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Preface

The response of students and teachers to the first three editions of Linear Algebra and
Its Applications has been most gratifying. This Fourth Edition provides substantial
support both for teaching and for using technology in the course. As before, the text
provides a modern elementary introduction to linear algebra and a broad selection of
interesting applications. The material is accessible to students with the maturity that
should come from successful completion of two semesters of college-level mathematics,
usually calculus.

The main goal of the text is to help students master the basic concepts and skills they
will use later in their careers. The topics here follow the recommendations of the Linear
Algebra Curriculum Study Group, which were based on a careful investigation of the
real needs of the students and a consensus among professionals in many disciplines that
use linear algebra. Hopefully, this course will be one of the most useful and interesting
mathematics classes taken by undergraduates.

WHAT'S NEW IN THIS EDITION

The main goal of this revision was to update the exercises and provide additional con-
tent, both in the book and online.

1. More than 25 percent of the exercises are new or updated, especially the computa-
tional exercises. The exercise sets remain one of the most important features of this
book, and these new exercises follow the same high standard of the exercise sets of
the past three editions. They are crafted in a way that retells the substance of each
of the sections they follow, developing the students’ confidence while challenging
them to practice and generalize the new ideas they have just encountered.

2. Twenty-five percent of chapter openers are new. These introductory vignettes pro-
vide applications of linear algebra and the motivation for developing the mathematics
that follows. The text returns to that application in a section toward the end of the
chapter.

3. A New Chapter: Chapter 8, The Geometry of Vector Spaces, provides a fresh topic
that my students have really enjoyed studying. Sections 1, 2, and 3 provide the basic
geometric tools. Then Section 6 uses these ideas to study Bezier curves and surfaces,
which are used in engineering and online computer graphics (in Adobe® Illustrator®
and Macromedia® FreeHand®). These four sections can be covered in four or five
50-minute class periods.

A second course in linear algebra applications typically begins with a substantial
review of key ideas from the first course. If part of Chapter 8 is in the first course,
the second course could include a brief review of sections 1 to 3 and then a focus on
the geometry in sections 4 and 5. That would lead naturally into the online chapters
9 and 10, which have been used with Chapter 8 at a number of schools for the past
five years.

4. The Study Guide, which has always been an integral part of the book, has been up-
dated to cover the new Chapter 8. As with past editions, the Study Guide incorporates

ix
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DISTINCTIVE FEATURES

detailed solutions to every third odd-numbered exercise as well as solutions to every
odd-numbered writing exercise for which the text only provides a hint.

5. Two new chapters are now available online, and can be used in a second course:

Chapter 9. Optimization
Chapter 10. Finite-State Markov Chains

An access code is required and is available to qualified adopters. For more informa-
tion, visit www.pearsonhighered.com/irc or contact your Pearson representative.

6. PowerPoint® slides are now available for the 25 core sections of the text; also in-
cluded are 75 figures from the text.

Early Introduction of Key Concepts

Many fundamental ideas of linear algebra are introduced within the first seven lectures,
in the concrete setting of R”, and then gradually examined from different points of view.
Later generalizations of these concepts appear as natural extensions of familiar ideas,
visualized through the geometric intuition developed in Chapter 1. A major achievement
of this text is that the level of difficulty is fairly even throughout the course.

A Modern View of Matrix Multiplication

Good notation is crucial, and the text reflects the way scientists and engineers actually
use linear algebra in practice. The definitions and proofs focus on the columns of a ma-
trix rather than on the matrix entries. A central theme is to view a matrix—vector product
Ax as a linear combination of the columns of A. This modern approach simplifies many
arguments, and it ties vector space ideas into the study of linear systems.

Linear Transformations

Linear transformations form a “thread” that is woven into the fabric of the text. Their
use enhances the geometric flavor of the text. In Chapter 1, for instance, linear trans-
formations provide a dynamic and graphical view of matrix—vector multiplication.

Eigenvalues and Dynamical Systems

Eigenvalues appear fairly early in the text, in Chapters 5 and 7. Because this material
is spread over several weeks, students have more time than usual to absorb and review
these critical concepts. Eigenvalues are motivated by and applied to discrete and con-
tinuous dynamical systems, which appear in Sections 1.10, 4.8, and 4.9, and in five
sections of Chapter 5. Some courses reach Chapter 5 after about five weeks by covering
Sections 2.8 and 2.9 instead of Chapter 4. These two optional sections present all the
vector space concepts from Chapter 4 needed for Chapter 5.

Orthogonality and Least-Squares Problems

These topics receive a more comprehensive treatment than is commonly found in begin-
ning texts. The Linear Algebra Curriculum Study Group has emphasized the need for
a substantial unit on orthogonality and least-squares problems, because orthogonality
plays such an important role in computer calculations and numerical linear algebra and
because inconsistent linear systems arise so often in practical work.
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PEDAGOGICAL FEATURES
Applications

A broad selection of applications illustrates the power of linear algebra to explain fun-
damental principles and simplify calculations in engineering, computer science, math-
ematics, physics, biology, economics, and statistics. Some applications appear in sep-
arate sections; others are treated in examples and exercises. In addition, each chapter
opens with an introductory vignette that sets the stage for some application of linear
algebra and provides a motivation for developing the mathematics that follows. Later,
the text returns to that application in a section near the end of the chapter.

A Strong Geometric Emphasis

Every major concept in the course is given a geometric interpretation, because many
students learn better when they can visualize an idea. There are substantially more
drawings here than usual, and some of the figures have never before appeared in a linear
algebra text.

Examples

This text devotes a larger proportion of its expository material to examples than do
most linear algebra texts. There are more examples than an instructor would ordinarily
present in class. But because the examples are written carefully, with lots of detail,
students can read them on their own.

Theorems and Proofs

Important results are stated as theorems. Other useful facts are displayed in tinted boxes,
for easy reference. Most of the theorems have formal proofs, written with the beginning
student in mind. In a few cases, the essential calculations of a proof are exhibited in a
carefully chosen example. Some routine verifications are saved for exercises, when they
will benefit students.

Practice Problems

A few carefully selected Practice Problems appear just before each exercise set. Com-
plete solutions follow the exercise set. These problems either focus on potential trouble
spots in the exercise set or provide a “warm-up” for the exercises, and the solutions
often contain helpful hints or warnings about the homework.

Exercises

The abundant supply of exercises ranges from routine computations to conceptual ques-
tions that require more thought. A good number of innovative questions pinpoint con-
ceptual difficulties that I have found on student papers over the years. Each exercise
set is carefully arranged in the same general order as the text; homework assignments
are readily available when only part of a section is discussed. A notable feature of the
exercises is their numerical simplicity. Problems “unfold” quickly, so students spend
little time on numerical calculations. The exercises concentrate on teaching understand-
ing rather than mechanical calculations. The exercises in the Fourth Edition maintain
the integrity of the exercises from the third edition, while providing fresh problems for
students and instructors.

Exercises marked with the symbol [M] are designed to be worked with the aid of a
“Matrix program” (a computer program, such as MATLAB® Maple™, Mathematica®,
MathCad®, or Derive™, or a programmable calculator with matrix capabilities, such as
those manufactured by Texas Instruments).
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WEB SUPPORT

True/False Questions

To encourage students to read all of the text and to think critically, I have developed 300
simple true/false questions that appear in 33 sections of the text, just after the computa-
tional problems. They can be answered directly from the text, and they prepare students
for the conceptual problems that follow. Students appreciate these questions—after
they get used to the importance of reading the text carefully. Based on class testing
and discussions with students, I decided not to put the answers in the text. (The Study
Guide tells the students where to find the answers to the odd-numbered questions.) An
additional 150 true/false questions (mostly at the ends of chapters) test understanding
of the material. The text does provide simple T/F answers to most of these questions,
but it omits the justifications for the answers (which usually require some thought).

Writing Exercises

An ability to write coherent mathematical statements in English is essential for all stu-
dents of linear algebra, not just those who may go to graduate school in mathematics.
The text includes many exercises for which a written justification is part of the answer.
Conceptual exercises that require a short proof usually contain hints that help a student
get started. For all odd-numbered writing exercises, either a solution is included at
the back of the text or a hint is provided and the solution is given in the Study Guide,
described below.

Computational Topics

The text stresses the impact of the computer on both the development and practice of
linear algebra in science and engineering. Frequent Numerical Notes draw attention
to issues in computing and distinguish between theoretical concepts, such as matrix
inversion, and computer implementations, such as LU factorizations.

This Web site at www.pearsonhighered.com/lay contains support material for the text-
book. For students, the Web site contains review sheets and practice exams (with
solutions) that cover the main topics in the text. They come directly from courses I
have taught in past years. Each review sheet identifies key definitions, theorems, and
skills from a specified portion of the text.

Applications by Chapters

The Web site also contains seven Case Studies, which expand topics introduced at the
beginning of each chapter, adding real-world data and opportunities for further explo-
ration. In addition, more than 20 Application Projects either extend topics in the text or
introduce new applications, such as cubic splines, airline flight routes, dominance matri-
ces in sports competition, and error-correcting codes. Some mathematical applications
are integration techniques, polynomial root location, conic sections, quadric surfaces,
and extrema for functions of two variables. Numerical linear algebra topics, such as
condition numbers, matrix factorizations, and the QR method for finding eigenvalues,
are also included. Woven into each discussion are exercises that may involve large data
sets (and thus require technology for their solution).

Getting Started with Technology

If your course includes some work with MATLAB, Maple, Mathematica, or TI cal-
culators, you can read one of the projects on the Web site for an introduction to the
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technology. In addition, the Study Guide provides introductory material for first-time
users.

Data Files

Hundreds of files contain data for about 900 numerical exercises in the text, Case Stud-
ies, and Application Projects. The data are available at www.pearsonhighered.com/lay
in a variety of formats—for MATLAB, Maple, Mathematica, and the TI-83+/86/89
graphic calculators. By allowing students to access matrices and vectors for a particular
problem with only a few keystrokes, the data files eliminate data entry errors and save
time on homework.

MATLAB Projects

These exploratory projects invite students to discover basic mathematical and numerical
issues in linear algebra. Written by Rick Smith, they were developed to accompany a
computational linear algebra course at the University of Florida, which has used Linear
Algebra and Its Applications for many years. The projects are referenced by an icon
at appropriate points in the text. About half of the projects explore fundamental
concepts such as the column space, diagonalization, and orthogonal projections; several
projects focus on numerical issues such as flops, iterative methods, and the SVD; and a
few projects explore applications such as Lagrange interpolation and Markov chains.

Study Guide

A printed version of the Study Guide is available at low cost. I wrote this Guide to
be an integral part of the course. An icon [ se | in the text directs students to special
subsections of the Guide that suggest how to master key concepts of the course. The
Guide supplies a detailed solution to every third odd-numbered exercise, which allows
students to check their work. A complete explanation is provided whenever an odd-
numbered writing exercise has only a “Hint” in the answers. Frequent “Warnings”
identify common errors and show how to prevent them. MATLAB boxes introduce
commands as they are needed. Appendixes in the Study Guide provide comparable
information about Maple, Mathematica, and TI graphing calculators (ISBN: 0-321-
38883-6).

Instructor’s Edition

For the convenience of instructors, this special edition includes brief answers to all
exercises. A Note to the Instructor at the beginning of the text provides a commentary
on the design and organization of the text, to help instructors plan their courses. It also
describes other support available for instructors. (ISBN: 0-321-38518-7)

Instructor’s Technology Manuals

Each manual provides detailed guidance for integrating a specific software package or
graphic calculator throughout the course, written by faculty who have already used the
technology with this text. The following manuals are available to qualified instructors
through the Pearson Instructor Resource Center, www.pearsonhighered.com/irc: MAT-
LAB (ISBN: 0-321-53365-8), Maple (ISBN: 0-321-75605-3), Mathematica (ISBN: 0-
321-38885-2), and the TI-834-/86/89 (ISBN: 0-321-38887-9).
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A Note to Students

This course is potentially the most interesting and worthwhile undergraduate mathe-
matics course you will complete. In fact, some students have written or spoken to me
after graduation and said that they still use this text occasionally as a reference in their
careers at major corporations and engineering graduate schools. The following remarks
offer some practical advice and information to help you master the material and enjoy
the course.

In linear algebra, the concepts are as important as the computations. The simple
numerical exercises that begin each exercise set only help you check your understanding
of basic procedures. Later in your career, computers will do the calculations, but you
will have to choose the calculations, know how to interpret the results, and then explain
the results to other people. For this reason, many exercises in the text ask you to explain
or justify your calculations. A written explanation is often required as part of the answer.
For odd-numbered exercises, you will find either the desired explanation or at least a
good hint. You must avoid the temptation to look at such answers before you have tried
to write out the solution yourself. Otherwise, you are likely to think you understand
something when in fact you do not.

To master the concepts of linear algebra, you will have to read and reread the text
carefully. New terms are in boldface type, sometimes enclosed in a definition box. A
glossary of terms is included at the end of the text. Important facts are stated as theorems
or are enclosed in tinted boxes, for easy reference. I encourage you to read the first five
pages of the Preface to learn more about the structure of this text. This will give you a
framework for understanding how the course may proceed.

In a practical sense, linear algebra is a language. You must learn this language the
same way you would a foreign language—with daily work. Material presented in one
section is not easily understood unless you have thoroughly studied the text and worked
the exercises for the preceding sections. Keeping up with the course will save you lots
of time and distress!

Numerical Notes

I hope you read the Numerical Notes in the text, even if you are not using a computer or
graphic calculator with the text. In real life, most applications of linear algebra involve
numerical computations that are subject to some numerical error, even though that error
may be extremely small. The Numerical Notes will warn you of potential difficulties in
using linear algebra later in your career, and if you study the notes now, you are more
likely to remember them later.

If you enjoy reading the Numerical Notes, you may want to take a course later in
numerical linear algebra. Because of the high demand for increased computing power,
computer scientists and mathematicians work in numerical linear algebra to develop
faster and more reliable algorithms for computations, and electrical engineers design
faster and smaller computers to run the algorithms. This is an exciting field, and your
first course in linear algebra will help you prepare for it.

XV
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A Note to Students

Study Guide

To help you succeed in this course, I suggest that you purchase the Study Guide
(www.mypearsonstore.com; 0-321-38883-6). Not only will it help you learn linear
algebra, it also will show you how to study mathematics. At strategic points in your
textbook, an icon [_se | will direct you to special subsections in the Study Guide entitled
“Mastering Linear Algebra Concepts.” There you will find suggestions for constructing
effective review sheets of key concepts. The act of preparing the sheets is one of
the secrets to success in the course, because you will construct links between ideas.
These links are the “glue” that enables you to build a solid foundation for learning and
remembering the main concepts in the course.

The Study Guide contains a detailed solution to every third odd-numbered exercise,
plus solutions to all odd-numbered writing exercises for which only a hint is given in
the Answers section of this book. The Guide is separate from the text because you
must learn to write solutions by yourself, without much help. (I know from years of
experience that easy access to solutions in the back of the text slows the mathematical
development of most students.) The Guide also provides warnings of common errors
and helpful hints that call attention to key exercises and potential exam questions.

If you have access to technology—MATLAB, Maple, Mathematica, or a TI
graphing calculator—you can save many hours of homework time. The Study Guide
is your “lab manual” that explains how to use each of these matrix utilities. It
introduces new commands when they are needed. You can download from the website
www.pearsonhighered.com/lay the data for more than 850 exercises in the text. (With
a few keystrokes, you can display any numerical homework problem on your screen.)
Special matrix commands will perform the computations for you!

What you do in your first few weeks of studying this course will set your pattern
for the term and determine how well you finish the course. Please read “How to Study
Linear Algebra” in the Study Guide as soon as possible. My students have found the
strategies there very helpful, and I hope you will, too.
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Linear Equations in

Linear Algebra

INTRODUCTORY EXAMPLE

Linear Models in Economics
and Engineering

It was late summer in 1949. Harvard Professor Wassily
Leontief was carefully feeding the last of his punched
cards into the university’s Mark II computer. The cards
contained economic information about the U.S. economy
and represented a summary of more than 250,000 pieces
of information produced by the U.S. Bureau of Labor
Statistics after two years of intensive work. Leontief had
divided the U.S. economy into 500 “sectors,” such as the
coal industry, the automotive industry, communications,
and so on. For each sector, he had written a linear equation
that described how the sector distributed its output to
the other sectors of the economy. Because the Mark II,
one of the largest computers of its day, could not handle
the resulting system of 500 equations in 500 unknowns,
Leontief had distilled the problem into a system of 42
equations in 42 unknowns.

Programming the Mark II computer for Leontief’s 42
equations had required several months of effort, and he
was anxious to see how long the computer would take
to solve the problem. The Mark II hummed and blinked
for 56 hours before finally producing a solution. We will
discuss the nature of this solution in Sections 1.6 and 2.6.

Leontief, who was awarded the 1973 Nobel Prize
in Economic Science, opened the door to a new era
in mathematical modeling in economics. His efforts

at Harvard in 1949 marked one of the first significant
uses of computers to analyze what was then a large-
scale mathematical model. Since that time, researchers
in many other fields have employed computers to analyze
mathematical models. Because of the massive amounts of
data involved, the models are usually linear; that is, they
are described by systems of linear equations.

The importance of linear algebra for applications has
risen in direct proportion to the increase in computing
power, with each new generation of hardware and
software triggering a demand for even greater capabilities.
Computer science is thus intricately linked with linear
algebra through the explosive growth of parallel processing
and large-scale computations.

Scientists and engineers now work on problems far
more complex than even dreamed possible a few decades
ago. Today, linear algebra has more potential value for
students in many scientific and business fields than any
other undergraduate mathematics subject! The material in
this text provides the foundation for further work in many
interesting areas. Here are a few possibilities; others will
be described later.

e Oil exploration. When a ship searches for offshore
oil deposits, its computers solve thousands of
separate systems of linear equations every day. The
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seismic data for the equations are obtained from employs linear programs that schedule flight crews,
underwater shock waves created by explosions monitor the locations of aircraft, or plan the varied
from air guns. The waves bounce off subsurface schedules of support services such as maintenance
rocks and are measured by geophones attached to and terminal operations.
mile-long cables behind the ship. o Electrical networks. Engineers use simulation

e Linear programming. Many important management software to design electrical circuits and microchips
decisions today are made on the basis of linear involving millions of transistors. Such software
programming models that utilize hundreds of relies on linear algebra techniques and systems of
variables. The airline industry, for instance, linear equations.

Systems of linear equations lie at the heart of linear algebra, and this chapter uses them to
introduce some of the central concepts of linear algebra in a simple and concrete setting.
Sections 1.1 and 1.2 present a systematic method for solving systems of linear equations.
This algorithm will be used for computations throughout the text. Sections 1.3 and
1.4 show how a system of linear equations is equivalent to a vector equation and to a
matrix equation. This equivalence will reduce problems involving linear combinations
of vectors to questions about systems of linear equations. The fundamental concepts of
spanning, linear independence, and linear transformations, studied in the second half of
the chapter, will play an essential role throughout the text as we explore the beauty and
power of linear algebra.

1.1 | SYSTEMS OF LINEAR EQUATIONS

A linear equation in the variables x, ..., x, is an equation that can be written in the
form
ay Xy +axxy + -+ apx, =b (1)

where b and the coefficients «, ..., a, are real or complex numbers, usually known
in advance. The subscript n may be any positive integer. In textbook examples and
exercises, n is normally between 2 and 5. In real-life problems, n might be 50 or 5000,
or even larger.

The equations

4x; —5x,+2=x; and x; =2(«/€—x1) + X3
are both linear because they can be rearranged algebraically as in equation (1):
3x1 —5x,=—2 and 2x; + x, —x3 = 276
The equations
dx; —5x, = x1x, and x, =2/x] — 6

are not linear because of the presence of x;x; in the first equation and ,/x; in the second.
A system of linear equations (or a linear system) is a collection of one or more
linear equations involving the same variables—say, xi, ..., X,. An example is

2x1 — X3 + 1.5x3= 8
X1 — 4X3=—7

2
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A solution of the system is a list (sq, 52, ..., 5,) of numbers that makes each equation a
true statement when the values sy, . . ., s, are substituted for xy, . . . , x,,, respectively. For
instance, (5, 6.5, 3) is a solution of system (2) because, when these values are substituted
in (2) for xy, x, x3, respectively, the equations simplify to 8 = 8§ and -7 = —7.

The set of all possible solutions is called the solution set of the linear system. Two
linear systems are called equivalent if they have the same solution set. That is, each
solution of the first system is a solution of the second system, and each solution of the
second system is a solution of the first.

Finding the solution set of a system of two linear equations in two variables is easy
because it amounts to finding the intersection of two lines. A typical problem is

X1 —2X2=—1
—X1 +3XZ = 3

The graphs of these equations are lines, which we denote by £; and £,. A pair of numbers
(x1, x,) satisfies both equations in the system if and only if the point (x;, x,) lies on both
£y and £,. In the system above, the solution is the single point (3, 2), as you can easily
verify. See Fig. 1.

FIGURE 1 Exactly one solution.

Of course, two lines need not intersect in a single point—they could be parallel, or
they could coincide and hence “intersect” at every point on the line. Figure 2 shows the
graphs that correspond to the following systems:

(@) x; —2x, =-—1 (b) x; —2x, =-1
X1 +2x,= 3 X1 +2x = 1
X X

2'/ 2+

(a) (b)
FIGURE 2 (a) No solution. (b) Infinitely many solutions.

Figures 1 and 2 illustrate the following general fact about linear systems, to be
verified in Section 1.2.
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A system of linear equations has

1. no solution, or
2. exactly one solution, or

3. infinitely many solutions.

A system of linear equations is said to be consistent if it has either one solution or
infinitely many solutions; a system is inconsistent if it has no solution.

Matrix Notation

The essential information of a linear system can be recorded compactly in a rectangular
array called a matrix. Given the system

X1 —2x,+ x3= 0
2x, —8x3= 8 3)
—4x1 + 5x2 +9x3 = -9
with the coefficients of each variable aligned in columns, the matrix

1 -2 1
0 2 =8
-4 5 9

is called the coefficient matrix (or matrix of coefficients) of the system (3), and

1 -2 1 0
0 2 -8 8 4)
-4 5 9 -9

is called the augmented matrix of the system. (The second row here contains a zero be-
cause the second equation could be written as 0 - x; + 2x, — 8x3 = 8.) An augmented
matrix of a system consists of the coefficient matrix with an added column containing
the constants from the right sides of the equations.

The size of a matrix tells how many rows and columns it has. The augmented matrix
(4) above has 3 rows and 4 columns and is called a 3 x 4 (read “3 by 4”) matrix. If m
and n are positive integers, an m x n matrix is a rectangular array of numbers with m
rows and n columns. (The number of rows always comes first.) Matrix notation will
simplify the calculations in the examples that follow.

Solving a Linear System

This section and the next describe an algorithm, or a systematic procedure, for solving
linear systems. The basic strategy is to replace one system with an equivalent system
(i.e., one with the same solution set) that is easier to solve.

Roughly speaking, use the x| term in the first equation of a system to eliminate
the x; terms in the other equations. Then use the x, term in the second equation to
eliminate the x, terms in the other equations, and so on, until you finally obtain a very
simple equivalent system of equations.

Three basic operations are used to simplify a linear system: Replace one equation
by the sum of itself and a multiple of another equation, interchange two equations, and
multiply all the terms in an equation by a nonzero constant. After the first example, you
will see why these three operations do not change the solution set of the system.
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EXAMPLE 1 Solve system (3).

SOLUTION The elimination procedure is shown here with and without matrix notation,
and the results are placed side by side for comparison:

xp =20+ x3= 0 1 2 1 0
2)C2 — 8X3 = & 0 2 -8 8
—4x1 + 5x2 + 9x3 = -9 -4 5 9 -9

Keep x| in the first equation and eliminate it from the other equations. To do so, add 4
times equation 1 to equation 3. After some practice, this type of calculation is usually
performed mentally:

4 - [equation 1]: 4x; —8xy + 4x3= 0
+ [equation 3]: —4x; + 5x3 + 9x3 =-9
[new equation 3]: —3x2 + 13x3 = -9

The result of this calculation is written in place of the original third equation:

X1 —2x+ x3= 0 1 =2 1 0
2X2 — 8X3 = & 0 2 -8 8
—3xy + 13x3 = —9 0 =3 13 -9

Now, multiply equation 2 by 1/2 in order to obtain 1 as the coefficient for x,. (This
calculation will simplify the arithmetic in the next step.)

X1 —2x+ x3= 0 1 =2 1 0
Xy — 4X3 = 4 0 1 —4 4
—3xy + 13x3 = —9 0 =3 13 -9

Use the x; in equation 2 to eliminate the —3x; in equation 3. The “mental” computation
is

3 - [equation 2]: 3x; — 12x3 = 12
+ [equation 3]: —3x, + 13x3 = -9
[new equation 3]: x3= 3

The new system has a triangular form:!

X1—2x+ x3 =0 1 =2 1 0
X2—4X3 =4 0 1 —4 4
0 0 1 3

X3

Eventually, you want to eliminate the —2x; term from equation 1, but it is more efficient
to use the x3 in equation 3 first, to eliminate the —4.x3 and +x3 terms in equations 2 and 1.
The two “mental” calculations are

4. eq. 3]: 4x; =12 —1-[eq. 3]: —x3=-3
+eq.2]: xp—4dx3= 4 +lq 1l x;—2x4+x3= 0
[new eq. 2]:  x» =16 [new eq. 1]:  x; — 2x, =-3

I'The intuitive term triangular will be replaced by a precise term in the next section.
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=/

} (29, 16, 3)

Each of the original equations
determines a plane in three-
dimensional space. The point

(29, 16, 3) lies in all three planes.

It is convenient to combine the results of these two operations:

X1 — 2x, =-3 1 =2 0 -3
X2 = 16 0 1 0 16
Xs= 3 0 0 1 3

Now, having cleaned out the column above the x3 in equation 3, move back to the x; in
equation 2 and use it to eliminate the —2x, above it. Because of the previous work with
X3, there is now no arithmetic involving x; terms. Add 2 times equation 2 to equation
1 and obtain the system:

X =29 1 0 0 29
X =16 0 1 0 16
= 3 0 0 1 3

The work is essentially done. It shows that the only solution of the original system is
(29, 16, 3). However, since there are so many calculations involved, it is a good practice
to check the work. To verify that (29, 16, 3) is a solution, substitute these values into
the left side of the original system, and compute:

(29) —2(16) + (3)=29-32+3=0
2(16) — 8(3) =32—24 =8
—4(29) + 5(16) + 9(3) = —116 + 80 + 27 = —9

The results agree with the right side of the original system, so (29, 16, 3) is a solution
of the system. [ ]

Example 1 illustrates how operations on equations in a linear system correspond to
operations on the appropriate rows of the augmented matrix. The three basic operations
listed earlier correspond to the following operations on the augmented matrix.

ELEMENTARY ROW OPERATIONS

1. (Replacement) Replace one row by the sum of itself and a multiple of another
row.?

2. (Interchange) Interchange two rows.
3. (Scaling) Multiply all entries in a row by a nonzero constant.

Row operations can be applied to any matrix, not merely to one that arises as the
augmented matrix of a linear system. Two matrices are called row equivalent if there
is a sequence of elementary row operations that transforms one matrix into the other.

It is important to note that row operations are reversible. If two rows are inter-
changed, they can be returned to their original positions by another interchange. If a
row is scaled by a nonzero constant ¢, then multiplying the new row by 1/c produces
the original row. Finally, consider a replacement operation involving two rows—say,
rows 1 and 2—and suppose that ¢ times row 1 is added to row 2 to produce a new row 2.
To “reverse” this operation, add —c times row 1 to (new) row 2 and obtain the original
row 2. See Exercises 29-32 at the end of this section.

2 A common paraphrase of row replacement is “Add to one row a multiple of another row.”



1.1 Systems of Linear Equations 7

At the moment, we are interested in row operations on the augmented matrix of a
system of linear equations. Suppose a system is changed to a new one via row opera-
tions. By considering each type of row operation, you can see that any solution of the
original system remains a solution of the new system. Conversely, since the original
system can be produced via row operations on the new system, each solution of the new
system is also a solution of the original system. This discussion justifies the following
statement.

If the augmented matrices of two linear systems are row equivalent, then the two
systems have the same solution set.

Though Example 1 is lengthy, you will find that after some practice, the calculations
go quickly. Row operations in the text and exercises will usually be extremely easy to
perform, allowing you to focus on the underlying concepts. Still, you must learn to
perform row operations accurately because they will be used throughout the text.

The rest of this section shows how to use row operations to determine the size of a
solution set, without completely solving the linear system.

Existence and Uniqueness Questions

Section 1.2 will show why a solution set for a linear system contains either no solutions,
one solution, or infinitely many solutions. Answers to the following two questions will
determine the nature of the solution set for a linear system.

To determine which possibility is true for a particular system, we ask two questions.

TWO FUNDAMENTAL QUESTIONS ABOUT A LINEAR SYSTEM
1. Is the system consistent; that is, does at least one solution exist?

2. If a solution exists, is it the only one; that is, is the solution unique?

These two questions will appear throughout the text, in many different guises. This
section and the next will show how to answer these questions via row operations on the
augmented matrix.

EXAMPLE 2 Determine if the following system is consistent:

X1 —2x,+ x3= 0
2X2 — 8X3 = 8
—4x; + 5x, + 9x3 = —9

SOLUTION This is the system from Example 1. Suppose that we have performed the
row operations necessary to obtain the triangular form

X1 —2x+ x3=0 1 =2 1 0
Xy —dx; =4 0 1 —4 4
=3 0 0 1 3

At this point, we know x3. Were we to substitute the value of x3 into equation 2, we
could compute x, and hence could determine x; from equation 1. So a solution exists;
the system is consistent. (In fact, x; is uniquely determined by equation 2 since x3 has
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This system is inconsistent
because there is no point that lies
in all three planes.

only one possible value, and x; is therefore uniquely determined by equation 1. So the
solution is unique.) [ ]

EXAMPLE 3 Determine if the following system is consistent:

Xy — 4)C3 =38
2x1 —3xy + 2x3 =1 (%)
5X1 — 8X2 + 7.X3 =1

SOLUTION The augmented matrix is

0 1 -4 8
2 -3 2 1
5 -8 7 1

To obtain an x; in the first equation, interchange rows 1 and 2:

2 -3 2 1
0o 1 —4 8
5 -8 7 1

To eliminate the 5x; term in the third equation, add —5/2 times row 1 to row 3:

2 -3 2 1
0 1 -4 8 (6)
0 —1/2 2 -3/2

Next, use the x, term in the second equation to eliminate the —(1/2)x, term from the
third equation. Add 1/2 times row 2 to row 3:

2 -3 2 1
0 1 —4 8 @)
0 0 0 5/2

The augmented matrix is now in triangular form. To interpret it correctly, go back to
equation notation:

2x1 —3x2 +2x3= 1
Xy — 4X3 = 8 (8)
0 =502

The equation 0 = 5/2 is a short form of Ox; + Ox, + Ox3; = 5/2. This system in trian-
gular form obviously has a built-in contradiction. There are no values of xy, x,, x3 that
satisfy (8) because the equation 0 = 5/2 is never true. Since (8) and (5) have the same
solution set, the original system is inconsistent (i.e., has no solution). |

Pay close attention to the augmented matrix in (7). Its last row is typical of an
inconsistent system in triangular form.
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— NUMERICAL NOTE

In real-world problems, systems of linear equations are solved by a computer. For
a square coefficient matrix, computer programs nearly always use the elimination
algorithm given here and in Section 1.2, modified slightly for improved accuracy.
The vast majority of linear algebra problems in business and industry are
solved with programs that use floating point arithmetic. Numbers are represented
as decimals &.d; - --d,, x 10", where r is an integer and the number p of digits to
the right of the decimal point is usually between 8 and 16. Arithmetic with such
numbers typically is inexact, because the result must be rounded (or truncated) to
the number of digits stored. “Roundoff error” is also introduced when a number
such as 1/3 is entered into the computer, since its decimal representation must be
approximated by a finite number of digits. Fortunately, inaccuracies in floating
point arithmetic seldom cause problems. The numerical notes in this book will
occasionally warn of issues that you may need to consider later in your career.

PRACTICE PROBLEMS

Throughout the text, practice problems should be attempted before working the exer-
cises. Solutions appear after each exercise set.

1. State in words the next elementary row operation that should be performed on the
system in order to solve it. [More than one answer is possible in (a).]

a. x| +4x, —2x3 + 8x4 = 12 b. x;1 —3x, +5x3 —2x4= 0
Xy — Tx3 + 2x4 = —4 X7 + 8x3 =—4
S5x3 — x4= 7 2x3 - 3
X3 + 3x4 =5
Xy = 1

2. The augmented matrix of a linear system has been transformed by row operations
into the form below. Determine if the system is consistent.

I 5 2 -6
0 4 -7 2
0 0 5 0

3. Is (3,4, —2) a solution of the following system?

5x1 — xo+2x3= 7
—2x1 + 6x7 + 9x3 =
—7x1 4+ 5xp — 3x3 = -7
4. For what values of & and k is the following system consistent?
2X1 — Xy = h
—6x1 +3x2 =k
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1.1 EXERCISES

Solve each system in Exercises 1-4 by using elementary row
operations on the equations or on the augmented matrix. Follow
the systematic elimination procedure described in this section.

1. X + 5)C2 = 7
—2X1 — 7.X2 = -5

2. 3X1 + 6X2 =-3
5X1 =+ 7X2 = 10

3. Find the point (x;, x,) that lies on the line x; + 2x, = 4 and
on the line x; — x, = 1. See the figure.

X2

X1
X +2x,=4

/

4. Find the point of intersection of the lines x; 4+ 2x, = —13
and 3x; —2x, =1

Consider each matrix in Exercises 5 and 6 as the augmented matrix
of a linear system. State in words the next two elementary row
operations that should be performed in the process of solving the
system.

1 -4 =3 0 7
s |0 1 4 0 6
“lo o 1 0 2
0 0 0 1 =5
(1 -6 4 0 —17
6 |0 2 -7 0 4
“lo o 1 2 =3
(0 0 4 1 2]

In Exercises 7-10, the augmented matrix of a linear system has
been reduced by row operations to the form shown. In each case,
continue the appropriate row operations and describe the solution
set of the original system.

17 3 —4

0 1 -1 3
1o 0 o 1
Lo 0 1 -2
(1 =5 4 0 0]
g |0 1 0 1 0
"o 0 3 0 o0
L0 0 0 2 0]
(1 -1 0 0 =57
o |0 1 -2 0 7
"o 0 1 -3 2
(0 0 0 1 4

1 3 0 -2 -7
o 1 0 3 6
10. o o 1 o0 2

o o0 o0 1 =2

Solve the systems in Exercises 11-14.

11. X + 5X3 =—4
X1 +4X2 +3X3 =-2
2X1 + 7)62 + X3 = -2

12. X — 5X2 + 4X3 =-3
2X1 — 7X2 + 3X3 =-2
—2X1 + X2+ 7X3 =-1

13. X1 — 3X3 =
2X1 + 2X2 + 9X3 = 7
X2 + 5)(3 = -2
14. 2X1 - 6X3 = -8
Xy + 2X3 = 3

3x) + 6x, —2x3 = —4

Determine if the systems in Exercises 15 and 16 are consistent.
Do not completely solve the systems.

15. x; — 6x, =5
X, —4x3 4+ x4 =0

—X1+ 6x2 + x3+5x, =3
—Xx3 +5x3 +4x, =0

16. 2x, —4x,=-10
3x, + 3x3 = 0

X3 +4x, = —1

=3x1 + 2% +3x3 + x4 = 5

17. Do the three lines 2x; + 3x, = —1, 6x; 4+ 5x, = 0, and
2x; — 5x, = 7 have a common point of intersection? Ex-
plain.

18. Do the three planes 2x| + 4x; + 4x3 = 4, x, — 2x3 = =2,
and 2x; + 3x, = 0 have at least one common point of inter-
section? Explain.

In Exercises 19-22, determine the value(s) of /& such that the
matrix is the augmented matrix of a consistent linear system.

1 h 4 1 h =5
O w |y 4 o

1 4 =2 —4 12 h
N ]

2 -6 -3
In Exercises 23 and 24, key statements from this section are
either quoted directly, restated slightly (but still true), or altered
in some way that makes them false in some cases. Mark each
statement True or False, and justify your answer. (If true, give the



approximate location where a similar statement appears, or refer
to a definition or theorem. If false, give the location of a statement
that has been quoted or used incorrectly, or cite an example that
shows the statement is not true in all cases.) Similar true/false
questions will appear in many sections of the text.

23. a.

b. A5 x 6 matrix has six rows.

Every elementary row operation is reversible.

c. The solution set of a linear system involving variables

X1,...,X, isalistof numbers (sy, ..., s,) that makes each
equation in the system a true statement when the values
S1,...,8, are substituted for x1, ..., x,, respectively.

d. Two fundamental questions about a linear system involve
existence and uniqueness.

24. a. Two matrices are row equivalent if they have the same

number of rows.
b. Elementary row operations on an augmented matrix never
change the solution set of the associated linear system.
c. Two equivalent linear systems can have different solution
sets.

d. A consistent system of linear equations has one or more
solutions.

25. Find an equation involving g, &, and k that makes
this augmented matrix correspond to a consistent system:

1 4 7 g

0 3 =5 h

-2 5 -9 k

26. Suppose the system below is consistent for all possible values
of f and g. What can you say about the coefficients ¢ and
d? Justify your answer.
2)C1 —+ 4X2 = f
cx;+dx, = g

27. Suppose a, b, ¢, and d are constants such that a is not zero
and the system below is consistent for all possible values of
f and g. What can you say about the numbers a, b, ¢, and
d? Justify your answer.
ax; +bx, = f
cxy+dx, =g

28. Construct three different augmented matrices for linear sys-
tems whose solution setis x; = 3, x, = —2, x3 = —1.
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In Exercises 29-32, find the elementary row operation that trans-
forms the first matrix into the second, and then find the reverse
row operation that transforms the second matrix into the first.

0o -2 5 3 -1 6

2. |1 3 5[, |1 3 -5
13 -1 6] [0 —2 5
(13 =471 3 —4

3. [0 2 6[,]0 2 6
[0 =5 10] [0 1 -2
(1 =2 1 o] [t =2 1 o0

3. [0 5 =2 8| |0 5 2 8
|4 -1 3 6] |0 7 -1 —6
12 -5 0] [1 2 -5 0

2. |0 1 -3 =20 1 =3 =2
L0 4 —12 7 0O 0 0 15

An important concern in the study of heat transfer is to determine
the steady-state temperature distribution of a thin plate when the
temperature around the boundary is known. Assume the plate
shown in the figure represents a cross section of a metal beam,
with negligible heat flow in the direction perpendicular to the
plate. Let 77, ..., T, denote the temperatures at the four interior
nodes of the mesh in the figure. The temperature at a node is
approximately equal to the average of the four nearest nodes—to
the left, above, to the right, and below.? For instance,

Ti=(10+20+T +Ty)/4, or 4T, —T>— Ty =30

20° 20°

10° L 2 e

10° P e
30° 30°

33. Write a system of four equations whose solution gives esti-
mates for the temperatures 7, ..., Ty.

34. Solve the system of equations from Exercise 33. [Hint: To
speed up the calculations, interchange rows 1 and 4 before
starting “replace” operations.]

3 See Frank M. White, Heat and Mass Transfer (Reading, MA:
Addison-Wesley Publishing, 1991), pp. 145-149.

SOLUTIONS TO PRACTICE PROBLEMS

1. a. For “hand computation,” the best choice is to interchange equations 3 and 4.
Another possibility is to multiply equation 3 by 1/5. Or, replace equation 4 by
its sum with —1/5 times row 3. (In any case, do not use the x; in equation 2 to
eliminate the 4x; in equation 1. Wait until a triangular form has been reached and
the x3 terms and x4 terms have been eliminated from the first two equations.)
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(3,4,-2)

Since (3, 4, —2) satisfies the first
two equations, it is on the line of
the intersection of the first two
planes. Since (3,4, —2) does not
satisfy all three equations, it does
not lie on all three planes.

b. The system is in triangular form. Further simplification begins with the x4 in the
fourth equation. Use the x4 to eliminate all x4 terms above it. The appropriate
step now is to add 2 times equation 4 to equation 1. (After that, move to equation
3, multiply it by 1/2, and then use the equation to eliminate the x3 terms above
it.)

2. The system corresponding to the augmented matrix is
X1 + 5x3 + 2x3 = —6

4)C2 — 7X3 = 2

5X3 = 0

The third equation makes x3 = 0, which is certainly an allowable value for x3. After

eliminating the x3 terms in equations 1 and 2, you could go on to solve for unique

values for x, and x;. Hence a solution exists, and it is unique. Contrast this situation
with that in Example 3.

3. Itis easy to check if a specific list of numbers is a solution. Set x; = 3, x, = 4, and
x3 = —2, and find that
53) - ) +2(-2)= 15— 4—- 4=7
—23)+6(4) +9(-2)= —6+24—-18=0
—73) +54) —3(-2)=-214+20+ 6=5
Although the first two equations are satisfied, the third is not, so (3,4, —2) is not a

solution of the system. Notice the use of parentheses when making the substitutions.
They are strongly recommended as a guard against arithmetic errors.

4. When the second equation is replaced by its sum with 3 times the first equation, the
system becomes
2X1 — Xy = h
0=k+3h

If k + 3h is nonzero, the system has no solution. The system is consistent for any
values of 1 and k that make k + 34 = 0.

1.2 | ROW REDUCTION AND ECHELON FORMS

This section refines the method of Section 1.1 into a row reduction algorithm that will
enable us to analyze any system of linear equations.! By using only the first part of
the algorithm, we will be able to answer the fundamental existence and uniqueness
questions posed in Section 1.1.

The algorithm applies to any matrix, whether or not the matrix is viewed as an
augmented matrix for a linear system. So the first part of this section concerns an
arbitrary rectangular matrix and begins by introducing two important classes of matrices
that include the “triangular” matrices of Section 1.1. In the definitions that follow, a
nonzero row or column in a matrix means a row or column that contains at least one
nonzero entry; a leading entry of a row refers to the leftmost nonzero entry (in a nonzero
row).

'The algorithm here is a variant of what is commonly called Gaussian elimination. A similar elimination
method for linear systems was used by Chinese mathematicians in about 250 B.C. The process was unknown
in Western culture until the nineteenth century, when a famous German mathematician, Carl Friedrich Gauss,
discovered it. A German engineer, Wilhelm Jordan, popularized the algorithm in an 1888 text on geodesy.
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A rectangular matrix is in echelon form (or row echelon form) if it has the
following three properties:
1. All nonzero rows are above any rows of all zeros.

2. Each leading entry of a row is in a column to the right of the leading entry of
the row above it.

3. All entries in a column below a leading entry are zeros.

If a matrix in echelon form satisfies the following additional conditions, then it is
in reduced echelon form (or reduced row echelon form):

4. The leading entry in each nonzero row is 1.

5. Each leading 1 is the only nonzero entry in its column.

An echelon matrix (respectively, reduced echelon matrix) is one that is in echelon
form (respectively, reduced echelon form). Property 2 says that the leading entries form
an echelon (“steplike”) pattern that moves down and to the right through the matrix.
Property 3 is a simple consequence of property 2, but we include it for emphasis.

The “triangular” matrices of Section 1.1, such as

2 =3 2 1 I 0 0 29
0o 1 —4 8 and 0 1 0 16
0 0 0 5/2 0 0 1 3

are in echelon form. In fact, the second matrix is in reduced echelon form. Here are
additional examples.

EXAMPLE 1 The following matrices are in echelon form. The leading entries (w)
may have any nonzero value; the starred entries (x) may have any value (including zero).

- “ N N 0 ] * * * * * * * *

0 . s N 0 0 0 " * * * * *
0O 0 0 O % * * * *

0 O 0 0

O 0 0 0 o O o0 0 O I * % %
o O O 0 0 0 0 0 " %

The following matrices are in reduced echelon form because the leading entries are 1°s,
and there are 0’s below and above each leading 1.

| 0 % % 0 1 *x 0 0 0 =x x 0 =x
0 1 N N 0O 0 0 1 0O 0 = * 0 x
, o o0 O o0 1 0 =« * 0 %

O 0 0 O
0o 0 0 0 O 0 O O O 1 =* =x 0 =«
o 0 O O O O o o0 1 =«

Any nonzero matrix may be row reduced (that is, transformed by elementary row
operations) into more than one matrix in echelon form, using different sequences of row
operations. However, the reduced echelon form one obtains from a matrix is unique.
The following theorem is proved in Appendix A at the end of the text.

THEOREM 1 Uniqueness of the Reduced Echelon Form

Each matrix is row equivalent to one and only one reduced echelon matrix.
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If a matrix A is row equivalent to an echelon matrix U, we call U an echelon form
(or row echelon form) of A; if U is in reduced echelon form, we call U the reduced
echelon form of A. [Most matrix programs and calculators with matrix capabilities
use the abbreviation RREF for reduced (row) echelon form. Some use REF for (row)
echelon form.]

Pivot Positions

When row operations on a matrix produce an echelon form, further row operations to
obtain the reduced echelon form do not change the positions of the leading entries. Since
the reduced echelon form is unique, the leading entries are always in the same positions
in any echelon form obtained from a given matrix. These leading entries correspond to
leading 1’s in the reduced echelon form.

A pivot position in a matrix A is a location in A that corresponds to a leading 1
in the reduced echelon form of A. A pivot column is a column of A that contains
a pivot position.

In Example 1, the squares (m) identify the pivot positions. Many fundamental
concepts in the first four chapters will be connected in one way or another with pivot
positions in a matrix.

EXAMPLE 2 Row reduce the matrix A below to echelon form, and locate the pivot
columns of A.
0 -3 -6 4 9
-1 -2 -1 3 1
-2 -3 0 3 -1
1 4 5 -9 -7

A=

SOLUTION Use the same basic strategy as in Section 1.1. The top of the leftmost
nonzero column is the first pivot position. A nonzero entry, or pivot, must be placed
in this position. A good choice is to interchange rows 1 and 4 (because the mental
computations in the next step will not involve fractions).

Pivot
lﬂ 5 -9 -7
-1 -2 -1 3 1
-2 =3 0 3 -1
0 -3 -6 4 9
L Pivot column

Create zeros below the pivot, 1, by adding multiples of the first row to the rows below,
and obtain matrix (1) below. The pivot position in the second row must be as far left
as possible—namely, in the second column. Choose the 2 in this position as the next

pivot.
Pivot
4]5 -9 -7
2 4 —6 —6

5 10 —15 —15 &y
3 6 4 9

SO O =

t Next pivot column
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Add —5/2 times row 2 to row 3, and add 3/2 times row 2 to row 4.

1 4 5 -9 -7
0 2 4 —6 —6
0o 0 0 0 O 2)
0O 0 0 -5 0

The matrix in (2) is different from any encountered in Section 1.1. There is no way to
create a leading entry in column 3! (We can’t use row 1 or 2 because doing so would
destroy the echelon arrangement of the leading entries already produced.) However, if
we interchange rows 3 and 4, we can produce a leading entry in column 4.

Pivot
1 4 5 -9 -7 [ I * ok
0 2 4 -6 -6 General form: 0 N * * *
0 0 0 -5 0 ’ 0 0 0 ] *
0 0 0 O 0 0 0 0 0 0
t t t Pivot columns

The matrix is in echelon form and thus reveals that columns 1, 2, and 4 of A are pivot

columns.
Pivot positions
OJ—3J—6 419

—1 —2<—1 3|1
A=l 5 3 0 3441 )

1 4 5 -9 -7

t 4 t Pivot columns |

A pivot, as illustrated in Example 2, is a nonzero number in a pivot position that is
used as needed to create zeros via row operations. The pivots in Example 2 were 1, 2,
and —5. Notice that these numbers are not the same as the actual elements of A in the
highlighted pivot positions shown in (3).

With Example 2 as a guide, we are ready to describe an efficient procedure for
transforming a matrix into an echelon or reduced echelon matrix. Careful study and
mastery of this procedure now will pay rich dividends later in the course.

The Row Reduction Algorithm

The algorithm that follows consists of four steps, and it produces a matrix in echelon
form. A fifth step produces a matrix in reduced echelon form. We illustrate the algorithm
by an example.

EXAMPLE 3 Apply elementary row operations to transform the following matrix
first into echelon form and then into reduced echelon form:

0O 3 -6 6 4 =5

3 -7 8 =5 8 9

3 -9 12 -9 6 15

SOLUTION

STEP 1

Begin with the leftmost nonzero column. This is a pivot column. The pivot
position is at the top.
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0O 3 -6 6 4 -5
3 -7 8§ =5 8 9
3 -9 12 -9 6 15
t Pivot column

STEP 2

Select a nonzero entry in the pivot column as a pivot. If necessary, interchange
rows to move this entry into the pivot position.

Interchange rows 1 and 3. (We could have interchanged rows 1 and 2 instead.)

Pivot
3<Jj9 12 =9 6 15

3 =7 8§ =5 8 9
0o 3 -6 6 4 =5

STEP 3

Use row replacement operations to create zeros in all positions below the pivot.

As a preliminary step, we could divide the top row by the pivot, 3. But with two 3’s in
column 1, it is just as easy to add —1 times row 1 to row 2.

Pivot
3<-9 12 -9 6 15
o 2 -4 4 2 -6
o 3 -6 6 4 =5

STEP 4

Cover (or ignore) the row containing the pivot position and cover all rows, if any,
above it. Apply steps 1-3 to the submatrix that remains. Repeat the process until
there are no more nonzero rows to modify.

With row 1 covered, step 1 shows that column 2 is the next pivot column; for step 2,
select as a pivot the “top” entry in that column.

Pivot
3 -9 12 -9 6 15
0O 2<—-4 4 2 —6
0 3 -6 6 4 -5

t New pivot column

For step 3, we could insert an optional step of dividing the “top” row of the submatrix by
the pivot, 2. Instead, we add —3/2 times the “top” row to the row below. This produces

3 -9 12 -9 6 15
0o 2 -4 4 2 -6
0 O 0o o0 1 4
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When we cover the row containing the second pivot position for step 4, we are left with
a new submatrix having only one row:

3 -9 12 -9 6 15
0 2 -4 4 2 —6
0

0 0 0 1 4
1 Pivot

Steps 1-3 require no work for this submatrix, and we have reached an echelon form of
the full matrix. If we want the reduced echelon form, we perform one more step.

STEP 5

Beginning with the rightmost pivot and working upward and to the left, create
zeros above each pivot. If a pivot is not 1, make it 1 by a scaling operation.

The rightmost pivot is in row 3. Create zeros above it, adding suitable multiples of row
3torows 2 and 1.

3 -9 12 -9 0 -9 <« Row 1 + (—6) -tow 3
0O 2 —4 4 0 -—14 <~ Row 2 + (=2) - row 3
o 0 0 0 1 4

The next pivot is in row 2. Scale this row, dividing by the pivot.
3 -9 12 -9 0 -9
o 1 -2 2 0 -7 < Row scaled by 1
o 0 0O o 1 4

Create a zero in column 2 by adding 9 times row 2 to row 1.

3 0-6 9 0 -72 <~ Row 1 + (9) - row 2
o 1 -2 2 0 -7
o 0 0 o0 1 4

Finally, scale row 1, dividing by the pivot, 3.

1 0 -2 3 0 —-24 < Row scaled by 1

This is the reduced echelon form of the original matrix. [ |

The combination of steps 1-4 is called the forward phase of the row reduction
algorithm. Step 5, which produces the unique reduced echelon form, is called the
backward phase.

r— NUMERICAL NOTE

In step 2 above, a computer program usually selects as a pivot the entry in a
column having the largest absolute value. This strategy, called partial pivoting,
is used because it reduces roundoff errors in the calculations.
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Solutions of Linear Systems

The row reduction algorithm leads directly to an explicit description of the solution set
of a linear system when the algorithm is applied to the augmented matrix of the system.

Suppose, for example, that the augmented matrix of a linear system has been
changed into the equivalent reduced echelon form

I 0 -5 1
0o 1 1 4
0 0 0 0

There are three variables because the augmented matrix has four columns. The
associated system of equations is

X1 —5X3=1
X2+ x3=4 “)
0 =0

The variables x; and x, corresponding to pivot columns in the matrix are called basic
variables.? The other variable, x3, is called a free variable.

Whenever a system is consistent, as in (4), the solution set can be described
explicitly by solving the reduced system of equations for the basic variables in terms of
the free variables. This operation is possible because the reduced echelon form places
each basic variable in one and only one equation. In (4), solve the first equation for x;
and the second for x,. (Ignore the third equation; it offers no restriction on the variables.)

X1 =1+ 5x3
Xy = 4 — X3 (5)
x3 is free

The statement “x3 is free” means that you are free to choose any value for x3. Once
that is done, the formulas in (5) determine the values for x; and x,. For instance, when
x3 = 0, the solution is (1, 4,0); when x3 = 1, the solution is (6,3, 1). Each different
choice of x3 determines a (different) solution of the system, and every solution of the
system is determined by a choice of x3.

EXAMPLE 4 Find the general solution of the linear system whose augmented ma-
trix has been reduced to

1 6 2 -5 -2 —4

o 0 2 -8 -1 3

o o0 o o 1 7
SOLUTION The matrix is in echelon form, but we want the reduced echelon form

before solving for the basic variables. The row reduction is completed next. The symbol
~ before a matrix indicates that the matrix is row equivalent to the preceding matrix.

1T 6 2 -5 -2 47 [1 6 2 -5 0 10]
0 0 2 -8 -1 3|~l0 0 2 -8 0 10
o o o o 1 7/ [0 0 O O 1 7]
1 6 2 -5 0 107 [1 6 0 3 0 0
~l0 0 1 -4 0 5|~ 0 1 -4 0 5
o o o 0 1 7] [0 0 0 O 1 7]

2Some texts use the term leading variables because they correspond to the columns containing leading
entries.



1.2 Row Reduction and Echelon Forms 19

There are five variables because the augmented matrix has six columns. The associated
system now is

X1 + 6x7 + 3x4 =0
X3 — 4X4 =5 (6)
X5 = 7

The pivot columns of the matrix are 1, 3, and 5, so the basic variables are x;, x3, and
xs5. The remaining variables, x, and x4, must be free. Solve for the basic variables to
obtain the general solution:

X1 = —6)(72 — 3)(74

X 1s free

X3 =5+4x, (7

X4 1s free

X5 = 7

Note that the value of x5 is already fixed by the third equation in system (6). [ |

Parametric Descriptions of Solution Sets

The descriptions in (5) and (7) are parametric descriptions of solution sets in which
the free variables act as parameters. Solving a system amounts to finding a parametric
description of the solution set or determining that the solution set is empty.

Whenever a system is consistent and has free variables, the solution set has many
parametric descriptions. For instance, in system (4), we may add 5 times equation 2 to
equation 1 and obtain the equivalent system

X1 + 5x» =21
X2+X3= 4

We could treat x, as a parameter and solve for x; and x3 in terms of x;, and we would
have an accurate description of the solution set. However, to be consistent, we make the
(arbitrary) convention of always using the free variables as the parameters for describing
a solution set. (The answer section at the end of the text also reflects this convention.)

Whenever a system is inconsistent, the solution set is empty, even when the system
has free variables. In this case, the solution set has no parametric representation.

Back-Substitution

Consider the following system, whose augmented matrix is in echelon form but is not
in reduced echelon form:

X; — Txy + 2x3 — 5x4 + 8x5 = 10
Xy —3x3 +3x4 + x5 =-5
X4 — X5 = 4

A computer program would solve this system by back-substitution, rather than by com-
puting the reduced echelon form. That is, the program would solve equation 3 for x4 in
terms of x5 and substitute the expression for x4 into equation 2, solve equation 2 for x»,
and then substitute the expressions for x, and x4 into equation 1 and solve for x;.

Our matrix format for the backward phase of row reduction, which produces the re-
duced echelon form, has the same number of arithmetic operations as back-substitution.
But the discipline of the matrix format substantially reduces the likelihood of errors
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during hand computations. The best strategy is to use only the reduced echelon form
to solve a system! The Study Guide that accompanies this text offers several helpful
suggestions for performing row operations accurately and rapidly.

— NUMERICAL NOTE

In general, the forward phase of row reduction takes much longer than the
backward phase. An algorithm for solving a system is usually measured in flops
(or floating point operations). A flop is one arithmetic operation (4, —, *, /)
on two real floating point numbers.? For an n x (n 4+ 1) matrix, the reduction
to echelon form can take 2n°/3 + n%/2 — 7n/6 flops (which is approximately
2n3/3 flops when n is moderately large—say, n > 30). In contrast, further
reduction to reduced echelon form needs at most 1 flops.

Existence and Uniqueness Questions

Although a nonreduced echelon form is a poor tool for solving a system, this form is
just the right device for answering two fundamental questions posed in Section 1.1.

EXAMPLE 5 Determine the existence and uniqueness of the solutions to the system

3xy — 6x3 + 6x4 + 4x5 = =5
3X1 — 7X2 + 8)63 — 5)64 + 8.X5 = 9
3x1 — 9xp + 12x3 — 9x4 + 6x5 = 15

SOLUTION The augmented matrix of this system was row reduced in Example 3 to

3 -9 12 -9 6 15
0 2 —4 4 2 —6 (8)
0 0 0 0 1 4

The basic variables are x;, x,, and xs; the free variables are x3 and x4. There is no
equation such as 0 = 1 that would indicate an inconsistent system, so we could use
back-substitution to find a solution. But the existence of a solution is already clear
in (8). Also, the solution is not unique because there are free variables. Each different
choice of x3 and x4 determines a different solution. Thus the system has infinitely many
solutions. [ |

When a system is in echelon form and contains no equation of the form 0 = b, with
b nonzero, every nonzero equation contains a basic variable with a nonzero coefficient.
Either the basic variables are completely determined (with no free variables) or at least
one of the basic variables may be expressed in terms of one or more free variables. In
the former case, there is a unique solution; in the latter case, there are infinitely many
solutions (one for each choice of values for the free variables).

These remarks justify the following theorem.

3Traditionally, a flop was only a multiplication or division, because addition and subtraction took much less
time and could be ignored. The definition of flop given here is preferred now, as a result of advances in
computer architecture. See Golub and Van Loan, Matrix Computations, 2nd ed. (Baltimore: The Johns
Hopkins Press, 1989), pp. 19-20.
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THEOREM 2 Existence and Uniqueness Theorem

A linear system is consistent if and only if the rightmost column of the augmented
matrix is not a pivot column—that is, if and only if an echelon form of the
augmented matrix has no row of the form

[0 .-« 0 b] with b nonzero

If a linear system is consistent, then the solution set contains either (i) a unique
solution, when there are no free variables, or (ii) infinitely many solutions, when
there is at least one free variable.

The following procedure outlines how to find and describe all solutions of a linear
system.

USING ROW REDUCTION TO SOLVE A LINEAR SYSTEM
1. Write the augmented matrix of the system.

2. Use the row reduction algorithm to obtain an equivalent augmented matrix in
echelon form. Decide whether the system is consistent. If there is no solution,
stop; otherwise, go to the next step.

3. Continue row reduction to obtain the reduced echelon form.
4. Write the system of equations corresponding to the matrix obtained in step 3.

5. Rewrite each nonzero equation from step 4 so that its one basic variable is
expressed in terms of any free variables appearing in the equation.

PRACTICE PROBLEMS
1. Find the general solution of the linear system whose augmented matrix is
1 -3 =5 0
o 1 1 3
2. Find the general solution of the system

X1 —2x, — x3+3x4=0
—2x1 + 4xy + 5x3 — 5x4 =3
3x1 —6xp —6x3 + 8x4 =2

EXERCISES

In Exercises 1 and 2, determine which matrices are in reduced
echelon form and which others are only in echelon form.

S = O

S O = O
S O = O
- o O O
(==l eR
S O N =
SO OO
S W N =
SN =

| I
=3
1
S O =
O = O
S = =
— o
| I
o
[ e e
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1o 1 1 10 0 0
2 [0 1 1 1| b |0 2 0 0
0 0 0 0] 0 0 1 1
[0 0 0 0]
w20 0
“lo 0o 1 0
L0 0 0 1|
o1 1 11
P I S N
"o 0o 0o o 1
L0 0 0 0 0

Row reduce the matrices in Exercises 3 and 4 to reduced echelon
form. Circle the pivot positions in the final matrix and in the
original matrix, and list the pivot columns.

1 2 4 8 1 2 4 5
3. 12 4 6 8 4. |2 4 5 4
36 9 12 4 5 4 2

5. Describe the possible echelon forms of a nonzero 2 x 2
matrix. Use the symbols ®, %, and 0, as in the first part of
Example 1.

6. Repeat Exercise 5 for a nonzero 3 x 2 matrix.

Find the general solutions of the systems whose augmented ma-
trices are given in Exercises 7-14.

103 4 7 1 -3 0 -5
13 9 7 6] 815 7 o 9]
[0 1 -2 3 1 =2 -1 4
ol R —6] 015 4 =5 6]
Hsa o 13 0
1. [9 -6 12 0 12.
6 4 5 0 0 0 0 1 -7
- (0 0 0 0 1
1 -3 0 -1 0 -2
0 1 0 0 —4 1
Bto 00 1 9 4
L0 0 0 0 0 0]
(10 -5 0 -8 37
0 1 4 -1 0 6
Y99 0 0 0 1 o0
L0 0 0 0 0 0]

Exercises 15 and 16 use the notation of Example 1 for matrices
in echelon form. Suppose each matrix represents the augmented
matrix for a system of linear equations. In each case, determine if
the system is consistent. If the system is consistent, determine if
the solution is unique.

% * *
15. a. 0 u * *
0 0 0 0

0 ] * * *

b. 0 0 ] * *

0o 0 0 ] 0

u *
16. a 0 ] *
0 0
] * * * *
b. 0 0 u * *
0 0 0 ] *

In Exercises 17 and 18, determine the value(s) of /& such that the
matrix is the augmented matrix of a consistent linear system.

1 —1 4 1 -3 1
17, [_2 ! h} 18, [h : _2]
In Exercises 19 and 20, choose / and k such that the system has (a)

no solution, (b) a unique solution, and (c¢) many solutions. Give
separate answers for each part.

19. x| + hX2 =2 20.
dx, + 8xy, =k

X1 —3X2:1
2X1+hX2:k

In Exercises 21 and 22, mark each statement True or False. Justify
each answer.*

21. a. In some cases, a matrix may be row reduced to more
than one matrix in reduced echelon form, using different

sequences of row operations.

b. The row reduction algorithm applies only to augmented
matrices for a linear system.

c. A basic variable in a linear system is a variable that
corresponds to a pivot column in the coefficient matrix.

d. Finding a parametric description of the solution set of a
linear system is the same as solving the system.

e. If one row in an echelon form of an augmented matrix
is[0 0 0 5 0], then the associated linear system is
inconsistent.

22,

I

The reduced echelon form of a matrix is unique.

b. If every column of an augmented matrix contains a pivot,
then the corresponding system is consistent.

c. The pivot positions in a matrix depend on whether row
interchanges are used in the row reduction process.

d. A general solution of a system is an explicit description
of all solutions of the system.

e. Whenever a system has free variables, the solution set
contains many solutions.

23. Suppose the coefficient matrix of a linear system of four
equations in four variables has a pivot in each column. Ex-
plain why the system has a unique solution.

24. Suppose a system of linear equations has a 3 x 5 augmented
matrix whose fifth column is not a pivot column. Is the
system consistent? Why (or why not)?

4 True/false questions of this type will appear in many sections. Methods
for justifying your answers were described before Exercises 23 and 24 in
Section 1.1.



25. Suppose the coefficient matrix of a system of linear equations
has a pivot position in every row. Explain why the system is
consistent.

26. Suppose a 3 x 5 coefficient matrix for a system has three
pivot columns. Is the system consistent? Why or why not?

27. Restate the last sentence in Theorem 2 using the concept of
pivot columns: “If a linear system is consistent, then the
solution is unique if and only if ”

28. What would you have to know about the pivot columns in an
augmented matrix in order to know that the linear system is
consistent and has a unique solution?

29. A system of linear equations with fewer equations than un-
knowns is sometimes called an underdetermined system. Can
such a system have a unique solution? Explain.

30. Give an example of an inconsistent underdetermined system
of two equations in three unknowns.

31. A system of linear equations with more equations than un-
knowns is sometimes called an overdetermined system. Can
such a system be consistent? Illustrate your answer with a
specific system of three equations in two unknowns.

32. Suppose an n X (n + 1) matrix is row reduced to reduced
echelon form. Approximately what fraction of the total
number of operations (flops) is involved in the backward
phase of the reduction when n = 20? when n = 200?

Suppose experimental data are represented by a set of points in the
plane. An interpolating polynomial for the data is a polynomial
whose graph passes through every point. In scientific work,
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such a polynomial can be used, for example, to estimate values
between the known data points. Another use is to create curves for
graphical images on a computer screen. One method for finding an
interpolating polynomial is to solve a system of linear equations.

33. Find the interpolating polynomial p(t) = ay + at + a,t*
for the data (1, 6), (2, 15), (3,28). That is, find ay, a;, and
a, such that
ag + ai(1) + ax (1) 6
a4+ a1(2) + a2(2)* = 15
ap +ai(3) +ax(3)> =28

34. [M] In a wind tunnel experiment, the force on a projectile
due to air resistance was measured at different velocities:

Velocity (100 ft/sec) 0 2 4 6 8 10
Force (100 1b) 0 290 14.8 39.6 743 119

Find an interpolating polynomial for these data and estimate
the force on the projectile when the projectile is traveling
at 750 ft/sec. Use p(t) = ag + at + a>t> + ast>® + aut* +
ast®. What happens if you try to use a polynomial of degree
less than 5? (Try a cubic polynomial, for instance.)’

5 Exercises marked with the symbol [M] are designed to be worked with
the aid of a “Matrix program” (a computer program, such as
MATLAB®, Maple™, Mathernatica®, MathCad®, or Derive™, or a
programmable calculator with matrix capabilities, such as those
manufactured by Texas Instruments or Hewlett-Packard).

SOLUTIONS TO PRACTICE PROBLEMS

1. The reduced echelon form of the augmented matrix and the corresponding system

are

o

The general solution of the
system of equations is the line of
intersection of the two planes.

—2X3=9

X2+ x3=3

-2 9 X1
1 3 :| and

The basic variables are x; and x,, and the general solution is

X1:9+2)C3
XQ=3—X3

X3 is free

Note: It is essential that the general solution describe each variable, with any param-
eters clearly identified. The following statement does not describe the solution:

X1 =94+ 2x3
Xy = 3— X3
x3 = 3 — X, Incorrect solution

This description implies that x, and x3 are both free, which certainly is not the case.
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2. Row reduce the system’s augmented matrix:

1 =2 -1 3 0 1 -2 -1 3 0
-2 4 5 -5 3|~l0 0 3 1 3
3 -6 -6 8 2 (0 0 =3 -1 2
1 -2 -1 3 0]
~10 0o 3 1 3

(0 0 0 0 5]

This echelon matrix shows that the system is inconsistent, because its rightmost
column is a pivot column; the third row corresponds to the equation 0 = 5. There
is no need to perform any more row operations. Note that the presence of the free
variables in this problem is irrelevant because the system is inconsistent.

1.3 VECTOR EQUATIONS

Important properties of linear systems can be described with the concept and notation
of vectors. This section connects equations involving vectors to ordinary systems of
equations. The term vector appears in a variety of mathematical and physical contexts,
which we will discuss in Chapter 4, “Vector Spaces.” Until then, vector will mean an
ordered list of numbers. This simple idea enables us to get to interesting and important
applications as quickly as possible.

Vectors in R2

A matrix with only one column is called a column vector, or simply a vector. Examples
of vectors with two entries are

S S

where w; and w, are any real numbers. The set of all vectors with two entries is denoted
by R? (read “r-two”). The R stands for the real numbers that appear as entries in the
vectors, and the exponent 2 indicates that each vector contains two entries.!

Two vectors in R? are equal if and only if their corresponding entries are equal.

Thus [‘7‘] and [Z} are not equal, because vectors in R? are ordered pairs of real

numbers.
Given two vectors u and v in R?, their sum is the vector u + v obtained by adding
corresponding entries of u and v. For example,

BRINHYENH

Given a vector u and a real number ¢, the scalar multiple of u by c¢ is the vector cu
obtained by multiplying each entry in u by c. For instance,

. 3 3 15
if u—|:_1:| and ¢ =5, then cu—5|:_li|—|:_5j|

'Most of the text concerns vectors and matrices that have only real entries. However, all definitions and
theorems in Chapters 1-5, and in most of the rest of the text, remain valid if the entries are complex
numbers. Complex vectors and matrices arise naturally, for example, in electrical engineering and physics.



1.3 Vector Equations 25

The number ¢ in cu is called a scalar; it is written in lightface type to distinguish it from
the boldface vector u.

The operations of scalar multiplication and vector addition can be combined, as in
the following example.

EXAMPLE 1 Givenu = [_;} andv = |:_§i|, find 4u, (—3)v, and 4u + (—3)v.

w=| ] =[]
4u+(—3)v=[_g}+[‘1§]=[ﬂ T

Sometimes, for convenience (and also to save space), this text may write a column

SOLUTION

and

vector such as |: _3 :| in the form (3, —1). In this case, the parentheses and the comma

1
distinguish the vector (3, —1) from the 1 X 2 row matrix [ 3 -1 ], written with brackets

and no comma. Thus
3
2]+ -

because the matrices have different shapes, even though they have the same entries.

Geometric Descriptions of R?

Consider a rectangular coordinate system in the plane. Because each point in the plane
is determined by an ordered pair of numbers, we can identify a geometric point (a, b)

with the column vector [a ] So we may regard R? as the set of all points in the plane.

b
See Fig. 1.

R X

°(2,2) °(2,2)
Xl Xl
° [ ) () ()
(-2.-1 3,-1 (-2,-1) 3,-1)
FIGURE 1 Vectors as points. FIGURE 2 Vectors with arrows.

The geometric visualization of a vector such as |: _3 i| is often aided by including

1
an arrow (directed line segment) from the origin (0, 0) to the point (3, —1), as in Fig. 2.
In this case, the individual points along the arrow itself have no special significance.?

The sum of two vectors has a useful geometric representation. The following rule
can be verified by analytic geometry.

2In physics, arrows can represent forces and usually are free to move about in space. This interpretation of
vectors will be discussed in Section 4.1.
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Parallelogram Rule for Addition

If u and v in R? are represented as points in the plane, then u + v corresponds to
the fourth vertex of the parallelogram whose other vertices are u, 0, and v. See
Fig. 3.

X

eu+V

0 1

FIGURE 3 The parallelogram rule.

EXAMPLE 2 The vectorsu = [;},V = [_?},andu—{—v = |:_‘3‘i| are displayed

in Fig. 4.

x
2
u+v L

-+ oll
ve aF

1+ —t—1x
-6 2
FIGURE 4

The next example illustrates the fact that the set of all scalar multiples of one fixed
nonzero vector is a line through the origin, (0, 0).

EXAMPLE 3 Letu= |:_? } Display the vectors u, 2u, and —%u on a graph.

SOLUTION See Fig. 5, where u, 2u = [_§j|, and —%u = [2_/§j| are displayed. The

arrow for 2u is twice as long as the arrow for u, and the arrows point in the same
direction. The arrow for —%u is two-thirds the length of the arrow for u, and the arrows
point in opposite directions. In general, the length of the arrow for cu is |¢]| times the

Ou

2u

Typical multiples of u The set of all multiples of u

FIGURE 5
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X

FIGURE 6

Scalar multiples .

FIGURE 7
Vector subtraction.
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length of the arrow for u. [Recall that the length of the line segment from (0, 0) to (a, b)
is ~/a* + b%. We shall discuss this further in Chapter 6.] [ |

Vectors in R3

Vectors in R? are 3 x 1 column matrices with three entries. They are represented geo-

metrically by points in a three-dimensional coordinate space, with arrows from the ori-
2

gin sometimes included for visual clarity. The vectors a = | 3 | and 2a are displayed
4

in Fig. 6.

Vectors in R”

If n is a positive integer, R” (read “r-n”) denotes the collection of all lists (or ordered
n-tuples) of n real numbers, usually written as 7 x 1 column matrices, such as

uj
Us

Up

The vector whose entries are all zero is called the zero vector and is denoted by 0.
(The number of entries in 0 will be clear from the context.)

Equality of vectors in R” and the operations of scalar multiplication and vector
addition in R” are defined entry by entry just as in R, These operations on vectors
have the following properties, which can be verified directly from the corresponding
properties for real numbers. See Practice Problem 1 and Exercises 33 and 34 at the end
of this section.

Algebraic Properties of R”
For all u, v, w in R” and all scalars ¢ and d:

(u+v=v+u (V) c(a+v)=cu+cv
(i) m+v)+w=u+ (v+w) vi) (c+d)u=cu+du
(i) u+0=0+u=u (vii) ¢(du) = (cd)(u)
@iv) u+ (—u) = —u+u =0, (viii) lu = u

where —u denotes (—1)u

For simplicity of notation, a vector such as u + (—1)v is often written as u —v.
Figure 7 shows u — v as the sum of u and —v.

Linear Combinations

Given vectors v, va, ..., V, in R" and given scalars ¢y, ¢s, .. ., ¢,, the vector y defined
by

y=cvi+--+cpv,
is called a linear combination of vy,...,v, with weights c,,...,c,. Property (ii)
above permits us to omit parentheses when forming such a linear combination. The



28 CHAPTER 1 Linear Equations in Linear Algebra

FIGURE 9

weights in a linear combination can be any real numbers, including zero. For example,
some linear combinations of vectors v; and v, are

V3V + v, %V] (= %V] +0vy), and O (= 0v; + 0vy)

EXAMPLE 4 Figure 8 identifies selected linear combinations of v; = |:_1 i| and

V) = 1

v; and v;.) Estimate the linear combinations of v; and v, that generate the vectors u
and w.

2 ] (Note that sets of parallel grid lines are drawn through integer multiples of

FIGURE 8 Linear combinations of v; and v,.

SOLUTION The parallelogram rule shows that u is the sum of 3v; and —2v;; that is,
u=23v; —2v,

This expression for u can be interpreted as instructions for traveling from the origin
to u along two straight paths. First, travel 3 units in the v, direction to 3v;, and then
travel —2 units in the v, direction (parallel to the line through v, and 0). Next, although
the vector w is not on a grid line, w appears to be about halfway between two pairs of
grid lines, at the vertex of a parallelogram determined by (5/2)v; and (—1/2)v,. (See
Fig. 9.) Thus a reasonable estimate for w is
W= %V] — %vz u
The next example connects a problem about linear combinations to the fundamental
existence question studied in Sections 1.1 and 1.2.

1 2 7
EXAMPLE 5 Letaj=| -2 |,aa=|5 |,andb = 4 |. Determine whether
-5 6 -3

b can be generated (or written) as a linear combination of a; and a,. That is, determine
whether weights x| and x, exist such that

xia; +xa, =b (D
If vector equation (1) has a solution, find it.

SOLUTION Use the definitions of scalar multiplication and vector addition to rewrite
the vector equation

1 2 7
Xi| 2 |4+x|5|= 4
) 6 -3

t t t

a

&0
S
[=n
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which is the same as

X1 2X2 7
=2x1 |+ | 5x | = 4
—5X1 6X2 -3
and
X1+ 2xo 7
=2x1+5x, | = 4 ()
—5x1 + 6x2 -3

The vectors on the left and right sides of (2) are equal if and only if their corresponding
entries are both equal. That is, x; and x, make the vector equation (1) true if and only
if x| and x; satisfy the system
X1 +2x, = 7
—2x1 +5x, = 4 3)
—5x1 + 6x, = =3

To solve this system, row reduce the augmented matrix of the system as follows:3

1 2 7 1 2 7 1 2 7 1 0 3
-2 5 4|~]10 9 18| ~[0 I 2|~]0 1 2
-5 6 =3 0 16 32 0 16 32 0 0 0

The solution of (3) is x; = 3 and x, = 2. Hence b is a linear combination of a; and a,,
with weights x; = 3 and x, = 2. That is,

1 2 7
3 2| +2(5 ]| = 4 [ |
-5 6 =3

Observe in Example 5 that the original vectors aj, a,, and b are the columns of the
augmented matrix that we row reduced:

1 2 7
-2 5 4
-5 6 -3
bt
a a b
For brevity, write this matrix in a way that identifies its columns —namely,
[a1 a; b] “)

It is clear how to write this augmented matrix immediately from vector equation (1),

without going through the intermediate steps of Example 5. Take the vectors in the

order in which they appear in (1) and put them into the columns of a matrix as in (4).
The discussion above is easily modified to establish the following fundamental fact.

A vector equation
xia; + Xo@ + -+ x,a, = b

has the same solution set as the linear system whose augmented matrix is
[ai a - a, b] ®)

In particular, b can be generated by a linear combination of a, . . ., a, if and only
if there exists a solution to the linear system corresponding to the matrix (5).

3The symbol ~ between matrices denotes row equivalence (Section 1.2).
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One of the key ideas in linear algebra is to study the set of all vectors that can be
generated or written as a linear combination of a fixed set {vi, ..., v,} of vectors.

If vi,...,v, are in R”, then the set of all linear combinations of vy,...,v,
is denoted by Span{v;,...,v,} and is called the subset of R” spanned (or
generated) by vi,...,v,. That is, Span{vy,...,v,} is the collection of all
vectors that can be written in the form

C1V1 +CVy + -+ CpVp

with ¢y, ..., ¢, scalars.

Asking whether a vector b is in Span {vy,...,v,} amounts to asking whether the
vector equation

X1vp +Xovp + -+ x,v, =b

has a solution, or, equivalently, asking whether the linear system with augmented matrix
[vi --- v, b]hasasolution.

Note that Span{v;,...,v,} contains every scalar multiple of v, (for exam-
ple), since ¢vy = ¢vy + 0vy +--- + 0Ov,. In particular, the zero vector must be in
Span{vy,...,v,}.

A Geometric Description of Span{v} and Span{u, v}

Let v be a nonzero vector in R3. Then Span {v} is the set of all scalar multiples of v,
which is the set of points on the line in R? through v and 0. See Fig. 10.

If u and v are nonzero vectors in R, with v not a multiple of u, then Span {u, v} is
the plane in R? that contains u, v, and 0. In particular, Span {u, v} contains the line in
R3 through u and 0 and the line through v and 0 . See Fig. 11.

X

m / /
’7 ST
[/
. [T
A 2 | w

X

.

2

FIGURE 10 Span{v} as a line FIGURE 11 Span{u, v} asa
through the origin. plane through the origin.
1 5 -3
EXAMPLE 6 Let aj=| -2, aa=| —13 |, and b= 8 |. Then
3 -3 1

Span {a;, a,} is a plane through the origin in R3. Is b in that plane?
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SOLUTION Does the equation x;a; + xpa, = b have a solution? To answer this, row
reduce the augmented matrix [a; a, b]:

1 5 =3 1 5 =3 1 5 =3

-2 —13 8|~]0 =3 2(~10 =3 2

3 -3 1 0 —18 10 0O 0 -2
The third equation is 0 = —2, which shows that the system has no solution. The vector
equation xja; + x,a, = b has no solution, and so b is not in Span {a;, a,}. |

Linear Combinations in Applications

The final example shows how scalar multiples and linear combinations can arise when
a quantity such as “cost” is broken down into several categories. The basic principle for
the example concerns the cost of producing several units of an item when the cost per

unit is known:

number| | cost | _ |total

of units | | perunit{ ~ | cost
EXAMPLE 7 A company manufactures two products. For $1.00 worth of product
B, the company spends $.45 on materials, $.25 on labor, and $.15 on overhead. For

$1.00 worth of product C, the company spends $.40 on materials, $.30 on labor, and
$.15 on overhead. Let

45 40
b=| .25 and c¢=1 .30
.15 15

Then b and c represent the “costs per dollar of income” for the two products.

a. What economic interpretation can be given to the vector 100b?

b. Suppose the company wishes to manufacture x; dollars worth of product B and
X, dollars worth of product C. Give a vector that describes the various costs the
company will have (for materials, labor, and overhead).

SOLUTION
a. Compute
45 45
100b = 100| .25 | = | 25
15 15

The vector 100b lists the various costs for producing $100 worth of product
B —namely, $45 for materials, $25 for labor, and $15 for overhead.

b. The costs of manufacturing x; dollars worth of B are given by the vector x;b, and
the costs of manufacturing x, dollars worth of C are given by x,¢. Hence the total
costs for both products are given by the vector x;b + xc. [ ]

PRACTICE PROBLEMS

1. Prove thatu + v = v + u for any u and v in R".
2. For what value(s) of & will y be in Span{vy, v, v3} if
1 5 -3 —4
vi=| -1/, v, = | —4 |, V3 = 1|, and y= 3
-2 -7 0 h
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1.3 EXERCISES

In Exercises 1 and 2, compute u 4 v and u — 2v.

ve=[S]v= 3] 2= 3=

In Exercises 3 and 4, display the following vectors using arrows
on an xy-graph: u, v, —v, —2v,u + v, u — v, and u — 2v. Notice
that u — v is the vertex of a parallelogram whose other vertices are

u, 0, and —v.

3. uand v as in Exercise 1 4. uand v as in Exercise 2

In Exercises 5 and 6, write a system of equations that is equivalent

to the given vector equation.

3 5 2
5. x| 2| +x, 0f=1]-3
8 -9 8

o [ 3] 2] [ 3]-[2]

Use the accompanying figure to write each vector listed in Exer-
cises 7 and 8 as a linear combination of u and v. Is every vector

in R? a linear combination of u and v?

7. Vectors a, b, ¢, and d

8. Vectors w, X, y, and z

In Exercises 9 and 10, write a vector equation that is equivalent to

the given system of equations.
9. Xy + 5)C3 =0 10.

4x; + 6x, — x3=0
—X1+3X2 —8X3:0

3x1 — 2X2 + 4X3 =3
—2X1 — 7X2 + 5)63 =1
5)C1 + 4X2 — 3)63 =2

In Exercises 11 and 12, determine if b is a linear combination of

aj, a,, and as.

1 0 5 2

11. a = -2 , Ay = 1 , a3 = —6 ,b: —1
L0 2 | | 8] | 6]
M1 —27] =6 117

12. a, = 0 , Ay = 3 ,a3 = 7 ,b= -5
1 -2 | | 5] | 9]

In Exercises 13 and 14, determine if b is a linear combination of
the vectors formed from the columns of the matrix A.

13.

14.

15.

16.

1 -4 2 3
A= 0 3 5(,b=]|-7
-2 8 —4 =N
1 0 57 M 27
A=|-2 1 -6 |,b=]| -1
. 0 2 8] | 6]
1] M5 37
Leta; = 3 |,aa=| —8 |,andb = | —5 |. For what
| -1 ] L 2] a
value(s) of /4 is b in the plane spanned by a; and a,?
17 =27 R
Letv, = , V) = 1 [,andy = | —3 |. For what
-2 7 | —5 ]

value(s) of_ h is;' in the pIane ggenerated by v; and v,?

In Exercises 17 and 18, list five vectors in Span {vy, v,}. For each
vector, show the weights on v; and v, used to generate the vector
and list the three entries of the vector. Do not make a sketch.

17.

18.

19.

20.

21.

22.

3 —4
vV = 1 , V) = 0
| 2 1
17] -2
vV = 1 , ¥V = 3
| —2 ] 0
Give a geometric description of Span {v;, v,} for the vectors
8] 12
V| = 2 |and v, = 3
—6 | -9

Give a geometric description of Span {v{, v,} for the vectors
in Exercise 18.

2 2 hil . .
Letu—[_1:| and v—[1:|. Show that [k]ls in
Span {u, v} for all s and k.

Construct a3 x 3 matrix A, with nonzero entries, and a vector
b in R3 such that b is not in the set spanned by the columns
of A.

In Exercises 23 and 24, mark each statement True or False. Justify
each answer.

23.

a. Another notation for the vector [ _g} is[—4 3]

b. The points in the plane corresponding to [_g] and

|: _; ] lie on a line through the origin.

c. An example of a linear combination of vectors v; and v,
is the vector 1v;.



24,

25.

26.

27.

28.

d. The solution set of the linear system whose augmented
matrix is [a; a, a3 b] is the same as the solution
set of the equation x;a; + x,a; + x3a; = b.

e. Theset Span {u, v} is always visualized as a plane through
the origin.

a. When u and v are nonzero vectors, Span {u, v} contains
only the line through u and the origin, and the line through
v and the origin.

b. Any list of five real numbers is a vector in R>.

c. Asking whether the linear system corresponding to
an augmented matrix [a; a, a; b] has a solution
amounts to asking whether b is in Span {a;, a,, a3 }.

d. The vector v results when a vector u — v is added to the

vector v.
e. The weights ¢;,...,c, in a linear combination
cvy + -+ + ¢,v, cannot all be zero.
1 0 —4 4
Let A = 0 3 =2 | and b= 1 Denote the
-2 6 3 —4

columns of A by aj, a,, a3, and let W = Span {a|, a,, a;3}.
a. Isbin{a;,a,, a;}? How many vectors are in {a,, a5, a3}?
b. Is b in W? How many vectors are in W?

c. Show that a, is in W. [Hint: Row operations are unnec-
essary.]

2 0 6 10
Let A=| —1 8 5|, letb= 3 |, and let W be
1 -2 1 7

the set of all linear combinations of the columns of A.
a. Isbin W?
b. Show that the second column of 4 isin W.

A mining company has two mines. One day’s operation
at mine #1 produces ore that contains 30 metric tons of
copper and 600 kilograms of silver, while one day’s operation
at mine #2 produces ore that contains 40 metric tons of
o

and

copper and 380 kilograms of silver. Let v; = |: 6(3)0

\2) 0 :| . Then v, and v, represent the “output per day”

| 4

- |:380

of mine #1 and mine #2, respectively.

a. What physical interpretation can be given to the vector
5V1?

b. Suppose the company operates mine #1 for x; days and

mine #2 for x, days. Write a vector equation whose

solution gives the number of days each mine should

operate in order to produce 240 tons of copper and 2824

kilograms of silver. Do not solve the equation.

c. [M] Solve the equation in (b).

A steam plant burns two types of coal: anthracite (A) and
bituminous (B). For each ton of A burned, the plant produces
27.6 million Btu of heat, 3100 grams (g) of sulfur dioxide,
and 250 g of particulate matter (solid-particle pollutants). For

29.
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each ton of B burned, the plant produces 30.2 million Btu,
6400 g of sulfur dioxide, and 360 g of particulate matter.

a. How much heat does the steam plant produce when it
burns x; tons of A and x, tons of B?

b. Suppose the output of the steam plant is described by
a vector that lists the amounts of heat, sulfur dioxide,
and particulate matter. Express this output as a linear
combination of two vectors, assuming that the plant burns
x tons of A and x, tons of B.

c. [M] Over a certain time period, the steam plant produced
162 million Btu of heat, 23,610 g of sulfur dioxide, and
1623 g of particulate matter. Determine how many tons
of each type of coal the steam plant must have burned.
Include a vector equation as part of your solution.

Let vy,...,v; be points in R? and suppose that for
Jj =1,...,k an object with mass m is located at point v;.
Physicists call such objects point masses. The total mass of
the system of point masses is

m=my+ -+ myg

The center of gravity (or center of mass) of the system is

1
V= —[mv+-- 4+ mv]
m

Compute the center of gravity of the system consisting of the
following point masses (see the figure):

Point Mass

v =(2,-2,4) 4¢g

v, = (—4,2,3) 2¢g

vy = (4,0,-2) 3¢g

vy = (1,-6,0) 5¢g
A3

\7 \p]
0

X1
33 V4 EY)

30. Let v be the center of mass of a system of point

masses located at v, .. Is v in

Span {vy, ..

., Vi as in Exercise 29.
., Vi +? Explain.
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31. A thin triangular plate of uniform density and thickness has solution? Is the solution unique? Use the figure to explain
vertices at vi = (0, 1), v, = (8,1),and v; = (2, 4), as in the your answers.
figure below, and the mass of the plate is 3 g. X2
X,
2 o3
Y3
4 [
Metal Plate Vi
b
V, oV ¢
| 2
o 0 .
8 V2
a. Find the (x, y)-coordinates of the center of mass of the
plate. This “balance point” of the plate coincides with 33. Use the vectors u = (uy,...,u,), v=(vy,...,v,), and
the center of mass of a system consisting of three 1-gram w = (wy,...,w,) to verify the following algebraic proper-
point masses located at the vertices of the plate. ties of R”.
b. Determine how to distribute an additional mass of 6 g a u+v)+w=u+(v+w)

at the three vertices of the plate to move the balance
point of the plate to (2,2). [Hint: Let w, w,, and ws
denote the masses added at the three vertices, so that 34. Use the vectoru = (uy, ..., u,) to verify the following alge-
w4 w4+ w; = 6.] braic properties of R".

32. Consider the vectors vy, V5, v3, and b in R?, shown in the a ut(-w=(uwt+u=0
figure. Does the equation x;v; + x,v, + X3V3 = b have a b. c¢(du) = (cd)u for all scalars ¢ and d

b. c(u+ v) = cu+ cv for each scalar ¢

SOLUTIONS TO PRACTICE PROBLEMS

1. Take arbitrary vectors u = (uy,...,u,) and v = (vy,...,v,) in R”, and compute
u+v=u +v,...,u, +vy,) Definition of vector addition
= (v1 +Uy,..., 0, + u,,) Commutativity of addition in R
=v+u Definition of vector addition
h=9 2. The vector y belongs to Span {v;, v,, v3} if and only if there exist scalars x;, x3, X3
such that
oV2 1 5 -3 —4
OV \h=5 o V3 X1 —1 +X2 —4 +X3 1 = 3
Span {vy, v, v3} -2 -7 0 h
h=1 This vector equation is equivalent to a system of three linear equations in three
unknowns. If you row reduce the augmented matrix for this system, you find that
R Rl I 1 5 -3 —4 1 5 -3 —4 1 5 -3 —4
€ points ;. 1€ on a line 1 —4 1 3l ~10 1 -2 _1 ~lo 1 -2 1
that intersects the plane when -2 -7 0 h 0 3 -6 h-8 0 0 0 h=5
h=5. The system is consistent if and only if there is no pivot in the fourth column. That

is, h — 5 must be 0. So y is in Span {vy, v,, v3} if and only if 4 = 5.

Remember: The presence of a free variable in a system does not guarantee that the
system is consistent.

1.4 | THE MATRIX EQUATION Ax=Db

A fundamental idea in linear algebra is to view a linear combination of vectors as the
product of a matrix and a vector. The following definition permits us to rephrase some
of the concepts of Section 1.3 in new ways.
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If A is an m x n matrix, with columns ay,...,a,, and if x is in R”, then the
product of A and x, denoted by Ax, is the linear combination of the columns
of A using the corresponding entries in x as weights; that is,

X1
Ax=[a; ay -+ a,]| ! | =xa +xa+-+xa,

Xn

Note that Ax is defined only if the number of columns of A equals the number of entries
in X.

EXAMPLE 1

B HE BB

2 3 4 2 -3 8 —21 —13
b. &8 0 |:7:| =4 8|+7| 0|= 32|+ 0] = 32 [ |
-5 2 -5 2 -20 14 —6

EXAMPLE 2 Forvy, vy, vsin R™, write the linear combination 3v; — 5v, + 7vs as
a matrix times a vector.

SOLUTION Place vy, v, v3 into the columns of a matrix A and place the weights 3, —5,
and 7 into a vector X. That is,

3
3vi=5va+7vs=[vi V2 vi|| =5 | = Ax ]
7

Section 1.3 showed how to write a system of linear equations as a vector equation
involving a linear combination of vectors. For example, the system

X1 +2x, — x3=4
—5x, +3x3 =1

Ll e

As in Example 2, the linear combination on the left side is a matrix times a vector, so

that (2) becomes
X1
1 2 -1 4
o 2=l ®

X3

ey

is equivalent to

Equation (3) has the form Ax = b. Such an equation is called a matrix equation,
to distinguish it from a vector equation such as is shown in (2).

Notice how the matrix in (3) is just the matrix of coefficients of the system (1).
Similar calculations show that any system of linear equations, or any vector equation
such as (2), can be written as an equivalent matrix equation in the form Ax = b. This
simple observation will be used repeatedly throughout the text.

Here is the formal result.
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THEOREM 3

If A is an m x n matrix, with columns ay, ..., a,, and if b is in R™, the matrix
equation
Ax=Db 4)

has the same solution set as the vector equation
Xia; + xpa + -+ x,a, = b (5)

which, in turn, has the same solution set as the system of linear equations whose
augmented matrix is
[a, a -+ a, b] (6)

Theorem 3 provides a powerful tool for gaining insight into problems in linear
algebra, because a system of linear equations may now be viewed in three different
but equivalent ways: as a matrix equation, as a vector equation, or as a system of linear
equations. Whenever you construct a mathematical model of a problem in real life, you
are free to choose whichever viewpoint is most natural. Then you may switch from one
formulation of a problem to another whenever it is convenient. In any case, the matrix
equation (4), the vector equation (5), and the system of equations are all solved in the
same way —by row reducing the augmented matrix (6). Other methods of solution will
be discussed later.

Existence of Solutions

The definition of Ax leads directly to the following useful fact.

The equation Ax = b has a solution if and only if b is a linear combination of the
columns of A.

Section 1.3 considered the existence question, “Is b in Span{ay, ..., a,}?” Equiv-
alently, “Is Ax = b consistent?” A harder existence problem is to determine whether
the equation Ax = b is consistent for all possible b.

1 3 4 by
EXAMPLE 3 LetA=| -4 2 —6 |andb = | b, |. Isthe equation Ax = b
-3 -2 -7 b3

consistent for all possible by, by, b3?

SOLUTION Row reduce the augmented matrix for Ax = b:

1 3 4 b 1 3 4 by
—4 2 —6 by |~ |0 14 10 by + 4b,
32 -7 b | |0 7 5 by+3b
1 3 4 by
~10 14 10 by + 4b,

0 0 0 bs+3b—5(by+4by)

The third entry in column 4 equals b, — %bz + b3. The equation Ax = b is not
consistent for every b because some choices of b can make b; — %bz + b3 nonzero. W
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The reduced matrix in Example 3 provides a description of all b for which the
equation Ax = b is consistent: The entries in b must satisfy

bl—%b2+b3=0

This is the equation of a plane through the origin in R3. The plane is the set of all linear
combinations of the three columns of 4. See Fig. 1.

The equation Ax = b in Example 3 fails to be consistent for all b because the
echelon form of A has a row of zeros. If A had a pivot in all three rows, we would
not care about the calculations in the augmented column because in this case an echelon
form of the augmented matrix could not have a row suchas[0 0 0 1].

In the next theorem, the sentence “The columns of A span R””” means that every b in

R™ is a linear combination of the columns of A. In general, a set of vectors {vy,...,V,}
in R” spans (or generates) R™ if every vector in R” is a linear combination of
Vi,...,V,—thatis, if Span{v,...,v,} = R".

Let A be an m x n matrix. Then the following statements are logically equivalent.
That is, for a particular A, either they are all true statements or they are all false.
For each b in R™, the equation Ax = b has a solution.

Each b in R™ is a linear combination of the columns of A.

The columns of A span R"™.

g o o p

A has a pivot position in every row.

Theorem 4 is one of the most useful theorems in this chapter. Statements (a),
(b), and (c) are equivalent because of the definition of Ax and what it means for a
set of vectors to span R”. The discussion after Example 3 suggests why (a) and (d)
are equivalent; a proof is given at the end of the section. The exercises will provide
examples of how Theorem 4 is used.

Warning: Theorem 4 is about a coefficient matrix, not an augmented matrix. If an
augmented matrix [ A b ] has a pivot position in every row, then the equation Ax = b
may or may not be consistent.

Computation of Ax

The calculations in Example 1 were based on the definition of the product of a matrix A
and a vector x. The following simple example will lead to a more efficient method for
calculating the entries in Ax when working problems by hand.

EXAMPLE 4 Compute Ax,where A= | -1 5 =3 |andx=| x»



38 CHAPTER 1 Linear Equations in Linear Algebra

SOLUTION From the definition,

2 3 4 X1 2 3 4
—1 5 =3 X2 | =x1| =1 |+ x 51 +x3] =3
6 -2 8 X3 6 -2 8
2)C1 3)62 T 4)C3
=| —x; | + 5x | + | —3x3 (7)
6X| —2X2 i 8X3

_2)61 +3X2 +4X3_
—Xx1 + 5x, — 3x3
L 6x1 —2x, + 8x3 i

The first entry in the product Ax is a sum of products (sometimes called a dot product),
using the first row of A and the entries in x. That is,

2 3 4 X1
X2

X3

2x1 + 3xy + 4x3

This matrix shows how to compute the first entry in Ax directly, without writing down
all the calculations shown in (7). Similarly, the second entry in Ax can be calculated at
once by multiplying the entries in the second row of A by the corresponding entries in
x and then summing the resulting products:

X1

-1 5 -3

X2
X3

—X1 4+ 5x, — 3x3

Likewise, the third entry in Ax can be calculated from the third row of A4 and the entries

in Xx. |
Row-Vector Rule for Computing Ax
If the product Ax is defined, then the ith entry in Ax is the sum of the products of
corresponding entries from row i of A and from the vector x.

EXAMPLE 5

a 1 2 -1 g 14423417 _ |3

[0 -5 3 . 044+ (-5-3+3-7| |6
2 -3 4 2:44(-3)-7 —137]

b. 8 0 |:7i|= 8-440-7 | = 32
| -5 2 (=5)-4+2-7 —6 |
1 o[ r 1-r+0-54+0-1 r

c. {0 1 O s =10r+1-5s+0-2|=|s [ |
|0 0 1 t O-r+0-s+1-¢ | ¢

By definition, the matrix in Example 5(c) with 1’s on the diagonal and 0’s elsewhere
is called an identity matrix and is denoted by /. The calculation in part (c) shows that
Ix = x for every x in R?. There is an analogous n x n identity matrix, sometimes
written as [,,. As in part (c), I,x = x for every x in R”.
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Properties of the Matrix—Vector Product Ax

The facts in the next theorem are important and will be used throughout the text. The
proof relies on the definition of Ax and the algebraic properties of R”.

If A is an m X n matrix, u and v are vectors in R”, and ¢ is a scalar, then:

a. A(u+v) = Au + Av;
b. A(cu) = c(Au).

PROOF For simplicity, taken =3, A =[a; a, az],andu,vin R3. (The proof of
the general case is similar.) Fori = 1,2, 3, let u; and v; be the ith entries in u and v,
respectively. To prove statement (a), compute A(u + v) as a linear combination of the
columns of A using the entries in u + v as weights.

ui + U1
A(u+v)=[a; a a3]| ur+ v
us + v3
i i ~L Entriesinu + v
= (u1 +vi)ay + (u2 + v)ay + (u3 + v3)az
1 1 1 Columns of 4
= (u1a; + uray + uzaz) + (via; + vra; + v3a3)

= Au+ Av
To prove statement (b), compute A(cu) as a linear combination of the columns of A
using the entries in cu as weights.
CUq

[ar1 ay a3]| cusr | = (cup)ay + (cuz)az + (cuz)az
Cus

A(cu)

= c(uja) + c(u2a2) + c(uzas)
= c(u1a; + usa; + uzaz)
= c(Au) ]

— NUMERICAL NOTE

To optimize a computer algorithm to compute Ax, the sequence of calculations
should involve data stored in contiguous memory locations. The most widely
used professional algorithms for matrix computations are written in Fortran, a
language that stores a matrix as a set of columns. Such algorithms compute Ax
as a linear combination of the columns of A. In contrast, if a program is written in
the popular language C, which stores matrices by rows, Ax should be computed
via the alternative rule that uses the rows of A.

PROOF OF THEOREM 4 As was pointed out after Theorem 4, statements (a), (b), and
(c) are logically equivalent. So, it suffices to show (for an arbitrary matrix A) that (a)
and (d) are either both true or both false. That will tie all four statements together.

Let U be an echelon form of 4. Given b in R”, we can row reduce the augmented
matrix [ A b] to an augmented matrix [U d] for some d in R™:

[A b]~-~[U d]



40 CHAPTER 1 Linear Equations in Linear Algebra

If statement (d) is true, then each row of U contains a pivot position and there can be
no pivot in the augmented column. So Ax = b has a solution for any b, and (a) is true.
If (d) is false, the last row of U is all zeros. Let d be any vector with a 1 in its last entry.
Then [U d] represents an inconsistent system. Since row operations are reversible,
[U d] can be transformed into the form [ A b]. The new system Ax = b is also
inconsistent, and (a) is false. |

PRACTICE PROBLEMS

1 5 -2 0 _g -7
I.letA=(-3 1 9 5|, p= ol and b = 9 |. It can be shown
4 -8 -1 7 4 0

that p is a solution of Ax = b. Use this fact to exhibit b as a specific linear
combination of the columns of A.

2. Let A = |:§ ?j|, u= [_T ], and v = [_g] Verify Theorem 5(a) in this case

by computing A(u + v) and Au + Av.

1.4 EXERCISES

Compute the products in Exercises 1-4 using (a) the definition, as 9. 5x1+ x» —3x3=8 10. 4x; — x, =8
in Example 1, and (b) the row—vector rule for computing Ax. If a 2%, 4 dx; =0 5% 4 3x, =2
product is undefined, explain why.
3X1 — Xy = 1
-4 2 3 1 . . . . .
1 1 6 9 2. |3 |: 5 ] Given A and b in Exercises 11 and 12, write the augmented matrix
0 1 7 1 -1 for the linear system that corresponds to the matrix equation
Ax = b. Then solve the system and write the solution as a vector.
a0 [_z] . [1 3 _4} ; 13 4 2
. 6 3 32 1 1 11. A= 1 5 2|,b= 4
-3 -7 6 12
In Exercises 5-8, use the definition of AX to write the matrix 1 ) | |
equation as a vector equation, or vice versa. 2. A=| -3 -4 2|b=
2 5 2 3 -3
5 1 2 -3 1 ] -1 _ [—4] 0 3 s
-2 =3 1 -1 1 1 . )
- -1 13. Letu= |4 [and A= | =2 6 |. Is uin the plane in
4 1 1
2 -3 =21 R* spanned by the columns of A? (See the figure.) Why or
6 32 [ -3 :| _ 1 why not?
) 8 -5 5 —49 *u?
|2 1 11
4 =5 7 6
7. X -1 ‘o 3 - _8 _ _8 . ; g}ane 1spannedflj:‘y
. 7 _5 k 0 0 /o.u_ e columns o
—4 ! 2 =7 Where is u?
8. Zl[_i]+22|: é]+23|: §]+Z4|:(2)i|=|:1§i| 4 2 5 —1
14. Letu=| —1 [andA = | 0 1 —1 |.Isuinthe subset
In Exercises 9 and 10, write the system first as a vector equation 4 1 2 0

and then as a matrix equation. of R? spanned by the columns of 4? Why or why not?



15.

16.

LetA = 3 -l andb = by . Show that the equation
-9 3 by

Ax = b does not have a solution for all possible b, and
describe the set of all b for which AXx = b does have a
solution.

Repeat the requests from Exercise 15 with

1 -2 -1 by
A=| =2 2 0|, and b= | b,
4 -1 3 b;

Exercises 17-20 refer to the matrices A and B below. Make
appropriate calculations that justify your answers and mention an
appropriate theorem.

A=

17.

18.

19.

20.

21.

22,

1 3 0 3 1 4 1 2
-1 -1 -1 1 B — 0 1 3 4
0o —4 2 -8 o 2 6 7
2 0 3 -1 2 9 5 -7

How many rows of A contain a pivot position? Does the
equation Ax = b have a solution for each b in R*?

Can every vector in R* be written as a linear combination of
the columns of the matrix B above? Do the columns of B
span R3?

Can each vector in R* be written as a linear combination of
the columns of the matrix A above? Do the columns of A
span R*?

Do the columns of B span R*? Does the equation Bx =y
have a solution for each y in R*?

1 0 1
0 —1 0
Let v, = 1l VvV, = o |’ V3 = 0 Does
L 0] L 1] L —1 ]
{v1, V5, v3} span R*? Why or why not?
M 0] M 07 M 47
Let v, = Of, vo=1| =3 |, v3=1| =2 Does
-3 |9 | —6 |

{V1, V2, v3} span R*? Why or why not?

In Exercises 23 and 24, mark each statement True or False. Justify

each

23.

answer.

a. The equation Ax = b is referred to as a vector equation.

b. A vector b is a linear combination of the columns of a
matrix A if and only if the equation Ax = b has at least
one solution.

c. The equation Ax = b is consistent if the augmented ma-
trix [ A b ] has a pivot position in every row.

d. The first entry in the product Ax is a sum of products.

e. If the columns of an m x n matrix A span R”, then the
equation Ax = b is consistent for each b in R”".

f. If A is an m x n matrix and if the equation Ax = b is
inconsistent for some b in R™, then A cannot have a pivot
position in every row.

24.

25.

26.

27.

28.

29.

30.

31.
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a. Every matrix equation Ax = b corresponds to a vector
equation with the same solution set.

b. If the equation Ax = b is consistent, then b is in the set
spanned by the columns of 4.

c. Any linear combination of vectors can always be written
in the form Ax for a suitable matrix 4 and vector x.

d. If the coefficient matrix A has a pivot position in every
row, then the equation Ax = b is inconsistent.

e. The solution set of a linear system whose augmented
matrix is [a; a, a; b]isthe same as the solution set
of Ax = b, if A= [al a 33].

f. If A is an m x n matrix whose columns do not span R",
then the equation Ax = b is consistent for every b in R”.

4 -3 1 -3 -7

Note that 5 =2 5 -1 |({=1-3

-6 2 -3 2 10

fact (and no row operations) to find scalars ¢y, ¢, ¢3 such
-7 4 -3 1
-3 | =cq 514+ =2 |+c 5
10 —6 2 -3

Use this

that

7 3 5
letu= (2|, v=]|1], and w=| 1

5 3 1
shown that 2u — 3v —w = 0. Use this fact (and no row
operations) to find x; and x, that satisfy the equation

7 3 . 5

2 1 [xl ] =1

5 3L 1
Rewrite the (numerical) matrix equation below in symbolic
form as a vector equation, using symbols vy, v, ... for the

vectors and ¢y, ¢, ... for scalars. Define what each symbol
represents, using the data given in the matrix equation.

-3
-3 5 -4 9 7
5 8 1 =2 —4

1
11
)=o)
1 —11
2
Let q;, q,, q3, and v represent vectors in R?, and let x1, x5,
and x; denote scalars. Write the following vector equation as
a matrix equation. Identify any symbols you choose to use.

It can be

X1q; + X2q, + X3q3 =V

Construct a 3 x 3 matrix, not in echelon form, whose
columns span R*. Show that the matrix you construct has
the desired property.

Construct a 3 x 3 matrix, not in echelon form, whose
columns do not span R3. Show that the matrix you construct
has the desired property.

Let A be a 3 x 2 matrix. Explain why the equation Ax = b
cannot be consistent for all b in R®. Generalize your ar-
gument to the case of an arbitrary A with more rows than
columns.



42

32.

33.

34.

35.

36.
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Could a set of three vectors in R* span all of R*? Explain.
What about n vectors in R” when 7 is less than m?

Suppose A is a 4 x 3 matrix and b is a vector in R* with
the property that Ax = b has a unique solution. What can
you say about the reduced echelon form of A? Justify your
answer.

Let A be a 3 x 4 matrix, let v; and v, be vectors in R3, and
let w = v; + v,. Suppose v; = Au; and v, = Au, for some
vectors u; and u, in R*. What fact allows you to conclude
that the system Ax = w is consistent? (Note: u; and u,
denote vectors, not scalar entries in vectors.)

Let A be a 5 x 3 matrix, let y be a vector in R3, and let z be
a vector in R>. Suppose Ay = z. What fact allows you to
conclude that the system Ax = 5z is consistent?

Suppose A is a 4 x 4 matrix and b is a vector in R* with the
property that Ax = b has a unique solution. Explain why the
columns of A must span R*.

[M] In Exercises 37-40, determine if the columns of the matrix
span R*.

El Mastering Linear Algebra Concepts: Span 1-18

37.

39.

40.

41.

42,

7 2 -5 8 4 5 -1 8
=5 34 9| o3 T 4 2
6 10 =2 7 |5 -6 -1 4
-7 9 2 15 9 1 10 7
0o -7 1 4 6

-8 4 —6 —-10 -3

-7 11 =5 -1 -8
| 3 -1 10 12 12
5 11 —6 -7 12

-7 -3 -4 6 -9

15 6 -9 -3
|3 4 -7 2 7

[M] Find a column of the matrix in Exercise 39 that can be
deleted and yet have the remaining matrix columns still span
R4,

[M] Find a column of the matrix in Exercise 40 that can be
deleted and yet have the remaining matrix columns still span
R*. Can you delete more than one column?

SOLUTIONS TO PRACTICE PROBLEMS

1. The matrix equation

1
-3
4

is equivalent to the vector equation

1
3] =3

-2

5 -2 0 _; -7
L9 s o= 0
-8 -1 7| _, 0
5 -2 0 -7
Ll+0] 9|—-4|-5]|=| 9
-8 -1 7 0

which expresses b as a linear combination of the columns of A.

2. u+tv= _?}—i—
2 5
A(u—l—v)—_3 1]

5 sTr

Au+ Av = 3 1:|

[ -3
5

B

4

—1

-1

L
B
N

22
7

7]
)
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1.5 | SOLUTION SETS OF LINEAR SYSTEMS

\b\\)@é%

FIGURE 1

X

Solution sets of linear systems are important objects of study in linear algebra. They
will appear later in several different contexts. This section uses vector notation to give
explicit and geometric descriptions of such solution sets.

Homogeneous Linear Systems

A system of linear equations is said to be homogeneous if it can be written in the
form Ax = 0, where A is an m x n matrix and 0 is the zero vector in R”. Such a
system Ax = 0 always has at least one solution, namely, x = 0 (the zero vector in R").
This zero solution is usually called the trivial solution. For a given equation Ax = 0,
the important question is whether there exists a nontrivial solution, that is, a nonzero
vector x that satisfies Ax = 0. The Existence and Uniqueness Theorem in Section 1.2
(Theorem 2) leads immediately to the following fact.

The homogeneous equation Ax = 0 has a nontrivial solution if and only if the
equation has at least one free variable.

EXAMPLE 1 Determine if the following homogeneous system has a nontrivial
solution. Then describe the solution set.
3x1 +5x, —4x3=0
—3x; —2x, +4x3=0
6x;1 + x, —8x3 =0

SOLUTION Let A be the matrix of coefficients of the system and row reduce the
augmented matrix [ A 0] to echelon form:

35 -4 0 35 -4 0 35 -4 0
-3 -2 4 O0|~(0 3 O O|~(0 3 0 O
6 1 -8 0 0-9 0 0 0 0 0 0

Since x3 is a free variable, Ax = 0 has nontrivial solutions (one for each choice of x3).
To describe the solution set, continue the row reduction of [ A 0] to reduced echelon
form:

10 -4 0 xp —30=0
0 1 0 0 X =0
0 0 0 0 0 -0

Solve for the basic variables x| and x, and obtain x; = %

vector, the general solution of Ax = 0 has the form

X3, X = 0, with x5 free. As a

4 4 4
X1 3X3 3 3
X=1|x | = 0 =x3| 0 | =x3v, wherev=] 0
X3 X3 1 1

Here x3 is factored out of the expression for the general solution vector. This shows that
every solution of Ax = 0 in this case is a scalar multiple of v. The trivial solution is
obtained by choosing x3 = 0. Geometrically, the solution set is a line through 0 in R3.
See Fig. 1. [ |
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FIGURE 2

Notice that a nontrivial solution x can have some zero entries so long as not all of
its entries are zero.

EXAMPLE 2 A single linear equation can be treated as a very simple system of
equations. Describe all solutions of the homogeneous “system”

10x1 — 3)C2 — 2)C3 =0 (1)

SOLUTION There is no need for matrix notation. Solve for the basic variable x; in
terms of the free variables. The general solution is x; = .3x; + .2x3, with x, and x3
free. As a vector, the general solution is

X1 .3X2 + .2X3 [ .3.X2 .2X3
X=| x| = X2 = Xy | + 0
X3 X3 | 0 X3
3 27
=x| 1 |[4+x3| O (with x,, x5 free) 2)
0 I
t t
u A\

This calculation shows that every solution of (1) is a linear combination of the vectors
u and v, shown in (2). That is, the solution set is Span {u, v}. Since neither u nor v is a
scalar multiple of the other, the solution set is a plane through the origin. See Fig.2. H

Examples 1 and 2, along with the exercises, illustrate the fact that the solu-
tion set of a homogeneous equation Ax = 0 can always be expressed explicitly as
Span{vy,...,v,} for suitable vectors vy, ..., v,. If the only solution is the zero vector,
then the solution set is Span{0}. If the equation Ax = 0 has only one free variable,
the solution set is a line through the origin, as in Fig. 1. A plane through the origin,
as in Fig. 2, provides a good mental image for the solution set of Ax = 0 when there
are two or more free variables. Note, however, that a similar figure can be used to
visualize Span {u, v} even when u and v do not arise as solutions of Ax = 0. See Fig. 11
in Section 1.3.

Parametric Vector Form

The original equation (1) for the plane in Example 2 is an implicit description of the
plane. Solving this equation amounts to finding an explicit description of the plane as
the set spanned by u and v. Equation (2) is called a parametric vector equation of the
plane. Sometimes such an equation is written as

Xx=su+1tv (s,7inR)

to emphasize that the parameters vary over all real numbers. In Example 1, the equation
X = x3V (with x3 free), or x = ¢v (with ¢ in R), is a parametric vector equation of a line.
Whenever a solution set is described explicitly with vectors as in Examples 1 and 2, we
say that the solution is in parametric vector form.

Solutions of Nonhomogeneous Systems

When a nonhomogeneous linear system has many solutions, the general solution can be
written in parametric vector form as one vector plus an arbitrary linear combination of
vectors that satisfy the corresponding homogeneous system.
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FIGURE 3
Adding p to v translates v to v + p.

L+p

FIGURE 4

Translated line.
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EXAMPLE 3 Describe all solutions of Ax = b, where

3 5 —4 7
A=| -3 -2 4 and b=| —1
6 1 -8 —4

SOLUTION Here 4 is the matrix of coefficients from Example 1. Row operations on
[A Db]produce

3.5 -4 7 1o -5 -1 T
-3 2 4 -1 |~]10 1 0 2/, X = 2
6 1 -8 —4 0O 0 0 O 0 = 0
Thus x; = —1 + §x3, X, =2, and x3 is free. As a vector, the general solution of
Ax = b has the form
X1 -1+ %X_v, -1 %Xj, -1 %
X=|x | = 2 = 214+1] 0 = 2 [ +x31 0
X3 X3 0 X3 0 1
{ t
|y v
The equation x = p + X3V, or, writing 7 as a general parameter,
x=p+1tv (inR) 3)

describes the solution set of Ax = b in parametric vector form. Recall from Example 1
that the solution set of Ax = 0 has the parametric vector equation

x=1tv (tinR) (Y]

[with the same v that appears in (3)]. Thus the solutions of Ax = b are obtained by
adding the vector p to the solutions of Ax = 0. The vector p itself is just one particular
solution of Ax = b [corresponding to # = 0 in (3)]. [ |

To describe the solution set of Ax = b geometrically, we can think of vector
addition as a translation. Given v and p in R? or R3, the effect of adding p to v is
to move v in a direction parallel to the line through p and 0. We say that v is translated
by p to v + p. See Fig. 3. If each point on a line L in R? or R? is translated by a vector
p. the result is a line parallel to L. See Fig. 4.

Suppose L is the line through 0 and v, described by equation (4). Adding p to each
point on L produces the translated line described by equation (3). Note that p is on the
line in equation (3). We call (3) the equation of the line through p parallel to v. Thus
the solution set of AX = b is a line through p parallel to the solution set of Ax = 0.
Figure 5 illustrates this case.

Ax=b

A PV
/ Ax=0
P %

tv

FIGURE 5 Parallel solution sets of Ax = b and
Ax = 0.

The relation between the solution sets of Ax = b and Ax = 0 shown in Fig. 5
generalizes to any consistent equation Ax = b, although the solution set will be larger
than a line when there are several free variables. The following theorem gives the precise
statement. See Exercise 25 for a proof.
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THEOREM 6 Suppose the equation Ax = b is consistent for some given b, and let p be a
solution. Then the solution set of Ax = b is the set of all vectors of the form
W = p + v;,, where vy, is any solution of the homogeneous equation Ax = 0.

Theorem 6 says that if Ax = b has a solution, then the solution set is obtained by
translating the solution set of Ax = 0, using any particular solution p of Ax = b for
the translation. Figure 6 illustrates the case in which there are two free variables. Even
when n > 3, our mental image of the solution set of a consistent system Ax = b (with
b # 0) is either a single nonzero point or a line or plane not passing through the origin.

Ax=Db

—Ax=0

FIGURE 6 Parallel solution sets of
Ax = b and Ax = 0.

Warning: Theorem 6 and Fig. 6 apply only to an equation Ax = b that has at least
one nonzero solution p. When Ax = b has no solution, the solution set is empty.

The following algorithm outlines the calculations shown in Examples 1, 2, and 3.

WRITING A SOLUTION SET (OF A CONSISTENT SYSTEM) IN PARAMETRIC
VECTOR FORM

1. Row reduce the augmented matrix to reduced echelon form.

2. Express each basic variable in terms of any free variables appearing in an
equation.

3. Write a typical solution x as a vector whose entries depend on the free
variables, if any.

4. Decompose x into a linear combination of vectors (with numeric entries) using
the free variables as parameters.

PRACTICE PROBLEMS

1. Each of the following equations determines a plane in R3. Do the two planes
intersect? If so, describe their intersection.

X1+4XQ—5X3=0
2x1 — X2 +8x3=9

2. Write the general solution of 10x; — 3x, — 2x3 = 7 in parametric vector form, and
relate the solution set to the one found in Example 2.
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In Exercises 1-4, determine if the system has a nontrivial solution.
Try to use as few row operations as possible.
1. 2X1 — 5X2 + 8X3 =0 2.
—2x1 —=Tx, + x3=0
4)C1 + 2X2 + 7X3 =0

X;—2x; 4+ 3x3=0
—2)C1 — 3X2 — 4X3 =0
2)(71 —4X2 + 9X3 =0

3. —3)61 + 4X2 — 8X3 =0 4.
—2X1 4+ 5x, + 4x3 =0

5)61 — 3X2 + 2X3 =0
—3X1 — 4X2 + 2X3 =0
In Exercises 5 and 6, follow the method of Examples 1 and 2

to write the solution set of the given homogeneous system in
parametric vector form.

5. 2X1 + 2X2 + 4X3 =0 6.
—4.X1 — 4X2 — 8X3 =0

—3)(2—3)63:0

X1 +2XZ—3X3:0
2.Xf1 + X — 3X3 =0
—1lx; 4+ x, =0

In Exercises 7-12, describe all solutions of Ax = 0 in parametric
vector form, where A is row equivalent to the given matrix.

(13 =3 7 1 -3 -8 5
1o 1 -4 5] 8. [0 ) —4]
3 -6 6 -1 —4 0 —4
12 4 —2] 10. [ 2 -8 0 8]
1 -4 2 0 3 -5]
0 0 1 0 0 —I
Wlo 0o 0 0 1 -4
L0 0 0 0 0 0]
(1 -2 3 6 5 0]
0 0 0 1 4 —6
2200 0 0 0o o 1
L0 0 0 0 0 0]

13. Suppose the solution set of a certain system of linear equa-
tions can be described as x; = 5 + 4x3, x, = —2 — 7x3, with
x5 free. Use vectors to describe this set as a line in R>.

14. Suppose the solution set of a certain system of linear
equations can be described as x; = 5x4, Xo = 3 —2Xxy,
x3 = 2 + 5xy4, with x4 free. Use vectors to describe this set
as a “line” in R*.

15. Describe and compare the solution sets of x; + 5x; —
3)(3 = 0and X1 + 5x, — 3X3 = -2.

16. Describe and compare the solution sets of x; —2x; +
3x3 = 0and x; —2x, + 3x3 = 4.

17. Follow the method of Example 3 to describe the solutions of
the following system in parametric vector form. Also, give
a geometric description of the solution set and compare it to
that in Exercise 5.

2X1 + 2X2 + 4X3 = 8
—4X1 — 4X2 — 8X3 =—16
- 3X2 — 3X3 = 12

18. As in Exercise 17, describe the solutions of the following
system in parametric vector form, and provide a geometric
comparison with the solution set in Exercise 6.

X1 + 2)62 — 3X3 = 5
2X1 + x; — 3)63 =13
—X1 + X3 = -8

In Exercises 19 and 20, find the parametric equation of the line
through a parallel to b.

T3] w2l

In Exercises 21 and 22, find a parametric equation of the line M
through p and q. [Hint: M is parallel to the vector q — p. See the

figure below.]
-3 0

o[- ]

X2

19. a=|:

X1

In Exercises 23 and 24, mark each statement True or False. Justify
each answer.

23. a. A homogeneous equation is always consistent.

b. The equation Ax = 0 gives an explicit description of its
solution set.

c. The homogeneous equation Ax = 0 has the trivial so-
lution if and only if the equation has at least one free
variable.

d. The equation X = p + ¢v describes a line through v par-
allel to p.

e. The solution set of Ax = b is the set of all vectors of
the form w = p + v,, where v, is any solution of the
equation Ax = 0.

24.

&

A homogeneous system of equations can be inconsistent.
b. Ifxis anontrivial solution of Ax = 0, then every entry in
X is nonzero.

c. The effect of adding p to a vector is to move the vector in
a direction parallel to p.

d. The equation Ax = b is homogeneous if the zero vector
is a solution.
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e. If Ax = b is consistent, then the solution set of Ax = b
is obtained by translating the solution set of Ax = 0.

25. Prove Theorem 6:

a. Suppose p is a solution of Ax = b, so that Ap = b. Let
v, be any solution of the homogeneous equation Ax = 0,
and let w = p + v;,. Show that w is a solution of Ax = b.

b. Let w be any solution of Ax = b, and define v, = w — p.
Show that v, is a solution of Ax = 0. This shows that
every solution of Ax = b has the form w = p + v,,, with
p a particular solution of Ax = b and v, a solution of
Ax = 0.

26. Suppose A is the 3 x 3 zero matrix (with all zero entries).

Describe the solution set of the equation Ax = 0.

27. Suppose Ax = b has a solution. Explain why the solution is
unique precisely when Ax = 0 has only the trivial solution.

In Exercises 28-31, (a) does the equation Ax = 0 have a nontriv-
ial solution and (b) does the equation Ax = b have at least one
solution for every possible b?

28. Ais a3 x 3 matrix with three pivot positions.
29. Ais a4 x 4 matrix with three pivot positions.
30. Aisa?2 x5 matrix with two pivot positions.
31. Ais a3 x 2 matrix with two pivot positions.

32. If b # 0, can the solution set of Ax = b be a plane through
the origin? Explain.

33. Constructa 3 x 3 nonzero matrix A such that the vector | 1
1
is a solution of Ax = 0.

34.

35.

36.

37.

38.

39.

Construct a 3 x 3 nonzero matrix A such that the vector
2
—1 | is a solution of Ax = 0.
1

[—1 -3
Given A = 7 21 |, find one nontrivial solution of
-2 —6

Ax = 0 by inspection. [;-Iint: Think of the equation Ax = 0
written as a vector equation. ]

3 —27]
Given A= | —6 4 |, find one nontrivial solution of
12 -8

Ax = 0 by ingpection.

Construct a 2 x 2 matrix A such that the solution set of the
equation Ax = 0 is the line in R? through (4,1) and the
origin. Then, find a vector b in R? such that the solution
set of Ax = b is not a line in R? parallel to the solution set
of Ax = 0. Why does this not contradict Theorem 6?

Let A be an m x n matrix and let w be a vector in R” that
satisfies the equation Ax = 0. Show that for any scalar c,
the vector cw also satisfies Ax = 0. [That is, show that
A(cw) =0.]

Let A be an m x n matrix, and let v and w be vectors in
R" with the property that Av =0 and Aw = 0. Explain
why A(v + w) must be the zero vector. Then explain why
A(cv + dw) = 0 for each pair of scalars ¢ and d.

. Suppose 4 is a 3 x 3 matrix and b is a vector in R? such that

the equation Ax = b does not have a solution. Does there
exist a vector y in R? such that the equation Ax =y has a
unique solution? Discuss.

SOLUTIONS TO PRACTICE PROBLEMS

1. Row reduce the augmented matrix:

1 4 -5 0 1 4 -5 0 1 0 3 4
2 -1 8 9 0o -9 18 9 0o 1 -2 -1
X1 +3x3= 4
Xy — 2X3 =-1
Thus x; = 4 — 3x3, x, = —1 + 2x3, with x3 free. The general solution in paramet-
ric vector form is
X1 4 — 3X3 4 -3
X2 = -1+ 2)(?3 = -1 + X3 2
X3 X3 0 1

—
—

The intersection of the two planes is the line through p in the direction of v.
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2. The augmented matrix [ 10 =3 -2 7] is row equivalent to [ 1 -3-2 7 ],
and the general solution is x; = .7 4+ .3x, + .2x3, with x, and x3 free. That is,

X1 T4+ 3x, + 2x3 i 3 2
X=|Xx | = X7 =1 0| +x] 1]|4+x3] 0
X3 X3 0 0 1

= p + xu + X3V

The solution set of the nonhomogeneous equation Ax = b is the translated plane
p + Span {u, v}, which passes through p and is parallel to the solution set of the
homogeneous equation in Example 2.

1.6 APPLICATIONS OF LINEAR SYSTEMS

You might expect that a real-life problem involving linear algebra would have only one
solution, or perhaps no solution. The purpose of this section is to show how linear
systems with many solutions can arise naturally. The applications here come from
economics, chemistry, and network flow.

A Homogeneous System in Economics

The system of 500 equations in 500 variables, mentioned in this chapter’s introduction,
is now known as a Leontief “input—output” (or “production”) model.! Section 2.6 will
examine this model in more detail, when more theory and better notation are available.
For now, we look at a simpler “exchange model,” also due to Leontief.

Suppose a nation’s economy is divided into many sectors, such as various manu-
facturing, communication, entertainment, and service industries. Suppose that for each
sector we know its total output for one year and we know exactly how this output is
divided or “exchanged” among the other sectors of the economy. Let the total dollar
value of a sector’s output be called the price of that output. Leontief proved the
following result.

There exist equilibrium prices that can be assigned to the total outputs of the
various sectors in such a way that the income of each sector exactly balances its
expenses.

The following example shows how to find the equilibrium prices.

EXAMPLE 1 Suppose an economy consists of the Coal, Electric (power), and Steel
sectors, and the output of each sector is distributed among the various sectors as shown
in Table 1 on page 50, where the entries in a column represent the fractional parts of a
sector’s total output.

The second column of Table 1, for instance, says that the total output of the Electric
sector is divided as follows: 40% to Coal, 50% to Steel, and the remaining 10% to
Electric. (Electric treats this 10% as an expense it incurs in order to operate its business.)
Since all output must be taken into account, the decimal fractions in each column must
sum to 1.

ISee Wassily W. Leontief, “Input—Output Economics,” Scientific American, October 1951, pp. 15-21.
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Denote the prices (i.e., dollar values) of the total annual outputs of the Coal,
Electric, and Steel sectors by pc, pg, and ps, respectively. If possible, find equilibrium

Electric prices that make each sector’s income match its expenditures.
4
Coal TABLE 1 A Simple Economy
.6
Distribution of Output from:
Coal Electric Steel Purchased by:
2 5
.0 4 .6 Coal
Steel .6 A 2 Electric
6 4 5 2 Steel
4

SOLUTION A sector looks down a column to see where its output goes, and it looks
across a row to see what it needs as inputs. For instance, the first row of Table 1
says that Coal receives (and pays for) 40% of the Electric output and 60% of the Steel
2 output. Since the respective values of the total outputs are pg and pg, Coal must spend
.4 pg dollars for its share of Electric’s output and .6pg for its share of Steel’s output.
Thus Coal’s total expenses are .4pg + .6ps. To make Coal’s income, pc, equal to its
expenses, we want

pc = .4pg + .6ps (D

The second row of the exchange table shows that the Electric sector spends .6 pc
for coal, .1pg for electricity, and .2 pg for steel. Hence the income/expense requirement
for Electric is

PE = .6pc + .1pg + 2ps (2)
Finally, the third row of the exchange table leads to the final requirement:
ps = .4pc + .5pe + .2ps 3)

To solve the system of equations (1), (2), and (3), move all the unknowns to the left
sides of the equations and combine like terms. [For instance, on the left side of (2),
write pg — .1pg as .9pg.]

pc — 4pe — .6ps =0
—.6pc + 9peg — 2ps =0
—.4pc — Spg + 8ps =0

Row reduction is next. For simplicity here, decimals are rounded to two places.

1 -4-6 0 1 -4 -6 0 I -4 -6 0
-6 9-2 0|~]|0 .66 —-.56 ~10 66 —56
-4 -5 8 0 | 0 —66 .56 0

0 0
0 0
[1 -4 -6 0 1 0 -9
~10 1-85 0 0 1—85
0 0 0 0 0
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The general solution is pc = .94 ps, pg = .85ps, and ps is free. The equilibrium price
vector for the economy has the form

Pc .94ps .94
pP= PE = .SSpS = Ps .85
Ps Ps 1

Any (nonnegative) choice for pg results in a choice of equilibrium prices. For instance,
if we take pg to be 100 (or $100 million), then pc = 94 and pg = 85. The incomes and
expenditures of each sector will be equal if the output of Coal is priced at $94 million,
that of Electric at $85 million, and that of Steel at $100 million. [ |

Balancing Chemical Equations

Chemical equations describe the quantities of substances consumed and produced
by chemical reactions. For instance, when propane gas burns, the propane (C3Hg)
combines with oxygen (O,) to form carbon dioxide (CO,) and water (H,O), according
to an equation of the form

(x1)C3Hg + (x2)02 — (x3)CO; + (x4)H20 )

To “balance” this equation, a chemist must find whole numbers X1, ..., x4 such that the
total numbers of carbon (C), hydrogen (H), and oxygen (O) atoms on the left match the
corresponding numbers of atoms on the right (because atoms are neither destroyed nor
created in the reaction).

A systematic method for balancing chemical equations is to set up a vector equation
that describes the numbers of atoms of each type present in a reaction. Since equation
(4) involves three types of atoms (carbon, hydrogen, and oxygen), construct a vector in
R for each reactant and product in (4) that lists the numbers of “atoms per molecule,”
as follows:

3 0 1 0 | <— Carbon
C3Hg: [ 8 |, O: | O], COy: | O |, HyO: | 2 | < Hydrogen
0 2 2 ] 1 | <— Oxygen
To balance equation (4), the coefficients xp, ..., x4 must satisfy
3 0 1 0
X1 8 + X2 0 = X3 0|+ X4 2
0 2 | 2 1

To solve, move all the terms to the left (changing the signs in the third and fourth
ctors):

3 0 —1 0 0
X1 8 + X7 0 —+ X3 0 =+ X4 -2 = 0
0 2 -2 —1 0

Row reduction of the augmented matrix for this equation leads to the general solution

X = %x4, Xy = §x4, X3 = %x4, with x4 free

Since the coefficients in a chemical equation must be integers, take x4 = 4, in which
case x; = 1, x, = 5, and x3 = 3. The balanced equation is

C3;Hg + 50, — 3CO, + 4H,0

The equation would also be balanced if, for example, each coefficient were doubled. For
most purposes, however, chemists prefer to use a balanced equation whose coefficients
are the smallest possible whole numbers.
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30 p—¢

—

FIGURE 1

—)xz

A junction, or node.

Network Flow

Systems of linear equations arise naturally when scientists, engineers, or economists
study the flow of some quantity through a network. For instance, urban planners and
traffic engineers monitor the pattern of traffic flow in a grid of city streets. Electrical
engineers calculate current flow through electrical circuits. And economists analyze
the distribution of products from manufacturers to consumers through a network of
wholesalers and retailers. For many networks, the systems of equations involve
hundreds or even thousands of variables and equations.

A network consists of a set of points called junctions, or nodes, with lines or arcs
called branches connecting some or all of the junctions. The direction of flow in each
branch is indicated, and the flow amount (or rate) is either shown or is denoted by a
variable.

The basic assumption of network flow is that the total flow into the network equals
the total flow out of the network and that the total flow into a junction equals the total
flow out of the junction. For example, Fig. 1 shows 30 units flowing into a junction
through one branch, with x; and x, denoting the flows out of the junction through other
branches. Since the flow is “conserved” at each junction, we must have x; + x, = 30.
In a similar fashion, the flow at each junction is described by a linear equation. The
problem of network analysis is to determine the flow in each branch when partial
information (such as the flow into and out of the network) is known.

EXAMPLE 2 The network in Fig. 2 shows the traffic flow (in vehicles per hour)
over several one-way streets in downtown Baltimore during a typical early afternoon.
Determine the general flow pattern for the network.

X3 100
Calvert St. | South St.Y T
N
Lombard St. |B
300 <« < ¢ < 400
X4
X2 A X5y
Pratt St. |A D
300 > = > > 600
A
500

FIGURE 2 Baltimore streets.

SOLUTION Write equations that describe the flow, and then find the general solution
of the system. Label the street intersections (junctions) and the unknown flows in the
branches, as shown in Fig. 2. At each intersection, set the flow in equal to the flow out.

Intersection Flow in Flow out
A 300 +500 = x;+ x;
B X+ x4 = 300+ x;
C 100 4400 = x4+ x5
D X+ x5 = 600
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Also, the total flow into the network (500 + 300 + 100 + 400) equals the total flow
out of the network (300 4 x3 + 600), which simplifies to x3 = 400. Combine this
equation with a rearrangement of the first four equations to obtain the following system
of equations:

X1+ X = 800
Xo — X3 + X4 = 300

X4 + x5 = 500

X1 + x5 = 600
X3 = 400

Row reduction of the associated augmented matrix leads to

X1 + x5 = 600
X2 — X5 = 200

X3 = 400

X4 + x5 = 500

The general flow pattern for the network is described by

x; = 600 — x5
X, = 200 + x5
x3 = 400
X4 = 500 — x5
X5 1s free

A negative flow in a network branch corresponds to flow in the direction opposite
to that shown on the model. Since the streets in this problem are one-way, none of the
variables here can be negative. This fact leads to certain limitations on the possible
values of the variables. For instance, x5 < 500 because x4 cannot be negative. Other
constraints on the variables are considered in Practice Problem 2. [ |

PRACTICE PROBLEMS

1. Suppose an economy has three sectors: Agriculture, Mining, and Manufacturing.
Agriculture sells 5% of its output to Mining and 30% to Manufacturing, and retains
the rest. Mining sells 20% of its output to Agriculture and 70% to Manufacturing,
and retains the rest. Manufacturing sells 20% of its output to Agriculture and 30% to
Mining, and retains the rest. Determine the exchange table for this economy, where
the columns describe how the output of each sector is exchanged among the three
sectors.

2. Consider the network flow studied in Example 2. Determine the possible range of
values of x; and x,. [Hint: The example showed that x5 < 500. What does this
imply about x; and x,? Also, use the fact that x5 > 0.]
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1.6 EXERCISES

1.

Suppose an economy has only two sectors: Goods and Ser-
vices. Each year, Goods sells 80% of its output to Services
and keeps the rest, while Services sells 70% of its output to
Goods and retains the rest. Find equilibrium prices for the
annual outputs of the Goods and Services sectors that make
each sector’s income match its expenditures.

Goods Services

Find another set of equilibrium prices for the economy in
Example 1. Suppose the same economy used Japanese
yen instead of dollars to measure the values of the various
sectors’ outputs. Would this change the problem in any way?
Discuss.

Consider an economy with three sectors: Fuels and Power,
Manufacturing, and Services. Fuels and Power sells 80%
of its output to Manufacturing, 10% to Services, and retains
the rest. Manufacturing sells 10% of its output to Fuels and
Power, 80% to Services, and retains the rest. Services sells
20% to Fuels and Power, 40% to Manufacturing, and retains
the rest.

a. Construct the exchange table for this economy.

b. Develop a system of equations that leads to prices at
which each sector’s income matches its expenses. Then
write the augmented matrix that can be row reduced to
find these prices.

c. [M] Find a set of equilibrium prices when the price for
the Services output is 100 units.

Suppose an economy has four sectors: Mining, Lumber,
Energy, and Transportation. Mining sells 10% of its output
to Lumber, 60% to Energy, and retains the rest. Lumber
sells 15% of its output to Mining, 50% to Energy, 20% to
Transportation, and retains the rest. Energy sells 20% of its
output to Mining, 15% to Lumber, 20% to Transportation,
and retains the rest. Transportation sells 20% of its output to
Mining, 10% to Lumber, 50% to Energy, and retains the rest.

a. Construct the exchange table for this economy.

b. [M] Find a set of equilibrium prices for the economy.

An economy has four sectors: Agriculture, Manufacturing,
Services, and Transportation. Agriculture sells 20% of its
output to Manufacturing, 30% to Services, 30% to Trans-
portation, and retains the rest. Manufacturing sells 35% of its
output to Agriculture, 35% to Services, 20% to Transporta-
tion, and retains the rest. Services sells 10% of its output to
Agriculture, 20% to Manufacturing, 20% to Transportation,

and retains the rest. Transportation sells 20% of its output
to Agriculture, 30% to Manufacturing, 20% to Services, and
retains the rest.

a. Construct the exchange table for this economy.

b. [M] Find a set of equilibrium prices for the economy if
the value of Transportation is $10.00 per unit.

c. The Services sector launches a successful “eat farm fresh”
campaign, and increases its share of the output from the
Agricultural sector to 40%, whereas the share of Agri-
cultural production going to Manufacturing falls to 10%.
Construct the exchange table for this new economy.

d. [M] Find a set of equilibrium prices for this new economy
if the value of Transportation is still $10.00 per unit.
What effect has the “eat farm fresh” campaign had on the
equilibrium prices for the sectors in this economy?

Balance the chemical equations in Exercises 6—11 using the vector
equation approach discussed in this section.

6.

10.

11.

Aluminum oxide and carbon react to create elemental alu-
minum and carbon dioxide:

A1203 + C — Al + C02

[For each compound, construct a vector that lists the numbers
of atoms of aluminum, oxygen, and carbon.]

Alka-Seltzer contains sodium bicarbonate (NaHCO;) and
citric acid (H;CgHs07). When a tablet is dissolved in water,
the following reaction produces sodium citrate, water, and
carbon dioxide (gas):

NaHCO3 + H3C6H507 — Na3C6H507 + Hzo + COz

Limestone, CaCOs, neutralizes the acid, H;0, in acid rain by
the following unbalanced equation:

H;0 + CaCO; — H,0 + Ca 4 CO,

Boron sulfide reacts violently with water to form boric acid
and hydrogen sulfide gas (the smell of rotten eggs). The
unbalanced equation is

BzSg, + HzO d H3BO3 + st

[M] If possible, use exact arithmetic or a rational format for
calculations in balancing the following chemical reaction:

PbN6 + CrMIlzog — Pb304 + Cr203 + MI'IOZ + NO

[M] The chemical reaction below can be used in some in-
dustrial processes, such as the production of arsene (AsHj).
Use exact arithmetic or a rational format for calculations to
balance this equation.

MnS + A52Cr10035 =+ HzSO4
— HMDO4 + ASH3 + CI'S30|2 + H20



12. Find the general flow pattern of the network shown in the
figure. Assuming that the flows are all nonnegative, what is
the smallest possible value for x,?

B
X2 —> 100

X Y X3

X ee———80
c

13. a. Find the general flow pattern of the network shown in the
figure.

b. Assuming that the flow must be in the directions indi-
cated, find the minimum flows in the branches denoted
by x5, X3, X4, and Xxs.

30 40
VN
Y
A X X C
80 — 2 5_4—100
B
XYy A Xg
60)—E X3 X4 D—>90
A
A 4
20 40

14. a. Find the general traffic pattern of the freeway network

15.
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shown in the figure. (Flow rates are in cars/minute.)

b. Describe the general traffic pattern when the road whose

flow is x5 is close

d.

¢. When x5 = 0, what is the minimum value of x,?

Ral

A
80 >
X5y
90 <
D

Intersections in England are often constructed as one-way
“roundabouts,” such as the one shown in the figure. Assume
that traffic must travel in the directions shown. Find the
general solution of the network flow. Find the smallest

possible value for xg.

A
60—)—1
804—1:

SOLUTIONS TO PRACTICE PROBLEMS

B
l}—>70

rc—(—IOO

1. Write the percentages as decimals. Since all output must be taken into account, each
column must sum to 1. This fact helps to fill in any missing entries.

Distribution of Output from:

Agriculture Mining Manufacturing Purchased by:
.65 .20 .20 Agriculture
.05 .10 .30 Mining
.30 .70 .50 Manufacturing

2. Since x5 < 500, the equations D and A for x; and x, imply that x; > 100
and x, < 700. The fact that x5 > 0 implies that x; < 600 and x, > 200. So,
100 < x; < 600, and 200 < x, < 700.

1.7 LINEAR INDEPENDENCE

The homogeneous equations in Section 1.5 can be studied from a different perspective
by writing them as vector equations. In this way, the focus shifts from the unknown
solutions of Ax = 0 to the vectors that appear in the vector equations.
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For instance, consider the equation

1 4 2 0
X121 +x2| 5| +x3] 1| =10 (D)
3 6 0 0

This equation has a trivial solution, of course, where x; = x, = x3 =0. As in
Section 1.5, the main issue is whether the trivial solution is the only one.

An indexed set of vectors {v;,...,v,} in R" is said to be linearly independent
if the vector equation

X1vi + XV + -+ x,v, =0
has only the trivial solution. The set {vy, ..., V,} is said to be linearly dependent
if there exist weights ¢, ..., ¢,, not all zero, such that

civit+evat ey, =0 2

Equation (2) is called a linear dependence relation among vy, ..., v, when the
weights are not all zero. An indexed set is linearly dependent if and only if it is not
linearly independent. For brevity, we may say that v, ..., v, are linearly dependent
when we mean that {vy,...,v,} is a linearly dependent set. We use analogous
terminology for linearly independent sets.

1 4 2
EXAMPLE 1 Letvi=|2|,v2=|5|,andvy; = | 1
3 6 0

a. Determine if the set {v, v,, v3} is linearly independent.
b. If possible, find a linear dependence relation among vy, v,, and vs.

SOLUTION

a. We must determine if there is a nontrivial solution of equation (1) above. Row oper-
ations on the associated augmented matrix show that

1 4 2 0 1 4 2 0
2 5 1 0f~]0 =3 =3 O
36 0 O 0O 0 0 O

Clearly, x; and x;, are basic variables, and x3 is free. Each nonzero value of x3
determines a nontrivial solution of (1). Hence vy, v, v3 are linearly dependent (and
not linearly independent).

b. To find a linear dependence relation among v;, v, and v3, completely row reduce
the augmented matrix and write the new system:

1 0 -2 0 X1 —2x3=0

0 1 1 0 X2+ x3=0

O 0 0 O 0=0
Thus x; = 2x3, X, = —x3, and x3 is free. Choose any nonzero value for x;—say,
x3 = 5. Then x; = 10 and x, = —5. Substitute these values into equation (1) and

obtain
10V1 — 5V2 + 5V3 =0

This is one (out of infinitely many) possible linear dependence relations among v,
Vs, and v3. ]
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Linear Independence of Matrix Columns

Suppose that we begin with a matrix A = [a; --- a, ] instead of a set of vectors. The
matrix equation Ax = 0 can be written as

xja; +x2a, +---+x,a, =0

Each linear dependence relation among the columns of A corresponds to a nontrivial
solution of Ax = 0. Thus we have the following important fact.

The columns of a matrix A are linearly independent if and only if the equation

Ax = 0 has only the trivial solution. 3)
0 1
EXAMPLE 2 Determine if the columns of the matrix A = |1 2 —1 | are
5 8

linearly independent.

SOLUTION To study Ax = 0, row reduce the augmented matrix:

0O 1 4 0 1 2 -1 0 1 2 -1 0
1 2 -1 O0f~]0 1 4 Of~]0 1 4 O
5 8 0 0 0 -2 5 0 0 0 13 0

At this point, it is clear that there are three basic variables and no free variables. So
the equation Ax = 0 has only the trivial solution, and the columns of A are linearly
independent. [ ]

Sets of One or Two Vectors

A set containing only one vector—say, v—is linearly independent if and only if v is
not the zero vector. This is because the vector equation x;v = 0 has only the trivial
solution when v # 0. The zero vector is linearly dependent because x;0 = 0 has many
nontrivial solutions.

The next example will explain the nature of a linearly dependent set of two vectors.

EXAMPLE 3 Determine if the following sets of vectors are linearly independent.

IS N

SOLUTION
a. Notice that v, is a multiple of v, namely, v, = 2v,. Hence —2v;| + v, = 0, which
shows that {vy, v,} is linearly dependent.
b. The vectors v; and v, are certainly not multiples of one another. Could they be
linearly dependent? Suppose ¢ and d satisfy
cvi+dvy =0

If ¢ # 0, then we can solve for v; in terms of v,, namely, v{ = (—d/c)v,. This
result is impossible because v is not a multiple of v,. So ¢ must be zero. Similarly,
d must also be zero. Thus {vy, v,} is a linearly independent set. ]
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(3, 1)

©.2),

X

Linearly dependent

3.2,

6.2,

Linearly independent

FIGURE 1

THEOREM 7

The arguments in Example 3 show that you can always decide by inspection when a
set of two vectors is linearly dependent. Row operations are unnecessary. Simply check
whether at least one of the vectors is a scalar times the other. (The test applies only to
sets of two vectors.)

A set of two vectors {vy, v,} is linearly dependent if at least one of the vectors is
a multiple of the other. The set is linearly independent if and only if neither of the
vectors is a multiple of the other.

In geometric terms, two vectors are linearly dependent if and only if they lie on the
same line through the origin. Figure 1 shows the vectors from Example 3.

Sets of Two or More Vectors

The proof of the next theorem is similar to the solution of Example 3. Details are given
at the end of this section.

Characterization of Linearly Dependent Sets

An indexed set S = {vy,...,v,} of two or more vectors is linearly dependent if
and only if at least one of the vectors in § is a linear combination of the others. In
fact, if S is linearly dependent and v; # 0, then some v; (with j > 1) is a linear
combination of the preceding vectors, vy,...,V;_i.

Warning: Theorem 7 does not say that every vector in a linearly dependent set is a
linear combination of the preceding vectors. A vector in a linearly dependent set may
fail to be a linear combination of the other vectors. See Practice Problem 3.

3 1
EXAMPLE 4 Letu= |1 [andv = | 6 |. Describe the set spanned by u and v,
0 0

and explain why a vector w is in Span {u, v} if and only if {u, v, w} is linearly dependent.

SOLUTION The vectors u and v are linearly independent because neither vector is a
multiple of the other, and so they span a plane in R3. (See Section 1.3.) In fact,
Span {u, v} is the x;x,-plane (with x3 = 0). If w is a linear combination of u and v,
then {u, v, w} is linearly dependent, by Theorem 7. Conversely, suppose that {u, v, w}
is linearly dependent. By Theorem 7, some vector in {u, v, w} is a linear combination
of the preceding vectors (since u # 0). That vector must be w, since v is not a multiple
of u. So w is in Span {u, v}. See Fig. 2. ]

Linearly dependent, Linearly independent,
w in Span{u, v} w not in Span{u, v}

FIGURE 2 Linear dependence in R
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If p > n, the columns are linearly
dependent.

2,1

X

L]
4, -1)
FIGURE 4
A linearly dependent set in R

THEOREM 9
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Example 4 generalizes to any set {u, v, w} in R® with u and v linearly independent.
The set {u, v, w} will be linearly dependent if and only if w is in the plane spanned by
uand v.

The next two theorems describe special cases in which the linear dependence of a
set is automatic. Moreover, Theorem 8 will be a key result for work in later chapters.

If a set contains more vectors than there are entries in each vector, then the set

is linearly dependent. That is, any set {vy,...,V,} in R” is linearly dependent if
p > n.
PROOF Let A=[v; --- v,]. Then 4 is n x p, and the equation Ax = 0 corre-

sponds to a system of n equations in p unknowns. If p > n, there are more variables
than equations, so there must be a free variable. Hence Ax = 0 has a nontrivial solution,
and the columns of A are linearly dependent. See Fig. 3 for a matrix version of this
theorem. [ |

Warning: Theorem 8 says nothing about the case in which the number of vectors in
the set does not exceed the number of entries in each vector.

4
—1
8, because there are three vectors in the set and there are only two entries in each vector.
Notice, however, that none of the vectors is a multiple of one of the other vectors. See
Fig. 4. [ |

EXAMPLE 5 The vectors [ ? ], [ :|, |: _§:| are linearly dependent by Theorem

If aset S = {vy,...,v,} in R" contains the zero vector, then the set is linearly
dependent.

PROOF By renumbering the vectors, we may suppose v; = 0. Then the equation
1vy + 0vy + --- + 0v, = 0 shows that S is linearly dependent. [ |

EXAMPLE 6 Determine by inspection if the given set is linearly dependent.

1] 2773 277 o _i _2
a |70 [1]. |1 b. [3].]0[. |1 OO B S

6] 9 5] 0] |8 0 e
SOLUTION

a. The set contains four vectors, each of which has only three entries. So the set is
linearly dependent by Theorem 8.

b. Theorem 8 does not apply here because the number of vectors does not exceed the
number of entries in each vector. Since the zero vector is in the set, the set is linearly
dependent by Theorem 9.

c. Compare the corresponding entries of the two vectors. The second vector seems to
be —3/2 times the first vector. This relation holds for the first three pairs of entries,
but fails for the fourth pair. Thus neither of the vectors is a multiple of the other, and
hence they are linearly independent. [ |
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Mastering: Linear In general, you should read a section thoroughly several times to absorb an

Independence 1-31 important concept such as linear independence. The notes in the Study Guide for
this section will help you learn to form mental images of key ideas in linear algebra.
For instance, the following proof is worth reading carefully because it shows how the
definition of linear independence can be used.

PROOF OF THEOREM 7 (Characterization of Linearly Dependent Sets)
If some v; in S equals a linear combination of the other vectors, then v; can be
subtracted from both sides of the equation, producing a linear dependence relation
with a nonzero weight (—1) on v;. [For instance, if v; = c2vs + c3v3, then 0 =
(=1)vi + c2v2 + ¢3v3 + 0v4 + -+ 4+ 0v,,.] Thus S is linearly dependent.

Conversely, suppose S is linearly dependent. If v; is zero, then it is a (trivial)
linear combination of the other vectors in S. Otherwise, vi # 0, and there exist weights
C1,...,Cp,notall zero, such that

C1Vi + Vo + -+ CpV) =0

Let j be the largest subscript for which ¢; # 0. If j =1, then ¢;v; = 0, which is
impossible because v; # 0. So j > 1, and

civy + -+ ¢V +0Vj+1 +"'+0Vp =0

CiV; = —C1Vp —+++—Cj—1Vj—1

=S _S)y,
v = Vi+ -+ vj—; H
Cj ¢j

PRACTICE PROBLEMS

3 —6 0 3
Letu = 2 (,v= 1|{,w=]| -5 ]|,andz = 7
—4 7 2 -5

1. Are the sets {u, v}, {u,w}, {u,z}, {v,w}, {v,z}, and {w,z} each linearly indepen-
dent? Why or why not?

2. Does the answer to Problem 1 imply that {u, v, w, z} is linearly independent?

3. To determine if {u, v, w,z} is linearly dependent, is it wise to check if, say, w is a
linear combination of u, v, and z?

4. Is {u, v, w, z} linearly dependent?

1.7 EXERCISES

In Exercises 1-4, determine if the vectors are linearly indepen- 0 -3 9 —4 =3 0

dent. Justify each answer. 5 2 1 =7 6 0 -1 5
=1 4 -5 : 1 1 =5

5 7 9 0 U 1 -4 —2 2 1 -10
1. [0 |, 2|, 4 2. | 2], 0|, 3 -
0] L-6] [-8 31 L-8 1 1 4 -3 0 T 12 3 2
2 =7 -2 4 -6 2
2 —4 -1 =3 -4 -5 7 5 0 1 -1 3
M ST R R R - -
In Exercises 9 and 10, (a) for what values of & is vz in

In Exercises 5-8, determine if the columns of the matrix form a Span {vy, v,}, and (b) for what values of % is {v, v, v3} linearly
linearly independent set. Justify each answer. dependent? Justify each answer.

~
1
wn
L 1
>



1 -3 5

9. vV = -3 , Vo = 9 , V3 = -7
| 2] | —6 | L 7]
17 =37 27

10. vV = -3 , Vo) = 9 , V3 = -5
L —5 | L 15 ] L h ]

In Exercises 11-14, find the value(s) of & for which the vectors
are linearly dependent. Justify each answer.

2 4 -2 3 —6 9

1. | =2 |,| =6 |, 2 12. | =6 |, 40,1 h
L 4L 71 L ] L 1] L-3] L3]
F 1] [=27 [ 37 17 [-37 [2]

13. 51,1 =9, h 14. | -2 |, 71,11
L-3] L 6] L9 L4 [ 6] 7]

Determine by inspection whether the vectors in Exercises 15-20
are linearly independent. Justify each answer.

_ 2 -3
15. f][g][;][_;] 16. | —4 |, 6
L | 8 ~12
57 To0 -7 -
17. | =3 |.|0],| 2 18. j][_é][g][”
-1 |o 4 L
r—871 [ 2 ! -2 0
19. | 12],] -3 20. a1, 51,10
| 4] | -1 | -7 3 0

In Exercises 21 and 22, mark each statement True or False. Justify
each answer on the basis of a careful reading of the text.

21. a. The columns of a matrix A are linearly independent if the

equation Ax = 0 has the trivial solution.

b. If S isalinearly dependent set, then each vector is a linear
combination of the other vectors in S.

c. The columns of any 4 x 5 matrix are linearly dependent.
d. If x and y are linearly independent, and if {x,y,z} is
linearly dependent, then z is in Span {x, y}.

22. a. If u and v are linearly independent, and if w is in

Span {u, v}, then {u, v, w} is linearly dependent.

b. If three vectors in R? lie in the same plane in R, then
they are linearly dependent.

c. If asetcontains fewer vectors than there are entries in the
vectors, then the set is linearly independent.

d. If asetin R” is linearly dependent, then the set contains
more than n vectors.

In Exercises 23-26, describe the possible echelon forms of the
matrix. Use the notation of Example 1 in Section 1.2.

23. Ais a2 x 2 matrix with linearly dependent columns.

24. Ais a3 x 3 matrix with linearly independent columns.
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25. Aisa4d x2matrix, A = [a,
a.

a], and a, is not a multiple of

26. Ais a4 x3matrix, A =[a; a, a3],such that{a;,a,}is
linearly independent and a3 is not in Span {a,, a,}.

27. How many pivot columns must a 6 X 4 matrix have if its
columns are linearly independent? Why?

28. How many pivot columns must a 4 x 6 matrix have if its
columns span R*? Why?

29. Construct 3 x 2 matrices A and B such that Ax = 0 has a
nontrivial solution, but Bx = 0 has only the trivial solution.

30. a. Fill in the blank in the following statement: “If A4 is
an m x n matrix, then the columns of A are linearly
independent if and only if A has pivot columns.”

b. Explain why the statement in (a) is true.

Exercises 31 and 32 should be solved without performing row
operations. [Hint: Write Ax = 0 as a vector equation.]

2 3 57
. -5 1 —4 .
31. Given A = 3 1 —al observe that the third column
1 0 1

is the sum of the first two columns. Find a nontrivial solution
of Ax = 0.

4 3 =57
32. GivenA=| -2 -2 4 |, observe that the first column
-2 =3 7

minus three times the second column equals the third column.
Find a nontrivial solution of Ax = 0.

Each statement in Exercises 33-38 is either true (in all cases)
or false (for at least one example). If false, construct a specific
example to show that the statement is not always true. Such
an example is called a counterexample to the statement. If a
statement is true, give a justification. (One specific example
cannot explain why a statement is always true. You will have to
do more work here than in Exercises 21 and 22.)

33. Ifv,,...,vsareinR*and v; = 2v, + v, then {v,, v5, v3, v}
is linearly dependent.

34. If v, and v, are in R* and v, is not a scalar multiple of vy,
then {v;, v,} is linearly independent.

35. If vy,...,vs are in R3 and v3 = 0, then {v|, V2, V3, V4, Vs5} is
linearly dependent.

36. If vy, v, v3 are in R? and v; is not a linear combination of
V1, V2, then {v, v,, v3} is linearly independent.

37. If vy,..., vy are in R* and {v,, v,, v3} is linearly dependent,
then {v,, v,, v3, v4} is also linearly dependent.

38. If {v,,...,v4}is alinearly independent set of vectors in R*,
then {v;, vy, v3} is also linearly independent. [Hint: Think
about x;v; + xovs + x3v3 + 0-v4 = 0.]

39. Suppose A is an m x n matrix with the property that for all b
in R” the equation Ax = b has at most one solution. Use the
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definition of linear independence to explain why the columns 12 10 -6 8 4 —14

of A must be linearly independent. -7 -6 4 -5 -7 9

. . . 42. A= 9 9 -9 9 9 -—18

40. Suppose an m x n matrix A has n pivot columns. Explain 4 3 _1 0 _8 )
why for each b in R” the equation Ax = b has at most one ] 7 _s 6 1 11

solution. [Hint: Explain why Ax = b cannot have infinitely
many solutions.]

[M] In Exercises 41 and 42, use as many columns of A4 as possible
to construct a matrix B with the property that the equation Bx = 0
has only the trivial solution. Solve Bx = 0 to verify your work.

41.

A=

1.8

43. [M] With A and B as in Exercise 41, select a column v of 4
that was not used in the construction of B and determine if
v is in the set spanned by the columns of B. (Describe your
calculations.)

3 -4 10 7 -4

-5 -3 -7 11 15 44. [M] Repeat Exercise 43 with the matrices A and B from
4 3 5 2 1 Exercise 42. Then give an explanation for what you discover,
8§ —7 23 4 15 assuming that B was constructed as specified.

SOLUTIONS TO PRACTICE PROBLEMS

Span{u, v, z} 1. Yes. In each case, neither vector is a multiple of the other. Thus each set is linearly
\ independent.

2. No. The observation in Practice Problem 1, by itself, says nothing about the linear
independence of {u, v, w, z}.

3. No. When testing for linear independence, it is usually a poor idea to check if one
selected vector is a linear combination of the others. It may happen that the selected
vector is not a linear combination of the others and yet the whole set of vectors is
linearly dependent. In this practice problem, w is not a linear combination of u, v,
and z.

4. Yes, by Theorem 8. There are more vectors (four) than entries (three) in them.

INTRODUCTION TO LINEAR TRANSFORMATIONS

The difference between a matrix equation Ax = b and the associated vector equation
xja; + .-+ + x,a, = b is merely a matter of notation. However, a matrix equation
Ax = b can arise in linear algebra (and in applications such as computer graphics and
signal processing) in a way that is not directly connected with linear combinations of
vectors. This happens when we think of the matrix A as an object that “acts” on a vector
x by multiplication to produce a new vector called Ax.

For instance, the equations

1 1
D0 s =] e 30 5 ] =10
1 3
r T r r
A X b A u 0

say that multiplication by A transforms x into b and transforms u into the zero vector.
See Fig. 1.
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multiplication
. m b
° L ]
0 multiplication
: /\
by A
u, 9
g 2

FIGURE 1 Transforming vectors via matrix
multiplication.

From this new point of view, solving the equation Ax = b amounts to finding
all vectors x in R* that are transformed into the vector b in R? under the “action” of
multiplication by A.

The correspondence from x to AX is a function from one set of vectors to another.
This concept generalizes the common notion of a function as a rule that transforms one
real number into another.

A transformation (or function or mapping) 7" from R” to R™ is a rule that assigns
to each vector x in R” a vector 7'(x) in R™. The set R” is called the domain of 7', and
R™ is called the codomain of 7. The notation 7" : R” — R™ indicates that the domain
of T is R” and the codomain is R™. For x in R”, the vector 7(x) in R™ is called the
image of x (under the action of T'). The set of all images T'(x) is called the range of T'.
See Fig. 2.

Domain Codomain

FIGURE 2 Domain, codomain, and range
of T : R" — R™,

The new terminology in this section is important because a dynamic view of
matrix—vector multiplication is the key to understanding several ideas in linear algebra
and to building mathematical models of physical systems that evolve over time. Such
dynamical systems will be discussed in Sections 1.10, 4.8, and 4.9 and throughout
Chapter 5.

Matrix Transformations

The rest of this section focuses on mappings associated with matrix multiplication. For
each x in R”, T'(x) is computed as Ax, where A4 is an m x n matrix. For simplicity, we
sometimes denote such a matrix transformation by x +— Ax. Observe that the domain
of T is R” when A has n columns and the codomain of 7 is R” when each column of
A has m entries. The range of T is the set of all linear combinations of the columns of
A, because each image 7 (x) is of the form Ax.
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1 =3 ) 3 3
EXAMPLE 1 1Let A= 3 5 ,uz[ ],b: 2|,e¢e=1]2], and
-1
-1 7 =5 5
define a transformation 7 : R? — R by T'(x) = Ax, so that
1 -3 X X1 — 3)(72
%, T(x)=Ax=| 3 5 [xl}z 3x1 + 5x;
-1 7t —x1 + 7x,
a. Find T'(u), the image of u under the transformation 7.
5 “I' p. Find an x in R? whose image under 7 is b.
‘ fus= [—1} c. Is there more than one x whose image under 7 is b?
d. Determine if ¢ is in the range of the transformation 7.
i ) ! SOLUTION
3
a. Compute
1 -3 5 5
%, *2 T(u) = Au = 3 5 |:_1:| = 1
-1 7 -9

b. Solve T(x) = b for x. That is, solve Ax = b, or

L3 3
3 s [ }: 2 (1)
/{ } -1 7 |L* -5

5
Twy=| 1 =
? Using the method discussed in Section 1.4, row reduce the augmented matrix:
1 -3 3 1 -3 37 1 -3 3 1 015
35 2|(~|0 14 -T7|~]0 1-=5f~[0 1-=5 2)
-1 7 =5 0 4 -2 0 0 O 0 0 O

1.5

Hence x; = 1.5, x, = —.5, and x = |:_ 5

]. The image of this x under 7 is the

given vector b.

¢. Any x whose image under 7 is b must satisfy equation (1). From (2), it is clear that
equation (1) has a unique solution. So there is exactly one x whose image is b.

d. The vector cis in the range of T if ¢ is the image of some x in R, that is, if ¢ = T'(x)
for some x. This is just another way of asking if the system Ax = c is consistent. To
find the answer, row reduce the augmented matrix:

1 -3 3 1 -3 3 1 -3 3 1 =3 3

35 2|(~|0 14 -T7|~]0 1 2|~]0 1 2

-1 7 5 0 4 8 0 14 =7 0 0 -35
The third equation, 0 = —35, shows that the system is inconsistent. So ¢ is not in
the range of T'. u

The question in Example 1(c) is a uniqueness problem for a system of linear
equations, translated here into the language of matrix transformations: Is b the image
of a unique x in R”? Similarly, Example 1(d) is an existence problem: Does there exist
an X whose image is ¢?

The next two matrix transformations can be viewed geometrically. They reinforce
the dynamic view of a matrix as something that transforms vectors into other vectors.
Section 2.7 contains other interesting examples connected with computer graphics.
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A projection transformation.

sheared sheep
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1 0 0
EXAMPLE 2 If A=|0 1 0|, then the transformation x — AX projects
0O 0 0
points in R3 onto the X1Xxz-plane because
X1 l O 0 X1 X1
X |0 1 0 X2 | = | x2
X3 0 0 0 X3 0
See Fig. 3. [ |

1 3
0 1
T (x) = Ax is called a shear transformation. It can be shown that if 7" acts on each
point in the 2 x 2 square shown in Fig. 4, then the set of images forms the shaded
parallelogram. The key idea is to show that 7 maps line segments onto line segments
(as shown in Exercise 27) and then to check that the corners of the square map onto

EXAMPLE 3 Let 4 = |: i| The transformation 7 : R?> — R? defined by

the vertices of the parallelogram. For instance, the image of the point u = [g} is

o[} 8-y - [2)

deforms the square as if the top of the square were pushed to the right while the base is
held fixed. Shear transformations appear in physics, geology, and crystallography. M

X R)

=

T X
2 2 8

FIGURE 4 A shear transformation.

Linear Transformations

Theorem 5 in Section 1.4 shows that if A is m x n, then the transformation x — AX has
the properties
A(u+v) = Au+ Av and A(cu) = cAu

forallu, vin R” and all scalars c. These properties, written in function notation, identify
the most important class of transformations in linear algebra.

A transformation (or mapping) 7 is linear if:
(i) T(wa+v) =T(u)+ T(v) forallu,v inthe domain of T';
(i) T'(cu) = c¢T(u) for all scalars ¢ and all u in the domain of 7'.

Every matrix transformation is a linear transformation. Important examples of
linear transformations that are not matrix transformations will be discussed in Chapters
4 and 5.
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Linear transformations preserve the operations of vector addition and scalar mul-
tiplication. Property (i) says that the result 7'(u 4 v) of first adding u and v in R” and
then applying T is the same as first applying 7 to u and to v and then adding 7 (u) and
T(v) in R™. These two properties lead easily to the following useful facts.

If T is a linear transformation, then
T@0)=0 3
and
T(cu+dv)=cT(u)+dT(v) )

for all vectors u, v in the domain of 7" and all scalars ¢, d.

Property (3) follows from condition (ii) in the definition, because 7'(0) = T(0u) =
07 (u) = 0. Property (4) requires both (i) and (ii):
T(cu+dv)=T(cu)+T(dv) =cT () +dT(v)
Observe that if a transformation satisfies (4) for all u, v and ¢, d, it must be linear.

(Set ¢ = d =1 for preservation of addition, and set d = 0 for preservation of scalar
multiplication.) Repeated application of (4) produces a useful generalization:

T(civi+---+cpvp) =c1T(V1) + -+ ¢, T(v)) &)

In engineering and physics, (5) is referred to as a superposition principle. Think
of vi,...,V, as signals that go into a system and 7'(vy), ..., T(v,) as the responses of
that system to the signals. The system satisfies the superposition principle if whenever
an input is expressed as a linear combination of such signals, the system’s response is
the same linear combination of the responses to the individual signals. We will return
to this idea in Chapter 4.

EXAMPLE 4 Given a scalar r, define 7 : R> — R? by T(x) = rx. T is called a
contraction when 0 < r < 1 and a dilation when r > 1. Let r = 3, and show that T’
is a linear transformation.

SOLUTION Let u, v be in R? and let ¢, d be scalars. Then
T(cu+dv) =3(cu+dv) Definition of T
=3cu+ 3dv
= c(3u) + d(3v)
=cT()+dT(v)

Vector arithmetic

Thus 7 is a linear transformation because it satisfies (4). See Fig. 5. [ |
X, X,
2 T T(u) 2 [
—_—— Ld
U, °

FIGURE 5 A dilation transformation.
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EXAMPLE 5 Define a linear transformation 7 : R? — R? by
_ 0 —1 X1 | =%
reo=[1 %) w] =[]
. . 4 2 6
Find the images under T of u = [1},v= [3:|,andu+v= |:4:|

R R R
rasw=|1 S][4]=] 7]

Note that 7'(u + v) is obviously equal to 7'(u) + 7' (v). It appears from Fig. 6 that
T rotates u, v, and u + v counterclockwise about the origin through 90°. In fact, T
transforms the entire parallelogram determined by u and v into the one determined by
T (u) and T'(v). (See Exercise 28.) ]

.T(u +v)

FIGURE 6 A rotation transformation.

The final example is not geometrical; instead, it shows how a linear mapping can
transform one type of data into another.

EXAMPLE 6 A company manufactures two products, B and C. Using data from
Example 7 in Section 1.3, we construct a “unit cost” matrix, U = [b ¢], whose
columns describe the “costs per dollar of output” for the products:

Product
B C
45 .40 | Materials
U=1.25 .35 | Labor
.15 .15 | Overhead

Letx = (x1, x2) be a “production” vector, corresponding to x; dollars of product B and
x; dollars of product C, and define T : R? — R? by

45 .40 Total cost of materials
T(x)=Ux=x;| .25 | + x| .30 | = | Total cost of labor
15 15 Total cost of overhead

The mapping T transforms a list of production quantities (measured in dollars) into a
list of total costs. The linearity of this mapping is reflected in two ways:

1. If production is increased by a factor of, say, 4, from x to 4x, then the costs will
increase by the same factor, from 7(x) to 47 (x).
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2. If x and y are production vectors, then the total cost vector associated with the
combined production x +y is precisely the sum of the cost vectors 7'(x) and

T(y).

PRACTICE PROBLEMS

1. Suppose T : R® — R? and T (x) = Ax for some matrix A and for each x in R>. How
many rows and columns does A have?

1

2. LetA = [0

0 . . o .
1 :| Give a geometric description of the transformation x — Ax.

3. The line segment from 0 to a vector u is the set of points of the form ru, where
0 <t < 1. Show that a linear transformation 7" maps this segment into the segment

between 0 and 7 (u).

1.8 EXERCISES

1. LetA = [g g],anddeﬁneT:Rz—HszyT(x)=Ax.
Find the images under 7 of u = [_;] andv = [Z]
10 0 3 a
2. Let A=| 0 % 0, u= 6|, and v=| b
0 0 % -9 c

Define T : R* — R*® by T'(x) = Ax. Find T'(u) and T'(v).

In Exercises 3-6, with T defined by 7' (x) = Ax, find a vector x
whose image under 7 is b, and determine whether x is unique.

1 0 -3 )
3.4=1-3 1 6|,p=]| 3
| 2 —2 -1 -1
1 -2 3 -6
4. A=l0 1 =3|,b=|—4
2 -5 6 -5
1 -5 -7 )
soa=| 3 3 5],1,_[_2]
i -3 2 1
3 -8 8 6
6. A=14y 1 2]'P=] 3
1 0 8 10

7. Let A be a 6 x 5 matrix. What must ¢ and b be in order to
define T : R — R? by T'(x) = Ax?

8. How many rows and columns must a matrix A have in order
to define a mapping from R? into R” by the rule 7'(x) = Ax?

For Exercises 9 and 10, find all x in R* that are mapped into the
zero vector by the transformation x — Ax for the given matrix A4.

1 -3 5 -5
9. 4=|0 1 -3 5
2 —4 4 —4

o

1.

32

1 0

A= 0 1
1 4
e

Letb = 1
- 0_

in the range of

why not?

(]

. Letb = 3
—1

4

10 -6
2 —4
2 3

10 8

, and let A be the matrix in Exercise 9. Is b

the linear transformation x — Ax? Why or

, and let A be the matrix in Exercise 10. Is

b in the ra_nge of the linear transformation x > Ax? Why or

why not?

In Exercises 13—16, use a rectangular coordinate system to plot

2 4
mation 7. (Make a separate and reasonably large sketch for each
exercise.) Describe geometrically what 7" does to each vector x

u= |: > ], V= [ -2 ], and their images under the given transfor-

in R2.

13, T(x) = :_(1) _ﬂ[i;]
14. T(x) = g (2)2
15. T(x) = (1) 52
16. T(x) = :8 (2)2

17. Let T : R?> — R? be a linear transformation that maps u =

3. 4 3. -1
|:4:|1nto|:1:|andmapsv—[3]mto|: 3):|.Usethefact

that 7" is linear to find the images under 7' of 2u, 3v, and
2u + 3v.



18.

19.

20.

The figure shows vectors u, v, and w, along with the images
T (u) and T'(v) under the action of a linear transformation
T : R? — R2. Copy this figure carefully, and draw the image
T (w) as accurately as possible. [Hint: First, write w as a
linear combination of u and v.]

X

T(v)

° T(u)

Lete, = [é],ez = [?],yl = |:§i|,andy2 = [_é],and

let 7 : R*> — R? be a linear transformation that maps e, into

y, and maps e, into y,. Find the images of [ g ] and[ il ]
- 2

_ X1 _ -3 _ 7
Let x = |:x2]’ A2 —|: 5], and v, = [_2], and let

T : R? — R? be a linear transformation that maps x into
X1Vy + X»V,. Find a matrix A such that 7'(x) is Ax for each x.

In Exercises 21 and 22, mark each statement True or False. Justify
each answer.

21.

22,

23.

a. A linear transformation is a special type of function.

b. If Ais a3 x 5 matrix and 7T is a transformation defined
by T(x) = Ax, then the domain of T is R3.

c. If Aisanm x n matrix, then the range of the transforma-
tion X > Ax is R™.

d. Every linear transformation is a matrix transformation.
e. A transformation 7 is linear if and only if
T(c1vi + cava) = 1T (Vi) + ¢2T(v2)

for all v, and v, in the domain of 7" and for all scalars ¢,
and ¢,.

a. The range of the transformation x > AXx is the set of all
linear combinations of the columns of A.

b. Every matrix transformation is a linear transformation.

c. If T:R" — R" is a linear transformation and if ¢ is in
R™, then a uniqueness question is “Is ¢ in the range of
T?”

d. Alinear transformation preserves the operations of vector
addition and scalar multiplication.

e. A linear transformation 7' : R" — R” always maps the
origin of R” to the origin of R”.

Define f : R — R by f(x) = mx + b.
a. Show that f is a linear transformation when b = 0.

b. Find a property of a linear transformation that is violated
when b # 0.

c. Why is f called a linear function?

24.

25.

26.

217.

28.

29.

30.

31.
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An gaffine transformation T : R" — R has the form T (x) =
Ax + b, with A an m x n matrix and b in R”. Show
that 7 is not a linear transformation when b # 0. (Affine
transformations are important in computer graphics.)

Givenv # 0 and p in R”, the line through p in the direction of
v has the parametric equation X = p + tv. Show that a linear
transformation 7" : R” — R” maps this line onto another line
or onto a single point (a degenerate line).

a. Show that the line through vectors p and q in R” may be
written in the parametric form x = (1 —7)p + tq. (Refer
to the figure with Exercises 21 and 22 in Section 1.5.)

b. The line segment from p to q is the set of points of the
form (1 —#)p + ¢q for 0 < ¢ < 1 (as shown in the figure
below). Show that a linear transformation 7" maps this
line segment onto a line segment or onto a single point.

(r=0)p T(q@)

X
(1-Dp+1q Tx)

T(p)
t=1)q

Let u and v be linearly independent vectors in R?, and let P
be the plane through u, v, and 0. The parametric equation
of P is x =su+¢v (with s,¢ in R). Show that a linear
transformation 7 : R®* — R? maps P onto a plane through 0,
or onto a line through 0, or onto just the origin in R*. What
must be true about 7'(u) and 7'(v) in order for the image of
the plane P to be a plane?

Letu and v be vectors in R”. It can be shown that the set P of
all points in the parallelogram determined by u and v has the
formau + bv,for0 <a <1,0<b <1.LetT :R" - R”
be a linear transformation. Explain why the image of a point
in P under the transformation 7 lies in the parallelogram
determined by 7 (u) and 7'(v).

Let T : R? — R? be the linear transformation that reflects
each point through the x,-axis. Make two sketches similar
to Fig. 6 that illustrate properties (i) and (ii) of a linear
transformation.

Suppose vectors vy, ...,v, span R", and let 7 : R" — R"
be a linear transformation. Suppose T(v;) =0 for i =
1,..., p. Show that T is the zero transformation. That is,
show that if x is any vector in R”, then 7'(x) = 0.

Let 7 :R" — R™ be a linear transformation, and let
{V1, V2, v3} be a linearly dependent set in R”. Explain why
the set {7'(vy), T(v2), T (v3)} is linearly dependent.

In Exercises 32-36, column vectors are written as rows, such as
X = (X1, xp), and T (x) is written as T (x1, X,).

32.

33.

Show that the transformation 7 defined by T (x,x,) =
(x1 — 2|x2], x; — 4x7) is not linear.

Show that the transformation 7 defined by T(x,x,) =
(x1 — 2x2, x; — 3,2x; — 5x3) is not linear.
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34. Let T : R?> — R? be the transformation that reflects each

vector X = (xy,Xx,,x3) through the plane x3 =0 onto 37.

T(x) = (x1,x2,—x3). Show that T is a linear transforma-
tion. [See Example 4 for ideas.]

35. Let T : R?® — R? be the transformation that projects each

vector X = (x1, X, x3) onto the plane x, =0, so T(x) = 39.

(x1,0, x3). Show that T is a linear transformation.

36. LetT : R” — R™ be alinear transformation. Suppose {u, v}
is a linearly independent set, but {7'(u), T'(v)} is a linearly
dependent set. Show that 7'(x) = 0 has a nontrivial solution.
[Hint: Use the fact that ¢;T(u) + ;T (v) =0 for some 4
weights ¢; and ¢,, not both zero.]

[M] In Exercises 37 and 38, the given matrix determines a linear
transformation 7'. Find all x such that 7'(x) = 0.

2 3 5 =5 3 4 -7 0
-7 7 0 0 5 -8 7 4
-3 4 1 3 38 6 -8 6 4
-9 3 -6 —4 9 -7 =2 0
- g
[M] Letb = Z and let A be the matrix in Exercise 37.
-3

Is b in the range of the transformation x > Ax? If so, find
an X whose image under the transformation is b.

. [M] Letb = and let A be the matrix in Exercise 38.

Is b in the range of the transformation x — Ax? If so, find
an X whose image under the transformation is b.

E Mastering: Linear Transformations 1-34

SOLUTIONS TO PRACTICE PROBLEMS

X

x, 1. A must have five columns for Ax to be defined. A must have two rows for the
Au codomain of T to be R
v :’: T 2. Plot some random points (vectors) on graph paper to see what happens. A point such

x-axis (or xj-axis).

.+
< 1
_'_'_
[ ]
= ot
w

| as (4, 1) maps into (4, —1). The transformation x — Ax reflects points through the

. Letx = ruforsome ¢ such that0 < ¢ < 1. Since T is linear, 7 (tu) = ¢ T'(u), which

The transformation x — Ax. is a point on the line segment between 0 and 7T (u).

1.9 THE MATRIX OF A LINEAR TRANSFORMATION

Whenever a linear transformation 7" arises geometrically or is described in words, we
usually want a “formula” for 7' (x). The discussion that follows shows that every linear
transformation from R” to R” is actually a matrix transformation x — Ax and that
important properties of 7 are intimately related to familiar properties of A. The key to
finding A is to observe that T is completely determined by what it does to the columns

of the n x n identity matrix [,,.

T(e) =

0

EXAMPLE 1 The columns of I, = |:1 (1):| are e; = |:(1):| and e; = [(1)1| Sup-

pose T is a linear transformation from R? into R? such that

5 -3
=7 and T(ey) = 8
2 0

]
e, =
: [0 With no additional information, find a formula for the image of an arbitrary x in R2.
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SOLUTION Write

1 0
x=[i;]=x1|:0]+xz[11|=x1e1+x2e2 (1)

Since T is a linear transformation,

T(x) = x1T(e1) + x2T(e2) 2
5 -3 5x1—3x
= X1 -7 + X2 8 = —7X1 + 8.X2 |
2 0 2x1+0

The step from equation (1) to equation (2) explains why knowledge of 7' (e;) and
T (e,) is sufficient to determine 7 (x) for any x. Moreover, since (2) expresses T'(x) as
a linear combination of vectors, we can put these vectors into the columns of a matrix
A and write (2) as

T(x)=[T(e) T(e)] [jﬂ — Ax

Let 7 : R"” — R™ be a linear transformation. Then there exists a unique matrix
A such that
T(x) = Ax forall x in R”

In fact, A is the m X n matrix whose j th column is the vector 7'(e; ), where e; is
the jth column of the identity matrix in R":

A=[T@e) - T(e)] A3)

PROOF Write x=I1,x=1[e; --- e,]x = x1€e; + -+ x,e,, and use the linearity
of T to compute

T(X) = T(xlel + o+ xnen) = xlT(el) +-- an(en)

X1
=[T() - T()]| : |=4x

Xn
The uniqueness of A is treated in Exercise 33. [ |

The matrix A in (3) is called the standard matrix for the linear transforma-
tion 7.

We know now that every linear transformation from R” to R” can be viewed as
a matrix transformation, and vice versa. The term linear transformation focuses on a
property of a mapping, while matrix transformation describes how such a mapping is
implemented, as Examples 2 and 3 illustrate.

EXAMPLE 2 Find the standard matrix A for the dilation transformation 7'(x) = 3x,
for x in R2.
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FIGURE 2

The unit square.

SOLUTION Write

T(e1)=3e1=[8} and T(ez):3e2:|:(3):|

vt

N -

EXAMPLE 3 Let 7 :R?> — R? be the transformation that rotates each point in
R? about the origin through an angle ¢, with counterclockwise rotation for a positive
angle. We could show geometrically that such a transformation is linear. (See Fig. 6 in
Section 1.8.) Find the standard matrix A of this transformation.

SOLUTION |:1] rotates into [C(.)S(p i|, and [O} rotates into |:_Sm¢ i| See Fig. 1.
0 sin ¢ 1 cos ¢

By Theorem 10,
| cosg —sing
T | sing  cosg

Example 5 in Section 1.8 is a special case of this transformation, with ¢ = 7/2. [ |

FIGURE 1 A rotation transformation.

Geometric Linear Transformations of R?

Examples 2 and 3 illustrate linear transformations that are described geometrically.
Tables 1-4 illustrate other common geometric linear transformations of the plane.
Because the transformations are linear, they are determined completely by what they
do to the columns of /,. Instead of showing only the images of e; and e,, the tables
show what a transformation does to the unit square (Fig. 2).

Other transformations can be constructed from those listed in Tables 1-4 by
applying one transformation after another. For instance, a horizontal shear could be
followed by a reflection in the x,-axis. Section 2.1 will show that such a composition
of linear transformations is linear. (Also, see Exercise 34.)

Existence and Uniqueness Questions

The concept of a linear transformation provides a new way to understand the existence
and uniqueness questions asked earlier. The two definitions following Tables 1-4 give
the appropriate terminology for transformations.
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TABLE 1 Reflections

Transformation Image of the Unit Square Standard Matrix
Reflection through x, 1 0
the x;-axis [1} |: 0 —1 ]

LN
(=)
=

Reflection through x, -1 o0
the x,-axis [ 0 1 :|

— y
-1
Lo
Reflection through x, 0o 1
the line x, = x; X, = 1 0
0
1 u
1
o
Reflection through x, 0 —1
the line x, = —x; —1 0
-1
0
X
H="%
0
-1
Reflection through x, -1 0
the origin 0 —1
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TABLE 2 Contractions and Expansions

Transformation Image of the Unit Square Standard Matrix
Horizontal x, X, k 0
contraction |: 0 1 ]
and expansion [O} [O}
1 1
———
———

O<k<l1 k>1
Vertical x, X, 1 0
contraction |: 0 k ]
and expansion [0}
l J k
0
k
X X
1 1
0 0
O<k<l1 k>1
TABLE 3 Shears
Transformation Image of the Unit Square Standard Matrix
Horizontal shear Xy X 1k
[k] [ 0 1 ]
4 _ :
1 : —_—t
| — —
I
} X T X
k 1] k [1]
0 0
k>0
Vertical shear X X




TABLE 4 Projections
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Transformation Image of the Unit Square Standard Matrix
Projection onto X, 1 0
the x,-axis [ 0 0 ]
+ X,
0 1
o Lo
Projection onto x, 0 0
the x,-axis |: 0 1 ]
0
]
—

A mapping 7" : R" — R is said to be onto R if each b in R" is the image of

at least one X in R”.

Equivalently, T is onto R” when the range of T is all of the codomain R™. That is,
T maps R” onto R™ if, for each b in the codomain R", there exists at least one solution
of T(x) = b. “Does T map R” onto R”?” is an existence question. The mapping T is
not onto when there is some b in R” for which the equation 7'(x) = b has no solution.

See Fig. 3.

it T A. ai” r &
p()frl —_— pgfﬂ —_— ange

T is not onto R T is onto R™

FIGURE 3 Is the range of T all of R"?

A mapping 7 : R” — R” is said to be one-to-one if each b in R” is the image
of at most one x in R".
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Equivalently, T is one-to-one if, for each b in R™, the equation 7' (x) = b has either
a unique solution or none at all. “Is 7" one-to-one?” is a uniqueness question. The
mapping T is not one-to-one when some b in R™ is the image of more than one vector
in R”. If there is no such b, then T is one-to-one. See Fig. 4.

R 4
. Q .
rﬂﬂlﬂ T 4 n&e Iﬂﬂlﬂ ) T
polfy T L po
.—,*/\’ >
0 0 0

1 RM 7

# #
T is not one-to-one T is one-to-one

FIGURE 4 Is every b the image of at most one vector?

Mastering: Existence The projection transformations shown in Table 4 are not one-to-one and do not map
and Uniqueness 1-39 R2 onto R2. The transformations in Tables 1, 2, and 3 are one-to-one and do map R2
onto R2. Other possibilities are shown in the two examples below.
Example 4 and the theorems that follow show how the function properties of being
one-to-one and mapping onto are related to important concepts studied earlier in this
chapter.

EXAMPLE 4 Let T be the linear transformation whose standard matrix is

1 4 8 1
A=[10 2 -1 3
0o 0 0 5

Does T map R* onto R3? Is T a one-to-one mapping?

SOLUTION Since A happens to be in echelon form, we can see at once that A has a
pivot position in each row. By Theorem 4 in Section 1.4, for each b in R?, the equation
Ax = b is consistent. In other words, the linear transformation 7" maps R* (its domain)
onto R3. However, since the equation Ax = b has a free variable (because there are
four variables and only three basic variables), each b is the image of more than one x.
That is, T is not one-to-one. |

THEOREM 11 Let 7 : R"” — R™ be a linear transformation. Then 7 is one-to-one if and only if
the equation 7'(x) = 0 has only the trivial solution.

PROOF Since T is linear, 7(0) = 0. If T is one-to-one, then the equation 7'(x) = 0
has at most one solution and hence only the trivial solution. If 7 is not one-to-one, then
there is a b that is the image of at least two different vectors in R” —say, u and v. That
is, T(u) = b and T'(v) = b. But then, since T is linear,

Tu—v)=T@w)—TK¥)=b—-b=0
The vector u — v is not zero, since u # v. Hence the equation 7'(x) = 0 has more than

one solution. So, either the two conditions in the theorem are both true or they are both
false. |
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€

/ €]
x

X

[ ]
&)
a; /
[ ]
Span{aj, a2}

1

The transformation 7" is not
onto R3.
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Let 7 : R” — R™ be a linear transformation and let A be the standard matrix for
T. Then:

a. T maps R” onto R™ if and only if the columns of A span R";

b. T is one-to-one if and only if the columns of A4 are linearly independent.

PROOF

a. By Theorem 4 in Section 1.4, the columns of A span R™ if and only if for each b
in R™ the equation Ax = b is consistent—in other words, if and only if for every b,
the equation 7'(x) = b has at least one solution. This is true if and only if 7" maps
R" onto R™.

b. The equations 7'(x) = 0 and Ax = 0 are the same except for notation. So, by
Theorem 11, 7' is one-to-one if and only if Ax = 0 has only the trivial solution.
This happens if and only if the columns of A are linearly independent, as was already
noted in the boxed statement (3) in Section 1.7. [ |

Statement (a) in Theorem 12 is equivalent to the statement “7" maps R” onto R”
if and only if every vector in R™ is a linear combination of the columns of 4.” See
Theorem 4 in Section 1.4.

In the next example and in some exercises that follow, column vectors are written in
rows, such as x = (x1, x3), and 7'(x) is written as 7' (x;, x;) instead of the more formal
T((x1,x2)).

EXAMPLE 5 Let T(x1,x2) = (3x; + X3, 5x1 + 7x2, X1 + 3x2). Show that T is a
one-to-one linear transformation. Does 7" map R? onto R3?

SOLUTION When x and 7'(x) are written as column vectors, you can determine the
standard matrix of 7" by inspection, visualizing the row—vector computation of each
entry in AX.

3x1 + X ? ? X 3 1 X
T(x)=|5x+7x |=]2 2 [1]= 5 7 [xl} 4)
X1 + 3x2 1 3 2

~
EN
~

So T is indeed a linear transformation, with its standard matrix A shown in (4). The
columns of A are linearly independent because they are not multiples. By Theorem
12(b), T is one-to-one. To decide if T is onto R3, examine the span of the columns of
A. Since A is 3 x 2, the columns of A span R? if and only if 4 has 3 pivot positions,
by Theorem 4. This is impossible, since A has only 2 columns. So the columns of 4 do
not span R3, and the associated linear transformation is not onto R3. [ |

PRACTICE PROBLEM

Let T : R? — R? be the transformation that first performs a horizontal shear that maps
e, into e, — .5e; (but leaves e; unchanged) and then reflects the result through the x,-
axis. Assuming that 7T is linear, find its standard matrix. [Hint: Determine the final
location of the images of e; and e;.]
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1.9

EXERCISES

In Exercises 1-10, assume that 7 is a linear transformation. Find
the standard matrix of 7.

1.

10.

11.

12.

13.

14.

T :R?>— R*T(e) = (3,1,3,1),and T (e;) = (—5,2,0,0),
where e; = (1,0) and e; = (0, 1).

T:R3>—=R?2 T(e)=(1,4), T(e)=(-2,9), and
T (e3) = (3,—8), where e, e,, and e; are the columns of
the 3 x 3 identity matrix.

T : R? — R? is a vertical shear transformation that maps e,
into e; — 3e,, but leaves e, unchanged.

T : R?> — R?is a horizontal shear transformation that leaves
e; unchanged and maps e, into e, + 2e;.

T : R? — R? rotates points (about the origin) through /2
radians (counterclockwise).

T : R*> — R? rotates points (about the origin) through
—3m/2 radians (clockwise).

T : R? — R? first rotates points through —37/4 radians
(clockwise) and then reflects points through the horizontal

xy-axis. [Hint: T(e)) = (—=1/5/2,1/+/2).]

T : R* — R? first performs a horizontal shear that trans-
forms e, into e, + 2e; (leaving e; unchanged) and then re-
flects points through the line x, = —x;.

T : R* — R? first reflects points through the horizontal x;-
axis and then rotates points —z /2 radians.

T : R* — R? first reflects points through the horizontal x;-
axis and then reflects points through the line x, = Xx;.

A linear transformation T : R? — R? first reflects points
through the x;-axis and then reflects points through the x,-
axis. Show that 7" can also be described as a linear transfor-
mation that rotates points about the origin. What is the angle
of that rotation?

Show that the transformation in Exercise 10 is merely a
rotation about the origin. What is the angle of the rotation?

Let 7 : R? — R? be the linear transformation such that T(er)
and T'(e,) are the vectors shown in the figure. Using the
figure, sketch the vector 7'(2, 1).

X

T(e,) T(e,)

| K

Let T : R? — R? be a linear transformation with standard
matrix A =[a; a,], where a; and a, are shown in the
figure at the top of column 2. Using the figure, draw the

image of |: _; ] under the transformation 7'.

X2
0 d

X1
°a

In Exercises 15 and 16, fill in the missing entries of the matrix,
assuming that the equation holds for all values of the variables.

15.

16.

? ? X1 2X1 — 4x2
? ? X2 = X1 — X3
? ? X3 —X; + 3X3

. 3x; —2x;
[ 1:| =| x1+4x,
X2
X2

In Exercises 17-20, show that 7 is a linear transformation by
finding a matrix that implements the mapping. Note that x;, x,, ...
are not vectors but are entries in vectors.

17.
18.
19.
20.
21.

22,

T(x1,x2,x3,x4) = (X1 4 2x2,0,2x5 + X4, X3 — X4)
T(x1,x2) = (x1 +4x2,0,x; — 3x2,x1)

T(x1, X2, x3) = (x1 — 5x2 + 4x3, x5 — 6x3)

T (x1, X2, X3, X4) = 3x] + 4x3 — 2x4 (Notice: T : R* — R)

Let T :R?> — R? be a linear transformation such that
T(x1,x2) = (x1 + x2,4x; + 5x;). Find x such that 7'(x) =
(3,8).

Let T:R?>—-R?> be a linear transformation with
T (x1,x3) = (2x; — X2, —3x; + X2,2x; — 3x»). Find x such
that 7' (x) = (0, —1, —4).

In Exercises 23 and 24, mark each statement True or False. Justify
each answer.

23.

24,

a. A linear transformation 7" : R” — R is completely de-
termined by its effect on the columns of the n x n identity
matrix.

b. If T : R? — R? rotates vectors about the origin through
an angle ¢, then 7 is a linear transformation.

c. When two linear transformations are performed one after
another, the combined effect may not always be a linear
transformation.

d. A mapping 7 : R” — R" is onto R™ if every vector X in
R” maps onto some vector in R”.

e. If A is a 3 x 2 matrix, then the transformation x > Ax
cannot be one-to-one.

a. If A is a 4 x 3 matrix, then the transformation x — Ax
maps R? onto R*.



b. Every linear transformation from R” to R" is a matrix
transformation.

c. The columns of the standard matrix for a linear transfor-
mation from R” to R are the images of the columns of
the n x n identity matrix under 7.

d. A mapping 7 : R" — R™ is one-to-one if each vector in
R" maps onto a unique vector in R”.

e. The standard matrix of a horizontal shear transformation

from R? to R? has the form

are +1.

a 0
0 dl where a and d

In Exercises 25-28, determine if the specified linear transforma-
tion is (a) one-to-one and (b) onto. Justify each answer.

25. The transformation in Exercise 17

26. The transformation in Exercise 2

27. The transformation in Exercise 19

28. The transformation in Exercise 14

In Exercises 29 and 30, describe the possible echelon forms of the
standard matrix for a linear transformation 7". Use the notation of
Example 1 in Section 1.2.

29. T :R?®— R*is one-to-one. 30. 7 :R* — R?is onto.

31. Let T :R" — R"™ be a linear transformation, with A its
standard matrix. Complete the following statement to make
it true: “T is one-to-one if and only if A has pivot
columns.” Explain why the statement is true. [Hint: Look
in the exercises for Section 1.7.]

32. Let T : R" — R™ be a linear transformation, with A its
standard matrix. Complete the following statement to make
it true: “7 maps R” onto R” if and only if A has
pivot columns.” Find some theorems that explain why the
statement is true.
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33. Verify the uniqueness of A in Theorem 10. Let 7 : R” — R™
be a linear transformation such that 7'(x) = Bx for some
m X n matrix B. Show that if A is the standard matrix for
T, then A = B. [Hint: Show that A and B have the same
columns. |

34, Let S :R? - R" and T : R” — R™ be linear transforma-
tions. Show that the mapping x > T'(S(x)) is a linear trans-
formation (from R? to R™). [Hint: Compute 7' (S(cu + dv))
for u,v in R” and scalars ¢ and d. Justify each step of
the computation, and explain why this computation gives the
desired conclusion. ]

35. If a linear transformation 7" : R” — R” maps R” onto R",
can you give a relation between m and n? If T' is one-to-one,
what can you say about m and n?

36. Why is the question “Is the linear transformation 7" onto?”
an existence question?

[M] In Exercises 37-40, let T' be the linear transformation whose
standard matrix is given. In Exercises 37 and 38, decide if 7" is
a one-to-one mapping. In Exercises 39 and 40, decide if 7" maps
R onto R?. Justify your answers.

-5 6 -5 —6 7 5 9 -9
8 3 -3 8 5 6 4 —4
37. 2 9 5 —-12 38 4 8 0 7
3 2 7 -12 -6 -6 6 5

39. | =7 10 =8 -9 14

4. | -8 -6 12 -5 -9

|13 14 15 3 11|

SOLUTION TO PRACTICE PROBLEM

Follow what happens to e; and e,. See Fig. 5. First, e; is unaffected by the shear and
then is reflected into —e;. So T'(e;) = —e;.

Second, e, goes to e, — .5e; by the shear

o [s F '
\_/

Shear transformation

Reflection through the xz—axis

FIGURE 5 The composition of two transformations.
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transformation. Since reflection through the x;-axis changes e; into —e; and leaves
e, unchanged, the vector e, — .5e; goes to e; + .5e¢;. So T'(e;) = e, + .5e;. Thus the
standard matrix of T is

ror otete mssni=[ 1]

1.10 LINEAR MODELS IN BUSINESS, SCIENCE, AND ENGINEERING

The mathematical models in this section are all linear; that is, each describes a problem
by means of a linear equation, usually in vector or matrix form. The first model concerns
nutrition but actually is representative of a general technique in linear programming
problems. The second model comes from electrical engineering. The third model
introduces the concept of a linear difference equation, a powerful mathematical tool for
studying dynamic processes in a wide variety of fields such as engineering, ecology,
economics, telecommunications, and the management sciences. Linear models are
important because natural phenomena are often linear or nearly linear when the variables
involved are held within reasonable bounds. Also, linear models are more easily adapted
for computer calculation than are complex nonlinear models.

As you read about each model, pay attention to how its linearity reflects some
property of the system being modeled.

Constructing a Nutritious Weight-Loss Diet

The formula for the Cambridge Diet, a popular diet in the 1980s, was based on years
of research. A team of scientists headed by Dr. Alan H. Howard developed this
diet at Cambridge University after more than eight years of clinical work with obese
patients.! The very low-calorie powdered formula diet combines a precise balance
of carbohydrate, high-quality protein, and fat, together with vitamins, minerals, trace
elements, and electrolytes. Millions of persons have used the diet to achieve rapid and
substantial weight loss.

To achieve the desired amounts and proportions of nutrients, Dr. Howard had to
incorporate a large variety of foodstuffs in the diet. Each foodstuff supplied several of
the required ingredients, but not in the correct proportions. For instance, nonfat milk
was a major source of protein but contained too much calcium. So soy flour was used for
part of the protein because soy flour contains little calcium. However, soy flour contains
proportionally too much fat, so whey was added since it supplies less fat in relation to
calcium. Unfortunately, whey contains too much carbohydrate. . . .

The following example illustrates the problem on a small scale. Listed in Table 1
are three of the ingredients in the diet, together with the amounts of certain nutrients
supplied by 100 grams (g) of each ingredient.?

EXAMPLE 1 Ifpossible, find some combination of nonfat milk, soy flour, and whey
to provide the exact amounts of protein, carbohydrate, and fat supplied by the diet in
one day (Table 1).

I'The first announcement of this rapid weight-loss regimen was given in the International Journal of Obesity
(1978) 2, 321-332.

2Ingredients in the diet as of 1984; nutrient data for ingredients adapted from USDA Agricultural
Handbooks No. 8-1 and 8-6, 1976.
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TABLE 1

Amounts (g) Supplied per 100 g of Ingredient Amounts (g) Supplied by
Nutrient Nonfat milk Soy flour  Whey Cambridge Diet in One Day
Protein 36 51 13 33
Carbohydrate 52 34 74 45

Fat 0 7 1.1 3

SOLUTION Let x;, xp, and x3, respectively, denote the number of units (100 g) of
these foodstuffs. One approach to the problem is to derive equations for each nutrient
separately. For instance, the product

x units of | |protein per unit
nonfat milk of nonfat milk

gives the amount of protein supplied by x; units of nonfat milk. To this amount, we
would then add similar products for soy flour and whey and set the resulting sum equal
to the amount of protein we need. Analogous calculations would have to be made for
each nutrient.

A more efficient method, and one that is conceptually simpler, is to consider a
“nutrient vector” for each foodstuff and build just one vector equation. The amount of
nutrients supplied by x; units of nonfat milk is the scalar multiple

Scalar Vector
% X1 units of } {nutrients per unit

nonfat milk of nonfat milk | — *1a

ey
where a; is the first column in Table 1. Let a, and a3 be the corresponding vectors
for soy flour and whey, respectively, and let b be the vector that lists the total nutrients
required (the last column of the table). Then x,a, and x3a3 give the nutrients supplied
by x; units of soy flour and x3 units of whey, respectively. So the relevant equation is

xXia; + xa, + x3a3 = b ()

Row reduction of the augmented matrix for the corresponding system of equations
shows that

36 51 13 33 1 0 0 277
52 34 74 45| ~---~ |0 1 0 392
0 7 1.1 3 0o 0 1 .233

To three significant digits, the diet requires .277 units of nonfat milk, .392 units of
soy flour, and .233 units of whey in order to provide the desired amounts of protein,
carbohydrate, and fat. n

It is important that the values of x, x,, and x3 found above are nonnegative. This is
necessary for the solution to be physically feasible. (How could you use —.233 units of
whey, for instance?) With a large number of nutrient requirements, it may be necessary
to use a larger number of foodstuffs in order to produce a system of equations with a
“nonnegative” solution. Thus many, many different combinations of foodstuffs may
need to be examined in order to find a system of equations with such a solution. In
fact, the manufacturer of the Cambridge Diet was able to supply 31 nutrients in precise
amounts using only 33 ingredients.

The diet construction problem leads to the linear equation (2) because the amount
of nutrients supplied by each foodstuff can be written as a scalar multiple of a vector, as
in (1). That is, the nutrients supplied by a foodstuff are proportional to the amount of
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20 volts
FIGURE 1

the foodstuff added to the diet mixture. Also, each nutrient in the mixture is the sum of
the amounts from the various foodstuffs.

Problems of formulating specialized diets for humans and livestock occur fre-
quently. Usually they are treated by linear programming techniques. Our method of
constructing vector equations often simplifies the task of formulating such problems.

Linear Equations and Electrical Networks

Current flow in a simple electrical network can be described by a system of linear
equations. A voltage source such as a battery forces a current of electrons to flow
through the network. When the current passes through a resistor (such as a lightbulb or
motor), some of the voltage is “used up”; by Ohm’s law, this “voltage drop” across a
resistor is given by

V =RI

where the voltage 1 is measured in volts, the resistance R in ohms (denoted by €2), and
the current flow I in amperes (amps, for short).

The network in Fig. 1 contains three closed loops. The currents flowing in loops 1,
2, and 3 are denoted by /I, I5, and I3, respectively. The designated directions of such
loop currents are arbitrary. If a current turns out to be negative, then the actual direction
of current flow is opposite to that chosen in the figure. If the current direction shown is
away from the positive (longer) side of a battery ({+) around to the negative (shorter)
side, the voltage is positive; otherwise, the voltage is negative.

Current flow in a loop is governed by the following rule.

KIRCHHOFF'S VOLTAGE LAW

The algebraic sum of the R/ voltage drops in one direction around a loop equals
the algebraic sum of the voltage sources in the same direction around the loop.

EXAMPLE 2 Determine the loop currents in the network in Fig. 1.

SOLUTION For loop 1, the current I; flows through three resistors, and the sum of the
RI voltage drops is

AL + 41 + 31 = (4+ 4+ 31, = 111,

Current from loop 2 also flows in part of loop 1, through the short branch between A
and B. The associated R/ drop there is 3/, volts. However, the current direction for
the branch AB in loop 1 is opposite to that chosen for the flow in loop 2, so the algebraic
sum of all R/ drops for loop 1 is 11/, — 31,. Since the voltage in loop 1 is 430 volts,
Kirchhoff’s voltage law implies that

117, -3, =30
The equation for loop 2 is
=3I +6l,—I3=5

The term —3/; comes from the flow of the loop-1 current through the branch AB (with
a negative voltage drop because the current flow there is opposite to the flow in loop 2).
The term 61, is the sum of all resistances in loop 2, multiplied by the loop current. The
term —/3 = —1 - I3 comes from the loop-3 current flowing through the 1-ohm resistor
in branch CD, in the direction opposite to the flow in loop 2. The loop-3 equation is

-0+ 31; =-25
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Note that the 5-volt battery in branch CD is counted as part of both loop 2 and loop 3,
but it is —5 volts for loop 3 because of the direction chosen for the current in loop 3.
The 20-volt battery is negative for the same reason.

The loop currents are found by solving the system

111, =31, = 30
=3I +6l, — I3= 5 3)

- L +3L=-25
Row operations on the augmented matrix lead to the solution: I, = 3 amps, I, =
1 amp, and /3 = —8 amps. The negative value of I3 indicates that the actual current
in loop 3 flows in the direction opposite to that shown in Fig. 1. |

It is instructive to look at system (3) as a vector equation:

11 -3 0 30
L| -3 |+L| 6|+L]—-1]|= 5 4)
0 -1 3 —-25
t t t t
I I I3 v

The first entry of each vector concerns the first loop, and similarly for the second and
third entries. The first resistor vector r; lists the resistance in the various loops through
which current /; flows. A resistance is written negatively when /; flows against the
flow direction in another loop. Examine Fig. 1 and see how to compute the entries in
ri; then do the same for r, and r3. The matrix form of equation (4),

Ri=v, where R=[r; r, r3] and i=| 1,
I3

provides a matrix version of Ohm’s law. If all loop currents are chosen in the same
direction (say, counterclockwise), then all entries off the main diagonal of R will be
negative.

The matrix equation Ri = v makes the linearity of this model easy to see at a glance.
For instance, if the voltage vector is doubled, then the current vector must double. Also,
a superposition principle holds. That is, the solution of equation (4) is the sum of the
solutions of the equations

30 0 0
Ri = 0, Ri=|5]|, and Ri= 0
0 0 -25

Each equation here corresponds to the circuit with only one voltage source (the other
sources being replaced by wires that close each loop). The model for current flow is
linear precisely because Ohm’s law and Kirchhoff’s law are linear: The voltage drop
across a resistor is proportional to the current flowing through it (Ohm), and the sum of
the voltage drops in a loop equals the sum of the voltage sources in the loop (Kirchhoff).

Loop currents in a network can be used to determine the current in any branch of
the network. If only one loop current passes through a branch, such as from B to D
in Fig. 1, the branch current equals the loop current. If more than one loop current
passes through a branch, such as from A to B, the branch current is the algebraic sum
of the loop currents in the branch (Kirchhoff’s current law). For instance, the current in
branch ABis I} — I, = 3 — 1 = 2 amps, in the direction of /;. The current in branch
CDis I, — Iz = 9 amps.
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Difference Equations

In many fields such as ecology, economics, and engineering, a need arises to model
mathematically a dynamic system that changes over time. Several features of the system
are each measured at discrete time intervals, producing a sequence of vectors Xg, Xj,
Xy, .... The entries in X, provide information about the state of the system at the time
of the kth measurement.

If there is a matrix A such that x; = Ax,, X, = AX|, and, in general,

X1 = Ax; fork =0,1,2,... 5)

then (5) is called a linear difference equation (or recurrence relation). Given such
an equation, one can compute X;, X, and so on, provided X, is known. Sections 4.8
and 4.9, and several sections in Chapter 5, will develop formulas for x; and describe
what can happen to x; as k increases indefinitely. The discussion below illustrates how
a difference equation might arise.

A subject of interest to demographers is the movement of populations or groups of
people from one region to another. The simple model here considers the changes in the
population of a certain city and its surrounding suburbs over a period of years.

Fix an initial year—say, 2000—and denote the populations of the city and suburbs
that year by ry and so, respectively. Let X, be the population vector

— o City population, 2000
0= S0 Suburban population, 2000

For 2001 and subsequent years, denote the populations of the city and suburbs by the

vectors
r r r3
X = , Xy = , X3 = yeee
S1 52 53

Our goal is to describe mathematically how these vectors might be related.

Suppose demographic studies show that each year about 5% of the city’s population
moves to the suburbs (and 95% remains in the city), while 3% of the suburban population
moves to the city (and 97% remains in the suburbs). See Fig. 2.

City Suburbs

.05

.95 97

.03

FIGURE 2 Annual percentage migration between city and suburbs.

After 1 year, the original ry persons in the city are now distributed between city and

suburbs as
95rg | p .95 Remain in city ©)
05rg | — o1 .05 Move to suburbs

The s¢ persons in the suburbs in 2000 are distributed 1 year later as

|: .03 :| Move to city
So

.97 Remain in suburbs

(N
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The vectors in (6) and (7) account for all of the population in 2001.3 Thus
"ol .95 " 031 195 .03 || ro
si] T Los | T o7 T 05 97| s

X = MXO (8)

That is,

where M is the migration matrix determined by the following table:

From:
City Suburbs To:

95 .03 City
05 .97 Suburbs

Equation (8) describes how the population changes from 2000 to 2001. If the migration
percentages remain constant, then the change from 2001 to 2002 is given by

Xy = MX]
and similarly for 2002 to 2003 and subsequent years. In general,
Xpt+1 = Mx; fork =0,1,2,... ©)]

The sequence of vectors {Xg, X;, Xz, ...} describes the population of the city/suburban
region over a period of years.

EXAMPLE 3 Compute the population of the region just described for the years
2001 and 2002, given that the population in 2000 was 600,000 in the city and 400,000
in the suburbs.

600,000
400,000

N .95 .03 || 600,000 | | 582,000
"7 1.05 .97 || 400,000 | ~ | 418,000

95 .03 || 582,000 | | 565,440
.05 .97 || 418,000 | — | 434,560

SOLUTION The initial population in 2000 is xo = |: ] For 2001,

For 2002,

Xy = M X = |: |

The model for population movement in (9) is linear because the correspondence
X; > Xk +1 1s a linear transformation. The linearity depends on two facts: the number
of people who chose to move from one area to another is proportional to the number of
people in that area, as shown in (6) and (7), and the cumulative effect of these choices
is found by adding the movement of people from the different areas.

PRACTICE PROBLEM
Find a matrix 4 and vectors x and b such that the problem in Example 1 amounts to

solving the equation Ax = b.

3For simplicity, we ignore other influences on the population such as births, deaths, and migration into and
out of the city/suburban region.
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1.10 EXERCISES

1. The container of a breakfast cereal usually lists the number

classical Mac and Cheese to Annie’s® Whole Wheat

of calories and the amounts of protein, carbohydrate, and
fat contained in one serving of the cereal. The amounts for
two common cereals are given below. Suppose a mixture of
these two cereals is to be prepared that contains exactly 295
calories, 9 g of protein, 48 g of carbohydrate, and 8 g of fat.
a. Setup a vector equation for this problem. Include a state-
ment of what the variables in your equation represent.

b. Write an equivalent matrix equation, and then determine
if the desired mixture of the two cereals can be prepared.

Nutrition Information per Serving

General Mills Quaker®
Nutrient Cheerios 100% Natural Cereal
Calories 110 130
Protein (g) 4 3
Carbohydrate (g) 20 18
Fat (g) 2 5

Shells and White Cheddar. What proportions of servings
of each food should she use to meet the same goals as in
part (a)?

. The Cambridge Diet supplies .8 g of calcium per day, in

addition to the nutrients listed in the Table 1 for Example
1. The amounts of calcium per unit (100 g) supplied by the
three ingredients in the Cambridge Diet are as follows: 1.26 g
from nonfat milk, .19 g from soy flour, and .8 g from whey.
Another ingredient in the diet mixture is isolated soy protein,
which provides the following nutrients in each unit: 80 g of
protein, O g of carbohydrate, 3.4 g of fat, and .18 g of calcium.
a. Set up a matrix equation whose solution determines the
amounts of nonfat milk, soy flour, whey, and isolated
soy protein necessary to supply the precise amounts of
protein, carbohydrate, fat, and calcium in the Cambridge
Diet. State what the variables in the equation represent.

b. [M] Solve the equation in (a) and discuss your answer.

. One serving of Shredded Wheat supplies 160 calories, 5 g of ~ In Exercises 5-8, write a matrix equation that determines the loop
protein, 6 g of fiber, and 1 g of fat. One serving of Crispix® currents. [M] If MATLAB or another matrix program is available,

supplies 110 calories, 2 g of protein, .1 g of fiber, and .4 g of ~ solve the system for the loop currents.

fat.

a. Setup a matrix B and a vector u such that Bu gives the
amounts of calories, protein, fiber, and fat contained in
a mixture of three servings of Shredded Wheat and two
servings of Crispix.

b. [M] Suppose that you want a cereal with more fiber than
Crispix but fewer calories than Shredded Wheat. Is it
possible for a mixture of the two cereals to supply 130
calories, 3.20 g of protein, 2.46 g of fiber, and .64 g of
fat? If so, what is the mixture?

. After taking a nutrition class, a big Annie’s® Mac and Cheese
fan decides to improve the levels of protein and fiber in
her favorite lunch by adding broccoli and canned chicken.
The nutritional information for the foods referred to in this
exercise are given in the table below.

Nutrition Information per Serving
Nutrient Mac and Cheese Broccoli Chicken Shells

Calories 270 51 70 260
Protein (g) 10 54 15 9
Fiber (g) 2 5.2 0 5

a. [M] If she wants to limit her lunch to 400 calories but
get 30 g of protein and 10 g of fiber, what proportions of
servings of Mac and Cheese, broccoli, and chicken should
she use?

b. [M] She found that there was too much broccoli in the
proportions from part (a), so she decided to switch from

6.
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11.
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In a certain region, about 7% of a city’s population moves
to the surrounding suburbs each year, and about 5% of the
suburban population moves into the city. In 2010, there were
800,000 residents in the city and 500,000 in the suburbs.
Set up a difference equation that describes this situation,
where X, is the initial population in 2010. Then estimate
the populations in the city and in the suburbs two years
later, in 2012. (Ignore other factors that might influence the
population sizes.)

In a certain region, about 6% of a city’s population moves
to the surrounding suburbs each year, and about 4% of the
suburban population moves into the city. In 2010, there were
10,000,000 residents in the city and 800,000 in the suburbs.
Set up a difference equation that describes this situation,
where X is the initial population in 2010. Then estimate the
populations in the city and in the suburbs two years later, in
2012.

In 1994, the population of California was 31,524,000, and
the population living in the United States but outside Cali-
fornia was 228,680,000. During the year, it is estimated that
516,100 persons moved from California to elsewhere in the
United States, while 381,262 persons moved to California
from elsewhere in the United States.*

a. Set up the migration matrix for this situation, using five
decimal places for the migration rates into and out of
California. Let your work show how you produced the
migration matrix.

b. [M] Compute the projected populations in the year 2000
for California and elsewhere in the United States, assum-
ing that the migration rates did not change during the 6-
year period. (These calculations do not take into account
births, deaths, or the substantial migration of persons into
California and elsewhere in the United States from other
countries.)

4 Migration data supplied by the Demographic Research Unit of the

California State Department of Finance.

12.

13.

14.

[M] Budget® Rent A Car in Wichita, Kansas has a fleet of
about 500 cars, at three locations. A car rented at one location
may be returned to any of the three locations. The various
fractions of cars returned to the three locations are shown in
the matrix below. Suppose that on Monday there are 295 cars
at the airport (or rented from there), 55 cars at the east side
office, and 150 cars at the west side office. What will be the
approximate distribution of cars on Wednesday?

Cars Rented From:

Airport East  West Returned To:
.97 .05 .10 Airport
.00 .90 .05 East
.03 .05 .85 West

[M] Let M and x, be as in Example 3.

a. Compute the population vectors x; for k = 1,...,20.
Discuss what you find.

b. Repeat part (a) with an initial population of 350,000 in
the city and 650,000 in the suburbs. What do you find?

[M] Study how changes in boundary temperatures on a steel
plate affect the temperatures at interior points on the plate.

a. Begin by estimating the temperatures 7, 1>, T3, T, at
each of the sets of four points on the steel plate shown in
the figure. In each case, the value of 7} is approximated
by the average of the temperatures at the four closest
points. See Exercises 33 and 34 in Section 1.1, where
the values (in degrees) turn out to be (20, 27.5, 30, 22.5).
How is this list of values related to your results for the
points in set (a) and set (b)?

b. Without making any computations, guess the interior

temperatures in (a) when the boundary temperatures are
all multipled by 3. Check your guess.

c. Finally, make a general conjecture about the correspon-
dence from the list of eight boundary temperatures to the
list of four interior temperatures.

Plate A Plate B
20°  20° 0 0°
0° ! 2 0° 10° ! 2 40°
0° 4 3 0° 10° 4 3 40°
200 20° 10°  10°
(a) (b)
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SOLUTION TO PRACTICE PROBLEM

13 X1 33
74 , XxX=|x2 |, b=|45
1.1 X3 3

CHAPTER 1 SUPPLEMENTARY EXERCISES

1. Mark each statement True or False. Justify each answer. (If

true, cite appropriate facts or theorems. If false, explain why

or give a counterexample that shows why the statement is not

true in every case.

a. Every matrix is row equivalent to a unique matrix in
echelon form.

b. Any system of n linear equations in n variables has at
most 7 solutions.

c. If a system of linear equations has two different solu-
tions, it must have infinitely many solutions.

d. Ifasystem of linear equations has no free variables, then
it has a unique solution.

e. If an augmented matrix [ A b] is transformed into
[C d] by elementary row operations, then the equa-
tions Ax = b and Cx = d have exactly the same solu-
tion sets.

f. If a system Ax = b has more than one solution, then so
does the system Ax = 0.

g. If A is an m x n matrix and the equation Ax =b is
consistent for some b, then the columns of A span R™.

h. If an augmented matrix [ A b ] can be transformed by
elementary row operations into reduced echelon form,
then the equation Ax = b is consistent.

i. If matrices A and B are row equivalent, they have the
same reduced echelon form.

j- The equation Ax = 0 has the trivial solution if and only
if there are no free variables.

k. If Ais anm x n matrix and the equation Ax = b is con-
sistent for every b in R”, then 4 has m pivot columns.

l.  If an m x n matrix A has a pivot position in every row,
then the equation Ax = b has a unique solution for each
b in R™.

m. If an n xn matrix A has n pivot positions, then the
reduced echelon form of A is the n x n identity matrix.

n. If 3 x 3 matrices A and B each have three pivot posi-
tions, then A can be transformed into B by elementary
row operations.

o. If Ais an m x n matrix, if the equation Ax = b has at
least two different solutions, and if the equation Ax = ¢
is consistent, then the equation Ax = ¢ has many solu-
tions.

p. If Aand B are row equivalent /7 x n matrices and if the
columns of A span R”, then so do the columns of B.

q. If none of the vectors in the set S = {v|,v,, v3} in R? is
a multiple of one of the other vectors, then S is linearly
independent.

r. If {u, v, w} is linearly independent, then u, v, and w are
not in R2.

s. In some cases, it is possible for four vectors to span R>.
t. Ifuandvare in R”, then —u is in Span{u, v}.

u. Ifu, v, and w are nonzero vectors in R?, then w is a linear
combination of u and v.

v. If wis a linear combination of u and v in R”, then u is a
linear combination of v and w.

w. Suppose that vy, v, and v; are in R>, v, is not a multiple
of vy, and v3 is not a linear combination of v; and v,.
Then {vy, v,, v3} is linearly independent.

X. A linear transformation is a function.

y. If Ais a6 x5 matrix, the linear transformation x — Ax
cannot map R onto R®.

z. If Ais an m x n matrix with m pivot columns, then the
linear transformation x — AX is a one-to-one mapping.

Let a and b represent real numbers. Describe the possible
solution sets of the (linear) equation ax = b. [Hint: The
number of solutions depends upon a and b.]

The solutions (x, y, z) of a single linear equation
ax +by+cz=d

form a plane in R when a, b, and ¢ are not all zero. Construct
sets of three linear equations whose graphs (a) intersect in
a single line, (b) intersect in a single point, and (c) have no



points in common. Typical graphs are illustrated in the figure.

- 1

. b

Three planes intersecting
in a line

Three planes intersecting
in a point
(a) (b)

ol | l

Three planes with no Three planes with no
intersection intersection

© (c)

. Suppose the coefficient matrix of a linear system of three
equations in three variables has a pivot position in each
column. Explain why the system has a unique solution.

. Determine /& and k such that the solution set of the system

(i) is empty, (ii) contains a unique solution, and (iii) contains

infinitely many solutions.

a. x +3x0n=k b.
4x1 + hx, = 8

—2x1 + hx, = 1
6x1 + kxo = =2
. Consider the problem of determining whether the following
system of equations is consistent:
4X1 — 2X2 + 7)C3 = -5
8x; —3x; + 10x;3 = -3
a. Define appropriate vectors, and restate the problem in
terms of linear combinations. Then solve that problem.

b. Define an appropriate matrix, and restate the problem
using the phrase “columns of A4.”

c. Define an appropriate linear transformation 7" using the
matrix in (b), and restate the problem in terms of 7'.

. Consider the problem of determining whether the following
system of equations is consistent for all by, b,, bs:
2)C1 — 4)(72 — 2)C3 = b1
—5X1 + X2+ X3 = bz
7X1 — 5)62 — 3X3 = b3
a. Define appropriate vectors, and restate the problem in
terms of Span {v|, v,, v3}. Then solve that problem.

b. Define an appropriate matrix, and restate the problem
using the phrase “columns of 4.”

10.

11.

12.

13.

14.

15.

16.

17.

18.

Chapter 1 Supplementary Exercises 89

c. Define an appropriate linear transformation 7" using the
matrix in (b), and restate the problem in terms of 7'.

Describe the possible echelon forms of the matrix A. Use the
notation of Example 1 in Section 1.2.

a. Aisa?2 x 3 matrix whose columns span R2.

b. Aisa3 x 3 matrix whose columns span R?.

. 5
Write the vector [ 6i| as the sum of two vectors,

one on the line {(x,y):y =2x} and one on the line
{(x.y) 1y =x/2}.
Leta,, a5, and b be the vectors in R? shown in the figure, and

let A =[a; a,]. Does the equation Ax = b have a solution?
If so, is the solution unique? Explain.

2

as

Construct a 2 x 3 matrix A, not in echelon form, such that
the solution of Ax = 0 is a line in R3.

Construct a 2 x 3 matrix A, not in echelon form, such that
the solution of Ax = 0 is a plane in R*.

Write the reduced echelon form of a 3 x 3 matrix A such
that the first two columns of A are pivot columns and

3 0
Al =21 =10
1 0

. 1 a .
Determine the value(s) of a such that {|:a :| , |:a P :|} is
linearly independent.

In (a) and (b), suppose the vectors are linearly independent.
What can you say about the numbers a, ..., f? Justify your
answers. [Hint: Use a theorem for (b).]

p b d a b d

a. 0O1f,]c|,| e b. ! s ¢ R e-
0 0 ’ 0 1 f

0 0 1

Use Theorem 7 in Section 1.7 to explain why the columns of
the matrix A are linearly independent.

1 0 0 O
2 5 0 0
A= 36 8 0
4 7 9 10

Explain why a set {v|,V,,v3,v4} in R® must be linearly
independent when {v{, v,, v3} is linearly independent and v,
is not in Span {vi, v, v3}.

Suppose {v;, v,} is a linearly independent set in R”. Show
that {v,, v; 4 v,} is also linearly independent.



920

19.

20.

21.

22,

23.
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Suppose vy, v,, v3 are distinct points on one line in R3. The
line need not pass through the origin. Show that {v, v,, v3}
is linearly dependent.

Let T : R" — R™ be a linear transformation, and suppose
T'(u) = v. Show that 7 (—u) = —v.

Let T :R3— R?® be the linear transformation that re-
flects each vector through the plane x, = 0. That is,
T (x1, X2, x3) = (X1, —X2, x3). Find the standard matrix of 7.

Let A be a 3 x 3 matrix with the property that the linear
transformation x — Ax maps R3 onto R®. Explain why the
transformation must be one-to-one.

A Givens rotation is a linear transformation from R” to R”
used in computer programs to create a zero entry in a vector
(usually a column of a matrix). The standard matrix of a
Givens rotation in R? has the form

a _b 2 2
|:b a:|’ a-+b"=1

Find a and b such that |: ;1 :| is rotated into |: (5) :|

B2

| X
(5.0

A Givens rotation in R2.

24.

25.

The following equation describes a Givens rotation in R3.
Find a and b.

a 0 —=b7|[2 25
o 1 off{3|=| 3 |, a+b=1
b 0 a 4 0

A large apartment building is to be built using modular
construction techniques. The arrangement of apartments
on any particular floor is to be chosen from one of three
basic floor plans. Plan A has 18 apartments on one floor,
including 3 three-bedroom units, 7 two-bedroom units, and 8
one-bedroom units. Each floor of plan B includes 4 three-
bedroom units, 4 two-bedroom units, and 8 one-bedroom
units. Each floor of plan C includes 5 three-bedroom units,
3 two-bedroom units, and 9 one-bedroom units. Suppose the
building contains a total of x; floors of plan A, x, floors of
plan B, and x; floors of plan C.
3
7 1?
8
b. Write a formal linear combination of vectors that ex-
presses the total numbers of three-, two-, and one-
bedroom apartments contained in the building.

a. What interpretation can be given to the vector x;

c. [M] Is it possible to design the building with exactly 66
three-bedroom units, 74 two-bedroom units, and 136 one-
bedroom units? If so, is there more than one way to do
it? Explain your answer.



Matrix Algebra

INTRODUCTORY EXAMPLE

Computer Models in Aircraft Design

To design the next generation of commercial and military
aircraft, engineers at Boeing’s Phantom Works use 3D
modeling and computational fluid dynamics (CFD). They
study the airflow around a virtual airplane to answer
important design questions before physical models are
created. This has drastically reduced design cycle times
and cost—and linear algebra plays a crucial role in the
process.

The virtual airplane begins as a mathematical “wire-
frame” model that exists only in computer memory and
on graphics display terminals. (A model of a Boeing
777 is shown.) This mathematical model organizes and
influences each step of the design and manufacture of the
airplane —both the exterior and interior. The CFD analysis
concerns the exterior surface.

Although the finished skin of a plane may seem
smooth, the geometry of the surface is complicated. In
addition to wings and a fuselage, an aircraft has nacelles,
stabilizers, slats, flaps, and ailerons. The way air flows
around these structures determines how the plane moves
through the sky. Equations that describe the airflow are
complicated, and they must account for engine intake,
engine exhaust, and the wakes left by the wings of the
plane. To study the airflow, engineers need a highly refined
description of the plane’s surface.

A computer creates a model of the surface by first
superimposing a three-dimensional grid of “boxes” on the

original wire-frame model. Boxes in this grid lie either
completely inside or completely outside the plane, or they
intersect the surface of the plane. The computer selects
the boxes that intersect the surface and subdivides them,
retaining only the smaller boxes that still intersect the
surface. The subdividing process is repeated until the grid
is extremely fine. A typical grid can include over 400,000
boxes.

The process for finding the airflow around the plane
involves repeatedly solving a system of linear equations
Ax = b that may involve up to 2 million equations and
variables. The vector b changes each time, based on data
from the grid and solutions of previous equations. Using
the fastest computers available commercially, a Phantom
Works team can spend from a few hours to several days
setting up and solving a single airflow problem. After the
team analyzes the solution, they may make small changes
to the airplane surface and begin the whole process again.
Thousands of CFD runs may be required.

This chapter presents two important concepts that
assist in the solution of such massive systems of equations:

e Partitioned matrices: A typical CFD system
of equations has a “sparse” coefficient matrix
with mostly zero entries. Grouping the variables
correctly leads to a partitioned matrix with many
zero blocks. Section 2.4 introduces such matrices
and describes some of their applications.

91



92 CHAPTER 2 Matrix Algebra

e Matrix factorizations: Even when written with
partitioned matrices, the system of equations is
complicated. To further simplify the computations,
the CFD software at Boeing uses what is called
an LU factorization of the coefficient matrix.
Section 2.5 discusses LU and other useful matrix
factorizations. Further details about factorizations
appear at several points later in the text.

To analyze a solution of an airflow system, engineers
want to visualize the airflow over the surface of the plane.
They use computer graphics, and linear algebra provides
the engine for the graphics. The wire-frame model of the
plane’s surface is stored as data in many matrices. Once the Modern CFD has revolutionized wing design. The Boeing
image has been rendered on a computer screen, engineers Blended Wing Body is in design for the year 2020 or sooner.
can change its scale, zoom in or out of small regions, and
rotate the image to see parts that may be hidden from view. matrix multiplications. Section 2.7 explains the basic

Each of these operations is accomplished by appropriate ideas.

Our ability to analyze and solve equations will be greatly enhanced when we can perform
algebraic operations with matrices. Furthermore, the definitions and theorems in this
chapter provide some basic tools for handling the many applications of linear algebra
that involve two or more matrices. For square matrices, the Invertible Matrix Theorem
in Section 2.3 ties together most of the concepts treated earlier in the text. Sections 2.4
and 2.5 examine partitioned matrices and matrix factorizations, which appear in most
modern uses of linear algebra. Sections 2.6 and 2.7 describe two interesting applications
of matrix algebra, to economics and to computer graphics.

2.1 MATRIX OPERATIONS

If A is an m X n matrix —that is, a matrix with 7 rows and n columns—then the scalar
entry in the ith row and j th column of A is denoted by a;; and is called the (i, j)-entry
of A. See Fig. 1. For instance, the (3, 2)-entry is the number a3; in the third row, second
column. Each column of A is a list of m real numbers, which identifies a vector in R".
Often, these columns are denoted by ay, ..., a,, and the matrix A is written as

A=la a - a,]

Observe that the number a;; is the ith entry (from the top) of the jth column vector a;.

The diagonal entries in an m x n matrix A = [a;; | are a1, a», ass, ..., and they
form the main diagonal of A. A diagonal matrix is a square n x n matrix whose
nondiagonal entries are zero. An example is the n x n identity matrix, I,. Anm x n
matrix whose entries are all zero is a zero matrix and is written as 0. The size of a zero
matrix is usually clear from the context.
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Column
- j —
an a4y ain
Row i ai; e aij PP ain = A
| Am1 A j Amn
T T T
a; a a

FIGURE 1 Matrix notation.

Sums and Scalar Multiples

The arithmetic for vectors described earlier has a natural extension to matrices. We
say that two matrices are equal if they have the same size (i.e., the same number of
rows and the same number of columns) and if their corresponding columns are equal,
which amounts to saying that their corresponding entries are equal. If A and B are
m X n matrices, then the sum 4 + B is the m X n matrix whose columns are the sums
of the corresponding columns in 4 and B. Since vector addition of the columns is done
entrywise, each entry in A + B is the sum of the corresponding entries in A and B. The
sum A + B is defined only when A and B are the same size.

EXAMPLE 1 Let

4 0 5 o1 2 -3
A_[—l 3 2}’ —[3 5 7]’ C—[o 1]

Then
5 1 6
A+ B = [2 8 9]
but A + C is not defined because A and C have different sizes. |

If r is a scalar and A is a matrix, then the scalar multiple rA4 is the matrix whose
columns are r times the corresponding columns in A. As with vectors, —A stands for
(—=1)A, and A — B is the same as A + (—1)B.

EXAMPLE 2 1If A and B are the matrices in Example 1, then
1 1 1 2 2 2
2B _2|:3 5 7] o [6 10 14]
4 0 5 2 2 2 2 =2 3
A_ZB_[—l 3 2}_[6 10 14} _[—7 -7 —12] "
It was unnecessary in Example 2 to compute A — 2B as A + (—1)2B because the

usual rules of algebra apply to sums and scalar multiples of matrices, as the following
theorem shows.

Let A, B, and C be matrices of the same size, and let r and s be scalars.

a. A+ B=B+ A
b. (A+B)+C =4+ (B+C)
c. A+0=4

d. r(A+ B)=rA+rB
e. r+s)A=rA+sA
f. r(sd) = (rs)A
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Each equality in Theorem 1 is verified by showing that the matrix on the left side has
the same size as the matrix on the right and that corresponding columns are equal. Size
is no problem because A, B, and C are equal in size. The equality of columns follows
immediately from analogous properties of vectors. For instance, if the jth columns of
A, B, and C are a;, b;, and c;, respectively, then the jth columns of (A4 + B) + C
and A + (B + C) are

(a,- +b,~)+cj and aj+(bj+cj)

respectively. Since these two vector sums are equal for each j, property (b) is verified.

Because of the associative property of addition, we can simply write A + B 4+ C
for the sum, which can be computed either as (A + B) + C oras A + (B + C). The
same applies to sums of four or more matrices.

Matrix Multiplication

When a matrix B multiplies a vector X, it transforms x into the vector Bx. If this vector
is then multiplied in turn by a matrix A, the resulting vector is A(Bx). See Fig. 2.

Multiplication Multiplication
m /—[)N
Xe ° [
Bx A(Bx)

FIGURE 2 Multiplication by B and then A.

Thus A(Bx) is produced from x by a composition of mappings—the linear transfor-
mations studied in Section 1.8. Our goal is to represent this composite mapping as
multiplication by a single matrix, denoted by AB, so that

A(Bx) = (AB)x (1
See Fig. 3.
Multiplication Multiplication
m m
Xe ° ® A(Bx)

Bx

Multiplication
by AB
FIGURE 3 Multiplication by AB.

If Aism xn, Bisn x p,and x is in R?, denote the columns of B by by,...,b,
and the entries in X by x1,...,x,. Then
Bx = xiby +---+ x,b,
By the linearity of multiplication by A4,

A(Bx) = A(x1by) +--- + A(x,b,)
= x14by + -+ + x,Ab,
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The vector A(Bx) is a linear combination of the vectors Aby, ..., Ab,, using the entries
in X as weights. In matrix notation, this linear combination is written as

A(Bx) =[Ab; Ab, --- Ab,]x

Thus multiplication by [ Ab; Ab, --- Ab,] transforms x into A(Bx). We have
found the matrix we sought!

If A is an m x n matrix, and if B is an n X p matrix with columns by, ..., b,
then the product AB is the m x p matrix whose columns are Aby, ..., Ab,. That
is,

AB = A[b1 b, --- bp] = [Ab1 Aby .- Abp]

This definition makes equation (1) true for all x in R?. Equation (1) proves that the
composite mapping in Fig. 3 is a linear transformation and that its standard matrix is
AB. Multiplication of matrices corresponds to composition of linear transformations.

EXAMPLE 3 Compute AB, where A = |:% _2:| and B = |:‘1l _; g]

SOLUTION Write B =[b; by bs], and compute:

T O R S
L B

Then * i *

11 0 21

ABZA[bl b, b3]=|:_1 13 _9j| |
tr
Ab;  Ab, Ab;

Notice that since the first column of AB is Ab, this column is a linear combination
of the columns of A using the entries in b; as weights. A similar statement is true for
each column of AB.

Each column of AB is a linear combination of the columns of A using weights
from the corresponding column of B.

Obviously, the number of columns of A must match the number of rows in B in
order for a linear combination such as Ab; to be defined. Also, the definition of AB
shows that AB has the same number of rows as A and the same number of columns
as B.

EXAMPLE 4 1If Ais a3 x5 matrix and B is a 5 x 2 matrix, what are the sizes of
AB and BA, if they are defined?
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SOLUTION Since A has 5 columns and B has 5 rows, the product AB is defined and
is a 3 x 2 matrix:

A B AB
k% ok % ok k% x %
kx  k ok ok ok kx| = | x %
k% ok ok ok * ok x %

* %
* %
3x5 5x2 3x2
Match
Size of AB

The product BA is not defined because the 2 columns of B do not match the 3 rows
of A. [ |

The definition of AB is important for theoretical work and applications, but the
following rule provides a more efficient method for calculating the individual entries in
AB when working small problems by hand.

ROW-COLUMN RULE FOR COMPUTING AB

If the product AB is defined, then the entry in row i and column j of AB is the
sum of the products of corresponding entries from row i of A and column j of
B. If (AB);; denotes the (i, j)-entry in AB, and if A is an m x n matrix, then

(AB)ij = anbij + anbrj + -+ + ainby;

To verify this rule, let B = [b; --- b, ]. Column j of AB is Ab;, and we can
compute Ab; by the row—vector rule for computing Ax from Section 1.4. The ith entry
in Ab; is the sum of the products of corresponding entries from row i of A and the
vector b;, which is precisely the computation described in the rule for computing the
(i, j)-entry of AB.

EXAMPLE 5 Use the row—column rule to compute two of the entries in AB for the
matrices in Example 3. An inspection of the numbers involved will make it clear how
the two methods for calculating AB produce the same matrix.

SOLUTION To find the entry in row 1 and column 3 of AB, consider row 1 of A and
column 3 of B. Multiply corresponding entries and add the results, as shown below:

'
AB:»[z 3}[4 3 6}:[D a 2(6)+3(3)}:[D O 21}
1 =51 =2 3 O O O o O d

For the entry in row 2 and column 2 of AB, use row 2 of A and column 2 of B:

}
2 3[4 3 6] _[O m 207 _[Oo O 21
4[1 —5][1 —7 3}_[5 G p=s1e?) D:|_[D 13 D:|
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EXAMPLE 6 Find the entries in the second row of AB, where
2 -5 0

4 —
-1 3 —4

A=|"¢ 5 5| B_; 1
-3 0 9

SOLUTION By the row—column rule, the entries of the second row of AB come from
row 2 of A (and the columns of B):

> =5 07! -
4 —6
—~| =1 3 4T T
6 8 7|5
-3 0 9 -
m m [0 O
| —4+21-12 6+43-8| |5 1 .
O O O O
O O O O

Notice that since Example 6 requested only the second row of AB, we could have
written just the second row of A to the left of B and computed

4 —6
[-1 3 —4]|7 1]|=[5 1]
302

This observation about rows of AB is true in general and follows from the row—column
rule. Let row; (4) denote the ith row of a matrix A. Then

row; (AB) = row;(A)- B )

Properties of Matrix Multiplication

The following theorem lists the standard properties of matrix multiplication. Recall that
I,, represents the m x m identity matrix and /,,,x = x for all x in R".

Let A be an m X n matrix, and let B and C have sizes for which the indicated
sums and products are defined.

a. A(BC) = (AB)C
b. A(B+ C) = AB + AC
c. (B+C)A=BA+CA

d. r(AB) = (rA)B = A(rB)
for any scalar r

e. [n,A=A=Al,

(associative law of multiplication)
(left distributive law)
(right distributive law)

(identity for matrix multiplication)

PROOF Properties (b)—(e) are considered in the exercises. Property (a) follows from
the fact that matrix multiplication corresponds to composition of linear transformations
(which are functions), and it is known (or easy to check) that the composition of func-
tions is associative. Here is another proof of (a) that rests on the “column definition” of
the product of two matrices. Let

C=[¢ ¢, ]
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By the definition of matrix multiplication,

BC =[B¢; -+ Bc,]
A(BC) =[A(Be)) --- A(Be,)]

Recall from equation (1) that the definition of AB makes A(Bx) = (AB)x for all x, so
A(BC) =[(AB)e; -+ (AB)c,] = (AB)C ]

The associative and distributive laws in Theorems 1 and 2 say essentially that pairs
of parentheses in matrix expressions can be inserted and deleted in the same way as in
the algebra of real numbers. In particular, we can write ABC for the product, which
can be computed either as A(BC) or as (AB)C.! Similarly, a product ABCD of four
matrices can be computed as A(BCD) or (ABC)D or A(BC)D, and so on. It does not
matter how we group the matrices when computing the product, so long as the left-to-
right order of the matrices is preserved.

The left-to-right order in products is critical because AB and BA are usually not
the same. This is not surprising, because the columns of AB are linear combinations
of the columns of 4, whereas the columns of BA are constructed from the columns of
B. The position of the factors in the product AB is emphasized by saying that A is
right-multiplied by B or that B is left-multiplied by A. If AB = BA, we say that A and
B commute with one another.

EXAMPLE 7 LetAd = |:§ _;] and B = |:i (3)} Show that these matrices do

not commute. That is, verify that AB # BA.

5 112 0 14 3
=3 )15 3)-15 <
2 0|5 1 10 2
BA‘[4 3}[3 —2}—[29 —2] "
Example 7 illustrates the first of the following list of important differences between

matrix algebra and the ordinary algebra of real numbers. See Exercises 9—12 for exam-
ples of these situations.

SOLUTION

WARNINGS:
1. In general, AB # BA.

2. The cancellation laws do not hold for matrix multiplication. That is, if
AB = AC, then it is not true in general that B = C. (See Exercise 10.)

3. If a product AB is the zero matrix, you cannot conclude in general that either
A = 0or B = 0. (See Exercise 12.)

Powers of a Matrix

If A is an n x n matrix and if k is a positive integer, then A* denotes the product of k

"'When B is square and C has fewer columns than A has rows, it is more efficient to compute A(BC) than
(AB)C.
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copies of A:

A = A--- A
———
k

If A is nonzero and if x is in R”, then A¥x is the result of left-multiplying x by A
repeatedly k times. If k = 0, then A°x should be x itself. Thus A4° is interpreted as the
identity matrix. Matrix powers are useful in both theory and applications (Sections 2.6,
4.9, and later in the text).

The Transpose of a Matrix

Given an m X n matrix A, the transpose of A is the n x m matrix, denoted by AT,
whose columns are formed from the corresponding rows of A.

EXAMPLE 8 Let

-5 2
a b 1 1 1 1
A= |: ], B = 1 =31, C= |: :|
c d 0 4 -3 5 =2 7
Then
1 -3
T a Cc T -5 1 0 T 1 5
A_[b d}’B_[2—3 4]’C_1—2 "
1 7
THEOREM 3 Let A and B denote matrices whose sizes are appropriate for the following sums
and products.
a. (AT =4

b. (A+ B)T = AT + BT
c. For any scalar r, (rd)” = rA”
d. (AB)T = BTAT

Proofs of (a)-(c) are straightforward and are omitted. For (d), see Exercise 33.
Usually, (AB)7 is not equal to A”B”, even when A and B have sizes such that the
product ATBT is defined.

The generalization of Theorem 3(d) to products of more than two factors can be
stated in words as follows:

The transpose of a product of matrices equals the product of their transposes in
the reverse order.

The exercises contain numerical examples that illustrate properties of transposes.
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— NUMERICAL NOTES

1. The fastest way to obtain AB on a computer depends on the way in which
the computer stores matrices in its memory. The standard high-performance
algorithms, such as in LAPACK, calculate AB by columns, as in our definition
of the product. (A version of LAPACK written in C++ calculates AB by rows.)

2. The definition of AB lends itself well to parallel processing on a computer.
The columns of B are assigned individually or in groups to different proces-
sors, which independently and hence simultaneously compute the correspond-
ing columns of AB.

PRACTICE PROBLEMS

1. Since vectors in R” may be regarded as n x 1 matrices, the properties of transposes
in Theorem 3 apply to vectors, too. Let

o[13)

Compute (Ax)7, x’AT, xx”', and x"x. Is A’x” defined?

2. Let A be a 4 x 4 matrix and let x be a vector in R*. What is the fastest way to
compute 4?x? Count the multiplications.

2.1 EXERCISES

In Exercises 1 and 2, compute each matrix sum or product if it is
defined. If an expression is undefined, explain why. Let

2 0 -1 7 -5 1
A_[4 -5 2]’ B_[l —4 —3]’
1 2 305 -5
o E R R
1. —24, B—2A4, AC, CD

2. A+3B, 2C -3E, DB, EC

In the rest of this exercise set and in those to follow, assume that
each matrix expression is defined. That is, the sizes of the matrices
(and vectors) involved “match” appropriately.

3. Letd = B :g] Compute 31, — A and (31,) A.
4. Compute A — 573 and (515) A, where
5 -1 3
A=|-4 3 -6
-3 1 2

In Exercises 5 and 6, compute the product AB in two ways: (a) by
the definition, where Ab; and Ab, are computed separately, and
(b) by the row—column rule for computing AB.

-1 3
5.A4=| 2 4 ,B=[_; _ﬂ
5 -3

10.

11.

12.

4 -3
P e T
0 1

If a matrix A is 5 x 3 and the product AB is 5 x 7, what is
the size of B?

How many rows does B have if BC is a 5 x 4 matrix?

-1 1 -3 k
of k, if any, will make AB = BA?

3 -6 —1 1
_1 2], B—[ 3 4], and C =

Let A = |: 3:| and B = |: ! 9:|. What value(s)

Let A:[

[_; _f ] Verify that AB = AC and yet B # C.

1 2 3 5 0 0
LetA=]2 4 5land D = | 0 3 0 |. Com-
3 5 6 o 0 2

pute AD and DA. Explain how the columns or rows of A

change when A is multiplied by D on the right or on the left.
Find a 3 x 3 matrix B, not the identity matrix or the zero
matrix, such that AB = BA.

3 —
-2 4
AB is the zero matrix. Use two different nonzero columns
for B.

Let A = . Construct a 2 x 2 matrix B such that



13.

14.

Let ry,...,r, be vectors in R", and let Q be an m x n
matrix. Write the matrix [ Or, Or, ] as a product of
two matrices (neither of which is an identity matrix).

Let U be the 3 x 2 cost matrix described in Example 6 in
Section 1.8. The first column of U lists the costs per dollar of
output for manufacturing product B, and the second column
lists the costs per dollar of output for product C. (The costs
are categorized as materials, labor, and overhead.) Let q,
be a vector in R? that lists the output (measured in dollars)
of products B and C manufactured during the first quarter
of the year, and let q,, q;, and q, be the analogous vectors
that list the amounts of products B and C manufactured in
the second, third, and fourth quarters, respectively. Give an
economic description of the data in the matrix UQ, where

O0=[q, @ q q]

Exercises 15 and 16 concern arbitrary matrices A4, B, and C for
which the indicated sums and products are defined. Mark each
statement True or False. Justify each answer.

15.

16.

17.

18.

19.

20.

21.

a. If A and B are 2 x 2 matrices with columns a;, a,, and
by, by, respectively, then AB = [a;b; ab, .

b. Each column of AB is a linear combination of the
columns of B using weights from the corresponding col-
umn of A.

c. AB+ AC = A(B+C)
d AT + BT =4+ B)T

e. The transpose of a product of matrices equals the product
of their transposes in the same order.

a. The first row of AB is the first row of A multiplied on the
right by B.

b. If A and B are 3 x 3 matrices and B = [b; b,
then AB = [ Ab, + Ab, + Ab; |.

c. If Aisann x n matrix, then (42)7 = (47)?

d. (ABC)T =CTATBT

e. The transpose of a sum of matrices equals the sum of their
transposes.

1 -3 -3 —11
IfA_|:_3 5i|andAB_|: 1 17

first and second columns of B.

b ],

], determine the

Suppose the third column of B is all zeros. What can be said
about the third column of AB?

Suppose the third column of B is the sum of the first two
columns. What can be said about the third column of AB?
Why?

Suppose the first two columns, b; and b,, of B are equal.
What can be said about the columns of AB? Why?

Suppose the last column of AB is entirely zeros but B itself
has no column of zeros. What can be said about the columns
of A?

22.

23.

24.

25.

26.

2.1 Matrix Operations 101

Show that if the columns of B are linearly dependent, then
so are the columns of AB.

Suppose CA = I, (the n x n identity matrix). Show that the
equation Ax = 0 has only the trivial solution. Explain why
A cannot have more columns than rows.

Suppose A is a 3 x n matrix whose columns span R?. Explain
how to construct an n x 3 matrix D such that AD = I5.

Suppose A is an m X n matrix and there exist n x m matrices
C and D such that CA =1, and AD = I,,. Prove that
m =n and C = D. [Hint: Think about the product CAD.]

Suppose AD = I, (the m x m identity matrix). Show that
for any b in R™, the equation Ax = b has a solution. [Hint:
Think about the equation ADb = b.] Explain why A cannot
have more rows than columns.

In Exercises 27 and 28, view vectors in R” as n x 1 matrices. For
uand v in R”, the matrix product u’visal x 1 matrix, called the
scalar product, or inner product, of u and v. It is usually written
as a single real number without brackets. The matrix product uy’”
is an n x n matrix, called the outer product of u and v. The
products u” v and uv’ will appear later in the text.

27.

28.

29.

30.

31.

32.

33.
34.

35.

-3 a

Letu=| 2 |andv=|b |. Compute u’v, v'u, uv’,
-5 c

and vu’ .

If u and v are in R”, how are u”'v and v’ 'u related? How are

uv” and vu’ related?

Prove Theorem 2(b) and 2(c). Use the row—column rule. The
(i, j)-entry in A(B + C) can be written as
aj(by + cij) + -+ ain(byj + cuj)

or
n

Z aji (bj + ckj)

k=1

Prove Theorem 2(d). [Hint: The (i, j)-entry in (rA)B is
(rai)byj + -+ (rai,)by;.]

Show that 7,,A = A where A is an m X n matrix. Assume
1,x = x for all x in R™.

Show that AI, = A when A is an m X n matrix. [Hint: Use
the (column) definition of A7,.]

Prove Theorem 3(d). [Hint: Consider the jthrow of (AB)7.]

Give a formula for (ABx)”, where x is a vector and A and B
are matrices of appropriate sizes.

[M] Read the documentation for your matrix program, and
write the commands that will produce the following matrices
(without keying in each entry of the matrix).

a. A 4 x5 matrix of zeros

b. A5 x 3 matrix of ones

c. The 5 x 5 identity matrix

d. A 4 x 4 diagonal matrix, with diagonal entries 3, 4, 2, 5
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A useful way to test new ideas in matrix algebra, or to make
conjectures, is to make calculations with matrices selected at
random. Checking a property for a few matrices does not prove
that the property holds in general, but it makes the property more
believable. Also, if the property is actually false, making a few
calculations may help to discover this.

39.

36. [M] Write the command(s) that will create a 5 x 6 matrix
with random entries. In what range of numbers do the entries
lie? Tell how to create a 4 x 4 matrix with random integer
entries between —9 and 9. [Hint: If x is a random number
such that 0 < x < 1, then —9.5 < 19(x —.5) < 9.5.]

37. [M] Construct random 4 x 4 matrices A and B to test
whether AB = BA. The best way to do this is to compute
AB — BA and check whether this difference is the zero
matrix. Then test AB — BA for three more pairs of random
4 x 4 matrices. Report your conclusions.

40.

41.
38. [M] Construct a random 5 x 5 matrix A and test whether

(A+I)(A—1T)= A>—1. The best way to do this is to
compute (A + I)(A—1)— (A>—1) and verify that this
difference is the zero matrix. Do this for three random
matrices. Then test (4 + B)(A — B) = A> — B? the same

SOLUTIONS TO PRACTICE

PR iR

way for three pairs of random 4 x 4 matrices. Report your
conclusions.

[M] Use at least three pairs of random 4 x 4 matrices A
and B to test the equalities (4 + B)T = AT + BT and
(AB)T = BTAT, as well as (AB)T = ATBT. (See Exercise
37.) Report your conclusions. [Note: Most matrix programs
use A’ for AT ]

[M] Let
0 1 0 0 0
0 0 1 0 0
s=l0 o o 1 o0
0 0 0 0 1
0 0 0 0 0

Compute S* fork =2,...,6.

[M] Describe in words what happens when 4°, A'°, 4%°, and
A3 are computed for

1/4 12 1/4
A=11/2 13 1/6

/4 1/6  7/12

PROBLEMS

—4

2]. So (Ax)" =[—-4 2]. Also,

XTAT =[5 3][_; ‘ﬂ:[_4 2],

The quantities (4x)” and x’A7 are equal, by Theorem 3(d). Next,

XTX =

HERE

E 3][2}:[25”]:34

A 1 x 1 matrix such as x’x is usually written without the brackets. Finally, A’x” is
not defined, because x” does not have two rows to match the two columns of A7

2. The fastest way to compute A’x is to compute A(Ax). The product Ax requires
16 multiplications, 4 for each entry, and A(Ax) requires 16 more. In contrast, the
product A% requires 64 multiplications, 4 for each of the 16 entries in A%. After that,
A>x takes 16 more multiplications, for a total of 80.

2.2 | THE INVERSE OF A MATRIX

Matrix algebra provides tools for manipulating matrix equations and creating various
useful formulas in ways similar to doing ordinary algebra with real numbers. This
section investigates the matrix analogue of the reciprocal, or multiplicative inverse, of

a nonzero number.
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Recall that the multiplicative inverse of a number such as 5 is 1/5 or 57!, This
inverse satisfies the equations

5'.5=1 and 5-5'=1

The matrix generalization requires both equations and avoids the slanted-line notation
(for division) because matrix multiplication is not commutative. Furthermore, a full
generalization is possible only if the matrices involved are square.!

An n x n matrix A is said to be invertible if there is an n x n matrix C such that

CA=1 and AC =1

where I = I, the n x n identity matrix. In this case, C is an inverse of A. In fact, C
is uniquely determined by A, because if B were another inverse of 4, then B = Bl =
B(AC) = (BA)C = IC = C. This unique inverse is denoted by A~', so that

A'A=1] and AA™' =1

A matrix that is not invertible is sometimes called a singular matrix, and an invertible
matrix is called a nonsingular matrix.

2 5 [—7 -5
EXAMPLE1 IfA=| j _7}andC— ; 2i|,then
2 57[=7 =57 1 0
AC:_—3 —7}[ 3 2_:[0 1] and
[—7 =57 2 5] 1 0
CA:_ 3 2}[—3 —7_:[0 1]

Thus C = A~ 1.

Here is a simple formula for the inverse of a 2 x 2 matrix, along with a test to tell
if the inverse exists.

Let A = [Ccl s :| If ad — be # 0, then A is invertible and

1 d —b
ad —bc| —¢c a

If ad — bc = 0, then A is not invertible.

A7l =

The simple proof of Theorem 4 is outlined in Exercises 25 and 26. The quantity
ad — bc is called the determinant of A, and we write

det A = ad — bc

Theorem 4 says that a 2 x 2 matrix A is invertible if and only if det A # 0.

'One could say that an m X n matrix A is invertible if there exist n X m matrices C and D such that
CA = I, and AD = I,,. However, these equations imply that 4 is square and C = D. Thus 4 is invertible
as defined above. See Exercises 23-25 in Section 2.1.
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EXAMPLE 2 Find the inverse of A = |:g 2i|

SOLUTION Since det A = 3(6) — 4(5) = —2 # 0, A is invertible, and

o L6 =41 [ 6/(=2) —4/(-=27_[-3 2 .
T 2| -5 3| | -5/(=2) 3/(=2) | |5/2 -3/2

Invertible matrices are indispensable in linear algebra— mainly for algebraic calcu-
lations and formula derivations, as in the next theorem. There are also occasions when
an inverse matrix provides insight into a mathematical model of a real-life situation, as
in Example 3, below.

If A is an invertible 7 x n matrix, then for each b in R”, the equation Ax = b has
the unique solution x = A~ 'b.

PROOF Take any b in R". A solution exists because if A~'b is substituted for x,
then Ax = A(A™'b) = (AA™")b = Ib = b. So A~ 'b is a solution. To prove that the
solution is unique, show that if u is any solution, then u, in fact, must be A~ 'b. Indeed,
if Au = b, we can multiply both sides by A~! and obtain

A" Adu= 4", Tu=A4"'"p, and u=4""b ]

EXAMPLE 3 A horizontal elastic beam is supported at each end and is subjected to
forces at points 1, 2, 3, as shown in Fig. 1. Let f in R3 list the forces at these points, and
let y in R? list the amounts of deflection (that is, movement) of the beam at the three
points. Using Hooke’s law from physics, it can be shown that

y = Df

where D is a flexibility matrix. Its inverse is called the stiffness matrix. Describe the
physical significance of the columns of D and D~!.

FIGURE 1 Deflection of an elastic beam.

SOLUTION Write /I3 = [e; e, e3]and observe that
D = DI3 = [D61 Dez De3]

Interpret the vector e; = (1,0, 0) as a unit force applied downward at point 1 on the
beam (with zero force at the other two points). Then Dey, the first column of D, lists
the beam deflections due to a unit force at point 1. Similar descriptions apply to the
second and third columns of D.

To study the stiffness matrix D!, observe that the equation f = D~y computes a
force vector f when a deflection vector y is given. Write

D'=D'I;=[D7'e, D'e; D7 'es]

Now interpret e; as a deflection vector. Then D~ 'e, lists the forces that create the
deflection. That is, the first column of D! lists the forces that must be applied at the
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three points to produce a unit deflection at point 1 and zero deflections at the other points.
Similarly, columns 2 and 3 of D! list the forces required to produce unit deflections at
points 2 and 3, respectively. In each column, one or two of the forces must be negative
(point upward) to produce a unit deflection at the desired point and zero deflections at
the other two points. If the flexibility is measured, for example, in inches of deflection
per pound of load, then the stiffness matrix entries are given in pounds of load per inch
of deflection. [ ]

The formula in Theorem 5 is seldom used to solve an equation Ax = b numerically
because row reduction of [ A b] is nearly always faster. (Row reduction is usually
more accurate, too, when computations involve rounding off numbers.) One possible
exception is the 2 x 2 case. In this case, mental computations to solve Ax = b are
sometimes easier using the formula for A™!, as in the next example.

EXAMPLE 4 Use the inverse of the matrix 4 in Example 2 to solve the system
3x1 +4x, =3
5x1 +6x, =7

SOLUTION This system is equivalent to Ax = b, so

x:A—‘b=[s_/3z —3?2]@}:[—2] )

The next theorem provides three useful facts about invertible matrices.

a. If A is an invertible matrix, then A~! is invertible and
(Aa)'=4

b. If A and B are n x n invertible matrices, then so is AB, and the inverse of AB
is the product of the inverses of A and B in the reverse order. That is,

(AB)™' = B~ 147!

c. If Aisan invertible matrix, then sois A7, and the inverse of A” is the transpose
of A~!. That is,
(AT)—l — (A—I)T

PROOF To verify statement (a), find a matrix C such that

AT'C=1 and CA'=1
In fact, these equations are satisfied with A in place of C. Hence A™! is invertible, and
A is its inverse. Next, to prove statement (b), compute:

(ABY(B'A™Y = ABB ™ WA ' = AIA' =447 =1

A similar calculation shows that (B~'47")(AB) = I. For statement (c), use Theorem
3(d), read fromright toleft, (A=")7 AT = (AA™")T = IT = I. Similarly, AT (4A™")T =
IT = I. Hence A7 is invertible, and its inverse is (A~")7. ]

The following generalization of Theorem 6(b) is needed later.

The product of n x n invertible matrices is invertible, and the inverse is the
product of their inverses in the reverse order.
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There is an important connection between invertible matrices and row operations
that leads to a method for computing inverses. As we shall see, an invertible matrix
A is row equivalent to an identity matrix, and we can find A~ by watching the row
reduction of A to I.

Elementary Matrices

An elementary matrix is one that is obtained by performing a single elementary row
operation on an identity matrix. The next example illustrates the three kinds of elemen-
tary matrices.

EXAMPLE 5 Let

I 0 O I 0 1 0
E = 0O 1 0|, E,=|1 0 O0f, Ez=[0 1 0],
—4 0 1 0 1 0 5
a b c
A=|d e f
g h i

Compute £ A, E»A, and E3A, and describe how these products can be obtained by
elementary row operations on A.

SOLUTION Verify that

a b c d e f
E\A = d e f , E,2A=|a b c |,
g—4a h—4b i—4c g h i
a b c
E3A= d e f
5¢ 5h 5i

Addition of —4 times row 1 of A to row 3 produces E;A. (This is a row replacement
operation.) An interchange of rows 1 and 2 of A produces E, A, and multiplication of
row 3 of A by 5 produces E3A. [ ]

Left-multiplication (that is, multiplication on the left) by E; in Example 5 has the
same effect on any 3 x n matrix. It adds —4 times row 1 to row 3. In particular, since
E, -1 = E,|,weseethat E| itself is produced by this same row operation on the identity.
Thus Example 5 illustrates the following general fact about elementary matrices. See
Exercises 27 and 28.

If an elementary row operation is performed on an m X n matrix A4, the resulting
matrix can be written as EA, where the m x m matrix E is created by performing
the same row operation on /,,,.

Since row operations are reversible, as shown in Section 1.1, elementary matrices
are invertible, for if £ is produced by a row operation on /, then there is another row
operation of the same type that changes E back into /. Hence there is an elementary
matrix F such that FE = [I. Since E and F correspond to reverse operations, EF = I,
too.
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Each elementary matrix E is invertible. The inverse of E is the elementary matrix
of the same type that transforms E back into /.

1 0 O
EXAMPLE 6 Find the inverse of E; = 0O 1 0
—4 0 1

SOLUTION To transform E; into I, add +4 times row 1 to row 3. The elementary
matrix that does this is

1 0 0
Ef'=]1 0 1 o0 ]
+4 0 1

The following theorem provides the best way to “visualize” an invertible matrix,
and the theorem leads immediately to a method for finding the inverse of a matrix.

An n x n matrix A is invertible if and only if A is row equivalent to /,,, and in
this case, any sequence of elementary row operations that reduces A to [, also
transforms 7, into A~".

PROOF Suppose that 4 is invertible. Then, since the equation Ax = b has a solution
for each b (Theorem 5), A has a pivot position in every row (Theorem 4 in Section 1.4).
Because A is square, the n pivot positions must be on the diagonal, which implies that
the reduced echelon form of A is /,,. Thatis, A ~ I,.

Now suppose, conversely, that A ~ I,,. Then, since each step of the row reduction
of A corresponds to left-multiplication by an elementary matrix, there exist elementary
matrices £y, ..., E, such that

A~ E\A~ Ey(EjA) ~ -~ Ey(Ep_y--- E{A) = I,

That is,
E,EA=1I, ()

Since the product E, - -- Ey of invertible matrices is invertible, (1) leads to
(Ep---E)"NE,---ENA=(E,---E)7',
A= (Ey-E)”
Thus A is invertible, as it is the inverse of an invertible matrix (Theorem 6). Also,
ATV =[(E,- E)™! 7' = E,-E

Then A~! = E,--- E;-I,, which says that A~ results from applying E1, ..., E, suc-
cessively to [,,. This is the same sequence in (1) that reduced A to I,,. |

An Algorithm for Finding A—1

If we place A and I side-by-side to form an augmented matrix [ A [ ], then row
operations on this matrix produce identical operations on A and on /. By Theorem 7,
either there are row operations that transform A to [, and I, to A~ or else A4 is not
invertible.
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ALGORITHM FOR FINDING A

Row reduce the augmented matrix [A [ ]. If A is row equivalent to 7, then
[A [I]isrow equivalentto [/ A~']. Otherwise, A does not have an inverse.

0o 1 2
EXAMPLE 7 Find the inverse of the matrix A= | 1 0 3 |, if it exists.
4 -3 8
SOLUTION
[0 1 2 1 0 0] [1 0O 3 0 1 O
[A4 I]=|1 0o 3 O 1 Of~|O0O 1 2 1 0 O
|4 -3 8 0 0 1] |4 -3 8 0 0 1]
1 0 3 0 1 0] [1 O 3 0 1 O
~/0 1 2 1 0 O|~]0 1 2 1 0 O
|0 -3 -4 0 —4 1] |00 2 3 -4 1]
1 0 3 0 1 0 ]
~10 1 2 1 0 0
|0 0 1 3/2 -2 1/2]
1 0 0 —9/2 7 -3/27]
~10 1 0 =2 4 -1
|0 0 1 3/2 -2 1/2]
Theorem 7 shows, since A ~ I, that A is invertible, and
-9/2 7 =3/2
A= 2 4 -1
3/2 =2 1/2
It is a good idea to check the final answer:
o 1 2 -9/2 7 =3/2 1 0 O
AAT' =1 0 3 2 4 -1 |[=|0 1
4 -3 8 3/2 =2 1/2 0 0 1
It is not necessary to check that A='4 = I since A4 is invertible. [ |
Another View of Matrix Inversion
Denote the columns of 7, by ey,...,e,. Then row reductionof [A []to[I A™']
can be viewed as the simultaneous solution of the n systems
AXx=e;, Ax=e;, ..., Ax =g, 2)

where the “augmented columns” of these systems have all been placed next to A to form
[A e e --- e,]=[A I]. Theequation AA~" = I and the definition of matrix
multiplication show that the columns of A™! are precisely the solutions of the systems
in (2). This observation is useful because some applied problems may require finding
only one or two columns of A~'. In this case, only the corresponding systems in (2)
need be solved.
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r— NUMERICAL NOTE

In practical work, 4~! is seldom computed, unless the entries of A~! are needed.
Computing both A~! and A~'b takes about three times as many arithmetic
operations as solving Ax = b by row reduction, and row reduction may be more

accurate.
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PRACTICE PROBLEMS

1. Use determinants to determine which of the following matrices are invertible.

N

2 EXERCISES

4
b, [0

2. Find the inverse of the matrix A =

DRREN!

1 =2 —1
-1 5 6 |,if it exists.
5 -4 5

Find the inverses of the matrices in Exercises 1-4.

1.

w

LR
I S ]

Use the inverse found in Exercise 1 to solve the system
8x; +6x, = 2
5x1 + 4x, = —1
Use the inverse found in Exercise 3 to solve the system

Tx1 4+ 3x, = =9
—6X1 — 3)(72 = 4

1 2
LetA—|:5 12],b1—

and by = [g]

a. Find A7, and use it to solve the four equations
Ax=b;, Ax=Db,, Ax=b;, Ax=b,

b. The four equations in part (a) can be solved by the
same set of row operations, since the coefficient ma-
trix is the same in each case. Solve the four equa-
tions in part (a) by row reducing the augmented matrix
[A by by by byl

Suppose P is invertible and A = PBP~!. Solve for B in
terms of A.

In Exercises 9 and 10, mark each statement True or False. Justify
each answer.

9.

10.

11.

12.

13.

a. In order for a matrix B to be the inverse of A, the
equations AB = I and BA = I must both be true.

b. If A and B are n x n and invertible, then A~' B~ is the
inverse of AB.

c. Ifd= |:£Cl 5 :| and ab — c¢d # 0, then A is invertible.

d. If A is an invertible n x n matrix, then the equation
Ax = b is consistent for each b in R".

e. Each elementary matrix is invertible.

a. If A is invertible, then elementary row operations that
reduce A to the identity I, also reduce A~ to 1,,.

b. If A is invertible, then the inverse of A™! is A itself.

c. A product of invertible n x n matrices is invertible, and
the inverse of the product is the product of their inverses
in the same order.

d. If A is an n x n matrix and Ax = e; is consistent for
every j € {l,2,...,n}, then A is invertible. Note:
e, ...,e, represent the columns of the identity matrix.

e. If A can be row reduced to the identity matrix, then A
must be invertible.

Let A be an invertible n x n matrix, and let B be an n x p
matrix. Show that the equation AX = B has a unique solu-
tion A7!B.

Use matrix algebra to show that if A is invertible and D
satisfies AD = I,then D = A~'.

Suppose AB = AC, where B and C are n x p matrices and
A is invertible. Show that B = C. Is this true, in general,
when A is not invertible?
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14.

15.

16.
17.

18.

19.

20.

21.
22,

23.

24.

Exercises 25 and 26 prove Theorem 4 for A = [i b ]

25.

26.

Suppose (B — C)D = 0, where B and C are m x n matrices
and D is invertible. Show that B = C.

Let A be an invertible n x n matrix, and let B be an n x p
matrix. Explain why A~! B can be computed by row reduc-
tion:

If[A B]~---~[I X],thenX = A"!B.

If A is larger than 2 x 2, then row reduction of [4 B] is
much faster than computing both A~! and A™!B.

Suppose A and B are n x n matrices, B is invertible, and AB
is invertible. Show that A is invertible. [Hint: Let C = AB,
and solve this equation for A.]

Suppose A, B, and C are invertible n x n matrices. Show
that ABC is also invertible by producing a matrix D such
that (ABC)D = I and D(ABC) = 1.

Solve the equation AB = BC for A, assuming that A, B, and
C are square and B is invertible.

If A, B, and C are n x n invertible matrices, does the equa-
tion C~'(A4 + X)B~! = I, have a solution, X? If so, find
it.

Suppose A, B, and X are n x n matrices with A, X, and
A — AX invertible, and suppose

(A—A4X)"'=X"'B (3)

a. Explain why B is invertible.

b. Solve equation (3) for X. If a matrix needs to be inverted,
explain why that matrix is invertible.

Explain why the columns of an n x n matrix A4 are linearly
independent when A is invertible.

Explain why the columns of an n x n matrix 4 span R” when
A is invertible. [Hint: Review Theorem 4 in Section 1.4.]

Suppose A is n x n and the equation Ax = 0 has only the
trivial solution. Explain why A has n pivot columns and A is
row equivalent to /,,. By Theorem 7, this shows that A must
be invertible. (This exercise and Exercise 24 will be cited in
Section 2.3.)

Suppose A is n x n and the equation Ax = b has a solution
for each b in R”. Explain why A must be invertible. [Hint:
Is A row equivalent to 7,7

d

Show that if ad —bc = 0, then the equation Ax = 0 has
more than one solution. Why does this imply that 4 is not
invertible? [Hint: First, consider @ = b = 0. Then, if a and

. —b
b are not both zero, consider the vector x = [ u ]

Show that if ad — bc # 0, the formula for A~! works.

Exercises 27 and 28 prove special cases of the facts about elemen-
tary matrices stated in the box following Example 5. Here A4 is a
3 x 3 matrix and / = I5. (A general proof would require slightly
more notation.)

27.

28.

Let A be a 3 x 3 matrix.

a. Use equation (2) from Section 2.1 to show that
row; (A) = row;(I)-A, fori =1,2,3.

b. Show that if rows 1 and 2 of A4 are interchanged, then the
result may be written as £A, where E is an elementary
matrix formed by interchanging rows 1 and 2 of /.

c. Show that if row 3 of A4 is multiplied by 5, then the result

may be written as E A, where E is formed by multiplying
row 3 of I by 5.

Suppose row 2 of A is replaced by row,(A4) — 3 - row;(A).
Show that the result is £A, where E is formed from / by
replacing row, (/) by row, (1) — 3 - row; (A).

Find the inverses of the matrices in Exercises 29-32, if they exist.
Use the algorithm introduced in this section.

29.

31.

33.

34.

35.

36.

37.

1 -3 36
o) o (3 3]
Co1 -2 1 2 -1
-3 1 4 2. | -4 -7 3
2 -3 4 —2 -6 4

Use the algorithm from this section to find the inverses of

B 0 0 1 o 0 O
1 1 0o 0
1 1 0 and
| | | 1 1 1 0
- 1 1 1 1

Let A be the corresponding n x n matrix, and let B be its
inverse. Guess the form of B, and then show that AB = .

Repeat the strategy of Exercise 33 to guess the inverse B of

1 0 O e 0
2 2 0 0
A=|3 3 3 0

Show that AB = I.

-1 -7 -3
Let A = 2 15 6 |. Find the third column of A~!
1 3 2

without computing the other columns.

=25 -9 =27
[M] Let A = | 536 185 537 |. Find the second and
154 52 143

third columns of A~! without computing the first column.

1 2
LetA=]|1 3
1 5

error) using only 1, —1, and O as entries, such that CA = I,.
Compute AC and note that AC # I;.

. Constructa 2 x 3 matrix C (by trial and



1 -1 1
0 1 -1
D using only 1 and O as entries, such that AD = I,. Is it
possible that CA = [, for some 4 x 2 matrix C? Why or

38. Let A= [ (1)] Construct a 4 x 2 matrix

why not?
39. [M] Let
.011  .003 .001
D =] .003 .009 .003
.001 .003 .011
be a flexibility matrix, with flexibility measured in inches per
pound. Suppose that forces of 40, 50, and 30 1b are applied at
points 1, 2, and 3, respectively, in Fig. 1 of Example 3. Find
the corresponding deflections.
40. [M] Compute the stiffness matrix D~ for D in Exercise 39.

List the forces needed to produce a deflection of .04 in. at
point 3, with zero deflections at the other points.

2.3 Characterizations of Invertible Matrices

41. [M] Let
0130
.0050
D=1 0020
0010

.0050
.0100
.0040
.0020

.0020
.0040
.0100
.0050

.0010
.0020
.0050
.0130

111

be a flexibility matrix for an elastic beam such as the one in
Example 3, with four points at which force is applied. Units
are centimeters per newton of force. Measurements at the
four points show deflections of .07, .12, .16, and .12 cm.
Determine the forces at the four points.

42. [M] With D as in Exercise 41, determine the forces that
produce a deflection of .22 c¢cm at the second point on the
beam, with zero deflections at the other three points. How is
the answer related to the entries in D~'? [Hint: First answer

the question when the deflection is 1 cm at the second point.]

SOLUTIONS TO PRACTICE PROBLEMS

1. a. det

; _zi| =3.6—(—9):2 = 18 4 18 = 36. The determinant is nonzero, so

the matrix is invertible.

(4 —9
b. det_o 5:|
6 —9
C. det__4 6
1 =2
2. [A I]~| -1 5
| 5 4
1 =2
~10 3
|0 6
1 =2
~10 3
00

=4-5—(=9)-0 = 20 # 0. The matrix is invertible.

] =6-6—(—9)(—4) = 36 — 36 = 0. The matrix is not invertible.

-1 1 0

—1
5
10

-1
5
0

0
6 0 1 0
5 0 0 1

1
1
-5

1
1
-7

- o O = O
—

—_ o O

-2

So[A [I]isrow equivalent to a matrix of the form [ B D |, where B is square
and has a row of zeros. Further row operations will not transform B into /, so we
stop. A does not have an inverse.

2.3

CHARACTERIZATIONS OF INVERTIBLE MATRICES

This section provides a review of most of the concepts introduced in Chapter 1, in
relation to systems of n linear equations in n unknowns and to square matrices. The
main result is Theorem 8.
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THEOREM 8

(a)
Z S
(b) (i)

A\ U

(© <= @
FIGURE 1

(k)

/2N
@ <= (@
(2) <= () <= ()

(d) <= () <= (D)

(a) <= (D

The Invertible Matrix Theorem

Let A be a square n x n matrix. Then the following statements are equivalent.
That is, for a given A, the statements are either all true or all false.

a. A is an invertible matrix.

A is row equivalent to the n x n identity matrix.

A has n pivot positions.

The equation Ax = 0 has only the trivial solution.

The columns of A form a linearly independent set.

The linear transformation x > AX is one-to-one.

The equation Ax = b has at least one solution for each b in R”.

PR = 0 &0 O

The columns of A span R”.

—-

The linear transformation x +— Ax maps R” onto R”.
There is an n x n matrix C such that CA = I.
There is an n x n matrix D such that AD = [.

— 5

AT is an invertible matrix.

First, we need some notation. If the truth of statement (a) always implies that
statement (j) is true, we say that (a) implies (j) and write (a) = (j). The proof will
establish the “circle” of implications shown in Fig. 1. If any one of these five statements
is true, then so are the others. Finally, the proof will link the remaining statements of
the theorem to the statements in this circle.

PROOF If statement (a) is true, then A~ works for C in (j), so (a) = (j). Next, (j) = (d)
by Exercise 23 in Section 2.1. (Turn back and read the exercise.) Also, (d) = (c) by
Exercise 23 in Section 2.2. If A is square and has n pivot positions, then the pivots
must lie on the main diagonal, in which case the reduced echelon form of A is 7,,. Thus
(c) = (b). Also, (b) = (a) by Theorem 7 in Section 2.2. This completes the circle in
Fig. 1.

Next, (a) = (k) because A~ works for D. Also, (k) = (g) by Exercise 26 in Sec-
tion 2.1, and (g) = (a) by Exercise 24 in Section 2.2. So (k) and (g) are linked to
the circle. Further, (g), (h), and (i) are equivalent for any matrix, by Theorem 4 in
Section 1.4 and Theorem 12(a) in Section 1.9. Thus, (h) and (i) are linked through (g)
to the circle.

Since (d) is linked to the circle, so are (e) and (f), because (d), (e), and (f) are
all equivalent for any matrix A. (See Section 1.7 and Theorem 12(b) in Section 1.9.)
Finally, (a) = (I) by Theorem 6(c) in Section 2.2, and (I) = (a) by the same theorem
with A and A7 interchanged. This completes the proof. [ |

Because of Theorem 5 in Section 2.2, statement (g) in Theorem 8 could also be
written as “The equation Ax = b has a unique solution for each b in R”.” This statement
certainly implies (b) and hence implies that A4 is invertible.

The next fact follows from Theorem 8 and Exercise 12 in Section 2.2.

Let A and B be square matrices. If AB = I, then A and B are both invertible,
with B =A"'and A = B~!.
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The Invertible Matrix Theorem divides the set of all n X n matrices into two disjoint
classes: the invertible (nonsingular) matrices, and the noninvertible (singular) matrices.
Each statement in the theorem describes a property of every n x n invertible matrix.
The negation of a statement in the theorem describes a property of every n x n singular
matrix. For instance, an n x n singular matrix is not row equivalent to /,,, does not have
n pivot positions, and has linearly dependent columns. Negations of other statements
are considered in the exercises.

EXAMPLE 1 Use the Invertible Matrix Theorem to decide if A is invertible:

I 0 =2
A= 31 =2
-5 -1 9
SOLUTION
1 0 =2 1 0 =2
A~]10 1 4|~]10 1 4
0 -1 -1 0 0 3

So A has three pivot positions and hence is invertible, by the Invertible Matrix Theorem,
statement (c). |

The power of the Invertible Matrix Theorem lies in the connections it provides
among so many important concepts, such as linear independence of columns of a matrix
A and the existence of solutions to equations of the form Ax = b. It should be empha-
sized, however, that the Invertible Matrix Theorem applies only to square matrices. For
example, if the columns of a 4 x 3 matrix are linearly independent, we cannot use the
Invertible Matrix Theorem to conclude anything about the existence or nonexistence of
solutions to equations of the form Ax = b.

Invertible Linear Transformations

Recall from Section 2.1 that matrix multiplication corresponds to composition of linear
transformations. When a matrix A is invertible, the equation A~ Ax = x can be viewed
as a statement about linear transformations. See Fig. 2.

Multiplication

/m‘

xXe e AX

Multiplication

by A™!
FIGURE 2 A~! transforms Ax back to x.

A linear transformation 7' : R” — R” is said to be invertible if there exists a func-
tion S : R” — R” such that

S(T(x)) =x forall xinR" (1
T(S(x)) =x forallxinR” 2)

The next theorem shows that if such an S exists, it is unique and must be a linear
transformation. We call S the inverse of T and write it as 7.
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THEOREM 9

Let 7 : R” — R” be a linear transformation and let A be the standard matrix for
T. Then T is invertible if and only if 4 is an invertible matrix. In that case, the
linear transformation S given by S(x) = A~!x is the unique function satisfying
equations (1) and (2).

PROOF Suppose that 7 is invertible. Then (2) shows that T is onto R”, for if b is in
R" and x = S(b), then T'(x) = T (S(b)) = b, so each b is in the range of 7. Thus 4 is
invertible, by the Invertible Matrix Theorem, statement (i).

Conversely, suppose that A is invertible, and let S(x) = A~ 'x. Then, S is a linear
transformation, and S’ obviously satisfies (1) and (2). For instance,

S(T(x)) = S(4Ax) = A '(4x) =x

Thus 7 is invertible. The proof that S is unique is outlined in Exercise 38. [ |

EXAMPLE 2 What can you say about a one-to-one linear transformation 7' from
R” into R"?

SOLUTION The columns of the standard matrix A of 7" are linearly independent (by
Theorem 12 in Section 1.9). So A is invertible, by the Invertible Matrix Theorem, and
T maps R” onto R". Also, T is invertible, by Theorem 9. [ |

— NUMERICAL NOTES

In practical work, you might occasionally encounter a “nearly singular” or ill-
conditioned matrix —an invertible matrix that can become singular if some of
its entries are changed ever so slightly. In this case, row reduction may produce
fewer than n pivot positions, as a result of roundoff error. Also, roundoff error
can sometimes make a singular matrix appear to be invertible.

Some matrix programs will compute a condition number for a square
matrix. The larger the condition number, the closer the matrix is to being singular.
The condition number of the identity matrix is 1. A singular matrix has an
infinite condition number. In extreme cases, a matrix program may not be able
to distinguish between a singular matrix and an ill-conditioned matrix.

Exercises 41—45 show that matrix computations can produce substantial error
when a condition number is large.

PRACTICE PROBLEMS

2 3 4
1. Determineif A = | 2 3 4 | isinvertible.
2 3 4

2. Suppose that for a certain n x n matrix A, statement (g) of the Invertible Matrix
Theorem is not true. What can you say about equations of the form Ax = b?

3. Suppose that A and B are n x n matrices and the equation ABx = 0 has a nontrivial
solution. What can you say about the matrix AB?
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Unless otherwise specified, assume that all matrices in these
exercises are n x n. Determine which of the matrices in Exer-
cises 1-10 are invertible. Use as few calculations as possible.

Justify your answers.
R [—4 2
- _6] 2 |7 _3]
3 0 07 (-5 1 47
3. | -3 -4 0 4. o 0 O
L 8 5 =3 L 1 4 9]
3 0 =37 1 -3 —67]
5. 2 0 4 6. 0o 4 3
-4 0 7] -3 6 0]
-1 -3 0 1 (3 4 7 4
7 35 8 -3 3 0 1 4 o6
-2 -6 3 2 o o 2 8
. 0 -1 2 1 L0 0 0 1
4 0 -3 -7
-6 9 9 9
o M 7 =5 10 19
-1 2 4 -1
(5 3 1 7 9
6 4 2 8 -8
10. M1 |7 5 3 10 9
9 6 4 -9 5
18 5 2 11 4

In Exercises 11 and 12, the matrices are all n x n. Each part

of the

exercises is an implication of the form “If ( statement 1),

then (statement 2 ).” Mark an implication as True if the truth of
(statement 2) always follows whenever (statement 1) happens
to be true. An implication is False if there is an instance in which
( statement 2 ) is false but ( statement 1 ) is true. Justify each
answer.

11. a.

12. a.

If the equation Ax = 0 has only the trivial solution, then
A is row equivalent to the n x n identity matrix.

If the columns of A span R”, then the columns are lin-
early independent.

If A is an n x n matrix, then the equation Ax = b has at
least one solution for each b in R”.

If the equation Ax = 0 has a nontrivial solution, then A
has fewer than n pivot positions.

If AT is not invertible, then A is not invertible.
If there is an n x n matrix D such that AD = I, then
DA =1.

If the linear transformation x — Ax maps R” into R”,
then the row reduced echelon form of 4 is /.

If the columns of A are linearly independent, then the
columns of A span R".

14.

15.

16.

17.

18.

19.

21.

22.

23.

24,

25.
26.

27.

28.

29.

d. Ifthe equation Ax = b has at least one solution for each b
in R”, then the transformation x — AX is not one-to-one.

e. If there is a b in R” such that the equation Ax = b is
consistent, then the solution is unique.

. An m x n upper triangular matrix is one whose entries

below the main diagonal are 0’s (as in Exercise 8). When
is a square upper triangular matrix invertible? Justify your
answer.

An m x n lower triangular matrix is one whose entries
above the main diagonal are 0’s (as in Exercise 3). When
is a square lower triangular matrix invertible? Justify your
answer.

Is it possible for a 4 x 4 matrix to be invertible when its
columns do not span R*? Why or why not?

If an n x n matrix A4 is invertible, then the columns of A7 are
linearly independent. Explain why.

Can a square matrix with two identical columns be invert-
ible? Why or why not?

Can a square matrix with two identical rows be invertible?
Why or why not?

If the columns of a 7 x 7 matrix D are linearly independent,
what can be said about the solutions of Dx = b? Why?

. If Ais a5 x5 matrix and the equation Ax = b is consistent

for every b in R?, is it possible that for some b, the equation
Ax = b has more than one solution? Why or why not?

If the equation Cu = v has more than one solution for some
v in R”, can the columns of the n x n matrix C span R"?
Why or why not?

If n x n matrices E and F have the property that EF = I,
then E and F commute. Explain why.

Assume that F is an n x n matrix. If the equation Fx =y
is inconsistent for some y in R”, what can you say about the
equation Fx = 0? Why?

If an n x n matrix G cannot be row reduced to /,, what can
you say about the columns of G? Why?

Verify the boxed statement preceding Example 1.

Explain why the columns of A% span R” whenever the
columns of an n x n matrix A are linearly independent.

Let A and B be n x n matrices. Show that if AB is invertible,
so is A. You cannot use Theorem 6(b), because you cannot
assume that A and B are invertible. [Hint: There is a matrix
W such that ABW = I. Why?]

Let A and B be n x n matrices. Show that if AB is invertible,
sois B.

If A is an n x n matrix and the transformation x — Ax is
one-to-one, what else can you say about this transformation?
Justify your answer.
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30.

31.

32.

If A is an n xn matrix and the equation Ax = b has
more than one solution for some b, then the transformation
X — AX is not one-to-one. What else can you say about this
transformation? Justify your answer.

Suppose A is an n x n matrix with the property that the
equation Ax = b has at least one solution for each b in R”.
Without using Theorems 5 or 8, explain why each equation
Ax = b has in fact exactly one solution.

Suppose A is an n x n matrix with the property that the equa-
tion Ax = 0 has only the trivial solution. Without using the
Invertible Matrix Theorem, explain directly why the equation
Ax = b must have a solution for each b in R".

In Exercises 33 and 34, T is a linear transformation from R? into
R2. Show that T is invertible and find a formula for 7.

33.
34.
35.

36.

37.

38.

39.

40.

T(x1,x2) = (=5x1 + 9x;,4x; — Tx3)
T(x1,x3) = (2x; — 8x3, —2x1 + 7x3)

Let 7 : R" — R” be an invertible linear transformation. Ex-
plain why T is both one-to-one and onto R”. Use equations
(1) and (2). Then give a second explanation using one or
more theorems.

Suppose a linear transformation 7" : R” — R” has the prop-
erty that 7'(u) = T'(v) for some pair of distinct vectors u and
vin R”. Can 7 map R" onto R”? Why or why not?

Suppose T and U are linear transformations from R” to
R” such that T(U(x)) = x for all x in R”. Is it true that
U(T(x)) = x for all x in R”? Why or why not?

Let 7 : R" — R” be an invertible linear transformation,
and let S and U be functions from R” into R" such that
S(T(x)) = xand U(T(x)) = x for all x in R”. Show that
U(v) = S(v) for all v in R”. This will show that 7 has a
unique inverse, as asserted in Theorem 9. [Hint: Given any
v in R”, we can write v = 7T'(x) for some x. Why? Compute
S(v) and U(v).]

Let T be a linear transformation that maps R” onto R”. Show
that 7! exists and maps R" onto R”. Is T~! also one-to-
one?

Suppose 7" and S satisfy the invertibility equations (1) and
(2), where T is a linear transformation. Show directly that
S is a linear transformation. [Hint: Given u,v in R”, let
x = S(u),y = S(v). Then T(x) = u, T(y) = v. Why? Ap-
ply S to both sides of the equation 7'(x) + 7'(y) = T(x + y).
Also, consider T'(¢x) = c¢T(x).]

41.

[M] Suppose an experiment leads to the following system of
equations:

4.5x, + 3.1x, = 19.249

(3)
1.6x; + 1.1x, = 6.843

a. Solve system (3), and then solve system (4), below, in
which the data on the right have been rounded to two
decimal places. In each case, find the exact solution.

4.5x; + 3.1x, = 19.25
1.6x; + 1.1x, = 6.84
b. The entries in system (4) differ from those in system (3)

by less than .05%. Find the percentage error when using
the solution of (4) as an approximation for the solution of

3).
c. Use a matrix program to produce the condition number of
the coefficient matrix in (3).

)

Exercises 42-44 show how to use the condition number of a
matrix A to estimate the accuracy of a computed solution of
Ax = b. If the entries of A and b are accurate to about r significant
digits and if the condition number of A is approximately 10% (with
k apositive integer), then the computed solution of Ax = b should
usually be accurate to at least r — k significant digits.

42,

43.
44.

45.

[M] Let A be the matrix in Exercise 9. Find the condition
number of A. Construct a random vector x in R* and compute
b = Ax. Then use a matrix program to compute the solution
x; of Ax = b. To how many digits do x and x; agree? Find
out the number of digits the matrix program stores accurately,
and report how many digits of accuracy are lost when x; is
used in place of the exact solution x.

[M] Repeat Exercise 42 for the matrix in Exercise 10.

[M] Solve an equation Ax = b for a suitable b to find the last
column of the inverse of the fifth-order Hilbert matrix

1 1/2 1/3 1/4  1)5
12 1/3 1/4 15 1/6
A=|1/3 1/4 1/5 1/6 1)1
1/4 15 1/6 17 1/8
1/5 1/6 17 1/8 1/9

How many digits in each entry of x do you expect to be
correct? Explain. [Note: The exact solution is (630, —12600,
56700, —88200, 44100).]

[M] Some matrix programs, such as MATLAB, have a com-
mand to create Hilbert matrices of various sizes. If possible,
use an inverse command to compute the inverse of a twelfth-
order or larger Hilbert matrix, A. Compute AA~". Report
what you find.

E Mastering: Reviewing and Reflecting 2-13
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SOLUTIONS TO PRACTICE PROBLEMS

1. The columns of A are obviously linearly dependent because columns 2 and 3 are
multiples of column 1. Hence A cannot be invertible, by the Invertible Matrix
Theorem.

2. If statement (g) is not true, then the equation Ax = b is inconsistent for at least one
b in R".

3. Apply the Invertible Matrix Theorem to the matrix AB in place of A. Then statement
(d) becomes: ABx = 0 has only the trivial solution. This is not true. So AB is not
invertible.

2.4  PARTITIONED MATRICES

A key feature of our work with matrices has been the ability to regard a matrix A4 as a list
of column vectors rather than just a rectangular array of numbers. This point of view has
been so useful that we wish to consider other partitions of A, indicated by horizontal
and vertical dividing rules, as in Example 1 below. Partitioned matrices appear in most
modern applications of linear algebra because the notation highlights essential structures
in matrix analysis, as in the chapter introductory example on aircraft design. This section
provides an opportunity to review matrix algebra and use the Invertible Matrix Theorem.

EXAMPLE 1 The matrix

30 -115 92
A=|-5 2 410 =3 1
8 -6 3|1 7| —4

can also be written as the 2 x 3 partitioned (or block) matrix

A= A A A
Ay Axn A |

whose entries are the blocks (or submatrices)

3 0 -1 5 9] -2
All—[_s 5 4} A12—|:O = A13—|: 1}

Ay =[-8 =6 3], An=[1 7] An=[-4] n

EXAMPLE 2 When a matrix A appears in a mathematical model of a physical
system such as an electrical network, a transportation system, or a large corporation,
it may be natural to regard A as a partitioned matrix. For instance, if a microcomputer
circuit board consists mainly of three VLSI (very large-scale integrated) microchips,
then the matrix for the circuit board might have the general form

Ay | A | A

A= | Ay | Apn | Ax
Azr | A | Az

The submatrices on the “diagonal” of A—namely, A}, A2>, and A33—concern the three
VLSI chips, while the other submatrices depend on the interconnections among those
microchips. [ |
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Addition and Scalar Multiplication

If matrices A and B are the same size and are partitioned in exactly the same way,
then it is natural to make the same partition of the ordinary matrix sum A + B. In this
case, each block of A 4 B is the (matrix) sum of the corresponding blocks of 4 and B.
Multiplication of a partitioned matrix by a scalar is also computed block by block.

Multiplication of Partitioned Matrices

Partitioned matrices can be multiplied by the usual row—column rule as if the block
entries were scalars, provided that for a product AB, the column partition of A matches
the row partition of B.

EXAMPLE 3 Let

6 4
2 3 110 —4 -2 1
A=|1 5 =23 -1 2[3“ 312}, B=|-3 7 =[§1]
0 —4 —2 |7 -1 A 1 3 :
5 2

The 5 columns of A are partitioned into a set of 3 columns and then a set of 2
columns. The 5 rows of B are partitioned in the same way—into a set of 3 rows and
then a set of 2 rows. We say that the partitions of A and B are conformable for block
multiplication. It can be shown that the ordinary product AB can be written as

5 4
AB — Ay An || B _|[AuBi+AnB | _ | ¢
Ay Axn || By Ay By + A B, > 1

It is important for each smaller product in the expression for AB to be written with
the submatrix from A on the left, since matrix multiplication is not commutative. For

instance,
6 4
2 =3 1 15 12
AHBlz[ _}_z | :[ _]
1 5 =2 3 7 2 =5

0 —47[-1 3 -20 -8
Alsz_[s —1}[ 5 2}_[ -8 7}

Hence the top block in AB is
15 12 —-20 -8 -5 4
A1131+A1232—|: 5 _51| +[ _3 7:| _|:—6 2] "

The row—column rule for multiplication of block matrices provides the most general
way to regard the product of two matrices. Each of the following views of a product
has already been described using simple partitions of matrices: (1) the definition of Ax
using the columns of A4, (2) the column definition of AB, (3) the row—column rule for
computing AB, and (4) the rows of AB as products of the rows of A and the matrix B.
A fifth view of AB, again using partitions, follows in Theorem 10 below.

The calculations in the next example prepare the way for Theorem 10. Here coly (A4)
is the kth column of A, and rowy (B) is the kth row of B.
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3 1 2 a b
EXAMPLE 4 letAd = [ | —4 5i| and B=| ¢ d |. Verify that
e f

AB = colj(A) row (B) + col(A) row,(B) + colz(A) rows(B)

SOLUTION Each term above is an outer product. (See Exercises 27 and 28 in Sec-
tion 2.1.) By the row—column rule for computing a matrix product,

col;(A) row(B) = __ii|[a b]= [—33 —3Zi|
col(A) rowy(B) = _i}[c d]= [_4§ _43}
col3(A) rows(B) = §:|[e f] _ [gi §§:|
Thus \
Z coli (A) rowg (B) = |:_a3a— ICC_:‘Sie —b3li l—dd—:-sif }

k=1

This matrix is obviously AB. Notice that the (1, 1)-entry in AB is the sum of the (1, 1)-
entries in the three outer products, the (1, 2)-entry in AB is the sum of the (1, 2)-entries
in the three outer products, and so on. |

Column-Row Expansion of AB

If Aism xn and B is n x p, then
row;(B)
row;(B)

col, (4)] : )
row, (B)

= col; (A)row;(B) + -+ + col, (A4) row,(B)

AB = [col;(A) col(A)

PROOF For each row index i and column index j, the (i, j)-entry in col; (A) row, (B)
is the product of a;; from col (A4) and by; from row, (B). Hence the (i, j)-entry in the
sum shown in equation (1) is

aithij  + apby;  + o+ by
k=1 (k=2) (k =n)
This sum is also the (i, j)-entry in AB, by the row—column rule. [ |

Inverses of Partitioned Matrices

The next example illustrates calculations involving inverses and partitioned matrices.
EXAMPLE 5 A matrix of the form
_ [ An An
A= |: 0 Ax
is said to be block upper triangular. Assume that A is p X p, A is g X ¢, and A is
invertible. Find a formula for A™!.
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SOLUTION Denote A~! by B and partition B so that

Ay Ap [ Bu B | _ |1, 0 2)
0 A22 321 Bzz 0 Iq
This matrix equation provides four equations that will lead to the unknown blocks
By, ..., By. Compute the product on the left side of equation (2), and equate each entry
with the corresponding block in the identity matrix on the right. That is, set
AnBi + AnBy =1, 3)
AnBi + AaBn =0 4)
AnBy =0 %)
AxnBxn =1, (6)

By itself, equation (6) does not show that Ay, is invertible. However, since Ay, is
square, the Invertible Matrix Theorem and (6) together show that A,; is invertible and
By, = A3 Next, left-multiply both sides of (5) by A5,' and obtain

By = A%0=0
so that (3) simplifies to

AuBi+0=1,
Since Aj; is square, this shows that A;; is invertible and B, = Al_ll. Finally, use these
results with (4) to find that

A11Biy = —A1nBy = —ApAy) and By = —Aj A1p Ay
Thus .
A A AT —A A4S

A7l = = » n
0 Axn 0 A3

A block diagonal matrix is a partitioned matrix with zero blocks off the main
diagonal (of blocks). Such a matrix is invertible if and only if each block on the diagonal
is invertible. See Exercises 13 and 14.

— NUMERICAL NOTES

1. When matrices are too large to fit in a computer’s high-speed memory,
partitioning permits the computer to work with only two or three submatrices
at a time. For instance, one linear programming research team simplified
a problem by partitioning the matrix into 837 rows and 51 columns. The
problem’s solution took about 4 minutes on a Cray supercomputer.!

2. Some high-speed computers, particularly those with vector pipeline architec-
ture, perform matrix calculations more efficiently when the algorithms use
partitioned matrices.>

3. Professional software for high-performance numerical linear algebra, such as
LAPACK, makes intensive use of partitioned matrix calculations.

'The solution time doesn’t sound too impressive until you learn that each of the 51 block columns contained
about 250,000 individual columns. The original problem had 837 equations and over 12,750,000 variables!
Nearly 100 million of the more than 10 billion entries in the matrix were nonzero. See Robert E. Bixby et
al., “Very Large-Scale Linear Programming: A Case Study in Combining Interior Point and Simplex
Methods,” Operations Research, 40, no. 5 (1992): 885-897.

2The importance of block matrix algorithms for computer calculations is described in Matrix Computations,
3rd ed., by Gene H. Golub and Charles F. van Loan (Baltimore: Johns Hopkins University Press, 1996).
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The exercises that follow give practice with matrix algebra and illustrate typical

calculations found in applications.

PRACTICE PROBLEMS

1. Show that [1{1 ?i| is invertible and find its inverse.

2. Compute X "X, where X is partitioned as [ X; X»].

2.4 EXERCISES

In Exercises 1-9, assume that the matrices are partitioned con-
formably for block multiplication. Compute the products shown
in Exercises 1-4.

S Bk

3 0 I||A B 4 I of(w X

|1 OoflC D “|-E I||Y Z
In Exercises 5-8, find formulas for X, Y, and Z in terms of A,
B, and C, and justify your calculations. In some cases, you may
need to make assumptions about the size of a matrix in order to

produce a formula. [Hint: Compute the product on the left, and
set it equal to the right side.]

s [ o]lx v]=[2 o]

ol LY

7'X00}gg_[10}
R | B 0 I
o [4 BI[X Y Zz]_[1 00
'_01001_001

9. Suppose By is an invertible matrix. Find matrices A, and
Aj (in terms of the blocks of B) such that the product below
has the form indicated. Also, compute C,, (in terms of the
blocks of B). [Hint: Compute the product on the left, and set
it equal to the right side.]

I 0 Of[Bu Bn Ch Cn
Ay I O || By Bn|=| 0 Cyn
Azi 0 I || By By 0 Cyp

10. The inverse of

oo~

0 0
I 0 is
D 1

Qv ~
D~ o
~N o o

Find P, Q, and R.

In Exercises 11 and 12, mark each statement True or False. Justify
each answer.

11. a. If A=[A, A,] and B=[B, B,], with A, and
A, the same sizes as B; and B,, respectively, then
A+B=[A+B A+ B,].

A An B,
of A and B are conformable for block multiplication.

b. If A= |:A” A12] and B = |:Bl ], then the partitions

12. a. If A, A,, By, and B, are n X n matrices, A = [ﬁ' ],and
2

B =[B; B,], then the product BA is defined, but AB
is not.
b. If A = po , then the transpose of A4 is
R S
PT T
oo o]
B 0

13. LetA = 0 | where B and C are square. Show that A

is invertible if and only if both B and C are invertible.

14. Show that the block upper triangular matrix 4 in Example 5 is
invertible if and only if both A;; and A,, are invertible. [Hint:
If A, and Ay, are invertible, the formula for 4! givenin Ex-
ample 5 actually works as the inverse of A.] This fact about
A is an important part of several computer algorithms that
estimate eigenvalues of matrices. Eigenvalues are discussed
in Chapter 5.

15. When a deep space probe is launched, corrections may
be necessary to place the probe on a precisely calculated
trajectory. Radio telemetry provides a stream of vectors,
Xy, ..., X, giving information at different times about how
the probe’s position compares with its planned trajectory.
Let X be the matrix [x; --- X¢]. The matrix G, = XkaT is
computed as the radar data are analyzed. When x4, arrives,
anew Gy must be computed. Since the data vectors arrive
at high speed, the computational burden could be severe.
But partitioned matrix multiplication helps tremendously.
Compute the column-row expansions of G and Gy, and
describe what must be computed in order to update Gy to
form Gy 4.
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The probe Galileo was launched October 18,
1989, and arrived near Jupiter in early December
1995.

Ay Ap

2 Ax
trix S = Ay — Ay A[' Ay, is called the Schur comple-
ment of A;,. Likewise, if A,, is invertible, the matrix
Ay — A;pAy' Ay is called the Schur complement of A,.
Suppose Aj; is invertible. Find X and Y such that

[A“ Alz]:[l 0][A11 0][1 Y] ™

Ay A X I 0 S|{o0 1[I

17. Suppose the block matrix A on the left side of (7) is invertible
and Ay, is invertible. Show that the Schur complement S of
Ay is invertible. [Hint: The outside factors on the right side
of (7) are always invertible. Verify this.] When 4 and A4,

are both invertible, (7) leads to a formula for A~!, using S~',
A7;', and the other entries in A.

16. Let A = [ ] If Ay, is invertible, then the ma-

18. Let X be an m x n data matrix such that X7 X is invertible,
andlet M = I, — X(XTX)7'XT. Add a column x; to the
data and form

W=[X xo]

Compute WTW. The (1, 1)-entry is X7 X. Show that the
Schur complement (Exercise 16) of X7 X can be written
in the form x] Mx,. It can be shown that the quantity
(xT Mxo)~" is the (2,2)-entry in (WTW)~!. This entry
has a useful statistical interpretation, under appropriate
hypotheses.

In the study of engineering control of physical systems, a standard
set of differential equations is transformed by Laplace transforms
into the following system of linear equations:

i BN ©

where Aisn xn, Bisnxm, C is m x n, and s is a variable.
The vector u in R™ is the “input” to the system, y in R" is the
“output,” and x in R” is the “state” vector. (Actually, the vectors
X, u, and y are functions of s, but this does not affect the algebraic
calculations in Exercises 19 and 20.)

19.

20.

21.

22,

23.

24.

Assume A — s/, is invertible and view (8) as a system of two
matrix equations. Solve the top equation for x and substitute
into the bottom equation. The result is an equation of the
form W(s)u =y, where W(s) is a matrix that depends on s.
W(s) is called the transfer function of the system because
it transforms the input u into the output y. Find W(s) and
describe how it is related to the partitioned system matrix on
the left side of (8). See Exercise 16.

Suppose the transfer function W(s) in Exercise 19 is invert-
ible for some s. It can be shown that the inverse transfer
function W(s)~", which transforms outputs into inputs, is the
Schur complement of A — BC — 51, for the matrix below.
Find this Schur complement. See Exercise 16.

A—-BC—-sl, B
—-C I

a. Verify that A> = [ when A = [; —(l):|

b. Use partitioned matrices to show that M> = I when

1 0o 0 0
2 -1 0o o0
M = 1 0 -1 0
0 1 -2 1
Generalize the idea of Exercise 21 by constructing a 6 x 6
A 0 O
matrix M = | 0 B 0 | such that M?> = I. Make C a
C 0 D

nonzero 2 x 2 matrix. Show that your construction works.

Use partitioned matrices to prove by induction that the prod-
uct of two lower triangular matrices is also lower triangular.
[Hint: A (k + 1) x (k + 1) matrix A; can be written in the
form below, where a is a scalar, v is in RF, and A is a k x k
lower triangular matrix. See the Study Guide for help with
induction.]

4= o7 The Principle of

! v A Induction 2-19
Use partitioned matrices to prove by induction that for
n=2,3,..., the n x n matrix A shown below is invertible

and B is its inverse.

T 0 0 - 0
1 1 0 0

A=]1 1 1 0.
111 1

O -+ 0

-1 1 0 0

B_ ~1 1 0

Lo -1 1




25.

26.

For the induction step, assume A and B are
(k + 1) x (k + 1) matrices, and partition A and B in a form
similar to that displayed in Exercise 23.

Without using row reduction, find the inverse of

1 2 0 0 O
35 0 0 O
A=(0 0 2 0 O
o o0 o 7 8
o 0 0 5 6

[M] For block operations, it may be necessary to access or
enter submatrices of a large matrix. Describe the functions
or commands of a matrix program that accomplish the fol-
lowing tasks. Suppose A is a 20 x 30 matrix.

a. Display the submatrix of A from rows 5 to 10 and
columns 15 to 20.

b. Insert a 5 x 10 matrix B into A, beginning at row 5 and
column 10.
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0 AT
[Note: 1t may not be necessary to specify the zero blocks
in C.]

c. Create a 50 x 50 matrix of the form C = |:A 0 :|

27. [M] Suppose memory or size restrictions prevent a matrix

program from working with matrices having more than 32
rows and 32 columns, and suppose some project involves
50 x 50 matrices A and B. Describe the commands or op-
erations of the matrix program that accomplish the following
tasks.

a. Compute A + B.

b. Compute AB.

c. Solve Ax = b for some vector b in R>°, assuming that
A can be partitioned into a 2 x 2 block matrix [A4;],
with A;; an invertible 20 x 20 matrix, A,, an invertible
30 x 30 matrix, and A, a zero matrix. [Hint: Describe
appropriate smaller systems to solve, without using any
matrix inverses. |

SOLUTIONS TO PRACTICE PROBLEMS

1
I'If|:A J

0. . . L. w
] is invertible, its inverse has the form |:

I 0
A T

X .
Y 7 j| . Verify that

wox] [ w X
Y Z|T |AW+Y AX+Z

SoW,X,Y,Zmustsatisfy W =1, X=0,AW+Y =0,andAX +Z=1.1t
follows that Y = —A4 and Z = I. Hence

SEEEN

The product in the reverse order is also the identity, so the block matrix is invert-

ible, and its inverse is |:

Theorem.)

1
XT

2. XTX=|:
2

—A 1

0:|. (You could also appeal to the Invertible Matrix

X7 _ XlTXl XITXZ . T
X Xo|= . The partitions of X' and X are

xI'x, xI'x,

automatically conformable for block multiplication because the columns of X7 are
the rows of X. This partition of XX is used in several computer algorithms for
matrix computations.

2.5 MATRIX FACTORIZATIONS

A factorization of a matrix A is an equation that expresses A4 as a product of two or more
matrices. Whereas matrix multiplication involves a synthesis of data (combining the
effects of two or more linear transformations into a single matrix), matrix factorization
is an analysis of data. In the language of computer science, the expression of 4 as a
product amounts to a preprocessing of the data in A, organizing that data into two or
more parts whose structures are more useful in some way, perhaps more accessible for
computation.
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Matrix factorizations and, later, factorizations of linear transformations will appear
at a number of key points throughout the text. This section focuses on a factorization
that lies at the heart of several important computer programs widely used in applica-
tions, such as the airflow problem described in the chapter introduction. Several other
factorizations, to be studied later, are introduced in the exercises.

The LU Factorization

The LU factorization, described below, is motivated by the fairly common industrial
and business problem of solving a sequence of equations, all with the same coefficient
matrix:

Ax=Db;, Ax=Db,, ..., Ax=b, @))]

See Exercise 32, for example. Also see Section 5.8, where the inverse power method
is used to estimate eigenvalues of a matrix by solving equations like those in sequence
(1), one at a time.

When A is invertible, one could compute A~! and then compute A7'by, A b,
and so on. However, it is more efficient to solve the first equation in sequence (1) by
row reduction and obtain an LU factorization of A4 at the same time. Thereafter, the
remaining equations in sequence (1) are solved with the LU factorization.

At first, assume that A is an m x n matrix that can be row reduced to echelon
form, without row interchanges. (Later, we will treat the general case.) Then A can
be written in the form A = LU, where L is an m x m lower triangular matrix with 1’s
on the diagonal and U is an m x n echelon form of A. For instance, see Fig. 1. Such
a factorization is called an LU factorization of A. The matrix L is invertible and is
called a unit lower triangular matrix.

10 O OI 3k 3k sk 3k

AZlf 1 0 ol moxw s

o= 1 oflo 0o 0o m

= o+ % 1o 0 0 0 0
L U

FIGURE 1 An LU factorization.

Before studying how to construct L and U, we should look at why they are so
useful. When A = LU, the equation Ax = b can be written as L(Ux) = b. Writing y
for Ux, we can find x by solving the pair of equations

Ly=Db

Us — 2

First solve Ly = b for y, and then solve Ux =y for x. See Fig. 2. Each equation is
easy to solve because L and U are triangular.

EXAMPLE 1 It can be verified that

3 -7 =2 2 1 0 0 O 3 -7 =2 2
-3 5 1 0 -1 1 0 0 0 -2 -1 2

A= 6 -4 0 -5| 2 -5 1 0 0 0 -1 1| Ly
-9 5 =5 12 -3 8 3 1 0 0 0 -1
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Multiplication
by A
Xe ob
Multiplication ;, Multiplication
by U by L

FIGURE 2 Factorization of the mapping x — AX.

Use this LU factorization of A to solve AX = b, where b =
11

SOLUTION The solution of Ly = b needs only 6 multiplications and 6 additions, be-
cause the arithmetic takes place only in column 5. (The zeros below each pivot in L are
created automatically by the choice of row operations.)

1 0 0 0 -9 1 0 0 0 —9
1 1 0 0 5 0 1 0 0 —4

[ bl=] 5 5 1 o 70~|o o 1 o s|=[1 ¥]
3 8 3 1 11 0 0 0 1 1

Then, for Ux =y, the “backward” phase of row reduction requires 4 divisions, 6 mul-
tiplications, and 6 additions. (For instance, creating the zeros in column 4 of [U y|]
requires 1 division in row 4 and 3 multiplication—addition pairs to add multiples of row 4
to the rows above.)

3 -7 -2 2 -9 I 0 0 0 3 3
[U y] _ 0 -2 -1 2 —4 N 0O 1 0 0 4 < — 4
0o 0 -1 1 5 0o 0 1 0 -6/ —6
0 0 0 -1 1 0o 0 0 1 -1 -1

To find x requires 28 arithmetic operations, or “flops” (floating point operations),
excluding the cost of finding L and U. In contrast, row reductionof [A b]to[/ x]
takes 62 operations. [ |

The computational efficiency of the LU factorization depends on knowing L and U .
The next algorithm shows that the row reduction of A to an echelon form U amounts to
an LU factorization because it produces L with essentially no extra work. After the first
row reduction, L and U are available for solving additional equations whose coefficient
matrix is A.

An LU Factorization Algorithm

Suppose A can be reduced to an echelon form U using only row replacements that add a
multiple of one row to another row below it. In this case, there exist unit lower triangular
elementary matrices E, ..., E, such that

E, - E\A=U 3)

Then
A=(E,--E\)"'U=LU

where
L=(E,-E)”" 4)
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It can be shown that products and inverses of unit lower triangular matrices are also unit
lower triangular. (For instance, see Exercise 19.) Thus L is unit lower triangular.

Note that the row operations in equation (3), which reduce A to U, also reduce
the L in equation (4) to I, because E,--- E\L = (E,--- E\)(E,--- E\)”' = I. This
observation is the key to constructing L.

ALGORITHM FOR AN LU FACTORIZATION

1. Reduce A to an echelon form U by a sequence of row replacement operations,
if possible.

2. Place entries in L such that the same sequence of row operations reduces L
to ].

Step 1 is not always possible, but when it is, the argument above shows that an LU
factorization exists. Example 2 will show how to implement step 2. By construction, L
will satisfy

(Ep---EV)L =1

using the same E|, ..., E, asinequation (3). Thus L will be invertible, by the Invertible
Matrix Theorem, with (E,--- E) = L~'. From (3), L'A=U, and A = LU. So
step 2 will produce an acceptable L.
EXAMPLE 2 Find an LU factorization of

2 4 -1 5 =2

-4 -5 3 -8 1
A= 2 -5 -4 1 8
-6 0 7 =3 1

SOLUTION Since A has four rows, L should be 4 x 4. The first column of L is the first
column of A divided by the top pivot entry:

1 0 0 0

-2 1 0 0

L= 1 I 0
-3 1

Compare the first columns of A and L. The row operations that create zeros in the
first column of A will also create zeros in the first column of L. To make this same
correspondence of row operations on 4 hold for the rest of L, watch a row reduction of
A to an echelon form U. That is, highlight the entries in each matrix that are used to
determine the sequence of row operations that transform A into U. [See the highlighted
entries in equation (5).]

2 4 -1 5 =2 2 4 -1 5 =2
—4 -5 3 -8 1 0 3 1 2 -3
A=1"9 5 4 1 8|~]0 -9 -3 4 10|=4 )
6 0 7 -3 1 0 12 4 12 -5
2 4 -1 5 =2 2 4 -1 5 =2
0 3 1 2 -3 0 3 1 2 -3
~h=10 0 0 2 1|™lo 0o 0o 2 1|7V
0 0 0 4 0 0 0 0 5
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The highlighted entries above determine the row reduction of A to U. At each pivot
column, divide the highlighted entries by the pivot and place the result into L:

2

—4 3

2 -9 ]2

—6 12 || 4 [5]

=2 =3 =2 =5

\) ool

1 1 0 0 O

-2 1 -2 1 0 0

T T L T B B

-3 4 2 1 -3 4 2 1
An easy calculation verifies that this L and U satisfy LU = A [ |

In practical work, row interchanges are nearly always needed, because partial piv-
oting is used for high accuracy. (Recall that this procedure selects, among the possible
choices for a pivot, an entry in the column having the largest absolute value.) To handle
row interchanges, the LU factorization above can be modified easily to produce an L that
is permuted lower triangular, in the sense that a rearrangement (called a permutation)
of the rows of L can make L (unit) lower triangular. The resulting permuted LU
Sactorization solves AX = b in the same way as before, except that the reduction of
[L b]to[] y]follows the order of the pivots in L from left to right, starting with
the pivot in the first column. A reference to an “LU factorization” usually includes the
possibility that L might be permuted lower triangular. For details, see the Study Guide.

— NUMERICAL NOTES

The following operation counts apply to an 7 X n dense matrix A (with most
entries nonzero) for n moderately large, say, n > 30.!

1. Computing an LU factorization of A takes about 213 /3 flops (about the same
as row reducing [ A b]), whereas finding A~! requires about 213 flops.

2. Solving Ly = b and Ux =y requires about 2n> flops, because any n x n
triangular system can be solved in about n? flops.

3. Multiplication of b by A~ also requires about 212 flops, but the result may
not be as accurate as that obtained from L and U (because of roundoff error
when computing both A~ and A~'b).

4. If A is sparse (with mostly zero entries), then L and U may be sparse, too,
whereas 47! is likely to be dense. In this case, a solution of Ax = b with an
LU factorization is much faster than using A~'. See Exercise 31.

A Matrix Factorization in Electrical Engineering

Matrix factorization is intimately related to the problem of constructing an electrical
network with specified properties. The following discussion gives just a glimpse of the
connection between factorization and circuit design.

!'See Section 3.8 in Applied Linear Algebra, 3rd ed., by Ben Noble and James W. Daniel (Englewood Cliffs,
NJ: Prentice-Hall, 1988). Recall that for our purposes, a flop is +, —, X, or =+.
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Suppose the box in Fig. 3 represents some sort of electric circuit, with an input
. v . .
and output. Record the input voltage and current by |: il i| (with voltage v in volts and
1

current i in amps), and record the output voltage and current by |: 1;2 i| Frequently, the
2

. v vy |, .. . . .
transformation |: il :| = [ i2i| is linear. That is, there is a matrix A, called the transfer
1 2

matrix, such that

il r------ a i2
—> ——
1 1
input i electric b output
terminals 1 | circuit | 2 terminals
1 1
1 1
| S ]

FIGURE 3 A circuit with input and output
terminals.

Figure 4 shows a ladder network, where two circuits (there could be more) are
connected in series, so that the output of one circuit becomes the input of the next circuit.
The left circuit in Fig. 4 is called a series circuit, with resistance R; (in ohms).

A series circuit A shunt circuit

FIGURE 4 A ladder network.

The right circuit in Fig. 4 is a shunt circuit, with resistance R,. Using Ohm’s law and
Kirchhoff’s laws, one can show that the transfer matrices of the series and shunt circuits,

respectively, are
1 —R; nd 1 0
0 1 a ~1/R, 1

Transfer matrix Transfer matrix
of series circuit of shunt circuit

EXAMPLE 3

a. Compute the transfer matrix of the ladder network in Fig. 4.

b. Design a ladder network whose transfer matrix is [ B é _2 j|

SOLUTION
a. Let A; and A be the transfer matrices of the series and shunt circuits, respectively.
Then an input vector X is transformed first into A;x and then into A, (A;x). The series

connection of the circuits corresponds to composition of linear transformations, and
the transfer matrix of the ladder network is (note the order)

B 1 Ol =Ry | _ 1 —R
A2A1—|:_1/R2 1i||:() 1 i|_|:—1/R2 1+R1/R2i| ©)
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. 1 -81. . .
b. To factor the matrix |:_ 5 5:| into the product of transfer matrices, as in equa-

tion (6), look for R; and R, in Fig. 4 to satisfy

1 —R _ 1 -8
|:—1/R2 1+R1/R2]_|:—.5 5i|

From the (1, 2)-entries, Ry = 8 ohms, and from the (2, 1)-entries, 1/R, = .5 ohm
and R, = 1/.5 = 2 ohms. With these values, the network in Fig. 4 has the desired
transfer matrix. [

A network transfer matrix summarizes the input—output behavior (the design spec-
ifications) of the network without reference to the interior circuits. To physically build
a network with specified properties, an engineer first determines if such a network can
be constructed (or realized). Then the engineer tries to factor the transfer matrix into
matrices corresponding to smaller circuits that perhaps are already manufactured and
ready for assembly. In the common case of alternating current, the entries in the transfer
matrix are usually rational complex-valued functions. (See Exercises 19 and 20 in
Section 2.4 and Example 2 in Section 3.3.) A standard problem is to find a minimal
realization that uses the smallest number of electrical components.

PRACTICE PROBLEM

2 -4 -2 3
6 -9 -5 8
Find an LU factorization of A = 2 =7 =3 9 |. [Note: It will turn out that A
4 -2 -2 -1
-6 3 3 4

has only three pivot columns, so the method of Example 2 will produce only the first
three columns of L. The remaining two columns of L come from /s.]

2.5 EXERCISES

In Exercises 1-6, solve the equation Ax = b by using the LU r 0 0|2 -4 2
factorization given for A. In Exercises 1 and 2, also solve Ax = b A=| -2 0 0 -3
by ordinary row reduction. L 3 -1 1 0 0 1
3 —7 =27 —7 ~
1. A=|-3 5 1{,b= 5 I -1 2 0
6 —4 0 2 4. A=|1 =3 1{,b=]| =5
T 10 01[3 -7 -2 > 7 7
A= —1 1 0 0o -2 -1 1 0 0 1 -1 2
2 =5 1 |:0 0 —1:| A=1|1 1 0:||:O -2 —1:|
- _ 3 =5 1|0 o0 -6
2 —6 4 2 L
2. A= -4 8 O0|,b=]|—4
0 -4 6 6 1 -2 =2 =37 1
T 1 0 072 —6 4 5A=3_90_9,b=6
-1 2 4 7 0
A=| -2 1 0 |:0 —4 8:| 3 ¢ 26 2 3
0 1 1 0 0o -2 L -
- - 1 0 0 O[1 -2 —2 -3
3A—i_g§b—(6) A=| 3 L 0 0o =360
R T -1 0 1 ofl0o 0 2 4
6 =9 1] 6 |3 4 =2 1flo 0o o0 1
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T 13 2 0] 1

-2 -3 -4 12 -2

A= 3 0 4 36 P70

| -5 -3 -8 49 2
Mo o o1 3 2 o0
4|2 1t o offo 3 0o 12
3 -3 1 of|lo 0o -2 o0
|5 4 -1 1]lo o o 1

Find an LU factorization of the matrices in Exercises 7-16 (with L
unit lower triangular). Note that MATLAB will usually produce
a permuted LU factorization because it uses partial pivoting for
numerical accuracy.

7.

11.

13.

15.

17.

18.
19.

20.

21.

2 5 g [ 6 4
| -3 —4 L2 s
f 3 1 2 (-5 0 4
-9 0 —4 10. |10 2 -5
9 9 14 L 10 10 16
307 2 [ 2 3 2
6 19 4 12.| 4 13 9
|3 2 3 |6 5 4
T 1 3 =5 =37 13 1 5
-1 =5 8 4 1520 31
4 2 5 7 2 -1 -1 4
|2 -4 7 5] -1 7 1 7
2 3 4
2 0 5 27 4 8 -7
—6 3 -13 -3 16. | 6 -5 14
| 4 9 16 17] -6 9 -12
8 —6 19

When A is invertible, MATLAB finds A~! by factoring
A = LU (where L may be permuted lower triangular), in-
verting L and U, and then computing U~!L™!. Use this
method to compute the inverse of A in Exercise 2. (Apply
the algorithm in Section 2.2 to L and to U.)

Find A" as in Exercise 17, using A from Exercise 3.

Let A be alower triangular 7 x n matrix with nonzero entries
on the diagonal. Show that A is invertible and A" is lower
triangular. [Hint: Explain why A can be changed into /
using only row replacements and scaling. (Where are the
pivots?) Also, explain why the row operations that reduce
A to I change I into a lower triangular matrix.]

Let A = LU be an LU factorization. Explain why A can be
row reduced to U using only replacement operations. (This
fact is the converse of what was proved in the text.)

Suppose A = BC, where B is invertible. Show that any
sequence of row operations that reduces B to / also reduces
A to C. The converse is not true, since the zero matrix may
be factored as 0 = B - 0.

Exercises 22-26 provide a glimpse of some widely used matrix
factorizations, some of which are discussed later in the text.

22.

24.

25.

27.

28.

29.

(Reduced LU Factorization) With A as in the Practice Prob-
lem, find a 5 x 3 matrix B and a 3 x 4 matrix C such that
A = BC. Generalize this idea to the case where A is m X n,
A = LU, and U has only three nonzero rows.

. (Rank Factorization) Suppose an m X n matrix A admits a

factorization A = CD where C ism x 4and D is 4 x n.

a. Show that A is the sum of four outer products. (See

Section 2.4.)

b. Letm = 400 and n = 100. Explain why a computer pro-
grammer might prefer to store the data from A in the form
of two matrices C and D.

(OR Factorization) Suppose A = QR, where Q and R are
n x n, R is invertible and upper triangular, and Q has the
property that QT Q = I. Show that for each b in R”, the
equation Ax = b has a unique solution. What computations
with Q and R will produce the solution?

(Singular Value Decomposition) Suppose A = UDVT,
where U and V' are n x n matrices with the property that
UTU = I and VTV = I, and where D is a diagonal matrix
with positive numbers o7, ..., 0, on the diagonal. Show that
A is invertible, and find a formula for A™".

. (Spectral Factorization) Suppose a 3 x 3 matrix A admits

a factorization as A = PDP ™!, where P is some invertible
3 x 3 matrix and D is the diagonal matrix

2 0 0
D=|0 3 0
0o 0 1

Show that this factorization is useful when computing high
powers of A. Find fairly simple formulas for A%, A%, and A*
(k a positive integer), using P and the entries in D.

Design two different ladder networks that each output 9 volts
and 4 amps when the input is 12 volts and 6 amps.

Show that if three shunt circuits (with resistances R, R», R3)
are connected in series, the resulting network has the same
transfer matrix as a single shunt circuit. Find a formula for
the resistance in that circuit.

a. Compute the transfer matrix of the network in the figure
below.

i Fe----- a iy Ih F=====- IR iy Fe----- oy
— MW ; ——— M ——
LR : % : R
Vi : 2 R S T : Va
b. Let A = 3 —12 Design a ladder network
: Tl o1z 53| e

whose transfer matrix is A by finding a suitable matrix
factorization of A.
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31.

Find a different factorization of the transfer matrix A in
Exercise 29, and thereby design a different ladder network
whose transfer matrix is A.

[M] Consider the heat plate in the following figure (refer to
Exercise 33 in Section 1.1).

0 0 0 0
= L3 s 1 1,
s 2 a6 8 |,
10° 10° 10° 10°

The solution to the steady-state heat flow problem for this
plate is approximated by the solution to the equation Ax = b,
where b = (5, 15,0, 10, 0, 10, 20, 30) and

4 -1 -1
-1 4 0 -1
-1 0 4 -1 -1
-1 -1 4 0 -1
A= -1 0 4 -1 -1
-1 -1 4 0 -1
-1 0 4 -1
i -1 -1 4|

The missing entries in A are zeros. The nonzero entries of
A lie within a band along the main diagonal. Such band
matrices occur in a variety of applications and often are
extremely large (with thousands of rows and columns but
relatively narrow bands).

a. Use the method in Example 2 to construct an LU factor-
ization of A, and note that both factors are band matrices
(with two nonzero diagonals below or above the main
diagonal). Compute LU — A to check your work.

32.
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b. Use the LU factorization to solve Ax = b.

Obtain A~! and note that A~ is a dense matrix with no
band structure. When A is large, L and U can be stored
in much less space than A™!. This fact is another reason
for preferring the LU factorization of A to A~ itself.

C.

[M] The band matrix A shown below can be used to estimate
the unsteady conduction of heat in a rod when the tempera-
tures at points py, ..., ps on the rod change with time.?

The constant C in the matrix depends on the physical nature
of the rod, the distance Ax between the points on the rod,
and the length of time Af between successive temperature
measurements. Suppose that fork = 0, 1,2, ..., a vector t;
in R* lists the temperatures at time kA¢. If the two ends of the
rod are maintained at 0°, then the temperature vectors satisfy
the equation Aty =t; (k =0,1,...), where

(1+20) —C
4| —¢ a+20

-C (1420 -C

-C  (1+420)

a. Find the LU factorization of A when C = 1. A matrix
such as A with three nonzero diagonals is called a tridi-
agonal matrix. The L and U factors are bidiagonal
matrices.

Suppose C =1 and t, = (10, 15,15, 10)7. Use the LU

factorization of A to find the temperature distributions t,,
tz, t3, and t4.

2 See Biswa N. Datta, Numerical Linear Algebra and Applications (Pacific
Grove, CA: Brooks/Cole, 1994), pp. 200-201.

SOLUTION TO PRACTICE PROBLEM

2
6

—4
-9

-2 3 2 4 -2 3
-5 8 0o 3 1 -1
-3 9| ~|0 =3 -1 6
-2 -1 0 6 2 -7
3 4 0 -9 -3 13
-2 3 2 -4 =2 3
I -1 0o 3 1 -1
0O 5| ~]0 0 0 5|=U
0 =5 0 0 0 O
0 10 0o 0 0 O

Divide the entries in each highlighted column by the pivot at the top. The resulting
columns form the first three columns in the lower half of L. This suffices to make row
reduction of L to / correspond to reduction of A to U. Use the last two columns of /5
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to make L unit lower triangular.

2
6 3
2 -3 5
4 6 -5
—6 -9 10
) ) =5
o Vool
1 1 o 0 0 0
3 1 3 1 0O 0 O
1 — 1 , L= 1 —1 1 0 0
2 —1 2 2 -1 1 0
_—3 -3 2 -3 -3 2 0 1

2.6 THE LEONTIEF INPUT-OUTPUT MODEL

Linear algebra played an essential role in the Nobel prize—winning work of Wassily
Leontief, as mentioned at the beginning of Chapter 1. The economic model described
in this section is the basis for more elaborate models used in many parts of the world.

Suppose a nation’s economy is divided into n sectors that produce goods or services,
and let x be a production vector in R” that lists the output of each sector for one
year. Also, suppose another part of the economy (called the open sector) does not
produce goods or services but only consumes them, and let d be a final demand vector
(or bill of final demands) that lists the values of the goods and services demanded
from the various sectors by the nonproductive part of the economy. The vector d can
represent consumer demand, government consumption, surplus production, exports, or
other external demands.

As the various sectors produce goods to meet consumer demand, the producers
themselves create additional intermediate demand for goods they need as inputs for
their own production. The interrelations between the sectors are very complex, and the
connection between the final demand and the production is unclear. Leontief asked if
there is a production level x such that the amounts produced (or “supplied”) will exactly
balance the total demand for that production, so that

amount intermediate final
produced ; = { demand } + < demand (D
X d

The basic assumption of Leontief’s input—output model is that for each sector, there is
a unit consumption vector in R” that lists the inputs needed per unit of output of the
sector. All input and output units are measured in millions of dollars, rather than in
quantities such as tons or bushels. (Prices of goods and services are held constant.)

As a simple example, suppose the economy consists of three sectors—manufac-
turing, agriculture, and services — with unit consumption vectors ¢y, ¢,, and ¢3, as shown
in the table that follows.
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Inputs Consumed per Unit of Output

Purchased from: Manufacturing Agriculture Services
Manufacturing .50 40 .20
Agriculture .20 .30 .10
Services .10 .10 .30

1 1 ?

C; C C3

EXAMPLE 1 What amounts will be consumed by the manufacturing sector if it
decides to produce 100 units?

SOLUTION Compute

.50 50
100¢; = 100| .20 | = | 20
.10 10

To produce 100 units, manufacturing will order (i.e., “demand”) and consume 50 units
from other parts of the manufacturing sector, 20 units from agriculture, and 10 units
from services. |

If manufacturing decides to produce x; units of output, then x;c¢; represents the in-
termediate demands of manufacturing, because the amounts in x;¢; will be consumed in
the process of creating the x; units of output. Likewise, if x, and x3 denote the planned
outputs of the agriculture and services sectors, x,¢; and x3c3 list their corresponding
intermediate demands. The total intermediate demand from all three sectors is given by

{intermediate demand} = x;¢; + x2¢; + x3€3
=Cx 2)

where C is the consumption matrix [¢; ¢, c¢3 ], namely,

50 .40 20
c=|.20 30 .10 3)
10 .10 30

Equations (1) and (2) yield Leontief’s model.

THE LEONTIEF INPUT-OUTPUT MODEL, OR PRODUCTION EQUATION

X = Cx + d @)
Amount Intermediate Final
produced demand demand

Equation (4) may also be written as /x — Cx = d, or
(I-C)x=d )
EXAMPLE 2 Consider the economy whose consumption matrix is given by (3).

Suppose the final demand is 50 units for manufacturing, 30 units for agriculture, and
20 units for services. Find the production level x that will satisfy this demand.
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THEOREM 11

SOLUTION The coefficient matrix in (5) is

S5 42 S5 -4 -2
. . . -2 7 =1
d 13 -1 -1 7

._
- oo
|
—_

Il

1
I-C=10
0

To solve (5), row reduce the augmented matrix

S5 -4 -2 50 5 =4 =2 500 I 0 0 226
-2 7-1 30|~|-2 7 -1 300 |~:---~[0 1 0 119
-1 -1 7 20 -1 -1 7 200 o 0 1 78

The last column is rounded to the nearest whole unit. Manufacturing must produce
approximately 226 units, agriculture 119 units, and services only 78 units. [ |

If the matrix I — C is invertible, then we can apply Theorem 5 in Section 2.2, with
A replaced by (I — C), and from the equation (/ — C)x = d obtainx = (I — C)~'d.
The theorem below shows that in most practical cases, I — C is invertible and the
production vector x is economically feasible, in the sense that the entries in x are non-
negative.

In the theorem, the term column sum denotes the sum of the entries in a column
of a matrix. Under ordinary circumstances, the column sums of a consumption matrix
are less than 1 because a sector should require less than one unit’s worth of inputs to
produce one unit of output.

Let C be the consumption matrix for an economy, and let d be the final demand.
If C and d have nonnegative entries and if each column sum of C is less than 1,
then (I — C)~! exists and the production vector

x=(I-C)"'d
has nonnegative entries and is the unique solution of

x=Cx+d

The following discussion will suggest why the theorem is true and will lead to a
new way to compute (I — C)~.

A Formula for (1-C)~1

Imagine that the demand represented by d is presented to the various industries at the
beginning of the year, and the industries respond by setting their production levels at
x = d, which will exactly meet the final demand. As the industries prepare to produce d,
they send out orders for their raw materials and other inputs. This creates an intermediate
demand of Cd for inputs.

To meet the additional demand of Cd, the industries will need as additional inputs
the amounts in C(Cd) = C 2d. Of course, this creates a second round of intermediate
demand, and when the industries decide to produce even more to meet this new demand,
they create a third round of demand, namely, C(C?d) = C3d. And so it goes.

Theoretically, this process could continue indefinitely, although in real life it would
not take place in such a rigid sequence of events. We can diagram this hypothetical
situation as follows:
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Demand That Inputs Needed to
Must Be Met  Meet This Demand

Final demand d Cd
Intermediate demand
Ist round cd Cc(Cd)=Cd
2nd round Ccid Cc(C*d) =C3d

3rd round cid C(C3d) = C*d

The production level x that will meet all of this demand is

x=d+Cd+C*d+C*d+---
=(I+C+C*+C*+---)d ©)

To make sense of equation (6), consider the following algebraic identity:
I-C)I+C+C*+---+C™=1-C""! 7

It can be shown that if the column sums in C are all strictly less than 1, then I — C is in-
vertible, C” approaches the zero matrix as m gets arbitrarily large, and / — C"+! — .
(This fact is analogous to the fact that if a positive number ¢ is less than 1, then " — 0
as m increases.) Using equation (7), write

I-C)'~I+C+C?>+C3+---4+C™ ®
when the column sums of C are less than 1.
The approximation in (8) means that the right side can be made as close to (I — C)~!
as desired by taking m sufficiently large.

In actual input—output models, powers of the consumption matrix approach the zero
matrix rather quickly. So (8) really provides a practical way to compute (I — C)™".
Likewise, for any d, the vectors C"d approach the zero vector quickly, and (6) is a
practical way to solve (I — C)x = d. If the entries in C and d are nonnegative, then (6)
shows that the entries in x are nonnegative, too.

The Economic Importance of Entries in (I — C)~1

The entries in (I — C)~! are significant because they can be used to predict how the
production x will have to change when the final demand d changes. In fact, the entries
in column j of (I — C)~! are the increased amounts the various sectors will have to
produce in order to satisfy an increase of I unit in the final demand for output from
sector j. See Exercise 8.

— NUMERICAL NOTE

In any applied problem (not just in economics), an equation Ax = b can always
be written as (/ — C)x = b, with C = I — A. If the system is large and sparse
(with mostly zero entries), it can happen that the column sums of the absolute
values in C are less than 1. In this case, C™ — 0. If C" approaches zero
quickly enough, (6) and (8) will provide practical formulas for solving Ax = b
and finding A=,
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PRACTICE PROBLEM

Suppose an economy has two sectors: goods and services. One unit of output from
goods requires inputs of .2 unit from goods and .5 unit from services. One unit of
output from services requires inputs of .4 unit from goods and .3 unit from services.
There is a final demand of 20 units of goods and 30 units of services. Set up the Leontief
input—output model for this situation.

2.6 EXERCISES

Agriculture Manufacturing Services

Open Sector

Exercises 1-4 refer to an economy that is divided into three 4. Determine the production levels needed to satisfy a final de-
sectors—manufacturing, agriculture, and services. For each unit mand of 20 units for manufacturing, 20 units for agriculture,
of output, manufacturing requires .10 unit from other companies and O units for services.

in that sector, .30 unit from agriculture, and .30 unit from services.
For each unit of output, agriculture uses .20 unit of its own output,
.60 unit from manufacturing, and .10 unit from services. For each
unit of output, the services sector consumes .10 unit from services, C = |: 0 5 ] d= [ 50 ]
.60 unit from manufacturing, but no agricultural products. 6 27 30

Use an inverse matrix to determine the production level
necessary to satisfy the final demand.

5. Consider the production model x = Cx + d for an economy
with two sectors, where

1. Construct the consumption matrix for this economy, and de-
termine what intermediate demands are created if agriculture

plans to produce 100 units.

6. Repeat Exercise 5 with C = [é ?] andd = [ }g ]

2. Determine the production levels needed to satisfy a final
7. Let C and d be as in Exercise 5.

demand of 20 units for agriculture, with no final demand for

the other sectors. (Do not compute an inverse matrix.) a. Determine the production level necessary to satisfy a final
demand for 1 unit of output from sector 1.
3. Determine the production levels needed to satisfy a final b. Use an inverse matrix to determine the production level

demand of 20 units for manufacturing, with no final demand

. 51
for the other sectors. (Do not compute an inverse matrix.) necessary to satisfy a final demand of |: 3 ]



8.

10.

11.

30 30 0
and why the answers to parts (a) and (b) and to Exercise
5 are related.

c. Use the fact that |:51 :| = |:50] + |: ! ] to explain how

Let C be an n x n consumption matrix whose column sums

are less than 1. Let x be the production vector that satisfies

a final demand d, and let Ax be a production vector that

satisfies a different final demand Ad.

a. Show that if the final demand changes fromd to d + Ad,
then the new production level must be x + Ax. Thus Ax
gives the amounts by which production must change in
order to accommodate the change Ad in demand.

b. Let Ad be the vector in R” with 1 as the first entry and
0’s elsewhere. Explain why the corresponding production
Ax is the first column of (I — C)™". This shows that the
first column of (I — C)™" gives the amounts the various
sectors must produce to satisfy an increase of 1 unit in the
final demand for output from sector 1.

Solve the Leontief production equation for an economy with
three sectors, given that

2 2 .0 40
c=13 1 3 and d= | 60
d 0 2 80

The consumption matrix C for the U.S. economy in 1972
has the property that every entry in the matrix (I — C)™ ! is
nonzero (and positive).! What does that say about the effect
of raising the demand for the output of just one sector of the
economy?

The Leontief production equation, x = Cx + d, is usually
accompanied by a dual price equation,

p=C'p+v

where p is a price vector whose entries list the price per unit
for each sector’s output, and v is a value added vector whose
entries list the value added per unit of output. (Value added
includes wages, profit, depreciation, etc.) An important fact
in economics is that the gross domestic product (GDP) can
be expressed in two ways:

{gross domestic product} = p’d = v'x

Verify the second equality. [Hint: Compute p”x in two

ways.]

! Wassily W. Leontief, “The World Economy of the Year 2000,” Scientific

American, September 1980, pp. 206-231.

12.

13.

14.

15.
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Let C be a consumption matrix such that C” — 0 as
m—oo, and for m=1,2,...,let D, =1 +C +---+
C™. Find a difference equation that relates D,, and D, 4,
and thereby obtain an iterative procedure for computing for-
mula (8) for (I — C)™ 1.

[M] The consumption matrix C below is based on
input—output data for the U.S. economy in 1958, with data
for 81 sectors grouped into 7 larger sectors: (1) nonmetal
household and personal products, (2) final metal products
(such as motor vehicles), (3) basic metal products and
mining, (4) basic nonmetal products and agriculture, (5)
energy, (6) services, and (7) entertainment and miscellaneous
products.” Find the production levels needed to satisfy the
final demand d. (Units are in millions of dollars.)

1588 0064 .0025 .0304 .0014 .0083 .1594]
0057 2645 0436 .0099 .0083 .0201 .3413
0264 1506 .3557 .0139 .0142 .0070 .0236
3299 0565 .0495 3636 .0204 .0483 .0649 |.
0089 0081 .0333 .0295 .3412 .0237 .0020
1190 0901 .0996 .1260 .1722 .2368 .3369
[ 0063 0126 .0196 .0098 .0064 .0132 .0012 |
[ 74,000 ]
56,000
10,500
d=| 25000
17,500
196,000
5,000 |

[M] The demand vector in Exercise 13 is reasonable for
1958 data, but Leontief’s discussion of the economy in the
reference cited there used a demand vector closer to 1964
data:

d = (99640, 75548, 14444, 33501, 23527,263985, 6526)

Find the production levels needed to satisfy this demand.

[M] Use equation (6) to solve the problem in Exercise 13. Set
x® =d,andfork = 1,2, ..., compute x®) =d + Cx*=V,
How many steps are needed to obtain the answer in Exer-
cise 13 to four significant figures?

2 Wassily W. Leontief, “The Structure of the U.S. Economy,” Scientific
American, April 1965, pp. 30-32.
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SOLUTION TO PRACTICE PROBLEM

The following data are given:

Inputs Needed per Unit of Output

Purchased from: Goods Services External Demand
Goods 2 4 20
Services 5 3 30

The Leontief input—output model is x = Cx + d, where

c=[7 4] a=|3]

2.7 APPLICATIONS TO COMPUTER GRAPHICS

1

FIGURE 1
Regular N.

2

5

Computer graphics are images displayed or animated on a computer screen. Applica-
tions of computer graphics are widespread and growing rapidly. For instance, computer-
aided design (CAD) is an integral part of many engineering processes, such as the
aircraft design process described in the chapter introduction. The entertainment industry
has made the most spectacular use of computer graphics —from the special effects in The
Matrix to PlayStation 2 and the Xbox.

Most interactive computer software for business and industry makes use of com-
puter graphics in the screen displays and for other functions, such as graphical display
of data, desktop publishing, and slide production for commercial and educational pre-
sentations. Consequently, anyone studying a computer language invariably spends time
learning how to use at least two-dimensional (2D) graphics.

This section examines some of the basic mathematics used to manipulate and dis-
play graphical images such as a wire-frame model of an airplane. Such an image (or
picture) consists of a number of points, connecting lines or curves, and information
about how to fill in closed regions bounded by the lines and curves. Often, curved lines
are approximated by short straight-line segments, and a figure is defined mathematically
by a list of points.

Among the simplest 2D graphics symbols are letters used for labels on the screen.
Some letters are stored as wire-frame objects; others that have curved portions are stored
with additional mathematical formulas for the curves.

EXAMPLE 1 The capital letter N in Fig. 1 is determined by eight points, or vertices.
The coordinates of the points can be stored in a data matrix, D.

Vertex:
1 2 3 4 5 6 7 8
x-coordinate |:O 5 S5 6 6 55 5.5 0i| - D
y-coordinate [0 0 642 0 8 8§ 1.58 8

In addition to D, it is necessary to specify which vertices are connected by lines, but we
omit this detail. [ |

The main reason graphical objects are described by collections of straight-line seg-
ments is that the standard transformations in computer graphics map line segments onto
other line segments. (For instance, see Exercise 26 in Section 1.8.) Once the vertices
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FIGURE 2
Slanted N.

FIGURE 3

Composite transformation of N.

-4 2

Translation by |: g ]
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that describe an object have been transformed, their images can be connected with the
appropriate straight lines to produce the complete image of the original object.

I .25
0 1

tion X — Ax on the letter N in Example 1.

EXAMPLE 2 Given 4 = |: i|, describe the effect of the shear transforma-

SOLUTION By definition of matrix multiplication, the columns of the product AD
contain the images of the vertices of the letter N.

1 2 3 4 5 6 7 8
0 5 2105 6 8 75 589 2:|
0

AD = |:O 6420 0 8 8 1580 8

The transformed vertices are plotted in Fig. 2, along with connecting line segments that
correspond to those in the original figure. [ |

The italic N in Fig. 2 looks a bit too wide. To compensate, shrink the width by a
scale transformation that affects the x-coordinates of the points.

EXAMPLE 3 Compute the matrix of the transformation that performs a shear trans-
formation, as in Example 2, and then scales all x-coordinates by a factor of .75.

SOLUTION The matrix that multiplies the x-coordinate of a point by .75 is

750
=% 1]

So the matrix of the composite transformation is

g5 0|1 .25
si=[ 5 Wl 7
|75 1875
1o 1
The result of this composite transformation is shown in Fig. 3. [ |

The mathematics of computer graphics is intimately connected with matrix multi-
plication. Unfortunately, translating an object on a screen does not correspond directly
to matrix multiplication because translation is not a linear transformation. The standard
way to avoid this difficulty is to introduce what are called homogeneous coordinates.

Homogeneous Coordinates

Each point (x, y) in R? can be identified with the point (x, y, 1) on the plane in R?
that lies one unit above the xy-plane. We say that (x, y) has homogeneous coordinates
(x, v, 1). For instance, the point (0, 0) has homogeneous coordinates (0,0, 1). Homo-
geneous coordinates for points are not added or multiplied by scalars, but they can be
transformed via multiplication by 3 x 3 matrices.

EXAMPLE 4 A translation of the form (x, y) = (x + h, y + k) is written in ho-
mogeneous coordinates as (x,y, 1) +(x 4+ i,y + k, 1). This transformation can be
computed via matrix multiplication:

1 0 h X x+h
0 1 k y|=|y+k [ |
o 0 1 1 1
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EXAMPLE 5 Any linear transformation on R? is represented with respect to homo-
geneous coordinates by a partitioned matrix of the form |:13 (1)], where Aisa2x2

matrix. Typical examples are

cosp —sing 0 0o 1 0 s 0 0
sin ¢ cosp 0], 1 0o 0, 0 t 0
0 0 1 0o 0 1 0 0 1
Counterclockwise Reflection Scale x by s
rotation about the through y = x and y by ¢
origin, angle ¢ |

Composite Transformations

The movement of a figure on a computer screen often requires two or more basic trans-
formations. The composition of such transformations corresponds to matrix multiplica-
tion when homogeneous coordinates are used.

EXAMPLE 6 Find the 3 x 3 matrix that corresponds to the composite transforma-
tion of a scaling by .3, a rotation of 90° about the origin, and finally a translation that
adds (—.5, 2) to each point of a figure.

SOLUTION If ¢ = /2, then sing = 1 and cos ¢ = 0. From Examples 4 and 5, we

Original Figure have
* Scale ?) g 0 §
1 | 0 0 1 1
[0 -1 07|[3 0 0O X
Rotate
el 0 oflo 3 ofly
After Scaling |00 1[0 0 1 1
Translate 1 0—-57[0 —1 0 3 0 0 X
: o 1 2 1 0 0 0 3 y
|0 0 T [0 0 1 0o 0 1 1

The matrix for the composite transformation is

1 0 -5 0 —1 0 3 0
After Rotating 0 1 2 1 0 0 0o . 0
0 0 1 0 0 1 0 0 1

3 0 0 0-3-5

0 0O 0 1 0 O 1

After Translating 3D Computer Graphics

Some of the newest and most exciting work in computer graphics is connected with
molecular modeling. With 3D (three-dimensional) graphics, a biologist can examine a
simulated protein molecule and search for active sites that might accept a drug molecule.
The biologist can rotate and translate an experimental drug and attempt to attach it to the
protein. This ability to visualize potential chemical reactions is vital to modern drug and
cancer research. In fact, advances in drug design depend to some extent upon progress
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in the ability of computer graphics to construct realistic simulations of molecules and
their interactions.!

Current research in molecular modeling is focused on virtual reality, an environ-
ment in which a researcher can see and feel the drug molecule slide into the protein. In
Fig. 4, such tactile feedback is provided by a force-displaying remote manipulator.

FIGURE 4 Molecular modeling in virtual reality.
(Computer Science Department, University of
North Carolina at Chapel Hill. Photo by Bo
Strain.)

Another design for virtual reality involves a helmet and glove that detect head, hand, and
finger movements. The helmet contains two tiny computer screens, one for each eye.
Making this virtual environment more realistic is a challenge to engineers, scientists,
and mathematicians. The mathematics we examine here barely opens the door to this
interesting field of research.

Homogeneous 3D Coordinates

By analogy with the 2D case, we say that (x, y, z, 1) are homogeneous coordinates for
the point (x, y, z) in R3. In general, (X, Y, Z, H) are homogeneous coordinates for
(x,y,z)if H # 0 and
_X _r d _Z )
Twa YT wm "™ YT H

Each nonzero scalar multiple of (x, y, z, 1) gives a set of homogeneous coordinates for
(x,y,z). For instance, both (10, —6, 14,2) and (—15,9, =21, —3) are homogeneous
coordinates for (5, —3, 7).

The next example illustrates the transformations used in molecular modeling to
move a drug into a protein molecule.

EXAMPLE 7 Give 4 x 4 matrices for the following transformations:

a. Rotation about the y-axis through an angle of 30°. (By convention, a positive angle
is the counterclockwise direction when looking toward the origin from the positive
half of the axis of rotation—in this case, the y-axis.)

'Robert Pool, “Computing in Science,” Science 256, 3 April 1992, p. 45.
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b. Translation by the vector p = (—6, 4, 5).

SOLUTION
z a. First, construct the 3 x 3 matrix for the rotation. The vector e; rotates down toward
the negative z-axis, stopping at (cos 30°, 0, —sin 30°) = (ﬁ/2, 0, —.5). The vector
e €3 e, on the y-axis does not move, but e3 on the z-axis rotates down toward the positive
X x-axis, stopping at (sin 30°, 0, cos 30°) = (.5, 0, v/3/2). See Fig. 5. From Section
\ \ 1.9, the standard matrix for this rotation is
\
. 3 V32 0 5
/ / 0 1 0
X \ € -5 0 32
y
So the rotation matrix for homogeneous coordinates is
FIGURE 5 «/3/2 0 5 0
A= 0 1 0 0
Tl =5 0 V32 0
0 0 0 1

b. We want (x, y,z,1) tomapto (x — 6,y + 4,z + 5, 1). The matrix that does this is

1 0 0 -6
0 1 0 4
0o 0 1 5 "
0 0 0 1

Perspective Projections

A three-dimensional object is represented on the two-dimensional computer screen by
projecting the object onto a viewing plane. (We ignore other important steps, such as
selecting the portion of the viewing plane to display on the screen.) For simplicity, let
the xy-plane represent the computer screen, and imagine that the eye of a viewer is
along the positive z-axis, at a point (0,0, d). A perspective projection maps each point
(x,y,z) onto an image point (x*, y*,0) so that the two points and the eye position,
called the center of projection, are on a line. See Fig. 6(a).

y

(x*, y*%,0)

(a) (b)
FIGURE 6 Perspective projection of (x, y, z) onto (x*, y*,0).
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The triangle in the xz-plane in Fig. 6(a) is redrawn in part (b) showing the lengths
of line segments. Similar triangles show that

x* X . dx X
— = and x* =

d d—z d—zzl—z/d

Similarly,

P Y
1—z/d

y

Using homogeneous coordinates, we can represent the perspective projection by a ma-
X Y
l—z/d 1—z/d’
coordinates by 1 — z/d, we can also use (x, y,0, 1 — z/d) as homogeneous coordinates

for the image. Now it is easy to display P. In fact,

trix, say, P. We want (x, y, z, 1) to map into ( 0,1 ). Scaling these

X 1 0 0 0 X X
plV | = 0 1 0 0 y| y

Z 0 O 0 0 Z 0

1 0 0 —-1/d 1 1 1—z/d

EXAMPLE 8 Let S be the box with vertices (3, 1,5), (5.1,5), (5,0,5), (3,0,5),
(3,1,4),(5,1,4),(5,0,4), and (3, 0, 4). Find the image of S under the perspective pro-
jection with center of projection at (0, 0, 10).

SOLUTION Let P be the projection matrix, and let D be the data matrix for S using
homogeneous coordinates. The data matrix for the image of S is

Vertex:
1 2 3 4 5 6 7 8
1 0 0 0 35 5 3 3 5 5 3
0 1 0 0 1 1 0 0 1 1 0 O
PD = 0 0 0 0 5 5 5 5 4 4 4 4
_O 0 —-1/10 1 1 1 1 1 1 1 1 1
3 5 5 3 3 5 5 3
1t 1 0 0 1 1 0 0
10 0 O O O O 0 O
_.5 S 5 5 6 6 6 6

To obtain R? coordinates, use equation (1) before Example 7, and divide the top three
entries in each column by the corresponding entry in the fourth row:

Vertex:
1 2 3 4 5 6 7 8
6 10 10 6 5 83 83 5
2 2 0 0 1.7 1.7 0 0
0 0 0 0 0 0 0 0 |

This text’s web site has some interesting applications of computer graphics, includ-
ing a further discussion of perspective projections. One of the computer projects on the
web site involves simple animation.
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— NUMERICAL NOTE

Continuous movement of graphical 3D objects requires intensive computation
with 4 x 4 matrices, particularly when the surfaces are rendered to appear
realistic, with texture and appropriate lighting. High-end computer graphics
boards have 4 x 4 matrix operations and graphics algorithms embedded in their
microchips and circuitry. Such boards can perform the billions of matrix multipli-
cations per second needed for realistic color animation in 3D gaming programs.?

Further Reading

James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes, Computer
Graphics: Principles and Practice, 3rd ed. (Boston, MA: Addison-Wesley, 2002),
Chapters 5 and 6.

PRACTICE PROBLEM

Rotation of a figure about a point p in R? is accomplished by first translating the figure
by —p, rotating about the origin, and then translating back by p. See Fig. 7. Construct
the 3 x 3 matrix that rotates points —30° about the point (—2, 6), using homogeneous

coordinates.
X2 X2 X2
Shdid
| p °p P
K
N X e g | &
(a) Original figure. (b) Translated to (¢) Rotated about (d) Translated
origin by —p. the origin. back by p.
FIGURE 7 Rotation of figure about point p.
1. What 3 x 3 matrix will have the same effect on homogeneous 5. Reflect points through the x-axis, and then rotate 45° about
coordinates for R? that the shear matrix A has in Example 2? the origin.
2. Use matrix multiplication to find the image of the triangle 6. Rotate points 45° about the origin, then reflect through the
. . 4 2 5 :
with data matrix D = 0o 2 3 under the transforma- X-axis.
tion that reflects points through the y-axis. Sketch both the 7. Rotate points through 60° about the point (6, 8).
original triangle and its image.
8. Rotate points through 45° about the point (3, 7).
In Exercises 3-8, find the 3 x 3 matrices that produce the de-
scribed composite 2D transformations, using homogeneous coor- 9. A 2 x 100 data matrix D contains the coordinates of 100
dinates. points. Compute the number of multiplications required to

transform these points using two arbitrary 2 x 2 matrices A

and B. Consider the two possibilities A(BD) and (AB)D.

4. Translate by (—1, 4), and then scale the x-coordinate by 1/2 Discuss the implications of your results for computer graph-
and the y-coordinate by 3/2. ics calculations.

3. Translate by (2, 1), and then rotate 90° about the origin.

2See Jan Ozer, “High-Performance Graphics Boards,” PC Magazine 19, 1 September 2000, pp. 187-200.
Also, “The Ultimate Upgrade Guide: Moving On Up,” PC Magazine 21, 29 January 2002, pp. 82-91.



10. Consider the following geometric 2D transformations: D, a
dilation (in which x-coordinates and y-coordinates are scaled
by the same factor); R, arotation; and 7', a translation. Does
D commute with R? That is, is D(R(x)) = R(D(x)) for all
x in R2? Does D commute with 7? Does R commute with
T?

11. A rotation on a computer screen is sometimes implemented
as the product of two shear-and-scale transformations, which
can speed up calculations that determine how a graphic image
actually appears in terms of screen pixels. (The screen con-
sists of rows and columns of small dots, called pixels.) The
first transformation A, shears vertically and then compresses
each column of pixels; the second transformation A4, shears
horizontally and then stretches each row of pixels. Let

1 0 0
Ay =|sing cose 0],
0 0 1
secy —tang 0
A, = 0 1 01,
0 0 1

and show that the composition of the two transformations is
a rotation in R2.

12. A rotation in R? usually requires four multiplications. Com-
pute the product below, and show that the matrix for a rota-
tion can be factored into three shear transformations (each of
which requires only one multiplication).

1 —tang/2 0 1 0 0
0 1 0 sin @ 1 0
0 0 1 0 0 1

1 —tangp/2 0

0 1 0

0 0 1

13. The usual transformations on homogeneous coordinates for
2D computer graphics involve 3 x 3 matrices of the form
A . . ..
|:0T ll):| where A is a 2 x 2 matrix and p is in R2. Show
that such a transformation amounts to a linear transformation
on R? followed by a translation. [Hint: Find an appropriate
matrix factorization involving partitioned matrices.]

14. Show that the transformation in Exercise 7 is equivalent to
a rotation about the origin followed by a translation by p.
Find p.

15. What
L1 11

24 TR/
16. Are (1,—2,-3,4) and (10, —20, —30, 40) homogeneous co-
ordinates for the same point in R*? Why or why not?

vector in R*® has homogeneous coordinates

2.7 Applications to Computer Graphics 145

17. Give the 4 x 4 matrix that rotates points in R3 about the x-
axis through an angle of 60°. (See the figure.)

Z

‘/ 3

18. Give the 4 x 4 matrix that rotates points in R* about the
z-axis through an angle of —30°, and then translates by
p=(5-21).

19. Let S be the triangle with vertices (4.2, 1.2, 4), (6,4, 2), and
(2,2, 6). Find the image of S under the perspective projection
with center of projection at (0, 0, 10).

20. Let S be the triangle with vertices (7, 3, —5), (12,8, 2), and
(1,2, 1). Find the image of S under the perspective projection
with center of projection at (0, 0, 10).

Exercises 21 and 22 concern the way in which color is specified
for display in computer graphics. A color on a computer screen
is encoded by three numbers (R, G, B) that list the amounts of
energy an electron gun must transmit to red, green, and blue
phosphor dots on the computer screen. (A fourth number specifies
the luminance or intensity of the color.)

21. [M] The actual color a viewer sees on a screen is influenced
by the specific type and amount of phosphors on the screen.
So each computer screen manufacturer must convert between
the (R, G, B) data and an international CIE standard for
color, which uses three primary colors, called X, Y, and Z.
A typical conversion for short-persistence phosphors is

.61 .29 150 R X
35 .59 .063 G|=|Y
.04 12 787 B Z

A computer program will send a stream of color information
to the screen, using standard CIE data (X, Y, Z). Find the
equation that converts these data to the (R, G, B) data needed
for the screen’s electron gun.

22. [M] The signal broadcast by commercial television describes
each color by a vector (Y, I, Q). If the screen is black and
white, only the Y -coordinate is used. (This gives a better
monochrome picture than using CIE data for colors.) The
correspondence between Y/Q and a “standard” RGB color is
given by

Y 299 587 114 R
I | =1].59 —-.275 -.321 G
0 212 =528 311 B
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(A screen manufacturer would change the matrix entries to the Y/Q data transmitted by the television station to the RGB
work for its RGB screens.) Find the equation that converts data needed for the television screen.

SOLUTION TO PRACTICE PROBLEM

Assemble the matrices right-to-left for the three operations. Using p = (-2, 6),
c0s(—30°) = +/3/2, and sin(—30°) = —.5, we have

Translate Rotate around Translate
back by p the origin by —p
1 0 =270[+3/2 12 0o[1 o 2
0 1 6| -1/2 3/2 0|0 1 —6
0 0 1 0 0 1[0 0 1

V3/2 12 J3-5
=|-1/2 3/2 -3/3+5
0 0 1

2.8 SUBSPACES OF R”

//

AL

FIGURE 1

Span {v;, v,} as a plane through
the origin.

This section focuses on important sets of vectors in R” called subspaces. Often sub-
spaces arise in connection with some matrix A, and they provide useful information
about the equation Ax = b. The concepts and terminology in this section will be used
repeatedly throughout the rest of the book.!

A subspace of R” is any set H in R” that has three properties:

a. The zero vector is in H.
b. Foreachuandvin H,the sumu + visin H.
c. Foreachuin H and each scalar c, the vector cu is in H .

In words, a subspace is closed under addition and scalar multiplication. As you will
see in the next few examples, most sets of vectors discussed in Chapter 1 are subspaces.
For instance, a plane through the origin is the standard way to visualize the subspace in
Example 1. See Fig. 1.

EXAMPLE 1 1If v, and v, are in R” and H = Span{vy, v}, then H is a subspace
of R". To verify this statement, note that the zero vector is in H (because Ov; + Ov; is
a linear combination of v; and v,). Now take two arbitrary vectors in H, say,

u=s5vy+s5v, and V=1V +HvV,
Then
u+v= (S] + l])V] + (Sz + tz)Vz
which shows that u + v is a linear combination of v; and v, and hence is in H . Also, for

any scalar c, the vector cu is in H, because cu = c(s;v] + 52V2) = (¢s51)vy + (cs52)va.
|

ISections 2.8 and 2.9 are included here to permit readers to postpone the study of most or all of the next two
chapters and to skip directly to Chapter 5, if so desired. Omit these two sections if you plan to work through
Chapter 4 before beginning Chapter 5.
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If vy is not zero and if v, is a multiple of v;, then v; and v, simply span a line
through the origin. So a line through the origin is another example of a subspace.

EXAMPLE 2 A line L not through the origin is not a subspace, because it does not
contain the origin, as required. Also, Fig. 2 shows that L is not closed under addition
or scalar multiplication. [ |

u-+v
u °
\4
[
L L
u -+ visnotonL 2w is not on L
FIGURE 2

EXAMPLE 3 Forvy,...,v, in R”, the set of all linear combinations of v,...,v,
is a subspace of R". The verification of this statement is similar to the argument given
in Example 1. We shall now refer to Span{vy,...,v,} as the subspace spanned (or
generated) by vi,...,v,. |

Note that R” is a subspace of itself because it has the three properties required for a
subspace. Another special subspace is the set consisting of only the zero vector in R”.
This set, called the zero subspace, also satisfies the conditions for a subspace.

Column Space and Null Space of a Matrix

Subspaces of R” usually occur in applications and theory in one of two ways. In both
cases, the subspace can be related to a matrix.

The column space of a matrix A is the set Col A of all linear combinations of the
columns of A.

If A=[a; --- a,], with the columns in R”, then Col A is the same as
Span{ay,...,a,}. Example 4 shows that the column space of an m x rn matrix is a
subspace of R™. Note that Col A equals R” only when the columns of A span R™.
Otherwise, Col A4 is only part of R”.

1 -3 —4 3
EXAMPLE 4 letA=| -4 6 —2 |andb = 3 |. Determine whether b is
-3 7 6 —4

in the column space of A.

SOLUTION The vector b is a linear combination of the columns of A if and only if
b can be written as Ax for some x, that is, if and only if the equation Ax = b has a
solution. Row reducing the augmented matrix [A b],

1 -3 -4 3 1 -3 -4 3 1 -3 —4 3
-4 6 -2 3|~|0 -6 —18 15|~ |0 —6 —18 15
-3 7 6 —4 0 -2 -6 5 0 0 0 0

we conclude that Ax = b is consistent and b is in Col A. |
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THEOREM 12

X3

€3
L)
/ €
/el

X1

FIGURE 3
The standard basis for R?>.

The solution of Example 4 shows that when a system of linear equations is written
in the form Ax = b, the column space of 4 is the set of all b for which the system has
a solution.

The null space of a matrix A is the set Nul A of all solutions of the homogeneous
equation Ax = 0.

When A has n columns, the solutions of Ax = 0 belong to R”, and the null space
of A is a subset of R”. In fact, Nul A has the properties of a subspace of R".

The null space of an m x n matrix A is a subspace of R”. Equivalently, the
set of all solutions of a system Ax = 0 of m homogeneous linear equations in
n unknowns is a subspace of R".

PROOF The zero vector is in Nul 4 (because A0 = 0). To show that Nul A satisfies the
other two properties required for a subspace, take any u and v in Nul A. That is, suppose
Au = 0 and Av = 0. Then, by a property of matrix multiplication,

Aw+v) =Au+Av=0+0=0

Thus u + v satisfies Ax = 0, and so u + v is in Nul A. Also, for any scalar ¢, A(cu) =
¢(Au) = ¢(0) = 0, which shows that cu is in Nul A. [ |

To test whether a given vector v is in Nul A, just compute Av to see whether Av is
the zero vector. Because Nul A4 is described by a condition that must be checked for each
vector, we say that the null space is defined implicitly. In contrast, the column space is
defined explicitly, because vectors in Col A can be constructed (by linear combinations)
from the columns of A. To create an explicit description of Nul A, solve the equation
Ax = 0 and write the solution in parametric vector form. (See Example 6, below.)?

Basis for a Subspace

Because a subspace typically contains an infinite number of vectors, some problems
involving a subspace are handled best by working with a small finite set of vectors that
span the subspace. The smaller the set, the better. It can be shown that the smallest
possible spanning set must be linearly independent.

A basis for a subspace H of R” is a linearly independent set in H that spans H .

EXAMPLE 5 The columns of an invertible n x n matrix form a basis for all of R”"
because they are linearly independent and span R”, by the Invertible Matrix Theorem.

One such matrix is the n x n identity matrix. Its columns are denoted by ey, ..., e,:
1 0 0
0 1 :
epr=1|.1, e=|.1, ..., e, =
! : ? : 0
0 0 1
The set {ey,...,e,} is called the standard basis for R". See Fig. 3. ]

2The contrast between Nul A and Col A is discussed further in Section 4.2.
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The next example shows that the standard procedure for writing the solution set of
Ax = 0 in parametric vector form actually identifies a basis for Nul A. This fact will be
used throughout Chapter 5.

EXAMPLE 6 Find a basis for the null space of the matrix

-3 6 -1 1 -7
A=| 1 =2 2 3 -1
2 —4 5 8 —4

SOLUTION First, write the solution of Ax = 0 in parametric vector form:

1 -2 0 -1 3 0 X1 —2xp — X4+ 3x5=0
[A 0]~ 0o 0 1 -2 0, X3+ 2x4 —2x5=0
o 0 O 0 0 O 0=0
The general solution is x; = 2x, + x4 — 3x5, X3 = —2x4 + 2x5, with x;, x4, and x5
free.
X1 2x7 + x4 — 3x5 2 1 -3
X2 X2 1 0 0
X3 | = —2x4 + 2X5 =x2| O | +x4| =2 | + x5 2
X4 X4 0 1 0
X5 X5 0 0 1
t t t
u A\ w
= XU + X4V + X5W (1

Equation (1) shows that Nul A coincides with the set of all linear combinations of u,
v, and w. That is, {u, v, w} generates Nul A. In fact, this construction of u, v, and w
automatically makes them linearly independent, because equation (1) shows that 0 =
Xou + x4V + x5w only if the weights x;, x4, and x5 are all zero. (Examine entries 2, 4,
and 5 in the vector x,u + x4V 4 x5W.) So {u, v, w} is a basis for Nul A. [ |

Finding a basis for the column space of a matrix is actually less work than finding
a basis for the null space. However, the method requires some explanation. Let’s begin
with a simple case.

EXAMPLE 7 Find a basis for the column space of the matrix

1 0 -3 5 0
0o 1 2 -1 0
B = 0 0 0 0 1

0 0 o0 0 O

SOLUTION Denote the columns of B by by, ..., bs and note thatb; = —3b; + 2b, and
b, = 5b; — b,. The fact that b; and b, are combinations of the pivot columns means that
any combination of by, ..., bs is actually just a combination of by, b,, and bs. Indeed,
if v is any vector in Col B, say,
v = c1b; + by + c3bs + c4by + cs5bs
then, substituting for b; and by, we can write v in the form
v = c1by + coby 4 ¢3(=3b; + 2by) + c4(5b; —by) + ¢5bs

which is a linear combination of by, b,, and bs. So {by, b,, b5} spans Col B. Also, by,
b,, and bs are linearly independent, because they are columns from an identity matrix.
So the pivot columns of B form a basis for Col B. [ |
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THEOREM 13

Mastering: Subspace,
Col A, Nul A, Basis 2-37

The matrix B in Example 7 is in reduced echelon form. To handle a general matrix
A, recall that linear dependence relations among the columns of A can be expressed
in the form Ax = 0 for some x. (If some columns are not involved in a particular
dependence relation, then the corresponding entries in x are zero.) When A is row
reduced to echelon form B, the columns are drastically changed, but the equations
Ax = 0 and Bx = 0 have the same set of solutions. That is, the columns of A have
exactly the same linear dependence relationships as the columns of B.

EXAMPLE 8 It can be verified that the matrix

2 2 2 -8 2
A=lar & —as]=1 5 5 (5
34 -1 11 -8

is row equivalent to the matrix B in Example 7. Find a basis for Col A.

SOLUTION From Example 7, the pivot columns of A are columns 1, 2, and 5.
Also, b3 = —3b; + 2b, and by = 5b; — b,. Since row operations do not affect linear
dependence relations among the columns of the matrix, we should have

a; = —3a; +2a, and ay; = 5a; —a,

Check that this is true! By the argument in Example 7, a3 and a4 are not needed to
generate the column space of A. Also, {a;, a,, as} must be linearly independent, because
any dependence relation among a;, a,, and a5 would imply the same dependence relation
among by, by, and bs. Since {by, b, bs} is linearly independent, {a|, a,, a5} is also
linearly independent and hence is a basis for Col A. ]

The argument in Example 8 can be adapted to prove the following theorem.

The pivot columns of a matrix A form a basis for the column space of A.

Warning: Be careful to use pivot columns of A itself for the basis of Col A. The
columns of an echelon form B are often not in the column space of A. (For instance,
in Examples 7 and 8, the columns of B all have zeros in their last entries and cannot
generate the columns of A.)

PRACTICE PROBLEMS

1 -1 5 -7
1. Let A = 2 0 7 |andu= 3 |. Isuin Nul A? Is u in Col A? Justify
-3 -5 -3 2
each answer.
0O 1 0
2. GivenA =0 0 1 [, finda vectorin Nul 4 and a vector in Col A4.
0O 0 O

3. Suppose an n x n matrix A is invertible. What can you say about Col A? About
Nul A?
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Exercises 1-4 display sets in R2. Assume the sets include the
bounding lines. In each case, give a specific reason why the set
H is not a subspace of R?. (For instance, find two vectors in H
whose sum is not in H, or find a vector in H with a scalar multiple
that is not in H. Draw a picture.)

1.
2.
3.
4.
1 -2 -3
5. Letv, = 3|,v,=| =3 |,and w= | —3 |. Deter-
—4 7 10

mine if w is in the subspace of R? generated by v, and v,.

1 4 5
-3 —4 =3
6. Let v, = s | V2= 5| V= 6 , and u =
3 7 5
-1
:Z . Determine if u is in the subspace of R* generated
2

by {vi, V2, v3}.

7. Let
2 -3 4
vV = —8 , V= 8 , V3 = 6 .
6 -7 -7
6
p=|—10|, and A=[vivavs].

11
a. How many vectors are in {v;, v, v3}?
b. How many vectors are in Col A?

c. Ispin Col A? Why or why not?

8. Let
-2 -2 0
vV, = 0 , VvV, = 3 N V3 = -5 N
6 3 5
—6
and p = 1 [. Determine if p is in Col A, where A =

17
[vi v2 3]
9. With A and p as in Exercise 7, determine if p is in Nul A.
=5
10. Withu = 5
3

and A as in Exercise 8, determine if u is

in Nul 4.

In Exercises 11 and 12, give integers p and g such that Nul 4 is a
subspace of R” and Col 4 is a subspace of RY.

302 1 -5
. A=|-9 —4 1 7
9 2 =5 1
12 3
4 5 7
12. A=| -5 -1 0
2 7 11
303 4

13. For A as in Exercise 11, find a nonzero vector in Nul 4 and a
nonzero vector in Col A.

14. For A as in Exercise 12, find a nonzero vector in Nul A and
a nonzero vector in Col A.

Determine which sets in Exercises 15-20 are bases for R? or R>.
Justify each answer.

[ 4716 -2 4
S A
T o0l [s]T[6 1 3 5
17. | o, |o].|3 8. | 1| -1].| 1
2] [4] |2 -3 2| | -4
M3 6 1 3137710
19. | 8[| 2| 20. | -6|.|-6].| 7/.]7
1 -5 -7 7 5|19
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In Exercises 21 and 22, mark each statement True or False. Justify
each answer.

21.

22,

a. A subspace of R” is any set H such that (i) the zero vector
isin H, (ii)u, v, and u + v are in H, and (iii) c is a scalar
and cuisin H.

b. Ifvy,...,v,areinR", then Span {v,,...,v,} is the same
as the column space of the matrix [V1 e vy ]

c. The set of all solutions of a system of m homogeneous
equations in # unknowns is a subspace of R™.

d. The columns of an invertible n X n matrix form a basis
for R”.

e. Row operations do not affect linear dependence relations
among the columns of a matrix.

®

A subset H of R” is a subspace if the zero vectorisin H.

b. If B is an echelon form of a matrix A, then the pivot
columns of B form a basis for Col 4.

c. Given vectors vy, ...,v, in R", the set of all linear com-
binations of these vectors is a subspace of R”.

d. Let H be a subspace of R”. If x is in H, and y is in R”,
thenx +yisin H.

e. The column space of a matrix A is the set of solutions of
Ax = b.

Exercises 23-26 display a matrix A and an echelon form of A.
Find a basis for Col A and a basis for Nul A.

23.

24.

25.

4 5 9 =2 1 2 6 =57
A=|l6 5 1 12|~]0 1 5 —6
|3 4 8 =3] [0 0 0 0]
3 =6 9 0] [1 —2 5 47
A=|2 -4 7 2|~ 0 3 6
|13 6 6 —6] [0 0 0 0]
1 4 8 -3 -7
-1 2 7 3 4
A=15 2 9 5 5
L 3 6 9 -5 =2
't 4 8 0 5
0 2 5 0 -1
0 0 0 1 4
(0 0 0 0 O

3 -1 -3 -1 8
31 3 0 2
6.4=1y 3 9 1 4
6 3 9 =2 6]
3 -1 -3 0 6]
0 2 6 0 —4
o 0 0 -1 2
o 0 0o o 0]

27. Construct a 3 x 3 matrix A and a nonzero vector b such that
b is in Col A4, but b is not the same as any one of the columns
of A.

28. Construct a 3 x 3 matrix A and a vector b such that b is not
in Col A.

29. Construct a nonzero 3 x 3 matrix 4 and a nonzero vector b
such that b is in Nul A.

30. Suppose the columns of a matrix A = [a; ---a,] are linearly
independent. Explain why {a,,...,a,} is a basis for Col A.

In Exercises 31-36, respond as comprehensively as possible, and
justify your answer.

31. Suppose F isa5 x 5 matrix whose column space is not equal
to R3. What can be said about Nul F?

32. If Bisa7 x 7matrix and Col B = R’, what can be said about
solutions of equations of the form Bx = b for b in R7?

33. If C is a 6 x 6 matrix and Nul C is the zero subspace, what
can be said about solutions of equations of the form Cx = b
for b in R%?

34. What can be said about the shape of an m x n matrix A when
the columns of A form a basis for R™?

35. If B is a 5 x 5 matrix and Nul B is not the zero subspace,
what can be said about Col B?

36. What can be said about Nul C when C is a 6 x 4 matrix with
linearly independent columns?

[M] In Exercises 37 and 38, construct bases for the column space
and the null space of the given matrix A. Justify your work.

T3 -5 0 —1 37

-7 9 —4 9-11
MA=1_5 7 5 5 7
| 3 -7 3 4 0]

r'5 3 2 —6 -8

4 1 3 -8 —7

WA=\ 5 1 4 5 19
| -7 -5 2 8 5

Column Space and Null Space
A Basis for Col A
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SOLUTIONS TO PRACTICE PROBLEMS

1. To determine whether u is in Nul A4, simply compute

1 -1 5 -7 0
Au = 2 0 7 31=160
-3 =5 3 2 0

The result shows that u is in Nul A. Deciding whether u is in Col 4 requires more
work. Reduce the augmented matrix [A u] to echelon form to determine whether
the equation Ax = u is consistent:

1 -1 5 -7 1 -1 5 -7 1 -1 5 =7
2 0 7 3|~({0 2 -3 17|~]0 2 =3 17
-3 =5 =3 2 0 -8 12 —19 0 0 0 49

The equation Ax = u has no solution, so u is not in Col A4.

2. In contrast to Practice Problem 1, finding a vector in Nul A requires more work
than testing whether a specified vector is in Nul A. However, since A is already
in reduced echelon form, the equation Ax = 0 shows that if x = (x1, x2, x3), then
xp =0, x3 =0, and x; is a free variable. Thus, a basis for Nul 4 is v = (1,0, 0).
Finding just one vector in Col A4 is trivial, since each column of A4 is in Col A. In
this particular case, the same vector v is in both Nul A and Col A. For most n x n
matrices, the zero vector of R” is the only vector in both Nul 4 and Col A.

3. If A is invertible, then the columns of A span R”, by the Invertible Matrix Theorem.
By definition, the columns of any matrix always span the column space, so in this
case Col A4 is all of R”. In symbols, Col A = R". Also, since A is invertible, the
equation Ax = 0 has only the trivial solution. This means that Nul 4 is the zero
subspace. In symbols, Nul A = {0}.

2.9 | DIMENSION AND RANK

This section continues the discussion of subspaces and bases for subspaces, beginning
with the concept of a coordinate system. The definition and example below should make
a useful new term, dimension, seem quite natural, at least for subspaces of R3.

Coordinate Systems

The main reason for selecting a basis for a subspace H, instead of merely a spanning
set, is that each vector in H can be written in only one way as a linear combination of
the basis vectors. To see why, suppose B = {by,...,b,} is a basis for H, and suppose
a vector x in H can be generated in two ways, say,

x=cbi+:-+¢c,b, and x=dbi+---+d,b, (1)
Then, subtracting gives
0=x—x=(ci—di)bi+:-+(c, —dp)b, 2)

Since B is linearly independent, the weights in (2) must all be zero. That is, ¢; = d;
for 1 < j < p, which shows that the two representations in (1) are actually the same.
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Suppose the set B = {b;,....b,} is a basis for a subspace H. For each x in H,
the coordinates of x relative to the basis 53 are the weights ¢y, ..., c, such that
x = ¢ib; +--- + ¢,b,, and the vector in R”

(6]
[X]s =
Cp
is called the coordinate vector of x (relative to 3) or the 3-coordinate vector
of x.!
3 -1 3
EXAMPLE 1 Letvi=|6|,v, = 0|,x= 1|12 |,and B = {v;,v,}. Then
2 1 7

B is a basis for H = Span {vy, v,} because v; and v, are linearly independent. Deter-
mine if x is in H, and if it is, find the coordinate vector of x relative to 5.

SOLUTION If x is in H, then the following vector equation is consistent:

3 —1 3
C1 6|+ (&) 0 = 12
2 1 7
The scalars ¢ and ¢, if they exist, are the B-coordinates of x. Row operations show
that
3 -1 3 1 0 2
6 0 12|~|0 1 3
2 1 7 0O 0 O
Thus ¢; = 2,¢, = 3, and [X] 5= g] The basis B determines a “coordinate system”
on H, which can be visualized by the grid shown in Fig. 1. |

FIGURE 1 A coordinate system on a plane H in
R3.

1Tt is important that the elements of 3 are numbered because the entries in [x]; depend on the order of the
vectors in 5.
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Notice that although points in H are also in R?, they are completely determined by
their coordinate vectors, which belong to R?. The grid on the plane in Fig. 1 makes
H “look” like R?. The correspondence X > [X ] 5 is a one-to-one correspondence
between H and R? that preserves linear combinations. We call such a correspondence
an isomorphism, and we say that H is isomorphic to R?.

In general, if B = {b;,...,b,} is a basis for H, then the mapping x > [x]5 is a
one-to-one correspondence that makes H look and act the same as R? (even though the
vectors in H themselves may have more than p entries). (Section 4.4 has more details.)

The Dimension of a Subspace

It can be shown that if a subspace H has a basis of p vectors, then every basis of H must
consist of exactly p vectors. (See Exercises 27 and 28.) Thus the following definition
makes sense.

The dimension of a nonzero subspace H, denoted by dim H, is the number of
vectors in any basis for H. The dimension of the zero subspace {0} is defined to
be zero.?

The space R” has dimension n. Every basis for R” consists of n vectors. A plane
through 0 in R? is two-dimensional, and a line through 0 is one-dimensional.

EXAMPLE 2 Recall that the null space of the matrix A in Example 6 in Section 2.8
had a basis of 3 vectors. So the dimension of Nul A4 in this case is 3. Observe how each
basis vector corresponds to a free variable in the equation Ax = 0. Our construction
always produces a basis in this way. So, to find the dimension of Nul A, simply identify
and count the number of free variables in Ax = 0. [ |

The rank of a matrix 4, denoted by rank A, is the dimension of the column space
of A.

Since the pivot columns of A form a basis for Col A, the rank of A is just the number
of pivot columns in A.

EXAMPLE 3 Determine the rank of the matrix

2 5 -3 -4 8
4 7 —4 -3 9
A= 6 9 -5 2 4
0 -9 6 5 -6
SOLUTION Reduce A to echelon form:
2 5 -3 -4 8 2 5 -3 —4 8
4 0o -3 2 5 =7 o -3 2 5 -7
0 -6 4 14 =20 0O 0 0 4 -6
0 -9 6 5 -6 o 0 O 0 o0
Pivot columns —+ ¢+ 4
The matrix A has 3 pivot columns, so rank A = 3. [ |

2The zero subspace has no basis (because the zero vector by itself forms a linearly dependent set).
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THEOREM 14

THEOREM 15

THEOREM

The row reduction in Example 3 reveals that there are two free variables in Ax = 0,
because two of the five columns of A are not pivot columns. (The nonpivot columns
correspond to the free variables in Ax = 0.) Since the number of pivot columns plus the
number of nonpivot columns is exactly the number of columns, the dimensions of Col 4
and Nul A4 have the following useful connection. (See the Rank Theorem in Section 4.6
for additional details.)

The Rank Theorem

If a matrix A has n columns, then rank A + dimNul A = n.

The following theorem is important for applications and will be needed in Chap-
ters 5 and 6. The theorem (proved in Section 4.5) is certainly plausible, if you think of
a p-dimensional subspace as isomorphic to R”. The Invertible Matrix Theorem shows
that p vectors in R” are linearly independent if and only if they also span R?.

The Basis Theorem

Let H be a p-dimensional subspace of R”. Any linearly independent set of exactly
p elements in H is automatically a basis for H. Also, any set of p elements of
H that spans H is automatically a basis for H.

Rank and the Invertible Matrix Theorem

The various vector space concepts associated with a matrix provide several more
statements for the Invertible Matrix Theorem. They are presented below to follow the
statements in the original theorem in Section 2.3.

The Invertible Matrix Theorem (continued)

Let A be an n x n matrix. Then the following statements are each equivalent to
the statement that A is an invertible matrix.

m. The columns of A form a basis of R”.

ColA = R”

dimCol A =n

rank A = n

Nul 4 = {0}

dimNul A =0

g =2 T o B

PROOF Statement (m) is logically equivalent to statements (e) and (h) regarding linear
independence and spanning. The other five statements are linked to the earlier ones of
the theorem by the following chain of almost trivial implications:

(@ = m= ()= ()= 0= (@ =d

Statement (g), which says that the equation Ax = b has at least one solution for each
b in R”, implies statement (n), because Col A is precisely the set of all b such that
the equation Ax = b is consistent. The implications (n) = (0) = (p) follow from the
definitions of dimension and rank. If the rank of A is n, the number of columns of A4,
then dim Nul A = 0, by the Rank Theorem, and so Nul A = {0}. Thus (p) = (r) = (q).
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Also, statement (q) implies that the equation Ax = 0 has only the trivial solution, which
Expanded Table is statement (d). Since statements (d) and (g) are already known to be equivalent to the
for the IMT 2-39 statement that A is invertible, the proof is complete. |

EXERCISES

— NUMERICAL NOTES

Many algorithms discussed in this text are useful for understanding concepts
and making simple computations by hand. However, the algorithms are often
unsuitable for large-scale problems in real life.

Rank determination is a good example. It would seem easy to reduce a matrix
to echelon form and count the pivots. But unless exact arithmetic is performed
on a matrix whose entries are specified exactly, row operations can change the

. . . . .5 7
apparent rank of a matrix. For instance, if the value of x in the matrix |: 5 o ]

is not stored exactly as 7 in a computer, then the rank may be 1 or 2, depending
on whether the computer treats x — 7 as zero.

In practical applications, the effective rank of a matrix A is often determined
from the singular value decomposition of A, to be discussed in Section 7.4.

PRACTICE PROBLEMS

1. Determine the dimension of the subspace H of R? spanned by the vectors vy, vs,

and vs. (First, find a basis for H.)

2 3 -1
vV = —8 s Vy = -7 s V3 = 6
6 -1 -7
2. Consider the basis
B— 1 2
201
for R2. If [x], = [3} what is x?
. 5 5 | )

3. Could R3 possibly contain a four-dimensional subspace? Explain.

In Exercises 1 and 2, find the vector x determined by the given
coordinate vector [x]z and the given basis B. Illustrate your
answer with a figure, as in the solution of Practice Problem 2.

a2
s o= [ []

In Exercises 3-6, the vector x is in a subspace H with a basis
B = {by, b,}. Find the B-coordinate vector of x.

. b =

. by

. b=

. b =
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7. Let b, = |:(3)],b2 = [_;:|, w= [_;] X = [T] and

B = {by,b,}. Use the figure to estimate [w]z and [X]z.
Confirm your estimate of [x]s by using it and {b;,b,} to
compute X.

hANRRY
LN
O

o w2} ne[] o35+ [

and B = {b;,b,}. Use the figure to estimate

(=]

—1
=25
[x]5, [¥]5, and [z] 5. Confirm your estimates of [y]s and [z]5
by using them and {b, b,} to compute y and z.

7=

AVANA

T

Exercises 9—12 display a matrix A and an echelon form of 4. Find
bases for Col A and Nul A, and then state the dimensions of these
subspaces.

1 3 2 -6 1 3 3 2
39 5 0 0 5 -7
2 A=1, 6 _ 9! 7lo o o0 s
|5 15 0 14 0 0 0 0
1 —2 -1 5 4
2 -1 1 5 6
0. 4=1_, o 2 1 -6
| 3 1 4 1 5
M -2 -1 2 0
o0 1 1 o0 3
0 0 0 1 0
(0 0 0 o0 1

2 4 -5 2 -3
3 6 -8 3 -5
ILoA=1 "3 6 9 0 o9
| -3 -6 -7 =3 -10

T 2 -5 1 —47

0 0 5 0 5

0 0 0 0 0

(0 0 0 0 0]

1 2 -4 4 67

5 1 -9 2 10
122.4=14 6 29 12 15
|3 4 -5 8 9|

1 2 8 4 —67

0 2 3 4 -1

0 0 5 0 -5

(0 0 0 0 0]

In Exercises 13 and 14, find a basis for the subspace spanned by
the given vectors. What is the dimension of the subspace?

17737 27 -4
-3 91 | -1 5
Bl ol 6| 4| -3
=4 L2 | 2] | 7]
T 1] 27 o] -1 3
“1 || =3 401 -7
Wl obl o] sl =7]| s
L3 L4 2] 7] [-9

15. Suppose a 4 x 6 matrix A has four pivot columns. Is
Col A = R*? Is Nul 4 = R?? Explain your answers.

16. Suppose a 4 x 7 matrix A has three pivot columns. Is
Col A = R3? What is the dimension of Nul A? Explain your
answers.

In Exercises 17 and 18, mark each statement True or False. Justify
each answer. Here A is an m x n matrix.

If B={vy,...,v,} is a basis for a subspace H and if
X = V| +---+¢,v,, then cy,...,c, are the coordi-
nates of x relative to the basis 3.

17. a.

b. Each line in R” is a one-dimensional subspace of R”.

c. The dimension of Col 4 is the number of pivot columns
in A.

d. The dimensions of Col 4 and Nul A add up to the number
of columns in A.

e. If a set of p vectors spans a p-dimensional subspace H
of R”, then these vectors form a basis for H.

18. a. If B is a basis for a subspace H, then each vector in H
can be written in only one way as a linear combination of

the vectors in 3.

b. The dimension of Nul A is the number of variables in the
equation Ax = 0.

c. The dimension of the column space of A is rank A.



d. If B={vy,...,v,} is a basis for a subspace H of R”,
then the correspondence x > [X]s makes H look and act
the same as R”.

e. If H is a p-dimensional subspace of R”, then a linearly
independent set of p vectors in H is a basis for H.

In Exercises 19-24, justify each answer or construction.

19.

20.

21.

22.

23.

24.

25.

26.

If the subspace of all solutions of Ax = 0 has a basis con-
sisting of three vectors and if A is a 5 X 7 matrix, what is the
rank of A?

What is the rank of a 6 x 8 matrix whose null space is three-
dimensional?

If the rank of a 9 x 8 matrix A is 7, what is the dimension of
the solution space of Ax = 0?

Show that a set {v;,...,vs} in R” is linearly dependent if
dim Span{v,,...,vs} = 4.

If possible, construct a 3 x 5 matrix A such thatdimNul 4 =
3 and dim Col 4 = 2.

Construct a 3 x 4 matrix with rank 1.

Let A be an n X p matrix whose column space is p-
dimensional. Explain why the columns of A must be linearly
independent.

Suppose columns 1, 3, 4, 5, and 7 of a matrix A are linearly
independent (but are not necessarily pivot columns) and the
rank of A is 5. Explain why the five columns mentioned must
be a basis for the column space of A.

. dim H = 2.

3
2. If [X]B = |:2
weights 3 and 2:

217.

28.

29.

30.
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Suppose vectors by,...,b, span a subspace W, and let

{a;,...,a,} be any set in W containing more than p vec-
tors. Fill in the details of the following argument to show
that {a;,...,a,} must be linearly dependent. First, let
B =[b, b,]and A = [a; a, .

a. Explain why for each vector a;, there exists a vector ¢;
in R? such thata; = Bc;.

b. LetC =[¢ ¢, ]. Explain why there is a nonzero
vector u such that Cu = 0.

c. Use B and C to show that Au = 0. This shows that the
columns of A are linearly dependent.

Use Exercise 27 to show that if A and B are bases for a
subspace W of R”, then A cannot contain more vectors than
BB, and, conversely, B cannot contain more vectors than A.

[M] Let H = Span{vy,v,} and B = {v;, v,}. Show that x is
in H, and find the B-coordinate vector of x, when

15 14 16
-5 ~10 0
i=lplp 27 P *T|n
7 17 -3

[M] Let H = Span{vy, v,,v3} and B = {v{, v,, v3}. Show
that 3 is a basis for H and xis in H , and find the 3-coordinate
vector of X, when

—6 8 -9 11

3 0 4 -2

Vi = 9 , Vo = 7 , V3 = _3 , X = 17
4 -3 3 -8

El Mastering: Dimension and Rank 2-41

SOLUTIONS TO PRACTICE PROBLEMS

1. Construct A = [v; v, v3]so that the subspace spanned by vy, v,, v3 is the column
space of A. A basis for this space is provided by the pivot columns of A.
2 3 -1 2 3 -1 2 3 -1
A=|-8 -7 6|~|0 5 2|~]0 5 2
6 —1 =7 0—-10 —4 0 0 O
The first two columns of A are pivot columns and form a basis for H. Thus

, then x is formed from a linear combination of the basis vectors using

1 2 3.4
2 c=a = 1] 2] 2]

The basis {b;,b,} determines a coordinate system for R?, illustrated by the grid in

1 the figure. Note how x is 3 units in the b;-direction and 2 units in the b,-direction.
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3. A four-dimensional subspace would contain a basis of four linearly independent
vectors. This is impossible inside R3. Since any linearly independent set in R3 has
no more than three vectors, any subspace of R has dimension no more than 3. The
space R? itself is the only three-dimensional subspace of R®. Other subspaces of R3
have dimension 2, 1, or O.

CHAPTER 2 SUPPLEMENTARY EXERCISES

. LetA=|1 0 0

1. Assume that the matrices mentioned in the statements below

have appropriate sizes. Mark each statement True or False.
Justify each answer.

a. If A and B are m x n, then both AB”T and A”B are
defined.

b. If AB = C and C has 2 columns, then A has 2 columns.

c. Left-multiplying a matrix B by a diagonal matrix 4, with
nonzero entries on the diagonal, scales the rows of B.

d. If BC = BD,thenC = D.
e. If AC =0, theneither A =00rC = 0.
f. If Aand Baren x n,then (4 + B)(A — B) = A> — B~

g. An elementary n x n matrix has either n or n 41
nonzero entries.

h. The transpose of an elementary matrix is an elementary
matrix.

i. An elementary matrix must be square.
j- Every square matrix is a product of elementary matrices.

k. If A is a 3 x3 matrix with three pivot positions,
there exist elementary matrices Ej,..., E, such that
E,--E/A=1.

1. If AB = I, then A is invertible.

m. If A and B are square and invertible, then AB is invert-
ible, and (AB)™! = A™'B™".

n. If AB = BA and if 4 is invertible, then A~'B = BA™!.
o. If Aisinvertible and if r # 0, then (rA)™! = rA~".

1
p- If Ais a3 x 3 matrix and the equation Ax = | 0 | has
0
a unique solution, then A is invertible.
. . . . 4 5
. Find the matrix C whose inverse is C ™' = 6 7l

0o 0 O

. Show that A* = 0. Use matrix
o 1 O

algebra to compute the product (1 — A)(I + A + A42).

. Suppose A" = 0 for some n > 1. Find an inverse for I — A.

. Suppose an n x n matrix A satisfies the equation A%—
24 + I = 0. Show that 4> = 34 — 21 and A* = 44 — 31.

1 0 0 1 .o
. Let A = |:0 _1], B = [1 0]’ These are Pauli spin

10.

11.

12.

matrices used in the study of electron spin in quantum
mechanics. Show that A> =1, B> =1, and AB = —BA.

Matrices such that AB = — BA are said to anticommute.
1 3 8 -3 5
LetA=|2 4 11 |and B = 1 5 |. Compute
1 2 5 3 4

A~'B without computing A~". [Hint: A" B is the solution
of the equation AX = B.]

Find a matrix A such that the transformation x — Ax maps

[;] and [%] into [ i ] and [?], respectively. [Hint:

Write a matrix equation involving A, and solve for A4.]

> 4]andB:[7 3i|.FindA.

Suppose AB = [_2 3 R

Suppose A is invertible. Explain why A”4 is also invertible.
Then show that A™' = (ATA)~'AT.

Let xi,...,x, be fixed numbers. The matrix below, called
a Vandermonde matrix, occurs in applications such as signal
processing, error-correcting codes, and polynomial interpo-
lation.

1 x X7 e xp!
X> x% x;’_l
V= . .
2 n—1
1 Xn xn xn
Giveny = (yy,...,y,) in R", suppose ¢ = (¢, ..., Cp—1) in

R" satisfies V¢ =y, and define the polynomial
p(t) =co+ et +oot® + -+ cpeyt"!

a. Show that p(x;) =y, ...,p(x,) =y,. We call
p(t) an interpolating polynomial for the points
(x1, 1), .., (xn, yu) because the graph of p(¢) passes
through the points.

b. Suppose xi,...,Xx, are distinct numbers. Show that the
columns of V' are linearly independent. [Hint: How many
zeros can a polynomial of degree n — 1 have?]

c. Prove: “If x, ..., x, are distinct numbers, and yy, ..., y,
are arbitrary numbers, then there is an interpolating poly-
nomial of degree < n — 1 for (x1, y1), ..., (Xp, Yu).”

Let A = LU, where L is an invertible lower triangular ma-
trix and U 1is upper triangular. Explain why the first column
of A is a multiple of the first column of L. How is the second
column of A related to the columns of L?



13.

14.

Givenuin R” withu’u = 1,let P = uu’ (an outer product)
and Q = I — 2P. Justify statements (a), (b), and (c).

a. P2=rpP b. PT =P c. 02=1

The transformation x — Px is called a projection, and
X — Ox is called a Householder reflection. Such reflections
are used in computer programs to create multiple zeros in a
vector (usually a column of a matrix).

0 1
Letu=| 0 | and x=| 5 |. Determine P and Q as in
1 3

Exercise 13, and compute Px and Ox. The figure shows that
Ox is the reflection of x through the xx,-plane.

X3

Px

X,

Ix—Px

X

1 Ox
A Householder reflection through the plane
X3 = 0.

15.

16.

17.

18.

19.

20.
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Suppose C = E;E,E| B, where E|, E;, and Ej are elemen-
tary matrices. Explain why C is row equivalent to B.

Let A be ann x n singular matrix. Describe how to construct
an n X n nonzero matrix B such that AB = 0.

Let A be a6 x 4 matrix and B a 4 x 6 matrix. Show that the
6 x 6 matrix AB cannot be invertible.

Suppose A is a 5 x 3 matrix and there exists a 3 x 5 matrix
C such that CA = I5. Suppose further that for some given b
in R, the equation Ax = b has at least one solution. Show
that this solution is unique.

[M] Certain dynamical systems can be studied by examining
powers of a matrix, such as those below. Determine what
happens to A* and B* as k increases (for example, try
k =2,...,16). Try to identify what is special about A and
B. Investigate large powers of other matrices of this type,
and make a conjecture about such matrices.

4 2 3 0o 2 3
A=(3 6 3|, B=|.1 6 3
3 2 4 9 2 4

[M] Let A, be the n x n matrix with 0’s on the main diagonal
and 1’s elsewhere. Compute An_1 for n = 4,5, and 6, and
make a conjecture about the general form of A;! for larger
values of n.
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Determinants

INTRODUCTORY EXAMPLE

Random Paths and Distortion

In his autobiographical book “Surely You’re Joking,
Mr. Feynman,” the Nobel Prize—winning physicist Richard
Feynman tells of observing ants in his Princeton graduate
school apartment. He studied the ants’ behavior by
providing paper ferries to sugar suspended on a string
where the ants would not accidentally find it. When an ant
would step onto a paper ferry, Feynman would transport the
ant to the food and then back. After the ants learned to use
the ferry, he relocated the return landing. The colony soon
confused the outbound and return ferry landings, indicating
that their “learning” consisted of creating and following
trails. Feynman confirmed this conjecture by laying glass
slides on the floor. Once the ants established trails on the
glass slides, he rearranged the slides and therefore the trails
on them. The ants followed the repositioned trails and
Feynman could direct the ants where he wished.

Suppose Feynman had decided to conduct additional
investigations using a globe built of wire mesh on which
an ant must follow individual wires and choose between
going left and right at each intersection. If several ants and
an equal number of food sources are placed on the globe,
how likely is it that each ant would find its own food source
rather than encountering another ant’s trail and following
it to a shared resource?!

!'The solution to the ant-path problem (and two other applications) can
be found in a June 2005, Mathematical Monthly article by Arthur
Benjamin and Naomi Cameron.

In order to record the actual routes of the ants and to
communicate the results to others, it is convenient to use
a rectangular map of the globe. There are many ways to
create such maps. One simple way is to use the longitude
and latitude on the globe as x and y coordinates on the map.
As is the case with all maps, the result is not a faithful
representation of the globe. Features near the “equator”
look much the same on the globe and the map, but regions
near the “poles” of the globe are distorted. Images of polar
regions are much larger than the images of similar sized
regions near the equator. To fit in with its surroundings on
the map, the image of an ant near one of the poles should
be larger than one near the equator. How much larger?

Surprisingly, both the ant-path and the area distortion
problems are best answered through the use of the determi-
nant, the subject of this chapter. Indeed, the determinant
has so many uses that a summary of the applications known
in the early 1900°s filled a four volume treatise by Thomas
Muir. With changes in emphasis and the greatly increased
sizes of the matrices used in modern applications, many
uses that were important then are no longer critical today.
Nevertheless, the determinant still plays an important role.

163
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Beyond introducing the determinant in Section 3.1, this chapter presents two important
ideas. Section 3.2 derives an invertibility criterion for a square matrix that plays a pivotal
role in Chapter 5. Section 3.3 shows how the determinant measures the amount by which
alinear transformation changes the area of a figure. When applied locally, this technique
answers the question of a map’s expansion rate near the poles. This idea plays a critical
role in multivariable calculus in the form of the Jacobian.

3.1 INTRODUCTION TO DETERMINANTS

Recall from Section 2.2 that a 2 x 2 matrix is invertible if and only if its determinant
is nonzero. To extend this useful fact to larger matrices, we need a definition for the
determinant of an n x n matrix. We can discover the definition for the 3 x 3 case by
watching what happens when an invertible 3 x 3 matrix A is row reduced.

Consider A = [a;;] witha;; # 0. If we multiply the second and third rows of 4 by
ay; and then subtract appropriate multiples of the first row from the other two rows, we
find that A is row equivalent to the following two matrices:

aipi an aps api ap aps
ana apax apaxs |~ | 0 ajaxn—apnay apas —asan (1)
appdsp  dpdsz dpjasz 0 anaz —apas anas; —apds

Since A is invertible, either the (2, 2)-entry or the (3,2)-entry on the right in (1) is
nonzero. Let us suppose that the (2,2)-entry is nonzero. (Otherwise, we can make a
row interchange before proceeding.) Multiply row 3 by a11a2, — a12a»;, and then to the
new row 3 add —(ay;a3; — ajpas;) times row 2. This will show that

airi apn aps
A~ 0 ajjdy —djgpds) ajpjdaz — ajpsdyg
0 0 anA

where
A = ayjaxnaz; + apaxpas; + aizaraz — ajd3ds — dipdsasz — azanaz;  (2)

Since A is invertible, A must be nonzero. The converse is true, too, as we will see in
Section 3.2. We call A in (2) the determinant of the 3 x 3 matrix A.
Recall that the determinant of a 2 x 2 matrix, A = [a;;], is the number

det A = ayjazn — apan

For a 1 x 1 matrix—say, A = [a;;]—we define det A = ay;. To generalize the defini-
tion of the determinant to larger matrices, we’ll use 2 x 2 determinants to rewrite the
3 x 3 determinant A described above. Since the terms in A can be grouped as
(ar1anaszs — a1asaz) — (1221033 — A12a23031) + (1382103 — A13a24031),

an ay azg ay azg an
A = ay -det 3 —ajy - det 3 + a3 - det
asp ass asg ass asg asp

For brevity, write
A=ay -detA;; —app-detA;, + a3 -det A3 3)

where A, A2, and A3 are obtained from A by deleting the first row and one of the
three columns. For any square matrix A, let A;; denote the submatrix formed by deleting
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the ith row and jth column of A. For instance, if

1 -2 5 0
2 0 4 -1
A= 31 0 7
0 4 -2 0
then A3 is obtained by crossing out row 3 and column 2,
1 -2 5 0
2 0 4 -1
3 1 0 7
0 4 -2 0
so that
1 5 0
Ap =12 4 -1
0 -2 0

We can now give a recursive definition of a determinant. When n = 3, det A is defined
using determinants of the 2 x 2 submatrices A;;, as in (3) above. When n = 4, det A
uses determinants of the 3 x 3 submatrices A;;. In general, an n x n determinant is
defined by determinants of (n — 1) x (n — 1) submatrices.

For n > 2, the determinant of an n x n matrix A = [a;;] is the sum of n terms
of the form %a;; det A;;, with plus and minus signs alternating, where the entries
aii,ap, . ..,ay, are from the first row of A. In symbols,

detA =aj detA;; —appdetApp +--- + (—l)H'"al,, det Ay,

= Z(—1)1+ja1j detAU

J=

EXAMPLE 1 Compute the determinant of

1 5 0
A=|2 4 —1
0 -2 0

SOLUTION Compute det A = a;det A, —apdet A1, + a3 det Ajs:

4 —1 2 -1 2 4
detA—l-det|:_2 0]—5-det[0 0:|+0-det|:0 _2]
=10-2)—50—-0)4+0(—4—-0) =—-2 ]
Another common notation for the determinant of a matrix uses a pair of vertical
lines in place of brackets. Thus the calculation in Example 1 can be written as
4 —1 2 —1 2 4
-2 0 0 o0 0 -2

To state the next theorem, it is convenient to write the definition of det A4 in a slightly
different form. Given A = [a;;], the (i, j)-cofactor of A is the number C;; given by

Cij = (—1)i+j detA,j @)

det4 =1 -5 +0 ‘=-~=—2

Then
detA =a1Cyy +apnCpn+---+a;,Ciy
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This formula is called a cofactor expansion across the first row of A. We omit the
proof of the following fundamental theorem to avoid a lengthy digression.

THEOREM 1 The determinant of an 7 x n matrix A can be computed by a cofactor expansion
across any row or down any column. The expansion across the ith row using the
cofactors in (4) is

detA = a;1Ci1 + a;2Cin + -+ + ainCiy
The cofactor expansion down the jth column is

detA = a;Cyj +ar;Cyj + -+ + a,; Cyj

The plus or minus sign in the (i, j)-cofactor depends on the position of a;; in the
matrix, regardless of the sign of a;; itself. The factor (—=1)"*/ determines the following
checkerboard pattern of signs:

+

+

+

+

I+

EXAMPLE 2 Useacofactor expansion across the third row to compute det A, where

1 5 0
A=|2 4 -1
0 -2 0

SOLUTION Compute
det A = a31C31 + a3 Csp + a33Css

= (=1)*"'as; det A3 + (=1)*Pan det Ay + (=1)*as;3 det A3

50 1o, (1 s
-3 -2l 3oz ]

=04+2(-1)+0=-2 "

Theorem 1 is helpful for computing the determinant of a matrix that contains many
zeros. For example, if a row is mostly zeros, then the cofactor expansion across that row
has many terms that are zero, and the cofactors in those terms need not be calculated.
The same approach works with a column that contains many zeros.

EXAMPLE 3 Compute det A, where
3 -7 8 9 —6
o 2 -5 7 3
A=]10 0 1 5 0
o 0 2 4 -1
0O 0 0 -2 0

SOLUTION The cofactor expansion down the first column of A has all terms equal to
zero except the first. Thus

detA =3 O 0. Cy 4+ 0-Cyy—0-Cay +0-Csy
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Henceforth we will omit the zero terms in the cofactor expansion. Next, expand this
4 x 4 determinant down the first column, in order to take advantage of the zeros there.

We have
1 5 0
detA=3-2-12 4 -1
0 -2 0

This 3 x 3 determinant was computed in Example 1 and found to equal —2. Hence
detA=3-2-(-2) =—-12. ]

The matrix in Example 3 was nearly triangular. The method in that example is
easily adapted to prove the following theorem.

THEOREM 2 If A is a triangular matrix, then det A is the product of the entries on the main
diagonal of A.

The strategy in Example 3 of looking for zeros works extremely well when an entire
row or column consists of zeros. In such a case, the cofactor expansion along such a row
or column is a sum of zeros! So the determinant is zero. Unfortunately, most cofactor
expansions are not so quickly evaluated.

— NUMERICAL NOTE

By today’s standards, a 25 x 25 matrix is small. Yet it would be impossible to
calculate a 25 x 25 determinant by cofactor expansion. In general, a cofactor
expansion requires over 7! multiplications, and 25! is approximately 1.5 x 10%.

If a computer performs one trillion multiplications per second, it would have
to run for over 500,000 years to compute a 25 x 25 determinant by this method.
Fortunately, there are faster methods, as we’ll soon discover.

Exercises 19-38 explore important properties of determinants, mostly for the 2 x 2
case. The results from Exercises 33—36 will be used in the next section to derive the
analogous properties for n x n matrices.

PRACTICE PROBLEM

5 -7 2 2
Compute 0 30 _4.

-5 -8 0 3

0 5 0 —6

3.1 EXERCISES

Compute the determinants in Exercises 1-8 using a cofactor 2 -4 3 1 35

expansion across the first row. In Exercises 1-4, also compute the 3.3 1 4 12 1 1

determinant by a cofactor expansion down the second column. 4 -1 3 4 2
3 0 4 0o 5 1

L2 3 2 204 3 0 2 3 -4 5 -2 4

0 5 1 2 4 1 5. |4 5 6. |0 3 =5

5 1 6 2 —4 7
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4 3 0 8 1 6
7. 16 5 2 8. 14 0 3
9 7 3 3 -2 5

Compute the determinants in Exercises 9—14 by cofactor expan-
sions. Ateach step, choose a row or column that involves the least

amount of computation.

6 0 0 5 1 =2 5 2
1 7 2 -5 0 0 3 0
%12 0 0 o 101, 6 7 5
8 3 1 8 5 0 4 4
35 -8 4 4 0 0 0
0 -2 3 —7 7 -1 0 0
by o 1 s 1221, 6 3 0
0 0 0 2 5 -8 4 -3
4 0 -7 3 -5
0 0 2 0 0
13.]7 3 -6 4 -8
5 0 5 2 -3
0 0 9 -1 2
6 3 2 4 0
9 0 -4 1 0
4. (8 =5 6 7 1
30 0 0 0
4 2 3 2 0

The expansion of a 3 x 3 determinant can be remembered by the
following device. Write a second copy of the first two columns to
the right of the matrix, and compute the determinant by multiply-
ing entries on six diagonals:

s

a 4y 4y

11 %2 43

Ay Gy Gp3| Ay dpp

a a a a a

31 32 33 31 32

Add the downward diagonal products and subtract the upward
products. Use this method to compute the determinants in Ex-
ercises 15-18. Warning: This trick does not generalize in any
reasonable way to 4 x 4 or larger matrices.

2 M3 4 3 4
"5 6] |5+3k 644k
[ b a+ke b+kd
2. | ¢ di|’|: ¢ d ]
! 1 1 kK k k
23. -3 8 —4|,| -3 8 —4
2 3 2 2 3 2
fa b ¢ 3 2 2
24. | 3 2 21|, a b ¢
6 5 6] |6 5 6

Compute the determinants of the elementary matrices given in
Exercises 25-30. (See Section 2.2.)

10 0 10 0
5.0 1 0 6. |0 1 0
0 k1 k0 1
[k 0 0 1 0 0
22. o 1 0 2.0 &k 0
L0 0 1 0o 0 1
[0 1 0] [0 0 1]
2.1 0 0 3. [o 1 0
0 0 1] 1 0 0]

Use Exercises 25-28 to answer the questions in Exercises 31 and
32. Give reasons for your answers.

31.

32.

What is the determinant of an elementary row replacement
matrix?

What is the determinant of an elementary scaling matrix with

k on the diagonal?

In Exercises 33-36, verify that det EA = (det E')(det A), where

. . a
E is the elementary matrix shown and A = |: .

b
d

0 1] 1 0
33. |: 1 0 34. |: 0k ]
1 k 1 0
s [0 4] [} 0]
3 1 .
37. Let A = 4 2]. Write 5A4. Isdet54 = 5det A?
38. LetA = a 3 and let k be a scalar. Find a formula that

3 0 4 0 5 1
1s. (2 3 2 16. (4 -3 0
0 5 -1 2 4 1
2 -4 3 1 3 5
17. |3 1 2 18. (2 1 1
1 4 -1 3 4 2

In Exercises 19-24, explore the effect of an elementary row
operation on the determinant of a matrix. In each case, state the
row operation and describe how it affects the determinant.

a b c d a b a b
19. |:c d]’[a b:| 20. |:c d]’[kc kd]

c
relates det kA to k and det A.

In Exercises 39 and 40, A is an n x n matrix. Mark each statement
True or False. Justify each answer.

39. a. An n xn determinant is defined by determinants of
(n — 1) x (n — 1) submatrices.
b. The (i, j)-cofactor of a matrix A is the matrix A;; ob-
tained by deleting from A4 its ith row and j th column.

40. a. The cofactor expansion of det A down a column is the

negative of the cofactor expansion along a row.



41.

42,

43.

b. The determinant of a triangular matrix is the sum of the
entries on the main diagonal.

Letu = [(3)] and v = [;] Compute the area of the par-

allelogram determined by u, v, u + v, and 0, and compute
the determinant of [u v |. How do they compare? Replace
the first entry of v by an arbitrary number x, and repeat the
problem. Draw a picture and explain what you find.

Letu = [Z ] and v = [f)]’ where a, b, ¢ are positive (for

simplicity). Compute the area of the parallelogram deter-
mined by u, v, u + v, and 0, and compute the determinants of
the matrices[u v]and[v wu]. Draw a picture and explain
what you find.

[M] Is it true that det(A + B) = detA + det B? To find
out, generate random 5 x 5 matrices A and B, and compute
det(A + B) —det A — det B. (Refer to Exercise 37 in Sec-

44.

45.

46.
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tion 2.1.) Repeat the calculations for three other pairs of
n X n matrices, for various values of n. Report your results.

[M] Is it true that det AB = (det A)(det B)? Experiment
with four pairs of random matrices as in Exercise 43, and
make a conjecture.

[M] Construct a random 4 x 4 matrix A with integer entries
between —9 and 9, and compare det A with det AT, det(—A),
det(2A), and det(10A4). Repeat with two other random 4 x 4
integer matrices, and make conjectures about how these de-
terminants are related. (Refer to Exercise 36 in Section 2.1.)
Then check your conjectures with several random 5 x 5 and
6 x 6 integer matrices. Modify your conjectures, if neces-
sary, and report your results.

[M] How is det A~! related to det A? Experiment with
random n X n integer matrices for n = 4, 5, and 6, and make
a conjecture. Note: In the unlikely event that you encounter
a matrix with a zero determinant, reduce it to echelon form
and discuss what you find.

SOLUTION TO PRACTICE PROBLEM

Take advantage of the zeros. Begin with a cofactor expansion down the third column to
obtain a 3 x 3 matrix, which may be evaluated by an expansion down its first column.

5 =7
0 3
-5 -8
0 5

2

0
0
0

_i 0 3 —4
3 = (-2 -5 -8 3
e 0 5 -6

=2-(—1)2+‘(—5>‘§ :2‘ =20

The (—1)?>*! in the next-to-last calculation came from the (2, 1)-position of the —5 in

the 3 x 3 determinant.

3.2  PROPERTIES OF DETERMINANTS

The secret of determinants lies in how they change when row operations are performed.
The following theorem generalizes the results of Exercises 19-24 in Section 3.1. The
proof is at the end of this section.

THEOREM 3

Row Operations

Let A be a square matrix.

a. If a multiple of one row of A is added to another row to produce a matrix B,

then det B = det A.

b. If two rows of A are interchanged to produce B, then det B = — det A.
c. If one row of A is multiplied by k to produce B, then det B = k - det A.

The following examples show how to use Theorem 3 to find determinants

efficiently.
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1 -4 2
EXAMPLE 1 Compute det A, where A = | =2 8 —9
—1 7 0

SOLUTION The strategy is to reduce A to echelon form and then to use the fact that
the determinant of a triangular matrix is the product of the diagonal entries. The first
two row replacements in column 1 do not change the determinant:

1 -4 2 1 -4 2 1 -4 2
detA=|-2 8 -9|=| 0 0 =5(=]0 0 =5
-1 7 0 -1 7 0 0 3 2

An interchange of rows 2 and 3 reverses the sign of the determinant, so

1 —4 2
detA=—{0 3 2|=—-(1)3)=5 =15 m
0 0 -5

A common use of Theorem 3(c) in hand calculations is to factor out a common
multiple of one row of a matrix. For instance,

* * * * ok ok
5k =2k 3k|=kl5 -2 3
* * * * ok ok

where the starred entries are unchanged. We use this step in the next example.

2 -8 6 8
EXAMPLE 2 Computedet 4, where A= | > 0 > 1)
1 -4 0 6

SOLUTION To simplify the arithmetic, we want a 1 in the upper-left corner. We could
interchange rows 1 and 4. Instead, we factor out 2 from the top row, and then proceed
with row replacements in the first column:

1 -4 3 4 1 —4 3 4
3.9 5 10 0 3 —4 -2
detA=2 5+ o 1 2120 12 10 10
1 -4 0 6 0 0 -3 2

Next, we could factor out another 2 from row 3 or use the 3 in the second column as a
pivot. We choose the latter operation, adding 4 times row 2 to row 3:

1 -4 3 4
0 3 —4 =2
detA =2 0 0 —6 2
0O 0 -3 2

Finally, adding —1/2 times row 3 to row 4, and computing the “triangular” determinant,
we find that

—4

detA =2

4
2 l=2- )6 0) = 36
1

3
—4
—6

0

SO O =

3
0
0



FIGURE 1

ok k|
" ok %
0 [ *
0O 0 =m
detU#0
% %k %]
| | ES *
0O 0 =m
0O 0 O
detU=0

Typical echelon forms of square

matrices.

THEOREM 4
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Suppose a square matrix A has been reduced to an echelon form U by row replace-
ments and row interchanges. (This is always possible. See the row reduction algorithm
in Section 1.2.) If there are r interchanges, then Theorem 3 shows that

detA = (—1)" detU

Since U is in echelon form, it is triangular, and so detU is the product of the
diagonal entries uyy,...,u,,. If A is invertible, the entries u;; are all pivots (because
A ~ I, and the u;; have not been scaled to 1’s). Otherwise, at least u,,, is zero, and the
product uy - - u,, is zero. See Fig. 1. Thus

(—1y" product of
detA = pivots in U
0 when A is not invertible

when A is invertible
(D

It is interesting to note that although the echelon form U described above is not unique
(because it is not completely row reduced), and the pivots are not unique, the product
of the pivots is unique, except for a possible minus sign.

Formula (1) not only gives a concrete interpretation of det A but also proves the
main theorem of this section:

A square matrix A is invertible if and only if det A # 0.

Theorem 4 adds the statement “det A 7 07 to the Invertible Matrix Theorem. A
useful corollary is that det A = 0 when the columns of A are linearly dependent. Also,
det A = 0 when the rows of A are linearly dependent. (Rows of A are columns of A7,
and linearly dependent columns of A” make A7 singular. When A7 is singular, so is
A, by the Invertible Matrix Theorem.) In practice, linear dependence is obvious when
two columns or two rows are the same or a column or a row is zero.

3 -1 2 =5
0 5 -3 -6
EXAMPLE 3 Compute det A, where 4 = 6 7 -7 4
-5 -8 0 9
SOLUTION Add 2 times row 1 to row 3 to obtain
3 -1 2 -5
0 5 -3 -6
det A = det 0 5 -3 —¢ =0
-5 -8 0 9
because the second and third rows of the second matrix are equal. [ |

— NUMERICAL NOTES

1. Most computer programs that compute det A for a general matrix A use the
method of formula (1) above.

2. It can be shown that evaluation of an n x n determinant using row operations
requires about 213 /3 arithmetic operations. Any modern microcomputer can
calculate a 25 x 25 determinant in a fraction of a second, since only about
10,000 operations are required.
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THEOREM 5

Computers can also handle large “sparse” matrices, with special routines that take
advantage of the presence of many zeros. Of course, zero entries can speed hand compu-
tations, too. The calculations in the next example combine the power of row operations
with the strategy from Section 3.1 of using zero entries in cofactor expansions.

o 1 2 -1

2 5 -7 3

EXAMPLE 4 Compute det A, where A = 0 3 6 2
-2 -5 4 -2

SOLUTION A good way to begin is to use the 2 in column 1 as a pivot, eliminating
the —2 below it. Then use a cofactor expansion to reduce the size of the determinant,
followed by another row replacement operation. Thus

0o 1 2 -1

1 2 -1 1 2 -1

detA=2 > 7 3:—23 6 2/=-2[0 0
03 6 2 0 -3 1 0 -3 1
0 0 -3 1

An interchange of rows 2 and 3 would produce a “triangular determinant.” Another
approach is to make a cofactor expansion down the first column:

detA = (—2)(1)‘ _(3) f =-2-(15) = -30 m

Column Operations

We can perform operations on the columns of a matrix in a way that is analogous to the
row operations we have considered. The next theorem shows that column operations
have the same effects on determinants as row operations.

If A is an n X n matrix, then det AT = det A.

PROOF The theorem is obvious for n = 1. Suppose the theorem is true for k x k
determinants and let n = k 4 1. Then the cofactor of a;; in A equals the cofactor
of a; in AT because the cofactors involve k x k determinants. Hence the cofactor
expansion of det 4 along the first row equals the cofactor expansion of det A” down the
first column. That is, A and AT have equal determinants. Thus the theorem is true for
n = 1, and the truth of the theorem for one value of n implies its truth for the next value
of n. By the principle of induction, the theorem is true for all n > 1. [ |

Because of Theorem 5, each statement in Theorem 3 is true when the word row is
replaced everywhere by column. To verify this property, one merely applies the original
Theorem 3 to A”. A row operation on A7 amounts to a column operation on A.

Column operations are useful for both theoretical purposes and hand computations.
However, for simplicity we’ll perform only row operations in numerical calculations.

Determinants and Matrix Products

The proof of the following useful theorem is at the end of the section. Applications are
in the exercises.
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Multiplicative Property
If A and B are n X n matrices, then det AB = (det A)(det B).

EXAMPLE 5 Verify Theorem 6 for A = |:g ;:| and B = |:411 ;:|

6 1[4 3 25 20
AB=[3 2][1 2]2[14 13}

detAB =25-13—-20-14 =325—-280 =45

SOLUTION

and

Since det A = 9 and det B = 5,
(det A)(det B) = 9-5 =45 = det AB [ ]

Warning: A common misconception is that Theorem 6 has an analogue for sums of
matrices. However, det(4 + B) is not equal to det A + det B, in general.

A Linearity Property of the Determinant Function

For an n x n matrix A, we can consider det 4 as a function of the n column vectors in
A. We will show that if all columns except one are held fixed, then det A is a linear
function of that one (vector) variable.

Suppose that the jth column of A is allowed to vary, and write

A:[al aj—l X aj+1 an]

Define a transformation 7" from R” to R by

T(x)=det[a, -~ a;_y X a4 - ]
Then,
T(cx) = c¢T(x) for all scalars ¢ and all x in R" 2)
Tu+v)=T(u)+ T(v) forallu,vinR" 3)

Property (2) is Theorem 3(c) applied to the columns of A. A proof of property (3)
follows from a cofactor expansion of det A down the jth column. (See Exercise 43.)
This (multi-) linearity property of the determinant turns out to have many useful conse-
quences that are studied in more advanced courses.

Proofs of Theorems 3 and 6

It is convenient to prove Theorem 3 when it is stated in terms of the elementary matrices
discussed in Section 2.2. We call an elementary matrix E a row replacement (matrix) if
E is obtained from the identity / by adding a multiple of one row to another row; E is
an interchange if E is obtained by interchanging two rows of /; and E is a scale by r if
E is obtained by multiplying a row of / by a nonzero scalar . With this terminology,
Theorem 3 can be reformulated as follows:
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If Ais an n x n matrix and E is an n X n elementary matrix, then
detEA = (det E)(det A)

where
1 if E is a row replacement
det E = {—1 if E is an interchange
r if E isascale by r

PROOF OF THEOREM 3 The proof is by induction on the size of A. The case of a
2 x 2 matrix was verified in Exercises 33—36 of Section 3.1. Suppose the theorem has
been verified for determinants of k x k matrices with k > 2, letn = k + 1, and let A
be n x n. The action of E on A involves either two rows or only one row. So we
can expand det E'A across a row that is unchanged by the action of E, say, row i. Let
Ajj (respectively, B;;) be the matrix obtained by deleting row i and column j from A
(respectively, EA). Then the rows of B;; are obtained from the rows of A;; by the same
type of elementary row operation that £ performs on A. Since these submatrices are
only k X k, the induction assumption implies that

det B,‘j = « - det A,‘j
where @ = 1, —1, or r, depending on the nature of E. The cofactor expansion across
row I is
det EA = a;; (—1) T det By + -+ + a;n(—1)" 7" det By,

= aa; (1)t det Ay + -+ + aa;, (1) " det 4;,

=uo-detAd
In particular, taking A = I,,, we see that det E = 1, —1, or r, depending on the nature
of E£. Thus the theorem is true for n = 2, and the truth of the theorem for one value of

n implies its truth for the next value of n. By the principle of induction, the theorem
must be true for n > 2. The theorem is trivially true forn = 1. |

PROOF OF THEOREM 6 If A is not invertible, then neither is AB, by Exercise 27
in Section 2.3. In this case, det AB = (det A)(det B), because both sides are zero, by
Theorem 4. If A is invertible, then A and the identity matrix I, are row equivalent by
the Invertible Matrix Theorem. So there exist elementary matrices Ey, ..., E, such that

A=E,E, - E -1, =E,E, | E

For brevity, write |A| for det A. Then repeated application of Theorem 3, as rephrased
above, shows that
|AB| = |Ep"'ElB| = |Ep||Ep—l“'ElB| = ...
= |Ep||E1||B| = ... = |Ep...E1||B|
= |A||B| u

PRACTICE PROBLEMS

1 -3 1 =2
2 =5 -1 =2
0o —4 5 1
-3 10 -6 8

1. Compute in as few steps as possible.
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3.2 Properties of Determinants

2. Use a determinant to decide if v, v,, v are linearly independent, when

5 -3 2
-7 s V) = 3 s V3 = -7
9 =5 5

175

Each equation in Exercises 14 illustrates a property of determi-

nants. State the property.

0o 5 =2 1 -3
1. |1 =3 6|=—0 5
4 —1 8 4 —1
2 -6 4 1 -3
2. |3 5 =2|=2/3 5
1 6 3 1 6
1 3 —4 1 3
3. 12 0 —-3|= —6
5 =4 7 5 —4
1 2 3 1 2
4, |0 5 —4|=]0 5
3 7 4 0 1
Find
echelon form.
1 5 —6
5. |—-1 —4 4
-2 -7 9
1 3 0o 2
-2 -5 7 4
7. 3 5 2 1
1 -1 2 -3
1 -1 -3 0
0 1 5 4
% —1 2 8 5
3 -1 =2 3
1 3 —1 0 -2
0 2 -4 -1 -6
10. | -2 -6 2 3 9
3 7 -3 8 -7
3 5 5 2 7

Combine the methods of row reduction and cofactor expansion to

1
3
2

5
-3
13

compute the determinants in Exercises 11-14.

2 5 =3 -1
30 1 -3
Wl 6 0 4 o9
4 10 —4 —1
2 05 4 1
4 7 6 2
O T
-6 7 71 0

12.

14.

-1
3

(9]

L S I S R R

-3
3
-7

B~ O W W

O -

|
S

(=]

[SS o) NN Rl

the determinants in Exercises 5-10 by row reduction to

Find the determinants in Exercises 15-20, where

a b ¢
d e f|=T.
g h i
a b c a b c
15. | d e f 16. |3d 3e 3f
5¢ 5h 50 g h i
a b ¢ g h i
17. |g h i 18. |a b c
d e f d e f
a b c
19. (2d +a 2e+b 2f+c
g h i
a+d b+4+e c+f
20. d e f
g h i

In Exercises 21-23, use determinants to find out if the matrix is
invertible.

2 3 0 5 0 -1
2. [ 1 3 4 2 |1 -3 22
12 1 0 5 3
2 0 o0 8
1 -7 =5 0
213 8 6 0
L0 7 5 4

In Exercises 24-26, use determinants to decide if the set of vectors
is linearly independent.

4 =7 =37 7 —8 7
24. 6 |, 0, -5 25. | —4 |, 51, 0
=71 L 2] L 6] —6 7 -5
C 37 [ 27 [-27 0
5 —6 -1 0
26. 6 |’ 0| , 0
L 41 L 71 L 0] -3

In Exercises 27 and 28, A and B are n X n matrices. Mark each
statement True or False. Justify each answer.

27. a. Arow replacement operation does not affect the determi-
nant of a matrix.

b. The determinant of A is the product of the pivots in any
echelon form U of A, multiplied by (—1)", where r is the
number of row interchanges made during row reduction
from A to U.
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c. If the columns of A are linearly dependent, then
detA = 0.

d. det(A + B) = det A + det B.

28. a. If two row interchanges are made in succession, then the

new determinant equals the old determinant.

b. The determinant of A4 is the product of the diagonal entries
in A.

c. If det A is zero, then two rows or two columns are the
same, or a row or a column is zero.

d. det AT = (—1)det A.

1 0 1
29. Compute det B>, where B=|1 1 2
1 2 1

30. Use Theorem 3 (but not Theorem 4) to show that if two rows
of a square matrix A are equal, then det A = 0. The same is
true for two columns. Why?

In Exercises 31-36, mention an appropriate theorem in your
explanation.

31. Show that if A4 is invertible, then det A=! = ——.
det A

32. Find a formula for det(rA) when A is an n X n matrix.

33. Let A and B be square matrices. Show that even though
AB and BA may not be equal, it is always true that
det AB = det BA.

34. Let A and P be square matrices, with P invertible. Show
that det(PAP ') = det A.

35. Let U be a square matrix such that UTU = I. Show that
detU = +£1.

36. Suppose that A is a square matrix such that det A* = 0.
Explain why A4 cannot be invertible.

Verify that det AB = (det A)(det B) for the matrices in Exercises
37 and 38. (Do not use Theorem 6.)

3 0 2 0
moa=[2 =]z Y]
3 6 _ 4 2
-1 =207 " |-1 -1
39. Let A and B be 3 x3 matrices, with det4 =4 and
det B = —3. Use properties of determinants (in the text and

38. A:[

40.

41.

42,

43.

44.

45.

46.

in the exercises above) to compute:
a. detAB b. det54
d. detA™! e. det43

c. detBT

Let A and B be 4 x4 matrices, with detA = —1 and
det B = 2. Compute:

a. detAB b. det B®
d. detA™A e. det B7'AB

c. det2A4

Verify that det A = det B + det C, where
_la+e b+ f _|la b e f
A_[c d :|’B_|:c d]’c_[c d

1 0 a b
LetA—|:0 l]andB—[c d].Showthat

det(A + B) = det A + det B ifand only ifa + d = 0.
Verify that det A = det B + det C, where

a ap U+
A= | ay an U, + vy |,
L a3 dx Uzt U3
_au app up an app Uy
B = ay an uy |, C = | ay an U
L 431 asz us asy asz U3

Note, however, that A is not the same as B + C.

Right-multiplication by an elementary matrix E affects the
columns of A in the same way that left-multiplication affects
the rows. Use Theorems 5 and 3 and the obvious fact that E7
is another elementary matrix to show that

det AE = (det E)(det A)

Do not use Theorem 6.

[M] Compute det A”4 and det AA” for several random 4 x 5
matrices and several random 5 x 6 matrices. What can you
say about A7A and AA” when A has more columns than
rows?

[M] If det A is close to zero, is the matrix A nearly singu-
lar? Experiment with the nearly singular 4 x 4 matrix A in
Exercise 9 of Section 2.3. Compute the determinants of A,
104, and 0.1A. In contrast, compute the condition numbers
of these matrices. Repeat these calculations when A is the
4 x 4 identity matrix. Discuss your results.

SOLUTIONS TO PRACTICE PROBLEMS

1. Perform row replacements to create zeros in the first column and then create a row

of zeros.
1 -3 1
-5 -1
0O —4 5
-3 10 —6

-2
-2

1
8

1 -3 1 =2| |1 -3 1 =2

_jo 13 2 o1 =3 2

“lo—4 5 1|70 -4 5 1|
0 1 =3 2| [0 0 0 0
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5 =3 2 > 32 Row 1 added

OW al C

2. det[vi v» v3]=|-7 3 -7|=|-2 0 =5 to(r0w2 )
9 -5 5 9 -5 5

_ -2 =5 5 2 Cofactors of
- _(_3)' 9 5 ‘ - (_5)‘ -2 -5 ' column 2
=3.-35+5-(21)=0
By Theorem 4, the matrix [v; Vv, V3] is not invertible. The columns are linearly
dependent, by the Invertible Matrix Theorem.

3.3  CRAMER'S RULE, VOLUME, AND LINEAR TRANSFORMATIONS

THEOREM 7

This section applies the theory of the preceding sections to obtain important theoretical
formulas and a geometric interpretation of the determinant.

Cramer’s Rule

Cramer’s rule is needed in a variety of theoretical calculations. For instance, it can be
used to study how the solution of Ax = b is affected by changes in the entries of b.
However, the formula is inefficient for hand calculations, except for 2 x 2 or perhaps
3 x 3 matrices.

For any n x n matrix A and any b in R”, let 4, (b) be the matrix obtained from A
by replacing column i by the vector b.

Aib) =[a; - b -+ ay]
t

coli

Cramer's Rule

Let A be an invertible n x n matrix. For any b in R”, the unique solution x of
Ax = b has entries given by

_ det 4;(b)

= . i=12,..., 1
det A ! " M

PROOF Denote the columns of A by ay, ..., a, and the columns of the n x n identity
matrix / by ey, ...,e,. If Ax = b, the definition of matrix multiplication shows that

A-I,-(x)zA[el cee X e en]z[Ael Ax .- Aen]
— [al e b e an] = A4;(b)
By the multiplicative property of determinants,
(det A)(det I; (x)) = det 4; (b)

The second determinant on the left is simply x;. (Make a cofactor expansion along the
ith row.) Hence (det A) - x; = det A; (b). This proves (1) because A4 is invertible and
det A # 0. ]

EXAMPLE 1 Use Cramer’s rule to solve the system
3X1 — 2)(?2 =6
—5x; +4x, =8
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SOLUTION View the system as Ax = b. Using the notation introduced above,

3 2 6 —2 3.6
A==[_5 4], A41(b) = [8 4}, Aﬂb)=:[_5 8]

Since det A = 2, the system has a unique solution. By Cramer’s rule,

det A;(b 24 4+ 16
_ detAy(b) 24+ _ 20

X1 = =
det A 2
det A»(b) 24+ 30
2T T heta 2

Application to Engineering

A number of important engineering problems, particularly in electrical engineering and
control theory, can be analyzed by Laplace transforms. This approach converts an
appropriate system of linear differential equations into a system of linear algebraic
equations whose coefficients involve a parameter. The next example illustrates the type
of algebraic system that may arise.

EXAMPLE 2 Consider the following system in which s is an unspecified parameter.
Determine the values of s for which the system has a unique solution, and use Cramer’s
rule to describe the solution.

3sx1 —2x, =4

—6x1 + sxp =1

SOLUTION View the system as Ax = b. Then
3s =2 4 =2 3s 4
a=3% 2] am= 2] e =[]

detA =35> —12=3(s +2)(s —2)

Since

the system has a unique solution precisely when s % £2. For such an s, the solution is
(x1, x2), where

- det A;(b) B 4s +2
"T T detd T 35 +2)(s—2)
det A, (b) 3s + 24 s+ 8
Xy = = |

detd  36+2)(5-2) G+2)(G-2)

A Formula for A—1

Cramer’s rule leads easily to a general formula for the inverse of an n x n matrix A.
The jth column of A™! is a vector x that satisfies

Ax =e;

where e; is the j th column of the identity matrix, and the i th entry of x is the (i, j )-entry
of A7L, By Cramer’s rule,
. det A; (ej)

i, j)entryof A7} = x; = ———L2 2
{(i, j)-entry o }=x T A (2)
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Recall that A ; denotes the submatrix of A formed by deleting row j and column i. A
cofactor expansion down column i of A;(e;) shows that

detA,-(ej) = (—I)H_j detAj,' = Cj,' (3)

where C; is a cofactor of A. By (2), the (i, j)-entry of A~ is the cofactor C;; divided
by det A. [Note that the subscripts on Cj; are the reverse of (i, j).] Thus

Ch Cu -+ Gy
o 1 Chr Cypn - Cp A
~ detd : : : @
Cln C2n Cnn

The matrix of cofactors on the right side of (4) is called the adjugate (or classi-
cal adjoint) of 4, denoted by adj A. (The term adjoint also has another meaning in
advanced texts on linear transformations.) The next theorem simply restates (4).

THEOREM 8 An Inverse Formula
Let A be an invertible n x n matrix. Then

-1 adi
detd 29
2 1
EXAMPLE 3 Findthe inverse of thematrix A = | 1 —1 1
1 -2
SOLUTION The nine cofactors are
-1 1 1 1 1 —1
1 3 2 3 2 1
C21 __'4 _2‘ _147 C22_+‘1 _2‘ 7» C23_ '1 4‘ _7
3 2 3 2 1
C31—+‘_ 1‘—4, C32——‘1 | =1, C33—+‘1 _1'——3

The adjugate matrix is the transpose of the matrix of cofactors. [For instance, Cj, goes
in the (2, 1) position.] Thus

-2 14 4
adjA=| 3 -7 1
5 -7 -3

We could compute det A directly, but the following computation provides a check on
the calculations above and produces det A4:

-2 14 4112 1 3 14 0 0
(adjA)- A = 3 -7 1 1 -1 1|=] 0 14 0| =141
5 =7 -3 1 4 =2 0 0 14
Since (adj A)A = 141, Theorem 8 shows that det A = 14 and
1 -2 14 4 -1/7 1 2/7
A= m 3 =7 1|=]|3/14 —-1/2 1/14 []

5 -7 =3 5/14 —1/2 —3/14
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THEOREM 9

A Geometric Proof
3-12

FIGURE 1
Area = |ad|.

— NUMERICAL NOTES

Theorem 8 is useful mainly for theoretical calculations. The formula for A~
permits one to deduce properties of the inverse without actually calculating it.
Except for special cases, the algorithm in Section 2.2 gives a much better way to
compute A, if the inverse is really needed.

Cramer’s rule is also a theoretical tool. It can be used to study how sensitive
the solution of Ax = b is to changes in an entry in b or in A (perhaps due
to experimental error when acquiring the entries for b or 4). When A is a
3 x 3 matrix with complex entries, Cramer’s rule is sometimes selected for hand
computation because row reduction of [ A b ] with complex arithmetic can be
messy, and the determinants are fairly easy to compute. For a larger n x n matrix
(real or complex), Cramer’s rule is hopelessly inefficient. Computing just one
determinant takes about as much work as solving Ax = b by row reduction.

Determinants as Area or Volume

In the next application, we verify the geometric interpretation of determinants described
in the chapter introduction. Although a general discussion of length and distance in R”
will not be given until Chapter 6, we assume here that the usual Euclidean concepts of
length, area, and volume are already understood for R? and R*.

If A is a2 x 2 matrix, the area of the parallelogram determined by the columns of
A s |det A|. If A is a 3 x 3 matrix, the volume of the parallelepiped determined
by the columns of A4 is |det A|.

PROOF The theorem is obviously true for any 2 x 2 diagonal matrix:

a 0 area of
det[ 0 4 i| %

rectangle

See Fig. 1. It will suffice to show that any 2 x 2 matrix A = [a; a;] can be trans-
formed into a diagonal matrix in a way that changes neither the area of the associated
parallelogram nor |det A|. From Section 3.2, we know that the absolute value of the
determinant is unchanged when two columns are interchanged or a multiple of one
column is added to another. And it is easy to see that such operations suffice to transform
A into a diagonal matrix. Column interchanges do not change the parallelogram at all.
So it suffices to prove the following simple geometric observation that applies to vectors
in R? or R3:

~lad = |

Let a; and a, be nonzero vectors. Then for any scalar ¢, the area of the
parallelogram determined by a; and a, equals the area of the parallelogram
determined by a; and a, + ca;.

To prove this statement, we may assume that a; is not a multiple of a;, for other-
wise the two parallelograms would be degenerate and have zero area. If L is the line
through 0 and a;, then a, + L is the line through a, parallel to L, and a, + ca; is on
this line. See Fig. 2. The points a, and a, + ca; have the same perpendicular distance
to L. Hence the two parallelograms in Fig. 2 have the same area, since they share the
base from 0 to a;. This completes the proof for R2.
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Volume = |abc|.
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a,+L

cal

FIGURE 2 Two parallelograms of equal area.

The proof for R? is similar. The theorem is obviously true for a 3 x 3 diagonal
matrix. See Fig. 3. And any 3 x 3 matrix A can be transformed into a diagonal matrix
using column operations that do not change |det A|. (Think about doing row operations
on AT.) So it suffices to show that these operations do not affect the volume of the
parallelepiped determined by the columns of A.

A parallelepiped is shown in Fig. 4 as a shaded box with two sloping sides. Its
volume is the area of the base in the plane Span {a,, a;} times the altitude of a, above
Span{a;,az}. Any vector a, + ca; has the same altitude because a, + ca; lies in the
plane a, + Span{aj, a;}, which is parallel to Span{a;,a;}. Hence the volume of the
parallelepiped is unchanged when [a; a, as3] is changed to [a; a; +ca; aj].
Thus a column replacement operation does not affect the volume of the parallelepiped.

Since column interchanges have no effect on the volume, the proof is complete. |
) ag ) .3_3
\‘b\’ \‘b\’
> >
. x X . rpﬂ;\ q}x X / . ‘M\
kg a K ¥ ar+ca; a K
W22 & 3 2 &
0 a 0 a,

FIGURE 4 Two parallelepipeds of equal volume.

EXAMPLE 4 Calculate the area of the parallelogram determined by the points
(—2,-2),(0,3), (4,—1), and (6, 4). See Fig. 5(a).

SOLUTION First translate the parallelogram to one having the origin as a vertex. For
example, subtract the vertex (—2,—2) from each of the four vertices. The new paral-
lelogram has the same area, and its vertices are (0,0), (2,5), (6,1), and (8,6). See

(@ (b)

FIGURE 5 Translating a parallelogram does not change its
area.
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THEOREM 10

Fig. 5(b). This parallelogram is determined by the columns of

=[5 0]

Since |det A| = |—28|, the area of the parallelogram is 28. ]

Linear Transformations

Determinants can be used to describe an important geometric property of linear trans-
formations in the plane and in R3. If T is a linear transformation and S is a set in the
domain of T, let T'(.S) denote the set of images of points in S. We are interested in how
the area (or volume) of 7'(S) compares with the area (or volume) of the original set S.
For convenience, when S is a region bounded by a parallelogram, we also refer to S as
a parallelogram.

Let 7 : R? — RR? be the linear transformation determined by a 2 x 2 matrix A. If
S is a parallelogram in R?, then

{area of T'(S)} = |det A| - {area of S} 5)
If T is determined by a 3 x 3 matrix A, and if S is a parallelepiped in R, then
{volume of T'(S)} = |det A]| - {volume of S} (6)

PROOF Consider the 2 x 2 case, with A = [a; a,]. A parallelogram at the origin in
R? determined by vectors b, and b, has the form

S={s1bi +5by:0=<s5 <1,0=<s5 <1}
The image of S under 7" consists of points of the form

T (s1b1 + s2b2) = 51T(b1) + 527 (b2)
= 514b; + s, A4b>
where 0 <51 <1, 0 <s, < 1. It follows that 7'(S) is the parallelogram determined

by the columns of the matrix [ Ab; Ab,]. This matrix can be written as AB, where
B =[b; by]. By Theorem 9 and the product theorem for determinants,

{area of T(S)} = |det AB| = |det A| - |det B|

= |det A| - {area of S} @

An arbitrary parallelogram has the form p + S, where p is a vector and § is a parallelo-
gram at the origin, as above. It is easy to see that 7 transforms p + S into 7' (p) + T(S).
(See Exercise 26.) Since translation does not affect the area of a set,
{areaof T(p + S)} = {area of T (p) + T'(S)}
= {area of T(S)} Translation
= |det A| - {area of S} By equation (7)
= |det A| - {areaof p + S} Translation

This shows that (5) holds for all parallelograms in R?. The proof of (6) for the 3 x 3
case is analogous. [ |
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When we attempt to generalize Theorem 10 to a region in R? or R? that is not
bounded by straight lines or planes, we must face the problem of how to define and
compute its area or volume. This is a question studied in calculus, and we shall only
outline the basic idea for R2. If R is a planar region that has a finite area, then R can
be approximated by a grid of small squares that lie inside R. By making the squares
sufficiently small, the area of R may be approximated as closely as desired by the sum
of the areas of the small squares. See Fig. 6.

=
I

=
~———

FIGURE 6 Approximating a planar region by a union of squares.
The approximation improves as the grid becomes finer.

If T is a linear transformation associated with a 2 x 2 matrix A, then the image of
a planar region R under 7 is approximated by the images of the small squares inside R.
The proof of Theorem 10 shows that each such image is a parallelogram whose area is
|det A| times the area of the square. If R’ is the union of the squares inside R, then the
area of T(R’) is |det A| times the area of R’. See Fig. 7. Also, the area of T'(R’) is close
to the area of 7(R). An argument involving a limiting process may be given to justify
the following generalization of Theorem 10.

7T T T
prd N
i~ ~ T /
/\ /
/i
7/ \ /
; /J ' /
1o /% 45 /
\ ] /
/)
™~ | /
4
A% i
N/ L

FIGURE 7 Approximating 7(R) by a union of parallelograms.

The conclusions of Theorem 10 hold whenever S is a region in R? with finite area
or a region in R3 with finite volume.

EXAMPLE 5 Let a and b be positive numbers. Find the area of the region E
bounded by the ellipse whose equation is

2 2
X X

1 2
_ + N

a? b2=l
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and x = Au, then

(15

I
J

X

AN
0

PRACTICE PROBLEM

SOLUTION We claim that E is the image of the unit disk D under the linear transfor-

a

mation 7" determined by the matrix A = |: 0 ] because if u = |:u1 :|, X = [xl :|,
0 b Up X2

X1
Uy = — and u, = —
a b

It follows that u is in the unit disk, with u% + u% <1, if and only if x is in E, with
(x1/a)* + (x2/b)? < 1. By the generalization of Theorem 10,

{area of ellipse} = {area of T'(D)}

= |det A| - {area of D}
=ab-n(1)* = nab u

Let S be the parallelogram determined by the vectors b; = [é] and b, = [f], and

I -1

let A = [0 2

3.3 EXERCISES

]. Compute the area of the image of S under the mapping x — Ax.

Use Cramer’s rule to compute the solutions of the systems in
Exercises 1-6.

1. 5X1+7X2:3 2. 4X1+ X2:6
2X1+4X2:1 5X1+2X2:7
3. 3)C| - 2.X2 = 7 4. —SX| + SXZ = 9
—le + 6X2 = -5 3.X1 — Xy = -5
5. 2x1+ x = 7 6. 2x; +x0+ x3=
—3X1 + x3 = —8 —x1; + 2X3 =
X2+2X3:—3 3X1+X2+3X3:—2

In Exercises 7-10, determine the values of the parameter s for
which the system has a unique solution, and describe the solution.

7. 65sx1 + 4x, = 5 8. 3sx; — 5x, = 3
I9x; + 25x, = -2 I9x; + 5sx, =2
9. sx; — 25x, = —1 10. 2sx; + x, = 1
3x; +6sx, = 4 35x; + 65x, =2

In Exercises 11-16, compute the adjugate of the given matrix, and
then use Theorem 8 to give the inverse of the matrix.

0o -2 -1 1
11. 30 O 12. |2 =2
-1 1 1 0

13.

—_
e
—_

4. |0 2

30 O 1 2 4
15. | -1 I 0 16. | 0 -3 1
-2 3 2 o 0 3

17. Show that if A is 2 x 2, then Theorem 8 gives the same
formula for A™! as that given by Theorem 4 in Section 2.2.

18. Suppose that all the entries in A are integers and det A = 1.
Explain why all the entries in A™! are integers.

In Exercises 19-22, find the area of the parallelogram whose
vertices are listed.

19. (0,0),(5.2), (6.4), (11,6)
20. (0,0), (—1.3), (4.-5), 3.-2)
21. (—1,0), (0.5), (1,—4), (2, 1)

22. (0,-2), (6.—1), (=3.1), (3.2)

23. Find the volume of the parallelepiped with one vertex at
the origin and adjacent vertices at (1,0,—2), (1,2,4), and
(7,1,0).

24. Find the volume of the parallelepiped with one vertex at
the origin and adjacent vertices at (1,4, 0), (—2,—5,2), and
(=1,2,-1).

25. Use the concept of volume to explain why the determinant of
a 3 x 3 matrix A is zero if and only if A4 is not invertible. Do
not appeal to Theorem 4 in Section 3.2. [Hint: Think about
the columns of A.]

26. Let 7 : R™ — R” be a linear transformation, and let p be a
vector and S asetin R”. Show that the image of p + S under
T is the translated set 7' (p) + 7'(S) in R”.



27.

28.

29.

30.

31.

Let S be the parallelogram determined by the vectors

-2 -2 6 -2
b1—|: 3]andb2—[ 5],andletA—[_3 2].

Compute the area of the image of S under the mapping
X — Ax.

4 0

Repeat Exercise 27 with b; = 7l b, = 11 and

7 2
=1 7]
Find a formula for the area of the triangle whose vertices are

0,v,,and v, in R2.

Let R be the triangle with vertices at (xy, y1), (x2, y2), and
(x3, ¥3). Show that

1 X1 Vi 1
{area of triangle} = 3 det| xo y» 1
X3 V3

[Hint: Translate R to the origin by subtracting one of the
vertices, and use Exercise 29.]

Let T : R® — R? be the linear transformation determined

a 0 0
by the matrix 4 = | 0 b 0 |, where a, b, and ¢ are
0 0 c

positive numbers. Let S be the unit ball, whose bounding
surface has the equation x7 + x3 + x7 = 1.
a. Show that 7'(S) is bounded by the ellipsoid with the
2 2 2
on XL X X5
equation ) + B + PR
b. Use the fact that the volume of the unit ball is 47/3
to determine the volume of the region bounded by the
ellipsoid in part (a).

32.

33.

34.

35.
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Let S be the tetrahedron in R? with vertices at the vectors 0,
e, €, and e3, and let S’ be the tetrahedron with vertices at
vectors 0, vy, vo, and v;. See the figure.

a. Describe a linear transformation that maps S onto S’.

b. Find a formula for the volume of the tetrahedron S’ using
the fact that

{volume of S} = (1/3){area of base} - {height}

[M] Test the inverse formula of Theorem 8 for a random
4 x 4 matrix A. Use your matrix program to compute the
cofactors of the 3 x 3 submatrices, construct the adjugate,
and set B = (adj A)/(det A). Then compute B —inv(A),
where inv(A) is the inverse of A as computed by the matrix
program. Use floating point arithmetic with the maximum
possible number of decimal places. Report your results.

[M] Test Cramer’s rule for a random 4 x 4 matrix A and a
random 4 x 1 vector b. Compute each entry in the solution of
Ax = b, and compare these entries with the entries in A~ 'b.
Write the command (or keystrokes) for your matrix program
that uses Cramer’s rule to produce the second entry of x.

[M] If your version of MATLAB has the £1lops command,
use it to count the number of floating point operations to com-
pute A~! for arandom 30 x 30 matrix. Compare this number
with the number of flops needed to form (adj A)/(det A).

SOLUTION TO PRACTICE PROBLEM

The area of S is | det

1
3

5
1

= 14, and det A = 2. By Theorem 10, the area of the

image of S under the mapping x — AX is

|det A| - {areaof S} =214 = 28

CHAPTER 3 SUPPLEMENTARY EXERCISES

1.

Mark each statement True or False. Justify each answer.
Assume that all matrices here are square.

a. If Ais a2 x 2 matrix with a zero determinant, then one
column of A is a multiple of the other.

b. If two rows of a 3 x 3 matrix A are the same, then
detA = 0.

c. If Ais a3 x 3 matrix, then det54 = 5det A.

d. If A and B are n xn matrices, with detA =2 and
det B = 3, then det(4 + B) = 5.

e. If Aisn x n and det A = 2, then det A° = 6.

If B is produced by interchanging two rows of A, then
det B = det 4.

g. If B is produced by multiplying row 3 of A by 5, then
det B =5 -det A.
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h. If B is formed by adding to one row of A a linear
combination of the other rows, then det B = det 4.

i. detA” = —det A.

j. det(—A) = —det A.

k. detA™A > 0.

1. Any system of n linear equations in n variables can be
solved by Cramer’s rule.

m. If u and v are in R? and det[u v] = 10, then the area
of the triangle in the plane with vertices at 0, u, and v is
10.

n. If 4> =0, thendet 4 = 0.
o. If A is invertible, then det A~! = det A.
p. If Ais invertible, then (det A)(det A™") = 1.

Use row operations to show that the determinants in Exercises 2—4
are all zero.

12 13 14 1 a b+c

15 16 17 3. |1 b a+c

18 19 20 1 c a-+b
a b c

a—+x b+ x c+x

a+y b+y c+y

Compute the determinants in Exercises 5 and 6.

9 1 9 9 9
9 0 9 9 2
4 0 0 5 0
9 0 3 9 0
6 0 0 7 0
4 &8 8 8 5
o 1 0 0 O
6 &8 8 8 7
o & 8 3 0
o 8 2 0 O

Show that the equation of the line in R? through distinct
points (x1, y1) and (x,, y,) can be written as

1 X y
det 1 X1 B! =0
X2 2

Find a 3 x 3 determinant equation similar to that in Exercise 7
that describes the equation of the line through (x;, y;) with
slope m.

Exercises 9 and 10 concern determinants of the following Vander-
monde matrices.

5 1t v

1 a a ) ;
I x Xy X

1 b | V)= 5 3
I xn x5 X

1 ¢ ¢ N 3
1 x5 x5 X3

10.

11.

12.

13.

14.

15.

16.

Use row operations to show that
detT = (b —a)(c —a)(c —b)

Let f(¢) = detV, with xy, x,, x5 all distinct. Explain why
f(t) is a cubic polynomial, show that the coefficient of 3 is
nonzero, and find three points on the graph of f.

Determine the area of the parallelogram determined by the
points (1,4), (—1,5), (3,9), and (5,8). How can you tell
that the quadrilateral determined by the points is actually a
parallelogram?

Use the concept of area of a parallelogram to write a state-
ment about a 2 x 2 matrix A that is true if and only if 4 is
invertible.

Show that if A is invertible, then adj A is invertible, and
djA)'=—4

@dj D)™ = Gea

[Hint: Given matrices B and C, what calculation(s) would

show that C is the inverse of B?]

Let A, B, C, D, and I be n x n matrices. Use the defini-
tion or properties of a determinant to justify the following
formulas. Part (c) is useful in applications of eigenvalues
(Chapter 5).

A 0 1 0

a. det[o 1:|—detA b. det[c D:|—detD
A 0 A B

c. det|:c D:| = (det A)(det D) = det|: 0 D:|

Let A, B, C, and D be n x n matrices with 4 invertible.

a. Find matrices X and Y to produce the block LU factor-
ization

A B| |1 0f] A B
C D| | X 1 0 Y
and then show that

det [é ]l; ] = (det A) - det(D — CA™'B)

b. Show that if AC = CA, then

A B
det[ c D]_det(AD—CB)

Let J be the n xn matrix of all 1’s,
A= (a—Db)I 4+ bJ;thatis,

and consider

a b b - b
b oa b b
A—|b b a b
b b b - a

Confirm that det A = (a — b)""'[a + (n — 1)b] as follows:

a. Subtract row 2 from row 1, row 3 from row 2, and so on,
and explain why this does not change the determinant of
the matrix.



17.

18.

b. With the resulting matrix from part (a), add column 1 to
column 2, then add this new column 2 to column 3, and so
on, and explain why this does not change the determinant.

c. Find the determinant of the resulting matrix from (b).

Let A be the original matrix given in Exercise 16, and let

fa—b b b -+ b
0 a b -+ b
B — 0 b a - b )
0 b b a
b b b b
b a b b
c=1|b b a b
b b b - a

Notice that A, B, and C are nearly the same except that the
first column of A equals the sum of the first columns of B
and C. A linearity property of the determinant function,
discussed in Section 3.2, says that det A = det B + detC.
Use this fact to prove the formula in Exercise 16 by induction
on the size of matrix A.

[M] Apply the result of Exercise 16 to find the determinants
of the following matrices, and confirm your answers using a
matrix program.

o0 0 OO0 W
o0 0 W 0
o0 W O 0
W 0 0 0
W W W W o
W W W oo W
W W o0 W W
W 0 W W W
0 W W W W

19.

20.
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[M] Use a matrix program to compute the determinants of
the following matrices.

- I B
1;; 12 2 2
L5 3 1 2 3 3
- 12 3 4
o1 111
12 2 2 2
1 2 3 3 3
1 2 3 4 4
1 2 3 4 5

Use the results to guess the determinant of the matrix below,
and confirm your guess by using row operations to evaluate
that determinant.

1 1 1 1

1 2 2 2
1 2 3 3
1 2 3 n

[M] Use the method of Exercise 19 to guess the determinant
of

111 1
1 3 3 3
1 3 6 6
1 3 6 3(n—1)

Justify your conjecture. [Hint: Use Exercise 14(c) and the
result of Exercise 19.]
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Vector Spaces

INTRODUCTORY EXAMPLE

Space Flight and Control Systems

Twelve stories high and weighing 75 tons, Columbia rose
majestically off the launching pad on a cool Palm Sunday
morning in April 1981. A product of ten years’ intensive
research and development, the first U.S. space shuttle was a
triumph of control systems engineering design, involving
many branches of engineering—aeronautical, chemical,
electrical, hydraulic, and mechanical.

The space shuttle’s control systems are absolutely
critical for flight. Because the shuttle is an unstable
airframe, it requires constant computer monitoring during
atmospheric flight. The flight control system sends a
stream of commands to aerodynamic control surfaces and
44 small thruster jets. Figure 1 shows a typical closed-
loop feedback system that controls the pitch of the shuttle

during flight. (The pitch is the elevation angle of the nose
cone.) The junction symbols (&) show where signals
from various sensors are added to the computer signals
flowing along the top of the figure.

Mathematically, the input and output signals to an
engineering system are functions. It is important in
applications that these functions can be added, as in
Fig. 1, and multiplied by scalars. These two operations
on functions have algebraic properties that are completely
analogous to the operations of adding vectors in R”
and multiplying a vector by a scalar, as we shall see
in Sections 4.1 and 4.8. For this reason, the set of all
possible inputs (functions) is called a vector space. The
mathematical foundation for systems engineering rests

Commanded Commanded
pitch pitch
rate acceleration Shuttle
N . Controller dynamics
+ + + .
Commanded —+(X) K, K, G,(s) G,(s) Pitch
pitch - T - T -
. . Pitch
I; {;feh F;gtceh ‘acceleration Accelerometer
error error )

Rate gyro

S

N

Inertial measuring unit

1

FIGURE 1 Pitch control system for the space shuttle. (Source: Adapted from Space Shuttle GN&C Operations

Manual, Rockwell International, ©1988.)
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on vector spaces of functions, and Chapter 4 extends the you will see how other vector spaces arise in engineering,

theory of vectors in R” to include such functions. Later on, physics, and statistics.

The mathematical seeds planted in Chapters 1 and 2 germinate and begin to blossom
in this chapter. The beauty and power of linear algebra will be seen more clearly when
you view R” as only one of a variety of vector spaces that arise naturally in applied
problems. Actually, a study of vector spaces is not much different from a study of R”
itself, because you can use your geometric experience with R? and R? to visualize many
general concepts.

Beginning with basic definitions in Section 4.1, the general vector space framework
develops gradually throughout the chapter. A goal of Sections 4.3—4.5 is to demonstrate
how closely other vector spaces resemble R”. Section 4.6 on rank is one of the high
points of the chapter, using vector space terminology to tie together important facts about
rectangular matrices. Section 4.8 applies the theory of the chapter to discrete signals and
difference equations used in digital control systems such as in the space shuttle. Markov
chains, in Section 4.9, provide a change of pace from the more theoretical sections of
the chapter and make good examples for concepts to be introduced in Chapter 5.

4.1 VECTOR SPACES AND SUBSPACES

Much of the theory in Chapters 1 and 2 rested on certain simple and obvious alge-
braic properties of R”, listed in Section 1.3. In fact, many other mathematical systems
have the same properties. The specific properties of interest are listed in the following
definition.

A vector space is a nonempty set V' of objects, called vectors, on which are de-
fined two operations, called addition and multiplication by scalars (real numbers),
subject to the ten axioms (or rules) listed below.! The axioms must hold for all
vectors u, v, and w in V' and for all scalars ¢ and d.

1. The sum of u and v, denoted by u + v, isin V.
2. u+v=v+u
3. W+v)+w=u+(v+w).
4. There is a zero vector 0 in V' such thatu + 0 = u.
5. For each u in V, there is a vector —u in V' such that u + (—u) = 0.
6. The scalar multiple of u by ¢, denoted by cu, isin V.
7. c(u+v) =cu+cv.
8. (c+d)u=cu+du
9. c(du) = (cd)u.
10. lu =u.

ITechnically, V' is a real vector space. All of the theory in this chapter also holds for a complex vector space
in which the scalars are complex numbers. We will look at this briefly in Chapter 5. Until then, all scalars
are assumed to be real.
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Using only these axioms, one can show that the zero vector in Axiom 4 is unique,
and the vector —u, called the negative of u, in Axiom 5 is unique for each u in V.
See Exercises 25 and 26. Proofs of the following simple facts are also outlined in the
exercises:

For each u in V and scalar c,

Ou=20 (D
c0=0 2
—u=(—1u 3)

EXAMPLE 1 The spaces R", where n > 1, are the premier examples of vector
spaces. The geometric intuition developed for R? will help you understand and visualize
many concepts throughout the chapter. [ |

EXAMPLE 2 LetV be the set of all arrows (directed line segments) in three-dimen-
sional space, with two arrows regarded as equal if they have the same length and point
in the same direction. Define addition by the parallelogram rule (from Section 1.3),
and for each v in V, define cv to be the arrow whose length is |c| times the length of
v, pointing in the same direction as v if ¢ > 0 and otherwise pointing in the opposite
direction. (See Fig. 1.) Show that V' is a vector space. This space is a common model
in physical problems for various forces.

SOLUTION The definition of V is geometric, using concepts of length and direction.
No xyz-coordinate system is involved. An arrow of zero length is a single point and
represents the zero vector. The negative of v is (—1)v. So Axioms 1,4, 5, 6, and 10 are

evident. The rest are verified by geometry. For instance, see Figs. 2 and 3. [ |
)\
\il
u
u V+w
u+v+w

FIGURE2 u+v=v+u FIGURE3 (u+v)+w=u+ (v+w).

EXAMPLE 3 LetS be the space of all doubly infinite sequences of numbers (usually
written in a row rather than a column):

Wk = G y—2.9-1.Y0. Y1, Y2, .- -)

If {zx} is another element of S, then the sum { y;} + {zx} is the sequence { yi + zZx}
formed by adding corresponding terms of { y; } and {z;}. The scalar multiple ¢ { y;} is
the sequence {cy }. The vector space axioms are verified in the same way as for R”.
Elements of S arise in engineering, for example, whenever a signal is measured (or
sampled) at discrete times. A signal might be electrical, mechanical, optical, and so on.
The major control systems for the space shuttle, mentioned in the chapter introduction,
use discrete (or digital) signals. For convenience, we will call S the space of (discrete-
time) signals. A signal may be visualized by a graph as in Fig. 4. [ |
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of + g
feo
og
[ ]
0
FIGURE 5
The sum of two vectors
(functions).

FIGURE 4 A discrete-time signal.

EXAMPLE 4 Forn > 0, the set P, of polynomials of degree at most n consists of
all polynomials of the form

p(t) = ag + ait +axt> + - + a,t" )

where the coefficients ay, ..., a, and the variable ¢ are real numbers. The degree of
p is the highest power of ¢ in (4) whose coefficient is not zero. If p(z) = ag # 0, the
degree of p is zero. If all the coefficients are zero, p is called the zero polynomial. The
zero polynomial is included in PP, even though its degree, for technical reasons, is not
defined.

If p is given by (4) and if q(¢) = by + b1t + --- + b,t", then the sum p + q is
defined by

(p+ @) =p@) +q()
= (ao + bo) + (a1 + b))t + -+ (a, + by)t"

The scalar multiple cp is the polynomial defined by
(ep)(t) = cp(t) = cao + (ca))t + -+ + (can)t”

These definitions satisfy Axioms 1 and 6 because p + q and cp are polynomials
of degree less than or equal to n. Axioms 2, 3, and 7-10 follow from properties of the
real numbers. Clearly, the zero polynomial acts as the zero vector in Axiom 4. Finally,
(—1)p acts as the negative of p, so Axiom 5 is satisfied. Thus P, is a vector space.

The vector spaces P, for various n are used, for instance, in statistical trend analysis
of data, discussed in Section 6.8. [ |

EXAMPLE 5 LetV be the set of all real-valued functions defined on a set D). (Typi-
cally, D is the set of real numbers or some interval on the real line.) Functions are added
in the usual way: f 4 g is the function whose value at ¢ in the domain D is f(¢) + g(?).
Likewise, for a scalar ¢ and an f in V, the scalar multiple cf is the function whose value
att is cf(¢). For instance, if D = R, f(r) = 1 + sin2¢, and g(t) = 2 + .5¢, then

f+g)(t)=3+sin2t+ .5t and (2g)(t) =4+1¢

Two functions in V' are equal if and only if their values are equal for every ¢ in D.
Hence the zero vector in V is the function that is identically zero, f(#) = 0 for all ¢, and
the negative of fis (—1)f. Axioms 1 and 6 are obviously true, and the other axioms
follow from properties of the real numbers, so V' is a vector space. [ |

It is important to think of each function in the vector space V of Example 5 as a
single object, as just one “point” or vector in the vector space. The sum of two vectors
f and g (functions in V, or elements of any vector space) can be visualized as in Fig. 5,
because this can help you carry over to a general vector space the geometric intuition
you have developed while working with the vector space R”. See the Study Guide for
help as you learn to adopt this more general point of view.
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A subspace of V.

X

FIGURE 7

X

X

The x;x,-plane as a subspace of

R3.
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Subspaces

In many problems, a vector space consists of an appropriate subset of vectors from some
larger vector space. In this case, only three of the ten vector space axioms need to be
checked; the rest are automatically satisfied.

A subspace of a vector space V' is a subset H of V' that has three properties:

a. The zero vector of V isin H .2

b. H is closed under vector addition. That is, for each u and v in H, the sum
u+visin H.

c. H is closed under multiplication by scalars. That is, for each u in H and each
scalar ¢, the vector cu is in H.

Properties (a), (b), and (c) guarantee that a subspace H of V is itself a vector
space, under the vector space operations already defined in V. To verify this, note
that properties (a), (b), and (c) are Axioms 1, 4, and 6. Axioms 2, 3, and 7-10 are
automatically true in H because they apply to all elements of 1/, including those in H.
Axiom 5 is also true in H, because if wis in H, then (—1)uis in H by property (c), and
we know from equation (3) on page 191 that (—1)u is the vector —u in Axiom 5.

So every subspace is a vector space. Conversely, every vector space is a subspace
(of itself and possibly of other larger spaces). The term subspace is used when at least
two vector spaces are in mind, with one inside the other, and the phrase subspace of V
identifies V' as the larger space. (See Fig. 6.)

EXAMPLE 6 The set consisting of only the zero vector in a vector space V is a
subspace of V', called the zero subspace and written as {0}. [ ]

EXAMPLE 7 LetP be the set of all polynomials with real coefficients, with opera-
tions in P defined as for functions. Then PP is a subspace of the space of all real-valued
functions defined on R. Also, for each n > 0, P, is a subspace of PP, because P, is a
subset of [P that contains the zero polynomial, the sum of two polynomials in P, is also
in P, and a scalar multiple of a polynomial in P, is also in IP,,. |

EXAMPLE 8 The vector space R? is not a subspace of R?® because R? is not even a
subset of R3. (The vectors in R3 all have three entries, whereas the vectors in R? have
only two.) The set
s
H = t | :sandt are real
0

is a subset of R? that “looks” and “acts” like R?, although it is logically distinct from
R2. See Fig. 7. Show that H is a subspace of R3.

SOLUTION The zero vector is in H, and H is closed under vector addition and scalar
multiplication because these operations on vectors in H always produce vectors whose
third entries are zero (and so belong to H). Thus H is a subspace of R?. ]

2Some texts replace property (a) in this definition by the assumption that A is nonempty. Then (a) could be
deduced from (c) and the fact that Ou = 0. But the best way to test for a subspace is to look first for the zero
vector. If 0 is in H, then properties (b) and (c) must be checked. If 0 is not in H, then H cannot be a
subspace and the other properties need not be checked.



194 CHAPTER 4 Vector Spaces

N

FIGURE 8

A line that is not a vector space.

FIGURE 9
An example of a subspace.

THEOREM 1

EXAMPLE 9 A plane in R? not through the origin is not a subspace of R3, because
the plane does not contain the zero vector of R*. Similarly, a line in R? not through the
origin, such as in Fig. 8, is not a subspace of R?. [ |

A Subspace Spanned by a Set

The next example illustrates one of the most common ways of describing a subspace.
As in Chapter 1, the term linear combination refers to any sum of scalar multiples of
vectors, and Span {vy, ..., v,} denotes the set of all vectors that can be written as linear
combinations of vy,...,v,.

EXAMPLE 10 Given v, and v, in a vector space V, let H = Span{v;, v5}. Show
that H is a subspace of V.

SOLUTION The zero vector is in H, since 0 = Ov; + Ov,. To show that H is closed
under vector addition, take two arbitrary vectors in H, say,

u=svi+s5v, and wW=1H1HV|+ LV,
By Axioms 2, 3, and 8 for the vector space 1/,

u+w=(s;v] + 52v2) + ({;v] + 1,v2)
= (51 +1)vi + (52 +12)v2

Sou + wis in H. Furthermore, if ¢ is any scalar, then by Axioms 7 and 9,
cu = c(s1vy + 52v2) = (¢s1)vy + (¢cs52)va

which shows that cu is in H and H is closed under scalar multiplication. Thus H is a
subspace of V. [ |

In Section 4.5, you will see that every nonzero subspace of R?, other than R? itself,
is either Span {vy, v,} for some linearly independent v; and v, or Span {v} for v # 0. In
the first case, the subspace is a plane through the origin; in the second case, it is a line
through the origin. (See Fig. 9.) It is helpful to keep these geometric pictures in mind,
even for an abstract vector space.

The argument in Example 10 can easily be generalized to prove the following
theorem.

If vi,...,v, are in a vector space V, then Span{vy,...,V,} is a subspace of V.
We call Span {vy,...,v,} the subspace spanned (or generated) by {v,...,v,}.
Given any subspace H of V', a spanning (or generating) set for H isaset {vy,...,v,}

in H such that H = Span{vy,...,v,}.
The next example shows how to use Theorem 1.

EXAMPLE 11 Let H be the set of all vectors of the form (a —3b,b —a,a,b),
where a and b are arbitrary scalars. That is, let H = {(¢ —3b,b —a,a,b) : a and b in
R}. Show that H is a subspace of R*.
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SOLUTION Write the vectors in H as column vectors. Then an arbitrary vector in H
has the form

a—3b 1 -3
b—a -1 1
a | = 1|Th] o
b 1

t t

Vi \5)

This calculation shows that H = Span {v, v,}, where v and v, are the vectors indicated
above. Thus H is a subspace of R* by Theorem 1. |

Example 11 illustrates a useful technique of expressing a subspace H as the set
of linear combinations of some small collection of vectors. If H = Span{vy,...,v ,,},
we can think of the vectors vy, ..., v, in the spanning set as “handles” that allow us to
hold on to the subspace H. Calculations with the infinitely many vectors in H are often
reduced to operations with the finite number of vectors in the spanning set.

EXAMPLE 12 For what value(s) of 2 will y be in the subspace of R* spanned by

Vi, V2, V3, if
1 5 -3 —4
vi=| -1, v, =| =4 |, V3 = 1|, and y= 3
-2 —7 0 h

SOLUTION This question is Practice Problem 2 in Section 1.3, written here with the
term subspace rather than Span{vi,v,,v3}. The solution there shows that y is in
Span{v;, v,,v3} if and only if 4~ = 5. That solution is worth reviewing now, along
with Exercises 11-16 and 19-21 in Section 1.3. [ |

Although many vector spaces in this chapter will be subspaces of R”, it is important
to keep in mind that the abstract theory applies to other vector spaces as well. Vector
spaces of functions arise in many applications, and they will receive more attention later.

PRACTICE PROBLEMS

1. Show that the set H of all points in R? of the form (3s,2 + 5s) is not a vector space,
by showing that it is not closed under scalar multiplication. (Find a specific vector
u in H and a scalar ¢ such that cu is not in H.)

2. Let W = Span{vy,... ,V,,}, where vi, ..., v, are in a vector space V. Show that vj
isin W for 1 <k < p. [Hint: First write an equation that shows that v; is in W.
Then adjust your notation for the general case.]

1. Let V' be the first quadrant in the xy-plane; that is, let that cu is not in V. (This is enough to show that V' is not

RHp

a vector space.)

2. Let W be the union of the first and third quadrants in the xy-

. x|
a. IfuandvareinV,isu+ vin V? Why? plane. That is, let W = {[y] Xy = 0}-

b. Find a specific vector u in V' and a specific scalar ¢ such a. Ifuisin W and c is any scalar, is cu in W? Why?
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3.

4.

b. Find specific vectors u and v in W such that u + v is
not in W. This is enough to show that W is not a vector
space.

Let H be the set of points inside and on the unit circle in
the xy-plane. That is, let H = {[;] (x4 y? < 1}. Find

a specific example —two vectors or a vector and a scalar—to
show that H is not a subspace of R2.

Construct a geometric figure that illustrates why a line in R?
not through the origin is not closed under vector addition.

In Exercises 5-8, determine if the given set is a subspace of P, for
an appropriate value of n. Justify your answers.

5.
6.
7.

10.

11.

12.

13.

14.

All polynomials of the form p(¢) = at?, where a is in R.
All polynomials of the form p(t) = a + t?, where a is in R.

All polynomials of degree at most 3, with integers as coeffi-
cients.

All polynomials in P, such that p(0) = 0.

-2t

Let H be the set of all vectors of the form 5t

3t

vector v in R3 such that H = Span {v}. Why does this show
that H is a subspace of R3?

. Find a

3t
Let H be the set of all vectors of the form 0
=7t
is any real number. Show that H is a subspace of R*. (Use
the method of Exercise 9.)

, Where ¢

2b + 3¢
—b ,
2¢
where b and ¢ are arbitrary. Find vectors u and v such that
W = Span {u, v}. Why does this show that ¥ is a subspace
of R3?

Let W be the set of all vectors of the form

25 + 4t 7]
2s
2s — 3t
5t
Show that W is a subspace of R*. (Use the method of
Exercise 11.)

Let W be the set of all vectors of the form

1 2 4 3
Letv, = 0|, vo=1|1],v3=1|2 |,andw= | 1
-1 3 6 2

a. Iswin{vy,v,,v;}? How many vectors are in {vy, V5, v3}?
b. How many vectors are in Span {v;, v, v3}?
c. Is win the subspace spanned by {vi, v, v3}? Why?

1

Let v, v,, v3 be as in Exercise 13, and let w = 3
14

Isw

in the subspace spanned by {v;, v, v3}? Why?

In Exercises 15-18, let W be the set of all vectors of the form
shown, where a, b, and ¢ represent arbitrary real numbers. In
each case, either find a set S of vectors that spans W or give an
example to show that W is not a vector space.

15.

17.

19.

20.

[ 2a + 3b 1
-1 16. 3a — 5b
| 2a —5b | 3b +2a
[2a—b 4a + 3b
3b—c 0
3c—a 18. a+3b+c
D | 3b—2¢

If a mass m is placed at the end of a spring, and if the mass is
pulled downward and released, the mass—spring system will
begin to oscillate. The displacement y of the mass from its
resting position is given by a function of the form

y(t) = ¢ coswt + ¢; sinwt 5)

where w is a constant that depends on the spring and the mass.
(See the figure below.) Show that the set of all functions
described in (5) (with @ fixed and ¢, ¢, arbitrary) is a vector
space.

The set of all continuous real-valued functions defined on a
closed interval [a, b] in R is denoted by Ca, b]. This set is
a subspace of the vector space of all real-valued functions
defined on [a, b].

a. What facts about continuous functions should be proved
in order to demonstrate that C [a, b] is indeed a subspace
as claimed? (These facts are usually discussed in a
calculus class.)

b. Show that {f in C[a,b]: f(a) = f(b)} is a subspace of
Cla,b].

For fixed positive integers m and n, the set M,,x, of all m xn
matrices is a vector space, under the usual operations of addition
of matrices and multiplication by real scalars.

21.

22.

Determine if the set H of all matrices of the form [ ?) 5 ]

is a subspace of M.

Let F be a fixed 3 x 2 matrix, and let H be the set of all
matrices A in M, with the property that FA = 0 (the zero
matrix in Msx4). Determine if H is a subspace of M,x4.



In Exercises 23 and 24, mark each statement True or False. Justify
each answer.

23. a. Iff is a function in the vector space V of all real-valued
functions on R and if f(#) = O for some ¢, then f is the
zero vector in V.

b. A vector is an arrow in three-dimensional space.

c. A subset H of a vector space V is a subspace of V' if the
zero vector is in H.

d. A subspace is also a vector space.

e. Analog signals are used in the major control systems for
the space shuttle, mentioned in the introduction to the
chapter.

24.

e

A vector is any element of a vector space.

b. Ifuisa vectorina vector space V, then (—1)u is the same
as the negative of u.

c. A vector space is also a subspace.
d. RZis a subspace of R3.

e. A subset H of a vector space V is a subspace of V' if the
following conditions are satisfied: (i) the zero vector of
Visin H, (ii) u, v, and u + v are in H, and (iii) ¢ is a
scalar and cuisin H.

Exercises 25-29 show how the axioms for a vector space V' can
be used to prove the elementary properties described after the
definition of a vector space. Fill in the blanks with the appropriate
axiom numbers. Because of Axiom 2, Axioms 4 and 5 imply,
respectively, that 0 + u = uw and —u + u = 0 for all u.

25. Complete the following proof that the zero vector is
unique.  Suppose that w in V' has the property that
u+w=w+u=uforalluin V. Inparticular, ) + w = 0.
But0+w=w,by Axiom ___. Hencew =0+ w = 0.

26. Complete the following proof that —u is the unique vector
in V such that u+ (—u) = 0. Suppose that w satisfies
u + w = 0. Adding —u to both sides, we have

(—u)+u+w=(u+0

[(—u) +u]+w=(—u)+0 by Axiom (a)
0+w=(—u)+0 by Axiom _____ (b)
w=-u by Axiom (c)

27. Fill in the missing axiom numbers in the following proof that
Ou = 0 foreveryuin V.

Ou = (0+ 0)u = Ou + Ou by Axiom (a)

Add the negative of Ou to both sides:

Ou + (—Ou) = [Ou + Ou] + (—Ou)

Ou + (—Ou) = Ou + [Ou + (—Ou)] by Axiom ____ (b)
0=0u+0 by Axiom (©)
0 =0u by Axiom ______(d)

28. Fill in the missing axiom numbers in the following proof that

29.

30.

31.

32.

33.

34.
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c0 = 0 for every scalar c.

c0=c(0+0) by Axiom (a)
=c0+c0 by Axiom ______(b)
Add the negative of c0 to both sides:
c0 + (—c0)=[c0 + c0] + (—c0)
c0 + (—c0)=c0 + [c0 + (—c0)] by Axiom (¢)
0=c0+0 by Axiom ____ (d)
0=c0 by Axiom (e)

Prove that (—1)u = —u. [Hint: Show that u + (—1)u = 0.
Use some axioms and the results of Exercises 27 and 26.]

Suppose cu = 0 for some nonzero scalar c. Show thatu = 0.
Mention the axioms or properties you use.

Let u and v be vectors in a vector space V', and let H be any
subspace of V' that contains both u and v. Explain why H
also contains Span {u, v}. This shows that Span {u, v} is the
smallest subspace of ' that contains both u and v.

Let H and K be subspaces of a vector space V. The
intersection of H and K, written as H N K, is the set of
v in V that belong to both H and K. Show that H N K is
a subspace of V. (See the figure.) Give an example in R?
to show that the union of two subspaces is not, in general, a
subspace.

Given subspaces H and K of a vector space V, the sum of
H and K, written as H + K, is the set of all vectors in V/
that can be written as the sum of two vectors, one in H and
the other in K; that is,

H + K ={w:w=u+v forsomeuin H
and some v in K}
a. Show that H + K is a subspace of V.

b. Show that H is a subspace of H + K and K is a subspace
of H + K.

Suppose uy,...,u, and vy,...,V, are vectors in a vector
space V, and let

H = Span{uy,...,u,}and K = Span{vy,...,v,}
Show that H + K = Span{u;,...,u,,vi,...,V4}.
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35.

36.

37.

[M] Show that w is in the subspace of R* spanned by
Vi, Vs, V3, where

9 8 —4 -7
W = —4 vV, = -4 Vy, = 3 V3 = 6
—4 -3 [ -2 " -5

7 9 -8 —18

[M] Determine if y is in the subspace of R* spanned by the
columns of A, where

—4 3 -5 -9
-8 8 7 —6
Y=| 6| 45| 5 s 3
-5 2 2 -9

[M] The vector space H = Span{l,cost,cos*t,cos®t}
contains at least two interesting functions that will be used

38.

in a later exercise:

f(t) =1 —8cos’t + 8cos*t

g(t) = —1 + 18cos*t — 48 cos*t + 32 cos ¢

Study the graph of f for 0 < ¢ < 27, and guess a simple for-
mula for f(¢). Verify your conjecture by graphing the differ-

ence between 1 + f(¢) and your formula for f(¢). (Hopefully,
you will see the constant function 1.) Repeat for g.

[M] Repeat Exercise 37 for the functions
f(1) = 3sint — 4sin®¢

g(t) = 1 —8sin*t + 8sin*s

h(7) = 5sint —20sin’ 4+ 165sin’ ¢

in the vector space Span {1,sinz,sin’z, ..., sin’ ¢}.

SOLUTIONS TO PRACTICE PROBLEMS

1. Take any u in H —say, u = [;i|—and take any ¢ # 1—say, ¢ =2. Then

cu = [ 12:| If this is in H , then there is some s such that

7] = 1]

That is, s = 2 and s = 12/5, which is impossible. So 2u is not in H and H is not a

vector space.

2. vi=1vi +0vy +--- 4+ 0v).

This expresses v; as a linear combination of

Vi,...,Vp,s0vyisin W. In general, v is in W because

Vi =0vi 4+ + 0V + v + 0V + -+ 4+ 0v,

4.2  NULL SPACES, COLUMN SPACES, AND LINEAR TRANSFORMATIONS

In applications of linear algebra, subspaces of R” usually arise in one of two ways: (1) as
the set of all solutions to a system of homogeneous linear equations or (2) as the set
of all linear combinations of certain specified vectors. In this section, we compare and
contrast these two descriptions of subspaces, allowing us to practice using the concept of
a subspace. Actually, as you will soon discover, we have been working with subspaces
ever since Section 1.3. The main new feature here is the terminology. The section
concludes with a discussion of the kernel and range of a linear transformation.

The Null Space of a Matrix

Consider the following system of homogeneous equations:

X1 —3X2—2X3=0

6]

—5x1 4+ 9% + x3=0
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In matrix form, this system is written as Ax = 0, where

1 -3 -2
A:[—s 9 1} @

Recall that the set of all x that satisfy (1) is called the solution set of the system (1).
Often it is convenient to relate this set directly to the matrix 4 and the equation Ax = 0.
We call the set of x that satisfy Ax = 0 the null space of the matrix A.

The null space of an m x n matrix A, written as Nul A, is the set of all solutions
of the homogeneous equation Ax = 0. In set notation,

Nul 4 = {x: xis in R" and Ax = 0}

A more dynamic description of Nul 4 is the set of all x in R” that are mapped into
the zero vector of R” via the linear transformation x — Ax. See Fig. 1.

FIGURE 1
5
EXAMPLE 1 Let A be the matrix in (2) above, and let u = 3 |. Determine if
-2
u belongs to the null space of A.
SOLUTION To test if u satisfies Au = 0, simply compute
5
Au = 1 -3 =2 3| = 5— 944 |0
-5 9 1 5 T -25+427-2|" |0
Thus u is in Nul 4. n

The term space in null space is appropriate because the null space of a matrix is a
vector space, as shown in the next theorem.

THEOREM 2 The null space of an m x n matrix A is a subspace of R”. Equivalently, the
set of all solutions to a system Ax = 0 of m homogeneous linear equations in
n unknowns is a subspace of R”.
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PROOF Certainly Nul A is a subset of R” because A has n columns. We must show
that Nul A satisfies the three properties of a subspace. Of course, 0 is in Nul 4. Next,
let u and v represent any two vectors in Nul A. Then

Au=0 and Av=0

To show that u + v is in Nul A, we must show that A(u + v) = 0. Using a property of
matrix multiplication, compute

Aw+v) =Au+Av=0+0=0

Thus u + v is in Nul 4, and Nul 4 is closed under vector addition. Finally, if ¢ is any
scalar, then
A(cu) = c(Au) =¢(0) =0

which shows that cu is in Nul A. Thus Nul 4 is a subspace of R”. [ |

EXAMPLE 2 Let H be the set of all vectors in R* whose coordinates a, b, c, d
satisfy the equations a — 2b + 5¢ = d and ¢ —a = b. Show that H is a subspace of
R4,

SOLUTION Rearrange the equations that describe the elements of H, and note that H
is the set of all solutions of the following system of homogeneous linear equations:

a—2b+5—-d=0
—a— b+ c =0

By Theorem 2, H is a subspace of R4 |

It is important that the linear equations defining the set H are homogeneous.
Otherwise, the set of solutions will definitely not be a subspace (because the zero vector
is not a solution of a nonhomogeneous system). Also, in some cases, the set of solutions
could be empty.

An Explicit Description of Nul 4

There is no obvious relation between vectors in Nul A and the entries in A. We say that
Nul A4 is defined implicitly, because it is defined by a condition that must be checked.
No explicit list or description of the elements in Nul A is given. However, solving
the equation Ax = 0 amounts to producing an explicit description of Nul A. The next
example reviews the procedure from Section 1.5.

EXAMPLE 3 Find a spanning set for the null space of the matrix

-3 6 -1 1 -7
A=| 1 =2 2 3 -1
2 -4 5 8 —4

SOLUTION The first step is to find the general solution of Ax = 0 in terms of free
variables. Row reduce the augmented matrix [ A 0] to reduced echelon form in order
to write the basic variables in terms of the free variables:

1 2 0 -1 3 0 X1 —2xp — x4+ 3x5=0
0 O 1 2 =2 0], X3+ 2x4 —2x5=0
o o0 O o0 0 o0 0=0
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The general solution is x; = 2x, + x4 — 3x5, X3 = —2x4 + 2x5, with x5, x4, and x5
free. Next, decompose the vector giving the general solution into a linear combination
of vectors where the weights are the free variables. That is,

X1 2x7 + x4 — 3Xx5 2 1 -3
X2 X2 1 0 0
X3 | = —2x4 + 2X5 =xo| O | +x4 =2 | + x5 2
X4 X4 0 1 0
X5 X5 0 0 1
1 1 1
u v w
= XoUu + X4V + X5W 3)

Every linear combination of u, v, and w is an element of Nul A. Thus {u,v,w} is a
spanning set for Nul 4. [ |

Two points should be made about the solution of Example 3 that apply to all
problems of this type where Nul A contains nonzero vectors. We will use these facts
later.

1. The spanning set produced by the method in Example 3 is automatically linearly
independent because the free variables are the weights on the spanning vectors. For
instance, look at the 2nd, 4th, and 5th entries in the solution vector in (3) and note
that x,u + x4v 4 x5w can be 0 only if the weights x,, x4, and x5 are all zero.

2. When Nul A4 contains nonzero vectors, the number of vectors in the spanning set for
Nul 4 equals the number of free variables in the equation Ax = 0.

The Column Space of a Matrix

Another important subspace associated with a matrix is its column space. Unlike the
null space, the column space is defined explicitly via linear combinations.

The column space of an m x n matrix A, written as Col A, is the set of all linear
combinations of the columns of A. If A = [a; --- a, ], then

Col A = Span{ay,...,a,}

Since Span {ay, ..., a,} is a subspace, by Theorem 1, the next theorem follows from
the definition of Col A and the fact that the columns of 4 are in R™.

The column space of an m x n matrix A is a subspace of R".

Note that a typical vector in Col A can be written as Ax for some x because the
notation Ax stands for a linear combination of the columns of 4. That is,

Col A = {b : b = Ax for some x in R"}

The notation Ax for vectors in Col A also shows that Col A4 is the range of the linear
transformation x — Ax. We will return to this point of view at the end of the section.
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EXAMPLE 4 Find a matrix A such that W = Col 4.
6a —b
W = a+b |:a,binR
—Ta

SOLUTION First, write W as a set of linear combinations.

6 —1 6 —1
W =<a 1+5b 1 |:a,binR ; = Span 11,
=7 0 =7 0
6 —
Second, use the vectors in the spanning set as the columns of 4. Let A = 1 1
-7 0
Then W = Col A, as desired. |

Recall from Theorem 4 in Section 1.4 that the columns of A span R” if and only if
the equation Ax = b has a solution for each b. We can restate this fact as follows:

The column space of an m X n matrix A is all of R” if and only if the equation
Ax = b has a solution for each b in R™.

The Contrast Between Nul 4 and Col 4

It is natural to wonder how the null space and column space of a matrix are related. In
fact, the two spaces are quite dissimilar, as Examples 5-7 will show. Nevertheless,
a surprising connection between the null space and column space will emerge in
Section 4.6, after more theory is available.

EXAMPLE 5 Let

2 4 =2 1
A=|-2 -5 T 3
3 7 -8 6

a. If the column space of A is a subspace of R¥, what is k?
b. If the null space of A4 is a subspace of R¥, what is k?

SOLUTION

a. The columns of A each have three entries, so Col A is a subspace of R¥ , Where
k = 3.

b. A vector x such that Ax is defined must have four entries, so Nul A4 is a subspace of
R*, where k = 4. [ |

When a matrix is not square, as in Example 5, the vectors in Nul A and Col A4 live
in entirely different “universes.” For example, no linear combination of vectors in R>
can produce a vector in R*. When A4 is square, Nul A and Col 4 do have the zero vector

in common, and in special cases it is possible that some nonzero vectors belong to both
Nul 4 and Col 4.
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EXAMPLE 6 With 4 as in Example 5, find a nonzero vector in Col A and a nonzero
vector in Nul 4.

2
SOLUTION It is easy to find a vector in Col A. Any column of 4 will do, say, | —2
3

To find a nonzero vector in Nul 4, row reduce the augmented matrix [ A 0] and obtain

1 0 9 0 0
[4 0]~|0 1 =5 0 0
0 0 0 1 0

Thus, if x satisfies Ax = 0, then x; = —9x3, x, = 5x3, x4 = 0, and x3 is free. As-
signing a nonzero value to x3—say, x3 = 1 —we obtain a vector in Nul A, namely,
x = (-9,5,1,0). [ ]
5 3
EXAMPLE 7 With A as in Example 5, letu = ] andv=| —1
3
0

a. Determine if u is in Nul A. Could u be in Col A?
b. Determine if v is in Col A. Could v be in Nul A?

SOLUTION

a. An explicit description of Nul A is not needed here. Simply compute the product
Au.

2 4 -2 1 _; 0 0
Au=|-2 -5 7 3|l 7|=|-3]#]0
37 8 6], 3 0

Obviously, u is not a solution of Ax = 0, souis notin Nul 4. Also, with four entries,
u could not possibly be in Col 4, since Col 4 is a subspace of R3.

b. Reduce [A V] to an echelon form.

2 4 -2 1 3 2 4 -2 1 3
[A4 v]=|-2 -5 7 3 —1|~|0 1 =5 -4 =2
37 -8 6 3 0 0 0 17 1

At this point, it is clear that the equation Ax = v is consistent, so v is in Col A. With
only three entries, v could not possibly be in Nul 4, since Nul A is a subspace of
R*. ]

The table on page 204 summarizes what we have learned about Nul 4 and Col A.
Item 8 is a restatement of Theorems 11 and 12(a) in Section 1.9.

Kernel and Range of a Linear Transformation

Subspaces of vector spaces other than R” are often described in terms of a linear
transformation instead of a matrix. To make this precise, we generalize the definition
given in Section 1.8.
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Contrast Between Nul A and Col A for an m x n Matrix A

Nul A

Col 4

. Nul 4 is a subspace of R”.
. Nul 4 is implicitly defined; that is, you are

given only a condition (Ax = 0) that vec-
tors in Nul A must satisfy.

. It takes time to find vectors in Nul A. Row

operationson [ A 0] are required.

. There is no obvious relation between Nul A

and the entries in A.

. A typical vector v in Nul 4 has the property

that Av = 0.

. Given a specific vector v, it is easy to tell if

v is in Nul A. Just compute Av.

. Nul A = {0} if and only if the equation

Ax = 0 has only the trivial solution.

. Nul 4 = {0} if and only if the linear trans-

formation X — AX is one-to-one.

. Col A is a subspace of R™.
. Col 4 is explicitly defined; that is, you are

told how to build vectors in Col A.

. It is easy to find vectors in Col A. The

columns of A are displayed; others are
formed from them.

. There is an obvious relation between Col A

and the entries in A, since each column of
Aisin Col A.

. A typical vector v in Col A has the property

that the equation Ax = v is consistent.

. Given a specific vector v, it may take time

to tell if v is in Col A. Row operations on
[A v]are required.

. Col A = R™ if and only if the equation

Ax = b has a solution for every b in R™.

. Col A = R™ if and only if the linear trans-

formation x — Ax maps R” onto R".

A linear transformation 7" from a vector space V' into a vector space W is a rule
that assigns to each vector x in V' a unique vector 7'(x) in W, such that

@) Ta+v)=Tw +T(v)
@ii) T(cu) =cT(u)

for allu, v in V, and
for all w in V' and all scalars c.

The kernel (or null space) of such a T is the set of all w in V' such that 7'(u) = 0
(the zero vector in W). The range of T is the set of all vectors in W of the form 7 (x)
for some x in V. If T happens to arise as a matrix transformation—say, 7'(x) = Ax
for some matrix A—then the kernel and the range of 7" are just the null space and the
column space of A, as defined earlier.

It is not difficult to show that the kernel of 7" is a subspace of V. The proof is
essentially the same as the one for Theorem 2. Also, the range of T is a subspace of W'.
See Fig. 2 and Exercise 30.

o rﬂaif’é T Ran
eM

Kernel is a
subspace of V

Range is a
subspace of W

FIGURE 2 Subspaces associated with
a linear transformation.

In applications, a subspace usually arises as either the kernel or the range of an
appropriate linear transformation. For instance, the set of all solutions of a homoge-
neous linear differential equation turns out to be the kernel of a linear transformation.
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Typically, such a linear transformation is described in terms of one or more derivatives
of a function. To explain this in any detail would take us too far afield at this point. So
we consider only two examples. The first explains why the operation of differentiation
is a linear transformation.

EXAMPLE 8 (Calculus required) Let V be the vector space of all real-valued func-
tions f defined on an interval [a, b] with the property that they are differentiable and
their derivatives are continuous functions on [, b]. Let W be the vector space C|a, b]
of all continuous functions on [a,b], and let D : V — W be the transformation that
changes f in V into its derivative f”. In calculus, two simple differentiation rules are

D(f +¢)=D(f)+ D(g) and D(cf)=cD(f)

That is, D is a linear transformation. It can be shown that the kernel of D is the set of
constant functions on [a, b] and the range of D is the set W of all continuous functions
on [a, b]. ]

EXAMPLE 9 (Calculus required) The differential equation
y' +w’y =0 )

where w is a constant, is used to describe a variety of physical systems, such as the
vibration of a weighted spring, the movement of a pendulum, and the voltage in an
inductance-capacitance electrical circuit. The set of solutions of (4) is precisely the
kernel of the linear transformation that maps a function y = f(¢) into the function
f"(t) + »> f(t). Finding an explicit description of this vector space is a problem in
differential equations. The solution set turns out to be the space described in Exercise 19
in Section 4.1. [ |

PRACTICE PROBLEMS

a
1. Let W = b|:a—3b—c=0;. Show in two different ways that W is a
¢

subspace of R3. (Use two theorems.)

7 -3 5 2 7
2. letA=| -4 1 =5 |,v= 1 |,andw = 6 |. Suppose you know that
-5 2 —4 -1 =3

the equations Ax = v and Ax = w are both consistent. What can you say about the
equation AX = v + w?

1. Determine if w = |:

|

3
6
-8

-5
-2
4

=3
0
1

1
3

—4

}.

:| is in Nul A, where

1
2. Determine if w = |:—1 :| is in Nul A, where
1

2 6 4
A=]-3 2 5/
-5 —4 1
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In Exercises 3-6, find an explicit description of Nul 4, by listing ~ 21. With A as in Exercise 17, find a nonzero vector in Nul A and

vectors that span the null space. a nonzero vector in Col 4.

3. 0A= 1 2 4 O] 22. With A as in Exercise 18, find a nonzero vector in Nul A and
L0 1 3 -2 a nonzero vector in Col A.
1 -3 2 0 [—

4. 4= 0O 0 3 0] 23. Let A = _f g]andW:[f]. Determine if w is in
1 -4 0 2 0 Col A. Is w in Nul A?

> A= 8 8 (1)_(5) g [10 -8 —2 -2 2
L 0o 2 2 =2 2 .
- 3 —4 _3 . 24, LetA = 1 -1 6 o0 andw = 0 . Determine

6. A={0 1 -3 1 0 L1 1 0 =2 2
L0 0 0 0 0 if wis in Col A. Is w in Nul 4?

In Exercises 7—14, either use an appropriate theorem to show that
the given set, W, is a vector space, or find a specific example to
the contrary.

_ 25. a. The null space of A4 is the solution set of the equation

In Exercises 25 and 26, A denotes an m X n matrix. Mark each
statement True or False. Justify each answer.

a r Ax = 0.
7. ZZ atbte=20 8 S dr=2=3s+1 b. The null space of an m x n matrix is in R”.
- c. The column space of A is the range of the mapping
p a X > Ax.
q |.p—3q=4s b| 3a+b=c . . . . om
9 r | 2p =s+5r 10. e P ashtoe=2d d. If the equation Ax = b is consistent, then Col 4 is R".
s d e. The kernel of a linear transformation is a vector space.
~ - - Col A is the set of all vectors that can be written as Ax for
s —2t 3p—5¢q some X
3+ 3s 4q ’
11. . s, t real 12. . p,q real
352"' ! P | 26. a. A null space is a vector space.
LA L4+ b. The column space of an m x n matrix is in R".
" ¢ _d6d Jreatl 14 - +23l | c. Col A is the set of all solutions of Ax = b.
. :c, . —2t | :s,t . .
¢ ¢ area gs —¢ 5. trea d. Nul 4 is the kernel of the mapping x — Ax.
- - N e. The range of a linear transformation is a vector space.
In Exercises 15 and 16, find A such that the given set is Col A. . . .
f. The set of all solutions of a homogeneous linear differen-
25 +1 tial equation is the kernel of a linear transformation.
1 r—s+2t | |
5. 3+ ir.s,trea 27. Itcan be shown that a solution of the system below is x; = 3,
2r—s—t X, = 2, and x3 = —1. Use this fact and the theory from this
- section to explain why another solution is x; = 30, x, = 20,
b—c and x3 = —10. (Observe how the solutions are related, but
2b+3d . make no other calculations.)
16. b+ 3¢ —3d . b, c,d real
C+d X1—3X2—3X3:O

. . . . —2X1 + 4X2 + 2X3 =0
For the matrices in Exercises 17-20, (a) find k such that Nul A4 is

a subspace of R, and (b) find k such that Col 4 is a subspace of —Xi+ 5% 4+ Tx3 =0
RE. 28. Consider the following two systems of equations:
6 —4 5 =2 3 5X1+ X2—3X3=0 5X1+ X2—3X3= 0
17. A= :3 2 18. A= _(1) _(2) :é —9x; + 26 + 55 =1 —9x +2x +5x5= 5
9 —6 _5 7 2 4x1 —+ Xy — 6X3 = 9 4)C1 + Xy — 6X3 =45
It can be shown that the first system has a solution. Use
4 5 -2 6 0 . . . .
19. A= 1 1 0 1 0 this fact and the theory from this section to explain why the

second system must also have a solution. (Make no row
20 A=[1 -3 2 0 -5] operations.)



29.

30.

31.

32.

33.

34.
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Prove Theorem 3 as follows: Given an m X n matrix A, an
element in Col A has the form Ax for some x in R”. Let Ax
and Aw represent any two vectors in Col 4.

a. Explain why the zero vector is in Col A.

b. Show that the vector Ax + Aw is in Col A.

c. Given a scalar ¢, show that c(Ax) is in Col A.

Let T :V — W be a linear transformation from a vector
space V' into a vector space W. Prove that the range of T’
is a subspace of W. [Hint: Typical elements of the range
have the form 7'(x) and 7'(w) for some x, win V.]

Define T : P, — R? by T(p) = [gi(l); :| For instance, if

p(t) = 3+ 5t + 7t%, then T(p) = [ 12]

a. Show that T is a linear transformation. [Hint: For
arbitrary polynomials p, q in P,, compute 7'(p + q) and
T(cp)]

b. Find a polynomial p in P, that spans the kernel of 7', and
describe the range of 7'.

Define a linear transformation 7 :P, — R? by

T(p) = [ggg; i| Find polynomials p, and p, in P, that

span the kernel of 7', and describe the range of 7.

Let M., be the vector space of all 2 x 2 matrices,

and define T : Myxy; — Myx, by T(A) = A+ AT, where
a b

A= [ b ]

a. Show that 7T is a linear transformation.

b. Let B be any element of M,x, such that B " = B. Find
an A in M, such that T(4) = B.

c. Show that the range of T is the set of B in M;x, with the
property that BT = B.
d. Describe the kernel of T'.

(Calculus required) Define T : C0, 1] — C|0, 1] as follows:
For f in C[0, 1], let T(f) be the antiderivative F of f such
that F(0) = 0. Show that 7T is a linear transformation, and
describe the kernel of 7. (See the notation in Exercise 20 of
Section 4.1.)

35.

36.

37.

38.

39.

40.
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Let V and W be vector spaces,andlet 7" : V' — W be alinear
transformation. Given a subspace U of V, let T(U) denote
the set of all images of the form 7'(x), where x is in U. Show
that 7(U) is a subspace of W.

Given T : V — W as in Exercise 35, and given a subspace
Z of W, let U be the set of all x in V' such that 7(x) is in Z.
Show that U is a subspace of V.

[M] Determine whether w is in the column space of A, the
null space of A, or both, where

1 76 —4 1
1 5 -1 0 -2
=1 A= 9 -1 7 =3
-3 19 -9 7 1

[M] Determine whether w is in the column space of A4, the
null space of A4, or both, where

1 -8 5 =2 0
2 -5 2 1 -2
=110 410 8 6 -3
L 0 3 -2 1 0
[M] Let ay,...,as denote the columns of the matrix A,
where
5 1 2 2 0
3 32 -1 —12
A=1g 4 4 -5 12| B=la a a]
2 1 1 0o -2

a. Explain why a3 and as are in the column space of B.
b. Find a set of vectors that spans Nul A.

c. LetT : R® — R*bedefined by T(x) = Ax. Explain why
T is neither one-to-one nor onto.

[M] Let H = Span {v;,v,} and K = Span {v3, v4}, where

5 1 2 0
vV = 3 ,Vp = 3 ,V3 = -1 , V4 = —12
8 4 5 —28

Then H and K are subspaces of R3. In fact, H and
K are planes in R? through the origin, and they intersect
in a line through 0. Find a nonzero vector w that gen-
erates that line. [Hint: w can be written as c;vy 4+ ¢,V
and also as c¢3v3 + c4v4. To build w, solve the equation
C1V1 + €2Vy = ¢3V3 + ¢4V4 for the unknown ¢;’s.]

Mastering: Vector Space, Subspace,
Col A, and Nul A 4-6

SOLUTIONS TO PRACTICE PROBLEMS

1. First method: W is a subspace of R by Theorem 2 because W is the set of all solu-
tions to a system of homogeneous linear equations (where the system has only one

equation). Equivalently, W is the null space of the 1 x 3 matrix 4 = [ 1

-3 —1].
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Second method: Solve the equation a — 3b — ¢ = 0 for the leading variable @ in
3b+c
terms of the free variables b and ¢. Any solution has the form b , where b
¢
and c are arbitrary, and

3b+c¢ 3 1
b =b|l1]|+4+c| O
c 0 1

) 1

v \2)

This calculation shows that W = Span{v;,v,}. Thus W is a subspace of R? by
Theorem 1. We could also solve the equation @ — 3b — ¢ = 0 for b or ¢ and get
alternative descriptions of W as a set of linear combinations of two vectors.

2. Both v and w are in Col A. Since Col A is a vector space, v + w must be in Col A.
That is, the equation AX = v + w is consistent.

4.3 | LINEARLY INDEPENDENT SETS; BASES

THEOREM 4

In this section we identify and study the subsets that span a vector space V' or a subspace
H as “efficiently” as possible. The key idea is that of linear independence, defined as
in R".
An indexed set of vectors {vy,...,v,} in V is said to be linearly independent if
the vector equation
civi+ceva+ -+ cpv, =0 (D)

has only the trivial solution, ¢; = 0,...,¢, = 0.!

The set {vy, ..., v,} is said to be linearly dependent if (1) has a nontrivial solution,
that is, if there are some weights, ¢y, ..., ¢,, not all zero, such that (1) holds. In such a
case, (1) is called a linear dependence relation among vy,...,v,.

Justas in R”, a set containing a single vector v is linearly independent if and only if
v # 0. Also, a set of two vectors is linearly dependent if and only if one of the vectors
is a multiple of the other. And any set containing the zero vector is linearly dependent.
The following theorem has the same proof as Theorem 7 in Section 1.7.

An indexed set {vi,...,V,} of two or more vectors, with v; # 0, is linearly
dependent if and only if some v; (with j > 1) is a linear combination of the
preceding vectors, Vi, ...,V;_i.

The main difference between linear dependence in R” and in a general vector space
is that when the vectors are not n-tuples, the homogeneous equation (1) usually cannot
be written as a system of n linear equations. That is, the vectors cannot be made into
the columns of a matrix A in order to study the equation Ax = 0. We must rely instead
on the definition of linear dependence and on Theorem 4.

EXAMPLE 1 Let p,(r) =1, py(t) =1, and p5(t) =4 —t. Then {p;,p,,p;} is
linearly dependent in P because p; = 4p, — p,. |

Tt is convenient to use ¢y, ..., ¢ in (1) for the scalars instead of xp,. .., X, as we did in Chapter 1.
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FIGURE 1
The standard basis for R>.
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EXAMPLE 2 The set {sint,cost} is linearly independent in C [0, 1], the space of
all continuous functions on 0 < ¢ < 1, because sin¢ and cos¢ are not multiples of one
another as vectors in C[0, 1]. That is, there is no scalar ¢ such that cost = ¢ - sint for
all ¢ in [0, 1]. (Look at the graphs of sint and cost.) However, {sinf cost,sin2t} is
linearly dependent because of the identity: sin2¢ = 2sint cos?, for all 7. [ |

Let H be a subspace of a vector space V. An indexed set of vectors
B ={by,...,b,}in V is a basis for H if

(i) B is a linearly independent set, and
(ii) the subspace spanned by B coincides with H ; that is,

H = Span{by,...,b,}

The definition of a basis applies to the case when H = V', because any vector space
is a subspace of itself. Thus a basis of V' is a linearly independent set that spans V.
Observe that when H # V, condition (ii) includes the requirement that each of the
vectors by, ..., b, must belong to H, because Span{by,....b,} contains by,....b,,
as shown in Section 4.1.

EXAMPLE 3 Let A be an invertible n x n matrix—say, A = [a; --- a,]. Then
the columns of A form a basis for R” because they are linearly independent and they
span R”, by the Invertible Matrix Theorem. [ |

EXAMPLE 4 Letey,...,e, be the columns of the n X n identity matrix, /,. That
is,

1 0 0
1
el = . ’ e2 = . ’ AL ] e}’l =
0 0 1
The set {ey, ..., e,} is called the standard basis for R” (Fig. 1). ]
3 —4 -2
EXAMPLE 5 Let v, = 0|, v,= 1|, and v3 = 1 |. Determine if
—6 7 5

{v1, V2, V3} is a basis for R3.

SOLUTION Since there are exactly three vectors here in R, we can use any of several
methods to determine if the matrix A = [v; v, V3] is invertible. For instance, two
row replacements reveal that A has three pivot positions. Thus A is invertible. As in
Example 3, the columns of A form a basis for R3. ]

EXAMPLE 6 LetS = {1,7,¢%,...,t"}. Verify that § is a basis for . This basis
is called the standard basis for P,,.

SOLUTION Certainly S spans IP,. To show that S is linearly independent, suppose that
Co, - - ., Cy satisfy
co-14cit 4+ cat> + -+ cut" =0(1) )

This equality means that the polynomial on the left has the same values as the zero poly-
nomial on the right. A fundamental theorem in algebra says that the only polynomial
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FIGURE 2
The standard basis for P,.

THEOREM 5

in P, with more than n zeros is the zero polynomial. That is, equation (2) holds for all
t only if ¢ = -+ = ¢, = 0. This proves that S is linearly independent and hence is a
basis for P,. See Fig. 2. [ |

Problems involving linear independence and spanning in [P, are handled best by a
technique to be discussed in Section 4.4.
The Spanning Set Theorem

As we will see, a basis is an “efficient” spanning set that contains no unnecessary
vectors. In fact, a basis can be constructed from a spanning set by discarding unneeded
vectors.

EXAMPLE 7 Let

0 2 6
V| = 2|, v,=1|2|, v3=]| 16|, and H = Span{vy,vy,vs}.
-1 0 -5

Note that v3 = 5v; + 3v,, and show that Span {vy, v5, v3} = Span{vy, v,}. Then find a
basis for the subspace H.

SOLUTION Every vector in Span {v,, v,} belongs to H because
C1V1 + €ava = ¢1Vy + 22 + 0vg

Now let x be any vector in H —say, X = ¢;v] + ¢2V2 + ¢3v3. Since vz = 5vi + 3v,
we may substitute
X = V) + V2 + c3(5v; + 3va)

= (c1 + 5¢3)vy + (c2 + 3c3)Vv2

Thus x is in Span {vy, v,}, so every vector in H already belongs to Span {v;,v,}. We
conclude that H and Span{v;, v,} are actually the same set of vectors. It follows that
{v1, v, } is a basis of H since {vi, v,} is obviously linearly independent. ]

The next theorem generalizes Example 7.

The Spanning Set Theorem
Let S = {vi,...,v,}beasetin IV, and let H = Span{v;,...,v,}.

a. If one of the vectors in S —say, vy —is a linear combination of the remaining
vectors in S, then the set formed from S by removing v still spans H'.

b. If H # {0}, some subset of S is a basis for H.

PROOF

a. By rearranging the list of vectors in S, if necessary, we may suppose that v, is a
linear combination of vy, ..., v,_j—say,

Vp=aivi+ o+, 1Vp— 3

Given any X in H, we may write

X =1V +"'+cp—lvp—l +vap (€]
for suitable scalars ¢y, ..., c,. Substituting the expression for v, from (3) into (4),
it is easy to see that X is a linear combination of vi,...,v,_i. Thus {vi,...,v,_i}

spans H , because x was an arbitrary element of H.
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b. If the original spanning set S is linearly independent, then it is already a basis for H .
Otherwise, one of the vectors in S depends on the others and can be deleted, by part
(a). So long as there are two or more vectors in the spanning set, we can repeat this
process until the spanning set is linearly independent and hence is a basis for H. If
the spanning set is eventually reduced to one vector, that vector will be nonzero (and
hence linearly independent) because H # {0}. ]

Bases for Nul 4 and Col A

We already know how to find vectors that span the null space of a matrix A. The
discussion in Section 4.2 pointed out that our method always produces a linearly
independent set when Nul A contains nonzero vectors. So, in this case, that method
produces a basis for Nul A.

The next two examples describe a simple algorithm for finding a basis for the
column space.

EXAMPLE 8 Find a basis for Col B, where

1 4 0 2 0
0 0 1 -1 0
B=lbr b e bs]=14 o o o
0 0 0 0 0

SOLUTION Each nonpivot column of B is a linear combination of the pivot columns.
In fact, b, = 4b; and by = 2b; — bs. By the Spanning Set Theorem, we may discard
b, and by, and {by, b3, b5} will still span Col B. Let

1 0 0
0 1 0
S = {by.bs,bs} = olloll1
0 0 0

Since b; # 0 and no vector in S is a linear combination of the vectors that precede it,
S is linearly independent (Theorem 4). Thus S is a basis for Col B. [ |

What about a matrix A that is not in reduced echelon form? Recall that any
linear dependence relationship among the columns of A can be expressed in the form
Ax = 0, where x is a column of weights. (If some columns are not involved in a
particular dependence relation, then their weights are zero.) When A is row reduced
to a matrix B, the columns of B are often totally different from the columns of A.
However, the equations Ax = 0 and Bx = 0 have exactly the same set of solutions. If
A=[a; -+ a,]and B =[b; --- b,], then the vector equations

xja+--+x,2a,=0 and xb;+---4+x,b, =0
also have the same set of solutions. That is, the columns of A have exactly the same

linear dependence relationships as the columns of B.

EXAMPLE 9 It can be shown that the matrix

1 4 0 2 —I
312 1 5 5

A=la a oas]=10 3
52 2 8 8

is row equivalent to the matrix B in Example 8. Find a basis for Col A.
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THEOREM 6

SOLUTION In Example 8 we saw that
b2 = 4b1 and b4 = 2b1 — b3

so we can expect that
a, =4a; and ay; =2a; —a3

Check that this is indeed the case! Thus we may discard a, and a; when selecting
a minimal spanning set for Col A. In fact, {a;, a3, a5} must be linearly independent
because any linear dependence relationship among a;, as, as would imply a linear
dependence relationship among by, b3, bs. But we know that {b;, b3, bs} is a linearly
independent set. Thus {a;, a3, as} is a basis for Col A. The columns we have used for
this basis are the pivot columns of A. [ |

Examples 8 and 9 illustrate the following useful fact.

The pivot columns of a matrix A form a basis for Col A.

PROOF The general proof uses the arguments discussed above. Let B be the reduced
echelon form of A. The set of pivot columns of B is linearly independent, for no
vector in the set is a linear combination of the vectors that precede it. Since A is row
equivalent to B, the pivot columns of A are linearly independent as well, because any
linear dependence relation among the columns of A corresponds to a linear dependence
relation among the columns of B. For this same reason, every nonpivot column of 4 is
a linear combination of the pivot columns of A. Thus the nonpivot columns of A may be
discarded from the spanning set for Col 4, by the Spanning Set Theorem. This leaves
the pivot columns of A as a basis for Col A. [ |

Warning: The pivot columns of a matrix A are evident when A has been reduced only
to echelon form. But, be careful to use the pivot columns of A itself for the basis of
Col A. Row operations can change the column space of a matrix. The columns of an
echelon form B of A are often not in the column space of A. For instance, the columns
of matrix B in Example 8 all have zeros in their last entries, so they cannot span the
column space of matrix A in Example 9.

Two Views of a Basis

When the Spanning Set Theorem is used, the deletion of vectors from a spanning set
must stop when the set becomes linearly independent. If an additional vector is deleted,
it will not be a linear combination of the remaining vectors, and hence the smaller set
will no longer span V. Thus a basis is a spanning set that is as small as possible.

A basis is also a linearly independent set that is as large as possible. If S is a basis
for V, and if S is enlarged by one vector—say, w—from V/, then the new set cannot be
linearly independent, because S spans V', and w is therefore a linear combination of the
elements in S.

EXAMPLE 10 The following three sets in R* show how a linearly independent set
can be enlarged to a basis and how further enlargement destroys the linear independence
of the set. Also, a spanning set can be shrunk to a basis, but further shrinking destroys
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the spanning property.
1 2 1 2 4 1 2 4 7
01(,]3 0f,13],]5 O.131].15].]8
0 0 0 0 6 0 0 6 9
Linearly independent A basis Spans R? but is
but does not span R3 for R? linearly dependent |
PRACTICE PROBLEMS
[ 1] -2
1. Letvi=| =2 | and v, = 7 Determine if {v,v,} is a basis for R?. Is
| 3] -9
{v1,v,} a basis for R2?
1] 6 2 —4
2. Letvi = | =3 [, v, = 2 1,v3=| —2 |,and v4 = | —8 |. Find a basis for
| 4] —1 3 9
the subspace W spanned by {vy, v, v3, v4}.
1 0 s
3. Letvi =0 |,v,=1|1|,and H = s | : sin Rp. Then every vector in H
| 0 0 0
is a linear combination of v; and v, because
S 1 0
s|=s[0|+s|1
0 0

El Mastering: Basis 4-9

4.3 EXERCISES

Is {vy, v,} a basis for H?

Determine whether the sets in Exercises 1-8 are bases for R>.
Of the sets that are not bases, determine which ones are linearly
independent and which ones span R3. Justify your answers.

BEREERRE r17 ro] o
Lol |1, 2 (1|0l |1
Lo Lo] 1 Lo o] |1
T 3] -2 M2 27 -8
3L ol -t 4 |-t].|-3]] s
3] [ 4] [ 1 1 2 4
37 7-37 [0 0 17 [—4
.| =3 7[.lo].|-3] 6| 2|] 3
L o] [ o] |o 5 —4 6
(27 6] 1 0 2 0
7. | 3|1 8 | —21[.] 3[.|-1].] o
L o] | 5] 3| -1 51 -1

Find bases for the null spaces of the matrices given in Exercises 9
and 10. Refer to the remarks that follow Example 3 in Section 4.2.

1 0 -2 =2 1 1 -2 1 5
9. 10 1 1 4 10. (O 1 0 -1 =2
3 -1 =7 3 0 0 -8 0 16

11. Find a basis for the set of vectors in R in the plane
x —3y + 2z = 0. [Hint: Think of the equation as a “sys-
tem” of homogeneous equations.]

12. Find a basis for the set of vectors in R? on the line y = —3x.

In Exercises 13 and 14, assume that A is row equivalent to B.
Find bases for Nul A and Col A.

-2 4 =2 —4 1 0 6 5
13. A= 2 -6 -3 11,B=]0 2 5 3
-3 8 2 =3 0o 0 0 0
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M1 2 3 —4 87
1 2 0 2 8
4. 4= 2 4 =3 10 97}
|3 6 0 6 9 |
1 2 0 2 57
0O 0 3 -6 3
B = o o0 o0 0 -7
L0 0 0 0 O
In Exercises 15-18, find a basis for the space spanned by the given
vectors, vy, ..., Vs.
M1 o1 T 27T 27T 37
0 1 -2 -1 -1
15. =2 01201 -8 10]|| -6
| 3 31 Lo L 3] L 9]
1 =277 37 57T 27
0 0 -1 -3 -1
16. 01 01 1] 30 1
|1 20 -1 4] L 0]
F 2777 4772771 8 -8
0 0 —4 4 4
17. M] | —4 |, 21, 01, 8 |, 0
—6 —4 1 - 0
L O] | 4] |L-7] L15 1
=37 [ 3 T ol [ 6 -6
2 0 2 -2 3
18. [M] 6,1 =91,| —41|,]| —14 |, 0
0 0 0 0 -1
=71 L 6] [—-1] | 13 0
4 1 7
19. Letvi=| -3 |, v, = ,vz=| 11 |, and also let
7 -2 6

20.

H = Span{v,, v,,vs}. It can be verified that 4v, + 5v, —
3v; = 0. Use this information to find a basis for H . There is
more than one answer.

3 4 2
Letv, = _; , V) = ; ,and vz = _Z . It can be
-5 4 —14

verified that 2v; — v, — v3 = 0. Use this information to find
a basis for H = Span {v;, v5, v3}.

In Exercises 21 and 22, mark each statement True or False. Justify
each answer.

21.

a. A single vector by itself is linearly dependent.

b. If H = Span{b;,...,b,}, then{b;,...
H.

c. The columns of an invertible n x n matrix form a basis
for R”.

d. A basis is a spanning set that is as large as possible.

.b,} is a basis for

e. Insome cases, the linear dependence relations among the
columns of a matrix can be affected by certain elementary
row operations on the matrix.

22.

23.

24.

25.

26.

217.

28.

a. A linearly independent set in a subspace H is a basis for
H.

b. If a finite set S’ of nonzero vectors spans a vector space
V', then some subset of S is a basis for V.

c. A basis is a linearly independent set that is as large as
possible.

d. The standard method for producing a spanning set for
Nul A, described in Section 4.2, sometimes fails to pro-
duce a basis for Nul A4.

e. If B is an echelon form of a matrix A, then the pivot
columns of B form a basis for Col A.

Suppose R* = Span {vi, ..., v4}. Explain why {v|,..., vy}

is a basis for R*.

Let B ={vy,...,v,} be a linearly independent set in R”".
Explain why B must be a basis for R”.
1 0 0
Letvi=|0]|,v,=|1|,v3= 1|1 [, and let H be the
1 1 0

set of vectors in R3 whose second and third entries are equal.
Then every vector in H has a unique expansion as a linear
combination of v, v,, v3, because

s 1 0 0
tl=s|0|+@=—5)1]|+s|1
t 1 1 0

for any s and ¢. Is {v;, v,, v3} a basis for H? Why or why
not?

In the vector space of all real-valued functions, find a basis
for the subspace spanned by {sint, sin2¢, sint cos}.

Let V' be the vector space of functions that describe the
vibration of a mass—spring system. (Refer to Exercise 19 in
Section 4.1.) Find a basis for V.

(RLC circuit) The circuit in the figure consists of a resistor
(R ohms), an inductor (L henrys), a capacitor (C farads), and
an initial voltage source. Let b = R/(2L), and suppose R,
L, and C have been selected so that b also equals 1/+/LC.
(This is done, for instance, when the circuit is used in a
voltmeter.) Let v(z) be the voltage (in volts) at time 7,
measured across the capacitor. It can be shown that v is
in the null space H of the linear transformation that maps
v(t) into Lv”(t) + Rv'(¢t) + (1/C)v(t), and H consists of
all functions of the form v(r) = e~ (¢, + c»t). Find a basis
for H.

VWA
R
Voltage L
source @ TC
L
——000000———

Exercises 29 and 30 show that every basis for R” must contain
exactly n vectors.



29. LetS = {vy,..., v} beasetof k vectors in R”, with k < n.
Use a theorem from Section 1.4 to explain why S cannot be
a basis for R".

30. LetS = {vy,...,vi}beasetofk vectors in R", with k > n.
Use a theorem from Chapter 1 to explain why S cannot be a
basis for R”.

Exercises 31 and 32 reveal an important connection between lin-
ear independence and linear transformations and provide practice
using the definition of linear dependence. Let V and W be
vector spaces, let 7 : V' — W be a linear transformation, and let
{Vi,...,v,} be asubsetof V.

31. Show that if {v,,...,v,} is linearly dependent in V', then
the set of images, {T(vi),...,T(v,)}, is linearly depen-
dent in W. This fact shows that if a linear transforma-
tion maps a set {v,...,v,} onto a linearly independent set
{T(v1),...,T(vp)}, then the original set is linearly indepen-
dent, too (because it cannot be linearly dependent).

32. Suppose that 7' is a one-to-one transformation, so that an
equation 7'(u) = T(v) always implies u = v. Show that if
the set of images {T'(v;),...,T(v,)} is linearly dependent,
then {v;,...,v,} is linearly dependent. This fact shows that
a one-to-one linear transformation maps a linearly indepen-
dent set onto a linearly independent set (because in this case
the set of images cannot be linearly dependent).

33. Consider the polynomials p;(f) = 1 +¢% and p,(t) = 1 —
t2. Is {p,. p,} a linearly independent set in P;? Why or why
not?

34. Consider the polynomials p,(¢t) = 1 + ¢, p,(t) = 1 —¢, and
p;(¢) = 2 (for all ¢). By inspection, write a linear depen-
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dence relation among p,, p,, and p;. Then find a basis for
Span {p,.p,. Ps}-

35. Let V be a vector space that contains a linearly indepen-
dent set {u;, u,, u3,uy}. Describe how to construct a set of
vectors {Vy, V,, V3, v4} in V such that {v,,vs} is a basis for
Span {vy, vy, V3, V4}.

36. [M] Let H = Span{u;,u,,u3} and K = Span{vy, v,, v3},

where

1] M 0] 3
2 2 4

u = ol u = N us; = 1
L —1 ] L 1] —4
M2 27 —1
vV, = -2 V) = 3 V3 = 4
-1 [ 2 6
3 | —6 | -2

Find bases for H, K, and H + K. (See Exercises 33 and 34
in Section 4.1.)

37. [M] Show that {¢,sinz, cos2¢,sint cost} is a linearly inde-
pendent set of functions defined on R. Start by assuming that

¢+t +cy-sint + c¢3-cos2t + ¢y -sintcost =0 5)

Equation (5) must hold for all real 7, so choose several
specific values of # (say, 7 = 0, .1, .2) until you get a system
of enough equations to determine that all the ¢; must be zero.
38. [M] Show that {1,cos¢,cos?¢,...,cos® ¢} is a linearly inde-
pendent set of functions defined on R. Use the method of

Exercise 37. (This result will be needed in Exercise 34 in
Section 4.5.)

SOLUTIONS TO PRACTICE PROBLEMS

1. Let A =[vi v2]. Row operations show that

| ) |
A=| =2 71~10 3
3 -9 0 0

Not every row of A contains a pivot position. So the columns of 4 do not span R?,
by Theorem 4 in Section 1.4. Hence {v,,v,} is not a basis for R3. Since v, and
v, are not in R?, they cannot possibly be a basis for R2. However, since v; and v,
are obviously linearly independent, they are a basis for a subspace of R?, namely,
Span{vy, v,}.

2. Set up a matrix A whose column space is the space spanned by {vy, v, v3, v4}, and
then row reduce A to find its pivot columns.

I 6 2 —4 1 6 2 —4 I 6 —4
A=]1-3 2 -2 8|~[0 20 4 -20|~]0 5 1 =5
4 -1 3 9 0 -25 =5 25 0 0 0
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The first two columns of A are the pivot columns and hence form a basis of
Col A = W. Hence {vy, v,} is a basis for W. Note that the reduced echelon form of
A is not needed in order to locate the pivot columns.

3. Neither vy nor v, is in H, so {v;, v,} cannot be a basis for H. In fact, {v|,v,} is a
basis for the plane of all vectors of the form (cy, c;, 0), but H is only a line.

4.4 COORDINATE SYSTEMS

An important reason for specifying a basis B for a vector space V is to impose a
“coordinate system” on V. This section will show that if B contains n vectors, then
the coordinate system will make V' act like R”. If V is already R” itself, then B will
determine a coordinate system that gives a new “view” of V.

The existence of coordinate systems rests on the following fundamental result.

THEOREM 7 The Unique Representation Theorem

Let B = {by,...,b,} be a basis for a vector space V. Then for each x in I/, there
exists a unique set of scalars cy, . .., ¢, such that
x = ciby + - + ¢,by (1)

PROOF Since B spans V, there exist scalars such that (1) holds. Suppose x also has
the representation
x =db; +---+ d,b,

for scalars dy, . .., d,. Then, subtracting, we have
0=x—x=(c;—d)bi+---+ (cx —dy)b, ()

Since B is linearly independent, the weights in (2) must all be zero. That is, ¢; = d;
forl < j <n. |

Suppose B = {by,....b,} is a basis for VV and x is in V. The coordinates of
x relative to the basis B (or the B-coordinates of x) are the weights ¢y, ..., ¢,
such that x = ¢;b; + --- + ¢,b,.

If ¢y, ..., c, are the B-coordinates of x, then the vector in R”

is the coordinate vector of x (relative to 8), or the B-coordinate vector of x. The
mapping X > [ X | ; is the coordinate mapping (determined by 5).!

'The concept of a coordinate mapping assumes that the basis 13 is an indexed set whose vectors are listed in
some fixed preassigned order. This property makes the definition of [ X |3 unambiguous.
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EXAMPLE 1 Consider a basis B = {b;.by} for R?, where b, = [(1)} e

b, = [;} Suppose an x in R? has the coordinate vector [x] 5= [ _g

SOLUTION The B-coordinates of x tell how to build x from the vectors in . That is,
1 1 1
c=comram =2 ][] .

EXAMPLE 2 The entries in the vector x = [ é

]. Find x.

] are the coordinates of x relative to

the standard basis £ = {ey, e,}, since

=[] e [8]=revoe

If £ = {e), ez}, then [x], = x. ]

A Graphical Interpretation of Coordinates

A coordinate system on a set consists of a one-to-one mapping of the points in the set
into R”. For example, ordinary graph paper provides a coordinate system for the plane
when one selects perpendicular axes and a unit of measurement on each axis. Figure 1
shows the standard basis {ej, e;}, the vectors b; (= e;) and b, from Example 1, and the

vector X = [ é ] The coordinates 1 and 6 give the location of x relative to the standard

basis: 1 unit in the e direction and 6 units in the e, direction.

Figure 2 shows the vectors by, by, and x from Fig. 1. (Geometrically, the three
vectors lie on a vertical line in both figures.) However, the standard coordinate grid
was erased and replaced by a grid especially adapted to the basis B in Example 1. The

2] . . . .
3 | &ives the location of x on this new coordinate system:
—2 units in the b direction and 3 units in the b, direction.

coordinate vector [X ], = |:_

/'x
b 4

2 /
Cz ! /
" 7/"
FIGURE 1 Standard graph FIGURE 2 B-graph paper.

paper.

EXAMPLE 3 1In crystallography, the description of a crystal lattice is aided by
choosing a basis {u, v, w} for R? that corresponds to three adjacent edges of one “unit
cell” of the crystal. An entire lattice is constructed by stacking together many copies of
one cell. There are fourteen basic types of unit cells; three are displayed in Fig. 3.2

2 Adapted from The Science and Engineering of Materials, 4th Ed., by Donald R. Askeland (Boston:
Prindle, Weber & Schmidt, ©2002), p. 36.
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0 Z/ 0 L\ 0 L\
T
v
—"u / v ~u / _u e
(a) (b) (c)
Simple Body-centered Face-centered
monoclinic cubic orthorhombic

FIGURE 3 Examples of unit cells.

The coordinates of atoms within the crystal are given relative to the basis for the
lattice. For instance,
1/2
1/2
1

identifies the top face-centered atom in the cell in Fig. 3(c). [ ]

Coordinates in R”

When a basis B for R” is fixed, the B-coordinate vector of a specified x is easily found,
as in the next example.

EXAMPLE 4 Letb, = [ﬂ,bz = [_1],x: [g:|,and[5’ = {b;,b,}. Find the

coordinate vector [X |, of X relative to B.

SOLUTION The B-coordinates ¢y, ¢, of x satisfy

o[l ]=5]

b b, X
X or
2 —1[e] _[4
)= ®
b] bg X

This equation can be solved by row operations on an augmented matrix or by using

b, b, the inverse of the matrix on the left. In any case, the solution is ¢; = 3, ¢, = 2. Thus
f —rt x = 3b; + 2b,, and
FIGURE 4 [x] :[61}2[3] n
B (&) 2
The B-coordinate vector of x is
(3,2). See Fig. 4.

The matrix in (3) changes the B-coordinates of a vector x into the standard
coordinates for Xx. An analogous change of coordinates can be carried out in R” for
abasis B = {by,...,b,}. Let

Pg=[b; by --- b,]
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Then the vector equation
x =cib; + by +--- 4+ ¢,b,

is equivalent to

x = Ps[x], @)

We call P the change-of-coordinates matrix from B to the standard basis in R”.
Left-multiplication by Py transforms the coordinate vector [ X | 5 Into x. The change-of-
coordinates equation (4) is important and will be needed at several points in Chapters 5
and 7.

Since the columns of Pz form a basis for R”, Py is invertible (by the Invertible
Matrix Theorem). Left-multiplication by P! converts x into its B-coordinate vector:

Pg1x=[x]6

The correspondence x —[x],, produced here by P !, is the coordinate mapping
mentioned earlier. Since Py !'is an invertible matrix, the coordinate mapping is a one-
to-one linear transformation from R” onto R”, by the Invertible Matrix Theorem. (See
also Theorem 12 in Section 1.9.) This property of the coordinate mapping is also true
in a general vector space that has a basis, as we shall see.

The Coordinate Mapping

Choosing a basis B = {by, ..., b,} for a vector space V introduces a coordinate system
in V. The coordinate mapping X [ X ], connects the possibly unfamiliar space V' to
the familiar space R”. See Fig. 5. Points in V' can now be identified by their new
“names.”

[1g

X. T [X] B

|
|\
17 R"

1%

FIGURE 5 The coordinate mapping from V' onto R”".

Let B = {by,...,b,} be a basis for a vector space V. Then the coordinate
mapping X > [X | is a one-to-one linear transformation from V" onto R".

PROOF Take two typical vectors in V, say,

u=cby +---+¢,b,
W=d1b1 +"'+dnbn

Then, using vector operations,

u+w=(c;+dy)b;+---+4 (¢, + d,)b,
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Isomorphic Vector
Spaces 4-11

It follows that
c1 +d; Cl d,
[ut+w],= : =t |+] | =luly+Iwlg
cn +dy Cn d,
So the coordinate mapping preserves addition. If r is any scalar, then
ru=r(ciby + -+ ¢;by) = (rep)by + -+ + (rea)b,

So
rcy C1
[ru]B: =r ZF[U]B
rey Cy

Thus the coordinate mapping also preserves scalar multiplication and hence is a linear
transformation. See Exercises 23 and 24 for verification that the coordinate mapping is
one-to-one and maps V' onto R”. [ |

The linearity of the coordinate mapping extends to linear combinations, just as in

Section 1.8. If uy,...,u, arein V and if ¢y, ..., ¢, are scalars, then
[clul—i—m—i—cpup]B=c1[u1]3+---+cp[up]6 (5)
In words, (5) says that the B-coordinate vector of a linear combination of uy, ..., u, is

the same linear combination of their coordinate vectors.

The coordinate mapping in Theorem 8 is an important example of an isomorphism
from V' onto R”. In general, a one-to-one linear transformation from a vector space V'
onto a vector space W is called an isomorphism from V' onto W (iso from the Greek
for “the same,” and morph from the Greek for “form” or “structure”). The notation and
terminology for V' and W may differ, but the two spaces are indistinguishable as vector
spaces. Every vector space calculation in V' is accurately reproduced in W, and vice
versa. In particular, any real vector space with a basis of n vectors is indistinguishable
from R”. See Exercises 25 and 26.

EXAMPLE 5 Let B be the standard basis of the space P5 of polynomials; that is, let
B = {1,t,1>,13}. A typical element p of P; has the form

p(t) = ap + ait + art* + ast®

Since p is already displayed as a linear combination of the standard basis vectors, we
conclude that

ao

ay

az

as

(plz =

Thus the coordinate mapping p [P ] ; is an isomorphism from PP; onto R*. All vector
space operations in P; correspond to operations in R*. [ |

If we think of P; and R* as displays on two computer screens that are connected
via the coordinate mapping, then every vector space operation in [P; on one screen is
exactly duplicated by a corresponding vector operation in R* on the other screen. The
vectors on the P3 screen look different from those on the R* screen, but they “act” as
vectors in exactly the same way. See Fig. 6.



4.4 Coordinate Systems 221

FIGURE 6 The space IP; is isomorphic to R*.

EXAMPLE 6 Use coordinate vectors to verify that the polynomials 1+ 2¢2,
4+t + 5¢2, and 3 + 2¢ are linearly dependent in P,.

SOLUTION The coordinate mapping from Example 5 produces the coordinate vectors
(1,0,2), (4,1,5), and (3, 2, 0), respectively. Writing these vectors as the columns of a
matrix A, we can determine their independence by row reducing the augmented matrix
for Ax = 0:

1 4 3 O 1 4 3 0
o 1 2 O0|~]0 1 2 0
2 5 0 0 0 0 0 0

The columns of A are linearly dependent, so the corresponding polynomials are linearly
dependent. In fact, it is easy to check that column 3 of A is 2 times column 2 minus 5
times column 1. The corresponding relation for the polynomials is

342t =204 +1+5%) —5(1 +21%) ]

The final example concerns a plane in R? that is isomorphic to R2.

EXAMPLE 7 Let

3 -1 3
vVi=| 6|, v,= 0, x=1|12 1,
2 1 7

and B = {vy, v»}. Then B is a basis for H = Span {vy, v,}. Determine if x is in H, and
if it is, find the coordinate vector of x relative to B.

SOLUTION If x is in H, then the following vector equation is consistent:

3 -1 3
| 6|+ O0)=]12
2 1 7

The scalars ¢; and c;, if they exist, are the B-coordinates of x. Using row operations,

we obtain
-1 3 2

3 1
6 0 12(~(0 1 3
2 1 7 0 0
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Thus ¢; = 2,¢, = 3,and [x],; = |:§

is shown in Fig. 7. [ ]

i|. The coordinate system on H determined by B

FIGURE 7 A coordinate system on a plane H in
R3.

If a different basis for H were chosen, would the associated coordinate system also
make H isomorphic to R2? Surely, this must be true. We shall prove it in the next
section.

PRACTICE PROBLEMS

1 -3 3 -8
1. Letb; =] 0 |,b, = 4 |,bs=| —6 |[,andx = 2
0 0 3 3

a. Show that the set B = {b;, by, b3} is a basis of R3.

b. Find the change-of-coordinates matrix from 55 to the standard basis.
c. Write the equation that relates x in R* to [ x ] 5

d. Find [x],, for the x given above.

2. The set B = {1 +t,1+ t2,t + t?} is a basis for IP,. Find the coordinate vector of
p(t) = 6 + 3t — t? relative to B.

4.4 EXERCISES

In Exercises 1-4, find the vector x determined by the given  In Exercises 5-8, find the coordinate vector [ x ], of x relative to
coordinate vector [ X ], and the given basis B. the given basis B = {by,...,b,}.

wo {3 2] o= o] =)= 0]
] om=[ = 3)= (5]

e [T e[
st 1 B B e
i 11 e R S H S RIS




In Exercises 9 and 10, find the change-of-coordinates matrix from
B to the standard basis in R”.

o ={[ ][5

3 2 1
10. B = 0, 20, =2
6 —4 3

In Exercises 11 and 12, use an inverse matrix to find [ x | 5 for the
given x and B.

s={ L[5 =[]
nos= {12 x=]3]

13. The set B = {1 +2,t +12,1+ 2t + 2} is a basis for P,.
Find the coordinate vector of p(¢) = 1 + 4¢ + 7¢? relative
to BB.

14. The set B={1 —t>,t —t>,2 —t 4+ t?} is a basis for PP,.
Find the coordinate vector of p(¢) = 1 + 3t — 612 relative
to BB.

11.

—

In Exercises 15 and 16, mark each statement True or False. Justify
each answer. Unless stated otherwise, I3 is a basis for a vector
space V.

15. a. If x is in V and if B contains n vectors, then the B-

coordinate vector of x is in R”.

b. If Pg is the change-of-coordinates matrix, then [X]z =
Ppx, forxin V.

c. The vector spaces IP; and R3 are isomorphic.

16. a. If B is the standard basis for R”, then the B-coordinate

vector of an x in R” is x itself.

b. The correspondence [ X ] 5 P> X is called the coordinate
mapping.

c. In some cases, a plane in R? can be isomorphic to R?.

2 | -3 )
—8]’V3 = |: 7]spanR

but do not form a basis. Find two different ways to express

17. The vectors v; = [_; ], V) = |:

1 . L
[ a2 linear combination of vy, v,, V3.

18. LetB = {by,...,b,} be abasis for a vector space V. Explain
why the B-coordinate vectors of by, ..., b, are the columns
er,...,e, of the n x n identity matrix.

19. Let S be a finite set in a vector space V' with the property
that every x in V' has a unique representation as a linear
combination of elements of S. Show that S is a basis of V.

20. Suppose {vy,...,V4} is a linearly dependent spanning set
for a vector space V. Show that each w in V can be
expressed in more than one way as a linear combination of
Vi,...,Vq. [Hint: Letw = kyv| + --- + k4v, be an arbitrary
vector in V. Use the linear dependence of {v;,...,v,} to

4.4 Coordinate Systems 223

produce another representation of w as a linear combination
of vi,...,vy.]

21. Let B = H: _i] [_g]} Since the coordinate mapping

determined by B is a linear transformation from R? into R?,
this mapping must be implemented by some 2 x 2 matrix A.
Find it. [Hint: Multiplication by A should transform a vector
X into its coordinate vector [x ] .]

22. Let B ={by,...,b,} be a basis for R”. Produce a descrip-
tion of an n x n matrix A that implements the coordinate
mapping X — [x] . (See Exercise 21.)

Exercises 23-26 concern a vector space V, a basis B =
{bi,....b,}, and the coordinate mapping X — [x] .

23. Show that the coordinate mapping is one-to-one. (Hint:
Suppose [u], =[w], for some u and w in V', and show
thatu = w.)

B

24. Show that the coordinate mapping is onto R". That is, given
any y in R”, with entries yy, ..., y,, produce uin V' such that

[ul; =y

25. Show that a subset {u;,...,u,} in V is linearly in-
dependent if and only if the set of coordinate vectors
tlui]g .-, [wy],} is linearly independent in R". Hint:
Since the coordinate mapping is one-to-one, the following
equations have the same solutions, ¢y, ..., c,.

The zero vector in V
The zero vector in R”

cup - +cpu, =0
[C]ll] +'”+Cpup ]B = [O]B
26. Given vectorsuy,...,u,,and win V', show that w is a linear
combination of uy, ..., u, if and only if [w], is a linear

combination of the coordinate vectors [u; ] 5, ..., [u, ] 4.

In Exercises 27-30, use coordinate vectors to test the linear
independence of the sets of polynomials. Explain your work.

27. 14203, 24132, —t +2t* =13
28. 1—-202 -1 1+ 263 141217
29, (1—0)% t—=2t24+1%, (1—1)°

30. 2—1)3, B3—1)* 1+6t—5t2+1°

31. Use coordinate vectors to test whether the following sets of
polynomials span [P,. Justify your conclusions.

a. 1 =3t 452, -34+5t—T7t2, —4+5t —61%,1 -1
b. 5t +12, 1 -8t —2t%, =3+ 4t +2t2,2 -3¢

32, Letp,(t) = 1+1%,p,(¢) =1 =33, ps(t) = 1 +1 — 32,
a. Use coordinate vectors to show that these polynomials
form a basis for P;.
b. Consider the basis B = {p,, p,. p;} for P». Find q in P,,
—1
given that [q]z = 1
2
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In Exercises 33 and 34, determine whether the sets of polynomials
form a basis for P;. Justify your conclusions.

33, [M]3+7t,5+¢—2t3t—2t% 1+ 16t —6¢* 4+ 213
34, [M]5—3t+4t2 423,941+ 82 —613,6—2t + 52,13

35. [M] Let H = Span{v,,v,}and B = {vy, v,}. Show that x is
in H and find the B-coordinate vector of x, for

11 14 19
v = =5 v, = -8 ‘= —-13
10 13 |’ 18
7 10 15

36. [M] Let H = Span{vy,Vv,,v3} and B = {v;, v,,v3}. Show
that 3 is a basis for H and xisin H , and find the B-coordinate
vector of x, for

—6 8 -9 4

4 -3 5 7

Vi = 9 , Vo = 7 , V3 = _3 X = _8
4 -3 3 3

[M] Exercises 37 and 38 concern the crystal lattice for titanium,
which has the hexagonal structure shown on the left in the ac-
2.6 0 0
1513, O

0 0 4.8
form a basis for the unit cell shown on the right. The numbers
here are Angstrom units (1 A = 1078 cm). In alloys of titanium,

companying figure. The vectors in R?

some additional atoms may be in the unit cell at the octahedral
and tetrahedral sites (so named because of the geometric objects
formed by atoms at these locations).

NN w
LN L I

1\

1
'
'
'

T

The hexagonal close-packed lattice and its unit cell.

1/2

37. One of the octahedral sites is | 1/4

1/6

basis. Determine the coordinates of this site relative to the
standard basis of R3.

AN

¥

0

P

us

AN

, relative to the lattice

1/2

38. One of the tetrahedral sites is | 1/2
1/3

dinates of this site relative to the standard basis of R>.

. Determine the coor-

SOLUTIONS TO PRACTICE PROBLEMS

1. a. Itisevident that the matrix Pz = [b; b,

bs ] is row-equivalent to the identity

matrix. By the Invertible Matrix Theorem, P is invertible and its columns form

a basis for R3.

1 -3 3
b. From part (a), the change-of-coordinates matrixis Pg = | 0 4 —6
0o 0 3

c. x= Pg[x],

d. To solve the equation in (c), it is probably easier to row reduce an augmented
matrix than to compute Pg I

Hence

-3 3 -8 1 0 0 =5
4 -6 2| ~1|0 1 0o 2
0O 3 3 0 O 1 1

P X 1 [x]4

)
[(xp]=| 2
1

2. The coordinates of p(¢) = 6 + 3¢ — t? with respect to B satisfy

cl(14+1) + (1 +12) +e3(t +12) = 6+ 3t — 1?
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Equating coefficients of like powers of #, we have

1+ =
1 +c3 =
o +e=-1
Solving, we find that¢; = 5,¢; = 1,¢3 = —2,and [p]; = 1

4.5 THE DIMENSION OF A VECTOR SPACE

THEOREM 9

Theorem 8 in Section 4.4 implies that a vector space V' with a basis B containing n
vectors is isomorphic to R”. This section shows that this number n is an intrinsic
property (called the dimension) of the space V' that does not depend on the particular
choice of basis. The discussion of dimension will give additional insight into properties
of bases.

The first theorem generalizes a well-known result about the vector space R”.

If a vector space V has a basis B = {by,...,b,}, then any set in V' containing
more than n vectors must be linearly dependent.

PROOF Let{uy,...,u,}beasetin V with more than n vectors. The coordinate vectors
[ui ]z ..., [up ]y form a linearly dependent set in R”, because there are more vectors
(p) than entries (1) in each vector. So there exist scalars ¢y, ..., ¢p, not all zero, such
that

0

cifug ]B+---+Cp[llp]6 =1 : The zero vector in R”
0
Since the coordinate mapping is a linear transformation,
0
e+ cpup ] = |
0

The zero vector on the right displays the n weights needed to build the vector
ciuy + -+ +cpu, from the basis vectors in B. That is, cjuy +---4cpu, =

0-by+-:--4+0-b, =0. Since the ¢; are not all zero, {uy,...,u,} is linearly
dependent.! [ |
Theorem 9 implies that if a vector space V' has a basis B = {by, ..., b,}, then each

linearly independent set in V' has no more than n vectors.

!'Theorem 9 also applies to infinite sets in V. An infinite set is said to be linearly dependent if some finite
subset is linearly dependent; otherwise, the set is linearly independent. If S is an infinite set in V, take any
subset {uy, ..., u,} of S, with p > n. The proof above shows that this subset is linearly dependent, and
hence so is S.
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THEOREM 10

If a vector space V' has a basis of n vectors, then every basis of /' must consist of
exactly n vectors.

PROOF Let B be a basis of n vectors and 3, be any other basis (of V). Since B is
a basis and B, is linearly independent, 3, has no more than n vectors, by Theorem 9.
Also, since B, is a basis and B is linearly independent, 3, has at least n vectors. Thus
BB, consists of exactly n vectors. [ |

If a nonzero vector space V is spanned by a finite set S, then a subset of S is a
basis for V', by the Spanning Set Theorem. In this case, Theorem 10 ensures that the
following definition makes sense.

If V is spanned by a finite set, then V' is said to be finite-dimensional, and the
dimension of 1/, written as dim V/, is the number of vectors in a basis for V. The
dimension of the zero vector space {0} is defined to be zero. If V' is not spanned
by a finite set, then V' is said to be infinite-dimensional.

EXAMPLE 1 The standard basis for R” contains n vectors, so dimR” = n. The
standard polynomial basis {1, 7, 2%} shows that dim P, = 3. In general,dim P, = n + 1.

The space PP of all polynomials is infinite-dimensional (Exercise 27). [ ]
3 —1

EXAMPLE 2 Let H = Span{vy,v,}, where v = | 6 | and v, = 0 |. Then
2 1

H is the plane studied in Example 7 in Section 4.4. A basis for H is {v{, v,}, since v;

and v, are not multiples and hence are linearly independent. Thus dim H = 2. [ |

EXAMPLE 3 Find the dimension of the subspace

a—3b+ 6¢
_ 5a + 4d ) .
H = b—2c—d ca,b,c,dinR
5d

SOLUTION It is easy to see that H is the set of all linear combinations of the vectors

1 -3 6 0
5 0 0 4
Vi = O 5 V) = 1 ) V3 = _2 . V4 = _1
0 0 0 5

Clearly, v; # 0, v, is not a multiple of vy, but v3 is a multiple of v,. By the Spanning
Set Theorem, we may discard v3 and still have a set that spans H. Finally, v4 is not a
linear combination of v; and v,. So {vy, v,, v4} is linearly independent (by Theorem 4
in Section 4.3) and hence is a basis for H. Thus dim H = 3. [ |

EXAMPLE 4 The subspaces of R? can be classified by dimension. See Fig. 1.

0-dimensional subspaces. Only the zero subspace.

1-dimensional subspaces. Any subspace spanned by a single nonzero vector. Such
subspaces are lines through the origin.
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2-dimensional subspaces. Any subspace spanned by two linearly independent
vectors. Such subspaces are planes through the origin.

3-dimensional subspaces. Only R? itself. Any three linearly independent vectors
in R? span all of R, by the Invertible Matrix Theorem. [ |

(a) (b)
FIGURE 1 Sample subspaces of R3.

Subspaces of a Finite-Dimensional Space

The next theorem is a natural counterpart to the Spanning Set Theorem.

Let H be a subspace of a finite-dimensional vector space V. Any linearly
independent set in H can be expanded, if necessary, to a basis for H. Also, H is
finite-dimensional and

dim H <dimV

PROOF If H = {0}, then certainly dim H = 0 < dim V. Otherwise, let S = {uy, ...,
u;} be any linearly independent set in H. If S spans H, then S is a basis for H.
Otherwise, there is some ug 4 in H that is not in Span S. But then {uy, ..., u, upy;}
will be linearly independent, because no vector in the set can be a linear combination of
vectors that precede it (by Theorem 4).

So long as the new set does not span H, we can continue this process of expanding
S to a larger linearly independent set in H. But the number of vectors in a linearly
independent expansion of S can never exceed the dimension of V', by Theorem 9.
So eventually the expansion of S will span H and hence will be a basis for H, and
dim H <dimV. ]

When the dimension of a vector space or subspace is known, the search for a basis
is simplified by the next theorem. It says that if a set has the right number of elements,
then one has only to show either that the set is linearly independent or that it spans the
space. The theorem is of critical importance in numerous applied problems (involving
differential equations or difference equations, for example) where linear independence
is much easier to verify than spanning.

The Basis Theorem

Let V be a p-dimensional vector space, p > 1. Any linearly independent set of
exactly p elements in V' is automatically a basis for V. Any set of exactly p
elements that spans V' is automatically a basis for V.
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PROOF By Theorem 11, a linearly independent set S of p elements can be extended to
a basis for V. But that basis must contain exactly p elements, since dimV = p. So §
must already be a basis for V. Now suppose that S has p elements and spans V. Since
V' is nonzero, the Spanning Set Theorem implies that a subset S’ of S is a basis of V.
Since dim V' = p, S’ must contain p vectors. Hence S = §’. ]

The Dimensions of Nul 4 and Col 4

Since the pivot columns of a matrix A form a basis for Col A, we know the dimension
of Col A as soon as we know the pivot columns. The dimension of Nul A might seem to
require more work, since finding a basis for Nul A usually takes more time than a basis
for Col A. But there is a shortcut!

Let A be an m x n matrix, and suppose the equation Ax = 0 has k free variables.
From Section 4.2, we know that the standard method of finding a spanning set for Nul 4
will produce exactly k linearly independent vectors—say, uy, ..., u;—one for each
free variable. So {uy,...,u;} is a basis for Nul A, and the number of free variables
determines the size of the basis. Let us summarize these facts for future reference.

The dimension of Nul A is the number of free variables in the equation Ax = 0,
and the dimension of Col 4 is the number of pivot columns in A.

EXAMPLE 5 Find the dimensions of the null space and the column space of

-3 6 -1 1 -7
A=| 1 =2 2 3 -1
2 -4 5 8 —4

SOLUTION Row reduce the augmented matrix [ A 0] to echelon form:

1 -2 2 3 -1 0
o o 1 2 -2 0
0O 0o o0 O 0 O

There are three free variables— x,, x4, and x5. Hence the dimension of Nul 4 is 3. Also,
dim Col A = 2 because A has two pivot columns. [ |

PRACTICE PROBLEMS

Decide whether each statement is True or False, and give a reason for each answer. Here
V' is a nonzero finite-dimensional vector space.

1. If dimV = p and if S is a linearly dependent subset of V', then S contains more
than p vectors.

If S spans V and if T is a subset of V' that contains more vectors than S, then 7T is
linearly dependent.
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For each subspace in Exercises 1-8, (a) find a basis for the
subspace, and (b) state the dimension.

s —2¢ [ 2a
1. s+t |:s,tinR 2. —4b | :a,bin R
3t | —2a
M 2c [p+2q
a—>b | . -P . :
3. b— 3¢ ca,b,cinR; 4. 3p—g i p,qinR
La+2b L p+yq
[ p—2¢
2p +5r | .
5. 2 +2r :p,q,rinR
| —3p +6r
3a —c
—b —3c .
6. 74+ 6b + 5¢ ca,b,cinR
—3a+c

7. {(a,b,c):a—3b+c=0,b—2c=0,2b—c =0}
8. {(a,b,c,d):a—3b+c=0}

9. Find the dimension of the subspace of all vectors in R* whose
first and third entries are equal.

10. Find the dimension of the subspace H of R? spanned by
1 -2 -3
=SSPl 1op| 15y
In Exercises 11 and 12, find the dimension of the subspace
spanned by the given vectors.

17737 2775
mo|o|, |1 [,|-1]]2

2] [t 1] [2

[ 113727 [-3
R | 26| 3| 5

L0 0 5 5

Determine the dimensions of Nul A and Col A for the matrices
shown in Exercises 13—18.

1 -6 9 0 -2
0 1 2 -4 5
BoA=145 o 0 5 1
(0 0 0 0 0
1 2 —4 3 2 6 0
0 0 0 1 0 -3 7
MoA=10 0 0 0 1 4 —2
(0 0 0 0 0 0 1
12 3 0 0 3
15. A=l0 0 1 0 1 16.A:[_6 5]
(0 0 0 1 0

1 -1 0 1 1 -1
17. A={0 1 3 18. A=({0 2 0
0o 0 1 0O 0 O

In Exercises 19 and 20, V' is a vector space. Mark each statement
True or False. Justify each answer.

19. a. The number of pivot columns of a matrix equals the

dimension of its column space.
b. A plane in R3 is a two-dimensional subspace of R>.
c. The dimension of the vector space P; is 4.

d. If dimV =n and S is a linearly independent set in V,
then S is a basis for V.

e. If a set {vy,...,v,} spans a finite-dimensional vector
space V and if T is a set of more than p vectors in V,
then 7 is linearly dependent.

20. a. R?is atwo-dimensional subspace of R3.

b. The number of variables in the equation Ax = 0 equals
the dimension of Nul A.

c. A vector space is infinite-dimensional if it is spanned by
an infinite set.

d. IfdimV = n and if S spans V, then S is a basis of V.

e. The only three-dimensional subspace of R3 is R? itself.

21. The first four Hermite polynomials are 1, 2¢, —2 + 4¢%, and
—12¢ + 8t3. These polynomials arise naturally in the study
of certain important differential equations in mathematical
physics.> Show that the first four Hermite polynomials form
a basis of P5.

22. The first four Laguerre polynomials are 1, 1 — 7,2 — 4t + ¢2,
and 6 — 18¢ + 9¢2 — 3. Show that these polynomials form a
basis of P;.

23. Let 5 be the basis of IP; consisting of the Hermite polynomi-
als in Exercise 21, and let p(t) = —1 + 872 + 8¢3. Find the
coordinate vector of p relative to B.

24, Let B be the basis of P, consisting of the first three
Laguerre polynomials listed in Exercise 22, and let
p(t) = 5 + 5t — 2¢. Find the coordinate vector of p relative
to B.

25. Let S be a subset of an n-dimensional vector space V', and
suppose S contains fewer than n vectors. Explain why S
cannot span V.

26. Let H be an n-dimensional subspace of an n-dimensional
vector space V. Show that H = V.

27. Explain why the space PP of all polynomials is an infinite-
dimensional space.

2 See Introduction to Functional Analysis, 2d ed., by A. E. Taylor and
David C. Lay (New York: John Wiley & Sons, 1980), pp. 92-93. Other
sets of polynomials are discussed there, too.
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28.

Show that the space C(R) of all continuous functions defined
on the real line is an infinite-dimensional space.

In Exercises 29 and 30, V' is a nonzero finite-dimensional vector
space, and the vectors listed belong to V. Mark each statement
True or False. Justify each answer. (These questions are more
difficult than those in Exercises 19 and 20.)

29.

30.

a. If there exists a set {vi,..
dimV < p.

.,Vp} that spans V, then

b. If there exists a linearly independent set {vy, ..
V,then dim V > p.

., Vp}in
c. If dimV = p, then there exists a spanning set of p + 1
vectors in V.

a. If there exists a linearly dependent set {vy, ..
thendim V < p.

L VppinV,

b. If every set of p elements in V fails to span V, then
dimV > p.

c. If p>2anddimV = p,thenevery setof p — 1 nonzero
vectors is linearly independent.

Exercises 31 and 32 concern finite-dimensional vector spaces V
and W and a linear transformation 7 : V' — W.

31.

32.

Let H be a nonzero subspace of I/, and let 7'(H ) be the set of
images of vectors in H. Then T (H) is a subspace of W, by
Exercise 35 in Section 4.2. Prove that dim 7'(H) < dim H.

Let H be a nonzero subspace of V', and suppose 7T is
a one-to-one (linear) mapping of V into W. Prove that
dimT(H) = dim H. If T happens to be a one-to-one map-
ping of V onto W, then dim V' = dim W. Isomorphic finite-
dimensional vector spaces have the same dimension.

33.

34.

[M] According to Theorem 11, a linearly independent set
{vi,..., vk} in R” can be expanded to a basis for R”. One
waytodothisistocreate A = [v; --- v; e e, ],
with ey, ..., e, the columns of the identity matrix; the pivot
columns of A form a basis for R”.

a. Use the method described to extend the following vectors
to a basis for R:

-9 9 6

=7 4 7

V) = 8 1, V) = 1], V3 = —8
-5 6 5

7 =7 =7

b. Explain why the method works in general: Why are the
original vectors vy, . .., v, included in the basis found for
Col A? Why is Col A = R"?

[M] Let B = {1,cost,cos’t,...,cost} and C = {1,cost,
cos2t,...,cos6t}. Assume the following trigonometric
identities (see Exercise 37 in Section 4.1).

cos2t = —1 + 2cos’t

cos3t = —3cost + 4cos’ ¢

cos4t =1 —8cos’t + 8cos*t
cos 5t =5cost —20cos’t + 16cos’ t
cos 6t = —1 4+ 18cos?>t — 48 cos*t + 32cos® ¢

Let H be the subspace of functions spanned by the functions
in B. Then B is a basis for H, by Exercise 38 in Section 4.3.

a. Write the B-coordinate vectors of the vectors in C, and
use them to show that C is a linearly independent set in
H.

b. Explain why C is a basis for H.

SOLUTIONS TO PRACTICE PROBLEMS

1. False. Consider the set {0}.

2. True. By the Spanning Set Theorem, S contains a basis for V; call that basis S’.
Then T will contain more vectors than S’. By Theorem 9, T is linearly dependent.

4.6 RANK

With the aid of vector space concepts, this section takes a look inside a matrix and
reveals several interesting and useful relationships hidden in its rows and columns.
For instance, imagine placing 2000 random numbers into a 40 x 50 matrix A and
then determining both the maximum number of linearly independent columns in 4 and
the maximum number of linearly independent columns in A7 (rows in A). Remarkably,
the two numbers are the same. As we’ll soon see, their common value is the rank of the
matrix. To explain why, we need to examine the subspace spanned by the rows of A.
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The Row Space

If A is an m x n matrix, each row of A has n entries and thus can be identified with a
vector in R”. The set of all linear combinations of the row vectors is called the row
space of A and is denoted by Row A. Each row has n entries, so Row A is a subspace
of R”. Since the rows of A are identified with the columns of A7, we could also write
Col AT in place of Row A.

EXAMPLE 1 Let
r = (-2.-5,8,0,—17)

-2 =5 8 0 —17
1 3 -5 1 5 r, =(1,3,-5,1,5)
A= and
30011 -19 7 1 r=(3,11,-19,7,1)
1 7 —-13 5 -3

ry=(1,7.-13,5,-3)

The row space of A is the subspace of R> spanned by {r;,ry,r3,1rs}. Thatis, Row A =
Span {r, r,,r3,ry}. It is natural to write row vectors horizontally; however, they may
also be written as column vectors if that is more convenient. [ |

If we knew some linear dependence relations among the rows of matrix A in
Example 1, we could use the Spanning Set Theorem to shrink the spanning set to a
basis. Unfortunately, row operations on A will not give us that information, because
row operations change the row-dependence relations. But row reducing A is certainly
worthwhile, as the next theorem shows!

If two matrices A and B are row equivalent, then their row spaces are the same.
If B is in echelon form, the nonzero rows of B form a basis for the row space of
A as well as for that of B.

PROOF If B is obtained from A by row operations, the rows of B are linear com-
binations of the rows of A. It follows that any linear combination of the rows of B
is automatically a linear combination of the rows of A. Thus the row space of B is
contained in the row space of A. Since row operations are reversible, the same argument
shows that the row space of A is a subset of the row space of B. So the two row spaces
are the same. If B is in echelon form, its nonzero rows are linearly independent because
no nonzero row is a linear combination of the nonzero rows below it. (Apply Theorem
4 to the nonzero rows of B in reverse order, with the first row last.) Thus the nonzero
rows of B form a basis of the (common) row space of B and A. [ |

The main result of this section involves the three spaces: Row A, Col A, and Nul A.
The following example prepares the way for this result and shows how one sequence of
row operations on A leads to bases for all three spaces.

EXAMPLE 2 Find bases for the row space, the column space, and the null space of

the matrix

-2 =5 8§ 0 —17
1 3 =5 1 5
3 11 —-19 7 1
1 7 —-13 5 =3
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SOLUTION To find bases for the row space and the column space, row reduce A to an
echelon form:

I 3 =5 1 5

o 1 -2 2 =7

0 0 0 —4 20

0 0 0 0 0

A~ B =
By Theorem 13, the first three rows of B form a basis for the row space of A (as well
as for the row space of B). Thus
Basis for Row 4: {(1,3,-5,1,5),(0,1,-2,2,-7),(0,0,0,—4,20)}

For the column space, observe from B that the pivots are in columns 1, 2, and 4. Hence
columns 1, 2, and 4 of A (not B) form a basis for Col A:

-2 -5 0

. ) 1 3 1
Basis for Col A4: 311 0] 7
1 7 5

Notice that any echelon form of A provides (in its nonzero rows) a basis for Row A
and also identifies the pivot columns of A for Col A. However, for Nul 4, we need the
reduced echelon form. Further row operations on B yield

1 0 1 0 1
N R
0O 0 0 0 O
The equation Ax = 0 is equivalent to Cx = 0, that is,
X+ X3 + x5=0

X2—2.X73 +3X5=O
)C4—5)C5:O

So x; = —x3 — x5, Xx» = 2x3 — 3x5, x4 = 5x5, with x3 and x5 free variables. The usual
calculations (discussed in Section 4.2) show that

-1 -1

2 -3

Basis for Nul 4: 1|, 0
0 5

0 1

Observe that, unlike the basis for Col A, the bases for Row A and Nul A have no simple
connection with the entries in A itself.! [ |

1t is possible to find a basis for the row space Row A that uses rows of A. First form A”, and then row
reduce until the pivot columns of A7 are found. These pivot columns of AT are rows of A, and they form
a basis for the row space of A.
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Warning: Although the first three rows of B in Example 2 are linearly independent,
it is wrong to conclude that the first three rows of A are linearly independent. (In fact,
the third row of A is 2 times the first row plus 7 times the second row.) Row operations
may change the linear dependence relations among the rows of a matrix.

The Rank Theorem

The next theorem describes fundamental relations among the dimensions of Col A4,
Row A, and Nul A.

The rank of A is the dimension of the column space of A.

Since Row A is the same as Col AT, the dimension of the row space of A is the rank
of AT. The dimension of the null space is sometimes called the nullity of 4, though we
will not use this term.

An alert reader may have already discovered part or all of the next theorem while
working the exercises in Section 4.5 or reading Example 2 above.

The Rank Theorem

The dimensions of the column space and the row space of an m X n matrix 4 are
equal. This common dimension, the rank of A, also equals the number of pivot
positions in A and satisfies the equation

rank A + dimNul A = n

PROOF By Theorem 6 in Section 4.3, rank A is the number of pivot columns in A.
Equivalently, rank A is the number of pivot positions in an echelon form B of A.
Furthermore, since B has a nonzero row for each pivot, and since these rows form a
basis for the row space of A, the rank of A is also the dimension of the row space.

From Section 4.5, the dimension of Nul A equals the number of free variables in
the equation Ax = 0. Expressed another way, the dimension of Nul A4 is the number of
columns of A that are not pivot columns. (It is the number of these columns, not the
columns themselves, that is related to Nul A.) Obviously,

number of number of __ | number of
pivot columns nonpivot columns | ~ | columns

This proves the theorem. n

The ideas behind Theorem 14 are visible in the calculations in Example 2. The
three pivot positions in the echelon form B determine the basic variables and identify
the basis vectors for Col 4 and those for Row A.

EXAMPLE 3

a. If Ais a7 x 9 matrix with a two-dimensional null space, what is the rank of A?

b. Could a 6 x 9 matrix have a two-dimensional null space?
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SOLUTION
a. Since A has 9 columns, (rank A) + 2 = 9, and hence rank A = 7.

b. No. If a 6 x 9 matrix, call it B, had a two-dimensional null space, it would have to
have rank 7, by the Rank Theorem. But the columns of B are vectors in R®, and so
the dimension of Col B cannot exceed 6; that is, rank B cannot exceed 6. |

The next example provides a nice way to visualize the subspaces we have been
studying. In Chapter 6, we will learn that Row A and Nul A have only the zero vector
in common and are actually “perpendicular” to each other. The same fact will apply
to Row AT (= Col A) and Nul A”. So Fig. 1, which accompanies Example 4, creates
a good mental image for the general case. (The value of studying A” along with A is
demonstrated in Exercise 29.)

3 0 -1
EXAMPLE 4 TLetA=|3 0 —1 |. Itis readily checked that Nul A4 is the x;,-
4 0 5

axis, Row A is the x;x3-plane, Col A4 is the plane whose equation is x; — x, = 0, and
Nul A7 is the set of all multiples of (1,—1,0). Figure 1 shows Nul A and Row 4 in
the domain of the linear transformation x — Ax; the range of this mapping, Col A, is
shown in a separate copy of R?, along with Nul A7 [

RoWA %14
R3 Xy R3
FIGURE 1 Subspaces determined by a matrix A.

Applications to Systems of Equations

The Rank Theorem is a powerful tool for processing information about systems of
linear equations. The next example simulates the way a real-life problem using linear
equations might be stated, without explicit mention of linear algebra terms such as
matrix, subspace, and dimension.

EXAMPLE 5 A scientist has found two solutions to a homogeneous system of
40 equations in 42 variables. The two solutions are not multiples, and all other solutions
can be constructed by adding together appropriate multiples of these two solutions.
Can the scientist be certain that an associated nonhomogeneous system (with the same
coefficients) has a solution?

SOLUTION Yes. Let A be the 40 x 42 coefficient matrix of the system. The given
information implies that the two solutions are linearly independent and span Nul A. So
dimNul A = 2. By the Rank Theorem, dim Col A = 42 —2 = 40. Since R* is the
only subspace of R*’ whose dimension is 40, Col 4 must be all of R*’. This means that
every nonhomogeneous equation Ax = b has a solution. [ |
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Rank and the Invertible Matrix Theorem

The various vector space concepts associated with a matrix provide several more
statements for the Invertible Matrix Theorem. The new statements listed here follow
those in the original Invertible Matrix Theorem in Section 2.3.

The Invertible Matrix Theorem (continued)

Let A be an n x n matrix. Then the following statements are each equivalent to
the statement that A is an invertible matrix.

m. The columns of A form a basis of R”.

ColA = R”

dimCol A =n

rank A =n

Nul 4 = {0}

dimNul4 =0

2 T o B

PROOF Statement (m) is logically equivalent to statements (e) and (h) regarding linear
independence and spanning. The other five statements are linked to the earlier ones of
the theorem by the following chain of almost trivial implications:

(8= M= ()= (= =@ =

Statement (g), which says that the equation Ax = b has at least one solution for each b in
R", implies (n), because Col 4 is precisely the set of all b such that the equation Ax = b
is consistent. The implications (n) = (0) = (p) follow from the definitions of dimension
and rank. If the rank of A is n, the number of columns of A, then dim Nul A = 0, by the
Rank Theorem, and so Nul A = {0}. Thus (p) = (r) = (q). Also, (q) implies that the
equation Ax = 0 has only the trivial solution, which is statement (d). Since statements
(d) and (g) are already known to be equivalent to the statement that A is invertible, the
proof is complete. [ |

We have refrained from adding to the Invertible Matrix Theorem obvious state-
ments about the row space of A, because the row space is the column space of A7.
Recall from statement (1) of the Invertible Matrix Theorem that A is invertible if and
only if AT is invertible. Hence every statement in the Invertible Matrix Theorem can
also be stated for A”. To do so would double the length of the theorem and produce a
list of over 30 statements!
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— NUMERICAL NOTE

Many algorithms discussed in this text are useful for understanding concepts
and making simple computations by hand. However, the algorithms are often
unsuitable for large-scale problems in real life.

Rank determination is a good example. It would seem easy to reduce a matrix
to echelon form and count the pivots. But unless exact arithmetic is performed
on a matrix whose entries are specified exactly, row operations can change the

. . . . |5 7
apparent rank of a matrix. For instance, if the value of x in the matrix |: 5 i|

is not stored exactly as 7 in a computer, then the rank may be 1 or 2, depending
on whether the computer treats x — 7 as zero.

In practical applications, the effective rank of a matrix A4 is often determined
from the singular value decomposition of A, to be discussed in Section 7.4. This
decomposition is also a reliable source of bases for Col A, Row A4, Nul A4, and

Nul AT
WEB

PRACTICE PROBLEMS

The matrices below are row equivalent.

2 -1 I -6 8
1 2 -4 3 =2
A= -7 8 10 3 —10 [ B=

4 -5 -7 0 4

(=l
=
=)
o
o

1. Find rank 4 and dim Nul 4.
2. Find bases for Col A and Row A.
3. What is the next step to perform to find a basis for Nul 4?
4. How many pivot columns are in a row echelon form of A7 ?
4.6 EXERCISES
In Exercises 1-4, assume that the matrix A is row equivalent to B. 2 6 -6 6 3 6
Without calculations, list rank A and dim Nul A. Then find bases 3.4 = -2 -3 6 -3 0 -6
for Col A, Row A, and Nul A4. 4 9 —12 9 3 12
- |2 3 6 3 3 =6
b4 9 =7 (2 6 -6 6 3 6]
R
3 0o 0o 0o 0 3 o0
10—l 5} 0O 0 0 0 0 0
B = -2 5 -6 - -
L 0 0 0 11 -2 0 1 =27
1 2 -3 0 -2 -3
M1 3 4 —1 2] 4. A=|1 -1 0o 0 1 6 |,
2 4= 2 6 6 0 -3 1 -2 2 1 -3 0
: 39 3 6 -3 1 2 1 0 2 -1
(3 9 0 9 0] 11 -2 0 1 -2
(1 3 4 —1 27 o 1 -1 0 =3 -1
B = 0 0 1 -1 1 B=]0 0 1 1 —-13 -1
o 0 0 0 =5 o o0 0 0 1 -1
|0 0 0 0 0] L0 0 0 0 0 1




10.

11.

12.

13.

14.

15.

16.

In Exercises 17 and 18, A is an m X n matrix.

If a 4 x 7 matrix A has rank 3, find dim Nul 4, dim Row A4,
and rank A7 .

If a 7 x 5 matrix A has rank 2, find dim Nul 4, dim Row A4,
and rank A7 .

Suppose a 4 x 7 matrix A has four pivot columns. Is
Col A = R*? Is Nul A = R3? Explain your answers.

Suppose a 6 x 8 matrix A has four pivot columns. What is
dim Nul 4? Is Col A = R*? Why or why not?

If the null space of a 4 x 6 matrix A4 is 3-dimensional, what
is the dimension of the column space of A? Is Col A = R3?
Why or why not?

If the null space of an 8 x 7 matrix A4 is 5-dimensional, what
is the dimension of the column space of A?

If the null space of an 8 x 5 matrix A is 3-dimensional, what
is the dimension of the row space of 4?

If the null space of a 5 x 4 matrix A is 2-dimensional, what
is the dimension of the row space of 4?

If Ais a7 x 5 matrix, what is the largest possible rank of A?
If Ais a5 x 7 matrix, what is the largest possible rank of A?
Explain your answers.

If A is a5 x 4 matrix, what is the largest possible dimension
of the row space of A? If A is a 4 x 5 matrix, what is the
largest possible dimension of the row space of A? Explain.

If Ais a3 x 7 matrix, what is the smallest possible dimension
of Nul A?

If Aisa7 x 5 matrix, what is the smallest possible dimension
of Nul A?

Mark each

statement True or False. Justify each answer.

17.

18.

a. The row space of A is the same as the column space of
AT.
b. If B is any echelon form of 4, and if B has three nonzero

rows, then the first three rows of A form a basis for
Row A.

c. The dimensions of the row space and the column space
of A are the same, even if A4 is not square.

d. The sum of the dimensions of the row space and the null
space of A equals the number of rows in A.

e. On a computer, row operations can change the apparent
rank of a matrix.

a. If B is any echelon form of A, then the pivot columns of
B form a basis for the column space of A.

b. Row operations preserve the linear dependence relations
among the rows of A.

c. The dimension of the null space of A4 is the number of
columns of A that are not pivot columns.

d. The row space of A” is the same as the column space of
A.

19.

20.

21.

22,

23.

24.

25.

26.
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e. If A and B are row equivalent, then their row spaces are
the same.

Suppose the solutions of a homogeneous system of five linear
equations in six unknowns are all multiples of one nonzero
solution. Will the system necessarily have a solution for
every possible choice of constants on the right sides of the
equations? Explain.

Suppose a nonhomogeneous system of six linear equations
in eight unknowns has a solution, with two free variables. Is
it possible to change some constants on the equations’ right
sides to make the new system inconsistent? Explain.

Suppose a nonhomogeneous system of nine linear equations
in ten unknowns has a solution for all possible constants on
the right sides of the equations. Is it possible to find two
nonzero solutions of the associated homogeneous system that
are not multiples of each other? Discuss.

Is is possible that all solutions of a homogeneous system of
ten linear equations in twelve variables are multiples of one
fixed nonzero solution? Discuss.

A homogeneous system of twelve linear equations in eight
unknowns has two fixed solutions that are not multiples of
each other, and all other solutions are linear combinations of
these two solutions. Can the set of all solutions be described
with fewer than twelve homogeneous linear equations? If so,
how many? Discuss.

Is it possible for a nonhomogeneous system of seven equa-
tions in six unknowns to have a unique solution for some
right-hand side of constants? Is it possible for such a system
to have a unique solution for every right-hand side? Explain.

A scientist solves a nonhomogeneous system of ten linear
equations in twelve unknowns and finds that three of the
unknowns are free variables. Can the scientist be certain
that, if the right sides of the equations are changed, the new
nonhomogeneous system will have a solution? Discuss.

In statistical theory, a common requirement is that a matrix
be of full rank. That is, the rank should be as large as
possible. Explain why an m x n matrix with more rows than
columns has full rank if and only if its columns are linearly
independent.

Exercises 27-29 concern an m x n matrix A and what are often
called the fundamental subspaces determined by A.

217.

28.

29.

Which of the subspaces Row A, Col A, Nul A, Row AT,
Col AT, and Nul A" are in R and which are in R”? How
many distinct subspaces are in this list?

Justify the following equalities:

a. dimRow A + dimNul A = n Number of columns of A
b. dimCol A + dimNul A” = m Number of rows of 4
Use Exercise 28 to explain why the equation Ax = b has a

solution for all b in R if and only if the equation A”x = 0
has only the trivial solution.
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30. Suppose A is m xn and b is in R”. What has to be true
about the two numbers rank [ A b ] and rank A in order for
the equation Ax = b to be consistent?

Rank 1 matrices are important in some computer algorithms and
several theoretical contexts, including the singular value decom-
position in Chapter 7. It can be shown that an m x n matrix A
has rank 1 if and only if it is an outer product; that is, A = uv’
for some u in R” and v in R”. Exercises 31-33 suggest why this
property is true.

2 a
31. Verify that rankuv’ < lifu=| -3 [andv= | b
5 c

|1 . . s 1 -3 41 5

32. Letu = [2}.Flndva suchthat|:2 _6 8:| =uv'.
33. Let A be any 2 x 3 matrix such that rank A = 1, let u be the
first column of A, and suppose u # 0. Explain why there

is a vector v in R? such that A = uv’. How could this
construction be modified if the first column of A were zero?

34. Let A be anm x n matrix of rank r > 0 and let U be an eche-
lon form of A. Explain why there exists an invertible matrix
E such that A = EU, and use this factorization to write A4
as the sum of r rank 1 matrices. [Hint: See Theorem 10 in
Section 2.4.]

35.

36.

37.

38.

7 -9 -4 5 3 -3 -
—4 6 7 -2 —6 -5
[M] Let A = 5 -7 -6 5 -6 2
-3 5 8§ -1 -7 —4
6 -8 -5 4 4 9
a. Construct matrices C and N whose columns are bases for
Col A and Nul A4, respectively, and construct a matrix R
whose rows form a basis for Row A.

W 00 0 U

b. Construct a matrix M whose columns form a ba-
sis for Nul A7, form the matrices S = [R” N ] and
T=[C M], and explain why S and T should be
square. Verify that both S and 7" are invertible.

[M] Repeat Exercise 35 for a random integer-valued 6 x 7
matrix A whose rank is at most 4. One way to make A
is to create a random integer-valued 6 x 4 matrix J and a
random integer-valued 4 x 7 matrix K, and set A = JK.
(See Supplementary Exercise 12 at the end of the chapter;
and see the Study Guide for matrix-generating programs.)

[M] Let A be the matrix in Exercise 35. Construct a matrix
C whose columns are the pivot columns of A, and construct
a matrix R whose rows are the nonzero rows of the reduced
echelon form of A. Compute CR, and discuss what you see.

[M] Repeat Exercise 37 for three random integer-valued
5 x 7 matrices A whose ranks are 5, 4, and 3. Make a
conjecture about how CR is related to A for any matrix A.
Prove your conjecture.

SOLUTIONS TO PRACTICE PROBLEMS

1. A has two pivot columns, so rank A = 2. Since A has 5 columns altogether,

dimNul4A =5-2=3.

2. The pivot columns of A are the first two columns. So a basis for Col 4 is

{aj, a} =

—1
-2

-5

The nonzero rows of B form a basis for Row 4, namely, {(1,-2,—4,3,-2),
(0,3,9,—12,12)}. In this particular example, it happens that any two rows of A
form a basis for the row space, because the row space is two-dimensional and none
of the rows of A is a multiple of another row. In general, the nonzero rows of an
echelon form of A should be used as a basis for Row A, not the rows of A itself.

3. For Nul 4, the next step is to perform row operations on B to obtain the reduced

echelon form of A.

Major Review of Key

Concepts 4-22 two pivot positions.

4. Rank A7 = rank A, by the Rank Theorem, because Col A7 = Row A. So A7 has
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4.7 CHANGE OF BASIS

When a basis 3 is chosen for an n-dimensional vector space V/, the associated coordinate
mapping onto R” provides a coordinate system for V. Each x in V' is identified uniquely
by its B-coordinate vector [X],.!

In some applications, a problem is described initially using a basis B, but the
problem’s solution is aided by changing B to a new basis C. (Examples will be given in
Chapters 5 and 7.) Each vector is assigned a new C-coordinate vector. In this section,
we study how [x ], and [x ], are related for each x in V.

To visualize the problem, consider the two coordinate systems in Fig. 1. In Fig. 1(a),
x = 3b; + by, while in Fig. 1(b), the same x is shown as x = 6¢; + 4¢;. That is,

[x], = [ﬂ and [x], = [i]

Our problem is to find the connection between the two coordinate vectors. Example 1
shows how to do this, provided we know how b; and b, are formed from ¢; and c,.

3b

(@) (b)

FIGURE 1 Two coordinate systems for the same vector space.

EXAMPLE 1 Consider two bases B = {by,b,} and C = {c, ¢} for a vector space
V', such that
by =4¢; +¢, and by, = —6¢; + ¢, (1)

Suppose
x = 3b; + b, (2)
That is, suppose [X ], = [:” Find [x]..
SOLUTION Apply the coordinate mapping determined by C to x in (2). Since the
coordinate mapping is a linear transformation,
[X]C = [3by +b2]c
=3[bi ], +[b2],

We can write this vector equation as a matrix equation, using the vectors in the linear
combination as the columns of a matrix:

xle=[mnle Il ][7] G)

!'Think of [ X ] ; as a “name” for x that lists the weights used to build x as a linear combination of the basis
vectors in B.
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This formula gives [ X ] ¢» once we know the columns of the matrix. From (1),

[bi], = [ﬂ and [by], = [_ﬂ

Thus (3) provides the solution:

[x], = 4 —6||13]_|6
CT 1 11| |4
The C-coordinates of x match those of the x in Fig. 1. [ |

The argument used to derive formula (3) can be generalized to yield the following
result. (See Exercises 15 and 16.)

THEOREM 15 Let B={by,....b,} and C = {c;,....c,} be bases of a vector space V. Then

there is a unique n X n matrix , fB such that

[x]; = Lslx], @

The columns of . fB are the C-coordinate vectors of the vectors in the basis .
That is,
Fe=[bie e - [bilc] 5)

The matrix . b 5 in Theorem 15 is called the change-of-coordinates matrix from
B to C. Multiplication by . £5 converts B-coordinates into C-coordinates.? Figure 2
illustrates the change-of-coordinates equation (4).

1%
WX
[ e [,
multiplication
X" T p by
B
R” R"

FIGURE 2 Two coordinate systems for V.

The columns of . f g are linearly independent because they are the coordinate
vectors of the linearly independent set 3. (See Exercise 25 in Section 4.4.) Since . f B
is square, it must be invertible, by the Invertible Matrix Theorem. Left-multiplying both
sides of equation (4) by (. fB)_l yields

(Pp)7'[x], = [x],

2To remember how to construct the matrix, think of C<£ B[ X ] as alinear combination of the columns of

C£ 5. The matrix-vector product is a C-coordinate vector, so the columns of C£ 5 should be C-coordinate
vectors, too.
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Thus ( fB)_l is the matrix that converts C-coordinates into 3-coordinates. That is,

(C£B)_1 = B£C (6)

Change of Basis in R”

If B=1{by,...,b,} and £ is the standard basis {ei,...,e,} in R", then [b{]¢ = by,
and likewise for the other vectors in B. In this case, r 5 1s the same as the change-of-
coordinates matrix Pg introduced in Section 4.4, namely,

Pg=[by by - b,]

To change coordinates between two nonstandard bases in R”, we need Theorem 15.
The theorem shows that to solve the change-of-basis problem, we need the coordinate
vectors of the old basis relative to the new basis.

EXAMPLE 2 Letb, = [‘ﬂ by = [:ﬂ ¢ = [_H, e = [_g} and con-

sider the bases for R? given by B = {b;,b,} and C = {c;,¢,}. Find the change-of-
coordinates matrix from 5 to C.

SOLUTION The matrix C£B involves the C-coordinate vectors of by and b,. Let

[bi], = [i;] and [by ], = [;] Then, by definition,
[ el cz][ii]:bl and [¢ cz][J’l]:bz

To solve both systems simultaneously, augment the coefficient matrix with b, and b,,
and row reduce:

[bi], = [_g] and [by]. = [_g}

The desired change-of-coordinates matrix is therefore
6 4
Lo=lhle k=] § 3] m

Observe that the matrix . (I_DB in Example 2 already appeared in (7). This is not
surprising because the first column of , £ 5 results from row reducing [¢; ¢, i by ] to
[1 i [b1], ], and similarly for the second column of cfs- Thus

[er ciby by]~[11.Ey5]

An analogous procedure works for finding the change-of-coordinates matrix between
any two bases in R".
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4.7 EXERCISES

1 -2 -7 )
EXAMPLE 3 Letb1=|:_3:|,b2=|: 4:|,c1=|: 9:|,C2=|: 7i|,andc0n—
sider the bases for R? given by B = {b;,b,} and C = {c;.¢,}.

a. Find the change-of-coordinates matrix from C to 5.

b. Find the change-of-coordinates matrix from 5 to C.
SOLUTION

a. Notice that 4 £c is needed rather than £ 5> and compute

‘ 1 —21-7 5] [1 0:5 3
[br b e CZ]:[—3 419 7}”[0 116 4}

So

b. By part (a) and property (6) above (with B and C interchanged),
Po— (P =l 4 31 _| 2 —3/2 -
C<B B<C 2| —6 5 -3 5/2

Another description of the change-of-coordinates matrix . f 5 uses the change-of-
coordinate matrices Pg and P that convert B-coordinates and C-coordinates, respec-
tively, into standard coordinates. Recall that for each x in R”,

Pplx]p =x, Pe[xle =x, and [x]¢c = Pc_lx
Thus

[Xle = Pi'x = P! Pslx]s

In R”, the change-of-coordinates matrix . £B may be computed as P;° ' Py. Actually,
for matrices larger than 2 x 2, an algorithm analogous to the one in Example 3 is faster
than computing P;' and then P! Pg. See Exercise 12 in Section 2.2.

PRACTICE PROBLEMS

1. Let F = {f|,f,} and G = {g,,8,} be bases for a vector space V, and let P be a
matrix whose columns are [ f; | g and [£2] g- Which of the following equations is
satisfied by P forall vin V'?

M [vl; = Plv], (i) [v], = Pv],

2. Let B and C be as in Example 1. Use the results of that example to find the change-
of-coordinates matrix from C to B.

1. LetB = {b;,b,} andC = {c;, c,} be bases for a vector space 2. Let B = {by,b,} and C = {c|, ¢,} be bases for a vector space
V', and suppose b; = 6¢; — 2¢, and b, = 9¢; — 4c,. V', and suppose b; = —2¢; + 4¢, and b, = 3¢; — 6¢,.

a. Find the change-of-coordinates matrix from B to C. a. Find the change-of-coordinates matrix from B to C.
b. Find [X]C for x = —3b; + 2b,. Use part (a). b. Find [x ]c for x = 2b; + 3b,.



LetU = {u;,u,} and W = {w;, w,} be bases for V, and let
P be amatrix whose columns are [u; ],,, and [w,]yy. Which
of the following equations is satisfied by P for all xin V'?

@ [x],=P[x], @ [x], =P[x],

Let A = {a;,a,,a3} and D = {d;,d,,d;} be bases for V,
andlet P =[[di]a [d2]a [d3]a]. Which of the follow-
ing equations is satisfied by P for all x in V'?

M [x],=Plx], G [x],=P[x],

Let A= {a;,a,a;} and B ={b;,by,b;} be bases
for a vector space V, and suppose a, = 4b; —b,,
a = —b1 + b2 + b3, and az = bz — 2b3

a. Find the change-of-coordinates matrix from A to 5.

b. Find [X]B for x = 3a; + 4a, + a;.

Let D ={d,,d,,d3} and F = {f|,f,,f3} be bases for
a vector space V, and suppose f; =2d; —d, + ds,
fz = 3(12 + d3, and f3 = —3(11 + 2d3

a. Find the change-of-coordinates matrix from F to D.

b. Find [X]D for x = £, — 2f, + 2f;.

In Exercises 7-10, let B = {b;,b,} and C = {c, ¢,} be bases for
R2. In each exercise, find the change-of-coordinates matrix from
B to C and the change-of-coordinates matrix from C to 5.

7.

10.

o-[-[F]e- o= [
o-[4o-[ o [e-[1]
o[- [e-[]e- [

o-[fJ- - [SJo- L]

In Exercises 11 and 12, B and C are bases for a vector space V.
Mark each statement True or False. Justify each answer.

11.

12.

13.

14.

a. The columns of the change-of-coordinates matrix £ B
are 3-coordinate vectors of the vectors in C.

b. If V =R" and C is the standard basis for V', then . £B
is the same as the change-of-coordinates matrix P intro-
duced in Section 4.4.

a. The columns of , £  are linearly independent.

b. If V. =R?, B ={b;,b,}, and C = {c;,¢,}, then row
reduction of [¢; ¢, by by]to[] P ] produces a
matrix P that satisfies [x ], = P[x], forallxin V.

In IP,, find the change-of-coordinates matrix from the basis
B={1—-2t+123—5t+ 42,2t + 3t*} to the standard
basis C = {1,7,1%}. Then find the B-coordinate vector for
—142z.

In P, find the change-of-coordinates matrix from the ba-
sis B = {1 —3t%,2 4+t —5¢2,1 + 2t} to the standard basis.
Then write 2 as a linear combination of the polynomials in

B.
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Exercises 15 and 16 provide a proof of Theorem 15. Fill in a
justification for each step.

15. Given vin V, there exist scalars xy, ..., x,, such that
V= xlbl + Xzbz + -+ xnbn

because (a) . Apply the coordinate mapping deter-
mined by the basis C, and obtain

[Vle = x1[bile + x2[bs]e + -+ + x4 [b,]c

because (b) . This equation may be written in the form
X1

[V]Cz[[bl]c [bz]c [bll]c] (8)
Xn

by the definition of (c) . This shows that the matrix

c£3 shown in (5) satisfies [v]c = C£B [v]g foreachvin V,
because the vector on the right side of (8) is (d) .

16. Suppose Q is any matrix such that

[Vl = Qlv]lg foreachvinV )
Set v=Db; in (9). Then (9) shows that [b;]c is the first
column of Q because (a) . Similarly, fork = 2,...,n,
the kth column of Q is (b) because (¢) . This

shows that the matrix . r g defined by (5) in Theorem 15 is
the only matrix that satisfies condition (4).

17. [M] Let B = {X¢,...,X¢yand C = {y,, ..., ¥q}, where x; is
the function cos* ¢ and y, is the function cos k¢. Exercise 34
in Section 4.5 showed that both 3 and C are bases for the
vector space H = Span {xo, ..., Xs}.

a. SetP =[[yyl;, -+ [¥lz] andcalculate P~

b. Explain why the columns of P! are the C-coordinate
vectors of X, ..., Xs. Then use these coordinate vectors
to write trigonometric identities that express powers of
cost in terms of the functions in C.

See the Study Guide.

18. [M] (Calculus required)’® Recall from calculus that integrals
such as
/(500s3t —6cos*t +5cos’t — 12cos®t) dt (10)

are tedious to compute. (The usual method is to apply inte-
gration by parts repeatedly and use the half-angle formula.)
Use the matrix P or P! from Exercise 17 to transform (10);
then compute the integral.

3 The idea for Exercises 17 and 18 and five related exercises in earlier
sections came from a paper by Jack W. Rogers, Jr., of Auburn University,
presented at a meeting of the International Linear Algebra Society,
August 1995. See “Applications of Linear Algebra in Calculus,”
American Mathematical Monthly 104 (1), 1997.
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19. [M] Let b. Find abasis {w, w,, w3} for R? such that P is the change-
1 2 of-coordinates matrix from {vy, v,, v3} to {w;, w,, w3 }.
P=|-3 -5 R 20. Let B = {by,b,}, C = {c1, ¢}, and D = {d,,d,} be bases
4 6 1 for a two-dimensional vector space.
-2 -8 -7

a. Write an equation that relates the matrices r B» D £c’
Vi = 2= S|V = 2 and D£B. Justify your result.

) ) ; ) b. [M] Use a matrix program either to help you find the
a. Find a basis {uj,u,u3} for R* such that P is the equation or to check the equation you write. Work with
change-of-coordinates matrix from {u;,u,,u;} to the three bases for R2. (See Exercises 7-10.)

basis {Vvi, V2, v3}. [Hint: What do the columns of C£B
represent?]

SOLUTIONS TO PRACTICE PROBLEMS

1. Since the columns of P are G-coordinate vectors, a vector of the form Px must be
a G-coordinate vector. Thus P satisfies equation (ii).

2. The coordinate vectors found in Example 1 show that

Lo=lhle k=] 7]

PPyt L[ 1 6] 1 6
B—C = AC=BS T gl -1 4| | =1 4

Hence

4.8 ' APPLICATIONS TO DIFFERENCE EQUATIONS

Now that powerful computers are widely available, more and more scientific and
engineering problems are being treated in a way that uses discrete, or digital, data rather
than continuous data. Difference equations are often the appropriate tool to analyze
such data. Even when a differential equation is used to model a continuous process, a
numerical solution is often produced from a related difference equation.

This section highlights some fundamental properties of linear difference equations
that are best explained using linear algebra.

Discrete-Time Signals

The vector space S of discrete-time signals was introduced in Section 4.1. A signal in
S is a function defined only on the integers and is visualized as a sequence of numbers,
say, {yx}. Figure 1 shows three typical signals whose general terms are (.7), 1*, and
(=1)*, respectively.

i, LIILLIL L1
T e R

FIGURE 1 Three signals in S.
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Digital signals obviously arise in electrical and control systems engineering, but
discrete-data sequences are also generated in biology, physics, economics, demography,
and many other areas, wherever a process is measured, or sampled, at discrete time
intervals. When a process begins at a specific time, it is sometimes convenient to write
a signal as a sequence of the form (yg, y1, y2,...). The terms y; for k < O either are
assumed to be zero or are simply omitted.

EXAMPLE 1 The crystal-clear sounds from a compact disc player are produced
from music that has been sampled at the rate of 44,100 times per second. See Fig. 2. At
each measurement, the amplitude of the music signal is recorded as a number, say, yy.
The original music is composed of many different sounds of varying frequencies, yet
the sequence {yy} contains enough information to reproduce all the frequencies in the
sound up to about 20,000 cycles per second, higher than the human ear can sense. M

FIGURE 2 Sampled data from a music signal.

Linear Independence in the Space S of Signals

To simplify notation, we consider a set of only three signals in S, say, {uy}, {vi}, and
{wy}. They are linearly independent precisely when the equation

ciug + covp + czwy =0 forall k (D

implies that ¢c; = ¢; = ¢3 = 0. The phrase “for all k” means for all integers — positive,
negative, and zero. One could also consider signals that start with k& = 0, for example,
in which case, “for all k¥ would mean for all integers k > 0.

Suppose ¢y, c2, c3 satisfy (1). Then equation (1) holds for any three consecutive
values of k, say, k, k + 1, and k 4 2. Thus (1) implies that

Clujq1 + Vg1 + c3wiy =0 forall k

and
ClUg42 + V42 + c3wWio = 0 forall k

Hence ¢y, ¢, c3 satisfy

U Ve Wy c1 0
Ukl Vg1 Wit =10 for all k 2)
Uk4+2  Uk+2  Wi42 || C3 0

The coefficient matrix in this system is called the Casorati matrix of the signals, and
the determinant of the matrix is called the Casoratian of {u;}, {vi}, and {wy}. If
the Casorati matrix is invertible for at least one value of k, then (2) will imply that
¢) = ¢; = c¢3 = 0, which will prove that the three signals are linearly independent.
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2__
$ \@/: ; } } k
-4 -2
-2+

The signals 1%, (=2)¥, and 3*.

EXAMPLE 2 Verify that 1%, (—2), and 3 are linearly independent signals.

SOLUTION The Casorati matrix is
lk (_2)k 3k
1k+1 (_2)k+1 3k+l
1k+2 (_2)k+2 3k+2

Row operations can show fairly easily that this matrix is always invertible. However, it
is faster to substitute a value for k —say, k = 0—and row reduce the numerical matrix:

1 1 1 1 1 1 11 1
1 2 3|~]1]0 -3 2|~|[0 =3 2
1 4 9 0o 3 8 0 0 10

The Casorati matrix is invertible for k = 0. So 1%, (—2)" , and 3% are linearly
independent. [ |

If a Casorati matrix is not invertible, the associated signals being tested may or
may not be linearly dependent. (See Exercise 33.) However, it can be shown that if
the signals are all solutions of the same homogeneous difference equation (described
below), then either the Casorati matrix is invertible for all k and the signals are linearly
independent, or else the Casorati matrix is not invertible for all k and the signals are
linearly dependent. A nice proof using linear transformations is in the Study Guide.

Linear Difference Equations
Given scalars aq, . . ., a,, with ay and a, nonzero, and given a signal {z; }, the equation
AoYk+n + @1 YVk4n—1 + o+ + An_1 Vi1 + @y = 2 forall k 3)

is called a linear difference equation (or linear recurrence relation) of order n. For
simplicity, ao is often taken equal to 1. If {z;} is the zero sequence, the equation is
homogeneous; otherwise, the equation is nonhomogeneous.

EXAMPLE 3 1In digital signal processing, a difference equation such as (3) de-
scribes a linear filter, and ao, . . ., a, are called the filter coefficients. If {y, } is treated
as the input and {z;} as the output, then the solutions of the associated homogeneous
equation are the signals that are filtered out and transformed into the zero signal. Let us
feed two different signals into the filter

35YVk42 + Syr41 + 35y = 2k

Here .35 is an abbreviation for +/2/4. The first signal is created by sampling the
continuous signal y = cos(;r¢/4) at integer values of #, as in Fig. 3(a). The discrete
signal is

{ve} ={...,cos(0),cos(w/4),cos(2r/4),cos(3n/4),...}

For simplicity, write #.7 in place of 4-+/2/2, so that
{yk} = {» 1’ '77 0» _~7a _15 _~7’ 07 '7, 1, .7, 0,}
k=0

Table 1 shows a calculation of the output sequence {7y }, where .35(.7) is an abbreviation
for (v/2/4)(+/2/2) = .25. The output is {y;}, shifted by one term.
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(@) (b)
FIGURE 3 Discrete signals with different frequencies.

TABLE 1 Computing the Output of a Filter

k Vi Vit1 Vit2 35y +5Vk41 + 35k =
0 1 7 0 351 +.5(7) +.350) = .7
1 70 -7 35(7) +.50) +35=7)= 0
2 0 -7 -1 3500)  +.5(=7) + 35(—1) = —7
3 ~7 -1 -7 35(=7) + 5(—1) +.35(—7) = —1
4 1 -7 0 35(=1) + .5(—7) + 350) =-7
5 -7 0 7 35(=7) +.50) +235(7) = 0

A different input signal is produced from the higher frequency signal y =
cos(3mt/4), shown in Fig. 3(b). Sampling at the same rate as before produces a new
input sequence:

(wey=4{...1,-7,0,.7, -1, 7.0, =7, 1, =7, 0,...}
t
k=0

When {wy } is fed into the filter, the output is the zero sequence. The filter, called a
low-pass filter, lets {yi} pass through, but stops the higher frequency {wy}. ]

In many applications, a sequence {z; } is specified for the right side of a difference
equation (3), and a {yy } that satisfies (3) is called a solution of the equation. The next
example shows how to find solutions for a homogeneous equation.

EXAMPLE 4 Solutions of a homogeneous difference equation often have the form
yx = r* for some r. Find some solutions of the equation

Vi3 — 2Vk42 — S5Vi+1 + 6y =0 forall k 4)
SOLUTION Substitute 7* for y; in the equation and factor the left side:
PR3 _opkt2 _guktl 4 oguk )
r*r—2rt=5r +6) =0
=D +2)(r=3)=0 ©6)

Since (5) is equivalent to (6), r* satisfies the difference equation (4) if and only if r
satisfies (6). Thus 1%, (—2)¥, and 3 are all solutions of (4). For instance, to verify that
3% is a solution of (4), compute

=3527-18—15+6) =0 forallk [ ]
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THEOREM 16

THEOREM 17

In general, a nonzero signal r* satisfies the homogeneous difference equation
YVikdn + A1 Yikdn—t + -+ a1 Yi+1 +a,yr =0 forallk
if and only if r is a root of the auxiliary equation
Mt ar" e agr +a, =0

We will not consider the case in which r is a repeated root of the auxiliary equation.
When the auxiliary equation has a complex root, the difference equation has solutions
of the form s¥ cos kw and s¥ sin kw, for constants s and w. This happened in Example 3.

Solution Sets of Linear Difference Equations

Givenay,...,a,, consider the mapping 7 : S — S that transforms a signal {y; } into a
signal {wy } given by

Wk = Yk+n + a1 YVk+n—1 + -+ An—1YVk+1 + an Yk

It is readily checked that T is a linear transformation. This implies that the solution set
of the homogeneous equation

Yk4n + Q1 Vitn—1 + -+ a1 Vit1 +apye =0 forallk

is the kernel of 7" (the set of signals that 7 maps into the zero signal), and hence the
solution set is a subspace of S. Any linear combination of solutions is again a solution.

The next theorem, a simple but basic result, will lead to more information about the
solution sets of difference equations.

If a, # 0 and if {zx} is given, the equation
Vin + @1Yk4n—1 + -+ @n1 Vi1 + anye = 2k forallk @)

has a unique solution whenever yy, ..., y,—; are specified.

PROOF If yy, ..., y,— are specified, use (7) to define

Yn=Z2o—[a1yn—1+ - Fap1y1 +anyo]

And now that y,...,y, are specified, use (7) to define y,+;. In general, use the
recurrence relation
Yntk = Zk — [ A1 Yk4n—1 + -+ anyr ] ®)
to define y, ¢ for k > 0. To define y; for k < 0, use the recurrence relation
1 1
Vi = —2Zk — — [ Ykan + Q1 Ykgn—1 + -+ n_1 Yy | ©)
an an

This produces a signal that satisfies (7). Conversely, any signal that satisfies (7) for all
k certainly satisfies (8) and (9), so the solution of (7) is unique. |

The set H of all solutions of the nth-order homogeneous linear difference equation
Vitn + @1Vk4n—1 + -+ an1 Vi1 + anye =0 forallk (10)

is an n-dimensional vector space.
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PROOF As was pointed out earlier, H is a subspace of S because H is the kernel
of a linear transformation. For {y;} in H, let F{yx} be the vector in R" given by
(Y0, Y1y .-y Yn—1). It is readily verified that F' : H — R” is a linear transformation.
Given any vector (o, ¥1,..., ya—1) in R”, Theorem 16 says that there is a unique
signal {y;} in H such that F{y;} = (Yo, Y1,-..,Yu—1). This means that F is a one-
to-one linear transformation of H onto R”; that is, F is an isomorphism. Thus
dim H = dimR” = n. (See Exercise 32 in Section 4.5.) [ |

EXAMPLE 5 Find a basis for the set of all solutions to the difference equation
Vk+3 = 2Vk+2 — Syk+1 + 6y =0 forall k

SOLUTION Our work in linear algebra really pays off now! We know from Examples 2
and 4 that 1, (—=2)%, and 3% are linearly independent solutions. In general, it can be
difficult to verify directly that a set of signals spans the solution space. But that is no
problem here because of two key theorems—Theorem 17, which shows that the solution
space is exactly three-dimensional, and the Basis Theorem in Section 4.5, which says
that a linearly independent set of n vectors in an n-dimensional space is automatically
a basis. So 1¥, (—=2)¥, and 3* form a basis for the solution space. [ ]

The standard way to describe the “general solution” of the difference equation (10)
is to exhibit a basis for the subspace of all solutions. Such a basis is usually called a
fundamental set of solutions of (10). In practice, if you can find n linearly independent
signals that satisfy (10), they will automatically span the n-dimensional solution space,
as explained in Example 5.

Nonhomogeneous Equations
The general solution of the nonhomogeneous difference equation

YVk4n F A1 Yign—1 + - F an_1yiy1 +anyr =z forallk (11)

can be written as one particular solution of (11) plus an arbitrary linear combination of
a fundamental set of solutions of the corresponding homogeneous equation (10). This
fact is analogous to the result in Section 1.5 showing that the solution sets of Ax = b
and Ax = 0 are parallel. Both results have the same explanation: The mapping x — Ax
is linear, and the mapping that transforms the signal {yy } into the signal {z;} in (11) is
linear. See Exercise 35.

EXAMPLE 6 Verify that the signal y; = k? satisfies the difference equation
Vit2 — 4Vi+1 + 3y = —4k  forall k (12)
Then find a description of all solutions of this equation.
SOLUTION Substitute k2 for Vi on the left side of (12):
(k +2)>—4(k + 1)> + 3k?
= (k* + 4k + 4) — 4(k*> + 2k + 1) + 3k
= —4k
So k? is indeed a solution of (12). The next step is to solve the homogeneous equation
Vi+2 =4V + 3y =0 (13)
The auxiliary equation is

rP—4r+3=(r-1)0r-3)=0
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FIGURE 4

Solution sets of difference
equations (12) and (13).

The roots are r = 1, 3. So two solutions of the homogeneous difference equation are 1%
and 3*. They are obviously not multiples of each other, so they are linearly independent
signals. By Theorem 17, the solution space is two-dimensional, so 3¥ and 1 form a basis
for the set of solutions of equation (13). Translating that set by a particular solution of
the nonhomogeneous equation (12), we obtain the general solution of (12):

K2+ 115 + ¢35, or kX4 cp + c3F

Figure 4 gives a geometric visualization of the two solution sets. Each point in the figure
corresponds to one signal in S. [ |

Reduction to Systems of First-Order Equations

A modern way to study a homogeneous nth-order linear difference equation is to replace
it by an equivalent system of first-order difference equations, written in the form

Xi+1 = Ax;  forall k

where the vectors x; are in R” and A is an n X n matrix.
A simple example of such a (vector-valued) difference equation was already studied
in Section 1.10. Further examples will be covered in Sections 4.9 and 5.6.

EXAMPLE 7 Write the following difference equation as a first-order system:

Vi3 — 2Vk42 — S5Vk+1 + 6yr =0 forall k

SOLUTION For each k, set

Vi
X = | Yk+1
Vie+2

The difference equation says that yx3 = —6yr + 5Vk+1 + 2Vk+2, SO

Vi1 0 + Y41 +0 0 1 07[
X1 = | Yet2 [=] 0 +0 + V2 | = 0 0 L || Ykt
V3 —6Yk + SVkt1 + 2Yi+42 =6 5 2 Yk
That is,
0 1 0
Xip+1 = Ax;  forallk, where A= 0o 0 1 [ |
-6 5 2

In general, the equation
Yitn + @1 Ykn—1 + o+ an—1Vk41 + anyr =0 forall k

can be rewritten as x;+; = Ax; for all k, where

0 1 0 0
Yk 0 0 1 0
Vie+1 . .
Xp = . , A=
’ 0 0 0 1
Yk+n—1



4.8 Applications to Difference Equations 251

Further Reading

Hamming, R. W., Digital Filters, 3rd ed. (Englewood Cliffs, NJ: Prentice-Hall, 1989),
pp. 1-37.

Kelly, W. G., and A. C. Peterson, Difference Equations, 2nd ed. (San Diego: Harcourt-
Academic Press, 2001).

Mickens, R. E., Difference Equations, 2nd ed. (New York: Van Nostrand Reinhold,
1990), pp. 88-141.

Oppenheim, A. V., and A. S. Willsky, Signals and Systems, 2nd ed. (Upper Saddle River,
NJ: Prentice-Hall, 1997), pp. 1-14, 21-30, 38—43.

PRACTICE PROBLEM

It can be shown that the signals 2k 3k gin %”, and 3* cos "7” are solutions of

Vi3 = 2Vk+2 + Oyi+1 — 18y, =0

Show that these signals form a basis for the set of all solutions of the difference equation.

4.8 EXERCISES

Verify that the signals in Exercises 1 and 2 are solutions of the
accompanying difference equation.

L 25 (=% yiego + 2041 — 8y =0

2. 55,(=5)" yrt2a =250 =0
Show that the signals in Exercises 3—6 form a basis for the solution
set of the accompanying difference equation.

3. The signals and equation in Exercise 1

4. The signals and equation in Exercise 2

5. (=2, k(=2)"; yia + 4y + 4y =0

6. 4% cos (*2), 4% sin (42); yyqo + 16y, = 0
In Exercises 7-12, assume the signals listed are solutions of
the given difference equation. Do the signals form a basis for

the solution space of the equation? Justify your answers using
appropriate theorems.

7. 15,25 (=2)%; yirs = Vit — 4yt + 4y =0
8. (=¥, 25,35 yiqs — 4yt + Ly + 6y =0
9. 2%, 5 cos (&), 5 sin (X2);
Yie+3 — 2Vk+2 + 25yk+1 — S0y = 0
10. (=2)%, k(=2)%, 3%; yis + yiga — 8y — 12y, =0
1. (=% 2% yiga = 3yqa + 49 =0
12. 35, (=2)%; yras — 13y542 + 36y, =0

In Exercises 13-16, find a basis for the solution space of the
difference equation. Prove that the solutions you find span the
solution set.

13, yigo— i1+ 33 =0 14 yiqo—Syq1 + 6y =0
15. 6yito + yit1 =2y =0 16, yr40—25y, =0

Exercises 17 and 18 concern a simple model of the national
economy described by the difference equation

Yitr —a(l 4+ b)Yiy; +abY, =1 (14)

Here Y} is the total national income during year k, a is a constant
less than 1, called the marginal propensity to consume, and b is
a positive constant of adjustment that describes how changes in
consumer spending affect the annual rate of private investment.!

17. Find the general solution of equation (14) when ¢ = .9 and
b= %. What happens to Yy as k increases? [Hint: First find a
particular solution of the form Y, = T, where T is a constant,
called the equilibrium level of national income.]

18. Find the general solution of equation (14) when a = .9 and
b =.5.

! For example, see Discrete Dynamical Systems, by James T. Sandefur
(Oxford: Clarendon Press, 1990), pp. 267-276. The original
accelerator-multiplier model is attributed to the economist P. A.
Samuelson.
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A lightweight cantilevered beam is supported at N points spaced
10 ft apart, and a weight of 500 Ib is placed at the end of the
beam, 10 ft from the first support, as in the figure. Let y; be
the bending moment at the kth support. Then y; = 5000 ft-1b.
Suppose the beam is rigidly attached at the Nth support and the
bending moment there is zero. In between, the moments satisfy
the three-moment equation

Vg2 + 441+ =0 fork=1,2,...,N -2 (15)

Bending moments on a cantilevered beam.

19. Find the general solution of difference equation (15). Justify
your answer.

20. Find the particular solution of (15) that satisfies the boundary
conditions y, = 5000 and yy = 0. (The answer involves
N.)

21. When a signal is produced from a sequence of measurements
made on a process (a chemical reaction, a flow of heat
through a tube, a moving robot arm, etc.), the signal usually
contains random noise produced by measurement errors. A
standard method of preprocessing the data to reduce the noise
is to smooth or filter the data. One simple filter is a moving
average that replaces each y; by its average with the two
adjacent values:

i+ 3y H i =z fork=1,2,...
Suppose a signal y;, fork =0,..., 14, is
9,5 7 3,2,4,6,5, 17,6,8,10,9,5,7

Use the filter to compute z;,...,2;3. Make a broken-line
graph that superimposes the original signal and the smoothed
signal.

22. Let {y;} be the sequence produced by sampling the continu-
ous signal 2 cos ”7’ + cos % atr =0,1,2,..., as shown in
the figure. The values of y;, beginning with k = 0, are

3,.7,0, -7 -3,-7,0, .73, .70, ...

where .7 is an abbreviation for «/5/ 2.
a. Compute the output signal {z;} when {yy} is fed into the
filter in Example 3.

b. Explain how and why the output in part (a) is related to
the calculations in Example 3.

y
_ Tt 3mt
y=2cos (—4) + cos(—4 j

Sampled data from 2 cos %' + cos %.
Exercises 23 and 24 refer to a difference equation of the form
Yk+1 — ayx = b, for suitable constants a and b.

23. Aloan of $10,000 has an interest rate of 1% per month and a
monthly payment of $450. The loan is made at month k& = 0,
and the first payment is made one month later, at k = 1. For
k=0,1,2,..., let y; be the unpaid balance of the loan just
after the kth monthly payment. Thus

yi = 10,000 + (.01)10,000 — 450
New Balance Interest Payment
balance due added

a. Write a difference equation satisfied by {yy }.

b. [M] Create a table showing k and the balance y; at month
k. List the program or the keystrokes you used to create
the table.

c. [M] What will k£ be when the last payment is made? How
much will the last payment be? How much money did the
borrower pay in total?

24. Attime k = 0, an initial investment of $1000 is made into a
savings account that pays 6% interest per year compounded
monthly. (The interest rate per month is .005.) Each month
after the initial investment, an additional $200 is added to
the account. For k = 0, 1,2,..., let y; be the amount in the
account at time k, just after a deposit has been made.

a. Write a difference equation satisfied by {yy }.

b. [M] Create a table showing k and the total amount in the
savings account at month k, for k = 0 through 60. List
your program or the keystrokes you used to create the
table.

c. [M] How much will be in the account after two years (that
is, 24 months), four years, and five years? How much of
the five-year total is interest?

In Exercises 25-28, show that the given signal is a solution of
the difference equation. Then find the general solution of that
difference equation.

25. yp = k% yego + 3y — 4y =7+ 10k
26. yi =1 +k; Yiya—6y+1 + Sy = —4
27. yr =k —2; yr42— 4y =83k

28. yr = 1+ 2k; ypo — 25y = —48k — 20



Write the difference equations in Exercises 29 and 30 as first-order
systems, Xy 41 = Axy, for all k.

29.
30.
31.

32.

33.

34.

4.9

YVita + 3Vk43 — 8Yit2 + 6yk41 — 2y, =0

Yi+3 — SYi+2 + 8y =0

Is the following difference equation of order 3? Explain.
Vi3 + SYk42 + 641 =0

What is the order of the following difference equation? Ex-
plain your answer.

Yi43 T a1Yido + @Y1 + azye =0

Let y, = k% and z; = 2k|k|. Are the signals {y;} and
{zi} linearly independent? Evaluate the associated Casorati
matrix C(k) for k =0, k = —1, and k = —2, and discuss
your results.

Let f, g, and & be linearly independent functions defined for
all real numbers, and construct three signals by sampling the
values of the functions at the integers:

we = fk),  w=gk),  we=nhk)

35.

36.

37.
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Must the signals be linearly independent in S? Discuss.

Let a and b be nonzero numbers. Show that the mapping T
defined by T{y;} = {wy}, where

Wy = Y42 + ayet1 + by

is a linear transformation from S into S.

Let V be a vector space, and let 7 : V' — V be a linear
transformation. Given z in V, suppose x, in V' satisfies
T(x,) =z, and let u be any vector in the kernel of 7.
Show that u + x, satisfies the nonhomogeneous equation
T(x) =1z

Let Sy be the vector space of all sequences of the form
(Y0, Y1, Y25 - . .), and define linear transformations 7 and D
from S into Sy by

T(yo,y1,¥y2,...) = (Y1, ¥2. 3, .. )

D(yo, y1,¥2,...) = (0,0, y1,¥2,...)

Show that TD = [ (the identity transformation on Sy) and
yet DT # I.

SOLUTION TO PRACTICE PROBLEM

Examine the Casorati matrix:

C(k) =

2k
2k+1

2k+2

k in ko
3sm2

3% cos ’%

k+1 iy (k+D k+1 (k+Dm
3 sin ~=—; 3 COs =

3k+2 gip (k+2)m 3k+2 g (k+2)m
2 2

Set k = 0 and row reduce the matrix to verify that it has three pivot positions and hence

is invertible:

Cc0) =

4

0 1 I 0 1
2 3 0f~0 3 =2
0 -9 0O 0 -13

The Casorati matrix is invertible at k = 0, so the signals are linearly independent.
Since there are three signals, and the solution space H of the difference equation has
dimension 3 (Theorem 17), the signals form a basis for H, by the Basis Theorem.

APPLICATIONS TO MARKOV CHAINS

The Markov chains described in this section are used as mathematical models of a
wide variety of situations in biology, business, chemistry, engineering, physics, and
elsewhere. In each case, the model is used to describe an experiment or measurement
that is performed many times in the same way, where the outcome of each trial of the
experiment will be one of several specified possible outcomes, and where the outcome
of one trial depends only on the immediately preceding trial.

For example, if the population of a city and its suburbs were measured each year,

then a vector such as

ey

60
o =1 40
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could indicate that 60% of the population lives in the city and 40% in the suburbs. The
decimals in x( add up to 1 because they account for the entire population of the region.
Percentages are more convenient for our purposes here than population totals.

A vector with nonnegative entries that add up to 1 is called a probability vector. A
stochastic matrix is a square matrix whose columns are probability vectors. A Markov
chain is a sequence of probability vectors X, X, X», ..., together with a stochastic
matrix P, such that

X; = PXo, Xo = PX|, X3= Pxo,
Thus the Markov chain is described by the first-order difference equation
Xp+1 = Px; fork =0,1,2,...

When a Markov chain of vectors in R” describes a system or a sequence of
experiments, the entries in x; list, respectively, the probabilities that the system is in
each of n possible states, or the probabilities that the outcome of the experiment is one
of n possible outcomes. For this reason, x; is often called a state vector.

EXAMPLE 1 Section 1.10 examined a model for population movement between a
city and its suburbs. See Fig. 1. The annual migration between these two parts of the
metropolitan region was governed by the migration matrix M :

From:
City Suburbs To:

195 .03 City
M= |:.05 .97j| Suburbs

That is, each year 5% of the city population moves to the suburbs, and 3% of the
suburban population moves to the city. The columns of M are probability vectors,
so M is a stochastic matrix. Suppose the 2000 population of the region is 600,000 in
the city and 400,000 in the suburbs. Then the initial distribution of the population in the
region is given by X, in (1) above. What is the distribution of the population in 2001?
In 20027

City

Suburbs

95

.05
97
.03

FIGURE 1 Annual percentage migration between city and suburbs.

SOLUTION In Example 3 of Section 1.10, we saw that after one year, the population
600,000 j|
changed to

vector [400,000
95 037 600,0007 _ [ 582.000
05 .97 || 400,000 | = | 418,000
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If we divide both sides of this equation by the total population of 1 million, and use the
fact that kM x = M (kx), we find that

95 .03 || .600 | | .582
.05 .97 || .400 | | 418

The vector x| = Z?; gives the population distribution in 2001. That is, 58.2% of

the region lived in the city and 41.8% lived in the suburbs. Similarly, the population
distribution in 2002 is described by a vector x,, where

95 0375827 _[.565
XZ_MX]_[.OS .97}[.418}_[.435] "

EXAMPLE 2 Suppose the voting results of a congressional election at a certain
voting precinct are represented by a vector x in R:

% voting Democratic (D)
X = | % voting Republican (R)
% voting Libertarian (L)

Suppose we record the outcome of the congressional election every two years by a vector
of this type and the outcome of one election depends only on the results of the preceding
election. Then the sequence of vectors that describe the votes every two years may be
a Markov chain. As an example of a stochastic matrix P for this chain, we take

From:
D R L To:
70 .10 .30 D
P=1].20 .80 .30 R
.10 .10 .40 L

The entries in the first column, labeled D, describe what the persons voting Democratic
in one election will do in the next election. Here we have supposed that 70% will vote D
again in the next election, 20% will vote R, and 10% will vote L. Similar interpretations
hold for the other columns of P. A diagram for this matrix is shown in Fig. 2.

70 .80

Democratic > Republican
vote < vote

<

10
30 \0 10 30

Libertarian
vote

L, ]

40

FIGURE 2 Voting changes from one election to the
next.
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If the “transition” percentages remain constant over many years from one election
to the next, then the sequence of vectors that give the voting outcomes forms a Markov
chain. Suppose the outcome of one election is given by

Determine the likely outcome of the next election and the likely outcome of the election
after that.

SOLUTION The outcome of the next election is described by the state vector x; and
that of the election after that by x,, where

70 .10 307 .55 440 44% will vote D.
X, =Pxo=1| .20 .80 .30 40 | = | 445 44.5% will vote R.
.10 .10 .40_ .05_ _.115 11.5% will vote L.
70 .10 30| [ .4407] [.3870 38.7% will vote D.
X, =Px; =1 .20 .80 .30 445 | = | .4785 47.8% will vote R.
A0 .10 .40 || 115 | 1345 13.5% will vote L.

To understand why x; does indeed give the outcome of the next election, suppose 1000
persons voted in the “first” election, with 550 voting D, 400 voting R, and 50 voting L.
(See the percentages in X¢.) In the next election, 70% of the 550 will vote D again, 10%
of the 400 will switch from R to D, and 30% of the 50 will switch from L to D. Thus
the total D vote will be

.70(550) + .10(400) + .30(50) = 385 + 40 + 15 = 440 )

Thus 44% of the vote next time will be for the D candidate. The calculation in (2) is
essentially the same as that used to compute the first entry in x;. Analogous calculations
could be made for the other entries in x;, for the entries in X,, and so on. |

Predicting the Distant Future

The most interesting aspect of Markov chains is the study of a chain’s long-term
behavior. For instance, what can be said in Example 2 about the voting after many
elections have passed (assuming that the given stochastic matrix continues to describe
the transition percentages from one election to the next)? Or, what happens to the
population distribution in Example 1 “in the long run”? Before answering these
questions, we turn to a numerical example.

S5 02 3 1
EXAMPLE 3 LetP=|.3 .8 .3 |andxo= | 0 [.Considerasystem whose
2 0 4 0

state is described by the Markov chain xz+; = Px, for k = 0, 1,... What happens to
the system as time passes? Compute the state vectors Xi, . .., X;5 to find out.
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SOLUTION

5 2 371 5
x=Pxp=|3 8 3 0(=13.3

|2 0 4][0 2

5 2 37[.5 .37
x;,=Px;=].3 8 3 3= 45

|2 0 4] 2 18

5 2 37[.37 329
x3=Px,=(3 8 3 A5 | = .525

|2 0 4] .18 .146

The results of further calculations are shown below, with entries rounded to four or five
significant figures.

3133 7] [.3064 ] [.3032 ] [.3016 ]
x4 = | 5625 X5 = | .5813 |, X = | .5906 x7 = | .5953
| 1242 | 1123 | | 1062 | 1031 |
[.3008 | [.3004 ] [.3002 ] .3001 ]
Xg = 5977 X9 = .5988 s X190 = .5994 X11 = .5997
| -1016 | .1008 | | 1004 | 1002 |
[.30005 [.30002 [.30001 .30001
Xpp = | 59985 |, x;3=.59993 [, x34 = .59996 |, x;5 = .59998
| 10010 | 10005 | 10002 | 10001
3
These vectors seem to be approaching q = | .6 The probabilities are hardly
1

changing from one value of k to the next. Observe that the following calculation is
exact (with no rounding error):

5 2 3 3 A5+ .12 + .03 30
Pgq=|(3 8 3 6| =|.09+.48+.03 |=| .60 | =q
2 0 4 .1 06+ 0 + .04 .10

When the system is in state q, there is no change in the system from one measurement
to the next. [ |

Steady-State Vectors

If P is a stochastic matrix, then a steady-state vector (or equilibrium vector) for P is
a probability vector q such that

Pq=q

It can be shown that every stochastic matrix has a steady-state vector. In Example 3, q
is a steady-state vector for P.

is a steady-state vector for the

375
= [.625} =¢ W

EXAMPLE 4 The probability vector q = [Z;g]

population migration matrix M in Example 1, because

Ma |95 03][3757 _[ 35625+ .01875
9=1 05 97| .625|7 | .01875 + .60625
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If the total population of the metropolitan region in Example 1 is 1 million, then
q from Example 4 would correspond to having 375,000 persons in the city and 625,000
in the suburbs. At the end of one year, the migration out of the city would be
(-05)(375,000) = 18,750 persons, and the migration info the city from the suburbs
would be (.03)(625,000) = 18,750 persons. As aresult, the population in the city would
remain the same. Similarly, the suburban population would be stable.

The next example shows how to find a steady-state vector.

6 3

EXAMPLE 5 LetP = [‘4 5

i|. Find a steady-state vector for P.

SOLUTION First, solve the equation Px = X.

Px—x=0
Px—Ix=0 Recall from Section 1.4 that /x = x.
(P-Dx=0

For P as above,

6 3
4 7

e[ 3T [ 2

To find all solutions of (P — I)x = 0, row reduce the augmented matrix:

-4 3 0 -4 3 0 1 =3/4 0
4 -3 0 0O 0 0 0 0 0
3 . . 3/4
Then x; = $x; and x; is free. The general solution is x, e
. . . . . . |3/4
Next, choose a simple basis for the solution space. One obvious choice is 1

. . Lo 3 .
but a better choice with no fractions is w = 4] (corresponding to x, = 4).

Finally, find a probability vector in the set of all solutions of Px = x. This process
is easy, since every solution is a multiple of the solution w above. Divide w by the sum
of its entries and obtain

37
q“_4/7]
As a check, compute
po— [6/10 3/107[3/77 _[18/70+12/707 _ [30/707 _ .
1= 4710 77104777 | 12/70+28/70 | ~ | 40/70 | =4

The next theorem shows that what happened in Example 3 is typical of many
stochastic matrices. We say that a stochastic matrix is regular if some matrix power
P* contains only strictly positive entries. For P in Example 3,

37 26 .33
P2=1| .45 70 .45
18 .04 22

Since every entry in P2 is strictly positive, P is a regular stochastic matrix.

Also, we say that a sequence of vectors {x; : k = 1,2, ...} converges to a vector
q as k — oo if the entries in x; can be made as close as desired to the corresponding
entries in q by taking k sufficiently large.
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THEOREM 18 If P is an n x n regular stochastic matrix, then P has a unique steady-state vector
q. Further, if x¢ is any initial state and x4+ = Px; fork =0, 1,2, ..., then the
Markov chain {x; } converges to q as k — oo.

This theorem is proved in standard texts on Markov chains. The amazing part of
the theorem is that the initial state has no effect on the long-term behavior of the Markov
chain. You will see later (in Section 5.2) why this is true for several stochastic matrices
studied here.

EXAMPLE 6 In Example 2, what percentage of the voters are likely to vote for the
Republican candidate in some election many years from now, assuming that the election
outcomes form a Markov chain?

SOLUTION For computations by hand, the wrong approach is to pick some initial
vector Xy and compute Xp, ..., X, for some large value of k. You have no way of
knowing how many vectors to compute, and you cannot be sure of the limiting values
of the entries in x.

The correct approach is to compute the steady-state vector and then appeal to
Theorem 18. Given P as in Example 2, form P — I by subtracting 1 from each diagonal
entry in P. Then row reduce the augmented matrix:

-3 1 3 0
[(P—1) 0]=| 2-2 3 0
1 1-6 0

Recall from earlier work with decimals that the arithmetic is simplified by multiplying
each row by 10.!

-3 1 3 0 1 0 -9/4 0
-2 3 0|~|0 1 —15/4 0
1 1 -6 0 0 o0 0 o0

The general solutionof (P — I)x = 0is x; = %)@, Xy = %)@, and x; is free. Choosing
x3 = 4, we obtain a basis for the solution space whose entries are integers, and from

this we easily find the steady-state vector whose entries sum to 1:

9 9/28 32
w=|15|, and q=]|15/28 | ~ | .54
4 4/28 14

The entries in q describe the distribution of votes at an election to be held many years
from now (assuming the stochastic matrix continues to describe the changes from one
election to the next). Thus, eventually, about 54% of the vote will be for the Republican
candidate. [ |

' Warning: Don’t multiply only P by 10. Instead, multiply the augmented matrix for equation
(P —1I)x=0by 10.
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— NUMERICAL NOTE
You may have noticed that if x; 11 = Px; fork =0, 1,..., then
X, = Px; = P(Pxg) = P?xo,

and, in general, X, = kao fork =0,1,...

To compute a specific vector such as x3, fewer arithmetic operations are needed
to compute X, X,, and x3, rather than P 3 and P3x0. However, if P is small —say,
30 x 30—the machine computation time is insignificant for both methods, and a
command to compute P3x, might be preferred because it requires fewer human
keystrokes.

PRACTICE PROBLEMS

1. Suppose the residents of a metropolitan region move according to the probabilities

in the migration matrix M in Example | and a resident is chosen “at random.” Then
a state vector for a certain year may be interpreted as giving the probabilities that the

4.9

person is a city resident or a suburban resident at that time.

a. Suppose the person chosen is a city resident now, so that x) = [

(1) ] What is the

likelihood that the person will live in the suburbs next year?

b. What is the likelihood that the person will be living in the suburbs in two years?

2. Let P = [ 2 §j| and q = [ ; ] Is q a steady-state vector for P?

3. What percentage of the population in Example 1 will live in the suburbs after many

years?

EXERCISES

1. A small remote village receives radio broadcasts from two

radio stations, a news station and a music station. Of the
listeners who are tuned to the news station, 70% will remain
listening to the news after the station break that occurs each
half hour, while 30% will switch to the music station at the
station break. Of the listeners who are tuned to the music
station, 60% will switch to the news station at the station
break, while 40% will remain listening to the music. Suppose
everyone is listening to the news at 8:15 A.M.

a. Give the stochastic matrix that describes how the radio
listeners tend to change stations at each station break.
Label the rows and columns.

b. Give the initial state vector.
c. What percentage of the listeners will be listening to the

music station at 9:25 A.M. (after the station breaks at 8:30
and 9:00 A.M.)?

. Alaboratory animal may eat any one of three foods each day.
Laboratory records show that if the animal chooses one food
on one trial, it will choose the same food on the next trial

with a probability of 60%, and it will choose the other foods
on the next trial with equal probabilities of 20%.

a. What is the stochastic matrix for this situation?

b. If the animal chooses food #1 on an initial trial, what is
the probability that it will choose food #2 on the second
trial after the initial trial?

3. On any given day, a student is either healthy or ill. Of

the students who are healthy today, 95% will be healthy



tomorrow. Of the students who are ill today, 55% will still
be ill tomorrow.

a. What is the stochastic matrix for this situation?

b. Suppose 20% of the students are ill on Monday. What
fraction or percentage of the students are likely to be ill
on Tuesday? On Wednesday?

c. If a student is healthy today, what is the probability that
he or she will be healthy two days from now?

The weather in Columbus is either good, indifferent, or bad
on any given day. If the weather is good today, there is a
40% chance it will be good tomorrow, a 30% chance it will
be indifferent, and a 30% chance it will be bad. If the weather
is indifferent today, there is a 50% chance it will be good
tomorrow, and a 20% chance it will be indifferent. Finally,
if the weather is bad today, there is a 30% chance it will be
good tomorrow and a 40% chance it will be indifferent.

a. What is the stochastic matrix for this situation?

b. Suppose there is a 50% chance of good weather today
and a 50% chance of indifferent weather. What are the
chances of bad weather tomorrow?

c. Suppose the predicted weather for Monday is 60% in-
different weather and 40% bad weather. What are the
chances for good weather on Wednesday?

In Exercises 5-8, find the steady-state vector.

5.

7.

9.

10.

11.

12.

13.

14.

15.

d 5 4 8
e . [5 3]
g 1 1 4 5 8
2 . . 8. 0o 5 .
d 17 6 0 .1
. 2 1. . .
Determine if P = g 0|12 regular stochastic matrix.
. 1 3. . .
Determine if P = [ 0 7:| is a regular stochastic matrix.

a. Find the steady-state vector for the Markov chain in
Exercise 1.

b. Atsome time late in the day, what fraction of the listeners
will be listening to the news?

Refer to Exercise 2. Which food will the animal prefer after
many trials?

a. Find the steady-state vector for the Markov chain in
Exercise 3.

b. What is the probability that after many days a specific
student is i11? Does it matter if that person is ill today?

Refer to Exercise 4. In the long run, how likely is it for the
weather in Columbus to be good on a given day?

[M] The Demographic Research Unit of the California State
Department of Finance supplied data for the following mi-
gration matrix, which describes the movement of the United
States population during 1989. In 1989, about 11.7% of the

16.

17.

18.

19.

20.
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total population lived in California. What percentage of the
total population would eventually live in California if the
listed migration probabilities were to remain constant over
many years?

From:
CA Restof U.S. To:
9821  .0029 California
|:.0179 .9971:| Rest of U.S.

[M] In Detroit, Hertz Rent A Car has a fleet of about 2000
cars. The pattern of rental and return locations is given by
the fractions in the table below. On a typical day, about how
many cars will be rented or ready to rent from the downtown
location?

Cars Rented from:

City Down- Metro
Airport town Airport Returned to:
.90 .01 .09 City Airport
.01 .90 .01 Downtown
.09 .09 .90 Metro Airport

Let P be ann x n stochastic matrix. The following argument

shows that the equation Px = x has a nontrivial solution. (In

fact, a steady-state solution exists with nonnegative entries.

A proof is given in some advanced texts.) Justify each

assertion below. (Mention a theorem when appropriate.)

a. If all the other rows of P — I are added to the bottom
row, the result is a row of zeros.

b. The rows of P — [ are linearly dependent.
c. The dimension of the row space of P — [ is less than n.

d. P — I has a nontrivial null space.

Show that every 2 x 2 stochastic matrix has at least one
steady-state vector. Any such matrix can be written in the
-« B
o 1-8
between 0 and 1. (There are two linearly independent steady-
state vectors if « = f = 0. Otherwise, there is only one.)

form P = , where « and f are constants

Let S be the 1 x n row matrix with a 1 in each column,
S = [ 1 1 e 1 ]

a. Explain why a vector x in R” is a probability vector if and
only if its entries are nonnegative and Sx = 1. (A 1 x 1
matrix such as the product Sx is usually written without
the matrix bracket symbols.)

b. Let P be an n x n stochastic matrix.
SP =S.

c. Let P be an n x n stochastic matrix, and let x be a
probability vector. Show that Px is also a probability
vector.

Explain why

Use Exercise 19 to show that if P is an n x n stochastic
matrix, then so is P2.
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21. [M] Examine powers of a regular stochastic matrix. Q. Conjecture what might be true for any regular stochas-
a. Compute P¥ fork = 2,3,4,5, when tic matrix.
c. Use Theorem 18 to explain what you found in parts (a)
3355 3682 .3067 .0389 and (b).
2663 2723 3277 5451
P = 1935 1502 .1589 .2395 22. [M] Compare two methods for finding the steady-state vector
2047 2093 2067 .1765 q of a regular stochastic matrix P: (1) computing q as in
Example 5, or (2) computing P* for some large value of k
Display calculations to four decimal places. What hap- and using one of the columns of P¥ as an approximation for
pens to the columns of P* as k increases? Compute the q. [The Study Guide describes a program nulbasis that almost
steady-state vector for P. automates method (1).]
b. Compute Q for k = 10,20, ..., 80, when Experiment with the largest random stochastic matrices
your matrix program will allow, and use k = 100 or some
97 .05 .10 other large value. For each method, describe the time you
0= 0 .90 .05 need to enter the keystrokes and run your program. (Some
.03 .05 .85 versions of MATLAB have commands flops and tic
... toc that record the number of floating point operations
(Stability for QF to four decimal places may require and the total elapsed time MATLAB uses.) Contrast the
k = 116 or more.) Compute the steady-state vector for advantages of each method, and state which you prefer.

SOLUTIONS TO PRACTICE PROBLEMS

1. a. Since 5% of the city residents will move to the suburbs within one year, there is
a 5% chance of choosing such a person. Without further knowledge about the
person, we say that there is a 5% chance the person will move to the suburbs.
This fact is contained in the second entry of the state vector x;, where

95 0371 95
X1 = Mxo = [.05 .97}[0] - [.05]

b. The likelihood that the person will be living in the suburbs after two years is

9.6%, because
o = Mxi = |95 037[ 957 _ [ 904
2= AT 05 97105 | .09

2. The steady-state vector satisfies Px = x. Since

6 2.3 32
Pq_[.4 .8][.7]_[.68]75‘1
we conclude that q is not the steady-state vector for P.

3. M in Example 1 is a regular stochastic matrix because its entries are all strictly
positive. So we may use Theorem 18. We already know the steady-state vector
from Example 4. Thus the population distribution vectors X, converge to

_[375
9= 625

Eventually 62.5% of the population will live in the suburbs.

CHAPTER 4 SUPPLEMENTARY EXERCISES

1. Mark each statement True or False. Justify each answer. vectors in a nonzero finite-dimensional vector space V', and
(If true, cite appropriate facts or theorems. If false, explain S ={vi,....v,}.
why or give a counterexample that shows why the statement a. Thesetofall linear combinations of vy, ..., v, is a vector

is not true in every case.) In parts (a)—(f), vi,...,v, are space.



b. If{vi,...,V,—} spans I/, then S spans V.
c. If{vi,...,v,_}islinearly independent, then so is S.
d. If S is linearly independent, then S is a basis for V.

e. IfSpanS = V, then some subset of S is a basis for V.

=

IfdimV = pandSpan S = V,then S cannot be linearly
dependent.

g. A plane in R? is a two-dimensional subspace.

h.  The nonpivot columns of a matrix are always linearly
dependent.

i. Row operations on a matrix A can change the linear
dependence relations among the rows of A.

j- Row operations on a matrix can change the null space.
k. The rank of a matrix equals the number of nonzero rows.

1. Ifanm x n matrix A is row equivalent to an echelon ma-
trix U and if U has k nonzero rows, then the dimension
of the solution space of Ax = 0ism — k.

m. If B is obtained from a matrix A by several elementary
row operations, then rank B = rank A.

n. The nonzero rows of a matrix A form a basis for Row A.

o. Ifmatrices A and B have the same reduced echelon form,
then Row A = Row B.

p. If H is a subspace of R?, then there is a 3 x 3 matrix A4
such that H = Col A.

q. If Ais m xn and rank A = m, then the linear transfor-
mation X — AX is one-to-one.

r. If Ais m x n and the linear transformation X > AX is
onto, then rank A = m.

s. A change-of-coordinates matrix is always invertible.

t. IfB=1{by,...,b,}andC = {cy,...,¢,} are bases for a
vector space V/, then the jth column of the change-of-

coordinates matrix 2, is the coordinate vector [c;]z.

. Find a basis for the set of all vectors of the form

a—2b+5¢
2a + 5b — 8¢
—a—4b+7¢ (Be careful.)
3a+b+c
) 1 by
. Llet wy=| 4|, wm=| 2|, b=|b |, and
_6 _5 b3

W = Span {u;, u,}. Find an implicit description of W that
is, find a set of one or more homogeneous equations that
characterize the points of W. [Hint: When is b in W?]

. Explain what is wrong with the following discussion: Let
f(t) = 3+ and g(t) = 3t + ¢, and note that g(¢) = tf(¢).
Then {f, g} is linearly dependent because g is a multiple of f.

. Consider the polynomials p,(t) =141, p,(t) =1—t¢,
p;(t) =4, p,(t) =1+ 1%, and ps(t) =1+ 2t + 2, and
let H be the subspace of Ps spanned by the set
S = {p;, P2, P53, P4 Ps}. Use the method described in the
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proof of the Spanning Set Theorem (Section 4.3) to produce
a basis for H. (Explain how to select appropriate members
of S.)

6. Suppose p;, p,, P3, P, are specific polynomials that span a
two-dimensional subspace H of P5. Describe how one can
find a basis for H by examining the four polynomials and
making almost no computations.

7. What would you have to know about the solution set of a
homogeneous system of 18 linear equations in 20 variables
in order to know that every associated nonhomogeneous
equation has a solution? Discuss.

8. Let H be an n-dimensional subspace of an n-dimensional
vector space V. Explain why H = V.

9. Let T : R" — R” be a linear transformation.
a. What is the dimension of the range of 7 if T is a one-to-
one mapping? Explain.
b. What is the dimension of the kernel of 7" (see Section 4.2)
if 7 maps R” onto R"”? Explain.

10. Let S be a maximal linearly independent subset of a vector
space V. That is, S has the property that if a vector not in S
is adjoined to S, then the new set will no longer be linearly
independent. Prove that S must be a basis for V. [Hint: What
if S were linearly independent but not a basis of V'?]

11. Let S be a finite minimal spanning set of a vector space V.
That is, S has the property that if a vector is removed from
S, then the new set will no longer span V. Prove that § must
be a basis for V.

Exercises 12—17 develop properties of rank that are sometimes
needed in applications. Assume the matrix A is m X n.

12. Show from parts (a) and (b) that rank AB cannot exceed the
rank of A or the rank of B. (In general, the rank of a
product of matrices cannot exceed the rank of any factor in
the product.)

a. Show that if B is n x p, then rank AB < rank A. [Hint:
Explain why every vector in the column space of AB is in
the column space of A.]

b. Show that if B is n x p, then rank AB < rank B. [Hint:
Use part (a) to study rank(AB)7.]

13. Show that if P is an invertible m X m matrix, then
rank PA = rank A. [Hint: Apply Exercise 12 to PA and
P~1(PA).]

14. Show that if Q is invertible, then rank AQ = rank A. [Hint:
Use Exercise 13 to study rank(4Q)7.]

15. Let A be an m x n matrix, and let B be an n X p matrix
such that AB = 0. Show that rank A 4 rank B < n. [Hint:
One of the four subspaces Nul A, Col A, Nul B, and Col B is
contained in one of the other three subspaces.]

16. If A is an m x n matrix of rank r, then a rank factorization
of A is an equation of the form A = CR, where C is an
m x r matrix of rank r and R is an r x n matrix of rank r.
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Such a factorization always exists (Exercise 38 in Section
4.6). Given any two m x n matrices A and B, use rank
factorizations of A and B to prove that

rank(A 4+ B) <rank A 4 rank B

[Hint: Write A 4+ B as the product of two partitioned matri-
ces.]

17. A submatrix of a matrix A is any matrix that results from
deleting some (or no) rows and/or columns of A. It can be
shown that A has rank r if and only if 4 contains an invertible
r X r submatrix and no larger square submatrix is invertible.
Demonstrate part of this statement by explaining (a) why
an m x n matrix A of rank r has an m x r submatrix A; of
rank 7, and (b) why A; has an invertible r x r submatrix A,.

The concept of rank plays an important role in the design of
engineering control systems, such as the space shuttle system
mentioned in this chapter’s introductory example. A state-space
model of a control system includes a difference equation of the
form

Xi+1 = AX; + Bu, fork =0,1,... (1)

where Aisn x n, Bisn x m, {X;} is a sequence of “state vectors”
in R” that describe the state of the system at discrete times, and
{uy} is a control, or input, sequence. The pair (4, B) is said to be
controllable if

rank[ B AB A’B A""'B]=n )

The matrix that appears in (2) is called the controllability matrix
for the system. If (A, B) is controllable, then the system can be
controlled, or driven from the state 0 to any specified state v (in
R") in at most 7 steps, simply by choosing an appropriate control
sequence in R”. This fact is illustrated in Exercise 18 for n = 4

and m = 2. For a further discussion of controllability, see this
text’s web site (Case Study for Chapter 4).

18. Suppose A is a 4 x 4 matrix and B is a 4 x 2 matrix, and let
uy. ..., u; represent a sequence of input vectors in R2.
a. Set Xy = 0, compute xy,...,Xs from equation (1), and
write a formula for x, involving the controllability matrix
M appearing in equation (2). (Note: The matrix M is
constructed as a partitioned matrix. Its overall size here
is4x8.)

b. Suppose (4, B) is controllable and v is any vector in R*.
Explain why there exists a control sequence uy, . .., uz in
R? such that x4 = v.

Determine if the matrix pairs in Exercises 19-22 are controllable.

9 1 0 0
19. 4= 0 -9 0/[,B=]1
L0 0 5] 1]
(8 -3 0] 1]
2. A=|2 5 1[,B=|1
L0 0 —5] 0 |
rTo 10 0 1
0o 0 1 0 0
a.MA=| o o o B=]
| 2 —42 —48 -36 —1
T o 1 0 0 1
0 0 1 0 0
2. MIA=1 o o 1B o
| -1 —13 —122 -15 -1




Eigenvalues and
Eigenvectors

INTRODUCTORY EXAMPLE

Dynamical Systems and Spotted Owls

In 1990, the northern spotted owl became the center of
a nationwide controversy over the use and misuse of the
majestic forests in the Pacific Northwest. Environmen-
talists convinced the federal government that the owl was
threatened with extinction if logging continued in the old-
growth forests (with trees over 200 years old), where the
owls prefer to live. The timber industry, anticipating
the loss of 30,000 to 100,000 jobs as a result of new
government restrictions on logging, argued that the owl
should not be classified as a “threatened species” and cited
anumber of published scientific reports to support its case.!

Caught in the crossfire of the two lobbying groups,
mathematical ecologists intensified their drive to under-
stand the population dynamics of the spotted owl. The
life cycle of a spotted owl divides naturally into three
stages: juvenile (up to 1 year old), subadult (1 to 2 years),
and adult (over 2 years). The owls mate for life during
the subadult and adult stages, begin to breed as adults,
and live for up to 20 years. Each owl pair requires about
1000 hectares (4 square miles) for its own home territory.
A critical time in the life cycle is when the juveniles leave
the nest. To survive and become a subadult, a juvenile
must successfully find a new home range (and usually a
mate).

! “The Great Spotted Owl War,” Reader’s Digest, November 1992,
pp. 91-95.

A first step in studying the population dynamics is to
model the population at yearly intervals, at times denoted
by k =0,1,2,.... Usually, one assumes that there is a 1:1
ratio of males to females in each life stage and counts only
the females. The population at year k can be described
by a vector Xy = (ji, Sk, ax), where ji, i, and a; are the
numbers of females in the juvenile, subadult, and adult
stages, respectively.

Using actual field data from demographic studies,
R. Lamberson and co-workers considered the following
stage-matrix model:?

Jk+1 0 0 33| jk
Sk+1 = 18 0 0 Sk
Ak 41 0 71 .94 Ay

Here the number of new juvenile females in year k& + 1
is .33 times the number of adult females in year k (based
on the average birth rate per owl pair). Also, 18% of the
juveniles survive to become subadults, and 71% of the
subadults and 94% of the adults survive to be counted as
adults.

The stage-matrix model is a difference equation of the
form X4+ = AXy. Such an equation is often called a

2R. H. Lamberson, R. McKelvey, B. R. Noon, and C. Voss, “A Dynamic
Analysis of the Viability of the Northern Spotted Owl in a Fragmented
Forest Environment,” Conservation Biology 6 (1992), 505-512. Also, a
private communication from Professor Lamberson, 1993.

265
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dynamical system (or a discrete linear dynamical
system) because it describes the changes in a system as
time passes.

The 18% juvenile survival rate in the Lamberson stage
matrix is the entry affected most by the amount of old-
growth forest available. Actually, 60% of the juveniles
normally survive to leave the nest, but in the Willow
Creek region of California studied by Lamberson and his
colleagues, only 30% of the juveniles that left the nest were
able to find new home ranges. The rest perished during the
search process.

A significant reason for the failure of owls to find new
home ranges is the increasing fragmentation of old-growth
timber stands due to clear-cutting of scattered areas on
the old-growth land. When an owl leaves the protective
canopy of the forest and crosses a clear-cut area, the risk of
attack by predators increases dramatically. Section 5.6 will
show that the model described above predicts the eventual
demise of the spotted owl, but that if 50% of the juveniles
who survive to leave the nest also find new home ranges,
then the owl population will thrive.

The goal of this chapter is to dissect the action of a linear transformation x — Ax into
elements that are easily visualized. Except for a brief digression in Section 5.4, all
matrices in the chapter are square. The main applications described here are to discrete
dynamical systems, including the spotted owls discussed above. However, the basic
concepts —eigenvectors and eigenvalues —are useful throughout pure and applied math-
ematics, and they appear in settings far more general than we consider here. Eigenvalues
are also used to study differential equations and continuous dynamical systems, they
provide critical information in engineering design, and they arise naturally in fields such
as physics and chemistry.

5.1 EIGENVECTORS AND EIGENVALUES

Although a transformation x — Ax may move vectors in a variety of directions, it often
happens that there are special vectors on which the action of A is quite simple.

EXAMPLE 1 LetAd = |:3 _21|,u = |:_i:|,andv = [?} The images of u and

1 0
v under multiplication by A are shown in Fig. 1. In fact, Av is just 2v. So A only
“stretches,” or dilates, v. |
)
4 o AV
/ 2
///—_\.1__ V\_//
7
> ——— —————x,
v 1
Aue T

FIGURE 1 Effects of multiplication by A.

As another example, readers of Section 4.9 will recall that if A is a stochastic matrix,
then the steady-state vector q for A satisfies the equation Ax = x. Thatis, Aq = 1-q.



~10+

20+

Au = —4u, but Av # Av.

30

X
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This section studies equations such as
Ax =2x or Ax = —4x

where special vectors are transformed by A into scalar multiples of themselves.

An eigenvector of an n x n matrix A is a nonzero vector x such that Ax = Ax
for some scalar A. A scalar A is called an eigenvalue of A if there is a nontrivial
solution x of Ax = Ax; such an x is called an eigenvector corresponding to A.'

It is easy to determine if a given vector is an eigenvector of a matrix. It is also easy
to decide if a specified scalar is an eigenvalue.

EXAMPLE 2 LetA=|:; g],uz[_g ,andv:[_;}.Areuandveigen—

ey 4[] 2]
eels 2 0)

Thus u is an eigenvector corresponding to an eigenvalue (—4), but v is not an eigenvector
of A, because Av is not a multiple of v. [ |

vectors of A?

SOLUTION

EXAMPLE 3 Show that 7 is an eigenvalue of matrix A in Example 2, and find the
corresponding eigenvectors.

SOLUTION The scalar 7 is an eigenvalue of A if and only if the equation
Ax = Tx (1)
has a nontrivial solution. But (1) is equivalent to Ax — 7x = 0, or
(A—TD)x =0 2)
To solve this homogeneous equation, form the matrix
en=[y -0 903 4]

The columns of A — 71 are obviously linearly dependent, so (2) has nontrivial solu-
tions. Thus 7 is an eigenvalue of A. To find the corresponding eigenvectors, use row

operations:
-6 6 0 1 -1 0
5 -5 0 0o 0 0

The general solution has the form xz[ ! . Each vector of this form with x, # 0 is an

1
eigenvector corresponding to A = 7. |

'Note that an eigenvector must be nonzero, by definition, but an eigenvalue may be zero. The case in which
the number O is an eigenvalue is discussed after Example 5.
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Warning: Although row reduction was used in Example 3 to find eigenvectors, it
cannot be used to find eigenvalues. An echelon form of a matrix A usually does not
display the eigenvalues of A.

The equivalence of equations (1) and (2) obviously holds for any A in place of
A = 7. Thus A is an eigenvalue of an n x n matrix A if and only if the equation

(A—ADHx =0 3)

has a nontrivial solution. The set of all solutions of (3) is just the null space of the matrix
A — Al. So this setis a subspace of R" and is called the eigenspace of A corresponding
to A. The eigenspace consists of the zero vector and all the eigenvectors corresponding
to A.

Example 3 shows that for matrix A in Example 2, the eigenspace corresponding to
A = 7 consists of all multiples of (1, 1), which is the line through (1, 1) and the origin.
From Example 2, you can check that the eigenspace corresponding to A = —4 is the
line through (6, —5). These eigenspaces are shown in Fig. 2, along with eigenvectors
(1,1) and (3/2,—5/4) and the geometric action of the transformation x > Ax on each
eigenspace.

-~ Multiplication _ -,
=+ by 7 p -

Eigenspace
forA=7

Eigenspace
for A =-4

FIGURE 2 Eigenspaces forA = —4and A = 7.

4 -1 6
EXAMPLE 4 LetA=|2 1 6 |. Aneigenvalue of A is 2. Find a basis for
2 -1 8

the corresponding eigenspace.

SOLUTION Form

4 -1 6 2 0 0 2 -1 6
A=-2I=]12 1 6|—|0 2 0f=]|2 -1 6
2 -1 8 0 0 2 2 -1 6
and row reduce the augmented matrix for (4 —27)x = 0:
2 -1 6 0 2 -1 6 0
2 -1 6 0|~[0 0 0 O
2 -1 6 0 0 0 0 O
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At this point, it is clear that 2 is indeed an eigenvalue of A because the equation
(A —21)x = 0 has free variables. The general solution is

X1 1/2 -3
X2 | = x2 1 + X3 0 |, Xxpand x3 free
X3 0 1

The eigenspace, shown in Fig. 3, is a two-dimensional subspace of R3. A basis is

1 -3
2 |, 0 [ |
0 1

FIGURE 3 A acts as a dilation on the eigenspace.

— NUMERICAL NOTE

Example 4 shows a good method for manual computation of eigenvectors in
simple cases when an eigenvalue is known. Using a matrix program and row
reduction to find an eigenspace (for a specified eigenvalue) usually works, too,
but this is not entirely reliable. Roundoff error can lead occasionally to a reduced
echelon form with the wrong number of pivots. The best computer programs
compute approximations for eigenvalues and eigenvectors simultaneously, to
any desired degree of accuracy, for matrices that are not too large. The size
of matrices that can be analyzed increases each year as computing power and
software improve.

The following theorem describes one of the few special cases in which eigenvalues
can be found precisely. Calculation of eigenvalues will also be discussed in Section 5.2.

THEOREM 1 The eigenvalues of a triangular matrix are the entries on its main diagonal.

PROOF For simplicity, consider the 3 x 3 case. If A is upper triangular, then A — A1
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THEOREM 2

has the form

_a“ an ars A 0 0
A—Al = 0 an ans — 0 A 0
B 0 0 ass 0 0 A
ap — A (V) as
= 0 an — A an
B 0 0 asz - A

The scalar A is an eigenvalue of A if and only if the equation (A —A/)x = 0 has a
nontrivial solution, that is, if and only if the equation has a free variable. Because of the
zero entries in A — A1, it is easy to see that (A — A7)x = 0 has a free variable if and
only if at least one of the entries on the diagonal of A — A/ is zero. This happens if and
only if A equals one of the entries ay;, a2y, as; in A. For the case in which A4 is lower

triangular, see Exercise 28. |
3 6 -8 4 0 O

EXAMPLES LetA=|0 0 6|andB=| -2 1 0 |. Theeigenval-
0 0 2 5 3 4

ues of A are 3, 0, and 2. The eigenvalues of B are 4 and 1. [ |

What does it mean for a matrix 4 to have an eigenvalue of 0, such as in Example 5?
This happens if and only if the equation

Ax = 0x 4

has a nontrivial solution. But (4) is equivalent to Ax = 0, which has a nontrivial solution
if and only if A is not invertible. Thus 0 is an eigenvalue of A if and only if A is not
invertible. This fact will be added to the Invertible Matrix Theorem in Section 5.2.

The following important theorem will be needed later. Its proof illustrates a typical
calculation with eigenvectors.

If vy,..., v, are eigenvectors that correspond to distinct eigenvalues Ay, ..., A,
of an n x n matrix A, then the set {v, ..., Vv,} is linearly independent.
PROOF Suppose {vy, ..., V,} is linearly dependent. Since v, is nonzero, Theorem 7 in

Section 1.7 says that one of the vectors in the set is a linear combination of the preceding
vectors. Let p be the least index such that v, is a linear combination of the preceding
(linearly independent) vectors. Then there exist scalars ¢y, ..., ¢, such that

Civi+ -+ CpVy =Vpi (®)]

Multiplying both sides of (5) by 4 and using the fact that Avy = A, vy for each k, we
obtain

CLAV + -+ cp AV, = AVpy
CIAMVE+ o+ CpApVy = ApiVppn (6)

Multiplying both sides of (5) by 4,4 and subtracting the result from (6), we have

A —Apr)vi -+ (A —Apr )V, =0 (7
Since {vi,...,V,} is linearly independent, the weights in (7) are all zero. But none of
the factors A; — 4,41 are zero, because the eigenvalues are distinct. Hence ¢; = 0 for
i =1,..., p. Butthen (5) says that v, ; = 0, which is impossible. Hence {vi,...,V,}

cannot be linearly dependent and therefore must be linearly independent. [ |
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Eigenvectors and Difference Equations

This section concludes by showing how to construct solutions of the first-order differ-
ence equation discussed in the chapter introductory example:

Xes1 = Axi (K =0,1,2,..)) (8)

If A is an n x n matrix, then (8) is a recursive description of a sequence {x;} in R”".
A solution of (8) is an explicit description of {x;} whose formula for each x; does not
depend directly on A or on the preceding terms in the sequence other than the initial
term X.

The simplest way to build a solution of (8) is to take an eigenvector Xy and its
corresponding eigenvalue A and let

xk = Mxo (k=1,2,..) )
This sequence is a solution because
Axi = AV x9) = A*(Ax0) = A (Axg) = A*F'xp = x4y

Linear combinations of solutions in the form of equation (9) are solutions, too! See
Exercise 33.

PRACTICE PROBLEMS

6 -3 1
1. Is5Saneigenvalueof A=|3 0 5|7
2 2 6

2. If x is an eigenvector of A corresponding to A, what is 4°x?

3. Suppose that b; and b, are eigenvectors corresponding to distinct eigenvalues A and
A, respectively, and suppose that b and by are linearly independent eigenvectors
corresponding to a third distinct eigenvalue A3. Does it necessarily follow that
{by, by, b3, by} is a linearly independent set? [Hint: Consider the equation c¢1b; +
by + (e3b3 + c4by) = 0.]

5.1 EXERCISES

302 1 3 6 7
= 1 9 9
L Is A = 2 an eigenvalue of [ 3 8 :| ? Why or why not’ 6. Is | —2 | aneigenvector of | 3 2 7 |? If so, find the
2 5 6 4
2. Is A = —3 an eigenvalue of -1 4 ? Why or why not? cigenvalue.
6 9 _ _
30 -1
: . . 7. Is A = 4 an eigenvalue of 2 3 1 |? If so, find one
3. Is [3 ] an eigenvector of [6 _4 :|? If so, find the eigen- -3 4 5]
- corresponding eigenvector.
value. B _
4 -2 3
— = i — 2
4 Is |: i] an eigenvector of [g z:|q If so. find the 8. Is A = 1 an eigenvalue of _(1) ; _; ? If so, find one

eigenvalue. corresponding eigenvector.

In Exercises 9-16, find a basis for the eigenspace corresponding

3 -4 3 3 . i
to each listed eigenvalue.

5. Is | —2 | an eigenvector of 2 =3 =2 |? Ifso, find

1 -1 0 =2 30
the eigenvalue. 9. A= > A=1,3
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10, 4=|* 2],1:—5
—
1. A= ],A:—l,7

3
5
12. A= 4 é:|,)&:3,7

0
13. A= -2 1
0

1
0
1

[4 0 —1
4. A=[3 0 3| 1=3
2

1
2

2 =2 5
[—4 1

15. A= 2 =3 ,A=-5
| 3 3 -2
5 0 —1 0
1 3 0 0

16. A = y 1 3 0 A=4
|4 2 -2 4

Find the eigenvalues of the matrices in Exercises 17 and 18.

0O 0 O 5 0 0
17. | O 3 4 18. 0o 0 0
0o 0 -2 -1 0o 3
1 2 3
19. ForA=| 1 2 3 |, find one eigenvalue, with no cal-
1 2 3

culation. Justify your answer.

20. Without calculation, find one eigenvalue and two linearly

2 2 2
independent eigenvectors of A = | 2 2 2 [. Justify
2 2 2

your answer.

In Exercises 21 and 22, A is an n x n matrix. Mark each statement
True or False. Justify each answer

21. a. If Ax = Ax for some vector x, then A is an eigenvalue of
A.

b. A matrix A is not invertible if and only if O is an eigen-
value of A.

c. A number ¢ is an eigenvalue of A if and only if the
equation (A — ¢/)x = 0 has a nontrivial solution.

d. Finding an eigenvector of A may be difficult, but check-
ing whether a given vector is in fact an eigenvector is
easy.

e. To find the eigenvalues of A4, reduce A to echelon form.

22. a. If Ax = Ax for some scalar A, then x is an eigenvector of
A.

b. If v; and v, are linearly independent eigenvectors, then
they correspond to distinct eigenvalues.

23.

24.

25.

26.

217.

28.

29.

c. A steady-state vector for a stochastic matrix is actually an
eigenvector.

d. The eigenvalues of a matrix are on its main diagonal.
e. An eigenspace of A4 is a null space of a certain matrix.

Explain why a 2 x 2 matrix can have at most two distinct
eigenvalues. Explain why an n x n matrix can have at most
n distinct eigenvalues.

Construct an example of a 2 x 2 matrix with only one distinct
eigenvalue.

Let A be an eigenvalue of an invertible matrix A. Show that
A~ ! is an eigenvalue of A™!. [Hint: Suppose a nonzero X
satisfies Ax = Ax.]

Show that if A? is the zero matrix, then the only eigenvalue
of Ais0.

Show that A is an eigenvalue of A if and only if A is an
eigenvalue of AT. [Hint: Find outhow A — Al and AT — A1
are related. |

Use Exercise 27 to complete the proof of Theorem 1 for the
case in which A is lower triangular.

Consider an n x n matrix A with the property that the row
sums all equal the same number s. Show that s is an
eigenvalue of A. [Hint: Find an eigenvector.]

. Consider an n x n matrix A with the property that the column

sums all equal the same number s. Show that s is an
eigenvalue of A. [Hint: Use Exercises 27 and 29.]

In Exercises 31 and 32, let A be the matrix of the linear trans-
formation 7. Without writing A, find an eigenvalue of A and
describe the eigenspace.

31.

32.

33.

34.

35.

T is the transformation on R? that reflects points across some
line through the origin.

T is the transformation on R? that rotates points about some
line through the origin.

Letu and v be eigenvectors of a matrix A, with corresponding
eigenvalues A and , and let ¢; and ¢, be scalars. Define

x; = cAfutoufv (k=0,1,2,..)
a. What is x4, by definition?

b. Compute Ax; from the formula for x;, and show that
AX; = X;41. This calculation will prove that the se-
quence {x;} defined above satisfies the difference equa-
tion X1 = Ax; (k =0,1,2,...).

Describe how you might try to build a solution of a difference
equation x| = Ax; (k = 0,1,2,...)if you were given the
initial xo and this vector did not happen to be an eigenvector
of A. [Hint: How might you relate x, to eigenvectors of A?]

Let u and v be the vectors shown in the figure, and suppose
u and v are eigenvectors of a 2 x 2 matrix A4 that correspond
to eigenvalues 2 and 3, respectively. Let T : R?> — R? be
the linear transformation given by 7'(x) = Ax for each x in
R2, and let w = u + v. Make a copy of the figure, and on
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the same coordinate system, carefully plot the vectors 7'(u), 12 1 4 5 -2 2
T(v), and T(w) 7 -4 2 —4
V), an w). 37. 2 11 4 38.
4 =4 2 0
X, L1 7 3 —1 1 -3
v (12 —90 30 30 30

8 —49 15 15 15

39. 16 —52 12 0 20
l 0 =30 10 22 10
8 41 15 15 7
36. Repeat Exercise 35, assuming u and v are eigenvectors of A

that correspond to eigenvalues —1 and 3, respectively. —23 57 -9 15 =59
—10 12 -10 2 =22

[M] In Exercises 37-40, use a matrix program to find the eigen- 40. 11 5 -3 —-19 —15
values of the matrix. Then use the method of Example 4 with a -27 31 —27 25 37
row reduction routine to produce a basis for each eigenspace. -5 15 -5 1 31

SOLUTIONS TO PRACTICE PROBLEMS

1. The number 5 is an eigenvalue of A if and only if the equation (A — 57/)x = 0 has a
nontrivial solution. Form

6 =3 1 5 0 O 1 =3 1
A-5I=|3 0 5|—-]0 5 0|=|3 -5
2 2 6 0o 0 5 2 2 1
and row reduce the augmented matrix:
1 -3 1 0 1 -3 1 0 1 -3 1 0
3 -5 5 0f~(0 4 2 O0f~|0 4 2 O
2 2 1 0 0 8 -1 0 0 0 -5 0

At this point, it is clear that the homogeneous system has no free variables. Thus
A — 51 is an invertible matrix, which means that 5 is not an eigenvalue of A.

2. If x is an eigenvector of A corresponding to A, then Ax = Ax and so
A’x = A(AX) = AAx = A%x
Again, A’x = A(A’x) = A(A>x) = A2Ax = A’x. The general pattern, A*x = A¥x,
is proved by induction.

3. Yes. Suppose c1b; + c2by + c3b; 4+ ¢4bs = 0. Since any linear combination of
eigenvectors from the same eigenvalue is again an eigenvector for that eigenvalue,
c3bs + ¢4by is an eigenvector for A3. By Theorem 2, the vectors by, b,, and ¢3bs +
c4by are linearly independent, so

ciby + by + (c3bs + ¢c4by) =0

implies ¢; = ¢; = 0. But then, ¢3 and ¢4 must also be zero since bs and by are
linearly independent. Hence all the coefficients in the original equation must be
zero, and the vectors by, b,, bz, and by are linearly independent.

5.2 THE CHARACTERISTIC EQUATION

Useful information about the eigenvalues of a square matrix A is encoded in a special
scalar equation called the characteristic equation of A. A simple example will lead to
the general case.
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EXAMPLE 1 Find the eigenvalues of A = |:§ _2]

SOLUTION We must find all scalars A such that the matrix equation
(A-ADx=0

has a nontrivial solution. By the Invertible Matrix Theorem in Section 2.3, this problem
is equivalent to finding all A such that the matrix A — A/ is not invertible, where

2 3 A0 2—AX 3
A=Al = [3 —6}_[0 A] - [ 3 —6—1}
By Theorem 4 in Section 2.2, this matrix fails to be invertible precisely when its
determinant is zero. So the eigenvalues of A are the solutions of the equation

2—A 3
det(A—AI):det|: 3 —6—)&]20

Recall that

det|:z §:| =ad — bc

So
det(A—AI)=2—-1)(=6—-21)—(3)(3)
=—124+61-21+1-9
=A%+ 4121
=A=-3)(A+7)
If det(A — A1) = 0, then A = 3 or A = —7. So the eigenvalues of A are 3 and —7. W

The determinant in Example 1 transformed the matrix equation (4 — Al)x = 0,
which involves two unknowns (A and x), into the scalar equation A> 4 41 — 21 = 0,
which involves only one unknown. The same idea works for n x n matrices. However,
before turning to larger matrices, we summarize the properties of determinants needed
to study eigenvalues.

Determinants

Let A be an n x n matrix, let U be any echelon form obtained from A by row
replacements and row interchanges (without scaling), and let r be the number of such
row interchanges. Then the determinant of A, written as det A, is (—1)" times the
product of the diagonal entries 1, ...,u,, in U. If A is invertible, then uyy, ..., u,,
are all pivots (because A ~ I, and the u;; have not been scaled to 1’s). Otherwise, at
least u,,, is zero, and the product uy; - - - u,, is zero. Thus'

(—1y product of
detA = pivots in U
0, when A is not invertible

,  when A4 is invertible
(D

'Formula (1) was derived in Section 3.2. Readers who have not studied Chapter 3 may use this formula as
the definition of det A. It is a remarkable and nontrivial fact that any echelon form U obtained from A
without scaling gives the same value for det 4.
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1 5 0
EXAMPLE 2 ComputedetAford=|2 4 —1
0 -2 0

SOLUTION The following row reduction uses one row interchange:

1 5 0 1 5 0 1 5 0
A~|0 -6 -1 | ~|]0 =2 O0|~[0 =2 O0|=0,
0 -2 0 0 -6 —I 0 0 -1

So det A equals (—1)'(1)(=2)(=1) = —2. The following alternative row reduction
avoids the row interchange and produces a different echelon form. The last step adds
—1/3 times row 2 to row 3:

1 5 0 1 5 0
A~]10 -6 -1 | ~]0 —6 -1 =0U,
0 -2 0 0 0 1/3
This time det 4 is (—1)°(1)(—6)(1/3) = —2, the same as before. [

Formula (1) for the determinant shows that A is invertible if and only if det 4 is
nonzero. This fact, and the characterization of invertibility found in Section 5.1, can be
added to the Invertible Matrix Theorem.

The Invertible Matrix Theorem (continued)
Let A be an n x n matrix. Then A is invertible if and only if:

s. The number O is not an eigenvalue of A.
t. The determinant of A is not zero.

When A is a 3 x 3 matrix, | det A| turns out to be the volume of the parallelepiped
determined by the columns aj, a,, a3 of A4, as in Fig. 1. (See Section 3.3 for details.)
This volume is nonzero if and only if the vectors a;, a,, a3 are linearly independent, in
which case the matrix A is invertible. (If the vectors are nonzero and linearly dependent,
they lie in a plane or along a line.)

The next theorem lists facts needed from Sections 3.1 and 3.2. Part (a) is included
here for convenient reference.

Properties of Determinants
Let A and B be n x n matrices.

a. A is invertible if and only if det A # 0.
b. det AB = (det A)(det B).
c. detAT = det A.

d. If A is triangular, then det A is the product of the entries on the main diagonal
of A.

e. A row replacement operation on A does not change the determinant. A row
interchange changes the sign of the determinant. A row scaling also scales the
determinant by the same scalar factor.



276 CHAPTER 5 Eigenvalues and Eigenvectors

The Characteristic Equation

Theorem 3(a) shows how to determine when a matrix of the form A — Al is not
invertible. The scalar equation det(4 — A7) = 0 is called the characteristic equation
of A, and the argument in Example 1 justifies the following fact.

A scalar A is an eigenvalue of an n x n matrix A if and only if A satisfies the

characteristic equation
det(A—AI) =0

EXAMPLE 3 Find the characteristic equation of

5 -2 6 -1
0 3 -8 0
A= 0O 0 5 4
0 0 0 1

SOLUTION Form A — A, and use Theorem 3(d):

5-2 =2 6 -1

0 3—-2 -8
det(A — Al) = det 0 0 51 A

0 0 0 1-21

=6-M)CB-HE-HU -1
The characteristic equation is
G-1*E-MN1-1)=0

or
A=5*A=3)A—-1)=0
Expanding the product, we can also write

A — 1403 + 6802 — 1300 + 75 =0 n

In Examples 1 and 3, det (A — A7) is a polynomial in A. It can be shown that if 4 is
ann x n matrix, then det (A — A7) is a polynomial of degree n called the characteristic
polynomial of A.

The eigenvalue 5 in Example 3 is said to have multiplicity 2 because (A — 5) occurs
two times as a factor of the characteristic polynomial. In general, the (algebraic)
multiplicity of an eigenvalue A is its multiplicity as a root of the characteristic equation.

EXAMPLE 4 The characteristic polynomial of a 6 x 6 matrix is A® — 41° — 1224,
Find the eigenvalues and their multiplicities.

SOLUTION Factor the polynomial
A =4 — 122 = A A =4 —12) = A* (A —6) (A + 2)

The eigenvalues are 0 (multiplicity 4), 6 (multiplicity 1), and —2 (multiplicity 1). H
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We could also list the eigenvalues in Example 4 as 0, 0, 0, 0, 6, and —2, so that the
eigenvalues are repeated according to their multiplicities.

Because the characteristic equation for an n X n matrix involves an nth-degree
polynomial, the equation has exactly n roots, counting multiplicities, provided complex
roots are allowed. Such complex roots, called complex eigenvalues, will be discussed
in Section 5.5. Until then, we consider only real eigenvalues, and scalars will continue
to be real numbers.

The characteristic equation is important for theoretical purposes. In practical
work, however, eigenvalues of any matrix larger than 2 x 2 should be found by a
computer, unless the matrix is triangular or has other special properties. Although a
3 x 3 characteristic polynomial is easy to compute by hand, factoring it can be difficult
(unless the matrix is carefully chosen). See the Numerical Notes at the end of this
section.

Similarity

The next theorem illustrates one use of the characteristic polynomial, and it provides
the foundation for several iterative methods that approximate eigenvalues. If A and
B are n x n matrices, then A is similar to B if there is an invertible matrix P
such that P~'AP = B, or, equivalently, A = PBP~'. Writing Q for P~', we have
QO 'BQ = A. So B is also similar to 4, and we say simply that 4 and B are similar.
Changing A into P~'AP is called a similarity transformation.

If n x n matrices A and B are similar, then they have the same characteristic
polynomial and hence the same eigenvalues (with the same multiplicities).

PROOF If B = P7'AP, then
B—X =P 'AP—AP7'P =P ' (AP—AP) =P "(A—AI)P
Using the multiplicative property (b) in Theorem 3, we compute

det(B — A1) = det[P~'(4 — AI)P]

=det(P~") - det(4 — AI) - det(P) )

Since det(P~')-det(P) = det(P~'P) =det] = 1, we see from equation (2) that

det(B — AI) = det(A — AI). [ |
WARNINGS:

1. The matrices
2 1 and 1 0
0o 2 0o 2
are not similar even though they have the same eigenvalues.

2. Similarity is not the same as row equivalence. (If 4 is row equivalent to B,
then B = EA for some invertible matrix £.) Row operations on a matrix
usually change its eigenvalues.
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Application to Dynamical Systems

Eigenvalues and eigenvectors hold the key to the discrete evolution of a dynamical
system, as mentioned in the chapter introduction.

95 .03

EXAMPLE 5 Let 4= |:.05 97

:|. Analyze the long-term behavior of the dy-
namical system defined by x;4+; = Ax; (k =0,1,2,...), withxy = [ 2 ]
SOLUTION The first step is to find the eigenvalues of A and a basis for each eigenspace.

The characteristic equation for 4 is

95 -2 .03
.05 97 -4

=A2—1.921 4+ .92

0 = det [ } = (.95 —1)(.97 — 1) — (.03)(.05)

By the quadratic formula

5= 1.92 + /(1.92)> —4(.92)  1.92 £ +/.0064
B 2 B 2
1.92 £ .08
=———=1 or .92
2
It is readily checked that eigenvectors corresponding to A = 1 and A = .92 are multiples
of
3 1
v = [5} and v, = |:_1]
respectively.

The next step is to write the given Xg in terms of v; and v,. This can be done because
V1, V,} is obviously a basis for R%. (Why?) So there exist weights ¢, and ¢, such that
y y g

Xo =C1Vi + v = [y V2]|i2i| 3)

ATt vl e=]? ! ~'T .60
| T LTS g 40
I [-1 —=11]].60 125
___g[—s 3][.40]_[.225} @
Because v; and v, in (3) are eigenvectors of A, with Av; = v and Av, = .92v,, we
easily compute each xy:

In fact,

X| = AXg = 1AV + AV, Using linearity of x > Ax
=c1v] + 2(.92)v, v, and v, are eigenvectors.
X; = AX| = c1 AV + ¢2(.92)Av,
= c1v) + 2(.92)°v,
and so on. In general,
X, = 1V + Cz(.92)kV2 (k=0,1,2,...)
Using ¢ and ¢, from (4),

X = .125[2] + .225(.92)"[_}] (k=0,1,2,..) (5)
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This explicit formula for x; gives the solution of the difference equation x;4; = Axy.

'375:| = .125v;. [ |

As k — 00, (.92)F tends to zero and x; tends to [ 625

The calculations in Example 5 have an interesting application to a Markov chain
discussed in Section 4.9. Those who read that section may recognize that matrix 4
in Example 5 above is the same as the migration matrix M in Section 4.9, X, is the
initial population distribution between city and suburbs, and x; represents the population
distribution after k years.

Theorem 18 in Section 4.9 stated that for a matrix such as A, the sequence x;, tends
to a steady-state vector. Now we know why the x; behave this way, at least for the
migration matrix. The steady-state vector is .125v;, a multiple of the eigenvector vy,
and formula (5) for x; shows precisely why x; — .125v;.

— NUMERICAL NOTES

1. Computer software such as Mathematica and Maple can use symbolic calcu-
lations to find the characteristic polynomial of a moderate-sized matrix. But
there is no formula or finite algorithm to solve the characteristic equation of a
general n x n matrix forn > 5.

2. The best numerical methods for finding eigenvalues avoid the characteristic
polynomial entirely. In fact, MATLAB finds the characteristic polynomial
of a matrix A by first computing the eigenvalues Aj,...,A, of A and then
expanding the product (A — A1)(A — A,) --- (A — A,).

3. Several common algorithms for estimating the eigenvalues of a matrix A
are based on Theorem 4. The powerful QR algorithm is discussed in the
exercises. Another technique, called Jacobi’s method, works when A = AT
and computes a sequence of matrices of the form

Al =A and App = PO APy (k=1,2,..)

Each matrix in the sequence is similar to A and so has the same eigenvalues
as A. The nondiagonal entries of Ay tend to zero as k increases, and the
diagonal entries tend to approach the eigenvalues of A.

4. Other methods of estimating eigenvalues are discussed in Section 5.8.

PRACTICE PROBLEM

Find the characteristic equation and eigenvalues of 4 = |:i _; :|

5.2 EXERCISES

Find the characteristic polynomial and the real eigenvalues of the s, |: 8 4 ] 6. |: 9 -2 ]
matrices in Exercises 1-8. 4 8 2 5

S dR [ [

Exercises 9-14 require techniques from Section 3.1. Find the
—4 2 8 2 L . . . .
3 4 characteristic polynomial of each matrix, using either a cofactor
6 7 3 3 . . - .
expansion or the special formula for 3 x 3 determinants described
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prior to Exercises 15-18 in Section 3.1. [Note: Finding the
characteristic polynomial of a 3 x 3 matrix is not easy to do with
just row operations, because the variable A is involved.]

4 0 -1 3
9. |0 4 -1 10. 0
1 0 2 -2

-1
12. 3
0

—_—_ o o w =

3 0o 0
11. 2 1 4
1 0 4
4
14. -1
0

13. | -2 9

T 1
woo L ]
T 1

N O N ~N o =
L I

N OO

For the matrices in Exercises 15-17, list the real eigenvalues,
repeated according to their multiplicities.

5.5 0 2 3.0 0 0
0 2 -3 6 6 2 0 0
Blo 0 3 2 1610 3 6 o
0 0 0 5 2 3 3 -5
3 0 0 0 0

-5 1 0 0 0
7.1 3 8 0 0 0

0 -7 2 1 0

|4 1 9 =2 3

18. It can be shown that the algebraic multiplicity of an eigen-
value A is always greater than or equal to the dimension of the
eigenspace corresponding to A. Find % in the matrix A below
such that the eigenspace for A = 4 is two-dimensional:

4 2 3 3
0 2 h 3
A= 0o 0 4 14
o 0 O 2

19. Let A be an n x n matrix, and suppose A has n real eigenval-
ues, A1, ..., A,, repeated according to multiplicities, so that

det(A—AT) = (A = A)(Aa—A) -+ (Ay — A)

Explain why det A is the product of the n eigenvalues of
A. (This result is true for any square matrix when complex
eigenvalues are considered.)

20. Use a property of determinants to show that 4 and A” have
the same characteristic polynomial.

In Exercises 21 and 22, A and B are n X n matrices. Mark each
statement True or False. Justify each answer.

21. a. Thedeterminant of A4 is the product of the diagonal entries

in A.

b. An elementary row operation on A does not change the
determinant.

(det A)(det B) = detAB

d. If A + 5 is a factor of the characteristic polynomial of A4,
then 5 is an eigenvalue of A.

22. a. If Ais 3 x 3, with columns a;, a,, a;, then det A equals

the volume of the parallelepiped determined by a,, a,, a;.
b. det AT = (—1)det A.

c. The multiplicity of a root r of the characteristic equation
of A is called the algebraic multiplicity of r as an eigen-
value of A4.

d. A row replacement operation on A does not change the
eigenvalues.

A widely used method for estimating eigenvalues of a general
matrix A is the QR algorithm. Under suitable conditions, this al-
gorithm produces a sequence of matrices, all similar to A, that be-
come almost upper triangular, with diagonal entries that approach
the eigenvalues of A. The main idea is to factor A (or another
matrix similar to A) in the form A = QR;, where 9T = Q!
and R, is upper triangular. The factors are interchanged to form
Ay = R, 0, which is again factored as A; = Q, R»; then to form
As = R, Q,, and so on. The similarity of 4, Ay, ... follows from
the more general result in Exercise 23.

23. Show that if A = QR with Q invertible, then A is similar to
A] = RQ

24. Show that if A and B are similar, then det A = det B.

|6 3 377 |5 )
25. Let A = |:'4 .7:|,v| = |:4/7:|,andx()—|:.5:|. [Note:

A is the stochastic matrix studied in Example 5 in Sec-
tion 4.9.]

a. Find a basis for R? consisting of v, and another eigenvec-
tor v, of A.

b. Verify that xo may be written in the form xg = v; + cv,.

c. Fork =1,2,...,definex, = A*x,. Compute x; and X,,

and write a formula for x;. Then show that x, — v; as k
increases.

26. Let A = [j 5 Use formula (1) for a determinant

(given before Example 2) to show that detA = ad — bc.
Consider two cases: @ # 0 and a = 0.

S5 2 03 3 1
27. Let A=|.3 8 3|, vi=|.6], v,=]|-3],
2 0 4 1 2
-1 1
V3 = 0 |,andw=| 1
1

1

a. Show that vy, v,, v; are eigenvectors of A. [Note: A is the
stochastic matrix studied in Example 3 of Section 4.9.]

b. Letxy be any vector in R* with nonnegative entries whose
sum is 1. (In Section 4.9, x, was called a probability
vector.) Explain why there are constants ¢, ¢,, ¢3 such
that Xy = ¢;v| + ¢2v, + ¢3v3. Compute w’ Xy, and de-
duce that¢; = 1.

c. Fork =1,2,..., define x;, = A*x,, with X, as in part
(b). Show that x;, — v; as k increases.
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28. [M] Construct a random integer-valued 4 x 4 matrix A, and c. List the matrix A, and, to four decimal places, list the
verify that A and A7 have the same characteristic polynomial pivotsin U and the eigenvalues of A. Compute det A with
(the same eigenvalues with the same multiplicities). Do A your matrix program, and compare it with the products
and A” have the same eigenvectors? Make the same analysis you found in (a) and (b).
of a 5 x 5 matrix. Report the matrices and your conclusions. 6 28 21
30. [M] Let A = 4 —15 —12 |. For each value of a in
29. [M] Construct a random integer-valued 4 x 4 matrix A. -8 a 25
a. Reduce A to echelon form U with no row scaling, and use the set {32,31.9,31.8,32.1,32.2}, compute the characteris-
U informula (1) (before Example 2) to compute det 4. (If tic polynomial of A and the eigenvalues. In each case, create
A ha.ppens to be singular, start over with a new random a graph of the characteristic polynomial p(r) = det (A — 1)
matrix.) for 0 <t < 3. If possible, construct all graphs on one coor-
b. Compute the eigenvalues of A and the product of these dinate system. Describe how the graphs reveal the changes
eigenvalues (as accurately as possible). in the eigenvalues as a changes.

SOLUTION TO PRACTICE PROBLEM
The characteristic equation is

1—-A —4
O:det(A—)LI):det[ 4 2—Aj|
=1-M)2-X)—-(-4H4) = A2 —31+18

From the quadratic formula,
34 /(=3)2—4(18) _3++4/-63

2 N 2
It is clear that the characteristic equation has no real solutions, so A has no real
eigenvalues. The matrix A is acting on the real vector space R?, and there is no nonzero
vector v in R? such that Av = Av for some scalar A.

A=

5.3 DIAGONALIZATION

In many cases, the eigenvalue—eigenvector information contained within a matrix A can
be displayed in a useful factorization of the form A = PDP~! where D is a diagonal
matrix. In this section, the factorization enables us to compute A quickly for large
values of k, a fundamental idea in several applications of linear algebra. Later, in
Sections 5.6 and 5.7, the factorization will be used to analyze (and decouple) dynamical
systems.

The following example illustrates that powers of a diagonal matrix are easy to
compute.

5 0 , [5 0[5 0] _[5* o
EXAMPLE 1 IfD_|:0 3], thenD_|:O 3}[0 3}_[0 32]

and 5 ;
3 > |5 0|5 0| |5 0
D =DD _[0 3 0 321710 33
In general,
k
Dk=|:50 3(3(] fork > 1 []

If A= PDP~! for some invertible P and diagonal D, then A* is also easy to
compute, as the next example shows.
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EXAMPLE 2 Letd = [

where

_Z ? :| Find a formula for A¥, giventhat A = PDP!,

1 1 5 0
T

SOLUTION The standard formula for the inverse of a 2 x 2 matrix yields

2 1
-1 _
=]

Then, by associativity of matrix multiplication,

A? = (pDP Y (PDP™Y) = PD(P~'P)DP~! = PDDP!
S ——

1
o [ 1 1[5 0] 2 1
= PP _[—1 2o 3|[-1 -1

A’ = (PDP™")A* = (PDP~ " PD*P~' = PDD*P~' = PD’ P!
e

1

Again,

In general, for k > 1,

k _ prkp—1 _ 1 1[5 o 2 1
AT =PDP _[—1 =21L0 3F|[-1 —1

_[ 2.5k -3k 5k — 3k }

2.3k_—2.5k p.3k_ 5k "

A square matrix A is said to be diagonalizable if A is similar to a diagonal matrix,
that is, if A = PDP~! for some invertible matrix P and some diagonal matrix D.
The next theorem gives a characterization of diagonalizable matrices and tells how to
construct a suitable factorization.

THEOREM 5 The Diagonalization Theorem

An n x n matrix A is diagonalizable if and only if A has n linearly independent
eigenvectors.

In fact, A = PDP~!, with D a diagonal matrix, if and only if the columns of
P are n linearly independent eigenvectors of A. In this case, the diagonal entries
of D are eigenvalues of A that correspond, respectively, to the eigenvectors in P.

In other words, A is diagonalizable if and only if there are enough eigenvectors to
form a basis of R"”. We call such a basis an eigenvector basis of R".

PROOF First, observe that if P is any n x n matrix with columns vy,...,v,, and if D
is any diagonal matrix with diagonal entries A4, ..., 4,, then
AP = A[vy vy - v =[Avy Avy -+ Av,] (1)
while
Al 0 0
0 Ay e 0
PD =P . . . = [A]V] )Lsz )LnVn] (2)
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Now suppose A is diagonalizable and A = PDP~!. Then right-multiplying this relation
by P, we have AP = PD. In this case, equations (1) and (2) imply that

[Av, Avy - Avy]l=[Aivi Aavy -0 AV, ] 3)
Equating columns, we find that
AV1 = /\1V1, AVZ = /\2V2, ey AV,, = Anvn (4)

Since P is invertible, its columns vy, ..., v, must be linearly independent. Also, since
these columns are nonzero, the equations in (4) show that A4, ..., A, are eigenvalues and
Vi, ...,V, are corresponding eigenvectors. This argument proves the “only if” parts of
the first and second statements, along with the third statement, of the theorem.

Finally, given any n eigenvectors vy, ..., v,, use them to construct the columns of
P and use corresponding eigenvalues A, ..., A, to construct D. By equations (1)—(3),
AP = PD. This is true without any condition on the eigenvectors. If, in fact, the
eigenvectors are linearly independent, then P is invertible (by the Invertible Matrix
Theorem), and AP = PD implies that A = PDP™". ]

Diagonalizing Matrices
EXAMPLE 3 Diagonalize the following matrix, if possible.

1 3 3
A=|-3 =5 =3
33 1

That is, find an invertible matrix P and a diagonal matrix D such that 4 = PDP™!.

SOLUTION There are four steps to implement the description in Theorem 5.

Step 1. Find the eigenvalues of A. As mentioned in Section 5.2, the mechanics of this
step are appropriate for a computer when the matrix is larger than 2 x 2. To avoid
unnecessary distractions, the text will usually supply information needed for this step.
In the present case, the characteristic equation turns out to involve a cubic polynomial
that can be factored:

0=det(A—AI)=—-A>—3)2+4
=—A-1AK+2)?

The eigenvalues are A = 1 and A = —2.

Step 2. Find three linearly independent eigenvectors of A. Three vectors are needed
because A is a 3 x 3 matrix. This is the critical step. If it fails, then Theorem 5 says
that A cannot be diagonalized. The method in Section 5.1 produces a basis for each
eigenspace:

1

BasisforA =1: vy =| —1

1
-1 -1
Basis for A = —=2: v, = 1 and v; = 0
0 1

You can check that {v{, v, v3} is a linearly independent set.
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THEOREM 6

Step 3. Construct P from the vectors in step 2. The order of the vectors is unimportant.
Using the order chosen in step 2, form

-1 -1
P = [V] V2 V3] = —1 1 0
0 1

Step 4. Construct D from the corresponding eigenvalues. In this step, it is essen-
tial that the order of the eigenvalues matches the order chosen for the columns of P.

Use the eigenvalue A = —2 twice, once for each of the eigenvectors corresponding to
A=-2
1 0 0
D=0 -2 0
0 0 -2

It is a good idea to check that P and D really work. To avoid computing P,
simply verify that AP = PD. This is equivalent to A = PDP~! when P is invertible.
(However, be sure that P is invertible!) Compute

13 37 1 -1 -1 12 2

AP=|-3 -5 =3 ||-1 1 o0|=|-1-2 0

3 3 1|1 o0 1 10 -2

1 -1 11 0 o 12 2
PD=|-1 1 0[|l0 -2 0|=|-1-2 0 n

i 0 1[0 o0 -2 1 0 -2

EXAMPLE 4 Diagonalize the following matrix, if possible.

2 4 3
A=|—-4 —6 =3
303 1

SOLUTION The characteristic equation of A turns out to be exactly the same as that in
Example 3:

0=det(A—AI)=-A1—3124+4=—-A—-1)(A+2)?

The eigenvalues are A = 1 and A = —2. However, it is easy to verify that each
eigenspace is only one-dimensional:

1
Basis for A = 1: vi=| —1
- 1_
e
Basis for A = —2: vy = 1
0

There are no other eigenvalues, and every eigenvector of A is a multiple of either v,
or vo. Hence it is impossible to construct a basis of R* using eigenvectors of 4. By
Theorem 5, A is not diagonalizable. |

The following theorem provides a sufficient condition for a matrix to be
diagonalizable.

An n x n matrix with n distinct eigenvalues is diagonalizable.
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PROOF Letvy,...,v, be eigenvectors corresponding to the n distinct eigenvalues of
a matrix A. Then {v;,...,v,} is linearly independent, by Theorem 2 in Section 5.1.
Hence A is diagonalizable, by Theorem 5. [ |

It is not necessary for an n x n matrix to have n distinct eigenvalues in order to

be diagonalizable. The 3 x 3 matrix in Example 3 is diagonalizable even though it has
only two distinct eigenvalues.

EXAMPLE 5 Determine if the following matrix is diagonalizable.

5 =8 1
A=|0 0 7
0 0 -2

SOLUTION This is easy! Since the matrix is triangular, its eigenvalues are obviously 5,
0, and —2. Since A4 is a 3 x 3 matrix with three distinct eigenvalues, A is diagonalizable.
|

Matrices Whose Eigenvalues Are Not Distinct

Ifan n x n matrix A has n distinct eigenvalues, with corresponding eigenvectors vy, . . .,
Vy,and if P =[v; --- v, ], then P is automatically invertible because its columns
are linearly independent, by Theorem 2. When A is diagonalizable but has fewer than n
distinct eigenvalues, it is still possible to build P in a way that makes P automatically
invertible, as the next theorem shows.!

Let A be an n x n matrix whose distinct eigenvalues are A,..., 4.

a. For1 <k < p, the dimension of the eigenspace for A is less than or equal to
the multiplicity of the eigenvalue Ay.

b. The matrix A is diagonalizable if and only if the sum of the dimensions of
the eigenspaces equals 7, and this happens if and only if (i) the characteristic
polynomial factors completely into linear factors and (i7) the dimension of the
eigenspace for each A; equals the multiplicity of A.

c. If A is diagonalizable and By is a basis for the eigenspace corresponding to A,
for each k, then the total collection of vectors in the sets Bj, ..., B, forms an
eigenvector basis for R".

EXAMPLE 6 Diagonalize the following matrix, if possible.

—_—— O W
S W oo
w o oo

0
5
4 —
-2

!'The proof of Theorem 7 is somewhat lengthy but not difficult. For instance, see S. Friedberg, A. Insel, and
L. Spence, Linear Algebra, 4th ed. (Englewood Cliffs, NJ: Prentice-Hall, 2002), Section 5.2.
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5.3 EXERCISES

SOLUTION Since A is a triangular matrix, the eigenvalues are 5 and —3, each with
multiplicity 2. Using the method in Section 5.1, we find a basis for each eigenspace.

-8 —16
Basis forA = 5: v = ‘1‘ and v, = ?)
0 1
:0 0
Basis for A = —3: v3 = (1) and vy = 8
K 1
The set {vy,...,v4} is linearly independent, by Theorem 7. So the matrix P =
[vi --- vy4]isinvertible,and A = PDP~!, where
-8 —-16 0 O 5 0 0 O
el | P00
0 I 0 1 0 0 0 =3

PRACTICE PROBLEMS
g 4 -3
1. Compute A®, where 4 = > 1l

-3 12
-2 7
v, are eigenvectors of A. Use this information to diagonalize A.

2. LetA = [ ], v = |:?:|, and v, = |:?:| Suppose you are told that v; and

3. Let A be a 4 x 4 matrix with eigenvalues 5, 3, and —2, and suppose you know that
the eigenspace for A = 3 is two-dimensional. Do you have enough information to
determine if A is diagonalizable?

In Exercises 1 and 2, let A = PDP ™! and compute A*. [ 2 -1 —1
5 o 5. A= 1 4 1
_|> 7 - -1 -1 2
N H L Ea Lt
1 -1 0 |:3 0 0:||: 0 —1 —1i|
=] -1 1 -1 o 2 0 -1 -1 -1
1 2 1 0
. = = 0 —1 1 0o 0 3 -1 -1 0
oot 2oe]) 1] KRN
3 0 07
In Exercises 3 and 4, use the factorization A = PDP ™! to com- 6. A=|-3 4 9
pute A¥, where k represents an arbitrary positive integer. 0o 0 3
3 a Ol_|1 Offa O 1 0 3 0 -1 30 0 0o 0 1
‘1 2(a—-b) b 2 1110 b2 1 =({0 1 =3 0 4 0 -3 1 9
|1 0 0 0o 0 3 -1 0 3
4. [; _2] = [ ; _f ] [ _(3) (2)] [ _; g] Diagonalize the matrices in Exercises 7-20, if possible. The real
N - - N eigenvalues for Exercises 11-16 and 18 are included below the
matrix.
In Exercises 5 and 6, the matrix A is factored in the form PDP™!.
Use the Diagonalization Theorem to find the eigenvalues of A and 7. |: 1 0 ] S. |: 32 ]
a basis for each eigenspace. 6 —1 o 3



2 —1 1 3
0. [1 4] 10 [4 2]
o 1 1 3 1 1]
2 1 2 1 3 1
11. 3 3 2 12. R
A=-1,5 A=25
T2 2 17 2 0 —27
1 3 -1 1 3 2
13. 2 2] 14. 0 0 3]
A=1,5 A=23
0 —1 —17 1 2 -3
1 2 1 2 5 2
5| ] o 16. KRR
A=0,1 A=0
_ (2 —2 -2
17 ; g g 18 33 =2
13 ) 2 2 —2]
L A=-2,-1,0
s =3 0 9 30 0 0
0 3 1 =2 0 2 0 0
B0y 0 2 o 20-06 0 2 o
(0 0 0 2 1 0 0 3

In Exercises 21 and 22, A, B, P, and D are n X n matrices.
Mark each statement True or False. Justify each answer. (Study
Theorems 5 and 6 and the examples in this section carefully before
you try these exercises.)

21. a. Aisdiagonalizableif A = PDP~! for some matrix D and
some invertible matrix P.

b. If R” has a basis of eigenvectors of A, then A is diago-
nalizable.

c. A is diagonalizable if and only if A has n eigenvalues,
counting multiplicities.

d. If A is diagonalizable, then A is invertible.

22. a. A isdiagonalizable if A has n eigenvectors.
b. If A is diagonalizable, then A has n distinct eigenvalues.
c. If AP = PD, with D diagonal, then the nonzero columns
of P must be eigenvectors of A.
d. If A is invertible, then A is diagonalizable.
23. A is a5 x5 matrix with two eigenvalues. One eigenspace

is three-dimensional, and the other eigenspace is two-
dimensional. Is A diagonalizable? Why?

24. A is a 3 x 3 matrix with two eigenvalues. Each eigenspace
is one-dimensional. Is A diagonalizable? Why?
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25. Ais a4 x 4 matrix with three eigenvalues. One eigenspace
is one-dimensional, and one of the other eigenspaces is two-
dimensional. Is it possible that A is not diagonalizable?
Justify your answer.

26. Aisa7 x 7matrix with three eigenvalues. One eigenspace is
two-dimensional, and one of the other eigenspaces is three-
dimensional. Is it possible that A is not diagonalizable?
Justify your answer.

27. Show that if A4 is both diagonalizable and invertible, then so
is A7L

28. Show that if A has n linearly independent eigenvectors, then
so does AT. [Hint: Use the Diagonalization Theorem.]

29. A factorization A = PDP™! is not unique. Demonstrate this
for the matrix A in Example 2. With D, = [(3) (5)], use
the information in Example 2 to find a matrix P; such that
A = P1D1P1_1‘

30. With A and D as in Example 2, find an invertible P, unequal
to the P in Example 2, such that A = P,DP; "

31. Construct a nonzero 2 x 2 matrix that is invertible but not
diagonalizable.

32. Construct a nondiagonal 2 x 2 matrix that is diagonalizable
but not invertible.

[M] Diagonalize the matrices in Exercises 33-36. Use your
matrix program’s eigenvalue command to find the eigenvalues,
and then compute bases for the eigenspaces as in Section 5.1.

9 —4 -2 —4
—56 32 —28 44
14 —14 6 —14

42 -33 21 —45

4 -9 -7 8 2
-7 =9 0 7 14
34. 5 10 5 =5 -10
-2 37 0 4
-3 —-13 -7 10 11

33.

13 —-12 9 -15 9
6 -5 9 —15 9

3. 6 -12 -5 6 9
6 —-12 9 -8 9

|6 12 12 —6 2]
[24 -6 2 6 27

72 51 9 —99 9

6. | 0 —63 15 63 63
72 15 9 —63 9

L 0 63 21 —63 —27



288 CHAPTER 5 Eigenvalues and Eigenvectors

SOLUTIONS TO PRACTICE PROBLEMS

1. det(A—Al) =A%>—31+2= (A —2)(A—1). The eigenvalues are 2 and 1, and
. . 3 1
the corresponding eigenvectors are vi = ) and v, = 1l Next, form

31 (2 o I I B |
p_[z 1}, D_[O 1}, and P _[_2 3}

Since A = PDP™!,
s prep—1 |3 1][2% 0 1 -1
AT=PDP = 2 1jLo 1B|[-2 3
_[3 1][256 o[ 1 -1
T2 1 0 1||-2 3
_[766 —765
510 =509

2. Compute Av| = [:; 1?“}} = [?} =1-vy,and

e[ H- (1)

So, v; and v, are eigenvectors for the eigenvalues 1 and 3, respectively. Thus

_ 1 13 2 |1 0
A = PDP~", where P—|:1 1 and D = 0 3

3. Yes, A is diagonalizable. There is a basis {vi, v,} for the eigenspace corresponding
to A = 3. In addition, there will be at least one eigenvector for A = 5 and one
for A = —2. Call them v; and v4. Then {v;, v, V3, v4} is linearly independent
by Theorem 2 and Practice Problem 3 in Section 5.1. There can be no additional
eigenvectors that are linearly independent from vy, v,, v, v4, because the vectors are

Mastering: Eigenvalue all in R*. Hence the eigenspaces for A = 5 and A = —2 are both one-dimensional.
and Eigenspace 5-14 It follows that A is diagonalizable by Theorem 7(b).

5.4 EIGENVECTORS AND LINEAR TRANSFORMATIONS

The goal of this section is to understand the matrix factorization A = PDP™! as a
statement about linear transformations. We shall see that the transformation x — Ax
is essentially the same as the very simple mapping u — Du, when viewed from the
proper perspective. A similar interpretation will apply to A and D even when D is not
a diagonal matrix.

Recall from Section 1.9 that any linear transformation 7" from R” to R™ can be
implemented via left-multiplication by a matrix A, called the standard matrix of T.
Now we need the same sort of representation for any linear transformation between two
finite-dimensional vector spaces.



T
X > T(x)
Multiplication
[x]z by M > [TX)],
FIGURE 2
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The Matrix of a Linear Transformation

Let V' be an n-dimensional vector space, let W be an m-dimensional vector space, and
let T be any linear transformation from V' to W. To associate a matrix with 7', choose
(ordered) bases 3 and C for V and W, respectively.

Given any x in V, the coordinate vector [X | ; is in R” and the coordinate vector of
its image, [ 7(x) | ., is in R™, as shown in Fig. 1.

\% T w
— 1Tx)
!
| T,
I —
_ s

Rm

FIGURE 1 A linear transformation from V to W.

The connection between [x ] and [ T'(X) ] , is easy to find. Let {by, ..., b, } be the
basis B for V. If x = rib; + --- + r,b,,, then
ry
Xls =
I'n
and
T'(x)=T(riby + -+ ryby) =rT(by) + -+ r,T(by) (1

because T is linear. Now, since the coordinate mapping from W to R” is linear
(Theorem 8 in Section 4.4), equation (1) leads to

[TX) ] =nl[TMb) ]+ +r[T(b)], @)

Since C-coordinate vectors are in R™, the vector equation (2) can be written as a matrix
equation, namely,

[T ], = M[x]y, 3)

where

M=[[Tb)], [TMd)], - [Th)]] “4)

The matrix M is a matrix representation of 7', called the matrix for 7 relative to the
bases B and C. See Fig. 2.

Equation (3) says that, so far as coordinate vectors are concerned, the action of T’
on x may be viewed as left-multiplication by M.

EXAMPLE 1 Suppose B = {b;,b,} is a basis for V and C = {¢;, ¢,, ¢3} is a basis
for W. Let T : V — W be a linear transformation with the property that
T(b]) = 3¢; —2¢; + 5¢; and T(bz) =4c; +7¢; —¢;3

Find the matrix M for T relative to 3 and C.
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X > T(x)
Multiplication
[x] > [T(x)]
5 by [71, 5
FIGURE 3

SOLUTION The C-coordinate vectors of the images of b; and b, are

3 4

[Tl =| =2 | and [TO)] =] 7

5 -1

\ |
Hence \
3 4

M=|-2 7 [ |

5 —1

If B and C are bases for the same space V and if T is the identity transformation
T(x) = x for x in V, then matrix M in (4) is just a change-of-coordinates matrix (see
Section 4.7).

Linear Transformations from V into V

In the common case where W is the same as V' and the basis C is the same as B, the
matrix M in (4) is called the matrix for T relative to B, or simply the B-matrix for 7,
and is denoted by [ 7" ] ;. See Fig. 3.

The B-matrix for T : V' — V satisfies

[T(x) ]z =[T]glx]gz forallxinV (5)

EXAMPLE 2 The mapping T : P, — P, defined by
T(ao + ait + ast?) = a; + 2ast

is a linear transformation. (Calculus students will recognize T as the differentiation
operator.)

a. Find the B-matrix for T, when B is the basis {1,7,?}.

b. Verify that [T'(p) |; = [T | 5[], for each p in P,.

SOLUTION

a. Compute the images of the basis vectors:

T)=0 The zero polynomial
T)=1 The polynomial whose value is always 1
T(12) = 2t

Then write the B-coordinate vectors of T'(1), T(¢), and T (t?) (which are found by
inspection in this example) and place them together as the B-matrix for 7':

s [T(tz)]Bz

SO

0
[TM1g=|0| [TO]z=
0

SO = - OO ==

SN O
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b. Fora general p(t) = ag + at + at>,

a

[T ]; =[a1 +2a ], = | 2a

0
o 1 0 ap

=10 0 2 a; :[T]B[p]lB
0O 0 O ar
See Fig. 4. [ |
T
Oa]+2a2t

P2 °a0+a1t+a212 IP’Z

2

by [TJB/E@_ 2

FIGURE 4 Matrix representation of a linear
transformation.

Linear Transformations on R”

In an applied problem involving R", a linear transformation 7" usually appears first as
a matrix transformation, x — Ax. If A is diagonalizable, then there is a basis B for R”
consisting of eigenvectors of A. Theorem 8 below shows that, in this case, the 3-matrix
for T is diagonal. Diagonalizing A amounts to finding a diagonal matrix representation
of x = Ax.

Diagonal Matrix Representation
Suppose A = PDP™!, where D is a diagonal n x n matrix. If B is the basis for

R" formed from the columns of P, then D is the 3-matrix for the transformation
X > AX.

PROOF Denote the columns of P by by,...,b,, sothat B={b;,...,b,} and P =
[by --- b,]. In this case, P is the change-of-coordinates matrix Py discussed in
Section 4.4, where

P[x],=x and [X]B=P_lx
If T(x) = Ax for x in R”, then
[Tl =[[Tb)]; - [Th)]s] Definition of [ '],
= [[Abl ]B [ Ab, ]B] Since T'(x) = Ax
=[P '4b; --- P7'4b,] Change of coordinates
=P 'A[b; -~ b,] Matrix multiplication
= P AP (6)

Since A = PDP~', we have [T'], = P7'AP = D. [
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EXAMPLE 3 Define T : R?> — R? by 7'(x) = Ax, where A = |: 7 21|. Find a

—4 1
basis B for R? with the property that the B-matrix for T is a diagonal matrix.

SOLUTION From Example 2 in Section 5.3, we know that A = PDP~!, where

1 1 5 0
R

The columns of P, call them b; and b,, are eigenvectors of A. By Theorem 8, D is the
B-matrix for T when B = {by,b,}. The mappings x — Ax and u > Du describe the
same linear transformation, relative to different bases. |

Similarity of Matrix Representations

The proof of Theorem 8 did not use the information that D was diagonal. Hence,
if A is similar to a matrix C, with A = PCP~!, then C is the B-matrix for the
transformation x — Ax when the basis B is formed from the columns of P. The
factorization A = PCP~! is shown in Fig. 5.

Multiplication , A
X by A > AX
Multiplication Multiplication
by P! by P
Multiplication
[x] > [AX]
B by C B

FIGURE 5 Similarity of two matrix representations:
A=pPcP".

Conversely, if 7 : R” — R” is defined by T (x) = Ax, and if B is any basis for
R”, then the B-matrix for T is similar to A. In fact, the calculations in the proof of
Theorem 8 show that if P is the matrix whose columns come from the vectors in B3,
then [T']z = P~'AP. Thus, the set of all matrices similar to a matrix A coincides with
the set of all matrix representations of the transformation x — Ax.

4 -9 3 2 .

4 —8}’ b, = |:2j|, and b, = [1} The characteristic
polynomial of A is (A 4 2)?, but the eigenspace for the eigenvalue —2 is only one-
dimensional; so A is not diagonalizable. However, the basis B = {b;,b,} has the

property that the B-matrix for the transformation x — Ax is a triangular matrix called
the Jordan form of A.' Find this B-matrix.

EXAMPLE 4 Let A = |:

SOLUTION If P = [b; b, ], then the B-matrix is P~'AP. Compute
4 —91({3 2 -6 —1
b i ]
o [-1 276 —17 [-2 1
PAP—[2—3 4 0] 0 -2

Notice that the eigenvalue of A is on the diagonal. [ ]
'Every square matrix A is similar to a matrix in Jordan form. The basis used to produce a Jordan form

consists of eigenvectors and so-called “generalized eigenvectors” of A. See Chapter 9 of Applied Linear
Algebra, 3rd ed. (Englewood Cliffs, NJ: Prentice-Hall, 1988), by B. Noble and J. W. Daniel.



r— NUMERICAL NOTE

An efficient way to compute a B-matrix P ~'AP is to compute AP and then to row
reduce the augmented matrix [ P AP ]to[I P ~'AP]. A separate computation
of P~!is unnecessary. See Exercise 15 in Section 2.2.
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PRACTICE PROBLEMS

1. Find T(ag + at + a»t?), if T is the linear transformation from P, to P, whose
matrix relative to B = {1, 1,12} is

34 0
[T],=|0 5 -1
1 -2 7

2. Let A, B, and C be n x n matrices. The text has shown that if 4 is similar to B,
then B is similar to A. This property, together with the statements below, shows that
“similar to” is an equivalence relation. (Row equivalence is another example of an
equivalence relation.) Verify parts (a) and (b).

a. A is similar to A.

b. If A is similar to B and B is similar to C, then A is similar to C.

5.4 EXERCISES

1. Let B = {b;,by,b;} and D = {d,, d,} be bases for vector

spaces V and W, respectively. Let T : V. — W be a linear
transformation with the property that

T(b;) =3d; —5d,, T(by) =—d; +6d;, T(b3) =4d,
Find the matrix for T relative to 13 and D.

. LetD = {d,,d,} and B = {by, b,} be bases for vector spaces
V and W, respectively. Let T : V' — W be a linear transfor-
mation with the property that

T(dl) = 3b1 - 3')2, T(dz) = —2b1 + 5b2
Find the matrix for 7 relative to D and 8.

. Let £ ={e;,e,,e;} be the standard basis for R3, let
B = {b;,b,,b3} be a basis for a vector space V, and let
T : R?® — V be alinear transformation with the property that
T(x1, X2, x3) = (2x3 — x2)b; — (2x2)bs + (x1 + 3x3)b3

a. Compute T'(e;), T(ey), and T (e3).

b. Compute [T ()]s, [T (e:)]s, and [T (e3)]5-

c. Find the matrix for T relative to £ and B.

. Let B = {b;, b, b;} be a basis for a vector space V and let
T : V — R?be alinear transformation with the property that

T(lel + x2b2 + X3b3) = |:2)C1 -~ 3x2 X ]

—2)61 =+ 5)63

Find the matrix for 7 relative to 13 and the standard basis for
R2.

. Let T : P, — IP; be the transformation that maps a polyno-

mial p(¢) into the polynomial (¢ + 3)p(¢).
a. Find the image of p(¢) = 3 — 21 + 2.
b. Show that 7 is a linear transformation.

c. Find the matrix for T relative to the bases {1, ¢, 7>} and
{1,1,1%,13}.

. Let T : P, — P4 be the transformation that maps a polyno-

mial p(¢) into the polynomial p(r) + 2%p(z).
a. Find the image of p(¢) = 3 —2¢ + 2.
b. Show that T is a linear transformation.

c. Find the matrix for T relative to the bases {1,¢,7?} and
{1,182, 63,14},

. Assume the mapping T : P, — P, defined by

T(ao +at + aztz) = 3610 + (5&0 — 201)1 + (4a1 + az)lz

is linear. Find the matrix representation of 7" relative to the
basis B = {1,1,1%}.

. Let B = {b;,b,, b3} be a basis for a vector space V. Find

T (4b; — 3b,) when T is a linear transformation from V' to
V whose matrix relative to 3 is

0 0 1
[Tl,=|2 1 -2
1 3 1
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p(=1)
9. DefineT : P, > R3by T(p) = | p(0)

p(l)
a. Find the image under T of p(¢) = 5 + 3t.

b. Show that 7 is a linear transformation.

c. Find the matrix for 7 relative to the basis {1,, >} for P,
and the standard basis for R3.

p(-2)

10. Define T : Py — R* by T(p) = gg;

p(0)
a. Show that T is a linear transformation.

b. Find the matrix for T relative to the basis {1,7, 2,13} for
5 and the standard basis for R*.

In Exercises 11 and 12, find the B-matrix for the transformation
x > Ax, where B = {b;, b,}.

[—4 —17 -1 -1
moA=|" 1_’b‘=[ 2],b2=|: 1]

[—6 —27] 0 —1
12. A= 4 0 ,b1—|:1i|7b2—|: 2]

In Exercises 13-16, define T : R> — R? by T'(x) = Ax. Find a
basis B for R? with the property that [T]5 is diagonal.

0 17 2 3

13. A= ] 14. A—[3 2:|
4 =2
6 = 7]

-3 4
4 1 1
17. LetA:[_1 2i| and B = {b;,b,}, for blz[_ i|,

12
15 4=, _4}

1
b, = [_;] Define T : R? — R? by T (x) = Ax.
a. Verify that b, is an eigenvector of A but that 4 is not
diagonalizable.
b. Find the B-matrix for 7'.
18. Define T : R? — R? by T(x) = Ax, where 4 is a 3 x 3
matrix with eigenvalues 5, 5, and —2. Does there exist a basis

B for R? such that the B-matrix for T is a diagonal matrix?
Discuss.

Verify the statements in Exercises 19-24. The matrices are square.

19. If A is invertible and similar to B, then B is invertible
and A" is similar to B~'. [Hint: P~'AP = B for some
invertible P. Explain why B is invertible. Then find an
invertible Q such that 07'A™1Q = B! ]

20. If A is similar to B, then A? is similar to B2.

21. If B is similar to A and C is similar to A, then B is similar
to C.

22. If A is diagonalizable and B is similar to A, then B is also
diagonalizable.

23. If B = P7'AP and x is an eigenvector of A4 corresponding
to an eigenvalue A, then P~ 'x is an eigenvector of B corre-
sponding also to A.

24, If A and B are similar, then they have the same rank. [Hint:
Refer to Supplementary Exercises 13 and 14 in Chapter 4.]

25. The trace of a square matrix A is the sum of the diagonal
entries in A and is denoted by tr A. It can be verified that
tr(FG) = tr(GF) for any two n x n matrices F and G.
Show that if 4 and B are similar, then tr A = tr B.

26. It can be shown that the trace of a matrix A equals the sum of
the eigenvalues of A. Verify this statement for the case when
A is diagonalizable.

27. Let V be R” with a basis B = {by,...,b,}; let W be R"
with the standard basis, denoted here by £; and consider the
identity transformation / : R” — R”, where /(x) = x. Find
the matrix for I relative to 3 and £. What was this matrix
called in Section 4.4?

28. Let V be a vector space with abasis B = {by,...,b,},let W
be the same space V' with a basis C = {cy,...,c¢,}, and let /
be the identity transformation / : V' — W. Find the matrix
for I relative to 5 and C. What was this matrix called in
Section 4.7?

29. Let V be a vector space with a basis B = {by,...,b,}. Find
the B-matrix for the identity transformation 7 : V — V.

[M] In Exercises 30 and 31, find the B-matrix for the transforma-
tion X > Ax where B = {by, b,, bs}.

6 —2 —2
30 A=|3 1 -2,
2 -2 2
1 2 ~1
bi=|1[b=]|1][by=]-1
1 3 0
—7 —48 —16
3. A= 1 14 6],
—3 —45 —19
-3 -2 3
bi=| 1[bh=| 1]by=]-1
-3 -3 0

32. [M] Let T be the transformation whose standard matrix is
given below. Find a basis for R* with the property that [ T | 5
is diagonal.

-6 4 0 9
3 0 1 6
A=1_1 5 1 o
-4 4 0 7
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SOLUTIONS TO PRACTICE PROBLEMS

1. Letp(t) = ap + at + ayt? and compute

3 4 0[] ao 3ay + 4a,
[T(p)]BZ[T]B[p]BZ 0 5 —1 a | = Say —a
1 -2 7 ar ap—2ay + 7a;

So T(p) = (Bao + 4a1) + (5a1 — ax)t + (ag — 2a; + Tax)>.
2. a. A= (I)""Al,so A is similar to A.

b. By hypothesis, there exist invertible matrices P and Q with the property that
B = P7'AP and C = Q~'BQ. Substitute the formula for B into the formula
for C, and use a fact about the inverse of a product:

C=07'BQ =0 '(PT'AP)Q = (PO)"'A(PQ)

This equation has the proper form to show that A is similar to C.

5.5 COMPLEX EIGENVALUES

Since the characteristic equation of an n x n matrix involves a polynomial of degree 7,
the equation always has exactly » roots, counting multiplicities, provided that possibly
complex roots are included. This section shows that if the characteristic equation of
a real matrix A has some complex roots, then these roots provide critical information
about A. The key is to let A act on the space C” of n-tuples of complex numbers.!

Our interest in C" does not arise from a desire to “generalize” the results of the
earlier chapters, although that would in fact open up significant new applications of
linear algebra.? Rather, this study of complex eigenvalues is essential in order to uncover
“hidden” information about certain matrices with real entries that arise in a variety of
real-life problems. Such problems include many real dynamical systems that involve
periodic motion, vibration, or some type of rotation in space.

The matrix eigenvalue—eigenvector theory already developed for R” applies
equally well to C". So a complex scalar A satisfies det(4 — Al) = 0 if and only if
there is a nonzero vector x in C” such that Ax = Ax. We call 1 a (complex) eigenvalue
and x a (complex) eigenvector corresponding to A.

0 -1
EXAMPLE 1 If A= [1 0
rotates the plane counterclockwise through a quarter-turn. The action of A4 is periodic,
since after four quarter-turns, a vector is back where it started. Obviously, no nonzero
vector is mapped into a multiple of itself, so A has no eigenvectors in R? and hence no
real eigenvalues. In fact, the characteristic equation of A is

j|, then the linear transformation x — Ax on R2

A+1=0

Refer to Appendix B for a brief discussion of complex numbers. Matrix algebra and concepts about
real vector spaces carry over to the case with complex entries and scalars. In particular, A(cx 4+ dy) =
cAx + d Ay, for A an m X n matrix with complex entries, x, y in C", and ¢, d in C.

2 A second course in linear algebra often discusses such topics. They are of particular importance in
electrical engineering.
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The only roots are complex: A = i and A = —i. However, if we permit A to act on C2,
0 -1 Ly i _ . 1
1 ool =i |7 1|7 i
O 1] _[—if_ .1
Lol T T
Thus i and —i are eigenvalues, with |:_: i| and |: 1 i| as corresponding eigenvectors. (A

method for finding complex eigenvectors is discussed in Example 2.) |
The main focus of this section will be on the matrix in the next example.

5 .6

EXAMPLE 2 Let A = |:‘75 1

for each eigenspace.

]. Find the eigenvalues of A, and find a basis

SOLUTION The characteristic equation of A is

S5—-A

0=det|: 75

-6
11— A} =(5=A)1.1=2) = (=.6)(.75)
=1 —1.61+1

From the quadratic formula, A = %[1.6 + /(—1.6)2 — 4] = .8 + .6i. For the eigen-
value A = .8 — .61, construct

. 5 -6 8— .6i 0
A_('S_'é’)l‘[ﬂs 1.1]_[ 0 .8—.61’}

_[-3+6i -6
- [ 75 3+ .61‘] M

Row reduction of the usual augmented matrix is quite unpleasant by hand because of the
complex arithmetic. However, here is a nice observation that really simplifies matters:
Since .8 — .6 is an eigenvalue, the system

(—3 + .6i)x1 — .6)62 =0

. (@)
TI5x1 + (34 .6i)x, =0

has a nontrivial solution (with x; and x; possibly complex numbers). Therefore, both
equations in (2) determine the same relationship between x| and x,, and either equation
can be used to express one variable in terms of the other.
The second equation in (2) leads to
JI5x; = (—3 - .6i)X2
X1 = (—.4 — .Si))CQ

Choose x, = 5 to eliminate the decimals, and obtain x; = —2 — 4j. A basis for the
eigenspace corresponding to A = .8 — .61 is

—2—4i
V) = 5

3 Another way to see this is to realize that the matrix in equation (1) is not invertible, so its rows are linearly
dependent (as vectors in C?), and hence one row is a (complex) multiple of the other.
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Analogous calculations for A = .8 + .67 produce the eigenvector

2+ 4i
V) = 5

As a check on the work, compute

(5 -6 [-2+4i] [-4+2i_ .
AVZ_[.75 1.1“ 5 ]_[ 4+3i}_('8+'6’)V2 -

Surprisingly, the matrix A in Example 2 determines a transformation x — Ax that
is essentially a rotation. This fact becomes evident when appropriate points are plotted.

EXAMPLE 3 One way to see how multiplication by the matrix A in Example 2
affects points is to plot an arbitrary initial point—say, Xy = (2, 0)—and then to plot
successive images of this point under repeated multiplications by A. That is, plot

w=ao=[3 T1][0]=[1%]
w=a=| % 10052

X3 = AX2, e
Figure 1 shows Xy, ..., Xg as larger dots. The smaller dots are the locations of xg, ...,
x100- The sequence lies along an elliptical orbit. [ ]
X2
- e,
I' X3 X,
: X
é !
$N4
° “ X
) ¢ & x,
Xse,
“ s
X . .
e . ,.;
X, 8

FIGURE 1 Iterates of a point X,
under the action of a matrix with a
complex eigenvalue.

Of course, Fig. 1 does not explain why the rotation occurs. The secret to the rotation
is hidden in the real and imaginary parts of a complex eigenvector.

Real and Imaginary Parts of Vectors

The complex conjugate of a complex vector x in C” is the vector X in C” whose entries
are the complex conjugates of the entries in x. The real and imaginary parts of a
complex vector x are the vectors Re x and Im x in R” formed from the real and imaginary
parts of the entries of x.
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Imz

FIGURE 2

Rez

3—i ] 3 -
EXAMPLE 4 Ifx = i =10]|+1i 1 |, then
2451 | 2 5
3 —17] 3 -1 341
Rex=]0|, Imx= 1|, and X=|0 |—1i 1| = —i |
2 A 2 2—5i

If B is an m x n matrix with possibly complex entries, then B denotes the matrix
whose entries are the complex conjugates of the entries in B. Properties of conjugates
for complex numbers carry over to complex matrix algebra:

rx=rx, Bx=Bx, BC=BC, and rB=rB

Eigenvalues and Eigenvectors of a Real Matrix
That Acts on C”"

Let A be an n x n matrix whose entries are real. Then AXx = AX = AX. If A is an
eigenvalue of A and x is a corresponding eigenvector in C”, then

AX = AX = AX = AX

Hence A is also an eigenvalue of A, with X a corresponding eigenvector. This shows that
when A is real, its complex eigenvalues occur in conjugate pairs. (Here and elsewhere,
we use the term complex eigenvalue to refer to an eigenvalue A = a + bi, with b # 0.)

EXAMPLE 5 The eigenvalues of the real matrix in Example 2 are complex con-
jugates, namely, .8 — .6/ and .8 + .6i. The corresponding eigenvectors found in
Example 2 are also conjugates:

vlz[_2;4l] and sz[_zg—m}:ﬂ |

The next example provides the basic “building block™ for all real 2 x 2 matrices
with complex eigenvalues.

EXAMPLE 6 IfC = |:Z _Z i|, where a and b are real and not both zero, then the

eigenvalues of C are A = a + bi. (See the Practice Problem at the end of this section.)
Also, if r = |A| = +~/a? + b2, then

C = a/r =b/r| _|r 0][cosg —sing

Tl b/r a/r | |0 1| sing Cos @
where ¢ is the angle between the positive x-axis and the ray from (0, 0) through (a, b).
See Fig. 2 and Appendix B. The angle ¢ is called the argument of A = a + bi. Thus

the transformation x — Cx may be viewed as the composition of a rotation through the
angle ¢ and a scaling by |A| (see Fig. 3). ]

Finally, we are ready to uncover the rotation that is hidden within a real matrix
having a complex eigenvalue.
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X
Scaling X
A
AX.$ > N e .
\y Rotation

¢

X

FIGURE 3 A rotation followed by a
scaling.

S5 -6
EXAMPLE 7 Let A = [.75 11

Example 2. Also, let P be the 2 x 2 real matrix
2 —4
P =[Rev; Imv]|= |: 5 Oi|
and let
_ 1 0 4|[.5 -6 || -2 —4 8 —.6
_ p-lap_ o —
C=rAp= 20[—5 —2}[.75 1.1}[ 5 0} [.6 8]
By Example 6, C is a pure rotation because |A|?> = (.8)>+ (.6)> =1. From
C = P7'AP, we obtain

, A =.8—.6i, and v; = |:_25_4li|, as in

71 .8 _.6 71
A=PCP = P[.6 S}P
Here is the rotation “inside” A! The matrix P provides a change of variable, say,
X = Pu. The action of A amounts to a change of variable from x to u, followed by
a rotation, and then a return to the original variable. See Fig. 4. The rotation produces
an ellipse, as in Fig. 1, instead of a circle, because the coordinate system determined
by the columns of P is not rectangular and does not have equal unit lengths on the two

axes. |
X A > AX
Change of p-l P Change of
variable variable
u C_ > Cu
Rotation

FIGURE 4 Rotation due to a complex eigenvalue.

The next theorem shows that the calculations in Example 7 can be carried out for
any 2 x 2 real matrix A having a complex eigenvalue A. The proof uses the fact that
if the entries in A are real, then A(Rex) = Re Ax and A(Imx) = Im Ax, and if X is an
eigenvector for a complex eigenvalue, then Rex and Im x are linearly independent in
R2. (See Exercises 25 and 26.) The details are omitted.

Let A be a real 2 x 2 matrix with a complex eigenvalue A = a — bi (b # 0) and
an associated eigenvector v in C2. Then

A=PCP~!, where P =[Rev Imv] and Cz[z _2]
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FIGURE 5

The phenomenon displayed in Example 7 persists in higher dimensions. For
instance, if A is a 3 x 3 matrix with a complex eigenvalue, then there is a plane in
R3 on which A acts as a rotation (possibly combined with scaling). Every vector in that
plane is rotated into another point on the same plane. We say that the plane is invariant
under A.

8 -6 0
EXAMPLE 8 The matrix A= | .6 .8 0 | has eigenvalues .8 £ .6/ and
0 0 1.07

1.07. Any vector wy in the xjx,-plane (with third coordinate 0) is rotated by A into
another point in the plane. Any vector X( not in the plane has its x3-coordinate multiplied
by 1.07. The iterates of the points wo = (2,0, 0) and Xy = (2, 0, 1) under multiplication

by A are shown in Fig. 5.
Iterates of two points under the

action of a 3 x 3 matrix with a
complex eigenvalue.

PRACTICE PROBLEM

Show that if a and b are real, then the eigenvalues of A = Z

are a + bi, with

. . 1 1
corresponding eigenvectors _i and i |

5.5 EXERCISES

Let each matrix in Exercises 1-6 act on C?2. Find the eigenvalues
and a basis for each eigenspace in C2.

1 =2 (3 -3
1. K 3] 2. 3 3]
5 1 [1 =27
3 = 1} 4 |1 3
[ 3 1 [7 —57
Sl 5} 6 |1 3

In Exercises 7-12, use Example 6 to list the eigenvalues of A.
In each case, the transformation x > Ax is the composition of a
rotation and a scaling. Give the angle ¢ of the rotation, where
—n < ¢ < m, and give the scale factor r.

7. [V Al s [ 3@]
9. :_g g} 10, :_'g -g}
11. —_‘_f‘:’ _J;] 12. \g _‘/g]

In Exercises 13-20, find an invertible matrix P and a matrix C

such that the given matrix has the form

3 -3
s 7]

of the form [a

b
A=pCPT.

1 -2
w 2]

o 5 (4 —2
[—11 —4 (3 —5
17. 20 5 ] 18. 2 5 ]
(152 -7 [—3 -8
19. | .56 .4] 20. | 4 5 ]
21. In Example 2, solve the first equation in (2) for x; in terms of

x1, and from that produce the eigenvector y = [ 1 3_ 2 ]

for the matrix A. Show that this y is a (complex) multiple of
the vector v; used in Example 2.

22. Let A be a complex (or real) n x n matrix, and let x in C" be
an eigenvector corresponding to an eigenvalue A in C. Show
that for each nonzero complex scalar u, the vector ux is an

eigenvector of A.

Chapter 7 will focus on matrices A with the property that A7 = A.
Exercises 23 and 24 show that every eigenvalue of such a matrix
is necessarily real.

23. Let A be ann x n real matrix with the property that A7 = A4,
let x be any vector in C”, and let ¢ = X’Ax. The equalities
below show that ¢ is a real number by verifying that g = q.
Give a reason for each step.

F=XAx=x"TAx =x"Ax = x"AX)T=xATx =¢

(a) (b) () (d) (e
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24. Let A be ann x n real matrix with the property that A” = A. [M] In Exercises 27 and 28, find a factorization of the given

25.

26.

Show that if Ax = Ax for some nonzero vector x in C”, then, matrix A4 in the form A = PCP !, where C is a block-diagonal
in fact, A is real and the real part of X is an eigenvector of A. matrix with 2 x 2 blocks of the form shown in Example 6. (For
[Hint: Compute X'Ax, and use Exercise 23. Also, examine each conjugate pair of eigenvalues, use the real and imaginary
the real and imaginary parts of Ax.] parts of one eigenvector in C* to create two columns of P.)

Let A be a real n x n matrix, and let x be a vector in C”. 26 33 23 2077

Show that Re(Ax) = A(Rex) and Im(A4x) = A(Imx). 27 4 —6 _8 -1 —13

Let A be a real 2 x 2 matrix with a complex eigenvalue T -4 —19 16 3

A = a — bi (b # 0) and an associated eigenvector v in C2. [ —20 20 =20 14 ]

a. Show that A(Rev) =aRev+ bImv and A(Imv) =
—b Rev + almv. [Hint: Write v=Rev + i Imv, and -

compute Av.]

b. Verify that if P and C are given as in Theorem 9, then 0 -5  —-10 -—10

AP = PC.

7 11 20 177]

28, A= 20 —-40 86 74

10 28 60 53

SOLUTION TO PRACTICE PROBLEM

Remember that it is easy to test whether a vector is an eigenvector. There is no need to
examine the characteristic equation. Compute

o B R )

Thus [ i i| is an eigenvector corresponding to A = a + bi. From the discussion in this

. 1 . . - .
section, ; must be an eigenvector corresponding to A = a — bi.

5.6 DISCRETE DYNAMICAL SYSTEMS

Eigenvalues and eigenvectors provide the key to understanding the long-term behavior,
or evolution, of a dynamical system described by a difference equation X4+ = AXy.
Such an equation was used to model population movement in Section 1.10, various
Markov chains in Section 4.9, and the spotted owl population in the introductory
example for this chapter. The vectors x; give information about the system as time
(denoted by k) passes. In the spotted owl example, for instance, x; listed the numbers
of owls in three age classes at time k.

The applications in this section focus on ecological problems because they are easier
to state and explain than, say, problems in physics or engineering. However, dynamical
systems arise in many scientific fields. For instance, standard undergraduate courses
in control systems discuss several aspects of dynamical systems. The modern state-
space design method in such courses relies heavily on matrix algebra.! The steady-state
response of a control system is the engineering equivalent of what we call here the
“long-term behavior” of the dynamical system Xz = AX.

ISee G. F. Franklin, J. D. Powell, and A. Emami-Naeimi, Feedback Control of Dynamic Systems, 5th ed.

(Upper Saddle River, NJ: Prentice-Hall, 2006). This undergraduate text has a nice introduction to dynamic
models (Chapter 2). State-space design is covered in Chapters 7 and 8.
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Until Example 6, we assume that A is diagonalizable, with n linearly indepen-

dent eigenvectors, vy, ..., V,, and corresponding eigenvalues, A, ..., A,. For conve-
nience, assume the eigenvectors are arranged so that |A;| > 1] > --- > |A,]. Since
{vi,...,v,}is abasis for R”, any initial vector Xy can be written uniquely as

Xg = €1Vl + o0+ Wy (D

This eigenvector decomposition of Xy determines what happens to the sequence {xy }.
The next calculation generalizes the simple case examined in Example 5 of Section 5.2.
Since the v; are eigenvectors,

X| = AXg = c1Av| + -+ + ¢, Av,
=AMV + o ChAnVy

In general,
xp = () v+ ) v (k=0,1,2,...) )

The examples that follow illustrate what can happen in (2) as k — oo.

A Predator—Prey System

Deep in the redwood forests of California, dusky-footed wood rats provide up to 80% of
the diet for the spotted owl, the main predator of the wood rat. Example 1 uses a linear
dynamical system to model the physical system of the owls and the rats. (Admittedly,
the model is unrealistic in several respects, but it can provide a starting point for the
study of more complicated nonlinear models used by environmental scientists.)

Ox
Ry |
where k is the time in months, O is the number of owls in the region studied, and Ry
is the number of rats (measured in thousands). Suppose

Ok+1 = (.5) O + (4) Rk
Rit1 =—p- O + (L) R

where p is a positive parameter to be specified. The (.5) Oy in the first equation says
that with no wood rats for food, only half of the owls will survive each month, while the
(1.1) Ry in the second equation says that with no owls as predators, the rat population
will grow by 10% per month. If rats are plentiful, the (.4) R; will tend to make the
owl population rise, while the negative term —p - O measures the deaths of rats due to
predation by owls. (In fact, 1000p is the average number of rats eaten by one owl in
one month.) Determine the evolution of this system when the predation parameter p is
.104.

EXAMPLE 1 Denote the owl and wood rat populations at time k by x; =

3)

SOLUTION When p = .104, the eigenvalues of the coefficient matrix A for the
equations in (3) turn out to be A; = 1.02 and A, = .58. Corresponding eigenvectors

are
_T10 Ts
izl Y270

An initial Xy can be written as Xo = ¢;v] + ¢2v,. Then, for k > 0,

x¢ = ¢1(1.02)%v, + ¢2(.58)%v,
_ ([ 10 HE
oy [ e[ ]
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As k — o0, (.58)F rapidly approaches zero. Assume ¢; > 0. Then, for all sufficiently
large k, x; is approximately the same as ¢;(1.02)Fv,, and we write

10
Xk A cl(l.oz)k[ 13] )
The approximation in (4) improves as k increases, and so for large k,
Xpp1 A c1(1.02)k+1[ }(3)] = (1.02)c1(1.02)k[ }g} ~ 1.02x; 5)

The approximation in (5) says that eventually both entries of x; (the numbers of owls
and rats) grow by a factor of almost 1.02 each month, a 2% monthly growth rate. By
(4), x is approximately a multiple of (10, 13), so the entries in X;, are nearly in the same
ratio as 10 to 13. That is, for every 10 owls there are about 13 thousand rats. |

Example 1 illustrates two general facts about a dynamical system X;4+; = AX in
which A is n x n, its eigenvalues satisfy [A;| > land 1 > [A;|for j =2,...,n,and v,
is an eigenvector corresponding to A. If X, is given by equation (1), with ¢ # 0, then
for all sufficiently large k,

Xit1 A AXg (6)

and
xi ~ c1(A)Fv 7

The approximations in (6) and (7) can be made as close as desired by taking k
sufficiently large. By (6), the x; eventually grow almost by a factor of A, each time, so
A determines the eventual growth rate of the system. Also, by (7), the ratio of any two
entries in X, (for large k) is nearly the same as the ratio of the corresponding entries in
vy. The case in which A; = 1 is illustrated in Example 5 in Section 5.2.

Graphical Description of Solutions

When A is 2 x 2, algebraic calculations can be supplemented by a geometric description
of a system’s evolution. We can view the equation x;4; = AX; as a description of
what happens to an initial point X, in R? as it is transformed repeatedly by the mapping
x > Ax. The graph of Xy, X1, ... is called a trajectory of the dynamical system.

EXAMPLE 2 Plot several trajectories of the dynamical system x;+; = AX;, when
.80 0
A= [ 0 .64]
SOLUTION The eigenvalues of A are .8 and .64, with eigenvectors v| = |:(1)] and

v, = |:(1):| If xg = c;vy + ¢,v,, then

Xp = cl(.8)k|:(1):| + cz(.64)"[(1)]

Of course, X; tends to 0 because (.8)¢ and (.64)* both approach 0 as k — oco. But the
way X; goes toward 0 is interesting. Figure 1 (on page 304) shows the first few terms
of several trajectories that begin at points on the boundary of the box with corners at
(43, £3). The points on each trajectory are connected by a thin curve, to make the
trajectory easier to see. [ |
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FIGURE 1 The origin as an attractor.

In Example 2, the origin is called an attractor of the dynamical system because
all trajectories tend toward 0. This occurs whenever both eigenvalues are less than 1
in magnitude. The direction of greatest attraction is along the line through 0 and the
eigenvector v, for the eigenvalue of smaller magnitude.

In the next example, both eigenvalues of A are larger than 1 in magnitude, and 0
is called a repeller of the dynamical system. All solutions of x;4; = Ax; except the
(constant) zero solution are unbounded and tend away from the origin.?

EXAMPLE 3 Plot several typical solutions of the equation x;+; = AX;, where
1.44 0
A= |: 0 1.2]
SOLUTION The eigenvalues of A are 1.44 and 1.2. If xg = [El j|, then
2

Xi = c1(1.44)k[é} + cz(l.2)k|:(l)]

Both terms grow in size, but the first term grows faster. So the direction of greatest re-
pulsion is the line through 0 and the eigenvector for the eigenvalue of larger magnitude.
Figure 2 shows several trajectories that begin at points quite close to 0. [ |

In the next example, 0 is called a saddle point because the origin attracts solutions
from some directions and repels them in other directions. This occurs whenever one
eigenvalue is greater than 1 in magnitude and the other is less than 1 in magnitude. The
direction of greatest attraction is determined by an eigenvector for the eigenvalue of
smaller magnitude. The direction of greatest repulsion is determined by an eigenvector
for the eigenvalue of greater magnitude.

2The origin is the only possible attractor or repeller in a linear dynamical system, but there can be multiple
attractors and repellers in a more general dynamical system for which the mapping Xy +> X4 is not linear.
In such a system, attractors and repellers are defined in terms of the eigenvalues of a special matrix (with
variable entries) called the Jacobian matrix of the system.
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N
A

FIGURE 2 The origin as a repeller.

EXAMPLE 4 Plot several typical solutions of the equation y; . ; = Dy, , where
2.0 0
=0 5]
(We write D and y here instead of A and x because this example will be used later.)
Show that a solution {y, } is unbounded if its initial point is not on the x,-axis.

SOLUTION The eigenvalues of D are 2 and .5. If y, = |:21 :|, then
2

Vi = clzk[é] +Cz(-5)k[(1)] ®)

Ify, is on the x,-axis, thenc; = Oandy, — 0ask — oo. Butify, is not on the x,-axis,
then the first term in the sum for y, becomes arbitrarily large, and so {y, } is unbounded.
Figure 3 shows ten trajectories that begin near or on the x,-axis. [ |

FIGURE 3 The origin as a saddle point.
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Change of Variable

The preceding three examples involved diagonal matrices. To handle the nondiagonal
case, we return for a moment to the n x n case in which eigenvectors of A form a
basis {vi,...,v,} for R". Let P =[v; --- v, ], and let D be the diagonal matrix
with the corresponding eigenvalues on the diagonal. Given a sequence {x; } satisfying
Xk4+1 = AXy, define a new sequence {y, } by

Vi = P_lxk, or equivalently, x; = Py,
Substituting these relations into the equation x;4; = AxX; and using the fact that A =
PDP™', we find that

Py, 4 = APy, = (PDP™")Py, = PDy,

Left-multiplying both sides by P~!, we obtain

Yi+1 = Dy;

If we write y;, as y(k) and denote the entries in y(k) by y;(k), ..., y,(k), then
ik +1) At 0 o0 yi(k)
wk+1) | _ 10 A 5 y2(k)

: : L0 :
yu(k +1) 0o - 0 Ay (k)

The change of variable from x to y; has decoupled the system of difference equations.
The evolution of y; (k), for example, is unaffected by what happens to y,(k), ..., y,(k),
because y;(k + 1) = Ay - y(k) for each k.

The equation x; = Py, says thaty, is the coordinate vector of x; with respect to
the eigenvector basis {vy, ..., v,}. We can decouple the system X4 = AX; by making
calculations in the new eigenvector coordinate system. When n = 2, this amounts to
using graph paper with axes in the directions of the two eigenvectors.

EXAMPLE 5 Show that the origin is a saddle point for solutions of x;+; = Ax,

where
1.25 =75
A= |:—.75 1.25]

Find the directions of greatest attraction and greatest repulsion.

SOLUTION Using standard techniques, we find that A has eigenvalues 2 and .5, with
corresponding eigenvectors v; = |:_” and v, = |:}i|, respectively. Since [2| > 1

and |.5] < 1, the origin is a saddle point of the dynamical system. If X = ¢;v] + V2,
then
X = 12V + 2(.5)' v ©)

This equation looks just like equation (8) in Example 4, with v; and v, in place of the
standard basis.

On graph paper, draw axes through 0 and the eigenvectors v; and v,. See Fig. 4.
Movement along these axes corresponds to movement along the standard axes in Fig. 3.
In Fig. 4, the direction of greatest repulsion is the line through 0 and the eigenvector v;
whose eigenvalue is greater than 1 in magnitude. If X is on this line, the ¢, in (9) is zero
and x; moves quickly away from 0. The direction of greatest attraction is determined
by the eigenvector v, whose eigenvalue is less than 1 in magnitude.

A number of trajectories are shown in Fig. 4. When this graph is viewed in terms of
the eigenvector axes, the picture “looks” essentially the same as the picture in Fig. 3. W
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FIGURE 4 The origin as a saddle point.

Complex Eigenvalues

When a real 2 x 2 matrix A has complex eigenvalues, A is not diagonalizable (when
acting on R?), but the dynamical system Xz, = AX; is easy to describe. Example 3
of Section 5.5 illustrated the case in which the eigenvalues have absolute value 1. The
iterates of a point X spiraled around the origin along an elliptical trajectory.

If A has two complex eigenvalues whose absolute value is greater than 1, then 0 is
a repeller and iterates of x( will spiral outward around the origin. If the absolute values
of the complex eigenvalues are less than 1, then the origin is an attractor and the iterates
of x¢ spiral inward toward the origin, as in the following example.

EXAMPLE 6 It can be verified that the matrix
8 5
A= [—.1 1.0]

1F2

1 ! :| Figure 5 (on page 308) shows

has eigenvalues .9 £ .2, with eigenvectors |:

three trajectories of the system X4 = AX,, with initial vectors [2 (5)}, [8], and

5] m

Survival of the Spotted Owls

Recall from this chapter’s introductory example that the spotted owl population in the
Willow Creek area of California was modeled by a dynamical system X = AXy in
which the entries in Xy = (Jji, Sk, ax) listed the numbers of females (at time k) in the
juvenile, subadult, and adult life stages, respectively, and A is the stage-matrix

0 0 .33
A=|.18 0 0 (10)
0 .71 .94
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FIGURE 5 Rotation associated with complex
eigenvalues.

MATLAB shows that the eigenvalues of A are approximately A; = .98,
Ay =—.02+ 21i, and A3 = —.02 — .21i. Observe that all three eigenvalues are
less than 1 in magnitude, because |A,|*> = |A3]? = (—.02)> 4 (.21)> = .0445.

For the moment, let A act on the complex vector space C3. Then, because A has
three distinct eigenvalues, the three corresponding eigenvectors are linearly independent
and form a basis for C3. Denote the eigenvectors by vy, v, and v3. Then the general
solution of x; 4| = Ax; (using vectors in C?) has the form

xe = 1) Vi + c2(Aa)fva + e3(A3) v (11)

If xq is a real initial vector, then x; = AX, is real because A is real. Similarly, the
equation x;4; = Ax; shows that each x; on the left side of (11) is real, even though
it is expressed as a sum of complex vectors. However, each term on the right side
of (11) is approaching the zero vector, because the eigenvalues are all less than 1 in
magnitude. Therefore the real sequence x; approaches the zero vector, too. Sadly, this
model predicts that the spotted owls will eventually all perish.

Is there hope for the spotted owl? Recall from the introductory example that the
18% entry in the matrix A in (10) comes from the fact that although 60% of the juvenile
owls live long enough to leave the nest and search for new home territories, only 30%
of that group survive the search and find new home ranges. Search survival is strongly
influenced by the number of clear-cut areas in the forest, which make the search more
difficult and dangerous.

Some owl populations live in areas with few or no clear-cut areas. It may be that
a larger percentage of the juvenile owls there survive and find new home ranges. Of
course, the problem of the spotted owl is more complex than we have described, but the
final example provides a happy ending to the story.

EXAMPLE 7 Suppose the search survival rate of the juvenile owls is 50%, so the
(2, 1)-entry in the stage-matrix A in (10) is .3 instead of .18. What does the stage-matrix
model predict about this spotted owl population?

SOLUTION Now the eigenvalues of A turn out to be approximately A; = 1.01, A, =
—.03 4+ .26i, and A3 = —.03 —.26i. An eigenvector for A, is approximately v; =
(10, 3,31). Let v, and v3 be (complex) eigenvectors for A, and A3. In this case, equation
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(11) becomes
xr = ¢1 (1.0 v, 4 c2(—.03 4 .260) v, + ¢3(—.03 — 261 ) v3

As k — o0, the second two vectors tend to zero. So x; becomes more and more like
the (real) vector ¢;(1.01)*v,. The approximations in equations (6) and (7), following
Example 1, apply here. Also, it can be shown that the constant ¢; in the initial
decomposition of x is positive when the entries in X, are nonnegative. Thus the owl
population will grow slowly, with a long-term growth rate of 1.01. The eigenvector v,
describes the eventual distribution of the owls by life stages: for every 31 adults, there
will be about 10 juveniles and 3 subadults. [ |

Further Reading

Franklin, G. F.,, J. D. Powell, and M. L. Workman. Digital Control of Dynamic Systems,
3rd ed. Reading, MA: Addison-Wesley, 1998.

Sandefur, James T. Discrete Dynamical Systems—Theory and Applications. Oxford:
Oxford University Press, 1990.

Tuchinsky, Philip. Management of a Buffalo Herd, UMAP Module 207. Lexington,
MA: COMAP, 1980.

PRACTICE PROBLEMS

2

1. The matrix A below has eigenvalues 1, £, and %, with corresponding eigenvectors

Vi, Vo, and vj3:

1 7 -2 0 -2 1
A=—-| =2 6 2, vV = s Vy) = 1 s V3 = 2
Lo 2 5 1 -2
1
Find the general solution of the equation x4 = Ax¢ if xo = | 11
-2

2. What happens to the sequence {x } in Practice Problem 1 as k — oco?

1. Let A be a 2 x 2 matrix with eigenvalues 3 and 1/3 and 2. Suppose the eigenvalues of a 3 x 3 matrix A4 are 3, 4/5, and

. . 1 -1
corresponding eigenvectors v; = [ | ] andv, = |: | ] Let
{x¢} be a solution of the difference equation x4, = Axy,

w[1]

a. Compute x; = AX,. [Hint: You do not need to know A
itself.]

b. Find a formula for x; involving k and the eigenvectors v,
and v,.

1 2
3/5, with corresponding eigenvectors |: 0 :| , |: 1 :| , and
-3 =5

-3 -2
|: -3 i| . Letxy = |: -5 :| . Find the solution of the equation
7 3

X;+1 = Ax; for the specified x¢, and describe what happens
as k — oo.
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In Exercises 3—6, assume that any initial vector X, has an eigen-
vector decomposition such that the coefficient ¢; in equation (1)
of this section is positive.?

3.

Determine the evolution of the dynamical system in Exam-
ple 1 when the predation parameter p is .2 in equation (3).
(Give a formula for x;.) Does the owl population grow or
decline? What about the wood rat population?

Determine the evolution of the dynamical system in Example
1 when the predation parameter p is .125. (Give a formula
for x;.) As time passes, what happens to the sizes of the owl
and wood rat populations? The system tends toward what is
sometimes called an unstable equilibrium. What do you think
might happen to the system if some aspect of the model (such
as birth rates or the predation rate) were to change slightly?

In old-growth forests of Douglas fir, the spotted owl dines
mainly on flying squirrels. Suppose the predator—prey matrix
4 3 .
—p 12 . Show that if
the predation parameter p is .325, both populations grow.
Estimate the long-term growth rate and the eventual ratio of

owls to flying squirrels.

for these two populations is A =

Show that if the predation parameter p in Exercise 5 is .5,
both the owls and the squirrels will eventually perish. Find a
value of p for which populations of both owls and squirrels
tend toward constant levels. What are the relative population
sizes in this case?

Let A have the properties described in Exercise 1.

a. Is the origin an attractor, a repeller, or a saddle point of
the dynamical system Xz = Axy?

b. Find the directions of greatest attraction and/or repulsion
for this dynamical system.

c. Make a graphical description of the system, showing the
directions of greatest attraction or repulsion. Include
a rough sketch of several typical trajectories (without
computing specific points).

Determine the nature of the origin (attractor, repeller, or
saddle point) for the dynamical system x;4; = Ax; if 4 has
the properties described in Exercise 2. Find the directions of
greatest attraction or repulsion.

In Exercises 9-14, classify the origin as an attractor, repeller,
or saddle point of the dynamical system X;4+; = AX,. Find the
directions of greatest attraction and/or repulsion.

9.

1.7 -3 3 4
A_[—I.Z .8} 10. A_[—s 1.1}

3 One of the limitations of the model in Example 1 is that there always

exist initial population vectors Xo with positive entries such that the
coefficient ¢; is negative. The approximation (7) is still valid, but the
entries in X, eventually become negative.

11.

13.

15.

16.

17.

18.

4 0 2 1
Let A= .3 8 .3 |. The vector vi = | .6 | is an
3 2 5 3

eigenvector for A, and two eigenvalues are .5 and .2. Con-
struct the solution of the dynamical system x;4; = Ax; that
satisfies xo = (0, .3, .7). What happens to x; as k — 00?

[M] Produce the general solution of the dynamical system
Xi+1 = Ax; when A is the stochastic matrix for the Hertz
Rent A Car model in Exercise 16 of Section 4.9.

Construct a stage-matrix model for an animal species that has
two life stages: juvenile (up to 1 year old) and adult. Suppose
the female adults give birth each year to an average of 1.6
female juveniles. Each year, 30% of the juveniles survive
to become adults and 80% of the adults survive. For k > 0,
let X, = (Jjk,ax), where the entries in x; are the numbers of
female juveniles and female adults in year k.

a. Construct the stage-matrix A such that x;; = Ax; for
k> 0.

b. Show that the population is growing, compute the even-
tual growth rate of the population, and give the eventual
ratio of juveniles to adults.

c. [M] Suppose that initially there are 15 juveniles and 10
adults in the population. Produce four graphs that show
how the population changes over eight years: (a) the
number of juveniles, (b) the number of adults, (c) the
total population, and (d) the ratio of juveniles to adults
(each year). When does the ratio in (d) seem to stabilize?
Include a listing of the program or keystrokes used to
produce the graphs for (c) and (d).

A herd of American buffalo (bison) can be modeled by a stage
matrix similar to that for the spotted owls. The females can be
divided into calves (up to 1 year old), yearlings (1 to 2 years),
and adults. Suppose an average of 42 female calves are
born each year per 100 adult females. (Only adults produce
offspring.) Each year, about 60% of the calves survive, 75%
of the yearlings survive, and 95% of the adults survive. For
k >0, let x; = (ck, yk,ax), where the entries in x; are the
numbers of females in each life stage at year k.

a. Construct the stage-matrix A for the buffalo herd, such
that x;; = Axy for k > 0.

b. [M] Show that the buffalo herd is growing, determine
the expected growth rate after many years, and give the
expected numbers of calves and yearlings present per 100
adults.
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SOLUTIONS TO PRACTICE PROBLEMS

1. The first step is to write X( as a linear combination of vy, v,, and v3. Row reduction
of [vi V2 v3 Xg]produces the weights ¢c; =2, ¢, = 1, and ¢3 = 3, so that
Xp = 2V1 + 1V2 + 3V3

2
’ 3

2\ 1\*
k
X =2-1 V1+1'(§) V2+3'(§) V3

Since the eigenvalues are 1, £, and %, the general solution is

-2 2\ k 2 1\* 1
=2 2|+ (—) I |+3: (—) 2 (12)
1 312 31
2. As k — o0, the second and third terms in (12) tend to the zero vector, and
2\ 1\* —4
Xk =2vi+ =) v24+3[=) v3 = 2vy = 4
3 3 2

5.7 APPLICATIONS TO DIFFERENTIAL EQUATIONS

This section describes continuous analogues of the difference equations studied in
Section 5.6. In many applied problems, several quantities are varying continuously
in time, and they are related by a system of differential equations:

Xy =anxi + -+ anx,

!
Xy = A1 X1 + -+ dopXy

/
X, = an1 X1 + o+ apn Xy

Here x,, ..., x, are differentiable functions of 7, with derivatives x{, e, x,’, , and the a;;
are constants. The crucial feature of this system is that it is linear. To see this, write the
system as a matrix differential equation

X' (1) = Ax(1r) (H
where
x1 (1) x1 (1) apy ot A
x(1) = : , X (1) = : , and A= :
Xn (t) x’/l (t) Anl e [

A solution of equation (1) is a vector-valued function that satisfies (1) for all # in some
interval of real numbers, such as r > 0.

Equation (1) is linear because both differentiation of functions and multiplication of
vectors by a matrix are linear transformations. Thus, if u and v are solutions of X' = Ax,
then cu + dv is also a solution, because

(cu+dv) =cu +dv
=cAu+ dAv = A(cu + dv)
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FIGURE 1

(Engineers call this property superposition of solutions.) Also, the identically zero
function is a (trivial) solution of (1). In the terminology of Chapter 4, the set of all
solutions of (1) is a subspace of the set of all continuous functions with values in R”.

Standard texts on differential equations show that there always exists what is
called a fundamental set of solutions to (1). If A is n x n, then there are n linearly
independent functions in a fundamental set, and each solution of (1) is a unique linear
combination of these n functions. That is, a fundamental set of solutions is a basis for
the set of all solutions of (1), and the solution set is an n-dimensional vector space of
functions. If a vector X, is specified, then the initial value problem is to construct the
(unique) function x such that X’ = Ax and x(0) = x.

When A is a diagonal matrix, the solutions of (1) can be produced by elementary
calculus. For instance, consider

x1(t) _ 3 0| x1(0) )
x5(1) 0 =5 || x2(0)

xi ()
x5 (1)
The system (2) is said to be decoupled because each derivative of a function depends
only on the function itself, not on some combination or “coupling” of both x(¢) and

x(t). From calculus, the solutions of (3) are x;(¢) = c;e> and x,(t) = c,e™', for any
constants ¢ and c¢,. Each solution of equation (2) can be written in the form

3t
[a)- o] - fale ]

This example suggests that for the general equation X' = Ax, a solution might be a
linear combination of functions of the form

that is,

3x1(¢)

—5x2(7) ®

x(1) = ve (4)

for some scalar A and some fixed nonzero vector v. [If v = 0, the function x(¢) is
identically zero and hence satisfies X' = Ax.] Observe that

x'(t) = Ave™ By calculus, since v is a constant vector
Ax(t) = Ave™  Multiplying both sides of (4) by 4

Since e’ is never zero, X'(t) will equal Ax(¢) if and only if Av = Av, that is, if and

only if A is an eigenvalue of A and v is a corresponding eigenvector. Thus each
eigenvalue—eigenvector pair provides a solution (4) of X' = Ax. Such solutions are
sometimes called eigenfunctions of the differential equation. Eigenfunctions provide
the key to solving systems of differential equations.

EXAMPLE 1 The circuit in Fig. 1 can be described by the differential equation

xq (1) _ —(1/Ry + 1/Ry)/ Cy 1/(R2Cy) x1(1)
x5(1) 1/(RC») —1/(RyC)) || x2(2)

where x;(7) and x,(¢) are the voltages across the two capacitors at time 7. Suppose
resistor R; is 1 ohm, R, is 2 ohms, capacitor C; is 1 farad, and C, is .5 farad, and
suppose there is an initial charge of 5 volts on capacitor C; and 4 volts on capacitor C,.
Find formulas for x;(¢) and x,(¢) that describe how the voltages change over time.
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SOLUTION Let A4 denote the matrix displayed above, and let x(¢) = |:§l 23 i| For the
2

—Lss ], and x(0) = [Z] The eigenvalues of 4 are A} = —.5

1 -1
and A, = —2, with corresponding eigenvectors

- [1] o[ ]

The eigenfunctions X (1) = v;e*'’ and x,(1) = v,e?’ both satisfy X' = Ax, and so does
any linear combination of x; and x,. Set

X(1) = c1vieM! + cpvae™ = ¢ [;}e‘ﬁ + cz[_} i|e_2’

data given, A = |:

and note that x(0) = ¢;v; + ¢,v;. Since v; and v, are obviously linearly independent
and hence span R2, ¢; and ¢, can be found to make x(0) equal to xo. In fact, the equation

o] re[3]= 1]

f t t
A4l \4) Xo
leads easily to ¢c; = 3 and ¢c; = —2. Thus the desired solution of the differential equation
x = Axis
x(1) =3 ! el =2 -1 e
2 1
or

xi(0)] | 3e 4+ 2e7*
x(t) | 7| 6e™ —2e7
Figure 2 shows the graph, or trajectory, of x(t), for t > 0, along with trajectories for
some other initial points. The trajectories of the two eigenfunctions x; and x; lie in the
eigenspaces of A.
The functions x; and x, both decay to zero as ¢ — oo, but the values of x;
decay faster because its exponent is more negative. The entries in the corresponding

eigenvector v, show that the voltages across the capacitors will decay to zero as rapidly
as possible if the initial voltages are equal in magnitude but opposite in sign. [ |

W —

\

FIGURE 2 The origin as an attractor.
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In Fig. 2, the origin is called an attractor, or sink, of the dynamical system because
all trajectories are drawn into the origin. The direction of greatest attraction is along the
trajectory of the eigenfunction x; (along the line through 0 and v,) corresponding to
the more negative eigenvalue, A = —2. Trajectories that begin at points not on this line
become asymptotic to the line through 0 and v; because their components in the v,
direction decay so rapidly.

If the eigenvalues in Example 1 were positive instead of negative, the corresponding
trajectories would be similar in shape, but the trajectories would be traversed away from
the origin. In such a case, the origin is called a repeller, or source, of the dynamical
system, and the direction of greatest repulsion is the line containing the trajectory of the
eigenfunction corresponding to the more positive eigenvalue.

EXAMPLE 2 Suppose a particle is moving in a planar force field and its position
vector x satisfies X' = Ax and x(0) = x(, where

4 =5 2.9
A_[—z 1} XO_[2.6]

Solve this initial value problem for ¢ > 0, and sketch the trajectory of the particle.

SOLUTION The eigenvalues of A turnouttobe A; = 6 and A, = —1, with correspond-
ing eigenvectors vi = (—5,2) and v, = (1, 1). For any constants c¢; and c;, the function

x(t) = crvie! + cave™! = ¢ [ _g]eﬁt + 62[ ” )

is a solution of X’ = Ax. We want ¢; and ¢; to satisfy x(0) = xo, that is,

[l [22] (5 - [2]

Calculations show that ¢; = —3/70 and ¢, = 188/70, and so the desired function is

3757 . 188[17 .
X(l)—%[ 2:|€ +% 1 e

Trajectories of x and other solutions are shown in Fig. 3. [ |

Q

In Fig. 3, the origin is called a saddle point of the dynamical system because
some trajectories approach the origin at first and then change direction and move away
from the origin. A saddle point arises whenever the matrix A has both positive and
negative eigenvalues. The direction of greatest repulsion is the line through v, and 0,
corresponding to the positive eigenvalue. The direction of greatest attraction is the line
through v, and 0, corresponding to the negative eigenvalue.

y

FIGURE 3 The origin as a saddle point.
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Decoupling a Dynamical System

The following discussion shows that the method of Examples 1 and 2 produces a
fundamental set of solutions for any dynamical system described by x' = Ax when A
is n x n and has n linearly independent eigenvectors, that is, when A is diagonalizable.
Suppose the eigenfunctions for A are

vieMt, L vett
with vy, ..., v, linearly independent eigenvectors. Let P = [v; --- v, ], and let D
be the diagonal matrix with entries A1, ..., A,,sothat A = PDP~!. Now make a change

of variable, defining a new function y by
y(t) = P7'x(t) or, equivalently, x(t) = Py(t)

The equation x(¢) = Py(t¢) says that y(¢) is the coordinate vector of x(¢) relative to the
eigenvector basis. Substitution of Py for x in the equation X' = Ax gives

d
= (Py) = A(Py) = (PDP™") Py = PDy Q)

Since P is a constant matrix, the left side of (5) is Py’. Left-multiply both sides of (5)
by P! and obtain y’ = Dy, or

yi(®) A0 e 0 yi(1)

»o | _ |0 A 3 y2(1)
: : L0 :

yy/l(l) 0 0 An Yn(t)

The change of variable from x to y has decoupled the system of differential equations,
because the derivative of each scalar function y; depends only on yi. (Review the anal-

ogous change of variables in Section 5.6.) Since y| = A1y, we have y;(t) = cie*!,
with similar formulas for y,, ..., y,. Thus
crett 13
y() = : ,  Wwhere D =y(0) = P7x(0) = P 'xg
cpetnt Cn

To obtain the general solution x of the original system, compute

x(t) = Py() =[vi - Valy(@)

=cviet 4 - 4 v et

This is the eigenfunction expansion constructed as in Example 1.

Complex Eigenvalues

In the next example, a real matrix A has a pair of complex eigenvalues A and A, with
associated complex eigenvectors v and V. (Recall from Section 5.5 that for a real matrix,
complex eigenvalues and associated eigenvectors come in conjugate pairs.) So two
solutions of X = Ax are

Moand  x(r) = ve (6)

xi(t) = ve
It can be shown that x,(¢f) = x;(¢) by using a power series representation for the
complex exponential function. Although the complex eigenfunctions x; and x, are
convenient for some calculations (particularly in electrical engineering), real functions
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are more appropriate for many purposes. Fortunately, the real and imaginary parts of x;
are (real) solutions of X’ = Ax, because they are linear combinations of the solutions in

(6):
1 N 1 -
Re(ve™) = E[Xl(t) +x(2) ], Im(ve™) = Z—i[Xl(l) —x(1)]

To understand the nature of Re(ve??), recall from calculus that for any number x,
the exponential function e* can be computed from the power series:

ex:1+x—|—lx2—|—~~+lx”+n-
2! n!

This series can be used to define e*’ when A is complex:
1 1
eM =1+ (t)+ 5()u)2 et ;(m)” 4o

By writing A = a + bi (with a and b real), and using similar power series for the cosine
and sine functions, one can show that

et = oat . oih! = ¢4 (cos bt + i sin bt) (7
Hence

ve* = (Rev 4 i Imv) - e“ (cos bt + i sinbt)
= [(Rev)cosbt — (Imv) sin bt Je*
+i[(Rev)sinbt + (Imv) cos bt ]e”

So two real solutions of X’ = Ax are

y;(t) = Rex(t) = [ (Rev)cos bt — (Imv) sinbt ] e
¥,(t) = Imx;(t) = [ (Rev) sinbt + (ImvV) cos bt ] e

It can be shown that y, and y, are linearly independent functions (when b # 0).!

WA EXAMPLE 3 The circuit in Fig. 4 can be described by the equation
R
: ip | [-R/L  —1/L ir
Ve 1/C —1/(R,C) Ve
+
IC( where i, is the current passing through the inductor L and v¢ is the voltage drop across
the capacitor C. Suppose R, is 5 ohms, R, is .8 ohm, C is .1 farad, and L is .4 henry.
Ry Find formulas for i;, and v¢, if the initial current through the inductor is 3 amperes and
i the initial voltage across the capacitor is 3 volts.
L . -2 =25 3
SOLUTION For the data given, 4 = and xy = . The method
FIGURE 4 10 -2 3
discussed in Section 5.5 produces the eigenvalue A = —2 + 5i and the corresponding

. i . . .
eigenvector v; = [ ) :| The complex solutions of X' = Ax are complex linear combi-

nations of

x| () = |:;j|e(_2+5i)f and x(¢) = [_;}e(_Z_Si)‘

I'Since x,(¢) is the complex conjugate of x| (¢), the real and imaginary parts of X () are y; (¢) and —y,(¢),
respectively. Thus one can use either x; () or x,(¢), but not both, to produce two real linearly independent
solutions of X' = Ax.
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Next, use equation (7) to write

X (1) = |:;i|e_2’ (cos 5t + i sin 5¢)

/\ The real and imaginary parts of x; provide real solutions:
| —sin5t | _y | cos5t | _y
X Vi) = |:2c055t:|e ’ y2() = |:ZSin5tj|e
Since y, and y, are linearly independent functions, they form a basis for the two-
\ dimensional real vector space of solutions of X' = Ax. Thus the general solution is
@

x(t) = ¢ |: —sin 5t :|e_2’+ Cz|: cos 5¢ :|e_2t

2cos 5t 2 sin 5t

To satisfy x(0) = [gi|, weneedcl[g} + cz[(l)} = [gi|, which leads to ¢; = 1.5 and
¢» = 3. Thus
_ —sind5t | _y; cos5t | o,
x() = 1'5|: 2 cos 5t i|e + 3|:Zsin5[ ]e
or
ir() | | —1.5sin5¢ 4 3 cos 5t o2

FIGURE 8 ve() | | 3cos5f + 6sin5t
The origin as a spiral point. See Fig. 5. |

In Fig. 5, the origin is called a spiral point of the dynamical system. The rotation
is caused by the sine and cosine functions that arise from a complex eigenvalue. The
trajectories spiral inward because the factor e tends to zero. Recall that —2 is the real
part of the eigenvalue in Example 3. When A has a complex eigenvalue with positive
real part, the trajectories spiral outward. If the real part of the eigenvalue is zero, the
trajectories form ellipses around the origin.

PRACTICE PROBLEMS

A real 3 x 3 matrix A has eigenvalues —.5, .2 4 .37, and .2 — .3/, with corresponding

eigenvectors
1 1+ 2i 1—2i
vi=| 2|, V= 4i , and vy = | —4i
1 2 2

1. Is A diagonalizable as A = PDP~!, using complex matrices?

2. Write the general solution of X' = Ax using complex eigenfunctions, and then find
the general real solution.

3. Describe the shapes of typical trajectories.

5.7 EXERCISES

1. A particle moving in a planar force field has a position vector v, = |: -1 :| Find the position of the particle at time
x that satisfies X" = Ax. The 2 x 2 matrix A has eigenvalues 1

— . —6
4 and 2, with corresponding eigenvectors v; = [ ?] and assuming that x(0) = [ | :|
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2. Let A be a 2 x 2 matrix with eigenvalues —3 and —1 and
L -1 1

corresponding eigenvectors v, = | andv, = E Let

x(t) be the position of a particle at time ¢. Solve the initial

value problem x” = Ax, x(0) = |:§ ]
In Exercises 3-6, solve the initial value problem x' () = Ax(z)
for t > 0, with x(0) = (3,2). Classify the nature of the origin
as an attractor, repeller, or saddle point of the dynamical system
described by x' = Ax. Find the directions of greatest attraction
and/or repulsion. When the origin is a saddle point, sketch typical

trajectories.
-2 =5
1 4

2 3
wa[2 2]
1 -2
e

7 -1
s a=] 1]

In Exercises 7 and 8, make a change of variable that decouples
the equation X’ = Ax. Write the equation x(z) = Py(¢) and
show the calculation that leads to the uncoupled systemy’ = Dy,
specifying P and D.

4 -]

7. A asin Exercise 5 8. A asin Exercise 6

In Exercises 9-18, construct the general solution of x' = Ax
involving complex eigenfunctions and then obtain the general real
solution. Describe the shapes of typical trajectories.

(-3 2 [ 31
9. 4=| 7 _]] 0. 4= 1]
[—3 -9 [—7 10
4= 3] 2. 4=, 5}
(4 -3 (2 1
13. 4= g _2] 14 4= T 2}
-8 12 —6
15 MlA=| 2 1 2
7 125

16.

17.

18.

19.

20.

21.

22,

[—6 —11 16
M] A = 2 5 —4
|4 -5 10
30 64 23
MjA=| —-11 -23 -9
| 6 15 4
(53 —30 —2
M]A=]9 -52 -3
120 —10 2
[M] Find formulas for the voltages v, and v, (as functions of

time ¢) for the circuit in Example 1, assuming that Ry = 1/5
ohm, R, = 1/3 ohm, C, = 4 farads, C, = 3 farads, and the
initial charge on each capacitor is 4 volts.

[M] Find formulas for the voltages v, and v, for the circuit in
Example 1, assuming that Ry = 1/15 ohm, R, = 1/3 ohm,
C, = 9 farads, C, = 2 farads, and the initial charge on each
capacitor is 3 volts.

[M] Find formulas for the current i, and the voltage v¢
for the circuit in Example 3, assuming that R; = 1 ohm,
R, = .125 ohm, C = .2 farad, L = .125 henry, the initial
current is 0 amp, and the initial voltage is 15 volts.

[M] The circuit in the figure is described by the equation

il [ o 1/L iL
v | | -1/Cc =1/(RC) || ve

where i, is the current through the inductor L and v is the
voltage drop across the capacitor C. Find formulas for i,
and ve when R = .5 ohm, C = 2.5 farads, L = .5 henry,
the initial current is 0 amp, and the initial voltage is 12 volts.

—— MW —

R

]

C

L > so—
L

SOLUTIONS TO PRACTICE PROBLEMS

1. Yes, the 3 x 3 matrix is diagonalizable because it has three distinct eigenvalues.
Theorem 2 in Section 5.1 and Theorem 5 in Section 5.3 are valid when complex
scalars are used. (The proofs are essentially the same as for real scalars.)

2. The general solution has the form

1
x(1) = ¢
1

2 e +er| 4i

| 1—2i
e(.2+.31)l‘ + c3 —4i
2 2

1+ 2i '
e(.27.31)t

The scalars ¢y, ¢;, ¢3 here can be any complex numbers. The first term in x(¢) is real.
Two more real solutions can be produced using the real and imaginary parts of the
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second term in x(?):

1+2i
4i e (cos .3t + i sin.31)
2

The general real solution has the following form, with real scalars ¢y, ¢,, c3:

1 cos .3t —2sin .3t sin.3¢ + 2cos .3t
| =2 [e™ + ¢ —4sin .3t e + c; 4 cos .3t e
1 2cos .3t 2sin .3t

3. Any solution with ¢, = ¢3 = 0 is attracted to the origin because of the negative
exponential factor. Other solutions have components that grow without bound, and
the trajectories spiral outward.

Be careful not to mistake this problem for one in Section 5.6. There the condition
for attraction toward 0 was that an eigenvalue be less than 1 in magnitude, to make
|A¥ — 0. Here the real part of the eigenvalue must be negative, to make e*’ — 0.

5.8 ITERATIVE ESTIMATES FOR EIGENVALUES

In scientific applications of linear algebra, eigenvalues are seldom known precisely.
Fortunately, a close numerical approximation is usually quite satisfactory. In fact, some
applications require only a rough approximation to the largest eigenvalue. The first
algorithm described below can work well for this case. Also, it provides a foundation
for a more powerful method that can give fast estimates for other eigenvalues as well.

The Power Method

The power method applies to an n x n matrix A with a strictly dominant eigenvalue
A1, which means that A; must be larger in absolute value than all the other eigenvalues.
In this case, the power method produces a scalar sequence that approaches A; and a
vector sequence that approaches a corresponding eigenvector. The background for the
method rests on the eigenvector decomposition used at the beginning of Section 5.6.
Assume for simplicity that 4 is diagonalizable and R” has a basis of eigenvectors
Vi,...,V,,arranged so their corresponding eigenvalues Ay, . .., A, decrease in size, with

the strictly dominant eigenvalue first. That is,
A > |Aa] = [A3] = -+ = 4] "
t Strictly larger

As we saw in equation (2) of Section 5.6, if x in R” is written as X = ¢;v| + - -+ + ¢, Vy,
then
Afx = Cl(/ll)le + Cz()tz)sz + e+ Cn(kn)kvn (k=12,..)

Assume ¢; # 0. Then, dividing by (1,)*,

Ak _ A2 g An ‘ —
X=cCVi+ 0 A_l V) 4+ -+ ¢y /1—1 v, (k=1,2,..) )

Ak

From inequality (1), the fractions A, /A1, ..., A, /A are all less than 1 in magnitude and
so their powers go to zero. Hence

(Al)_kAkx — vy ask — oo 3)
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Thus, for large k, a scalar multiple of A¥x determines almost the same direction as the
eigenvector ¢;v;. Since positive scalar multiples do not change the direction of a vector,
AFx itself points almost in the same direction as v; or —v, provided ¢; # 0.

EXAMPLE 1 Let A = [li o
eigenvalues 2 and 1, and the eigenspace for A; = 2 is the line through 0 and v,. For
k =0,...,8, compute A*x and construct the line through 0 and A*x. What happens as
k increases?

:|, V| = |:‘1‘:|, and x = [_f:| Then A has

SOLUTION The first three calculations are
[1.8 81 -5 —.1
=10 12| 1}_[1.1]

Ax = A(Ax) = (1.8 .8"—1.1}2[ .7}

2 12 11 1.3
e e (18 8T 77 _[23
Ax=AA0=1"5 1213|717

Analogous calculations complete Table 1.

TABLE 1 Iterates of a Vector

k 0 1 2 3 4 5 6 7 8
Akx -5 —.1 i 2.3 55 11.9 24.7 50.3 101.5
1 1.1 1.3 1.7 2.5 4.1 7.3 13.7 26.5
The vectors X, AX, ..., A*x are shown in Fig. 1. The other vectors are growing

too long to display. However, line segments are drawn showing the directions of those
vectors. In fact, the directions of the vectors are what we really want to see, not the vec-
tors themselves. The lines seem to be approaching the line representing the eigenspace
spanned by v;. More precisely, the angle between the line (subspace) determined by

AFx and the line (eigenspace) determined by v; goes to zero as k — oo. [ |
*
A*x
A 3
i A2x AX Eigenspace

T} v,
f f —x,
1 4 10

FIGURE 1 Directions determined by x, Ax, A°x, ..., A’x.

The vectors (Al)kakx in (3) are scaled to make them converge to ¢v;, provided
c1 # 0. We cannot scale A¥x in this way because we do not know A ;. But we can scale
each A*x to make its largest entry a 1. It turns out that the resulting sequence {x; } will
converge to a multiple of v; whose largest entry is 1. Figure 2 shows the scaled sequence
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for Example 1. The eigenvalue A; can be estimated from the sequence {x; }, too. When
X is close to an eigenvector for A, the vector Ax; is close to A;xy, with each entry in
Ax;. approximately A; times the corresponding entry in x;. Because the largest entry in
X, is 1, the largest entry in Ax; is close to A;. (Careful proofs of these statements are
omitted.)

Ax

Eigenspace

THE POWER METHOD FOR ESTIMATING A STRICTLY DOMINANT EIGENVALUE
1. Select an initial vector x, whose largest entry is 1.
2. Fork =0,1,...,

a. Compute Ax.

b. Let uy be an entry in Ax; whose absolute value is as large as possible.

c. Compute x;41 = (1/ur) Axy.

3. For almost all choices of xo, the sequence {u;} approaches the dominant
eigenvalue, and the sequence {x; } approaches a corresponding eigenvector.

EXAMPLE 2 Apply the power method to 4 = |:? §:| with xg = [(1)} Stop

when k = 5, and estimate the dominant eigenvalue and a corresponding eigenvector
of A.

SOLUTION Calculations in this example and the next were made with MATLAB,
which computes with 16-digit accuracy, although we show only a few significant figures
here. To begin, compute Ax, and identify the largest entry o in AXq:

e[t (3] e

Scale Axg by 1/ to get X, compute Ax;, and identify the largest entry in Ax;:

1 175 1
= —A = — =
H Ho 0 5[2] [4]

e[t 0[] e

Scale Ax; by 1/ to get x,, compute AxX,, and identify the largest entry in Ax;:

L, 8] [ 1
RELN TR e T 225

6 5[ 1 7.125
Ax, = [1 2} [.225] - [1.450}’ pa = 17125
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Scale Ax; by 1/, to get x3, and so on. The results of MATLAB calculations for the
first five iterations are arranged in Table 2.

TABLE 2 The Power Method for Example 2
k 0 1 2 3 4 5

0 1 1 1 1
e 1 4 2035 2005 20007
4 5 8 7.125 7.0175 7.0025 7.00036
) 1.8 1.450 1.4070 1.4010 1.40014

Ik 5 8 7.125 7.0175 7.0025 7.00036

The evidence from Table 2 strongly suggests that {x; } approaches (1,.2) and { }
approaches 7. If so, then (1, .2) is an eigenvector and 7 is the dominant eigenvalue. This
is easily verified by computing

UEI i IS .

The sequence {u } in Example 2 converged quickly to A; = 7 because the second
eigenvalue of A was much smaller. (In fact, A, = 1.) In general, the rate of convergence
depends on the ratio |1, /A, |, because the vector c;(A2/A1)¥ v, in equation (2) is the main
source of error when using a scaled version of A¥x as an estimate of ¢;v;. (The other
fractions A; /A are likely to be smaller.) If [A,/A4] is close to 1, then {ux} and {x;}
can converge very slowly, and other approximation methods may be preferred.

With the power method, there is a slight chance that the chosen initial vector x
will have no component in the v, direction (when ¢; = 0). But computer rounding
errors during the calculations of the x; are likely to create a vector with at least a small
component in the direction of v;. If that occurs, the x; will start to converge to a multiple
of v;.

The Inverse Power Method

This method provides an approximation for any eigenvalue, provided a good initial
estimate o of the eigenvalue A is known. In this case, we let B = (A — af)~! and apply
the power method to B. It can be shown that if the eigenvalues of A are A, ..., A,, then
the eigenvalues of B are

1 1 1

Al—a’ Az—Ol’

A —a

and the corresponding eigenvectors are the same as those for A. (See Exercises 15 and
16.)

Suppose, for example, that « is closer to A, than to the other eigenvalues of A.
Then 1/(A, — «) will be a strictly dominant eigenvalue of B. If « is really close to A,,
then 1/(A; — ) is much larger than the other eigenvalues of B, and the inverse power
method produces a very rapid approximation to A, for almost all choices of x¢. The
following algorithm gives the details.
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THE INVERSE POWER METHOD FOR ESTIMATING AN EIGENVALUE A OF A
1. Select an initial estimate o sufficiently close to A.
2. Select an initial vector xo whose largest entry is 1.
3. Fork=0,1,...,
a. Solve (A —al)y, = xi fory,.
b. Let ux be an entry in y, whose absolute value is as large as possible.
c. Compute vy =« + (1/p).
d. Compute x¢41 = (1/ k) yy-

4. For almost all choices of xq, the sequence {v;} approaches the eigenvalue A
of A, and the sequence {X; } approaches a corresponding eigenvector.

Notice that B, or rather (4 — «al)™!, does not appear in the algorithm. Instead of
computing (A —al)~'x; to get the next vector in the sequence, it is better to solve
the equation (A — «l)y, = x4 for y, (and then scale y; to produce Xi+). Since this
equation for y, must be solved for each k, an LU factorization of A — «/ will speed up
the process.

EXAMPLE 3 TItis not uncommon in some applications to need to know the smallest
eigenvalue of a matrix A and to have at hand rough estimates of the eigenvalues.
Suppose 21, 3.3, and 1.9 are estimates for the eigenvalues of the matrix A below. Find
the smallest eigenvalue, accurate to six decimal places.

10 -8 —4
A=|-8 13 4
4 5 4

SOLUTION The two smallest eigenvalues seem close together, so we use the inverse
power method for A — 1.9/. Results of a MATLAB calculation are shown in Table 3.
Here xo was chosen arbitrarily, y, = (A — 1.97)"!x, wy is the largest entry in y,,
Vi = 1.9+ 1/ g, and Xg 41 = (1/14x)y,. As it turns out, the initial eigenvalue estimate
was fairly good, and the inverse power sequence converged quickly. The smallest
eigenvalue is exactly 2. [ |

TABLE 3 The Inverse Power Method
k 0 1 2 3 4

1 5736 .5054 .5004 .50003
X 1 .0646 .0045 .0003 .00002
1 1 1 1 1

4.45 5.0131 5.0012 5.0001 5.000006
Vi .50 .0442 .0031 .0002 .000015
7.76 9.9197 9.9949 9.9996 9.999975

Mk 7.76 9.9197 9.9949 9.9996 9.999975
Vi 2.03 2.0008 2.00005 2.000004 2.0000002

If an estimate for the smallest eigenvalue of a matrix is not available, one can simply
take @ = 0 in the inverse power method. This choice of @ works reasonably well if the
smallest eigenvalue is much closer to zero than to the other eigenvalues.
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5.8 EXERCISES

The two algorithms presented in this section are practical tools for many simple
situations, and they provide an introduction to the problem of eigenvalue estimation. A
more robust and widely used iterative method is the QR algorithm. For instance, it is
the heart of the MATLAB command eig (A), which rapidly computes eigenvalues and
eigenvectors of A. A brief description of the QR algorithm was given in the exercises
for Section 5.2. Further details are presented in most modern numerical analysis texts.

PRACTICE PROBLEM

How can you tell if a given vector x is a good approximation to an eigenvector of a
matrix A? If it is, how would you estimate the corresponding eigenvalue? Experiment

with

In Exercises 1-4, the matrix A is followed by a sequence {x;}
produced by the power method. Use these data to estimate the
largest eigenvalue of A, and give a corresponding eigenvector.

5 8 4 1.0
8§ 3 -1 and x=| —43
4 -1 2 8.1
-2 -3 . .
6. Let A = [ 6 7 :| Repeat Exercise 5, using the follow-
ing sequence x, Ax, ..., A°X.

4 3
WHEE
1 1 1 1 1
Of'f.25]"].3158 || .3298 || .3326
1.8 -8
2 A= [—3.2 4.2]’
1 —.5625 —.3021 —.2601 —.2520
01l 1 ’ 1 ’ 1 ’ 1
S5 2
3 A= [.4 .7]’
1 1 6875 5577 5188
of'|.81 1 ’ 1 ’ 1
4.1 -6
4 A:[ 3 —4.4]’
1 1 1 1 1
1(7].7368 |*| .7541 |"| .7490 || .7502
_ 15 16 5 1
S. LetA—[_ZO _21].Thevectorsx,...,A xare[l],
31 —191 991 —4991 24991
—41 |’ 241 || —1241 | 6241 |'| =31241 |’

Find a vector with a 1 in the second entry that is close to
an eigenvector of A. Use four decimal places. Check your
estimate, and give an estimate for the dominant eigenvalue

of A.

LS E s e )| s

[M] Exercises 7-12 require MATLAB or other computational aid.
In Exercises 7 and 8, use the power method with the x, given. List
{X¢}and {pi} fork = 1,...,5. In Exercises 9 and 10, list ;s and

He-
(6 7 1
7. A__8 5 ,X()—|:0:|
2 1 1
soa-[2 -]l
s 0 12 1
9. A=|1 -2 1 ,xo=10
0 3 0 0
1 2 =2 1
10. A=|1 1 9|,xq=10
0 1 9 0

Another estimate can be made for an eigenvalue when an approx-
imate eigenvector is available. Observe that if Ax = Ax, then
x’Ax = xT (Ax) = A(x"x), and the Rayleigh quotient

x"Ax

x’'x

R(x) =

equals A. If x is close to an eigenvector for A, then this quotient
is close to A. When A is a symmetric matrix (47 = A), the
Rayleigh quotient R(x¢) = (x! Ax;)/(x]x,) will have roughly
twice as many digits of accuracy as the scaling factor p; in the
power method. Verify this increased accuracy in Exercises 11 and
12 by computing p; and R(x;) fork = 1,...,4.



5 2 1
11. A—|:2 2:|,X()—|:0]

-3 2 1
wa=[ 2w=[l]

Exercises 13 and 14 apply to a 3 x 3 matrix A whose eigenvalues
are estimated to be 4, —4, and 3.

13. If the eigenvalues close to 4 and —4 are known to have
different absolute values, will the power method work? Is
it likely to be useful?

14. Suppose the eigenvalues close to 4 and —4 are known to have
exactly the same absolute value. Describe how one might
obtain a sequence that estimates the eigenvalue close to 4.

15. Suppose Ax = Ax with x # 0. Let o be a scalar different
from the eigenvalues of A, and let B = (4 —al)™'. Sub-
tract ax from both sides of the equation Ax = Ax, and use
algebra to show that 1 /(A — «) is an eigenvalue of B, with x
a corresponding eigenvector.

16. Suppose u is an eigenvalue of the B in Exercise 15, and that
X is a corresponding eigenvector, so that (4 — af)™'x = ux.
Use this equation to find an eigenvalue of A in terms of . and
«. [Note: ;@ # 0 because B is invertible.]

17. [M] Use the inverse power method to estimate the middle
eigenvalue of the A in Example 3, with accuracy to four
decimal places. Set xo = (1,0, 0).

5.8 Iterative Estimates for Eigenvalues 325

18. [M] Let A be as in Exercise 9. Use the inverse power
method with xy = (1,0, 0) to estimate the eigenvalue of A
near « = —1.4, with an accuracy to four decimal places.

[M] In Exercises 19 and 20, find (a) the largest eigenvalue and (b)
the eigenvalue closest to zero. In each case, set xo = (1,0,0,0)
and carry out approximations until the approximating sequence
seems accurate to four decimal places. Include the approximate
eigenvector.

0w 7 8 7
7 5 6 5
BoA=1 % 6 10 o9
7 5 9 10
1 2 3 2
2 12 13 11
0-4=1 5 3 0 2
4 5 7 2

21. A common misconception is that if A has a strictly dominant
eigenvalue, then, for any sufficiently large value of k, the
vector A¥x is approximately equal to an eigenvector of A.
For the three matrices below, study what happens to Ax
when x = (.5,.5), and try to draw general conclusions (for

a 2 x 2 matrix).
R 1 0
a A_[O .2] b.A_[O .8]

8 0
c.A—[O 2:|

SOLUTION TO PRACTICE PROBLEM

For the given A and x,

Ax =

5 8 4 1.00 3.00
&8 3 -1 —4.30 | = | —13.00
4 -1 2 8.10 24.50

If Ax is nearly a multiple of x, then the ratios of corresponding entries in the two vectors
should be nearly constant. So compute:

{entry in Ax} =+ {entry in x} = {ratio}

3.00 1.00 3.000
—13.00 —4.30 3.023
24.50 8.10 3.025

Each entry in Ax is about 3 times the corresponding entry in X, so x is close to an

eigenvector. Any of the ratios above is an estimate for the eigenvalue. (To five decimal
places, the eigenvalue is 3.02409.)
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CHAPTER 5 SUPPLEMENTARY EXERCISES

Throughout these supplementary exercises, A and B represent
square matrices of appropriate sizes.

1. Mark each statement as True or False. Justify each answer.

a.

If A is invertible and 1 is an eigenvalue for A, then 1 is
also an eigenvalue of 47!,

If A is row equivalent to the identity matrix /, then A is
diagonalizable.

If A contains a row or column of zeros, then O is an
eigenvalue of A.

Each eigenvalue of A is also an eigenvalue of A2.
Each eigenvector of A4 is also an eigenvector of 4.

Each eigenvector of an invertible matrix A is also an
eigenvector of A™!.

Eigenvalues must be nonzero scalars.
Eigenvectors must be nonzero vectors.

Two eigenvectors corresponding to the same eigenvalue
are always linearly dependent.

Similar matrices always have exactly the same eigen-
values.

Similar matrices always have exactly the same eigen-
vectors.

The sum of two eigenvectors of a matrix A is also an
eigenvector of A4.

The eigenvalues of an upper triangular matrix A are
exactly the nonzero entries on the diagonal of A.

The matrices A and AT have the same eigenvalues,
counting multiplicities.

If a5 x 5 matrix A4 has fewer than 5 distinct eigenvalues,
then A is not diagonalizable.

There exists a 2 x 2 matrix that has no eigenvectors in
R2.

If A is diagonalizable, then the columns of A are linearly
independent.

A nonzero vector cannot correspond to two different
eigenvalues of A.

A (square) matrix A is invertible if and only if there is a
coordinate system in which the transformation x > Ax
is represented by a diagonal matrix.

If each vector e; in the standard basis for R" is an
eigenvector of A, then A4 is a diagonal matrix.

If A is similar to a diagonalizable matrix B, then 4 is
also diagonalizable.

If A and B are invertible n x n matrices, then AB is
similar to BA.

An n x n matrix with n linearly independent eigenvec-
tors is invertible.

10.

11.

x. If Aisann x n diagonalizable matrix, then each vector
in R” can be written as a linear combination of eigenvec-
tors of A.

Show that if x is an eigenvector of the matrix product AB and
Bx # 0, then Bx is an eigenvector of BA.

Suppose X is an eigenvector of A corresponding to an eigen-

value A.

a. Show that x is an eigenvector of 5/ — A. What is the
corresponding eigenvalue?

b. Show that x is an eigenvector of 5/ — 34 + A?. What is
the corresponding 