
LINQ: The Future of Data Access in C# 3.0
By Joe Hummel
...
Publisher: O'Reilly
Pub Date: October 01, 2006
Print ISBN-10: 0-596-52841-8
Print ISBN-13: 978-0-59-652841-6
Pages: 64

Table of Contents

Language Integrated Query (LINQ) is Microsoft's new technology for powerful, general purpose data access. This
technology provides a fully-integrated query language, available in both C# 3.0 and VB 9.0, for high-level data access
against objects, relational databases, and XML documents. In this Short Cut you'll learn about LINQ and the proposed
C# 3.0 extensions that support it. You'll also see how you can use LINQ and C# to accomplish a variety of tasks, from
querying objects to accessing relational data and XML. Best of all, you'll be able to test the examples and run your
own code using the latest LINQ CTP, available free from Microsoft. This Short Cut includes a complete reference to the
standard LINQ query operators.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LINQ: The Future of Data Access in C# 3.0
By Joe Hummel
...
Publisher: O'Reilly
Pub Date: October 01, 2006
Print ISBN-10: 0-596-52841-8
Print ISBN-13: 978-0-59-652841-6
Pages: 64

Table of Contents

 Copyright

 Chapter 1. Learn LINQ and the C# 3.0 Features That Support It

 Chapter 2. A Quick Introduction to LINQ

 Chapter 3. The LINQ Architecture

 Chapter 4. Supporting LINQ in C# 3.0

 Section 4.1. Lambda Expressions

 Section 4.2. Type Inference

 Section 4.3. Anonymous Types and Object Initializers

 Section 4.4. Query Expressions

 Section 4.5. Extension Methods

 Section 4.6. Lazy Evaluation

 Chapter 5. Applying LINQ

 Section 5.1. LINQ to DataSets

 Section 5.2. LINQ to SQL

 Section 5.3. Create, Read, Update, and Delete with LINQ

 Section 5.4. LINQ to XML

 Section 5.5. LINQ to IEnumerable

 Chapter 6. Standard LINQ Query Operators

 Section 6.1.

 Chapter 7. Extending LINQ

 Chapter 8. For Further Information

 Chapter 9. Acknowledgements

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Copyright
Copyright © 2006, O'Reilly Media, Inc.. All rights reserved.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 1. Learn LINQ and the C# 3.0 Features That
Support It
Imagine writing SQL-like queries entirely in C#, with IntelliSense and compile-time type checking. Imagine queries as
flexible as dynamically-generated SQL, yet as secure and efficient as calling stored procedures. Now take these same
queries and execute them against an XML document or against a collection of data objects. While Microsoft isn't quite
there yet, this is the goal of the LINQ project.

Language Integrated Query (LINQ) is a C# 3.0 API centered on data access. Developers focused on data access will be
able to leverage the LINQ API to interoperate with a variety of data sources and vendors in a consistent, object-
oriented fashion. The LINQ API is also extensible, as demonstrated by Microsoft's most important components of LINQ,
LINQ to SQL and LINQ to XML. The former provides LINQ-like manipulation of relational databases and the latter of XML
documents. You can expect future componentsboth from Microsoft and developers like yourselfto extend LINQ in new
and interesting ways.

The vast majority of LINQ is made possible by language extensions in C# 3.0 and VB 9.0, which will appear in the
upcoming 3.0 release of .NET. However, LINQ will also require a new version of the .NET Framework, which will follow
the upcoming 3.0 release. We shall tentatively refer to this version as .NET 3.5. The implication is that developers will
need to redeploy on .NET 3.5 to use LINQ.

NOTE

LINQ is still in development, and will be released in an upcoming version of .NET (3.5?). In the meantime,
you can experiment with LINQ by downloading the latest CTP for Visual Studio 2005 here:
http://msdn.microsoft.com/data/ref/linq.

The material for this Short Cut is based on the May 2006 CTP of LINQ. Since LINQ is beta software, I
encourage you to install Visual Studio 2005 and LINQ in a virtual environment, such as one created with
Virtual PC.

The source code accompanying this Short Cut is available at either of the following URLs:
http://www.oreilly.com/catalog/language1 or http://pluralsight.com/drjoe/pdfs/pdfs.aspx. To get started
yourself, install the latest LINQ CTP, startup Visual Studio 2005, expand the project types for C#, and
select "LINQ Preview." To see lots of examples of LINQ in action, try this site:
http://msdn.microsoft.com/vcsharp/future/linqsamples.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 2. A Quick Introduction to LINQ
Anders Hejlsberg, the chief architect of the C# programming language, summarizes LINQ quite nicely:

"It's about turning query set operations and transforms into first-class concepts of the language"
(http://channel9.msdn.com/showpost.aspx?postid=114680)

Let's look at an example. Imagine we are writing a scheduling application for a hospital, where every night a doctor
must be on call to handle emergencies. The main objects we are interacting with are of type Doctor, stored in a Doctors
collection that inherits from List<Doctor>:

Doctors doctors = new Doctors();

Suppose we need a list of all the doctors living within the Chicago city limits. The obvious approach involves a simple
iteration across the collection:

List<Doctor> inchicago = new List<Doctor>();
foreach (Doctor d in doctors)
 if (d.City == "Chicago")
 inchicago.Add(d);

In LINQ, this search reduces to the following query, with the IDE providing keyword highlighting, IntelliSense, and
compile-time type checking:

var inchicago = from d in doctors where d.City == "Chicago" select d;

Need a list sorted by last name? How about:

var byname = from d in doctors
 where d.City == "Chicago"
 orderby d.FamilyLastName
 select d;

Also need a list sorted by pager number? In LINQ:

var bypager = from d in doctors
 where d.City == "Chicago"
 orderby d.PagerNumber
 select d;

Finally, suppose we need a count of how many doctors live in each city (not just Chicago, but every city for which at
least one doctor lives). With LINQ, we can compute this result by grouping the doctors by city, much like we would in
SQL:

var bycity = from d in doctors
 group d by d.City into g
 orderby g.Key
 select new { City = g.Key, Count = g.Count() };

These types of queries begin to reveal the real power of LINQ. The results are easily harvested by iterating across the
query, for example:

foreach (var result in bycity)
 System.Console.WriteLine("{0}: {1}", result.City, result.Count);

This yields the following output for our set of doctors:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This yields the following output for our set of doctors:

Chicago: 5
Elmhurst: 1
Evanston: 3
Oak Park: 2
Wilmette: 1

LINQ does not limit us to a read-only data access strategy. CRUD-like (create, read, update, and delete) operations are
easily performed using the traditional object-oriented approach. For example, have the Larsens moved to the suburbs?
If so, search for the appropriate Doctor objects and update the City:

var larsens = from d in doctors where d.FamilyLastName == "Larsen" select d;
foreach (var d in larsens)
 d.City = "Suburb";

Need to create a doctor? Add an instance of the Doctor class to the doctors collection. Need to delete a doctor? Query to
find the corresponding Doctor object, and remove from the collection. In short, while the LINQ API does not provide
direct support for CRUD, these operations are easily accomplished.

NOTE

Here are the definitions of the Doctors and Doctor classes we'll be using throughout this Short Cut.

public class Doctors : List<Doctor>
 {
 public Doctors() // constructor (fills list with Doctors):
 {
 this.Add(new Doctor("mbl", "Marybeth", "Larsen", 52248,
 "mlarsen@uhospital.edu", "1305 S. Michigan", "Chicago",
 new DateTime(1998, 12, 1)));
 this.Add(new Doctor("jl", "Joe", "Larsen", 52249,
 "jlarsen@uhospital.edu", "1305 S. Michigan", "Chicago",
 new DateTime(1999, 11, 1)));
 this.Add(new Doctor("ch", "Carl", "Harding", 53113,
 "charding@uhospital.edu", "2103 Oak St", "Evanston",
 new DateTime(2000, 10, 1)));
 .
 .
 .
 }
 }
 // continued
 public class Doctor : IComparable<Doctor>
// NOTE: IComparable NOT required by LINQ.
 {
 private string m_Initials, m_GivenFirstName, m_FamilyLastName;
 private int m_PagerNumber;
 private string m_EmailAddress, m_StreetAddress, m_City;
 private DateTime m_StartDate;

 public string Initials
 { get { return m_Initials; } set { m_Initials = value; } }
 public string GivenFirstName
 { get { return m_GivenFirstName; } set { m_GivenFirstName = value; } }
 public string FamilyLastName
 { get { return m_FamilyLastName; } set { m_FamilyLastName = value; } }
 public int PagerNumber
 { get { return m_PagerNumber; } set { m_PagerNumber = value; } }
 public string EmailAddress
 { get { return m_EmailAddress; } set { m_EmailAddress = value; } }
 public string StreetAddress
 { get { return m_StreetAddress; } set { m_StreetAddress = value; } }
 public string City
 { get { return m_City; } set { m_City = value; } }
 public DateTime StartDate
 { get { return m_StartDate; } set { m_StartDate = value; } }

 public Doctor(string initials, string givenFirstName, string familyLastName,
 int pagerNumber, string emailAddress, string streetAddress,
string city,
 DateTime startDate)
 {
 this.m_Initials = initials;
 this.m_GivenFirstName = givenFirstName;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 this.m_GivenFirstName = givenFirstName;
 this.m_FamilyLastName = familyLastName;
 this.m_PagerNumber = pagerNumber;
 this.m_EmailAddress = emailAddress;
 this.m_StreetAddress = streetAddress;
 this.m_City = city;
 this.m_StartDate = startDate;
 }

 public override bool Equals(object obj) // NOTE: Equals NOT required by LINQ.
 {
 if (obj == null || this.GetType().Equals(obj.GetType()) == false)
 return false;
 Doctor other = (Doctor) obj;
 return this.m_Initials.Equals(other.m_Initials);
 }

 public override int GetHashCode() // NOTE: GetHashCode NOT required by LINQ.
 { return this.m_Initials.GetHashCode(); }

 public int CompareTo(Doctor other)
 { return this.m_Initials.CompareTo(other.m_Initials); }
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 3. The LINQ Architecture
In scanning the examples in the previous section, you probably noticed use of the var keyword, as well as the use of the
new keyword without an accompanying class name. What you see are two new features of C# 3.0, namely type
inference and anonymous types, added to the language in support of LINQ. Additional language features include query
expressions, lambda expressions, expression trees, extension methods, and object initializers, all of which will be
explained in the following sections.

Figure 3-1. LINQ_Architecture

LINQ's architecture is designed around a high-level, collection-like abstraction. This means that LINQ queries are
written in C# 3.0 against the notion of an object collection, and then translated by the compiler into IL for execution
against a particular data source (see Figure 1). This provides many benefits, including:

Ability to target different data sources, e.g. databases and XML documents.

Ability to use LINQ with existing .NET 1.* and 2.0 objects.

Ability to extend LINQ to support new classes and technologies.

As an analogy, consider the foreach loop. The foreach is merely syntactic sugar for a while loop written against the
IEnumerable and IEnumerator interfaces. However, foreach represents a convenient and powerful abstraction, allowing
intuitive iteration across different types of collections, today and in the future. It's now hard to imagine C# or VB
without foreach.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 4. Supporting LINQ in C# 3.0
Generics, delegates, and anonymous methods in C# 2.0 provide insight into how LINQ is supported in C# 3.0. Let's
consider once again the problem of finding all doctors living within the Chicago city limits. As shown earlier, here's the
obvious approach using foreach:

List<Doctor> inchicago = new List<Doctor>();
foreach (Doctor d in doctors)
 if (d.City == "Chicago")
 inchicago.Add(d);

A more elegant approach currently available in C# 2.0 is to take advantage of the collection's FindAll method, which can
be passed a delegate to a function that determines whether the doctor resides in Chicago:

public delegate bool Predicate<T>(T obj); // pre-defined in .NET 2.0

public bool IsInChicago(Doctor obj) // notice how this matches delegate signature
{
 return obj.City == "Chicago";
}
.
.
.

List<Doctor> inchicago = doctors.FindAll(new Predicate<Doctor>(this.IsInChicago));

FindAll iterates through the collection, building a new collection containing those objects for which the delegate-invoked
function returns true.

A more succinct version passes an anonymous method to FindAll:

List<Doctor> inchicago = doctors.FindAll(delegate(Doctor d)
 {
 return d.City == "Chicago";
 });

The {} denote the body of the anonymous method; notice these fall within the scope of the () in the call to FindAll. The
signature of the anonymous methodin this case a Boolean function with a single Doctor argumentis type-checked by the
compiler to ensure that it matches the definition of the argument to FindAll. The compiler then translates this version into
an explicit delegate-based version, assigning a unique name to the underlying method:

private static bool b__0(Doctor d)
{
 return d.City == "Chicago";
}

List<Doctor> inchicago = doctors.FindAll(new Predicate<Doctor>(b__0));

While this has nothing to do with LINQ per se, this approach of translating from one abstraction to another exemplifies
how LINQ integrates into C# 3.0.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.1. Lambda Expressions
From the developer's perspective, lambda expressions in C# 3.0 are a straightforward simplification of anonymous
methods. Whereas an anonymous method is an unnamed block of code, a lambda expression is an unnamed expression
that evaluates to a single value. Given a value x and an expression f(x) to evaluate, the corresponding lambda
expression is written

x => f(x)

For example, in C# 3.0 the previous call to FindAll with an anonymous method is significantly shortened by using a
lambda expression:

List<Doctor> inchicago = doctors.FindAll(x => x.City == "Chicago");

In this case, x is a doctor, and f(x) is the expression x.City == "Chicago", which evaluates to true or false. For readability,
let's substitute d for x:

List<Doctor> inchicago = doctors.FindAll(d => d.City == "Chicago");

Notice that this lambda expression matches the parameter and body of the anonymous method we saw earlier, minus
the syntactic extras like {}.

Lambda expressions are equivalent to anonymous methods that return a value when invoked, and are thus
interchangeable. In fact, the compiler translates lambda expressions into delegate-based code, exactly as it does for
anonymous methods.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.2. Type Inference
Interestingly, there is one very subtle difference between lambda expressions and anonymous methods: the latter
require type information, while the former do not. Returning to our example, notice that the lambda expression

d => d.City == "Chicago"

does not specify a type for d. Without a type, the compiler cannot translate the lambda expression into the equivalent
anonymous method:

delegate(?????? d) // what type is the argument d?
{
 return d.City == "Chicago";
}

To make this work, C# 3.0 is actually inferring the type of d in the lambda expression, based on contextual information.
For example, since doctors is of type List<Doctor>, the compiler can prove that in the context of calling FindAll

doctors.FindAll(d => d.City == "Chicago")

d must be of type Doctor.

Type inference is used throughout C# 3.0 to make LINQ more convenient, without any loss of safety or performance.
The idea of type inference is that the compiler infers the types of your variables based on context, not programmer-
supplied declarations. The compiler does this while continuing to enforce strict, compile-time type checking.

As we saw earlier when introducing LINQ, developers can take advantage of type inference by using the var keyword
when declaring local variables. For example, the declarations

var sum = 0;
var avg = 0.0;
var obj = new Doctor(...);

trigger the inference of int for sum, double for avg, and Doctor for obj. The initializer in the declaration is used to drive the
inference engine, and is required. The following are thus illegal:

var obj2; // ERROR: must have an initializer
var obj3 = null; // ERROR: must have a specific type

Assuming the inference is successful, the inferred type becomes permanent and compilation proceeds as usual.
Apparent misuses of the type are detected and reported by the compiler:

var obj4 = "hi!";
.
.
.
obj4.Close(); // Oops, wrong object! (ERROR: 'string' does not contain 'Close').

Do not confuse var with the concept of a VB variant (it's not), nor with the concept of var in dynamic languages like
JavaScript (where var really means object). In these languages the variable's type can change, and so type checking is
performed at runtimeincreased flexibility at the cost of safety. In C# 3.0 the type cannot change, and all type checking
is done at compile-time. For example, if the inferred type is object (as for obj6 below), in C# 3.0 you end up with an
object reference of very little functionality:

object obj5 = "hi"; // obj5 references the string "hi!", but type is object
var obj6 = obj5; // obj6 also references "hi!", with inferred type object
.
.
.
string s1 = obj6.ToUpper(); // ERROR: 'object' does not contain 'ToUpper'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

string s1 = obj6.ToUpper(); // ERROR: 'object' does not contain 'ToUpper'

While developers will find type inference useful in isolation, the real motivation is LINQ. Type inference is critical to the
success of LINQ since queries can yield complex results. LINQ would be far less attractive if developers had to explicitly
type all aspects of their queries. In fact, specifying a type is sometimes impossible, e.g., when projections select new
patterns of data:

 var query = from d in doctors
 where d.City == "Chicago"
 select new { d.GivenFirstName, d.FamilyLastName }; // type?

foreach (var r in query)
 System.Console.WriteLine("{0}, {1}", r.FamilyLastName, r.GivenFirstName);

In these cases, typing is better left to the compiler.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.3. Anonymous Types and Object Initializers
Consider the previous query to find the names of all doctors living in Chicago:

var query = from d in doctors
 where d.City == "Chicago"
 select new { d.GivenFirstName, d.FamilyLastName };

The query interacts with complete Doctor objects from the doctors collection, but then projects only the doctor's first and
last name. Look carefully at the syntax. We see the new keyword without a class name, and { } instead of ():

new { d.GivenFirstName, d.FamilyLastName }

The new operator is in fact instantiating an object, but the class is an anonymous typethe C# 3.0 compiler is
automatically creating an appropriate class definition with a unique name and substituting that name. The only
constructor provided by the generated class is a default one (i.e. parameter-less), which favors serialization but
complicates the issue of object initialization. This is the motivation for the { }, which denote C# 3.0's new object
initializer syntax. Object initializers provide an inline mechanism for initializing objects. And in the case of anonymous
types, object initializers define both the data members of the type and their initial values.

For example, our earlier object instantiation is translated to

new <Projection>f__12 { d.GivenFirstName, d.FamilyLastName }

where the compiler has generated

public sealed class <Projection>f__12
{
 private string _GivenFirstName;
 private string _FamilyLastName;

 public string GivenFirstName
 { get { return _GivenFirstName; } set { _GivenFirstName = value; } }
 public string FamilyLastName
 { get { return _FamilyLastName; } set { _FamilyLastName = value; } }

 public <Projection>f__12() // default constructor: empty
 { }
 public override string ToString() // dumps contents of all fields
 { ... }
 public override bool Equals(object obj) // all fields must be Equals
 { ... }
 public override int GetHashCode()
 { ... }
}

As you can see, the names and types of the properties are inferred from the initializers. If you prefer, you can assign
your own names to the data members of the anonymous type. For example:

new { First = d.GivenFirstName, Last = d.FamilyLastName }

In this case the compiler generates:

public sealed class <Projection>f__13

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public sealed class <Projection>f__13
{
 private string _First;
 private string _Last;

 public string First
 { get { return _First; } set { _First = value; } }
 public string Last
 { get { return _Last; } set { _Last = value; } }
 .
 .
 .
}

Anonymous types are being added to C# 3.0 primarily to support of LINQ, allowing developers to work with just the
data they need in a familiar, object-oriented package. And courtesy of type inference, you can work with anonymous
types in a safe, type-checked manner.

A current limitation of anonymous types is that they cannot be accessed outside the defining assemblywhat name would
you use to refer to the class? In theory you could compile the code in a separate assembly and then use the generated
name, but this is an obvious bad practice (and currently prevented by the fact that the generated name is invalid at the
source code level). At issue is the design of N-tier applications, whose tiers communicate by passing data. If the data is
packaged as an anonymous type, how do the other tiers refer to it? Since they cannot, anonymous types should be
viewed as a technology for local use only.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.4. Query Expressions
A LINQ query is called a query expression. Query expressions start with the keyword from, and are written using SQL-
like query operators such as Select, Where, and OrderBy:

using System.Query; // import standard LINQ query operators

// all doctors living in Chicago, sorted by last name, first name:
var chicago = from d in doctors
 where d.City == "Chicago"
 orderby d.FamilyLastName, d.GivenFirstName
 select d;

foreach (var r in chicago)
 System.Console.WriteLine("{0}, {1}", r.FamilyLastName, r.GivenFirstName);

By default, you must import the namespace System.Query to gain access to the standard LINQ query operators.

As noted earlier, type inference is used to make query expressions easier to write and consume:

 var chicago = from d in doctors ... select d;

foreach (var r in chicago) ... ;

But what exactly is a query expression? What type is inferred for the variable chicago above? Consider SQL. In SQL, a
select query is a declarative statement that operates on one or more tables, producing a table. In LINQ, a query
expression is a declarative expression operating on one or more IEnumerable objects, returning an IEnumerable object.
Thus, a query expression is an expression of iteration across one or more objects, producing an object over which you
iterate to collect the result. For example, let's be type-specific in our previous declaration:

 IEnumerable<Doctor> chicago = from d in doctors ... select d;

LINQ defines query expressions in terms of IEnumerable<T> to hide implementation details (preserving flexibility!) while
conveying in a strongly-typed way the key concept that a query expression can be iterated across:

foreach (Doctor d in chicago) ... ;

Of course, type inference conveniently hides this level of detail without any loss of safety or performance.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.5. Extension Methods
So how exactly are query expressions executed? Query expressions are translated into traditional object-oriented
method calls by way of extension methods. Extension methods, new in C# 3.0, extend a class without actually being
members of that class. For example, consider the following query expression:

using System.Query;

// initials of all doctors living in Chicago, in no particular order:
var chicago = from d in doctors
 where d.City == "Chicago"
 select d.Initials;

Using extension methods, this query can be rewritten as follows:

using System.Query;

var chicago = doctors.
 Where(d => d.City == "Chicago").
 Select(d => d.Initials);

This statement calls two methods, Where and Select, passing them lambda expressionsyet these methods are not
members of the Doctors class. How and why does this compile?

In C# 3.0, extension methods are defined as static methods in a static class, annotated with the
System.Runtime.CompilerServices.Extension attribute. By importing the namespace that includes this static class, the compiler
treats the extension methods as if they were instance methods. For example, the LINQ standard query operators are
defined as extension methods in the class System.Query.Sequence. By importing the namespace System.Query, we gain access
to the query operators as if they were members of the Doctors class.

Let's look at an extension method in more detail. Here's the signature for System.Query.Sequence.Where:

namespace System.Query
{
 public delegate ReturnT Func<ArgT, ReturnT>(ArgT arg);

 public static class Sequence
 {
 public static IEnumerable<T> Where<T>(this IEnumerable<T> source,
 Func<T, bool> predicate)
 { ... }
 .
 .
 .
 }
}

The extension method Where returns an IEnumerable object by iterating across an existing IEnumerable object (source),
applying a delegate-based Boolean function (predicate) to determine membership in the result set. Notice that both the
first parameter and the return value are defined in terms of IEnumerable<T>, establishing the link between query
expressions and the extension methods that drive them.

Given a query expression or a query written using extension methods, the C# 3.0 compiler translates these into calls to
the underlying static methods. For example, either form of our query above is conceptually translated into the
following:

var temp = System.Query.Sequence.Where(doctors, d => d.City == "Chicago");
var chicago = System.Query.Sequence.Select(temp, d => d.Initials);

In reality, this form is skipped and the translation proceeds directly to C# 2.0-compatible code:

IEnumerable<Doctor> temp; // doctors living in chicago
IEnumerable<string> chicago; // initials of doctors living in chicago

temp = System.Query.Sequence.Where<Doctor>(doctors,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

temp = System.Query.Sequence.Where<Doctor>(doctors,
 new Func<Doctor, bool>(b__0));
chicago = System.Query.Sequence.Select<Doctor, string>(temp,
 new Func<Doctor, string>(b__3));

with the lambda expressions translated into delegate-invoked methods:

private static bool b__0(Doctor d) // lambda: d => d.City == "Chicago"
{ return d.City == "Chicago"; }

private static string b__3(Doctor d) // lambda: d => d.Initials
{ return d.Initials; }

Notice the important role that type inference plays during this translation. Extension methods and their supporting
types (IEnumerable, Func, etc.) are elegantly defined once using generics. Type inference is relied on to determine the type
T involved in each aspect of the query, and to then qualify the generic appropriately. In this case we see the inference
of both Doctor and string.

In C# 3.0, what differentiates an extension method from an ordinary static method? Observe that a query based on
extension methods is converted to a static version by passing the object instance as the first argument:

doctors.Where(...) ==> System.Query.Sequence.Where(doctors, ...)

This is identical to the standard mechanism for calling instance methods, where the first parameter is a reference to the
object itselfproviding a value for this. This logic explains C#'s choice of the this keyword in the signature of extension
methods:

public static IEnumerable<T> Where<T>(this IEnumerable<T> source, ...)

In C# 3.0 it is the presence of the this keyword on the first parameter that identifies a static method as an extension
method.

What if the class (such as Doctors) or one of its base classes contain methods that conflict with imported extension
methods? To avoid unexpected behavior, all other methods take priorityextension methods have the lowest precedence
when the compiler performs name resolution, and thus become candidates only after all other possibilities have been
exhausted. If two or more imported namespaces yield candidate extension methods, the compiler reports the conflict as
a compilation error.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.6. Lazy Evaluation
Interestingly, you may be a bit surprised by the behavior of queries in LINQ. Let's look at an example. First, consider
the following Boolean function that as a side-effect outputs the doctor's initials:

public static bool dump(Doctor d)
{
 System.Console.WriteLine(d.Initials);
 return true;
}

Now let's use dump in a simple query that will end up selecting all the doctors because the function always returns true:

var query = from d in doctors
 where dump(d)
 select d;

Here's the million dollar question: what does this query output? [Nothing!]

It turns out that the declaration of a query expression does just thatdeclares a query, but does not evaluate it.
Evaluation in most cases is delayed until the results of the query are actually requested, an approach known as lazy
evaluation. For example, the following statement outputs the initials of the first doctor:

query.GetEnumerator().MoveNext(); // outputs ==> "mbl"

By "moving" to the first element in the result set, we trigger a call to dump based on the first doctor, which outputs the
doctor's initials. Since dump returns true, this doctor satisfies the where condition, the doctor is considered part of the
result set, and MoveNext returns because it has successfully moved to the first element in the result set. Hence the
initials of the first doctor, and only the first doctor, are output. [What do you think happens if dump returns false for
the first doctor?]

To output the initials of all the doctors, we iterate across the entire result:

foreach (var result in query) // "mbl", "jl", "ch", ...
 ;

Again, it's sufficient to simply request each result in order to trigger evaluation (and in this case the output of the
doctor's initials), we do not have to access the resulting value.

You are probably wondering how lazy evaluation is supported in C# 3.0. In fact, the support was introduced in C# 2.0
via the yield construct. For example, here's the complete implementation of the standard LINQ query operator Where that
we discussed earlier:

public static class Sequence
{
 public static IEnumerable<T> Where<T>(this IEnumerable<T> source,
 Func<T, bool> predicate)
 {
 foreach (T element in source)
 if (predicate(element))
 yield return element;
 }
}

The yield return pattern produces the next value of the iteration and then returns. In response to yield, the C# compiler
generates the necessary code (essentially a nested iterator class) to implement IEnumerable and enable iteration to
continue where it left off.

NOTE

To learn more about how things work and what the C# compiler is doing, I highly recommend Lutz
Roeder's Reflector tool as a way to reverse-engineer your compiled code and see what's going on:
http://www.aisto.com/roeder/dotnet.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

http://www.aisto.com/roeder/dotnet.

One of the implications of LINQ's lazy evaluation is that query expressions are re-evaluated each time they are
processed. In other words, the results of a query are not stored or cached in a collection, but lazily evaluated and
returned on each request. The advantage is that changes in the data are automatically reflected in the next processing
cycle:

foreach (var result in query) // outputs initials for all doctors
 ;

doctors.Add(new Doctor("xyz", ...));

foreach (var result in query) // output now includes new doctor "xyz"
 ;

Another advantage is that complex queries can be constructed from simpler ones, and execution is delayed until the
final query is ready (and possibly optimized!).

If you want to force immediate query evaluation and cache the results, the simplest approach is to call the ToArray or
ToList methods on the query. For example, the following code fragment outputs the initials of all doctors three
consecutive times:

var cache1 = query.ToArray(); // evaluate query & cache results as an array

doctors.Add(new Doctor("xyz", ...));

System.Console.WriteLine("###");
var cache2 = query.ToList(); // evaluate query again & cache results as a list

System.Console.WriteLine("###");
System.Console.WriteLine(cache1.GetType());
System.Console.WriteLine(cache2.GetType());

foreach (var result in cache1) // output results of initial query:
 System.Console.WriteLine(result.Initials);

System.Console.WriteLine("###");

The second cache contains the new doctor, but the first does not. Here's the output:

mbl
jl
.
.
ks
###
mbl
jl
.
.
ks
xyz
###
Doctor[]
System.Collections.Generic.List`1[Doctor]
mbl
jl
.
.
ks
###

Most (but not all) of the standard LINQ query operators are lazily evaluated. The exception are operators that return a
single (scalar) value, such as Min and Max, which might as well produce the value instead of a collection containing that
value:

int minPager = doctors.Min(d => d.PagerNumber);
int maxPager = doctors.Max(d => d.PagerNumber);

System.Console.WriteLine("Pager range: {0}..{1}", minPager, maxPager);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Console.WriteLine("Pager range: {0}..{1}", minPager, maxPager);

The section on standard LINQ query operators will make note of which operators are lazily evaluated, and which are
not. But first, let's take a deeper look at what LINQ offers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 5. Applying LINQ
LINQ is really the centerpiece of a wide range of data access technologiesfrom datasets to databases, text files to XML
documents, objects to object graphs. The extensibility of LINQ is one of its most elegant features, allowing LINQ to
query just about any enumerable data source.

In this section we'll look at some of the more interesting ways you can use LINQ to query DataSets, databases, XML
documents, text files, and more.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.1. LINQ to DataSets
LINQ supports the querying of both typed and untyped DataSets. Expanding on our theme of a hospital scheduling
application, suppose we have a namespace DataSets with a typed dataset SchedulingDocs containing three tables:
Doctors, Calls, and Vacations. The Doctors table contains one record for each doctor, the Calls table keeps track of
which doctor is on call each day, and the Vacations table makes note of vacation requests. The DataSet is summarized
in Figure 2.

Figure 5-1. Tables in the SchedulingDocs typed DataSet

Let's assume an instance of SchedulingDocs has been created and filled:

DataSets.SchedulingDocs ds = new DataSets.SchedulingDocs(); // create dataset
.
. // open connection to a database and fill each table?
.

To find all the doctors living within Chicago, the query is exactly as we've seen before:

var chicago = from d in ds.Doctors
 where d.City == "Chicago"
 select d;

In this case ds.Doctors denotes a DataTable object, and d represents a DataRow object. Since the DataSet is typed, these
objects are strongly-typed as DoctorsTable and DoctorsRow, respectively.

NOTE

For completeness, here's the code to create and fill an instance of SchedulingDocs, declared within the DataSets
namespace:

using System.Data.Common;
using DataSets;

SchedulingDocsTableAdapters.DoctorsTableAdapter doctorsAdapter;
SchedulingDocsTableAdapters.CallsTableAdapter callsAdapter;
SchedulingDocsTableAdapters.VacationsTableAdapter vacationsAdapter;
SchedulingDocs ds;
DbProviderFactory dbFactory;

dbFactory = DbProviderFactories.GetFactory(providerInfo);
ds = new SchedulingDocs();
doctorsAdapter = new SchedulingDocsTableAdapters.DoctorsTableAdapter();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

doctorsAdapter = new SchedulingDocsTableAdapters.DoctorsTableAdapter();
callsAdapter = new SchedulingDocsTableAdapters.CallsTableAdapter();
vacationsAdapter = new SchedulingDocsTableAdapters.VacationsTableAdapter();

using (DbConnection dbConn = dbFactory.CreateConnection())
{
 dbConn.ConnectionString = connectionInfo;
 dbConn.Open();

 doctorsAdapter.Fill(ds.Doctors);
 callsAdapter.Fill(ds.Calls);
 vacationsAdapter.Fill(ds.Vacations);
} //dbConn.Close();

LINQ supports the notion of joins, including inner and outer joins. For example, let's join the Doctors and Calls tables to
see which doctors are scheduled in the month of October 2006:

var oct2006 = (
 from d in ds.Doctors
 join c in ds.Calls
 on d.Initials equals c.Initials
 where c.DateOfCall >= new DateTime(2006, 10, 1) &&
 c.DateOfCall <= new DateTime(2006, 10, 31)
 orderby d.Initials
 select d.Initials
)
 .Distinct();

This query expression uses a number of standard LINQ query operators, including Join, OrderBy, and Distinct; Join
implements an inner equijoin.

LINQ is not limited to yielding tabular data, but will produce hierarchical results as appropriate. For example, suppose
we want to know not only which doctors are on call in October 2006, but also the dates. In this case, we join the
Doctors and Calls tables, now grouping the results:

var oct2006 = from d in ds.Doctors
 join c in ds.Calls
 on d.Initials equals c.Initials
 where c.DateOfCall >= new DateTime(2006, 10, 1) &&
 c.DateOfCall <= new DateTime(2006, 10, 31)
 group c by d.Initials into g
 select g;

Notice we group the calls ("c") on a per doctor basis ("d"). For each scheduled doctor, this yields an enumerable
collection of calls. Here's how we process the query:

 foreach (var group in oct2006)
{
 System.Console.WriteLine("{0}: ", group.Key);
 foreach (var call in group)
 System.Console.WriteLine(" {0}", call.DateOfCall.ToString("dd MMM yyyy"));
 System.Console.WriteLine(" calls = {0}", group.Count());
}

The hierarchical output appears as follows:

jl:
 02 Oct 2006
 calls = 1
mbl:
 01 Oct 2006
 31 Oct 2006
 calls = 2
.
.
.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

How about we re-order the results by those working the most, and select just the data we need in the result set:

var oct2006 = from d in ds.Doctors
 join c in ds.Calls
 on d.Initials equals c.Initials
 where c.DateOfCall >= new DateTime(2006, 10, 1) &&
 c.DateOfCall <= new DateTime(2006, 10, 31)
 group c by d.Initials into g
 orderby g.Count() descending
 select new { Initials = g.Key,
 Count = g.Count(),
 Dates = from c in g
 select c.DateOfCall };

foreach (var result in oct2006)
{
 System.Console.WriteLine("{0}:", result.Initials);
 foreach (var date in result.Dates)
 System.Console.WriteLine(" {0}", date.ToString("dd MMM yyyy"));
 System.Console.WriteLine(" calls = {0}", result.Count);
}

By projecting just the needed data, we can do things like data-bind the result for ease of display. The trade-off is that
this potentially requires another set of custom objects to be instantiated. However, keep in mind that the design of
LINQ enables the query operators to optimize away unnecessary object creation, much like compilers routinely
eliminate unneeded code. This is especially true when applying LINQ in other situations, such as against a database
(i.e., "LINQ to SQL").

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.2. LINQ to SQL
Instead of executing our queries against a DataSet, suppose we want to execute against the database directly? No
problem. With LINQ to SQL, we change only the target of our query:

 Databases.SchedulingDocs db = new Databases.SchedulingDocs(connectionInfo);

var oct2006 = (// find all doctors scheduled for October 2006:
 from d in db.Doctors
 join c in db.Calls
 on d.Initials equals c.Initials
 where c.DateOfCall >= new DateTime(2006, 10, 1) &&
 c.DateOfCall <= new DateTime(2006, 10, 31)
 orderby d.Initials
 select d.Initials
)
 .Distinct();

In this case, SchedulingDocs is a class denoting a SQL Server 2005 database named SchedulingDocs. This class, and its
associated entity classesD o ctors, Calls, and Vacationswere automatically generated by LINQ's SQLMetal tool to represent
the database and its tables. As you would expect, the query expression is lazily evaluated, waiting for the query to be
consumed:

 foreach (var initials in oct2006) // execute the query:
 System.Console.WriteLine("{0}", initials);

The query is now translated into parameterized SQL, sent to the database for execution, and the result set produced.
How efficient is the generated SQL? In this case (and the May CTP of LINQ), a single select statement is executed
against the database:

SELECT DISTINCT [t0].[Initials]
 FROM [Doctors] AS [t0], [Calls] AS [t1]
 WHERE ([t1].[DateOfCall] >= @p0) AND
 ([t1].[DateOfCall] <= @p1) AND
 ([t0].[Initials] = [t1].[Initials])
 ORDER BY [t0].[Initials]

NOTE

In the May CTP of LINQ, SQLMetal is provided as a command-line tool. To run, first open a command
window and cd to the install directory for LINQ (most likely C:\Program Files\LINQ Preview\Bin). Now ask
SQLMetal to read the metadata from your database and generate the necessary class files. For the SQL
Server 2005 database named SchedulingDocs, the command is:

 C:\...\Bin>sqlmetal /server:. /database:SchedulingDocs
/language:csharp /code:SchedulingDocs.cs /namespace:Databases

This will generate a source code file SchedulingDocs.cs in the current directory.

Let's look at a more complex query that computes the number of calls for every doctor in the month of October 2006.
Recall that an inner join produces results for only those doctors that are working:

var oct2006 = from d in db.Doctors
 join c in db.Calls
 on d.Initials equals c.Initials
 where c.DateOfCall >= new DateTime(2006, 10, 1) &&
 c.DateOfCall <= new DateTime(2006, 10, 31)
 group c by d.Initials into g
 select new { Initials = g.Key, Count = g.Count() };

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An outer join is needed to capture the results for all doctors, whether scheduled or not. Outer joins are based on LINQ's
join ... into syntax:

var allOct2006 = from d1 in db.Doctors // join all doctors
 join d2 in oct2006 // with those working in Oct 2006
 on d1.Initials equals d2.Initials
 into j
 from r in j.DefaultIfEmpty()
 select new { Initials = d1.Initials,
 Count = (r == null ? 0 : r.Count) };

This left outer join produces a result set "into" j, which is then enumerated across using the sub-expression "from r in
...". If a given doctor is working, then r is the joined result; if the doctor is not working then the result is empty, in
which case j.DefaultIfEmpty() returns null. For each doctor, we then project their initials and the number of calls they are
workingeither 0 or the count from the inner join. Iterating across the query:

foreach (var result in allOct2006)
 System.Console.WriteLine("{0}: {1}", result.Initials, result.Count);

Yields:

ay: 7
bb: 0
ch: 3
.
.
.

When the query is executed, the following SQL is sent to the database (this is a test intended for the SQL wizards in the
audience):

SELECT [t7].[Initials], [t7].[value] AS [Count]
FROM (
 SELECT
 (CASE
 WHEN [t4].[test] IS NULL THEN 0
 ELSE (
 SELECT COUNT(*)
 FROM [Doctors] AS [t5], [Calls] AS [t6]
 WHERE ([t4].[Initials] = [t5].[Initials]) AND
 ([t6].[DateOfCall] >= @p0) AND
 ([t6].[DateOfCall] <= @p1) AND
 ([t5].[Initials] = [t6].[Initials])
)
 END) AS [value], [t0].[Initials]
 FROM [Doctors] AS [t0]
 LEFT OUTER JOIN (
 SELECT 1 AS [test], [t3].[Initials]
 FROM (
 SELECT [t1].[Initials]
 FROM [Doctors] AS [t1], [Calls] AS [t2]
 WHERE ([t2].[DateOfCall] >= @p0) AND
 ([t2].[DateOfCall] <= @p1) AND
 ([t1].[Initials] = [t2].[Initials])
 GROUP BY [t1].[Initials]
) AS [t3]
) AS [t4] ON [t0].[Initials] = [t4].[Initials]
) AS [t7]

NOTE

In all fairness, it should be noted that the focus of this Short Cut is LINQ, and not particularly LINQ to SQL.
For this reason, the picture painted of LINQ to SQL is quite superficial. For example, in LINQ to SQL,
queries are translated to SQL and executed with SQL semantics. In comparison, most other LINQ queries
are directly executed by .NET Framework objects with CLR semantics. Likewise, LINQ to SQL handles
changes to the data quite differently than other flavors of LINQ. For more details, we encourage you to
read the forthcoming Part 2 of this Short Cut series on LINQ (expected fall 2006), which focuses
exclusively on LINQ to SQL. Watch for an announcement at http://oreilly.com

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.3. Create, Read, Update, and Delete with LINQ
Most of the discussion thus far has focused on data querying, and not data modification. Don't be mistaken, LINQ
provides full support for read/write data access, commonly referred to as CRUD.

Interestingly, while data is read using an SQL-like query language, data modification is approached using more
traditional, object-oriented mechanisms. For example, to schedule the doctor mbl for call on November 30, 2006 in our
SchedulingDocs database, we do two things. First, we add a new row to the object representing the Calls table:

db.Calls.Add(new Databases.Calls{Initials="mbl",
 DateOfCall=new DateTime(2006, 11, 30});

Second, we flush the change back to the database:

db.SubmitChanges();

The first step makes a local, in-memory change only; the second step is what triggers the underlying SQL (or stored
procedure) to update the database. LINQ to SQL will automatically generate the appropriate SQL for inserts, updates,
and deletes, or interoperate with your custom stored procedures.

To delete a call, we find the corresponding object, remove it from the table, and update the database:

var del = from c in db.Calls
 where c.Initials == "mbl" && c.DateOfCall == new DateTime(2006, 11, 30)
 select c;

foreach (var c in del)
 db.Calls.Remove(c);

db.SubmitChanges();

Since there is at most one doctor on call for any given day, we know the above query will return exactly one record. In
this case we can use the standard query operator Single, passing a lambda expression for the search criteria:

var call = db.Calls.Single(c => c.Initials == "mbl" &&
 c.DateOfCall == new DateTime(2006, 11, 30));
db.Calls.Remove(call);
db.SubmitChanges();

If it's possible that the search may fail, use the query operator SingleOrDefault, and check the query result for null.

Finally, to update existing data, the approach is (1) query to find the corresponding objects, (2) update those objects,
and (3) flush the changes. For example, if the doctor ay's pager number changes to 53301, we update the database as
follows:

var ay = db.Doctors.Single(d => d.Initials == "ay");
ay.PagerNumber = 53301;
db.SubmitChanges();

The same logic applies to other LINQ scenarios, such as XML documents and DataSets. For example, with the typed
DataSet SchedulingDocs (see Figure 2), scheduling a doctor on call is simply a matter of adding a new row to the Calls
table:

ds.Calls.AddCallsRow("mbl", new DateTime(2006, 11, 30));

Much like the database objects, DataSets are a local, in-memory collection of objects. To persist your changes, an
updated DataSet must be written to some durable medium, such as the file system or a database:

dbConn.Open();
callsAdapter.Update(ds.Calls);
dbConn.Close();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

dbConn.Close();

Here we re-open the connection, update the database to match, and close the connectionthe equivalent of
db.SubmitChanges(). The key difference is that in the case of LINQ to SQL, the SQLMetal tool generates the necessary code
to update the underlying database. In the case of DataSets and XML documents (and other flavors of LINQ), it's
typically our responsibility to load the data, and consequently to persist it back.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.4. LINQ to XML
From its beginnings, LINQ was designed to manipulate XML data as easily as it manipulates relational data. LINQ to XML
represents a new API for XML-based development, equivalent in power to XPath and XQuery yet far simpler for most
developers to use.

For example, let's assume the data source for our hospital scheduling application is an XML document stored in the file
SchedulingDocs.xml. Here's the basic structure of the document:

<?xml version="1.0" standalone="yes"?>
<SchedulingDocs>
 <Calls>
 <Call>
 <Initials>mbl</Initials>
 <DateOfCall>2006-10-01T00:00:00-05:00</DateOfCall>
 </Call>
 .
 .
 .
 </Calls>
 <Doctors>
 <Doctor>
 <Initials>ay</Initials>
 <GivenFirstName>Amy</GivenFirstName>
 <FamilyLastName>Yang</FamilyLastName>
 <PagerNumber>53300</PagerNumber>
 <EmailAddress>ayang@uhospital.edu</EmailAddress>
 <StreetAddress>1400 Ridge Ave.</StreetAddress>
 <City>Evanston</City>
 </Doctor>
 .
 .
 .
 </Doctors>
 <Vacations>
 <Vacation>
 <Initials>jl</Initials>
 <DateOfDayOff>2006-10-03T00:00:00-05:00</DateOfDayOff>
 </Vacation>
 .
 .
 .
 </Vacations>
</SchedulingDocs>

Using LINQ, we load this document as follows:

import System.Xml.XLinq; // LINQ to XML

XElement root, calls, doctors, vacations;

root = XElement.Load("SchedulingDocs.xml");

calls = root.Element("Calls");
doctors = root.Element("Doctors");
vacations = root.Element("Vacations");

We now have access to the three main elements of the XML document: calls, doctors, and vacations. To select all the
doctors, it's a simple query expression:

var docs = from doc in doctors.Elements()
 select doc;

And to find just those doctors living in Chicago:

var chicago = from doc in doctors.Elements()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

var chicago = from doc in doctors.Elements()
 where doc.Element("City").Value == "Chicago"
 orderby doc.Element("Initials").Value
 select doc;

As you can see, querying XML documents with LINQ is conceptually the same as that of relational databases, DataSets,
and other objects. The difference is that the structure of the XML document must be taken into account, e.g., in this
case the document's hierarchical design and its use of elements over attributes.

An important aspect of LINQ is the ability to easily transform data into other formats. In the world of XML,
transformation is commonplace given the need to create XML documents as well as translate from one schema to
another. For example, suppose we need to produce a new XML document containing just the names of the doctors, with
their initials as an attribute:

<?xml version="1.0" standalone="yes"?>
<Doctors>
 <Doctor Initials="bb">Boswell, Bryan</Doctor>
 <Doctor Initials="lg">Goldstein, Luther</Doctor>
 .
 .
 .
</Doctors>

This document is easily produced by the following query, which simply projects new XElements:

var docs = from doc in doctors.Elements()
 orderby doc.Element("FamilyLastName").Value,
 doc.Element("GivenFirstName").Value
 select new XElement("Doctor",
 new XAttribute("Initials", doc.Element("Initials").Value),
 doc.Element("FamilyLastName").Value +
 ", " +
 doc.Element("GivenFirstName").Value);

XElement newroot = new XElement("Doctors", docs);

The last statement creates the root element <Doctors>, using the query to generate the <Doctor> sub-elements.

Finally, here's a real-world example of translating a text-based IIS logfile into an XML document. This example comes
from a series of posts to the MSDN LINQ Project General Forum, "Transforming a TXT file into XML with LINQ to XML,"
http://forums.microsoft.com/MSDN/ShowPost.aspx?PostID=574140&SiteID=1. The logfile contains 0 or more lines of
the form:

Time IP-address Method URI Status

For example:

#Software: Microsoft Internet Information Services 5.1
#Version: 1.0
#Date: 2006-06-23 12:37:18
#Fields: time c-ip cs-method cs-uri-stem sc-status
12:37:18 127.0.0.1 GET /cobrabca 404
12:37:25 127.0.0.1 GET /cobranca 401
.
.
.

Here's the LINQ query to produce an XML document from such a log:

var logIIS = new XElement("LogIIS",
 from line in File.ReadAllLines("file.log")
 where !line.StartsWith("#")
 let items = line.Split(' ')
 select new XElement("Entry",
 new XElement("Time", items[0]),
 new XElement("IP", items[1]),
 new XElement("Url", items[3]),
 new XElement("Status", items[4])
)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

)
);

LINQ over a text file? The next section will discuss this, and other examples, in more detail.

NOTE

The general focus of this Short Cut precludes an in-depth treatment of LINQ to XML. For more details, we
encourage you to read the forthcoming Part 3 of this Short Cut series (expected Q4 2006), which focuses
exclusively on LINQ to XML. Watch for an announcement at http://oreilly.com

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.5. LINQ to IEnumerable
One of the elegant design aspects of LINQ is that queries can be executed against any enumerable data source. If an
object implements IEnumerable, then LINQ can access the data behind that object. For example, suppose we need to
search the current user's My Documents folder (and sub-folders) for all non-system files modified in the last hour. Using
LINQ we do this as follows:

using SIO = System.IO;

string[] files;
string mydocs;

mydocs = Environment.GetFolderPath(Environment.SpecialFolder.MyDocuments);
files = SIO.Directory.GetFiles(mydocs, "*.*", SIO.SearchOption.AllDirectories);

var query = from file in files
 let lasthour = DateTime.Now.Subtract(new TimeSpan(0, 1, 0, 0))
 where SIO.File.GetLastAccessTime(file) >= lasthour &&
 (SIO.File.GetAttributes(file) & SIO.FileAttributes.System) == 0
 select file;

Notice the presence of the let statement, which allows for the definition of values local to the query; let is used to
improve readability and efficiency by factoring out common operations.

This example should not be very surprising, since what we are really doing is iterating across an array of filenames
("files"), not the file system itself. But this is a design artifact of the .NET Framework, not a limitation of LINQ. A similar
example is the searching of a file, which is easily done in LINQ by iterating across the lines of the file:

string filename = ...; // file to search

var lines = from line in SIO.File.ReadAllLines(filename)
 where line.Contains("class")
 select line;

In this example, we are reading all the lines into an array and then searching the array to select those lines containing
the character sequence "class."

Need to search the Windows event log? An event log is a collection of EventLogEntry objects, and is accessed in .NET by
creating an instance of the EventLog class. For example, here's how we gain access to the Application event log on the
current machine:

using SD = System.Diagnostics;

SD.EventLog applog = new SD.EventLog("Application", ".");

Suppose we need to find all events logged by our application for a particular user. This is easily expressed as a LINQ
query:

string appname = ...; // name of our application, e.g. "SchedulingApp"
string username = ...; // login name for user, e.g. "DOMAIN\\hummel"

var entries = from entry in applog.Entries
 where entry.Source == appname &&
 entry.UserName == username
 orderby entry.TimeWritten descending
 select entry;

Interestingly, while this query makes perfect sense, it does not compile. The issue is that EnTRies is a pre-2.0 collection,
which means it implements IEnumerable and not IEnumerable<T>. Since IEnumerable is defined in terms of object and not a
specific type T, the C# type inference engine cannot infer the type of objects the query expression is working with. The
designers of LINQ provide an easy solution in the form of the standard query operator Cast. The Cast operator wraps a
generic enumerable object with a type-specific one suitable for LINQ:

var entries = from entry in applog.Entries.Cast<SD.EventLogEntry>()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

var entries = from entry in applog.Entries.Cast<SD.EventLogEntry>()
 where entry.Source == appname &&
 entry.UserName == username
 orderby entry.TimeWritten descending
 select entry;

The Cast operator allows LINQ to support .NET 1.x collections.

As a final example, let's apply LINQ to the world of Visual Studio Tools for Office (VSTO). To search a user's Outlook
contacts, the basic query is as follows:

Outlook.MAPIFolder folder = this.ActiveExplorer().Session.
 GetDefaultFolder(Outlook.OlDefaultFolders.olFolderContacts);

var contacts = from contact in folder.Items.OfType<Outlook.ContactItem>()
 where ... // search criteria, e.g. contact.Email1Address != null
 select contact;

We take advantage of LINQ's OfType query operator, which (a) wraps pre-2.0 collections and (b) filters the collection to
return only those objects of the desired type. Here's a query to collect all distinct email addresses from a user's Outlook
contacts:

var emails = (
 from contact in folder.Items.OfType<Outlook.ContactItem>()
 where contact.Email1Address != null
 select contact.Email1Address
)
 .Distinct();

Finally, given collections of email addresses from different folders or users, we can use LINQ to perform various set
operations over these collections:

var union = emails.Union(emails2);
var intersection = emails.Intersect(emails2);
var difference = emails.Except(emails2);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 6. Standard LINQ Query Operators
LINQ provides a wide-range of query operators, many of which have been demonstrated in the previous sections. The
purpose of this section is to succinctly summarize the complete set of LINQ query operators listed in Table 1. Recall that
you must import the System.Query namespace to use these operators.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.1.

6.1.1. Aggregate

The Aggregate operator applies a function over a sequence, with or without an initial seed value. The result can be post-
processed by another function is desired.

int[] ints = { 1, 2, 3, 4, 5, 6 };
var query = from ...;

int sum = ints.Aggregate((a, b) => a + b);
int product = ints.Aggregate(1, (a, b) => a * b);
int sump1 = ints.Aggregate(0, (a, b) => a + b, r => r+1);
var result = query.Aggregate(...);

Console.WriteLine(sum); // 21
Console.WriteLine(product); // 720
Console.WriteLine(sump1); // 22
Console.WriteLine(result);

The sequence can be of any type T.

See also: Average, Count, LongCount, Max, Min, and Sum.

Table 1. List of Standard LINQ Query Operators
Operator Lazy? Description

Aggregate No Applies a function to a sequence, yielding a single value.

All No Applies a function to a sequence to see if all elements satisfy the function.

Any No Applies a function to a sequence to see if any element satisfies the function.

Average No Computes the average of a numeric sequence.

Cast Yes Yields the elements of a sequence type-casted to a given type.

Concat Yes Yields the concatenation of two sequences S1 and S2.

Contains No Searches a sequence to see if it contains a given element.

Count No Counts the number of elements in a sequence, yielding an integer result.

DefaultIfEmpty Yes Given a sequence S, yields S or a sequence with the default value if S is empty.

Distinct Yes Returns a sequence with duplicates eliminated.

ElementAt No Returns the ith element of a sequence.

ElementAtOrDefault No Returns the ith element of a sequence, or the default value if sequence is empty.

Empty Yes Yields an empty sequence.

EqualAll No Compares two sequences for equality.

Except Yes Given two sequences S1 and S2, returns the set difference S1 S2.

First No Returns the first element of a sequence.

FirstOrDefault No Returns the first element of a sequence, or the default value if sequence is empty.

Fold No Obsolete, see Aggregate.

GroupBy Yes Groups the elements of a sequence by key.

GroupJoin Yes Performs a join of two sequences S1 and S2, yielding a hierarchical result.

Intersect Yes Given two sequences S1 and S2, returns the set intersection of S1 and S2.

Join Yes Performs a traditional inner equijoin of two sequences S1 and S2.

Last No Returns the last element of a sequence.

LastOrDefault No Returns the last element of a sequence, or the default value if sequence is empty.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LongCount No Counts the number of elements in a sequence, yielding a long result.

Max No Returns the maximum of a sequence.

Min No Returns the minimum of a sequence.

OfType Yes Yields the elements of a sequence that match a given type.

OrderBy Yes Orders a sequence of elements by key into ascending order.

OrderByDescending Yes Orders a sequence of elements by key into descending order.

Range Yes Yields a sequence of integers in a given range.

Repeat Yes Yields a sequence of values by repeating a given value n times.

Reverse Yes Reverses the elements of a sequence.

Select Yes Applies a projection function to a sequence, yielding a new sequence.

SelectMany Yes Applies a projection function to flatten a sequence of sequences.

Single No Returns the lone element of a singleton sequence.

SingleOrDefault No Returns the lone element of a singleton sequence, or default if sequence is empty.

Skip Yes Skips the first n elements of a sequence, yielding the remaining elements.

SkipWhile Yes Given function F and sequence S, skips the initial elements of S where F is true.

Sum No Computes the sum of a numeric sequence.

Take Yes Yields the first n elements of a sequence.

TakeWhile Yes Given function F and sequence S, yields the initial elements of S where F is true.

ThenBy Yes Takes an ordered sequence and yields a secondary, ascending ordering.

TheyByDescending Yes Takes an ordered sequence and yields a secondary, descending ordering.

ToArray No Iterates across a sequence, capturing results in an array.

ToDictionary No Iterates across a sequence, capturing results in a Dictionary<K, V>.

ToList No Iterates across a sequence, capturing results in a List<T>.

ToLookup No Iterates across a sequence, capturing results in a Lookup<K, IEnumerable<V>>.

ToSequence Yes Casts a sequence as an IEnumerable sequence for use with standard query ops.

Union Yes Given two sequences S1 and S2, returns the set union of S1 and S2.

Where Yes Applies a Boolean function to a sequence, yielding a sub-sequence.

6.1.2. All

The All operator applies a function over a sequence, checking to see if all of the elements satisfy the function, i.e., cause
the function to return true. For example, do all the doctors have pager numbers? How about all the doctors retrieved by
a particular query?

Doctors doctors = new Doctors();

var query = from doc in doctors ...;

bool allHavePagers = doctors.All(doc => doc.PagerNumber > 0);
bool theseHavePagers = query.All(doc => doc.PagerNumber > 0);

See also: Any, Contains, and EqualAll.

6.1.3. Any

The Any operator applies a function over a sequence, checking to see if any of the elements satisfy the function, i.e.,
cause the function to return true. For example, are there any doctors living in Lake Forest?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

cause the function to return true. For example, are there any doctors living in Lake Forest?

Doctors doctors = new Doctors();

bool inLakeForest = doctors.Any(doc => doc.City == "Lake Forest");

The function is optional; if omitted, the Any operator returns true if the sequence contains at least one element.

var query = from doc in doctors
 where doc.City == "Lake Forest"
 select doc;

bool inLakeForest = query.Any();

See also: All, Contains, and EqualAll.

6.1.4. Average

The Average operator computes the average of a sequence of numeric values. The values are either the sequence itself,
or selected out of a sequence of objects.

int[] ints = { 1, 2, 3, 4, 5, 6 };
decimal?[] values = { 1, null, 2, null, 3, 4 };
Doctors doctors = new Doctors();
var query = from ...;

double avg1 = ints.Average();
decimal? avg2 = values.Average();
double avgYears = doctors.Average(doc =>
 DateTime.Now.Subtract(doc.StartDate).Days / 365.25);
var avg = query.Average();

Console.WriteLine(avg1); // 3.5
Console.WriteLine(avg2); // 2.5
Console.WriteLine(avgYears.ToString("0.00")); // 5.72
Console.WriteLine(avg);

The values can be of type int, int?, long, long?, decimal, decimal?, double, or double?. The resulting type is double,
double?, double, double?, decimal, decimal?, double, or double?, respectively.

See also: Aggregate, Count, LongCount, Max, Min, and Sum.

6.1.5. Cast

The Cast operator yields the elements of a sequence type-casted to a given type T.

System.Collections.ArrayList al = new System.Collections.ArrayList();
al.Add("abc");
al.Add("def");
al.Add("ghi");

var strings = al.Cast<string>();

foreach(string s in strings) // "abc", "def", "ghi"
 Console.WriteLine(s);

The Cast operator is commonly used to wrap pre-2.0 collections (such as ArrayLists) for use with LINQ. Here's a more
interesting example of searching the Windows event log for all events logged by an application:

var entries = from entry in applog.Entries.Cast<System.Diagnostics.EventLogEntry>()
 where entry.Source == "ApplicationName"
 orderby entry.TimeWritten descending
 select entry;

See also: OfType.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See also: OfType.

6.1.6. Concat

The Concat operator concatenates two sequences S1 and S2, yielding the elements of S1 followed by the elements of S2.

int[] ints1 = { 1, 2, 3 };
int[] ints2 = { 4, 5, 6 };
var query1 = from ...;
var query2 = from ...;

var all = ints1.Concat(ints2);
var results = query1.Concat(query2);

foreach(var x in all) // 1, 2, 3, 4, 5, 6
 Console.WriteLine(x);
foreach(var r in results)
 Console.WriteLine(r);

The sequences may contain elements of any type T. This element type T must be the same at compile-time (e.g. object),
but may differ at run-time:

object[] objects1 = { "abc", "def" };
object[] objects2 = { 1, 2, 3 };

var result = objects1.Concat(objects2);

See also: Union.

6.1.7. Contains

The Contains operator searches a sequence to see if it contains a given element. For example, is there a doctor with
initials "gg" still working at University Hospital? One approach is to create a Doctor object with the initials we are looking
for, and see if the collection contains this object:

Doctors doctors = new Doctors();

bool docExists = doctors.Contains(new Doctor("gg", ...));

This assumes the Doctor class defines Equals based on a doctor's initials. Another approach (without this assumption) is
to select all the initials and then see if the result contains the string "gg":

var query = from doc in doctors
 select doc.Initials

bool docExists = query.Contains("gg");

See also: All, Any, EqualAll, and Where.

6.1.8. Count

The Count operator counts the number of elements in a sequence, yielding an integer result. The elements are either the
sequence itself, or selected from a sequence of objects.

int[] ints = { 1, 2, 3, 4, 5, 6 };
decimal?[] values = { 1, null, 2, null, 3 };
IEnumerable<Doctor> doctors = new Doctors();
var query = from ...;

int count1 = ints.Count();
int count2 = values.Count();
int count3 = doctors.Count();
int count4 = doctors.Count(doc => doc.City == "Chicago");
int count = query.Count();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

int count = query.Count();

Console.WriteLine(count1); // 6
Console.WriteLine(count2); // 5
Console.WriteLine(count3); // 12
Console.WriteLine(count4); // 5
Console.WriteLine(count);

The sequence can be of any type T.

See also: Aggregate, Average, LongCount, Max, Min, and Sum.

6.1.9. DefaultIfEmpty

Given a non-empty sequence, the DefaultIfEmpty operator yields this same sequence. If the sequence is empty,
DefaultIfEmpty yields a sequence containing a single default value.

int[] ints1 = { 1, 2, 3, 4, 5, 6 };
int[] ints2 = { };
var query = from ...;

var ints = ints1.DefaultIfEmpty();
var zero = ints2.DefaultIfEmpty();
var minus1 = ints2.DefaultIfEmpty(-1);
var result = query.DefaultIfEmpty();

foreach(int x in ints) // 1, 2, 3, 4, 5, 6
 Console.WriteLine(x);
foreach(int x in zero) // 0
 Console.WriteLine(x);
foreach(int x in minus1) // -1
 Console.WriteLine(x);
foreach(var r in result)
 Console.WriteLine(r);

The sequence can be of any type T; if the sequence is empty and a default value is not provided, the default value for
type T is used.

See also: FirstOrDefault, GroupJoin, LastOrDefault, SingleOrDefault, and ElementAtOrDefault.

6.1.10. Distinct

Given a sequence of elements, the Distinct operator returns the same sequence without duplicates.

int[] ints = { 1, 2, 2, 3, 2, 3, 4 };
var query = from ...;

var distinctInts = ints.Distinct();
var distinctResults = query.Distinct();

foreach(var x in distinctInts) // 1, 2, 3, 4
 Console.WriteLine(x);
foreach(var r in distinctResults)
 Console.WriteLine(r);

The sequence can be of any type T.

See also: Except, Intersect, and Union.

6.1.11. ElementAt

The ElementAt operator returns the ith element of a sequence; the sequence must be non-empty, and i is 0-based.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The ElementAt operator returns the ith element of a sequence; the sequence must be non-empty, and i is 0-based.

int[] ints = { 1, 2, 3, 4, 5, 6 };
Doctors doctors = new Doctors();
var query = from ...;

int third = ints.ElementAt(2);
Doctor doctor = doctors.ElementAt(2);
var result = query.ElementAt(i);

Console.WriteLine(third); // 3
Console.WriteLine(doctor.Initials); // 3rd doc in Chicago: ch
Console.WriteLine(result);

The sequence can be of any type T.

See also: ElementAtOrDefault.

6.1.12. ElementAtOrDefault

The ElementAtOrDefault operator returns the ith element of a possibly empty sequence; i is 0-based.

int[] ints1 = { 1, 2, 3, 4, 5, 6 };
int[] ints2 = { };
Doctors doctors = new Doctors();
var query = from ...;

int x1 = ints1.ElementAtOrDefault(2);
int x2 = ints1.ElementAtOrDefault(6);
int x3 = ints2.ElementAtOrDefault(0);
Doctor doc1 = doctors.ElementAtOrDefault(2);
Doctor doc2 = doctors.ElementAtOrDefault(-1);
var result = query.ElementAtOrDefault(i);

Console.WriteLine(x1); // 3
Console.WriteLine(x2); // 0
Console.WriteLine(x3); // 0
Console.WriteLine(doc1 == null); // False
Console.WriteLine(doc2 == null); // True
Console.WriteLine(result);

The sequence can be of any type T; if the sequence is empty or i is invalid, the default value for type T is returned.

See also: ElementAt.

6.1.13. Empty

The Empty operator yields an empty sequence of the given type.

var emptyDocs = System.Query.Sequence.Empty<Doctor>();

foreach(var doc in emptyDocs) // <none>
 Console.WriteLine(doc);

This operator is helpful when you need an empty sequence for another operator or a method argument.

See also: Range and Repeat.

6.1.14. EqualAll

The EqualAll operator compares two sequences for equality. Two sequences are equal if they are of the same length, and
contain the same sequence of elements.

var query1 = from ...;
var query2 = from ...;

bool equal = query1.EqualAll(query2);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

bool equal = query1.EqualAll(query2);

The sequences may contain elements of any type T. This element type T must be the same at compile-time (e.g. object),
but may differ at run-time:

object[] objects1 = { "abc", "def" };
object[] objects2 = { 1, 2, 3 };

bool isFalse = objects1.EqualAll(objects2); // false

The result in such cases is false.

See also: All, Any, and Contains.

6.1.15. Except

Given two sequences of elements S1 and S2, the Except operator returns the distinct elements of S1 not in S2. In other
words, Except computes the set difference S1 S2.

int[] intsS1 = { 1, 2, 2, 3, 2, 3, 4, 5, 6 };
int[] intsS2 = { 1, 3, 6, 7 };
var query1 = from ...;
var query2 = from ...;

var diffInts = intsS1.Except(intsS2);
var diffResults = query1.Except(query2);

foreach(var x in diffInts) // 2, 4, 5
 Console.WriteLine(x);
foreach(var r in diffResults)
 Console.WriteLine(r);

The sequences may contain elements of any type T. This element type T must be the same at compile-time (e.g. object),
but may differ at run-time:

object[] objects1 = { "abc", "def" };
object[] objects2 = { 1, 2, 3 };

var result = objects1.Except(objects2);

See also: Distinct, Intersect, and Union.

6.1.16. First

The First operator returns the first element of a sequence; the sequence must be non-empty.

int[] ints = { 1, 2, 3, 4, 5, 6 };
Doctors doctors = new Doctors();
var query = from ...;

int first = ints.First();
Doctor doctor = doctors.First(doc => doc.City == "Chicago");
var result = query.First();

Console.WriteLine(first); // 1
Console.WriteLine(doctor.Initials); // mbl
Console.WriteLine(result);

The sequence can be of any type T.

See also: FirstOrDefault.

6.1.17. FirstOrDefault

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The FirstOrDefault operator returns the first element of a possibly empty sequence.

int[] ints1 = { 1, 2, 3, 4, 5, 6 };
int[] ints2 = { };
Doctors doctors = new Doctors();
var query = from ...;

int x1 = ints1.FirstOrDefault();
int x2 = ints2.FirstOrDefault();
Doctor doc1 = doctors.FirstOrDefault(doc => doc.City == "Chicago");
Doctor doc2 = doctors.FirstOrDefault(doc => doc.City == "Planet Mars");
var result = query.FirstOrDefault();

Console.WriteLine(x1); // 1
Console.WriteLine(x2); // 0
Console.WriteLine(doc1 == null); // False
Console.WriteLine(doc2 == null); // True
Console.WriteLine(result);

The sequence can be of any type T; if the sequence is empty, the default value for type T is returned.

See also: First.

6.1.18. Fold

The Fold operator is considered obsolete, see Aggregate.

6.1.19. GroupBy

The GroupBy operator groups the elements of a sequence by key; the keys are yielded by a function applied to each
element. Each resulting group is an IEnumerable sequence of elements S with a key K.

Doctors doctors = new Doctors();

var groups = doctors.GroupBy(doc => doc.City);

foreach(var group in groups)
{
 Console.WriteLine("{0}:", group.Key); // Chicago, Evanston, ...
 foreach(var doc in group) // {mbl,jl,...}, {ch,cm,...}, ...
 Console.WriteLine(" {0}", doc.Initials);
}

A second version allows you to project exactly what data to store in the group, such as only the doctor's initials:

Doctors doctors = new Doctors();

var groups2 = doctors.GroupBy(doc => doc.City, doc => doc.Initials);

foreach(var group in groups2)
{
 Console.WriteLine("{0}:", group.Key); // Chicago, Evanston, ...
 foreach(var initials in group) // {mbl,jl,...}, {ch,cm,...}, ...
 Console.WriteLine(" {0}", initials);
}

Additional versions allow you to provide a comparer of type IEqualityComparer for comparing keys.

Use of the group by clause in a query expression translates into application of the GroupBy operator. For example, the
following statements are equivalent:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

following statements are equivalent:

var groups = doctors.GroupBy(doc => doc.City);
var groups = from doc in doctors
 group doc by doc.City into g
 select g;

var groups2 = doctors.GroupBy(doc => doc.City, doc => doc.Initials);
var groups2 = from doc in doctors
 group doc.Initials by doc.City into g
 select g;

See also: OrderBy.

6.1.20. GroupJoin

The GroupJoin operator performs a join of two sequences S1 and S2, based on the keys selected from S1's and S2's
elements. The keys are yielded by functions applied to each element; a third function determines the data projected by
the join.

Unlike an inner join which yields essentially a table of joined records, the result of a GroupJoin is hierarchical. For each
element in S1, there's a possibly empty sub-sequence of matching elements from S2. For example, the following query
joins Doctors and Calls via the doctors' initials to determine which doctors are working on what dates:

DataSets.SchedulingDocs ds = FillDataSet();

var working = ds.Doctors.GroupJoin(ds.Calls,
 doc => doc.Initials,
 call => call.Initials,
 (doc,call) => new { doc.Initials, Calls=call }
);

foreach(var record in working)
{
 Console.WriteLine("{0}:", record.Initials);
 foreach(var call in record.Calls)
 Console.WriteLine(" {0}", call.DateOfCall);
}

Here's the output:

ay:
 11/2/2006 12:00:00 AM
bb:
ch:
cm:
jl:
 10/2/2006 12:00:00 AM
 11/1/2006 12:00:00 AM
.
.
.

Use of the join into clause in a query expression translates into application of the GroupJoin operator. For example, the
following statements are equivalent:

var working = ds.Doctors.GroupJoin(ds.Calls,
 doc => doc.Initials,
 call => call.Initials,
 (doc,call) => new { doc.Initials, Calls=call }
);

var working = from doc in ds.Doctors
 join call in ds.Calls
 on doc.Initials equals call.Initials
 into j
 select new { doc.Initials, Calls = j };

To perform a traditional left outer join (and thus flatten the result into a table), use the DefaultIfEmpty operator as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To perform a traditional left outer join (and thus flatten the result into a table), use the DefaultIfEmpty operator as follows:

var working = from doc in ds.Doctors
 join call in ds.Calls
 on doc.Initials equals call.Initials
 into j
 from r in j.DefaultIfEmpty()
 select new { doc.Initials, Call = r };

foreach(var record in working)
 Console.WriteLine("{0}: {1}",
 record.Initials,
 (record.Call == null) ? "" : record.Call.DateOfCall.ToString());

See also: Join.

6.1.21. Intersect

Given two sequences of elements S1 and S2, the Intersect operator returns the distinct elements of S1 that also appear
in S2. In other words, Intersect computes the set intersection of S1 and S2.

int[] intsS1 = { 1, 2, 2, 3, 2, 3, 4, 5, 6, 8 };
int[] intsS2 = { 6, 1, 3, 6, 7 };
var query1 = from ...;
var query2 = from ...;

var commonInts = intsS1.Intersect(intsS2);
var commonResults = query1.Intersect(query2);

foreach(var x in commonInts) // 1, 3, 6
 Console.WriteLine(x);
foreach(var r in commonResults)
 Console.WriteLine(r);

The sequences may contain elements of any type T. This element type T must be the same at compile-time (e.g. object),
but may differ at run-time:

object[] objects1 = { "abc", "def" };
object[] objects2 = { 1, 2, 3 };

var result = objects1.Intersect(objects2);

See also: Distinct, Except, and Union.

6.1.22. Join

The Join operator performs an inner equijoin of two sequences S1 and S2, based on the keys selected from S1's and
S2's elements. The keys are yielded by functions applied to each element; a third function determines the data
projected by the join. For example, the following query joins Doctors and Calls via the doctors' initials to determine which
doctors are working on what dates:

DataSets.SchedulingDocs ds = FillDataSet();

var working = ds.Doctors.Join(ds.Calls,
 doc => doc.Initials,
 call => call.Initials,
 (doc,call) => new { doc.Initials, call.DateOfCall }
);

foreach(var record in working)
 Console.WriteLine(record);

The query yields pairs of the form (Initials, DateOfCall), created from the joined Doctor and Call elements. Here's the output:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The query yields pairs of the form (Initials, DateOfCall), created from the joined Doctor and Call elements. Here's the output:

{Initials=ay, DateOfCall=11/2/2006 12:00:00 AM}
{Initials=jl, DateOfCall=10/2/2006 12:00:00 AM}
{Initials=jl, DateOfCall=11/1/2006 12:00:00 AM}
.
.
.

Use of the join clause in a query expression translates into application of the Join operator. For example, the following
statements are equivalent:

var working = ds.Doctors.Join(ds.Calls,
 doc => doc.Initials,
 call => call.Initials,
 (doc,call) => new { doc.Initials, call.DateOfCall }
);

var working = from doc in ds.Doctors
 join call in ds.Calls
 on doc.Initials equals call.Initials
 select new { doc.Initials, call.DateOfCall };

See also: GroupJoin.

6.1.23. Last

The Last operator returns the last element of a sequence; the sequence must be non-empty.

int[] ints = { 1, 2, 3, 4, 5, 6 };
Doctors doctors = new Doctors();
var query = from ...;

int last = ints.Last();
Doctor doctor = doctors.Last(doc => doc.City == "Chicago");
var result = query.Last();

Console.WriteLine(last); // 6
Console.WriteLine(doctor.Initials); // tm
Console.WriteLine(result);

The sequence can be of any type T.

See also: LastOrDefault.

6.1.24. LastOrDefault

The LastOrDefault operator returns the last element of a possibly empty sequence.

int[] ints1 = { 1, 2, 3, 4, 5, 6 };
int[] ints2 = { };
Doctors doctors = new Doctors();
var query = from ...;

int x1 = ints1.LastOrDefault();
int x2 = ints2.LastOrDefault();
Doctor doc1 = doctors.LastOrDefault(doc => doc.City == "Chicago");
Doctor doc2 = doctors.LastOrDefault(doc => doc.City == "Planet Mars");
var result = query.LastOrDefault();

Console.WriteLine(x1); // 6
Console.WriteLine(x2); // 0
Console.WriteLine(doc1 == null); // False
Console.WriteLine(doc2 == null); // True
Console.WriteLine(result);

The sequence can be of any type T; if the sequence is empty, the default value for type T is returned.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The sequence can be of any type T; if the sequence is empty, the default value for type T is returned.

See also: Last.

6.1.25. LongCount

The LongCount operator counts the number of elements in a sequence, yielding a long result. The elements are either the
sequence itself, or selected from a sequence of objects.

int[] ints = { 1, 2, 3, 4, 5, 6 };
decimal?[] values = { 1, null, 2, null, 3 };
IEnumerable<Doctor> doctors = new Doctors();
var query = from ...;

long count1 = ints.LongCount();
long count2 = values.LongCount();
long count3 = doctors.LongCount();
long count4 = doctors.LongCount(doc => doc.City == "Chicago");
long count = query.LongCount();

Console.WriteLine(count1); // 6
Console.WriteLine(count2); // 5
Console.WriteLine(count3); // 12
Console.WriteLine(count4); // 5
Console.WriteLine(count);

The sequence can be of any type T.

See also: Aggregate, Average, Count, Max, Min, and Sum.

6.1.26. Max

The Max operator finds the maximum of a sequence of values. The values are either the sequence itself, or selected out
of a sequence of objects, and must implement IComparable for comparison purposes.

int[] ints = { 1, 2, 3, 6, 5, 4 };
decimal?[] values = { 1, null, 4, null, 3, 2 };
Doctors doctors = new Doctors();
var query = from ...;

int max1 = ints.Max();
decimal? max2 = values.Max();
string maxInitials = doctors.Max(doc => doc.Initials);
double maxYears = doctors.Max(doc =>
 DateTime.Now.Subtract(doc.StartDate).Days / 365.25);
var max = query.Max();

Console.WriteLine(max1); // 6
Console.WriteLine(max2); // 4
Console.WriteLine(maxInitials); // "vj"
Console.WriteLine(maxYears.ToString("0.00")); // 11.43
Console.WriteLine(max);

The sequence can be of any type T; the resulting type is the same.

See also: Aggregate, Average, Count, LongCount, Min, and Sum.

6.1.27. Min

The Min operator finds the minimum of a sequence of values. The values are either the sequence itself, or selected out
of a sequence of objects, and must implement IComparable for comparison purposes.

int[] ints = { 6, 2, 3, 1, 5, 4 };
decimal?[] values = { 4, null, 1, null, 3, 2 };
Doctors doctors = new Doctors();
var query = from ...;

int min1 = ints.Min();
decimal? min2 = values.Min();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

decimal? min2 = values.Min();
string minInitials = doctors.Min(doc => doc.Initials);
double minYears = doctors.Min(doc =>
 DateTime.Now.Subtract(doc.StartDate).Days / 365.25);
var min = query.Min();

Console.WriteLine(min1); // 1
Console.WriteLine(min2); // 1
Console.WriteLine(minInitials); // "ay"
Console.WriteLine(minYears.ToString("0.00")); // 0.67
Console.WriteLine(min);

The sequence can be of any type T; the resulting type is the same.

See also: Aggregate, Average, Count, LongCount, Max, and Sum.

6.1.28. OfType

The OfType operator yields the elements of a sequence that match a given type T. In other words, OfType filters a
sequence by type.

 System.Collections.ArrayList al = new System.Collections.ArrayList();
 al.Add(1);
 al.Add("abc");
 al.Add(2);
 al.Add("def");
 al.Add(3);

 var strings = al.OfType<string>();

 foreach(string s in strings) // "abc", "def"
 Console.WriteLine(s);

The OfType operator is commonly used to (a) wrap pre-2.0 collections (such as ArrayLists) for use with LINQ and (b) filter
mixed collections. Here's a more interesting example of searching a user's Outlook contacts with LINQ:

Outlook.MAPIFolder folder = this.ActiveExplorer().Session.
 GetDefaultFolder(Outlook.OlDefaultFolders.olFolderContacts);

var contacts = from contact in folder.Items.OfType<Outlook.ContactItem>()
 where .
 . // search criteria, e.g. contact.Email1Address != null
 .
 select contact;

See also: Cast.

6.1.29. OrderBy

The OrderBy operator orders a sequence of elements into ascending order; the keys used to order the sequence are
yielded by a function applied to each element.

int[] ints = {3, 1, 6, 4, 2, 5};
Doctors doctors = new Doctors();

var sorted = ints.OrderBy(x => x);
var docs = doctors.OrderBy(doc => doc.Initials);

foreach(var x in sorted) // 1, 2, 3, 4, 5, 6
 Console.WriteLine(x);
foreach(var doc in docs) // ay, bb, ..., vj
 Console.WriteLine(doc.Initials);

A second version allows you to provide a comparer of type IComparer for comparing keys and thus controlling the
ordering, e.g., when you want to compare strings in a case-insensitive manner:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ordering, e.g., when you want to compare strings in a case-insensitive manner:

var docs = doctors.OrderBy(doc => doc.Initials,
 StringComparer.CurrentCultureIgnoreCase);

Use of the orderby clause in a query expression translates into application of the OrderBy operator. For example, the
following statements are equivalent:

var docs = doctors.OrderBy(doc => doc.Initials);

var docs = from doc in doctors
 orderby doc.Initials
 select doc;

See also: OrderByDescending, ThenBy, and ThenByDescending.

6.1.30. OrderByDescending

The OrderByDescending operator orders a sequence of elements into descending order; the keys used to order the
sequence are yielded by a function applied to each element.

int[] ints = {3, 1, 6, 4, 2, 5};
Doctors doctors = new Doctors();

var sorted = ints.OrderByDescending(x => x);
var docs = doctors.OrderByDescending(doc => doc.Initials);

foreach(var x in sorted) // 6, 5, 4, 3, 2, 1
 Console.WriteLine(x);
foreach(var doc in docs) // vj, tm, ..., ay
 Console.WriteLine(doc.Initials);

A second version allows you to provide a comparer of type IComparer for comparing keys and thus controlling the
ordering, e.g., when you want to compare strings in a case-insensitive manner:

var docs = doctors.OrderByDescending(doc => doc.Initials,
 StringComparer.CurrentCultureIgnoreCase);

Use of the orderby clause in a query expression with the descending keyword translates into application of the
OrderByDescending operator. For example, the following statements are equivalent:

var docs = doctors.OrderByDescending(doc => doc.Initials);

var docs = from doc in doctors
 orderby doc.Initials descending
 select doc;

See also: OrderBy, ThenBy, and ThenByDescending.

6.1.31. Range

The Range operator yields a sequence of integers in the given range, inclusive.

var oneToTen = System.Query.Sequence.Range(1, 10);

foreach(var x in oneToTen) // 1, 2, 3, ..., 10
 Console.WriteLine(x);

See also: Empty and Repeat.

6.1.32. Repeat

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Repeat operator yields a sequence of values by repeating a given value n times.

var zeros = System.Query.Sequence.Repeat(0, 8);
var strings = System.Query.Sequence.Repeat("", n);

Console.WriteLine(zeros.Count()); // 8
Console.WriteLine(strings.Count()); // n

foreach(var zero in zeros) // 0, 0, ..., 0
 Console.WriteLine(zero);

See also: Empty and Range.

6.1.33. Reverse

The Reverse operator reverses the elements of a sequence.

int[] ints = {1, 2, 3, 4, 5, 6};
Doctors doctors = new Doctors();

var revInts = ints.Reverse();
var docs = from doc in doctors
 orderby doc.Initials
 select doc;
var revDocs = docs.Reverse();

foreach(var x in revInts) // 6, 5, 4, 3, 2, 1
 Console.WriteLine(x);
foreach(var doc in revDocs) // vj, tm, ..., ay
 Console.WriteLine(doc.Initials);

See also: OrderBy and OrderByDescending.

6.1.34. Select

The Select operator applies a projection function over a sequence of elements, yielding a sequence of possibly new
elements.

int[] ints = {1, 2, 3, 4, 5, 6};
Doctors doctors = new Doctors();

var sameInts = ints.Select(x => x);
var chicago = doctors.Where(d => d.City == "Chicago").Select(d => d.Initials);
var names = doctors.Select(d => new {LN=d.FamilyLastName, FN=d.GivenFirstName});

foreach(var x in sameInts) // 1, 2, 3, 4, 5, 6
 Console.WriteLine(x);
foreach(var d in chicago) // mbl, jl, kl, py, tm
 Console.WriteLine(d);
foreach(var n in names) // {LN=Larsen, FN=Marybeth}, ...
 Console.WriteLine(n);

Use of the select clause in a query expression translates into application of the Select operator (except in trivial cases
where the Select operator can be optimized away). For example, the following statements are equivalent:

var chicago = doctors.Where(d => d.City == "Chicago").Select(d => d.Initials);

var chicago = from d in doctors
 where d.City == "Chicago"
 select d.Initials;

A second version of the Select operator provides an element's 0-based index in the sequence along with the element
itself, for example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

itself, for example:

var sumLast3 = ints.Select((x,index) => (index >= ints.Length-3) ? x : 0).Sum();

Console.WriteLine(sumLast3); // 15

See also: SelectMany and Where.

6.1.35. SelectMany

The SelectMany operator applies a projection function over a sequence of sequences, yielding a "flattened" sequence of
possibly new elements. For example, turning an array of arrays into an array:

List<int[]> list = new List<int[]>();
int[] ints123 = {1, 2, 3};
int[] ints456 = {4, 5, 6};

list.Add(ints123);
list.Add(ints456);

var flat = list.SelectMany(x => x);

foreach (var x in list) // Int32[], Int32[]
 Console.WriteLine(x);
foreach (var x in flat) // 1, 2, 3, 4, 5, 6
 Console.WriteLine(x);

The SelectMany operator is commonly used to flatten hierarchical data. For example, the following query yields the list of
doctors working in October 2006, with sub-lists of the calls each is working:

DataSets.SchedulingDocs ds = FillDataSet();

var oct2006 = from d in ds.Doctors
 join c in ds.Calls
 on d.Initials equals c.Initials
 where c.DateOfCall >= new DateTime(2006, 10, 1) &&
 c.DateOfCall <= new DateTime(2006, 10, 31)
 group c by d.Initials into g
 select g;

foreach (var group in oct2006) // jl: 1, mbl: 2
{
 Console.WriteLine("{0}: {1}", group.Key, group.Count());
 foreach (var call in group)
 Console.WriteLine(call.DateOfCall);
}

To flatten the hierarchy into just the list of calls:

var calls = oct2006.SelectMany(call => call);

foreach (var c in calls)
 Console.WriteLine(c.DateOfCall);

Use of the select clause in a query expression on all but the initial from clause translates into application of the
SelectMany operator. For example, here's another way to flatten the list of calls for doctors working in October 2006:

var calls = from d in ds.Doctors
 from c in ds.Calls
 where
 d.Initials == c.Initials &&
 c.DateOfCall >= new DateTime(2006, 10, 1) &&
 c.DateOfCall <= new DateTime(2006, 10, 31)
 select c;

This is translated into the following application of the SelectMany operator:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This is translated into the following application of the SelectMany operator:

var calls = ds.Doctors.SelectMany(
 d => ds.Calls.Where(c => d.Initials == c.Initials &&
 c.DateOfCall >= new DateTime(2006, 10, 1) &&
 c.DateOfCall <= new DateTime(2006, 10, 31)));

A second version of the SelectMany operator provides an element's 0-based index in the outer sequence along with the
element itself.

See also: Select and Where.

6.1.36. Single

The Single operator returns the lone element of a sequence; the sequence must contain exactly one element.

int[] ints = { 3 };
Doctors doctors = new Doctors();
var query = from ...;

int lone = ints.Single();
Doctor doctor = doctors.Single(doc => doc.Initials == "mbl");
var result = query.Single();

Console.WriteLine(lone); // 3
Console.WriteLine(doctor.PagerNumber); // 52248
Console.WriteLine(result);

The sequence can be of any type T.

See also: SingleOrDefault.

6.1.37. SingleOrDefault

The SingleOrDefault operator returns the lone element of a sequence; the sequence must be empty or contain exactly one
element.

int[] ints1 = { 3 };
int[] ints2 = { };
Doctors doctors = new Doctors();
var query = from ...;

int x1 = ints1.SingleOrDefault();
int x2 = ints2.SingleOrDefault();
Doctor doc1 = doctors.SingleOrDefault(doc => doc.Initials == "mbl");
Doctor doc2 = doctors.SingleOrDefault(doc => doc.Initials == "AAA");
var result = query.SingleOrDefault();

Console.WriteLine(x1); // 3
Console.WriteLine(x2); // 0
Console.WriteLine(doc1 == null); // False
Console.WriteLine(doc2 == null); // True
Console.WriteLine(result);

The sequence can be of any type T; if the sequence is empty, the default value for type T is returned.

See also: Single.

6.1.38. Skip

The Skip operator skips the first n elements of a sequence, yielding the remaining elements. If n <= 0 the result is the
sequence itself; if n >= sequence's length the result is an empty sequence.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

sequence itself; if n >= sequence's length the result is an empty sequence.

int[] ints = { 1, 2, 3, 4, 5, 6 };
var query = from ...;

var last3 = ints.Skip(3);
var bottom10 = query.Skip(query.Count() - 10);

foreach(var x in last3) // 4, 5, 6
 Console.WriteLine(x);
foreach(var r in bottom10)
 Console.WriteLine(r);

The sequence can be of any type T.

See also: Take.

6.1.39. SkipWhile

Given a function F and a sequence S, the SkipWhile operator skips the first n elements of S where F returns true, yielding
the remaining elements. Two versions of F are supported: accepting an element, or accepting an element along with its
0-based index in the sequence.

int[] ints = { 1, 2, 3, 4, 5, 6 };
var query = from ...;

var all = ints.SkipWhile(x => false);
var none = ints.SkipWhile(x => true);
var last3 = ints.SkipWhile((x,i) => i < 3);
var lastN = query.SkipWhile(result => ...);

foreach(var x in all) // 1, 2, 3, 4, 5, 6
 Console.WriteLine(x);
foreach(var x in none) // <none>
 Console.WriteLine(x);
foreach(var x in last3) // 4, 5, 6
 Console.WriteLine(x);
foreach(var r in lastN)
 Console.WriteLine(r);

The sequence can be of any type T.

See also: TakeWhile and Where.

6.1.40. Sum

The Sum operator computes the sum of a sequence of numeric values. The values are either the sequence itself or
selected out of a sequence of objects.

int[] ints = { 1, 2, 3, 4, 5, 6 };
decimal?[] values = { 1, null, 2, null, 3, 4 };
Doctors doctors = new Doctors();
var query = from ...;

int sum1 = ints.Sum();
decimal? sum2 = values.Sum();
double sumYears = doctors.Sum(doc =>
 DateTime.Now.Subtract(doc.StartDate).Days / 365.25);
var sum = query.Sum();

Console.WriteLine(sum1); // 21
Console.WriteLine(sum2); // 10
Console.WriteLine(sumYears.ToString("0.00")); // 68.61
Console.WriteLine(sum);

The values can be of type int, int?, long, long?, decimal, decimal?, double, or double?. The resulting type is the same.

See also: Aggregate, Average, Count, LongCount, Max, and Min.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See also: Aggregate, Average, Count, LongCount, Max, and Min.

6.1.41. Take

The Take operator yields the first n elements of a sequence. If n <= 0 the result is an empty sequence; if n >=
sequence's length the result is the sequence itself.

int[] ints = { 1, 2, 3, 4, 5, 6 };
var query = from ...;

var first3 = ints.Take(3);
var top10 = query.Take(10);

foreach(var x in first3) // 1, 2, 3
 Console.WriteLine(x);
foreach(var r in top10)
 Console.WriteLine(r);

The sequence can be of any type T.

See also: Skip.

6.1.42. TakeWhile

Given a function F and a sequence S, the TakeWhile operator yields the first n elements of S where F returns true. Two
versions of F are supported: accepting an element, or accepting an element along with its 0-based index in the
sequence.

int[] ints = { 1, 2, 3, 4, 5, 6 };
var query = from ...;

var all = ints.TakeWhile(x => true);
var none = ints.TakeWhile(x => false);
var first3 = ints.TakeWhile((x,i) => i < 3);
var firstN = query.TakeWhile(result => ...);

foreach(var x in all) // 1, 2, 3, 4, 5, 6
 Console.WriteLine(x);
foreach(var x in none) // <none>
 Console.WriteLine(x);
foreach(var x in first3) // 1, 2, 3
 Console.WriteLine(x);
foreach(var r in firstN)
 Console.WriteLine(r);

The sequence can be of any type T.

See also: SkipWhile and Where.

6.1.43. ThenBy

The ThenBy operator takes an ordered sequence and yields a secondary, ascending ordering; the keys used for the
secondary ordering are yielded by a function applied to each element. Ordered sequences are typically produced by
OrderBy or OrderByDescending, but can also be produced by ThenBy and ThenByDescending to yield additional sub-orderings.

Doctors doctors = new Doctors();

var docs = doctors.OrderBy(doc => doc.City).ThenBy(doc => doc.Initials);

foreach(var doc in docs)
 Console.WriteLine("{0}: {1}", doc.City, doc.Initials);

A second version allows you to provide a comparer of type IComparer for comparing keys and thus controlling the
ordering, e.g., when you want to compare strings in a case-insensitive manner:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ordering, e.g., when you want to compare strings in a case-insensitive manner:

var docs = doctors.OrderBy(doc => doc.City)
 .ThenBy(doc => doc.Initials,
 StringComparer.CurrentCultureIgnoreCase);

Use of an orderby clause in a query expression with subsequent keys translates into application of the ThenBy operator.
For example, the following are equivalent:

var docs = doctors.OrderBy(doc => doc.City).ThenBy(doc => doc.Initials);

var docs = from doc in doctors
 orderby doc.City, doc.Initials
 select doc;

See also: OrderBy, OrderByDescending, and ThenByDescending.

6.1.44. ThenByDescending

The ThenByDescending operator takes an ordered sequence and yields a secondary, descending ordering; the keys used for
the secondary ordering are yielded by a function applied to each element. Ordered sequences are typically produced by
OrderBy or OrderByDescending, but can also be produced by ThenBy and ThenByDescending to yield additional sub-orderings.

Doctors doctors = new Doctors();

var docs = doctors.OrderBy(doc => doc.City).ThenByDescending(doc => doc.Initials);

foreach(var doc in docs)
 Console.WriteLine("{0}: {1}", doc.City, doc.Initials);

A second version allows you to provide a comparer of type IComparer for comparing keys and thus controlling the
ordering, e.g., when you want to compare strings in a case-insensitive manner:

var docs = doctors.OrderBy(doc => doc.City)
 .ThenByDescending(doc => doc.Initials,
 StringComparer.CurrentCultureIgnoreCase);

Use of an orderby clause in a query expression with subsequent keys and the descending keyword translates into
application of the ThenBy operator. For example, the following are equivalent:

var docs = doctors.OrderBy(doc => doc.City).ThenByDescending(doc => doc.Initials);

var docs = from doc in doctors
 orderby doc.City, doc.Initials descending
 select doc;

See also: OrderBy, OrderByDescending, and ThenBy.

6.1.45. ToArray

The ToArray operator iterates across a sequence of values, yielding an array containing these values. For example,
doctors living in Chicago:

Doctors doctors = new Doctors();

var query = from doc in doctors
 where doc.City == "Chicago"
 select doc;

Doctor[] chicago = query.ToArray();

Since queries are lazily evaluated, ToArray is commonly used to execute a query and capture the results in a simple data
structure.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

structure.

See also: ToDictionary, ToList, ToLookup, and ToSequence.

6.1.46. ToDictionary

The ToDictionary operator iterates across a sequence of values, yielding a Dictionary<K, V> of (key, value) pairs. Each
key must be unique, resulting in a one-to-one mapping of key to value. For example, storing doctors by their initials:

Doctors doctors = new Doctors();

var query = from doc in doctors
 where doc.City == "Chicago"
 select doc;

Dictionary<string, Doctor> chicago = query.ToDictionary(doc => doc.Initials);

foreach(var pair in chicago)
 Console.WriteLine("{0}: {1}", pair.Key, pair.Value.PagerNumber);

Since queries are lazily evaluated, ToDictionary is commonly used to execute a query and capture the results in a data
structure that supports efficient lookup by key. For example, finding a doctor via their initials:

Doctor mbl = chicago["mbl"];

Another version provides control over exactly what values are stored in the data structure, e.g., only the doctor's email
address:

Dictionary<string, string> emails = doctors.ToDictionary(doc => doc.Initials,
 doc => doc.EmailAddress);

Finally, additional versions of ToDictionary allow you to provide a comparer of type IEqualityComparer for comparing keys.

See also: ToArray, ToList, ToLookup, and ToSequence.

6.1.47. ToList

The ToList operator iterates across a sequence of values, yielding a List<T> containing these values. For example,
doctors living in Chicago:

Doctors doctors = new Doctors();

var query = from doc in doctors
 where doc.City == "Chicago"
 select doc;

List<Doctor> chicago = query.ToList();

Since queries are lazily evaluated, ToList is commonly used to execute a query and capture the results in a flexible data
structure.

See also: ToArray, ToDictionary, ToLookup, and ToSequence.

6.1.48. ToLookup

The ToLookup operator iterates across a sequence of values, yielding a Lookup<K, V> of (key, value) pairs. The keys do
not need to be unique; values with the same key form a collection under that key, resulting in a one-to-many mapping
of key to values. For example, grouping doctors by city:

Doctors doctors = new Doctors();

var query = from doc in doctors
 select doc;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 select doc;

Lookup<string, Doctor> cities = query.ToLookup(doc => doc.City);

foreach(var pair in cities)
{
 Console.WriteLine("{0}:", pair.Key); // city
 foreach(var doc in pair) // doctors in that city
 Console.WriteLine(" {0}", doc.Initials);
}

Since queries are lazily evaluated, ToLookup is commonly used to execute a query and capture the results in a data
structure that supports efficient lookup by key. For example, finding the doctors living in Chicago:

IEnumerable<Doctor> docs = cities["Chicago"];

Another version provides control over exactly what values are stored in the data structure, e.g., only the doctor's
initials:

Lookup<string, string> cities = doctors.ToLookup(doc => doc.City,
 doc => doc.Initials);

Finally, additional versions of ToLookup allow you to provide a comparer of type IEqualityComparer for comparing keys.

See also: ToArray, ToDictionary, ToList, and ToSequence.

6.1.49. ToSequence

The ToSequence operator casts a sequence as a sequence, thereby hiding any public members of the original sequencein
particular those that might conflict or compete with the standard query operators. Use this operator when you want to
gain access to the standard LINQ query operators.

For example, the following use of the Count query operator fails to compile:

Doctors doctors = new Doctors();
int count = doctors.Count(doc => doc.City == "Chicago"); // ERROR!

It fails because the Doctors class provides a conflicting Count property (inherited from List<T>). The ToSequence operator
provides a quick solution:

int count1 = doctors.Count;
int count2 = doctors.ToSequence().Count();
int count3 = doctors.ToSequence().Count(doc => doc.City == "Chicago");

Console.WriteLine(count1); // 12
Console.WriteLine(count2); // 12
Console.WriteLine(count3); // 5

See also: ToArray, ToDictionary, ToList, and ToLookup.

6.1.50. Union

Given two sequences of elements S1 and S2, the Union operator returns the distinct elements of S1, followed by the
distinct elements of S2 not in S1. In other words, Union computes the set union of S1 and S2.

int[] intsS1 = { 1, 2, 2, 3, 2, 3, 4, 6 };
int[] intsS2 = { 6, 1, 3, 5 };
var query1 = from ...;
var query2 = from ...;

var allInts = intsS1.Union(intsS2);
var allResults = query1.Union(query2);

foreach(var x in allInts) // 1, 2, 3, 4, 6, 5

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

foreach(var x in allInts) // 1, 2, 3, 4, 6, 5
 Console.WriteLine(x);
foreach(var r in allResults)
 Console.WriteLine(r);

The sequences may contain elements of any type T. This element type T must be the same at compile-time (e.g. object),
but may differ at run-time:

object[] objects1 = { "abc", "def" };
object[] objects2 = { 1, 2, 3 };

var result = objects1.Union(objects2);

See also: Distinct, Except, and Intersect.

6.1.51. Where

The Where operator applies a function to a sequence of elements, yielding a sub-sequence of these elements.

int[] ints = {1, 2, 3, 4, 5, 6};
Doctors doctors = new Doctors();

var even = ints.Where(x => x % 2 == 0);
var chicago = doctors.Where(doc => doc.City == "Chicago");

foreach(var x in even) // 2, 4, 6
 Console.WriteLine(x);
foreach(var doc in chicago) // mbl, jl, kl, py, tm
 Console.WriteLine(doc.Initials);

Use of the where clause in a query expression translates into application of the Where operator. For example, the
following statements are equivalent:

var chicago = doctors.Where(doc => doc.City == "Chicago");

var chicago = from doc in doctors
 where doc.City == "Chicago"
 select doc;

A second version of the Where operator provides an element's 0-based index in the sequence along with the element
itself, for example:

var last3 = ints.Where((x,index) => (index >= ints.Length-3) ? true : false);

foreach (var x in last3) // 4, 5, 6
 Console.WriteLine(x);

See also: Select.

NOTE

The application of LINQ is limited only by your imagination (and time). Here are a couple of the more
interesting LINQ extensions floating around on the Web:

1. BLinq is a tool that generates an ASP.NET web application from a database schema. The web site
supports the display, creation, and manipulation of the data in the database. LINQ to SQL is used
for all database access, making the generated code easier to understand and modify. For more
information see http://www.asp.net/sandbox/app_blinq.aspx?tabid=62.

2. LINQ to Amazon extends LINQ to support the querying of Amazon.com. See
http://weblogs.asp.net/fmarguerie/archive/2006/06/26/Introducing-Linq-to-Amazon.aspx
(http://weblogs.asp.net/fmarguerie/archive/2006/06/26/Introducing-Linq-to-Amazon.aspx:).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 7. Extending LINQ
In closing, let's touch on the extensibility of LINQ, another of its elegant design characteristics. As you have seen, LINQ
interoperates with a range of data sources, from object graphs to relational databases to XML documents. Let's look at
a quick example of how we go about extending one of our own classes to natively support LINQ.

Our running demo has focused on doctors working at the fictitious University Hospital. You've seen many queries
involving doctors, often using the Distinct operator to eliminate duplicates. For example, a query to yield the distinct
doctors working in October 2006:

DataSets.SchedulingDocs ds = FillDataSet();

var oct2006 = (
 from doc in ds.Doctors
 join call in ds.Calls
 on doc.Initials equals call.Initials
 where call.DateOfCall >= new DateTime(2006, 10, 1) &&
 call.DateOfCall <= new DateTime(2006, 10, 31)
 select doc
)
 .Distinct();

Since we designed the data model, we know that a doctor's initials are unique. We can take advantage of this
information to optimize the application of Distinct in the query above by providing our own implementation specific to our
DataSet:

using DS = DataSets.SchedulingDocs;

public static class DataSetsExtension
{

 public static IEnumerable<DS.DoctorsRow> Distinct(this
 IEnumerable<DS.DoctorsRow> src)
 {
 // optimize by using a hashtable with doctors' initials:
 System.Collections.Hashtable ht = new System.Collections.Hashtable();

 foreach(var doc in src) // for each doctor in the original sequence:
 {
 if (ht[doc.Initials] == null) // first time, so remember and return:
 {
 ht.Add(doc.Initials, doc.Initials);
 yield return doc;
 }
 else // we've yielded this doc already, so skip:
 continue;
 }
 }

}//class

For sequences of type DoctorsRowi.e., doctors in our DataSetthis implementation will be used in place of the standard
LINQ implementation of Distinct. Thus, for any query of the form,

var query = from doc in ds.Doctors
 .
 .
 select doc;

the application of Distinct will invoke our optimized implementation. That's it!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 8. For Further Information
For all things LINQ, start at http://msdn.microsoft.com/data/ref/linq/. This short video with Anders Hejlsberg and Luca
Bolognese provides a great overview of LINQ: http://channel9.msdn.com/showpost.aspx?postid=114680. Finally, keep
an eye out for LINQ-related webcasts by yours truly, which will be announced at the O'Reilly site for this Short Cut
(http://www.oreilly.com/catalog/language1) and on my blog (http://www.pluralsight.com/blogs/drjoe/).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 9. Acknowledgements
I'd like to thank the LINQ team at Microsoft for their insightful review of this Short Cut. The result is a much improved
document, which benefits us all.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 9. Acknowledgements
I'd like to thank the LINQ team at Microsoft for their insightful review of this Short Cut. The result is a much improved
document, which benefits us all.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.3. Anonymous Types and Object Initializers
Consider the previous query to find the names of all doctors living in Chicago:

var query = from d in doctors
 where d.City == "Chicago"
 select new { d.GivenFirstName, d.FamilyLastName };

The query interacts with complete Doctor objects from the doctors collection, but then projects only the doctor's first and
last name. Look carefully at the syntax. We see the new keyword without a class name, and { } instead of ():

new { d.GivenFirstName, d.FamilyLastName }

The new operator is in fact instantiating an object, but the class is an anonymous typethe C# 3.0 compiler is
automatically creating an appropriate class definition with a unique name and substituting that name. The only
constructor provided by the generated class is a default one (i.e. parameter-less), which favors serialization but
complicates the issue of object initialization. This is the motivation for the { }, which denote C# 3.0's new object
initializer syntax. Object initializers provide an inline mechanism for initializing objects. And in the case of anonymous
types, object initializers define both the data members of the type and their initial values.

For example, our earlier object instantiation is translated to

new <Projection>f__12 { d.GivenFirstName, d.FamilyLastName }

where the compiler has generated

public sealed class <Projection>f__12
{
 private string _GivenFirstName;
 private string _FamilyLastName;

 public string GivenFirstName
 { get { return _GivenFirstName; } set { _GivenFirstName = value; } }
 public string FamilyLastName
 { get { return _FamilyLastName; } set { _FamilyLastName = value; } }

 public <Projection>f__12() // default constructor: empty
 { }
 public override string ToString() // dumps contents of all fields
 { ... }
 public override bool Equals(object obj) // all fields must be Equals
 { ... }
 public override int GetHashCode()
 { ... }
}

As you can see, the names and types of the properties are inferred from the initializers. If you prefer, you can assign
your own names to the data members of the anonymous type. For example:

new { First = d.GivenFirstName, Last = d.FamilyLastName }

In this case the compiler generates:

public sealed class <Projection>f__13

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public sealed class <Projection>f__13
{
 private string _First;
 private string _Last;

 public string First
 { get { return _First; } set { _First = value; } }
 public string Last
 { get { return _Last; } set { _Last = value; } }
 .
 .
 .
}

Anonymous types are being added to C# 3.0 primarily to support of LINQ, allowing developers to work with just the
data they need in a familiar, object-oriented package. And courtesy of type inference, you can work with anonymous
types in a safe, type-checked manner.

A current limitation of anonymous types is that they cannot be accessed outside the defining assemblywhat name would
you use to refer to the class? In theory you could compile the code in a separate assembly and then use the generated
name, but this is an obvious bad practice (and currently prevented by the fact that the generated name is invalid at the
source code level). At issue is the design of N-tier applications, whose tiers communicate by passing data. If the data is
packaged as an anonymous type, how do the other tiers refer to it? Since they cannot, anonymous types should be
viewed as a technology for local use only.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 5. Applying LINQ
LINQ is really the centerpiece of a wide range of data access technologiesfrom datasets to databases, text files to XML
documents, objects to object graphs. The extensibility of LINQ is one of its most elegant features, allowing LINQ to
query just about any enumerable data source.

In this section we'll look at some of the more interesting ways you can use LINQ to query DataSets, databases, XML
documents, text files, and more.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 2. A Quick Introduction to LINQ
Anders Hejlsberg, the chief architect of the C# programming language, summarizes LINQ quite nicely:

"It's about turning query set operations and transforms into first-class concepts of the language"
(http://channel9.msdn.com/showpost.aspx?postid=114680)

Let's look at an example. Imagine we are writing a scheduling application for a hospital, where every night a doctor
must be on call to handle emergencies. The main objects we are interacting with are of type Doctor, stored in a Doctors
collection that inherits from List<Doctor>:

Doctors doctors = new Doctors();

Suppose we need a list of all the doctors living within the Chicago city limits. The obvious approach involves a simple
iteration across the collection:

List<Doctor> inchicago = new List<Doctor>();
foreach (Doctor d in doctors)
 if (d.City == "Chicago")
 inchicago.Add(d);

In LINQ, this search reduces to the following query, with the IDE providing keyword highlighting, IntelliSense, and
compile-time type checking:

var inchicago = from d in doctors where d.City == "Chicago" select d;

Need a list sorted by last name? How about:

var byname = from d in doctors
 where d.City == "Chicago"
 orderby d.FamilyLastName
 select d;

Also need a list sorted by pager number? In LINQ:

var bypager = from d in doctors
 where d.City == "Chicago"
 orderby d.PagerNumber
 select d;

Finally, suppose we need a count of how many doctors live in each city (not just Chicago, but every city for which at
least one doctor lives). With LINQ, we can compute this result by grouping the doctors by city, much like we would in
SQL:

var bycity = from d in doctors
 group d by d.City into g
 orderby g.Key
 select new { City = g.Key, Count = g.Count() };

These types of queries begin to reveal the real power of LINQ. The results are easily harvested by iterating across the
query, for example:

foreach (var result in bycity)
 System.Console.WriteLine("{0}: {1}", result.City, result.Count);

This yields the following output for our set of doctors:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This yields the following output for our set of doctors:

Chicago: 5
Elmhurst: 1
Evanston: 3
Oak Park: 2
Wilmette: 1

LINQ does not limit us to a read-only data access strategy. CRUD-like (create, read, update, and delete) operations are
easily performed using the traditional object-oriented approach. For example, have the Larsens moved to the suburbs?
If so, search for the appropriate Doctor objects and update the City:

var larsens = from d in doctors where d.FamilyLastName == "Larsen" select d;
foreach (var d in larsens)
 d.City = "Suburb";

Need to create a doctor? Add an instance of the Doctor class to the doctors collection. Need to delete a doctor? Query to
find the corresponding Doctor object, and remove from the collection. In short, while the LINQ API does not provide
direct support for CRUD, these operations are easily accomplished.

NOTE

Here are the definitions of the Doctors and Doctor classes we'll be using throughout this Short Cut.

public class Doctors : List<Doctor>
 {
 public Doctors() // constructor (fills list with Doctors):
 {
 this.Add(new Doctor("mbl", "Marybeth", "Larsen", 52248,
 "mlarsen@uhospital.edu", "1305 S. Michigan", "Chicago",
 new DateTime(1998, 12, 1)));
 this.Add(new Doctor("jl", "Joe", "Larsen", 52249,
 "jlarsen@uhospital.edu", "1305 S. Michigan", "Chicago",
 new DateTime(1999, 11, 1)));
 this.Add(new Doctor("ch", "Carl", "Harding", 53113,
 "charding@uhospital.edu", "2103 Oak St", "Evanston",
 new DateTime(2000, 10, 1)));
 .
 .
 .
 }
 }
 // continued
 public class Doctor : IComparable<Doctor>
// NOTE: IComparable NOT required by LINQ.
 {
 private string m_Initials, m_GivenFirstName, m_FamilyLastName;
 private int m_PagerNumber;
 private string m_EmailAddress, m_StreetAddress, m_City;
 private DateTime m_StartDate;

 public string Initials
 { get { return m_Initials; } set { m_Initials = value; } }
 public string GivenFirstName
 { get { return m_GivenFirstName; } set { m_GivenFirstName = value; } }
 public string FamilyLastName
 { get { return m_FamilyLastName; } set { m_FamilyLastName = value; } }
 public int PagerNumber
 { get { return m_PagerNumber; } set { m_PagerNumber = value; } }
 public string EmailAddress
 { get { return m_EmailAddress; } set { m_EmailAddress = value; } }
 public string StreetAddress
 { get { return m_StreetAddress; } set { m_StreetAddress = value; } }
 public string City
 { get { return m_City; } set { m_City = value; } }
 public DateTime StartDate
 { get { return m_StartDate; } set { m_StartDate = value; } }

 public Doctor(string initials, string givenFirstName, string familyLastName,
 int pagerNumber, string emailAddress, string streetAddress,
string city,
 DateTime startDate)
 {
 this.m_Initials = initials;
 this.m_GivenFirstName = givenFirstName;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 this.m_GivenFirstName = givenFirstName;
 this.m_FamilyLastName = familyLastName;
 this.m_PagerNumber = pagerNumber;
 this.m_EmailAddress = emailAddress;
 this.m_StreetAddress = streetAddress;
 this.m_City = city;
 this.m_StartDate = startDate;
 }

 public override bool Equals(object obj) // NOTE: Equals NOT required by LINQ.
 {
 if (obj == null || this.GetType().Equals(obj.GetType()) == false)
 return false;
 Doctor other = (Doctor) obj;
 return this.m_Initials.Equals(other.m_Initials);
 }

 public override int GetHashCode() // NOTE: GetHashCode NOT required by LINQ.
 { return this.m_Initials.GetHashCode(); }

 public int CompareTo(Doctor other)
 { return this.m_Initials.CompareTo(other.m_Initials); }
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Copyright
Copyright © 2006, O'Reilly Media, Inc.. All rights reserved.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.3. Create, Read, Update, and Delete with LINQ
Most of the discussion thus far has focused on data querying, and not data modification. Don't be mistaken, LINQ
provides full support for read/write data access, commonly referred to as CRUD.

Interestingly, while data is read using an SQL-like query language, data modification is approached using more
traditional, object-oriented mechanisms. For example, to schedule the doctor mbl for call on November 30, 2006 in our
SchedulingDocs database, we do two things. First, we add a new row to the object representing the Calls table:

db.Calls.Add(new Databases.Calls{Initials="mbl",
 DateOfCall=new DateTime(2006, 11, 30});

Second, we flush the change back to the database:

db.SubmitChanges();

The first step makes a local, in-memory change only; the second step is what triggers the underlying SQL (or stored
procedure) to update the database. LINQ to SQL will automatically generate the appropriate SQL for inserts, updates,
and deletes, or interoperate with your custom stored procedures.

To delete a call, we find the corresponding object, remove it from the table, and update the database:

var del = from c in db.Calls
 where c.Initials == "mbl" && c.DateOfCall == new DateTime(2006, 11, 30)
 select c;

foreach (var c in del)
 db.Calls.Remove(c);

db.SubmitChanges();

Since there is at most one doctor on call for any given day, we know the above query will return exactly one record. In
this case we can use the standard query operator Single, passing a lambda expression for the search criteria:

var call = db.Calls.Single(c => c.Initials == "mbl" &&
 c.DateOfCall == new DateTime(2006, 11, 30));
db.Calls.Remove(call);
db.SubmitChanges();

If it's possible that the search may fail, use the query operator SingleOrDefault, and check the query result for null.

Finally, to update existing data, the approach is (1) query to find the corresponding objects, (2) update those objects,
and (3) flush the changes. For example, if the doctor ay's pager number changes to 53301, we update the database as
follows:

var ay = db.Doctors.Single(d => d.Initials == "ay");
ay.PagerNumber = 53301;
db.SubmitChanges();

The same logic applies to other LINQ scenarios, such as XML documents and DataSets. For example, with the typed
DataSet SchedulingDocs (see Figure 2), scheduling a doctor on call is simply a matter of adding a new row to the Calls
table:

ds.Calls.AddCallsRow("mbl", new DateTime(2006, 11, 30));

Much like the database objects, DataSets are a local, in-memory collection of objects. To persist your changes, an
updated DataSet must be written to some durable medium, such as the file system or a database:

dbConn.Open();
callsAdapter.Update(ds.Calls);
dbConn.Close();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

dbConn.Close();

Here we re-open the connection, update the database to match, and close the connectionthe equivalent of
db.SubmitChanges(). The key difference is that in the case of LINQ to SQL, the SQLMetal tool generates the necessary code
to update the underlying database. In the case of DataSets and XML documents (and other flavors of LINQ), it's
typically our responsibility to load the data, and consequently to persist it back.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 7. Extending LINQ
In closing, let's touch on the extensibility of LINQ, another of its elegant design characteristics. As you have seen, LINQ
interoperates with a range of data sources, from object graphs to relational databases to XML documents. Let's look at
a quick example of how we go about extending one of our own classes to natively support LINQ.

Our running demo has focused on doctors working at the fictitious University Hospital. You've seen many queries
involving doctors, often using the Distinct operator to eliminate duplicates. For example, a query to yield the distinct
doctors working in October 2006:

DataSets.SchedulingDocs ds = FillDataSet();

var oct2006 = (
 from doc in ds.Doctors
 join call in ds.Calls
 on doc.Initials equals call.Initials
 where call.DateOfCall >= new DateTime(2006, 10, 1) &&
 call.DateOfCall <= new DateTime(2006, 10, 31)
 select doc
)
 .Distinct();

Since we designed the data model, we know that a doctor's initials are unique. We can take advantage of this
information to optimize the application of Distinct in the query above by providing our own implementation specific to our
DataSet:

using DS = DataSets.SchedulingDocs;

public static class DataSetsExtension
{

 public static IEnumerable<DS.DoctorsRow> Distinct(this
 IEnumerable<DS.DoctorsRow> src)
 {
 // optimize by using a hashtable with doctors' initials:
 System.Collections.Hashtable ht = new System.Collections.Hashtable();

 foreach(var doc in src) // for each doctor in the original sequence:
 {
 if (ht[doc.Initials] == null) // first time, so remember and return:
 {
 ht.Add(doc.Initials, doc.Initials);
 yield return doc;
 }
 else // we've yielded this doc already, so skip:
 continue;
 }
 }

}//class

For sequences of type DoctorsRowi.e., doctors in our DataSetthis implementation will be used in place of the standard
LINQ implementation of Distinct. Thus, for any query of the form,

var query = from doc in ds.Doctors
 .
 .
 select doc;

the application of Distinct will invoke our optimized implementation. That's it!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.5. Extension Methods
So how exactly are query expressions executed? Query expressions are translated into traditional object-oriented
method calls by way of extension methods. Extension methods, new in C# 3.0, extend a class without actually being
members of that class. For example, consider the following query expression:

using System.Query;

// initials of all doctors living in Chicago, in no particular order:
var chicago = from d in doctors
 where d.City == "Chicago"
 select d.Initials;

Using extension methods, this query can be rewritten as follows:

using System.Query;

var chicago = doctors.
 Where(d => d.City == "Chicago").
 Select(d => d.Initials);

This statement calls two methods, Where and Select, passing them lambda expressionsyet these methods are not
members of the Doctors class. How and why does this compile?

In C# 3.0, extension methods are defined as static methods in a static class, annotated with the
System.Runtime.CompilerServices.Extension attribute. By importing the namespace that includes this static class, the compiler
treats the extension methods as if they were instance methods. For example, the LINQ standard query operators are
defined as extension methods in the class System.Query.Sequence. By importing the namespace System.Query, we gain access
to the query operators as if they were members of the Doctors class.

Let's look at an extension method in more detail. Here's the signature for System.Query.Sequence.Where:

namespace System.Query
{
 public delegate ReturnT Func<ArgT, ReturnT>(ArgT arg);

 public static class Sequence
 {
 public static IEnumerable<T> Where<T>(this IEnumerable<T> source,
 Func<T, bool> predicate)
 { ... }
 .
 .
 .
 }
}

The extension method Where returns an IEnumerable object by iterating across an existing IEnumerable object (source),
applying a delegate-based Boolean function (predicate) to determine membership in the result set. Notice that both the
first parameter and the return value are defined in terms of IEnumerable<T>, establishing the link between query
expressions and the extension methods that drive them.

Given a query expression or a query written using extension methods, the C# 3.0 compiler translates these into calls to
the underlying static methods. For example, either form of our query above is conceptually translated into the
following:

var temp = System.Query.Sequence.Where(doctors, d => d.City == "Chicago");
var chicago = System.Query.Sequence.Select(temp, d => d.Initials);

In reality, this form is skipped and the translation proceeds directly to C# 2.0-compatible code:

IEnumerable<Doctor> temp; // doctors living in chicago
IEnumerable<string> chicago; // initials of doctors living in chicago

temp = System.Query.Sequence.Where<Doctor>(doctors,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

temp = System.Query.Sequence.Where<Doctor>(doctors,
 new Func<Doctor, bool>(b__0));
chicago = System.Query.Sequence.Select<Doctor, string>(temp,
 new Func<Doctor, string>(b__3));

with the lambda expressions translated into delegate-invoked methods:

private static bool b__0(Doctor d) // lambda: d => d.City == "Chicago"
{ return d.City == "Chicago"; }

private static string b__3(Doctor d) // lambda: d => d.Initials
{ return d.Initials; }

Notice the important role that type inference plays during this translation. Extension methods and their supporting
types (IEnumerable, Func, etc.) are elegantly defined once using generics. Type inference is relied on to determine the type
T involved in each aspect of the query, and to then qualify the generic appropriately. In this case we see the inference
of both Doctor and string.

In C# 3.0, what differentiates an extension method from an ordinary static method? Observe that a query based on
extension methods is converted to a static version by passing the object instance as the first argument:

doctors.Where(...) ==> System.Query.Sequence.Where(doctors, ...)

This is identical to the standard mechanism for calling instance methods, where the first parameter is a reference to the
object itselfproviding a value for this. This logic explains C#'s choice of the this keyword in the signature of extension
methods:

public static IEnumerable<T> Where<T>(this IEnumerable<T> source, ...)

In C# 3.0 it is the presence of the this keyword on the first parameter that identifies a static method as an extension
method.

What if the class (such as Doctors) or one of its base classes contain methods that conflict with imported extension
methods? To avoid unexpected behavior, all other methods take priorityextension methods have the lowest precedence
when the compiler performs name resolution, and thus become candidates only after all other possibilities have been
exhausted. If two or more imported namespaces yield candidate extension methods, the compiler reports the conflict as
a compilation error.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 8. For Further Information
For all things LINQ, start at http://msdn.microsoft.com/data/ref/linq/. This short video with Anders Hejlsberg and Luca
Bolognese provides a great overview of LINQ: http://channel9.msdn.com/showpost.aspx?postid=114680. Finally, keep
an eye out for LINQ-related webcasts by yours truly, which will be announced at the O'Reilly site for this Short Cut
(http://www.oreilly.com/catalog/language1) and on my blog (http://www.pluralsight.com/blogs/drjoe/).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.1.

6.1.1. Aggregate

The Aggregate operator applies a function over a sequence, with or without an initial seed value. The result can be post-
processed by another function is desired.

int[] ints = { 1, 2, 3, 4, 5, 6 };
var query = from ...;

int sum = ints.Aggregate((a, b) => a + b);
int product = ints.Aggregate(1, (a, b) => a * b);
int sump1 = ints.Aggregate(0, (a, b) => a + b, r => r+1);
var result = query.Aggregate(...);

Console.WriteLine(sum); // 21
Console.WriteLine(product); // 720
Console.WriteLine(sump1); // 22
Console.WriteLine(result);

The sequence can be of any type T.

See also: Average, Count, LongCount, Max, Min, and Sum.

Table 1. List of Standard LINQ Query Operators
Operator Lazy? Description

Aggregate No Applies a function to a sequence, yielding a single value.

All No Applies a function to a sequence to see if all elements satisfy the function.

Any No Applies a function to a sequence to see if any element satisfies the function.

Average No Computes the average of a numeric sequence.

Cast Yes Yields the elements of a sequence type-casted to a given type.

Concat Yes Yields the concatenation of two sequences S1 and S2.

Contains No Searches a sequence to see if it contains a given element.

Count No Counts the number of elements in a sequence, yielding an integer result.

DefaultIfEmpty Yes Given a sequence S, yields S or a sequence with the default value if S is empty.

Distinct Yes Returns a sequence with duplicates eliminated.

ElementAt No Returns the ith element of a sequence.

ElementAtOrDefault No Returns the ith element of a sequence, or the default value if sequence is empty.

Empty Yes Yields an empty sequence.

EqualAll No Compares two sequences for equality.

Except Yes Given two sequences S1 and S2, returns the set difference S1 S2.

First No Returns the first element of a sequence.

FirstOrDefault No Returns the first element of a sequence, or the default value if sequence is empty.

Fold No Obsolete, see Aggregate.

GroupBy Yes Groups the elements of a sequence by key.

GroupJoin Yes Performs a join of two sequences S1 and S2, yielding a hierarchical result.

Intersect Yes Given two sequences S1 and S2, returns the set intersection of S1 and S2.

Join Yes Performs a traditional inner equijoin of two sequences S1 and S2.

Last No Returns the last element of a sequence.

LastOrDefault No Returns the last element of a sequence, or the default value if sequence is empty.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LongCount No Counts the number of elements in a sequence, yielding a long result.

Max No Returns the maximum of a sequence.

Min No Returns the minimum of a sequence.

OfType Yes Yields the elements of a sequence that match a given type.

OrderBy Yes Orders a sequence of elements by key into ascending order.

OrderByDescending Yes Orders a sequence of elements by key into descending order.

Range Yes Yields a sequence of integers in a given range.

Repeat Yes Yields a sequence of values by repeating a given value n times.

Reverse Yes Reverses the elements of a sequence.

Select Yes Applies a projection function to a sequence, yielding a new sequence.

SelectMany Yes Applies a projection function to flatten a sequence of sequences.

Single No Returns the lone element of a singleton sequence.

SingleOrDefault No Returns the lone element of a singleton sequence, or default if sequence is empty.

Skip Yes Skips the first n elements of a sequence, yielding the remaining elements.

SkipWhile Yes Given function F and sequence S, skips the initial elements of S where F is true.

Sum No Computes the sum of a numeric sequence.

Take Yes Yields the first n elements of a sequence.

TakeWhile Yes Given function F and sequence S, yields the initial elements of S where F is true.

ThenBy Yes Takes an ordered sequence and yields a secondary, ascending ordering.

TheyByDescending Yes Takes an ordered sequence and yields a secondary, descending ordering.

ToArray No Iterates across a sequence, capturing results in an array.

ToDictionary No Iterates across a sequence, capturing results in a Dictionary<K, V>.

ToList No Iterates across a sequence, capturing results in a List<T>.

ToLookup No Iterates across a sequence, capturing results in a Lookup<K, IEnumerable<V>>.

ToSequence Yes Casts a sequence as an IEnumerable sequence for use with standard query ops.

Union Yes Given two sequences S1 and S2, returns the set union of S1 and S2.

Where Yes Applies a Boolean function to a sequence, yielding a sub-sequence.

6.1.2. All

The All operator applies a function over a sequence, checking to see if all of the elements satisfy the function, i.e., cause
the function to return true. For example, do all the doctors have pager numbers? How about all the doctors retrieved by
a particular query?

Doctors doctors = new Doctors();

var query = from doc in doctors ...;

bool allHavePagers = doctors.All(doc => doc.PagerNumber > 0);
bool theseHavePagers = query.All(doc => doc.PagerNumber > 0);

See also: Any, Contains, and EqualAll.

6.1.3. Any

The Any operator applies a function over a sequence, checking to see if any of the elements satisfy the function, i.e.,
cause the function to return true. For example, are there any doctors living in Lake Forest?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

cause the function to return true. For example, are there any doctors living in Lake Forest?

Doctors doctors = new Doctors();

bool inLakeForest = doctors.Any(doc => doc.City == "Lake Forest");

The function is optional; if omitted, the Any operator returns true if the sequence contains at least one element.

var query = from doc in doctors
 where doc.City == "Lake Forest"
 select doc;

bool inLakeForest = query.Any();

See also: All, Contains, and EqualAll.

6.1.4. Average

The Average operator computes the average of a sequence of numeric values. The values are either the sequence itself,
or selected out of a sequence of objects.

int[] ints = { 1, 2, 3, 4, 5, 6 };
decimal?[] values = { 1, null, 2, null, 3, 4 };
Doctors doctors = new Doctors();
var query = from ...;

double avg1 = ints.Average();
decimal? avg2 = values.Average();
double avgYears = doctors.Average(doc =>
 DateTime.Now.Subtract(doc.StartDate).Days / 365.25);
var avg = query.Average();

Console.WriteLine(avg1); // 3.5
Console.WriteLine(avg2); // 2.5
Console.WriteLine(avgYears.ToString("0.00")); // 5.72
Console.WriteLine(avg);

The values can be of type int, int?, long, long?, decimal, decimal?, double, or double?. The resulting type is double,
double?, double, double?, decimal, decimal?, double, or double?, respectively.

See also: Aggregate, Count, LongCount, Max, Min, and Sum.

6.1.5. Cast

The Cast operator yields the elements of a sequence type-casted to a given type T.

System.Collections.ArrayList al = new System.Collections.ArrayList();
al.Add("abc");
al.Add("def");
al.Add("ghi");

var strings = al.Cast<string>();

foreach(string s in strings) // "abc", "def", "ghi"
 Console.WriteLine(s);

The Cast operator is commonly used to wrap pre-2.0 collections (such as ArrayLists) for use with LINQ. Here's a more
interesting example of searching the Windows event log for all events logged by an application:

var entries = from entry in applog.Entries.Cast<System.Diagnostics.EventLogEntry>()
 where entry.Source == "ApplicationName"
 orderby entry.TimeWritten descending
 select entry;

See also: OfType.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See also: OfType.

6.1.6. Concat

The Concat operator concatenates two sequences S1 and S2, yielding the elements of S1 followed by the elements of S2.

int[] ints1 = { 1, 2, 3 };
int[] ints2 = { 4, 5, 6 };
var query1 = from ...;
var query2 = from ...;

var all = ints1.Concat(ints2);
var results = query1.Concat(query2);

foreach(var x in all) // 1, 2, 3, 4, 5, 6
 Console.WriteLine(x);
foreach(var r in results)
 Console.WriteLine(r);

The sequences may contain elements of any type T. This element type T must be the same at compile-time (e.g. object),
but may differ at run-time:

object[] objects1 = { "abc", "def" };
object[] objects2 = { 1, 2, 3 };

var result = objects1.Concat(objects2);

See also: Union.

6.1.7. Contains

The Contains operator searches a sequence to see if it contains a given element. For example, is there a doctor with
initials "gg" still working at University Hospital? One approach is to create a Doctor object with the initials we are looking
for, and see if the collection contains this object:

Doctors doctors = new Doctors();

bool docExists = doctors.Contains(new Doctor("gg", ...));

This assumes the Doctor class defines Equals based on a doctor's initials. Another approach (without this assumption) is
to select all the initials and then see if the result contains the string "gg":

var query = from doc in doctors
 select doc.Initials

bool docExists = query.Contains("gg");

See also: All, Any, EqualAll, and Where.

6.1.8. Count

The Count operator counts the number of elements in a sequence, yielding an integer result. The elements are either the
sequence itself, or selected from a sequence of objects.

int[] ints = { 1, 2, 3, 4, 5, 6 };
decimal?[] values = { 1, null, 2, null, 3 };
IEnumerable<Doctor> doctors = new Doctors();
var query = from ...;

int count1 = ints.Count();
int count2 = values.Count();
int count3 = doctors.Count();
int count4 = doctors.Count(doc => doc.City == "Chicago");
int count = query.Count();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

int count = query.Count();

Console.WriteLine(count1); // 6
Console.WriteLine(count2); // 5
Console.WriteLine(count3); // 12
Console.WriteLine(count4); // 5
Console.WriteLine(count);

The sequence can be of any type T.

See also: Aggregate, Average, LongCount, Max, Min, and Sum.

6.1.9. DefaultIfEmpty

Given a non-empty sequence, the DefaultIfEmpty operator yields this same sequence. If the sequence is empty,
DefaultIfEmpty yields a sequence containing a single default value.

int[] ints1 = { 1, 2, 3, 4, 5, 6 };
int[] ints2 = { };
var query = from ...;

var ints = ints1.DefaultIfEmpty();
var zero = ints2.DefaultIfEmpty();
var minus1 = ints2.DefaultIfEmpty(-1);
var result = query.DefaultIfEmpty();

foreach(int x in ints) // 1, 2, 3, 4, 5, 6
 Console.WriteLine(x);
foreach(int x in zero) // 0
 Console.WriteLine(x);
foreach(int x in minus1) // -1
 Console.WriteLine(x);
foreach(var r in result)
 Console.WriteLine(r);

The sequence can be of any type T; if the sequence is empty and a default value is not provided, the default value for
type T is used.

See also: FirstOrDefault, GroupJoin, LastOrDefault, SingleOrDefault, and ElementAtOrDefault.

6.1.10. Distinct

Given a sequence of elements, the Distinct operator returns the same sequence without duplicates.

int[] ints = { 1, 2, 2, 3, 2, 3, 4 };
var query = from ...;

var distinctInts = ints.Distinct();
var distinctResults = query.Distinct();

foreach(var x in distinctInts) // 1, 2, 3, 4
 Console.WriteLine(x);
foreach(var r in distinctResults)
 Console.WriteLine(r);

The sequence can be of any type T.

See also: Except, Intersect, and Union.

6.1.11. ElementAt

The ElementAt operator returns the ith element of a sequence; the sequence must be non-empty, and i is 0-based.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The ElementAt operator returns the ith element of a sequence; the sequence must be non-empty, and i is 0-based.

int[] ints = { 1, 2, 3, 4, 5, 6 };
Doctors doctors = new Doctors();
var query = from ...;

int third = ints.ElementAt(2);
Doctor doctor = doctors.ElementAt(2);
var result = query.ElementAt(i);

Console.WriteLine(third); // 3
Console.WriteLine(doctor.Initials); // 3rd doc in Chicago: ch
Console.WriteLine(result);

The sequence can be of any type T.

See also: ElementAtOrDefault.

6.1.12. ElementAtOrDefault

The ElementAtOrDefault operator returns the ith element of a possibly empty sequence; i is 0-based.

int[] ints1 = { 1, 2, 3, 4, 5, 6 };
int[] ints2 = { };
Doctors doctors = new Doctors();
var query = from ...;

int x1 = ints1.ElementAtOrDefault(2);
int x2 = ints1.ElementAtOrDefault(6);
int x3 = ints2.ElementAtOrDefault(0);
Doctor doc1 = doctors.ElementAtOrDefault(2);
Doctor doc2 = doctors.ElementAtOrDefault(-1);
var result = query.ElementAtOrDefault(i);

Console.WriteLine(x1); // 3
Console.WriteLine(x2); // 0
Console.WriteLine(x3); // 0
Console.WriteLine(doc1 == null); // False
Console.WriteLine(doc2 == null); // True
Console.WriteLine(result);

The sequence can be of any type T; if the sequence is empty or i is invalid, the default value for type T is returned.

See also: ElementAt.

6.1.13. Empty

The Empty operator yields an empty sequence of the given type.

var emptyDocs = System.Query.Sequence.Empty<Doctor>();

foreach(var doc in emptyDocs) // <none>
 Console.WriteLine(doc);

This operator is helpful when you need an empty sequence for another operator or a method argument.

See also: Range and Repeat.

6.1.14. EqualAll

The EqualAll operator compares two sequences for equality. Two sequences are equal if they are of the same length, and
contain the same sequence of elements.

var query1 = from ...;
var query2 = from ...;

bool equal = query1.EqualAll(query2);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

bool equal = query1.EqualAll(query2);

The sequences may contain elements of any type T. This element type T must be the same at compile-time (e.g. object),
but may differ at run-time:

object[] objects1 = { "abc", "def" };
object[] objects2 = { 1, 2, 3 };

bool isFalse = objects1.EqualAll(objects2); // false

The result in such cases is false.

See also: All, Any, and Contains.

6.1.15. Except

Given two sequences of elements S1 and S2, the Except operator returns the distinct elements of S1 not in S2. In other
words, Except computes the set difference S1 S2.

int[] intsS1 = { 1, 2, 2, 3, 2, 3, 4, 5, 6 };
int[] intsS2 = { 1, 3, 6, 7 };
var query1 = from ...;
var query2 = from ...;

var diffInts = intsS1.Except(intsS2);
var diffResults = query1.Except(query2);

foreach(var x in diffInts) // 2, 4, 5
 Console.WriteLine(x);
foreach(var r in diffResults)
 Console.WriteLine(r);

The sequences may contain elements of any type T. This element type T must be the same at compile-time (e.g. object),
but may differ at run-time:

object[] objects1 = { "abc", "def" };
object[] objects2 = { 1, 2, 3 };

var result = objects1.Except(objects2);

See also: Distinct, Intersect, and Union.

6.1.16. First

The First operator returns the first element of a sequence; the sequence must be non-empty.

int[] ints = { 1, 2, 3, 4, 5, 6 };
Doctors doctors = new Doctors();
var query = from ...;

int first = ints.First();
Doctor doctor = doctors.First(doc => doc.City == "Chicago");
var result = query.First();

Console.WriteLine(first); // 1
Console.WriteLine(doctor.Initials); // mbl
Console.WriteLine(result);

The sequence can be of any type T.

See also: FirstOrDefault.

6.1.17. FirstOrDefault

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The FirstOrDefault operator returns the first element of a possibly empty sequence.

int[] ints1 = { 1, 2, 3, 4, 5, 6 };
int[] ints2 = { };
Doctors doctors = new Doctors();
var query = from ...;

int x1 = ints1.FirstOrDefault();
int x2 = ints2.FirstOrDefault();
Doctor doc1 = doctors.FirstOrDefault(doc => doc.City == "Chicago");
Doctor doc2 = doctors.FirstOrDefault(doc => doc.City == "Planet Mars");
var result = query.FirstOrDefault();

Console.WriteLine(x1); // 1
Console.WriteLine(x2); // 0
Console.WriteLine(doc1 == null); // False
Console.WriteLine(doc2 == null); // True
Console.WriteLine(result);

The sequence can be of any type T; if the sequence is empty, the default value for type T is returned.

See also: First.

6.1.18. Fold

The Fold operator is considered obsolete, see Aggregate.

6.1.19. GroupBy

The GroupBy operator groups the elements of a sequence by key; the keys are yielded by a function applied to each
element. Each resulting group is an IEnumerable sequence of elements S with a key K.

Doctors doctors = new Doctors();

var groups = doctors.GroupBy(doc => doc.City);

foreach(var group in groups)
{
 Console.WriteLine("{0}:", group.Key); // Chicago, Evanston, ...
 foreach(var doc in group) // {mbl,jl,...}, {ch,cm,...}, ...
 Console.WriteLine(" {0}", doc.Initials);
}

A second version allows you to project exactly what data to store in the group, such as only the doctor's initials:

Doctors doctors = new Doctors();

var groups2 = doctors.GroupBy(doc => doc.City, doc => doc.Initials);

foreach(var group in groups2)
{
 Console.WriteLine("{0}:", group.Key); // Chicago, Evanston, ...
 foreach(var initials in group) // {mbl,jl,...}, {ch,cm,...}, ...
 Console.WriteLine(" {0}", initials);
}

Additional versions allow you to provide a comparer of type IEqualityComparer for comparing keys.

Use of the group by clause in a query expression translates into application of the GroupBy operator. For example, the
following statements are equivalent:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

following statements are equivalent:

var groups = doctors.GroupBy(doc => doc.City);
var groups = from doc in doctors
 group doc by doc.City into g
 select g;

var groups2 = doctors.GroupBy(doc => doc.City, doc => doc.Initials);
var groups2 = from doc in doctors
 group doc.Initials by doc.City into g
 select g;

See also: OrderBy.

6.1.20. GroupJoin

The GroupJoin operator performs a join of two sequences S1 and S2, based on the keys selected from S1's and S2's
elements. The keys are yielded by functions applied to each element; a third function determines the data projected by
the join.

Unlike an inner join which yields essentially a table of joined records, the result of a GroupJoin is hierarchical. For each
element in S1, there's a possibly empty sub-sequence of matching elements from S2. For example, the following query
joins Doctors and Calls via the doctors' initials to determine which doctors are working on what dates:

DataSets.SchedulingDocs ds = FillDataSet();

var working = ds.Doctors.GroupJoin(ds.Calls,
 doc => doc.Initials,
 call => call.Initials,
 (doc,call) => new { doc.Initials, Calls=call }
);

foreach(var record in working)
{
 Console.WriteLine("{0}:", record.Initials);
 foreach(var call in record.Calls)
 Console.WriteLine(" {0}", call.DateOfCall);
}

Here's the output:

ay:
 11/2/2006 12:00:00 AM
bb:
ch:
cm:
jl:
 10/2/2006 12:00:00 AM
 11/1/2006 12:00:00 AM
.
.
.

Use of the join into clause in a query expression translates into application of the GroupJoin operator. For example, the
following statements are equivalent:

var working = ds.Doctors.GroupJoin(ds.Calls,
 doc => doc.Initials,
 call => call.Initials,
 (doc,call) => new { doc.Initials, Calls=call }
);

var working = from doc in ds.Doctors
 join call in ds.Calls
 on doc.Initials equals call.Initials
 into j
 select new { doc.Initials, Calls = j };

To perform a traditional left outer join (and thus flatten the result into a table), use the DefaultIfEmpty operator as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To perform a traditional left outer join (and thus flatten the result into a table), use the DefaultIfEmpty operator as follows:

var working = from doc in ds.Doctors
 join call in ds.Calls
 on doc.Initials equals call.Initials
 into j
 from r in j.DefaultIfEmpty()
 select new { doc.Initials, Call = r };

foreach(var record in working)
 Console.WriteLine("{0}: {1}",
 record.Initials,
 (record.Call == null) ? "" : record.Call.DateOfCall.ToString());

See also: Join.

6.1.21. Intersect

Given two sequences of elements S1 and S2, the Intersect operator returns the distinct elements of S1 that also appear
in S2. In other words, Intersect computes the set intersection of S1 and S2.

int[] intsS1 = { 1, 2, 2, 3, 2, 3, 4, 5, 6, 8 };
int[] intsS2 = { 6, 1, 3, 6, 7 };
var query1 = from ...;
var query2 = from ...;

var commonInts = intsS1.Intersect(intsS2);
var commonResults = query1.Intersect(query2);

foreach(var x in commonInts) // 1, 3, 6
 Console.WriteLine(x);
foreach(var r in commonResults)
 Console.WriteLine(r);

The sequences may contain elements of any type T. This element type T must be the same at compile-time (e.g. object),
but may differ at run-time:

object[] objects1 = { "abc", "def" };
object[] objects2 = { 1, 2, 3 };

var result = objects1.Intersect(objects2);

See also: Distinct, Except, and Union.

6.1.22. Join

The Join operator performs an inner equijoin of two sequences S1 and S2, based on the keys selected from S1's and
S2's elements. The keys are yielded by functions applied to each element; a third function determines the data
projected by the join. For example, the following query joins Doctors and Calls via the doctors' initials to determine which
doctors are working on what dates:

DataSets.SchedulingDocs ds = FillDataSet();

var working = ds.Doctors.Join(ds.Calls,
 doc => doc.Initials,
 call => call.Initials,
 (doc,call) => new { doc.Initials, call.DateOfCall }
);

foreach(var record in working)
 Console.WriteLine(record);

The query yields pairs of the form (Initials, DateOfCall), created from the joined Doctor and Call elements. Here's the output:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The query yields pairs of the form (Initials, DateOfCall), created from the joined Doctor and Call elements. Here's the output:

{Initials=ay, DateOfCall=11/2/2006 12:00:00 AM}
{Initials=jl, DateOfCall=10/2/2006 12:00:00 AM}
{Initials=jl, DateOfCall=11/1/2006 12:00:00 AM}
.
.
.

Use of the join clause in a query expression translates into application of the Join operator. For example, the following
statements are equivalent:

var working = ds.Doctors.Join(ds.Calls,
 doc => doc.Initials,
 call => call.Initials,
 (doc,call) => new { doc.Initials, call.DateOfCall }
);

var working = from doc in ds.Doctors
 join call in ds.Calls
 on doc.Initials equals call.Initials
 select new { doc.Initials, call.DateOfCall };

See also: GroupJoin.

6.1.23. Last

The Last operator returns the last element of a sequence; the sequence must be non-empty.

int[] ints = { 1, 2, 3, 4, 5, 6 };
Doctors doctors = new Doctors();
var query = from ...;

int last = ints.Last();
Doctor doctor = doctors.Last(doc => doc.City == "Chicago");
var result = query.Last();

Console.WriteLine(last); // 6
Console.WriteLine(doctor.Initials); // tm
Console.WriteLine(result);

The sequence can be of any type T.

See also: LastOrDefault.

6.1.24. LastOrDefault

The LastOrDefault operator returns the last element of a possibly empty sequence.

int[] ints1 = { 1, 2, 3, 4, 5, 6 };
int[] ints2 = { };
Doctors doctors = new Doctors();
var query = from ...;

int x1 = ints1.LastOrDefault();
int x2 = ints2.LastOrDefault();
Doctor doc1 = doctors.LastOrDefault(doc => doc.City == "Chicago");
Doctor doc2 = doctors.LastOrDefault(doc => doc.City == "Planet Mars");
var result = query.LastOrDefault();

Console.WriteLine(x1); // 6
Console.WriteLine(x2); // 0
Console.WriteLine(doc1 == null); // False
Console.WriteLine(doc2 == null); // True
Console.WriteLine(result);

The sequence can be of any type T; if the sequence is empty, the default value for type T is returned.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The sequence can be of any type T; if the sequence is empty, the default value for type T is returned.

See also: Last.

6.1.25. LongCount

The LongCount operator counts the number of elements in a sequence, yielding a long result. The elements are either the
sequence itself, or selected from a sequence of objects.

int[] ints = { 1, 2, 3, 4, 5, 6 };
decimal?[] values = { 1, null, 2, null, 3 };
IEnumerable<Doctor> doctors = new Doctors();
var query = from ...;

long count1 = ints.LongCount();
long count2 = values.LongCount();
long count3 = doctors.LongCount();
long count4 = doctors.LongCount(doc => doc.City == "Chicago");
long count = query.LongCount();

Console.WriteLine(count1); // 6
Console.WriteLine(count2); // 5
Console.WriteLine(count3); // 12
Console.WriteLine(count4); // 5
Console.WriteLine(count);

The sequence can be of any type T.

See also: Aggregate, Average, Count, Max, Min, and Sum.

6.1.26. Max

The Max operator finds the maximum of a sequence of values. The values are either the sequence itself, or selected out
of a sequence of objects, and must implement IComparable for comparison purposes.

int[] ints = { 1, 2, 3, 6, 5, 4 };
decimal?[] values = { 1, null, 4, null, 3, 2 };
Doctors doctors = new Doctors();
var query = from ...;

int max1 = ints.Max();
decimal? max2 = values.Max();
string maxInitials = doctors.Max(doc => doc.Initials);
double maxYears = doctors.Max(doc =>
 DateTime.Now.Subtract(doc.StartDate).Days / 365.25);
var max = query.Max();

Console.WriteLine(max1); // 6
Console.WriteLine(max2); // 4
Console.WriteLine(maxInitials); // "vj"
Console.WriteLine(maxYears.ToString("0.00")); // 11.43
Console.WriteLine(max);

The sequence can be of any type T; the resulting type is the same.

See also: Aggregate, Average, Count, LongCount, Min, and Sum.

6.1.27. Min

The Min operator finds the minimum of a sequence of values. The values are either the sequence itself, or selected out
of a sequence of objects, and must implement IComparable for comparison purposes.

int[] ints = { 6, 2, 3, 1, 5, 4 };
decimal?[] values = { 4, null, 1, null, 3, 2 };
Doctors doctors = new Doctors();
var query = from ...;

int min1 = ints.Min();
decimal? min2 = values.Min();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

decimal? min2 = values.Min();
string minInitials = doctors.Min(doc => doc.Initials);
double minYears = doctors.Min(doc =>
 DateTime.Now.Subtract(doc.StartDate).Days / 365.25);
var min = query.Min();

Console.WriteLine(min1); // 1
Console.WriteLine(min2); // 1
Console.WriteLine(minInitials); // "ay"
Console.WriteLine(minYears.ToString("0.00")); // 0.67
Console.WriteLine(min);

The sequence can be of any type T; the resulting type is the same.

See also: Aggregate, Average, Count, LongCount, Max, and Sum.

6.1.28. OfType

The OfType operator yields the elements of a sequence that match a given type T. In other words, OfType filters a
sequence by type.

 System.Collections.ArrayList al = new System.Collections.ArrayList();
 al.Add(1);
 al.Add("abc");
 al.Add(2);
 al.Add("def");
 al.Add(3);

 var strings = al.OfType<string>();

 foreach(string s in strings) // "abc", "def"
 Console.WriteLine(s);

The OfType operator is commonly used to (a) wrap pre-2.0 collections (such as ArrayLists) for use with LINQ and (b) filter
mixed collections. Here's a more interesting example of searching a user's Outlook contacts with LINQ:

Outlook.MAPIFolder folder = this.ActiveExplorer().Session.
 GetDefaultFolder(Outlook.OlDefaultFolders.olFolderContacts);

var contacts = from contact in folder.Items.OfType<Outlook.ContactItem>()
 where .
 . // search criteria, e.g. contact.Email1Address != null
 .
 select contact;

See also: Cast.

6.1.29. OrderBy

The OrderBy operator orders a sequence of elements into ascending order; the keys used to order the sequence are
yielded by a function applied to each element.

int[] ints = {3, 1, 6, 4, 2, 5};
Doctors doctors = new Doctors();

var sorted = ints.OrderBy(x => x);
var docs = doctors.OrderBy(doc => doc.Initials);

foreach(var x in sorted) // 1, 2, 3, 4, 5, 6
 Console.WriteLine(x);
foreach(var doc in docs) // ay, bb, ..., vj
 Console.WriteLine(doc.Initials);

A second version allows you to provide a comparer of type IComparer for comparing keys and thus controlling the
ordering, e.g., when you want to compare strings in a case-insensitive manner:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ordering, e.g., when you want to compare strings in a case-insensitive manner:

var docs = doctors.OrderBy(doc => doc.Initials,
 StringComparer.CurrentCultureIgnoreCase);

Use of the orderby clause in a query expression translates into application of the OrderBy operator. For example, the
following statements are equivalent:

var docs = doctors.OrderBy(doc => doc.Initials);

var docs = from doc in doctors
 orderby doc.Initials
 select doc;

See also: OrderByDescending, ThenBy, and ThenByDescending.

6.1.30. OrderByDescending

The OrderByDescending operator orders a sequence of elements into descending order; the keys used to order the
sequence are yielded by a function applied to each element.

int[] ints = {3, 1, 6, 4, 2, 5};
Doctors doctors = new Doctors();

var sorted = ints.OrderByDescending(x => x);
var docs = doctors.OrderByDescending(doc => doc.Initials);

foreach(var x in sorted) // 6, 5, 4, 3, 2, 1
 Console.WriteLine(x);
foreach(var doc in docs) // vj, tm, ..., ay
 Console.WriteLine(doc.Initials);

A second version allows you to provide a comparer of type IComparer for comparing keys and thus controlling the
ordering, e.g., when you want to compare strings in a case-insensitive manner:

var docs = doctors.OrderByDescending(doc => doc.Initials,
 StringComparer.CurrentCultureIgnoreCase);

Use of the orderby clause in a query expression with the descending keyword translates into application of the
OrderByDescending operator. For example, the following statements are equivalent:

var docs = doctors.OrderByDescending(doc => doc.Initials);

var docs = from doc in doctors
 orderby doc.Initials descending
 select doc;

See also: OrderBy, ThenBy, and ThenByDescending.

6.1.31. Range

The Range operator yields a sequence of integers in the given range, inclusive.

var oneToTen = System.Query.Sequence.Range(1, 10);

foreach(var x in oneToTen) // 1, 2, 3, ..., 10
 Console.WriteLine(x);

See also: Empty and Repeat.

6.1.32. Repeat

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Repeat operator yields a sequence of values by repeating a given value n times.

var zeros = System.Query.Sequence.Repeat(0, 8);
var strings = System.Query.Sequence.Repeat("", n);

Console.WriteLine(zeros.Count()); // 8
Console.WriteLine(strings.Count()); // n

foreach(var zero in zeros) // 0, 0, ..., 0
 Console.WriteLine(zero);

See also: Empty and Range.

6.1.33. Reverse

The Reverse operator reverses the elements of a sequence.

int[] ints = {1, 2, 3, 4, 5, 6};
Doctors doctors = new Doctors();

var revInts = ints.Reverse();
var docs = from doc in doctors
 orderby doc.Initials
 select doc;
var revDocs = docs.Reverse();

foreach(var x in revInts) // 6, 5, 4, 3, 2, 1
 Console.WriteLine(x);
foreach(var doc in revDocs) // vj, tm, ..., ay
 Console.WriteLine(doc.Initials);

See also: OrderBy and OrderByDescending.

6.1.34. Select

The Select operator applies a projection function over a sequence of elements, yielding a sequence of possibly new
elements.

int[] ints = {1, 2, 3, 4, 5, 6};
Doctors doctors = new Doctors();

var sameInts = ints.Select(x => x);
var chicago = doctors.Where(d => d.City == "Chicago").Select(d => d.Initials);
var names = doctors.Select(d => new {LN=d.FamilyLastName, FN=d.GivenFirstName});

foreach(var x in sameInts) // 1, 2, 3, 4, 5, 6
 Console.WriteLine(x);
foreach(var d in chicago) // mbl, jl, kl, py, tm
 Console.WriteLine(d);
foreach(var n in names) // {LN=Larsen, FN=Marybeth}, ...
 Console.WriteLine(n);

Use of the select clause in a query expression translates into application of the Select operator (except in trivial cases
where the Select operator can be optimized away). For example, the following statements are equivalent:

var chicago = doctors.Where(d => d.City == "Chicago").Select(d => d.Initials);

var chicago = from d in doctors
 where d.City == "Chicago"
 select d.Initials;

A second version of the Select operator provides an element's 0-based index in the sequence along with the element
itself, for example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

itself, for example:

var sumLast3 = ints.Select((x,index) => (index >= ints.Length-3) ? x : 0).Sum();

Console.WriteLine(sumLast3); // 15

See also: SelectMany and Where.

6.1.35. SelectMany

The SelectMany operator applies a projection function over a sequence of sequences, yielding a "flattened" sequence of
possibly new elements. For example, turning an array of arrays into an array:

List<int[]> list = new List<int[]>();
int[] ints123 = {1, 2, 3};
int[] ints456 = {4, 5, 6};

list.Add(ints123);
list.Add(ints456);

var flat = list.SelectMany(x => x);

foreach (var x in list) // Int32[], Int32[]
 Console.WriteLine(x);
foreach (var x in flat) // 1, 2, 3, 4, 5, 6
 Console.WriteLine(x);

The SelectMany operator is commonly used to flatten hierarchical data. For example, the following query yields the list of
doctors working in October 2006, with sub-lists of the calls each is working:

DataSets.SchedulingDocs ds = FillDataSet();

var oct2006 = from d in ds.Doctors
 join c in ds.Calls
 on d.Initials equals c.Initials
 where c.DateOfCall >= new DateTime(2006, 10, 1) &&
 c.DateOfCall <= new DateTime(2006, 10, 31)
 group c by d.Initials into g
 select g;

foreach (var group in oct2006) // jl: 1, mbl: 2
{
 Console.WriteLine("{0}: {1}", group.Key, group.Count());
 foreach (var call in group)
 Console.WriteLine(call.DateOfCall);
}

To flatten the hierarchy into just the list of calls:

var calls = oct2006.SelectMany(call => call);

foreach (var c in calls)
 Console.WriteLine(c.DateOfCall);

Use of the select clause in a query expression on all but the initial from clause translates into application of the
SelectMany operator. For example, here's another way to flatten the list of calls for doctors working in October 2006:

var calls = from d in ds.Doctors
 from c in ds.Calls
 where
 d.Initials == c.Initials &&
 c.DateOfCall >= new DateTime(2006, 10, 1) &&
 c.DateOfCall <= new DateTime(2006, 10, 31)
 select c;

This is translated into the following application of the SelectMany operator:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This is translated into the following application of the SelectMany operator:

var calls = ds.Doctors.SelectMany(
 d => ds.Calls.Where(c => d.Initials == c.Initials &&
 c.DateOfCall >= new DateTime(2006, 10, 1) &&
 c.DateOfCall <= new DateTime(2006, 10, 31)));

A second version of the SelectMany operator provides an element's 0-based index in the outer sequence along with the
element itself.

See also: Select and Where.

6.1.36. Single

The Single operator returns the lone element of a sequence; the sequence must contain exactly one element.

int[] ints = { 3 };
Doctors doctors = new Doctors();
var query = from ...;

int lone = ints.Single();
Doctor doctor = doctors.Single(doc => doc.Initials == "mbl");
var result = query.Single();

Console.WriteLine(lone); // 3
Console.WriteLine(doctor.PagerNumber); // 52248
Console.WriteLine(result);

The sequence can be of any type T.

See also: SingleOrDefault.

6.1.37. SingleOrDefault

The SingleOrDefault operator returns the lone element of a sequence; the sequence must be empty or contain exactly one
element.

int[] ints1 = { 3 };
int[] ints2 = { };
Doctors doctors = new Doctors();
var query = from ...;

int x1 = ints1.SingleOrDefault();
int x2 = ints2.SingleOrDefault();
Doctor doc1 = doctors.SingleOrDefault(doc => doc.Initials == "mbl");
Doctor doc2 = doctors.SingleOrDefault(doc => doc.Initials == "AAA");
var result = query.SingleOrDefault();

Console.WriteLine(x1); // 3
Console.WriteLine(x2); // 0
Console.WriteLine(doc1 == null); // False
Console.WriteLine(doc2 == null); // True
Console.WriteLine(result);

The sequence can be of any type T; if the sequence is empty, the default value for type T is returned.

See also: Single.

6.1.38. Skip

The Skip operator skips the first n elements of a sequence, yielding the remaining elements. If n <= 0 the result is the
sequence itself; if n >= sequence's length the result is an empty sequence.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

sequence itself; if n >= sequence's length the result is an empty sequence.

int[] ints = { 1, 2, 3, 4, 5, 6 };
var query = from ...;

var last3 = ints.Skip(3);
var bottom10 = query.Skip(query.Count() - 10);

foreach(var x in last3) // 4, 5, 6
 Console.WriteLine(x);
foreach(var r in bottom10)
 Console.WriteLine(r);

The sequence can be of any type T.

See also: Take.

6.1.39. SkipWhile

Given a function F and a sequence S, the SkipWhile operator skips the first n elements of S where F returns true, yielding
the remaining elements. Two versions of F are supported: accepting an element, or accepting an element along with its
0-based index in the sequence.

int[] ints = { 1, 2, 3, 4, 5, 6 };
var query = from ...;

var all = ints.SkipWhile(x => false);
var none = ints.SkipWhile(x => true);
var last3 = ints.SkipWhile((x,i) => i < 3);
var lastN = query.SkipWhile(result => ...);

foreach(var x in all) // 1, 2, 3, 4, 5, 6
 Console.WriteLine(x);
foreach(var x in none) // <none>
 Console.WriteLine(x);
foreach(var x in last3) // 4, 5, 6
 Console.WriteLine(x);
foreach(var r in lastN)
 Console.WriteLine(r);

The sequence can be of any type T.

See also: TakeWhile and Where.

6.1.40. Sum

The Sum operator computes the sum of a sequence of numeric values. The values are either the sequence itself or
selected out of a sequence of objects.

int[] ints = { 1, 2, 3, 4, 5, 6 };
decimal?[] values = { 1, null, 2, null, 3, 4 };
Doctors doctors = new Doctors();
var query = from ...;

int sum1 = ints.Sum();
decimal? sum2 = values.Sum();
double sumYears = doctors.Sum(doc =>
 DateTime.Now.Subtract(doc.StartDate).Days / 365.25);
var sum = query.Sum();

Console.WriteLine(sum1); // 21
Console.WriteLine(sum2); // 10
Console.WriteLine(sumYears.ToString("0.00")); // 68.61
Console.WriteLine(sum);

The values can be of type int, int?, long, long?, decimal, decimal?, double, or double?. The resulting type is the same.

See also: Aggregate, Average, Count, LongCount, Max, and Min.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See also: Aggregate, Average, Count, LongCount, Max, and Min.

6.1.41. Take

The Take operator yields the first n elements of a sequence. If n <= 0 the result is an empty sequence; if n >=
sequence's length the result is the sequence itself.

int[] ints = { 1, 2, 3, 4, 5, 6 };
var query = from ...;

var first3 = ints.Take(3);
var top10 = query.Take(10);

foreach(var x in first3) // 1, 2, 3
 Console.WriteLine(x);
foreach(var r in top10)
 Console.WriteLine(r);

The sequence can be of any type T.

See also: Skip.

6.1.42. TakeWhile

Given a function F and a sequence S, the TakeWhile operator yields the first n elements of S where F returns true. Two
versions of F are supported: accepting an element, or accepting an element along with its 0-based index in the
sequence.

int[] ints = { 1, 2, 3, 4, 5, 6 };
var query = from ...;

var all = ints.TakeWhile(x => true);
var none = ints.TakeWhile(x => false);
var first3 = ints.TakeWhile((x,i) => i < 3);
var firstN = query.TakeWhile(result => ...);

foreach(var x in all) // 1, 2, 3, 4, 5, 6
 Console.WriteLine(x);
foreach(var x in none) // <none>
 Console.WriteLine(x);
foreach(var x in first3) // 1, 2, 3
 Console.WriteLine(x);
foreach(var r in firstN)
 Console.WriteLine(r);

The sequence can be of any type T.

See also: SkipWhile and Where.

6.1.43. ThenBy

The ThenBy operator takes an ordered sequence and yields a secondary, ascending ordering; the keys used for the
secondary ordering are yielded by a function applied to each element. Ordered sequences are typically produced by
OrderBy or OrderByDescending, but can also be produced by ThenBy and ThenByDescending to yield additional sub-orderings.

Doctors doctors = new Doctors();

var docs = doctors.OrderBy(doc => doc.City).ThenBy(doc => doc.Initials);

foreach(var doc in docs)
 Console.WriteLine("{0}: {1}", doc.City, doc.Initials);

A second version allows you to provide a comparer of type IComparer for comparing keys and thus controlling the
ordering, e.g., when you want to compare strings in a case-insensitive manner:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ordering, e.g., when you want to compare strings in a case-insensitive manner:

var docs = doctors.OrderBy(doc => doc.City)
 .ThenBy(doc => doc.Initials,
 StringComparer.CurrentCultureIgnoreCase);

Use of an orderby clause in a query expression with subsequent keys translates into application of the ThenBy operator.
For example, the following are equivalent:

var docs = doctors.OrderBy(doc => doc.City).ThenBy(doc => doc.Initials);

var docs = from doc in doctors
 orderby doc.City, doc.Initials
 select doc;

See also: OrderBy, OrderByDescending, and ThenByDescending.

6.1.44. ThenByDescending

The ThenByDescending operator takes an ordered sequence and yields a secondary, descending ordering; the keys used for
the secondary ordering are yielded by a function applied to each element. Ordered sequences are typically produced by
OrderBy or OrderByDescending, but can also be produced by ThenBy and ThenByDescending to yield additional sub-orderings.

Doctors doctors = new Doctors();

var docs = doctors.OrderBy(doc => doc.City).ThenByDescending(doc => doc.Initials);

foreach(var doc in docs)
 Console.WriteLine("{0}: {1}", doc.City, doc.Initials);

A second version allows you to provide a comparer of type IComparer for comparing keys and thus controlling the
ordering, e.g., when you want to compare strings in a case-insensitive manner:

var docs = doctors.OrderBy(doc => doc.City)
 .ThenByDescending(doc => doc.Initials,
 StringComparer.CurrentCultureIgnoreCase);

Use of an orderby clause in a query expression with subsequent keys and the descending keyword translates into
application of the ThenBy operator. For example, the following are equivalent:

var docs = doctors.OrderBy(doc => doc.City).ThenByDescending(doc => doc.Initials);

var docs = from doc in doctors
 orderby doc.City, doc.Initials descending
 select doc;

See also: OrderBy, OrderByDescending, and ThenBy.

6.1.45. ToArray

The ToArray operator iterates across a sequence of values, yielding an array containing these values. For example,
doctors living in Chicago:

Doctors doctors = new Doctors();

var query = from doc in doctors
 where doc.City == "Chicago"
 select doc;

Doctor[] chicago = query.ToArray();

Since queries are lazily evaluated, ToArray is commonly used to execute a query and capture the results in a simple data
structure.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

structure.

See also: ToDictionary, ToList, ToLookup, and ToSequence.

6.1.46. ToDictionary

The ToDictionary operator iterates across a sequence of values, yielding a Dictionary<K, V> of (key, value) pairs. Each
key must be unique, resulting in a one-to-one mapping of key to value. For example, storing doctors by their initials:

Doctors doctors = new Doctors();

var query = from doc in doctors
 where doc.City == "Chicago"
 select doc;

Dictionary<string, Doctor> chicago = query.ToDictionary(doc => doc.Initials);

foreach(var pair in chicago)
 Console.WriteLine("{0}: {1}", pair.Key, pair.Value.PagerNumber);

Since queries are lazily evaluated, ToDictionary is commonly used to execute a query and capture the results in a data
structure that supports efficient lookup by key. For example, finding a doctor via their initials:

Doctor mbl = chicago["mbl"];

Another version provides control over exactly what values are stored in the data structure, e.g., only the doctor's email
address:

Dictionary<string, string> emails = doctors.ToDictionary(doc => doc.Initials,
 doc => doc.EmailAddress);

Finally, additional versions of ToDictionary allow you to provide a comparer of type IEqualityComparer for comparing keys.

See also: ToArray, ToList, ToLookup, and ToSequence.

6.1.47. ToList

The ToList operator iterates across a sequence of values, yielding a List<T> containing these values. For example,
doctors living in Chicago:

Doctors doctors = new Doctors();

var query = from doc in doctors
 where doc.City == "Chicago"
 select doc;

List<Doctor> chicago = query.ToList();

Since queries are lazily evaluated, ToList is commonly used to execute a query and capture the results in a flexible data
structure.

See also: ToArray, ToDictionary, ToLookup, and ToSequence.

6.1.48. ToLookup

The ToLookup operator iterates across a sequence of values, yielding a Lookup<K, V> of (key, value) pairs. The keys do
not need to be unique; values with the same key form a collection under that key, resulting in a one-to-many mapping
of key to values. For example, grouping doctors by city:

Doctors doctors = new Doctors();

var query = from doc in doctors
 select doc;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 select doc;

Lookup<string, Doctor> cities = query.ToLookup(doc => doc.City);

foreach(var pair in cities)
{
 Console.WriteLine("{0}:", pair.Key); // city
 foreach(var doc in pair) // doctors in that city
 Console.WriteLine(" {0}", doc.Initials);
}

Since queries are lazily evaluated, ToLookup is commonly used to execute a query and capture the results in a data
structure that supports efficient lookup by key. For example, finding the doctors living in Chicago:

IEnumerable<Doctor> docs = cities["Chicago"];

Another version provides control over exactly what values are stored in the data structure, e.g., only the doctor's
initials:

Lookup<string, string> cities = doctors.ToLookup(doc => doc.City,
 doc => doc.Initials);

Finally, additional versions of ToLookup allow you to provide a comparer of type IEqualityComparer for comparing keys.

See also: ToArray, ToDictionary, ToList, and ToSequence.

6.1.49. ToSequence

The ToSequence operator casts a sequence as a sequence, thereby hiding any public members of the original sequencein
particular those that might conflict or compete with the standard query operators. Use this operator when you want to
gain access to the standard LINQ query operators.

For example, the following use of the Count query operator fails to compile:

Doctors doctors = new Doctors();
int count = doctors.Count(doc => doc.City == "Chicago"); // ERROR!

It fails because the Doctors class provides a conflicting Count property (inherited from List<T>). The ToSequence operator
provides a quick solution:

int count1 = doctors.Count;
int count2 = doctors.ToSequence().Count();
int count3 = doctors.ToSequence().Count(doc => doc.City == "Chicago");

Console.WriteLine(count1); // 12
Console.WriteLine(count2); // 12
Console.WriteLine(count3); // 5

See also: ToArray, ToDictionary, ToList, and ToLookup.

6.1.50. Union

Given two sequences of elements S1 and S2, the Union operator returns the distinct elements of S1, followed by the
distinct elements of S2 not in S1. In other words, Union computes the set union of S1 and S2.

int[] intsS1 = { 1, 2, 2, 3, 2, 3, 4, 6 };
int[] intsS2 = { 6, 1, 3, 5 };
var query1 = from ...;
var query2 = from ...;

var allInts = intsS1.Union(intsS2);
var allResults = query1.Union(query2);

foreach(var x in allInts) // 1, 2, 3, 4, 6, 5

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

foreach(var x in allInts) // 1, 2, 3, 4, 6, 5
 Console.WriteLine(x);
foreach(var r in allResults)
 Console.WriteLine(r);

The sequences may contain elements of any type T. This element type T must be the same at compile-time (e.g. object),
but may differ at run-time:

object[] objects1 = { "abc", "def" };
object[] objects2 = { 1, 2, 3 };

var result = objects1.Union(objects2);

See also: Distinct, Except, and Intersect.

6.1.51. Where

The Where operator applies a function to a sequence of elements, yielding a sub-sequence of these elements.

int[] ints = {1, 2, 3, 4, 5, 6};
Doctors doctors = new Doctors();

var even = ints.Where(x => x % 2 == 0);
var chicago = doctors.Where(doc => doc.City == "Chicago");

foreach(var x in even) // 2, 4, 6
 Console.WriteLine(x);
foreach(var doc in chicago) // mbl, jl, kl, py, tm
 Console.WriteLine(doc.Initials);

Use of the where clause in a query expression translates into application of the Where operator. For example, the
following statements are equivalent:

var chicago = doctors.Where(doc => doc.City == "Chicago");

var chicago = from doc in doctors
 where doc.City == "Chicago"
 select doc;

A second version of the Where operator provides an element's 0-based index in the sequence along with the element
itself, for example:

var last3 = ints.Where((x,index) => (index >= ints.Length-3) ? true : false);

foreach (var x in last3) // 4, 5, 6
 Console.WriteLine(x);

See also: Select.

NOTE

The application of LINQ is limited only by your imagination (and time). Here are a couple of the more
interesting LINQ extensions floating around on the Web:

1. BLinq is a tool that generates an ASP.NET web application from a database schema. The web site
supports the display, creation, and manipulation of the data in the database. LINQ to SQL is used
for all database access, making the generated code easier to understand and modify. For more
information see http://www.asp.net/sandbox/app_blinq.aspx?tabid=62.

2. LINQ to Amazon extends LINQ to support the querying of Amazon.com. See
http://weblogs.asp.net/fmarguerie/archive/2006/06/26/Introducing-Linq-to-Amazon.aspx
(http://weblogs.asp.net/fmarguerie/archive/2006/06/26/Introducing-Linq-to-Amazon.aspx:).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.1. Lambda Expressions
From the developer's perspective, lambda expressions in C# 3.0 are a straightforward simplification of anonymous
methods. Whereas an anonymous method is an unnamed block of code, a lambda expression is an unnamed expression
that evaluates to a single value. Given a value x and an expression f(x) to evaluate, the corresponding lambda
expression is written

x => f(x)

For example, in C# 3.0 the previous call to FindAll with an anonymous method is significantly shortened by using a
lambda expression:

List<Doctor> inchicago = doctors.FindAll(x => x.City == "Chicago");

In this case, x is a doctor, and f(x) is the expression x.City == "Chicago", which evaluates to true or false. For readability,
let's substitute d for x:

List<Doctor> inchicago = doctors.FindAll(d => d.City == "Chicago");

Notice that this lambda expression matches the parameter and body of the anonymous method we saw earlier, minus
the syntactic extras like {}.

Lambda expressions are equivalent to anonymous methods that return a value when invoked, and are thus
interchangeable. In fact, the compiler translates lambda expressions into delegate-based code, exactly as it does for
anonymous methods.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.6. Lazy Evaluation
Interestingly, you may be a bit surprised by the behavior of queries in LINQ. Let's look at an example. First, consider
the following Boolean function that as a side-effect outputs the doctor's initials:

public static bool dump(Doctor d)
{
 System.Console.WriteLine(d.Initials);
 return true;
}

Now let's use dump in a simple query that will end up selecting all the doctors because the function always returns true:

var query = from d in doctors
 where dump(d)
 select d;

Here's the million dollar question: what does this query output? [Nothing!]

It turns out that the declaration of a query expression does just thatdeclares a query, but does not evaluate it.
Evaluation in most cases is delayed until the results of the query are actually requested, an approach known as lazy
evaluation. For example, the following statement outputs the initials of the first doctor:

query.GetEnumerator().MoveNext(); // outputs ==> "mbl"

By "moving" to the first element in the result set, we trigger a call to dump based on the first doctor, which outputs the
doctor's initials. Since dump returns true, this doctor satisfies the where condition, the doctor is considered part of the
result set, and MoveNext returns because it has successfully moved to the first element in the result set. Hence the
initials of the first doctor, and only the first doctor, are output. [What do you think happens if dump returns false for
the first doctor?]

To output the initials of all the doctors, we iterate across the entire result:

foreach (var result in query) // "mbl", "jl", "ch", ...
 ;

Again, it's sufficient to simply request each result in order to trigger evaluation (and in this case the output of the
doctor's initials), we do not have to access the resulting value.

You are probably wondering how lazy evaluation is supported in C# 3.0. In fact, the support was introduced in C# 2.0
via the yield construct. For example, here's the complete implementation of the standard LINQ query operator Where that
we discussed earlier:

public static class Sequence
{
 public static IEnumerable<T> Where<T>(this IEnumerable<T> source,
 Func<T, bool> predicate)
 {
 foreach (T element in source)
 if (predicate(element))
 yield return element;
 }
}

The yield return pattern produces the next value of the iteration and then returns. In response to yield, the C# compiler
generates the necessary code (essentially a nested iterator class) to implement IEnumerable and enable iteration to
continue where it left off.

NOTE

To learn more about how things work and what the C# compiler is doing, I highly recommend Lutz
Roeder's Reflector tool as a way to reverse-engineer your compiled code and see what's going on:
http://www.aisto.com/roeder/dotnet.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

http://www.aisto.com/roeder/dotnet.

One of the implications of LINQ's lazy evaluation is that query expressions are re-evaluated each time they are
processed. In other words, the results of a query are not stored or cached in a collection, but lazily evaluated and
returned on each request. The advantage is that changes in the data are automatically reflected in the next processing
cycle:

foreach (var result in query) // outputs initials for all doctors
 ;

doctors.Add(new Doctor("xyz", ...));

foreach (var result in query) // output now includes new doctor "xyz"
 ;

Another advantage is that complex queries can be constructed from simpler ones, and execution is delayed until the
final query is ready (and possibly optimized!).

If you want to force immediate query evaluation and cache the results, the simplest approach is to call the ToArray or
ToList methods on the query. For example, the following code fragment outputs the initials of all doctors three
consecutive times:

var cache1 = query.ToArray(); // evaluate query & cache results as an array

doctors.Add(new Doctor("xyz", ...));

System.Console.WriteLine("###");
var cache2 = query.ToList(); // evaluate query again & cache results as a list

System.Console.WriteLine("###");
System.Console.WriteLine(cache1.GetType());
System.Console.WriteLine(cache2.GetType());

foreach (var result in cache1) // output results of initial query:
 System.Console.WriteLine(result.Initials);

System.Console.WriteLine("###");

The second cache contains the new doctor, but the first does not. Here's the output:

mbl
jl
.
.
ks
###
mbl
jl
.
.
ks
xyz
###
Doctor[]
System.Collections.Generic.List`1[Doctor]
mbl
jl
.
.
ks
###

Most (but not all) of the standard LINQ query operators are lazily evaluated. The exception are operators that return a
single (scalar) value, such as Min and Max, which might as well produce the value instead of a collection containing that
value:

int minPager = doctors.Min(d => d.PagerNumber);
int maxPager = doctors.Max(d => d.PagerNumber);

System.Console.WriteLine("Pager range: {0}..{1}", minPager, maxPager);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Console.WriteLine("Pager range: {0}..{1}", minPager, maxPager);

The section on standard LINQ query operators will make note of which operators are lazily evaluated, and which are
not. But first, let's take a deeper look at what LINQ offers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 1. Learn LINQ and the C# 3.0 Features That
Support It
Imagine writing SQL-like queries entirely in C#, with IntelliSense and compile-time type checking. Imagine queries as
flexible as dynamically-generated SQL, yet as secure and efficient as calling stored procedures. Now take these same
queries and execute them against an XML document or against a collection of data objects. While Microsoft isn't quite
there yet, this is the goal of the LINQ project.

Language Integrated Query (LINQ) is a C# 3.0 API centered on data access. Developers focused on data access will be
able to leverage the LINQ API to interoperate with a variety of data sources and vendors in a consistent, object-
oriented fashion. The LINQ API is also extensible, as demonstrated by Microsoft's most important components of LINQ,
LINQ to SQL and LINQ to XML. The former provides LINQ-like manipulation of relational databases and the latter of XML
documents. You can expect future componentsboth from Microsoft and developers like yourselfto extend LINQ in new
and interesting ways.

The vast majority of LINQ is made possible by language extensions in C# 3.0 and VB 9.0, which will appear in the
upcoming 3.0 release of .NET. However, LINQ will also require a new version of the .NET Framework, which will follow
the upcoming 3.0 release. We shall tentatively refer to this version as .NET 3.5. The implication is that developers will
need to redeploy on .NET 3.5 to use LINQ.

NOTE

LINQ is still in development, and will be released in an upcoming version of .NET (3.5?). In the meantime,
you can experiment with LINQ by downloading the latest CTP for Visual Studio 2005 here:
http://msdn.microsoft.com/data/ref/linq.

The material for this Short Cut is based on the May 2006 CTP of LINQ. Since LINQ is beta software, I
encourage you to install Visual Studio 2005 and LINQ in a virtual environment, such as one created with
Virtual PC.

The source code accompanying this Short Cut is available at either of the following URLs:
http://www.oreilly.com/catalog/language1 or http://pluralsight.com/drjoe/pdfs/pdfs.aspx. To get started
yourself, install the latest LINQ CTP, startup Visual Studio 2005, expand the project types for C#, and
select "LINQ Preview." To see lots of examples of LINQ in action, try this site:
http://msdn.microsoft.com/vcsharp/future/linqsamples.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.1. LINQ to DataSets
LINQ supports the querying of both typed and untyped DataSets. Expanding on our theme of a hospital scheduling
application, suppose we have a namespace DataSets with a typed dataset SchedulingDocs containing three tables:
Doctors, Calls, and Vacations. The Doctors table contains one record for each doctor, the Calls table keeps track of
which doctor is on call each day, and the Vacations table makes note of vacation requests. The DataSet is summarized
in Figure 2.

Figure 5-1. Tables in the SchedulingDocs typed DataSet

Let's assume an instance of SchedulingDocs has been created and filled:

DataSets.SchedulingDocs ds = new DataSets.SchedulingDocs(); // create dataset
.
. // open connection to a database and fill each table?
.

To find all the doctors living within Chicago, the query is exactly as we've seen before:

var chicago = from d in ds.Doctors
 where d.City == "Chicago"
 select d;

In this case ds.Doctors denotes a DataTable object, and d represents a DataRow object. Since the DataSet is typed, these
objects are strongly-typed as DoctorsTable and DoctorsRow, respectively.

NOTE

For completeness, here's the code to create and fill an instance of SchedulingDocs, declared within the DataSets
namespace:

using System.Data.Common;
using DataSets;

SchedulingDocsTableAdapters.DoctorsTableAdapter doctorsAdapter;
SchedulingDocsTableAdapters.CallsTableAdapter callsAdapter;
SchedulingDocsTableAdapters.VacationsTableAdapter vacationsAdapter;
SchedulingDocs ds;
DbProviderFactory dbFactory;

dbFactory = DbProviderFactories.GetFactory(providerInfo);
ds = new SchedulingDocs();
doctorsAdapter = new SchedulingDocsTableAdapters.DoctorsTableAdapter();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

doctorsAdapter = new SchedulingDocsTableAdapters.DoctorsTableAdapter();
callsAdapter = new SchedulingDocsTableAdapters.CallsTableAdapter();
vacationsAdapter = new SchedulingDocsTableAdapters.VacationsTableAdapter();

using (DbConnection dbConn = dbFactory.CreateConnection())
{
 dbConn.ConnectionString = connectionInfo;
 dbConn.Open();

 doctorsAdapter.Fill(ds.Doctors);
 callsAdapter.Fill(ds.Calls);
 vacationsAdapter.Fill(ds.Vacations);
} //dbConn.Close();

LINQ supports the notion of joins, including inner and outer joins. For example, let's join the Doctors and Calls tables to
see which doctors are scheduled in the month of October 2006:

var oct2006 = (
 from d in ds.Doctors
 join c in ds.Calls
 on d.Initials equals c.Initials
 where c.DateOfCall >= new DateTime(2006, 10, 1) &&
 c.DateOfCall <= new DateTime(2006, 10, 31)
 orderby d.Initials
 select d.Initials
)
 .Distinct();

This query expression uses a number of standard LINQ query operators, including Join, OrderBy, and Distinct; Join
implements an inner equijoin.

LINQ is not limited to yielding tabular data, but will produce hierarchical results as appropriate. For example, suppose
we want to know not only which doctors are on call in October 2006, but also the dates. In this case, we join the
Doctors and Calls tables, now grouping the results:

var oct2006 = from d in ds.Doctors
 join c in ds.Calls
 on d.Initials equals c.Initials
 where c.DateOfCall >= new DateTime(2006, 10, 1) &&
 c.DateOfCall <= new DateTime(2006, 10, 31)
 group c by d.Initials into g
 select g;

Notice we group the calls ("c") on a per doctor basis ("d"). For each scheduled doctor, this yields an enumerable
collection of calls. Here's how we process the query:

 foreach (var group in oct2006)
{
 System.Console.WriteLine("{0}: ", group.Key);
 foreach (var call in group)
 System.Console.WriteLine(" {0}", call.DateOfCall.ToString("dd MMM yyyy"));
 System.Console.WriteLine(" calls = {0}", group.Count());
}

The hierarchical output appears as follows:

jl:
 02 Oct 2006
 calls = 1
mbl:
 01 Oct 2006
 31 Oct 2006
 calls = 2
.
.
.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

How about we re-order the results by those working the most, and select just the data we need in the result set:

var oct2006 = from d in ds.Doctors
 join c in ds.Calls
 on d.Initials equals c.Initials
 where c.DateOfCall >= new DateTime(2006, 10, 1) &&
 c.DateOfCall <= new DateTime(2006, 10, 31)
 group c by d.Initials into g
 orderby g.Count() descending
 select new { Initials = g.Key,
 Count = g.Count(),
 Dates = from c in g
 select c.DateOfCall };

foreach (var result in oct2006)
{
 System.Console.WriteLine("{0}:", result.Initials);
 foreach (var date in result.Dates)
 System.Console.WriteLine(" {0}", date.ToString("dd MMM yyyy"));
 System.Console.WriteLine(" calls = {0}", result.Count);
}

By projecting just the needed data, we can do things like data-bind the result for ease of display. The trade-off is that
this potentially requires another set of custom objects to be instantiated. However, keep in mind that the design of
LINQ enables the query operators to optimize away unnecessary object creation, much like compilers routinely
eliminate unneeded code. This is especially true when applying LINQ in other situations, such as against a database
(i.e., "LINQ to SQL").

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.5. LINQ to IEnumerable
One of the elegant design aspects of LINQ is that queries can be executed against any enumerable data source. If an
object implements IEnumerable, then LINQ can access the data behind that object. For example, suppose we need to
search the current user's My Documents folder (and sub-folders) for all non-system files modified in the last hour. Using
LINQ we do this as follows:

using SIO = System.IO;

string[] files;
string mydocs;

mydocs = Environment.GetFolderPath(Environment.SpecialFolder.MyDocuments);
files = SIO.Directory.GetFiles(mydocs, "*.*", SIO.SearchOption.AllDirectories);

var query = from file in files
 let lasthour = DateTime.Now.Subtract(new TimeSpan(0, 1, 0, 0))
 where SIO.File.GetLastAccessTime(file) >= lasthour &&
 (SIO.File.GetAttributes(file) & SIO.FileAttributes.System) == 0
 select file;

Notice the presence of the let statement, which allows for the definition of values local to the query; let is used to
improve readability and efficiency by factoring out common operations.

This example should not be very surprising, since what we are really doing is iterating across an array of filenames
("files"), not the file system itself. But this is a design artifact of the .NET Framework, not a limitation of LINQ. A similar
example is the searching of a file, which is easily done in LINQ by iterating across the lines of the file:

string filename = ...; // file to search

var lines = from line in SIO.File.ReadAllLines(filename)
 where line.Contains("class")
 select line;

In this example, we are reading all the lines into an array and then searching the array to select those lines containing
the character sequence "class."

Need to search the Windows event log? An event log is a collection of EventLogEntry objects, and is accessed in .NET by
creating an instance of the EventLog class. For example, here's how we gain access to the Application event log on the
current machine:

using SD = System.Diagnostics;

SD.EventLog applog = new SD.EventLog("Application", ".");

Suppose we need to find all events logged by our application for a particular user. This is easily expressed as a LINQ
query:

string appname = ...; // name of our application, e.g. "SchedulingApp"
string username = ...; // login name for user, e.g. "DOMAIN\\hummel"

var entries = from entry in applog.Entries
 where entry.Source == appname &&
 entry.UserName == username
 orderby entry.TimeWritten descending
 select entry;

Interestingly, while this query makes perfect sense, it does not compile. The issue is that EnTRies is a pre-2.0 collection,
which means it implements IEnumerable and not IEnumerable<T>. Since IEnumerable is defined in terms of object and not a
specific type T, the C# type inference engine cannot infer the type of objects the query expression is working with. The
designers of LINQ provide an easy solution in the form of the standard query operator Cast. The Cast operator wraps a
generic enumerable object with a type-specific one suitable for LINQ:

var entries = from entry in applog.Entries.Cast<SD.EventLogEntry>()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

var entries = from entry in applog.Entries.Cast<SD.EventLogEntry>()
 where entry.Source == appname &&
 entry.UserName == username
 orderby entry.TimeWritten descending
 select entry;

The Cast operator allows LINQ to support .NET 1.x collections.

As a final example, let's apply LINQ to the world of Visual Studio Tools for Office (VSTO). To search a user's Outlook
contacts, the basic query is as follows:

Outlook.MAPIFolder folder = this.ActiveExplorer().Session.
 GetDefaultFolder(Outlook.OlDefaultFolders.olFolderContacts);

var contacts = from contact in folder.Items.OfType<Outlook.ContactItem>()
 where ... // search criteria, e.g. contact.Email1Address != null
 select contact;

We take advantage of LINQ's OfType query operator, which (a) wraps pre-2.0 collections and (b) filters the collection to
return only those objects of the desired type. Here's a query to collect all distinct email addresses from a user's Outlook
contacts:

var emails = (
 from contact in folder.Items.OfType<Outlook.ContactItem>()
 where contact.Email1Address != null
 select contact.Email1Address
)
 .Distinct();

Finally, given collections of email addresses from different folders or users, we can use LINQ to perform various set
operations over these collections:

var union = emails.Union(emails2);
var intersection = emails.Intersect(emails2);
var difference = emails.Except(emails2);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.2. LINQ to SQL
Instead of executing our queries against a DataSet, suppose we want to execute against the database directly? No
problem. With LINQ to SQL, we change only the target of our query:

 Databases.SchedulingDocs db = new Databases.SchedulingDocs(connectionInfo);

var oct2006 = (// find all doctors scheduled for October 2006:
 from d in db.Doctors
 join c in db.Calls
 on d.Initials equals c.Initials
 where c.DateOfCall >= new DateTime(2006, 10, 1) &&
 c.DateOfCall <= new DateTime(2006, 10, 31)
 orderby d.Initials
 select d.Initials
)
 .Distinct();

In this case, SchedulingDocs is a class denoting a SQL Server 2005 database named SchedulingDocs. This class, and its
associated entity classesD o ctors, Calls, and Vacationswere automatically generated by LINQ's SQLMetal tool to represent
the database and its tables. As you would expect, the query expression is lazily evaluated, waiting for the query to be
consumed:

 foreach (var initials in oct2006) // execute the query:
 System.Console.WriteLine("{0}", initials);

The query is now translated into parameterized SQL, sent to the database for execution, and the result set produced.
How efficient is the generated SQL? In this case (and the May CTP of LINQ), a single select statement is executed
against the database:

SELECT DISTINCT [t0].[Initials]
 FROM [Doctors] AS [t0], [Calls] AS [t1]
 WHERE ([t1].[DateOfCall] >= @p0) AND
 ([t1].[DateOfCall] <= @p1) AND
 ([t0].[Initials] = [t1].[Initials])
 ORDER BY [t0].[Initials]

NOTE

In the May CTP of LINQ, SQLMetal is provided as a command-line tool. To run, first open a command
window and cd to the install directory for LINQ (most likely C:\Program Files\LINQ Preview\Bin). Now ask
SQLMetal to read the metadata from your database and generate the necessary class files. For the SQL
Server 2005 database named SchedulingDocs, the command is:

 C:\...\Bin>sqlmetal /server:. /database:SchedulingDocs
/language:csharp /code:SchedulingDocs.cs /namespace:Databases

This will generate a source code file SchedulingDocs.cs in the current directory.

Let's look at a more complex query that computes the number of calls for every doctor in the month of October 2006.
Recall that an inner join produces results for only those doctors that are working:

var oct2006 = from d in db.Doctors
 join c in db.Calls
 on d.Initials equals c.Initials
 where c.DateOfCall >= new DateTime(2006, 10, 1) &&
 c.DateOfCall <= new DateTime(2006, 10, 31)
 group c by d.Initials into g
 select new { Initials = g.Key, Count = g.Count() };

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An outer join is needed to capture the results for all doctors, whether scheduled or not. Outer joins are based on LINQ's
join ... into syntax:

var allOct2006 = from d1 in db.Doctors // join all doctors
 join d2 in oct2006 // with those working in Oct 2006
 on d1.Initials equals d2.Initials
 into j
 from r in j.DefaultIfEmpty()
 select new { Initials = d1.Initials,
 Count = (r == null ? 0 : r.Count) };

This left outer join produces a result set "into" j, which is then enumerated across using the sub-expression "from r in
...". If a given doctor is working, then r is the joined result; if the doctor is not working then the result is empty, in
which case j.DefaultIfEmpty() returns null. For each doctor, we then project their initials and the number of calls they are
workingeither 0 or the count from the inner join. Iterating across the query:

foreach (var result in allOct2006)
 System.Console.WriteLine("{0}: {1}", result.Initials, result.Count);

Yields:

ay: 7
bb: 0
ch: 3
.
.
.

When the query is executed, the following SQL is sent to the database (this is a test intended for the SQL wizards in the
audience):

SELECT [t7].[Initials], [t7].[value] AS [Count]
FROM (
 SELECT
 (CASE
 WHEN [t4].[test] IS NULL THEN 0
 ELSE (
 SELECT COUNT(*)
 FROM [Doctors] AS [t5], [Calls] AS [t6]
 WHERE ([t4].[Initials] = [t5].[Initials]) AND
 ([t6].[DateOfCall] >= @p0) AND
 ([t6].[DateOfCall] <= @p1) AND
 ([t5].[Initials] = [t6].[Initials])
)
 END) AS [value], [t0].[Initials]
 FROM [Doctors] AS [t0]
 LEFT OUTER JOIN (
 SELECT 1 AS [test], [t3].[Initials]
 FROM (
 SELECT [t1].[Initials]
 FROM [Doctors] AS [t1], [Calls] AS [t2]
 WHERE ([t2].[DateOfCall] >= @p0) AND
 ([t2].[DateOfCall] <= @p1) AND
 ([t1].[Initials] = [t2].[Initials])
 GROUP BY [t1].[Initials]
) AS [t3]
) AS [t4] ON [t0].[Initials] = [t4].[Initials]
) AS [t7]

NOTE

In all fairness, it should be noted that the focus of this Short Cut is LINQ, and not particularly LINQ to SQL.
For this reason, the picture painted of LINQ to SQL is quite superficial. For example, in LINQ to SQL,
queries are translated to SQL and executed with SQL semantics. In comparison, most other LINQ queries
are directly executed by .NET Framework objects with CLR semantics. Likewise, LINQ to SQL handles
changes to the data quite differently than other flavors of LINQ. For more details, we encourage you to
read the forthcoming Part 2 of this Short Cut series on LINQ (expected fall 2006), which focuses
exclusively on LINQ to SQL. Watch for an announcement at http://oreilly.com

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.4. LINQ to XML
From its beginnings, LINQ was designed to manipulate XML data as easily as it manipulates relational data. LINQ to XML
represents a new API for XML-based development, equivalent in power to XPath and XQuery yet far simpler for most
developers to use.

For example, let's assume the data source for our hospital scheduling application is an XML document stored in the file
SchedulingDocs.xml. Here's the basic structure of the document:

<?xml version="1.0" standalone="yes"?>
<SchedulingDocs>
 <Calls>
 <Call>
 <Initials>mbl</Initials>
 <DateOfCall>2006-10-01T00:00:00-05:00</DateOfCall>
 </Call>
 .
 .
 .
 </Calls>
 <Doctors>
 <Doctor>
 <Initials>ay</Initials>
 <GivenFirstName>Amy</GivenFirstName>
 <FamilyLastName>Yang</FamilyLastName>
 <PagerNumber>53300</PagerNumber>
 <EmailAddress>ayang@uhospital.edu</EmailAddress>
 <StreetAddress>1400 Ridge Ave.</StreetAddress>
 <City>Evanston</City>
 </Doctor>
 .
 .
 .
 </Doctors>
 <Vacations>
 <Vacation>
 <Initials>jl</Initials>
 <DateOfDayOff>2006-10-03T00:00:00-05:00</DateOfDayOff>
 </Vacation>
 .
 .
 .
 </Vacations>
</SchedulingDocs>

Using LINQ, we load this document as follows:

import System.Xml.XLinq; // LINQ to XML

XElement root, calls, doctors, vacations;

root = XElement.Load("SchedulingDocs.xml");

calls = root.Element("Calls");
doctors = root.Element("Doctors");
vacations = root.Element("Vacations");

We now have access to the three main elements of the XML document: calls, doctors, and vacations. To select all the
doctors, it's a simple query expression:

var docs = from doc in doctors.Elements()
 select doc;

And to find just those doctors living in Chicago:

var chicago = from doc in doctors.Elements()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

var chicago = from doc in doctors.Elements()
 where doc.Element("City").Value == "Chicago"
 orderby doc.Element("Initials").Value
 select doc;

As you can see, querying XML documents with LINQ is conceptually the same as that of relational databases, DataSets,
and other objects. The difference is that the structure of the XML document must be taken into account, e.g., in this
case the document's hierarchical design and its use of elements over attributes.

An important aspect of LINQ is the ability to easily transform data into other formats. In the world of XML,
transformation is commonplace given the need to create XML documents as well as translate from one schema to
another. For example, suppose we need to produce a new XML document containing just the names of the doctors, with
their initials as an attribute:

<?xml version="1.0" standalone="yes"?>
<Doctors>
 <Doctor Initials="bb">Boswell, Bryan</Doctor>
 <Doctor Initials="lg">Goldstein, Luther</Doctor>
 .
 .
 .
</Doctors>

This document is easily produced by the following query, which simply projects new XElements:

var docs = from doc in doctors.Elements()
 orderby doc.Element("FamilyLastName").Value,
 doc.Element("GivenFirstName").Value
 select new XElement("Doctor",
 new XAttribute("Initials", doc.Element("Initials").Value),
 doc.Element("FamilyLastName").Value +
 ", " +
 doc.Element("GivenFirstName").Value);

XElement newroot = new XElement("Doctors", docs);

The last statement creates the root element <Doctors>, using the query to generate the <Doctor> sub-elements.

Finally, here's a real-world example of translating a text-based IIS logfile into an XML document. This example comes
from a series of posts to the MSDN LINQ Project General Forum, "Transforming a TXT file into XML with LINQ to XML,"
http://forums.microsoft.com/MSDN/ShowPost.aspx?PostID=574140&SiteID=1. The logfile contains 0 or more lines of
the form:

Time IP-address Method URI Status

For example:

#Software: Microsoft Internet Information Services 5.1
#Version: 1.0
#Date: 2006-06-23 12:37:18
#Fields: time c-ip cs-method cs-uri-stem sc-status
12:37:18 127.0.0.1 GET /cobrabca 404
12:37:25 127.0.0.1 GET /cobranca 401
.
.
.

Here's the LINQ query to produce an XML document from such a log:

var logIIS = new XElement("LogIIS",
 from line in File.ReadAllLines("file.log")
 where !line.StartsWith("#")
 let items = line.Split(' ')
 select new XElement("Entry",
 new XElement("Time", items[0]),
 new XElement("IP", items[1]),
 new XElement("Url", items[3]),
 new XElement("Status", items[4])
)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

)
);

LINQ over a text file? The next section will discuss this, and other examples, in more detail.

NOTE

The general focus of this Short Cut precludes an in-depth treatment of LINQ to XML. For more details, we
encourage you to read the forthcoming Part 3 of this Short Cut series (expected Q4 2006), which focuses
exclusively on LINQ to XML. Watch for an announcement at http://oreilly.com

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LINQ: The Future of Data Access in C# 3.0
By Joe Hummel
...
Publisher: O'Reilly
Pub Date: October 01, 2006
Print ISBN-10: 0-596-52841-8
Print ISBN-13: 978-0-59-652841-6
Pages: 64

Table of Contents

Language Integrated Query (LINQ) is Microsoft's new technology for powerful, general purpose data access. This
technology provides a fully-integrated query language, available in both C# 3.0 and VB 9.0, for high-level data access
against objects, relational databases, and XML documents. In this Short Cut you'll learn about LINQ and the proposed
C# 3.0 extensions that support it. You'll also see how you can use LINQ and C# to accomplish a variety of tasks, from
querying objects to accessing relational data and XML. Best of all, you'll be able to test the examples and run your
own code using the latest LINQ CTP, available free from Microsoft. This Short Cut includes a complete reference to the
standard LINQ query operators.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.4. Query Expressions
A LINQ query is called a query expression. Query expressions start with the keyword from, and are written using SQL-
like query operators such as Select, Where, and OrderBy:

using System.Query; // import standard LINQ query operators

// all doctors living in Chicago, sorted by last name, first name:
var chicago = from d in doctors
 where d.City == "Chicago"
 orderby d.FamilyLastName, d.GivenFirstName
 select d;

foreach (var r in chicago)
 System.Console.WriteLine("{0}, {1}", r.FamilyLastName, r.GivenFirstName);

By default, you must import the namespace System.Query to gain access to the standard LINQ query operators.

As noted earlier, type inference is used to make query expressions easier to write and consume:

 var chicago = from d in doctors ... select d;

foreach (var r in chicago) ... ;

But what exactly is a query expression? What type is inferred for the variable chicago above? Consider SQL. In SQL, a
select query is a declarative statement that operates on one or more tables, producing a table. In LINQ, a query
expression is a declarative expression operating on one or more IEnumerable objects, returning an IEnumerable object.
Thus, a query expression is an expression of iteration across one or more objects, producing an object over which you
iterate to collect the result. For example, let's be type-specific in our previous declaration:

 IEnumerable<Doctor> chicago = from d in doctors ... select d;

LINQ defines query expressions in terms of IEnumerable<T> to hide implementation details (preserving flexibility!) while
conveying in a strongly-typed way the key concept that a query expression can be iterated across:

foreach (Doctor d in chicago) ... ;

Of course, type inference conveniently hides this level of detail without any loss of safety or performance.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 6. Standard LINQ Query Operators
LINQ provides a wide-range of query operators, many of which have been demonstrated in the previous sections. The
purpose of this section is to succinctly summarize the complete set of LINQ query operators listed in Table 1. Recall that
you must import the System.Query namespace to use these operators.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 4. Supporting LINQ in C# 3.0
Generics, delegates, and anonymous methods in C# 2.0 provide insight into how LINQ is supported in C# 3.0. Let's
consider once again the problem of finding all doctors living within the Chicago city limits. As shown earlier, here's the
obvious approach using foreach:

List<Doctor> inchicago = new List<Doctor>();
foreach (Doctor d in doctors)
 if (d.City == "Chicago")
 inchicago.Add(d);

A more elegant approach currently available in C# 2.0 is to take advantage of the collection's FindAll method, which can
be passed a delegate to a function that determines whether the doctor resides in Chicago:

public delegate bool Predicate<T>(T obj); // pre-defined in .NET 2.0

public bool IsInChicago(Doctor obj) // notice how this matches delegate signature
{
 return obj.City == "Chicago";
}
.
.
.

List<Doctor> inchicago = doctors.FindAll(new Predicate<Doctor>(this.IsInChicago));

FindAll iterates through the collection, building a new collection containing those objects for which the delegate-invoked
function returns true.

A more succinct version passes an anonymous method to FindAll:

List<Doctor> inchicago = doctors.FindAll(delegate(Doctor d)
 {
 return d.City == "Chicago";
 });

The {} denote the body of the anonymous method; notice these fall within the scope of the () in the call to FindAll. The
signature of the anonymous methodin this case a Boolean function with a single Doctor argumentis type-checked by the
compiler to ensure that it matches the definition of the argument to FindAll. The compiler then translates this version into
an explicit delegate-based version, assigning a unique name to the underlying method:

private static bool b__0(Doctor d)
{
 return d.City == "Chicago";
}

List<Doctor> inchicago = doctors.FindAll(new Predicate<Doctor>(b__0));

While this has nothing to do with LINQ per se, this approach of translating from one abstraction to another exemplifies
how LINQ integrates into C# 3.0.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 3. The LINQ Architecture
In scanning the examples in the previous section, you probably noticed use of the var keyword, as well as the use of the
new keyword without an accompanying class name. What you see are two new features of C# 3.0, namely type
inference and anonymous types, added to the language in support of LINQ. Additional language features include query
expressions, lambda expressions, expression trees, extension methods, and object initializers, all of which will be
explained in the following sections.

Figure 3-1. LINQ_Architecture

LINQ's architecture is designed around a high-level, collection-like abstraction. This means that LINQ queries are
written in C# 3.0 against the notion of an object collection, and then translated by the compiler into IL for execution
against a particular data source (see Figure 1). This provides many benefits, including:

Ability to target different data sources, e.g. databases and XML documents.

Ability to use LINQ with existing .NET 1.* and 2.0 objects.

Ability to extend LINQ to support new classes and technologies.

As an analogy, consider the foreach loop. The foreach is merely syntactic sugar for a while loop written against the
IEnumerable and IEnumerator interfaces. However, foreach represents a convenient and powerful abstraction, allowing
intuitive iteration across different types of collections, today and in the future. It's now hard to imagine C# or VB
without foreach.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LINQ: The Future of Data Access in C# 3.0
By Joe Hummel
...
Publisher: O'Reilly
Pub Date: October 01, 2006
Print ISBN-10: 0-596-52841-8
Print ISBN-13: 978-0-59-652841-6
Pages: 64

Table of Contents

 Copyright

 Chapter 1. Learn LINQ and the C# 3.0 Features That Support It

 Chapter 2. A Quick Introduction to LINQ

 Chapter 3. The LINQ Architecture

 Chapter 4. Supporting LINQ in C# 3.0

 Section 4.1. Lambda Expressions

 Section 4.2. Type Inference

 Section 4.3. Anonymous Types and Object Initializers

 Section 4.4. Query Expressions

 Section 4.5. Extension Methods

 Section 4.6. Lazy Evaluation

 Chapter 5. Applying LINQ

 Section 5.1. LINQ to DataSets

 Section 5.2. LINQ to SQL

 Section 5.3. Create, Read, Update, and Delete with LINQ

 Section 5.4. LINQ to XML

 Section 5.5. LINQ to IEnumerable

 Chapter 6. Standard LINQ Query Operators

 Section 6.1.

 Chapter 7. Extending LINQ

 Chapter 8. For Further Information

 Chapter 9. Acknowledgements

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.2. Type Inference
Interestingly, there is one very subtle difference between lambda expressions and anonymous methods: the latter
require type information, while the former do not. Returning to our example, notice that the lambda expression

d => d.City == "Chicago"

does not specify a type for d. Without a type, the compiler cannot translate the lambda expression into the equivalent
anonymous method:

delegate(?????? d) // what type is the argument d?
{
 return d.City == "Chicago";
}

To make this work, C# 3.0 is actually inferring the type of d in the lambda expression, based on contextual information.
For example, since doctors is of type List<Doctor>, the compiler can prove that in the context of calling FindAll

doctors.FindAll(d => d.City == "Chicago")

d must be of type Doctor.

Type inference is used throughout C# 3.0 to make LINQ more convenient, without any loss of safety or performance.
The idea of type inference is that the compiler infers the types of your variables based on context, not programmer-
supplied declarations. The compiler does this while continuing to enforce strict, compile-time type checking.

As we saw earlier when introducing LINQ, developers can take advantage of type inference by using the var keyword
when declaring local variables. For example, the declarations

var sum = 0;
var avg = 0.0;
var obj = new Doctor(...);

trigger the inference of int for sum, double for avg, and Doctor for obj. The initializer in the declaration is used to drive the
inference engine, and is required. The following are thus illegal:

var obj2; // ERROR: must have an initializer
var obj3 = null; // ERROR: must have a specific type

Assuming the inference is successful, the inferred type becomes permanent and compilation proceeds as usual.
Apparent misuses of the type are detected and reported by the compiler:

var obj4 = "hi!";
.
.
.
obj4.Close(); // Oops, wrong object! (ERROR: 'string' does not contain 'Close').

Do not confuse var with the concept of a VB variant (it's not), nor with the concept of var in dynamic languages like
JavaScript (where var really means object). In these languages the variable's type can change, and so type checking is
performed at runtimeincreased flexibility at the cost of safety. In C# 3.0 the type cannot change, and all type checking
is done at compile-time. For example, if the inferred type is object (as for obj6 below), in C# 3.0 you end up with an
object reference of very little functionality:

object obj5 = "hi"; // obj5 references the string "hi!", but type is object
var obj6 = obj5; // obj6 also references "hi!", with inferred type object
.
.
.
string s1 = obj6.ToUpper(); // ERROR: 'object' does not contain 'ToUpper'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

string s1 = obj6.ToUpper(); // ERROR: 'object' does not contain 'ToUpper'

While developers will find type inference useful in isolation, the real motivation is LINQ. Type inference is critical to the
success of LINQ since queries can yield complex results. LINQ would be far less attractive if developers had to explicitly
type all aspects of their queries. In fact, specifying a type is sometimes impossible, e.g., when projections select new
patterns of data:

 var query = from d in doctors
 where d.City == "Chicago"
 select new { d.GivenFirstName, d.FamilyLastName }; // type?

foreach (var r in query)
 System.Console.WriteLine("{0}, {1}", r.FamilyLastName, r.GivenFirstName);

In these cases, typing is better left to the compiler.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

