
 < Day Day Up >

• Table of Contents
• Index
• Reviews
• Reader Reviews
• Errata
• Academic
Linux Unwired

By Edd Dumbill, Brian Jepson, Roger Weeks

Publisher: O'Reilly

Pub Date: April 2004

ISBN: 0-596-00583-0

Pages: 312

Slots: 1.0

Linux Unwired is a one-stop wireless information source for on-the-go Linux users. Whether you're considering Wi-Fi as
a supplement or alternative to cable and DSL, using Bluetooth to network devices in your home or office,or want to use
cellular data plans for access to data nearly everywhere, this book will show you the full-spectrum view of wireless
capabilities of Linux, and how to take advantage of them.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

• Table of Contents
• Index
• Reviews
• Reader Reviews
• Errata
• Academic
Linux Unwired

By Edd Dumbill, Brian Jepson, Roger Weeks

Publisher: O'Reilly

Pub Date: April 2004

ISBN: 0-596-00583-0

Pages: 312

Slots: 1.0

 Copyright

 Foreword

 Preface

 What This Book Covers

 Conventions Used in This Book

 Comments and Questions

 Acknowledgments

 Chapter 1. Introduction to Wireless

 Section 1.1. Radio Waves

 Section 1.2. Connections Without Wires

 Section 1.3. Wireless Alphabet Soup

 Section 1.4. Bluetooth

 Section 1.5. Cellular Data

 Section 1.6. Infrared

 Chapter 2. Wi-Fi on Your Linux Box

 Section 2.1. Quick Start

 Section 2.2. Chipset Compatibility

 Section 2.3. Four Steps to Wi-Fi

 Section 2.4. Linux Wi-Fi Drivers in Depth

 Chapter 3. Getting On the Network

 Section 3.1. Hotspots

 Section 3.2. Wireless Network Discovery

 Chapter 4. Communicating Securely

 Section 4.1. The Pitfalls of WEP

 Section 4.2. The Future Is 802.11i

 Section 4.3. WPA: a Subset of 802.11i

 Section 4.4. WPA on Linux

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Chapter 5. Configuring Access Points with Linux

 Section 5.1. Linux-Friendly Wireless Vendors

 Section 5.2. Commercial Wireless Equipment Overview

 Section 5.3. Configuring Access Points

 Section 5.4. Flashing Your Access Point

 Chapter 6. Building Your Own Access Point

 Section 6.1. Hardware

 Section 6.2. Software

 Section 6.3. Linux-Powered Off-the-Shelf

 Chapter 7. Bluetooth

 Section 7.1. Quick Start

 Section 7.2. Bluetooth Basics

 Section 7.3. Bluetooth Hardware

 Section 7.4. Linux Bluetooth Support

 Section 7.5. Installing the BlueZ Utilities

 Section 7.6. Basic Configuration and Operation

 Section 7.7. Graphical Applications

 Section 7.8. Cool Bluetooth Tricks

 Chapter 8. Infrared

 Section 8.1. IrDA in the Kernel

 Section 8.2. PC Laptop with Built-In IrDA

 Section 8.3. Infrared Dongle

 Section 8.4. Sharing a Network Connection over IrDA

 Section 8.5. Connecting to the Internet with a Cell Phone

 Section 8.6. Transferring Files with OpenOBEX

 Section 8.7. Synchronizing with a Palm

 Section 8.8. Pocket PC

 Chapter 9. Cellular Networking

 Section 9.1. Cellular Data

 Section 9.2. Some Cellular Carriers

 Section 9.3. Phones and Cards

 Section 9.4. Sending a Fax

 Section 9.5. Text Messaging

 Section 9.6. Acceleration

 Chapter 10. GPS

 Section 10.1. Uses of GPS

 Section 10.2. A GPS Glossary

 Section 10.3. GPS Devices

 Section 10.4. Listening to a GPS

 Section 10.5. Mapping Wi-Fi Networks with Kismet

 Section 10.6. GpsDrive

 Section 10.7. Other Applications

 Colophon

 Index

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Copyright © 2004 O'Reilly Media, Inc.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safari.oreilly.com). For more information, contact our corporate/institutional sales
department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Reilly Media, Inc.
The Linux series designations, Linux Unwired, images of the American West, and related trade dress are trademarks of
O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and O'Reilly Media, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Foreword
This is a book about two revolutions: free software and free wireless networking.

The first revolution was born in 1991, when a lone Finnish hacker named Linus Torvalds used the GNU Project's free C
compiler to build Linux, a free Unix-like operating system kernel. One of the hallmarks of this kernel was its release
under the GNU Public License, which guaranteed that anyone would be able to customize and improve the Linux kernel
to suit their computing needs, and that those improvements would be shared with the other users of the Linux kernel.

Today, Linus Torvalds is virtually a household name, and his brainchild has gone on to star in millions of personal
computers, web servers, supercomputing clusters, embedded devices, mainframes, and more. Bolstered by the success
of Linux and its BSD-derived cousins, a globe-spanning Free Software movement has taken hold, spawning thousands
of community-supported projects, and fundamentally altering how software is made and distributed in the 21st century.

Although the second revolution has been lurking in the background for years, it received a major boost in 1999 from
the publication of the IEEE 802.11b standard, a specification for wireless data networking that made use of the 2.4 GHz
microwave band, which had long been considered "junk" spectrum in the U.S. As consumer 802.11b devices hit the
market, more and more people were able to use computers and access the network from an ever widening array of
locales—living room couches, conference rooms, coffee shops, and even sunny park benches.

Meanwhile, ordinary individuals were discovering that, using nothing more than off-the-shelf radio hardware and the
right antennas, they could build wide-area—and even metropolitan-area—IP network infrastructure for the first time
ever, without the need for costly or restrictive government licenses. The result has been a quantum leap in ubiquitous
computing, with millions of 802.11 devices in use across the world. The newer IEEE 802.11a and 802.11g standards are
now implemented to offer even more possibilities for free data networking.

The operative word at the heart of both of these revolutions is the word "free," but the concept it refers to is freedom.
Trivially, they offer the opportunity to download an operating system free of charge or perhaps to escape the tyranny of
Ethernet cables. But on a deeper level, these revolutions promise basic freedoms of action and of speech—the freedom
to employ your computing hardware to communicate with others as you see fit, and not merely as commercial interests
dictate. Unlike many of the technical choices available to you today, Linux and 802.11 serve to enhance your freedom
and expand your options, rather than to constrain them.

As the title implies, Linux Unwired guides you through configuring and using Linux with the 802.11 protocols, as well as
Bluetooth, IR, cellular data networking, and GPS. Ultimately, though, this is a book about freedom. This book shows
you how to harness the combined power of these technologies to expand your options and your technical horizons.

Welcome to the revolution(s). May you do good work!

—Schuyler Erle
February, 2004

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Preface
Take a trip to the computer store, buy a Wi-Fi card, and insert it into your Linux notebook. You will probably hear two
beeps; are they both happy beeps, or is one of them an angry beep? It's possible that you will receive a happy beep,
but with the variety of hardware, firmware, and software drivers for Wi-Fi cards, it's quite likely that you will receive the
angry beep. Next, go through this exercise with a Bluetooth adapter, cell phone, and some other random wireless
hardware.

This book is all about hearing the happy beeps.

Wireless networks are popping up everywhere; from Wi-Fi hotspots to cellular data plans, you can connect to the
Internet virtually anywhere. You can even cut more cables with technologies like Bluetooth and Infrared. Linux is
already an amazing operating system, and combined with wireless, its strengths are amplified.

But things really shine when you combine wireless technologies. This book also discusses using wireless technology in
combination, whether you want to share your Wi-Fi connection to Bluetooth devices or map out Wi-Fi networks with a
Global Positioning System (GPS) device.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

What This Book Covers
This book explains how to use the following wireless technologies with Linux:

Wireless Fidelity (Wi-Fi)

Wi-Fi is short-range wireless networking that supports raw speeds up to 54 Mbps (about 20-25 Mbps actual
speeds). It's an affordable replacement for wired Ethernet, and includes the 802.11b, 802.11g, and 802.11a
protocols. Chapter 1 through Chapter 6 discuss Wi-Fi.

Bluetooth

Bluetooth is a wireless cable-replacement that allows you to get rid of USB and serial cables. You can use it to
connect a Personal Digital Assistant (PDA), such as a Palm or Pocket PC, to Linux; create an ad-hoc network; or
transfer files between computers. Bluetooth is covered in Chapter 7.

Infrared

Infrared has been available for a long time, and in some cases, it's the only way that two devices will talk to
each other, particularly with older PDAs. Infrared uses light waves that are just outside the range of visible
light. Infrared is covered in Chapter 8.

Cellular networking

Although Wi-Fi is fast and reliable, it disappears the moment you leave its useful range. Cellular networks cover
large areas, reach speeds between 40 kbps and 100 kbps, and even work reliably while you are in a moving
vehicle. With unlimited data plans starting at $19.99 a month from some providers, cellular data plans can be a
useful complement to Wi-Fi. Chapter 9 covers cellular data.

Global Positioning System (GPS)

Use a GPS to figure out your location in two or three dimensions. Plugged into a Linux computer, a GPS device
becomes a source of location data that can be combined with freely available maps to plot locations of wireless
networks, figure out where you are, or map out whatever interests you. GPS is covered in Chapter 10.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Conventions Used in This Book
This book uses the following abbreviations:

Hz, kHz, MHz, and GHz

Hertz (cycles per second), kilohertz (one thousand hertz), megahertz (one million hertz), and gigahertz (one
billion, or 109 hertz)

bps, kbps, Mbps

Bits per second, kilobits (1,024 bits) per second, and megabits (1,048,576 bits) per second

KB/s, MB/s

Kilobytes (1,024 bytes) per second and megabytes (1,048,576 bytes) per second

MB

Megabytes (1,048,576 bytes) of hard disk or RAM storage

mW

Milliwatts; one thousandth of a watt of power output

This book uses the following typographic conventions:

Constant width

Used for listing the output of command-line utilities

Constant width italic

Used to show items that need to be replaced in commands

Italic

Used for emphasis, for first use of a technical term, and for example URLs

...

Indicates text that has been omitted for clarity

This icon indicates a tip, suggestion, or general note.

This icon indicates a warning or caution.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Comments and Questions
Please address any comments or questions concerning this book to the publisher:

O'Reilly & Associates
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the U.S. or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

O'Reilly has a web site for this book where examples, errata, and any plans for future editions are listed. You can
access this site at:

http://www.oreilly.com/catalog/lnxunwired

For more information about this book and others, see the O'Reilly web site:

http://www.oreilly.com

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Acknowledgments

Roger Weeks

Writing this book would not have been possible without the backing and inspiration of my wife, Cynthia. Despite a
house sometimes too cluttered with geek gear, long technical conversations, and more than one late night, she's always
there for me.

Many thanks also to Schuyler Erle, who not only got the book approved by O'Reilly, but somehow managed to convince
them that I should be the author.

All of the "Cats" should be thanked publicly for their amazing amounts of knowledge, friendship, and hard work: Rob
Flickenger, Schuyler Erle, Adam Flaherty, Nate Boblitt, Jim Rosenbaum, and Rich Gibson. Without them, significant
parts of the West Coast would be very boring, and the wireless community would be much poorer.

Finally, many thanks to Brad Silva for excellent hardware advice and soldering skills.

Edd Dumbill

I would like to thank Marcel Holtmann and Maxim Krasnyansky for their devoted work on the BlueZ Linux Bluetooth
stack and, of course my wife Rachael for her patient support.

Brian Jepson

My thanks go out to Schuyler Erle and Rob Flickenger for helping to develop the original outline of this book and for
technical review. Thanks also to Adam Flaherty for technical review. I'm very grateful to Roger and Edd for being such
great coauthors.

I'd especially like to thank my wife, Joan, and my stepsons, Seiji and Yeuhi, for their support and encouragement
through my late night and weekend writing sessions, my occasional trips around town in a car full of Wi-Fi and GPS
equipment, and the various milliwattage that soaked through the walls of my home office while I worked on this book.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 1. Introduction to Wireless
Wireless networks use radio waves to move data without wires and they have been around in one form or another for
decades. Teletype, or telex, systems were established worldwide in the early 1920s. These systems used copper lines
to connect two or more teletype machines. Government investments in military radios lead to innovations in radio;
teletype over radio (TOR), or radioteletype, replaced many teletype systems, particularly in third-world countries that
lacked copper-wire infrastructures. In many parts of the world, TOR is still used as the primary communications
medium for governments. TOR uses the high frequency (HF) radio band. We'll cover the types of radio bands later in
this chapter.

In 1970, Norm Abramson, a professor of engineering at the University of Hawaii, developed a radio-based
communications system known as ALOHANET. This was the world's first wireless packet-switched network, which allows
multiple devices to transmit and receive data simultaneously. The research behind ALOHANET was used by Bob Metcalfe
to develop the Ethernet standard for wired networking.

Presently, there are many types of wireless networks in use around the world. The 802.11 protocol set, popularly
known as Wi-Fi, includes wireless network standards that allow data transmission up to a theoretical 54 Mbps. The
Global Positioning System (GPS) uses a wireless connection from a receiver to a series of satellites to fix a location
precisely on the planet. There are several wireless networking standards in the mobile-phone world, including General
Packet Radio Service (GPRS) and Code Division Multiple Access (CDMA) 1xRTT (1x Radio Transmission Technology).
Subsequent chapters will discuss all of these in detail.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.1 Radio Waves
Radio waves are created when electrically charged particles accelerate with a frequency that lies in the radio frequency
(RF) portion of the electromagnetic spectrum. Other emissions that fall outside of the RF spectrum include X-rays,
gamma rays, and infrared and ultraviolet light. When a radio wave passes a copper wire or another electrically sensitive
device, it produces a moving electric charge, or voltage, which can be transformed into an audio or data signal.

Radio waves can be depicted mathematically as a sinusoidal curve, as shown in Figure 1-1.

Figure 1-1. A sine wave representing a radio wave

The distance covered by a complete sine wave (a cycle) is known as the wavelength. The height of the wave is called
the amplitude. The number of cycles made in a second is known as the frequency. Frequency is measured in Hertz (Hz),
also known as cycles per second. So, a 1 Hz signal makes a full cycle once per second. You should be familiar with this
unit of measurement: if your new computer's CPU operates at 2 GHz, the internal clock of your CPU generates signals
roughly at two billion cycles per second.

Note that frequency is inversely proportional to the wavelength: the longer the
wavelength, the lower the frequency; the shorter the wavelength, the higher the
frequency. The wavelength of a 1 Hz signal is about 30 billion centimeters, which is the
distance that light travels in one second. A 1 MHz signal has a wavelength of 300 meters.

1.1.1 Radio Frequency Spectrum

To regulate the use of the various radio frequencies, the Federal Communications Commission (FCC) in the United
States determines the allocation of frequencies for various uses. Table 1-1 shows some of the bands defined by the FCC
(see http://www.fcc.gov/oet/spectrum/table/fcctable.pdf).

Table 1-1. Range of frequencies defined for the various bands
Frequency Band

10 kHz to 30 kHz Very Low Frequency (VLF)

30 kHz to 300 kHz Low Frequency (LF)

300 kHz to 3 MHz Medium Frequency (MF)

3 MHz to 30 MHz High Frequency (HF)

30 MHz to 328.6 MHz Very High Frequency (VHF)

328.6 MHz to 2.9 GHz Ultra High Frequency (UHF)

2.9 GHz to 30 GHz Super High Frequency (SHF)

30 GHz and higher Extremely High Frequency (EHF)

You can get a more detailed frequency allocation chart from http://www.ntia.doc.gov/osmhome/allochrt.pdf. The
following conversion list should help you understand this chart:

1 kilohertz (kHz) = 1,000 Hz

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1 kilohertz (kHz) = 1,000 Hz

1 megahertz (MHz) = 1,000 kHz

1 gigahertz (GHz) = 1,000 MHz

Wireless networks use a variety of radio frequencies. Table 1-2 shows some common wireless network protocols and
the corresponding radio frequencies.

Table 1-2. Frequencies used by various wireless networks
Frequency range Wireless network

2.45 GHz Bluetooth

2.4 to 2.483 GHz 802.11, 802.11b, 802.11g

5.180 GHz to 5.805 GHz 802.11a

1.2276 and 1.57542 GHz GPS

1.1.2 Radio Wave Behavior

Radio waves, similar to light waves, exhibit certain characteristics when coming into contact with objects.

Reflection occurs when a radio wave hits an object that is larger than the wavelength of the radio wave (see Figure 1-
2). The radio wave is then reflected off the surface.

Figure 1-2. Reflection of a radio wave

Refraction occurs when a radio wave hits an object of a higher density than its current medium (see Figure 1-3). The
radio wave now travels at a different angle—for example, waves propagating through clouds.

Figure 1-3. Refraction of a radio wave

Scattering occurs when a radio wave hits an object of irregular shape, usually an object with a rough surface area (see
Figure 1-4), and the radio wave bounces off in multiple directions.

Figure 1-4. Scattering of a radio wave

Absorption occurs when a radio wave hits an object but is not reflected, refracted, or scattered. Rather, the radio wave
is absorbed by the object and is then lost (see Figure 1-5).

Figure 1-5. Absorption of a radio wave

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Radio Interference and Absorption
Radio waves are subject to interference caused by objects and obstacles in the air. Such obstacles can be
concrete walls, metal cabinets, or even raindrops. Generally, transmissions made at higher frequencies are
more subject to radio absorption (by the obstacles) and larger signal loss. Larger frequencies have smaller
wavelengths; hence, signals with smaller wavelengths tend to be absorbed by the obstacles that they
collide with. This causes high-frequency devices to have a shorter operating range.

For devices that transmit data at high frequencies, much more power is needed in order for them to cover
the same range as compared to lower-frequency transmitting devices.

Diffraction occurs when objects block a radio wave's path. In this case, the radio wave breaks up and bends around the
corners of the object (see Figure 1-6). This property allows radio waves to operate without a visual line of sight.

Figure 1-6. Diffraction of radio waves

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.2 Connections Without Wires
There are many types of wireless networks, such as Cellular (wide-area wireless networking), Wi-Fi (local and wide area
wireless networking), and Bluetooth (cable-replacement and short-range wireless networking). All of these networks
run with Linux. Here is a list of tasks you can complete with Linux and wireless networks:

Build your own wireless access point. At home, use a Linux box as your wireless access point and secure
firewall for a broadband connection, and use a Linux notebook as a wireless client. To control who uses your
access point, build a captive portal. It's also possible that your broadband connection is wireless and uses a
point-to-point directional wireless network.

Synchronize your contacts. At the office, keep your contacts list from your Linux desktop synchronized with
your cell phone using Bluetooth or an infrared port.

Use a cellular network and GPS for the ultimate road warrior experience. On the road, use your Linux-
powered PDA to check email from a wireless hotspot. Connect your cell phone and laptop, and use a high-speed
data network where there is a digital cell signal. Hook a GPS receiver to your laptop and find that out-of-the-
way hotel.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.3 Wireless Alphabet Soup
While it is not the sole focus of this book, there are several chapters that deal entirely with "Wi-Fi," or Wireless Fidelity.
This phrase is trademarked by the Wi-Fi Alliance, a group that consists of nearly all 802.11 manufacturers. The Wi-Fi
Alliance does product testing and certification for interoperability.

802.11 was defined as a protocol by the Institute of Electrical and Electronics Engineers (IEEE) in 1997. This protocol
specification allowed for 1 and 2 Mbps transfer rates using the 2.4 GHz ISM (Industrial, Scientific, and Medical) band,
which is open to unlicensed public use. Prior to the adoption of this standard, there were various wireless network
vendors manufacturing proprietary equipment using both the 2.4 GHz and the 900 MHz bands. The early adopters of
the proprietary technologies and 802.11 were primarily the manufacturing and health care industries, which rapidly
benefited from their employees' mobile access to data. The 802.11 standard uses spread spectrum modulation to
achieve high data rates. Two types of modulation were specified: Frequency Hopping and Direct Sequence. 802.11 also
uses the Carrier Sense Multiple Access (CSMA), which was developed for Ethernet in 1975 with the addition of Collision
Avoidance (CA)—referred to as CSMA-CA.

In 1999, the IEEE adopted two supplements to the 802.11 standard: 802.11a and 802.11b. The 802.11b standard is
also referred to as High Rate DS and is an extension of the Direct Sequence Spread Spectrum type of modulation
specified in 802.11. 802.11b uses 14 overlapping, staggered channels, each channel occupying 22 MHz of the
spectrum. This standard's primary benefit is that it offers data rates of 5.5 and 11 Mbps in addition to the 12 megabits
provided by 802.11. 802.11b has been widely adopted around the world, and its products have been readily available
since 1999.

However, 802.11a products did not begin shipping until 2001. 802.11a utilizes a range in the 5 GHz frequency and
operates with a theoretical maximum throughput of 54 Mbps. It provides for 12 nonoverlapping channels. Products
based on this protocol have not seen the adoption rate of 802.11b products for several reasons. At higher frequencies,
more power is needed to transmit. The power of 802.11 radio types is limited; therefore, 802.11 and 802.11b have
longer range transmission and reception characteristics than 802.11a. Because of its higher frequency, 802.11a is
absorbed more readily by obstacles, reducing range and throughput.

In June of 2003, the IEEE ratified a third supplement to the 802.11 standard: 802.11g. This standard continues to
operate in the 2.4 GHz band with backward compatibility to 802.11b, but it raises the theoretical maximum throughput
to 54 Mbps. In early 2003, there were many products released prior to the ratification of the standard. The standard
was delayed several times as the subcommittees in the IEEE worked out interoperability issues between 802.11b and
802.11g.

1.3.1 Operating Modes

There are two main client operating modes in the 802.11 family of standards: Infrastructure and Ad-Hoc. Two
additional modes, Master and Monitor, are discussed in later chapters.

Infrastructure Mode requires the use of a wireless access point. At a minimum, this is a device with a radio that
operates in Infrastructure Mode and has a connection to a wired network. This is also known as the Basic Service Set
(BSS). There is also an Extended Service Set (ESS) for use with multiple access points.

A typical 802.11b access point consists of a radio, external antenna, and at least one Ethernet port. There are many
variations on this theme, with models sporting 4-port Ethernet switches, connectors for other external antennas, and
higher-power radios.

When operating in Infrastructure Mode, an access point is the master of any client radios that are associated with the
access point. The client radios are also operating in Infrastructure Mode, in a different sub-mode. The access point is
programmed with a Service Set Identifier (SSID); this is the network name for the access point. The access point
broadcasts the SSID as an advertisement of the network name.

Clients operating in Infrastructure Mode identify an access point by these SSID broadcast frames. Once a client is
associated with an access point, the access point manages all communication over the radio link. When multiple clients
are associated with a single access point, the access point has a set of algorithms for controlling traffic to and from the
access point radio.

Ad-Hoc Mode, or peer-to-peer mode, is designed specifically for client-to-client communication. To use Ad-Hoc Mode,
you need at least two radio clients. In this example, let's say we have two Linux notebooks with PCMCIA radio cards.
Both cards are configured to work in Ad-Hoc Mode, and both clients must use the same SSID. Ad-Hoc clients do not
advertise themselves with the same broadcast frames used by an access point.

While Ad-Hoc Mode is very useful for client-to-client communication, it introduces a difficult situation known as the
Hidden Node problem. Ad-Hoc Mode does not provide an access point to control communications between other client
machines, so any client using Ad-Hoc Mode may decide to transmit data on its own rather than being told when it is
clear to transmit. Figure 1-7 illustrates the problem.

Figure 1-7. A Hidden Node problem with three clients in Ad-Hoc Mode

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1-7. A Hidden Node problem with three clients in Ad-Hoc Mode

As shown, node A can hear node B, but it cannot hear node C. Node C can also hear node B, but it cannot hear node A.
Because 802.11 is a shared-access physical medium, only one device can transmit at any given time. The Hidden Node
problem is that node A and node C cannot hear each other, and neither node will detect a collision. Hidden Node issues
reduce throughput in this example by at least 50%.

1.3.2 Wi-Fi Hardware

As discussed previously, to make a Wi-Fi network, you need a minimum of two radios, whether you operate in Ad-Hoc
or Infrastructure Mode. For PC hardware, there are three physical types of radio interface cards available: PC Card, PCI,
and MiniPCI.

Of the three, the PC Card is by far the most common, because notebook PCs are widely deployed, and most have at
least one card slot; notebook users are the most common users of 802.11 networks.

MiniPCI cards are the up-and-coming form factor. Many notebook manufacturers have built MiniPCI cards into their
motherboards, which enables you to install network cards without using a PC Card slot.

At one time, PCI cards were not as common as the other types of radios, but they are staging a comeback with new
offerings from Linksys and D-Link. Many manufacturers, such as Linksys and D-Link, produce some PCI cards now,
which actually consist of a MiniPCI or PCMCIA card on a larger PCI card.

There is a fourth option for a growing number of notebook and PDA users: built-in Wi-Fi. Intel is marketing their
Centrino chipset that integrates an 802.11b radio on the motherboard, and most notebook manufacturers offer Centrino
notebooks. Similarly, other CPU manufacturers such as Via will be integrating wireless into their chipsets. Finally, there
are a number of notebook and PDA models that feature built-in radios. Sony, for example, sells a Vaio notebook with an
Orinoco radio built in and also sells the Clie handheld PDAs with optional Wi-Fi.

As of this writing, more and more dual- and tri-mode cards are available. These cards allow you to access 802.11a/b/g
networks with a single radio. The maker of a radio chipset decides the level of support—as of this writing, support for
these cards is still in flux under Linux. We'll cover this in more detail in the next chapter.

Wireless access points are also available now in dual- and tri-mode. There is a wide range of access points on the
market, which range from units geared specifically for home users with built-in firewalls, 4-port switches, and web-
based configuration to models aimed at the corporate market with support for authentication protocols such as RADIUS
and LDAP, the ability to run via Power Over Ethernet (POE), and connectors for external antennas.

Another category of access point is the "hotspot in a box." With the rising popularity of Wi-Fi hotspots in cafes, hotels,
and airports, many manufacturers have developed access points that are an all-in-one solution. These boxes provide
the radio and Ethernet of a normal access point, but also have some form of authentication and payment system, which
range from a web-based login to a printed coupon that the store clerk delivers to the customer.

1.3.2.1 Antennas

Although a discussion of the physics of antennas is beyond the scope of this book, antennas are obviously a very
important part of any radio. Depending on the type of antenna, radio coverage is narrowly focused or widely
distributed, which makes a great deal of difference when building or connecting to 802.11 networks.

Briefly, antennas are transducers that convert radio frequency electric currents to electromagnetic waves that are then
radiated into space. Antennas are polarized according to the plane of the electric field radiating from the antenna. A
vertically polarized antenna has an electric field that is perpendicular to the Earth's surface. Likewise, the electric field
of a horizontally polarized antenna is parallel with the Earth's surface.

There are several types of antennas used for Wi-Fi networks. The most common antenna is the integrated antenna,
followed by omnidirectional and directional antennas

Integrated antennas

Most PC Card radios have integrated antennas inside the enclosure of the card. A typical integrated antenna
design has two very small antennas—really just a solder trace or small piece of foil—located at right angles to
each other for diversity. Diversity antennas are designed so that one antenna or the other is used to transmit

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

each other for diversity. Diversity antennas are designed so that one antenna or the other is used to transmit
and receive, but never at the same time. The card switches automatically between antennas to choose the
stronger signal. The antennas are horizontally polarized, and this layout produces an antenna that has a
somewhat omnidirectional pattern in a horizontal beam.

Omnidirectional antennas

If you have a radio card or access point with a single external antenna attached, you are likely looking at an
omnidirectional, or omni, antenna. Omnidirectional antennas, as the name implies, are designed to send and
receive signals 360 degrees around the antenna. Figure 1-8, which is a sample antenna gain pattern for a
commercially produced omnidirectional antenna, shows that the 360-degree pattern is not circular at all. Notice
that the antenna has pronounced gain at 0 and 180 degrees, but hardly any gain at 90 and 270 degrees.

Figure 1-8. A sample omnidirectional antenna gain pattern

While the theoretical beamwidth of an omnidirectional antenna is 360 degrees horizontally, the vertical
beamwidth of most omni antennas is less than 8 degrees. See Figure 1-9 for a side view of a typical omni
antenna. Notice that if the antenna were mounted high enough, someone directly under the antenna itself
would have very poor signal quality.

Figure 1-9. A side view of an omnidirectional antenna beamwidth

Most omnidirectional antennas are of the "rubber ducky" type—a rubber- covered antenna, which ranges from a
few inches long for a low-gain model to several feet for high-gain types.

Directional antennas

Although patch antennas are similar to sector antennas, they are considered directional antennas. Patch
antennas generally have horizontal and vertical beamwidths that are similar. An example shown in Figure 1-10
shows the gain patterns for a patch antenna.

Figure 1-10. A sample patch antenna gain pattern

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1-10. A sample patch antenna gain pattern

Yagi antennas are also directional antennas and are designed for highly directional applications. They typically
have a beamwidth of less than 30 degrees; most of them look like a PVC pipe or a "Christmas tree" pointed at
its target.

Finally, parabolic dish, or grid, antennas are the most highly directional antennas used in the 802.11 world. If
you've seen a satellite dish, you've seen a parabolic dish antenna. These antenna types are suited for sending
wireless network signals over several miles. As shown in Figure 1-11, the gain pattern is very tight.

Figure 1-11. A sample parabolic dish antenna gain pattern

Another antenna type widely used in outdoor applications is a sector antenna. These antennas are generally available
with horizontal polarization and antenna patterns from 90 to 180 degrees. They are rectangular with a flat profile.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.4 Bluetooth
Bluetooth is a low-power radio technology aimed at replacing cables for connecting devices. It was originally developed
by the Swedish telecommunications manufacturer Ericsson and then formalized by an industry consortium. The name is
taken from a Danish king, Harald Bluetooth, who ruled Denmark and Norway in A.D. 936.

The standards for Bluetooth define a low-power radio with a maximum range of 300 feet. The radios are actually on a
transceiver microchip to keep size and power consumption to a minimum. Bluetooth uses the 2.45 GHz band of the ISM
radio spectrum and divides the band into 79 channels. To further reduce any crosstalk into other ISM bands, Bluetooth
devices can change channels up to 1,600 times per second.

Bluetooth is becoming widely available on mobile phones and PDAs, and one of its "killer" applications is hands-free
wireless headsets for mobile phones. Bluetooth is also a popular way to "tether" a notebook computer to a cellular
phone, which allows you to connect to the Internet even when an 802.11 network is not available (because current
cellular data speeds are much slower than Bluetooth, Bluetooth's relatively slow speeds are not the limiting factor).
Bluetooth adapters are available for PDAs, desktops, and notebooks. There are some printers and keyboards available
that use Bluetooth to communicate with the host device as well.

Compared to Wi-Fi, Bluetooth speeds are not impressive, but they are quite useful for transferring small amounts of
data. Download speeds can max out at 720 kbps with a simultaneous upload speed of 56 kbps. Every Bluetooth device
can simultaneously maintain up to seven connections, making a personal Bluetooth LAN a real possibility.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.5 Cellular Data
With the rise of digital cellular phone networks, it became possible to use these networks to transfer data rather than
just voice. There are several differing and competing technologies available.

Cellular Digital Packet Data (CDPD) was one of the first data networking technologies available for mobile phones. CDPD
utilizes unused bandwidth in the 800-900 MHz range normally used by mobile phones. Data transfer rates max out at a
theoretical 19.2 kbps. Today, CDPD is obsolete, and cellular carriers are actively trying to phase it out.

General Packet Radio Service (GPRS) is an add-on technology to existing Time Division Multiple Access (TDMA)-based
GSM mobile phone networks. Timeslots in the GSM network are normally allocated to create a circuit-switched voice
connection. With a GPRS-enabled network, the timeslots are used for packet data as needed. This by design creates a
very slow data network with high latency and, theoretically, the speed of a 56 kbps modem. AT&T Wireless, T-Mobile,
and Cingular Wireless use this technology. In 2003, an enhancement to GPRS, Enhanced Data Rates for Global
Evolution (EDGE), was partially rolled out in the United States by AT&T Wireless and Cingular. In theory, EDGE can
triple the data rate of GPRS, but you need an EDGE-capable handset, such as the Nokia 6200, to use it.

1xRTT stands for Single Carrier Radio Transmission Technology and is part of the CDMA2000 family of protocols, which
includes successors to 1xRTT such as Single Carrier Evolution Data Only (1xEV-DO). It is built on top of the CDMA-
based mobile phone networks and allows for ISDN-like data transfer speeds up to 144 kbps (1xEV-DO is capable of
much higher speeds). Sprint's PCS Vision and Verizon's Express Network use this technology. As of this writing, Verizon
Wireless is experimenting with 1xEV-DO in two U.S. markets, with testers obtaining data rates between 500 and 800
kbps.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.6 Infrared
The electromagnetic (EM) spectrum contains many different wavelengths of which the RF spectrum is a small part.
Another part of the EM spectrum is infrared light. This light has a longer wavelength than visible light, but a much
shorter wavelength than radio or microwave radiation. Infrared is usually linked to body or mechanical heat, as many
objects above room temperature emit infrared radiation. These emissions can be seen by night vision equipment.

Infrared is used in television remote controls, because the signal does not interfere with the TV transmission. Remote
controls and Infrared Data (IrDA) equipment utilize light-emitting diodes to emit infrared radiation that is then focused
by a lens into a narrow beam. The beam is modulated on and off to encode the data transmission.

The IrDA Association publishes specifications that are used by PDA, notebook, and mobile phone device manufacturers
for the infrared ports on their devices. IrDA devices typically have a maximum throughput of 4 Mbps. While most mobile
devices still have IrDA, many manufacturers are replacing these with Bluetooth.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 2. Wi-Fi on Your Linux Box
Wireless support on Linux has come a long way. With modern Linux distributions, you may not need to recompile your
kernel to receive support for your Wi-Fi card. You probably won't need to install driver software or even touch a
command line. However, this isn't always the case, especially as new cards come on the market, so you should still
have a good understanding of how Wi-Fi works under Linux. This chapter starts out with an explanation of what you
need to do with some common distributions and a common radio card, and then gets into the details you need to know
to take things a little further, including radio chipsets, drivers, kernel compilation, the PCMCIA subsystem, and the
Linux wireless tools.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.1 Quick Start
If you haven't purchased a Wi-Fi card yet, and are happy with 802.11b (about 5.5 Mbps real-world speed versus about
20 for 802.11a or g), pick up either a Lucent/Agere/Avaya/Proxim Orinoco Silver or Orinoco Gold (see Section 2.2.1.2
later in this chapter). If you've purchased a different card, it may work out of the box with Linux. But if it doesn't, the
rest of this chapter describes chipsets and drivers in enough detail for you to find your way. Unfortunately, the
orinoco_cs driver does not support monitor mode, which passive monitoring tools such as Kismet require. See Chapter
3 for information on monitor mode and available patches for orinoco_cs. If you want to use monitor mode with an
unpatched driver, we suggest that you use a Prism or Atheros-based card.

When you install Linux for the first time, load the modules for all the built-in network
interfaces, especially any wired Ethernet adapters you might use in the future to avoid a
particular situation where your Wi-Fi card is assigned and configured as eth0 during
installation, but the system later detects the onboard Ethernet and assigns it to eth0
(bumping up your Wi-Fi adapter to eth1 and messing up the configuration files that think
eth0 is your Wi-Fi adapter).

You must install the wireless tools package, which is described in Section 2.3.4 later in this chapter. The name of this
package in all the Linux distributions in the following list is wireless-tools.

We tested the Proxim Orinoco Classic Gold (pictured in Figure 2-1) with several Linux distributions on an IBM ThinkPad
A20m with onboard Ethernet (eth0), and this is what we found:

Debian 3.0r1

We used disk 5 (kernel 2.4.18-bf2.4) to boot the installer and installed the base system using disk 1. During
installation, the card was recognized and configured properly using orinoco_cs and the eth1 adapter.

SuSE 9.0

We used the free download version of SuSE 9.0 and installed everything over FTP. The installer did not
automatically detect the card, so we had to use wired Ethernet for the installation. However, when we booted
the system for the first time, SuSE found the card and configured it automatically using the orinoco_cs driver as
wlan0 (the default for orinoco_cs would be to use eth1).

Mandrake 9.2

The card was automatically detected during installation. We configured it by clicking Configure under Network &
Internet when the installer reached the summary screen. Mandrake offers advanced options, including SSID
(WIRELESS_ESSID) and WEP key (WIRELESS_ENC_KEY). Mandrake used orinoco_cs and the eth1 adapter for
this card.

RedHat 9

The RedHat installer detected the card using the orinoco_cs driver and set up the card as eth1. However, the
card was not configured correctly on first boot. We edited /etc/sysconfig/network-scripts/ifcfg-eth1 and set
ONBOOT to no, which corrected the problem. (Linux should always defer configuration of PCMCIA adapters until
the pcmcia rc script runs.)

Gentoo 1.4

We performed a stage 3 install of Gentoo. After booting the installer, we tried to start PCMCIA with
/etc/init.d/pcmcia start, but it insisted on loading the prism2_cs driver, which did not work at all. However, after
we installed Gentoo, built a kernel with genkernel, and rebooted, Gentoo correctly loaded the orinoco_cs driver
(which saw the card as eth1).

Figure 2-1. The Orinoco Classic Gold card

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2-1. The Orinoco Classic Gold card

If you're connecting to a network that uses WEP or one that doesn't broadcast its SSID,
you may need to use the wireless tools, described later in this chapter, after installation is
complete. However, if the Linux distribution supports advanced options (as does Mandrake
9.2), you should be able to connect to the network during the initial installation. For more
information on using WEP with Linux, see Chapter 4.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.2 Chipset Compatibility
While there are many vendors selling Wi-Fi hardware, the radio chipsets come from a relatively small set of
manufacturers. With a few exceptions, radio chipset support under Linux is quite good, and getting better.

Before getting into the nuts and bolts of radio chipsets, there is one online resource that you absolutely need. Jean
Tourrilhes at Hewlett Packard is the author of the Linux Wireless Tools (covered later in this chapter). He also maintains
an extensive web page that includes the Wireless LAN How-To. The page is located at
http://www.hpl.hp.com/personal/Jean_Tourrilhes/index.html. For information regarding a specific radio chipset and
driver support in Linux, look on the Devices & Drivers page:
http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Linux.Wireless.drivers.html. The page is updated frequently
and has extensive information on many esoteric wireless devices and drivers.

2.2.1 Common Chipsets

Although there are probably less than 50 manufacturers of Wi-Fi radio chipsets, this book simply does not have the
space to cover each of these manufacturers in detail. We cover the five most popular manufacturers and their chipsets,
which, in reality, produce 80% of all 802.11 hardware.

2.2.1.1 Intersil Prism II

Before it became a part of Intersil, a company called Harris developed the Prism I reference standard for 802.11, based
on an AMD AM930 processor core. This chipset is 802.11 only, so we won't cover any details of driver support, but they
are available on Jean Tourrilhes' web site, listed in the previous section.

At one point, Prism II has been the most widely available and popular 802.11b radio chipset. Intersil licensed the
chipset and reference designs for Prism II to a large number of vendors. A partial list of vendors using Prism II radios in
their access points, PCMCIA cards, PCI cards, USB adapters, and Compact Flash (CF) cards includes:

Compaq

Nokia

Proxim

D-Link

Linksys

Netgear

SMC

Senao/Engenius

Nearly all of these vendors have products using other radio chipsets. Unfortunately, many products have kept the same
name and sometimes even the same part number, while changing the underlying radio chipset. A good case in point:
the D-Link DWL-650. This radio card initially shipped with a Prism II chipset and was very popular, because it worked in
a Linux box. However, D-Link changed chipsets when it released the DWL-650 Version 2, choosing an ADMtek chipset.
It is very difficult to tell from the packaging which version of the DWL-650 you are purchasing.

Although you have a very good chance of finding an 802.11b radio card that uses a Prism II chipset, there is no
guarantee that the chipset is inside your card. This applies to every other card manufacturer as well. Once you've
decided on a radio card, research online to make sure you know which chipset it uses.

Several manufacturers licensed the Prism II reference design from Intersil and based their products around this design.
These manufacturers include Lucent, Symbol, and Aironet/Cisco. However, the radios designed by these manufacturers
use different firmware and are not compatible with Prism II drivers, although some cards may appear to work: the
driver will load, but the card may function only partially or not at all.

2.2.1.2 Lucent WaveLan/Orinoco

The original Lucent WaveLan radios developed at AT&T (before Lucent was spun off as a separate company) were 900

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The original Lucent WaveLan radios developed at AT&T (before Lucent was spun off as a separate company) were 900
MHz radios, later followed by 2.4 GHz radios in the Industrial, Scientific, and Medical (ISM) band. These cards used an
Ethernet MAC chip onboard, rather than a MAC chip that met standard 802.11 specifications.

The history of WaveLan is of name changes, mergers, and acquisitions. Lucent released a newer version of the card,
the WaveLan IEEE, which met the 802.11 specifications, and then later upgraded the card to support 802.11b (based
on the Prism II reference design, discussed previously). Not too long afterward, the WaveLan brand was renamed to
Orinoco. Lucent then spun off this part of its company into a separate company named Agere. Another Lucent spin-off
called Avaya also sells radio cards using the Orinoco chipset. Most recently the end unit sales of Orinoco have been
acquired by Proxim, while Agere still manufactures the radio chipsets.

Lucent/Agere was one of the few vendors not only to manufacture the radio chipset, but to sell end-user equipment in
the form of radio cards and access points.

In addition to the Lucent, Agere, and Avaya brands, which use the Orinoco chipset, the Apple AirPort line of products is
based on the WaveLan IEEE chipset but is not compatible with Linux drivers for Orinoco. Other vendors that sell radios
using the Orinoco chipset include Enterasys, Elsa, Buffalo, HP, IBM, Dell, Sony, and Compaq. Again, many of these
vendors also produce radios using chipsets from other manufacturers.

2.2.1.3 Aironet/Cisco

The original Aironet radios were similar to the original Lucent WaveLan: they started at 900 MHz and then moved to 2.4
GHz. Again, they were not initially compatible with the 802.11 standard. Aironet produced the 4500 (802.11) and 4800
(802.11b) series of radios, based on the Harris Prism chipset, but with proprietary firmware.

The story of Aironet is also one of acquisition: Cisco purchased Aironet in March of 2000. Prior to the purchase, Aironet
had released the 4800B family of radio cards, including ISA, PCI, and PCMCIA versions, based on the Intersil Prism II
chipset. These radios were renamed as the Cisco 340 series of cards. Cisco has since released the 350 series of radio
cards that feature 100 mW of transmit power (as opposed to the 30 mW offered by the majority of radios). The 350
family also includes a MiniPCI form factor radio card.

The majority of consumer Wi-Fi radio cards have radios that feature 30 mW of transmit
power. Notable exceptions to this are the Cisco 350 cards, the Senao/EnGenius 100 and
200 mW cards, similar 100/200 mW cards from Zcomax, and a few models from D-Link.

2.2.1.4 Symbol

Symbol developed frequency-hopping radios in the 2.4 GHz band called Spectrum24. In a slight twist, Symbol made
sure its products were 802.11-compliant from the beginning. Symbol came somewhat late to the 802.11b market, but it
released a new line called Spectrum24 High-Rate. Again, these cards are based on the Intersil Prism II chipset with
custom firmware. Both 3Com and Intel sell OEM versions of these cards.

Symbol sells mostly PCMCIA cards but also offers a PCI card. Symbol main strength is integrated products—it offers
PDAs with built-in wireless and barcode readers for industrial, medical, and manufacturing applications. Symbol also has
one of the few CF implementations of 802.11b. Versions of these cards are also available and sold as an OEM package
by Socket Communications.

2.2.1.5 Atmel

Atmel was the first to market a USB 802.11b chipset. However, that chipset did not include a radio, so various radios
can be used with this chipset, including the Intersil Prism II radios. Linksys and D-Link both sell USB radio adapters
based on the Intersil chipset. SMC and 3Com both sell PCMCIA cards using the Atmel chipset.

2.2.1.6 Atheros

Atheros is unique in that its chipsets are not based on the Intersil Prism II reference designs. It was the first to market
802.11a chipsets. For quite some time, any 802.11a radios available for purchase were built using the Atheros chipset.
Atheros has since introduced dual-mode 802.11a/b radios with its ar5211 chipset and tri-mode a/b/g radios using their
ar5212 chipset.

Proxim, SMC, Linksys, and D-Link all sell 802.11a, as well as dual- and tri-mode radio products using the Atheros
chipset. The primary form factors are PCMCIA and MiniPCI. Linksys and D-Link both sell PCI dual- and tri-mode radios;
however, they consist of a PCI card with a MiniPCI radio onboard.

2.2.1.7 Broadcom

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.2.1.7 Broadcom

Broadcom has both 802.11b and 802.11g radio chipsets. It has completely ignored the Linux community despite the
many references to Linux on its web pages. No Linux drivers are available for Broadcom radio cards as of this writing.
Cards based on the Broadcom 802.11b chipset include the Dell TrueMobile 1180 and the Linksys WMP11 (previous
versions of this card used the Intersil Prism II chipset). Cards based on the Broadcom 802.11g chipset include the
Linksys WPC54G and WMP54G.

Linux, Driver Support, and the GPL
There are a few fronts on which the proprietary approach of a few hardware vendors clashes with the spirit
of the Linux community.

Companies that manufacture many of the unsupported Wi-Fi cards refuse to divulge enough information
on their radios and firmware for the open source community to effectively build drivers.

Also, there are a number of drivers available that are available only in binary form. The company that
manufactures the radio chipset releases most of these drivers. The madwifi driver for the Atheros chipsets,
developed by Sam Leffler with the cooperation of Atheros, is a good example. The original driver was
developed for BSD but wasn't released, because the Atheros hardware does not enforce valid operating
modes that comply with FCC regulations.

As a solution, Atheros developed a Hardware Abstraction Layer (HAL), in binary form, that sits between
the hardware and the driver and regulates the hardware to meet FCC requirements. Unfortunately, the
binary HAL is available only for i386 architecture, and source is not available.

As such, the madwifi driver is viewed in the open source community as a "black sheep" project, and many
people refuse to use the driver, because a large portion of it does not have source publicly available. There
is a completely open source driver for the Atheros chipsets under development; see Section 2.4.4 later in
this chapter.

Finally, there are issues with some vendors that have released products based on Linux and other open
source software products. The open source community has made recent discoveries that show that some
vendors appear to be violating the GNU General Public License under which the operating system and tools
software were published. As of this writing, this is an unresolved matter.

2.2.2 Determining Your Radio Chipset

As previously discussed, determining the chipset your radio uses can be difficult, because many equipment vendors use
chipsets from several different manufacturers. An excellent example is Linksys. Its 802.11b PCMCIA cards use the Prism
II chipset. However, the Linksys USB 802.11b adapters use the Atmel chipset, while its 802.11g PCMCIA cards use a
Broadcom chipset, and its dual-mode 802.11a/802.11g PCMCIA and PCI cards use the Atheros chipset. The bottom line
is that you should determine your card chipset type before installing drivers.

To determine the chipset of a radio card, refer to the following methods:

If your radio card is PCMCIA or Cardbus, and you have the pcmcia-cs package installed, or are using the kernel
tree PCMCIA, use the cardctl ident command. This shows vendor identification strings for the cards that are
currently inserted in the PCMCIA slots. This works regardless of whether you have a driver loaded for the card.
Here is an example output of the command on a system with two Orinoco cards:

cardctl ident

Socket 0:

 product info: "Lucent Technologies", "WaveLAN/IEEE", "Version 01.01",

 ""

 manfid: 0x0156, 0x0002

 function: 6 (network)

Socket 1:

 product info: "Lucent Technologies", "WaveLAN/IEEE", "Version 01.01",

 ""

 manfid: 0x0156, 0x0002

 function: 6 (network)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 function: 6 (network)

Here is an example output of the command on a system with a single Senao Prism II-based card:

cardctl ident

Socket 0:

 product info: "INTERSIL", "HFA384x/IEEE", "Version 01.02", ""

 manfid: 0x0156, 0x0002

 function: 6 (network)

If your radio card is PCI, use the command lspci -v to show the vendor identification string. Bear in mind that
this command shows you all of the devices on your PCI bus, so for some systems this may return a list several
pages long.

If your radio card is USB, you can usually find the vendor identification strings for any USB device by using the
dmesg command to show output generated during the boot process. You might also find the same information in
/var/log/messages.

These commands usually let you know the manufacturer of the chipset. However, some manufacturers have obfuscated
their vendor identification strings, so you still may not find a valid chipset ID.

An excellent resource that is published on the pages of the wlan-ng driver is the WLAN Adapter Chipset Directory
(http://www.linux-wlan.org/docs/wlan_adapters.html). This is compiled and updated regularly by the maintainers of
wlan-ng, AbsoluteValue Systems, Inc.

All radio devices are required to have the FCC ID printed on them. A final option is to get the FCC ID from your radio
card and look it up on the FCC web site (http://www.fcc.gov/oet/fccid). Using this web site, the FCC ID NI3-SL-2011CD
from the back of a Senao 100 mW 802.11b card returned a single entry for Senao in Taiwan. If you select this entry by
choosing the link for Detail, you are again presented with a number of documents provided to the FCC by the
manufacturer. In this particular case, select a PDF document titled "Operational Description," which reads:

The SL-2011CD WLAN PC Card utilize the Intersil Prism II Direct Sequence Spread Spectrum Wireless
Transceiver chip set.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.3 Four Steps to Wi-Fi
To use a Wi-Fi card on your Linux system, you need several things:

The correct driver software for your Wi-Fi card

The Linux Wireless Tools software

If your system uses a PC Card interface for the Wi-Fi card, the pcmcia-cs software package must be installed
and configured OR

Your kernel must have kernel PCMCIA support compiled in. You may need to recompile your kernel, depending
on your system and distribution.

If you installed your Linux distribution on a notebook or laptop, there's a good chance that you already have at least
part of the necessary packages to make a configured and operational Wi-Fi network card. Current versions of Red Hat,
Debian, and SuSE with 2.4 kernels all include a "notebook" option during the installation process that installs kernel
PCMCIA support.

You have two options for PCMCIA support in Linux: the pcmcia-cs package or kernel PCMCIA support. All 2.4.x
distributions of the Linux kernel include the option for compiling in PCMCIA support, which removes the need for the
external pcmcia-cs package. However, there are some valid reasons to use the pcmcia-cs package rather than the
kernel PCMCIA support, which we discuss later in this section.

Kernel PCMCIA support is based on the pcmcia-cs package. The pcmcia-cs README for Version 2.4 kernels, found at
http://pcmcia-cs.sourceforge.net/ftp/README-2.4, has several good questions on this topic:

Q: Are these two versions of PCMCIA both going to continue with active development?

A: The kernel PCMCIA subsystem should be the focus for ongoing development. The standalone pcmcia-
cs drivers are still being maintained but the focus has shifted from adding functionality, towards mainly
bug fixes.

Q: Which should I use / which is better? The kernel PCMCIA, or the standalone PCMCIA?

A: It rarely matters. The client drivers should generally behave the same. At this point, most current
distributions use the kernel PCMCIA subsystem, and I recommend sticking with that unless you have a
particular need that is only met by the standalone drivers.

Your Linux distribution may not install the Linux Wireless Tools or the pcmcia-cs packages by default. You must select
these packages during the installation process or add them at a later time.

You don't need to install both kernel PCMCIA and pcmcia-cs.

The same is true for many wireless drivers. Most current Linux distributions give you drivers for some common Wi-Fi
cards, including the orinoco_cs driver for Lucent WaveLan/Orinoco cards. However, if you need the hostap, wlan-ng, or
madwifi drivers, you must install these from source, or optionally from a binary package that a third party has made
available.

2.3.1 Linux Wi-Fi Drivers

We can't cover all Wi-Fi radio cards, their features, and the available drivers for them. We'll discuss several of them
briefly and cover the four most useful drivers for Linux in more detail at the end of this chapter:

Hermes AP

Hermes AP is a patched version of the orinoco_cs driver that allows you to use the "tertiary" code available for
Orinoco cards, which allows them to act as an access point. You can find the driver at
http://hunz.org/hermesap.html.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

http://hunz.org/hermesap.html.

hostap_cs

This is a driver for Prism II cards but with a few features not found in other drivers. You can find the driver at
http://hostap.epitest.fi. See Section 2.4.2 later in this chapter.

madwifi

This driver supports the Atheros 802.11a/b/g radio cards. You can find this driver at
http://sourceforge.net/projects/madwifi. See Section 2.4.4 later in this chapter.

orinoco_cs

This driver supports Lucent WaveLAN IEEE, Lucent Orinoco, Symbol Spectrum 24, and Apple AirPort (but not
AirPort Extreme) cards, and is included with most recent Linux distributions. This driver also supports Prism II
cards, but most features of the Prism II chipset are not supported. You can download the driver from
http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Orinoco.html. See Section 2.4.1 later in this chapter.

prism54

The prism54 driver supports cards based on Prism GT, Prism Duette, and Prism Indigo chipsets. You can find
this driver at http://prism54.org/.

wlan-ng

This is another Prism II driver. It does not support the wireless-tools package, but it does come with its own
utilities. You can download the driver from http://www.linux-wlan.org/. See Section 2.4.3 later in this chapter.

2.3.2 Configuring and Compiling Your Kernel

There are a number of reasons why you should consider compiling your own Linux kernel from source:

Many drivers require certain features to be compiled into the kernel that are not available in stock distribution
kernels. For example, the madwifi driver requires not only radio support and the wireless tools, but also PCI
Hotplug and ACPI support, which must be compiled into the kernel.

Other drivers, while not requiring experimental kernel features, still require a configured kernel source. A
.config file must exist in the root of your kernel source and must be the file that was used to configure and
compile your running kernel. Some Linux distributions do not include this file, which makes it difficult for you to
install kernel drivers.

You should know how to compile a Linux kernel. If you have used Linux for any length of time, or if you plan to,
kernel compilation teaches you a great deal about Linux.

Compiling the Linux kernel from source is not a trivial undertaking. While you don't need prior experience building
system-level software, you do need a basic understanding of Linux filesystems, editors, and other concepts. See the
following resources for some good basic Linux backgrounders:

The Linux Kernel HOWTO, part of the Linux Documentation Project
(http://www.linux.org/docs/ldp/howto/Kernel-HOWTO/index.html)

Running Linux, Fourth Edition (O'Reilly)

Understanding the Linux Kernel, Second Edition (O'Reilly)

To configure and compile a Linux kernel, you must obtain the following items:

A working Linux system

The correct compiler, libraries and tools

The kernel source

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The kernel source

A working Linux system should be fairly modern if you are planning on compiling modern kernel code. For instance, do
not attempt to compile a 2.4 kernel tree using a Linux system based on a 2.0 or prior kernel. Any recent distribution of
Linux should have the kernel version and tools necessary for compiling your own kernel.

In each kernel release, the README file in the kernel source specifies the version of the gcc compiler needed to compile
successfully. For example, the README for kernel 2.4.22 states:

Make sure you have gcc 2.94.3 available. gcc 2.91.66 (ecgs-1.1.2) may also work but is not as safe,
and gcc 2.7.2.3 is no longer supported.

Compiling and running the 2.4.xx kernels requires up-to-date versions of various software packages.
Consult /Documentation/Changes for the minimum version numbers required and how to get updates
for these packages.

The Changes document goes into great detail on versions of software, including gcc, that are required for successful
compilation of the kernel source. Make sure your system has the correct versions of the tools specified. Failure to do so
may mean that your new kernel will not compile, or that bugs will be introduced into your kernel.

Kernel source can be obtained from many places. The major distributions include kernel source in package format—
RPMs, Debian packages for apt-get, or dpkg. Other kernel source RPMs built by third parties can be found at
http://www.rpmfind.net. The ultimate repository for all Linux kernels is kernel.org, accessible via FTP or HTTP. Here you
can find source for any kernel version you want, all the way back to the 1.0 kernel from 1994.

The latest stable kernel is Version 2.4.23, and it can be downloaded directly by using this URL:
http://www.kernel.org/pub/linux/kernel/v2.4/linux-2.4.23.tar.bz2. You'll want to save this compressed file in /usr/src.

To find the latest kernel source, look in the major/minor version subdirectory (such as
v2.4) for a file starting with LATEST-IS. For example, a file named LATEST-IS-2.4.23 tells
you that kernel 2.4.23 is the most recent. Unless you are aware of a specific problem with
the latest kernel version, you should always use the most recent one.

We'll walk through a compile of the 2.4.23 kernel for a Debian Linux system running on a Dell laptop. Obviously, this
only scratches the surface of kernel compilation. This book doesn't have the space to cover multiple versions of kernels,
much less cover what it takes to compile on other specific systems. One good resource for information is the Kernel
HOWTO listed earlier. Another is the linux-kernel mailing list, located at http://www.tux.org/lkml/. This page has a very
extensive questions section, where many common kernel answers are given.

2.3.2.1 Off to the races

Assuming that you have obtained the 2.4.23 kernel source from www.kernel.org, you'll want to uncompress the file and
change into the working source directory (these instructions will work with later versions of the 2.4 kernel):

tar xjvf linux-2.4.23.tar.bz2

cd linux-2.4.23

If you want to save the original .config file from the source, you should back it up (if you obtained your kernel source
from a tarball at kernel.org, this file won't exist):

cp .config .config-original

If you have done anything in this directory other than the three commands listed previously, it's a good idea to run a
couple of cleanup commands. These commands clean out all sorts of things that might have been compiled or
configured in ways that you don't want:

make clean

make mrproper

At this point, you have four options for configuring your kernel before compilation.

Manual editing of the .config file

Not recommended unless you are a serious kernel hacker, and you know exactly what you're doing.

make config

This is a command-line interface that walks you through every possible config option, one at a time. It is very

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This is a command-line interface that walks you through every possible config option, one at a time. It is very
time consuming and very unfriendly. When you enter this command, you see something such as this on the
screen:

rm -f include/asm

(cd include ; ln -sf asm-i386 asm)

/bin/sh scripts/Configure arch/i386/config.in

#

Using defaults found in .config

#

*

* Code maturity level options

*

Prompt for development and/or incomplete code/drivers (CONFIG_

EXPERIMENTAL) [Y/n/?]

You must answer each and every question the script asks you in order to generate a valid .config file.

make menuconfig

This is a command-line menu interface that relies on the ncurses library to generate a menu-based
configuration editor. It is a much more friendly interface than the preceding options. Here, instead of answering
a question about each and every single possible kernel feature, you are presented with a hierarchical menu that
breaks things down into sections. Figure 2-2 shows the main menu you obtain from running make menuconfig.

Figure 2-2. Initial menu from make menuconfig

make xconfig

As the name implies, this is an X-Windows interface for the config process. You must be running some flavor of
X-Windows to use this option. For most Linux users, this is Gnome or KDE. make xconfig produces a GUI window,
as shown in Figure 2-3.

Figure 2-3. Initial menu from make xconfig

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2-3. Initial menu from make xconfig

For most users, make menuconfig or make xconfig are going to be the most friendly. This book assumes that you have
chosen one of these options. Every option in the following list that you pick is from a menu in make menuconfig or make
xconfig.

The following list presents a number of options that you must choose to successfully compile your kernel for wireless
connectivity. Note that there are many other options that must be selected to compile a kernel for your system, but
they are not covered here. There are three options you can select: Y for yes, M for module, and N for no:

Code maturity level options

 Prompt for development and/or incomplete code/drivers: Y

Loadable Module Support

 Enable loadable module support: Y

 Set version information on all module symbols: Y

 Kernel module loader: Y

Processor type and features

 It is vitally important that you select your correct processor type

 in this option. Otherwise your kernel will not be compiled properly

 and will definitely not boot.

General Setup

 Networking support: Y

 PCI Support (for PCI or CardBus wireless cards): Y

 Support for hot-pluggable devices (for PCMCIA, CardBus or USB support) Y

 PCMCIA/CardBus support

 PCMCIA/CardBus support: Y

 CardBus support (if required for your setup): Y

 PCI Hotplug Support

 Support for PCI Hotplug (required for madwifi driver): Y

 ACPI PCI Hotplug driver (required for madwifi driver): M

 Power Management Support (required for ACPI): Y

 ACPI Support

 ACPI Support (required for madwifi driver): Y

Plug and Play configuration

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Plug and Play configuration

 Plug and Play support: Y

Networking options

 Packet socket: Y

 Socket filtering: Y

 Unix domain sockets: Y

 TCP/IP networking: Y

Network device support

 Network device support: Y

 Wireless LAN (non-hamradio): Y

 In this section you will want to choose a wireless

 driver for your card, if it is listed here.

Once you have selected these options (and any other options required for your particular system), you're done with the
config. You can choose to Store Configuration to File if you would like to write this particular config to a file other than
the default .config. Otherwise, choose Save and Exit, which writes your options to the .config file.

Your next step is to issue the make dep command. This runs a Makefile script that compiles any dependencies required
for your kernel. Depending on your system, this likely takes a few minutes.

You're now ready to compile the kernel! This is done with the make bzImage command. This takes quite some time.

Next, because you have selected the Loadable Modules section, you must compile all of the modules by issuing the
make modules command. On some systems, depending on the number of modules you chose to build, this command
may take more time than compiling the kernel.

Finally, you must install the modules you have just compiled. This is accomplished by the make modules_install command.

If you encounter errors during the compile process, note the specific error and the directory in which it occurred.
Execute the make clean command. Go back into make xconfig and find the area corresponding to the directory where the
compile failed. Examine the options you chose very carefully. Did you choose a kernel option or module that is not on
your system? Did you choose an option that is labeled as EXPERIMENTAL? You may wish to alter your choices. While the
menu makes choosing kernel options very easy, it does not give you advice on which options to choose. You may have
to experiment with the settings until you get a successful compile.

Once you have compiled the bzImage and the modules, you are ready. Now, you must copy the bzImage file that was
compiled to your /boot directory. Many distributions use the filename of vmlinuz for this purpose, but you can call the
file anything you want. The path below obviously varies depending on your system architecture. The following example
is from kernel 2.4.23 compiled for i386:

cp /usr/src/linux/arch/i386/boot/vmlinuz-2.4.23 /boot/

One last thing must be done: configure your boot loader program so that it recognizes your new kernel. The two most
common boot loaders are GRUB and LILO. LILO is the older of the two, but it is still widely used. We assume that you
are using LILO. For more information on configuring GRUB, see the GNU software pages at
http://www.gnu.org/software/grub.

To configure LILO for your new kernel, edit the /etc/lilo.conf file. A typical lilo.conf is shown here:

lba32

boot=/dev/hda

root=/dev/hda3

install=boot/boot-menu.b

map=/boot/map

delay=20

prompt

timeout=150

vga=normal

default=Linux

image=/boot/vmlinuz-2.4.23

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 label=Linux

 read-only

image=/boot/vmlinuz-2.4.18

 label=Old Kernel

 read-only

The key pieces are at the end. This example uses default=Linux, the label associated with the image for kernel 2.4.23,
which you have just built and copied to /boot. Leave the old kernel image in the configuration file. This is very
important, because it gives you a rescue option if your new kernel image does not boot or has errors.

To activate this lilo.conf, run LILO and specify the configuration file:

#lilo -C /etc/lilo.conf

Added Linux *

Added Old Kernel

You are now ready to reboot your system and boot into the new kernel that you just compiled.

2.3.3 Building and Configuring the pcmcia-cs Subsystem

As mentioned previously, you have two options for PCMCIA support. You can select PCMCIA/CardBus support when you
compile your kernel, or you can build the pcmcia-cs subsystem from scratch.

The pcmcia-cs software package, available from http://pcmcia-cs.sourceforge.net, is the basis for the kernel PCMCIA
support. Going forward into the 2.6 kernels, it appears that all new development will be on the kernel tree PCMCIA.
However, as of this writing and the 2.4.23 kernel, the pcmcia-cs version of 3.25 has newer utilities and drivers than the
ones in the kernel PCMCIA. It is mainly for this reason that you will want to compile pcmcia-cs from source.

If you compile your kernel with PCMCIA/CardBus support, you do not need to install the
pcmcia-cs package from source. However, if you want the latest versions of the PCMCIA
utilities, you can install this package without interfering with kernel support for
PCMCIA/CardBus. For more information, see Section 2.3.3.1 later in this chapter.

Once again, to compile kernel modules from source, you need the configured kernel source for your kernel. This
generally means that you have configured and compiled your own Linux kernel. While it is certainly possible to compile
kernel modules against Linux kernels provided by a stock distribution, it can be tricky. For more on compiling your own
kernel, see the previous Section 2.3.2.

There are a number of kernel options that may need to be enabled, depending on how you use the PCMCIA devices.
Because many of these options pertain to wired network cards, SCSI and IDE adapters, we do not cover them here.
However, if you do plan to use 16-bit PCMCIA (non-CardBus cards), you must enable CONFIG_ISA. This option can be
found in the General Setup portion of make menuconfig or make xconfig as part of your kernel configuration.

To begin compiling the package, download the pcmcia-cs.3.2.5.tar.gz file into the /usr/src directory. Unpack the tar.gz
file and change into the top-level directory (if a later version is available, you should use that):

tar xzvf pcmcia-cs.3.2.5.tgz

cd pcmcia-cs.3.2.5

You must configure the package before compilation and make a few decisions on what kind of PCMCIA support you
need. In most cases, you can accept the defaults on all of the config questions.

The kernel source directory defaults to /usr/src/linux. If your kernel source is located in /usr/src/kernel-2.4.23, you
must enter that here:

make config

Linux kernel source directory?

Next, you can choose whether to allow non-root users to modify PCMCIA card configurations. The default answer is no,
which does not allow any non-root users to suspend, resume, or reset cards, or to change the PCMCIA configuration
scheme. Answering yes allows non-root users all these privileges.

Build 'trusting' versions of card utilities?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Build 'trusting' versions of card utilities?

In most cases, you want to enable CardBus support. Unless you plan only to use 16-bit 802.11 and 802.11b PCMCIA
cards, CardBus is required for 802.11a and 802.11g PC Cards.

Include 32-bit (CardBus) card support?

This option inserts extra code into the PCMCIA subsystem, which allows it to check with a system's BIOS to obtain
resource information on a motherboard's devices to help avoid resource conflicts. It can cause problems on some
laptops, so this option is not enabled by default.

Include PnP BIOS resource checking?

Unless you are installing modules in an alternate directory for some reason, this should be the subdirectory of
/lib/modules that matches your kernel. In this case, the subdirectory is /lib/modules/2.4.23.

Module install directory?

Once you've answered the questions and config has finished, you should run the following commands to build and then
install the kernel modules and utility programs:

make all

make install

Once installed, the kernel modules will be located in /lib/modules/2.4.23/pcmcia, the binary PCMCIA control programs
will be located in /sbin, and all configuration files will be located in /etc/pcmcia. A startup configuration file will also be
installed, but this location varies with the Linux distribution in question. Debian locates the startup configuration in
/etc/default/pcmcia. RedHat and several other distributions locate the startup configuration in /etc/sysconfig/pcmcia.

The startup configuration file has several options that can be set. A sample file from a modified Debian system looks
like this:

PCMCIA=yes

PCIC=i82365

PCIC_OPTS=

CORE_OPTS=

CARDMGR_OPTS=-f

If PCMCIA is set to anything other than "yes," the PCMCIA subsystem will not start at time of boot.

The only mandatory option in this file that must be set is PCIC=. There are three options: tcic, i82365, and
yenta_socket. tcic is a driver for older PC Card controllers, and unless you're building on a 486 laptop, you won't use it.
Most other systems will want to set this option as i82365, unless you have the kernel tree PCMCIA. If the kernel tree
PCMCIA is configured in your kernel, you must set this option to yenta_socket. Finally, if your PCMCIA card is CardBus,
you should set this to yenta_socket.

PCIC_OPTS are necessary only if your specific PC Card controller has options that need to be passed to it at boot time.
For most modern controllers, this is not an issue.

CORE_OPTS are options for the kernel module pcmcia_core. man pcmcia_core gives you a listing of all these options.

CARDMGR_OPTS are options for the cardmgr daemon. man cardmgr gives you a listing of these options. In this case, the
-f option tells cardmgr to run in the foreground, rather than as a daemon, until any cards present are already
configured.

There are quite a number of settings that are possible for various systems. If you have an unusual system or a desktop
system with an add-on PCMCIA reader, you should completely read through the PCMCIA HOWTO:

http://pcmcia-cs.sourceforge.net/ftp/doc/PCMCIA-HOWTO.html

2.3.3.1 2.4 kernels and kernel tree PCMCIA

Note that if you have a 2.4 kernel and kernel tree PCMCIA configured in your kernel, the pcmcia-cs install process will
install only the PCMCIA tools, cardmgr, and cardctl in the /sbin directory. None of the kernel modules or client card
drivers will be installed, because the pcmcia-cs installer will find existing modules from the kernel tree PCMCIA and by
default will not overwrite them.

Included with the pcmcia-cs source is a README file on issues with the 2.4 kernel. (You can also find this file at
http://pcmcia-cs.sourceforge.net/ftp/README-2.4.) One of the questions in the Q&A section covers this issue. You
cannot compile or install anything in the /usr/src/pcmcia-cs.3.2.5/modules directory, as these modules would conflict
with the PCMCIA subsystem in the kernel tree.

However, you can build client card drivers from the pcmcia-cs source code by executing make install in either the
/usr/src/pcmcia-cs.3.2.5/clients or /usr/src/pcmcia-cs.3.2.5/wireless subdirectories after running make config.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

/usr/src/pcmcia-cs.3.2.5/clients or /usr/src/pcmcia-cs.3.2.5/wireless subdirectories after running make config.

You may need to build the drivers this way for a variety of reasons. For example, when we built and compiled the
2.4.23 kernel, pcmcia-cs, and associated wireless drivers, we discovered that the madwifi driver for Atheros chipsets
required kernel tree PCMCIA. However, once the kernel was compiled and the Atheros card was successfully tested, we
discovered that the Orinoco card would not initialize. The PCMCIA subsystem reported orinoco_cs: CardServices release
does not match! In order to fix this, it was necessary to configure pcmcia-cs and run a make install in the wireless
subdirectory, as described earlier.

2.3.3.2 Controlling the PCMCIA subsystem

To successfully initialize and configure a PCMCIA wireless card, there are a number of pieces that come into play. Three
modules need to be loaded at boot time: ds, i82365 or yenta_socket, and pcmcia_core. If you have kernel tree PCMCIA
enabled or have gone through the pcmcia-cs installation process, these modules load automatically.

The next important bit is the cardmgr daemon, which monitors the PCMCIA socket, loads client card drivers at startup,
and runs user scripts when cards are inserted or removed. The two important files for cardmgr are located in
/etc/pcmcia/config and /etc/pcmcia/config.opts. config contains information about all of the client card drivers, about
how to identify various cards, and about which drivers to load for which card. This file shouldn't be modified unless you
really know what you're doing and must load a driver for a card that is not described in the config file. Similarly,
config.opts must be modified if you have special options that must be passed to the PCMCIA card from cardmgr, or if
you are experiencing memory or address conflicts with a specific card.

To manage a given PCMCIA card, run a user-space program called cardctl. cardctl checks the status and configuration of
a PCMCIA socket and allows you to modify the configuration, as well as insert, eject, and suspend PCMCIA cards. There
are several commands that cardctl supports. Examples with sample output from the commands are shown next.

The config command shows low-level configuration for any PCMCIA card: the voltage type, interface type, IRQ in use,
and I/O memory used. This is a very handy tool for troubleshooting if you are running into resource conflicts.

cardctl config

Socket 0:

 Vcc 3.3V Vpp1 0.0V Vpp2 0.0V

 interface type is "memory and I/O"

 irq 12 [exclusive] [level]

 function 0:

 config base 0x03e0

 option 0x41

 io 0x0100-0x013f [16bit]

The ident command gives you the chipset identification strings for your PCMCIA card. In this example, you are looking at
a Senao 802.11b card that uses the Intersil Prism II chipset. Note that one thing you don't see is the manufacturer
name; rather, you see the chipset manufacturer name.

cardctl ident

Socket 0:

 product info: "INTERSIL", "HFA384x/IEEE", "Version 01.02", ""

 manfid: 0x0156, 0x0002

 function: 6 (network)

The suspend and resume commands shut down a PCMCIA card without unloading the associated drivers, and then they
allow you to resume normal card operation. reset reloads the card driver without shutting down power to the card or
resetting the PCMCIA subsystem.

cardctl suspend

cardctl resume

cardctl reset

The eject and insert commands are the software equivalent of physically ejecting and inserting a PCMCIA card, so the
card drivers are loaded or unloaded, and the devices are configured or shut down. It's important to note that CardBus
cards may not react well to physical ejection, and you should use the cardctl eject command before removing a CardBus
card.

cardctl eject

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

cardctl eject

cardctl insert

Schemes allow you to have multiple configurations for your PCMCIA card. With a wireless network card, multiple
schemes provide you with the ability to change ESSID and other wireless settings as well as TCP/IP configuration.
Schemes are covered in more detail in the discussion of the PCMCIA configuration.

cardctl scheme

To stop or start the entire PCMCIA subsystem, execute the rc script that is installed with pcmcia-cs or the kernel tree
PCMCIA. Where this file is located varies depending on your Linux distribution. On most Linux distributions, these
commands stop and start the PCMCIA subsystem:

/etc/init.d/pcmcia stop

/etc/init.d/pcmcia start

2.3.3.3 PCMCIA wireless card configuration

PCMCIA devices are grouped into classes that define how they are configured and managed. These classes include
network, SCSI, CDROM, fixed disk, serial, and a couple of memory card classes. This chapter is really concerned with
wireless network cards, so the only class that is discussed here is the network class.

When the Wireless Tools are installed (see Section 2.3.4 later in this chapter for more information), an additional class
is added: wireless.

Classes are associated with device drivers in /etc/pcmcia/config. Each class has two scripts located in /etc/pcmcia: a
main configuration script and an options script. For network cards, these scripts are /etc/pcmcia/network and
/etc/pcmcia/network.opts. Similarly, the wireless class scripts are /etc/pcmcia/wireless and /etc/pcmcia/wireless.opts.

Both config scripts extract some information about the PCMCIA card from the PCMCIA subsystem and use this
information to generate a device address. The first part of any PCMCIA device address is the current scheme.

While the PCMCIA scripts accept any number of parameters in the device address, the sample scripts use the following
syntax:

case "$ADDRESS" in

,0,,*)

 # definitions for network card in socket 0

 ;;

,1,,*)

 # definitions for network card in socket 1

 ;;

esac

The comma-separated fields in this example are the scheme, the socket number, the device instance, and the card's
hardware Ethernet address. The device instance is used only if the card has multiple network interfaces, so, in most
cases, it is zero. In this example, the cards are configured based on their socket number, which is somewhat easier to
manage than configuration based on hardware Ethernet address.

The network.opts file accepts a large number of parameters. For information on all that this file offers, read through the
PCMCIA HOWTO:

http://pcmcia-cs.sourceforge.net/ftp/doc/PCMCIA-HOWTO.html

It is also beneficial to read through the default /etc/pcmcia/network.opts file before making any changes. Back up the
file before you start editing:

/etc/pcmcia# cp network.opts network.opts.orig

Here is a sample of a configured network.opts file that sets up a static IP address and related TCP/IP address
information for the wireless network card in slot 0:

case "$ADDRESS" in

,0,,*)

 INFO="Sample network setup"

 IPADDR="10.42.7.2"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 IPADDR="10.42.7.2"

 NETMASK="255.255.255.192"

 NETWORK="10.42.7.0"

 BROADCAST="10.42.7.63"

 GATEWAY="10.42.7.1"

 ;;

esac

This configuration applies to any PCMCIA network card that happens to be placed in slot 0. To make the configuration
adaptable to a laptop that needs to establish network configuration between home and work, set up the network.opts
file:

case "$ADDRESS" in

yourjob,0,*,*)

 INFO="Work network setup"

 IPADDR="10.1.1.200"

 NETMASK="255.255.255.0"

 NETWORK="10.1.1.0"

 BROADCAST="10.1.1.255"

 GATEWAY="10.1.1.1"

 ;;

home,0,*,*)

 INFO="Home network settings"

 DHCP=Y

esac

With this setup, you can switch between the static IP address assigned by your employer and the DHCP address you
receive at home from your ADSL or cable router. To switch to the home settings, run the following command:

cardctl scheme home

The scheme is persistent after rebooting. This may be a problem if you shut down your system at home and bring it up
at work, and you are still using your home network and wireless settings.

You can manually edit your lilo.conf so that the PCMCIA scheme is passed from LILO to the system init as a variable.
Here is a lilo.conf that shows two different schemes:

root = /dev/hda1

read-only

image = /boot/vmlinuz-2.4.22

 label = home

 append = "SCHEME=home"

image = /boot/vmlinuz-2.4.22

 label = work

 append = "SCHEME=yourjob"

The /etc/pcmcia/wireless.opts file can be handled in a similar manner as network.opts. Again, the wireless.opts file
accepts a large number of parameters, and you should read through the Wireless HOWTO before starting:

http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/#howto

Also, read through the default /etc/pcmcia/wireless.opts file before making any changes. Back up the file before you
start editing:

/etc/pcmcia# cp wireless.opts wireless.opts.orig

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

/etc/pcmcia# cp wireless.opts wireless.opts.orig

Here is a sample of a configured wireless.opts file that sets an ESSID of home and a scheme of home:

case "$ADDRESS" in

home,0,*,*)

 INFO="Home wireless setup"

 ESSID="home"

 MODE="managed"

 RATE="auto"

 ;;

esac

The fields of interest are the ESSID, the mode, the channel, and the rate. The ESSID can
be set either to the correct case-sensitive ESSID from the needed access point or to any,
which allows the card to associate with any wireless network it finds.

For most cards, the mode can be set to managed or to ad-hoc. Managed mode is the 802.11 infrastructure mode, which
means your card is a client to an access point. Ad-hoc mode can be used to communicate directly between two
computers. Many cards support a third "monitor" mode that can be used to monitor wireless traffic. This mode is
covered in Chapter 3. Finally, if you have a Prism or Atheros-based card, a fourth "master" mode can be used to let
your card act as an access point (see Chapter 6).

Setting the rate allows you to determine the network speed your wireless card uses. For 802.11b cards, the valid rates
are 1MB, 2MB, 5.5MB, 11MB, and auto. Setting this to any of the numerical values locks your card into that rate, and it
transmits and receives at no other rate. If you want the card to automatically choose a rate up to a particular limit, use
the desired rate along with auto. For example, choosing "5.5MB auto" chooses automatically 1MB, 2MB, or 5.5MB,
depending on the amount of available signal. You may want to force a rate (or range of rates) if you are operating in an
area with marginal coverage. Locking in a lower rate can sometimes lead to better performance than auto if the card is
continually renegotiating the data rate.

The channel setting is not always needed, particularly if you have ESSID="any". However, if you are in a noisy wireless
environment with multiple access points, you may wish to set the ESSID and the channel to ensure that your card does
not associate with other access points.

Building on the use of a scheme, here is an expanded wireless.opts that provides configuration for both home and
work:

case "$ADDRESS" in

home,0,*,*)

 INFO="Home wireless setup"

 ESSID="home"

 MODE="managed"

 CHANNEL="11"

 RATE="auto"

 ;;

yourjob,0,*,*)

 INFO="Work wireless setup"

 ESSID="BigCorp"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ESSID="BigCorp"

 MODE="managed"

 CHANNEL="4"

 RATE="auto"

 KEY="s:bigsecret"

esac

Note that the work setup has another field: KEY="s:bigsecret". "bigsecret" is the Wired Equivalent Privacy (WEP) key, and
it is used to encrypt traffic between the client network card and an access point. WEP, its uses, and its weaknesses are
covered in Chapter 4.

Debian Network Device Configuration
Debian users have an alternate method of configuring their network devices, including any wireless
PCMCIA devices. Rather than relying on the /etc/pcmcia/network.opts and /etc/pcmcia/wireless.opts, all
options are set using /etc/network/interfaces.

Any PCMCIA device you wish to configure with the /etc/network/interfaces file should not be marked as
"auto." Debian will try to configure these interfaces before PCMCIA support is started, and the network
configuration will fail.

The interfaces file is responsible for setting TCP/IP settings for any network interfaces configured in
Debian. A sample entry defining a static IP address would look like this:

iface wlan0 inet static

 address 192.168.1.2

 network 192.168.1.0

 netmask 255.255.255.0

 broadcast 192.168.1.255

 gateway 192.168.1.l

If you install the wireless-tools package via apt-get, rather than compiling from source, Debian adds hooks
to the interfaces file to support new option statements. These options take the form of:

wireless_<function> <value>

When the interface is brought up during the boot process, these options result in the execution of the
following Wireless Tools command:

iwconfig <interface> <function> <value>

Using this method, any command that is recognized by iwconfig, except for "Nickname," can be entered in
/etc/network/interfaces and passed to the wireless card when it is initialized. To expand on the previous
sample entry, here is an expanded entry that sets various wireless parameters:

iface wlan0 inet static

 address 192.168.1.2

 network 192.168.1.0

 netmask 255.255.255.0

 broadcast 192.168.1.255

 gateway 192.168.1.1

 wireless_essid NoCat

 wireless_mode Managed

2.3.4 Installing the Wireless Tools

The Linux Wireless Tools and their companion API, the Wireless Extensions, are both the work of Jean Tourrilhes at

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Linux Wireless Tools and their companion API, the Wireless Extensions, are both the work of Jean Tourrilhes at
Hewlett Packard, who maintains an excellent web page full of useful information for Linux and wireless LANs at
http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/.

While the Wireless Tools and Extensions are not the only methods of configuring and using wireless network cards
under Linux, they are the most common and are discussed in this chapter.

2.3.4.1 Wireless Extensions

To use the Wireless Tools, you must have a kernel and drivers with the Wireless Extensions. Fortunately, most kernels
since 2.2.14 have included the wireless.h that defines Wireless Extensions in the kernel. In order for the Wireless
Extensions to be included in the kernel, you must make sure that the CONFIG_NET_RADIO option is enabled. If you
built your kernel following the instructions earlier in the chapter, your kernel should be built properly with the Wireless
Extensions.

Table 2-1 shows what version of the Wireless Extensions your kernel should support (see Jean Tourrilhes's web page for
the most recent information).

Table 2-1. Wireless Extensions support in Linux kernels
Version Kernel Features

WE-9 2.2.14, 2.3.30 Basic 802.11b support

WE-10 2.2.19, 2.4.0 Add TxPower setting

WE-11 2.4.4 Driver version check, retry setting

WE-12 2.4.13 Additional statistics

WE-13 2.4.19, 2.5.3 New driver API

WE-14 2.4.20, 2.5.7 Wireless Scanning, Wireless Events

WE-15 2.4.21, 2.5.37 Enhanced iwpriv support

WE-16 2.4.23, 2.6 802.11a/802.11g fixes, Enhanced iwspy support

The Wireless Extensions Version 16 is used for all the examples that use the 2.4.23 kernel. While there are patches to
upgrade older kernels to later versions of the Wireless Extensions, it is not recommended, as many of the changes in
wireless.h are dependent on specific kernel features and were not tested in older kernel versions.

2.3.4.2 Compiling the Wireless Tools

Now that you know the version of the Wireless Extensions that your kernel includes, you should get the latest version of
the Wireless Tools. At the time of this writing, the latest stable version is 26 and can be obtained from the pcmcia-cs
web site:

http://pcmcia-cs.sourceforge.net/ftp/contrib/wireless_tools.26.tar.gz

If you don't want to compile from source, you can install a binary package. Debian users
can install the Wireless Tools as a package using apt-get install wireless-tools. RedHat and
Mandrake users can install the wireless-tools RPM from the installation CDs. Other
distributions should have a similarly named package.

Your best option is to download the source code from the aforementioned link and build the Wireless Tools for your
exact version of the Wireless Extensions in your kernel. If you install a package version, it may have been compiled
against a different version of the Wireless Extensions. When this happens, every time you use one of the Wireless
Tools, you will see this error message:

Warning: Driver for device wlan0 has been compiled

with version 14 of Wireless Extension, while this program is using version

15. Some things may be broken...

As the error message states, if you are using a version of the Wireless Tools that has been compiled with a previous
version of the Wireless Extensions, some features may not work. Looking at Table 2-1, you can see that if you use a
version of the Wireless Tools that had been compiled against Version 13 of the Wireless Extensions, you would not be
able to use the Wireless Scanning in Version 14, regardless of the version of the Wireless Extensions in your kernel.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

able to use the Wireless Scanning in Version 14, regardless of the version of the Wireless Extensions in your kernel.

To successfully compile the Wireless Tools, you should need only a working compiler environment and a kernel with
CONFIG_NET_RADIO enabled. PCMCIA support is optional but obviously required if your wireless card is a PCMCIA card.
To really use the tools, you definitely need a wireless driver that supports the Wireless Extensions. Most Linux drivers
do. Consult Jean Tourrilhes's web page if you have questions about a specific driver. Of the drivers covered in this
chapter, only the wlan-ng driver does not support the Wireless Extensions.

To begin compiling the package, download the wireless_tools.26.tar.gz file into the /usr/src directory. Unpack the tar.gz
file and change into the top-level directory:

tar xzvf wireless_tools.26.tar.gz

cd wireless_tools.26

There isn't any configuration to do. As Jean Tourrilhes says in the INSTALL text file, "in theory a `make' should suffice
to create the tools." You should be able to:

make

make install

One potential problem you may run into: there are compilation issues with certain kernel and libc combinations. If you
receive the error "Your kernel/libc combination is not supported," it means some code hacking is required. For your
purposes, you are better off installing a packaged version from your distribution.

2.3.5 Using the Wireless Tools

You now have the Wireless Tools compiled and installed in /usr/local/sbin. There are four binary executables included
with the Wireless Tools. All four Wireless Tools pull information from /proc/net/wireless, which is created only when
your kernel is compiled with the Wireless Extensions.

2.3.5.1 iwconfig

This is the tool you use to configure the basic operating parameters of your wireless card. It is also the tool that is
called during the boot process to configure your card based on settings in /etc/pcmcia/wireless.opts.

Called without any arguments, iwconfig displays current wireless settings for any wireless cards in the system. A typical
example would look something like this:

lo no wireless extensions.

eth0 no wireless extensions.

wlan0 IEEE 802.11-b ESSID:"NoCat-Grandview" Nickname:"airhead"

 Mode:Managed Frequency:2.462GHz

 Access Point: 00:02:6F:04:78:7E

 Bit Rate:11Mb/s Tx-Power=24 dBm Sensitivity=1/3

 Retry min limit:8 RTS thr:off Fragment thr:off

 Encryption key:off

 Power Management:off

 Link Quality:40/92 Signal level:-77 dBm

 Noise level:-100 dBm

 Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0

 Tx excessive retries:5293 Invalid misc:86372

 Missed beacon:0

If you have multiple wireless network cards and you don't wish to see the "no wireless extensions" message each time
you run iwconfig, make sure to specify the interface:

$ iwconfig wlan0

This only shows the configuration for the specified network card.

As you can see, there are quite a number of parameters that iwconfig can set. Not everything can be changed, however.
Starting with Link Quality, the output is taken from /proc/net/wireless and consists of read-only statistics.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Starting with Link Quality, the output is taken from /proc/net/wireless and consists of read-only statistics.

All of these parameters, settings, and statistics are device- and driver- dependent. Each wireless driver is going to write
different things to /proc/net/wireless, and each driver supports commands from the Wireless Tools differently. For
example, if you use an Orinoco card with the orinoco_cs wireless driver, your options for "Mode" are much more limited
than if you use a Prism II-based card with the hostap_cs driver.

Let's step through the available iwconfig parameters. In the following examples, we use the eth1 interface, but it may be
something different, such as wlan0 in the hostap_cs driver or ath0 in the madwifi driver:

essid < name>

Sets the network name or SSID to which the wireless card connects. A useful option is to set the name to any,
which allows the card to connect to any available wireless network:

iwconfig eth1 essid NoCat

iwconfig eth1 essid any

freq or channel

Sets the operating frequency or channel of the wireless card. channel accepts a number in the range of 1-11
(U.S.) or 1-14 (E.U.). freq accepts the frequency in Hz. You should enter the exact frequency, such as 2.462 for
channel 11. You can also enter the frequency with the suffix of G: 2.46G for channel 11:

iwconfig eth1 channel 6

iwconfig eth1 freq 2.437

iwconfig eth1 freq 2.43G

mode

Sets the operating mode of the wireless card. There are different options depending on your wireless card and
driver. Most cards and drivers under Linux support ad-hoc mode for communicating with another node, without
any access points. The most common mode is managed, which allows the wireless card to connect as a client to
an access point. One advanced mode is master, which is supported in the hostap and madwifi drivers, and
makes the card into a software-controlled access point. Another advanced mode is monitor, which turns the
wireless card into a passive receiver that can only receive packets:

iwconfig eth1 mode managed

iwconfig eth1 mode ad-hoc

ap

Enters a hardware address of a specific access point, which forces the card to associate with that access point.
By default, if the connection quality degrades or is unusable, the card defaults back to automatic mode, where
the card finds the best access point in range. You can defeat this by using the option off to disable automatic
mode. any or auto enables automatic mode.

iwconfig eth1 ap 00:02:2d:53:66:19

iwconfig eth1 ap off

iwconfig eth1 ap auto

sens

Sets the sensitivity threshold of the wireless card. The card does not receive any signal lower than this level.
This avoids background noise. Positive values are assumed to be the raw value used by the hardware, or a
percentage. Negative values are assumed to be dBm. Again, the settings are dependent on the hardware of the
wireless card. Prism and Orinoco cards seem to treat only values of 1-3 as valid sensitivity settings. Depending
on your hardware, this parameter may also control the defer threshold (the lowest signal level for which the
channel is considered busy) and the handover threshold (the lowest signal level where the card stays associated
with an access point).

iwconfig eth1 sens -80

rate

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sets the bit-rate in bits/second. Once again the available options depend on your wireless card. The value of the
option must be the exact bitrate number or should have M appended to the end of the number. auto is the
default setting for most cards and falls back to lower bit-rates if there is noise.

iwconfig eth1 rate auto

iwconfig eth1 rate 11M # (802.11b)

iwconfig eth1 rate 54M # (802.11a/g)

rts

RTS/CTS adds a handshake before each packet transmission to make sure that the channel is clear. This adds
quite a bit of overhead and decreases the potential bandwidth. However, it can result in increased performance
in the case of hidden nodes or large numbers of active nodes. Set a packet size that determines the minimum
packet size threshold for enabling RTS/CTS, auto to have the driver automatically perform RTC/CTS, or off to
disable:

iwconfig eth1 rts 250

iwconfig eth1 rts auto

iwconfig eth1 rts off

frag

Sets the fragmentation threshold. This allows the card to split a packet into smaller packet fragments to
transmit. As with rts, this adds overhead and reduces the available bandwidth, but in very noisy environments,
it reduces the amount of errors and tries to send packets again. As with rts, you set a packet size that
determines the minimum packet size for determining when fragmentation should be enabled. You can also set
auto to have the driver automatically perform fragmentation or off to disable fragmentation.

iwconfig eth1 frag 512

iwconfig eth1 frag auto

iwconfig eth1 frag off

nick

Sets the nickname or station name of the wireless card. Most 802.11 devices define this parameter, but it is
completely optional and doesn't affect performance or operation at all. Some diagnostic tools may use it.

iwconfig eth1 nick "Network God"

key or enc

Sets the encryption mode and keys for the wireless card. on and off enable and disable encryption, respectively.
Encryption keys can be entered as hex digits, with or without separation dashes, or ASCII strings can be
entered in the format s:password. Generate an index of keys by appending an index number in brackets ([]) to
the key when it is entered. Once you have multiple keys in the index, change keys by simply passing the index
number as the option. Two modes are available: open and restricted. open accepts nonencrypted traffic, while
restricted accepts only encrypted packets.

iwconfig eth1 enc on

iwconfig eth1 key 0a12fc132

iwconfig eth1 key s:supersecret [2]

iwconfig eth1 key [2] restricted

power

Sets power management modes and parameters. on and off enable and disable power management,
respectively.

txpower

For cards that support multiple transmit powers, this sets the transmit power in dBm. on and off enable and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For cards that support multiple transmit powers, this sets the transmit power in dBm. on and off enable and
disable radio transmissions entirely. auto enables automatic power selection if that feature is available. If the
entry is followed by "mW," the value automatically is converted to dBm. Geeky math note: if W is the power in
watts, the power (P) in dBm is P = 30 + 10.log(W).

iwconfig eth1 txpower 30

iwconfig eth1 txpower 200mw

iwconfig eth1 txpower auto

iwconfig eth1 txpower off

retry

For cards that support MAC retransmissions, this allows you to change the parameters of the retry. You can set
the maximum number of retries with limit and an absolute value. The maximum length of time the MAC should
retry is set with lifetime, in seconds. You can append "m" or "u" to specify milliseconds or microseconds
respectively. limit and lifetime can also be modified by the use of min or max, which allows you to set the upper
and lower boundaries of limit and lifetime.

iwconfig eth1 retry 16

iwconfig eth1 retry lifetime 300m

iwconfig eth1 retry min limit 8

iwconfig eth1 retry max lifetime 500m

--version

Displays the version of iwlist and the Wireless Extensions:

iwconfig --version

iwconfig Version 25

 Compatible with Wireless Extension v15 or earlier,

 Currently compiled with Wireless Extension v15.

wlan0 Recommend Wireless Extension v13 or later,

 Currently compiled with Wireless Extension v14.

To summarize: iwconfig allows you to change the configuration of your wireless network card on the fly. All of the
options supported by iwconfig can be set in /etc/pcmcia/wireless.opts, and when the PCMCIA subsystem is initialized,
these options are executed as the card is configured.

2.3.5.2 iwlist

This is mainly used for showing lists of parameters that the current wireless card supports. However, it does have one
very useful feature that is not a list of parameters.

If you would like to see a list of access points available for your wireless card, iwlist is your ticket. You won't have to
install other network-scanning utilities like Kismet (covered in Chapter 3). Not all card drivers support this option. For
instance, the orinoco_cs driver does not support scanning. To initiate scanning, this command must be run with root
access:

iwlist eth1 scan

Here is a sample of th output you might expect:

wlan0 Scan completed :

 Cell 01 - Address: 00:02:6F:04:78:7E

 ESSID:"NoCat"

 Mode:Managed

 Frequency:2.462GHz

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Frequency:2.462GHz

 Quality:0/92 Signal level:-64 dBm Noise level:-100 dBm

 Encryption key:off

 Bit Rate:1Mb/s

 Bit Rate:2Mb/s

 Bit Rate:5.5Mb/s

 Bit Rate:11Mb/s

If you are in an area with multiple access points, you should see "Cell" entries for each access point, with specific
information on signal and noise level. This is a very useful base tool for finding access points in an unfamiliar
environment, or even for baselining your wireless network infrastructure.

Aside from this, iwlist serves as a query tool to determine what features your wireless card supports. Let's step through
the available iwlist queries:

freq

Displays the list of available radio frequencies and the number of defined radio channels. It also displays the
currently used radio channel. For a U.S. user, typical output from this command would be:

$ iwlist wlan0 freq

wlan0 14 channels in total; available frequencies :

 Channel 01 : 2.412 GHz

 Channel 02 : 2.417 GHz

 Channel 03 : 2.422 GHz

 Channel 04 : 2.427 GHz

 Channel 05 : 2.432 GHz

 Channel 06 : 2.437 GHz

 Channel 07 : 2.442 GHz

 Channel 08 : 2.447 GHz

 Channel 09 : 2.452 GHz

 Channel 10 : 2.457 GHz

 Channel 11 : 2.462 GHz

 Current Frequency:2.462GHz (channel 11)

ap or peers

This feature is deprecated in favor of the scan feature, previously mentioned. Most current drivers do not
support this feature. However, some drivers may use this command to return a specific list of peers associated
with the wireless card.

rate

Lists the bit-rates supported by the card and the current bit-rate in use:

$ iwlist wlan0 rate

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ iwlist wlan0 rate

wlan0 4 available bit-rates :

 1Mb/s

 2Mb/s

 5.5Mb/s

 11Mb/s

 Current Bit Rate:11Mb/s

key or enc

Lists the encryption key size supported, the available keys in the wireless card, and the current key in use:

$ iwlist wlan0 key

wlan0 2 key sizes : 40, 104bits

 4 keys available :

 [1]: off

 [2]: off

 [3]: off

 [4]: off

 Current Transmit Key: [0]

txpower

Lists the various transmit powers available on the wireless card. This feature appears to be broken, at least with
respect to Wireless Extensions 15 and a Prism card using the hostap driver.

retry

Lists the transmit retry limits and lifetime:

$ iwlist wlan0 retry

wlan0 Fixed limit ; min limit:0

 max limit:255

 Current mode:on

 min limit:8 max limit:5

--version

Displays the version of iwlist and the Wireless Extensions:

$ iwlist --version

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ iwlist --version

iwlist Version 25

 Compatible with Wireless Extension v15 or earlier,

 Currently compiled with Wireless Extension v15.

wlan0 Recommend Wireless Extension v13 or later,

 Currently compiled with Wireless Extension v14.

2.3.5.3 iwspy

This is a useful tool that shows you quality-of-link information for one or many nodes in a wireless network. The
information is taken from /proc/net/wireless, but when running iwspy, the statistics are updated each time a packet is
received from the remote node. This does add some driver overhead, which means that local performance on the
machine running iwspy is degraded. Note that different drivers may partially support iwspy or may not support it at all.

In the most basic mode, simply run iwspy interface:

$ iwspy wlan1

wlan1 Statistics collected:

 00:02:6F:03:FE:65 : Quality:42/92 Signal level:-90 dBm

 Noise level:-98 dBm

 00:02:2D:04:EB:15 : Quality:31/92 Signal level:-94 dBm

 Noise level:-98 dBm

As in the previous example, you should see a MAC address for every remote station, along with quality, signal level,
and noise level statistics.

To start collecting statistics for a specific node, invoke iwspy with a DNS name, an IP, or hardware address:

$ iwspy wlan1 192.168.0.1

Then, when you invoke iwspy again for that interface, you see not only the current statistics for the remote node, but a
set of averages as well:

$ iwspy wlan1

wlan1 Statistics collected:

 00:02:6F:01:6A:02 : Quality:18/92 Signal level:-82 dBm

 Noise level:-100 dBm (updated)

 typical/average : Quality:36/92 Signal level:-62 dBm

 Noise level:-98 dBm

You can have iwspy monitor up to eight addresses simply by passing it multiple DNS names, IP, or hardware addresses
on the command line:

$ iwspy wlan1 192.168.0.1 test.foobarus.com notebook.foobarus.com

Again, when you invoke iwspy for that interface, you see current statistics for each remote node plus an average across
all three nodes.

If you are already monitoring three remote nodes and run iwspy again with a fourth IP address to monitor, iwspy will
replace the monitoring of your existing three nodes with monitoring of the new IP address. To avoid this, use the + sign
before the IP address on the command line:

$ iwspy wlan1 + 192.168.0.15

This appends the new address to your existing list of addresses that are already being monitored.

To disable any iwspy statistic collection you may have started, simply turn it off:

$ iwspy wlan1 off

Two more useful commands in iwspy let you set high and low signal strength thresholds for wireless events. setthr

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Two more useful commands in iwspy let you set high and low signal strength thresholds for wireless events. setthr
<low/high> sets the thresholds, and if an address monitored with iwspy goes higher or lower than the thresholds, a
wireless event is generated:

$ iwspy wlan1 setthr 40 80

This means that you can monitor link status on multiple connections without having to continually run iwspy.

To show what the threshold has been set to, type the following:

$ iwspy wlan1 getthr

2.3.5.4 iwpriv

This tool allows you to configure private wireless options—in other words, options that are limited to a single wireless
driver. This is different than iwconfig, which deals with generic settings that are applicable to all wireless cards.

Called without any arguments, iwpriv returns a list of available private commands. On a Prism II-based Senao 200 mW
card, the following list is returned:

wlan0 Available private ioctl :

 monitor (8BE4) : set 1 int & get 0

 readmif (8BE3) : set 1 byte & get 1 byte

 writemif (8BE2) : set 2 byte & get 0

 reset (8BE6) : set 1 int & get 0

 inquire (8BE8) : set 1 int & get 0

 set_rid_word (8BEE) : set 2 int & get 0

 maccmd (8BF0) : set 1 int & get 0

 wds_add (8BEA) : set 18 char & get 0

 wds_del (8BEC) : set 18 char & get 0

 addmac (8BF2) : set 18 char & get 0

 delmac (8BF4) : set 18 char & get 0

 kickmac (8BF6) : set 18 char & get 0

 prism2_param (8BE0) : set 2 int & get 0

 getprism2_param (8BE1) : set 1 int & get 1 int

This list shows that there are quite a few private options that can be set using iwpriv on a Prism II card. One option is
WDS, the Wireless Distribution System, which is covered in Chapter 6. Most of the private commands are hardware-
and driver-specific.

Many cards support some types of iwpriv reset command. The orinoco_cs driver includes card_reset and force_reset
options for iwpriv.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.4 Linux Wi-Fi Drivers in Depth
Most Linux distributions include a number of wireless drivers. In many cases, the driver that you need will be available.
However, there are a number of situations where you must obtain the driver source and build it yourself. This is true for
many newer Wi-Fi cards, particularly cards that support 802.11a, 802.11g, or both. The drivers for these cards are still
under development and are not included with most Linux distributions.

A second reason to obtain the driver source and build it yourself is if you wish to build your own access point. (The
details of Linux access points are covered in Chapter 6.) However, the drivers that enable you to have your own Linux
AP all require that you obtain the source code and compile it.

In addition to the drivers described in this chapter, there are two ways you can get
Windows drivers to load on your Linux system. NdisWrapper
(http://ndiswrapper.sourceforge.net/) is an open source project that loads Windows
drivers, and Linuxant (http://www.linuxant.com/) is a proprietary product that also
accomplishes this. We'll talk more about Linuxant in Chapter 4, where we discuss using
Wireless Protected Access (WPA) with non-Prism cards.

2.4.1 orinoco_cs

There are two original drivers available for the Lucent WaveLan/Orinoco radio cards: wvlan_cs and wavelan2_cs.
wvlan_cs was the first driver for Linux that supported the WaveLan IEEE (802.11 and 802.11b) radio cards.
wavelan2_cs is a binary driver released by Lucent. The downside of the binary driver is that it's limited to i386
architecture, and the source is not available. With the sale of Orinoco to Proxim, development of the wavelan2_cs driver
stopped. However, Agere continues to build the chipsets for the Orinoco radios, and has developed a driver called
wlags49 based on the wavelan2_cs code. Details on wlags49 are found in Chapter 6.

The orinoco_cs driver was written by David Gibson, who was maintaining the wvlan_cs driver and was not satisfied with
the code or the performance of the driver. orinoco_cs was written based on low-level parts of the wlan-ng driver and
BSD drivers. The driver also supports Prism II radio cards, Symbol Spectrum 24, and Apple AirPort (but not AirPort
Extreme) cards, with varying degrees of feature support. This driver is primarily written for support of the Lucent
WaveLan IEEE cards, which are also known as Orinoco and are also sold by Agere and Avaya. Proxim is now selling
cards branded "Orinoco" for 802.11a and 802.11g, which are based on the Atheros chipset.

The orinoco_cs driver can be obtained in several ways. Red Hat, Debian, and SuSE all have installation packages with
names similar to kernel-pcmcia-modules-2.4.x. Choosing this package during installation or adding it later will install
the orinoco_cs driver. The orinoco_cs driver has been merged into the kernel sources since kernel Version 2.4.3.

The pcmcia-cs software package, which comprises the PC Card Services for Linux, also includes the orinoco_cs driver.
As with the kernel PCMCIA modules, pcmcia-cs can be installed as a package in most Linux distributions, or it can be
installed from source. Both options are covered earlier in this chapter. pcmcia-cs is the only option for kernel Version
2.2 users.

Finally, you can download the most current beta version of the orinoco_cs driver from the download section of Jean
Tourrilhes's web page: http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Orinoco.html. As of this writing, the
most current version is 0.13e. The README on the download page does explain that unless you have a 2.2 kernel or
you need some of the experimental features of the beta orinoco_cs driver, you would be better off using the kernel
version.

In the download section, there is a list of patches to the orinoco_cs driver. Of note is the orinoco_usb driver, which is a
separately maintained software package and supports Orinoco USB Wi-Fi adapters.

Also of note is the Shmoo Group's patch for the orinoco_cs driver that enables monitor mode for Versions 0.13e and
earlier. If you need monitor mode with your Orinoco card, this is one option. The other option is to obtain the CVS code
of the orinoco_cs driver, now in 0.14 alpha from http://savannah.nongnu.org/cvs/?group=orinoco.

To compile the orinoco_cs driver, download the latest tar.gz file from the aforementioned web site. You need the kernel
source for whatever kernel version your Linux system is running. Major Linux vendors include the kernel source on their
installation media as a package, and also as an optional package on their web or FTP sites. For example, on a Pentium 4
Debian system running the 2.4.18 kernel, use apt-get to install the package titled kernel-source-2.4.18 from the
installation CD. If you have upgraded your kernel, install kernel-source-2.4.21 (or later) from one of the Debian update
sites. It's worth noting that when you retrieve the kernel source files in this manner, apt does not uncompress them.
You will have a kernel-source-2.4.21.tar.bz2 file located in /usr/src, which you must extract. For information about
using apt-get, consult the Debian web pages at http://www.debian.org/doc/user-manuals#apt-howto.

You can also download kernel sources from http://www.kernel.org or ftp://ftp.kernel.org. This is the primary archive
site for all Linux kernel sources and is your best source for kernel code. For example, download the 2.4.21 kernel
sources from http://www.kernel.org/pub/linux/kernel/2.4/linux-2.4.21.tar.gz.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

sources from http://www.kernel.org/pub/linux/kernel/2.4/linux-2.4.21.tar.gz.

Compilation of the orinoco_cs driver also assumes that the symbolic link of /lib/modules/<version>/build points to the
kernel source of your current kernel. For example, /lib/modules/2.4.21-5-686/build should be a symbolic link that
points to /usr/src/linux-2.4.21-5-686. To create this link, execute the following command:

ln -s /usr/src/linux-2.4.21-5-686 /lib/modules/2.4.21-5-686/build

To build the driver, unpack the tar.gz file and change into the top-level directory:

tar xzvf orinoco-0.13e.tar.gz

cd orinoco-0.13e

To compile and install the driver, run the following:

make

make install

If you try to load the driver and receive the error message "Card Services release does not match," the driver was
compiled against the Kernel PCMCIA drivers, but the system is actually using the drivers from the pcmcia-cs package.
To fix this, you must edit the Makefile in the orinoco-0.13e directory and set the PCMCIA_CS variable to reflect your
local source for the pcmcia-cs package.

Once the driver is installed, you can execute:

modprobe orinoco_cs

to load the driver module.

2.4.2 hostap_cs

The HostAP driver is one of the drivers for Prism II radio cards. (wlan-ng is another widely used driver that is discussed
in the following section.) The HostAP driver has a couple of noteworthy features not found in the wlan-ng driver. First, it
supports access point mode on Prism II radio cards. wlan-ng supports only access point mode with a "tertiary firmware"
loaded on the Prism II card. This firmware is not widely available. Second, the HostAP driver is well integrated with the
Linux Wireless Tools. The wlan-ng driver provides its own set of tools.

The access point mode of a Prism II card does not provide a full 802.11b access point. What it does do is broadcast the
beacon frames that advertise an access point. The HostAP driver, in this case, actually takes care of the 802.11
management. In a standalone access point, this function is usually in firmware. The tertiary firmware mentioned for
Prism II cards turns a Prism II card into a full access point, which is what allows the wlan-ng driver to utilize this mode
as an access point.

The author and maintainer of the HostAP driver is Jouni Malinen. His web site for HostAP is located at
http://hostap.epitest.fi. In addition to the source for HostAP, the web site hosts a useful mailing list and anonymous
CVS access to the source code.

The hostapd daemon is also available. When used in conjunction with the HostAP driver, it provides support for 802.1X,
dynamic WEP rekeying, RADIUS Accounting, and minimal support for IAPP (802.11f). Use hostapd with a RADIUS
server to provide authenticated access to 802.11b networks.

The hostap driver not only supports Prism II cards in a PCMCIA bus, but it also supports PCI cards (hostap_pci) and PLX
cards; these cards look like they are a PCMCIA-to-PCI bridge adapter card, but actually, they are another beast
altogether—hostap_plx.

Debian users can use apt-get to install a hostap source package from the stable package tree. To locate the hostap
packages, use the apt-cache utility to search through the available package lists:

apt-cache search hostap

hostap-source - Software access point driver for Prism2 based 802.11b cards

hostap-utils - Utilities and configurations for the hostap driver

hostapd - 802.11x access daemon for hostap driver

To install any of these packages, or all three, use the apt-get install command:

apt-get install hostap-source hostap-utils hostapd

This example installs all three hostap packages and may require you to install additional packages as well. For more
information on how to use apt-get and its associated utilities, consult the Debian web pages at
http://www.debian.org/doc/user-manuals#apt-howto.

Note that HostAP is a kernel driver, so the aforementioned apt-get command installs the source only for HostAP. It does
not install the actual binary kernel driver. The source is downloaded and placed in /usr/src/hostap-modules.tar.gz. You
must extract this file and follow the compilation instructions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

must extract this file and follow the compilation instructions.

Mandrake users can find HostAP RPMs for HostAP at http://www.rpmfind.net. Kernel RPMs for Red Hat Versions 8 and 9
can be found at http://www.cat.pdx.edu/~baera/redhat_hostap/. The maintainer of this site has recompiled the
production Red Hat kernels with the HostAP 0.0.3 kernel driver and made the RPMs available. As with the testing tree in
Debian, you should use these RPMs at your own risk. You should note that these kernels are out of date since the latest
stable release of HostAP is 0.1.2, and the development versions are 0.2.0 and higher.

The best option for most distributions is to compile the HostAP driver from source. As of this writing, the most current
version is 0.1.3; the latest version can be downloaded from http://hostap.epitest.fi/releases/ (see the HostaAP
homepage for a link to the most recent stable and development releases). To compile kernel modules from source, you
must have the configured kernel source for your kernel. This generally means that you have configured and compiled
your own Linux kernel. While it is certainly possible to compile kernel modules against Linux kernels provided by a stock
distribution, it can be tricky. For more on compiling your own kernel, see Section 2.3.2 earlier in this chapter.

The HostAP distribution includes three files, hostap-driver-x.y.z.tar.gz, hostap-utils-x.y.z.tar.gz, and hostapd-
x.y.z.tar.gz. To build hostap-utils and hostapd, extract the tarball with tar xzvf filename, cd into the top-level directory,
and run make and then make install as root.

To begin compiling the driver, unpack the tar.gz file and change into the top-level directory (the file and directory name
will be different if you are using a more recent version):

tar xzvf hostap-driver-0.1.3.tar.gz

cd hostap-driver-0.1.3

How you proceed in the compilation at this stage depends on whether your system is using the kernel tree PCMCIA
subsystem or the external pcmcia-cs subsystem.

If you are using the kernel tree PCMCIA, you must edit the Makefile in the hostap-driver-x.y.z directory. As with the
orinoco_cs driver, you need the kernel source for the kernel that your Linux distribution is currently running. The
KERNEL_PATH variable should be set to the location of your kernel source.

Once you have set the KERNEL_PATH variable, there are two commands to compile and install the hostap_cs driver:

make pccard

make install pccard

Once the driver is compiled and installed, you must restart the PCMCIA card services. On must Linux distributions, the
rc file for this is located in /etc/init.d/pcmcia, so you can execute:

/etc/init.d/pcmcia restart

to restart the PCMCIA card services.

If you are using the external pcmcia-cs, you have two compilation options:

You must set the KERNEL_PATH variable as in the previous example. You also must set the PCMCIA_PATH
variable to point to the source for the pcmcia-cs. So, for example, if you download and extract the pcmcia-cs
source code into /home/barfoo/pcmcia-cs-3.2.5, you must set PCMCIA_PATH=/home/barfoo/pcmcia-cs-3.2.5.

Once the PCMCIA_PATH variable is set, you should be able to run the make commands shown previously to
compile the hostap_cs driver.

Copy the entire contents of the driver subdirectory except for driver/modules/Makefile to the root of the
pcmcia-cs source directory, so that driver/modules/hostap.c ends up in the pcmcia-cs/modules directory. The
README for installing HostAP recommends doing the following:

make sure that Makefile does not overwrite old Makefile in pcmcia-cs

mv driver/modules/Makefile driver/modules/Makefile-not-used

cp -a driver/* home/barfoo/pcmcia-cs-3.2.5

Once the copy is finished, compile and install pcmcia-cs with the hostap_cs driver included in the process using
the commands:

make config

make all

make install

This second method installs both pcmcia-cs and HostAP; therefore, complete the compilation and install, and you'll have
successfully installed both the PCMCIA card services and HostAP. See Section 2.3.3 earlier in this chapter for
information on compiling pcmcia-cs from source.

There are specific instructions in the README for installing the driver for use with PCI or PLX adapter cards. Consult the
README if your card falls into one of these categories.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

README if your card falls into one of these categories.

There are two excellent sources of information and assistance you can consult if you run into problems with the hostap
driver. The first is the well-populated hostap mailing list. Subscribe at http://lists.shmoo.com/mailman/listinfo/hostap.
The mailing list archives can be read at http://sisyphus.iocaine.com/pipermail/hostap/. Use Google to search through
lists like hostap, because the archives do not have a search function. For example, if you want to search for the text
"compile error," enter the following search parameters at Google: compile error site:lists.shmoo.com. Before posting to the
mailing lists, it is advisable to read through both the FAQ and the README files, located on the main hostap page at
http://hostap.epitest.fi.

2.4.3 wlan-ng

The wlan-ng driver is the other available driver for Prism II chipsets. The developer and maintainer of wlan-ng is
AbsoluteValue Systems, which first released the linux-wlan driver supporting Prism I 802.11 chipsets in 1999, and
followed that with linux-wlan-ng to support Prism II and later 802.11b in August of 2000. According to its web pages at
http://www.linux-wlan.com, one of its cofounders was employed at Harris Semiconductor where the original Prism
chipsets were developed, and three of its employees are voting members of the IEEE.

One thing that is mentioned on the front page of the wlan-ng web site is that AbsoluteValue Systems's approach to
writing this driver is different from other available Linux wireless drivers because "everything is based on the IEEE
802.11 standard."

In a practical sense, this means that just about everything in the wlan-ng driver is different from most other Linux Wi-Fi
drivers. For starters, wlan-ng does not support the Linux Wireless Tools (although certain Wireless Tools commands will
work with this driver); instead, it has its own set of utilities. You don't configure wlan-ng in /etc/pcmcia like other
drivers; it has its own configuration directory in /etc/wlan.

The driver does support PCMCIA, PCI, and PCMCIA cards in PLX adapters, and USB adapters, all using Prism II, 2.5, or
3 chipsets. By and large, most cards you find on the market are still based on Prism II. Prism 2.5 cards are integrated
PCI cards, so you won't find a Prism 2.5 PCMCIA card. Prism 3 was announced in 2002 and has made its way into
products from Linksys, among others.

There are several methods to install the wlan-ng driver. As with HostAP, there are packages available for Debian Linux
in the testing and unstable trees. In order to do this, you must modify the /etc/apt/sources.list file, which defines where
apt-get downloads package lists and the corresponding packages. To add the testing tree to apt, add the following line
to sources.list:

deb http://ftp.us.debian.org/debian/testing main contrib non-free

Once you have added this line to sources.list, you must execute the following command:

apt-get update

This command updates the lists of packages from the sources defined in sources.list. Because you have added the
testing tree to your sources, you now have a list of packages that are in testing mode. A caveat: packages in the
testing and unstable trees are just that - designed for testing and/or may be unstable. Use them at your own risk.

To locate the wlan-ng packages, use the apt-cache utility to search through the available package lists:

apt-cache search wlan-ng

linux-wlan-ng - utilities for wireless prism2 cards

linux-wlan-ng-doc - documentation for wlan-ng

linux-wlan-ng-modules-2.4.20-3-386 - drivers for wireless prism2 cards

linux-wlan-ng-modules-2.4.20-3-586tsc - drivers for wireless prism2 cards

linux-wlan-ng-modules-2.4.20-3-686 - drivers for wireless prism2 cards

linux-wlan-ng-modules-2.4.20-3-686-smp - drivers for wireless prism2 cards

linux-wlan-ng-modules-2.4.20-3-k6 - drivers for wireless prism2 cards

linux-wlan-ng-modules-2.4.20-3-k7 - drivers for wireless prism2 cards

linux-wlan-ng-modules-2.4.20-3-k7-smp - drivers for wireless prism2 cards

At a minimum, you need the linux-wlan-ng package and the correct set of linux-wlan-ng-modules for your processor
architecture. Note that these modules are compiled against kernel Version 2.4.20-3. apt-get checks dependencies for
these packages, and if you do not have kernel Version 2.4.20-3 as your current kernel, it requires you to install 2.4.20-
3 as part of the package install process. To install the necessary packages, use the following command:

apt-get install linux-wlan-ng linux-wlan-ng-modules-2.4.20-3-686

This example installs the utilities and kernel drivers for a Pentium Pro/II/III/IV and may require you to install additional
packages as well. For more information on how to use apt-get and its associated utilities, consult the Debian web pages
at http://www.debian.org/doc/user-manuals#apt-howto.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

at http://www.debian.org/doc/user-manuals#apt-howto.

The FAQ for wlan-ng, available at ftp://ftp.linux-wlan.org/pub/linux-wlan-ng/FAQ, states:

Q: Can I get Debian packages of linux-wlan-ng?

A: Packages of linux-wlan-ng are available in the Debian unstable and testing trees now, and will
eventually be shipped with a stable Debian release. The Debian packages include support for configuring
linux-wlan-ng interfaces via /etc/network/interfaces, among other things. Complete details about the
Debian-specific parts of these packages, including instructions for building a linux-wlan-ng modules
package for your kernel can be found in the file /usr/share/doc/linux-wlang-ng/README.Debian.gz.

wlan-ng RPMs for Red Hat Linux can be found on the web at http://prism2.unixguru.raleigh.nc.us. RPMs are available
for RedHat 7.3, 8, and 9. The page is maintained by Tim Miller and is kept up to date. As with other independently
maintained packages, use these at your own risk. You need three different RPM files to get all of the wlan-ng
functionality installed under RedHat:

kernel-wlan-ng-<architecture>: the base package

kernel-wlan-ng-<usb/pci/pcmcia-architecture>: interface packages

kernel-wlan-ng-modules-<rh73/rh8/rh9-architecture>: kernel-specific module packages

For example, to install the RPM packages for Red Hat 9, kernel Version 2.4.20-20.9, i686 architecture, and a PCMCIA
Prism II card, execute:

rpm --install kernel-wlan-ng-0.2.0-7.i686.rpm

rpm --install kernel-wlan-ng-pcmcia-0.2.0-7.i686.rpm

rpm --install kernel-wlan-ng-modules-rh9.20-0.2.0-7.i686.rpm

Your other option, as always, is to compile the driver from source. It is available at ftp://ftp.linux-wlan.org/pub/linux-
wlan-ng/. As of this writing, the most recent version is linux-wlan-ng-0.2.1-pre12.tar.gz.

To compile kernel modules from source, you need the configured kernel source for your kernel. This generally means
that you have configured and compiled your own Linux kernel. While it is certainly possible to compile kernel modules
against Linux kernels provided by a stock distribution, it can be tricky. For more on compiling your own kernel, see
Section 2.3.2 earlier in this chapter.

If your Prism II card is a PCMCIA-based card, you also need the configured source code for pcmcia-cs to be available.
Again, this means that you have configured and compiled pcmcia-cs from source, and you have that source available,
usually located in /usr/src/pcmcia-cs-version.

To begin compiling the driver, unpack the tar.gz file and change into the top-level directory (if you are using a more
recent version, the filename and directory will differ):

tar xzvf linux-wlan-ng-0.2.1-pre12.tar.gz

cd linux-wlan-ng-0.2.1-pre12

make config

You'll be asked a series of questions, including which type of interfaces you want the driver to support (pcmcia, pci, plx,
usb) and where your kernel and pcmcia-cs sources are located. Once you've stepped through the config, compile and
install the driver:

make all

make install

2.4.4 madwifi

The Atheros chipsets were eagerly awaited by the open source community, because Atheros was the first vendor to ship
802.11a equipment, and among the first to ship dual-mode and tri-mode radio chipsets.

The Atheros hardware is designed for use as a "software-defined radio," which means that the hardware itself is very
basic, and on a Windows platform, the operating parameters of the card are all handled by the software driver. The
development of a driver for the Atheros chipset was very difficult from an open source standpoint. Sam Leffler originally
developed a BSD driver for the Atheros chipset with the help of Atheros. However, the driver did not enforce valid
modes, so it violated FCC regulations by allowing the setting of invalid radio modes.

The solution to this was for Atheros to develop a Hardware Abstraction Layer (HAL), which is in binary form. It sits
between the driver and the hardware to enforce valid FCC operating modes. As discussed earlier, the Atheros chipset
design presents some problems for open source driver development.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Multiband Atheros Driver for WiFi (madwifi) driver that is now available for BSD and Linux is currently the only
working implementation of a driver for Atheros chipsets. There is a complete GPL driver implementation in the works.
According to Jean Tourrilhes's page, some anonymous people and companies have worked to get documentation on the
Atheros chipset made available, and are supporting the development of the GPL driver. This driver is known as "ar5k,"
and the web page for it is http://team.vantronix.net/ar5k/. As of this writing, the ar5k driver is not yet functional, and
development seems to be stalled.

The FCC mandates that the manufacturers of software radios must prevent the software from being modified so that it
can operate outside the FCC regulations. This mandate also makes it very difficult for maintainers of Linux distributions
to include the madwifi driver as a package. The package cannot be redistributed under the GPL because the source is
not freely available. As such, there are no Debian packages or RPMs of the madwifi driver available.

The following is from the README in the madwifi installation source:

The ath_hal module contains the Atheros Hardware Access Layer (HAL). This code manages much of
the chip-specific operation of the driver. The HAL is provided in a binary-only form in order to comply
with FCC regulations. In particular, a radio transmitter can only be operated at power levels and on
frequency channels for which it is approved. The FCC requires that a software-defined radio cannot be
configured by a user to operate outside the approved power levels and frequency channels.

This makes it difficult to open-source code that enforces limits on the power levels, frequency channels
and other parameters of the radio transmitter. See
http://ftp.fcc.gov/Bureaus/Engineering_Technology/Orders/2001/fcc01264.pdf for the specific FCC
regulation. Because the module is provided in a binary-only form it is marked "Proprietary"; this means
when you load it you will see messages that your system is now "tainted".

As of this writing, the most current version of the madwifi driver can be obtained from the SourceForge project page at
http://sourceforge.net/projects/madwifi. The driver supports both MiniPCI and Cardbus devices. The driver can be built
as a module or linked into the kernel and depends on two other modules: wlan.o and ath_hal.o.

The madwifi driver has been written and tested with kernel Version 2.4.20 and the Linux Wireless Tools v25. As the
README says, "expect some rough edges if you deviate from that combo," particularly with older kernel or Wireless
Tools versions.

In order for the madwifi driver to compile and run successfully, make sure a number of things are compiled into your
kernel:

Kernel-tree PCMCIA (CONFIG_NET_RADIO)

Wireless Tools (CONFIG_NET_WIRELESS)

ACPI Support (CONFIG_ACPI)

PCI Hotplug Support (CONFIG_HOTPLUG_PCI, CONFIG HOTPLUG_PCI_ACPI)

Note that the ACPI and PCI Hotplug features are considered experimental in the 2.4 kernel tree.

To begin compiling the driver, unpack the .tgz file and change into the top-level directory (if you are using a more
recent version, the filename and directory will differ):

tar xzvf madwifi-20030802.tgz

cd madwifi-20030802

The Makefile.inc should automatically determine the location of your running kernel and modules. If not, you may need
to edit Makefile.inc manually and specify the KERNEL_PATH and MODULE_PATH variables.

On most Linux distributions, you should simply be able to execute these commands:

make

make install

make install copies the drivers to the appropriate location, i.e., /lib/modules/<kernel version>/<net>. You can then run
modprobe or insmod from inside the source directory to load the modules:

insmod wlan/wlan.o

insmod ath_hal/ath_hal.o

Warning: loading ath_hal/ath_hal.o will taint the kernel:

 non-GPL license - Proprietary

insmod driver/ath_pci.o

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

insmod driver/ath_pci.o

Support for 802.11a and 802.11g cards in Linux is very new. The madwifi driver in particular is still being actively
worked on. As such, there is every possibility that the last stable release of code will not work with your kernel or your
hardware. Until development on madwifi settles down (keep your eye on the web site), we suggest that you check out
the latest CVS code of the driver to get the most current updates.

CVS is a revision control system used by many open source project developers. Open source development sites like
SourceForge (http://www.sourceforge.net) provide CVS access both for developers and for end users.

CVS is required to access a CVS repository. Most distributions install CVS by default, located in /usr/bin/cvs. Debian
users can install CVS by executing the commands apt-get update; apt-get install cvs. Red Hat users can find the CVS RPM
on their installation CDROM or from a Red Hat source mirror. Many other distributions that use RPM can find CVS at
http://www.rpmfind.net.

To obtain the latest CVS code for the madwifi driver, change to a directory where you want the code located and
execute the following command:

cvs -z3 -d:pserver:anonymous@cvs.sourceforge.net:/cvsroot/madwifi \

 co madwifi

This will log in to the CVS server at sourceforge.net as an anonymous (read-only) user and check out (co) the madwifi
source tree. It will place the source code in a directory titled madwifi in the directory you were in when the command
was executed.

Once you have obtained the CVS code, you should be able to follow the compilation instructions described earlier.
However, be aware that CVS code can change frequently, sometimes daily. CVS code is development code, which
means it can have bugs. It may not compile on your system at all.

There are two excellent sources of information and assistance you can consult if you run into problems with the madwifi
driver. The first is the excellent madwifi-users mailing list. Subscribe at
http://lists.sourceforge.net/lists/listinfo/madwifi-users. The mailing list archives can be searched at
http://sourceforge.net/mailarchive/forum.php?forum=madwifi-users. Second, a FAQ has been created by a volunteer
member of the mailing list and has several tips for getting the CVS code to compile in various situations. The FAQ is
located at http://www.mattfoster.clara.co.uk/madwifi-faq.htm.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 3. Getting On the Network
Assuming that you didn't encounter any problems in Chapter 2, you should now have a functional wireless network
adapter, and the knowledge to configure and use it under Linux. If you have a wireless network set up at home or at
work, chances are you will use this network most of the time.

If, however, you have Linux installed on a notebook PC, chances are you're often in transit, and you probably want to
find and use wireless networks in cities, airports, hotels, and conferences.

This chapter discusses tools and techniques that allow you to find available wireless networks, whether they are fee-
based or free.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.1 Hotspots
It would be pretty much impossible for any notebook user not to have heard the term hotspot. Wireless hotspots are
popping up in many locations; coffee shops, airports, hotels, conferences, restaurants, city parks, and libraries are just
a few places where you might find a hotspot.

You can easily build your own hotspot, and we cover this in detail in Chapter 6. A hotspot requires at least one access
point, a good antenna that covers the needed area, a broadband Internet connection, and some form of access control
(if you want to restrict access).

Most hotspots are built around these four basic pieces. Some use DSL as their broadband Internet connection, while
many of the commercial hotspots use a T1 line or other dedicated circuit. However, many hotspots are simply in a
house or apartment, particularly in dense urban areas, and these connections are DSL, cable, or even simply dial-up.

Before you leave for a trip, research online to find hotspots along the way to your destination. To find both fee-based
and free hotspots, consult the following web sites:

WiFinder

http://www.wifinder.com/search.php

HotSpotList

http://www.hotspotlist.com

T-Mobile Hotspots

http://www.t-mobile.com/hotspot

Wi-Fi Zone Finder

http://www.wi-fizone.org/zoneLocator.asp

JiWire

http://www.jiwire.com

3.1.1 Wireless Hotspot Providers

There are an increasing number of commercial hotspot providers, ranging from large companies, such as T-Mobile and
WayPort, to small operations in local coffee shops, and wireless aggregators that allow you to access multiple networks
from different hotspot providers.

Nearly all of these providers restrict access to their hotspots through a captive portal. This form of access control
intercepts all TCP/IP traffic. To gain access through a captive portal, simply open a web browser and attempt to
navigate to any web page, such as http://www.oreilly.com. Your browser traffic is intercepted and redirected to the
login screen of the hotspot's portal software. Figure 3-1 shows a typical hotspot login screen.

Figure 3-1. Typical hotspot login to a captive portal

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

With commercial hotspot providers, you have a number of payment choices for access. The large operators all offer
monthly subscriptions in addition to pay-as-you-go pricing. This is convenient if you don't want to sign up with a specific
provider or if you don't travel enough to justify the $20-40 per month that most monthly subscriptions cost.

If you travel frequently, you may want to sign up with one of the wireless hotspot providers. Deciding which one to use
is tricky. It really depends on where you think you may spend the most time. T-Mobile provides access in nearly all
Starbucks coffee shops, as well as Borders bookstores, Kinko's copy centers, and many airports. Surf and Sip has
neatly taken up many of the non-Starbucks coffee shops in major cities. WayPort is a good choice if you need hotel or
airport access.

Associating with a hotspot provider is easy. They all have easy-to-identify SSIDs. You can also locate their hotspots
ahead of time using their web pages. Table 3-1 lists some major hotspot providers, their SSIDs, and their web pages
for locating their hotspots.

Table 3-1. Hotspot providers, SSIDs, and location finders
Hotspot provider SSID Web location finder

Cometa Cometa-Hotspot http://www.cometa-hotspot.com/locations/

STSN STSN http://www.stsn.com/hotel_locator.php

Surf and Sip SurfandSip http://www.surfandsip.com

T-Mobile tmobile http://locations.hotspot.t-mobile.com/

Verizon Wireless Verizon http://www.verizonwireless.com/wifi/hot_spot/

WayPort wayport http://www.wayport.com/locations

3.1.2 Wireless Aggregators

With the rise in availability of commercial hotspot providers comes a conundrum: which hotspot provider do you sign up
with? As you've seen, there are many providers, and each of them has different coverage. If you're a real road warrior,
using several different hotspots could cost quite a bit.

Wireless aggregators have come into the market to address this problem. You sign up for an account with the
aggregator, and through its revenue-sharing agreements with different hotspot providers, you are able to use many
different hotspots while maintaining a single account with one company.

That's the theory. In practice, roaming is still very difficult, especially for non-Windows users. Boingo
(http://www.boingo.com), the largest aggregator, requires the use of proprietary software on your notebook, and as of
this writing, that software is Windows-only. There are reports of adventurous people running the Boingo software using
a Windows emulator like Wine, but we're not going to attempt to cover that here. Unless the web-based captive portal
offers a roaming option, roaming with Boingo and Linux isn't possible at this time.

Two other aggregators fall into the same category: Trustive (http://www.trustive.com/) provides only a Windows client
software package, and iPass (http://www.ipass.com), while providing clients for Windows, Windows CE/Pocket PC, Mac
OS X, and Mac OS, does not provide a Linux software client.

Fortunately, there is at least one roaming company that has gotten it right: FatPort. FatPort's roaming customers don't
need any special software. Its locations and partner locations all use captive portal software that requires only a web
browser.

Although FatPort is based primarily in Canada, it has a wide range of partner agreements with Surf and Sip, Boingo, and
iPass. While not a complete coverage of all roaming sites, this is an excellent option for the Linux user who is constantly
on the road. FatPort accounts range from hourly rates to yearly subscriptions. Check out http://www.fatport.com for
more details.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.1.3 Open Hotspots

Just as the software world is split into proprietary and open source, the hotspot world is populated with commercial
hotspots (which we've covered) and open hotspots. These open wireless networks span a wide range of locations and
philosophies:

Businesses providing free wireless access as an incentive to customers. Hotels, coffee shops, restaurants,
bookstores, and other businesses are all using free wireless access as a way to bring in customers and entice
them to stay.

Public places serving up hotspots as a public service. Libraries, city parks, town squares, city halls, and other
publicly owned spaces view free wireless access as a way of promoting their city, county, or other locations, and
attracting visitors.

Community wireless groups working with businesses, governments, and private citizens placing hotspots in all
sorts of locations, including apartment buildings, parks, downtown areas, and any place that would benefit from
free wireless access. Many community groups view this as a way to better their neighborhoods.

Open hotspots are a mixed bag. You may simply be associating with a wireless router in someone's apartment,
connected to his DSL line. On the other hand, it may be a custom-built Linux-based access point in a New York City
park, installed by NYCWireless (http://www.nycwireless.net), with a T1 or DSL backhaul.

Access control is also going to vary. If you connect to someone's home network with an SSID of "default" or "linksys,"
chances are you won't find a captive portal or any other form of access control in place. Many community and business
that open hotspots have some sort of access control in place, such as a web page that asks you to agree to a Terms of
Service (ToS) agreement before you are allowed to use the network.

A good place to locate open hotspots is the Personal Telco Project in Portland, Oregon. Visit its Wireless Communities
site at http://www.personaltelco.net/index.cgi/WirelessCommunities. A second place to look for hotspots is WiFiMaps at
http://www.wifimaps.com. This site, while still in development, shows you hotspots all over the world.

3.1.4 Associating with Hotspots

To associate your Linux notebook with an open or commercial hotspot, you have a couple of options. If you know the
SSID of the hotspot, simply set the SSID using iwconfig:

$ iwconfig eth1 ESSID SurfandSip

Once you've done this, fire up your favorite web browser, attempt to navigate to any web page, and you will be
redirected to the hotspot captive portal login, as shown in Figure 3-1.

If you've settled in a coffee shop that has an unknown hotspot provider, the first thing you can try is:

$ iwconfig eth1 ESSID any

If there is a hotspot in range, your card should find and associate with it. This can be tricky, especially if you're in a
densely populated urban area. For example, sitting in a coffee shop in San Francisco, we were able to associate with
four different SSIDs. The signal strength from the coffee shop hotspot was not as strong as a neighboring open hotspot
located in someone's apartment.

In these cases, you want to identify all of the access points in your immediate area before you decide which one to
associate with. There are several methods of finding access points with Linux, and we cover each one in turn.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.2 Wireless Network Discovery
If your network card supports it, the easiest method of locating available wireless networks is included with the Wireless
Tools, which you installed in Chapter 2. The iwlist command supports a scanning parameter that lists any access points in
range. It's worth noting, however, that some wireless card drivers do not support this feature. Chief among them is the
orinoco_cs driver. If you're using this driver, you must use one of the alternative discovery methods next.

To determine if your card and driver support scanning, execute the iwlist command with no other parameters. If you see
"scanning" listed in the output, you should be able to scan for available access points. Note that you must have root
access to use this command.

iwlist

Usage: iwlist [interface] frequency

 [interface] channel

 [interface] ap

 [interface] accesspoints

 [interface] bitrate

 [interface] rate

 [interface] encryption

 [interface] key

 [interface] power

 [interface] txpower

 [interface] retry

 [interface] scanning

Once you've determined that you can use the scanning parameter, execute the command. You must specify the network
adapter that corresponds to your wireless card (eth1 in the following example). Again, you must have root access.

iwlist eth1 scanning

eth1 Scan completed :

 Cell 01 - Address: 00:02:6F:01:76:31

 ESSID:"NoCat "

 Mode:Master

 Frequency: 2.462GHz

 Quality:0/92 Signal level:-50 dBm Noise level:-100 dBm

 Encryption key:off

 Bit Rate:1Mb/s

 Bit Rate:2Mb/s

 Bit Rate:5.5Mb/s

 Bit Rate:11Mb/s

 Cell 02 - Address: 00:30:65:03:E7:0A

 Essid:"SurfandSip "

 Mode:Master

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Frequency:2.422GHz

 Quality:0/92 Signal level:-66 dBm Noise level:-96 dBm

 Encryption key:off

 Bit Rate:1Mb/s

 Bit Rate:2Mb/s

 Bit Rate:5.5Mb/s

 Bit Rate:11Mb/s

Now that you've obtained a list of available networks, see what providers are in your area, and make a decision on the
hotspot to use. scanning shows you relative signal strengths, so pay attention. You don't necessarily want to associate
with the weakest hotspot in the area.

Note also that the scanning output gives you the frequency of each hotspot as well as whether encryption (WEP) is
enabled.

3.2.1 Kismet

In contrast to the small bit of information you can glean by using iwlist scanning, Kismet is a seriously advanced wireless
diagnostic tool. It is a passive network scanner, similar to commercial tools such as Network Associates' Sniffer Wireless
and Airopeek. It is designed from the ground up specifically for scanning wireless networks, so it detects all 802.11
traffic from both access points and wireless clients. It can find "closed" networks (some access points allow you to
disable the broadcast of the SSID) by monitoring traffic sent from clients, and it logs all raw 802.11 frames in standard
pcap(3) format for later use with other specialized tools such as Ethereal, an open source network protocol analyzer.

To take advantage of Kismet's advanced features, you need a wireless card and driver capable of entering RF Monitor or
promiscuous mode. Cards in this category include the Prism-based cards using the host_ap driver and the Cisco Aironet
cards using the airo driver. Kismet also works well with Atheros-based 802.11a/g cards using the madwifi driver.
However, if you need monitor mode in the madwifi driver, download the latest CVS driver code. Finally, you'll need a
patched orinoco_cs driver or the latest CVS version of the orinoco_cs code to support monitor mode with Orinoco cards.
We covered this in detail in Chapter 2.

Kismet is available as a package with most distributions. Debian users can install Kismet using apt-get:

apt-get install kismet

Red Hat and Fedora users can obtain RPM packages from http://www.rpmfind.net. Mandrake users can install Kismet
using urpmi:

urpmi kismet

If you want to read Kismet's dump files in Ethereal, you must download the source code for Kismet from
http://www.kismetwireless.net. Also, Ethereal must be installed from source, and the Ethereal source code tree must
be available. Change into the Kismet source directory, and configure Kismet as follows:

./configure --with-ethereal=/your/ethereal/source/path/here

Once that is done, build Kismet with standard compile commands:

make

make dep

make install

Once Kismet is compiled or installed from source, you must edit /usr/local/etc/kismet.conf to suit your system. If
you've installed from package, the file is probably located in /etc/kismet.conf. At a minimum, you must edit the source=
line to match your hardware. The format for this line is driver,device,description. For example, with a Prism card, edit
the line to read:

source=hostap_cs,wlan0,Prism

See the comments in the kismet.conf file for more information on supported drivers.

If you want Kismet to play sound effects when it finds new SSIDs, it will. By default, it expects /usr/bin/play to be
installed, which is part of the Sox sound utilities, but any command-line audio player works. All of the audio and other
display parameters are configured in /usr/local/etc/kismet_ui.conf.

When Kismet is running, your wireless card will be in RF monitoring mode. Note that once in this mode, your card can
no longer associate with wireless networks, so you may not have a network connection.

Now execute the kismet command using your normal user ID. You don't have to run the Kismet user interface as root.
You should see the Kismet screen as shown in Figure 3-2.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You should see the Kismet screen as shown in Figure 3-2.

Figure 3-2. The main Kismet screen

Kismet incorporates a hopping algorithm to switch between radio channels in order to find all the networks in your
locations. This makes your card hop between radio channels. The hop pattern is configurable to your needs. See the
kismet_hopper manpage for details. Note that newer versions of Kismet call kismet_hopper automatically

By default, Kismet initially scans the network list based on the last time it saw traffic from each network. This list
constantly changes, making it difficult, if not impossible, to select any one network for more detailed information.

To keep the list from constantly changing, manage the scanning sort order by hitting s at any time, followed by the
desired sort order. For example, to sort by SSID, hit ss. Now use the arrow keys to select a network for further details.
Press h at any time to see keystroke help and q to close any pop-up windows.

To get more information on a specific network, select it using the arrow keys and press i. You will see a more detailed
screen as shown in Figure 3-3.

Figure 3-3. Kismet's detailed network information

Kismet finds closed networks (networks that do not broadcast their SSID). If there is no network traffic coming from a
client of that network, Kismet lists the SSID with a name of <no_ssid>. Once Kismet sees a frame of traffic from a
client, the SSID updates.

Note that your card is now out of monitor mode, but the original network settings are not returned. You can physically
eject the card and reinsert or execute:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

cardctl reset

3.2.2 AP Radar

The previous methods are perfectly usable and provide you with all sorts of information regarding the available wireless
networks near you. These are manual methods that don't approach the level of ease in wireless detection and
configuration that is offered with other operating systems.

AP Radar is an attempt to make detection of and connecting to wireless networks easier and more manageable. It is
both a graphical network discovery tool and a wireless profile manager. Using the Wireless Extensions, it has the ability
to watch for wireless networks while staying associated to your existing network. It focuses on automating tasks, so
that when you come in range of your home network, you are automatically connected.

AP Radar is the work of Don Park, and you can obtain it from the project's SourceForge development site at
http://apradar.sourceforge.net. Currently, it is available as an RPM package or as a source file. In order to get the
package running, you must have GNOME Version 2. You'll also need a 2.4.20 kernel or higher, or any 2.6 kernel.

To compile AP Radar from source, you must have the GTK+ header files and libraries, as well as the GTKmm header
files and libraries. Users of Mandrake, RedHat, and other distributions that use RPM should see the AP Radar README
file for a list of required RPMs.

Debian users should be able to install the same packages via apt-get; however, you must set up apt to obtain packages
from the testing or unstable trees. See the sources.list manpage for details.

To build AP Radar from source, uncompress the source code file and change into the newly created directory. The
commands to compile are standard, although the filename and top-level directory name will differ if you are using a
newer version than we did:

$ tar xzvf apradar-0.50.tar.gz

$ cd apradar-0.50

$./configure

$ make

$ su -c "make install"

AP Radar works with a number of wireless cards and drivers. To determine whether AP Radar will run with your card
and driver, execute iwlist scanning:

iwlist wlan0 scanning

You should see some output like the following:

eth1 Scan completed :

 Cell 01 - Address: 00:02:6F:01:76:31

 ESSID:"NoCat "

 Mode:Master

 Frequency: 2.462GHz

 Quality:0/92 Signal level:-50 dBm Noise level:-100 dBm

 Encryption key:off

 Bit Rate:1Mb/s

 Bit Rate:2Mb/s

 Bit Rate:5.5Mb/s

 Bit Rate:11Mb/s

If you see anything else, chances are AP Radar will not function with your card. Some reasons for this include the use of
the following drivers:

Orinoco_cs driver, wvlan, wavelan, and wavelan2 drivers

None of these drivers currently support wireless scanning. Patches are available for the orinoco_cs driver to
enable scanning, and the CVS code for orinoco_cs also supports scanning. See Chapter 2 for more details.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

enable scanning, and the CVS code for orinoco_cs also supports scanning. See Chapter 2 for more details.

host_ap driver

If you are using the newest host_ap code, Version 0.1.3 (as of this writing), you must execute the following
command as root for AP Radar to function properly:

iwpriv wlan0 host_roaming 1

Once you install AP Radar and determine that it will function with your wireless card/driver, simply start it as root:

apradar

If you experience problems starting AP Radar, it may be due to oddities in your wireless card driver and how it writes
status to /proc/net/wireless. In order to avoid this problem, start AP Radar by specifying the interface name (ath0 in
the following example):

apradar -i ath0

The AP Radar main screen appears, as shown in Figure 3-4.

Figure 3-4. AP Radar main screen

AP Radar shows all access points that are in range. Almost every field on the screen is either clickable or provides you
with information when you hover the mouse over it.

To associate with any of the access points shown under Access Point List, simply click on the name of the access point.
By default, AP Radar not only associates your wireless card with the selected AP, but it runs dhclient to obtain an IP
address via DHCP.

This and one other option can be set by clicking on the red symbol at the top of the AP Radar screen. You can set two
options:

Ping default gateway

This monitors the gateway that you receive from DHCP. When it does not receive a response from a ping after
more than a second, AP Radar assumes that the gateway is out of range.

Run dhclient on associate

This allows you to specify whether you want AP Radar to obtain a DHCP address for your PC after it associates
with an access point. Turn this off if you need to use static addressing.

In addition to displaying the SSID, mode, and channel and signal strength for each access point, AP Radar also displays
whether WEP is enabled by displaying the warchalking symbol for the network. See the later Section 3.2.5.

3.2.3 Wardriving

Back in the good ol' days of hacking, wardialing was (and still is) the act of having a computer use a modem to dial
phone numbers from a list or mathematically step through all possible numbers in a telephone exchange. Malicious
hackers noted each line that had an answering modem and went back to those numbers to find systems that could be
compromised.

With the proliferation of notebook computers, handheld computers, and wireless network cards, the term wardriving

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

With the proliferation of notebook computers, handheld computers, and wireless network cards, the term wardriving
has been coined. When you wardrive, usually a two-man team takes off: one driving and the other handling the
wireless scanning. In dense urban areas, a wardrive can locate hundreds if not thousands of active SSIDs.

With some added equipment such as external antennas and a GPS receiver, wardrivers can log each wireless network
and place them on a physical map. http://www.wifimaps.com is just one example of a collaborative effort to place
wardriving maps from all over the world in an online database. Kismet (discussed previously) makes an excellent tool
for wardriving, and it interfaces with GPS systems. See Chapter 10 and the Kismet documentation for details.

People wardrive for different reasons. While many people do it simply for enjoyment or for the technical knowledge
gained, there are also those who have more illicit purposes in mind. Some wardrivers are specifically out there looking
for insecure networks that can be compromised for various purposes.

Wardriving may not be legal in your area. While it does not appear to be illegal in the United States, there are many
countries where it is considered a crime.

3.2.4 Warflying

In the same vein, warflying is conducted by those lucky people who can afford to rent a plane for a few hours or who
actually have their own plane. Warflyers generally need external antennas to pick up wireless networks below the
plane.

If you think this practice sounds too far-fetched to be true, Google for the phrase "warflying". You'll be surprised at how
many people do this.

3.2.5 Warchalking

During the Great Depression, many people in the United States were homeless because of economic conditions. Tramps
and hobos traveled the country looking for work and food. Due to scarcity of work, hobos were not welcome in many
places. Over time, hobos devised a set of logos that could be written in chalk or stone, or carved in trees near various
houses, restaurants, and other places. These logos could communicate everything from "free food" to "you will be
beaten."

You can visit the following web sites for more symbols used by the hobos:

http://www.slackaction.com/signroll.htm

http://sedaliakatydepot.com/hobo.htm

Matt Jones, an Internet product designer, operates a web site (http://blackbeltjones.com) that serves primarily as the
Londoner's online resume and portfolio. In 2002, Jones combined the practice of using a sniffer tool to detect a wireless
network with the hobos' set of logos to come up with the symbols for wireless networks (see Figure 3-5).

Figure 3-5. Warchalking symbols

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using these symbols, wireless users can discover if there is an available wireless network for their use. He was inspired
by architecture students "chalking up the pavement" on his way to lunch. During a lunch, Jones and a friend, who had
recently been discussing hobo signs, called their idea warchalking. You can learn more at http://www.warchalking.org.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 4. Communicating Securely
In a wired network, physical security is complicated but manageable. You can restrict physical access to routers,
switches, and network hardware. You can provide a complex authentication mechanism for proving that users are who
they say they are. You can set up Virtual LANs or Virtual Private Networks for even more security. Even if an attacker
were to plug into your wireless network, it would be difficult to penetrate further with these kinds of security measures
in place.

The wireless network world is not nearly this secure. In fact, it's not secure at all. Disassembling your network packets
and transmitting them wirelessly means that anyone within reach can see them. A wily attacker could join or passively
monitor your network from a mile away with a high-gain antenna, and you would never see him.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.1 The Pitfalls of WEP
The IEEE specifications for 802.11a/b/g all provide a form of encryption called Wired Equivalent Privacy (WEP). WEP
operates at the Media Access Control (MAC) layer, or the Data Link layer, between the Physical Layer (radio waves) and
the Network Layer (TCP). WEP encryption is based on the RC4 algorithm from RSA Data Security and employs a 40-bit
encryption key.

Anyone who knows the secret key (unless you're the only user on the network, this key is shared, so it's not all that
secret) can participate in a WEP network. Secret keys are generally either plaintext words or somewhat longer
combinations of hexadecimal numbers.

There are two major problems with WEP:

Encryption is handled at the Data Link layer, so if you connect to a WEP network with your notebook, the
communication between your notebook and the access point is encrypted. All packets are decrypted at the
access point and sent from there in the clear.

Other computers that also have the secret key for this WEP network can read all packets sent to and from your
computer. The secret key is a "shared" key, which means that all devices that encrypt packets must use the
same key. Some access points use a passphrase to generate the WEP key, making the key even easier to
deduce. Once you are connected to a WEP network, you can do all the packet sniffing you want with a tool like
Ethereal.

A team of cryptographers from the University of California at Berkeley, as well as several other groups (see the
references at the end of this section), have identified weaknesses in the way that WEP keys are generated and used,
effectively making the number of bits in the key immaterial. Even though many manufacturers have added extra bits to
the key length, up to 152 bits, the longer key length provides minimal protection, because WEP is not a well-designed
cryptographic system.

With all of these problems, why is WEP still supported by wireless equipment manufacturers? Until recently, there had
not been another standard for wireless encryption. You could have run a Virtual Private Network (VPN) on top of your
wireless network, but this would have presented its own set of challenges, and it is not practical for home or even
small-business users. The Wi-Fi Alliance announced a standard called Wireless Protected Access (WPA) in mid-2002.
WPA is based on a draft of the IEEE 802.11i specification, which will probably be ratified in mid-2004. We cover WPA a
bit later in the chapter.

So why would you want to use WEP on your wireless network at all? Consider it a first line of defense. While it is
definitely possible to crack its keys and gain access to a WEP network, someone who is looking for free wireless access
will choose an open network when given the choice. However, if you are worried about an attacker specifically targeting
your network, you must take stronger measures.

Consider not using WEP at all. There are other alternatives that provide stronger encryption and authentication, and we
cover those in this chapter. However, if you want an easy out-of-the-box setup, WEP is your ticket. To keep your WEP
network as secure as possible, keep these guidelines in mind:

Make your secret key difficult to crack. Once a hacker has captured enough frames from your encrypted
network, he needs to run a tool to guess your secret key. This is no different from a hacker running crack
against a password database. The more complex your key, the less likely a standard dictionary attack will crack
it. Choose a long, complex key that utilizes nonalphanumeric characters. If you can, use hexadecimal strings.
Use the longest key that your hardware will support. If you have access points and clients that support 128-bit
WEP, by all means use it. However, some implementations of WEP have weaknesses that allow attackers to
recover the key even without mounting a dictionary attack.

Change your secret key often. WEP key attacks rely on two methods: a dictionary attack or the collection of
large amounts of frames data in order to deduce the secret key. Obviously, you provide less of a chance for an
attacker to break your key when you change it often. However, this option becomes more cumbersome with
larger networks, giving you the classic key-distribution problem.

Use WEP in combination with other security measures. If your network uses equipment from a single
manufacturer, you may be able to take advantage of nonstandard security features. Cisco and Proxim, for
example, support rapid WEP key rotation and dynamic rekeying. If all of your clients can take advantage of
these features, use them. You should also consider whether the various IP tunneling or VPN solutions will fit into
your network infrastructure.

Several security measures that come standard with many access points are almost useless in protecting your wireless
network:

Disabling SSID broadcast

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Disabling SSID broadcast

This creates a "hidden" network by causing the access point to suppress the broadcast of SSID information. In
order to join a network with SSID broadcast disabled, the client must manually enter the SSID.

Premise: if you don't know the SSID, you can't join the network.

Reality: Kismet and other wireless network scanners can easily pick up the SSID by monitoring traffic from
clients of the "hidden" network.

MAC address filtering

Most access points allow you to set up a list of allowed network cards by entering their MAC address. If the
access point sees a MAC address that is not on the list, it will not allow that device to associate.

Premise: only authorized network cards can join the network.

Reality: Kismet and other wireless scanners can easily pick up MAC addresses by monitoring client traffic on the
wireless network. Spoofing a MAC address is very easy under Linux and other operating systems, allowing easy
access to the network. Also, wireless network cards can easily be stolen. The MAC address filter only
authenticates a device, so anyone can use it.

IP address filtering

Similar to MAC address filtering, this technique allows you to set up a list of allowed IP addresses that can send
TCP/IP traffic on the network. Other machines may be allowed to associate with the access point, but they
would not be able to participate in any TCP/IP network.

Premise: only known IP addresses are allowed to communicate on the network.

Reality: any network sniffer or analyzer, such as Ethereal or tcpdump, can easily find IP addresses in use on
any given network. Spoofing IP addresses is even easier than spoofing MAC addresses.

4.1.1 References

As mentioned previously, several groups have identified weaknesses in the way that WEP keys are generated and used.
To learn more, consult the following sources:

Your 802.11 Wireless Network has No Clothes (http://www.cs.umd.edu/~waa/wireless.pdf) by Arbaugh,
Shankar, and Wan. University of Maryland, March 30, 2001.

Weaknesses in the Key Scheduling Algorithm of RC4 (http://www.crypto.com/papers/others/rc4_ksaproc.ps) by
Fluhrer, Mantin, and Shamir. July 25, 2001.

Using the Fluhrer, Mantin, and Shamir Attack to Break WEP (http://www.cs.rice.edu/~astubble/wep). AT&T
Labs Technical Report by Stubblefield, Ioannidis, and Rubin. August 21, 2001.

Security of the WEP Algorithm (http://www.isaac.cs.berkeley.edu/isaac/wep-faq.html) by Borisov, Goldberg,
and Wagner, UC Berkeley. April 1, 2001.

4.1.2 WEP with Linux

Back in Chapter 2, we covered the use of schemes to set up multiple wireless networks on your PC with the ability to
switch between them as needed. Here again is a sample /etc/pcmcia/wireless.opts that contains schemes for two
networks and includes the use of a WEP key:

case "$ADDRESS" in

home,0,*,*)

 INFO="Home wireless setup"

 ESSID="home"

 MODE="managed"

 CHANNEL="11"

 RATE="auto"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ;;

yourjob,0,*,*)

 INFO="Work wireless setup"

 ESSID="BigCorp"

 MODE="managed"

 CHANNEL="4"

 RATE="auto"

 KEY="s:bigsecret"

esac

Use cardctl yourjob to switch to the WEP-enabled scheme.

The corresponding iwconfig command to configure a WEP key is iwconfig enc or iwconfig key. This command accepts
several parameters:

iwconfig eth1 key [on|off]

on and off enable and disable encryption, respectively.

iwconfig eth1 key 0a12fc132

Secret keys can be entered as hex strings with or without separating dashes.

iwconfig eth1 key s:supersecret

ASCII secret keys can be entered in the form of s:secretkey.

iwconfig eth1 key s:supersecret [2]

An index of keys can be generated by appending an index number in brackets ([]) to the key when it is
entered.

iwconfig eth1 key [2]

You can change secret keys by passing the index number of the key as an option.

iwconfig eth1 key [open|restricted]

Two operating modes are available: open accepts nonencrypted traffic, and restricted accepts only encrypted
packets.

Using NoCatAuth
If WPA isn't an option for you, you may want to consider setting up a captive portal (see Section 3.1.1 in
Chapter 3).

NoCatAuth, which ships with Pebble Linux (see Chapter 6), is a captive portal that offers two modes of
operation: open and authenticated. Open mode intercepts a user's first web request with a simple splash
page and a Click here to continue button. Authenticated mode relies on both the local NoCatAuth daemon
and an authentication service on another machine. The daemon and authentication service communicate
via an encrypted channel, so passwords are never sent in the clear.

NoCatAuth can be downloaded from http://nocat.net, and there is also a wiki and a fairly high volume
development mailing list. Other captive portal systems are available for Linux, as well. You can find out
more about them on the Personal Telco Project's portal software page at
http://www.personaltelco.net/index.cgi/PortalSoftware.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.2 The Future Is 802.11i
The future solution from the IEEE to provide real wireless security and a strong cryptographic system is the proposed
802.11i standard. The IEEE Task Group responsible for this standard maintains a web page at
http://grouper.ieee.org/groups/802/11/Reports/tgi_update.htm. As of December 2003, draft 7 of this proposal has
been sent to a "sponsor ballot," and the results are not yet available. The word on the street is that 802.11i will become
a ratified standard sometime in mid-2004.

The final standard of 802.11i will likely address the following:

Use of 802.1x for authentication

802.1x is a specification framework for mutual authentication between a client and an access point. 802.1x may
also use a backend authentication server such as RADIUS and take advantage of one of the Extensible
Authentication Protocol (EAP) variations. 802.1x uses a new key for each session, so it resolves the issue of a
single static WEP key.

Use of the Temporal Key Integrity Protocol (TKIP)

TKIP uses 128-bit dynamic keys that are changed at random times. Because of the constantly changing keys,
intruders would be hard pressed to collect enough radio frames to compromise the keys.

Use of the Advanced Encryption Standard (AES)

The full implementation of 802.11i will utilize AES encryption to make a very strong cryptographic system.
However, using AES requires significant computational horsepower. Current models of access points will not be
able to handle AES due to limited processors. Expect new models that are "802.11i ready" to arrive on the
market in 2004.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.3 WPA: a Subset of 802.11i
Work on 802.11i began in 2001 after the weaknesses in WEP were made public by several teams of researchers.
However, as with any standards body, the IEEE does not always work as fast as some people would like.

In mid-2002, the Wi-Fi Alliance, an industry consortium, proposed a subset of 802.11i, based on draft 3 from the IEEE
working group, and called it Wireless Protected Access (WPA). The upcoming full IEEE implementation is also being
referred to as WPA v2.

WPA, as a subset of the 802.11i proposed standard, incorporates two major features:

Use of 802.1x for authentication

Use of the Temporal Key Integrity Protocol (TKIP)

Chipsets supporting WPA began to become available in 2003. As of this writing, many access points either support WPA
out of the box or have firmware updates available that include WPA.

WPA is not only an encryption mechanism but also includes 802.1x authentication, so support is required on the client
for the authentication mechanism. As of this writing, your options are very limited regarding WPA support in Linux.

A few vendors have released updated firmware for older radio cards with WPA support; Apple AirPort cards, the Linksys
WPC-11, and the Dell TrueMobile 1150 all have updates available.

WPA Support in Access Points
WPA and 802.1x are starting to become available in new access points, and earlier models are getting
firmware updates that support WPA. The Linksys WRT54G and D-Link 900AP+ can both support WPA after
a firmware upgrade. Newer Linksys and D-Link models are packaged with this support already enabled.
Enterprise-level access points from Cisco, Proxim, and others also support WPA and are starting to
advertise themselves as "802.11i-ready."

The Dell 1150 card is a rebranded Orinoco card; Agere has drivers on its web site listed
"for evaluation only" that include this same update. However, Proxim, the new owner of
the Orinoco brand, has nothing on its web site about WPA for older cards.

All of this is interesting but not immediately useful, however, because you can't use any of these cards under Linux and
take advantage of the WPA code in the cards. Why? Because their associated Linux drivers do not support WPA. As of
early 2004, you have two options if you want to use WPA under Linux, which we discuss below. In order to take
advantage of these methods, you should understand how 802.1x works.

4.3.1 802.1x Authentication

802.1x was originally designed for wired Ethernet networks. It is a port-based authentication mechanism; when a client
is authenticated, traffic is allowed to flow from the Ethernet port of the client through the authenticating device and out
into the secured network.

In a wireless network, the principle is the same. Your notebook client is required to authenticate to the access point. If
authentication does not occur, wireless frames are not allowed to be sent through the access point to the wired
network.

802.1x authenticates users via a four-part process:

1. The Supplicant (the client that wants to access a network resource) connects to the Authenticator (whose
resource is needed).

2. The Authenticator asks for credentials from the Supplicant and passes the credentials to the Authenticating
Server.

3. The Authenticating Server authenticates the Supplicant on behalf of the Authenticator.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4. If the Supplicant is authenticated, access is then granted.

Note that before the authentication is performed, all the communications go through an uncontrolled port. After
authentication, the controlled port is used.

For the Authenticating Server to authenticate the Supplicant, the Extensible Authentication Protocol (EAP) is used. EAP
supports multiple authentication mechanisms and was originally developed for PPP.

There are many variants of EAP. Here are some that you may come across in wireless security literature:

EAP-MD5

EAP-MD5 uses the challenge/response method to allow a server to authenticate a user by requesting a
username and password. EAP-MD5 does not provide mutual authentication and is vulnerable to an offline
dictionary attack.

EAP-Transport Layer Security (EAP-TLS)

EAP-TLS is based on X.509 (an ITU standard specifying the contents of a digital certificate) certificates. It is
currently the most commonly used EAP type for securing wireless networks. However, EAP-TLS requires the use
of Public Key Infrastructure (PKI), which is not feasible to be implemented on small networks.

Protected EAP (PEAP)

To counter the complexity of using EAP-TLS, PEAP was proposed as an alternative. PEAP uses a server-side
certificate to allow the authentication of the server. It creates an EAP-TLS tunnel and then uses other
authentication methods over the tunnel. EAP methods such as MD5, MS-CHAP, and MS-CHAP v2 are supported.
PEAP was proposed as an IETF standard by Microsoft, Cisco, and RSA.

EAP Tunneled TLS (EAP-TTLS)

EAP-TTLS is similar to PEAP. It creates a tunnel between the user and the RADIUS server. It supports EAP
methods such as MD5, MS-CHAP, and MS-CHAP v2.

Lightweight EAP (LEAP)

LEAP is Cisco's proprietary version of EAP, which works mostly with Cisco's wireless cards, RADIUS servers, and
access points.

Microsoft Challenge-Handshake Authentication Protocol Version 2 (MS-CHAP v2)

Originally designed by Microsoft as a PPP authentication protocol, MSCHAP v2 is a password-based, challenge-
response, mutual authentication protocol that uses the Message Digest 4 (MD4) and Data Encryption Standard
(DES) algorithms to encrypt responses. MS-CHAP v2 is now an EAP type in Windows XP.

In the wireless world, suppose a notebook PC needs to connect to an access point. The notebook PC is the Supplicant,
and the access point is the Authenticator. The access point, as the Authenticator, maintains a list of users and
passwords and acts as the Authenticating Server. For small networks, this is not an issue; for large networks, however,
this is an additional overhead in maintenance and a potential security risk, because it means that users must have
another account and password.

In this case, the access point is told to refer to an external RADIUS server. RADIUS was developed by Livingston (now
part of Lucent) for use in large dial-up modem pools, and is widely used by ISPs as the authentication mechanism for
PPP and PPPoE users. The protocol is now defined by RFCs 2058, 2138, and 2139.

A RADIUS server maintains the user and password list, and performs authentication on behalf of the access point. The
RADIUS server in this scenario is the Authenticating Server. Frequently, a RADIUS server is merely a method to
transform authentication from some other source—for example, NIS, LDAP, or Kerberos authentication from a corporate
network, which is then used by the RADIUS server to authenticate clients.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.4 WPA on Linux
As of this writing, if you want to use WPA and/or 802.1x as a client on Linux, you have two options:

Obtain the WLAN Driver Loader from Linuxant. This is a compatibility wrapper that allows you to use the
standard Windows NDIS drivers that ship with wireless network cards. The advantage to this is that you can use
a wide array of WiFi cards that currently do not have open source drivers available.

Use a Prism-based Wi-Fi card with the latest HostAP CVS code. The newest versions of HostAP contain a WPA
Supplicant in software that allows you to connect to WPA-protected networks.

If you want to use your Linux box as a WPA Authenticator, you're currently out of luck. The HostAP development team
is working towards a full implementation of a WPA Authenticator. Right now, however, the hostapd daemon acts as an
802.1x Authenticator and authenticates against a RADIUS database.

Windows XP and Mac OS X both include support for 802.1x Supplicants. There is an open source implementation
available for Linux called Xsupplicant, which is located at http://www.open1x.org.

A last option is to use your Linux box as the RADIUS server (Authenticating Server), and use an inexpensive access
point as the WPA Authenticator. You can then use any WPA Supplicant to connect to the access points, and the backend
authentication is handled by Linux/RADIUS.

4.4.1 WLAN Driver Loader

The Linuxant WLAN Driver Loader is a compatibility wrapper that allows the use of Windows NDIS wireless network
drivers under Linux. Open source purists have issues with this software, because parts of it are released only in binary
form, and after 30 days you must pay $20 for a permanent license. If you're completely opposed to anything Windows-
related, keep in mind that this solution requires you to run Windows binary drivers, so this option may not be for you.

However, at this point in time, Linuxant is the only game in town if you need access to WPA-protected networks from a
Linux box and you don't have a Prism-based wireless card. More to the point, the WLAN Driver Loader software allows
you to use WiFi cards that do not have any open source drivers, including cards with chipsets from Broadcom and Texas
Instruments. For many of the popular 802.11g cards, this may be your only option in Linux.

A completely open source project to provide NDIS driver loading for Linux is located at
http://ndiswrapper.sourceforge.net. As of this writing, support for radio chipsets is limited
and there is no support for WPA.

You can obtain the software from the Linuxant web site at
http://www.linuxant.com/driverloader/wlan/full/downloads.php. Linuxant provides RPM packages for Fedora, Red Hat,
Mandrake, SuSE, and Turbolinux, and has built them for various architectures. Debian users can download a
driverloader.deb package for installation with dpkg. For other systems, or if you wish to compile the driver, the source
code can be downloaded as well.

In order to use the WLAN Driver Loader with WPA-PSK (personal) authentication, Linuxant provides a wpa_supplicant
daemon that is also available in its downloads section. If you need to have WPA-EAP authentication, the Xsupplicant
from open1x.org is required in addition to the wpa_supplicant from Linuxant. We cover installation of both supplicants
next.

To compile the Driver Loader software from source, extract the package and change into the newly created directory. A
single make command compiles and installs:

$ tar -xzf driverloader- version .tar.gz
$ cd driverloader- version
$ make install

By default, WLAN Driver Loader starts up a localhost web-based configuration tool on port 18020. You can access it by
pointing a web browser to http://127.0.0.1:18020 and logging in as root. You can also configure the software from a
shell by executing the dldrconfig command.

If you wish to disable the web configurator for security reasons, use dldrconfig --webconf=off. To reenable it, use dldrconfig
--webconf=127.0.0.1:18020. Note that this command enables you to choose an alternate port for web-based configuration.

The dldrconfig command can also be used to change certain configuration options or recompile (generic packages only)
the kernel modules after installation or kernel upgrades. Run dldrconfig --help for usage information.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the kernel modules after installation or kernel upgrades. Run dldrconfig --help for usage information.

If necessary, the device drivers can be unloaded using the dldrstop command.

Figure 4-1 shows the screen that you will see when you point a web browser at the localhost address created by the
WLAN Driver Loader installation.

Figure 4-1. DriverLoader initial configuration

As shown, the first thing you must do is provide the DriverLoader with Windows NDIS drivers for the device you want to
use. Click on the Upload Windows Driver link, and you will be presented with another screen, shown in Figure 4-2, that
allows you to browse the local filesystem for an .INF or .NTF file that comes in the Windows driver package for your
wireless card.

Figure 4-2. Browse for Windows driver files

In our example, we used a Linksys WPC55AG PC Card. We downloaded the latest driver in ZIP format from the Linksys
web site at http://www.linksys.com/download. The file we obtained was wpc55ag_driver_utility_v1.2.zip, which we
extracted using the unzip command. This created three subdirectories: Drivers, image, and utility. In the Drivers
subdirectory, we found two ar5211.sys files and a net5211.inf file, which are exactly what we needed to continue.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

subdirectory, we found two ar5211.sys files and a net5211.inf file, which are exactly what we needed to continue.
Obviously, this procedure will vary for each different wireless card. Linuxant maintains a list of wireless cards known to
work with WLAN Driver Loader and links to downloads of the associated Windows drivers. This list can be found at
http://www.linuxant.com/driverloader/drivers.php.

Using the browse function in Figure 4-2, we found the Drivers directory and selected net5211.inf. The program quickly
prompted us that the ar5211.sys file would be required and asked us to locate it. Once we clicked OK, the driver file
loaded, and we were presented with the screen in Figure 4-3.

Figure 4-3. DriverLoader shows a missing license for the newly installed driver

As we mentioned, the Linuxant software is proprietary. Permanent licenses can be purchased from Linuxant, and you
can also obtain a 30-day license for trial purposes from the Linuxant web site at http://www.linuxant.com/store. In
order to get a license, you must fill out a registration form, wait for an email from Linuxant with a verification code, and
enter that code. Once entered, you can generate a license. In order to do this, Linuxant requires the MAC address from
your wireless card. You can obtain this either from the web interface or by running:

dldrconfig -info
Linuxant DriverLoader for Wireless LAN devices, version 1.61

Web configurator: listening on 127.0.0.1:18020

Wireless interface name: eth1
 MAC address : 00:0C:41:0A:24:F8
 Device instance: PCI-0000:05:00.0-168c:0013-1737:0017
 Device driver : net5211
 License owner : unknown
 License key : none
 License status : MISSING

Enter the MAC address into the form on the Linuxant web site, and after a few seconds, you will be presented with a
30-day-trial license key, a 12-character hexadecimal string that needs to be entered either in the web configurator or
by executing dldrconfig --license. You'll be asked to enter the email address you used to register with Linuxant along with
the license key, as shown in Figure 4-4.

Figure 4-4. Entering the Linuxant license information

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4-4. Entering the Linuxant license information

Once you've entered the license information, you'll be returned to the main web screen, but this time it should show
that your driver is loaded. You can perform additional configuration on the card by clicking on Settings and then
selecting Advanced. Here you'll see the license information and any other configuration options that are supported by
the NDIS driver for your card. A sample screen is shown in Figure 4-5.

Figure 4-5. Advanced configuration under WLAN Driver Loader

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

After having made any changes in the Advanced configuration, exit the web-based configuration. Your wireless card
should now be active. In this example, you can see that our Linksys WPC55AG wireless card has been assigned to eth1:

iwconfig
lo no wireless extensions.

eth0 no wireless extensions.

eth1 IEEE 802.11g ESSID:"whitecottage-wpa" Nickname:"unknown"
 Mode:Managed Frequency:2.447GHz Access Point: 00:0C:41:D4:71:AB
 Bit Rate=54Mb/s Tx-Power=8 dBm
 RTS thr:off Fragment thr:off
 Encryption key:off
 Power Management:off
 Link Quality:1/1 Signal level:-38 dBm Noise level:-83 dBm
 Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0
 Tx excessive retries:0 Invalid misc:0 Missed beacon:0

As you can see from the ESSID, we are connected to a WPA-protected network. To authenticate, see Section 4.4.3 later
in this chapter. The next section describes how to connect to a WPA network with a Prism-based card and the HostAP
driver without using the WLAN Driver Loader.

Bleeding-Edge Warning
The Linuxant WLAN Driver Loader software is very new. As with any new software, particularly software
that allows cross-platform device drivers to work, you may run into problems. The first two cards we tried
with the Linuxant software did not work.

The Linksys WPC55AG card is based on the Atheros 5211 chipset and is compatible with 802.11a/b/g.
While it was easy to load the card driver and make it work with WLAN Driver Loader, further configuration
of the card was prohibited by the fact that we could not change operating modes. The card remained stuck
in 802.11a mode, making it impossible to test with our 802.11g access point that supports WPA. According
to Linuxant Support, the INF file included with the WPC55AG driver doesn't contain a section that deals
with changing the mode of the card; this is a bit odd, because the card does support this function in
Windows.

We then attempted to load the drivers for an Orinoco Gold 802.11b card. Agere has recently released
Windows drivers that support WPA on this card, available from http://www.agere.com/support/downloads.
While we were able to load the drivers, WLAN Driver Loader was not able to find any compatible devices
on the system. We suspect this is because our test system already had the orinoco_cs driver loaded, but
even by disabling orinoco_cs, we were unsuccessful.

Our last, and only, successful test used a Linksys WPC54G 802.11G radio card. This is based on a
Broadcom chipset and worked flawlessly, in both the setup and with the wpa_supplicant software.

4.4.2 HostAP

Jouni Malinen, the developer behind the HostAP project, has developed a package called wpa_supplicant. In this
section, we discuss how you can use a Prism-based wireless card, the HostAP driver, and the wpa_supplicant to connect
your Linux box to a WPA-protected network.

In order to use the wpa_supplicant in conjunction with HostAP, you must have a Prism-based Wi-Fi card with station
firmware Version 1.7 or later. The latest version of firmware as of this writing is 1.8.0, although Version 1.7.4 is more
widely available and works as well. The most complete collection of Prism firmware is located at http://www.red-
bean.com/~proski/firmware

To update your Prism card firmware, refer to the excellent tutorial at http://linux.junsun.net/intersil-prism. If you have
questions or problems with the firmware update process, we recommend that you check there first. However, we do go
over the basics of updating your firmware later in this section. To determine whether you need to update the firmware.

1. Build and install the hostap utilities (see Section 4.4.2.2 later in this chapter).

2. Use the hostap_diag wlan0 command to determine the current version of your Prism firmware. Alternatively, use
dmesg | grep wlan0. hostap_diag returns output similar to the following:

NICID: id=0x8013 v1.0.0 (PRISM II (2.5) Mini-PCI (SST parallel flash))
PRIID: id=0x0015 v1.1.0
STAID: id=0x001f v1.4.9 (station firmware)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. You should be concerned with the Station Firmware version, which must be at least Version 1.7.0. Chances are
that your card is below that version, and you will need to upgrade the firmware. Take note of the NICID in the
output of dmesg or hostap_diag. This is the ID of your Prism card and there are many different IDs. Some IDs
have only certain firmware versions available. To determine the software that is required for your card, consult
the tutorial at http://linux.junsun.net/intersil-prism.

Once you've determined which firmware you need, you can build hostap and its utilities, and then update the firmware,
as described in the following sections.

4.4.2.1 Building hostap from CVS

While you don't necessarily need the CVS version of the HostAP code to update your Prism firmware, you will need it to
use the wpa_supplicant features and to obtain the wpa_supplicant code.

You can obtain the CVS development snapshot from the HostAP web pages at http://hostap.epitest.fi. Select the link for
development branch in the section titled "CVS snapshot of the driver source code." You must have the development
branch of the code to get the WPA features.

Once you've downloaded the compressed file, extract it and change to the newly created directory:

tar xzvf hostap.tar.gz
cd hostap

You must edit the file drivers/modules/hostap_config.h and make sure these two items are uncommented: #define
PRISM2_DOWNLOAD_SUPPORT and #define PRISM2_NON_VOLATILE_DOWNLOAD. In the CVS version, the first #define
statement is already uncommented.

Once you have edited this file, go back to the hostap directory and build the software:

make
make install

To load the new HostAP drivers, stop and restart the PCMCIA services:

/etc/init.d/pcmcia restart

4.4.2.2 Building the hostap tools

In the hostap source directory is a subfolder containing the hostap utilities. Building them is easy:

cd utils
make

There is no make install command, so if you want the tools installed outside of the utils directory, you must move them
yourself. Our examples merely run the utilities out of the directory where they are compiled.

4.4.2.3 Updating the firmware

Copy the version of firmware files that you need for your prism card into the utils directory. The utility that manages
the firmware upgrade is prism2_srec. This utility not only updates the station firmware of your card, but also the primary
firmware. Updating the primary firmware is beyond the scope of your needs, so focus simply on updating the station
firmware.

Station firmware is always provided in the format s[platform][version].hex. The tutorial web pages at
http://linux.junsun.net/intersil-prism give you information on determining your platform. Make sure that you are using
the station firmware file and no other file. You could render your card useless if you were to update it with the wrong
firmware (the faint of heart may want to consider updating their card using a Windows-based updater from the
manufacturer, which is likely to be the only supported technique).

First, do a test run in verbose mode:

./prism2_srec -v wlan0 s1010701.hex

The -v argument specifies verbose mode, and because we have not called the tool with any other options, it simply
tests the firmware against the card. If at the end of the output you see OK, you can proceed to the next step. If you
see anything else at the end of the output, do not proceed. You will know that the firmware is not compatible with your
card if you see output like:

NICID was not found from the list of supported platforms. Incompatible update data

Assuming that your test run returned an OK, you can proceed to the next step, and write the firmware to the flash on
the Prism card. First, if you use a laptop, make sure it has a fully charged battery and is plugged into the wall outlet. If
your computer is a desktop, be sure that it is plugged into a UPS. (If the power fails during this step, your Wi-Fi card
will be useless.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

will be useless.)

./prism2_srec -v -f wlan0 s1010701.hex

The process takes about 30 seconds, and you should make sure that the card is not removed during the update. Once
finished, you should see output that shows the new firmware versions on the card and that should be returned to a
shell prompt:

Components after download:
 NICID: 0x8003 v1.0.0
 PRIID: 0x0015 v0.3.0
 STAID: 0x001f v1.7.1
#

The card driver is unloaded after the firmware update, so you should remove the card and reinsert it to reload the
driver.

4.4.3 Authenticating with wpa_supplicant

The supplicant software is included in the CVS releases of HostAP 0.2.x source, so you have already downloaded it
when you installed the CVS version of HostAP in the previous section. Linuxant also provides the source for
wpa_supplicant in the downloads section of its web site, but as of this writing, the version included with HostAP 0.2.x
source is more current. We recommend obtaining the HostAP source to build wpa_supplicant even if you plan on using
it with the WLAN Driver Loader.

Operating wpa_supplicant with either HostAP or the WLAN Driver Loader doesn't require a different setup. You must
make sure that the wireless card that you intend to use with WLAN Driver Loader supports WPA in both the card
firmware and the Windows NDIS driver. See the sidebar Bleeding-Edge Warning for details on how some WPA-enabled
cards may not work.

The only difference between running wpa_supplicant with HostAP and WLAN Driver Loader is what interface you call
from the shell. HostAP interfaces are always wlanX, typically wlan0. For all of the cards we tried with WLAN Driver
Loader, the interface came up as eth1.

In the hostap source directory is a subfolder that contains the wpa_supplicant. Building it from source is easy:

cd wpa_supplicant
make

Again, there is no make install, so you must copy the generated executables to where you want them: wpa_supplicant
and wpa_passphrase, and the configuration file wpa_supplicant.conf.

According to the README file included with the source, wpa_supplicant is designed to run as a background daemon. A
frontend program that provides a user interface is planned but is not yet available.

On currently available access points, there are two possible operating modes for WPA:

WPA-PSK (pre-shared key)

Also called "WPA-Personal" by the Wi-Fi Alliance; this somewhat resembles WEP in that it allows you to use an
identical key (a pre-shared key) on both the access point and the client. The access point, acting as the WPA
Authenticator, uses this pre-shared key to generate a master session key.

WPA-EAP

Also called "WPA-Enterprise" by the Wi-Fi Alliance; this relies on an external authentication server, most likely
RADIUS, and the EAP used by 802.1x. The master session key is generated by the Authentication Server and
then passed to the access point, which authenticates the client with that key.

In both cases, WPA implements a 4-Way Key Handshake and Group Key Handshake, which generates and exchanges
data encryption keys between the Authenticator (access point) and Supplicant (client). The only difference between the
two methods is where the master session key is generated.

You want to start wpa_supplicant as a daemon, give it the path to the configuration file, and specify the wireless
interface. In most cases, you can use the line shown in Example 4-1.

Example 4-1. Launching wpa_supplicant

/path/to/ wpa_supplicant -Bw -c /path/to/ wpa_supplicant.conf -iwlan0

This makes the process fork into the background and wait for the wlan0 interface, so you can insert this command into
an appropriate place in your startup environment. WPA handshakes must be complete before data frames can be
exchanged, so wpa_supplicant must be started before a DHCP client, for instance.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

exchanged, so wpa_supplicant must be started before a DHCP client, for instance.

wpa_supplicant must be running when using a WPA-protected wireless network, so it should be started from system
startup scripts using the command shown in Example 4-1, or it can be called from the pcmcia-cs scripts if you are using
a PC card.

To enable WPA support using the pcmcia-cs scripts, add these lines to /etc/pcmcia/wireless.opts:

MODE="Managed"
WPA="y"

Add the following code to the end of the start action handler in /etc/pcmcia/wireless:

if [$WPA = "y" -a -x /usr/local/bin/wpa_supplicant]; then
 /usr/local/bin/wpa_supplicant -Bw -c/etc/wpa_supplicant.conf \
 -i$DEVICE
fi

Finally, add the following code to the end of the stop action handler in /etc/pcmcia/wireless:

if [$WPA = "y" -a -x /usr/local/bin/wpa_supplicant]; then
 killall wpa_supplicant
fi

The combined effect of these changes make cardmgr start up wpa_supplicant when the card is plugged in.
wpa_supplicant waits until the interface is set up, and then negotiates keys with the access point.

The example wpa_supplicant.conf file can be used to generate a configuration for your environment. The file needs at
least two mandatory parameters, and it has several options depending on how your network is configured. The general
file format should be as in the example below. Empty lines and lines starting with # are ignored.

network={
 ssid="locked-down"
 psk="s00pers3cr3t"
 key_mgmt=WPA-PSK
 pairwise=CCMP TKIP
 group=CCMP TKIP
}

Here is a list of the possible fields in the configuration file:

ssid=

A mandatory field that can be either an ASCII string in quotes or a hex string.

bssid=

Optional, only needed if your network uses a BSSID.

key_mgmt=

A list of accepted key management protocols. Options are WPA-PSK, WPA-EAP, and NONE. If not set, this defaults
to WPA-PSK WPA-EAP.

pairwise=

A list of accepted pairwise (unicast) ciphers for WPA. Options are CCMP (AES encryption), TKIP, or NONE. If not
set, this defaults to CCMP TKIP.

group=

A list of accepted group (broadcast/multicast) ciphers for WPA. Options are CCMP, TKIP, WEP104, and WEP40. If
not set, this defaults to CCMP TKIP WEP104 WEP40.

psk=

A mandatory field when using WPA-PSK. This field can be entered as 64 hex digits or as an ASCII passphrase.
The ASCII passphrase must be at least 8 characters in length and can be a maximum of 63 characters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The ASCII passphrase must be at least 8 characters in length and can be a maximum of 63 characters.

In our example configuration, we are connecting to a WPA-PSK network, and we have chosen to put the ASCII
passphrase in the text configuration file. If you want more protection, the included tool wpa_passphrase can be used to
generate 256-bit keys from an ASCII passphrase. This tool uses a fair amount of CPU time, so it should be used only
when the passphrase has actually changed.

If you don't have WPA set up on your access point, see Section 4.4.3.2, which provides information on setting up a
Linksys access point for WPA.

wpa_supplicant has an experimental interface for integrating with Xsupplicant. This allows you to connect to a WPA-EAP
network by having Xsupplicant manage the 802.1x and EAP authentication. In order for this to work properly,
Xsupplicant must be modified to send the master session key to wpa_supplicant after successful EAP authentication.

The latest wpa_supplicant code includes an xsupplicant.patch that can be used to patch the source code for Xsupplicant.
However, this patch has been merged into the Xupplicant CVS code, so we recommend you check out CVS code instead
of dealing with the separate patch.

4.4.3.1 Xsupplicant

The folks at the Open1x project build the Xsupplicant software, available at http://www.open1x.org. The latest stable
release is Version 0.8b. However, for our purposes, we need the CVS code, which you can check out from the
SourceForge CVS server using the following commands (press Enter when prompted for a password):

cvs -d:pserver:anonymous@cvs.sourceforge.net:/cvsroot/open1x login
cvs -d:pserver:anonymous@cvs.sourceforge.net:/cvsroot/open1x co \
 xsupplicant

These commands check out the CVS code and deposit it in a newly created xsupplicant directory.

Xsupplicant requires that Openssl 0.9.7 or greater be installed. Mandrake, Fedora, and Red Hat users can install the
openssl package, Debian users can run apt-get install openssl, and the source can be downloaded from
http://www.openssl.org. Most distributions already have this package installed by default, but you may need to upgrade
it to ensure that you have the version required.

In order to get the CVS code running, you must install the automake1.7 and autoconf2.5 packages (or more recent
compatible versions). Once these are installed, compiling from source is straightforward:

cd xsupplicant
./configure
make
make install

This installs xsupplicant and some related tools in /usr/local/bin. However, the CVS make install does not install a config
file, so you must copy the sample etc/xsupplicant.conf to /etc/1x/1x.conf (this is the default location of the conf file).

Edit the 1x.conf file. Many of the defaults can be left in place, but you must change a few particulars starting with the
identity, then moving on to the EAP type. Although the sample configuration file gives you a starting point for each type
of EAP, we'll use EAP-MD5 because it's easy to implement and doesn't require us to generate a certificate. After that,
you need to configure the phase2 authentication type and chap:

identity =

What Xsupplicant responds with when presented with an EAP ID Request. This is typically the username, and
because this can be an arbitrary string, you should enclose it with a <BEGIN ID> and <END ID>.

eap-md5

In this section, you must enter a username and password.

phase2_type

Here you must specify the type of phase2 authentication. The default is chap, which we use for our example.

chap

In this section, you must enter a username and password.

If you're uncomfortable entering confidential information into clear text files, Xsupplicant can be called from the
command line with switches that allow you to enter your username and password with the -u and -p options. However,
these options allow anyone who can execute a ps command on your system to see your password.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

these options allow anyone who can execute a ps command on your system to see your password.

Xsupplicant can be used both to authenticate your Linux machine to an 802.1x server as well as in combination with
wpa_supplicant to connect to WPA networks.

In either case, Xsupplicant must be activated after the interface is brought up so it can transmit authentication
information; Xsupplicant is unlike wpa_supplicant, which must complete the WPA handshakes before any data can be
transmitted.

After you have entered all of the correct information into the 1x.conf file, call Xsupplicant from the command line:

xsupplicant -i wlan0 -D

This command line puts Xsupplicant into daemon mode after it receives the password. Put the 1x.conf file in the default
location so you don't need to specify the location of the conf file. This command allows you to authenticate against any
802.11x server.

To use Xsupplicant in combination with wpa_supplicant to connect to a WPA-EAP network, you must change a few
things:

1. First, you must edit the wpa_supplicant.conf file and change the key_mgmt entry to WPA-EAP.

2. Now you can start Xsupplicant, but it must be started with an extra command line switch:

xsupplicant -I wlan0 -D -W

The -W switch tells Xsupplicant that it must communicate the master session key that it obtains from the 802.11X/EAP
server back to wpa_supplicant.

Xsupplicant also comes with some example ifup and ifdown scripts in the tools directory of the source tarball. We
suggest that you use these scripts instead of the normal distribution scripts when you wish to bring up or down an
interface that uses 802.1x authentication.

4.4.3.2 Example WPA setup on a Linksys access point

All of our testing with WPA-PSK and WPA-EAP was done using a Linksys WRT54G Wireless Router. With Version 2.0 and
above of firmware, the WRT54G is capable of both WPA methods as well as TKIP and AES encryption.

Figure 4-6 shows the configuration necessary for a WPA-PSK setup.

Figure 4-6. WPA-PSK setup for a Linksys WRT54G

Figure 4-7 shows configuration for a WPA RADIUS setup.

Figure 4-7. WPA RADIUS setup for a Linksys WRT54G

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4-7. WPA RADIUS setup for a Linksys WRT54G

4.4.3.3 WPA RADIUS setup details

In order to make this work, we set up a Mandrake 9.2 system as a dedicated RADIUS server. For a RADIUS server, we
installed the freeradius packages and their dependencies with urpmi freeradius. RedHat, Fedora, and Debian users should
be able to install the freeradius packages similarly on their systems. We did not attempt to compile the source code for
our testing, but it can be downloaded from http://www.freeradius.org.

FreeRadius supports a wide variety of database backends, including LDAP, MySQL, and others. This was major overkill
for our purposes. In order to run FreeRadius, we had to edit two files:

/etc/raddb/users

We didn't use any backend database for users, so we simply added several test users to this file. A sample user
entry is shown here:

"roger" Auth-Type := Local, User-Password = = "useless"
 Reply-Message = "Hello, %u"

/etc/raddb/clients.conf

For each client of the RADIUS server, you can define an entry with a shared secret. This isn't particularly
secure, because RADIUS shared secrets are sent in the open with no encryption (for this reason, you should use
a wired link on a physically secured network between the RADIUS server and access point). If this shared secret
were compromised, it would not compromise the integrity of the 802.1x-protected communication. However, an
attacker with knowledge of the secret and physical access to your network could replace either the RADIUS
server or access point. We defined an entry for our Linksys WRT54G and made sure that we entered the same
shared secret here as we did in the Linksys setup:

client 10.42.7.14 {
 secret = s00pers3cr3t
 shortname = wrt54g
 nastype = other
}

Once we edited these files, we started FreeRadius manually with debugging enabled so we could watch for any
problems:

/usr/sbin/radiusd -x

At this point, we were able to use the combination of Xsupplicant and wpa_supplicant described earlier in the chapter to
establish a WPA link with the WRT54G, and authenticate through to the RADIUS server.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 5. Configuring Access Points with Linux
So you've purchased an access point. You brought it home from the store, broke open the packaging, discarded all of
the extraneous bits of fluff, and you're likely left with an access point, a power supply, an Ethernet cable and a CD that
says "Windows Software Installation."

This chapter explains how to avoid this scenario. While there are vendors of wireless equipment that still expect you to
configure their gear from a Windows PC, there are many alternatives for the Linux user.

Many of the early access points from vendors, such as WaveLAN/Lucent/Orinoco, Linksys, and others, required an
external setup program. With few exceptions, these setup and configuration programs ran only under Windows.
However, as the price of wireless equipment continued to drop and access points began to be marketed to home users,
a number of vendors chose to make their equipment configurable with a web browser.

There are also several manufacturers that allow Telnet access for configuration of their access points. One thing you're
unlikely to find, however, is SSH-enabled access. As of this writing, there are no commercial access points capable of
SSH. However, at least one company is producing wireless routers that operate using a Linux kernel. Several
organizations have built custom firmware for these boxes that include SSH daemons. See Chapter 6 for details.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.1 Linux-Friendly Wireless Vendors
While it is impossible to provide a complete and up-to-date list of all wireless vendors, Table 5-1 shows a list of many of
the major manufacturers, the types of equipment they sell, and how their equipment is configured.

Table 5-1. Linux-friendly wireless vendors
Vendor Equipment types Configuration methods

Linksys[1]

www.linksys.com
Access points, bridges, routers Web-based

Netgear

www.netgear.com
Access points, bridges, routers Web-based

D-Link

www.dlink.com
Access points, bridges, routers Web-based

Cisco

www.cisco.com
Access points, bridges Web-based, Telnet, SNMP

SMC

www.smc.com
Access points, bridges, routers Web-based

EnGenius

www.engeniustech.com
Access points, bridges, routers Web-based, Telnet, SNMP

Belkin

www.belkin.com
Access points, bridges, routers Web-based

US Robotics

www.usr.com
Access points, routers Web-based

Microsoft

www.microsoft.com
Access points Web-based

ActionTec

www.actiontec.com
Access points, routers Web-based

[1] Linksys was acquired by Cisco in June 2003.

Alternatively, Table 5-2 shows a list of vendors that are not configurable from Linux out of the box. However, with some
of this equipment, there are alternative methods of configuration, and even the ability to reflash the firmware to run
Linux or make the device act like a different model.

Table 5-2. Linux-less-than-friendly wireless vendors
Vendor Equipment types Configuration methods

Proxim Orinoco

www.proxim.com
Access points Windows GUI[2]

Apple

www.apple.com
Access points Apple GUI

Tranzeo Access points, bridges Windows GUI, limited telnet

SmartBridges

www.smartbridges.com
Access points, bridges Windows GUI

[2] Proxim makes available the Orinoco CLI Proxy, which is covered later in this chapter.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.2 Commercial Wireless Equipment Overview
With the explosion in Wi-Fi popularity, a corresponding plethora of vendors and equipment choices have surfaced. There
are an amazing number of access points, but there are also wireless routers, wireless bridges, wireless-to-Ethernet
bridges, and some Linux-powered equipment as well.

5.2.1 Access Points

In Chapter 1, we covered the basics of 802.11 and the two modes of operation it supports. Infrastructure Mode, the
most common mode, requires the use of a wireless access point.

Most access points on the market share a common number of connectors: at least one external antenna, one Ethernet
port, status LEDs, and an external power supply or wall wart. Other features you might find on some models include
connectors for attaching external antennas, a reset button to return the unit to factory settings, multiple Ethernet ports,
and support for Power Over Ethernet (POE).

Power over Ethernet
If you're familiar with network cabling, you know that Ethernet uses only two pairs of the wire inside a
standard Category 5 cable. Pairs 1-2 and 3-6 are used, leaving 4-5 and 7-8 available.

POE sends DC power over these unused pairs, enabling the placement of access points or other network
hardware away from power sources. This is especially useful if you need to mount your access point on a
pole, on the ceiling, or in other inaccessible places. Run CAT5 wire rather than going to the trouble of
running electrical conduit. You can now supply both Ethernet and power to the unit.

In June 2003, the IEEE released its specification for POE, 802.3af. More information on this standard can
be obtained from the IEEE web site at http://www.ieee802.org/3/af/.

The IEEE standard is only a few months old as of this writing, so most POE equipment available for
purchase will not meet the standard. There are excellent documents from community wireless
organizations available on building POE equipment. A few good examples are the Bay Area Wireless Users
Group (BAWUG) page at http://www.bawug.org/howto/hacks/PoE/ and the NYCWireless page at
http://www.nycwireless.net/poe/.

In order to make POE work, you need a power injector, which is referred to in the 802.3af standard as the
Power Sourcing Equipment (PSE), and a corresponding unit on the other end. The standard refers to the
end device as a PD.

If your equipment is designed to support POE out of the box, you need only a PSE. This unit typically has
three jacks: DC power, Ethernet IN, and Ethernet/power OUT. Connect power, Ethernet from your
network, and then connect Ethernet/power OUT to the Cat 5 cable running to your Powered Device.

On the other end, if your equipment does not natively support POE, what you need is a splitter, a reverse
of the PSE. It also has three jacks: Ethernet/power IN, Ethernet OUT, and DC power OUT. This device
takes your incoming Ethernet/power and splits it again for connection to your device.

WARNING: unless you have electrical and LAN wiring experience, making your own POE equipment can be
dangerous or fatal to you and your equipment.

Once you get past the outside connectors, the internal features of access points begin to vary widely. There are all sorts
of devices on the market, ranging from simple home-use devices to enterprise-class units designed for large
deployments. The following list describes various manufacturers and some of their equipment:

Apple AirPort

This was one of the first access points available. Apple brought this access point and the AirPort client cards to
market before the 802.11b standard was finalized. The internals of the unit are built by Lucent/Orinoco and are
identical to the Orinoco RG-1100. Note that this applies only to the original AirPort model. The second model
(Snow) and the subsequent AirPort Extreme are based on a different processor.

Chapter 6 covers some utilities that can be used to reflash the firmware on these units, allowing you to swap
personalities and even to run Linux on them. As shown in Table 5-2, the AirPort and the RG-1100 are not
configurable out of the box from Linux. This is easily remedied. Also, early versions of the AirPort had problems
with non-Apple wireless cards. Many of these cards would not associate with the access point. This has since
been fixed through firmware updates.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

been fixed through firmware updates.

Orinoco AP-series

This series includes some of the most popular enterprise-class access points. The AP-500 has a single radio
inside, an Orinoco PC Card. The AP-1000 was the first access point to feature two radios, again both in PC Card
format. Orinoco access points have a wide array of features: MAC address filtering, network protocol filtering to
enforce such policies as preventing IPX from traversing your wireless network, support for RADIUS
authentication, and custom power over Ethernet adapters. Orinoco calls these units "Active Ethernet," and they
are available in 1-, 6-, and 12-port models, so that you can power up to 12 access points using the same POE
adapter.

More recent models include the AP-2000, the successor model to the AP-1000 (which features upgradeability to
802.11a or 802.11g, or both), giving you a tri-mode access point with all of the Orinoco features, and the AP-
2500, which is a "hotspot-in-a-box" model that includes a captive portal and many other features necessary for
setting up a wireless hotspot.

Linksys

Linksys made a huge splash with its WAP-11 access point when it was first introduced. It had a good feature set
and external antenna adapters, and was priced for the home market. Unfortunately, it is mainly configurable
through a Linksys-specific setup program, which runs on Windows. There is an SNMP utility for Windows, and
Linksys did publish an SNMP Management Information Base (MIB) for Linux/Unix users. (An MIB is one or more
text files that allow Linux's SNMP tools to generate human-readable statistics from SNMP management strings.)

Later Linksys models still continue to ship with Windows-only setup programs. However, they now offer web-
based configuration that is easily accessible from Linux web browsers.

Much of the other consumer-level wireless gear can be placed in the same area as Linksys. D-Link, SMC, and
Netgear all offer models with nearly identical features and price points.

EnGenius/Senao

Early in 2002, rumors surfaced of a 200 mW radio card. While one manufacturer, Zcomax, had made these
available, they were hard to find and were expensive.

At that point, with a few exceptions, most radio cards and access points were powered by 30 mW radios. You
can imagine how excited the wireless users were at the thought of being able to expand their range.

Today, EnGenius/Senao offers several access points for indoor and outdoor use, all with 200 mW radios. Along
with Cisco, it is one of the few vendors to support Telnet access for configuration. Figure 5-1 shows a sample
web-based configuration screen from an EnGenius access point.

Tranzeo

Tranzeo is one of a number of vendors focused on supplying wireless Internet service providers. Tranzeo's
equipment is designed to work outdoors and comes in many models, some of which include an integrated
directional panel antenna. Its access points are accessible via Telnet as well as a Windows-based GUI. Many of
its models offer some routing features (see Section 5.2.2 later in this chapter).

Cisco

The 800-pound gorilla of networking, Cisco, entered the 802.11 market when it acquired Aironet in late 1999.
Aironet was already a manufacturer of 802.11 first-generation equipment, and Cisco bought Aironet at precisely
the right time to take advantage of the 802.11b introduction.

Cisco's access points, as expected, integrate extremely well into a Cisco network. They have a wide feature set
and compare well with the products from Orinoco in the enterprise space. Also, as expected, the Cisco units all
support Telnet as well as web-based configuration. Figure 5-2 shows the main Telnet screen from a Cisco AP.

Figure 5-1. Web-based configuration for an EnGenius/Senao access point

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5-1. Web-based configuration for an EnGenius/Senao access point

Figure 5-2. Cisco Telnet configuration window

5.2.2 Wireless Routers

The line between an access point and a wireless router is very blurry. Many devices sold as access points include
routing features. For example, the Apple AirPort models offer Network Address Translation and a DHCP server. Wireless
routers are basically a combination of home ADSL/cable routers and a wireless access point.

There are some key differences, however, between most of the wireless routers now available and standard access
points. You can expect to find at least some of these features on a wireless router:

Routing protocol support

RIP or RIPv2 on many models

Network services

DHCP, DNS, and others

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DHCP, DNS, and others

Encryption support

Client or router support for IPSec and PPTP VPNs

Limited firewalls

IP masquerading and some packet filtering

Port forwarding

Sending certain TCP or UDP ports to a specific machine

These units are really designed for home or small-office use. You'll find that the larger network vendors such as Cisco
don't manufacture this type of hardware, because they want you to purchase one of their full-fledged routers.

Security in many models of these routers is also questionable. The bugtraq mailing list at
http://www.securityfocus.com/archive shows you that the number of vulnerabilities in this type of consumer hardware
is fairly high. While these units increase security compared to a standalone PC connected to a DSL modem, they are not
the end-all be-all for network security.

Wireless routers are available from almost any manufacturer that also makes access points. An alternative to
commercial wireless routers is to build your own using Linux. Chapter 6 covers this topic in detail.

5.2.3 Wireless Bridges

Perhaps the most well-known wireless bridge is the Linksys WET-11. A wireless bridge takes in an Ethernet signal and
repeats it out to a wireless network, and vice versa.

A wireless bridge is not an access point, however. The bridge is only capable of acting as an infrastructure client to a
distant access point. The practical uses of these devices abound. If you want to connect your Ethernet-enabled PC to
your wireless network, attach it to a bridge. Wireless ISPs can install a wireless bridge as their customer premises
equipment (CPE), allowing the customer to have a wired Ethernet network in her home, bridged wirelessly to a remote
access point. Any device with an Ethernet port can be added to a wireless network using a wireless bridge.

As with wireless routers, most of the companies that manufacture access points have at least one model of wireless
bridge available. If you want an outdoor wireless bridge with an integrated antenna, excellent models are available from
Tranzeo at http://www.tranzeo.com. Models for home or office use can be found from Linksys, D-Link, SMC, and all the
other usual suspects.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.3 Configuring Access Points
While many of the manufacturers we've covered allow their wireless equipment to be configured through a web or
telnet interface, this is not an option for Orinoco or Apple access points. However, there are two options for configuring
Orinoco access points under Linux and at least one option for Apple AirPort configuration.

5.3.1 Orinoco CLI Proxy

Orinoco provides a program it calls the CLI Proxy. It's available at
http://www.proxim.com/support/all/orinoco/software/dl2002_orinoco_apcli_117_linux.html. If you look at the
accompanying README file, there appears to be support from Orinoco for this product.

The release notes and program are from 2002 and have not been updated in a while. The system requirements state
that the program runs under Red Hat Linux 6.1 or similar systems. We were able to successfully install and run the
package on both Red Hat 9 and Debian Woody distributions.

To install the CLI Proxy, download the .tgz file from the Orinoco web site. The help notes suggest unpacking it in the
/opt directory, but that's not necessary. The package can be unpacked in any location that makes sense for your
filesystem. For our purposes, we'll assume you're using /opt. You'll need 1.5 MB of disk space for installation.

To unpack, execute the following command as root:

tar xzvf clili117.tar.gz

The package is a compiled binary with no source, so at this point all you can do is execute the program with the
command /opt/cliproxy/cliproxy. You'll see this prompt:

[CLI]>

First, read through the HTML documentation that is installed with the program in the /opt/cliproxy/Help directory.

The program works by downloading a configuration from an Orinoco access point on your local subnet. The program
makes use of broadcast traffic, so your Linux box must be on the same physical network as the access point for it to
work. You can also open a local configuration file. This is done through the use of the configure command. Saving the file
is accomplished by writing the file to disk or writing it to the access point, and is done by issuing the command write.

The interface is very similar to Cisco IOS, along with tab-completion of commands and the use of the ? key to find
context sensitive help. For example, show ? gives you all of the options to the show command.

Once you have opened a configuration for editing, you can modify any of the access point features available, from the
wireless interface to TCP/IP options to setting up bridging. The Orinoco access points have a pretty broad set of
features.

The software ships with default configuration files for the Orinoco AP-1000 and AP-500, which you can open and modify
to fit your needs.

5.3.2 Airport/RG-1000 Configurator

Jon Sevy of Drexel University has built a Java-based configuration program for the Apple AirPort and the Orinoco RG-
1000 access point. He also has versions of this program for the newer AirPort models with two Ethernet ports and the
AirPort Extreme 802.11g model. The software can be downloaded from
http://edge.mcs.drexel.edu/GICL/people/sevy/airport/#Configurator.

There are versions for Unix as well as MacOS 9, Mac OS X, and Windows. You need a Java 1.2-compliant runtime
engine (JRE). The latest versions of Java for many platforms can be downloaded from Sun Microsystems at
http://java.sun.com/j2se/1.4.

Once you've downloaded the Configurator, unpack it in a directory of your choice and run the program using this
command line:

java -jar AirportConfigurator.jar

When Java starts, it executes the Java Archive (JAR) code, which will result in Figure 5-3.

Figure 5-3. Java AirPort/RG-1000 Configurator main screen

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5-3. Java AirPort/RG-1000 Configurator main screen

If you're familiar with either the Orinoco configuration programs available for Windows or the FreeBase configuration
software written to configure an Apple AirPort from Windows, this screen is very familiar.

As you can see, you have the option to discover compatible devices on your network or to specify the IP address of a
device you wish to configure. Configuration is handled through a series of tabs, giving you options for wireless and
wired network settings, bridging, DHCP, and a whole host of advanced settings.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.4 Flashing Your Access Point
One feature that is not immediately apparent in the Java Configurator is located in the drop-down File menu: Upload
New Base Station Firmware. This feature is also available in the Orinoco configuration software for Windows and in the
Apple AirPort software for Mac OS X, as well as in the FreeBase software mentioned earlier.

However, a neat hack that the Java configurator and FreeBase allow is the uploading of firmware to a device that does
not explicitly match the firmware in question.

For example, the original Apple AirPort and the Orinoco RG-1000 are identical hardware, so you can flash either unit
with the firmware image of the other. You can also flash both of these models and the Orinoco RG-1100 with the
Orinoco AP-500 or AP-1000 firmware (which is quite a feature upgrade because it supports bridging, protocol filtering,
RADIUS, and many other advanced configuration options).

To flash the firmware, you need the firmware images. The Orinoco CLI proxy software comes with binary (.bin)
firmware images for the AP-500 and AP-1000. The Orinoco AP Manager software for Windows comes with these images,
as well as the RG-1000 and RG-1100 images. It is available from
http://www.proxim.com/support/all/orinoco/software/dl2002_orinoco_ap_75.html.

Apple has built its firmware updates into the executables for its AirPort updater software. If you're a Mac-head, you can
use ResEdit to remove the binary firmware from the executable. However, we won't go into that here. There is a non-
Apple web page available that provides binary firmware images for the various AirPort versions:
http://www.icir.org/fenner/airport. Use these images at your own risk. For more information on creative ways to flash
an access point, see Chapter 6.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 6. Building Your Own Access Point
Wi-Fi access points are inexpensive, because they are now accepted as commodity hardware. You can buy them at
discount stores, warehouse clubs, and probably your local gas station. Models with many features and support for
802.11g can now be purchased for well under $100.

Why then would you want to build your own access point? Aside from the usual geek reason ("because you can," a.k.a.
"why even ask?"), there are many practical reasons:

Make use of old or surplus PC hardware. An effective access point can be built with a 486/33 and 16 MB of
RAM. Many commercial access points are not any more powerful inside. Don't know what to do with that old
Pentium? Stick a radio card in it and unwire your house.

Take advantage of a complete Linux installation. Run an iptables firewall to protect your network, build a
web caching server, and set up intrusion detection. If you build a Linux-based access point, you can do almost
anything with it.

Run a customized Linux kernel on off-the-shelf hardware. Wireless access point/routers from Linksys and
other manufacturers are actually running Linux kernels inside. Several groups of people have put out alternative
firmware for these units. You can build your own custom firmware if you want.

These are only a few good reasons to build your own access point. In order to get started, you need some hardware, a
Linux distribution, and some configuration basics. We cover each in turn.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.1 Hardware
As we mentioned, building an access point can be a useful way to resurrect old PC hardware you may have sitting
around. Depending on where you want to install it, you can leave it in that old bulky case or dress it up with a spiffy
waterproof case and install it outside.

One of the wireless routing nodes we built for the NoCat network (http://nocat.net) in Sonoma County, California, is a
beige Macintosh G3/266 desktop machine. It runs Yellow Dog Linux and has two PCI-PCMCIA converters and two Agere
Orinoco Silver 802.11b radio cards. An odd choice, you might think—but we had the hardware and it has already
functioned as a wireless router for over a year as of this writing.

There are a few things you'll want to keep in mind when deciding whether any given hardware is right for building an
access point:

Processor speed

While it might seem nostalgic to consider using a 386 or a non-PowerPC Mac for your access point project,
these machines are so slow and old that it can be painful running Linux on them. Once you do, they don't have
the horsepower to do many neat Linux tricks such as firewalling. Anything faster than a 486/33 is able to act as
an access point with little trouble.

Support

Older PCs can certainly be made into access points. Bear in mind, though, that you must dig up such ancient
artifacts as ISA network cards and SIMM memory. If you need to build on the cheap, this can be the way to go,
but all hardware ages and fails sooner or later. If you want reliability, you might want to think about newer
hardware. There's also the issue of relying on a PC with a spinning hard disk inside—they will fail, often when
you really need them.

Standardization

You might be expanding a larger network rather than just installing an access point in your closet. If you build
more than one access point for whatever reason, you've just crossed over into the zone of network
administration. In this world, standard hardware is the norm, because you can keep single types of replacement
hardware on hand, and if you're in a multisite network, it means that everyone who's responsible is familiar
with the same hardware.

Power

Depending on where you want to locate your access point, you must consider power requirements. Do you
really want a noisy old 486-power supply fan blowing in your closet? One alternative is to consider DC-powered
devices, which range from a dedicated embedded PC to an off-the-shelf access point.

Ports

In a nutshell, does the hardware you're considering have all the right ports? Does it have onboard Ethernet, or
do you need to add a network card? If you add that network card, do you have room for a radio card? Are there
enough memory slots? Does it have a serial interface for a console? Do you need a console?

6.1.1 Recycled Hardware

The first thing you should consider is whether you have any old PC hardware sitting around that can be dusted off,
turned on, and made into a Linux-powered access point. If you're on a budget, this may be one of the cheapest
solutions, but this depends on what hardware you have, and what you want to use it for.

At a minimum, your hardware should be able to accommodate a Wi-Fi card and an Ethernet card. As we've discussed
already, you should not consider using anything slower than a 486/33 processor. Additionally, if you have old Macintosh
hardware available, you can easily run Linux on systems such as a PowerMac 8500/120. It's also possible to run Linux
on the first generation of PowerMacs, but their motherboard are expandable only with NuBus interface cards, so you're
not going to find a radio for these models.

How much memory you need depends on what distribution you decide to run. If you choose to boot your system in

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

How much memory you need depends on what distribution you decide to run. If you choose to boot your system in
read-only mode from a CD or Compact Flash (CF) RAM, and use one of the custom distributions designed specifically to
be small, 16-32 MB of RAM will suffice. More RAM is always better, of course, and if you plan on doing anything
memory-intensive, such as web caching or intrusion detection, you'll want at least 128 MB.

The beauty of using your own or buying used hardware is that you need very few components to build a working
system:

Motherboard

Memory

Processor

Power supply

Bootable media drive: hard disk, CD, CF

Ethernet card

Radio card

All the other components you'd usually find on a regular PC are optional. A case is nice to keep dust off, but a box or a
large Rubbermaid container works just as well. You need a video card, keyboard, monitor, and (optionally) a mouse for
installation, but once the access point is operational, you can boot without them. If your hardware is really old, it may
not support booting without a keyboard. Check the options in your BIOS to see if it will ignore a missing keyboard on
boot.

All of the extraneous items that are in any old PCs can probably be removed: floppy drives, sound cards, modems, and
anything else not on the list above should all be taken out. You don't need them.

Another option that you should consider is an old laptop PC. The key concern here is PCMCIA slots. You want at least
two of them, unless the laptop has a built-in Ethernet port, which you probably won't find in older laptops. The beauty
of a used laptop is that they are inexpensive, especially if the LCD screen is dead (which you don't need!). As long as it
has an external video adapter or even a serial port that can be used as a console, you should be set.

Fujitsu Stylistic
These units definitely fall under the category of recycled hardware, because they have been out of
production for years. They are not laptops, but rather the predecessor of the Tablet PC. The Stylistic 1000
models are regularly available on Ebay for under $100. Fujitsu still manufactures PCs in the Stylistic
series, but all of its new models are Tablet PCs and cost as much as a new laptop.

The 1000 series have three PCMCIA slots, one of which is the boot device. The Stylistics shipped with
internal type III PCMCIA hard disks, but you can also boot the unit from a CF using a CF-PCMCIA adapter.

The 1000 models are powered by a 486 DX4/100 processor and expandable to 40 MB of RAM, and they
feature an integrated LCD display with cordless pen input and a 4-hour battery. The 1200 models are
identical except that they are powered by a 120 MHz Pentium processor.

We have successfully used Stylistic 1000 units for access points and wireless routers on the NoCat and
Seattle Wireless networks. A single Stylistic 1000 served as the primary Internet gateway for our Internet
coop (http://www.wscicc.org) for over a year.

6.1.2 Small Board and Embedded PCs

So you don't have any used hardware sitting around that is suitable for building an access point, or you want to build a
small unit that might be placed in a location where using a full-size PC is impractical, such as mounting it in a
waterproof enclosure or installing it on your roof with a directional antenna.

However, an outdoor enclosure is only one reason you might want to think small. Power consumption, noise levels, and
available space are all good reasons to consider a small board or embedded computer system for building your access
point. Be warned, however: building one of these systems from the ground up may cost you at least $400.

Your options in this arena range from custom-designed embedded PCs specifically built for communications and
networking to tiny PC motherboards that use the Mini-ITX form factor and measure only 17 x 17 centimeters. Some of
the more popular options include:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Soekris (http://www.soekris.com)

Packaged in a green metal case that is improbably the color of a refrigerator from the early 1970s, the Soekris
motherboards are a popular choice with do-it-yourself networkers. Soren Kristensen has designed and built
several custom motherboards based on the x86 architecture, and as of this writing, he has four different models
available for single purchase or bulk quantities. All of the Soekris units are DC-powered and wired to support
Power Over Ethernet. In addition, all units have a serial console port.

The net4801 is the newest addition to the Soekris line. It is powered by a 266 MHz GEODE Pentium-class
processor. It sports three 10/100 Ethernet ports, a CF slot, both MiniPCI and PCI slots, and up to 256 MB of
RAM soldered on board. See Figure 6-1 for a detailed picture. As of this writing, in single quantities a board and
case will cost you $265.

If you need PCMCIA support, you'll want to look at the net4521. It's a different form factor, because the
PCMCIA slots are positioned side-by-side rather than over-under as in most laptops. The net4521 has a 133
MHz AMD ELAN processor, which is equivalent inside to a 486. It has two 10/100 Ethernet ports, a CF slot, a
MiniPCI slot, and up to 64 MB of RAM soldered on board. See Figure 6-2. A board and case will cost you $235.

Figure 6-1. The Soekris net4801 embedded PC

Figure 6-2. The Soekris net4521 embedded PC

BARWN outdoor routers

BARWN is the Bay Area Research Wireless Network. Tim Pozar and Matt Peterson have created BARWN, which
has some interesting research projects, including an easy-to-build outdoor wireless router.

At the time this idea was conceived, few commercial products were available that fit the needs of an outdoor
weatherproof design. To this date, not many products are available that also allow you to run a Linux or BSD
operating system on the wireless router, and have it mounted outside.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

operating system on the wireless router, and have it mounted outside.

The BARWN guys put together a white paper based on Matt Peterson's initial prototype of an outdoor router,
and that white paper is available at http://www.barwn.org.

One fine, sunny day in May 2003, several interested groups of people converged at Tim Pozar's house in San
Francisco to assemble 30 or so of these outdoor routers. It was a messy job, because three holes had to be
drilled in each box, and those holes then had to be filed and sanded so that barrel connectors and RJ-45 twist-
lock connectors could be inserted.

Figure 6-3 shows a completed installation with the Soekris net4521 mounted inside a weatherproof box.

Figure 6-4 shows one of these boxes in action on San Bruno Mountain south of San Francisco, as part of the
BARWN network.

Figure 6-3. Completed BARWN Outdoor Router

Figure 6-4. A BARWN Outdoor Router in action

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

OpenBrick (http://www.openbrick.org)

The OpenBrick is a hybrid, a cross between a custom-designed embedded PC and one of the Mini-ITX
motherboards. It's designed to be a very small server or act as a workstation, so it has onboard video,
keyboard and mouse connectors, serial ports, USB ports, onboard sound, and a Small Form Factor (SFF) IDE
connector for a 2.5-inch laptop hard drive.

However, it does run on DC power, and it features a single PCMCIA slot, onboard 10/100 Ethernet and a CF
slot. It comes standard with 128 MB of RAM and is powered by a 300 MHz fanless Geode processor. Figure 6-5
shows the back of an OpenBrick. As of this writing, an OpenBrick will set you back a cool $360.

A newer model, the OpenBrick/E, is powered by a Via C3 533 MHz processor and features three Ethernet ports,
but has no PCMCIA or PCI bus slots, which makes it less useful for building an access point.

Figure 6-5. The OpenBrick

Via Mini-ITX PCs (http://www.viavpsd.com)

Via developed the Mini-ITX format, which defines a motherboard of 17 x 17 centimeters. It offers a range of
motherboards in the EPIA line, with processor speeds from 500 MHz to 1 GHz. They are intended to be general-
purpose PC workstations, so they come with a wide array of features: onboard Ethernet, video, sound, USB,
FireWire, IDE interface, and a single PCI slot.

The Via motherboards can all be powered by an external DC adapter if you wish, but their power requirements
are such that adapting them for use with Power Over Ethernet is not advised. You can simply boot from a
standard IDE hard disk, or if you are using a CF-to-IDE adapter, boot a Via (or any PC) from a CF card. (See
Section 6.1.3 later in this chapter.)

If you want a silent unit, make sure that the EPIA motherboard you buy is powered by the Eden ESP processor.
This is a low-power processor that requires cooling only from a heatsink instead of a processor fan. The Via C3
processors are available at higher clock speeds, but they require a fan.

Older models of the EPIA M motherboards are widely available, and you can find them with 500 MHz Eden
processors. If you buy them on eBay, these motherboards can be purchased for as little as $50. If you buy
them new, they are pretty easy to find for $100.

Via's newest EPIA motherboard is the EPIA MII, which seems to be designed specifically for our purposes. Not
only does it have a fanless Eden processor, it features a PCI slot, a CardBus slot, and a CF slot. All you need to
build an access point with this motherboard is a power supply, memory, radio card, and CF card. As of this
writing, the MII can be purchased at http://www.mini-itx.com for $218. Figure 6-6 shows the MII motherboard
in detail.

Figure 6-6. The Via EPIA MII motherboard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There are many other embedded PC designs on the market. One example is the PC-104 motherboard standard, which is
commonly used for industrial applications. However, obtaining PC-104 boards in small quantities is very expensive. The
motherboards offer low performance compared to the other options we've already discussed, and the cost alone is
prohibitive.

6.1.3 Bootable Media

Your new custom access point will run a general-purpose operating system rather than a custom operating system
designed for embedded processors, so you will need a bootable media device.

There's nothing wrong with using a hard disk. After all, they are inexpensive and reliable, and if you're using recycled
hardware, you probably already have one. Hard disks have their own set of problems, however. They are mechanical
devices, with limits to the temperature and humidity that they can withstand. They generate noise, draw a fair amount
of power, and are fragile. Mechanical devices, no matter how well-designed, are going to fail eventually. If your access
point needs to be small and quiet, or needs to run on Power Over Ethernet or be installed outside, you should consider
other bootable media options.

A CD drive shares some of the same caveats as a hard disk. It's a mechanical device, it isn't suited to run at high
temperatures, and it is fragile. The cost for generic CD drives is very low; they can be purchased new for less than $30.
Again, if you have recycled hardware, you may already have a spare unit.

Using a CD as bootable media is advantageous because the device is read-only. This makes it rather resistant to
malicious hackers, because system files cannot be changed without physical access to the machine. This is also a
disadvantage, because making configuration changes is rather difficult, and any configuration you do change won't be
saved if you need to reboot. There are several Linux distributions specifically built to boot from a CD, and we discuss
them in Section 6.2.

A third option is to skip using bootable media altogether and boot your device from the network. Several of the small
board PCs support Preboot eXecution Environment (PXE), which is a technology developed by Intel. You can find out
more on PXE at the following link: http://www.intel.com/labs/manage/wfm/wfmspecs.htm. Most PCs sold since 1999
support PXE booting in their BIOS.

PXE allows you to tell a device that it will obtain booting information from another device attached to a network. In
practice, this works only on a wired network, because PXE is designed for Ethernet cards. A PXE boot over a wireless
network would require wireless drivers to be built into a device BIOS. You would then have to set up a PXE boot server,
which answers requests from PXE boot clients and feeds them the code necessary to start up. This is a pretty advanced
setup. You can get tutorials on how to set up PXE here: http://www.kegel.com/linux/pxe.html.

Your last option, and one that we recommend, is to use flash RAM as the boot device. While PCMCIA flash cards are
available, they tend to be expensive and are not as widely available as the CF cards. CF cards are now available in sizes
up to 1 GB of storage. Several of the motherboards that we discussed earlier have CF slots included. 128 MB cards can
be found for less than $40, and 256 MB cards can be found for under $50.

Compact Flash cards have many advantages. While they aren't nearly as cost-effective as a hard disk, they are tiny,
lightweight, consume almost no power, can operate in high-temperature conditions, and can be dropped with no
consequence. They can be rewritten many thousands of times. However, CF cards can eventually be written too many
times, but you can avoid this by using a Linux distribution that mounts the CF as read-only. We cover how to do this
later in the chapter.

It's even possible to use CF cards on any system that has IDE connectors on the motherboard by utilizing a CF-IDE
adapter card. These devices have a slot for the CF card, an IDE connector, and a power connector. You attach the
adapter to the IDE bus on your PC with a standard IDE cable. The CF card should appear to your PCs BIOS as a
standard IDE device.

A great source for CF-IDE adapters is Mesa Electronics. You can find a whole range of adapters on its web page,
including adapters for Smart Media cards and Memory Sticks, and other small flash cards that are widely available.
Check out http://www.mesanet.com/diskcardinfo.html for more details on the cards it offers. Figure 6-7 shows the
model CFADPT1, which has both IDE and SFF-IDE connectors.

Figure 6-7. CF-IDE adapter

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6-7. CF-IDE adapter

The CF-IDE adapters from Mesa are something to consider if you want to build an access point from an old laptop.
Suppose you have a Pentium-based laptop with two PCMCIA slots. You will need one slot for a radio card and the other
for an Ethernet card. Mesa's adapters have an SFF-IDE connector for the small-form IDE cable that laptops use, so you
can boot your laptop from CF. Mesa also sells the SFF IDE cables, which can be hard to find in retail outlets.

6.1.4 Radio Cards

In Chapter 2, we covered all the steps you would need to get a number of different wireless cards working with various
Linux distributions. We showed you how to use the Wireless Tools to change operating modes of your radio card.

Most 802.11 Linux card drivers support at least two modes: client (Infrastructure) Mode, also called managed mode by
the Wireless Tools, and ad-hoc mode. Some cards and their drivers support a third monitor mode, which we discussed
in Chapter 3. There is a fourth mode, master mode, that is of prime importance when building your own access point.

6.1.4.1 Master mode

A commercial access point has multiple functions. Not only does it have an 802.11 radio of some kind, but it also
functions as the Master of any client radio that connects to it in Infrastructure mode. The access point broadcasts
beacon frames, which advertise the SSID of the access point to clients. Once a client associates with an access point,
the access point manages all radio communication. When multiple clients associate with an access point, the access
point follows a set of algorithms to control radio traffic.

These access points usually have a separate onboard chipset that provides the additional functionality besides the
802.11 radio, or the radio card inside the access point is loaded with tertiary firmware, which gives the card access
point capability.

In our case, we can't rely on custom chipsets to provide access point functionality to our radio cards. Depending on
your particular radio card, the tertiary firmware may be an option. We discuss the ins and outs of flashing tertiary
firmware to your radio card in Section 6.2.

So where does that leave us? There are at least two types of chipsets and associated drivers that allow the use of
master mode in the driver:

Prism 2/2.5/3-based radio cards with the HostAP driver

Atheros-based radio cards with the Madwifi driver

When set to master mode, these cards do not actually provide a full 802.11 access point. They only broadcast the
beacon frames that advertise an access point to clients. The HostAP and Madwifi drivers actually take care of the
802.11 management functionality that would otherwise require a separate chipset or tertiary firmware.

In addition, if you have a Lucent WaveLAN IEEE/Orinoco/Agere 802.11b radio card, there are a couple of options you
can use to have your card act as an access point. The HermesAP project is a modified version of the orinoco_cs driver
that allows use of the tertiary firmware for Orinoco cards. While the driver does not include the tertiary firmware, it
does provide instructions on where to obtain the firmware.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

does provide instructions on where to obtain the firmware.

The second option is an updated driver from Agere. This driver is not available from any of the other Orinoco
manufacturers, including Proxim. This driver is an updated version of the wavelan2_cs driver and has been renamed
wlags49_cs. The driver includes support for master mode. We set up these drivers in Section 6.2 of the chapter.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.2 Software
There are a number of ways you can set up Linux on any of the hardware we discussed in the previous section, ranging
from custom-built distributions specifically designed for a particular motherboard to simply installing a full Linux
distribution on the hard disk of your recycled PC. We discuss several of the most common distributions that you may
want to consider.

What all of these distributions share in common is, at least, the wireless drivers you need. As mentioned in Section
6.1.4.1, there are currently two drivers that support the use of master mode: the HostAP and Madwifi drivers. In
addition, there are two driver options you can use with a Hermes I (Lucent WaveLAN IEEE/Orinoco/Agere 802.11b) or
Hermes II (Agere/Proxim 802.11g) radio card to run in master mode. We cover all four of these driver options in detail.

6.2.1 Linux Distributions

There are several available versions of Linux that are specifically geared toward building your own Linux-powered
access point. Most of them have been under development for quite some time and are very stable. Wireless ISPs and
community network organizations use these distributions to power their access points.

6.2.1.1 Running Linux off a CF card

One thing you will need for many of these installations is a Linux system that can read a CF card. Don't panic! You don't
need a custom-built motherboard such as the Soekris or the Via MII. You need a CF adapter, and you can find it in
three flavors:

1. CF-to-PC Card adapter sleeves

2. USB CF reader

3. CF-to-IDE adapter

Any of these types of units will work fine for our purposes. The USB reader will obviously require that your Linux system
be configured properly for USB, and we don't have the space to go into those details here. However, most USB card
readers, once recognized, will use a device name of /dev/sd<x> where x=a-z. If you have other SCSI devices in your
system, the CF may not be recognized as /dev/sda.

The CF-to-PC Card adapter sleeve is your best option if you are working with a laptop system. You simply fit the CF
card into the end of the adapter, then insert the adapter like a regular PC Card. In order for this to work in Linux, you
must have pcmcia-cs installed or kernel tree PCMCIA configured in your kernel. We covered both of these in detail in
Chapter 2.

If you have a desktop system, the CF-to-IDE adapter is your other option if you don't have a USB reader. (We
discussed these adapters in Section 6.1.3.) We suggest using this type of adapter only if you don't need any special
drivers loaded. As long as your system recognizes an IDE device, you're set. Insert the CF into the adapter when your
system is powered off, and on boot, your Linux distribution should recognize the CF as an IDE device.

Almost all CF cards sold on the market come preformatted with the Microsoft FAT16
filesystem. Why? Because this has become the de facto filesystem that most digital
cameras read. Digital cameras are the primary users of CF cards, so it makes sense for the
CF manufacturers to have their media ready to play.

We have encountered problems off and on with getting some makes of CF cards to
reformat properly in Linux. After you fdisk the CF card and run mkfs to make a new
filesystem, everything appears to run smoothly. However, when you attempt to mount the
new filesystem, you receive an error similar to "FAT filesystem not supported."

On some Red Hat 8 and 9 systems, we were not able to resolve this problem. On other
distributions, we were able to use the cfdisk graphical partitioning utility instead of fdisk,
and that resolved the issue. One other workaround was to fdisk the CF card in a Sharp
Zaurus PDA.

6.2.1.2 Pebble

This distribution was developed by Terry Schmidt of NYCWireless. Terry has worked very hard on this distribution, and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This distribution was developed by Terry Schmidt of NYCWireless. Terry has worked very hard on this distribution, and
it shows. Pebble is designed specifically with the Soekris hardware in mind, but it also runs quite nicely on the Stylistic
and Via hardware.

The NoCat lab runs Pebble on various Pentium-era systems down to a Pentium 75 with an ISA 3Com Ethernet card and
an ISA PCMCIA adapter for an Orinoco wireless card. According to the README, Pebble has also been known to run on
1U servers, IBM ThinkPads, and a robot at the Defcon hacking conference.

Terry developed this distribution specifically for the Soekris, so it was built from the ground up to be run from a 128 MB
CF memory card. While you could strip out some functionality by removing Perl, NoCatAuth, djbdns, and a few other
utilities, and get the distro to fit on a 32 MB CF card, it's barely worth the effort because you can find 128 MB CF cards
for $30.

To prevent excessive writes to the CF card, Pebble is designed to boot read-only, and it creates a RAM disk for any
temporary files that need to be written in the course of regular system operation. This means that once the system is
configured, the flash is never written to, which will extend the life of your CF card. The other great advantage of a read-
only mounted operating system is that you can lose power at any time, and you won't corrupt any data.

Pebble is based on the Debian GNU/Linux 3.0r1 release, so customizing the installed software is easily done with the
included apt utilities. For example, the Pebble boxes on the NoCat network are customized from the standard pebble
release, so run apt-get install sudo ntp-simple bind9 bind9-host and apt-get remove djbdns ppp pppoe nano before you deploy a
new Pebble machine. This approach is much more flexible than some of the other small distributions we discuss later in
the chapter. While the apt databases do take up some space, the flexibility they offer is worth it.

Pebble is freely available at http://www.nycwireless.net/pebble. As of this writing, the latest version is
pebble.v39.tar.bz2. This release includes:

Linux Kernel 2.4.22 with Crypto modules

HostAP 0.1.2 and utils and hostapd

MadWiFi CVS version from 11/17/03

bridge-tools

djbdns caching dns server

elvis (tiny vi)

gnupg

iptables 1.2.6a

lilo

NoCatAuth, running as non-root user, post 0.81 nightly

ntpdate

openSSH server 3.4p1-1.woody.2 patched

openSSL 0.9.6c patched with security fixes backported by Debian

pcmcia-cs (kernel module pcmcia)

Perl 5.6.1

ISC dhcpd and dhclient

zebra 0.92a-5 (BGP, OSPF, RIP Routing Daemon)

Pebble has wireless card driver support for many but not all wireless cards. There are drivers for Orinoco, Cisco,
Atheros (madwifi), and Prism (HostAP). It supports a fairly wide variety of Ethernet drivers, including 3Com, Intel,
National Semiconductor (Soekris), and Via-Rhine (Via motherboards), as well as the Tulip driver, which supports a wide
range of Ethernet cards.

We assume for the purposes of this section that you will install Pebble on a CF card for use in a Soekris or other
machine that can boot from a CF. This shouldn't keep you from loading it on other media. It works well from a hard
disk, and you can simply substitute a mounted IDE hard disk for the CF card in the following instructions.

As Terry mentions in the README, there are many types of CF cards. He has had problems with Kingston flash cards
and recommends SanDisk CF cards. We concur, having had a few flash cards ourselves that simply would not boot

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and recommends SanDisk CF cards. We concur, having had a few flash cards ourselves that simply would not boot
properly. Pebble fits nicely on a 128 MB flash. We don't recommend anything smaller unless you plan to trim packages,
and we don't cover that here. See Section 6.2.1.1.

Once the CF card is in your system and is successfully recognized, there are several steps to obtaining a working Pebble
distribution on the CF. Terry has greatly improved this process over time, and the latest versions of Pebble have an
installation script that takes care of most of the heavy lifting for you.

Here's what you must do as root. These examples assume that your CF card is recognized as /dev/hde. This is the case
on a typical system with a single IDE hard disk and an IDE CD-ROM. Consult dmesg to make sure you know which
device your CF card is using.

1. Use fdisk to create one large partition. You don't need swap, because Pebble mounts read-only and writes
everything entirely to RAM.

fdisk /dev/hde

2. Next, use mkfs.ext2 to create an ext2 filesystem. You don't need or want a journaling filesystem such as ext3
or jfs. Again, Pebble mounts read-only, so the journal uses up space that you could use:

mkfs.ext2 /dev/hde1

3. Create a mount point for the CF card (you don't need to mount it, because the pebble.update script, which
you'll run later, takes care of this for you):

mkdir /mnt/cf

4. Make a directory to untar the Pebble distro so the install script can work:

mkdir /mnt/pebble

cd /mnt/pebble

5. Uncompress and untar the Pebble distro to the directory that you have just created (the actual version number
may be different):

tar jxvf /path/to/pebble.

v39.tar.bz2

If you want to do manual configuration of your Pebble install before invoking the installation scrip, there is an
opportunity here for editing filest. For instance, if you want to configure dhcpd or any of the other daemons that run at
startup, this is a good time to do so. In particular, you should consider editing etc/network/interfaces to define TCP/IP
for eth0, and also editing etc/pcmcia/network.opts and etc/pcmcia/wireless.opts to configure your radio cards. This
way, you can bring up a working system from the get-go.

We also recommend editing etc/inittab. Terry runs the NoCatAuth captive portal from inittab to make sure that it always
respawns if it dies unexpectedly. This is fine, but until you have a completely configured Pebble system with all of its
network interfaces active, you will receive garbage on the console while NoCatAuth tries to start, fails, and respawns.
The last line of etc/inittab reads:

NC:23:respawn:start-stop-daemon -S -c nocat -exec /usr/local/nocat/bin/

gateway -- -F

Comment this line out by placing a # at the beginning of the line. Then you can run:

./pebble.update

This is the installation script. It's interactive, so you must answer a few questions before it can start.

 Where is the pebble installer (this) directory? default=/mnt/pebble:

 Which device accesses the compact flash? default=/dev/hde:

 Which directory should I mount the FlashCard to? devfault=/mnt/cf:

 Which module? Enter 1 for pcmcia, 2 for net4501, or 3 for net4521/net4511 \

 default=net4501

You should know the answers to the first three questions, because we've discussed them in the previous steps. The last
question is critical, because the answer affects which modules load in the Pebble installation you create, as well as other
startup operations.

If you're setting up a Soekris system, the answers are obvious for any other system that uses a PC Card radio, you
must choose option #1. If you have a PCI or a MiniPCI radio card, none of these options will completely suit you.
Choose #1 and make some configuration changes later.

Once you have the questions answered, the installer script goes to work, making changes to the configuration files
depending on how you answered the last question. Once done, it copies the modified distribution from /mnt/pebble to
the mounted CF card at /mnt/cf.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the mounted CF card at /mnt/cf.

After copying, it performs ssh key generation for the sshd keys, so that there are no duplicate Pebble ssh keys running
in the world, and finally, it makes you change the root password. Once done, it unmounts the CF card, and you are
ready to insert the CF card into your chosen access point hardware.

If you have a Soekris system, this is the point where you'll want to hook up a serial cable to a PC and run some
terminal software at 9600 8-N-1, so you can see the console as Pebble boots. If you made configuration changes prior
to running the installation script, this is doubly important so you can make sure things start like you expect. If you're on
a PC system with video output, hook up a monitor.

At this point, you should have a working Pebble access point. If you happen to have a Prism-based card in your system,
it should come up in master mode and appear as an access point with an SSID of "Freenetworks." Later in this section,
we cover some specifics on configuration of the HostAP driver that makes this setup possible.

There are two places to get help with Pebble. First, read completely through the README, available at
http://www.nycwireless.net/pebble/pebble.README. If you can't resolve your issue with the help of the README,
subscribe to the Pebble mailing list at http://freenetworks.org/mailman/listinfo/pebble-linux. The list is active and full of
knowledgeable readers who should be able to provide you assistance.

6.2.1.3 LEAF/WISP-Dist

LEAF stands for the Linux Embedded Appliance Firewall. Rather than being a single distribution, LEAF has actually
become a clearinghouse of sorts for a number of related distributions, all of which are available from the LEAF pages:
http://leaf.sourceforge.net.

Most of the LEAF distributions are children of the Linux Router Project (LRP), which was designed as a single-floppy
bootable Linux-based router. As the project matured, spin-offs developed that included newer kernel support, among
other things. LEAF is now the parent organization for six active distributions and some inactive ones.

At one time, Wireless ISP Distribution (WISP-Dist) was an independent distribution, but recently it has moved under the
support of LEAF. For the purposes of building a custom access point, WISP-Dist is the only LEAF distribution we cover.

WISP-Dist is a modular embedded Linux distribution for wireless routers but can be used for other purposes as well.
The entire system fits in 8 MB flash/16 MB RAM, making it much smaller than Pebble. The stated goal of the project is
"to create an open, customizable, and easy to use embedded router for ISP needs."

As of this writing, the current version of WISP-Dist is 2624, but it is referred to in the documentation as WISP-2003,
because it was the only release in that year. Current features include:

Linux kernel 2.4

Simple to use menu-based configuration system for basic functionality

Command-line access for advanced configuration

The ability upgrade remotely via automatic script

Modularity: you can add/remove packages

Local access via console or serial port

Remote access via sshd

Statistics available via SNMP, including wireless statistics

Layer 3 bridging support based on proxy ARP

OSPF, RIPv2 dynamic routing support integrated with Zebra routing engine

NAT (with H.323, PPTP pass-through support)

Bandwidth shaping

PPP

PPPoE client

VTUN for encrypted PtP

VLAN trunking

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VLAN trunking

Access point support for Prism2/2.5/3/Atheros

MAC filter support for access point

Advanced network diagnostics: NTOP, tcpdump, bmon, etc.

The ability to log all system events to remote system with syslog

checkping: system reboots if some of the specified hosts are unreachable (useful when radios get stuck)

The ability to store all files, which makes it easy to service on standard FAT partition.

While WISP-Dist is very small, it runs on pretty much any x86-compatible CPU. The developers recommend at least a
100 MHz processor in addition to the minimum of 8 MB of disk space and 16 MB of RAM. WISP-Dist has been tested on
the Soekris hardware as well as several single-board computers designed for the ISP market. It includes drivers for
Cisco, Orinoco, Atheros, and Prism-based cards. There are two types of wireless cards that it does not support: cards
based on the Texas Instruments chipset (such as the D-Link DWL-520/650+) and USB wireless adapters.

As with Pebble, WISP-Dist is designed to be installed on a CF card. The size requirements are much smaller, however—
you can run WISP-Dist on as little as 8 MB of flash. You do need a system that can read CF cards. See Section 6.2.1.1,
earlier in this section.

The WISP-Dist installation is nowhere near the simplicity of the Pebble installation script. The distribution is provided in
two different types:

Partitionless installation from a .bin or .img file

Once you have downloaded the wisp-dist_2624_img_wdist.bin file (or a newer version) and have a CF card
inserted in your reader, you must use the dd command to copy the image to the CF card. dd makes a block-by-
block copy of the image, so you don't need to partition the CF. This invocation assumes your CF card is on
/dev/hde:

$ dd if=wisp-dist_ 2624

_img_wdist.bin of=/dev/ hde

Partition-based installation from package distribution .zip file

You must manually partition the CF card using the fdisk command. The first partition that you create should be
at least 6800 Kb in size, and you should set this partition to Active. You should also specify the partition type as
FAT. The second partition should be at least 1,300 Kb in size. If you have more than 16 MB RAM in your system,
you can skip the creation of the second partition, as WISP-Dist will create a RAMdisk on boot to use instead of a
second partition, similar to Pebble's operation.

Next, create the filesystem on the first partition:

mkfs.msdos /dev/ hde1

Now obtain the SYSLINUX bootloader from http://syslinux.zytor.com, and install it on the first partition.
SYSLINUX can also be installed in Debian using apt-get. Mandrake and Red Hat/Fedora users can install an
RPM. SYSLINUX is designed to boot Linux from a FAT filesystem. Once you have the SYSLINUX binary on your
system, execute this command:

syslinux /dev/ hde1

This creates a boot sector on the disk and copies a file named LDLINUX.SYS into the root directory.

Next, you should mount the CF card, unzip the wisp-dist_2624_pkg_wdist.zip file (or a newer version that
matches the version of the .bin file) into a temporary directory, and copy files from the temporary directory to
the root of the CF card:

mount -t vfat /dev/ hde1 /mnt/cf

cd wisp-dist

cp -a * /mnt/cf

Lastly, edit the syslinux.cfg file. If you did create the second partition in the first step, you must add the
statement rwfs=/dev/hda2. This assumes that on your target system, the CF card is the IDE primary master
/dev/hda. If your system is booting from a different device, you must also change any occurrence of
boot=/dev/hdaX in the syslinux.cfg file to the appropriate device.

At this point, you should be able to unmount /dev/<hde> (or whatever device your CF is on) from your system, eject

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

At this point, you should be able to unmount /dev/<hde> (or whatever device your CF is on) from your system, eject
the CF card, and place it in the system that will be running WISP-Dist. As with Pebble, it's a good idea to connect a
serial console or monitor to the system to watch the initial boot.

WISP-Dist should appear with a default configuration that has no root password, the eth0 Ethernet interface at
192.168.1.1 with a 255.255.255.0 netmask, and a serial console on ttyS0 at 9600 8N1. When you log in as root, you
are immediately presented with a menu, as shown in Figure 6-8.

Figure 6-8. WISP-Dist Configuration menu

The WISP-Dist configuration system is straightforward and easy to set up. If you want a command line for advanced
configuration, you can choose Quit from the menu and you will be presented with the root command line.

If you need help with WISP-Dist, you should first read through the User Guide, which is located at
http://leaf.sourceforge.net/devel/hzdrus/doc/html. For some reason, there is no WISP-Dist topic in the LEAF FAQs at
SourceForge, so the next place you should check is the leaf-user mailing list. You can search the archives at
http://www.mail-archive.com/leaf-user%40lists.sourceforge.net or subscribe to the list at
http://lists.sourceforge.net/lists/listinfo/leaf-user.

6.2.1.4 LinuxAP

The LinuxAP distribution began life as an upgrade to the OpenAP code, which was developed to run on certain access
point hardware. See Section 6.3.4 later in this chapter for details.

As of this writing, the current version of LinuxAP is based on the 2.4.20 kernel, and it supports both the Eumitcom
WL11000 motherboards that power some access points, as well as the Soekris hardware platform. The LinuxAP web
pages are at http://linuxap.ksmith.com, and as of this writing, the most current version of the LinuxAP source is
linuxAP-2003-09-13.tar.bz2.

Installation and compilation of LinuxAP is somewhat modular in that you can choose up front which daemons and
utilities you want to include with your compiled kernel. In addition to the LinuxAP source, you can download additional
compressed files from the LinuxAP web site, including:

Kernel 2.4.20

Bridge utilities

BusyBox shell/network utilities

C-Kermit

CRAMFS filesystem utilities

CIPE tunnel driver and utilities

HostAP driver

IP tables firewall

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IP tables firewall

pcmcia-cs

Tiny login

Uclibc compact C library

uDHCP client/server

UMSDOS enhanced FAT filesystem

Wireless tools

As with the previous two distributions, in order to get LinuxAP loaded on a CF card for use in a Soekris unit, you need a
CF card reader. See Section 6.2.1.1 earlier in this section.

1. First, uncompress the LinuxAP distribution. The developer recommends that you place the compressed file in
/usr/src so that your code tree resides in /usr/src/linuxAP. You must replace 2004-09-13 with whatever version
of LinuxAP you downloaded:

cd /usr/src

tar xjvf linuxAP- 2004-09-13 -tar.bz2

cd linuxAP

2. Next, make a directory for the utilities that you selected and downloaded:

mkdir tarfiles

3. Uncompress each source file for the utilities, but leave the .tar file intact, and copy the .tar files into the newly
created directory:

cd /usr/src

bunzip2 linux- 2.4.20 .tar.bz2

cp linux- 2.4.20 .tar linuxAP/tarfiles

4. Now, run make, which allows you to select the type of hardware, Eumitcom or Soekris, and also the utilities you
want to include:

cd linuxAP

make

5. Once the compile is completed, in the linuxAP directory you will have two created files: kernel and ramdisk. At
this point, prepare your target disk and install SYSLINUX. (See the Section 6.2.1.3 earlier in the chapter for
details on where to obtain SYSLINUX.) Set up the first partition as 8 MB, set it as Active, and make it a FAT16
partition. Make a new MSDOS partition, and then install SYSLINUX. If your CF card is on a different device,
replace /dev/hde with the appropriate device.

fdisk /dev/ hde

mkfs.msdos /dev/ hde1

syslinux /dev/ hde1

6. The last step is to mount your newly formatted CF card and copy the compiled kernel, ramdisk, and the
syslinux.cfg files over:

mount -t vfat /dev/ hde1 /mnt/cf

cd /usr/src/linuxAP

cp syslinux.cfg ramdisk /mnt/cf

cp kernel /mnt/cf/linux

umount /mnt/cf

7. Once again, you can now remove the CF card, insert it in your Soekris hardware, and boot it up with a serial
cable attached to observe the initial boot.

For help with LinuxAP, refer to the LinuxAP-dev mailing list, hosted at
http://linuxap.ksmith.com/mailman/listinfo/linuxap-dev. There is an active development and user community
who should be able to provide you with advanced assistance.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.2.1.5 Other distributions

As of this writing, Pebble and WISP-Dist are the two most full-featured distributions specifically aimed to make a small-
board computer into an access point. There are some other distributions you may want to investigate:

Sydney Wireless HostAP CD

The wireless folks down under have produced this ISO CDROM image of a Linux bootable CDROM installer. This
is not just a bootable CDROM; it will fdisk and format a hard disk or device that you choose and install a custom
version of Debian Linux. The distribution features support for PCI and PCMCIA Prism cards using the HostAP
driver, has support for a wide variety of Ethernet cards, does advanced routing with the Zebra routing engine,
and has IPv6 capabilities.

The installed distribution takes up approximately 43 MB, so you can consider this as another alternative
operating system to try on your CF card. The CD can be downloaded from http://www.sydneywireless.org/?
Projects.

LocustWorld MeshAP

MeshAP is a unique distribution in many respects. Jon Anderson, in the UK, created MeshAP and has added
some interesting features. First, MeshAP is designed from the ground up to actually build mesh networks using
the Ad-hoc On-demand Distance Vector (AODV) routing protocol. AODV builds routes between nodes on
demand, as desired by those nodes. You can get detailed information on AODV at
http://moment.cs.ucsb.edu/AODV/aodv.html.

Second, as part of the MeshAP project, Jon created the Wireless Internet Assigned Numbers Authority (WIANA),
found at http://www.wiana.org. This is slightly controversial, as WIANA will assign you a 1.x.x.x IPv4 address
for the wireless mesh portion of your MeshAP. WIANA certainly is not the first organization to assign unused
IPv4 address space to wireless networks; the folks at http://freenetworks.org have done the same with the
10.x.x.x address space. Both of these assignments are really hacks on the existing infrastructure, until IPv6 is
actually implemented on a larger basis.

MeshAP is provided in a similar format to the Sydney Wireless CD, in that you download an ISO CDROM image,
burn that image to CD, and boot from the CD. The installation process lets you select a device for installation,
and it then partitions and formats the destination device and installs a MeshAP distribution. Once you have
MeshAP installed, you must register at http://www.wiana.org to receive a 1.x.x.x address for your Mesh.

You can get documentation for MeshAP from the LocustWorld Wiki at http://www.locustworld.com/tracker/wiki?
p=WikiIndex. There is also a MeshAP User mailing list. To subscribe, send an empty email message to
meshapuser-subscribe@lists.locust.net.

6.2.2 HostAP

In Chapter 2, we covered in detail the compilation and installation of the HostAP driver, so all the examples from this
point on assume that you have compiled and installed HostAP (if necessary—some distributions include it), and then
configured the HostAP driver for your Prism-based radio card. Also, we assume that the driver works with your card in
managed mode.

As we've explained previously, the HostAP driver performs the 802.11 management functions that would normally be
performed in an access point by either tertiary firmware in a radio card or dedicated additional hardware.

Setting up HostAP to function this way is a simple matter of changing the card to master mode. You can do this through
the iwconfig tool (replace MyAP with the name you want to use for your access point):

iwconfig wlan0 essid myAP mode master

To bring up the HostAP driver in master mode during startup, modify /etc/pcmcia/wireless.opts. Here is an example
(you can change the ESSID and CHANNEL settings):

wireless.opts

case "$ADDRESS" in

,,*,*)

 INFO="Prism card in Master mode"

 ESSID="myAP"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ESSID="myAP"

 MODE="Master"

 CHANNEL="11"

 RATE="Auto"

 ;;

esac

Chapter 2 also discussed the address-matching syntax used in the wireless.opts and network.opts files. This syntax is:

scheme, socket, instance, MAC address

You can use this syntax in many different ways. Schemes are mostly useful for client-based laptops, where you need to
switch between different wireless settings for home and work. instance is supposed to be used for network cards that
have multiple interfaces. We've never found a wireless card that uses this parameter.

However, for an access point, it can be extremely useful to specify which slot should only hold the access point radio
card:

,0,.*)

This syntax would ensure that only a card in PCMCIA socket 0 would be given the master mode configuration. It would
even be more useful to add a wildcard MAC address match:

,0,,00:02:6F:*)

Now, any card that is inserted in slot 0 and is a Senao/EnGenius Prism-based card is given the master mode
configuration, and allowed to act as the access point card. If you're spending a lot of time futzing around with your
radio card configuration, this is one way to make sure that you know what to expect when you plug in a certain card.

Some machines, including the Stylistic and Soekris, have problems loading the HostAP
driver with high-power 100 mW and 200 mW Prism-based radio cards. The card is
detected on insert but fails to initialize, and it reports an obscure error: "GetNextTuple: No
more items." If you have this problem, add this line to /etc/pcmcia/hostap_cs.conf:

module "hostap_cs" opts "ignore_cis_vcc=1"

The driver attempts to verify that one entry on the card's acceptable voltage table
matches the voltage reported by your PC Card slot. In some cases, this voltage can be
reported incorrectly, causing the driver to fail. This option causes the driver to ignore the
reported voltage and load anyway.

If you have a PCI or MiniPCI Prism card, configuration is not handled via the pcmcia-cs configuration scripts, but is
handled like any other Ethernet interface. On Debian systems, you can add an up iwconfig line to the TCP/IP definition
for the radio card in /etc/network/interfaces:

iface wlan0 inet static

 address 192.168.1.1

 netmask 255.255.255.0

 broadcast 192.168.1.255

 up iwconfig wlan0 essid myAP mode master channel 11 rate auto

On Mandrake, RedHat, and Fedora systems, you can add radio configuration for PC Card, PCI, and MiniPCI Wi-Fi
adapters in /etc/sysconfig/network-scripts. This is a sample ifcfg-wlan0 script:

DEVICE=wlan0

BOOTPROTO=static

ADDRESS=192.168.1.1

NETMASK=255.255.255.0

BROADCAST=192.168.1.255

ONBOOT=yes

MODE=Master

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MODE=Master

ESSID=myAP

CHANNEL=11

RATE=AUTO

Once you have your card configured for master mode, you can now treat wlan0 as any other Ethernet interface. Assign
IP addresses, set up routing, and bind processes to the interface as needed. HostAP takes care of all the details of
managing wireless clients attached to your access point.

6.2.2.1 Bridging

In the previous examples, your Prism card on wlan0 has its own IP address. This requires you to set up routing on your
Linux system. While this really isn't a problem, there may be situations where you don't want routing, but rather want
to bridge all wireless traffic across to your wired Ethernet port.

Later in this chapter, we discuss setting up Wireless Distribution System (WDS), which bridges HostAP and a Linksys
access point. In order to set up bridging or WDS, we needed to install the bridge-utils package. On our Mandrake 9.2
system, this was installed using the command urpmi bridge-utils; Red Hat and Fedora users should be able to similarly
use the rpm installation, and Debian users can do apt-get install bridge-utils. You can also obtain the source code from
http://bridge.sourceforge.net. You must also make sure that your kernel has support for 802.1d Ethernet bridging. On
the factory kernels from Mandrake and Fedora, this was enabled by default, but for RedHat and Debian systems, we
needed to compile this option into the kernel ourselves.

To bridge your Prism card running in master mode with your first Ethernet card, use the following, preferably from the
console of your access point (if you try to mess with networking while you are connected via ssh, things will probably
become weird):

ifconfig eth0 0.0.0.0

ifconfig wlan0 0.0.0.0

brctl addbr br0

brctl addif br0 eth0

brctl addif br0 wlan0

ifconfig br0 192.168.1.2

route add default gw 192.168.1.1

As we report in the WDS section later in this chapter, it can take up to 30 seconds for the bridge to come up and began
passing TCP/IP traffic. Don't be alarmed if you can't ping across the bridge from your client immediately after pressing
Enter on the last command.

If you have only one bridge on your network, you can safely turn off the Spanning Tree protocol with:

brctl stp br0 off

This prevents the bridging code from needlessly sending 802.1d traffic to other nonexistent bridges. You can see the
configuration of your bridge at any time by using brctl show:

brctl show

bridge name bridge id STP enabled interfaces

br0 8000.00026f15423F no eth0

 wlan0

Bridges tend to be "set and forget" devices (although you must run the commands shown in this section after each
reboot, so you may want to put them in a startup script). Once configured, your bridge maintains itself, barring a huge
amount of traffic. Be sure to read the documentation available at http://bridge.sourceforge.net as well as the
documents listed at the end of this section.

Keep in mind that although a bridge is simple to configure, it isn't very secure. You don't have any control over the
packets that flow across your bridge. To use a bit of cliché, you may want to consider enacting a toll on your bridge by
implementing some firewalling. Unfortunately, standard iptables firewall commands don't work with bridging in the 2.4
kernels. Rob Flickenger has detailed how to bridge with a firewall in his excellent book, Wireless Hacks (O'Reilly).

For more information, please consult the following sources:

The Linux Bridge STP HOWTO (http://www.linux.org/docs/ldp/howto/BRIDGE-STP-HOWTO)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Linux Bridge STP HOWTO (http://www.linux.org/docs/ldp/howto/BRIDGE-STP-HOWTO)

The Linux Bridge and Firewall mini HOWTO (http://www.tldp.org/HOWTO/mini/Bridge+Firewall.html)

Wireless Hacks, by Rob Flickenger (O'Reilly)

6.2.2.2 MAC address filtering

We touched briefly on this subject in Chapter 4. MAC filtering does not offer much security, because a person running
Kismet can easily sit in range of your access point, capture a number of frames, and quickly deduce at least one MAC
address that is allowed to associate with your access point. It is pretty trivial under Linux to spoof a MAC address,
allowing an attacker to join your wireless network. You should combine MAC filtering with WEP and implement a captive
portal with authentication to provide a reasonable measure of security.

While the filtering of MAC addresses is certainly not the best security measure for your wireless network, it does at least
provide the first layer of defense. Filtering MAC addresses not only blocks traffic that is not destined for your network,
but also attempts to prevent other users from associating with your access point.

When using MAC filtering, make a list of wireless devices that you wish to allow, and then deny all others. With the
HostAP driver, this is done using the iwpriv command:

iwpriv wlan0 addmac 00:01:02:03:04:05

iwpriv wlan0 addmac 05:06:07:08:AA:BB

This adds MAC addresses to an internal table maintained by HostAP. You can add as many addresses to the table as you
like, one on each line, and then tell HostAP what to do with the table you've built:

iwpriv wlan0 maccmd 1

iwpriv wlan0 maccmd 4

The maccmd 1 tells HostAP to use the table as an allowed list and deny all other MAC addresses from associating. The
maccmd 4 disconnects all associated clients, forcing them to reassociate. At this point, only clients in the table are
allowed to reassociate with your access point.

Sometimes, you may only need to ban a troublemaker or two, rather than set up a list of permitted devices. Again, you
would use the iwpriv command:

iwpriv wlan0 addmac 01:10:20:02:30:03

iwpriv wlan0 maccmd 2

iwpriv wlan0 kickmac 01:10:20:02:30:03

As before, you can use addmac to add as many addresses to the table as you need. The maccmd 2 sets the policy for the
new table to deny, and kickmac boots the specific MAC immediately from the access point. This is nicer than booting
everybody and making them reassociate.

To disable MAC filtering, enter this command:

iwpriv wlan0 maccmd 0

If you make a mistake typing in a MAC address, you can use the delmac command just as you would addmac. Should you
ever need to flush the current MAC table entirely but keep a defined policy in place, issue:

iwpriv wlan0 maccmd 3

Finally, you can view the current MAC table in /proc:

cat /proc/net/hostap/wlan0/ap_control

While iwpriv manipulates the running HostAP driver, it doesn't preserve settings across reboots. Once you're happy with
your MAC filtering tables and policies, make sure you put the necessary commands in an rc script to run at boot.

6.2.3 Madwifi

Unfortunately, the Madwifi driver does not have nearly all of the bells and whistles of HostAP. However, if you want a
Linux-based 802.11a or 802.11g access point, this driver is really your only working option as of this writing.

Again, we covered the installation and compilation of the Madwifi driver in Chapter 2. We assume that you are able to
use the driver in managed mode.

The Madwifi driver, like HostAP, performs the 802.11 management functions that normally are performed in an access
point by either tertiary firmware in a radio card or dedicated additional hardware.

Setting up Madwifi to function this way is a simple matter of changing the card to master mode. You can do this through

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Setting up Madwifi to function this way is a simple matter of changing the card to master mode. You can do this through
the iwconfig tool (you can change myAP to whatever you prefer for the SSID):

iwconfig ath0 essid myAP mode master

To bring up the Madwifi driver in master mode during startup, you can modify /etc/pcmcia/wireless.opts. Here is an
example (you can replace ESSID and CHANNEL with your own settings):

wireless.opts

case "$ADDRESS" in

,,*,*)

 INFO="Atheros card in Master mode"

 ESSID="myAP"

 MODE="Master"

 CHANNEL="11"

 RATE="Auto"

 ;;

esac

The Atheros cards are all CardBus adapters, so they are treated as hotplug devices, and configuration can also be
handled like any other Ethernet interface. On Debian systems, you can add an up iwconfig line to the TCP/IP definition
for the radio card in /etc/network/interfaces:

iface ath0 inet static

 address 192.168.1.1

 netmask 255.255.255.0

 broadcast 192.168.1.255

 up iwconfig wlan0 essid myAP mode master channel 11 rate auto

On Mandrake, RedHat, and Fedora systems, you can add radio configuration for PC Card, PCI, and MiniPCI Wi-Fi
adapters in /etc/sysconfig/network-scripts. This is a sample ifcfg-ath0 script:

DEVICE=ath0

BOOTPROTO=static

ADDRESS=192.168.1.1

NETMASK=255.255.255.0

BROADCAST=192.168.1.255

ONBOOT=yes

MODE=Master

ESSID=myAP

CHANNEL=11

RATE=AUTO

Once you have your card configured for master mode, you can treat ath0 as any other Ethernet interface. Assign IP
addresses, set up routing, and bind processes to the interface as needed. Madwifi takes care of all the details of
managing wireless clients attached to your access point.

The Madwifi driver at this time does not support MAC address filtering, but you can set up bridging using an Atheros
card. (See the Section 6.2.2.1 previously in this chapter where we discussed setting up a bridge with HostAP and a
Prism card.) To set up a bridge with your Atheros card, simply substitute ath0 for wlan0 in the bridge setup.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.2.4 Hermes AP

Hermes-based radio cards (the tremendously popular but confusingly named Lucent/Orinoco/Avaya/Proxim silver and
gold cards) are notoriously difficult to operate as an access point. By design, the cards themselves are actually not able
to provide 802.11 BSS master services on their own. You might find this surprising, because they are the radio cards
embedded in the original AirPort AP, as well as the RG1000, RG1100, AP1000, and many others.

Before these cards can operate as a BSS master, they need additional firmware uploaded to the card. Orinoco and
many other cards originally based on the Prism designs can actually host three firmware images: primary or operating
firmware; station or client firmware; and tertiary firmware. This tertiary firmware is uploaded to the card's RAM and lost
if the card loses power. To make matters even more difficult, the firmware in question is licensed software and can't
legally be distributed by anyone but the manufacturer.

The ingenious Hermes AP project (http://hunz.org/hermesap.html) addresses both of these tricky issues. It consists of
a set of modified drivers, a utility for uploading the tertiary firmware, and a simple script that downloads the firmware
from Proxim's public FTP server. Running Hermes AP successfully is not trivial, but it can be the perfect piece of
software if you absolutely need a host-based Orinoco AP.

To get Hermes AP running, you need a kernel with Dev FS enabled. This allows the kernel to manage the /dev
directory, dynamically creating device files for every physical device that the kernel supports. Run a make menuconfig or
make xconfig, and select Code maturity level options Prompt for development and/or incomplete code/drivers. Now
go back to the main menu, and under File systems enable /dev file system support, as well as Automatically mount at
boot. When running Dev FS, it's also a good idea to disable /dev/pts filesystem support, as Dev FS automatically
manages your ptys for you.

Before you recompile your kernel, copy all of the source code under the drivers/ directory from Hermes AP over top of
the existing drivers in the kernel (right over the files in linux/drivers/net/wireless/). Now build your kernel and modules
as you normally would, and reboot.

Your Orinoco card should come up as normal with the new driver, but it won't support BSS master mode yet. First, cd to
the Hermes AP source directory. To download a copy of the tertiary firmware from Proxim's site, run the hfwget.sh
script in the firmware/ directory. Next, build the hfwload utility by running make in the hfw/ directory. This utility
uploads the tertiary firmware to your card. Copy the utility and the card firmware somewhere handy (we keep ours in
/usr/local/hermesap), and run a command like this at boot time, before the interface comes up, replacing eth1 with the
actual interface name and FIRMWARE with the firmware filename (such as T1085800.hfw):

cd /usr/local/hermesap; ./hfwload eth1 FIRMWARE

Note that the card must not be configured up when you load the firmware; if it is already up, an ifconfig eth1 down brings
it down for you. If all goes well, an iwconfig should show that eth1 is in master mode! You can now configure the radio
with an ESSID, WEP keys, and any other features as you normally would.

Hermes AP is still beta software, but it seems to run quite well. For situations where you don't have the option of using
HostAP and a Prism-based card, Hermes AP is a good alternative solution.

6.2.5 Agere Wlags49

Linux drivers for the Hermes cards have unfortunately hit a stopping point with the recent acquisition of the Orinoco line
by Proxim. If you look for any information about Linux support on the Proxim web site, you will find that the latest
Proxim-provided driver for Hermes-based cards is 6.20 from May 2002.

An interesting twist to this storyline is that Agere, who was originally spun off from Lucent and also produced Hermes-
based radio cards, has updated drivers available on its web site dating from September 2003. If you browse to
http://www.agere.com/support/drivers, you will find the Linux LKM Wireless Driver Source Code, Version 7.14 listed,
which you can download from http://www.agere.com/support/drivers/wl_lkm_714_release.tar.gz.

If you dig into the README, you will find that this is a major update of the previously provided wavelan2_cs driver. It
has been renamed wlags49, for reasons that are not clear. What is clear, however, is that the driver provides support
for not only the classic Hermes I chipset that powers Orinoco Gold/Silver cards, but the Hermes II chipset that is found
in newer 802.11b PC Cards, MiniPCI, and CF adapters from Agere and Proxim.

Even more interesting is the list of new features in the release:

Began updating the Wireless Extensions

Added support for access point (AP) mode

Added support for tertiary firmware downloads

Added support for WDS in AP mode

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Added support for WDS in AP mode

The requirement for the driver is a 2.4.x kernel. The README does say that this driver should compile under
architectures other than x86, but that has not been verified. You'll also need a working gcc compiler environment. If
you have been able to compile kernels, pcmcia-cs, and the HostAP driver to this point, compiling this driver will not be a
problem.

If you already have the standard orinoco_cs or a compiled HostAP driver on your system,
be warned: wlags49 does not play nice with these drivers. Once compiled and loaded as a
module, wlags49 will be the default driver for any Hermes or Prism-based card in your
system.

We recommend you use only wlags49 on a system where you are not going to use the
orinoco_cs or HostAP drivers.

Getting the driver to compile is rather tricky. In order to configure the source code for compilation, you must first
obtain the pcmcia-cs source code. In Chapter 2, we covered in detail how to compile and install pcmcia-cs. In brief, you
can obtain the source code from http://pcmcia-cs.sourceforge.net.

You'll want to unpack the pcmcia-cs source somewhere. (On our Mandrake 9.2 system, we put the source in
/usr/src/pcmcia-cs-3.2.7.) Once you have done that, copy the gzipped Agere source into the pcmcia-cs directory and
extract it:

cp /root/download/wl_lkm_ 714 _release.tar.gz pcmcia-cs-3.2.7

cd pcmcia-cs- 3.2.7

tar xzvf wl_lkm_ 714 _release.tar.gz

To configure the source for the driver, run ./Configure. This will look familiar to you if you have already compiled pcmcia-
cs, because the Configure script is part of the pcmcia-cs release. You must configure the wlags49 source this way, even
if you have kernel tree PCMCIA enabled.

You don't have to completely reinstall pcmcia-cs once the configuration is completed. To install the wlags49 default
driver, which supports Hermes I and II cards in both STA (station adapter or managed) mode and AP mode, run the
scripts that came with the wlags49 source:

./Build

./Install

Once installed, you must stop and restart the pcmcia-cs subsystem, unless you have a MiniPCI Hermes II card, in which
case you may want to simply reboot.

The wlags49 source also gives you the option of building a driver that supports either Hermes I or II in STA or AP mode
only. Instead of the ./Build command, you can issue one of the following commands before ./Install:

make -f wlags49.mk h1_cs_sta # Hermes I, STA mode

make -f wlags49.mk h1_cs_ap # Hermes I, AP mode

make -f wlags49.mk h2_cs_sta # Hermes II, STA mode

make -f wlags49.mk h2_cs_ap # Hermes II, AP mode

If you only wish to build the driver to support a PCI/MiniPCI card in either STA or AP modes, you can issue these
commands:

make -f wlags49.mk pci

make -f wlags49.mk pci_install

Once the driver is loaded, you have the option of configuring wireless parameters in three different ways. The
documentation seems to suggest that you should perform all wireless configuration in the /etc/pcmcia/config.opts file.
This is rather nonstandard, and we did not even attempt to go down this road.

The documentation goes on to say that you can also configure the driver using a file in /etc/agere/iwconfig-eth1. This
directory was not created as part of the installation, so we also did not attempt to use this method. We did not have a
Hermes II MiniPCI card to test with, but we suspect that this second method is the one that you would need to use.

Fortunately, the third method is to simply use the pcmcia-cs standard configuration by configuring the card in
/etc/pcmcia/wireless.opts and /etc/pcmcia/network.opts. The wlags49 driver takes advantage of the Wireless Tools, so
that setting up our Orinoco Silver card as an access point is just like using HostAP:

iwconfig eth1 essid myAP mode Master

As with Madwifi, the wlags49 driver does not support MAC address filtering. We were able to set up a bridge using the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As with Madwifi, the wlags49 driver does not support MAC address filtering. We were able to set up a bridge using the
Orinoco Silver card in master mode, using the example provided previously in the HostAP section of this chapter.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.3 Linux-Powered Off-the-Shelf
Electronics manufacturers are increasingly turning to Linux to power all sorts of devices: e.g., TV set-top boxes,
handheld computers, and mobile phones. Now wireless vendors have begun shipping products running a Linux kernel.

For example, Linksys is now selling the WRT54G Wireless Router. As the name implies, it uses an 802.11g radio.
However, the name doesn't tell you that the box is really running a custom Linux kernel based on the 2.4.5 kernel code,
running on a Broadcom processor, based on a 125 MHz MIPS processor core. As of this writing, a WRT54G can be
purchased for as little as $70, making it probably the cheapest project in this book.

The Seattle Wireless folks have an excellent page on their web site detailing the work they have done peeking into the
innards of this device. You can find it at http://www.seattlewireless.net/index.cgi/LinksysWrt54g. Even before Linksys
began releasing the source code, people were hacking away at the WRT54G, trying to get a login shell and figure out
what made it tick.

6.3.1 Hacking the WRT54G Hardware

In the fall of 2003, several of the NoCat folks were hacking away at a newly acquired WRT54G, attempting to learn how
to get a login shell on the box. Early on, the Seattle Wireless group had determined that you could execute arbitrary
code by using the Ping.asp web page, which is part of the administrative web pages shipped with the unit.

If you're just looking for a quick way to upload new firmware, such as a custom Linux
distribution, to the unit, skip ahead to "Hacking the WRT54G Firmware," later in this
chapter.

It was then possible to upload arbitrary files to the unit, which we don't recommend for this reason: we managed to
render our WRT54G completely useless by attempting to modify the administrative HTML pages. In other words, the
configuration on the box was stuck that way, and we couldn't change it. Due to our error, none of the web pages were
accessible, including Ping.asp, which was the only method at that time.

The box sat unhappily in a paper bag for a few months. Recently, while reading through the Seattle Wireless pages
again, we became aware that someone had managed to solder the correct components on the motherboard of a
WRT54G and had a working serial port. With a working serial console, you can interrupt the boot of the unit with Ctrl-C:

^C

PMON>

This puts you at the PMON bootloader prompt. From here, you can recover a crippled WRT54G by executing the
following commands:

PMON> set boot_wait on

PMON> set nvram boot_wait

These commands tell the unit to wait at boot and to attempt to load firmware via TFTP. In order to take advantage of
this, you need a tftp client that supports passwords. Standard tftp client software does not use authentication, and the
tftpd running on the WRT54G expects authentication. You can download a tftp client for Linux that supports
authentication from http://redsand.net/code/linksys-tftp.tar.bz2. The code can be compiled with a simple make. The
WRTG54 assigns itself the IP address 192.168.1.1, so to connect to it, you must assign an IP address from the same
subnet on the machine from which you want to run the tftp client.

When you are attempting a tftp upgrade of firmware or using the web-based firmware upgrade shown in the next
section, you must make sure you have a reliable power connection. Interrupting the firmware upgrade process can
corrupt the flash memory during a write and make your unit a very nice blue and black brick. It's also important to use
an Ethernet connection to one of the LAN ports of the WRT54G when upgrading the firmware. While it is possible to use
the wireless connection, if anything interrupts the wireless transmission, you again run the risk of killing your flash
memory and the unit.

Once you have set the boot_wait parameter, you can power-cycle the WRT54G. At this point, you have approximately
three seconds to start the tftp client. In these three seconds, you must execute the following commands:

$./linksys-tftp 192.168.1.1

linksys-tftp> put firmware_image password

In the next section, we discuss alternate firmware images for the WRT54G.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In the next section, we discuss alternate firmware images for the WRT54G.

Without a console on the Linksys unit, you cannot enter the bootloader. If you examine the motherboard of a WRT54G,
you will find several empty surface mount sockets, a mount for a crystal, and two sets of standard pinouts marked
UART1 and UART2 next to the WAN Ethernet port and the reset switch. Figure 6-9 shows a close-up of this area.

Figure 6-9. Close-up of WRT54G showing space for a UART

The Seattle Wireless web pages have a list of hardware that must be soldered on in the empty sockets:

UART: National Semi PC16552DV

Transceiver: Maxim MAS213CIA

XTAL: 12.75MHZ

The details in this section are relevant only for a Linksys WRT54GVersion 1.0. Version 1.1
hardware is different, and you can find a discussion on 1.1 serial port hardware at
http://www.sveasoft.com/postt44.html. Look on the bottom of the WRT54G case to
determine the hardware version: if your hardware is Version 1.1, it is printed there. 1.0
hardware has no identifier.

We ordered the first two sample parts from each manufacturer. For links to the order pages, see the Seattle Wireless
WRT54G web page: http://www.seattlewireless.net/index.cgi/LinksysWrt54g. Search for "14 Booting your own kernel"
to find the correct section.

As for the crystal, our hardware and soldering guru Brad Silva suggested that we should use an oscillator instead. This
required a slightly different approach when we began construction, as you'll see below, but it worked well. We ordered
a 12.8 MHz oscillator from Digikey (http://www.digikey.com).

Once all the parts had arrived, we set aside an evening to work on the unit in Brad's lab. He had the necessary
soldering equipment plus an oscilloscope and a number of other tools that came in handy.

Unless you really know what you're doing, soldering extra parts on your WRT54G is an
excellent way to void your warranty and potentially destroy the unit. You need exceptional
soldering skills for this project.

The first task was to solder the National Semi UART to the socket at U5. This was the most difficult part of the
operation, as the socket is surface-mount technology that is designed to be soldered by a machine. The UART uses J-
connectors, which curve inward under the chip. We held the chip in place with a piece of double-sided tape underneath,
but it was still difficult for Brad. However, his soldering skills won out in the end.

Once we had the UART in place, we pulled out the oscilloscope so we could determine which of the two smaller sockets
would need the Maxim transceiver installed. The correct socket turned out to be U1, which is strangely connected to the
pinout for UART2, not to the pinout marked UART1/CON1 (which would seem to be indicative of the console).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pinout for UART2, not to the pinout marked UART1/CON1 (which would seem to be indicative of the console).

We then soldered the transceiver in place at U1, and despite the small size, the soldering went much faster because the
soldering iron simply wicked the existing solder into place on the chip.

Next up was the oscillator. As stated earlier, we chose an oscillator in place of a crystal. Either one should work,
however. As Brad states, "Crystals are finicky devices. Oscillators are much more reliable and easier to work with." We
mounted the oscillator on a small piece of breadboard.

In order to get signal flowing to the oscillator, we had to remove a resistor and a capacitor from the motherboard.
These are located at R7 and C14 between the UART and the spot where a crystal would be mounted.

Lastly, we needed power and ground for the oscillator. We obtained these from ZN1 and DS1 next to the DC power
input. Figure 6-10 shows an image of the motherboard with all the work completed up to this point.

During this process, we stopped at each step to use the oscilloscope to look at output from each new chip. Checking the
output from the transceiver and doing a little math, we were able to determine that the eventual console serial speed
would be at least 115 kbps.

Figure 6-10. WRT54G with added UART, transceiver, and oscillator

The last requirement was to add a DB9 connector so we could connect to the serial port with a laptop. For this, we
needed pins 2, 3, and 5 from the pinout marked UART2. It is important to note that unlike a standard RS-232 DB9
pinout, pins 2 and 3 are not crossed. The pinout to the DB9 is as follows:

Pin 2: Pin 2 Transmit

Pin 3: Pin 3 Receive

Pin 5: Pin 5 Ground

Figure 6-11 shows the attached serial port close-up. We were not striving for attractiveness, just function. The intent
was not to have the serial port permanently attached, because if the whole exercise were a success, we wouldn't have
needed it afterwards.

Figure 6-11. WRT54G with attached DB9 serial port

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6-11. WRT54G with attached DB9 serial port

This was the magic moment. Our monitoring with the oscilloscope was promising, in that we were definitely seeing a
flood of output immediately after the unit was powered on. We hooked up a laptop to the DB9 port, fired up a minicom
session, set the port speed to 115200, no RTS/CTS, no Xon/Xoff, applied power to the WRT54G, and voila!

We were then able to use Ctrl-C to immediately interrupt the boot process, set the boot_wait parameter, and reboot.
This time, the console showed a message indicating that it was waiting for network boot. Following the previous
instructions, we ran the linksys_tftp client software and were able to flash the WRT54G with the latest Linksys
firmware. We then went on to try out some alternate firmware, which we describe in the next section.

6.3.2 Hacking the WRT54G Firmware

At the time of this writing, you can find Linksys source code modifications at http://www.linksys.com/support/gpl.asp.
Broadcom has not yet released any source code for the radio drivers, nor has it released the modifications that it has
made to the gcc compiler.

Several Linux distributions for the WRT54G are available. Some of these depend on execution of arbitrary commands
via Ping.asp. However, Linksys has fixed this "bug" with software release 1.42.2, which has made any release that
depends on this feature unusable.

With the release of the modified source code for the WRT54G, it is possible for interested parties to compile the source
themselves and learn how to build custom firmware that includes features that Linksys does not support in its product.

These new distributions are easy to install, because they are complete firmware releases based on the Linksys code.
Linksys includes a firmware upgrade option in the administrative web pages for the WRT54G. Figure 6-12 shows the
screen, which you can find by selecting the Administration tab in the web page and clicking on Firmware Upgrade.

Figure 6-12. WRT54G firmware upgrade

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can also upgrade the firmware via TFTP, as we described in the Section 6.1. Of course, on an unmodified WRT54G
running Linksys firmware, the TFTP option is not possible. You must have a soldered-on serial port to enable the
interrupt of the boot process, or you must flash the unit first with one of the alternative firmware images we discuss
below. They both provide support for enabling the boot_wait option from the administrative web pages.

As of this writing, there are two well-developed distributions available that are based on the latest Linksys 2.0 source
code. Each distribution appears to have a number of similar features, and as they continue to mature, it seems that
they will continue to become more similar. Right now, however, both have different feature sets and appeal to
somewhat different audiences. There is also a third distribution at sourgeforge.net (see Section 6.3.2.3 later in this
chapter), which is built from the ground up and is not based on Linksys source code.

Linksys doesn't support firmware that you receive from other sources. While you many not
be voiding your warranty by flashing the firmware with alternate versions from other
sources, you should be aware that the process is not perfect. There is a possibility of
corrupting the flash in your WRT54G and making it an expensive paperweight.

When you upgrade your firmware, whether it is a Linksys or alternative firmware file, the
configuration in the WRT54G is erased. There is no provision for saving a configuration to
NVRAM, so before you upgrade, make a note of all your settings.

Finally, it should be stressed that as of this writing, all of the alternative firmwares are in
beta or testing modes, and are not as stable as the Linksys firmware.

6.3.2.1 Sveasoft firmware

Sveasoft is a company with offices in Sweden and California. It has developed a very nice firmware package for the
WRT54G. The developers host an active forum at http://www.sveasoft.com/forums.html and are very responsive to bug
reports and feature requests. Sveasoft is also selling in Sweden an outdoor-mountable repackaged WRT54G with its
custom code, suitable for a wireless ISP or community network installation.

The Sveasoft firmware includes the following features:

Telnet daemon

SSH daemon

OSPF routing from the Bird routing daemon

20 new iptables filters to support filtering P2P and other protocols

QoS bandwidth management

Local DNS caching daemon

PPTP client and server capability

Radio transmit power adjustment

Antenna selection

Client radio mode

Signal strength and MAC addresses of radio clients

WDS

Added options in the Administrative web pages to enable/disable services

Command shell from the Administrative web pages

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Command shell from the Administrative web pages

Replaced openssl with maxssl to free up 1 MB of flash

Roaring Pengiun PPPoE module

Additional features planned for inclusion in the firmware are:

SNMP support

Kismet drone—a remote sniffer

Remote monitoring package

Dynamic DNS configuration

Shorewall firewall

NoCat-like captive portal

Snort intrusion detection engine

Complete IPSec client and server support

802.1X for client radio mode

Simplified web interface

Support for a dynamic download so that developers can update in packages rather than in a complete firmware
reflash.

You can obtain the latest Sveasoft firmware from its FTP site: ftp.sveasoft.com/pub. As of this writing, the most current
firmware is Satori_v2_2.00.8.7sv-pre1.bin.zip. When you uncompress this file:

$ unzip Satori_v2_2.00.8.7sv-pre1.bin.zip

you will receive a single .bin file that you can flash to the WRT54G using the Firmware Upgrade web page previously
shown. Once you've clicked on the Upgrade button, do not interrupt the upgrade. Make sure you have reliable power
and wired Ethernet connections to the unit from the PC that you are using.

Once the firmware upgrade is complete, you should hold down the reset button on the back of the unit for 8-10
seconds, until you see the LEDs on the front of the unit turn red and flash in a pattern. This ensures that you have
cleared anything out of NVRAM that might have been put there by the previous firmware version.

When the unit resets, connect to it from a web browser; http://192.168.1.1 is the default address for Linksys devices.
As you can see from Figure 6-13, the firmware version in the upper-right corner is now a non-Linksys version.

Figure 6-13. Sveasoft firmware main configuration screen

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Sveasoft firmware offers another nice feature: the ability to select the receive and transmit antennas, as well as
the ability to increase and decrease the transmit power of the radio card. In the web-based configuration, click on
Wireless, and then on Advanced Settings. As shown in Figure 6-14, the last three options allow TX and RX antenna
selection, and you can now increase the milliwatt output of the WRT54G radio card up to a maximum of 83 mW from
the default of 28.

Figure 6-14. Sveasoft Advanced wireless configuration settings

If you have two WRT54G units, a Linux box with a Prism card and the HostAP driver, or an access point running the
OpenAP/LinuxAP distributions (see Section 6.3.4 later in this chapter), you have the option of setting up WDS between
your access points. If you choose to use a Prism card, it must have station firmware Version 1.50 or higher. See
Chapter 4 for details on how to determine your station firmware version.

WDS is an 802.11 specification for using an 802.11 wireless connection as a distribution system. A special data frame
with four addresses is defined for WDS. This allows layer 2 bridging of packets between two addresses. In other words,
your access points continue to serve clients, but can also communicate with each other over a bridge. You can use this
to set up a second access point that has no wired connection, only the bridged connection to another access point. This
is most useful for extending the range of your network.

There are some caveats for using WDS. Your access points must use the same SSID, the same channel, and the same
WEP keys (if you're using WEP). Currently, using WPA to encrypt WDS communications is not possible. Unless you use
WEP, all of your bridged packets sent between the access points will be sent in the clear, and you could easily fall victim
to a classic "man in the middle" attack where one of your MAC addresses is spoofed.

Another side effect of WDS will be decreased throughput. If both of your access points are serving clients while they are
communicating via the WDS bridge, you will lose throughput due to increased radio utilization for WDS.

We did not have two WRT54G units with which to test this WDS, but we were able to set up a WDS link between our
WRT54G running the Sveasoft code, and a notebook with a Prism card and the HostAP driver.

In order to set up the WDS link, we needed to install the bridge-utils package. On our Mandrake 9.2 system, this was
installed using urpmi bridge-utils; Red Hat and Fedora users should be able to similarly use the rpm installation, and
Debian users can do apt-get install bridge-utils.

It took some fits and starts to get WDS working between the WRT54G and our Mandrake box running HostAP. Figure 6-
15 shows the WDS configuration screen in the Sveasoft firmware. Here, we entered the MAC address of the Prism card
on the Mandrake system and assigned the WDS bridge an IP address and subnet mask.

Figure 6-15. Sveasoft WDS configuration

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6-15. Sveasoft WDS configuration

However, when we first attempted to set this up and clicked on Save Settings on the WRT54G, our Prism card lost
wireless communication with the Linksys. We were not able to bring up a bridge at that point. Later, as we continued to
troubleshoot, we were able to figure out why: the MAC address we obtained from the WRT54G was not the MAC
address that the WRT54G assigned to the WDS bridge.

On our WRT54G, the wireless MAC address is 00:06:25:B2:6B:D5. We entered this initially in the WDS configuration for
the Prism card. However, once we obtained a console login on the Linksys, we found that the WDS interface was
actually given a MAC address of 00:06:25:B2:6B:D7. Once we set up WDS for the Prism card with this interface, we
were able to communicate over the WDS link.

Once the WDS commands were entered for the Prism card, it took approximately 30
seconds for the WDS link to begin working. Don't give up if you can't ping across the link
immediately.

In order to set up the WDS link on the Prism card running HostAP, we entered the following commands:

iwpriv wlan0 wds_add 00:06:25:B2:6B:D7

 # Creates a WDS interface

brctl addbr br0 # Creates a bridge interface

brctl addif wlan0 # Adds wlan0 to the bridge

brctl addif wlan0wds0 # Adds the WDS interface to the bridge

ifconfig wlan0 0.0.0.0 # Zeros out TCP/IP for wlan0

ifconfig wlan0wds0 0.0.0.0 # Zeros out TCP/IP for the WDS interface

ifconfig br0 192.168.255.2 # Assigns TCP/IP to the bridge interface

Note that you must have your Prism card in either managed or master mode for this to work. If you are in managed
mode, you are essentially acting as a client to the bridge, and you must add another Ethernet or radio interface to
make the bridge useful. If you are in master mode, your HostAP access point can continue to serve other clients while
still participating in the WDS bridge.

The Sveasoft firmware enables many other interesting features, including Quality of Service (QoS) for bandwidth
management, among other things. Those features are really outside the scope of this book, but one feature that is very
handy is the SSH daemon.

To set up the SSH daemon, navigate to the Administration tab, and click on Management. Scroll down to the section
titled SSHD. First, click on the radio button to Enable SSHD. Scroll down and click on Save Settings. Navigate back to
the SSHD section and similarly enable Password Login. Click on Save Settings again. Reboot the WRT54G.

You can now use ssh to log in to the router using root as a username and the administrative password that you set in

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can now use ssh to log in to the router using root as a username and the administrative password that you set in
the web interface. (You have changed your administrative password from the default, haven't you?)

6.3.2.2 Wifi-Box firmware

The Wifi-Box firmware distribution was developed by Augustin Vu. It is also now based on the Linksys 2.0 firmware
release, and the project web page is found at http://sourceforge.net/projects/wifi-box.

As we previously discussed, this project has much in common with the Sveasoft firmware, because many of the stated
end goals of the project are similar. The current implementations, however, differ somewhat in their feature sets.

The Wifi-Box software includes the following features:

Radio transmit power adjustment

Antenna selection

DHCP server can assign static DHCP addresses

Supports Class A and Class B subnets

Local caching DNS server

SNMP daemon

Support for VPN Passthrough—IPSec, PPTP, L2TP

Server Profiles for multiple IP forwarding

Telnet daemon

Remote wake on LAN support

Web-driven reboot and restart services commands

Enhanced status pages

Additional features planned for inclusion in the firmware include:

WDS bridging

SSH daemon

QoS bandwidth management

IPSec client and server

PPTP client

You can download the firmware from the SourceForge web site. As of this writing, the most current version is
code_2.02.pre1-wfb.zip. Use the unzip command to extract the single .bin file contained in the compressed download.

The procedure for installing the Wifi-Box firmware is identical to flashing any other firmware to the WRT54G (see
Section 6.3.2 and Section 6.3.2.1). You can use the web interface, or, if you have already tried the Sveasoft firmware,
you can set the boot_wait option in the Administration tab and flash the router via tftp on the next reboot.

As you can see from Figure 6-16, the only noticeable difference to the Wifi-Box firmware is again in the upper-right
corner of the main screen.

Figure 6-16. Wifi-Box firmware main configuration screen

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6-16. Wifi-Box firmware main configuration screen

The current Wifi-Box firmware has fewer enhancements to the wireless side of the router and more added features in
the TCP/IP department. Wifi-Box does include the antenna selection and radio transmit power adjustments in the same
location as Sveasoft: Click on the Wireless tab and select Advanced Wireless Settings.

One feature that will appeal to anyone already running MRTG, Cacti, or any other SNMP-based network data gathering
tool is the inclusion of an SNMP daemon. To configure SNMP, click on the Setup tab and then select SNMP. The
documentation is incomplete, and there is no help file for this page, so it is unclear if the SNMP daemon supports SNMP
v1, v2, v3, or a combination of these.

The Security tab adds new VPN settings to allow passthrough of the three most widely used VPN protocols. In the
Applications & Gaming tab you can define Server Profiles that allow you to forward many commonly used ports to
different servers on the LAN side of the WRT54G.

In the Administration section, you can enable the Telnet daemon. Here you can also click to reboot the router or restart
all services on the router without a reboot.

All in all, the Wifi-Box firmware is a nice upgrade from the standard Linksys firmware. As of this writing, it appears that
the Sveasoft firmware has more wireless features enabled, and it also does have the advantage of a working SSH
daemon. Both firmware packages are worth investigating for your use.

6.3.2.3 OpenWrt firmware

The OpenWrt firmware project is taking a completely different approach. Its firmware is not based on the Linksys code
at all, and its statement of goals at http://openwrt.sourceforge.net states some very specific goals:

Create a usable and functional development environment for the WRT54G that exposes the full capability of the
2.4.20 kernel.

Firmware must have failsafe modes so that configuration errors do not prevent the unit from booting.

As much flash as possible should be dedicated to read/write filesystems for installation of functional modules.

The Linksys/Broadcom/Cisco copyrighted configuration utilities are not included.

The OpenWrt developers are hard at work on the beta version of their firmware. As of this writing, they have not
released any packages on their SourceForge project site. Follow the directions at http://openwrt.sourceforge.net to
obtain their latest beta.

As the login file to the #wrt54g IRC channel states: "Newbies need not apply." The
OpenWrt firmware is not complete. OpenWrt is still working on a development platform
base. If you want a fully functional access point with all the features shipped in the Linksys
firmware, this is not for you. If, however, you want to hack on a fully open source Linux
distribution for the WRT54G, read on.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As with the previous firmwares, you can load the OpenWrt firmware by using the Upgrade Firmware option in the
Administration web pages, or, if you have loaded Sveasoft or Wifi-Box firmware, you can set boot_wait and use the tftp
client to flash the WRT54G firmware.

OpenWrt changes the flash filesystem layout of the Linksys firmware. It contains a small read-only squashfs filesystem
and a larger writable jffs2 (Journaling Flash Filesystem). The squashfs partition has a failsafe boot routine, which you
can trigger by holding the reset button during boot. This failsafe mode boots entirely from the squashfs partition, and
configures the LAN and wireless networks to 192.168.1.1. So if you manage to munge up the jffs2 partition, you can
always recover and start over.

OpenWrt attempts to set up the networking of the WRT54G using configuration stored in NVRAM. So your LAN, WAN,
and wireless network information should remain the same after flashing.

OpenWrt implements a Telnet daemon for administrative access. The developers plan to have ssh available as a
package once the basic development environment is done. The busybox environment implements telnetd by default, so
this is a simple way to proceed with development.

On the first boot after flashing, the jffs2 filesystem does not exist. You must telnet to 192.168.1.1, run the firstboot
command at this point, and then restart the system. This initializes the jffs2 filesystem and allows you to boot
completely into OpenWrt.

When fully booted, the squashfs partition is remounted as /rom with the jffs2 partition mounted as /. Symlinks are
made from the root filesystem to files contained in /rom. If you want to modify any of the files on jffs2, you must
remove the symlink and copy the file or create the file on the root partition.

OpenWrt uses VLAN interfaces to represent the LAN and WAN ports. On a v1.x WRT54G, the following interfaces are
created:

vlan1: WAN interface

vlan2: LAN interface

eth2: Wireless interface

For more detailed information on the innards of this beta version, you should consult the README. Check out the IRC
channel and the SourceForge project pages for updates. The developers hang out on #wrt54g, so it's the best place at
the moment for help with the firmware.

You now have a small Linux-powered router. Although the OpenWrt firmware is still in early development, we think it
has the most potential of the alternative firmwares currently available for the WRT54G. The Linksys-based firmware
version have some impressive features, to be sure, but OpenWrt will definitely be the most flexible firmware distribution
of the three, due to its stated goals.

6.3.3 Other Linux-Powered Devices

Aside from the WRT54G, there are other Linux-powered devices now on the market. Some of them appear to be even
more capable internally than the WRT54G. Some of them have serious limitations that would make it difficult or
impossible to modify the kernel source. We touch on a few of these devices here. If you're a dedicated hardware or
kernel hacker, these boxes could use your time and expertise.

The Linux-powered device world is constantly changing, so by the time you read this, other wireless devices with Linux
under the hood will probably be available.

6.3.3.1 Linksys WRV54G

This is a Linksys wireless VPN router. It has nothing in common with the WRT54G, in that the internal processor is a
266 MHz Intel ISP425 ARM-based CPU and the MiniPCI wireless card is a PrismGT 802.11G chipset. The MiniPCI card is
soldered to the MiniPCI connector for grounding purposes. There are open source issues with the Intel Ethernet driver
for the ISP425. The Intel Access Software Library license expressly forbids any code in the Library from being released
under the GPL or BSD licenses.

The Seattle Wireless folks have been hard at work on a WRV54G. As of this writing, however, there is no alternative
firmware available, and the firmware has not yet been hacked. You can find all of their current information at
http://seattlewireless.net/index.cgi/LinksysWrv54g. Linksys has released the source code, and the various versions are
available at http://www.linksys.com/support/opensourcecode/wrv54g.

6.3.3.2 Dell TrueMobile 1184

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.3.3.2 Dell TrueMobile 1184

The Dell TrueMobile 1184 was released in early 2003. It has a Prism 3 802.11b chipset inside and runs a 2.2 Linux
kernel. It appears that Dell contracted with another vendor to develop this product, and when it was released, there
was no acknowledgment that the device was Linux based, nor was there any source code released.

Dell was persuaded by a user to release the source code. However, since that time it has been discovered that the
released source is not actually the correct source for the internal ARM processor or Ethernet chipset.

As of this writing, there does not yet appear to be a viable solution to run any custom Linux kernels on the Dell
hardware. Dell has since discontinued this unit, and information and source code are no longer available on the Dell
web site. You can follow the Dell 1184 threads at the LinuxAP mailing list for more information:
http://ksmith.com/pipermail/linuxap-dev/2003-July. Lastly, if you follow this threaded discussion, it appears that the
Dell is so difficult to work with, any development has been abandoned to look for easier hardware to hack:
http://ksmith.com/pipermail/linuxap-dev/2003-October/000522.html.

6.3.4 Running Linux on Non-Linux Devices

Ever since 802.11b access points began shipping, people have been taking them apart to find out what makes them
tick. In many cases, especially with early models, the internals were i386-compatible chips, which made the challenge
of attempting to run Linux on these machines impossible to ignore. There are some serious caveats to running Linux on
any of these devices:

These systems need a small kernel. 2.4 series kernels, even stripped to the bare bones, just take up too much
space on a device that has 2 or 4 MB of RAM. 2.2 series kernels are then the choice for all of the following
distributions.

With some of these devices, there isn't enough room to store a usable Linux system on the flash, so the root
filesystem must be kept on an NFS server. While this isn't out of the question, it does mean you must have an
NFS server running.

The minimal amount of RAM in these systems means that application space is very limited. It's possible to run
things like telnetd, but sshd or any other larger applications are out of the question.

The cards in these access points are based on chipsets that do not support master mode. Even though you have
Linux running on them, you are restricted to managed or ad-hoc modes, and can't use the AP as an actual
access point.

6.3.4.1 Apple AirPort

When the Apple AirPort 802.11b access point was first released, people naturally opened it up to find out what was
inside. The guts of the unit are an AMD ELAN processor running at 33 MHz. The ELAN is an i386-compatible processor
that is very popular with embedded device manufacturers.

Of course someone took the challenge of getting the AirPort to run Linux, because it runs i386 binary code. Til
Straumann has an excellent web page detailing the steps necessary to run a Linux 2.2 kernel on the AirPort:
http://www-hft.ee.tu-berlin.de/~strauman/airport/airport.html.

The AirPort has only 4 MB of flash RAM, so you must boot and load software from a network share to make Linux run.
To do this, you need a tftp server, NFS server, and DHCP server. In addition, you must reflash your AP with boot code
that makes it look for the Linux software on the network. This is not easy to set up, so we recommend that you read
completely through the web page listed in the previous paragraph before attempting to run Linux on your AirPort or RG-
1000.

6.3.4.2 Orinoco RG-1000

The Lucent Orinoco RG-1000 is internally identical to the Apple AirPort. Seattle Wireless uses Linux-powered AirPorts
and RG-1000s extensively in its citywide wireless network. More information on its projects can be found at
http://www.seattlewireless.net/?AirportLinux.

Seattle Wireless AirportLinux is based on the code by Til Straumann for the AirPort, with some modifications. While both
of these distributions are fun hacks, they are not nearly as practical as using vanilla PC hardware or flashing a Linksys
router. They both require a dedicated server to boot from. If you have such an environment, great! You can pick up
used RG-1000 units on Ebay for very little money.

6.3.4.3 Eumitcom WL11000

While you will never find a consumer product with this name on it, this motherboard was the basis for these early
models of 802.11b access points:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

models of 802.11b access points:

US Robotics (USR 2450)

SMC EZconnect (2652W)

Addtron (AWS-100)

There have been two Linux distributions developed for these access points. They are both still available, although the
first, OpenAP, does not appear to be under active development. OpenAP is available from
http://opensource.instant802.com. As stated, it runs only on this single hardware platform. It is increasingly difficult to
find these access points, but if you have one, this is a fun little project.

In order to flash these access points, you need a linearly mapped memory card. The OpenAP site recommends a
MagicRAM Industrial SRAM Memory card that is 2 MB in size and readable at 3.3 V. You must also connect a null
modem cable to the RS-232 serial port on the access point, and a terminal program to communicate with the Linux
distribution.

For information and complete instructions, see the Getting Started page on the OpenAP web site:
http://opensource.instant802.com/getting_started.php.

We mentioned LinuxAP in Section 6.2 earlier in this chapter. While LinuxAP is designed to run on the Soekris hardware
platform, and indeed can be made to run on any Intel-compatible small-board PC, it also supports the WL11000-based
access points. You can find LinuxAP at http://linuxap.ksmith.com. This site also hosts an active mailing list at
http://linuxap.ksmith.com/mailman/listinfo/linuxap-dev, and a recent posting of the LinuxAP FAQ can be found in the
mailing list archives: http://ksmith.com/pipermail/linuxap-dev/2004-February/000675.html.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 7. Bluetooth
Bluetooth is a wireless cable-replacement technology that uses low-power signals in the 2.4 GHz band. Using Bluetooth,
devices can transfer up to 720 kbps. This bandwidth is restricted in comparison to those obtainable from 802.11
wireless technology, and while networking is one application of Bluetooth, it is not the primary application area.

Bluetooth's goal is to be a low-cost, low-power, and, above all, pervasive technology. As well as to increase
convenience for the user, its aim is also to reduce the cost to the manufacturer by eliminating the need to supply cables
with devices. As opposed to single-use cables, a Bluetooth transceiver sustains multiple connections, and, for most
applications, the bandwidth constraints are not an issue.

As befits a cable-replacement technology, many of Bluetooth's applications are in areas where infrared, USB, or serial
connections were previously used: in connecting peripherals, PDAs, cell phones, and other portable devices. One much-
trumpeted application that bucks this general trend is mobile phone headsets, which use Bluetooth to carry the audio to
and from the user, who is liberated from the tiresome cable.

Support for Bluetooth in the Linux kernel is mature, being present in both the 2.4 and 2.6 series of stable kernels.
Popular core functions of Bluetooth, such as emulated serial connections and networking, are well-supported. More
recent Bluetooth technologies, such as keyboard and mice support, have less well-developed support and require more
involvement from the user. User-level applications that support Bluetooth on Linux are of varying maturity: applications
simply requiring an emulated serial port work out of the box, whereas specialized Bluetooth tools are under heavy
development.

This chapter first introduces the core Bluetooth concepts that will aid a Linux system administrator in his deployment,
discusses kernel configuration and system-level tools, and finally covers user-level applications.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

7.1 Quick Start
We tested a Belkin Bluetooth USB adapter with several Linux distributions on an IBM ThinkPad A20m. In all cases, we
got it up and running to the point where we created a serial port connection between a Bluetooth cell phone (Nokia
3650) and the Linux machine.

After we set up Bluetooth on each distribution, we completed the following steps (all of this is explained in detail
throughout the chapter):

1. Set the pinin /etc/bluetooth/pin to a numeric-only pin (1234)

2. Restarted the hcid daemon with killall -HUP hcid

3. Plugged in the adapter

4. Discovered the cell phone's Bluetooth address with hcitool scan

5. Configured the serial port (/dev/rfcomm0) with:

rfcomm bind 0 bluetooth_address

Upon completion, we conversed with the phone over the serial port using Kermit (see Section 9.3).

The following sections describe our distribution-specific notes. Even if your distribution isn't listed here, check these
notes out.

7.1.1 Debian 3.0r1

We abandoned the older 2.4.18 kernel that was the latest 2.4 kernel available for Debian 3.0, and we compiled kernel
2.4.24 according to the instructions in "Configuring the kernel," later in this chapter. To get Bluetooth to the point
where we could make an rfcomm connection, we follow these steps:

1. Edited /etc/apt/sources.list according to the instructions at http://bluez.sourceforge.net/download/debian/APT-
README.

2. Next, we completed an apt-get update and then installed the following packages:

bluez-hcidump

bluez-pan

bluez-sdp

bluez-utils

hotplug

3. The bluez-utils and bluez-sdp packages configured themselves to start in runlevel 3 and 5. After installing these
packages, we started them with the following commands (but we could also have rebooted):

/etc/init.d/bluez-utils start

/etc/init.d/bluez-sdp start

4. The /dev/rfcomm* devices already exist, so we didn't need to create them.

7.1.2 SuSE 9.0

We used SuSE 9.0 (FTP install) with the latest available kernel package (2.4.21-166-default). To enable Bluetooth, we
followed these steps:

1. Installed the following packages using YaST:

bluez-bluefw

bluez-libs

bluez-pan

bluez-sdp

bluez-utils

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. The packages configured themselves to start in runlevels 3 and 5. After installing these packages, we started
them with /etc/init.d/bluetooth start (but we could also have rebooted).

3. The /dev/rfcomm* devicesdid not exist, so we created them as shown in Example 7-4.

7.1.3 Mandrake 9.2 and RedHat 9

On Mandrake, we used the latest available kernel package (2.4.22-10mdk), but on Red Hat, we rebuilt the kernel the
same way we built it for Debian. For rfcomm to work on RedHat and Mandrake, we followed these steps:

1. Downloaded the following RedHat RPMs from http://bluez.sourceforge.net:

bluez-bluefw

bluez-hcidump

bluez-libs

bluez-pan

bluez-sdp

bluez-utils

2. Next, we ran rpm --test -ivh bluez-*, and all looked well, so we installed them with rpm -ivh bluez-*.

3. To make sure that the Bluetooth scripts were started on boot, we ran chkconfig --add bluetooth.

4. We ran /etc/init.d/bluetooth start (we could also have rebooted).

5. The /dev/rfcomm* devices did not exist, so we created them as shown in Example 7-4.

7.1.4 Troubleshooting

Generally, following the previous steps went smoothly, but we did run into some problems. Here are some tips that
should help you out:

Start hcid in the foreground

By default, the startup scripts launch hcid in the background. If you want to see verbose messages from it, kill
it and then start it with -n:

killall hcid

hcid -n

This helps you figure out what's going on with failed PIN requests.

Restart hcid after PIN changes

If you edit the PIN in /etc/bluetooth/pin, restart hcid (killall -HUP hcid should do the trick).

Replace bluepin

In theory, the bluepin utility should either use the PIN in /etc/bluetooth/pin or prompt you when it needs a PIN.
However, on Mandrake, the PIN exchange was silently failing. So, we replaced bluepin with a script that spat
out the PIN in /etc/bluetooth/pin:

#!/bin/sh

file: /usr/local/bin/bluepincat

echo -n "PIN:"

cat /etc/bluetooth/pin

Then we set the pin_helper line in /etc/bluetooth/hcid.conf:

pin_helper /usr/local/bin/bluepincat

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pin_helper /usr/local/bin/bluepincat

Make sure the rfcomm module is loaded

When we installed Bluetooth support on Mandrake and Red Hat, the rfcomm module wasn't loaded
automatically, so we received a complaint when we ran /etc/init.d/bluetooth start:

"Can't open RFCOMM control socket: Address family not supported by protocol"

So, we added modprobe rfcomm to the start() section of the /etc/init.d/bluetooth script and rebooted to make
sure everything worked OK.

Double-check your kernel configuration

If you're compiling the kernel from source, be sure everything is configured the way it should be. For example,
one of us was testing the examples in this chapter and received an Operation not supported error when we tried to
make a connection over /dev/rfcomm0. We hadn't configured RFCOMM TTY support
(CONFIG_BLUEZ_RFCOMM_TTY) in the kernel. Well, we had, but it was configured as a module rather than
statically compiled into the kernel. Although make menuconfig showed [*], a peek inside our .config file showed:

CONFIG_BLUEZ_RFCOMM_TTY=m

So we changed m to y, recompiled the kernel, installed it, and rebooted, and all was well.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

7.2 Bluetooth Basics
Bluetooth Special Interest Group (SIG), a consortium of telecommunications, electronics, and computer manufacturers,
develops Bluetooth. The founding members were Ericsson, Nokia, IBM, Intel, and Toshiba. The first version of the
Bluetooth specification was formally adopted by the SIG in 1999.

The first revisions of the Bluetooth specification had a mixed reception, because implementations were dogged by
interoperability problems. The 1.1 release, published in 2001, eliminated the gray areas from the 1.0b specification
and, as a result, improved device interoperability. Over two years since the 1.1 release, Bluetooth is well on its way to
becoming a ubiquitous technology in portable devices. At the time of writing, the current approved revision of the
Bluetooth specification is Version 1.2, released in November 2003.

The Bluetooth specification itself covers the many levels involved in getting a signal between two applications, from the
radio through link control to application-level protocols. Figure 7-1 shows just some of the various strata specified by
Bluetooth, which we encounter in this chapter. Further details, including the specifications themselves, can be obtained
from http://www.bluetooth.org.

Figure 7-1. Some layers of the Bluetooth specification

Bluetooth hardware typically takes the form of one or two microchips, which are embedded in devices. Computers are
increasingly shipping with integrated Bluetooth adapters, but the prevailing way of adding Bluetooth support is by
adding an external adapter, typically via the USB or PC card ports. Before a device can sport the Bluetooth logo and use
the Bluetooth trademarks, it must be put through a series of tests known as qualification. Qualification involves tests for
all parts of the Bluetooth specification, from radio testing to protocol conformance.

7.2.1 What You Can Do with Bluetooth

As Bluetooth is intended to replace cable, it can be used for more or less the same purposes as a cable, within the
bandwidth constraints of the technology. All the following usage scenarios are supported within Linux and are discussed
in this chapter:

Serial port

Bluetooth's serial port emulation enables the connection of modems (such as in cell phones) and printers. Serial
emulation is also an easy way of writing simple data exchange applications using Bluetooth.

Object exchange (OBEX)

Facilitated by implementing the OBEX protocol, object exchange is used for "beaming" data objects between
devices, such as contacts from address books. It is the main way that cell phones exchange data and is often
implemented by Bluetooth-enabled printers.

Synchronization

Devices that implement the IrMC specification permit synchronization of data sources, such as calendars and
address books. Many Bluetooth-enabled cell phones have this feature. More modern devices implement the
SyncML specification, which requires a networking connection.

Networking

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Networking

Bluetooth supports two different forms of networking. The most basic and commonly implemented form is dial-
up networking using PPP over a serial connection. In addition, there is BNEP, an encapsulation of Ethernet
networking, which allows Bluetooth devices to join a network in a manner much more analogous to Wi-Fi
networking.

Input devices

Bluetooth supports an array of input devices similar to USB. Major manufacturers such as Apple and Microsoft
are shipping Bluetooth-enabled mice and keyboards.

Audio

Audio is one of the most-promoted aspects of Bluetooth by cell phone manufacturers; it is possible to support
bi-directional audio connections to headsets over Bluetooth.

7.2.2 Concepts

The following sections describe essential Bluetooth concepts that you need to be aware of. These include the Bluetooth
address, which uniquely identifies a Bluetooth adapter; the protocols and profiles that define the communication
techniques and device capabilities; bonding, discoverability, and device classes, which Bluetooth devices use to find
each other and communicate their abilities; and piconets, scatternets, masters, and slaves, which describe the topology
of Bluetooth networks and the relationships of one device to another.

7.2.2.1 Bluetooth address

Each Bluetooth interface has a Bluetooth address, also known as its BDADDR. These addresses look very much like
Ethernet interface MAC addresses, and follow the same address allotments that the ANSI/IEEE 802 standard,
administered by the IEEE, has laid down. The first three octets of the Bluetooth address denote the organizationally
unique identifier (OUI). For instance, the address 00:80:98:23:15:6E has an OUI of 008098, which is registered to the
TDK Corporation.

OUIs can be looked up online using the IEEE's search interface at
http://standards.ieee.org/regauth/oui/. As some device manufacturers subcontract to
others, it may not always be possible to determine the manufacturer of a device from its
OUI.

In addition, Bluetooth adapters have a programmable name used to present to the user in interactions. Example 7-2
shows both the Bluetooth addresses and the names that are discovered in a device scan.

7.2.2.2 Protocols

The Bluetooth specification defines some protocols of its own and also reuses some existing standards. A protocol is an
agreement about the way data is exchanged. It is on top of these protocols that all applications of Bluetooth are built.
An in-depth knowledge of the protocols is not necessary to deploy Bluetooth, but passing familiarity with them helps in
troubleshooting situations.

Confusingly, some of the protocols have very similar names to the profiles in which they are used and are listed next.
(Additionally, some protocols are layered on top of lower-level protocols. This happens elsewhere in computing—for
example, when a computer connects to the Internet via a modem, it uses the RS232 protocol to communicate serial
port data, the PPP protocol on top of that to facilitate a network connection, and TCP/IP on top of that to carry the
data.)

Link Manager Protocol (LMP)

Provides basic control of interdevice communication links

Logical Link Control and Adaptation Protocol (L2CAP)

Provides logical channels of communication to higher protocol layers

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Provides logical channels of communication to higher protocol layers

Radio Frequency Communication (RFCOMM)

Provides emulated serial connections

Object Exchange (OBEX)

A simple file transfer protocol

Bluetooth Network Encapsulation Protocol (BNEP)

Provides Ethernet encapsulation for wireless networking

Service Discovery Protocol (SDP)

Enables the querying and reporting of services that a device supports

Telephony Control Protocol Specification (TCS)

Provides call control for voice and data telephone calls

7.2.2.3 Profiles

A profile is the name given to the implementation of one more protocols to provide a particular application service.
Bluetooth devices advertise profiles. Many of the profiles build on each other—for instance, the OBEX profile builds on
the serial port profile.

Commonly implemented profiles include:

Service Discovery Access Profile (SDAP)

Enables a device to discover the profiles supported by other devices

Serial Port Profile (SPP)

Emulates a serial port connection

Hardcopy Cable Replacement (HCRP)

Emulates a parallel port connection for the purposes of printing

Dial-up Networking Profile (DUN)

A connection to a modem or cell phone, which connects to an Internet access point

LAN Access Profile (LAP)

A point-to-point (PPP) access to a network

Headset Profile (HS)

A combination voice and control channel, which provides a link between a cell phone and audio headset

Generic Object Exchange Profile (GOEP)

A file exchange, which exchanges business cards on cell phones

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

File Transfer Profile (FTP)

Analogous to Internet FTP, which allows navigation and access to a filesystem

Synchronization Profile (SP)

An address book and calendar synchronization, which uses the IrMC protocol

Human Interface Device Profile (HID)

A connection to a keyboard, mouse, joystick, barcode scanner, or other input devices

Personal Area Networking (PAN)

An Ethernet-like access to a network

Basic Printing Profile (BPP)

Enables devices to print text, as well as formatted documents; useful for low-powered devices such as phones
or pagers

7.2.2.4 Bonding

Bonding, also called pairing, is the process by which trust is established between two Bluetooth devices. The user is
required to input matching codes, called personal identification numbers (PINs), into the two devices. In some
situations, one of the devices may have the PIN pre-set—for example, some headsets come with a PIN of 0000. PINs
are typically a sequence of digits; they provide little security, and they are intended only for the initial pairing.

Given a successful match of PIN, the devices negotiate a link key, a much more cryptographically secure code, which is
used thereafter as an access control mechanism between the two devices.

7.2.2.5 Discoverability

A Bluetooth device is discoverable if it can be found by another device's inquiry. During discovery, the inquiring device
broadcasts a specially coded message. As remote devices receive the message, they send a return message indicating
their presence. In most circumstances, you must make a device discoverable in order to initiate bonding.

Bluejacking
Cell phone owners who inadvertently leave their phones discoverable may suffer from "bluejacking," the
phenomenon in which unknown people send data transfers such as address cards. The address card
carries a message in place of contact details. Although a remote device can never force a data transfer on
another device, leaving devices discoverable makes the user vulnerable to these half technical, half social-
engineering attacks. And it's possible for bluejacking to go beyond pranks: one early smartphone
operating system had a bug that caused the phone to lock up if it was sent a GIF image file constructed in
a particular way.

7.2.2.6 Device classes

Bluetooth devices fulfill many functions, so there should be a way that a device can quickly indicate its primary function.
As we have already mentioned, the SDP exists to provide a complete description of running services. However,
Bluetooth provides an additional way for a device to describe itself: the device class. Although the SDP provides the
description of the running services, the device class provides the purpose of them.

The device class code is a 24-bit number that incorporates three subcodes: the major device type, the minor device
type, and additional service codes, which broadly indicate the services available. Table 7-1 shows the meaning of the
useful major device types (other types are reserved or undefined), and Table 7-2 shows the useful service class bits.
The meaning of the minor device type bits (bits 7-0) depends on the major device type. You can find a full explanation
of these values on the Bluetooth Special Interest Group web site at http://www.bluetoothsig.org/assigned-
numbers/baseband.htm.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 7-1. Major device types as expressed in the device class
Bit pattern (bits 12-8) Meaning

0 0 0 0 0 Miscellaneous

0 0 0 0 1 Computer (from desktop to PDA)

0 0 0 1 0 Telephone (cell phone, payphone, cordless phone)

0 0 0 1 1 Network access point

0 0 1 0 0 Audio/video device (headset, speakers)

0 0 1 0 1 Peripheral (keyboard, mouse, joystick)

0 0 1 1 0 Imaging (printer, camera, scanner)

1 1 1 1 1 Uncategorized

Table 7-2. Service classes as expressed in the device class
Bit Meaning if set

16 Positioning (location information, e.g., GPS)

17 Networking

18 Rendering (printer, speakers)

19 Capturing (scanner, microphone)

20 Object transfer

21 Audio (speaker, microphone, headset)

22 Telephone (modem, cordless telephone, headset)

23 Information (web server)

7.2.2.7 Piconets and scatternets, and masters and slaves

A piconet is a network of Bluetooth devices created by a master connecting to one or more slaves. The master is the
device that initiates the connection. Figure 7-2 shows the topology of a piconet. A master may be connected to as many
as seven slaves simultaneously.

Figure 7-2. Topology of a piconet

Various applications such as LAN access points require the master/slave relationship to be the same as the server/client
relationship. For this reason, a client device, which serves as a master, initiates a connection to the access point; once
connected, a role-switch occurs, and the client device now becomes a slave. For most applications of Bluetooth on
Linux, you do not need to be aware of these distinctions, but the knowledge of their existence may be useful in
debugging scenarios. Some Bluetooth hardware has restricted role-switching ability.

Sometimes, a slave in one piconet is connected to a master of another piconet. The linking together of multiple piconets
in this way is called a scatternet.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

7.3 Bluetooth Hardware
There is a wide variety of hardware available for adding Bluetooth support to your computer. Devices fall into several
categories:

USB dongle

Plugs into the USB port. This device is the most common and economical.

Built-in

Increasingly, laptops are shipping with a Bluetooth transmitter built in. Typically this device appears to the
operating system as if it were a USB device.

PC card

Plugs into a laptop's PCMCIA slot and provides a serial interface to the Bluetooth transmitter.

CF card

Behaves in the same way as a PCMCIA card, and it is used with PDA devices.

Serial dongle

A Bluetooth transmitter that plugs into the serial port. In the early days of Bluetooth deployment, it was a
popular choice; today, however, it is not a recommended option.

Compatibility between Linux and Bluetooth hardware is good. A comprehensive table of verified device compatibility can
be found on Marcel Holtmann's web site, at http://www.holtmann.org/linux/bluetooth/devices.html. This table includes
information for laptops with built-in Bluetooth, too. If you have no specific overriding criteria, it is best to choose a USB
dongle. Due to the standardization of the Bluetooth USB interface, compatibility is very good.

If you dual-boot your computer between Linux and the manufacturer's operating system,
such as Windows XP or Mac OS X, you may want to use the Bluetooth device your vendor
recommends. Both the Apple-sold D-Link USB dongle and Microsoft-manufactured USB
dongle are known to work with Linux. If in doubt, consult the Linux device compatibility
list.

When choosing a Bluetooth device, be aware of the difference between Class 1 and Class 2 Bluetooth devices. Class 1
devices have a more sensitive radio and work up to distances of 100 meters, whereas Class 2 devices work up to 10
meters and are cheaper.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

7.4 Linux Bluetooth Support
As with many emerging technologies, there are competing implementations of Linux Bluetooth support. The main two
implementations are Affix and BlueZ. Affix was originally developed by Nokia and is now hosted as an open source
project at SourceForge (http://affix.sourceforge.net). BlueZ is also hosted at SourceForge is
(http://bluez.sourceforge.net) and the official Bluetooth stack of the Linux kernel.

Although Affix is a mature and functional project, BlueZ receives more testing and has more widespread adoption. For
this reason, this chapter focuses on the uses of the BlueZ Linux Bluetooth stack and libraries.

This section includes all the information that you need to install and configure Bluetooth support from scratch. It is
possible that your Linux distribution already contains preconfigured Bluetooth support, which will save you effort.
However, the installation instructions provide useful background information for troubleshooting.

7.4.1 Distributions

As Bluetooth is a relative newcomer to Linux, BlueZ support across commercial distributions varies. Generally speaking,
if the kernel shipping with your distribution is older than 2.4.22, it is a good idea to upgrade it. Users of "bleeding-edge"
distributions such as Debian Unstable and Gentoo should find that Bluetooth is adequately supported.

7.4.2 Configuring the Kernel

Bluetooth support under Linux requires a recent kernel. If your kernel is Version 2.4.22 or better, or a 2.6 series kernel,
then you're all set. Otherwise, you must upgrade your kernel. Alternatively, if you do not wish to upgrade, and have
kernel 2.4.18 or better compiled from source, you can apply the patches from the "kernel patches" area of the BlueZ
web site (http://bluez.sourceforge.net). Regardless, it's worth checking out the patches, because there are often
improvements available that have not yet been merged into the main Linux kernel source.

Patching the Kernel
To patch the kernel, first download the most recent patch for your kernel version from the BlueZ web site
(for example, patch-2.4.22-mh1.gz), and place it somewhere convenient, such as /usr/src/. Change into
the directory where your kernel source is unpacked, typically /usr/src/linux, and apply the patch:

cd /usr/src/linux

gzip -dc .. /patch-2.4.22-mh1.gz | patch -p1

Next, run this command:

find . -name '*rej'

If any of the patches were rejected, you'll find some files ending in .rej. If they were, delete the kernel
source, extract it again (be sure that you have the correct patch for your kernel version), and try the
patch again.

You can then proceed with configuring your kernel for Bluetooth by running make menuconfig, make xconfig,
or make config.

Chapter 2 explains how to configure and compile a kernel. Table 7-3 and Table 7-4 show the options that must be set in
your kernel configuration to enable Bluetooth support. You can either configure Bluetooth support to be compiled into
the kernel or to be loadable on-demand in the form of modules. Many Linux distributions choose to ship with modules,
so we proceed on the assumption that you will use modules. This removes the need to recompile your kernel if you
acquire a different type of Bluetooth device.

Figure 7-3 and Figure 7-4 show the Bluetooth configuration options from the 2.4.24 kernel.

Figure 7-3. Configuring Bluetooth support in the Linux kernel

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 7-3. Configuring Bluetooth support in the Linux kernel

Figure 7-4. Configuring Bluetooth hardware support in the Linux kernel

Table 7-3. BlueZ protocol configuration options

Option Purpose Recommended
value

Bluetooth subsystem support Enables the entire BlueZ stack m

L2CAP protocol support A basic Bluetooth protocol m

SCO links support Bluetooth Audio m

RFCOMM protocol support Serial data transfer m

RFCOMM TTY support Maps Linux terminal devices (e.g., /dev/rfcomm0) to
Bluetooth serial ports y

BNEP protocol support Personal area networking m

BNEP Multicast filter support, protocol
filter support Advanced filtering for networking y

Table 7-4. BlueZ hardware support configuration options

Option Purpose Recommended
value

HCI USB driver Support for USB dongles m

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SCO (voice) support Audio transmission support y

USB zero packet support Workaround for buggy USB devices n

HCI UART driver Support for serial dongles: either PCMCIA, CF, or RS232 serial
port y

UART (H4) protocol support Serial protocol used for most PCMCIA and CF cards y

BCSP protocol support Serial protocol used for PCMCIA and CF cards based on the CSR
BlueCore chipset y

Transmit CRC with every
BCSP packet Improves reliability of BCSP support, at a slight cost to efficiency y

HCI BlueFRITZ! USB driver Support for BlueFRITZ! Bluetooth ISDN m

HCI VHCI (Virtual HCI device)
driver Support for a virtual Bluetooth device for testing purposes m

You should not enable the Bluetooth device support in the USB drivers section of your
kernel configuration (CONFIG_USB_BLUETOOTH). This is a vestigial driver from very early
Bluetooth work and will prevent the BlueZ Bluetooth stack from operating. If you are using
a distribution's precompiled kernel, this corresponds to the bluetooth kernel module, and
you should prevent it from being loaded. This can be done either by ensuring the BlueZ
hci_usb module is loaded instead of the USB Bluetooth module or by disabling the module
by adding its name to hotplug's configuration list (/etc/hotplug/blacklist).

Once your kernel is compiled and you have rebooted, you must configure Linux so it knows how to load the appropriate
Bluetooth protocol modules. Most modern distributions come with /etc/modules.conf already set up for Bluetooth use,
but you may be missing the required configuration.

To verify this, ensure that the contents of Example 7-1 are present in /etc/modules.conf. If you need to change this file,
run depmod -a to ensure automatic loading of modules by the kernel. You must be the root user to perform this
operation.

Example 7-1. Module configuration for BlueZ

BlueZ modules

alias net-pf-31 bluez

alias bt-proto-0 l2cap

alias bt-proto-2 sco

alias bt-proto-3 rfcomm

alias bt-proto-4 bnep

alias tty-ldisc-15 hci_uart

alias char-major-10-250 hci_vhci

Linux distributions may vary in the way they manage the /etc/modules.conf file. Debian
GNU/Linux, for example, requires you put the contents of Example 7-1 in a separate file in
/etc/modutils and run /sbin/update-modules; however, if you use the pre-packaged Debian
BlueZ utilities, this file is already provided for you.

7.4.3 Supporting Subsystems

Depending on your hardware configuration, you must ensure you are running some extra supporting software to
initialize your Bluetooth device.

7.4.3.1 PCMCIA

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.4.3.1 PCMCIA

If your Bluetooth adapter is a PC card or a CF card, you must have kernel support for PCMCIA and the PCMCIA card
services software installed. This software is responsible for initializing your adapter when it is plugged in and loading the
required drivers into the kernel.

BlueZ requires PCMCIA card services to be Version 3.2.2 or higher. If your Linux distribution has an older version, you
can update it from http://pcmcia-cs.sourceforge.net. See Chapter 2 for complete instructions on compiling pcmcia-cs
from source.

7.4.3.2 Hotplug

The Linux hotplug subsystem enables you to plug in a device and have it immediately ready to use. It is similar in
function to the card manager from PCMCIA card services, except it is generalized to include USB, Firewire (IEEE 1394),
and network devices. The 2.6 series of Linux kernels adds hotplug capability to even more subsystems, such as SCSI
and input devices.

When hotplug detects a new device, it loads the necessary driver modules into the kernel, and it runs any scripts the
user has configured. In the case of BlueZ, hotplug is required for certain Bluetooth devices that require firmware
downloaded to them, such as the USB dongles based on the Broadcom chipset.

Hotplug ships with most Linux distributions. Version 2002_08_26 or later is required. If you need to install it separately,
download it from http://linux-hotplug.sourceforge.net/.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

7.5 Installing the BlueZ Utilities
In addition to the kernel support, you must install a set of utility programs to help you manage your Bluetooth devices.
Table 7-5 shows the names of the packages and their purpose. You can either install the versions of these tools that
come with your Linux distribution, or compile and install them from source.

Table 7-5. BlueZ software packages
Package Purpose

bluez-libs The application library that all other Bluetooth tools require in order to function

bluez-utils Main utilities that enable you to initialize and control Bluetooth devices

bluez-sdp Service discovery protocol tools that enable the advertisement and discovery of Bluetooth services

bluez-pan Tools that enable personal area networking using Bluetooth

bluez-hcidump A debugging tool that permits the monitoring of Bluetooth packets

bluez-bluefw The firmware for Broadcom chipset-based Bluetooth devices

If you are compiling the tools from source code, compile and install in the order shown in Table 7-5 to avoid
dependency problems.

Precompiled version of the utilities can be obtained for Red Hat Linux as RPMs, for Debian stable as .deb packages (the
latest BlueZ utilities are an integral part of Debian unstable), and as packages suitable for the Sharp Zaurus Linux PDA.
These can be downloaded, along with the source code packages, from the BlueZ download page at
http://bluez.sourceforge.net/.

In order to determine whether your Bluetooth system is working, you only need to install the bluez-libs and bluez-utils
packages, and also bluez-bluefw if your dongle contains a Broadcom chip (you can determine this from Marcel
Holtmann's Bluetooth hardware page at http://www.holtmann.org/linux/bluetooth/devices.html). Install the rest when
you have verified that everything is working properly.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

7.6 Basic Configuration and Operation
The bluez-utils package contains the tools you need to configure and test your Bluetooth setup. Once you've installed
the package, run the init script (/etc/init.d/bluez-utils start on Debian, /etc/init.d/bluetooth start on Red Hat) to start the
Bluetooth subsystem. These scripts normally run on boot, so they may have been started already if you installed from
RPMs or Debian packages.

The hcid daemon should now be running. This program controls the initialization of Bluetooth devices on the system and
handles the bonding process with other devices. We discuss configuration of hcid later in this chapter.

The prefix "hci" derives from the name of the interface between the computer and the Bluetooth device, the Host
Controller Interface.

7.6.1 Examining Local Devices

The hciconfig tool allows the configuration of the characteristics of your Bluetooth adapter. If you are familiar with the
configuration of network interfaces, you will find it parallel in operation to ifconfig. Use -a to display extended
information about each Bluetooth device attached to the computer:

hciconfig -a

hci0: Type: USB

 BD Address: 00:80:98:24:15:6D ACL MTU: 128:8 SCO MTU: 64:8

 UP RUNNING PSCAN ISCAN

 RX bytes:4923 acl:129 sco:0 events:168 errors:0

 TX bytes:2326 acl:87 sco:0 commands:40 errors:0

 Features: 0xff 0xff 0x05 0x00

 Packet type: DM1 DM3 DM5 DH1 DH3 DH5 HV1 HV2 HV3

 Link policy: HOLD SNIFF PARK

 Link mode: SLAVE ACCEPT

 Name: 'saag-0'

 Class: 0x100100

 Service Classes: Object Transfer

 Device Class: Computer, Uncategorized

 HCI Ver: 1.1 (0x1) HCI Rev: 0x73 LMP Ver: 1.1 (0x1) LMP Subver: 0x73

 Manufacturer: Cambridge Silicon Radio (10)

From this output, you can observe several things, which have been rendered in bold text in the example.

Bluetooth interfaces are referred to as hci0, hci1, etc. in the same way as Ethernet interfaces are generally
named eth0, eth1, etc.

The unique Bluetooth address of our device is 00:80:98:24:15:6D.

The hci0 device in question is activated, that is, UP.

Other Bluetooth devices will see this computer as saag-0. This name is configurable, as explained in Table 7-6.

The chipset is manufactured by Cambridge Silicon Radio (CSR). The CSR chipset is the most commonly used
chipset for USB dongles.

When diagnosing and reporting problems to kernel driver authors, you may be asked for the output of hciconfig -a. Note
that you must be the root user to use some of the features of hciconfig.

Table 7-6 shows the most useful options of the hciconfig tool.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 7-6 shows the most useful options of the hciconfig tool.

Table 7-6. Common usages of the hciconfig tool
Command Description

hciconfig hci0 up

hciconfig hci0 down
Activates or deactivates the Bluetooth device. Normally, in hcid does this for you when you
plug the device.

hciconfig hci0 reset Sends a reset command to the Bluetooth device.

hciconfig hci0 name myname Sets the device's public name to myname.

hciconfig hci0 features Shows a human-readable list of the Bluetooth features the device supports. The most
useful feature is SCO link, required in order to use audio.

7.6.2 Scanning for Remote Devices

The acid test is, of course, to see if your computer can detect other Bluetooth devices. The hcitool toolcan be used to do
this. Switch on your other Bluetooth device, and ensure it is in "discoverable" mode. Issue the command hcitool scan and
wait (see Example 7-2). You don't need to be root in order to run this command.

Example 7-2. An example scan of remote Bluetooth devices

$ hcitool scan

Scanning ...

 00:0A:D9:15:CB:B4 ED P800

 00:40:05:D0:DD:69 saag-1

Example 7-2 shows a typical output of a scan. In this case, the author's cell phone, "ED P800," and second Bluetooth
adapter, "saag-1," are shown as discoverable.

Why Isn't Scanning Instantaneous?
The reason scanning can take a long time is because a Bluetooth inquiry is being performed. As Bluetooth
devices frequency-hop, inquiry cannot be instantaneous. The device performing the inquiry transmits a
special code on two consecutive frequencies. When the other devices' hop patterns take them onto those
frequencies, they listen for a repetition of that code and then indicate their presence to the inquirer.

The hcitool and hciconfig programs produce similar output for the remote devices. You must be root to use this option
of hcitool. Here's an example session with hcitool where we specify the Bluetooth address of the P800 cell phone
discovered in Example 7-2:

hcitool info 00:0A:D9:15:CB:B4

Requesting information ...

 BD Address: 00:0A:D9:15:CB:B4

 Device Name: ED P800

 LMP Version: 1.1 (0x1) LMP Subversion: 0x9040

 Manufacturer: Ericsson Mobile Comunications (0)

 Features: 0xff 0xfb 0x01 0x00

 <3-slot packets> <5-slot packets> <encryption> <slot offset>

 <timing accuracy> <role switch> <hold mode> <sniff mode>

 <park mode> <RSSI> <SCO link> <HV2 packets>

 <HV3 packets> <u-law log> <A-law log> <CVSD>

7.6.3 Pinging a Remote Device

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The ping command is an incredibly useful tool for discovering whether remote computers are reachable over a TCP/IP
network. BlueZ has an analog to ping, called l2ping. Its name refers to the fact that it attempts to create a connection
to the device using the logical link control and adaptation protocol (L2CAP), the lowest-level link-based protocol in
Bluetooth.

In other words, before despairing because you cannot connect to a device, check it with l2ping. There may be a fault
with software higher up the chain; l2ping enables you to determine whether a basic connection can be established with
a remote device. Here's an example of l2ping in action (you need to run l2ping as root):

l2ping 00:0A:D9:15:CB:B4

Ping: 00:0A:D9:15:CB:B4 from 00:80:98:24:15:6D (data size 20) ...

0 bytes from 00:0A:D9:15:CB:B4 id 200 time 54.85ms

0 bytes from 00:0A:D9:15:CB:B4 id 201 time 49.35ms

0 bytes from 00:0A:D9:15:CB:B4 id 202 time 34.35ms

0 bytes from 00:0A:D9:15:CB:B4 id 203 time 28.33ms

4 sent, 4 received, 0% loss

If you have not yet paired your computer with the device with which you are testing, using
l2ping may result in a "permission denied" error. To remedy this, you must either pair your
device with the computer (see Section 7.6.5 later in this chapter) or ensure that the
remote device is discoverable.

7.6.4 Configuring hcid

The hcid daemon handles various low-level aspects of a system's Bluetooth devices, including activating and configuring
the Bluetooth interfaces, and handling device bonding. hcid should be running at all times on your system, and it is
usually started by initialization scripts installed along with the rest of the tools from the bluez-utils package.

The configuration file for hcid, /etc/bluetooth/hcid.conf, has two parts: global configuration and Bluetooth device
configuration. In normal operation, most of the default options are acceptable. In this chapter, we cover only the
options that are most useful to change.

7.6.4.1 Global options

This section is introduced by the options keyword in the configuration file and controls the behavior of the hcid program.
The most useful option in this section is pin_helper, which tells the computer the program to run in order to obtain a PIN
code when pairing. The default PIN helper that ships with bluez-utils is a Python script, which uses the Python bindings
to the GTK graphical toolkit. Unless you have Python and the Python-GTK package installed on your computer, this
helper will not work, and you will not be able to pair your computer with other Bluetooth devices. (See the Section
7.1.4 earlier in this chapter for instructions on replacing the PIN helper with one that returns the same PIN code every
time.)

A better-looking PIN helper is available separately from bluez-utils, in a package called bluez-pin. Installing this package
is recommended, and several Linux distributions ship it as a default. If you install bluez-pin, you must amend the
pin_helper option accordingly. Figure 7-5 shows bluez-pin in action.

Figure 7-5. A request for a PIN from bluez-pin

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.6.4.2 Device options

This section is introduced by the devices keyword, which controls the configuration that hcid gives to each Bluetooth
device as it is activated. This has the same effect as if you were to manually configure the device with hciconfig. Table
7-7 explains the most useful options available in this section.

Table 7-7. Useful device-level options from /etc/bluetooth/hcid.conf
Option Explanation

name The name of the adapter as it appears to other devices. The special sequence %h is replaced by the
machine's hostname, and %d is replaced by the interface number.

class
The Bluetooth device and service class advertised to other devices. The default is hex 0x000100, indicating a
computer device class, with no special service class. Depending on how the Bluetooth adapter is to be used,
it may be helpful to amend this value. For more information, see Section 7.2.2.6.

iscan
pscan

These two options control whether the adapter responds to inquiry and page scans. If inquiry scanning
(iscan) is enabled, the adapter is discoverable by other devices. If page scanning (pscan) is enabled, the
computer permits adapter connections from remote devices.

7.6.5 Bonding/Pairing

Many devices require that bonding, or pairing, is performed before a Bluetooth connection is established. Bonding may
be initiated by the computer or by the remote device.

If the computer initiates bonding—usually by making an outgoing connection—then the pin_helper program (usually
bluepin) will present a graphical dialog box to the user requesting that he input a PIN, which should match the code set
on the remote device. If the remote device initiates bonding, then the remote device is required to provide a PIN to
match that set in the file /etc/bluetooth/pin.

In some distributions of bluez-utils, the PIN code is set to the alphabetical string BlueZ.
This is troublesome, because many Bluetooth devices, including most cell phones, are only
capable of delivering numeric PINs. It is therefore recommended that you alter the
contents of /etc/bluetooth/pin to a numeric code.

If bonding is successful, the hcid daemon will store the resulting link key, used to authenticate all future connections
between the two devices concerned, in the database file /etc/bluetooth/link_key.

7.6.6 Service Discovery

Bluetooth devices implement the service discovery profile (SDP) in order to describe to other devices how their services
may be accessed. SDP is generally used in two ways: browsing and searching. An SDP browse request causes a device
to respond with a list of services that it supports. A search request is a query for details of a particular service.

Two tools found in the bluez-sdp package handle SDP on Linux. The first is sdpd, which provides an SDP server and
allows remote devices to query the computer. The second, sdptool, allows administration of the SDP server and
querying of the remote device.

Not all Bluetooth-enabled devices support SDP browsing—for example, the Palm Tungsten-
T PDA. Applications that wish to connect to these devices must instead search for the
services they wish to use, as shown in the following section.

7.6.6.1 Using sdptool

The simplest invocation of sdptool is sdptool browse. This performs an inquiry and then browses each available device.
Example 7-3 shows the result of this command.

Example 7-3. Results of an SDP browse

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 7-3. Results of an SDP browse

$ sdptool browse

Inquiring ...

Browsing 00:80:98:24:15:6D ...

Service Name: SDP Server

Service Description: Bluetooth service discovery server

Service Provider: BlueZ

Service RecHandle: 0x0

Service Class ID List:

 "SDP Server" (0x1000)

Protocol Descriptor List:

 "L2CAP" (0x0100)

 PSM: 1

 Version: 0x0001

Language Base Attr List:

 code_ISO639: 0x656e

 encoding: 0x6a

 base_offset: 0x100

Service Name: Public Browse Group Root

Service Description: Root of public browse hierarchy

Service Provider: BlueZ

Service RecHandle: 0x804d008

Service Class ID List:

 "Browse Group Descriptor" (0x1001)

Language Base Attr List:

 code_ISO639: 0x656e

 encoding: 0x6a

 base_offset: 0x100

Service Name: LAN Access Point

Service RecHandle: 0x804d6f0

Service Class ID List:

 "LAN Access Using PPP" (0x1102)

Protocol Descriptor List:

 "L2CAP" (0x0100)

 "RFCOMM" (0x0003)

 Channel: 3

Profile Descriptor List:

 "LAN Access Using PPP" (0x1102)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 "LAN Access Using PPP" (0x1102)

 Version: 0x0100

Service Name: OBEX Object Push

Service RecHandle: 0x804d7f0

Service Class ID List:

 "OBEX Object Push" (0x1105)

Protocol Descriptor List:

 "L2CAP" (0x0100)

 "RFCOMM" (0x0003)

 Channel: 4

 "OBEX" (0x0008)

Profile Descriptor List:

 "OBEX Object Push" (0x1105)

 Version: 0x0100

The output from the browse command shows a list of service descriptions obtained from the SDP server. In this case,
you can see that the device is running an SDP server, has support for public browsing of the SDP server contents, is
offering network access via PPP, and supports OBEX via OBEX PUSH. The two profiles that use RFCOMM as a base
protocol also indicate the RFCOMM channel on which the service is available. The term "channel" is somewhat
overloaded in radio technologies such as Bluetooth, so you may find it helpful to consider each RFCOMM channel a
virtual serial port number.

If the BDADDR of the device to query is known, it can be specified on the command line: sdptool browse
00:80:98:24:15:6D.

The sdptool program is also used to search for devices supporting a particular service. For instance, sdptool search OPUSH
returns the service descriptor for OBEX PUSH support from any available device supporting it. Unfortunately, unlike the
browse command, there is no way of searching only one device with the current version of sdptool; it must perform an
inquiry and search for the service on every device. Table 7-8 shows the service abbreviations that sdptool understands.

Table 7-8. Service abbreviations for sdptool
Abbreviation Service

SP Serial port

DUN Dial-up networking

LAN LAN access

HSET Headset profile

FAX Fax profile

OPUSH Object push

FTRN Object file transfer protocol

NAP Network access point

GN Ad-hoc peer networking

HID Human interface device

CIP Common ISDN access

CTP Cordless telephony

Although the use of sdptool appears clumsy, in practice it is normally required only for diagnostic purposes. Bluetooth
application software generally performs its own SDP requests to determine how to connect to a service on a remote
device.

7.6.6.2 Configuring sdpd with sdptool

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.6.6.2 Configuring sdpd with sdptool

Unlike hcid, sdpd does not remember its settings by use of a static configuration file. The service directory is dynamic,
allowing services to register and deregister themselves as they come and go. Most applications do this by using the
BlueZ SDP libraries, but on occasion, it is useful to configure this manually using sdptool.

To see which services the system's SDP daemon is advertising, use the special Bluetooth address FF:FF:FF:00:00:00,
which refers to the local Bluetooth device: sdptool browse FF:FF:FF:00:00:00.

The add subcommand of sdptool registers a service via SDP. It takes the service name as a parameter, with an optional
parameter for the RFCOMM channel. For instance, to advertise a serial port connection on RFCOMM channel 3, use the
following command: sdptool add --channel=3 SP. Obviously, the channel option makes sense only for those services based
on serial emulation, such as dial-up networking, OBEX, and fax.

Removing a service is slightly more complex, requiring the identifying "handle" of the record. In the output from an SDP
browse in Example 7-3, there is a Service RecHandle entry for each record; the del command requires this number. So,
assuming Example 7-3 refers to a local SDP server, you could remove the object push record with the command sdptool
del 0x804d7f0.

The sdptool command provides even more granular control over the SDP records through the use of setattr and setseq,
which adjust particular parameters. Use of setattr and setseq require knowledge that is likely to be useful only if you are
writing sophisticated Bluetooth programs.

7.6.7 Serial Connections

Using BlueZ's RFCOMM implementation, it is possible to create and use emulated serial port connections over Bluetooth.
RFCOMM actually underlies many Bluetooth profiles such as dial-up networking and OBEX.

As with SDP, BlueZ provides both application libraries, so programs can create and utilize RFCOMM connections and an
administrative tool for the user to set up connections herself.

7.6.7.1 Ensuring RFCOMM is set up

To use RFCOMM connections, you must ensure that:

The rfcomm kernel module is either compiled into the kernel or available to load

The /dev/rfcomm* devices exist on your machine

Kernel configuration was covered in Section 7.4.2 earlier in this chapter. Most Linux distributions should automatically
create the RFCOMM device entries for you, but if they don't exist, create them using the script in Example 7-4, which
must be run as the root user.

Example 7-4. Creating the /dev/rfcomm devices

#!/bin/sh

script: mkrfcomm

C=0;

while [$C -lt 256]; do

 if [! -c /dev/rfcomm$C]; then

 mknod -m 666 /dev/rfcomm$C c 216 $C

 fi

C=`expr $C + 1`

done

7.6.7.2 Connecting to a cell phone

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.6.7.2 Connecting to a cell phone

To see an example of RFCOMM usage, you could set up a serial connection to a cell phone's modem and try some
commands on it. First, you must discover the RFCOMM channel that dial-up networking uses on the phone. For this, use
sdptool browse ADDR (where ADDR is a Bluetooth address you retrieved with sdptool browse):

$ sdptool browse

00:0A:D9:15:CB:B4

...

Service Name: Dial-up Networking

Service Description: Dial-up Networking

Service Provider: Sony Ericsson

Service RecHandle: 0x10002

Service Class ID List:

 "Dialup Networking" (0x1103)

Protocol Descriptor List:

 "L2CAP" (0x0100)

 "RFCOMM" (0x0003)

 Channel: 3

The phone uses channel 3 for dial-up networking. A virtual serial port on the Linux machine must be bound to this
channel on the phone. As the root user, use the rfcomm command to bind the port and then again to confirm that the
port is bound, as shown in Example 7-5.

Example 7-5. Binding to and checking an RFCOMM serial port

rfcomm bind 0 00:0A:D9:15:CB:B4 3

rfcomm

rfcomm0: 00:0A:D9:15:CB:B4 channel 3 clean

The 0 in bind 0 corresponds to the 0 in the device /dev/rfcomm0, which can now be used with applications in the same
way that traditional serial ports (known as /dev/ttyS0, etc.) are used. A terminal emulation package, such as the
popular minicom, can be used to confirm that the phone's modem is working, as shown in the following listing. The
command ATI3 usually returns useful model information for a remote modem.

OK

ATI3

P800 Bluetooth (TM) Modem

OK

For more information on minicom, see http://alioth.debian.org/projects/minicom/. You
must create a configuration file for minicom referencing /dev/rfcomm0 or change the serial
device to /dev/rfcomm0 from within minicom's option screens, which you can find by
running minicom -s. You can also use Kermit, as shown in Chapter 9.

7.6.7.3 Internet access via a cell phone

By creating PPP connections with RFCOMM serial ports, you can use your cell phone for Internet access. (To learn how
to do this with GPRS cell phones, see Chapter 9.) For example, to connect to AT&T Wireless's GPRS network with a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

to do this with GPRS cell phones, see Chapter 9.) For example, to connect to AT&T Wireless's GPRS network with a
Nokia 3650 (see "GSM/GPRS Phone with Data Cable" in Chapter 9), use the peers script shown in Example 7-6. Be sure
to use rfcomm bind as shown in Example 7-6. You can use the attws-connect and attws-disconnect scripts from Chapter
9.

Example 7-6. PPP peer settings for AT&T Wireless and the Nokia 3650 over
Bluetooth

File: /etc/ppp/peers/attws-rfcomm

#

/dev/rfcomm0 # Nokia 3650

115200 # speed

defaultroute # use the cellular network for the default route

usepeerdns # use the DNS servers from the remote network

nodetach # keep pppd in the foreground

nocrtscts # no hardware flow control

lock # lock the serial port

noauth # don't expect the modem to authenticate itself

local # don't use Carrier Detect or Data Terminal Ready

connect "/usr/sbin/chat -v -f /etc/chatscripts/attws-connect"

disconnect "/usr/sbin/chat -v -f

/etc/chatscripts/attws-disconnect"

7.6.8 Object Exchange

OBEX is a simple file transfer protocol. It is used when you "beam" files from one device to another. This is known as
OBEX PUSH. Some devices also support OBEX FTP. As its name suggests, OBEX FTP behaves similarly to the Internet
FTP protocol, allowing file uploads and downloads to a device.

The OBEX protocol was introduced as part of the group of technologies created for infrared device connections. Its
implementation in devices such as cell phones is widespread but not without its quirks. OBEX itself is a binary protocol
layered on top of a serial connection. With Bluetooth, it is layered on top of an RFCOMM connection. Example 7-3 shows
an entry for the OBEX PUSH profile, using RFCOMM channel 4.

Some older cell phones don't actually provide OBEX implementation in this way. Instead, they have extended AT
commands accessible from a serial connection to their internal modem, as described in the previous section. These
commands place the connection into OBEX mode. We do not cover this use, often called "cable OBEX," but rather focus
on the Bluetooth OBEX profiles.

OBEX FTP over Bluetooth is not very well supported on Linux. The most popular package, obexftp, still has Bluetooth
support in development at the time of writing. We advise you to check the project's home page at http://triq.net/obex.

OBEX PUSH is better supported and is more practical since it is consistently implemented in consumer devices such as
cell phones. There are several graphical programs available to support OBEX PUSH on Linux, as we shall see later. First,
we look at the command-line tools available to perform file transfers.

7.6.8.1 Basic support

OBEX support on Linux is implemented through a project called OpenOBEX. Any OBEX-related program requires you to
have these libraries installed. They can be obtained and compiled from the project's home page at
http://openobex.sourceforge.net/ or installed through your Linux system's package management system.

If your Linux distribution is relatively old, be aware that OpenOBEX might not have been
compiled with Bluetooth enabled. If you are encountering inexplicable errors in starting up
OBEX applications, this may well be the case, and you should contact your Linux
distribution vendor.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The OpenOBEX libraries have a companion package called openobex-apps. The openobex-apps package contains a set
of basic test programs that you can use to get started. They are by no means production quality, but they enable you to
test your setup. We'll use the obex_test program to test receiving and sending files.

To send a file to a remote device, you must first discover the RFCOMM port the OBEX PUSH support uses, as shown in
Example 7-3. Use sdptool to discover this, and then run obex_test. Let's suppose our remote device has the address
11:22:33:44:55:66 and uses RFCOMM port 3 for OBEX PUSH. Here is an imaginary session:

$ obex_test -b 11:22:33:44:55:66 3

> c

> p localfilename remotefilename

This session presents two arguments to the p command: the location of the file you want to send and the name of the
file to use when it reaches the remote device.

To receive a file from a remote device, use the test program in server mode. (This is shown in the following listing.) You
can then push a file to your computer from a remote device.

$ sdptool add --channel=4 OPUSH

$ obex_test -b ff:ff:ff:00:00:00 4

> s

Note that some devices require the OBEX capability to be reflected in your Bluetooth device's device class setting before
they allow transfers to be made to your computer. (See the section Section 7.2.2.6 for a detailed discussion on the
exact values that this can take.) In most cases, it is sufficient to set the class to service_class_obex | device_class_computer
(0x100100). This can be set in /etc/bluetooth/hcid.conf or by dynamically using the hciconfig command.

The test applications that come with the OpenOBEX libraries are necessarily very rough and require you to do the
legwork. Happily, more polished applications are available. These applications form part of the KDE and GNOME desktop
projects, and are mentioned later in this chapter.

Other software meriting investigation can be found on the Web. These programs include ussp-push, obextool, and the
OBEX PUSH daemon. They can be found either by searching the Web or visiting a page on Linux and Bluetooth, created
by BlueZ maintainer Marcel Holtmann, at http://www.holtmann.org/linux/bluetooth.

7.6.9 PPP Networking

Point-to-point networking is useful for networking two computers together. If one of the peers permits routing or
bridging to a wider network, then the other gains access to that network. This is what happens when you dial up your
Internet service provider on a traditional modem.

PPP networking is used in the implementation of the Bluetooth LAN access profile. Here is what an SDP record for the
LAN access profile looks like:

Service Name: LAN Access over PPP

Service RecHandle: 0x804dae0

Service Class ID List:

 "LAN Access Using PPP" (0x1102)

Protocol Descriptor List:

 "L2CAP" (0x0100)

 "RFCOMM" (0x0003)

 Channel: 2

Profile Descriptor List:

 "LAN Access Using PPP" (0x1102)

 Version: 0x0100

You can use LAN access to provide Bluetooth devices with access to your local network. Many PDA devices support this
connection method, both for purposes of synchronization over TCP/IP and general Internet access.

In order to use LAN access, you need the bluez-pan package installed on your computer. This contains two tools: dund

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In order to use LAN access, you need the bluez-pan package installed on your computer. This contains two tools: dund
and pand. LAN access is provided by dund, which we discuss here. You also need PPP support in your Linux kernel, and
the PPP daemon pppd installed on your computer. With most Linux distributions, this is already installed.

While no pppd expertise is assumed in this section, you are strongly recommended to familiarize yourself with its
documentation. The Linux PPP HOWTO at http://www.linux.org/docs/ldp/howto/PPP-HOWTO is a good starting point.

The dund daemon can be used to manage both sides of the LAN connection. It provides PPP access to a remote device
or connects to a provider. Acting as the server, it listens on a specific RFCOMM channel, and when a connection is
made, it invokes pppd to establish the network connection. Acting as the client, it establishes a connection over
Bluetooth to a remote device and then invokes pppd to handle the network connection.

7.6.9.1 Creating a LAN access server

The simplest invocation of dund is dund --listen --persist. You should run this command from the account of a user with
permission to run pppd (as a fallback, you can always run it as the root user.) This command line causes dund to
register the LAN access profile with the local SDP server and listen for incoming connections as a daemon. (For
debugging purposes, dund can be given the --nodetach argument, which causes it to run in the foreground like a normal
program.) The persist option causes the daemon to continue running after a connection has terminated and await new
connections. You can check the system log /var/log/syslog for status messages from dund.

When a connection is established, dund invokes pppd with its default options. You can normally find these in
/etc/ppp/options. Some systems use /etc/pppd instead of /etc/ppp. However, it's better to create a separate
configuration file especially for your connections. Anything you pass to dund on the command line after its own
configuration options is sent straight to pppd. Create a file called dun in /etc/ppp/peers with the content shown in
Example 7-7.

Example 7-7. PPP daemon configuration for LAN access

noauth

debug

crtscts

lock

local

proxyarp

ms-dns 192.168.0.5

local : remote

192.168.7.1:192.168.7.2

You may want to adjust the last two entries in the configuration to suit your setup: the ms-dns line specifies the IP
address of your DNS server. This will become useful when you enable routing. The two colon-separated addresses are
the local IP address and the IP address to give the remote device. You should choose addresses in the 10.x.x.x or
192.168.x.x ranges that don't clash with any of your internal subnets.

The dund program can then be invoked with dund --listen --persist call dun. When a remote device connects, the PPP
connection is brought up. Because of the "debug" option to pppd, you should see a verbose report of the connection in
the system log. To confirm that a connection has been established, run the ifconfig command and look for the ppp0
network interface. Invoke the ping command to confirm that your remote device is reachable:

$ ping 192.168.7.2

PING 192.168.7.2 (192.168.7.2): 56 data bytes

64 bytes from 192.168.7.2: icmp_seq=0 ttl=255 time=77.8 ms

64 bytes from 192.168.7.2: icmp_seq=1 ttl=255 time=80.5 ms

64 bytes from 192.168.7.2: icmp_seq=2 ttl=255 time=78.3 ms

The final step is to ensure that your Linux box can route for the remote device, so it can take advantage of your
network facilities. Various Linux distributions have their own way of doing this in their network configuration, but to test
you can enable it by issuing the command echo 1 > /proc/sys/net/ipv4/ip_forward. Further instructions on routing can be
found on the iptables home page (http://www.netfilter.org) and also in "Sharing a Network Connection over IrDA" in
Chapter 8. There are a few ways to set up this kind of routing, depending on your distribution and kernel version, but
make sure that other machines on your network know how to route to your connected Bluetooth device.

If you are connecting to a device running Microsoft software, you should pass the --ms-dun

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you are connecting to a device running Microsoft software, you should pass the --ms-dun
option to dund. This enables the extra negotiation required to talk to the Windows dial-up
networking implementation.

Our setup so far has no security considerations. There are several steps one can take to improve the security situation:

Require username/password authentication for the PPP setup; see the pppd documentation for how to do this.

Configure your Bluetooth device to always use link-level encryption in hcid.conf.

You should rely on neither of these to provide more than basic security. Bluetooth is still a relatively new technology,
and its security measures have not yet been subjected to many attacks in the wild. It's always best, if the remote
device is capable of it, to assume link-level security is weak and to use secure connection tools such as ssh to encrypt
your network traffic at the application layer.

7.6.9.2 Connecting to a LAN access server

The dund program can be configured to connect to a known LAN access point or to search for one and connect to it.
Here are the command lines for these two functions:

dund --connect 11:22:33:44:55:66

dund --search

You can also specify a PPP configuration file by appending the call keyword and the name of the configuration in
/etc/ppp/peers/ to the command line.

7.6.10 Personal Area Networking

While you can achieve much with file transfers via OBEX and point-to-point networking with PPP, devices can take the
full advantage of being interlinked in the same way that Ethernet networks are. They can then run protocols such as
IPv4, IPv6, and IPX. For this reason, the Bluetooth specifications define a protocol called Bluetooth Network
Encapsulation (BNEP). BNEP is used by the Personal Area Networking (PAN) profiles.

The PAN profiles cover two basic modes of networking. The first profile is a network access point (NAP). NAPs provide
network access in the same way that an access point for a Wi-Fi network does. They are typically connected to a wider
network and provide bridging. Figure 7-6 shows the structure of a NAP network. Clients connect using a profile called
PAN user (PANU).

Figure 7-6. Structure of a network connected to a NAP

The second PAN profile is a group ad-hoc network (GN). GNs are not intended to provide access to any further network
but can be used to create ad-hoc networks among a group of devices. Figure 7-7 shows the structure of a GN.

Figure 7-7. Structure of a GN

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 7-7. Structure of a GN

Both of these types of network are supported under Linux. To set them up, you must have some familiarity with Linux
network administration.

7.6.10.1 Creating a GN

GNs are easier to create, so they are good starting points to test PAN functionality. To set up a GN or NAP, the bluez-
pan package must be compiled and installed. You must also ensure that your kernel has the BNEP module compiled
(Table 7-3). Load the BNEP module with modprobe bnep.

On the server machine, run this command as root:

pand --master --listen --role GN

On the client machine, run this command, substituting the Bluetooth address of the master machine:

pand --connect 11:22:33:44:55:66

As usual, you can check for status reports from pand in the system log file. To bring a network up, configure the
interfaces' network addresses. On the master:

ifconfig bnep0 192.168.7.1

and on the client:

ifconfig bnep0 192.168.7.2

If you use the 192.168.7.x network locally, substitute other suitable IP addresses. Test the connection by using ping to
verify the connection from each end. Use ifconfig to display the interface configuration:

ifconfig bnep0

bnep0 Link encap:Ethernet HWaddr 00:80:98:24:15:6D

 inet addr:192.168.7.1 Bcast:192.168.7.255 Mask:255.255.255.0

 inet6 addr: fe80::280:98ff:fe24:156d/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:0 errors:0 dropped:0 overruns:0 frame:0

 TX packets:5 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:20 (20.0 b) TX bytes:188 (188.0 b)

You may not want to specify the GN host's Bluetooth address on the client. By default, pand registers the GN or NAP
service with the master host's SDP server. To make the client find its access point via SDP, give the client the following
command line:

pand --role PANU --search --service GN

Omitting the service argument causes pand to search for the NAP by default. Specifying the --persist option to the
client's pand line causes it to search for the GN whenever it is not connected. Using this option, you can configure a
machine to automatically connect to the network whenever it comes in range of the master machine.

To automate the IP address configuration, use the methods provided by your Linux distribution. On Red Hat, this means
creating suitable scripts to go into /etc/sysconfig/network-scripts. On Debian, you should edit /etc/network/interfaces.
The BNEP network interfaces are not present at boot time, but they will be initialized by the hotplug utility when a BNEP
connection is made. For further details of this configuration, read the manpages on your system for ifup, interfaces
(Debian only), and hotplug.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(Debian only), and hotplug.

The ideal configuration is to give the GN master a static IP address and require the clients to use DHCP. If your DHCP
server is running on the GN master, you may need to run a command to cause it to take note of the new network
interface to listen on. This should be possible through your system's network configuration.

7.6.10.2 Bridging interfaces

As you will discover if you attempt to connect more than one client machine to your host, each connection is given its
own network interface: bnep0, bnep1, bnep2 and so on. Not only is it a nuisance to specify multiple configurations on
the master side for each interface, but it leaves the client devices unable to communicate with each other. The solution
to this is called bridging. Bridging enables multiple network devices to appear as one interface on a network by tying,
on the master side, all the bnep* devices into one interface.

The first step is to ensure that bridging is enabled in your Linux kernel; bridging is supported in both the 2.4 and 2.6
series of kernels. This option can be found under "Networking options" from the kernel's menu configuration and is
called 802.1d Ethernet Bridging. You also need the bridge-utils software package installed. If this is not part of your
Linux distribution, download it from http://bridge.sourceforge.net/.

Once you have the kernel modules and tools installed, you can bring up and configure a bridge interface:

brctl addbr pan0

ifconfig pan0

192.168.7.1

brctl setfd pan0 0

brctl stp pan0 disable

This bridged interface then handles all the BNEP interfaces. The latter two commands disable two features of Ethernet
bridging known as Listening and Learning States and Spanning Tree Protocol. For noncomplex networks, they are not
required and may cause delays to initializing the network. Further information on these features can be found on the
O'Reilly Network web site at http://www.oreillynet.com/pub/a/network/2001/03/30/net_2nd_lang.html.

The second part of the trick is to get pand to add each interface to the bridge as it comes up. Create a script, as shown
in Example 7-8, and save it to /etc/bluetooth/pan/dev-up. Ensure it is executable.

Example 7-8. A script to add each BNEP network interface to the bridge

#!/bin/sh

brctl addif pan0 $1

ifconfig $1 0.0.0.0

The bridging method provides another advantage: you don't need to inform your DHCP server of the existence of a new
interface whenever a BNEP connection is made.

Here is the configuration of the network interfaces after a bridged network connection has been established with one
NAP and two PANU clients:

bnep0 Link encap:Ethernet HWaddr 00:40:05:D0:DD:69

 inet6 addr: fe80::240:5ff:fed0:dd69/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:11 errors:0 dropped:0 overruns:0 frame:0

 TX packets:13 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:789 (789.0 b) TX bytes:880 (880.0 b)

bnep1 Link encap:Ethernet HWaddr 00:80:98:24:15:6D

 inet6 addr: fe80::280:98ff:fe24:156d/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:49 errors:0 dropped:0 overruns:0 frame:0

 TX packets:72 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:6453 (6.3 KiB) TX bytes:9019 (8.8 KiB)

pan0 Link encap:Ethernet HWaddr 00:40:05:D0:DD:69

 inet addr:192.168.7.1 Bcast:192.168.7.255 Mask:255.255.255.0

 inet6 addr: fe80::200:ff:fe00:0/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:11 errors:0 dropped:0 overruns:0 frame:0

 TX packets:13 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

 RX bytes:700 (700.0 b) TX bytes:1254 (1.2 KiB)

7.6.10.3 Creating a network access point

If you intend to incorporate PAN networking as part of your network's infrastructure, you will want to set up a NAP. The
initial part of NAP configuration is exactly the same as for the aforementioned GN configuration, except it specifies --role
NAP to the pand command line rather than --role GN.

The remaining configuration required is to set up the routing in your network to ensure that the client machines and the
rest of your LAN know how to reach each other. To illustrate, consider a network where the LAN uses the 10.x.x.x
subnet and your NAP machine has the IP 10.0.3.2. The Bluetooth access point you just set up uses the 192.168.7.x
subnet with 192.168.7.1 as your NAP machine. On your client machines, you must run:

route add -net 10.0.0.0 netmask 255.0.0.0 gw 192.168.7.1

On the LAN router, you must run the following command, or insert an equivalent configuration in the case of a non-
Linux router:

route add -net 192.168.7.0 netmask 255.255.255.0 gw 10.0.3.2

As with the configuration for dund, you must also ensure your NAP machine has IP forwarding enabled.

Finally, for further information, you should consult the "PAN HOWTO" document, available from the documentation area
of the BlueZ web site (http://www.bluez.org/documentation.html). This document serves as the source for much of the
information in this section.

7.6.11 Experimental Features

The uses of Bluetooth covered so far in this chapter are the widespread applications of the BlueZ stack. In this section,
we cover the more experimental uses: printing over Bluetooth, connecting Bluetooth mice and keyboards, and using
audio with Bluetooth headsets. If you're not afraid of some system configuration, happy with compiling programs from
source, and understand how to use CVS, this section is for you.

7.6.11.1 Printing over Bluetooth

The Common Unix Printing System (CUPS) is a popular solution for managing printers on Linux systems. If you run
CUPS, you can add a Bluetooth printer to your system. Assuming you don't already have a Bluetooth-enabled printer,
you can buy Bluetooth-to-Centronics dongles that plug into the back of your printer. These devices are produced by
several manufacturers, which include AnyCom, Axis, HP, and TDK.

To configure CUPS to use a Bluetooth printer, you must first download and install Marcel Holtmann's software from
http://www.holtmann.org/linux/bluetooth/cups.html. Once you have compiled and installed the software as per Marcel's
instructions, you can configure the CUPS backend.

Edit the file /etc/bluetooth/printers.conf and add an entry similar to the following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Edit the file /etc/bluetooth/printers.conf and add an entry similar to the following:

default {

 # Bluetooth address of the device

 device 00:40:8C:5E:5D:A4;

 # Bluetooth printing protocol

 protocol serial;

 # Description of the connection

 comment "My Bluetooth printer";

}

Restart your CUPS system, and you should then see the printer ready for administration. The Bluetooth backend
performs an SDP inquiry on the target printer to discover the RFCOMM channel on which to send data.

7.6.11.2 Connecting input devices

Vendors such as Apple and Microsoft both produce Bluetooth-connected mice and keyboards. There is experimental
support available from the BlueZ project for these devices, and they will be supported more fully in the 2.0 release of
the BlueZ tools.

Input device support entails enabling the user-level driver support in the Input device drivers section of your Linux
kernel. As its name suggests, this allows regular programs to inject events into the system's input device channels.
Secondly, you must compile and configure the development version of BlueZ:

cvs -d :pserver:anonymous@cvs.bluez.sourceforge.net login

cvs -z3 -d :pserver:anonymous@cvs.bluez.sourceforge.net \

 co libs2 utils2

cd libs2

./bootstrap

./configure --prefix=/opt/bluez2

make && make install

cd ../utils2

./bootstrap

./configure --prefix=/opt/bluez2 --with-bluetooth=/opt/bluez2

make && make install

echo /opt/bluez2/lib >> /etc/ld.so.conf

ldconfig

Put BlueZ into /opt/bluez2 to avoid conflict with earlier, production-quality versions of the
BlueZ tools. We suggest that you don't put /opt/bluez2/bin in your path, but invoke the
2.0 tools with their full path. When BlueZ 2.0 is released, however, feel free to use them
with wild abandon.

Next, you must verify that the user-level input module is working. Check that the device /dev/misc/uinput exists. If not,
create it with mknod /dev/misc/uinput c 10 223. Load the module with modprobe uinput.

If you use your mouse with the XFree86 windowing system, ensure that it has a suitable entry. If you already use a
USB mouse, you should have this already. Here is a configuration appropriate for the Microsoft Bluetooth mouse,
supporting its scroll wheel:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

supporting its scroll wheel:

Section "InputDevice"

 Identifier "MSMouse"

 Driver "mouse"

 Option "Protocol" "IMPS/2"

 Option "Device" "/dev/input/mice"

 Option "ZAxisMapping" "4 5"

 Option "Buttons" "5"

 Option "Emulate3Buttons" "false"

EndSection

Additionally, ensure that InputDevice "MSMouse" "SendCoreEvents" is added to the ServerLayout section of your XFree86
configuration.

Adding Bluetooth input devices to your system is now a matter of invoking the /opt/bluez2/bthid program. This runs
once as a daemon, and then you should invoke it again, each time to add a device:

/opt/bluez2/bin/bthid -d

/opt/bluez2/bin/bthid -c 11:22:33:44:55:66

Note that the input devices need to be paired before they will connect. With mice, the manufacturer presets the PIN,
usually to 0000. With keyboards, you enter a PIN and press return on the Bluetooth keyboard. As ever, keep an eye on
the system log to help diagnose failures.

7.6.11.3 Connecting to Bluetooth ISDN modems

Marcel Holtmann has written the necessary tools to interface with Bluetooth-enabled ISDN modems. The relevant
software and instructions can be found on his web site at http://www.holtmann.org/linux/bluetooth/cmtp.html.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

7.7 Graphical Applications
Linux has several popular graphical user interface systems, the most well-known being KDE and GNOME. These projects
both have tools that provide an easy-to-use interface to your system's Bluetooth devices. At the time of writing, neither
project is an official part of the KDE or GNOME desktop, but both will be integrated in future. This section presents a
brief survey of the tools available and where to get them.

7.7.1 KDE

The KDE Bluetooth Framework's home page is at http://kde-bluetooth.sourceforge.net/. Its features include:

A control center plug-in to configure Bluetooth devices

An OBEX server application

An OBEX sending client

Graphical exploration of remote devices

Cell phone handsfree implementation using your computer's microphone and speakers

Proximity-based screen locking

The KDE Bluetooth Framework can be downloaded from the project's web page. Figure 7-8 and Figure 7-9 show KDE's
Bluetooth applications in action.

Figure 7-8. Browsing a device's services in KDE

Figure 7-9. Receiving a file via OBEX in KDE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 7-9. Receiving a file via OBEX in KDE

7.7.2 GNOME

The GNOME Bluetooth subsystem's home page is available at http://usefulinc.com/software/gnome-bluetooth.
Download it from the project's home page. RPM and Debian packages are also available. Features of the GNOME
Bluetooth subsystem include:

An OBEX server application

An OBEX sending client

A phone manager application allowing sending and receiving of SMS messages

Graphical exploration of remote devices

Programming libraries for creating Bluetooth-aware applications in C, Python, or C#

Figure 7-10 and Figure 7-11 show GNOME's Bluetooth features in action.

Figure 7-10. Exploring nearby Bluetooth devices in GNOME

Figure 7-11. Sending a file via OBEX in GNOME

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 7-11. Sending a file via OBEX in GNOME

7.7.2.1 Synchronization

If your PDA uses Bluetooth and you use Ximian Evolution as your calendar and contacts management tool, you can
synchronize the two over Bluetooth using the Multisync application. Multisync is available in most Linux distributions,
and you can download it from its home page at http://multisync.sourceforge.net.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

7.8 Cool Bluetooth Tricks
Aside from the everyday file management and connectivity, Bluetooth on Linux provides scope for some fun
applications. This section outlines a few of them, mostly involving interfacing a cell phone with your computer.

7.8.1 Use a Bluetooth Cell Phone to Control Presentations

Wireless devices that control presentations have been available for some time, but at a relatively hefty price tag,
they're probably not worth the investment for the occasional presenter. Instead, why not program your cell phone to do
the work?

This trick works with Ericsson phones, such as the T610, T68i, and R520m. These phones provide an advanced ability to
map keypad presses to output over an RFCOMM serial connection. In turn, a program running on the Linux side can
translate these codes into system input events.

You can find the code at http://www.hackdiary.com/projects/bluetoothremote.

7.8.2 Controlling Music Players

Using a similar trick as mentioned previously, the popular MP3-playing application XMMS can be controlled from a
suitable Ericsson phone. The bluexmms program even supports display of the MP3 playlist on the phone's screen. You
can find instructions and a download at http://linuxbrit.co.uk/bluexmms.

7.8.3 Proximity-Sensitive Screen Blanking

The BlueZ Bluetooth stack reports the signal strength of an active Bluetooth connection. The KDE Bluetooth Framework
has a program that takes advantage of this and activates your screensaver when you take your cell phone out of range.

If you don't run the KDE desktop, then try Jon Allen's Perl script to do a similar task, available from
http://perl.jonallen.info/bin/view/Main/BluetoothProximityDetection.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 8. Infrared
Infrared is a legacy technology that won't die any time soon. Sure, it has lousy range and can be a hassle to set up, but
sometimes, it's the only common communications medium between your Linux box and something you want to talk to.

If you have ever used a remote control, you have used infrared technology. Infrared is a wireless communication
technology that makes use of the invisible spectrum of light that is just beyond red in the visible spectrum. It's suitable
for applications that require short-range, point-to-point data transfer. Because it uses light, line of sight is a
prerequisite for using infrared. Despite this limitation, infrared is widely used in household equipment and is
increasingly popular in devices such as digital cameras, PDAs, and notebook computers.

Founded in 1993 as a nonprofit organization, the Infrared Data Association (IrDA) is an international organization that
creates and promotes interoperable, low-cost infrared data interconnection standards that allow users to transfer data
from one device to another. The Infrared Data Association standards support a broad range of appliances, computing,
and communications devices.

The term IrDA is typically used to refer to the protocols for infrared communications, not
exclusively to the nonprofit body.

There are currently four versions of IrDA; their differences are mainly in the transfer speed:

Serial Infrared (SIR)

The original standard with a transfer speed of up to 115 kbps

Medium Infrared (MIR)

Improved transfer speed of 1.152 Mbps; it is not widely implemented

Fast Infrared (FIR)

Speed of up to 4 Mbps; most new computers implement this standard

Very Fast Infrared (VFIR)

Speed of up to 16 Mbps; it is not widely implemented yet

When two devices with two different IrDA implementations communicate, one steps down to the lower transfer speed.

In terms of operating range, infrared devices can communicate up to one or two meters. Depending on the
implementation, if a device uses a lower power version, the range can be stepped down to a mere 20 to 30 cm. This is
crucial for low-power devices.

A Cyclic Redundancy Check (CRC), which uses a number derived from the transmitted data to verify its integrity,
protects all exchanged data packets. CRC-16 is used for speeds up to 1.152 Mbps, and CRC-32 is used for speeds up to
4 Mbps. The IrDA also defines a bi-directional communication for infrared communications.

An infrared connection operates at a range of 0 to 1 meter, with peak intensity within a 30-degree cone (see Figure 8-
1). With more power, a longer operating range is possible with a reduction in transfer speed. In addition, an infrared
connection requires a visual line of sight in order to work, so there cannot be any direct obstruction between the two
communicating devices.

Figure 8-1. The 30-degree cone for peak power intensity of an infrared port

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8-1. The 30-degree cone for peak power intensity of an infrared port

Setting up Infrared with Linux can be tricky. Jean Tourrilhes's Linux-IrDA Quick Tutorial
(http://www.hpl.hp.com/personal/Jean_Tourrilhes/IrDA/IrDA.html) lists 24 common pitfalls that await the unsuspecting
user.

If your hardware supports SIR mode, this is usually straightforward. FIR configuration is still somewhat arcane, unless
you have a system that's supported right out of the box. Most modern notebooks support FIR by default, but you can
often go into the BIOS setup and change it to SIR. Even if you want FIR to work, be sure to try SIR first, because it's
usually the simplest.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

8.1 IrDA in the Kernel
Most modern kernels have all the support that you need to get infrared to work. If you build your own kernel, make
sure that you've enabled infrared support. Most of the infrared support is configured under the IrDA (Infrared) Support
section that appears in the kernel configuration. Figure 8-2 shows the make menuconfig kernel configuration screen
open to the IrDA Support section. (You may need to select Prompt for development and/or incomplete code/drivers
under the top-level Code maturity level options section of the kernel configuration to see all the available options.)

Figure 8-2. Configuring IrDA support with make menuconfig

You'll definitely want to configure IrDA Subsystem Support (CONFIG_IRDA) as well as the IrCOMM Protocol
(CONFIG_IRCOMM), which lets you use the IrDA port as a serial port via one of the /dev/ircommN ports. We suggest
that you compile these as modules and go into Infrared-port Device Drivers and select every driver that it offers you,
configuring each as a module.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

8.2 PC Laptop with Built-In IrDA
There is a lot of hardware out there, and it's all put together slightly differently. We got infrared working under a couple
of different distributions, both with a dongle and the internal infrared. Your configuration should be similar, but if you
run into any trouble, check out Jean Tourrilhes's Linux-IrDA Quick Tutorial at
http://www.hpl.hp.com/personal/Jean_Tourrilhes/IrDA/IrDA.html.

To make sure you are up to date with the most recent bug and security fixes, make sure
you've installed the most recent updates that are available for your Linux distribution,
especially for the kernel and associated modules.

Out of the box, we were unable to get infrared working in SIR or FIR mode on our computer, a ThinkPad A20m. On a
whim, we went into the BIOS and tried different IRQ and port settings. The combination of IRQ 4 and port 0x3E8 did
the trick. The ThinkPad didn't let us switch from FIR to SIR mode in the BIOS, but it let us use SIR mode without any
complaints under several Linux distributions.

On all of the Linux distributions described in the following list, we performed some initial steps to discover the infrared
port. First, we booted the system, and then inspected the output of dmesg to get a list of serial ports:

debian:~# dmesg | grep tty

ttyS01 at 0x02f8 (irq = 3) is a 16550A

ttyS02 at 0x03e8 (irq = 4) is a 16550A

We used this information to figure out which serial devices corresponded to the infrared hardware. If there are a lot of
serial devices on your system, this may involve some guesswork or at least a look around the BIOS settings. In this
infrared port, we knew that the first serial devices listed (/dev/ttyS1) corresponds to the 9-pin serial port on the back of
the computer, so that left /dev/ttyS2.

In each of the following examples, we rebooted after making the changes to ensure that everything worked. If you'd
like to preserve your uptime, try running /etc/init.d/irda restart after making the changes instead of rebooting.

Debian 3.0r1

Because the latest 2.4 kernel-image package (2.4.18-14.1) was showing its age, we compiled and installed the
latest kernel from source (2.4.24). Other than that, we worked with a stock 3.0r1 install with the latest
updates. To get infrared working, we installed the irda-common and irda-tools packages, and edited
/etc/irda.conf, setting IRDADEV=/dev/ttyS2. irda-common sets up /etc/init.d/irda to start in all runlevels, so we
didn't need to modify any startup scripts. However, Debian did not put our mortal user into the correct group
(dialout) to access serial ports, so we fixed that with usermod -G dialout username.

SuSE 9.0

The irda package, which was installed by default, provided all the utilities we needed for IrDA support. We set
IRDA_PORT="/dev/ttyS2" in /etc/sysconfig/irda. Next, we ran insserv /etc/init.d/irda to enable IrDA support to start
at boot time.

Mandrake 9.2

To get infrared working, we installed the irda-utils package and edited /etc/sysconfig/irda, setting
DEVICE=/dev/ttyS2. irda-utils sets up /etc/init.d/irda to start in all runlevels, so we didn't need to modify any
startup scripts. Mandrake did not put our mortal user into the correct group (uucp) to access serial ports, so we
fixed that with usermod -G uucp username.

RedHat 9

The irda-utils package, which was installed by default, provided all the utilities we needed for IrDA support. We
set DEVICE=/dev/ttyS2 in /etc/sysconfig/irda. Next, we ran chkconfig --level 5 irda on to enable IrDA support to start
in runlevel 5, the default runlevel for Red Hat Linux running in graphical mode (check your /etc/inittab to see
the default runlevel for your system or use the runlevel command to see your current runlevel). Red Hat did not
put our mortal user into the correct group (uucp) to access serial ports, so we fixed that with usermod -G uucp

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

put our mortal user into the correct group (uucp) to access serial ports, so we fixed that with usermod -G uucp
username.

Gentoo 1.4

We installed the infrared utilities with emerge irda-utils and set IRDADEV=/dev/ttyS2 in /etc/conf.d/irda. Next, we
enabled the irda startup script with rc-update add irda default. The ircomm devices were owned by root, so we
gave the uucp group access to them with chgrp uucp /dev/ircomm* and chmod g+rw /dev/ircomm*, and then gave
our mortal user access with usermod -G uucp username.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

8.3 Infrared Dongle
If you don't have built-in infrared support, or if you can't get the built-in infrared to work, use an infrared dongle. If
your dongle is compatible with the USB and IrDA specifications, it should just work. We tested the WINIC W-USB-180
IrDA dongle (http://www.winic.com.tw/180.htm), which is available in the U.S. from MadsonLine
(http://www.madsonline.com/).

The most compelling reason to use an external dongle is the awkward placement of infrared ports on devices. Figure 8-
3 shows how we had to position an HP iPaq upside down to use it with the ThinkPad's built-in IrDA port. Figure 8-4
shows a much more relaxed positioning using the W-USB-180..

Figure 8-3. Awkward infrared port placement

Figure 8-4. Taking things into your own hands with an external IrDA adapter

At the time of this writing, support for USB infrared dongles was experimental. We suggest
you compile the latest kernel available in the series you are using and configure irda-usb
as a module (CONFIG_USB_IRDA). You should also disable ir-usb, which conflicts with irda-
usb. See "IrDA in the Kernel" earlier in this chapter

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We got the W-USB-180 adapter to work by following these steps:

1. We stopped irda, just in case it had been started earlier:

/etc/init.d/irda stop

2. We disabled the ir-usb module, which appears in some recent kernels and conflicts with the driver that we
should be using, irda-usb:

cd /lib/modules/

find . -name ir-usb.o

cd ./2.4.21-166-default/kernel/drivers/usb/serial/

mv ir-usb.o ir-usb.o.unused

3. (Optional.) If you've already plugged in the dongle in the ir-usb module may have already claimed it. You can
convince that module to release the dongle with this command (you may have to run it more than once if there
are some other dependencies that prevent the modules from unloading):

rmmod ircomm-tty ircomm irtty ir-usb irda-usb irda

4. Next, we modprobeed the irda-usb module, and dmesg showed that the device irda0 had come up (the actual
device name may vary on your system):

modprobe irda-usb

dmesg | grep irda

usb.c: registered new driver irda-usb

IrDA: Registered device irda0

5. A device name of irdaX (where X is some number) indicates that you've loaded the IrDA device as a network
device. So, instead of putting the pathname to a device (such as /dev/ttyS2) in your IrDA configuration file, you
should put just the device name alone. For example, under Debian 3.0r1, we set IRDADEV=irda0 in /etc/irda.conf
(for a list of some Linux distributions and the IrDA configuration files used by each, see the Debian entry in
Section 8.2 earlier in this chapter).

6. After this, we rebooted, but we could have also started IrDA support with /etc/init.d/irda start.

For more information on using infrared dongles with Linux, including serial port dongles, see the sections on dongles in
the Linux Infrared HOWTO (http://www.tuxmobil.com/Infrared-HOWTO/Infrared-HOWTO.html).

For specific details on using USB dongles, see the IrDA and USB section of the Linux Infrared HOWTO at
http://www.tuxmobil.com/Infrared-HOWTO/infrared-howto-s-irda-usb.html.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

8.4 Sharing a Network Connection over IrDA
If you want to accept PPP connections from other IrDA-enabled devices, start pppd listening on the ircomm device that
corresponds to your IrDA adapter (these devices are numbered ircommN, where N is a number from 0 to one less than
the number of IrDA adapters on your system). See Chapter 7.

In most cases, you'll want more than just a PPP connection. If you want to connect to the Internet from the other
device, you'll need your Linux box to act as a NAT router, and you'll also need to tell the PPP client device where it can
find its name server. We've found that the following script works well (you may need to customize $LOCAL, $REMOTE,
$DNS, $INTERFACE, and $IRDEV):

#!/bin/sh

LOCAL=192.168.2.1 # IP address for the server running pppd

REMOTE=192.168.2.2 # IP address for the device

DNS=192.168.254.1 # A DNS server

INTERFACE=wlan0 # Interface that connects to the network

IRDEV=/dev/ircomm0 # Infrared device

Set up forwarding.

#

echo 1 > /proc/sys/net/ipv4/ip_forward

/usr/sbin/iptables -t nat --flush

/usr/sbin/iptables -t nat -A POSTROUTING -o "$INTERFACE" -j MASQUERADE

Start the PPP link.

#

/usr/sbin/pppd $IRDEV 115200 local \

 $LOCAL:$REMOTE ms-dns $DNS \

 silent noauth persist nodetach \

8.4.1 Connecting from Linux

To connect from another IrDA-enabled Linux device, align the infrared ports and then issue the following command:

pppd /dev/ircomm0 115200 usepeerdns local nodetach defaultroute

You may need to bring down any existing network interfaces, because the defaultroute option generally does not override
existing default routes. Some versions of Linux ship with a modified pppd that lets you use the replacedefaultroute option
to replace any existing default route.

8.4.2 Connecting from Palm OS

To set up the connection to the Linux system:

1. Select Prefs Communication Network (Figure 8-5)

2. The Network preferences appear, which list the existing services; click New.

3. Give the new service a name and select IR to a PC/Handheld under Connection as shown in Figure 8-6.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8-5. Opening Network Preferences on the Palm

Figure 8-6. Setting up a new network connection on the Palm

To connect, align the infrared ports of your Linux system and the Palm. Return to Network preferences, select the
service you created in Step 3, and click Connect. When you are done with the network connection, return to the
Network preferences and click Disconnect.

To test out your connection, ping a remote host. To do this, stay in the Network preferences after the connection is
made and select Menu Options View Log. Scroll to the bottom of the log, use Graffiti to write ping hostname
and then use the Graffiti stroke for a carriage return (a diagonal stroke in the ABC region from upper right to lower
left). If you've made the network connection successfully, you'll be able to ping a remote host, as shown in Figure 8-7.
(Be sure that the remote host accepts pings and that your network does not block them).

Figure 8-7. Pinging a remote host from the Palm

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.4.3 Connecting from Pocket PC

Making a simple PPP connection is more complicated under the Pocket PC than under Palm OS. To set up the connection
to the Linux system with Windows Mobile 2003.

1. Click the Start menu, and choose Settings Connections. The Connections settings will appear, as shown in
Figure 8-8. Click Add a New Modem Connection.

Figure 8-8. Connection settings on the Pocket PC

2. You'll be prompted to choose a name for the connection and to select a modem. Select Generic IrDA and click
Next.

3. You'll be prompted to type in a phone number. Pick anything you want—it's just a placeholder—and then click
Next.

4. On the next screen, you'll be asked to supply a username, password, and domain. Leave these all blank and
click Advanced.

5. On the General tab of the advanced settings, set the Baud rate to 115200 and uncheck Wait for Dial Tone
before Dialing, as shown in Figure 8-9.

Figure 8-9. Specifying general settings on the Pocket PC

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6. Click the Port Settings tab and check the box labeled Enter Dialing Commands Manually, as shown in Figure 8-
10. Click OK.

7. You'll be back at the dialog (username, password, and domain) that you originally saw in Step 4. Click Finish to
return to the Connections settings.

Figure 8-10. Specifying port settings on the Pocket PC

To connect to the Linux system, align your infrared ports, and then:

1. Click the Start menu and choose Settings Connections. Click Manage Existing Connections under the same
section where you created the connection originally.

2. A list of connections appears, showing the connection that you created. Tap and hold on it to bring up a context
menu and select Connect, as shown in Figure 8-11.

Figure 8-11. Making the connection on the Pocket PC

3. You'll be prompted for a username, password, and domain. Leave these blank and click Save Password to have
this (hopefully) never bother you again, and then click OK.

4. After a few seconds, the Manual Dial Terminal should appear full of PPP gibberish, as shown in Figure 8-12.
Click OK, and you should get confirmation of your connection, as shown in Figure 8-13.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8-12. The Manual Dial Terminal on the Pocket PC

Figure 8-13. Confirming the connection on the Pocket PC

You can hide this notification and make it reappear by clicking its icon at the top of the screen. Use the Disconnect
button to disconnect when you are finished. Test your connection by visiting a web site with Pocket Internet Explorer.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

8.5 Connecting to the Internet with a Cell Phone
Making an Internet connection over infrared is really no different from making it over any other serial port, which is
described in detail in Chapter 9. For example, to connect to AT&T Wireless's EDGE network with a Nokia 6200 (see
"GSM/GPRS Phone with Data Cable" in Chapter 9), use the peers script as shown in Example 8-1. You can use the same
attws-connect and attws-disconnect scripts as shown in Chapter 9.

Example 8-1. PPP peer settings for AT&T Wireless and the Nokia 6200 over IrDA

File: /etc/ppp/peers/attws-irda

#

/dev/ircomm0 # Nokia 6200

115200 # speed

defaultroute # use the cellular network for the default route

usepeerdns # use the DNS servers from the remote network

nodetach # keep pppd in the foreground

nocrtscts # no hardware flow control

lock # lock the serial port

noauth # don't expect the modem to authenticate itself

local # don't use Carrier Detect or Data Terminal Ready

connect "/usr/sbin/chat -v -f /etc/chatscripts/attws-connect"

disconnect "/usr/sbin/chat -v -f /etc/chatscripts/attws-disconnect"
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

8.6 Transferring Files with OpenOBEX
OBEX (Object Exchange) is an IrDA standard (http://www.irda.org/standards/standards.asp) for transferring files
between devices. OpenOBEX (http://sourceforge.net/projects/openobex/) is an open source implementation of this
standard. To install OpenOBEX, download the latest release (openobex-x.y.z.tar.gz), extract the tarball, then configure,
compile, and install it:

bjepson@linux:~/Documents> tar xfz openobex-1.0.1.tar.gz

bjepson@linux:~/Documents> cd openobex-1.0.1/

bjepson@linux:~/Documents/openobex-1.0.1> ./configure

bjepson@linux:~/Documents/openobex-1.0.1> make

bjepson@linux:~/Documents/openobex-1.0.1> sudo make install

You'll also want the applications, so download the latest release of the apps (openobex-apps-x.y.z.tar.gz), and go
through the same steps:

bjepson@linux:~/Documents> tar xfz openobex-apps-1.0.0.tar.gz

bjepson@linux:~/Documents> cd openobex-apps-1.0.0/

bjepson@linux:~/Documents/ openobex-apps-1.0.0> ./configure

bjepson@linux:~/Documents/ openobex-apps-1.0.0> make

bjepson@linux:~/Documents/ openobex-apps-1.0.0> sudo make install

(You may need to add /usr/local/lib to /etc/ld.so.conf and run ldconfig as root for everything to work.)

After you've installed the applications, you can transfer files with the irobex_palm3 utility. Don't let the "palm" in the
name put you off; we've used it with cellular phones as with well as a Palm (you should be able to use any infrared
device that supports OBEX). To receive files, start irobex_palm3, initiate sending a file from your device, and align the
ports. After irobex_palm3 receives the file, it exits. Here's a session where irobex_palm3 receives a business card from
a Nokia phone:

bjepson@linux:~ > irobex_palm3

 Send and receive files to Palm3

Waiting for files

..HEADER_LENGTH = 220

Filename = Nokia.vcf

Wrote /tmp/Nokia.vcf (108 bytes)

To send a file, be sure that your device is configured to receive files via infrared, align the ports, and use irobex_palm3
filename:

bjepson@linux:~> irobex_palm3 sample.png

Send and receive files to Palm3

name=sample.png, size=11439

...........

PUT successful
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

8.7 Synchronizing with a Palm
There are several tools that you can use to synchronize your Palm and Linux system. pilot-xfer, which is part of the
pilot-link (http://www.pilot-link.org/) package, lets you synchronize your Palm to a directory. You can synchronize to
KDE address books, calendars, etc. with KPilot (http://www.slac.com/pilone/kpilot_home/). GNOME-Pilot
(http://www.gnome.org/projects/gnome-pilot/) lets you do the same with GNOME applications.

In each of these applications, you'll be asked to press the HotSync button somewhere
along the way. When this happens, launch HotSync on your Palm, select IR to a
PC/Handheld, and click the on-screen HotSync button (not the HotSync button on your
cable or cradle), as shown in Figure 8-17.

8.7.1 KPilot

You can use KPilot as a free alternative to the Palm Desktop software for Windows and Mac OS X. To set up KPilot with
your Palm over infrared:

1. Launch KPilot (select it from a menu or run the command kpilot). The main window appears as shown in Figure
8-14.

Figure 8-14. The KPilot main window

2. Click Settings Configure KPilot. The settings window appears, as shown in Figure 8-15. Specify
/dev/ircommN (where N is the number of your infrared device, usually 0) as the Pilot device and click OK.

Figure 8-15. Setting the Pilot device in KPilot

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8-15. Setting the Pilot device in KPilot

3. The main window should update to display the following (if it doesn't, check your IrDA configuration):

13:05:54 Trying to open device...

13:05:54 Device link ready.

4. Next, click Settings Configure Conduits to choose the kind of information you want to synchronize. The
conduit configuration window appears, as shown in Figure 8-16. Select each conduit you want, and click Enable.
Click OK when you are done.

Figure 8-16. Selecting which conduits to use in KPilot

To synchronize with your Palm:

1. Place your Palm's infrared port in range of that of your Linux system.

2. On your Palm, click the on-screen HotSync button as shown in Figure 8-17.

3. The first time you sync, you may get a dialog indicating that the Palm already has a username associated with
it. If you haven't synced the Palm before, the dialog may be slightly different.

The KPilot window shows the progress of the HotSync as it continues.

Figure 8-17. Starting a HotSync from the Palm

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8-17. Starting a HotSync from the Palm

8.7.2 pilot-link

Use the pilot-xfer utility to back up, sync, or restore your Palm (see the pilot-xfer manpage for a complete list of
options and features). For example, to sync your Palm into the ~/Palm directory, use the --sync option and specify
/dev/ircommN (where N is the number of your infrared device, usually 0) as the port with the -p option:

bjepson@linux:~> pilot-xfer -p /dev/ircomm0 --sync ~/Palm

 Listening to port: /dev/ircomm0

Please press the HotSync button now... Connected

Synchronizing /home/bjepson/Palm/Novarra-19.txt.pdb

Synchronizing /home/bjepson/Palm/Novarra-19.nod.pdb

...

You can use the --backup option to back up your Palm and the --restore option to restore it.

8.7.3 GNOME-Pilot

GNOME-Pilot lets you synchronize your Palm to various components of the GNOME desktop, including Evolution. To
configure GNOME-Pilot:

1. Launch GNOME-Pilot (gpilotd-control-applet). You'll see a Welcome screen. Click Next.

2. The Cradle Settings appear (Figure 8-18). Give your settings a name, then select the port, such as
/dev/ircommN (where N is the number of your infrared device, usually 0), and speed (115200). Specify a type
of IrDA and click Next.

Figure 8-18. GNOME-Pilot cradle settings

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. The Pilot Identification appears. Here you must specify whether you've synced this Palm before. If not, provide
a username and ID. Click Next.

4. If you have synced the Palm before, the Initial Sync screen appears, and GNOME-Pilot will try to retrieve the
username and ID. Click Next after it has retrieved the name and ID (see Figure 8-19).

Figure 8-19. GNOME-Pilot retrieving the username and ID

5. The Pilot Attributes screen appears, as shown in Figure 8-20. You can specify a name, working directory, and
action to perform on syncing. You should set the Sync Action to Use conduit settings and click Next.

Figure 8-20. GNOME-Pilot displaying the Pilot Attributes

6. The final screen appears, which should indicate success. Click Finish, and the Pilot Link dialog appears, as
shown in Figure 8-21.

7. (Optional.) If GNOME-Pilot retrieved a negative ID in Step 3, you should change it now. Select your Palm in the
Pilot Link dialog and click Edit.

8. The Pilot Settings appear, as shown in Figure 8-22. Set the ID to a reasonable number (just to be safe, choose
an integer between 1 and 254) and click Send to Pilot. You'll need to press the on-screen HotSync as shown
earlier in Figure 8-17.

Figure 8-21. The Pilot Link dialog

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8-22. Setting a new ID with GNOME-Pilot

9. Select the Conduits tab (see Figure 8-23), and for each conduit you want to enable, select the conduit name
and click Enable.

10. Click OK when you are done.

Now, when you press the onscreen HotSync button, you may not see anything on the screen unless you've added a
panel item for GNOME-Pilot. However, the Palm will show you what's happening as the HotSync progresses.

Figure 8-23. Specifying conduit settings in GNOME-Pilot

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

8.8 Pocket PC
You can sync with a Pocket PC using SynCE (http://synce.sourceforge.net/synce/). If SynCE is not available with your
distribution, follow the excellent instructions at the SynCE site for installing and configuring the software.

After it's installed, you can generally start SynCE with synce-serial-config ircommN (where N is the number of your infrared
device, usually 0) and then use synce-serial-start (run these as root):

synce-serial-config ircomm0

You can now run synce-serial-start to start a serial connection.

synce-serial-start

Once synce-serial-start is running, you should run the dccm utility as the mortal user who wants to play with the Pocket
PC (this utility communicates with the synce process that you started as root):

bjepson@linux:~> dccm

Now, align your Pocket PC's infrared port with that of your Linux system, and launch ActiveSync. Click Tools
Connect via IR, and your Pocket PC should make an ActiveSync connection, as shown in Figure 8-24. Note that the
progress bar never goes anywhere. It's just a live link between the two; it's not actually syncing.

Figure 8-24. Never-ending ActiveSync

To move data between your Linux system and your Pocket PC, you can use commands like pls to list files on the Pocket
PC and pcp (may be Pcp on some systems) to copy files to and from the Pocket PC. Note that you must prefix the root of
the filesystem with ":" when you use pcp.

bjepson@linux:~> pls /My\ Documents/

AC-------- 57727 Thu Jul 31 20:00:02 2003 000013a8 Sample4.jpg

AC-------- 67617 Thu Jul 31 20:00:02 2003 00001393 Sample3.jpg

AC-------- 45053 Thu Jul 31 20:00:02 2003 00001386 Sample2.jpg

AC-------- 64168 Thu Jul 31 20:00:02 2003 00001374 Sample1.jpg

Directory Thu Jul 31 20:00:02 2003 0000134a Business/

Directory Thu Jul 31 20:00:02 2003 00001349 Personal/

Directory Thu Jul 31 20:00:02 2003 00001287 Templates/

bjepson@linux:~> Pcp ":/My Documents/Sample1.jpg"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

bjepson@linux:~> Pcp ":/My Documents/Sample1.jpg"

File copy of 64168 bytes took 0 minutes and 7 seconds, that's 9166 bytes/s.

The SynCE site includes a number of other tools, such as Orange (extract .cab files from Pocket PC installation
packages) and a plug-in for MultiSync (http://multisync.sourceforge.net/).

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 9. Cellular Networking
The widest of the wide area wireless networks are the cellular networks. They're also among the slowest, unless you're
in one of the markets where third-generation (3G) cellular networks are available. At the time of this writing, San Diego
and Washington, D.C. users could receive between 300 and 500 kbps from Verizon for $80 a month. The rest of the
United States, and much of the world, is still plodding along at between 30 and 130 kbps, depending on several
variables: the type of network, capabilities of their terminal (a phone or PC Card), and quality of coverage. This chapter
explains these variables to help you make the best choice in cellular data service, and also talks about configuring a
cellular phone or PC Card with Linux (although this is usually just a small matter of PPP chat scripting).

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.1 Cellular Data
There are several types of cellular data networks. The most popular are General Packet Radio Services (GPRS) and 1x
Radio Transmission Technology (1xRTT). At the time of this writing, slightly faster Enhanced Data rates for GSM
Evolution (EDGE) and 1x Evolution Data Only (1xEV-DO) networks are emerging.

9.1.1 CSD

You use Circuit Switched Data (CSD) when you use your cellular phone as a dial-up modem. When you do this, you use
your voice plan. Generally, this is not the best option: CSD calls typically don't receive the full throughput that's
available to a data connection. However, there is a high-speed variant called High Speed CSD (HSCSD) that can provide
you with better speeds.

Unless you need to dial into a private network using a modem, we suggest that you use a packet-switched protocol,
such as GPRS, EDGE, 1xRTT, or 1xEV-DO, to make your data connection. With these technologies, you're not dialing a
bank of modems; rather, you're effectively using your cellular carrier as your ISP and your phone as a network adapter.
Additionally, CSD calls are billed by the minute; with the exception of one plan offering from Verizon Wireless (Express
Network NationalAccess) that we're aware of, packet-switched data connections are billed by the amount of data used,
rather than the amount of time you spend online (unless you have an unlimited plan, in which case you are paying a
flat rate).

If your cellular carrier and GSM device supports it, you can make an HSCSD at speeds up to 40 kbps. To enable this
capability, you must issue the command AT+CBST=speed,0,1, where speed is a value supported by your phone (you can
enumerate the supported values by issuing the AT+CBST=? command). For example, request 14.4 kbps with
AT+CBST=14,0,1.

The isdn4linux FAQ has some information on using HSCSD with ISDN: http://www.mhessler.de/i4lfaq/i4lfaq-
6.html#config_gsmv110. The following sites have information on HSCD commands, although support varies from
device to device, and some providers do not support HSCD at all (contact your cellular provider if you are unsure):

http://www.gcrsoft.com/data.html
http://www.nc9210.de/9210/tipps/at_hscsd.htm
http://www.zelaskowski.de/pda/hscsd.html

9.1.2 GPRS and EDGE

GPRS sits on top of Global System for Mobile communications (GSM), a cellular networking protocol that breaks a
channel into timeslots so that up to eight users can share the same channel; at any given time, a channel is dedicated
to one user only. A channel is 200 kHz of bandwidth within the 850, 900, 1,800, or 1,900 MHz bands. GSM is the most
widespread digital cellular technology with 970 million users at the end of 2003. It's available in the U.S., much of Asia,
Europe, and many other places.

Although a given timeslot supports a slow data rate (typically between 9.6 and 13.4 kbps), one timeslot is sufficient for
each side of a voice conversation. GPRS phones and PC Cards combine multiple GSM timeslots (up to eight in theory,
but the equipment we've seen maxes out at four) and typically support a downstream data rate of 40 kbps (we have
found that this translates to a peak of 30 kbps for HTTP transfers). Upstream data rates are typically less, as low as 9.6
kbps, but this is governed by the number of timeslots your device supports for upstream data, as well as by the number
of timeslots your cellular carrier makes available for this purpose.

EDGE is an improvement over GSM in that it increases the data rate per timeslot significantly. Instead of 9.6 kbps to
13.4 kbps, EDGE supports between 48 and 70 kbps per timeslot. However, to take advantage of EDGE speeds, you
need a handset or PC Card that supports EDGE, such as the Nokia 6200 cell phone or the Sony Ericsson GC82 PC Card
Modem. EDGE devices are backward-compatible with GSM and GPRS, so if you're in a location without EDGE coverage,
you can still connect at the slower GPRS speeds.

GSM devices require the installation of a Subscriber Identity Module (SIM). You (or the salesperson) insert this card
when you first get the phone. If you have more than one phone, you can swap SIMs and use the phone that is currently
holding the SIM. However, most cellular providers lock the device to their network, so you can use the phone onlwith
them. So, if you buy a phone from AT&T Wireless and insert the SIM you bought from T-Mobile, you'll receive an error
message. However, there are many ways to remove this lock. Some carriers will do it for you if you contact their
customer support and ask; this is usually done for customers who have been with the carrier for a while, have an
account in good standing, and are planning to use the phone overseas (you can save money by buying a pay-as-you-go
SIM from a local cellular provider and swapping SIMs while you are abroad). Figure 9-1 shows a Nokia 6200 that is
being inserted with an AT&T Wireless SIM card (that's the battery next to it, which we had to remove to get at the
SIM).

Figure 9-1. Inserting a SIM card into a Nokia 6200

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9-1. Inserting a SIM card into a Nokia 6200

9.1.3 1xRTT and 1xEV-DO

1xRTT is an improvement to CDMAone, the first version of Code Division Multiple Access (CDMA), a digital cellular
protocol that supported data rates up to 14.4 kbps. 1xRTT cranks it up to 144 kbps upstream and downstream. Instead
of slicing up cellular channels by timeslots, CDMA uses spread-spectrum technology to support multiple users in each
1.25 MH-wide CDMA channel within the 800 and 1900 MHz bands. Each user within a given CDMA channel is associated
with a code, and their signals (tagged with the associated code) are spread across the channel. although CDMA is not as
widespread as GSM, there are still many users (188 million at the end of 2003). It's available in the U.S., parts of Asia,
Latin America, and Europe.

1xEV-DO improves on 1xRTT by supporting burst speeds up to 2.4 Mbps while still keeping channels only 1.25 MHz
wide. At the time of this writing, Verizon Wireless has begun 1xEV-DO trials in San Diego and Washington, D.C. (priced
the same as its 1xRTT offering). Initial reports indicate that 300-500 kbps are the likely real-world speeds.

CDMA phones do not use SIM cards. As a result, you can't move your account to a new phone as easily as you can with
GSM phones. You must contact your cellular provider, deactivate the old phone, and activate the new one. (Your carrier
may also allow you to do this through its customer support web site).

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.2 Some Cellular Carriers
There are major cellular carriers around the world; This section looks at some of the major U.S. providers. Of the ones
described here, we have hands-on experience with Sprint, Verizon Wireless, AT&T Wireless, and T-Mobile.

To connect to the Internet using a GPRS carrier, you must specify an Access Point Name (APN), which is the name of a
gateway on the carrier's network that gets you on the Internet. After that, dial *99#***1# to connect. APNs for
networks not listed here can be found in a variety of places online, but your best bet is to contact your cellular provider.
Opera Software maintains a list of user-submitted carriers and APNs at
http://www.opera.com/products/smartphone/docs/connect/.

All plans and prices listed in the following sections are accurate as of this writing, but are subject to change.

9.2.1 AT&T Wireless

AT&T Wireless (http://www.attwireless.com) offers GSM service with GPRS under a variety of plans. Its consumer-
oriented mMode plan tops out at 8 megabytes of data per month for $19.99, with additional megabytes costing about
six dollars each.

mMode plans must be accompanied by a voice plan. However, AT&T Wireless offers standalone Mobile Internet data
plans starting at $29.99 for 10 megabytes (about three dollars per additional megabyte), going up to $79.99 a month
for unlimited data (you can also add these plans to service with an existing voice plan). In late 2003, AT&T rolled out
support for EDGE on its North American network.

AT&T Wireless uses a GPRS APN named proxy, which also works with its EDGE data service. You can set your APN with
the following AT command sequence:

AT+CGDCONT=1,"IP","proxy"

AT&T Wireless maintains online support forums at http://forums.attwireless.com/attws that are valuable more for the
community discussion than for the actual tech support that goes on there. Check out the mMode and
GSM(TM)/GPRS/EDGE General Discussion forums for insights into AT&T Wireless' data services.

At the time of this writing, Cingular has just purchased AT&T Wireless, and it is expected to merge its network with
AT&T's by the end of 2004. Whether that changes any of the AT&T Wireless-related instructions in this chapter remains
to be seen. For more information, consult this book's errata at http://www.oreilly.com/catalog/lnxunwired.

9.2.2 T-Mobile

T-Mobile (http://www.t-mobile.com), formerly VoiceStream, offers GSM and GPRS in a number of markets across the
globe. Its unlimited (T-Mobile Internet Unlimited) data plans are available as an add-on to voice service or as separate
plans. You can add unlimited GPRS data for $19.99 a month with a qualifying voice plan ($29.99 and higher).
Otherwise, unlimited GPRS data is $29.99 a month.

Don't confuse T-Mobile's t-zones plan with its T-Mobile Internet Unlimited plan. The $4.99 and $9.99 a month t-zones
plans are designed for users who use the Internet exclusively from their handset, and some users have reported that
services such as SSH (and practically anything that isn't HTTP, SMTP, or POP3) don't work with these plans.

As of late 2003, T-Mobile had not rolled out EDGE in any of the markets we tested.

T-Mobile uses two different APNs: internet2.voicestream.com and internet3.voicestream.com. internet2.voicestream.com gives
you a private network IP address, which may cause headaches with VPN connections, and internet3.voicestream.com gives
you a public IP address, which may cause headaches when people to try break into your machine. If you want to use
internet3.voicestream.com, you must be on the T-Mobile Internet Unlimited VPN plan, which costs the same as T-Mobile
Internet Unlimited. If you aren't sure which plan you are on, contact T-Mobile customer service to find out. You can set
your APN with one of the following AT command sequences:

AT+CGDCONT=1,"IP","internet2.voicestream.com"

AT+CGDCONT=1,"IP","internet3.voicestream.com"

9.2.3 Cingular Wireless

Cingular Wireless (http://www.cingular.com) is also a GSM/GPRS provider. Its Wireless Internet Express pricing plans
are similar to AT&T's mMode and Mobile Internet plans: for $24.99 a month, you can get 10 megabytes of data, and
each additional megabyte is about four dollars. Its unlimited plan is $74.99 per month.

As of late 2003, Cingular Wireless had rolled out trial EDGE support in one market (Indianapolis).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As of late 2003, Cingular Wireless had rolled out trial EDGE support in one market (Indianapolis).

Cingular Wireless uses a GPRS APN named isp.cingular. You can set your APN with the following AT command sequence:

AT+CGDCONT=1,"IP","isp.cingular"

9.2.4 Verizon Wireless

Verizon Wireless (http://www.verizonwireless.com) offers CDMA service with 1xRTT and 1xEV-DO for data. Its
advertised data plans are available as add-ons to a voice plan or as standalone data plans. Although it is not advertised
on its site, many users have reported that the America's Choice voice plan minutes can be used for data; but many
users have reported that Verizon does not permit this, so unless you get something in writing that indicates your plan
allows this, we suggest that you use an add-on data plan.

Verizon Wireless has a number of data plans. Its NationalAccess plan lets you pay by the minute. This means that
you're paying even when your network connection is idle. However, it also has plans that let you pay by the megabyte,
starting at 20 megabytes for $40 a month with each additional megabyte for about four dollars. You can go up from
there to unlimited data for $79.99 a month.

Verizon Wireless' 1xRTT service is available across its national network. As of late 2003, 1xEV-DO trials were underway
in San Diego and Washington, DC.

An APN is not required for 1xRTT or 1xEV-DO; you can generally just dial #777 to make
the connection. For more details, see "CDMA Phone with Data Cable" and "CDMA PC Card"
later in this chapter.

9.2.5 Sprint

Sprint PCS (http://www.pcsvision.com) offers CDMA cellular service. It offers unlimited 1xRTT data service, which it
calls PCS Vision, as an add-on to a voice plan for $15 a month. However, there are reports that say that these plans are
not intended for users who want to connect a laptop to their cell phone, and that Sprint may charge users who use the
service in this way as much as $10 a megabyte.

However, Sprint does offer by-the-megabyte plans starting from $40 a month for 20 megabytes, going up to $100 for
300 megabytes. Additional megabytes are two dollars each under all their megabyte plans. Although Sprint had offered
an unlimited data plan for $80 a month in the past, it is not advertising such a plan at the time of this writing.

As of late 2003, Sprint was reported to be testing 1xEV-DO, but it was not marketing it or selling 1xEV-DO cards or
phones.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.3 Phones and Cards
The following sections describe the cards and phones that we tested with Linux. They include an assortment of devices
that can talk CDMA 1xRTT, GPRS, and EDGE. Each section includes the information you need to make a data call.

Table 9-1 contains the results of the testing with these devices. In each download test, we moved a 384 KB compressed
datafile down from an HTTP server using wget 1.8.1 (wget_1.8.1-6.1_i386.deb) and recorded the transfer rate. In each
upload test, we uploaded the same file using Debian's ftp client (ftp_0.17-9_i386.deb) and recorded the transfer rate.

Table 9-1. Download and upload speeds with various devices

Device Carrier Signal[1] Download test
1

Upload test
1

Download test
2

Upload test
2

Merlin C201 Sprint 65% 12.64 KB/sec 8.7 KB/sec 12.86 KB/sec 9.0 KB/sec

Motorola
v120e Verizon Wireless 97% 13.94 KB/sec 5.7 KB/sec 13.3 KB/sec 7.5 KB/sec

Nokia 6200
AT&T
Wireless[2] 55% 11.05 KB/sec 6.0 KB/sec 11.31 KB/sec 6.0 KB/sec

Nokia 6200 T-Mobile[3] 65% 2.61 KB/sec 2.8 KB/sec 1.74 KB/sec 2.6 KB/sec

Merlin G100 T-Mobile 32-54% 4.26 KB/sec 1.4 KB/sec 5.09 KB/sec 1.4 KB/sec

[1] Reported by AT+CSQ and divided by 31.

[2] Connected in an EDGE-enabled AT&T Wireless market.

[3] At the time of this writing, T-Mobile does not support EDGE.

These devices use a basic Hayes command set but also support an extended command set (IS-707 AT command set).
You can use this command set to ask the modem about signal strength and the type of network to which it's connected.
For example, if you issue the command AT+CSQ?, the phone will respond with the signal strength (on a scale of 0-31)
and the frame error rate, which will be zero if you haven't had any network activity.

Table 9-2 shows some of the commands and sample responses from the Novatel Wireless Merlin C201 (you should be
able to use these commands with any CDMA or GPRS device described later in this chapter). To issue one of these
commands, use minicom or Kermit; type the command and then press Enter. Example 9-1 shows a session where we
set the serial speed and then run Kermit to have a conversation with the modem. If your user account does not have
the correct permissions, you must set the permisions appropriately (on Debian, we add the bjepson user to the dialout
group).

Example 9-1. Kermit session with the Novatel Wireless Merlin C201

bjepson@debian:~$ setserial /dev/ttyS2 baud_base 230400

bjepson@debian:~$ kermit

C-Kermit 7.0.196, 1 Jan 2000, for Linux

 Copyright (C) 1985, 2000,

 Trustees of Columbia University in the City of New York.

Type ? or HELP for help.

(/home/bjepson/) C-Kermit>set line /dev/ttyS2

(/home/bjepson/) C-Kermit>set speed 115200

/dev/ttyS2, 115200 bps

(/home/bjepson/) C-Kermit>connect

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(/home/bjepson/) C-Kermit>connect

Connecting to /dev/ttyS2, speed 115200.

The escape character is Ctrl-\ (ASCII 28, FS)

Type the escape character followed by C to get back,

or followed by ? to see other options.

--

at

OK

at+csq?

+CSQ: 22, 00000000,00000000

OK

If you can't see the commands you are typing but are still getting a response, the modem
is probably set to not echo the commands that you type. You can reset this with the
command ATE1 or reset the modem to its defaults with ATZ.

Table 9-2. Some of the AT commands recognized by cellular modems
Command Syntax Sample response from C201

Get battery
charge
information

AT+CBC?[4]
+CBC: 0,65 (First integer: 0=running on battery, 1=charging, 2=status no
available, 3=power fault; second integer: percentage charge remaining) Not
applicable to the C201, because it's powered by the PCMCIA bus

Get
manufacturer
information

AT+GMI +GMI: Novatel Wireless Inc.

Get mobile
model AT+GMM +GMM: CDMA Merlin 1900MHz

Get model
revision AT+GMR +GMR: F/W VER: 1065 S/W VER: BM3.0.10 Jun 11 03 14:45:56 BOOT VER: 1-1

Get serial
number AT+GSN +GSN: 00000000

Get service
information
(analog or
digital)

AT+CAD?[5] +CAD: 1 (0=no service, 1=CDMA digital, 2=TDMA digital, 3=analog)

Get serving
system
information

AT+CSS?Footnote
5

+CSS: 1,1 4106 (First integer: 0=unknown band, 1=800MHz, 2=1900MHz;
second integer: mobile station block; third integer: system identifier)

Get signal
quality

AT+CSQ?Footnote
4

+CSQ: 5, 00000291,00000241 (First integer: signal strength from 0-31; last
integers: frame error rate)

[4] Do not include the ? for GSM phones or modems.

[5] Not supported by the GSM phones or modems that we tested.

The Tao of Mac maintains a list of GSM AT commands at http://the.taoofmac.com/space/AT%20Commands.

Although the example PPP peers file and chat scripts show examples for a particular provider, you should be able to
adapt these to providers and phones other than the ones covered in this chapter. If you decide to change the name of
the files, be sure that the connect and disconnect entries in your peers file match the new filenames. For CDMA
providers, you shouldn't need to make any change unless your cellular carrier requires a username and password. For
GSM providers other than the ones described in this chapter, you need to change the APN (and perhaps set a username
and password). If you are using a different type of phone that uses a different file in the /dev directory, you need to
change the device name.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

change the device name.

When you make a connection as directed in the following sections (running the command pppd call provider as root), you
should see something similar to the following:

Serial port initialized.

Starting CDMA connect script

Dialing...

Serial connection established.

Using interface ppp0

Connect: ppp0 <--> /dev/ttyS2

kernel does not support PPP filtering

Cannot determine ethernet address for proxy ARP

local IP address 68.29.37.40

remote IP address 68.28.97.6

primary DNS address 68.28.122.11

secondary DNS address 68.28.114.11

When you're done with your connection, press Ctrl-C to disconnect.

9.3.1 PPP Troubleshooting

If you see a message that the pppd command is "not replacing existing default route," it means you have another
network connection active. You should temporarily bring this network connection down before making the PPP
connection or manually adjust the routing to your liking.

If your link is dropping due to LCP Echo errors, try setting the interval to something really high in the /etc/ppp/peers
file:

lcp-echo-failure 4

lcp-echo-interval 65535

Also, some phones may have trouble with the default compression scheme that PPP uses. If you are having problems
negotiating a connection, try adding novj and novjccomp, as shown in Example 9-5 later in this chapter.

For more information on PPP configuration, see the Linux PPP HOWTO: https://secure.linuxports.com/howto/ppp/.

9.3.2 CDMA PC Card

The Novatel Wireless Merlin C201 (Figure 9-2) is a CDMA 1xRTT PC Card offered by Sprint that is automatically
recognized by all the versions of Linux we tested (Mandrake 9.2, Gentoo 1.4, and Debian 3.0). It appears as two serial
ports starting at the highest unused serial port. So, on a ThinkPad A20m running Debian 3.0, there were already two
serial ports (ttyS0 and ttyS1). When we plugged in the C201 card, two more were detected: ttyS2, which is the CDMA
modem, and ttyS3, a status port for the modem (whose purpose is unknown to us but is not necessary to connect to
the Internet).

Figure 9-2. The Novatel Wireless Merlin C201 card

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As of this writing, there is no way to provision (perform the initial activation with the Sprint network) this card without a
PC running Microsoft Windows. Novatel Wireless technical support confirmed this but mentioned that upcoming
firmware may come out that supports provisioning on any operating system. Unless that happens, you must get access
to a Windows notebook long enough to install the software that comes with the card, activate it, and verify that you can
connect to the network before trying it with Linux.

To get online with the Merlin C201, use a PPP connection and the phone number #777. If you use a regular phone
number, you'll end up making a CSD call, which may incur per-minute charges. When you dial #777, you'll incur
whatever charges are applicable under your data plan. To set up a data connection with the C201, first create the
/etc/ppp/peers/sprint-pcs file shown in Example 9-2. You must change the first two lines to specify your device (for
example, /dev/ttyS2).

Example 9-2. PPP peer settings for Sprint PCS and the Merlin C201

File: /etc/ppp/peers/sprint-pcs

#

/dev/YOUR_DEVICE # device

init "setserial /dev/YOUR_DEVICE baud_base 230400"

115200 # speed

defaultroute # use the cellular network for the default route

usepeerdns # use the DNS servers from the remote network

nodetach # keep pppd in the foreground

crtscts # hardware flow control

lock # lock the serial port

noauth # don't expect the modem to authenticate itself

scripts for connection/disconnection

connect "/usr/sbin/chat -v -f /etc/chatscripts/sprint-connect"

disconnect "/usr/sbin/chat -v -f /etc/chatscripts/sprint-disconnect"

The Merlin C201 is a bit of an oddball. You must use setserial to specify twice the actual
speed you want to use. (Thanks to the folks at tummy.com for this information, found on
http://www.tummy.com/articles/laptops/merlin-c201/)

Next, create the /etc/chatscripts/sprint-connect and /etc/chatscripts/sprint-disconnect scripts, shown in Example 9-3

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next, create the /etc/chatscripts/sprint-connect and /etc/chatscripts/sprint-disconnect scripts, shown in Example 9-3
and Example 9-4.

Example 9-3. PPP connect script for Sprint PCS and the Merlin C201

File: /etc/chatscripts/sprint-connect

#

TIMEOUT 10

ABORT 'BUSY'

ABORT 'NO ANSWER'

ABORT 'NO CARRIER'

SAY 'Starting CDMA connect script\n'

Get the modem's attention and reset it.

'' 'ATZ'

E0=No echo, V1=English result codes

OK 'ATE0V1'

Dial the number

SAY 'Dialing...\n'

OK 'ATD#777'

CONNECT ''

Example 9-4. PPP disconnect script for Sprint PCS and the Merlin C201

File: /etc/chatscripts/sprint-disconnect

#

"" "\K"

"" "+++ATH0"

SAY "CDMA disconnected."

After you've set up these scripts, issue the command pppd call sprint-pcs as root. Press Ctrl-C to invoke the disconnect
script and hang up the PPP connection.

If your carrier requires a username and password, set the user and remote_name options as
shown in Example 9-5, and create a chap_secrets file, as shown in Example 9-6.

9.3.3 CDMA Phone with Data Cable

The Motorola v120e (see Figure 9-3) is a CDMA 1xRTT phone offered by Verizon Wireless. You must modprobe or insmod
the acm.o (the USB Abstract Control Model drive) module for this phone to be recognized. The v120e appears as a
serial port named /dev/ttyACM0.

Figure 9-3. The Motorola v120e CDMA phone

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9-3. The Motorola v120e CDMA phone

The Motorola v120e does not require the provisioning step typically required of PCMCIA
cards (see Section 9.3.2 earlier in this chapter). Simply using the data connection for the
first time provisions the phone.

To get online with this phone, create a PPP connection using the phone number #777. You can also use this phone to
connect to dial-up service (see Section 9.1.1 earlier in this chapter), but per-minute charges will apply, and you'll get a
maximum speed of 14.4 kbps. To set up a data connection for this phone, first create the /etc/ppp/peers/verizon file
shown in Example 9-5. Be sure the device name corresponds to that of your phone (use dmesg to see which device the
phone was associated with), although it will probably be /dev/ttyACM0. You must supply your phone number followed
by @vzw3g.com as your username in the verizon file, and specify vzw as your password in the /etc/ppp/chap-secrets file
shown in Example 9-6 (the verizon in the server column in chap-secrets corresponds to the remote_name specified in the
/etc/ppp/peers/verizon file).

Example 9-5. PPP peer settings for Verizon Wireless and the Motorola v120e

File: /etc/ppp/peers/verizon

#

/dev/ttyACM0 # device

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

/dev/ttyACM0 # device

The following two settings need a corresponding entry in

/etc/ppp/chap-secrets.

user YOUR_CELLULAR_PHONE_NUMBER@vzw3g.com

remotename verizon

115200 # speed

defaultroute # use the cellular network for the default route

usepeerdns # use the DNS servers from the remote network

nodetach # keep pppd in the foreground

crtscts # hardware flow control

lock # lock the serial port

noauth # don't expect the modem to authenticate itself

novj

novjccomp

scripts for connection/disconnection

connect "/usr/sbin/chat -v -f /etc/chatscripts/verizon-connect"

disconnect "/usr/sbin/chat -v -f /etc/chatscripts/verizon-disconnect"

Example 9-6. CHAP password for Verizon wireless connection

File: /etc/ppp/chap-secrets

#

Secrets for authentication using CHAP

client server secret IP addresses

YOUR_CELLULAR_PHONE_NUMBER@vzw3g.com verizon vzw *

Next, create the /etc/chatscripts/verizon-connect and /etc/chatscripts/verizon-disconnect scripts, shown in Example 9-7
and Example 9-8.

Example 9-7. PPP connect script for Verizon Wireless and Motorola v120e

File: /etc/chatscripts/verizon-connect

#

TIMEOUT 10

ABORT 'BUSY'

ABORT 'NO ANSWER'

ABORT 'NO CARRIER'

SAY 'Starting CDMA connect script\n'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Get the modem's attention and reset it.

'' 'ATZ'

E0=No echo, V1=English result codes

OK 'ATE0V1'

Dial the number

SAY 'Dialing...\n'

OK 'ATD#777'

CONNECT ''

Example 9-8. PPP disconnect script for Verizon Wireless and Motorola v120e

File: /etc/chatscripts/verizon-disconnect

#

"" "\K"

"" "+++ATH0"

SAY "CDMA disconnected."

After you've set up these scripts, issue the command pppd call verizon as root (if you haven't configured Linux to
automatically load the acm.o module, you must issue the command modprobe acm first). Usage charges will apply
according to your data plan. When you are done, press Ctrl-C to invoke the disconnect script and hang up the PPP
connection.

9.3.4 GSM/GPRS Phone with Data Cable

The Nokia 6200 (Figure 9-4) was the first phone on the market to support EDGE, an enhancement to GSM that
increases the data rate per timeslot up to 48 kbps (higher in ideal network conditions). With two EDGE timeslots for
uploads and downloads, the Nokia 6200 can achieve data rates of 96 kbps or higher. The Nokia 6200 is offered by AT&T
Wireless.

Figure 9-4. The Nokia 6200 EDGE/GPRS phone

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EDGE-capable phones are compatible with GSM/GPRS networks. If the cellular base station you connect to does not
support EDGE, the phone will fall back to regular GSM data rates.

Unfortunately, the Nokia 6200 does not support Bluetooth, so you must use either IrDA or a data cable. Linux does not
recognize the Nokia data cable (DKU-5), but it does recognize the cable that comes with the SmithMicro QuickLink
Mobile for Mac OS X kit (available for $59.95 at http://www.smithmicro.com) as a Prolific 2303. However, we had
trouble with some of the 2.4 kernels that we had tested with 2.4.20 through 2.4.22: the driver (pl2303.o) would trigger
a kernel oops when hanging up the connection. However, we tested a prerelease version of 2.4.23 (rc3), which solved
this problem.

To connect to the Internet with this phone, you must set up a PPP connection that sets the APN (see Section 9.2 earlier
in this chapter) and dials the number (*99***1#) for making a GPRS connection. In theory, you can use this phone to
connect to a dialup service (see Section 9.1.1 earlier in this chapter).

To set up your PPP connection, first create the /etc/ppp/peers/attws file shown in Example 9-9. Be sure the device
name corresponds to that of your phone (use dmesg to look at the device that the phone was assigned to), although it
will probably be /dev/ttyUSB0.

Example 9-9. PPP peer settings for AT&T Wireless and the Nokia 6200

/dev/ttyUSB0 # USB-serial port

230400 # speed

defaultroute # use the cellular network for the default route

usepeerdns # use the DNS servers from the remote network

nodetach # keep pppd in the foreground

crtscts # hardware flow control

lock # lock the serial port

noauth # don't expect the modem to authenticate itself

connect "/usr/sbin/chat -v -f /etc/chatscripts/attws-connect"

disconnect "/usr/sbin/chat -v -f /etc/chatscripts/attws-disconnect"

Next, create the /etc/chatscripts/attws-connect and /etc/chatscripts/attws-disconnect scripts, shown in Example 9-10
and Example 9-11. If you are using a GPRS cellular provider other than AT&T Wireless, you will probably have to
change the APN (proxy in Example 9-10).

Example 9-10. PPP connect script for AT&T Wireless and the Nokia 6200

File: /etc/chatscripts/attws-connect

#

TIMEOUT 10

ABORT 'BUSY'

ABORT 'NO ANSWER'

ABORT 'NO CARRIER'

SAY 'Starting GPRS connect script\n'

Get the modem's attention and reset it.

'' 'ATZ'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

E0=No echo, V1=English result codes

OK 'ATE0V1'

Set Access Point Name (APN)

SAY 'Setting APN\n'

OK 'AT+CGDCONT=1,"IP","proxy"'

Dial the number

SAY 'Dialing...\n'

OK 'ATD*99***1#'

CONNECT ''

Example 9-11. PPP disconnect script for AT&T Wireless and the Nokia 6200

File: /etc/chatscripts/attws-disconnect

#

"" "\K"

"" "+++ATH0"

SAY "GPRS disconnected."

After you've set up these scripts, issue the command pppd call attws as root. Usage charges will apply according to your
data plan. Press Ctrl-C to invoke the disconnect script and hang up the PPP connection.

If your carrier requires a username and password, set the user and remote_name options, as
shown in Example 9-5 and create a chap_secrets file, as shown in Example 9-6.

9.3.5 GPRS PC Card

T-Mobile once operated in the United States under the VoiceStream brand. In fact, you still see voicestream.com on T-
Mobile's APNs, and a USENET group that discusses T-Mobile is alt.cellular.gsm.carriers.voicestream. Back when it
operated as VoiceStream, it offered a great cellular card that was branded iStream (see Figure 9-5). Under the hood,
it's a Novatel Wireless Merlin G100 GPRS PCMCIA modem. We like this card because it's cheap (we picked ours up for
$50 on eBay) and we have received faster downloads with it than with other GPRS phones that we've used.

Figure 9-5. The (VoiceStream branded) Novatel Wireless Merlin G100 GPRS card

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Linux automatically detects this as a serial card; when you insert the card, look for messages in the system log or the
output of dmesg to see the port it's assigned to. On our system, it shows up as /dev/ttyS2 (dmesg reports "ttyS02 at
port 0x03e8," and ttyS02 corresponds to /dev/ttyS2).

To connect to the Internet with this phone, you must set up a PPP connection that sets the APN (see Section 9.2 earlier
in this chapter) and dials the number (*99***1#) for making a GPRS connection. In theory, you could dial the number of
a dialup ISP (see Section 9.1.1 earlier in this chapter).

To set up your PPP connection, first create the /etc/ppp/peers/tmobile file shown in Example 9-12 Be sure the device
name corresponds to that of the PCMCIA card.

Example 9-12. PPP peer settings for T-Mobileand the Merlin G100

/dev/ttyS2 # G100 modem

115200 # speed

defaultroute # use the cellular network for the default route

usepeerdns # use the DNS servers from the remote network

nodetach # keep pppd in the foreground

crtscts # hardware flow control

lock # lock the serial port

noauth # don't expect the modem to authenticate itself

local # don't use Carrier Detect or Data Terminal Ready

debug

Use the next two lines if you receive the dreaded messages:

#

No response to n echo-requests

Serial link appears to be disconnected.

Connection terminated.

#

lcp-echo-failure 4

lcp-echo-interval 65535

connect "/usr/sbin/chat -v -f /etc/chatscripts/tmobile-connect"

disconnect "/usr/sbin/chat -v -f /etc/chatscripts/tmobile-disconnect"

Next, create the /etc/chatscripts/tmobile-connect and /etc/chatscripts/tmobile-disconnect scripts, shown in Example 9-
13 and Example 9-14. If you are using a GPRS cellular provider other than T-Mobile, you will probably have to change
the APN (internet3.voicestream.com). Also, T-Mobile offers two options on its T-Mobile Internet plan. By default, you
should use the internet2.voicestream.com APN. However, if you've opted for VPN support (you receive a public IP address),

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

should use the internet2.voicestream.com APN. However, if you've opted for VPN support (you receive a public IP address),
use internet3.voicestream.com.

Example 9-13. PPP connect script for T-Mobile and the Merlin G100

File: /etc/chatscripts/tmobile-connect

#

TIMEOUT 10

ABORT 'BUSY'

ABORT 'NO ANSWER'

ABORT 'ERROR'

SAY 'Starting GPRS connect script\n'

Get the modem's attention and reset it.

"" 'ATZ'

E0=No echo, V1=English result codes

OK 'ATE0V1'

Set Access Point Name (APN)

SAY 'Setting APN\n'

OK 'AT+CGDCONT=1,"IP","internet3.voicestream.com"'

Dial the number

ABORT 'NO CARRIER'

SAY 'Dialing...\n'

OK 'ATD*99***1#'

CONNECT ''

Example 9-14. PPP disconnect script for T-Mobile and the Merlin G100

File: /etc/chatscripts/tmobile-disconnect

#

"" "\K"

"" "+++ATH0"

SAY "GPRS disconnected."

After you've set up these scripts, issue the command pppd call tmobile as root. Usage charges will apply according to your
data plan. Press Ctrl-C to invoke the disconnect script and hang up the PPP connection.

If your carrier requires a username and password, set the user and remote_name options, as
shown in Example 9-5 and create a chap_secrets file, as shown in Example 9-6.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.4 Sending a Fax
You can send a fax from your cell phone if both your cellular carrier and your cell phone support it. You can figure out
quickly whether your phone supports it by making a Kermit connection (see Section 9.3 earlier in this chapter). Here's a
session with a Motorola v120e in which the phone acknowledges that it's capable of Class 2 fax modem commands:

bjepson@debian:~$ kermit -l /dev/ttyACM0 -b 115200

C-Kermit 7.0.196, 1 Jan 2000, for Linux

 Copyright (C) 1985, 2000,

 Trustees of Columbia University in the City of New York.

Type ? or HELP for help.

(/home/bjepson/) C-Kermit>connect

Connecting to /dev/ttyACM0, speed 115200.

The escape character is Ctrl-\ (ASCII 28, FS)

Type the escape character followed by C to get back,

or followed by ? to see other options.

--

AT+FCLASS=?

0,2.0

OK

However, the following session with the Nokia 6200 shows that it doesn't have any fax modem capabilities:

bjepson@debian:~$ kermit -l /dev/ttyUSB0 -b 115200

C-Kermit 7.0.196, 1 Jan 2000, for Linux

 Copyright (C) 1985, 2000,

 Trustees of Columbia University in the City of New York.

Type ? or HELP for help.

(/home/bjepson/) C-Kermit>set carrier-watch off # required for some phones

(/home/bjepson/) C-Kermit>connect

Connecting to /dev/ttyUSB0, speed 115200.

The escape character is Ctrl-\ (ASCII 28, FS)

Type the escape character followed by C to get back,

or followed by ? to see other options.

--

AT+FCLASS=?

0

OK

To send a fax with your cell phone, install a package such as efax (http://www.cce.com/efax/) and configure it for your
modem. In the case of efax, you must edit /etc/efax.rc. At a minimum, you should set the device (DEV), your phone
number (FROM), and name (NAME):

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

number (FROM), and name (NAME):

DEV=ttyACM0

Your fax number in international format, 20 characters maximum.

Use only digits, spaces, and the "+" character.

FROM="+1 401 555 1234"

Your name as it should appear on the page header.

NAME="Brian Jepson"

Once you've done this, you can use a client program, such as fax (included as part of the efax package), to send a file:

bjepson@debian:~$ fax send 4015555678 Letter.ps

Letter.ps is postscript or pdf ...

efax: Sun Nov 23 16:39:16 2003 efax v 0.9a-001114 Copyright 1999 Ed Casas

efax: 39:16 opened /dev/ttyACM0

efax: 39:21 using in class 2.0

efax: 39:22 dialing T4015555678

efax: 39:43 remote ID -> " 401 555 5678"

efax: 39:43 connected

efax: 39:51 session 196lpi 4800bps 8.5"/215mm 11"/A4 1D - - 0ms

efax: 39:51 header:[2003/11/23 16:39 +1 401 555 1234 Brian Jepson p. 1/1]

efax: 41:52 sent 20+2156 lines, 61097+0 bytes, 121 s 4039 bps

efax: 41:52 sent -> Letter.ps.001

efax: 41:57 done, returning 0 (success)
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.5 Text Messaging
Some phones and modems let you send a text message via Short Message Service (SMS) using AT commands. To find
out whether your device supports this (nearly all GSM devices do), connect with Kermit, as shown in Example 9-1, and
issue the query AT+CSMS=0 (the three columns indicate whether the device is capable of receiving messages, sending
messages, or sending broadcast messages):

AT+CSMS=0

+CSMS: 1,1,1

OK

If your cell phone supports this capability, you can work with text messages using AT commands. You can list your text
messages with AT+CMGL=4 (the 4 indicates all messages: use 0 for unread, 1 for read, 2 for unsent, and 3 for sent
messages) and read a message with AT+CMGR=MESSAGE_NUMBER:

AT+CMGL=4

+CMGL: 1,1,,28

07919170389103F2040B91XXXXXXXXXXF100013011320211500A0AD3771D7E9A83DEEE10

+CMGL: 2,1,,25

07919170389103F2040B91XXXXXXXXXXF100013011329135610A06C8F79D9C0F01

OK

AT+CMGR=1

+CMGR: 1,,28

07919170389103F2040B91XXXXXXXXXXF100013011320211500A0AD3771D7E9A83DEEE10

OK

However, you'll want to put the phone into text mode, so the responses that you receive are human-readable. Use
AT+CMGF=1 for this, and try reading the message again:

AT+CMGF=1

OK

AT+CMGR=1

+CMGR: "REC READ","+14015559000",,"03/11/23,20:11:05-20"

Soup's on!

OK

You can send a message with AT+CMGS="PHONE_NUMBER" (but make sure you've set responses to be human-readable
with AT+CMGF=1). You'll be prompted for the message; type it and press Ctrl-Z when you are finished:

AT+CMGF=1

OK

AT+CMGS="4015559000"

> Hello, world!^Z

OK

You can also use the gsmsendsms utility from gsmlib (http://www.pxh.de/fs/gsmlib/index.html) to send the message:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can also use the gsmsendsms utility from gsmlib (http://www.pxh.de/fs/gsmlib/index.html) to send the message:

bjepson@debian:~$ gsmsendsms -d /dev/ttyUSB0 4015559000 "Hello, World"
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.6 Acceleration
Although GPRS and CDMA are pretty slow, some providers have put compression servers on their network to compress
documents before they make it to your computer.

Verizon Wireless uses a two-tier proxy server called Venturi (http://www.venturiwireless.com/products.html). One tier
of the proxy server sits on the cellular carrier's network and compresses documents before they come down to your
machine. The other tier is a local proxy server that runs on your machine and decompresses the content on the fly
before presenting it to your web browser or any other application. (Venturi can compress data sent over a number of
protocols including SMTP and POP3.) AT&T Wireless uses something similar, but we do not know what it is. At the time
of this writing, there isn't a Linux client for either Venturi (or whatever it is that AT&T Wireless uses). But that shouldn't
stop you from asking customer support about it, because it may have changed (at the very least, you should let them
know the demand exists).

Sprint and T-Mobile have transparent acceleration on their networks. The nice thing about this approach is that it
should, in theory, obey web standards without requiring any fiddling on the client side; so it doesn't matter what
operating system you're on. To compress HTML, the compression server can use gzip compression; to compress
images, it can reduce the image quality. Figure 9-6 shows the T-Mobile Internet Accelerator configuration page
(http://getmorespeed.t-mobile.com). You will not be able to reach this page unless you are connected to the
internet2.voicestream.com or internet3.voicestream.com APNs on T-Mobile's GPRS network.

Figure 9-6. Configuring the T-Mobile Internet Accelerator

Figure 9-7 shows detail from an image that was sent across T-Mobile's network with compression disabled. Figure 9-8
shows that same detail with maximum compression. Although some artifacts appear in the image, the differences
should not annoy most users. This 799 x 599 pixel image started out at 96 KB; compression reduced it to 48 KB.

Figure 9-7. Photograph with no compression

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9-7. Photograph with no compression

Figure 9-8. Photograph with maximum compression

Your mileage will vary using acceleration; in theory, it should speed things up. We've found this to be the case most of
the time.

However, we've also found cases where the compression server was having a bad day, and the amount of time it took
to do its thing exceeded the acceleration we received from the compression. Try it out and see how it works, and
disable it if it's a problem. Contact your cellular carrier for instructions on turning compression on and off.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 10. GPS
The Global Positioning System (GPS) consists of 27 earth-orbiting satellites (of which 24 are operational and 3 are
backups) circling the earth twice each day. These satellites are arranged in six orbital paths, as shown in Figure 10-1.

Figure 10-1. Satellites circling the earth in six orbital paths

These satellites continuously emit coded positional and timing information using low-power radio waves at frequencies
around 1,500 MHz. GPS receivers on earth can pick up the signals and calculate the exact (we discuss what we mean
by "exact" later in this chapter) positioning on earth. The orbits of the satellites are arranged in such a manner that at
least four satellites are visible at any given time. Thus, a GPS receiver is able to receive signals from these four
satellites and, based on the various signals transmitted by them, derive positional information on earth.

So how does the GPS receiver calculate its position? It does so by measuring the distance between itself and the
satellites. Signals emitted by the satellites are received by the GPS receiver after a time lag, and based on the speed of
light, the GPS receiver calculates the distance from itself to the satellite. But obtaining the distance from one satellite is
not enough, because it tells you only that you are somewhere on the surface of the sphere (think in terms of three-
dimensional space). Figure 10-2 shows that you can be anywhere on a sphere with a radius equal to the estimated
distance to the satellite.

Figure 10-2. A sphere containing all the possible positions

To pinpoint your exact location, GPS uses at least three satellites to triangulate an exact location on earth. Figure 10-3
shows that if you have two satellites, then you can narrow down your location to the intersection of the two spheres. In
this case, you can be anywhere on the dotted line (which is an ellipse).

Figure 10-3. Intersection of two spheres forming an ellipse

This is not precise enough. With a third satellite, you can reduce the possibilities to two (see Figure 10-4). But one of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This is not precise enough. With a third satellite, you can reduce the possibilities to two (see Figure 10-4). But one of
these two points is in space, which is not likely the position you are in. Hence, you can effectively derive your position
from three satellites, but four or more satellites are needed to get a decent altitude fix.

Figure 10-4. Intersection of the ellipse (formed by the two intersecting spheres)
with a third sphere

GPS Accuracy
GPS was originally developed in the 1980s by the U.S. Department of Defense for military use. Because it
was designed primarily for the military, the U.S. Department of Defense introduced Selective Availability
(SA) to degrade the signal accuracy and to encrypt sensitive information, so that civilian usage could be
restricted. The satellites would deliberately broadcast wrong and randomly inaccurate signals, which would
cause the precision of the GPS data to be within 100 meters. The accurate information could be decoded
only by the military.

Because of the great commercial potential of GPS, in May 2000, President Clinton announced that the U.S.
would no longer degrade the accuracy of GPS. With SA turned off, the accuracy of the GPS data could be
within five meters.

Most GPS receivers use information from three or more satellites to increase the accuracy
of the positional information.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

10.1 Uses of GPS
The function of GPS is fairly straightforward—with a GPS receiver, you can obtain your positional information in the
form of longitude, latitude, and altitude. It is the way that you use this information that is important. Some useful
applications of GPS are described in the following list:

Military use

As GPS was originally developed for military use, the U.S. Department of Defense is the main user of the
technology.

Location-Based Services (LBS)

GPS has been increasingly deployed in the commercial scene. LBS make use of the knowledge of your precise
location to provide location-sensitive services. For example, you can use LBS to receive a list of restaurants
near your current location.

Navigation services

GPS is popularly used for navigational purposes, such as driving and flying. A GPS-enabled PDA can help a
driver navigate unfamiliar cities. GPS is also widely used in the shipping industry, as well as in airplane
navigational systems. Courier companies, such as UPS and FedEx, make extensive use of GPS in their delivery
infrastructures.

Tracking

Using GPS to track the whereabouts of people or objects is rapidly gaining acceptance. This is useful in the
medical sector: patients suffering from diseases such as Alzheimer's can wear a GPS watch, and, when needed,
they can press a panic button to reveal their exact location to their family members.

Mapping

GPS is also popularly used in mapping software, allowing you to combine a GPS receiver with mapping software
to display your current location. This is useful for travelers or explorers who need navigational aids.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

10.2 A GPS Glossary
Here are some GPS terms that you will encounter when you use GPS and GPS software:

8/12 channels receiver

An 8-channel receiver uses 8 channels to access 8 different satellites at any one time. A 12-channel receiver
can access 12 satellites at once.

Bearing

The direction you are aiming for.

CEP, RMS, and 2D RMS

Circular Error Probable (CEP), Root Mean Square (RMS), and 2D RMS are all measures of the accuracy of a GPS
receiver. CEP represents the radius of a circle containing 50% of the GPS readings. RMS represents the radius
of a circle containing 68% of the GPS readings. 2D RMS represents the radius of a circle containing 98% of the
GPS readings. If three GPS receivers each claims to have 2m CEP, 2m RMS, and 2m 2D RMS respectively, then
the third one is the most accurate, because it has readings accurate to within a 2-meter radius 98 percent of
the time.

DGPS

Differential GPS is an enhancement to the satellite-based GPS that makes use of receivers on fixed reference
points on the ground and improves accuracy to within 3-5 meters. These receivers transmit error-correcting
information to DGPS receivers to enhance the information supplied by the satellites.

Fix

A location returned by the GPS receiver after processing the readings of at least three satellites.

Heading

The actual direction you are traveling towards. It is not the same as bearing. Bearing is your desired direction,
but you may not be heading towards the desired direction due to factors such as obstacles (e.g., water, fences,
and mountains). Therefore, you have to momentarily head in another direction in a bid to get to your
destination.

Latitude, longitude, and altitude

The coordinates of a specific location on earth. These three pieces of information together define a point in the
three-dimensional space.

National Marine Electronics Association (NMEA)

The NMEA-0183 standard has been universally adopted by GPS manufacturers and virtually every GPS product
for exchanging navigational information between devices. NMEA-0183 defines a "sentence" format (using
printable ASCII text) describing navigational information.

Route

A collection of waypoints representing the path that you would like to take.

Selective Availability (SA)

The degradation of GPS data for nonmilitary use. See the sidebar "GPS Accuracy" earlier in this chapter for
more information on SA.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

more information on SA.

Time to First Fix (TTFF)

The least amount of time required to obtain a fix by the minimum number of satellites required for
triangulation. Normally, it takes a few minutes before you can receive a fix.

WAAS

WAAS is an enhancement similar to DGPS that uses fixed reference stations on the ground to enhance accuracy
to under 3 meters.

Waypoint

A location that you store in your GPS system (as coordinates). Examples of waypoints are a hiking location,
camping ground, church, or any place of interest to a GPS user. You normally add a waypoint to your GPS
before you start your traveling. You can also add one during your travel when you locate a place of interest.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

10.3 GPS Devices
There are two main types of GPS receivers on the market at the moment:

Plain GPS receivers

GPS receivers with maps

A plain GPS receiver simply interprets the readings from the satellite and returns the result in latitude, longitude, and
altitude. Figure 10-5 shows the PocketMap (http://www.pocketmap.com) PMG-220 Compact Flash (CF) GPS receiver.
You can use the PMG-220 on a handheld or your notebook computer (which may require a PCMCIA adapter for the CF
card).

Figure 10-5. The PocketMap PMG-220 CF GPS receiver with a CF-to-PCMCIA
adapter

Figure 10-6 shows the Deluo Laptop GPS receiver. This is an affordable receiver ($99) that's available from Deluo
(http://www.deluo.com) in serial or USB configurations. We used the Deluo USB model in our testing for this chapter.

Figure 10-6. The Deluo Laptop GPS receiver

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 10-7 shows two standalone GPS receivers equipped with their own mapping software. The Magellan Meridian
Gold and the Garmin StreetPilot III contain built-in screens to display maps. There is no need to connect the receivers
to any device for them to work. Standalone GPS receivers are useful for travelers who need a lightweight GPS solution.

Figure 10-7. The Magellan Meridian Gold GPS (left) and the Garmin StreetPilot III
(Magellen used by permission, Thales Navigation, Inc. 2003; Garmin courtesy of

Garmin Ltd.)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

10.4 Listening to a GPS
Listening to a GPS from a Linux box is as simple as listening to any serial device: plug it in, make sure the driver (if
any) is loaded, open the port, and read the stream. We tried connecting both the PocketMap CF GPS (using a CF-to-
PCMCIA adapter) and the Deluo USB GPS. The PocketMap GPS was detected automatically as a serial port; we needed
to load the Prolific 2303 USB/Serial module (modprobe pl2303) for the Deluo GPS to be recognized (it appeared on
/dev/ttyUSB0, as did the Nokia 6200 described in Chapter 9).

Most GPS devices use a format called NMEA 0183; however, many of them include proprietary extensions. The NMEA
standard specifies a transport of RS-232 at 4,800 kbps, 8 data bits, 1 stop bit, and no parity, but some devices support
higher speeds. The Deluo GPS that we used sends standard NMEA sentences in the sequence GPGGA-GPGSA-GPGSV-
GPRMC. Each sentence is a line of comma-separated text that begins with $TYPE (where TYPE is the NMEA 0183
sentence type) and ends with a checksum value, as shown in Example 10-1.

Example 10-1. Sample output from the Deluo GPS

$GPGGA,071110.000,3242.8536,N,11709.7626,W,1,05,01.5,00104.2,M,-34.0,M,,*50

$GPGSA,A,3,22,16,,14,20,,,,,25,,,02.5,01.5,02.1*05

$GPGSV,3,1,10,22,11,117,35,16,13,151,35,11,44,256,,14,26,056,35*78

$GPGSV,3,2,10,20,32,316,34,01,22,266,,30,09,052,,02,07,172,*76

$GPGSV,3,3,10,23,30,110,33,25,70,061,39*77

$GPRMC,071110.000,A,3242.8536,N,11709.7626,W,000.0,000.0,100204,013.0,E*7D

The checksum is a two-digit hexadecimal value that's created by XORing the ASCII values of each character in the
sentence, except for the leading $ and * that precede the checksum itself. For example, the Perl code shown in Example
10-2 verifies the checksum of each line in Example 10-1.

Example 10-2. Verifying NMEA 0183 sentence checksums

#!/usr/bin/perl -w

#

gpscksum.pl--verify each NMEA 0183 sentence in standard input

#

use strict;

my $count=1;

while (<>)

{

 my ($string, $cksum);

 if (/^\$(.*)*([0-9A-Fa-f][0-9A-Fa-f])/)

 {

 $string = $1; # everything between leading $ and checksum

 $cksum = $2; # hex checksum from NMEA sentence

 } else

 {

 die "Malformed NMEA 0183 sentence: $_\n";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 die "Malformed NMEA 0183 sentence: $_\n";

 }

 # Calculate the checksum

 my $my_cksum;

 for (my $i = 0; $i < length ($string); $i++)

 {

 $my_cksum ^= ord(substr($string, $i, 1))

 }

 # Compare the checksums

 if ($my_cksum != hex($cksum))

 {

 print "Checksum for line $count doesn't match: ",

 $my_cksum, "!=", hex($cksum), "\n";

 }

 $count++;

}

The following tables describe the NMEA 0183 sentences listed in Example 10-1. Items in the Example column are drawn
directly from Example 10-1. Table 10-1 describes the elements of the GPGGA sentence (GPS fix data). This sentence
gives you information about the current position fix.

Table 10-1. GPGGA sentence
Column(s) Example Description

1 071110.000(7:11:10) Current time UTC (HHMMSS.mmm)

2, 3 3242.8536,
N(32°42.8836' N) Latitude

4,5 11709.7626,
W(117°9.7626' Wt) Longitude

6 1 Fix quality (0=no fix, 1=GPS, 2=differential GPS)

7 05 Number of satellites used for fix

8 01.5 Horizontal dilution of precision

9,10 00104.2,M(104.2
meters) Altitude

11,12 -34.0, M(-34 meters) Difference between mean sea level and the ellipsoid modeled by WGS-84
(http://www.wgs84.com/)

13 (empty) Age of differential GPS data (if any)

14 (empty) Differential station ID

15 50 Checksum (preceded by * rather than a comma)

Table 10-2 describes the GPGSA (active satellites) sentence. This sentence summarizes information about the satellites
used to determine your current fix.

Table 10-2. GPGSA sentence
Column(s) Example Description

1 A Selection mode (A=Automatic, M=Manual)

2 3 Fix mode (1=no fix; 2=2-dimensional; 3=3-dimensional)

3-14 22,16,,14,20,,,,,25,, Satellite IDs (blanks indicate satellites not in view)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3-14 22,16,,14,20,,,,,25,, Satellite IDs (blanks indicate satellites not in view)

15 02.5 Positional dilution of precision

16 01.5 Horizontal dilution of precision

17 02.1 Vertical dilution of precision

18 05 Checksum (preceded by * rather than a comma)

Table 10-3 describes the GPGSV (satellites in view) sentence, which may appear multiple times. This sentence provides
detailed information about each satellite, describing up to four satellites per line.

Table 10-3. GPGSV sentence
Column(s) Example Description

1 3 Number of GPGSV sentences

2 1 Current sentence number

3 10 Number of satellites in view

4 22 Satellite number

5 11 Satellite elevation in degrees

6 117 Satellite azimuth in degrees

7 35 Signal-to-noise ratio

8-11 16,13,151,35 Repeat of 4-7 for another satellite

12-14 11,44,256, Repeat of 4-7 for another satellite

15-18 14,26,056,35 Repeat of 4-7 for another satellite

19 78 Checksum (preceded by * rather than a comma)

Table 10-4 describes the GPRMC (transit information) sentence, which provides navigational data such as ground speed
and course traveled.

Table 10-4. GPRMC Sentence
Column(s) Example Description

1
071110.000

(7:11:10)
Time of fix

2 A Navigation receiver warning (A=OK; V=receiver warning)

3,4
3242.8536, N

(32°42.8836' N)
Latitude

5,6
11709.7626, W

(117°9.7626' W)
Longitude

7 000.0 Ground speed in knots

8 000.0 Course made good (degrees)

9
100204

(10 February 2004)
Date of fix

10,11
013.0, E

(13°E)
Magnetic variation

12 7D Checksum (preceded by * rather than a comma)

10.4.1 References

Peter Bennett's NMEA FAQ

http://vancouver-webpages.com/peter/nmeafaq.txt

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

http://vancouver-webpages.com/peter/nmeafaq.txt

Walter Piechulla's Understanding NMEA 0183

http://www.walterpiechulla.de/nmea0183.html

10.4.2 GPSd

GPSd listens to a GPS receiver and republishes the GPS information on the network in an easy-to-read format. It's
included with GpsDrive, described later in this chapter, but you can also download it and install it yourself from the
GPSd home page at http://www.pygps.org/gpsd/gpsd.html.

To launch GPSd, specify the serial port with -p and (optionally) the speed with -s. If you use the -D option to specify a
debugging level above 1, GPSd will stay in the foreground and display debugging info (if you are using an RS-232
connection for your GPS, the port will be a standard serial port such as /dev/ttys0):

$ sudo gpsd -D9 -p /dev/ttyUSB0 -s 4800

command line options:

 debug level: 9

 gps device name: /dev/ttyUSB0

 gps device speed: 12

 gpsd port: 2947

 latitude: 3600.000N

 longitude: 12300.000W

It doesn't start reading from the GPS until it gets a connection from a client. The simplest way to connect is via telnet to
port 2947. GPSd understands several simple commands followed by a carriage return, as shown in Table 10-5.

Table 10-5. Commands supported by GPSd
Command Response from GPSd

P Latitude and longitude

D Date and time

A Altitude in meters

V Speed in knots

S Status (0=no GPS; 1=no fix; 2=2D fix; 3=3D Fix)

M Mode (0=no GPS; 1=GPS; 2=differential GPS)

R Enter raw mode (dumps NMEA 0183 sentences)

The first time you ask for latitude and longitude after launching GPSd, you might not get a valid result (and it may take
a while to get a fix anyhow). But on subsequent requests, you should get valid data:

bjepson@debian:~$ telnet localhost 2947

Trying 127.0.0.1...

Connected to debian.

Escape character is '^]'.

p

GPSD,P=0.000000 0.000000

p

GPSD,P=32.714227 -117.162708

Here's a sample session showing some of the other commands:

bjepson@debian:~$ telnet localhost 2947

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

bjepson@debian:~$ telnet localhost 2947

Trying 127.0.0.1...

Connected to debian.

Escape character is '^]'.

d

GPSD,D=02/10/2004 07:11:14

a

GPSD,A=103.500000

v

GPSD,V=0.000000

r

GPSD,R=1

$GPGSA,A,3,22,16,,14,20,,,,,25,,,02.5,01.5,02.1*05

$GPGSV,3,1,10,22,11,117,36,16,13,151,35,11,44,256,,14,26,056,36*78

$GPGSV,3,2,10,20,32,316,30,01,22,266,,30,09,052,,02,07,172,*72

$GPGSV,3,3,10,23,30,110,35,25,70,061,39*71

$GPRMC,071119.000,A,3242.8539,N,11709.7626,W,000.0,000.0,100204,013.0,E*7B

r$GPGGA,071120.000,3242.8539,N,11709.7626,W,1,05,01.5,00103.1,M,-34.0,M,,*58

$GPGSA,A,3,22,16,,14,20,,,,,25,,,02.5,01.5,02.1*05

GPSD,R=0

But to really have fun with GPSd, you can use GPSd-aware applications such as Kismet and GpsDrive, described in the
following sections.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

10.5 Mapping Wi-Fi Networks with Kismet
We introduced Kismet in Chapter 3 as a powerful network scanner. You can also use it in conjunction with GPSd to map
out the locations of Wi-Fi networks. (For the basics of getting Kismet running, see Chapter 3.) Once you have Kismet
and GPSd up and running, you can make them work together.

Safety
If you plan to do some network mapping with Kismet, keep the following in mind:

Put the computer somewhere safe and out of the way. Don't put it someplace where a sudden stop
will send it into your lap or through a window.

Forget that the computer is there while you are driving. If you have to fiddle with it, pull over first.
If you can have a friend driving with you who can operate the computer, all the better. Do not let
the computer distract you while you are driving.

Make sure that the GPS gets a fix before you start driving. It may be hard for it to get a fix while
you are in motion.

Put the GPS somewhere where it can easily pick up the satellite signals. Your best bet is to get a
magnetized external antenna that can attach to your roof. Be sure that there are no loose wires
sticking out of your window. Don't slam the wires in the door!

Above all, when you are driving a car, your first responsibility is to drive safely. Pay attention to the road
and drive carefully.

To map networks with Kismet and GPSd:

1. (Optional.) Load any modules needed for the serial port you're using for the GPS:

$ sudo modprobe pl2303

$ dmesg | grep tty

ttyS00 at 0x03f8 (irq = 4) is a 16550A

ttyS02 at 0x03e8 (irq = 4) is a 16550A

usbserial.c: PL-2303 converter now attached to ttyUSB0 (or usb/tts/0 for devfs)

2. Start GPSd, specifying the serial port with -p and the speed with -s:

$ sudo gpsd -D9 -p /dev/ttyUSB0 -s 4800

3. Telnet to GPSd and use p until you have a reliable fix; you can disconnect when you are done:

$ telnet localhost 2947

Trying 127.0.0.1...

Connected to debian.

Escape character is '^]'.

p

GPSD,P=0.000000 0.000000

p

GPSD,P=41.485882 -71.524841

^]

telnet> q

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

telnet> q

Connection closed.

4. Launch Kismet with the -g (GPS) switch and specify the hostname and port that GPSd is listening on:

$ sudo kismet -g localhost:2947

5. Go for a drive. Press Q when you are done with the drive to terminate Kismet.

When you shut down Kismet, it writes its log files. Check the logtemplate setting in kismet.conf to see where it puts its
log files:

logtemplate=/var/log/kismet/%n-%d-%i.%l

Kismet writes several log files in the logtemplate directory (I starts at 1 and increments for each time you run Kismet
on a given day):

Kismet-<MMM-DD-YYYY>-I.csv

Kismet log in semicolon-separated fields, one line per entry. The first entry contains the field names.

Kismet-<MMM-DD-YYYY>-I.dump

Kismet log in a pcap(3) format suitable for loading under Ethereal (http://www.ethereal.com).

Kismet-<MMM-DD-YYYY>-I.gps

Kismet log in a format designed to be read by the gpsmap utility, which is included with the Kismet distribution.

Kismet-<MMM-DD-YYYY>-I.network

A human-readable dump of the networks that Kismet encountered.

Kismet-<MMM-DD-YYYY>-I.xml

Kismet log in an XML format.

When you're done with Kismet, you must reassociate your Wi-Fi card with the network.
This can sometimes be done by restarting PCMCIA card services or removing and
reinserting the card, but it resulted in a kernel panic in some of our tests. Our workaround
was to use a second network card for network connectivity and let Kismet have its way
with the Prism-based card on wlan0.

To generate a map, run gpsmap on the .gps log file. See the gpsmap manpage for all the drawing and mapping options.
If you choose to use a downloaded map (the default), you must be online. Figure 10-8 shows a map generated by the
following command:

$ gpsmap -S3 -p /var/log/kismet/Kismet-Feb-16-2004-5.gps

The -S option specifies which map server to use (0 = MapBlast;1 = MapPoint;2 = Terraserver; 3= Tiger Census). If you
have trouble with one, try another (Tiger is loosely maintained by the Census Bureau and is not up 100 percent of the
time). Use -p to show power levels or -e to plot simply the locations of the hotspots on the map (see the gpsmap
manpage for more options).

Figure 10-8. Wi-Fi power levels in the Kingston, Rhode Island area

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

10.6 GpsDrive
GpsDrive (http://www.gpsdrive.cc/index.shtml) is an open source GPS-aware navigation system that uses GTK+. It
works with maps from a variety of sources, and plot waypoints, and even lets you share your position with friends and
send SMS text messages with position information.

If you launch GpsDrive while GPSd is listening on the localhost, it will pick it up and start reading coordinates from it. By
default, GpsDrive displays a placeholder map that's not very detailed (see Figure 10-9). However, you can download
new maps by clicking the Download Map button and selecting the map server from the dialog that pops up, as shown in
Figure 10-10.

Figure 10-9. Default map from GpsDrive

Figure 10-10. Selecting a map to download in GpsDrive

Using GpsDrive to download maps from a commercial map service may violate that site's
Terms of Service (ToS). Be sure to consult that mapping site's ToS before proceeding.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The latest beta version as of this writing (2.08pre12) comes with support for NASA's Blue Marble
(http://earthobservatory.nasa.gov/Newsroom/BlueMarble/) satellite images. You must download some extremely large
files (over 1 GB uncompressed) and install them according to the README.nasamaps file that's included with the
GpsDrive distribution. Figure 10-11 shows the NASA maps in action.

GpsDrive does not support route planning, but it does show your speed, position, and altitude. What's more, a version
is available that runs on Linux-powered handhelds (http://www.gpsdrive.cc/pda.shtml), so you can load it up with
waypoints for points of interest and use it while you wander around unfamiliar territory.

Figure 10-11. Using NASA's Blue Marble satellite maps with GpsDrive

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

10.7 Other Applications
Linux is a playground for geographic information, and there are a lot of other applications out there for you to play with.
GPStrans (http://sourceforge.net/projects/gpstrans) and GARNIX
(http://homepage.ntlworld.com/anton.helm/garnix.html) are free applications that exchange information (track, route,
waypoint, etc.) with a Garmin GPS. If you want to enjoy the increased accuracy of Differential GPS without having to
buy a DGPS radio, see the DGPS over the Internet project at http://www.wsrcc.com/wolfgang/gps/dgps-ip.html.

If you're looking for a public map server with U.S. street maps, the U.S. Census Bureau makes street maps that date
from 1998, available at the TIGER Map Server (http://tiger.census.gov/cgi-bin/mapbrowse-tbl). The maps on this site
are public domain, and you can specify latitude, longitude, marker positions, and more in the URL. If you want to put a
bunch of markers on the map (such as Wi-Fi hotspots), see the instructions at
http://tiger.census.gov/instruct.html#MURL. The Tiger web server is loosely maintained by the Census Bureau and is
not always in a working state.

One of the best resources for free/open source geographic information is the FreeGIS project (http://www.freegis.org/).
This site contains an overview of the massive world of free Geographic Information Systems (GIS) software and
provides software on CD-ROM. FreeGIS also acts as a central point for communication and collaboration on free GIS
projects. You can browse the software by category at http://www.freegis.org/browse.en.html and its list of geographic
data (including maps and other geographic models) at http://freegis.org/geo-data.en.html.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Colophon
Our look is the result of reader comments, our own experimentation, and feedback from distribution channels.
Distinctive covers complement our distinctive approach to technical topics, breathing personality and life into potentially
dry subjects.

The image on the cover of Linux Unwired is cattle ropers. Ropers were cowboys who snared calves and dragged them
to the fire for branding. Branding was the act of applying a red-hot branding iron to a calf's flank to mark the animal.
Each ranch had a marking that identified cattle belonging to its herd, and this was thought to discourage theft.

Sarah Sherman was the production editor and copyeditor for Linux Unwired. Matt Hutchinson was the proofreader.
Colleen Gorman and Claire Cloutier provided quality control. Julie Hawks wrote the index.

Emma Colby designed the cover of this book, based on a series design by Hanna Dyer and Edie Freedman. The cover
image is a 19th-century engraving from The Book of the American West (Bonanza Books, 1963). Emma Colby produced
the cover layout with QuarkXPress 4.1 using Adobe's ITC Garamond font.

David Futato designed the interior layout. The chapter opening images are from the Dover Pictorial Archive, Marvels of
the New West: A Vivid Portrayal of the Stupendous Marvels in the Vast Wonderland West of the Missouri River, by
William Thayer (The Henry Bill Publishing Co., 1888), and The Pioneer History of America: A Popular Account of the
Heroes and Adventures, by Augustus Lynch Mason, A.M. (The Jones Brothers Publishing Company, 1884). This book
was converted by Joe Wizda to FrameMaker 5.5.6 with a format conversion tool created by Erik Ray, Jason McIntosh,
Neil Walls, and Mike Sierra that uses Perl and XML technologies. The text font is Linotype Birka; the heading font is
Adobe Myriad Condensed; and the code font is LucasFont's TheSans Mono Condensed. The illustrations that appear in
the book were produced by Robert Romano and Jessamyn Read using Macromedia FreeHand 9 and Adobe Photoshop 6.
The tip and warning icons were drawn by Christopher Bing. This colophon was written by Sarah Sherman.

The online edition of this book was created by the Safari production group (John Chodacki, Becki Maisch, and Madeleine
Newell) using a set of Frame-to-XML conversion and cleanup tools written and maintained by Erik Ray, Benn Salter,
John Chodacki, and Jeff Liggett.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

--version parameter (iwconfig)
--version parameter (iwlist)
12-channel receiver
1x Evolution Data Only [See 1xEV-DO]
1x Radio Transmission Technology [See 1xRTT]
1x.conf file
1xEV-DO (1x Evolution Data Only)
 APN and
 network
1xRTT (1x Radio Transmission Technology) 2nd 3rd
 APN and
 Sprint PCS and
 Verizon Wireless and
2.4 GHz ISM (Industrial, Scientific, and Medical) band
2.4 kernel PCMCIA
2D RMS
8-channel receiver
802.11
 family of standards
 history
 Prism I reference standard for
 protocol set [See Wi-Fi]
802.11a
802.11b standard
802.11g cards
802.11i standard
802.1x authentication

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Abramson, Norm
absorption
 radio interference and
acceleration
Access Point Name (APN)
access points
 commercial wireless
 configuring
 configuring with Linux
 custom [See custom access points]
 flashing
 scanning for available
 seeing list of available
 WPA support in
ActionTec (wireless vendor)
ActiveSync
Ad-Hoc Mode
Advanced Encryption Standard (AES)
Affix
Agere wlags49 [See wlags49]
aggregators, wireless
Aironet radio chipsets
Airopeek
Allen, Jon
ALOHANET
altitude
amplitude
antennas
 directional
 integrated
 omnidirectional
 parabolic dish
 patch
 sector
 Yagi
AP (wireless access point)
ap parameter (iwconfig)
ap parameter (iwlist)
AP Radar
 associating with access points
 building from source
 compiling from source
 determining if it will run with your card and driver
 Ping default gateway option
 Run dhclient on associate option
APN (Access Point Name)
Apple (wireless vendor)
Apple AirPort 2nd
 configuration
AT commands recognized by cellular modems
AT&T Wireless 2nd
 Edge network, connecting to
Atheros radio chipsets
 madwifi driver for

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Atmel radio chipsets
audio and Bluetooth

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

BARWN outdoor routers
Basic Printing Profile (BPP)
Basic Service Set (BSS)
bearings (GPS)
Belkin (wireless vendor)
Bennett, Peter
bigsecret (PCMCIA wireless card configuration)
blackbeltjones.com
bluejacking
Bluetooth 2nd 3rd
 adapters
 address
 basics
 BlueZ utilities, installing
 bonding/pairing 2nd
 Class 1 and Class 2 devices
 configuration and operation
 configuring hcid
 connecting input devices
 controlling music players with
 controlling presentations with
 cool tricks
 Debian 3.0 and
 device classes
 discoverability
 examining local drives
 experimental features
 GUIs
 hardware
 Linux hotplug subsystem and
 Linux support
 configuring kernel
 patching kernel
 Local Area Network (LAN) access profile
 Mandrake and
 master/slave
 OBEX
 overview
 PAN profiles
 PCMCIA and
 piconets
 pinging remote devices
 PINs
 PPP networking
 printing over
 profiles
 protocols
 proximity-sensitive screen blanking
 quick start
 RedHat and
 scanning remote devices
 scatternets
 serial connections
 service discovery

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 SuSE 9.0 and
 troubleshooting
 what you can do with
Bluetooth Network Encapsulation Protocol (BNEP) 2nd
Bluetooth Special Interest Group (SIG)
Bluetooth-enabled ISDN modems, connecting to
BlueZ utilities
 hardware support configuration options
 installing
 protocol configuration options
 RFCOMM implementation
bluez-bluefw package
bluez-hcidump package
bluez-libs package
bluez-pan package
 LAN access
bluez-sdp package
bluez-utils package
Boingo
bootable media and access points
 CD drives
 flash RAM
Borders bookstores
bps (bits per second)
bridges, wireless
bridging interfaces
Broadcom radio chipsets
BSS (Basic Service Set)
built-in (Bluetooth hardware)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

captive portal
Cardbus, identifying radio chipset
cardctl program
CARDMGR_OPTS option
Carrier Sense Multiple Access (CSMA)
CD drives and access points
CDMA PC card
CDMA phones
 with data cable
 with data cable, getting online
CDMA2000 family of protocols
CDPD (Cellular Digital Packet Data)
cell phones
 connecting to Internet with
 download and upload speeds
 Internet access using Bluetooth
 sending faxes
 sending text messages
cellular carriers
cellular data networks
Cellular Digital Packet Data (CDPD)
cellular modems, AT commands recognized by
cellular networks 2nd
Centrino chipset
CEP (Circular Error Probable)
CF-IDE adapters
channel parameter (iwconfig)
chipset compatibility
 common chipsets
 identifying chipsets
 PCI
 PCMCIA or Cardbus
 USB
 Linux, driver support, and GPL
Cingular Wireless 2nd
Circuit Switched Data (CSD)
Circular Error Probable (CEP)
Cisco (wireless vendor) 2nd
Cisco radio chipsets
client-to-client communication
closed networks and Kismet
Code Division Multiple Access (CDMA)
Code Division Multiple Access (CDMA) 1xRTT (1x Radio Transmission Technology)
Cometa (hotspot provider)
Common UNIX Printing System (CUPS)
communicating securely
Compact Flash cards 2nd
 Kingston
 Linux-powered access points and
 reformatting problems
 SanDisk
 WISP-Dist and
config command (cardctl program)
CONFIG_IRCOMM

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CONFIG_IRDA
CONFIG_NET_RADIO option
CONFIG_USB_BLUETOOTH
configuring and compiling Linux kernel
 configuring boot loader program
 editing .config file
 reasons for
 requirements
 uncompressing kernel
contacts, synchronizing
CORE_OPTS option
CSD (Circuit Switched Data)
CSMA (Carrier Sense Multiple Access)
custom access points
 bootable media
 CD drives
 flash RAM
 booting from network
 Fujitsu Stylistic
 hardware
 components
 deciding factors
 memory
 minimum requirements
 ports
 power
 processor speed
 recycled
 support 2nd
 LEAF/WISP-Dist
 Linux-powered off-the-shelf
 LinuxAP
 old laptop PC
 PCMCIA slots in laptop
 Pebble
 radio cards
 master mode
 reasons for
 small board and embedded PCs
 BARWN outdoor routers
 OpenBrick
 Soekris motherboards
 software
 Agere wlags49
 Hermes AP
 HostAP
 Linux
 Madwifi
Cyclic Redundancy Check (CRC)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

D-Link (wireless vendor)
DB9 connector
Debian
 configuring network devices
 installing Kismet
Debian 3.0
 Bluetooth and
Debian 3.0r1 and IrDA
Dell 1150 card
Dell TrueMobile 1184
Deluo GPS
Deluo Laptop GPS receiver
Dial-up Networking Profile (DUN)
Differential GPS (DGPS)
diffraction
digital cellular phone networks
Direct Sequence
Direct Sequence Spread Spectrum
directional antennas
dldrconfig command
dldrstop command
download speeds of cell phones
drivers, Linux Wi-Fi
 hostap_cs
 madwifi
 orinoco_cs
 wlan-ng
dual-mode cards
dund program
 connecting to LAN access server

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

EAP (Extensible Authentication Protocol)
EAP Tunneled TLS (EAP-TTLS)
EAP-MD5
EAP-Transport Layer Security (EAP-TLS)
EDGE (Enhanced Data Rates for Global Evolution) 2nd
 devices
efax package
EHF (Extremely High Frequency) band
eject command (cardctl program)
electromagnetic (EM) spectrum
embedded PCs, using to build access points
enc parameter (iwconfig)
enc parameter (iwlist)
EnGenius (wireless vendor)
EnGenius/Senao (wireless vendor)
Enhanced Data rates
Enhanced Data Rates for Global Evolution (EDGE)
EPIA MII motherboard
ESS (Extended Service Set)
ESSID
 noisy wireless environment
essid parameter (iwconfig)
Ethereal, reading Kismet's dump files in
Ethernet
 standard for wired networking
Eumitcom WL11000 motherboard
Extended Service Set (ESS)
Extensible Authentication Protocol (EAP)
Extremely High Frequency (EHF) band

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Fast Infrared (FIR)
FatPort
faxes, sending from cell phones
FCC (Federal Communications Commission)
 bands defined by
Fedora, installing Kismet
File Transfer Profile (FTP)
fix (GPS)
flash RAM and access points
flashing access points
frag parameter (iwconfig)
FreeGIS project
freeradius packages
freq parameter (iwconfig)
freq parameter (iwlist)
frequency 2nd [See also radio frequency]
 allocation chart
 range defined for various bands
Frequency Hopping
Fujitsu Stylistic, using to build access points

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Garmin GPS
Garmin StreetPilot III
GARNIX
General Packet Radio Service (GPRS) 2nd
General Packet Radio Services (GPRS)
Generic Object Exchange Profile (GOEP)
Gentoo 1.4 and IrDA
GHz (gigahertz)
gigahertz (GHz)
Global Positioning System [See GPS]2nd [See GPS]
Global System for Mobile communications (GSM)
GN networks
 creating
GNOME Bluetooth subsystem
GNOME-Pilot 2nd
 configuring
GPGSA (active satellites) sentence
GPGSV (satellites in view) sentence
GPRMC (transit information) sentence
GPRS (General Packet Radio Service) 2nd 3rd
 carrier, connecting to Internet using
 PC card
 getting online
GPS (Global Positioning System) 2nd
 accuracy
 communication rate
 glossary
 listening from a Linux box
 pinpointing exact location
 receivers
 calculating position
 with mapping software
 uses of
GPSd
 commands supported by
 launching
 mapping networks with Kismet and
GpsDrive
gpsmap command
GPStrans
group ad-hoc network [See GN networks]
GRUB boot loader
GSM (Global System for Mobile communications)
GSM Evolution (EDGE) network
GSM/GPRS phone with data cable
 getting online
GTK+

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

hands-free wireless headsets for mobile phones
Hardcopy Cable Replacement (HCRP)
Hardware Abstraction Layer (HAL)
hciconfig tool
 common usages
 options
hcid daemon, configuring
heading (GPS)
Headset Profile (HS)
Hermes AP driver
 custom access points
Hertz (Hz)
Hidden Node problem
High Frequency (HF) band 2nd
High Rate DS
High Speed CSD (HSCSD)
hobo symbols
Holtmann, Marcel
hopping between radio channels
horizontally polarized antenna
host_ap driver
hostap
 building from CVS
 building tools
HostAP
 custom access points
hostap
 distribution files
HostAP
 driver,
 loading
hostap
 mailing list
 packages, installing
hostap_cs driver 2nd
 compiling
 installing for use with PCI or PLX adapter cards
hostap_pci driver
hostapd daemon
hotspot in a box
HotSpotList website
hotspots
 associating with
 locating
 open
 providers
 associating with
 requirements
 restricted access
Human Interface Device Profile (HID)
Hz (Hertz)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

ident command (cardctl program)
IEEE (Institute of Electrical and Electronics Engineers)
infrared
 setting up with Linux
Infrared Data Association [See IrDA]
infrared devices
 operating range
infrared dongles
 USB
infrared light
Infrastructure Mode
input devices and Bluetooth
insert command (cardctl program)
integrated antennas
interfaces file
Intersil Prism radio chipsets
IP address filtering
iPass
ir-usb module
IrCOMM Protocol (CONFIG_IRCOMM)
IrDA (Infrared Data Association)
 devices with different transfer speeds
 equipment
 in kernel
 PC laptop with built-in
 PPP settings for AT&T Wireless and Nokia 6200 over
 sharing a network connection over
 connecting from Linux
 connecting from Palm OS
 connecting from Pocket PC
IrDA Subsystem Support (CONFIG_IRDA)
isdn4linux FAQ
iwconfig command, configuring WEP key
iwconfig tool
 parameters
iwlist tool
iwpriv tool
iwspy tool
 monitoring up to eight addresses

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Java Configurator
JiWire website
Jones, Matt

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

KB/s (kilobytes)
kbps (kilobits per second)
KDE address books, synchronizing
KDE Bluetooth Framework
Kermit session with the Novatel Wireless Merlin C201
kernel PCMCIA support
kernel source, obtaining
kernel tree PCMCIA
kernel, LInux
 configuring and compiling [See configuring and compiling Linux kernel]
key parameter (iwconfig)
key parameter (iwlist)
kHz (kilohertz)
kilohertz (kHz)
Kingston flash cards
Kinkos copy centers
Kismet
 building
 closed networks
 configuring
 Debian and
 Fedora and
 mapping networks with GPSd and
 mapping Wi-Fi networks with
 safety issues
 playing sound effects when it finds new SSIDs
 reassociating Wi-Fi card with network when done
 RedHat and
 shutting down
 taking advantage of advanced features
kismet command
kismet_hopper command
KPilot
Kristensen, Soren

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

l2ping tool
LAN access (Bluetooth)
 connecting to server
 creating a server
LAN Access Profile (LAP)
latitude
LDAP
LEAF (Linux Embedded Appliance Firewall)
Leffler, Sam
LF (Low Frequency) band
Lightweight EAP (LEAP)
LILO boot loader
lilo.conf file
 manually editing
Link Manager Protocol (LMP)
Linksys 2nd
 firmware support
 source code modifications
Linksys WPC55AG PC Card
Linksys WRV54G router
Linux
 basic resources
 running on non-Linux devices
 wireless networks, tasks you can complete with
Linux Embedded Appliance Firewall [See LEAF]
Linux hotplug subsystem and Bluetooth
Linux PPP HOWTO
Linux Router Project (LRP)
Linux Wireless Tools [See Wireless Tools]
Linux-friendly wireless vendors
Linux-IrDA Quick Tutorial
Linux-powered access points
 LEAF/WISP-Dist
 LinuxAP
 off-the-shelf
 Pebble
 running off Compact Flash card
Linux-powered handhelds and GPS
linux-wlan-ng package
Linuxant 2nd
 licenses
 web site
LinuxAP
 web site and mailing list
Location Based Services (LBS)
LocustWorld MeshAP
LocustWorld Wiki
Logical Link Control and Adaptation Protocol (L2CAP)
longitude
Low Frequency (LF) band
Lucent Orinoco RG-1000
Lucent WaveLAN IEEE/Orinoco/Agere 802.11b radio card
Lucent WaveLan radio chipsets

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

MAC address filtering
MadsonLine
madwifi driver 2nd
 custom access points
 for Atheros chipsets
 obtaining
 obtaining CVS code for
madwifi-users mailing list
Magellan Meridian Gold
make config command
make menuconfig command
make xconfig command
Malinen, Jouni 2nd
Mandrake 9.2 and IrDA
Mandrake and Bluetooth
mapping software, GPS in
maps, public map server with USA street maps
MB/s (megabytes)
Mbps (megabits per second)
Medium Frequency (MF) band
Medium Infrared (MIR)
megahertz (MHz)
Merlin C201 card
 download and upload speeds
 getting online with
 PPP peer settings for
Merlin G100, download and upload speeds
Mesa Electronics
MeshAP
Metcalfe, Bob
MF (Medium Frequency) band
MHz (megahertz)
Microsoft (wireless vendor)
Microsoft Challenge-Handshake Authentication Protocol Version 2 (MS-CHAP v2)
military use of GPS
Miller, Tim
milliwatts (mW)
MiniPCI
mobile phones
mode parameter (iwconfig)
Motorola v120e phone
 download and upload speeds
 getting online
MP3 players, controlling with Bluetooth
Multiband Atheros Driver for WiFi [See madwifi driver]
MultiSync tool
music players, controlling with Bluetooth
mW (milliwatts)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

NAP (network access point)
NAP access point, setting up
NASA Blue Marble
National Marine Electronics Association (NMEA)
National Marine Electronics Association (NMEA) 0183
National Semi UART
navigation services and GPS
NdisWrapper
net4521 motherboards
net4801 motherboard
Netgear (wireless vendor)
network access point (NAP)
network cards, determining if scanning is supported
network class (PCMCIA wireless card configuration)
 bigsecret
network.opts file
networking with Bluetooth
networks
 closed
 mapping with Kismet and GPSd
 wireless [See wireless networks]
nick parameter (iwconfig)
NMEA (National Marine Electronics Association)
 FAQ
 sentences
NoCatAuth captive portal
Nokia 6200 phone
 download and upload speeds
 EDGE and
 inserting SIM card into
Novatel Wireless Merlin C201 [See Merlin C201 phone]
Novatel Wireless Merlin C201 phone
Novatel Wireless Merlin G100 GPRS PCMCIA modem
NYCWireless

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

OBEX (Object Exchange) 2nd
OBEX FTP over Bluetooth
OBEX PUSH
Object Exchange (OBEX) 2nd
object exchange with Bluetooth
omnidirectional antennas
open wireless networks
OpenBrick
OpenOBEX
 transferring files with
OpenOBEX libraries
openobex-apps package
OpenWrt
 telnet daemon
OpenWrt firmware
 loading
Opera Software
Orange tool
Orinoco AP Manager software
Orinoco AP-series
Orinoco CLI Proxy
Orinoco radio chipsets
Orinoco RG-1000
Orinoco RG-1000 configuration
orinoco_cs driver 2nd
Orinoco_cs driver
oscillators

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

packet-switched network, first
Palm OS, sharing a network connection over IrDA
Palm system
 synchronizing with Linux system
PAN (personal area networking)
 setting up NAP access point
pand tool
parabolic dish antennas
Park, Don
patch antennas
pay-as-you-go SIM
PC Card
PC card (Bluetooth hardware)
PC laptop with built-in IrDA
PC-104 motherboard standard
PCI
 identifying radio chipset
PCIC_OPTS option
PCMCIA
 Bluetooth and
 card
 managing
 multiple configurations
 network class 2nd
 devices
 classes
 identifying radio chipset
 kernel support
 Linux support
 scripts
 support with Wireless Tools
pcmcia-cs README for Version 2.4 kernels
pcmcia-cs software package
 building and configuring
 options
PCMCIA/CardBus support, compiling kernel with
PDAs
Pebble
 getting to work on CF card
 included in release
 Linux-powered access points
 mailing list
 manually configurating installation
 wireless card driver support
peer-to-peer mode
peers parameter (iwlist)
Personal Area Networking (PAN)
personal area networking (PAN)
Personal Telco Project
Peterson, Matt
piconets
Piechulla, Walter
pilot-link package 2nd
pilot-xfer utility 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

plain GPS receivers
PMG-220 CF GPS receiver
Pocket PC
 moving data between Linux system and
 synchronizing
Pocket PC, sharing a network connection over IrDA
PocketMap
PocketMap Compact Flash GPS
Point-to-point networking [See PPP]
Power Over Ethernet (POE)
power parameter (iwconfig)
Pozar, Tim
PPP
 connect script
 for AT&T Wireless and the Nokia 6200
 for Sprint PCS and the Merlin C201
 for T-Mobile and Merlin G100
 for Verizon Wireless and Motorola v120e
 connections and IrDA-enabled devices
 disconnect script for AT&T Wireless and Nokia 6200
 networking and Bluetooth
 peer settings
 for AT&T Wireless and the Nokia 6200
 for Sprint PCS and the Merlin C201
 for T-Mobile and Merlin G100
 for Verizon Wireless and Motorola v120e
 peer settings for AT&T Wireless and the Nokia 6200
 troubleshooting
pppd command
Preboot eXecution Environment (PXE)
presentations, controlling with Bluetooth
primary firmware
printing over Bluetooth
Prism card firmware, updating
Prism I reference standard for 802.11
prism54 driver
Protected EAP (PEAP)
Proxim Orinoco (wireless vendor)
public map server with USA street maps
PXE (Preboot eXecution Environment)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

quality of link information for one or many nodes in a wireless network

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

radio cards
 access points and
 master mode
radio frequency
 corresponding wireless network protocols
Radio Frequency Communication (RFCOMM)
radio interface cards
radio interference and absorption
radio waves
 amplitude
 behavior
 frequency
radioteletype
RADIUS
 server
rate parameter (iwconfig)
rate parameter (iwlist)
RedHat
 Bluetooth and
RedHat 9 and IrDA
RedHat, installing Kismet
reflection
refraction
Remote Authentication Dial In User Service (RADIUS) server
remote controls 2nd
ResEdit, removing binary firmware from executable
retry parameter (iwconfig)
retry parameter (iwlist)
RFCOMM connections and BlueZ
RG-1000 configuration
RMS (Root Mean Square)
Root Mean Square (RMS)
route (GPS)
routers, wireless
rts parameter (iwconfig)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

safety issues related to network mapping with Kismet
SanDisk CF cards
satellites and GPS
scanning
 network card support
scanning for available access points
scattering
scatternets
schemes (PCMCIA card)
Schmidt, Terry
sdpd tool
 configuring with sdptool
sdptool utility
 browsing
 service abbreviations
Seattle Wireless
sector antennas
security [See communicating securely]
Selective Availability (SA) 2nd
sens parameter (iwconfig)
serial dongle (Bluetooth hardware)
Serial Infrared (SIR)
serial port emulation with Bluetooth
Serial Port Profile (SPP)
Service Discovery Access Profile (SDAP)
service discovery profile (SDP) in Bluetooth
Service Discovery Protocol (SDP)
Service Set Identifier (SSID)
Sevy, Jon
SHF (Super High Frequency) band
Short Message Service (SMS)
Silva, Brad
SIM (Subscriber Identity Module)
Single Carrier Radio Transmission Technology
small board PCs, using to build access points
SmartBridges (wireless vendor)
SMC (wireless vendor)
SmithMicro QuickLink Mobile for Mac OS X kit
Sniffer Wireless
Soekris motherboards
Soekris system, setting up with Pebble
Sony Ericsson GC82 PC Card Modem
SourceForge
 development site
Spectrum24
Sprint and acceleration
Sprint PCS
 PPP peer settings for
Sprint PCS Vision
SSID (Service Set Identifiers)
SSIDs (Service Set Identifiers)
 disabling broadcast
 hotspot providers and
Starbucks coffee shops

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

station firmware
Straumann, Til
STSN (hotspot provider)
Subscriber Identity Module (SIM)
Super High Frequency (SHF) band
Surf and Sip (hotspot provider)
SuSE 9.0
 Bluetooth and
SuSE 9.0 and IrDA
Sveasoft firmware
 obtaining
 selecting receive and transmit antennas
 setting up SSH daemon
Sydney Wireless HostAP CD
Symbol radio chipsets
SynCE program
Synchronization Profile (SP)
synchronizing
 Bluetooth
 contacts
 Palm and Linux systems
 Pocket PC

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

T-Mobile 2nd 3rd 4th
 acceleration and
 Hotspots website
Telephony Control Protocol Specification (TCS)
teletype over radio (TOR)
Temporal Key Integrity Protocol (TKIP)
text messaging
TIGER Map Server
Time Division Multiple Access (TDMA)-based GSM mobile phone networks
Time to First Fix (TTFF)
Tourrilhes, Jean 2nd 3rd
tracking and GPS
Tranzeo (wireless vendor) 2nd
tri-mode cards
Trustive
TTFF (Time to First Fix)
txpower parameter (iwconfig)
txpower parameter (iwlist)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

U.S. Department of Defense
UHF (Ultra High Frequency) band
Ultra High Frequency (UHF) band
upload speeds of cell phones
US Robotics (wireless vendor)
USA street maps
USB dongle (Bluetooth hardware)
USB Infrared dongles
USB, identifying radio chipset

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

vendors, Linux-friendly wireless
Venturi
Verizon Express Network
Verizon Wireless 2nd
 Express Network NationalAccess plan
 Venturi
vertically polarized antenna
Very Fast Infrared (VFIR)
Very High Frequency (VHF) band
Very Low Frequency (VLF) band
VHF (Very High Frequency) band
Via Mini-ITX
Via Mini-ITX PCs
Virtual LANs/Virtual Private Networks
VLF (Very Low Frequency) band
VoiceStream 2nd
Vu, Augustin

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

WAP-11 access point
warchalking
wardialing
wardriving
wardriving maps
warflying
wavelan and wavelan2 drivers
wavelength (radio waves)
waypoints (GPS)
WayPort
WayPort (hotspot provider)
WEP (Wired Equivalent Privacy)
 complex keys
 key attacks
 pitfalls
 rapid key rotation
 references
 with Linux
Wi-Fi
 hardware
 networks
 mapping with Kismet 2nd
 under Linux
 chipset compatibility [See chipset compatibility]
 configuring and compiling kernel [See configuring and compiling Linux kernel]
 quick start
 requirements
Wi-Fi Alliance
Wi-Fi Zone Finder website
Wifi-Box firmware
 installing
 SNMP daemon
WiFinder website
Windows Mobile 2003, sharing a network connection over IrDA
WINIC W-USB-180 IrDA dongle
Wired Equivalent Privacy [See WEP]
wireless
 first packet-switched network
 introduction to
wireless access points
 custom
wireless aggregators
wireless bridges
wireless card
 changing parameters of retry
 configuring private wireless options
 displaying list of available radio frequencies
 displaying version of iwlist and Wireless Extensions
 listing available keys
 listing bit-rates supported by
 listing current key in use
 listing encryption key size supported
 listing transmit powers
 listing transmit retry limits and lifetime

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 listing version of iwlist and Wireless Extensions
 operating mode
 seeing list of access points available
 sending handshake before packet transmission
 setting access point
 setting bit-rate
 setting encryption mode and keys
 setting fragmentation threshhold
 setting frequency
 setting network name
 setting power management modes and parameters
 setting rate
 setting sensitivity threshhold
 setting station name
 setting transmit power
wireless equipment overview
Wireless Extensions
 support in Linux kernel
Wireless Fidelity [See Wi-Fi]
Wireless Internet Assigned Numbers Authority (WIANA)
Wireless ISP Distribution [See WISP-Dist]
wireless network
 discovery
 getting on
wireless network protocols
 corresponding radio frequencies
wireless networks
 locating
 open
 types
Wireless Protected Access [See WPA]
wireless router [See routers, wireless]
Wireless Tools
 compiling
 installing
 iwconfig tool
 iwpriv tool
 iwspy tool
 PCMCIA support
 using
wireless vendors, Linux-friendly
wireless-tools package
wireless.h file
wireless.opts file
WISP-Dist (Wireless ISP Distribution)
 current features
 installing
 User Guide
wlags49
 configuring wireless parameters
 custom access points
 getting driver to compile
WLAN Adapter Chipset Directory
WLAN Driver Loader
 compiling from source
 using with WPA-PSK (personal) authentication
 wireless card downloads
wlan-ng driver 2nd
wlan-ng RPMs for Red Hat Linux

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WPA (Wireless Protected Access)
 on Linux
WPA RADIUS setup details
WPA support in access points
wpa_supplicant
 authenticating with
 Xsupplicant with
wpa_supplicant package
WRT54G Wireless Router
 hacking firmware
 OpenWrt
 Sveasoft
 Wifi-Box
 hacking hardware
 Linksys firmware support
 Linux distributions for
 soldering extra parts
wvlan driver

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Ximian Evolution
Xsupplicant
Xsupplicant with wpa_supplicant

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Yagi antennas

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Abramson, Norm
absorption
 radio interference and
acceleration
Access Point Name (APN)
access points
 commercial wireless
 configuring
 configuring with Linux
 custom [See custom access points]
 flashing
 scanning for available
 seeing list of available
 WPA support in
ActionTec (wireless vendor)
ActiveSync
Ad-Hoc Mode
Advanced Encryption Standard (AES)
Affix
Agere wlags49 [See wlags49]
aggregators, wireless
Aironet radio chipsets
Airopeek
Allen, Jon
ALOHANET
altitude
amplitude
antennas
 directional
 integrated
 omnidirectional
 parabolic dish
 patch
 sector
 Yagi
AP (wireless access point)
ap parameter (iwconfig)
ap parameter (iwlist)
AP Radar
 associating with access points
 building from source
 compiling from source
 determining if it will run with your card and driver
 Ping default gateway option
 Run dhclient on associate option
APN (Access Point Name)
Apple (wireless vendor)
Apple AirPort 2nd
 configuration
AT commands recognized by cellular modems
AT&T Wireless 2nd
 Edge network, connecting to
Atheros radio chipsets
 madwifi driver for

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Atmel radio chipsets
audio and Bluetooth

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

BARWN outdoor routers
Basic Printing Profile (BPP)
Basic Service Set (BSS)
bearings (GPS)
Belkin (wireless vendor)
Bennett, Peter
bigsecret (PCMCIA wireless card configuration)
blackbeltjones.com
bluejacking
Bluetooth 2nd 3rd
 adapters
 address
 basics
 BlueZ utilities, installing
 bonding/pairing 2nd
 Class 1 and Class 2 devices
 configuration and operation
 configuring hcid
 connecting input devices
 controlling music players with
 controlling presentations with
 cool tricks
 Debian 3.0 and
 device classes
 discoverability
 examining local drives
 experimental features
 GUIs
 hardware
 Linux hotplug subsystem and
 Linux support
 configuring kernel
 patching kernel
 Local Area Network (LAN) access profile
 Mandrake and
 master/slave
 OBEX
 overview
 PAN profiles
 PCMCIA and
 piconets
 pinging remote devices
 PINs
 PPP networking
 printing over
 profiles
 protocols
 proximity-sensitive screen blanking
 quick start
 RedHat and
 scanning remote devices
 scatternets
 serial connections
 service discovery

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 SuSE 9.0 and
 troubleshooting
 what you can do with
Bluetooth Network Encapsulation Protocol (BNEP) 2nd
Bluetooth Special Interest Group (SIG)
Bluetooth-enabled ISDN modems, connecting to
BlueZ utilities
 hardware support configuration options
 installing
 protocol configuration options
 RFCOMM implementation
bluez-bluefw package
bluez-hcidump package
bluez-libs package
bluez-pan package
 LAN access
bluez-sdp package
bluez-utils package
Boingo
bootable media and access points
 CD drives
 flash RAM
Borders bookstores
bps (bits per second)
bridges, wireless
bridging interfaces
Broadcom radio chipsets
BSS (Basic Service Set)
built-in (Bluetooth hardware)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

captive portal
Cardbus, identifying radio chipset
cardctl program
CARDMGR_OPTS option
Carrier Sense Multiple Access (CSMA)
CD drives and access points
CDMA PC card
CDMA phones
 with data cable
 with data cable, getting online
CDMA2000 family of protocols
CDPD (Cellular Digital Packet Data)
cell phones
 connecting to Internet with
 download and upload speeds
 Internet access using Bluetooth
 sending faxes
 sending text messages
cellular carriers
cellular data networks
Cellular Digital Packet Data (CDPD)
cellular modems, AT commands recognized by
cellular networks 2nd
Centrino chipset
CEP (Circular Error Probable)
CF-IDE adapters
channel parameter (iwconfig)
chipset compatibility
 common chipsets
 identifying chipsets
 PCI
 PCMCIA or Cardbus
 USB
 Linux, driver support, and GPL
Cingular Wireless 2nd
Circuit Switched Data (CSD)
Circular Error Probable (CEP)
Cisco (wireless vendor) 2nd
Cisco radio chipsets
client-to-client communication
closed networks and Kismet
Code Division Multiple Access (CDMA)
Code Division Multiple Access (CDMA) 1xRTT (1x Radio Transmission Technology)
Cometa (hotspot provider)
Common UNIX Printing System (CUPS)
communicating securely
Compact Flash cards 2nd
 Kingston
 Linux-powered access points and
 reformatting problems
 SanDisk
 WISP-Dist and
config command (cardctl program)
CONFIG_IRCOMM

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CONFIG_IRDA
CONFIG_NET_RADIO option
CONFIG_USB_BLUETOOTH
configuring and compiling Linux kernel
 configuring boot loader program
 editing .config file
 reasons for
 requirements
 uncompressing kernel
contacts, synchronizing
CORE_OPTS option
CSD (Circuit Switched Data)
CSMA (Carrier Sense Multiple Access)
custom access points
 bootable media
 CD drives
 flash RAM
 booting from network
 Fujitsu Stylistic
 hardware
 components
 deciding factors
 memory
 minimum requirements
 ports
 power
 processor speed
 recycled
 support 2nd
 LEAF/WISP-Dist
 Linux-powered off-the-shelf
 LinuxAP
 old laptop PC
 PCMCIA slots in laptop
 Pebble
 radio cards
 master mode
 reasons for
 small board and embedded PCs
 BARWN outdoor routers
 OpenBrick
 Soekris motherboards
 software
 Agere wlags49
 Hermes AP
 HostAP
 Linux
 Madwifi
Cyclic Redundancy Check (CRC)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

D-Link (wireless vendor)
DB9 connector
Debian
 configuring network devices
 installing Kismet
Debian 3.0
 Bluetooth and
Debian 3.0r1 and IrDA
Dell 1150 card
Dell TrueMobile 1184
Deluo GPS
Deluo Laptop GPS receiver
Dial-up Networking Profile (DUN)
Differential GPS (DGPS)
diffraction
digital cellular phone networks
Direct Sequence
Direct Sequence Spread Spectrum
directional antennas
dldrconfig command
dldrstop command
download speeds of cell phones
drivers, Linux Wi-Fi
 hostap_cs
 madwifi
 orinoco_cs
 wlan-ng
dual-mode cards
dund program
 connecting to LAN access server

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

EAP (Extensible Authentication Protocol)
EAP Tunneled TLS (EAP-TTLS)
EAP-MD5
EAP-Transport Layer Security (EAP-TLS)
EDGE (Enhanced Data Rates for Global Evolution) 2nd
 devices
efax package
EHF (Extremely High Frequency) band
eject command (cardctl program)
electromagnetic (EM) spectrum
embedded PCs, using to build access points
enc parameter (iwconfig)
enc parameter (iwlist)
EnGenius (wireless vendor)
EnGenius/Senao (wireless vendor)
Enhanced Data rates
Enhanced Data Rates for Global Evolution (EDGE)
EPIA MII motherboard
ESS (Extended Service Set)
ESSID
 noisy wireless environment
essid parameter (iwconfig)
Ethereal, reading Kismet's dump files in
Ethernet
 standard for wired networking
Eumitcom WL11000 motherboard
Extended Service Set (ESS)
Extensible Authentication Protocol (EAP)
Extremely High Frequency (EHF) band

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Fast Infrared (FIR)
FatPort
faxes, sending from cell phones
FCC (Federal Communications Commission)
 bands defined by
Fedora, installing Kismet
File Transfer Profile (FTP)
fix (GPS)
flash RAM and access points
flashing access points
frag parameter (iwconfig)
FreeGIS project
freeradius packages
freq parameter (iwconfig)
freq parameter (iwlist)
frequency 2nd [See also radio frequency]
 allocation chart
 range defined for various bands
Frequency Hopping
Fujitsu Stylistic, using to build access points

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Garmin GPS
Garmin StreetPilot III
GARNIX
General Packet Radio Service (GPRS) 2nd
General Packet Radio Services (GPRS)
Generic Object Exchange Profile (GOEP)
Gentoo 1.4 and IrDA
GHz (gigahertz)
gigahertz (GHz)
Global Positioning System [See GPS]2nd [See GPS]
Global System for Mobile communications (GSM)
GN networks
 creating
GNOME Bluetooth subsystem
GNOME-Pilot 2nd
 configuring
GPGSA (active satellites) sentence
GPGSV (satellites in view) sentence
GPRMC (transit information) sentence
GPRS (General Packet Radio Service) 2nd 3rd
 carrier, connecting to Internet using
 PC card
 getting online
GPS (Global Positioning System) 2nd
 accuracy
 communication rate
 glossary
 listening from a Linux box
 pinpointing exact location
 receivers
 calculating position
 with mapping software
 uses of
GPSd
 commands supported by
 launching
 mapping networks with Kismet and
GpsDrive
gpsmap command
GPStrans
group ad-hoc network [See GN networks]
GRUB boot loader
GSM (Global System for Mobile communications)
GSM Evolution (EDGE) network
GSM/GPRS phone with data cable
 getting online
GTK+

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

hands-free wireless headsets for mobile phones
Hardcopy Cable Replacement (HCRP)
Hardware Abstraction Layer (HAL)
hciconfig tool
 common usages
 options
hcid daemon, configuring
heading (GPS)
Headset Profile (HS)
Hermes AP driver
 custom access points
Hertz (Hz)
Hidden Node problem
High Frequency (HF) band 2nd
High Rate DS
High Speed CSD (HSCSD)
hobo symbols
Holtmann, Marcel
hopping between radio channels
horizontally polarized antenna
host_ap driver
hostap
 building from CVS
 building tools
HostAP
 custom access points
hostap
 distribution files
HostAP
 driver,
 loading
hostap
 mailing list
 packages, installing
hostap_cs driver 2nd
 compiling
 installing for use with PCI or PLX adapter cards
hostap_pci driver
hostapd daemon
hotspot in a box
HotSpotList website
hotspots
 associating with
 locating
 open
 providers
 associating with
 requirements
 restricted access
Human Interface Device Profile (HID)
Hz (Hertz)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

ident command (cardctl program)
IEEE (Institute of Electrical and Electronics Engineers)
infrared
 setting up with Linux
Infrared Data Association [See IrDA]
infrared devices
 operating range
infrared dongles
 USB
infrared light
Infrastructure Mode
input devices and Bluetooth
insert command (cardctl program)
integrated antennas
interfaces file
Intersil Prism radio chipsets
IP address filtering
iPass
ir-usb module
IrCOMM Protocol (CONFIG_IRCOMM)
IrDA (Infrared Data Association)
 devices with different transfer speeds
 equipment
 in kernel
 PC laptop with built-in
 PPP settings for AT&T Wireless and Nokia 6200 over
 sharing a network connection over
 connecting from Linux
 connecting from Palm OS
 connecting from Pocket PC
IrDA Subsystem Support (CONFIG_IRDA)
isdn4linux FAQ
iwconfig command, configuring WEP key
iwconfig tool
 parameters
iwlist tool
iwpriv tool
iwspy tool
 monitoring up to eight addresses

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Java Configurator
JiWire website
Jones, Matt

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

KB/s (kilobytes)
kbps (kilobits per second)
KDE address books, synchronizing
KDE Bluetooth Framework
Kermit session with the Novatel Wireless Merlin C201
kernel PCMCIA support
kernel source, obtaining
kernel tree PCMCIA
kernel, LInux
 configuring and compiling [See configuring and compiling Linux kernel]
key parameter (iwconfig)
key parameter (iwlist)
kHz (kilohertz)
kilohertz (kHz)
Kingston flash cards
Kinkos copy centers
Kismet
 building
 closed networks
 configuring
 Debian and
 Fedora and
 mapping networks with GPSd and
 mapping Wi-Fi networks with
 safety issues
 playing sound effects when it finds new SSIDs
 reassociating Wi-Fi card with network when done
 RedHat and
 shutting down
 taking advantage of advanced features
kismet command
kismet_hopper command
KPilot
Kristensen, Soren

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

l2ping tool
LAN access (Bluetooth)
 connecting to server
 creating a server
LAN Access Profile (LAP)
latitude
LDAP
LEAF (Linux Embedded Appliance Firewall)
Leffler, Sam
LF (Low Frequency) band
Lightweight EAP (LEAP)
LILO boot loader
lilo.conf file
 manually editing
Link Manager Protocol (LMP)
Linksys 2nd
 firmware support
 source code modifications
Linksys WPC55AG PC Card
Linksys WRV54G router
Linux
 basic resources
 running on non-Linux devices
 wireless networks, tasks you can complete with
Linux Embedded Appliance Firewall [See LEAF]
Linux hotplug subsystem and Bluetooth
Linux PPP HOWTO
Linux Router Project (LRP)
Linux Wireless Tools [See Wireless Tools]
Linux-friendly wireless vendors
Linux-IrDA Quick Tutorial
Linux-powered access points
 LEAF/WISP-Dist
 LinuxAP
 off-the-shelf
 Pebble
 running off Compact Flash card
Linux-powered handhelds and GPS
linux-wlan-ng package
Linuxant 2nd
 licenses
 web site
LinuxAP
 web site and mailing list
Location Based Services (LBS)
LocustWorld MeshAP
LocustWorld Wiki
Logical Link Control and Adaptation Protocol (L2CAP)
longitude
Low Frequency (LF) band
Lucent Orinoco RG-1000
Lucent WaveLAN IEEE/Orinoco/Agere 802.11b radio card
Lucent WaveLan radio chipsets

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

MAC address filtering
MadsonLine
madwifi driver 2nd
 custom access points
 for Atheros chipsets
 obtaining
 obtaining CVS code for
madwifi-users mailing list
Magellan Meridian Gold
make config command
make menuconfig command
make xconfig command
Malinen, Jouni 2nd
Mandrake 9.2 and IrDA
Mandrake and Bluetooth
mapping software, GPS in
maps, public map server with USA street maps
MB/s (megabytes)
Mbps (megabits per second)
Medium Frequency (MF) band
Medium Infrared (MIR)
megahertz (MHz)
Merlin C201 card
 download and upload speeds
 getting online with
 PPP peer settings for
Merlin G100, download and upload speeds
Mesa Electronics
MeshAP
Metcalfe, Bob
MF (Medium Frequency) band
MHz (megahertz)
Microsoft (wireless vendor)
Microsoft Challenge-Handshake Authentication Protocol Version 2 (MS-CHAP v2)
military use of GPS
Miller, Tim
milliwatts (mW)
MiniPCI
mobile phones
mode parameter (iwconfig)
Motorola v120e phone
 download and upload speeds
 getting online
MP3 players, controlling with Bluetooth
Multiband Atheros Driver for WiFi [See madwifi driver]
MultiSync tool
music players, controlling with Bluetooth
mW (milliwatts)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

NAP (network access point)
NAP access point, setting up
NASA Blue Marble
National Marine Electronics Association (NMEA)
National Marine Electronics Association (NMEA) 0183
National Semi UART
navigation services and GPS
NdisWrapper
net4521 motherboards
net4801 motherboard
Netgear (wireless vendor)
network access point (NAP)
network cards, determining if scanning is supported
network class (PCMCIA wireless card configuration)
 bigsecret
network.opts file
networking with Bluetooth
networks
 closed
 mapping with Kismet and GPSd
 wireless [See wireless networks]
nick parameter (iwconfig)
NMEA (National Marine Electronics Association)
 FAQ
 sentences
NoCatAuth captive portal
Nokia 6200 phone
 download and upload speeds
 EDGE and
 inserting SIM card into
Novatel Wireless Merlin C201 [See Merlin C201 phone]
Novatel Wireless Merlin C201 phone
Novatel Wireless Merlin G100 GPRS PCMCIA modem
NYCWireless

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

OBEX (Object Exchange) 2nd
OBEX FTP over Bluetooth
OBEX PUSH
Object Exchange (OBEX) 2nd
object exchange with Bluetooth
omnidirectional antennas
open wireless networks
OpenBrick
OpenOBEX
 transferring files with
OpenOBEX libraries
openobex-apps package
OpenWrt
 telnet daemon
OpenWrt firmware
 loading
Opera Software
Orange tool
Orinoco AP Manager software
Orinoco AP-series
Orinoco CLI Proxy
Orinoco radio chipsets
Orinoco RG-1000
Orinoco RG-1000 configuration
orinoco_cs driver 2nd
Orinoco_cs driver
oscillators

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

packet-switched network, first
Palm OS, sharing a network connection over IrDA
Palm system
 synchronizing with Linux system
PAN (personal area networking)
 setting up NAP access point
pand tool
parabolic dish antennas
Park, Don
patch antennas
pay-as-you-go SIM
PC Card
PC card (Bluetooth hardware)
PC laptop with built-in IrDA
PC-104 motherboard standard
PCI
 identifying radio chipset
PCIC_OPTS option
PCMCIA
 Bluetooth and
 card
 managing
 multiple configurations
 network class 2nd
 devices
 classes
 identifying radio chipset
 kernel support
 Linux support
 scripts
 support with Wireless Tools
pcmcia-cs README for Version 2.4 kernels
pcmcia-cs software package
 building and configuring
 options
PCMCIA/CardBus support, compiling kernel with
PDAs
Pebble
 getting to work on CF card
 included in release
 Linux-powered access points
 mailing list
 manually configurating installation
 wireless card driver support
peer-to-peer mode
peers parameter (iwlist)
Personal Area Networking (PAN)
personal area networking (PAN)
Personal Telco Project
Peterson, Matt
piconets
Piechulla, Walter
pilot-link package 2nd
pilot-xfer utility 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

plain GPS receivers
PMG-220 CF GPS receiver
Pocket PC
 moving data between Linux system and
 synchronizing
Pocket PC, sharing a network connection over IrDA
PocketMap
PocketMap Compact Flash GPS
Point-to-point networking [See PPP]
Power Over Ethernet (POE)
power parameter (iwconfig)
Pozar, Tim
PPP
 connect script
 for AT&T Wireless and the Nokia 6200
 for Sprint PCS and the Merlin C201
 for T-Mobile and Merlin G100
 for Verizon Wireless and Motorola v120e
 connections and IrDA-enabled devices
 disconnect script for AT&T Wireless and Nokia 6200
 networking and Bluetooth
 peer settings
 for AT&T Wireless and the Nokia 6200
 for Sprint PCS and the Merlin C201
 for T-Mobile and Merlin G100
 for Verizon Wireless and Motorola v120e
 peer settings for AT&T Wireless and the Nokia 6200
 troubleshooting
pppd command
Preboot eXecution Environment (PXE)
presentations, controlling with Bluetooth
primary firmware
printing over Bluetooth
Prism card firmware, updating
Prism I reference standard for 802.11
prism54 driver
Protected EAP (PEAP)
Proxim Orinoco (wireless vendor)
public map server with USA street maps
PXE (Preboot eXecution Environment)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

quality of link information for one or many nodes in a wireless network

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

radio cards
 access points and
 master mode
radio frequency
 corresponding wireless network protocols
Radio Frequency Communication (RFCOMM)
radio interface cards
radio interference and absorption
radio waves
 amplitude
 behavior
 frequency
radioteletype
RADIUS
 server
rate parameter (iwconfig)
rate parameter (iwlist)
RedHat
 Bluetooth and
RedHat 9 and IrDA
RedHat, installing Kismet
reflection
refraction
Remote Authentication Dial In User Service (RADIUS) server
remote controls 2nd
ResEdit, removing binary firmware from executable
retry parameter (iwconfig)
retry parameter (iwlist)
RFCOMM connections and BlueZ
RG-1000 configuration
RMS (Root Mean Square)
Root Mean Square (RMS)
route (GPS)
routers, wireless
rts parameter (iwconfig)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

safety issues related to network mapping with Kismet
SanDisk CF cards
satellites and GPS
scanning
 network card support
scanning for available access points
scattering
scatternets
schemes (PCMCIA card)
Schmidt, Terry
sdpd tool
 configuring with sdptool
sdptool utility
 browsing
 service abbreviations
Seattle Wireless
sector antennas
security [See communicating securely]
Selective Availability (SA) 2nd
sens parameter (iwconfig)
serial dongle (Bluetooth hardware)
Serial Infrared (SIR)
serial port emulation with Bluetooth
Serial Port Profile (SPP)
Service Discovery Access Profile (SDAP)
service discovery profile (SDP) in Bluetooth
Service Discovery Protocol (SDP)
Service Set Identifier (SSID)
Sevy, Jon
SHF (Super High Frequency) band
Short Message Service (SMS)
Silva, Brad
SIM (Subscriber Identity Module)
Single Carrier Radio Transmission Technology
small board PCs, using to build access points
SmartBridges (wireless vendor)
SMC (wireless vendor)
SmithMicro QuickLink Mobile for Mac OS X kit
Sniffer Wireless
Soekris motherboards
Soekris system, setting up with Pebble
Sony Ericsson GC82 PC Card Modem
SourceForge
 development site
Spectrum24
Sprint and acceleration
Sprint PCS
 PPP peer settings for
Sprint PCS Vision
SSID (Service Set Identifiers)
SSIDs (Service Set Identifiers)
 disabling broadcast
 hotspot providers and
Starbucks coffee shops

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

station firmware
Straumann, Til
STSN (hotspot provider)
Subscriber Identity Module (SIM)
Super High Frequency (SHF) band
Surf and Sip (hotspot provider)
SuSE 9.0
 Bluetooth and
SuSE 9.0 and IrDA
Sveasoft firmware
 obtaining
 selecting receive and transmit antennas
 setting up SSH daemon
Sydney Wireless HostAP CD
Symbol radio chipsets
SynCE program
Synchronization Profile (SP)
synchronizing
 Bluetooth
 contacts
 Palm and Linux systems
 Pocket PC

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

--version parameter (iwconfig)
--version parameter (iwlist)
12-channel receiver
1x Evolution Data Only [See 1xEV-DO]
1x Radio Transmission Technology [See 1xRTT]
1x.conf file
1xEV-DO (1x Evolution Data Only)
 APN and
 network
1xRTT (1x Radio Transmission Technology) 2nd 3rd
 APN and
 Sprint PCS and
 Verizon Wireless and
2.4 GHz ISM (Industrial, Scientific, and Medical) band
2.4 kernel PCMCIA
2D RMS
8-channel receiver
802.11
 family of standards
 history
 Prism I reference standard for
 protocol set [See Wi-Fi]
802.11a
802.11b standard
802.11g cards
802.11i standard
802.1x authentication

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

T-Mobile 2nd 3rd 4th
 acceleration and
 Hotspots website
Telephony Control Protocol Specification (TCS)
teletype over radio (TOR)
Temporal Key Integrity Protocol (TKIP)
text messaging
TIGER Map Server
Time Division Multiple Access (TDMA)-based GSM mobile phone networks
Time to First Fix (TTFF)
Tourrilhes, Jean 2nd 3rd
tracking and GPS
Tranzeo (wireless vendor) 2nd
tri-mode cards
Trustive
TTFF (Time to First Fix)
txpower parameter (iwconfig)
txpower parameter (iwlist)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

U.S. Department of Defense
UHF (Ultra High Frequency) band
Ultra High Frequency (UHF) band
upload speeds of cell phones
US Robotics (wireless vendor)
USA street maps
USB dongle (Bluetooth hardware)
USB Infrared dongles
USB, identifying radio chipset

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

vendors, Linux-friendly wireless
Venturi
Verizon Express Network
Verizon Wireless 2nd
 Express Network NationalAccess plan
 Venturi
vertically polarized antenna
Very Fast Infrared (VFIR)
Very High Frequency (VHF) band
Very Low Frequency (VLF) band
VHF (Very High Frequency) band
Via Mini-ITX
Via Mini-ITX PCs
Virtual LANs/Virtual Private Networks
VLF (Very Low Frequency) band
VoiceStream 2nd
Vu, Augustin

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

WAP-11 access point
warchalking
wardialing
wardriving
wardriving maps
warflying
wavelan and wavelan2 drivers
wavelength (radio waves)
waypoints (GPS)
WayPort
WayPort (hotspot provider)
WEP (Wired Equivalent Privacy)
 complex keys
 key attacks
 pitfalls
 rapid key rotation
 references
 with Linux
Wi-Fi
 hardware
 networks
 mapping with Kismet 2nd
 under Linux
 chipset compatibility [See chipset compatibility]
 configuring and compiling kernel [See configuring and compiling Linux kernel]
 quick start
 requirements
Wi-Fi Alliance
Wi-Fi Zone Finder website
Wifi-Box firmware
 installing
 SNMP daemon
WiFinder website
Windows Mobile 2003, sharing a network connection over IrDA
WINIC W-USB-180 IrDA dongle
Wired Equivalent Privacy [See WEP]
wireless
 first packet-switched network
 introduction to
wireless access points
 custom
wireless aggregators
wireless bridges
wireless card
 changing parameters of retry
 configuring private wireless options
 displaying list of available radio frequencies
 displaying version of iwlist and Wireless Extensions
 listing available keys
 listing bit-rates supported by
 listing current key in use
 listing encryption key size supported
 listing transmit powers
 listing transmit retry limits and lifetime

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 listing version of iwlist and Wireless Extensions
 operating mode
 seeing list of access points available
 sending handshake before packet transmission
 setting access point
 setting bit-rate
 setting encryption mode and keys
 setting fragmentation threshhold
 setting frequency
 setting network name
 setting power management modes and parameters
 setting rate
 setting sensitivity threshhold
 setting station name
 setting transmit power
wireless equipment overview
Wireless Extensions
 support in Linux kernel
Wireless Fidelity [See Wi-Fi]
Wireless Internet Assigned Numbers Authority (WIANA)
Wireless ISP Distribution [See WISP-Dist]
wireless network
 discovery
 getting on
wireless network protocols
 corresponding radio frequencies
wireless networks
 locating
 open
 types
Wireless Protected Access [See WPA]
wireless router [See routers, wireless]
Wireless Tools
 compiling
 installing
 iwconfig tool
 iwpriv tool
 iwspy tool
 PCMCIA support
 using
wireless vendors, Linux-friendly
wireless-tools package
wireless.h file
wireless.opts file
WISP-Dist (Wireless ISP Distribution)
 current features
 installing
 User Guide
wlags49
 configuring wireless parameters
 custom access points
 getting driver to compile
WLAN Adapter Chipset Directory
WLAN Driver Loader
 compiling from source
 using with WPA-PSK (personal) authentication
 wireless card downloads
wlan-ng driver 2nd
wlan-ng RPMs for Red Hat Linux

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WPA (Wireless Protected Access)
 on Linux
WPA RADIUS setup details
WPA support in access points
wpa_supplicant
 authenticating with
 Xsupplicant with
wpa_supplicant package
WRT54G Wireless Router
 hacking firmware
 OpenWrt
 Sveasoft
 Wifi-Box
 hacking hardware
 Linksys firmware support
 Linux distributions for
 soldering extra parts
wvlan driver

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Ximian Evolution
Xsupplicant
Xsupplicant with wpa_supplicant

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Yagi antennas

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.1 Radio Waves
Radio waves are created when electrically charged particles accelerate with a frequency that lies in the radio frequency
(RF) portion of the electromagnetic spectrum. Other emissions that fall outside of the RF spectrum include X-rays,
gamma rays, and infrared and ultraviolet light. When a radio wave passes a copper wire or another electrically sensitive
device, it produces a moving electric charge, or voltage, which can be transformed into an audio or data signal.

Radio waves can be depicted mathematically as a sinusoidal curve, as shown in Figure 1-1.

Figure 1-1. A sine wave representing a radio wave

The distance covered by a complete sine wave (a cycle) is known as the wavelength. The height of the wave is called
the amplitude. The number of cycles made in a second is known as the frequency. Frequency is measured in Hertz (Hz),
also known as cycles per second. So, a 1 Hz signal makes a full cycle once per second. You should be familiar with this
unit of measurement: if your new computer's CPU operates at 2 GHz, the internal clock of your CPU generates signals
roughly at two billion cycles per second.

Note that frequency is inversely proportional to the wavelength: the longer the
wavelength, the lower the frequency; the shorter the wavelength, the higher the
frequency. The wavelength of a 1 Hz signal is about 30 billion centimeters, which is the
distance that light travels in one second. A 1 MHz signal has a wavelength of 300 meters.

1.1.1 Radio Frequency Spectrum

To regulate the use of the various radio frequencies, the Federal Communications Commission (FCC) in the United
States determines the allocation of frequencies for various uses. Table 1-1 shows some of the bands defined by the FCC
(see http://www.fcc.gov/oet/spectrum/table/fcctable.pdf).

Table 1-1. Range of frequencies defined for the various bands
Frequency Band

10 kHz to 30 kHz Very Low Frequency (VLF)

30 kHz to 300 kHz Low Frequency (LF)

300 kHz to 3 MHz Medium Frequency (MF)

3 MHz to 30 MHz High Frequency (HF)

30 MHz to 328.6 MHz Very High Frequency (VHF)

328.6 MHz to 2.9 GHz Ultra High Frequency (UHF)

2.9 GHz to 30 GHz Super High Frequency (SHF)

30 GHz and higher Extremely High Frequency (EHF)

You can get a more detailed frequency allocation chart from http://www.ntia.doc.gov/osmhome/allochrt.pdf. The
following conversion list should help you understand this chart:

1 kilohertz (kHz) = 1,000 Hz

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1 kilohertz (kHz) = 1,000 Hz

1 megahertz (MHz) = 1,000 kHz

1 gigahertz (GHz) = 1,000 MHz

Wireless networks use a variety of radio frequencies. Table 1-2 shows some common wireless network protocols and
the corresponding radio frequencies.

Table 1-2. Frequencies used by various wireless networks
Frequency range Wireless network

2.45 GHz Bluetooth

2.4 to 2.483 GHz 802.11, 802.11b, 802.11g

5.180 GHz to 5.805 GHz 802.11a

1.2276 and 1.57542 GHz GPS

1.1.2 Radio Wave Behavior

Radio waves, similar to light waves, exhibit certain characteristics when coming into contact with objects.

Reflection occurs when a radio wave hits an object that is larger than the wavelength of the radio wave (see Figure 1-
2). The radio wave is then reflected off the surface.

Figure 1-2. Reflection of a radio wave

Refraction occurs when a radio wave hits an object of a higher density than its current medium (see Figure 1-3). The
radio wave now travels at a different angle—for example, waves propagating through clouds.

Figure 1-3. Refraction of a radio wave

Scattering occurs when a radio wave hits an object of irregular shape, usually an object with a rough surface area (see
Figure 1-4), and the radio wave bounces off in multiple directions.

Figure 1-4. Scattering of a radio wave

Absorption occurs when a radio wave hits an object but is not reflected, refracted, or scattered. Rather, the radio wave
is absorbed by the object and is then lost (see Figure 1-5).

Figure 1-5. Absorption of a radio wave

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Radio Interference and Absorption
Radio waves are subject to interference caused by objects and obstacles in the air. Such obstacles can be
concrete walls, metal cabinets, or even raindrops. Generally, transmissions made at higher frequencies are
more subject to radio absorption (by the obstacles) and larger signal loss. Larger frequencies have smaller
wavelengths; hence, signals with smaller wavelengths tend to be absorbed by the obstacles that they
collide with. This causes high-frequency devices to have a shorter operating range.

For devices that transmit data at high frequencies, much more power is needed in order for them to cover
the same range as compared to lower-frequency transmitting devices.

Diffraction occurs when objects block a radio wave's path. In this case, the radio wave breaks up and bends around the
corners of the object (see Figure 1-6). This property allows radio waves to operate without a visual line of sight.

Figure 1-6. Diffraction of radio waves

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.2 Connections Without Wires
There are many types of wireless networks, such as Cellular (wide-area wireless networking), Wi-Fi (local and wide area
wireless networking), and Bluetooth (cable-replacement and short-range wireless networking). All of these networks
run with Linux. Here is a list of tasks you can complete with Linux and wireless networks:

Build your own wireless access point. At home, use a Linux box as your wireless access point and secure
firewall for a broadband connection, and use a Linux notebook as a wireless client. To control who uses your
access point, build a captive portal. It's also possible that your broadband connection is wireless and uses a
point-to-point directional wireless network.

Synchronize your contacts. At the office, keep your contacts list from your Linux desktop synchronized with
your cell phone using Bluetooth or an infrared port.

Use a cellular network and GPS for the ultimate road warrior experience. On the road, use your Linux-
powered PDA to check email from a wireless hotspot. Connect your cell phone and laptop, and use a high-speed
data network where there is a digital cell signal. Hook a GPS receiver to your laptop and find that out-of-the-
way hotel.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.3 Wireless Alphabet Soup
While it is not the sole focus of this book, there are several chapters that deal entirely with "Wi-Fi," or Wireless Fidelity.
This phrase is trademarked by the Wi-Fi Alliance, a group that consists of nearly all 802.11 manufacturers. The Wi-Fi
Alliance does product testing and certification for interoperability.

802.11 was defined as a protocol by the Institute of Electrical and Electronics Engineers (IEEE) in 1997. This protocol
specification allowed for 1 and 2 Mbps transfer rates using the 2.4 GHz ISM (Industrial, Scientific, and Medical) band,
which is open to unlicensed public use. Prior to the adoption of this standard, there were various wireless network
vendors manufacturing proprietary equipment using both the 2.4 GHz and the 900 MHz bands. The early adopters of
the proprietary technologies and 802.11 were primarily the manufacturing and health care industries, which rapidly
benefited from their employees' mobile access to data. The 802.11 standard uses spread spectrum modulation to
achieve high data rates. Two types of modulation were specified: Frequency Hopping and Direct Sequence. 802.11 also
uses the Carrier Sense Multiple Access (CSMA), which was developed for Ethernet in 1975 with the addition of Collision
Avoidance (CA)—referred to as CSMA-CA.

In 1999, the IEEE adopted two supplements to the 802.11 standard: 802.11a and 802.11b. The 802.11b standard is
also referred to as High Rate DS and is an extension of the Direct Sequence Spread Spectrum type of modulation
specified in 802.11. 802.11b uses 14 overlapping, staggered channels, each channel occupying 22 MHz of the
spectrum. This standard's primary benefit is that it offers data rates of 5.5 and 11 Mbps in addition to the 12 megabits
provided by 802.11. 802.11b has been widely adopted around the world, and its products have been readily available
since 1999.

However, 802.11a products did not begin shipping until 2001. 802.11a utilizes a range in the 5 GHz frequency and
operates with a theoretical maximum throughput of 54 Mbps. It provides for 12 nonoverlapping channels. Products
based on this protocol have not seen the adoption rate of 802.11b products for several reasons. At higher frequencies,
more power is needed to transmit. The power of 802.11 radio types is limited; therefore, 802.11 and 802.11b have
longer range transmission and reception characteristics than 802.11a. Because of its higher frequency, 802.11a is
absorbed more readily by obstacles, reducing range and throughput.

In June of 2003, the IEEE ratified a third supplement to the 802.11 standard: 802.11g. This standard continues to
operate in the 2.4 GHz band with backward compatibility to 802.11b, but it raises the theoretical maximum throughput
to 54 Mbps. In early 2003, there were many products released prior to the ratification of the standard. The standard
was delayed several times as the subcommittees in the IEEE worked out interoperability issues between 802.11b and
802.11g.

1.3.1 Operating Modes

There are two main client operating modes in the 802.11 family of standards: Infrastructure and Ad-Hoc. Two
additional modes, Master and Monitor, are discussed in later chapters.

Infrastructure Mode requires the use of a wireless access point. At a minimum, this is a device with a radio that
operates in Infrastructure Mode and has a connection to a wired network. This is also known as the Basic Service Set
(BSS). There is also an Extended Service Set (ESS) for use with multiple access points.

A typical 802.11b access point consists of a radio, external antenna, and at least one Ethernet port. There are many
variations on this theme, with models sporting 4-port Ethernet switches, connectors for other external antennas, and
higher-power radios.

When operating in Infrastructure Mode, an access point is the master of any client radios that are associated with the
access point. The client radios are also operating in Infrastructure Mode, in a different sub-mode. The access point is
programmed with a Service Set Identifier (SSID); this is the network name for the access point. The access point
broadcasts the SSID as an advertisement of the network name.

Clients operating in Infrastructure Mode identify an access point by these SSID broadcast frames. Once a client is
associated with an access point, the access point manages all communication over the radio link. When multiple clients
are associated with a single access point, the access point has a set of algorithms for controlling traffic to and from the
access point radio.

Ad-Hoc Mode, or peer-to-peer mode, is designed specifically for client-to-client communication. To use Ad-Hoc Mode,
you need at least two radio clients. In this example, let's say we have two Linux notebooks with PCMCIA radio cards.
Both cards are configured to work in Ad-Hoc Mode, and both clients must use the same SSID. Ad-Hoc clients do not
advertise themselves with the same broadcast frames used by an access point.

While Ad-Hoc Mode is very useful for client-to-client communication, it introduces a difficult situation known as the
Hidden Node problem. Ad-Hoc Mode does not provide an access point to control communications between other client
machines, so any client using Ad-Hoc Mode may decide to transmit data on its own rather than being told when it is
clear to transmit. Figure 1-7 illustrates the problem.

Figure 1-7. A Hidden Node problem with three clients in Ad-Hoc Mode

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1-7. A Hidden Node problem with three clients in Ad-Hoc Mode

As shown, node A can hear node B, but it cannot hear node C. Node C can also hear node B, but it cannot hear node A.
Because 802.11 is a shared-access physical medium, only one device can transmit at any given time. The Hidden Node
problem is that node A and node C cannot hear each other, and neither node will detect a collision. Hidden Node issues
reduce throughput in this example by at least 50%.

1.3.2 Wi-Fi Hardware

As discussed previously, to make a Wi-Fi network, you need a minimum of two radios, whether you operate in Ad-Hoc
or Infrastructure Mode. For PC hardware, there are three physical types of radio interface cards available: PC Card, PCI,
and MiniPCI.

Of the three, the PC Card is by far the most common, because notebook PCs are widely deployed, and most have at
least one card slot; notebook users are the most common users of 802.11 networks.

MiniPCI cards are the up-and-coming form factor. Many notebook manufacturers have built MiniPCI cards into their
motherboards, which enables you to install network cards without using a PC Card slot.

At one time, PCI cards were not as common as the other types of radios, but they are staging a comeback with new
offerings from Linksys and D-Link. Many manufacturers, such as Linksys and D-Link, produce some PCI cards now,
which actually consist of a MiniPCI or PCMCIA card on a larger PCI card.

There is a fourth option for a growing number of notebook and PDA users: built-in Wi-Fi. Intel is marketing their
Centrino chipset that integrates an 802.11b radio on the motherboard, and most notebook manufacturers offer Centrino
notebooks. Similarly, other CPU manufacturers such as Via will be integrating wireless into their chipsets. Finally, there
are a number of notebook and PDA models that feature built-in radios. Sony, for example, sells a Vaio notebook with an
Orinoco radio built in and also sells the Clie handheld PDAs with optional Wi-Fi.

As of this writing, more and more dual- and tri-mode cards are available. These cards allow you to access 802.11a/b/g
networks with a single radio. The maker of a radio chipset decides the level of support—as of this writing, support for
these cards is still in flux under Linux. We'll cover this in more detail in the next chapter.

Wireless access points are also available now in dual- and tri-mode. There is a wide range of access points on the
market, which range from units geared specifically for home users with built-in firewalls, 4-port switches, and web-
based configuration to models aimed at the corporate market with support for authentication protocols such as RADIUS
and LDAP, the ability to run via Power Over Ethernet (POE), and connectors for external antennas.

Another category of access point is the "hotspot in a box." With the rising popularity of Wi-Fi hotspots in cafes, hotels,
and airports, many manufacturers have developed access points that are an all-in-one solution. These boxes provide
the radio and Ethernet of a normal access point, but also have some form of authentication and payment system, which
range from a web-based login to a printed coupon that the store clerk delivers to the customer.

1.3.2.1 Antennas

Although a discussion of the physics of antennas is beyond the scope of this book, antennas are obviously a very
important part of any radio. Depending on the type of antenna, radio coverage is narrowly focused or widely
distributed, which makes a great deal of difference when building or connecting to 802.11 networks.

Briefly, antennas are transducers that convert radio frequency electric currents to electromagnetic waves that are then
radiated into space. Antennas are polarized according to the plane of the electric field radiating from the antenna. A
vertically polarized antenna has an electric field that is perpendicular to the Earth's surface. Likewise, the electric field
of a horizontally polarized antenna is parallel with the Earth's surface.

There are several types of antennas used for Wi-Fi networks. The most common antenna is the integrated antenna,
followed by omnidirectional and directional antennas

Integrated antennas

Most PC Card radios have integrated antennas inside the enclosure of the card. A typical integrated antenna
design has two very small antennas—really just a solder trace or small piece of foil—located at right angles to
each other for diversity. Diversity antennas are designed so that one antenna or the other is used to transmit

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

each other for diversity. Diversity antennas are designed so that one antenna or the other is used to transmit
and receive, but never at the same time. The card switches automatically between antennas to choose the
stronger signal. The antennas are horizontally polarized, and this layout produces an antenna that has a
somewhat omnidirectional pattern in a horizontal beam.

Omnidirectional antennas

If you have a radio card or access point with a single external antenna attached, you are likely looking at an
omnidirectional, or omni, antenna. Omnidirectional antennas, as the name implies, are designed to send and
receive signals 360 degrees around the antenna. Figure 1-8, which is a sample antenna gain pattern for a
commercially produced omnidirectional antenna, shows that the 360-degree pattern is not circular at all. Notice
that the antenna has pronounced gain at 0 and 180 degrees, but hardly any gain at 90 and 270 degrees.

Figure 1-8. A sample omnidirectional antenna gain pattern

While the theoretical beamwidth of an omnidirectional antenna is 360 degrees horizontally, the vertical
beamwidth of most omni antennas is less than 8 degrees. See Figure 1-9 for a side view of a typical omni
antenna. Notice that if the antenna were mounted high enough, someone directly under the antenna itself
would have very poor signal quality.

Figure 1-9. A side view of an omnidirectional antenna beamwidth

Most omnidirectional antennas are of the "rubber ducky" type—a rubber- covered antenna, which ranges from a
few inches long for a low-gain model to several feet for high-gain types.

Directional antennas

Although patch antennas are similar to sector antennas, they are considered directional antennas. Patch
antennas generally have horizontal and vertical beamwidths that are similar. An example shown in Figure 1-10
shows the gain patterns for a patch antenna.

Figure 1-10. A sample patch antenna gain pattern

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1-10. A sample patch antenna gain pattern

Yagi antennas are also directional antennas and are designed for highly directional applications. They typically
have a beamwidth of less than 30 degrees; most of them look like a PVC pipe or a "Christmas tree" pointed at
its target.

Finally, parabolic dish, or grid, antennas are the most highly directional antennas used in the 802.11 world. If
you've seen a satellite dish, you've seen a parabolic dish antenna. These antenna types are suited for sending
wireless network signals over several miles. As shown in Figure 1-11, the gain pattern is very tight.

Figure 1-11. A sample parabolic dish antenna gain pattern

Another antenna type widely used in outdoor applications is a sector antenna. These antennas are generally available
with horizontal polarization and antenna patterns from 90 to 180 degrees. They are rectangular with a flat profile.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.4 Bluetooth
Bluetooth is a low-power radio technology aimed at replacing cables for connecting devices. It was originally developed
by the Swedish telecommunications manufacturer Ericsson and then formalized by an industry consortium. The name is
taken from a Danish king, Harald Bluetooth, who ruled Denmark and Norway in A.D. 936.

The standards for Bluetooth define a low-power radio with a maximum range of 300 feet. The radios are actually on a
transceiver microchip to keep size and power consumption to a minimum. Bluetooth uses the 2.45 GHz band of the ISM
radio spectrum and divides the band into 79 channels. To further reduce any crosstalk into other ISM bands, Bluetooth
devices can change channels up to 1,600 times per second.

Bluetooth is becoming widely available on mobile phones and PDAs, and one of its "killer" applications is hands-free
wireless headsets for mobile phones. Bluetooth is also a popular way to "tether" a notebook computer to a cellular
phone, which allows you to connect to the Internet even when an 802.11 network is not available (because current
cellular data speeds are much slower than Bluetooth, Bluetooth's relatively slow speeds are not the limiting factor).
Bluetooth adapters are available for PDAs, desktops, and notebooks. There are some printers and keyboards available
that use Bluetooth to communicate with the host device as well.

Compared to Wi-Fi, Bluetooth speeds are not impressive, but they are quite useful for transferring small amounts of
data. Download speeds can max out at 720 kbps with a simultaneous upload speed of 56 kbps. Every Bluetooth device
can simultaneously maintain up to seven connections, making a personal Bluetooth LAN a real possibility.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.5 Cellular Data
With the rise of digital cellular phone networks, it became possible to use these networks to transfer data rather than
just voice. There are several differing and competing technologies available.

Cellular Digital Packet Data (CDPD) was one of the first data networking technologies available for mobile phones. CDPD
utilizes unused bandwidth in the 800-900 MHz range normally used by mobile phones. Data transfer rates max out at a
theoretical 19.2 kbps. Today, CDPD is obsolete, and cellular carriers are actively trying to phase it out.

General Packet Radio Service (GPRS) is an add-on technology to existing Time Division Multiple Access (TDMA)-based
GSM mobile phone networks. Timeslots in the GSM network are normally allocated to create a circuit-switched voice
connection. With a GPRS-enabled network, the timeslots are used for packet data as needed. This by design creates a
very slow data network with high latency and, theoretically, the speed of a 56 kbps modem. AT&T Wireless, T-Mobile,
and Cingular Wireless use this technology. In 2003, an enhancement to GPRS, Enhanced Data Rates for Global
Evolution (EDGE), was partially rolled out in the United States by AT&T Wireless and Cingular. In theory, EDGE can
triple the data rate of GPRS, but you need an EDGE-capable handset, such as the Nokia 6200, to use it.

1xRTT stands for Single Carrier Radio Transmission Technology and is part of the CDMA2000 family of protocols, which
includes successors to 1xRTT such as Single Carrier Evolution Data Only (1xEV-DO). It is built on top of the CDMA-
based mobile phone networks and allows for ISDN-like data transfer speeds up to 144 kbps (1xEV-DO is capable of
much higher speeds). Sprint's PCS Vision and Verizon's Express Network use this technology. As of this writing, Verizon
Wireless is experimenting with 1xEV-DO in two U.S. markets, with testers obtaining data rates between 500 and 800
kbps.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.6 Infrared
The electromagnetic (EM) spectrum contains many different wavelengths of which the RF spectrum is a small part.
Another part of the EM spectrum is infrared light. This light has a longer wavelength than visible light, but a much
shorter wavelength than radio or microwave radiation. Infrared is usually linked to body or mechanical heat, as many
objects above room temperature emit infrared radiation. These emissions can be seen by night vision equipment.

Infrared is used in television remote controls, because the signal does not interfere with the TV transmission. Remote
controls and Infrared Data (IrDA) equipment utilize light-emitting diodes to emit infrared radiation that is then focused
by a lens into a narrow beam. The beam is modulated on and off to encode the data transmission.

The IrDA Association publishes specifications that are used by PDA, notebook, and mobile phone device manufacturers
for the infrared ports on their devices. IrDA devices typically have a maximum throughput of 4 Mbps. While most mobile
devices still have IrDA, many manufacturers are replacing these with Bluetooth.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 1. Introduction to Wireless
Wireless networks use radio waves to move data without wires and they have been around in one form or another for
decades. Teletype, or telex, systems were established worldwide in the early 1920s. These systems used copper lines
to connect two or more teletype machines. Government investments in military radios lead to innovations in radio;
teletype over radio (TOR), or radioteletype, replaced many teletype systems, particularly in third-world countries that
lacked copper-wire infrastructures. In many parts of the world, TOR is still used as the primary communications
medium for governments. TOR uses the high frequency (HF) radio band. We'll cover the types of radio bands later in
this chapter.

In 1970, Norm Abramson, a professor of engineering at the University of Hawaii, developed a radio-based
communications system known as ALOHANET. This was the world's first wireless packet-switched network, which allows
multiple devices to transmit and receive data simultaneously. The research behind ALOHANET was used by Bob Metcalfe
to develop the Ethernet standard for wired networking.

Presently, there are many types of wireless networks in use around the world. The 802.11 protocol set, popularly
known as Wi-Fi, includes wireless network standards that allow data transmission up to a theoretical 54 Mbps. The
Global Positioning System (GPS) uses a wireless connection from a receiver to a series of satellites to fix a location
precisely on the planet. There are several wireless networking standards in the mobile-phone world, including General
Packet Radio Service (GPRS) and Code Division Multiple Access (CDMA) 1xRTT (1x Radio Transmission Technology).
Subsequent chapters will discuss all of these in detail.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

10.1 Uses of GPS
The function of GPS is fairly straightforward—with a GPS receiver, you can obtain your positional information in the
form of longitude, latitude, and altitude. It is the way that you use this information that is important. Some useful
applications of GPS are described in the following list:

Military use

As GPS was originally developed for military use, the U.S. Department of Defense is the main user of the
technology.

Location-Based Services (LBS)

GPS has been increasingly deployed in the commercial scene. LBS make use of the knowledge of your precise
location to provide location-sensitive services. For example, you can use LBS to receive a list of restaurants
near your current location.

Navigation services

GPS is popularly used for navigational purposes, such as driving and flying. A GPS-enabled PDA can help a
driver navigate unfamiliar cities. GPS is also widely used in the shipping industry, as well as in airplane
navigational systems. Courier companies, such as UPS and FedEx, make extensive use of GPS in their delivery
infrastructures.

Tracking

Using GPS to track the whereabouts of people or objects is rapidly gaining acceptance. This is useful in the
medical sector: patients suffering from diseases such as Alzheimer's can wear a GPS watch, and, when needed,
they can press a panic button to reveal their exact location to their family members.

Mapping

GPS is also popularly used in mapping software, allowing you to combine a GPS receiver with mapping software
to display your current location. This is useful for travelers or explorers who need navigational aids.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

10.2 A GPS Glossary
Here are some GPS terms that you will encounter when you use GPS and GPS software:

8/12 channels receiver

An 8-channel receiver uses 8 channels to access 8 different satellites at any one time. A 12-channel receiver
can access 12 satellites at once.

Bearing

The direction you are aiming for.

CEP, RMS, and 2D RMS

Circular Error Probable (CEP), Root Mean Square (RMS), and 2D RMS are all measures of the accuracy of a GPS
receiver. CEP represents the radius of a circle containing 50% of the GPS readings. RMS represents the radius
of a circle containing 68% of the GPS readings. 2D RMS represents the radius of a circle containing 98% of the
GPS readings. If three GPS receivers each claims to have 2m CEP, 2m RMS, and 2m 2D RMS respectively, then
the third one is the most accurate, because it has readings accurate to within a 2-meter radius 98 percent of
the time.

DGPS

Differential GPS is an enhancement to the satellite-based GPS that makes use of receivers on fixed reference
points on the ground and improves accuracy to within 3-5 meters. These receivers transmit error-correcting
information to DGPS receivers to enhance the information supplied by the satellites.

Fix

A location returned by the GPS receiver after processing the readings of at least three satellites.

Heading

The actual direction you are traveling towards. It is not the same as bearing. Bearing is your desired direction,
but you may not be heading towards the desired direction due to factors such as obstacles (e.g., water, fences,
and mountains). Therefore, you have to momentarily head in another direction in a bid to get to your
destination.

Latitude, longitude, and altitude

The coordinates of a specific location on earth. These three pieces of information together define a point in the
three-dimensional space.

National Marine Electronics Association (NMEA)

The NMEA-0183 standard has been universally adopted by GPS manufacturers and virtually every GPS product
for exchanging navigational information between devices. NMEA-0183 defines a "sentence" format (using
printable ASCII text) describing navigational information.

Route

A collection of waypoints representing the path that you would like to take.

Selective Availability (SA)

The degradation of GPS data for nonmilitary use. See the sidebar "GPS Accuracy" earlier in this chapter for
more information on SA.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

more information on SA.

Time to First Fix (TTFF)

The least amount of time required to obtain a fix by the minimum number of satellites required for
triangulation. Normally, it takes a few minutes before you can receive a fix.

WAAS

WAAS is an enhancement similar to DGPS that uses fixed reference stations on the ground to enhance accuracy
to under 3 meters.

Waypoint

A location that you store in your GPS system (as coordinates). Examples of waypoints are a hiking location,
camping ground, church, or any place of interest to a GPS user. You normally add a waypoint to your GPS
before you start your traveling. You can also add one during your travel when you locate a place of interest.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

10.3 GPS Devices
There are two main types of GPS receivers on the market at the moment:

Plain GPS receivers

GPS receivers with maps

A plain GPS receiver simply interprets the readings from the satellite and returns the result in latitude, longitude, and
altitude. Figure 10-5 shows the PocketMap (http://www.pocketmap.com) PMG-220 Compact Flash (CF) GPS receiver.
You can use the PMG-220 on a handheld or your notebook computer (which may require a PCMCIA adapter for the CF
card).

Figure 10-5. The PocketMap PMG-220 CF GPS receiver with a CF-to-PCMCIA
adapter

Figure 10-6 shows the Deluo Laptop GPS receiver. This is an affordable receiver ($99) that's available from Deluo
(http://www.deluo.com) in serial or USB configurations. We used the Deluo USB model in our testing for this chapter.

Figure 10-6. The Deluo Laptop GPS receiver

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 10-7 shows two standalone GPS receivers equipped with their own mapping software. The Magellan Meridian
Gold and the Garmin StreetPilot III contain built-in screens to display maps. There is no need to connect the receivers
to any device for them to work. Standalone GPS receivers are useful for travelers who need a lightweight GPS solution.

Figure 10-7. The Magellan Meridian Gold GPS (left) and the Garmin StreetPilot III
(Magellen used by permission, Thales Navigation, Inc. 2003; Garmin courtesy of

Garmin Ltd.)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

10.4 Listening to a GPS
Listening to a GPS from a Linux box is as simple as listening to any serial device: plug it in, make sure the driver (if
any) is loaded, open the port, and read the stream. We tried connecting both the PocketMap CF GPS (using a CF-to-
PCMCIA adapter) and the Deluo USB GPS. The PocketMap GPS was detected automatically as a serial port; we needed
to load the Prolific 2303 USB/Serial module (modprobe pl2303) for the Deluo GPS to be recognized (it appeared on
/dev/ttyUSB0, as did the Nokia 6200 described in Chapter 9).

Most GPS devices use a format called NMEA 0183; however, many of them include proprietary extensions. The NMEA
standard specifies a transport of RS-232 at 4,800 kbps, 8 data bits, 1 stop bit, and no parity, but some devices support
higher speeds. The Deluo GPS that we used sends standard NMEA sentences in the sequence GPGGA-GPGSA-GPGSV-
GPRMC. Each sentence is a line of comma-separated text that begins with $TYPE (where TYPE is the NMEA 0183
sentence type) and ends with a checksum value, as shown in Example 10-1.

Example 10-1. Sample output from the Deluo GPS

$GPGGA,071110.000,3242.8536,N,11709.7626,W,1,05,01.5,00104.2,M,-34.0,M,,*50

$GPGSA,A,3,22,16,,14,20,,,,,25,,,02.5,01.5,02.1*05

$GPGSV,3,1,10,22,11,117,35,16,13,151,35,11,44,256,,14,26,056,35*78

$GPGSV,3,2,10,20,32,316,34,01,22,266,,30,09,052,,02,07,172,*76

$GPGSV,3,3,10,23,30,110,33,25,70,061,39*77

$GPRMC,071110.000,A,3242.8536,N,11709.7626,W,000.0,000.0,100204,013.0,E*7D

The checksum is a two-digit hexadecimal value that's created by XORing the ASCII values of each character in the
sentence, except for the leading $ and * that precede the checksum itself. For example, the Perl code shown in Example
10-2 verifies the checksum of each line in Example 10-1.

Example 10-2. Verifying NMEA 0183 sentence checksums

#!/usr/bin/perl -w

#

gpscksum.pl--verify each NMEA 0183 sentence in standard input

#

use strict;

my $count=1;

while (<>)

{

 my ($string, $cksum);

 if (/^\$(.*)*([0-9A-Fa-f][0-9A-Fa-f])/)

 {

 $string = $1; # everything between leading $ and checksum

 $cksum = $2; # hex checksum from NMEA sentence

 } else

 {

 die "Malformed NMEA 0183 sentence: $_\n";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 die "Malformed NMEA 0183 sentence: $_\n";

 }

 # Calculate the checksum

 my $my_cksum;

 for (my $i = 0; $i < length ($string); $i++)

 {

 $my_cksum ^= ord(substr($string, $i, 1))

 }

 # Compare the checksums

 if ($my_cksum != hex($cksum))

 {

 print "Checksum for line $count doesn't match: ",

 $my_cksum, "!=", hex($cksum), "\n";

 }

 $count++;

}

The following tables describe the NMEA 0183 sentences listed in Example 10-1. Items in the Example column are drawn
directly from Example 10-1. Table 10-1 describes the elements of the GPGGA sentence (GPS fix data). This sentence
gives you information about the current position fix.

Table 10-1. GPGGA sentence
Column(s) Example Description

1 071110.000(7:11:10) Current time UTC (HHMMSS.mmm)

2, 3 3242.8536,
N(32°42.8836' N) Latitude

4,5 11709.7626,
W(117°9.7626' Wt) Longitude

6 1 Fix quality (0=no fix, 1=GPS, 2=differential GPS)

7 05 Number of satellites used for fix

8 01.5 Horizontal dilution of precision

9,10 00104.2,M(104.2
meters) Altitude

11,12 -34.0, M(-34 meters) Difference between mean sea level and the ellipsoid modeled by WGS-84
(http://www.wgs84.com/)

13 (empty) Age of differential GPS data (if any)

14 (empty) Differential station ID

15 50 Checksum (preceded by * rather than a comma)

Table 10-2 describes the GPGSA (active satellites) sentence. This sentence summarizes information about the satellites
used to determine your current fix.

Table 10-2. GPGSA sentence
Column(s) Example Description

1 A Selection mode (A=Automatic, M=Manual)

2 3 Fix mode (1=no fix; 2=2-dimensional; 3=3-dimensional)

3-14 22,16,,14,20,,,,,25,, Satellite IDs (blanks indicate satellites not in view)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3-14 22,16,,14,20,,,,,25,, Satellite IDs (blanks indicate satellites not in view)

15 02.5 Positional dilution of precision

16 01.5 Horizontal dilution of precision

17 02.1 Vertical dilution of precision

18 05 Checksum (preceded by * rather than a comma)

Table 10-3 describes the GPGSV (satellites in view) sentence, which may appear multiple times. This sentence provides
detailed information about each satellite, describing up to four satellites per line.

Table 10-3. GPGSV sentence
Column(s) Example Description

1 3 Number of GPGSV sentences

2 1 Current sentence number

3 10 Number of satellites in view

4 22 Satellite number

5 11 Satellite elevation in degrees

6 117 Satellite azimuth in degrees

7 35 Signal-to-noise ratio

8-11 16,13,151,35 Repeat of 4-7 for another satellite

12-14 11,44,256, Repeat of 4-7 for another satellite

15-18 14,26,056,35 Repeat of 4-7 for another satellite

19 78 Checksum (preceded by * rather than a comma)

Table 10-4 describes the GPRMC (transit information) sentence, which provides navigational data such as ground speed
and course traveled.

Table 10-4. GPRMC Sentence
Column(s) Example Description

1
071110.000

(7:11:10)
Time of fix

2 A Navigation receiver warning (A=OK; V=receiver warning)

3,4
3242.8536, N

(32°42.8836' N)
Latitude

5,6
11709.7626, W

(117°9.7626' W)
Longitude

7 000.0 Ground speed in knots

8 000.0 Course made good (degrees)

9
100204

(10 February 2004)
Date of fix

10,11
013.0, E

(13°E)
Magnetic variation

12 7D Checksum (preceded by * rather than a comma)

10.4.1 References

Peter Bennett's NMEA FAQ

http://vancouver-webpages.com/peter/nmeafaq.txt

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

http://vancouver-webpages.com/peter/nmeafaq.txt

Walter Piechulla's Understanding NMEA 0183

http://www.walterpiechulla.de/nmea0183.html

10.4.2 GPSd

GPSd listens to a GPS receiver and republishes the GPS information on the network in an easy-to-read format. It's
included with GpsDrive, described later in this chapter, but you can also download it and install it yourself from the
GPSd home page at http://www.pygps.org/gpsd/gpsd.html.

To launch GPSd, specify the serial port with -p and (optionally) the speed with -s. If you use the -D option to specify a
debugging level above 1, GPSd will stay in the foreground and display debugging info (if you are using an RS-232
connection for your GPS, the port will be a standard serial port such as /dev/ttys0):

$ sudo gpsd -D9 -p /dev/ttyUSB0 -s 4800

command line options:

 debug level: 9

 gps device name: /dev/ttyUSB0

 gps device speed: 12

 gpsd port: 2947

 latitude: 3600.000N

 longitude: 12300.000W

It doesn't start reading from the GPS until it gets a connection from a client. The simplest way to connect is via telnet to
port 2947. GPSd understands several simple commands followed by a carriage return, as shown in Table 10-5.

Table 10-5. Commands supported by GPSd
Command Response from GPSd

P Latitude and longitude

D Date and time

A Altitude in meters

V Speed in knots

S Status (0=no GPS; 1=no fix; 2=2D fix; 3=3D Fix)

M Mode (0=no GPS; 1=GPS; 2=differential GPS)

R Enter raw mode (dumps NMEA 0183 sentences)

The first time you ask for latitude and longitude after launching GPSd, you might not get a valid result (and it may take
a while to get a fix anyhow). But on subsequent requests, you should get valid data:

bjepson@debian:~$ telnet localhost 2947

Trying 127.0.0.1...

Connected to debian.

Escape character is '^]'.

p

GPSD,P=0.000000 0.000000

p

GPSD,P=32.714227 -117.162708

Here's a sample session showing some of the other commands:

bjepson@debian:~$ telnet localhost 2947

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

bjepson@debian:~$ telnet localhost 2947

Trying 127.0.0.1...

Connected to debian.

Escape character is '^]'.

d

GPSD,D=02/10/2004 07:11:14

a

GPSD,A=103.500000

v

GPSD,V=0.000000

r

GPSD,R=1

$GPGSA,A,3,22,16,,14,20,,,,,25,,,02.5,01.5,02.1*05

$GPGSV,3,1,10,22,11,117,36,16,13,151,35,11,44,256,,14,26,056,36*78

$GPGSV,3,2,10,20,32,316,30,01,22,266,,30,09,052,,02,07,172,*72

$GPGSV,3,3,10,23,30,110,35,25,70,061,39*71

$GPRMC,071119.000,A,3242.8539,N,11709.7626,W,000.0,000.0,100204,013.0,E*7B

r$GPGGA,071120.000,3242.8539,N,11709.7626,W,1,05,01.5,00103.1,M,-34.0,M,,*58

$GPGSA,A,3,22,16,,14,20,,,,,25,,,02.5,01.5,02.1*05

GPSD,R=0

But to really have fun with GPSd, you can use GPSd-aware applications such as Kismet and GpsDrive, described in the
following sections.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

10.5 Mapping Wi-Fi Networks with Kismet
We introduced Kismet in Chapter 3 as a powerful network scanner. You can also use it in conjunction with GPSd to map
out the locations of Wi-Fi networks. (For the basics of getting Kismet running, see Chapter 3.) Once you have Kismet
and GPSd up and running, you can make them work together.

Safety
If you plan to do some network mapping with Kismet, keep the following in mind:

Put the computer somewhere safe and out of the way. Don't put it someplace where a sudden stop
will send it into your lap or through a window.

Forget that the computer is there while you are driving. If you have to fiddle with it, pull over first.
If you can have a friend driving with you who can operate the computer, all the better. Do not let
the computer distract you while you are driving.

Make sure that the GPS gets a fix before you start driving. It may be hard for it to get a fix while
you are in motion.

Put the GPS somewhere where it can easily pick up the satellite signals. Your best bet is to get a
magnetized external antenna that can attach to your roof. Be sure that there are no loose wires
sticking out of your window. Don't slam the wires in the door!

Above all, when you are driving a car, your first responsibility is to drive safely. Pay attention to the road
and drive carefully.

To map networks with Kismet and GPSd:

1. (Optional.) Load any modules needed for the serial port you're using for the GPS:

$ sudo modprobe pl2303

$ dmesg | grep tty

ttyS00 at 0x03f8 (irq = 4) is a 16550A

ttyS02 at 0x03e8 (irq = 4) is a 16550A

usbserial.c: PL-2303 converter now attached to ttyUSB0 (or usb/tts/0 for devfs)

2. Start GPSd, specifying the serial port with -p and the speed with -s:

$ sudo gpsd -D9 -p /dev/ttyUSB0 -s 4800

3. Telnet to GPSd and use p until you have a reliable fix; you can disconnect when you are done:

$ telnet localhost 2947

Trying 127.0.0.1...

Connected to debian.

Escape character is '^]'.

p

GPSD,P=0.000000 0.000000

p

GPSD,P=41.485882 -71.524841

^]

telnet> q

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

telnet> q

Connection closed.

4. Launch Kismet with the -g (GPS) switch and specify the hostname and port that GPSd is listening on:

$ sudo kismet -g localhost:2947

5. Go for a drive. Press Q when you are done with the drive to terminate Kismet.

When you shut down Kismet, it writes its log files. Check the logtemplate setting in kismet.conf to see where it puts its
log files:

logtemplate=/var/log/kismet/%n-%d-%i.%l

Kismet writes several log files in the logtemplate directory (I starts at 1 and increments for each time you run Kismet
on a given day):

Kismet-<MMM-DD-YYYY>-I.csv

Kismet log in semicolon-separated fields, one line per entry. The first entry contains the field names.

Kismet-<MMM-DD-YYYY>-I.dump

Kismet log in a pcap(3) format suitable for loading under Ethereal (http://www.ethereal.com).

Kismet-<MMM-DD-YYYY>-I.gps

Kismet log in a format designed to be read by the gpsmap utility, which is included with the Kismet distribution.

Kismet-<MMM-DD-YYYY>-I.network

A human-readable dump of the networks that Kismet encountered.

Kismet-<MMM-DD-YYYY>-I.xml

Kismet log in an XML format.

When you're done with Kismet, you must reassociate your Wi-Fi card with the network.
This can sometimes be done by restarting PCMCIA card services or removing and
reinserting the card, but it resulted in a kernel panic in some of our tests. Our workaround
was to use a second network card for network connectivity and let Kismet have its way
with the Prism-based card on wlan0.

To generate a map, run gpsmap on the .gps log file. See the gpsmap manpage for all the drawing and mapping options.
If you choose to use a downloaded map (the default), you must be online. Figure 10-8 shows a map generated by the
following command:

$ gpsmap -S3 -p /var/log/kismet/Kismet-Feb-16-2004-5.gps

The -S option specifies which map server to use (0 = MapBlast;1 = MapPoint;2 = Terraserver; 3= Tiger Census). If you
have trouble with one, try another (Tiger is loosely maintained by the Census Bureau and is not up 100 percent of the
time). Use -p to show power levels or -e to plot simply the locations of the hotspots on the map (see the gpsmap
manpage for more options).

Figure 10-8. Wi-Fi power levels in the Kingston, Rhode Island area

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

10.6 GpsDrive
GpsDrive (http://www.gpsdrive.cc/index.shtml) is an open source GPS-aware navigation system that uses GTK+. It
works with maps from a variety of sources, and plot waypoints, and even lets you share your position with friends and
send SMS text messages with position information.

If you launch GpsDrive while GPSd is listening on the localhost, it will pick it up and start reading coordinates from it. By
default, GpsDrive displays a placeholder map that's not very detailed (see Figure 10-9). However, you can download
new maps by clicking the Download Map button and selecting the map server from the dialog that pops up, as shown in
Figure 10-10.

Figure 10-9. Default map from GpsDrive

Figure 10-10. Selecting a map to download in GpsDrive

Using GpsDrive to download maps from a commercial map service may violate that site's
Terms of Service (ToS). Be sure to consult that mapping site's ToS before proceeding.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The latest beta version as of this writing (2.08pre12) comes with support for NASA's Blue Marble
(http://earthobservatory.nasa.gov/Newsroom/BlueMarble/) satellite images. You must download some extremely large
files (over 1 GB uncompressed) and install them according to the README.nasamaps file that's included with the
GpsDrive distribution. Figure 10-11 shows the NASA maps in action.

GpsDrive does not support route planning, but it does show your speed, position, and altitude. What's more, a version
is available that runs on Linux-powered handhelds (http://www.gpsdrive.cc/pda.shtml), so you can load it up with
waypoints for points of interest and use it while you wander around unfamiliar territory.

Figure 10-11. Using NASA's Blue Marble satellite maps with GpsDrive

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

10.7 Other Applications
Linux is a playground for geographic information, and there are a lot of other applications out there for you to play with.
GPStrans (http://sourceforge.net/projects/gpstrans) and GARNIX
(http://homepage.ntlworld.com/anton.helm/garnix.html) are free applications that exchange information (track, route,
waypoint, etc.) with a Garmin GPS. If you want to enjoy the increased accuracy of Differential GPS without having to
buy a DGPS radio, see the DGPS over the Internet project at http://www.wsrcc.com/wolfgang/gps/dgps-ip.html.

If you're looking for a public map server with U.S. street maps, the U.S. Census Bureau makes street maps that date
from 1998, available at the TIGER Map Server (http://tiger.census.gov/cgi-bin/mapbrowse-tbl). The maps on this site
are public domain, and you can specify latitude, longitude, marker positions, and more in the URL. If you want to put a
bunch of markers on the map (such as Wi-Fi hotspots), see the instructions at
http://tiger.census.gov/instruct.html#MURL. The Tiger web server is loosely maintained by the Census Bureau and is
not always in a working state.

One of the best resources for free/open source geographic information is the FreeGIS project (http://www.freegis.org/).
This site contains an overview of the massive world of free Geographic Information Systems (GIS) software and
provides software on CD-ROM. FreeGIS also acts as a central point for communication and collaboration on free GIS
projects. You can browse the software by category at http://www.freegis.org/browse.en.html and its list of geographic
data (including maps and other geographic models) at http://freegis.org/geo-data.en.html.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 10. GPS
The Global Positioning System (GPS) consists of 27 earth-orbiting satellites (of which 24 are operational and 3 are
backups) circling the earth twice each day. These satellites are arranged in six orbital paths, as shown in Figure 10-1.

Figure 10-1. Satellites circling the earth in six orbital paths

These satellites continuously emit coded positional and timing information using low-power radio waves at frequencies
around 1,500 MHz. GPS receivers on earth can pick up the signals and calculate the exact (we discuss what we mean
by "exact" later in this chapter) positioning on earth. The orbits of the satellites are arranged in such a manner that at
least four satellites are visible at any given time. Thus, a GPS receiver is able to receive signals from these four
satellites and, based on the various signals transmitted by them, derive positional information on earth.

So how does the GPS receiver calculate its position? It does so by measuring the distance between itself and the
satellites. Signals emitted by the satellites are received by the GPS receiver after a time lag, and based on the speed of
light, the GPS receiver calculates the distance from itself to the satellite. But obtaining the distance from one satellite is
not enough, because it tells you only that you are somewhere on the surface of the sphere (think in terms of three-
dimensional space). Figure 10-2 shows that you can be anywhere on a sphere with a radius equal to the estimated
distance to the satellite.

Figure 10-2. A sphere containing all the possible positions

To pinpoint your exact location, GPS uses at least three satellites to triangulate an exact location on earth. Figure 10-3
shows that if you have two satellites, then you can narrow down your location to the intersection of the two spheres. In
this case, you can be anywhere on the dotted line (which is an ellipse).

Figure 10-3. Intersection of two spheres forming an ellipse

This is not precise enough. With a third satellite, you can reduce the possibilities to two (see Figure 10-4). But one of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This is not precise enough. With a third satellite, you can reduce the possibilities to two (see Figure 10-4). But one of
these two points is in space, which is not likely the position you are in. Hence, you can effectively derive your position
from three satellites, but four or more satellites are needed to get a decent altitude fix.

Figure 10-4. Intersection of the ellipse (formed by the two intersecting spheres)
with a third sphere

GPS Accuracy
GPS was originally developed in the 1980s by the U.S. Department of Defense for military use. Because it
was designed primarily for the military, the U.S. Department of Defense introduced Selective Availability
(SA) to degrade the signal accuracy and to encrypt sensitive information, so that civilian usage could be
restricted. The satellites would deliberately broadcast wrong and randomly inaccurate signals, which would
cause the precision of the GPS data to be within 100 meters. The accurate information could be decoded
only by the military.

Because of the great commercial potential of GPS, in May 2000, President Clinton announced that the U.S.
would no longer degrade the accuracy of GPS. With SA turned off, the accuracy of the GPS data could be
within five meters.

Most GPS receivers use information from three or more satellites to increase the accuracy
of the positional information.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.1 Quick Start
If you haven't purchased a Wi-Fi card yet, and are happy with 802.11b (about 5.5 Mbps real-world speed versus about
20 for 802.11a or g), pick up either a Lucent/Agere/Avaya/Proxim Orinoco Silver or Orinoco Gold (see Section 2.2.1.2
later in this chapter). If you've purchased a different card, it may work out of the box with Linux. But if it doesn't, the
rest of this chapter describes chipsets and drivers in enough detail for you to find your way. Unfortunately, the
orinoco_cs driver does not support monitor mode, which passive monitoring tools such as Kismet require. See Chapter
3 for information on monitor mode and available patches for orinoco_cs. If you want to use monitor mode with an
unpatched driver, we suggest that you use a Prism or Atheros-based card.

When you install Linux for the first time, load the modules for all the built-in network
interfaces, especially any wired Ethernet adapters you might use in the future to avoid a
particular situation where your Wi-Fi card is assigned and configured as eth0 during
installation, but the system later detects the onboard Ethernet and assigns it to eth0
(bumping up your Wi-Fi adapter to eth1 and messing up the configuration files that think
eth0 is your Wi-Fi adapter).

You must install the wireless tools package, which is described in Section 2.3.4 later in this chapter. The name of this
package in all the Linux distributions in the following list is wireless-tools.

We tested the Proxim Orinoco Classic Gold (pictured in Figure 2-1) with several Linux distributions on an IBM ThinkPad
A20m with onboard Ethernet (eth0), and this is what we found:

Debian 3.0r1

We used disk 5 (kernel 2.4.18-bf2.4) to boot the installer and installed the base system using disk 1. During
installation, the card was recognized and configured properly using orinoco_cs and the eth1 adapter.

SuSE 9.0

We used the free download version of SuSE 9.0 and installed everything over FTP. The installer did not
automatically detect the card, so we had to use wired Ethernet for the installation. However, when we booted
the system for the first time, SuSE found the card and configured it automatically using the orinoco_cs driver as
wlan0 (the default for orinoco_cs would be to use eth1).

Mandrake 9.2

The card was automatically detected during installation. We configured it by clicking Configure under Network &
Internet when the installer reached the summary screen. Mandrake offers advanced options, including SSID
(WIRELESS_ESSID) and WEP key (WIRELESS_ENC_KEY). Mandrake used orinoco_cs and the eth1 adapter for
this card.

RedHat 9

The RedHat installer detected the card using the orinoco_cs driver and set up the card as eth1. However, the
card was not configured correctly on first boot. We edited /etc/sysconfig/network-scripts/ifcfg-eth1 and set
ONBOOT to no, which corrected the problem. (Linux should always defer configuration of PCMCIA adapters until
the pcmcia rc script runs.)

Gentoo 1.4

We performed a stage 3 install of Gentoo. After booting the installer, we tried to start PCMCIA with
/etc/init.d/pcmcia start, but it insisted on loading the prism2_cs driver, which did not work at all. However, after
we installed Gentoo, built a kernel with genkernel, and rebooted, Gentoo correctly loaded the orinoco_cs driver
(which saw the card as eth1).

Figure 2-1. The Orinoco Classic Gold card

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2-1. The Orinoco Classic Gold card

If you're connecting to a network that uses WEP or one that doesn't broadcast its SSID,
you may need to use the wireless tools, described later in this chapter, after installation is
complete. However, if the Linux distribution supports advanced options (as does Mandrake
9.2), you should be able to connect to the network during the initial installation. For more
information on using WEP with Linux, see Chapter 4.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.2 Chipset Compatibility
While there are many vendors selling Wi-Fi hardware, the radio chipsets come from a relatively small set of
manufacturers. With a few exceptions, radio chipset support under Linux is quite good, and getting better.

Before getting into the nuts and bolts of radio chipsets, there is one online resource that you absolutely need. Jean
Tourrilhes at Hewlett Packard is the author of the Linux Wireless Tools (covered later in this chapter). He also maintains
an extensive web page that includes the Wireless LAN How-To. The page is located at
http://www.hpl.hp.com/personal/Jean_Tourrilhes/index.html. For information regarding a specific radio chipset and
driver support in Linux, look on the Devices & Drivers page:
http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Linux.Wireless.drivers.html. The page is updated frequently
and has extensive information on many esoteric wireless devices and drivers.

2.2.1 Common Chipsets

Although there are probably less than 50 manufacturers of Wi-Fi radio chipsets, this book simply does not have the
space to cover each of these manufacturers in detail. We cover the five most popular manufacturers and their chipsets,
which, in reality, produce 80% of all 802.11 hardware.

2.2.1.1 Intersil Prism II

Before it became a part of Intersil, a company called Harris developed the Prism I reference standard for 802.11, based
on an AMD AM930 processor core. This chipset is 802.11 only, so we won't cover any details of driver support, but they
are available on Jean Tourrilhes' web site, listed in the previous section.

At one point, Prism II has been the most widely available and popular 802.11b radio chipset. Intersil licensed the
chipset and reference designs for Prism II to a large number of vendors. A partial list of vendors using Prism II radios in
their access points, PCMCIA cards, PCI cards, USB adapters, and Compact Flash (CF) cards includes:

Compaq

Nokia

Proxim

D-Link

Linksys

Netgear

SMC

Senao/Engenius

Nearly all of these vendors have products using other radio chipsets. Unfortunately, many products have kept the same
name and sometimes even the same part number, while changing the underlying radio chipset. A good case in point:
the D-Link DWL-650. This radio card initially shipped with a Prism II chipset and was very popular, because it worked in
a Linux box. However, D-Link changed chipsets when it released the DWL-650 Version 2, choosing an ADMtek chipset.
It is very difficult to tell from the packaging which version of the DWL-650 you are purchasing.

Although you have a very good chance of finding an 802.11b radio card that uses a Prism II chipset, there is no
guarantee that the chipset is inside your card. This applies to every other card manufacturer as well. Once you've
decided on a radio card, research online to make sure you know which chipset it uses.

Several manufacturers licensed the Prism II reference design from Intersil and based their products around this design.
These manufacturers include Lucent, Symbol, and Aironet/Cisco. However, the radios designed by these manufacturers
use different firmware and are not compatible with Prism II drivers, although some cards may appear to work: the
driver will load, but the card may function only partially or not at all.

2.2.1.2 Lucent WaveLan/Orinoco

The original Lucent WaveLan radios developed at AT&T (before Lucent was spun off as a separate company) were 900

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The original Lucent WaveLan radios developed at AT&T (before Lucent was spun off as a separate company) were 900
MHz radios, later followed by 2.4 GHz radios in the Industrial, Scientific, and Medical (ISM) band. These cards used an
Ethernet MAC chip onboard, rather than a MAC chip that met standard 802.11 specifications.

The history of WaveLan is of name changes, mergers, and acquisitions. Lucent released a newer version of the card,
the WaveLan IEEE, which met the 802.11 specifications, and then later upgraded the card to support 802.11b (based
on the Prism II reference design, discussed previously). Not too long afterward, the WaveLan brand was renamed to
Orinoco. Lucent then spun off this part of its company into a separate company named Agere. Another Lucent spin-off
called Avaya also sells radio cards using the Orinoco chipset. Most recently the end unit sales of Orinoco have been
acquired by Proxim, while Agere still manufactures the radio chipsets.

Lucent/Agere was one of the few vendors not only to manufacture the radio chipset, but to sell end-user equipment in
the form of radio cards and access points.

In addition to the Lucent, Agere, and Avaya brands, which use the Orinoco chipset, the Apple AirPort line of products is
based on the WaveLan IEEE chipset but is not compatible with Linux drivers for Orinoco. Other vendors that sell radios
using the Orinoco chipset include Enterasys, Elsa, Buffalo, HP, IBM, Dell, Sony, and Compaq. Again, many of these
vendors also produce radios using chipsets from other manufacturers.

2.2.1.3 Aironet/Cisco

The original Aironet radios were similar to the original Lucent WaveLan: they started at 900 MHz and then moved to 2.4
GHz. Again, they were not initially compatible with the 802.11 standard. Aironet produced the 4500 (802.11) and 4800
(802.11b) series of radios, based on the Harris Prism chipset, but with proprietary firmware.

The story of Aironet is also one of acquisition: Cisco purchased Aironet in March of 2000. Prior to the purchase, Aironet
had released the 4800B family of radio cards, including ISA, PCI, and PCMCIA versions, based on the Intersil Prism II
chipset. These radios were renamed as the Cisco 340 series of cards. Cisco has since released the 350 series of radio
cards that feature 100 mW of transmit power (as opposed to the 30 mW offered by the majority of radios). The 350
family also includes a MiniPCI form factor radio card.

The majority of consumer Wi-Fi radio cards have radios that feature 30 mW of transmit
power. Notable exceptions to this are the Cisco 350 cards, the Senao/EnGenius 100 and
200 mW cards, similar 100/200 mW cards from Zcomax, and a few models from D-Link.

2.2.1.4 Symbol

Symbol developed frequency-hopping radios in the 2.4 GHz band called Spectrum24. In a slight twist, Symbol made
sure its products were 802.11-compliant from the beginning. Symbol came somewhat late to the 802.11b market, but it
released a new line called Spectrum24 High-Rate. Again, these cards are based on the Intersil Prism II chipset with
custom firmware. Both 3Com and Intel sell OEM versions of these cards.

Symbol sells mostly PCMCIA cards but also offers a PCI card. Symbol main strength is integrated products—it offers
PDAs with built-in wireless and barcode readers for industrial, medical, and manufacturing applications. Symbol also has
one of the few CF implementations of 802.11b. Versions of these cards are also available and sold as an OEM package
by Socket Communications.

2.2.1.5 Atmel

Atmel was the first to market a USB 802.11b chipset. However, that chipset did not include a radio, so various radios
can be used with this chipset, including the Intersil Prism II radios. Linksys and D-Link both sell USB radio adapters
based on the Intersil chipset. SMC and 3Com both sell PCMCIA cards using the Atmel chipset.

2.2.1.6 Atheros

Atheros is unique in that its chipsets are not based on the Intersil Prism II reference designs. It was the first to market
802.11a chipsets. For quite some time, any 802.11a radios available for purchase were built using the Atheros chipset.
Atheros has since introduced dual-mode 802.11a/b radios with its ar5211 chipset and tri-mode a/b/g radios using their
ar5212 chipset.

Proxim, SMC, Linksys, and D-Link all sell 802.11a, as well as dual- and tri-mode radio products using the Atheros
chipset. The primary form factors are PCMCIA and MiniPCI. Linksys and D-Link both sell PCI dual- and tri-mode radios;
however, they consist of a PCI card with a MiniPCI radio onboard.

2.2.1.7 Broadcom

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.2.1.7 Broadcom

Broadcom has both 802.11b and 802.11g radio chipsets. It has completely ignored the Linux community despite the
many references to Linux on its web pages. No Linux drivers are available for Broadcom radio cards as of this writing.
Cards based on the Broadcom 802.11b chipset include the Dell TrueMobile 1180 and the Linksys WMP11 (previous
versions of this card used the Intersil Prism II chipset). Cards based on the Broadcom 802.11g chipset include the
Linksys WPC54G and WMP54G.

Linux, Driver Support, and the GPL
There are a few fronts on which the proprietary approach of a few hardware vendors clashes with the spirit
of the Linux community.

Companies that manufacture many of the unsupported Wi-Fi cards refuse to divulge enough information
on their radios and firmware for the open source community to effectively build drivers.

Also, there are a number of drivers available that are available only in binary form. The company that
manufactures the radio chipset releases most of these drivers. The madwifi driver for the Atheros chipsets,
developed by Sam Leffler with the cooperation of Atheros, is a good example. The original driver was
developed for BSD but wasn't released, because the Atheros hardware does not enforce valid operating
modes that comply with FCC regulations.

As a solution, Atheros developed a Hardware Abstraction Layer (HAL), in binary form, that sits between
the hardware and the driver and regulates the hardware to meet FCC requirements. Unfortunately, the
binary HAL is available only for i386 architecture, and source is not available.

As such, the madwifi driver is viewed in the open source community as a "black sheep" project, and many
people refuse to use the driver, because a large portion of it does not have source publicly available. There
is a completely open source driver for the Atheros chipsets under development; see Section 2.4.4 later in
this chapter.

Finally, there are issues with some vendors that have released products based on Linux and other open
source software products. The open source community has made recent discoveries that show that some
vendors appear to be violating the GNU General Public License under which the operating system and tools
software were published. As of this writing, this is an unresolved matter.

2.2.2 Determining Your Radio Chipset

As previously discussed, determining the chipset your radio uses can be difficult, because many equipment vendors use
chipsets from several different manufacturers. An excellent example is Linksys. Its 802.11b PCMCIA cards use the Prism
II chipset. However, the Linksys USB 802.11b adapters use the Atmel chipset, while its 802.11g PCMCIA cards use a
Broadcom chipset, and its dual-mode 802.11a/802.11g PCMCIA and PCI cards use the Atheros chipset. The bottom line
is that you should determine your card chipset type before installing drivers.

To determine the chipset of a radio card, refer to the following methods:

If your radio card is PCMCIA or Cardbus, and you have the pcmcia-cs package installed, or are using the kernel
tree PCMCIA, use the cardctl ident command. This shows vendor identification strings for the cards that are
currently inserted in the PCMCIA slots. This works regardless of whether you have a driver loaded for the card.
Here is an example output of the command on a system with two Orinoco cards:

cardctl ident

Socket 0:

 product info: "Lucent Technologies", "WaveLAN/IEEE", "Version 01.01",

 ""

 manfid: 0x0156, 0x0002

 function: 6 (network)

Socket 1:

 product info: "Lucent Technologies", "WaveLAN/IEEE", "Version 01.01",

 ""

 manfid: 0x0156, 0x0002

 function: 6 (network)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 function: 6 (network)

Here is an example output of the command on a system with a single Senao Prism II-based card:

cardctl ident

Socket 0:

 product info: "INTERSIL", "HFA384x/IEEE", "Version 01.02", ""

 manfid: 0x0156, 0x0002

 function: 6 (network)

If your radio card is PCI, use the command lspci -v to show the vendor identification string. Bear in mind that
this command shows you all of the devices on your PCI bus, so for some systems this may return a list several
pages long.

If your radio card is USB, you can usually find the vendor identification strings for any USB device by using the
dmesg command to show output generated during the boot process. You might also find the same information in
/var/log/messages.

These commands usually let you know the manufacturer of the chipset. However, some manufacturers have obfuscated
their vendor identification strings, so you still may not find a valid chipset ID.

An excellent resource that is published on the pages of the wlan-ng driver is the WLAN Adapter Chipset Directory
(http://www.linux-wlan.org/docs/wlan_adapters.html). This is compiled and updated regularly by the maintainers of
wlan-ng, AbsoluteValue Systems, Inc.

All radio devices are required to have the FCC ID printed on them. A final option is to get the FCC ID from your radio
card and look it up on the FCC web site (http://www.fcc.gov/oet/fccid). Using this web site, the FCC ID NI3-SL-2011CD
from the back of a Senao 100 mW 802.11b card returned a single entry for Senao in Taiwan. If you select this entry by
choosing the link for Detail, you are again presented with a number of documents provided to the FCC by the
manufacturer. In this particular case, select a PDF document titled "Operational Description," which reads:

The SL-2011CD WLAN PC Card utilize the Intersil Prism II Direct Sequence Spread Spectrum Wireless
Transceiver chip set.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.3 Four Steps to Wi-Fi
To use a Wi-Fi card on your Linux system, you need several things:

The correct driver software for your Wi-Fi card

The Linux Wireless Tools software

If your system uses a PC Card interface for the Wi-Fi card, the pcmcia-cs software package must be installed
and configured OR

Your kernel must have kernel PCMCIA support compiled in. You may need to recompile your kernel, depending
on your system and distribution.

If you installed your Linux distribution on a notebook or laptop, there's a good chance that you already have at least
part of the necessary packages to make a configured and operational Wi-Fi network card. Current versions of Red Hat,
Debian, and SuSE with 2.4 kernels all include a "notebook" option during the installation process that installs kernel
PCMCIA support.

You have two options for PCMCIA support in Linux: the pcmcia-cs package or kernel PCMCIA support. All 2.4.x
distributions of the Linux kernel include the option for compiling in PCMCIA support, which removes the need for the
external pcmcia-cs package. However, there are some valid reasons to use the pcmcia-cs package rather than the
kernel PCMCIA support, which we discuss later in this section.

Kernel PCMCIA support is based on the pcmcia-cs package. The pcmcia-cs README for Version 2.4 kernels, found at
http://pcmcia-cs.sourceforge.net/ftp/README-2.4, has several good questions on this topic:

Q: Are these two versions of PCMCIA both going to continue with active development?

A: The kernel PCMCIA subsystem should be the focus for ongoing development. The standalone pcmcia-
cs drivers are still being maintained but the focus has shifted from adding functionality, towards mainly
bug fixes.

Q: Which should I use / which is better? The kernel PCMCIA, or the standalone PCMCIA?

A: It rarely matters. The client drivers should generally behave the same. At this point, most current
distributions use the kernel PCMCIA subsystem, and I recommend sticking with that unless you have a
particular need that is only met by the standalone drivers.

Your Linux distribution may not install the Linux Wireless Tools or the pcmcia-cs packages by default. You must select
these packages during the installation process or add them at a later time.

You don't need to install both kernel PCMCIA and pcmcia-cs.

The same is true for many wireless drivers. Most current Linux distributions give you drivers for some common Wi-Fi
cards, including the orinoco_cs driver for Lucent WaveLan/Orinoco cards. However, if you need the hostap, wlan-ng, or
madwifi drivers, you must install these from source, or optionally from a binary package that a third party has made
available.

2.3.1 Linux Wi-Fi Drivers

We can't cover all Wi-Fi radio cards, their features, and the available drivers for them. We'll discuss several of them
briefly and cover the four most useful drivers for Linux in more detail at the end of this chapter:

Hermes AP

Hermes AP is a patched version of the orinoco_cs driver that allows you to use the "tertiary" code available for
Orinoco cards, which allows them to act as an access point. You can find the driver at
http://hunz.org/hermesap.html.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

http://hunz.org/hermesap.html.

hostap_cs

This is a driver for Prism II cards but with a few features not found in other drivers. You can find the driver at
http://hostap.epitest.fi. See Section 2.4.2 later in this chapter.

madwifi

This driver supports the Atheros 802.11a/b/g radio cards. You can find this driver at
http://sourceforge.net/projects/madwifi. See Section 2.4.4 later in this chapter.

orinoco_cs

This driver supports Lucent WaveLAN IEEE, Lucent Orinoco, Symbol Spectrum 24, and Apple AirPort (but not
AirPort Extreme) cards, and is included with most recent Linux distributions. This driver also supports Prism II
cards, but most features of the Prism II chipset are not supported. You can download the driver from
http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Orinoco.html. See Section 2.4.1 later in this chapter.

prism54

The prism54 driver supports cards based on Prism GT, Prism Duette, and Prism Indigo chipsets. You can find
this driver at http://prism54.org/.

wlan-ng

This is another Prism II driver. It does not support the wireless-tools package, but it does come with its own
utilities. You can download the driver from http://www.linux-wlan.org/. See Section 2.4.3 later in this chapter.

2.3.2 Configuring and Compiling Your Kernel

There are a number of reasons why you should consider compiling your own Linux kernel from source:

Many drivers require certain features to be compiled into the kernel that are not available in stock distribution
kernels. For example, the madwifi driver requires not only radio support and the wireless tools, but also PCI
Hotplug and ACPI support, which must be compiled into the kernel.

Other drivers, while not requiring experimental kernel features, still require a configured kernel source. A
.config file must exist in the root of your kernel source and must be the file that was used to configure and
compile your running kernel. Some Linux distributions do not include this file, which makes it difficult for you to
install kernel drivers.

You should know how to compile a Linux kernel. If you have used Linux for any length of time, or if you plan to,
kernel compilation teaches you a great deal about Linux.

Compiling the Linux kernel from source is not a trivial undertaking. While you don't need prior experience building
system-level software, you do need a basic understanding of Linux filesystems, editors, and other concepts. See the
following resources for some good basic Linux backgrounders:

The Linux Kernel HOWTO, part of the Linux Documentation Project
(http://www.linux.org/docs/ldp/howto/Kernel-HOWTO/index.html)

Running Linux, Fourth Edition (O'Reilly)

Understanding the Linux Kernel, Second Edition (O'Reilly)

To configure and compile a Linux kernel, you must obtain the following items:

A working Linux system

The correct compiler, libraries and tools

The kernel source

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The kernel source

A working Linux system should be fairly modern if you are planning on compiling modern kernel code. For instance, do
not attempt to compile a 2.4 kernel tree using a Linux system based on a 2.0 or prior kernel. Any recent distribution of
Linux should have the kernel version and tools necessary for compiling your own kernel.

In each kernel release, the README file in the kernel source specifies the version of the gcc compiler needed to compile
successfully. For example, the README for kernel 2.4.22 states:

Make sure you have gcc 2.94.3 available. gcc 2.91.66 (ecgs-1.1.2) may also work but is not as safe,
and gcc 2.7.2.3 is no longer supported.

Compiling and running the 2.4.xx kernels requires up-to-date versions of various software packages.
Consult /Documentation/Changes for the minimum version numbers required and how to get updates
for these packages.

The Changes document goes into great detail on versions of software, including gcc, that are required for successful
compilation of the kernel source. Make sure your system has the correct versions of the tools specified. Failure to do so
may mean that your new kernel will not compile, or that bugs will be introduced into your kernel.

Kernel source can be obtained from many places. The major distributions include kernel source in package format—
RPMs, Debian packages for apt-get, or dpkg. Other kernel source RPMs built by third parties can be found at
http://www.rpmfind.net. The ultimate repository for all Linux kernels is kernel.org, accessible via FTP or HTTP. Here you
can find source for any kernel version you want, all the way back to the 1.0 kernel from 1994.

The latest stable kernel is Version 2.4.23, and it can be downloaded directly by using this URL:
http://www.kernel.org/pub/linux/kernel/v2.4/linux-2.4.23.tar.bz2. You'll want to save this compressed file in /usr/src.

To find the latest kernel source, look in the major/minor version subdirectory (such as
v2.4) for a file starting with LATEST-IS. For example, a file named LATEST-IS-2.4.23 tells
you that kernel 2.4.23 is the most recent. Unless you are aware of a specific problem with
the latest kernel version, you should always use the most recent one.

We'll walk through a compile of the 2.4.23 kernel for a Debian Linux system running on a Dell laptop. Obviously, this
only scratches the surface of kernel compilation. This book doesn't have the space to cover multiple versions of kernels,
much less cover what it takes to compile on other specific systems. One good resource for information is the Kernel
HOWTO listed earlier. Another is the linux-kernel mailing list, located at http://www.tux.org/lkml/. This page has a very
extensive questions section, where many common kernel answers are given.

2.3.2.1 Off to the races

Assuming that you have obtained the 2.4.23 kernel source from www.kernel.org, you'll want to uncompress the file and
change into the working source directory (these instructions will work with later versions of the 2.4 kernel):

tar xjvf linux-2.4.23.tar.bz2

cd linux-2.4.23

If you want to save the original .config file from the source, you should back it up (if you obtained your kernel source
from a tarball at kernel.org, this file won't exist):

cp .config .config-original

If you have done anything in this directory other than the three commands listed previously, it's a good idea to run a
couple of cleanup commands. These commands clean out all sorts of things that might have been compiled or
configured in ways that you don't want:

make clean

make mrproper

At this point, you have four options for configuring your kernel before compilation.

Manual editing of the .config file

Not recommended unless you are a serious kernel hacker, and you know exactly what you're doing.

make config

This is a command-line interface that walks you through every possible config option, one at a time. It is very

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This is a command-line interface that walks you through every possible config option, one at a time. It is very
time consuming and very unfriendly. When you enter this command, you see something such as this on the
screen:

rm -f include/asm

(cd include ; ln -sf asm-i386 asm)

/bin/sh scripts/Configure arch/i386/config.in

#

Using defaults found in .config

#

*

* Code maturity level options

*

Prompt for development and/or incomplete code/drivers (CONFIG_

EXPERIMENTAL) [Y/n/?]

You must answer each and every question the script asks you in order to generate a valid .config file.

make menuconfig

This is a command-line menu interface that relies on the ncurses library to generate a menu-based
configuration editor. It is a much more friendly interface than the preceding options. Here, instead of answering
a question about each and every single possible kernel feature, you are presented with a hierarchical menu that
breaks things down into sections. Figure 2-2 shows the main menu you obtain from running make menuconfig.

Figure 2-2. Initial menu from make menuconfig

make xconfig

As the name implies, this is an X-Windows interface for the config process. You must be running some flavor of
X-Windows to use this option. For most Linux users, this is Gnome or KDE. make xconfig produces a GUI window,
as shown in Figure 2-3.

Figure 2-3. Initial menu from make xconfig

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2-3. Initial menu from make xconfig

For most users, make menuconfig or make xconfig are going to be the most friendly. This book assumes that you have
chosen one of these options. Every option in the following list that you pick is from a menu in make menuconfig or make
xconfig.

The following list presents a number of options that you must choose to successfully compile your kernel for wireless
connectivity. Note that there are many other options that must be selected to compile a kernel for your system, but
they are not covered here. There are three options you can select: Y for yes, M for module, and N for no:

Code maturity level options

 Prompt for development and/or incomplete code/drivers: Y

Loadable Module Support

 Enable loadable module support: Y

 Set version information on all module symbols: Y

 Kernel module loader: Y

Processor type and features

 It is vitally important that you select your correct processor type

 in this option. Otherwise your kernel will not be compiled properly

 and will definitely not boot.

General Setup

 Networking support: Y

 PCI Support (for PCI or CardBus wireless cards): Y

 Support for hot-pluggable devices (for PCMCIA, CardBus or USB support) Y

 PCMCIA/CardBus support

 PCMCIA/CardBus support: Y

 CardBus support (if required for your setup): Y

 PCI Hotplug Support

 Support for PCI Hotplug (required for madwifi driver): Y

 ACPI PCI Hotplug driver (required for madwifi driver): M

 Power Management Support (required for ACPI): Y

 ACPI Support

 ACPI Support (required for madwifi driver): Y

Plug and Play configuration

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Plug and Play configuration

 Plug and Play support: Y

Networking options

 Packet socket: Y

 Socket filtering: Y

 Unix domain sockets: Y

 TCP/IP networking: Y

Network device support

 Network device support: Y

 Wireless LAN (non-hamradio): Y

 In this section you will want to choose a wireless

 driver for your card, if it is listed here.

Once you have selected these options (and any other options required for your particular system), you're done with the
config. You can choose to Store Configuration to File if you would like to write this particular config to a file other than
the default .config. Otherwise, choose Save and Exit, which writes your options to the .config file.

Your next step is to issue the make dep command. This runs a Makefile script that compiles any dependencies required
for your kernel. Depending on your system, this likely takes a few minutes.

You're now ready to compile the kernel! This is done with the make bzImage command. This takes quite some time.

Next, because you have selected the Loadable Modules section, you must compile all of the modules by issuing the
make modules command. On some systems, depending on the number of modules you chose to build, this command
may take more time than compiling the kernel.

Finally, you must install the modules you have just compiled. This is accomplished by the make modules_install command.

If you encounter errors during the compile process, note the specific error and the directory in which it occurred.
Execute the make clean command. Go back into make xconfig and find the area corresponding to the directory where the
compile failed. Examine the options you chose very carefully. Did you choose a kernel option or module that is not on
your system? Did you choose an option that is labeled as EXPERIMENTAL? You may wish to alter your choices. While the
menu makes choosing kernel options very easy, it does not give you advice on which options to choose. You may have
to experiment with the settings until you get a successful compile.

Once you have compiled the bzImage and the modules, you are ready. Now, you must copy the bzImage file that was
compiled to your /boot directory. Many distributions use the filename of vmlinuz for this purpose, but you can call the
file anything you want. The path below obviously varies depending on your system architecture. The following example
is from kernel 2.4.23 compiled for i386:

cp /usr/src/linux/arch/i386/boot/vmlinuz-2.4.23 /boot/

One last thing must be done: configure your boot loader program so that it recognizes your new kernel. The two most
common boot loaders are GRUB and LILO. LILO is the older of the two, but it is still widely used. We assume that you
are using LILO. For more information on configuring GRUB, see the GNU software pages at
http://www.gnu.org/software/grub.

To configure LILO for your new kernel, edit the /etc/lilo.conf file. A typical lilo.conf is shown here:

lba32

boot=/dev/hda

root=/dev/hda3

install=boot/boot-menu.b

map=/boot/map

delay=20

prompt

timeout=150

vga=normal

default=Linux

image=/boot/vmlinuz-2.4.23

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 label=Linux

 read-only

image=/boot/vmlinuz-2.4.18

 label=Old Kernel

 read-only

The key pieces are at the end. This example uses default=Linux, the label associated with the image for kernel 2.4.23,
which you have just built and copied to /boot. Leave the old kernel image in the configuration file. This is very
important, because it gives you a rescue option if your new kernel image does not boot or has errors.

To activate this lilo.conf, run LILO and specify the configuration file:

#lilo -C /etc/lilo.conf

Added Linux *

Added Old Kernel

You are now ready to reboot your system and boot into the new kernel that you just compiled.

2.3.3 Building and Configuring the pcmcia-cs Subsystem

As mentioned previously, you have two options for PCMCIA support. You can select PCMCIA/CardBus support when you
compile your kernel, or you can build the pcmcia-cs subsystem from scratch.

The pcmcia-cs software package, available from http://pcmcia-cs.sourceforge.net, is the basis for the kernel PCMCIA
support. Going forward into the 2.6 kernels, it appears that all new development will be on the kernel tree PCMCIA.
However, as of this writing and the 2.4.23 kernel, the pcmcia-cs version of 3.25 has newer utilities and drivers than the
ones in the kernel PCMCIA. It is mainly for this reason that you will want to compile pcmcia-cs from source.

If you compile your kernel with PCMCIA/CardBus support, you do not need to install the
pcmcia-cs package from source. However, if you want the latest versions of the PCMCIA
utilities, you can install this package without interfering with kernel support for
PCMCIA/CardBus. For more information, see Section 2.3.3.1 later in this chapter.

Once again, to compile kernel modules from source, you need the configured kernel source for your kernel. This
generally means that you have configured and compiled your own Linux kernel. While it is certainly possible to compile
kernel modules against Linux kernels provided by a stock distribution, it can be tricky. For more on compiling your own
kernel, see the previous Section 2.3.2.

There are a number of kernel options that may need to be enabled, depending on how you use the PCMCIA devices.
Because many of these options pertain to wired network cards, SCSI and IDE adapters, we do not cover them here.
However, if you do plan to use 16-bit PCMCIA (non-CardBus cards), you must enable CONFIG_ISA. This option can be
found in the General Setup portion of make menuconfig or make xconfig as part of your kernel configuration.

To begin compiling the package, download the pcmcia-cs.3.2.5.tar.gz file into the /usr/src directory. Unpack the tar.gz
file and change into the top-level directory (if a later version is available, you should use that):

tar xzvf pcmcia-cs.3.2.5.tgz

cd pcmcia-cs.3.2.5

You must configure the package before compilation and make a few decisions on what kind of PCMCIA support you
need. In most cases, you can accept the defaults on all of the config questions.

The kernel source directory defaults to /usr/src/linux. If your kernel source is located in /usr/src/kernel-2.4.23, you
must enter that here:

make config

Linux kernel source directory?

Next, you can choose whether to allow non-root users to modify PCMCIA card configurations. The default answer is no,
which does not allow any non-root users to suspend, resume, or reset cards, or to change the PCMCIA configuration
scheme. Answering yes allows non-root users all these privileges.

Build 'trusting' versions of card utilities?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Build 'trusting' versions of card utilities?

In most cases, you want to enable CardBus support. Unless you plan only to use 16-bit 802.11 and 802.11b PCMCIA
cards, CardBus is required for 802.11a and 802.11g PC Cards.

Include 32-bit (CardBus) card support?

This option inserts extra code into the PCMCIA subsystem, which allows it to check with a system's BIOS to obtain
resource information on a motherboard's devices to help avoid resource conflicts. It can cause problems on some
laptops, so this option is not enabled by default.

Include PnP BIOS resource checking?

Unless you are installing modules in an alternate directory for some reason, this should be the subdirectory of
/lib/modules that matches your kernel. In this case, the subdirectory is /lib/modules/2.4.23.

Module install directory?

Once you've answered the questions and config has finished, you should run the following commands to build and then
install the kernel modules and utility programs:

make all

make install

Once installed, the kernel modules will be located in /lib/modules/2.4.23/pcmcia, the binary PCMCIA control programs
will be located in /sbin, and all configuration files will be located in /etc/pcmcia. A startup configuration file will also be
installed, but this location varies with the Linux distribution in question. Debian locates the startup configuration in
/etc/default/pcmcia. RedHat and several other distributions locate the startup configuration in /etc/sysconfig/pcmcia.

The startup configuration file has several options that can be set. A sample file from a modified Debian system looks
like this:

PCMCIA=yes

PCIC=i82365

PCIC_OPTS=

CORE_OPTS=

CARDMGR_OPTS=-f

If PCMCIA is set to anything other than "yes," the PCMCIA subsystem will not start at time of boot.

The only mandatory option in this file that must be set is PCIC=. There are three options: tcic, i82365, and
yenta_socket. tcic is a driver for older PC Card controllers, and unless you're building on a 486 laptop, you won't use it.
Most other systems will want to set this option as i82365, unless you have the kernel tree PCMCIA. If the kernel tree
PCMCIA is configured in your kernel, you must set this option to yenta_socket. Finally, if your PCMCIA card is CardBus,
you should set this to yenta_socket.

PCIC_OPTS are necessary only if your specific PC Card controller has options that need to be passed to it at boot time.
For most modern controllers, this is not an issue.

CORE_OPTS are options for the kernel module pcmcia_core. man pcmcia_core gives you a listing of all these options.

CARDMGR_OPTS are options for the cardmgr daemon. man cardmgr gives you a listing of these options. In this case, the
-f option tells cardmgr to run in the foreground, rather than as a daemon, until any cards present are already
configured.

There are quite a number of settings that are possible for various systems. If you have an unusual system or a desktop
system with an add-on PCMCIA reader, you should completely read through the PCMCIA HOWTO:

http://pcmcia-cs.sourceforge.net/ftp/doc/PCMCIA-HOWTO.html

2.3.3.1 2.4 kernels and kernel tree PCMCIA

Note that if you have a 2.4 kernel and kernel tree PCMCIA configured in your kernel, the pcmcia-cs install process will
install only the PCMCIA tools, cardmgr, and cardctl in the /sbin directory. None of the kernel modules or client card
drivers will be installed, because the pcmcia-cs installer will find existing modules from the kernel tree PCMCIA and by
default will not overwrite them.

Included with the pcmcia-cs source is a README file on issues with the 2.4 kernel. (You can also find this file at
http://pcmcia-cs.sourceforge.net/ftp/README-2.4.) One of the questions in the Q&A section covers this issue. You
cannot compile or install anything in the /usr/src/pcmcia-cs.3.2.5/modules directory, as these modules would conflict
with the PCMCIA subsystem in the kernel tree.

However, you can build client card drivers from the pcmcia-cs source code by executing make install in either the
/usr/src/pcmcia-cs.3.2.5/clients or /usr/src/pcmcia-cs.3.2.5/wireless subdirectories after running make config.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

/usr/src/pcmcia-cs.3.2.5/clients or /usr/src/pcmcia-cs.3.2.5/wireless subdirectories after running make config.

You may need to build the drivers this way for a variety of reasons. For example, when we built and compiled the
2.4.23 kernel, pcmcia-cs, and associated wireless drivers, we discovered that the madwifi driver for Atheros chipsets
required kernel tree PCMCIA. However, once the kernel was compiled and the Atheros card was successfully tested, we
discovered that the Orinoco card would not initialize. The PCMCIA subsystem reported orinoco_cs: CardServices release
does not match! In order to fix this, it was necessary to configure pcmcia-cs and run a make install in the wireless
subdirectory, as described earlier.

2.3.3.2 Controlling the PCMCIA subsystem

To successfully initialize and configure a PCMCIA wireless card, there are a number of pieces that come into play. Three
modules need to be loaded at boot time: ds, i82365 or yenta_socket, and pcmcia_core. If you have kernel tree PCMCIA
enabled or have gone through the pcmcia-cs installation process, these modules load automatically.

The next important bit is the cardmgr daemon, which monitors the PCMCIA socket, loads client card drivers at startup,
and runs user scripts when cards are inserted or removed. The two important files for cardmgr are located in
/etc/pcmcia/config and /etc/pcmcia/config.opts. config contains information about all of the client card drivers, about
how to identify various cards, and about which drivers to load for which card. This file shouldn't be modified unless you
really know what you're doing and must load a driver for a card that is not described in the config file. Similarly,
config.opts must be modified if you have special options that must be passed to the PCMCIA card from cardmgr, or if
you are experiencing memory or address conflicts with a specific card.

To manage a given PCMCIA card, run a user-space program called cardctl. cardctl checks the status and configuration of
a PCMCIA socket and allows you to modify the configuration, as well as insert, eject, and suspend PCMCIA cards. There
are several commands that cardctl supports. Examples with sample output from the commands are shown next.

The config command shows low-level configuration for any PCMCIA card: the voltage type, interface type, IRQ in use,
and I/O memory used. This is a very handy tool for troubleshooting if you are running into resource conflicts.

cardctl config

Socket 0:

 Vcc 3.3V Vpp1 0.0V Vpp2 0.0V

 interface type is "memory and I/O"

 irq 12 [exclusive] [level]

 function 0:

 config base 0x03e0

 option 0x41

 io 0x0100-0x013f [16bit]

The ident command gives you the chipset identification strings for your PCMCIA card. In this example, you are looking at
a Senao 802.11b card that uses the Intersil Prism II chipset. Note that one thing you don't see is the manufacturer
name; rather, you see the chipset manufacturer name.

cardctl ident

Socket 0:

 product info: "INTERSIL", "HFA384x/IEEE", "Version 01.02", ""

 manfid: 0x0156, 0x0002

 function: 6 (network)

The suspend and resume commands shut down a PCMCIA card without unloading the associated drivers, and then they
allow you to resume normal card operation. reset reloads the card driver without shutting down power to the card or
resetting the PCMCIA subsystem.

cardctl suspend

cardctl resume

cardctl reset

The eject and insert commands are the software equivalent of physically ejecting and inserting a PCMCIA card, so the
card drivers are loaded or unloaded, and the devices are configured or shut down. It's important to note that CardBus
cards may not react well to physical ejection, and you should use the cardctl eject command before removing a CardBus
card.

cardctl eject

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

cardctl eject

cardctl insert

Schemes allow you to have multiple configurations for your PCMCIA card. With a wireless network card, multiple
schemes provide you with the ability to change ESSID and other wireless settings as well as TCP/IP configuration.
Schemes are covered in more detail in the discussion of the PCMCIA configuration.

cardctl scheme

To stop or start the entire PCMCIA subsystem, execute the rc script that is installed with pcmcia-cs or the kernel tree
PCMCIA. Where this file is located varies depending on your Linux distribution. On most Linux distributions, these
commands stop and start the PCMCIA subsystem:

/etc/init.d/pcmcia stop

/etc/init.d/pcmcia start

2.3.3.3 PCMCIA wireless card configuration

PCMCIA devices are grouped into classes that define how they are configured and managed. These classes include
network, SCSI, CDROM, fixed disk, serial, and a couple of memory card classes. This chapter is really concerned with
wireless network cards, so the only class that is discussed here is the network class.

When the Wireless Tools are installed (see Section 2.3.4 later in this chapter for more information), an additional class
is added: wireless.

Classes are associated with device drivers in /etc/pcmcia/config. Each class has two scripts located in /etc/pcmcia: a
main configuration script and an options script. For network cards, these scripts are /etc/pcmcia/network and
/etc/pcmcia/network.opts. Similarly, the wireless class scripts are /etc/pcmcia/wireless and /etc/pcmcia/wireless.opts.

Both config scripts extract some information about the PCMCIA card from the PCMCIA subsystem and use this
information to generate a device address. The first part of any PCMCIA device address is the current scheme.

While the PCMCIA scripts accept any number of parameters in the device address, the sample scripts use the following
syntax:

case "$ADDRESS" in

,0,,*)

 # definitions for network card in socket 0

 ;;

,1,,*)

 # definitions for network card in socket 1

 ;;

esac

The comma-separated fields in this example are the scheme, the socket number, the device instance, and the card's
hardware Ethernet address. The device instance is used only if the card has multiple network interfaces, so, in most
cases, it is zero. In this example, the cards are configured based on their socket number, which is somewhat easier to
manage than configuration based on hardware Ethernet address.

The network.opts file accepts a large number of parameters. For information on all that this file offers, read through the
PCMCIA HOWTO:

http://pcmcia-cs.sourceforge.net/ftp/doc/PCMCIA-HOWTO.html

It is also beneficial to read through the default /etc/pcmcia/network.opts file before making any changes. Back up the
file before you start editing:

/etc/pcmcia# cp network.opts network.opts.orig

Here is a sample of a configured network.opts file that sets up a static IP address and related TCP/IP address
information for the wireless network card in slot 0:

case "$ADDRESS" in

,0,,*)

 INFO="Sample network setup"

 IPADDR="10.42.7.2"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 IPADDR="10.42.7.2"

 NETMASK="255.255.255.192"

 NETWORK="10.42.7.0"

 BROADCAST="10.42.7.63"

 GATEWAY="10.42.7.1"

 ;;

esac

This configuration applies to any PCMCIA network card that happens to be placed in slot 0. To make the configuration
adaptable to a laptop that needs to establish network configuration between home and work, set up the network.opts
file:

case "$ADDRESS" in

yourjob,0,*,*)

 INFO="Work network setup"

 IPADDR="10.1.1.200"

 NETMASK="255.255.255.0"

 NETWORK="10.1.1.0"

 BROADCAST="10.1.1.255"

 GATEWAY="10.1.1.1"

 ;;

home,0,*,*)

 INFO="Home network settings"

 DHCP=Y

esac

With this setup, you can switch between the static IP address assigned by your employer and the DHCP address you
receive at home from your ADSL or cable router. To switch to the home settings, run the following command:

cardctl scheme home

The scheme is persistent after rebooting. This may be a problem if you shut down your system at home and bring it up
at work, and you are still using your home network and wireless settings.

You can manually edit your lilo.conf so that the PCMCIA scheme is passed from LILO to the system init as a variable.
Here is a lilo.conf that shows two different schemes:

root = /dev/hda1

read-only

image = /boot/vmlinuz-2.4.22

 label = home

 append = "SCHEME=home"

image = /boot/vmlinuz-2.4.22

 label = work

 append = "SCHEME=yourjob"

The /etc/pcmcia/wireless.opts file can be handled in a similar manner as network.opts. Again, the wireless.opts file
accepts a large number of parameters, and you should read through the Wireless HOWTO before starting:

http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/#howto

Also, read through the default /etc/pcmcia/wireless.opts file before making any changes. Back up the file before you
start editing:

/etc/pcmcia# cp wireless.opts wireless.opts.orig

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

/etc/pcmcia# cp wireless.opts wireless.opts.orig

Here is a sample of a configured wireless.opts file that sets an ESSID of home and a scheme of home:

case "$ADDRESS" in

home,0,*,*)

 INFO="Home wireless setup"

 ESSID="home"

 MODE="managed"

 RATE="auto"

 ;;

esac

The fields of interest are the ESSID, the mode, the channel, and the rate. The ESSID can
be set either to the correct case-sensitive ESSID from the needed access point or to any,
which allows the card to associate with any wireless network it finds.

For most cards, the mode can be set to managed or to ad-hoc. Managed mode is the 802.11 infrastructure mode, which
means your card is a client to an access point. Ad-hoc mode can be used to communicate directly between two
computers. Many cards support a third "monitor" mode that can be used to monitor wireless traffic. This mode is
covered in Chapter 3. Finally, if you have a Prism or Atheros-based card, a fourth "master" mode can be used to let
your card act as an access point (see Chapter 6).

Setting the rate allows you to determine the network speed your wireless card uses. For 802.11b cards, the valid rates
are 1MB, 2MB, 5.5MB, 11MB, and auto. Setting this to any of the numerical values locks your card into that rate, and it
transmits and receives at no other rate. If you want the card to automatically choose a rate up to a particular limit, use
the desired rate along with auto. For example, choosing "5.5MB auto" chooses automatically 1MB, 2MB, or 5.5MB,
depending on the amount of available signal. You may want to force a rate (or range of rates) if you are operating in an
area with marginal coverage. Locking in a lower rate can sometimes lead to better performance than auto if the card is
continually renegotiating the data rate.

The channel setting is not always needed, particularly if you have ESSID="any". However, if you are in a noisy wireless
environment with multiple access points, you may wish to set the ESSID and the channel to ensure that your card does
not associate with other access points.

Building on the use of a scheme, here is an expanded wireless.opts that provides configuration for both home and
work:

case "$ADDRESS" in

home,0,*,*)

 INFO="Home wireless setup"

 ESSID="home"

 MODE="managed"

 CHANNEL="11"

 RATE="auto"

 ;;

yourjob,0,*,*)

 INFO="Work wireless setup"

 ESSID="BigCorp"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ESSID="BigCorp"

 MODE="managed"

 CHANNEL="4"

 RATE="auto"

 KEY="s:bigsecret"

esac

Note that the work setup has another field: KEY="s:bigsecret". "bigsecret" is the Wired Equivalent Privacy (WEP) key, and
it is used to encrypt traffic between the client network card and an access point. WEP, its uses, and its weaknesses are
covered in Chapter 4.

Debian Network Device Configuration
Debian users have an alternate method of configuring their network devices, including any wireless
PCMCIA devices. Rather than relying on the /etc/pcmcia/network.opts and /etc/pcmcia/wireless.opts, all
options are set using /etc/network/interfaces.

Any PCMCIA device you wish to configure with the /etc/network/interfaces file should not be marked as
"auto." Debian will try to configure these interfaces before PCMCIA support is started, and the network
configuration will fail.

The interfaces file is responsible for setting TCP/IP settings for any network interfaces configured in
Debian. A sample entry defining a static IP address would look like this:

iface wlan0 inet static

 address 192.168.1.2

 network 192.168.1.0

 netmask 255.255.255.0

 broadcast 192.168.1.255

 gateway 192.168.1.l

If you install the wireless-tools package via apt-get, rather than compiling from source, Debian adds hooks
to the interfaces file to support new option statements. These options take the form of:

wireless_<function> <value>

When the interface is brought up during the boot process, these options result in the execution of the
following Wireless Tools command:

iwconfig <interface> <function> <value>

Using this method, any command that is recognized by iwconfig, except for "Nickname," can be entered in
/etc/network/interfaces and passed to the wireless card when it is initialized. To expand on the previous
sample entry, here is an expanded entry that sets various wireless parameters:

iface wlan0 inet static

 address 192.168.1.2

 network 192.168.1.0

 netmask 255.255.255.0

 broadcast 192.168.1.255

 gateway 192.168.1.1

 wireless_essid NoCat

 wireless_mode Managed

2.3.4 Installing the Wireless Tools

The Linux Wireless Tools and their companion API, the Wireless Extensions, are both the work of Jean Tourrilhes at

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Linux Wireless Tools and their companion API, the Wireless Extensions, are both the work of Jean Tourrilhes at
Hewlett Packard, who maintains an excellent web page full of useful information for Linux and wireless LANs at
http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/.

While the Wireless Tools and Extensions are not the only methods of configuring and using wireless network cards
under Linux, they are the most common and are discussed in this chapter.

2.3.4.1 Wireless Extensions

To use the Wireless Tools, you must have a kernel and drivers with the Wireless Extensions. Fortunately, most kernels
since 2.2.14 have included the wireless.h that defines Wireless Extensions in the kernel. In order for the Wireless
Extensions to be included in the kernel, you must make sure that the CONFIG_NET_RADIO option is enabled. If you
built your kernel following the instructions earlier in the chapter, your kernel should be built properly with the Wireless
Extensions.

Table 2-1 shows what version of the Wireless Extensions your kernel should support (see Jean Tourrilhes's web page for
the most recent information).

Table 2-1. Wireless Extensions support in Linux kernels
Version Kernel Features

WE-9 2.2.14, 2.3.30 Basic 802.11b support

WE-10 2.2.19, 2.4.0 Add TxPower setting

WE-11 2.4.4 Driver version check, retry setting

WE-12 2.4.13 Additional statistics

WE-13 2.4.19, 2.5.3 New driver API

WE-14 2.4.20, 2.5.7 Wireless Scanning, Wireless Events

WE-15 2.4.21, 2.5.37 Enhanced iwpriv support

WE-16 2.4.23, 2.6 802.11a/802.11g fixes, Enhanced iwspy support

The Wireless Extensions Version 16 is used for all the examples that use the 2.4.23 kernel. While there are patches to
upgrade older kernels to later versions of the Wireless Extensions, it is not recommended, as many of the changes in
wireless.h are dependent on specific kernel features and were not tested in older kernel versions.

2.3.4.2 Compiling the Wireless Tools

Now that you know the version of the Wireless Extensions that your kernel includes, you should get the latest version of
the Wireless Tools. At the time of this writing, the latest stable version is 26 and can be obtained from the pcmcia-cs
web site:

http://pcmcia-cs.sourceforge.net/ftp/contrib/wireless_tools.26.tar.gz

If you don't want to compile from source, you can install a binary package. Debian users
can install the Wireless Tools as a package using apt-get install wireless-tools. RedHat and
Mandrake users can install the wireless-tools RPM from the installation CDs. Other
distributions should have a similarly named package.

Your best option is to download the source code from the aforementioned link and build the Wireless Tools for your
exact version of the Wireless Extensions in your kernel. If you install a package version, it may have been compiled
against a different version of the Wireless Extensions. When this happens, every time you use one of the Wireless
Tools, you will see this error message:

Warning: Driver for device wlan0 has been compiled

with version 14 of Wireless Extension, while this program is using version

15. Some things may be broken...

As the error message states, if you are using a version of the Wireless Tools that has been compiled with a previous
version of the Wireless Extensions, some features may not work. Looking at Table 2-1, you can see that if you use a
version of the Wireless Tools that had been compiled against Version 13 of the Wireless Extensions, you would not be
able to use the Wireless Scanning in Version 14, regardless of the version of the Wireless Extensions in your kernel.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

able to use the Wireless Scanning in Version 14, regardless of the version of the Wireless Extensions in your kernel.

To successfully compile the Wireless Tools, you should need only a working compiler environment and a kernel with
CONFIG_NET_RADIO enabled. PCMCIA support is optional but obviously required if your wireless card is a PCMCIA card.
To really use the tools, you definitely need a wireless driver that supports the Wireless Extensions. Most Linux drivers
do. Consult Jean Tourrilhes's web page if you have questions about a specific driver. Of the drivers covered in this
chapter, only the wlan-ng driver does not support the Wireless Extensions.

To begin compiling the package, download the wireless_tools.26.tar.gz file into the /usr/src directory. Unpack the tar.gz
file and change into the top-level directory:

tar xzvf wireless_tools.26.tar.gz

cd wireless_tools.26

There isn't any configuration to do. As Jean Tourrilhes says in the INSTALL text file, "in theory a `make' should suffice
to create the tools." You should be able to:

make

make install

One potential problem you may run into: there are compilation issues with certain kernel and libc combinations. If you
receive the error "Your kernel/libc combination is not supported," it means some code hacking is required. For your
purposes, you are better off installing a packaged version from your distribution.

2.3.5 Using the Wireless Tools

You now have the Wireless Tools compiled and installed in /usr/local/sbin. There are four binary executables included
with the Wireless Tools. All four Wireless Tools pull information from /proc/net/wireless, which is created only when
your kernel is compiled with the Wireless Extensions.

2.3.5.1 iwconfig

This is the tool you use to configure the basic operating parameters of your wireless card. It is also the tool that is
called during the boot process to configure your card based on settings in /etc/pcmcia/wireless.opts.

Called without any arguments, iwconfig displays current wireless settings for any wireless cards in the system. A typical
example would look something like this:

lo no wireless extensions.

eth0 no wireless extensions.

wlan0 IEEE 802.11-b ESSID:"NoCat-Grandview" Nickname:"airhead"

 Mode:Managed Frequency:2.462GHz

 Access Point: 00:02:6F:04:78:7E

 Bit Rate:11Mb/s Tx-Power=24 dBm Sensitivity=1/3

 Retry min limit:8 RTS thr:off Fragment thr:off

 Encryption key:off

 Power Management:off

 Link Quality:40/92 Signal level:-77 dBm

 Noise level:-100 dBm

 Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0

 Tx excessive retries:5293 Invalid misc:86372

 Missed beacon:0

If you have multiple wireless network cards and you don't wish to see the "no wireless extensions" message each time
you run iwconfig, make sure to specify the interface:

$ iwconfig wlan0

This only shows the configuration for the specified network card.

As you can see, there are quite a number of parameters that iwconfig can set. Not everything can be changed, however.
Starting with Link Quality, the output is taken from /proc/net/wireless and consists of read-only statistics.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Starting with Link Quality, the output is taken from /proc/net/wireless and consists of read-only statistics.

All of these parameters, settings, and statistics are device- and driver- dependent. Each wireless driver is going to write
different things to /proc/net/wireless, and each driver supports commands from the Wireless Tools differently. For
example, if you use an Orinoco card with the orinoco_cs wireless driver, your options for "Mode" are much more limited
than if you use a Prism II-based card with the hostap_cs driver.

Let's step through the available iwconfig parameters. In the following examples, we use the eth1 interface, but it may be
something different, such as wlan0 in the hostap_cs driver or ath0 in the madwifi driver:

essid < name>

Sets the network name or SSID to which the wireless card connects. A useful option is to set the name to any,
which allows the card to connect to any available wireless network:

iwconfig eth1 essid NoCat

iwconfig eth1 essid any

freq or channel

Sets the operating frequency or channel of the wireless card. channel accepts a number in the range of 1-11
(U.S.) or 1-14 (E.U.). freq accepts the frequency in Hz. You should enter the exact frequency, such as 2.462 for
channel 11. You can also enter the frequency with the suffix of G: 2.46G for channel 11:

iwconfig eth1 channel 6

iwconfig eth1 freq 2.437

iwconfig eth1 freq 2.43G

mode

Sets the operating mode of the wireless card. There are different options depending on your wireless card and
driver. Most cards and drivers under Linux support ad-hoc mode for communicating with another node, without
any access points. The most common mode is managed, which allows the wireless card to connect as a client to
an access point. One advanced mode is master, which is supported in the hostap and madwifi drivers, and
makes the card into a software-controlled access point. Another advanced mode is monitor, which turns the
wireless card into a passive receiver that can only receive packets:

iwconfig eth1 mode managed

iwconfig eth1 mode ad-hoc

ap

Enters a hardware address of a specific access point, which forces the card to associate with that access point.
By default, if the connection quality degrades or is unusable, the card defaults back to automatic mode, where
the card finds the best access point in range. You can defeat this by using the option off to disable automatic
mode. any or auto enables automatic mode.

iwconfig eth1 ap 00:02:2d:53:66:19

iwconfig eth1 ap off

iwconfig eth1 ap auto

sens

Sets the sensitivity threshold of the wireless card. The card does not receive any signal lower than this level.
This avoids background noise. Positive values are assumed to be the raw value used by the hardware, or a
percentage. Negative values are assumed to be dBm. Again, the settings are dependent on the hardware of the
wireless card. Prism and Orinoco cards seem to treat only values of 1-3 as valid sensitivity settings. Depending
on your hardware, this parameter may also control the defer threshold (the lowest signal level for which the
channel is considered busy) and the handover threshold (the lowest signal level where the card stays associated
with an access point).

iwconfig eth1 sens -80

rate

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sets the bit-rate in bits/second. Once again the available options depend on your wireless card. The value of the
option must be the exact bitrate number or should have M appended to the end of the number. auto is the
default setting for most cards and falls back to lower bit-rates if there is noise.

iwconfig eth1 rate auto

iwconfig eth1 rate 11M # (802.11b)

iwconfig eth1 rate 54M # (802.11a/g)

rts

RTS/CTS adds a handshake before each packet transmission to make sure that the channel is clear. This adds
quite a bit of overhead and decreases the potential bandwidth. However, it can result in increased performance
in the case of hidden nodes or large numbers of active nodes. Set a packet size that determines the minimum
packet size threshold for enabling RTS/CTS, auto to have the driver automatically perform RTC/CTS, or off to
disable:

iwconfig eth1 rts 250

iwconfig eth1 rts auto

iwconfig eth1 rts off

frag

Sets the fragmentation threshold. This allows the card to split a packet into smaller packet fragments to
transmit. As with rts, this adds overhead and reduces the available bandwidth, but in very noisy environments,
it reduces the amount of errors and tries to send packets again. As with rts, you set a packet size that
determines the minimum packet size for determining when fragmentation should be enabled. You can also set
auto to have the driver automatically perform fragmentation or off to disable fragmentation.

iwconfig eth1 frag 512

iwconfig eth1 frag auto

iwconfig eth1 frag off

nick

Sets the nickname or station name of the wireless card. Most 802.11 devices define this parameter, but it is
completely optional and doesn't affect performance or operation at all. Some diagnostic tools may use it.

iwconfig eth1 nick "Network God"

key or enc

Sets the encryption mode and keys for the wireless card. on and off enable and disable encryption, respectively.
Encryption keys can be entered as hex digits, with or without separation dashes, or ASCII strings can be
entered in the format s:password. Generate an index of keys by appending an index number in brackets ([]) to
the key when it is entered. Once you have multiple keys in the index, change keys by simply passing the index
number as the option. Two modes are available: open and restricted. open accepts nonencrypted traffic, while
restricted accepts only encrypted packets.

iwconfig eth1 enc on

iwconfig eth1 key 0a12fc132

iwconfig eth1 key s:supersecret [2]

iwconfig eth1 key [2] restricted

power

Sets power management modes and parameters. on and off enable and disable power management,
respectively.

txpower

For cards that support multiple transmit powers, this sets the transmit power in dBm. on and off enable and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For cards that support multiple transmit powers, this sets the transmit power in dBm. on and off enable and
disable radio transmissions entirely. auto enables automatic power selection if that feature is available. If the
entry is followed by "mW," the value automatically is converted to dBm. Geeky math note: if W is the power in
watts, the power (P) in dBm is P = 30 + 10.log(W).

iwconfig eth1 txpower 30

iwconfig eth1 txpower 200mw

iwconfig eth1 txpower auto

iwconfig eth1 txpower off

retry

For cards that support MAC retransmissions, this allows you to change the parameters of the retry. You can set
the maximum number of retries with limit and an absolute value. The maximum length of time the MAC should
retry is set with lifetime, in seconds. You can append "m" or "u" to specify milliseconds or microseconds
respectively. limit and lifetime can also be modified by the use of min or max, which allows you to set the upper
and lower boundaries of limit and lifetime.

iwconfig eth1 retry 16

iwconfig eth1 retry lifetime 300m

iwconfig eth1 retry min limit 8

iwconfig eth1 retry max lifetime 500m

--version

Displays the version of iwlist and the Wireless Extensions:

iwconfig --version

iwconfig Version 25

 Compatible with Wireless Extension v15 or earlier,

 Currently compiled with Wireless Extension v15.

wlan0 Recommend Wireless Extension v13 or later,

 Currently compiled with Wireless Extension v14.

To summarize: iwconfig allows you to change the configuration of your wireless network card on the fly. All of the
options supported by iwconfig can be set in /etc/pcmcia/wireless.opts, and when the PCMCIA subsystem is initialized,
these options are executed as the card is configured.

2.3.5.2 iwlist

This is mainly used for showing lists of parameters that the current wireless card supports. However, it does have one
very useful feature that is not a list of parameters.

If you would like to see a list of access points available for your wireless card, iwlist is your ticket. You won't have to
install other network-scanning utilities like Kismet (covered in Chapter 3). Not all card drivers support this option. For
instance, the orinoco_cs driver does not support scanning. To initiate scanning, this command must be run with root
access:

iwlist eth1 scan

Here is a sample of th output you might expect:

wlan0 Scan completed :

 Cell 01 - Address: 00:02:6F:04:78:7E

 ESSID:"NoCat"

 Mode:Managed

 Frequency:2.462GHz

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Frequency:2.462GHz

 Quality:0/92 Signal level:-64 dBm Noise level:-100 dBm

 Encryption key:off

 Bit Rate:1Mb/s

 Bit Rate:2Mb/s

 Bit Rate:5.5Mb/s

 Bit Rate:11Mb/s

If you are in an area with multiple access points, you should see "Cell" entries for each access point, with specific
information on signal and noise level. This is a very useful base tool for finding access points in an unfamiliar
environment, or even for baselining your wireless network infrastructure.

Aside from this, iwlist serves as a query tool to determine what features your wireless card supports. Let's step through
the available iwlist queries:

freq

Displays the list of available radio frequencies and the number of defined radio channels. It also displays the
currently used radio channel. For a U.S. user, typical output from this command would be:

$ iwlist wlan0 freq

wlan0 14 channels in total; available frequencies :

 Channel 01 : 2.412 GHz

 Channel 02 : 2.417 GHz

 Channel 03 : 2.422 GHz

 Channel 04 : 2.427 GHz

 Channel 05 : 2.432 GHz

 Channel 06 : 2.437 GHz

 Channel 07 : 2.442 GHz

 Channel 08 : 2.447 GHz

 Channel 09 : 2.452 GHz

 Channel 10 : 2.457 GHz

 Channel 11 : 2.462 GHz

 Current Frequency:2.462GHz (channel 11)

ap or peers

This feature is deprecated in favor of the scan feature, previously mentioned. Most current drivers do not
support this feature. However, some drivers may use this command to return a specific list of peers associated
with the wireless card.

rate

Lists the bit-rates supported by the card and the current bit-rate in use:

$ iwlist wlan0 rate

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ iwlist wlan0 rate

wlan0 4 available bit-rates :

 1Mb/s

 2Mb/s

 5.5Mb/s

 11Mb/s

 Current Bit Rate:11Mb/s

key or enc

Lists the encryption key size supported, the available keys in the wireless card, and the current key in use:

$ iwlist wlan0 key

wlan0 2 key sizes : 40, 104bits

 4 keys available :

 [1]: off

 [2]: off

 [3]: off

 [4]: off

 Current Transmit Key: [0]

txpower

Lists the various transmit powers available on the wireless card. This feature appears to be broken, at least with
respect to Wireless Extensions 15 and a Prism card using the hostap driver.

retry

Lists the transmit retry limits and lifetime:

$ iwlist wlan0 retry

wlan0 Fixed limit ; min limit:0

 max limit:255

 Current mode:on

 min limit:8 max limit:5

--version

Displays the version of iwlist and the Wireless Extensions:

$ iwlist --version

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ iwlist --version

iwlist Version 25

 Compatible with Wireless Extension v15 or earlier,

 Currently compiled with Wireless Extension v15.

wlan0 Recommend Wireless Extension v13 or later,

 Currently compiled with Wireless Extension v14.

2.3.5.3 iwspy

This is a useful tool that shows you quality-of-link information for one or many nodes in a wireless network. The
information is taken from /proc/net/wireless, but when running iwspy, the statistics are updated each time a packet is
received from the remote node. This does add some driver overhead, which means that local performance on the
machine running iwspy is degraded. Note that different drivers may partially support iwspy or may not support it at all.

In the most basic mode, simply run iwspy interface:

$ iwspy wlan1

wlan1 Statistics collected:

 00:02:6F:03:FE:65 : Quality:42/92 Signal level:-90 dBm

 Noise level:-98 dBm

 00:02:2D:04:EB:15 : Quality:31/92 Signal level:-94 dBm

 Noise level:-98 dBm

As in the previous example, you should see a MAC address for every remote station, along with quality, signal level,
and noise level statistics.

To start collecting statistics for a specific node, invoke iwspy with a DNS name, an IP, or hardware address:

$ iwspy wlan1 192.168.0.1

Then, when you invoke iwspy again for that interface, you see not only the current statistics for the remote node, but a
set of averages as well:

$ iwspy wlan1

wlan1 Statistics collected:

 00:02:6F:01:6A:02 : Quality:18/92 Signal level:-82 dBm

 Noise level:-100 dBm (updated)

 typical/average : Quality:36/92 Signal level:-62 dBm

 Noise level:-98 dBm

You can have iwspy monitor up to eight addresses simply by passing it multiple DNS names, IP, or hardware addresses
on the command line:

$ iwspy wlan1 192.168.0.1 test.foobarus.com notebook.foobarus.com

Again, when you invoke iwspy for that interface, you see current statistics for each remote node plus an average across
all three nodes.

If you are already monitoring three remote nodes and run iwspy again with a fourth IP address to monitor, iwspy will
replace the monitoring of your existing three nodes with monitoring of the new IP address. To avoid this, use the + sign
before the IP address on the command line:

$ iwspy wlan1 + 192.168.0.15

This appends the new address to your existing list of addresses that are already being monitored.

To disable any iwspy statistic collection you may have started, simply turn it off:

$ iwspy wlan1 off

Two more useful commands in iwspy let you set high and low signal strength thresholds for wireless events. setthr

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Two more useful commands in iwspy let you set high and low signal strength thresholds for wireless events. setthr
<low/high> sets the thresholds, and if an address monitored with iwspy goes higher or lower than the thresholds, a
wireless event is generated:

$ iwspy wlan1 setthr 40 80

This means that you can monitor link status on multiple connections without having to continually run iwspy.

To show what the threshold has been set to, type the following:

$ iwspy wlan1 getthr

2.3.5.4 iwpriv

This tool allows you to configure private wireless options—in other words, options that are limited to a single wireless
driver. This is different than iwconfig, which deals with generic settings that are applicable to all wireless cards.

Called without any arguments, iwpriv returns a list of available private commands. On a Prism II-based Senao 200 mW
card, the following list is returned:

wlan0 Available private ioctl :

 monitor (8BE4) : set 1 int & get 0

 readmif (8BE3) : set 1 byte & get 1 byte

 writemif (8BE2) : set 2 byte & get 0

 reset (8BE6) : set 1 int & get 0

 inquire (8BE8) : set 1 int & get 0

 set_rid_word (8BEE) : set 2 int & get 0

 maccmd (8BF0) : set 1 int & get 0

 wds_add (8BEA) : set 18 char & get 0

 wds_del (8BEC) : set 18 char & get 0

 addmac (8BF2) : set 18 char & get 0

 delmac (8BF4) : set 18 char & get 0

 kickmac (8BF6) : set 18 char & get 0

 prism2_param (8BE0) : set 2 int & get 0

 getprism2_param (8BE1) : set 1 int & get 1 int

This list shows that there are quite a few private options that can be set using iwpriv on a Prism II card. One option is
WDS, the Wireless Distribution System, which is covered in Chapter 6. Most of the private commands are hardware-
and driver-specific.

Many cards support some types of iwpriv reset command. The orinoco_cs driver includes card_reset and force_reset
options for iwpriv.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.4 Linux Wi-Fi Drivers in Depth
Most Linux distributions include a number of wireless drivers. In many cases, the driver that you need will be available.
However, there are a number of situations where you must obtain the driver source and build it yourself. This is true for
many newer Wi-Fi cards, particularly cards that support 802.11a, 802.11g, or both. The drivers for these cards are still
under development and are not included with most Linux distributions.

A second reason to obtain the driver source and build it yourself is if you wish to build your own access point. (The
details of Linux access points are covered in Chapter 6.) However, the drivers that enable you to have your own Linux
AP all require that you obtain the source code and compile it.

In addition to the drivers described in this chapter, there are two ways you can get
Windows drivers to load on your Linux system. NdisWrapper
(http://ndiswrapper.sourceforge.net/) is an open source project that loads Windows
drivers, and Linuxant (http://www.linuxant.com/) is a proprietary product that also
accomplishes this. We'll talk more about Linuxant in Chapter 4, where we discuss using
Wireless Protected Access (WPA) with non-Prism cards.

2.4.1 orinoco_cs

There are two original drivers available for the Lucent WaveLan/Orinoco radio cards: wvlan_cs and wavelan2_cs.
wvlan_cs was the first driver for Linux that supported the WaveLan IEEE (802.11 and 802.11b) radio cards.
wavelan2_cs is a binary driver released by Lucent. The downside of the binary driver is that it's limited to i386
architecture, and the source is not available. With the sale of Orinoco to Proxim, development of the wavelan2_cs driver
stopped. However, Agere continues to build the chipsets for the Orinoco radios, and has developed a driver called
wlags49 based on the wavelan2_cs code. Details on wlags49 are found in Chapter 6.

The orinoco_cs driver was written by David Gibson, who was maintaining the wvlan_cs driver and was not satisfied with
the code or the performance of the driver. orinoco_cs was written based on low-level parts of the wlan-ng driver and
BSD drivers. The driver also supports Prism II radio cards, Symbol Spectrum 24, and Apple AirPort (but not AirPort
Extreme) cards, with varying degrees of feature support. This driver is primarily written for support of the Lucent
WaveLan IEEE cards, which are also known as Orinoco and are also sold by Agere and Avaya. Proxim is now selling
cards branded "Orinoco" for 802.11a and 802.11g, which are based on the Atheros chipset.

The orinoco_cs driver can be obtained in several ways. Red Hat, Debian, and SuSE all have installation packages with
names similar to kernel-pcmcia-modules-2.4.x. Choosing this package during installation or adding it later will install
the orinoco_cs driver. The orinoco_cs driver has been merged into the kernel sources since kernel Version 2.4.3.

The pcmcia-cs software package, which comprises the PC Card Services for Linux, also includes the orinoco_cs driver.
As with the kernel PCMCIA modules, pcmcia-cs can be installed as a package in most Linux distributions, or it can be
installed from source. Both options are covered earlier in this chapter. pcmcia-cs is the only option for kernel Version
2.2 users.

Finally, you can download the most current beta version of the orinoco_cs driver from the download section of Jean
Tourrilhes's web page: http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Orinoco.html. As of this writing, the
most current version is 0.13e. The README on the download page does explain that unless you have a 2.2 kernel or
you need some of the experimental features of the beta orinoco_cs driver, you would be better off using the kernel
version.

In the download section, there is a list of patches to the orinoco_cs driver. Of note is the orinoco_usb driver, which is a
separately maintained software package and supports Orinoco USB Wi-Fi adapters.

Also of note is the Shmoo Group's patch for the orinoco_cs driver that enables monitor mode for Versions 0.13e and
earlier. If you need monitor mode with your Orinoco card, this is one option. The other option is to obtain the CVS code
of the orinoco_cs driver, now in 0.14 alpha from http://savannah.nongnu.org/cvs/?group=orinoco.

To compile the orinoco_cs driver, download the latest tar.gz file from the aforementioned web site. You need the kernel
source for whatever kernel version your Linux system is running. Major Linux vendors include the kernel source on their
installation media as a package, and also as an optional package on their web or FTP sites. For example, on a Pentium 4
Debian system running the 2.4.18 kernel, use apt-get to install the package titled kernel-source-2.4.18 from the
installation CD. If you have upgraded your kernel, install kernel-source-2.4.21 (or later) from one of the Debian update
sites. It's worth noting that when you retrieve the kernel source files in this manner, apt does not uncompress them.
You will have a kernel-source-2.4.21.tar.bz2 file located in /usr/src, which you must extract. For information about
using apt-get, consult the Debian web pages at http://www.debian.org/doc/user-manuals#apt-howto.

You can also download kernel sources from http://www.kernel.org or ftp://ftp.kernel.org. This is the primary archive
site for all Linux kernel sources and is your best source for kernel code. For example, download the 2.4.21 kernel
sources from http://www.kernel.org/pub/linux/kernel/2.4/linux-2.4.21.tar.gz.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

sources from http://www.kernel.org/pub/linux/kernel/2.4/linux-2.4.21.tar.gz.

Compilation of the orinoco_cs driver also assumes that the symbolic link of /lib/modules/<version>/build points to the
kernel source of your current kernel. For example, /lib/modules/2.4.21-5-686/build should be a symbolic link that
points to /usr/src/linux-2.4.21-5-686. To create this link, execute the following command:

ln -s /usr/src/linux-2.4.21-5-686 /lib/modules/2.4.21-5-686/build

To build the driver, unpack the tar.gz file and change into the top-level directory:

tar xzvf orinoco-0.13e.tar.gz

cd orinoco-0.13e

To compile and install the driver, run the following:

make

make install

If you try to load the driver and receive the error message "Card Services release does not match," the driver was
compiled against the Kernel PCMCIA drivers, but the system is actually using the drivers from the pcmcia-cs package.
To fix this, you must edit the Makefile in the orinoco-0.13e directory and set the PCMCIA_CS variable to reflect your
local source for the pcmcia-cs package.

Once the driver is installed, you can execute:

modprobe orinoco_cs

to load the driver module.

2.4.2 hostap_cs

The HostAP driver is one of the drivers for Prism II radio cards. (wlan-ng is another widely used driver that is discussed
in the following section.) The HostAP driver has a couple of noteworthy features not found in the wlan-ng driver. First, it
supports access point mode on Prism II radio cards. wlan-ng supports only access point mode with a "tertiary firmware"
loaded on the Prism II card. This firmware is not widely available. Second, the HostAP driver is well integrated with the
Linux Wireless Tools. The wlan-ng driver provides its own set of tools.

The access point mode of a Prism II card does not provide a full 802.11b access point. What it does do is broadcast the
beacon frames that advertise an access point. The HostAP driver, in this case, actually takes care of the 802.11
management. In a standalone access point, this function is usually in firmware. The tertiary firmware mentioned for
Prism II cards turns a Prism II card into a full access point, which is what allows the wlan-ng driver to utilize this mode
as an access point.

The author and maintainer of the HostAP driver is Jouni Malinen. His web site for HostAP is located at
http://hostap.epitest.fi. In addition to the source for HostAP, the web site hosts a useful mailing list and anonymous
CVS access to the source code.

The hostapd daemon is also available. When used in conjunction with the HostAP driver, it provides support for 802.1X,
dynamic WEP rekeying, RADIUS Accounting, and minimal support for IAPP (802.11f). Use hostapd with a RADIUS
server to provide authenticated access to 802.11b networks.

The hostap driver not only supports Prism II cards in a PCMCIA bus, but it also supports PCI cards (hostap_pci) and PLX
cards; these cards look like they are a PCMCIA-to-PCI bridge adapter card, but actually, they are another beast
altogether—hostap_plx.

Debian users can use apt-get to install a hostap source package from the stable package tree. To locate the hostap
packages, use the apt-cache utility to search through the available package lists:

apt-cache search hostap

hostap-source - Software access point driver for Prism2 based 802.11b cards

hostap-utils - Utilities and configurations for the hostap driver

hostapd - 802.11x access daemon for hostap driver

To install any of these packages, or all three, use the apt-get install command:

apt-get install hostap-source hostap-utils hostapd

This example installs all three hostap packages and may require you to install additional packages as well. For more
information on how to use apt-get and its associated utilities, consult the Debian web pages at
http://www.debian.org/doc/user-manuals#apt-howto.

Note that HostAP is a kernel driver, so the aforementioned apt-get command installs the source only for HostAP. It does
not install the actual binary kernel driver. The source is downloaded and placed in /usr/src/hostap-modules.tar.gz. You
must extract this file and follow the compilation instructions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

must extract this file and follow the compilation instructions.

Mandrake users can find HostAP RPMs for HostAP at http://www.rpmfind.net. Kernel RPMs for Red Hat Versions 8 and 9
can be found at http://www.cat.pdx.edu/~baera/redhat_hostap/. The maintainer of this site has recompiled the
production Red Hat kernels with the HostAP 0.0.3 kernel driver and made the RPMs available. As with the testing tree in
Debian, you should use these RPMs at your own risk. You should note that these kernels are out of date since the latest
stable release of HostAP is 0.1.2, and the development versions are 0.2.0 and higher.

The best option for most distributions is to compile the HostAP driver from source. As of this writing, the most current
version is 0.1.3; the latest version can be downloaded from http://hostap.epitest.fi/releases/ (see the HostaAP
homepage for a link to the most recent stable and development releases). To compile kernel modules from source, you
must have the configured kernel source for your kernel. This generally means that you have configured and compiled
your own Linux kernel. While it is certainly possible to compile kernel modules against Linux kernels provided by a stock
distribution, it can be tricky. For more on compiling your own kernel, see Section 2.3.2 earlier in this chapter.

The HostAP distribution includes three files, hostap-driver-x.y.z.tar.gz, hostap-utils-x.y.z.tar.gz, and hostapd-
x.y.z.tar.gz. To build hostap-utils and hostapd, extract the tarball with tar xzvf filename, cd into the top-level directory,
and run make and then make install as root.

To begin compiling the driver, unpack the tar.gz file and change into the top-level directory (the file and directory name
will be different if you are using a more recent version):

tar xzvf hostap-driver-0.1.3.tar.gz

cd hostap-driver-0.1.3

How you proceed in the compilation at this stage depends on whether your system is using the kernel tree PCMCIA
subsystem or the external pcmcia-cs subsystem.

If you are using the kernel tree PCMCIA, you must edit the Makefile in the hostap-driver-x.y.z directory. As with the
orinoco_cs driver, you need the kernel source for the kernel that your Linux distribution is currently running. The
KERNEL_PATH variable should be set to the location of your kernel source.

Once you have set the KERNEL_PATH variable, there are two commands to compile and install the hostap_cs driver:

make pccard

make install pccard

Once the driver is compiled and installed, you must restart the PCMCIA card services. On must Linux distributions, the
rc file for this is located in /etc/init.d/pcmcia, so you can execute:

/etc/init.d/pcmcia restart

to restart the PCMCIA card services.

If you are using the external pcmcia-cs, you have two compilation options:

You must set the KERNEL_PATH variable as in the previous example. You also must set the PCMCIA_PATH
variable to point to the source for the pcmcia-cs. So, for example, if you download and extract the pcmcia-cs
source code into /home/barfoo/pcmcia-cs-3.2.5, you must set PCMCIA_PATH=/home/barfoo/pcmcia-cs-3.2.5.

Once the PCMCIA_PATH variable is set, you should be able to run the make commands shown previously to
compile the hostap_cs driver.

Copy the entire contents of the driver subdirectory except for driver/modules/Makefile to the root of the
pcmcia-cs source directory, so that driver/modules/hostap.c ends up in the pcmcia-cs/modules directory. The
README for installing HostAP recommends doing the following:

make sure that Makefile does not overwrite old Makefile in pcmcia-cs

mv driver/modules/Makefile driver/modules/Makefile-not-used

cp -a driver/* home/barfoo/pcmcia-cs-3.2.5

Once the copy is finished, compile and install pcmcia-cs with the hostap_cs driver included in the process using
the commands:

make config

make all

make install

This second method installs both pcmcia-cs and HostAP; therefore, complete the compilation and install, and you'll have
successfully installed both the PCMCIA card services and HostAP. See Section 2.3.3 earlier in this chapter for
information on compiling pcmcia-cs from source.

There are specific instructions in the README for installing the driver for use with PCI or PLX adapter cards. Consult the
README if your card falls into one of these categories.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

README if your card falls into one of these categories.

There are two excellent sources of information and assistance you can consult if you run into problems with the hostap
driver. The first is the well-populated hostap mailing list. Subscribe at http://lists.shmoo.com/mailman/listinfo/hostap.
The mailing list archives can be read at http://sisyphus.iocaine.com/pipermail/hostap/. Use Google to search through
lists like hostap, because the archives do not have a search function. For example, if you want to search for the text
"compile error," enter the following search parameters at Google: compile error site:lists.shmoo.com. Before posting to the
mailing lists, it is advisable to read through both the FAQ and the README files, located on the main hostap page at
http://hostap.epitest.fi.

2.4.3 wlan-ng

The wlan-ng driver is the other available driver for Prism II chipsets. The developer and maintainer of wlan-ng is
AbsoluteValue Systems, which first released the linux-wlan driver supporting Prism I 802.11 chipsets in 1999, and
followed that with linux-wlan-ng to support Prism II and later 802.11b in August of 2000. According to its web pages at
http://www.linux-wlan.com, one of its cofounders was employed at Harris Semiconductor where the original Prism
chipsets were developed, and three of its employees are voting members of the IEEE.

One thing that is mentioned on the front page of the wlan-ng web site is that AbsoluteValue Systems's approach to
writing this driver is different from other available Linux wireless drivers because "everything is based on the IEEE
802.11 standard."

In a practical sense, this means that just about everything in the wlan-ng driver is different from most other Linux Wi-Fi
drivers. For starters, wlan-ng does not support the Linux Wireless Tools (although certain Wireless Tools commands will
work with this driver); instead, it has its own set of utilities. You don't configure wlan-ng in /etc/pcmcia like other
drivers; it has its own configuration directory in /etc/wlan.

The driver does support PCMCIA, PCI, and PCMCIA cards in PLX adapters, and USB adapters, all using Prism II, 2.5, or
3 chipsets. By and large, most cards you find on the market are still based on Prism II. Prism 2.5 cards are integrated
PCI cards, so you won't find a Prism 2.5 PCMCIA card. Prism 3 was announced in 2002 and has made its way into
products from Linksys, among others.

There are several methods to install the wlan-ng driver. As with HostAP, there are packages available for Debian Linux
in the testing and unstable trees. In order to do this, you must modify the /etc/apt/sources.list file, which defines where
apt-get downloads package lists and the corresponding packages. To add the testing tree to apt, add the following line
to sources.list:

deb http://ftp.us.debian.org/debian/testing main contrib non-free

Once you have added this line to sources.list, you must execute the following command:

apt-get update

This command updates the lists of packages from the sources defined in sources.list. Because you have added the
testing tree to your sources, you now have a list of packages that are in testing mode. A caveat: packages in the
testing and unstable trees are just that - designed for testing and/or may be unstable. Use them at your own risk.

To locate the wlan-ng packages, use the apt-cache utility to search through the available package lists:

apt-cache search wlan-ng

linux-wlan-ng - utilities for wireless prism2 cards

linux-wlan-ng-doc - documentation for wlan-ng

linux-wlan-ng-modules-2.4.20-3-386 - drivers for wireless prism2 cards

linux-wlan-ng-modules-2.4.20-3-586tsc - drivers for wireless prism2 cards

linux-wlan-ng-modules-2.4.20-3-686 - drivers for wireless prism2 cards

linux-wlan-ng-modules-2.4.20-3-686-smp - drivers for wireless prism2 cards

linux-wlan-ng-modules-2.4.20-3-k6 - drivers for wireless prism2 cards

linux-wlan-ng-modules-2.4.20-3-k7 - drivers for wireless prism2 cards

linux-wlan-ng-modules-2.4.20-3-k7-smp - drivers for wireless prism2 cards

At a minimum, you need the linux-wlan-ng package and the correct set of linux-wlan-ng-modules for your processor
architecture. Note that these modules are compiled against kernel Version 2.4.20-3. apt-get checks dependencies for
these packages, and if you do not have kernel Version 2.4.20-3 as your current kernel, it requires you to install 2.4.20-
3 as part of the package install process. To install the necessary packages, use the following command:

apt-get install linux-wlan-ng linux-wlan-ng-modules-2.4.20-3-686

This example installs the utilities and kernel drivers for a Pentium Pro/II/III/IV and may require you to install additional
packages as well. For more information on how to use apt-get and its associated utilities, consult the Debian web pages
at http://www.debian.org/doc/user-manuals#apt-howto.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

at http://www.debian.org/doc/user-manuals#apt-howto.

The FAQ for wlan-ng, available at ftp://ftp.linux-wlan.org/pub/linux-wlan-ng/FAQ, states:

Q: Can I get Debian packages of linux-wlan-ng?

A: Packages of linux-wlan-ng are available in the Debian unstable and testing trees now, and will
eventually be shipped with a stable Debian release. The Debian packages include support for configuring
linux-wlan-ng interfaces via /etc/network/interfaces, among other things. Complete details about the
Debian-specific parts of these packages, including instructions for building a linux-wlan-ng modules
package for your kernel can be found in the file /usr/share/doc/linux-wlang-ng/README.Debian.gz.

wlan-ng RPMs for Red Hat Linux can be found on the web at http://prism2.unixguru.raleigh.nc.us. RPMs are available
for RedHat 7.3, 8, and 9. The page is maintained by Tim Miller and is kept up to date. As with other independently
maintained packages, use these at your own risk. You need three different RPM files to get all of the wlan-ng
functionality installed under RedHat:

kernel-wlan-ng-<architecture>: the base package

kernel-wlan-ng-<usb/pci/pcmcia-architecture>: interface packages

kernel-wlan-ng-modules-<rh73/rh8/rh9-architecture>: kernel-specific module packages

For example, to install the RPM packages for Red Hat 9, kernel Version 2.4.20-20.9, i686 architecture, and a PCMCIA
Prism II card, execute:

rpm --install kernel-wlan-ng-0.2.0-7.i686.rpm

rpm --install kernel-wlan-ng-pcmcia-0.2.0-7.i686.rpm

rpm --install kernel-wlan-ng-modules-rh9.20-0.2.0-7.i686.rpm

Your other option, as always, is to compile the driver from source. It is available at ftp://ftp.linux-wlan.org/pub/linux-
wlan-ng/. As of this writing, the most recent version is linux-wlan-ng-0.2.1-pre12.tar.gz.

To compile kernel modules from source, you need the configured kernel source for your kernel. This generally means
that you have configured and compiled your own Linux kernel. While it is certainly possible to compile kernel modules
against Linux kernels provided by a stock distribution, it can be tricky. For more on compiling your own kernel, see
Section 2.3.2 earlier in this chapter.

If your Prism II card is a PCMCIA-based card, you also need the configured source code for pcmcia-cs to be available.
Again, this means that you have configured and compiled pcmcia-cs from source, and you have that source available,
usually located in /usr/src/pcmcia-cs-version.

To begin compiling the driver, unpack the tar.gz file and change into the top-level directory (if you are using a more
recent version, the filename and directory will differ):

tar xzvf linux-wlan-ng-0.2.1-pre12.tar.gz

cd linux-wlan-ng-0.2.1-pre12

make config

You'll be asked a series of questions, including which type of interfaces you want the driver to support (pcmcia, pci, plx,
usb) and where your kernel and pcmcia-cs sources are located. Once you've stepped through the config, compile and
install the driver:

make all

make install

2.4.4 madwifi

The Atheros chipsets were eagerly awaited by the open source community, because Atheros was the first vendor to ship
802.11a equipment, and among the first to ship dual-mode and tri-mode radio chipsets.

The Atheros hardware is designed for use as a "software-defined radio," which means that the hardware itself is very
basic, and on a Windows platform, the operating parameters of the card are all handled by the software driver. The
development of a driver for the Atheros chipset was very difficult from an open source standpoint. Sam Leffler originally
developed a BSD driver for the Atheros chipset with the help of Atheros. However, the driver did not enforce valid
modes, so it violated FCC regulations by allowing the setting of invalid radio modes.

The solution to this was for Atheros to develop a Hardware Abstraction Layer (HAL), which is in binary form. It sits
between the driver and the hardware to enforce valid FCC operating modes. As discussed earlier, the Atheros chipset
design presents some problems for open source driver development.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Multiband Atheros Driver for WiFi (madwifi) driver that is now available for BSD and Linux is currently the only
working implementation of a driver for Atheros chipsets. There is a complete GPL driver implementation in the works.
According to Jean Tourrilhes's page, some anonymous people and companies have worked to get documentation on the
Atheros chipset made available, and are supporting the development of the GPL driver. This driver is known as "ar5k,"
and the web page for it is http://team.vantronix.net/ar5k/. As of this writing, the ar5k driver is not yet functional, and
development seems to be stalled.

The FCC mandates that the manufacturers of software radios must prevent the software from being modified so that it
can operate outside the FCC regulations. This mandate also makes it very difficult for maintainers of Linux distributions
to include the madwifi driver as a package. The package cannot be redistributed under the GPL because the source is
not freely available. As such, there are no Debian packages or RPMs of the madwifi driver available.

The following is from the README in the madwifi installation source:

The ath_hal module contains the Atheros Hardware Access Layer (HAL). This code manages much of
the chip-specific operation of the driver. The HAL is provided in a binary-only form in order to comply
with FCC regulations. In particular, a radio transmitter can only be operated at power levels and on
frequency channels for which it is approved. The FCC requires that a software-defined radio cannot be
configured by a user to operate outside the approved power levels and frequency channels.

This makes it difficult to open-source code that enforces limits on the power levels, frequency channels
and other parameters of the radio transmitter. See
http://ftp.fcc.gov/Bureaus/Engineering_Technology/Orders/2001/fcc01264.pdf for the specific FCC
regulation. Because the module is provided in a binary-only form it is marked "Proprietary"; this means
when you load it you will see messages that your system is now "tainted".

As of this writing, the most current version of the madwifi driver can be obtained from the SourceForge project page at
http://sourceforge.net/projects/madwifi. The driver supports both MiniPCI and Cardbus devices. The driver can be built
as a module or linked into the kernel and depends on two other modules: wlan.o and ath_hal.o.

The madwifi driver has been written and tested with kernel Version 2.4.20 and the Linux Wireless Tools v25. As the
README says, "expect some rough edges if you deviate from that combo," particularly with older kernel or Wireless
Tools versions.

In order for the madwifi driver to compile and run successfully, make sure a number of things are compiled into your
kernel:

Kernel-tree PCMCIA (CONFIG_NET_RADIO)

Wireless Tools (CONFIG_NET_WIRELESS)

ACPI Support (CONFIG_ACPI)

PCI Hotplug Support (CONFIG_HOTPLUG_PCI, CONFIG HOTPLUG_PCI_ACPI)

Note that the ACPI and PCI Hotplug features are considered experimental in the 2.4 kernel tree.

To begin compiling the driver, unpack the .tgz file and change into the top-level directory (if you are using a more
recent version, the filename and directory will differ):

tar xzvf madwifi-20030802.tgz

cd madwifi-20030802

The Makefile.inc should automatically determine the location of your running kernel and modules. If not, you may need
to edit Makefile.inc manually and specify the KERNEL_PATH and MODULE_PATH variables.

On most Linux distributions, you should simply be able to execute these commands:

make

make install

make install copies the drivers to the appropriate location, i.e., /lib/modules/<kernel version>/<net>. You can then run
modprobe or insmod from inside the source directory to load the modules:

insmod wlan/wlan.o

insmod ath_hal/ath_hal.o

Warning: loading ath_hal/ath_hal.o will taint the kernel:

 non-GPL license - Proprietary

insmod driver/ath_pci.o

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

insmod driver/ath_pci.o

Support for 802.11a and 802.11g cards in Linux is very new. The madwifi driver in particular is still being actively
worked on. As such, there is every possibility that the last stable release of code will not work with your kernel or your
hardware. Until development on madwifi settles down (keep your eye on the web site), we suggest that you check out
the latest CVS code of the driver to get the most current updates.

CVS is a revision control system used by many open source project developers. Open source development sites like
SourceForge (http://www.sourceforge.net) provide CVS access both for developers and for end users.

CVS is required to access a CVS repository. Most distributions install CVS by default, located in /usr/bin/cvs. Debian
users can install CVS by executing the commands apt-get update; apt-get install cvs. Red Hat users can find the CVS RPM
on their installation CDROM or from a Red Hat source mirror. Many other distributions that use RPM can find CVS at
http://www.rpmfind.net.

To obtain the latest CVS code for the madwifi driver, change to a directory where you want the code located and
execute the following command:

cvs -z3 -d:pserver:anonymous@cvs.sourceforge.net:/cvsroot/madwifi \

 co madwifi

This will log in to the CVS server at sourceforge.net as an anonymous (read-only) user and check out (co) the madwifi
source tree. It will place the source code in a directory titled madwifi in the directory you were in when the command
was executed.

Once you have obtained the CVS code, you should be able to follow the compilation instructions described earlier.
However, be aware that CVS code can change frequently, sometimes daily. CVS code is development code, which
means it can have bugs. It may not compile on your system at all.

There are two excellent sources of information and assistance you can consult if you run into problems with the madwifi
driver. The first is the excellent madwifi-users mailing list. Subscribe at
http://lists.sourceforge.net/lists/listinfo/madwifi-users. The mailing list archives can be searched at
http://sourceforge.net/mailarchive/forum.php?forum=madwifi-users. Second, a FAQ has been created by a volunteer
member of the mailing list and has several tips for getting the CVS code to compile in various situations. The FAQ is
located at http://www.mattfoster.clara.co.uk/madwifi-faq.htm.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 2. Wi-Fi on Your Linux Box
Wireless support on Linux has come a long way. With modern Linux distributions, you may not need to recompile your
kernel to receive support for your Wi-Fi card. You probably won't need to install driver software or even touch a
command line. However, this isn't always the case, especially as new cards come on the market, so you should still
have a good understanding of how Wi-Fi works under Linux. This chapter starts out with an explanation of what you
need to do with some common distributions and a common radio card, and then gets into the details you need to know
to take things a little further, including radio chipsets, drivers, kernel compilation, the PCMCIA subsystem, and the
Linux wireless tools.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.1 Hotspots
It would be pretty much impossible for any notebook user not to have heard the term hotspot. Wireless hotspots are
popping up in many locations; coffee shops, airports, hotels, conferences, restaurants, city parks, and libraries are just
a few places where you might find a hotspot.

You can easily build your own hotspot, and we cover this in detail in Chapter 6. A hotspot requires at least one access
point, a good antenna that covers the needed area, a broadband Internet connection, and some form of access control
(if you want to restrict access).

Most hotspots are built around these four basic pieces. Some use DSL as their broadband Internet connection, while
many of the commercial hotspots use a T1 line or other dedicated circuit. However, many hotspots are simply in a
house or apartment, particularly in dense urban areas, and these connections are DSL, cable, or even simply dial-up.

Before you leave for a trip, research online to find hotspots along the way to your destination. To find both fee-based
and free hotspots, consult the following web sites:

WiFinder

http://www.wifinder.com/search.php

HotSpotList

http://www.hotspotlist.com

T-Mobile Hotspots

http://www.t-mobile.com/hotspot

Wi-Fi Zone Finder

http://www.wi-fizone.org/zoneLocator.asp

JiWire

http://www.jiwire.com

3.1.1 Wireless Hotspot Providers

There are an increasing number of commercial hotspot providers, ranging from large companies, such as T-Mobile and
WayPort, to small operations in local coffee shops, and wireless aggregators that allow you to access multiple networks
from different hotspot providers.

Nearly all of these providers restrict access to their hotspots through a captive portal. This form of access control
intercepts all TCP/IP traffic. To gain access through a captive portal, simply open a web browser and attempt to
navigate to any web page, such as http://www.oreilly.com. Your browser traffic is intercepted and redirected to the
login screen of the hotspot's portal software. Figure 3-1 shows a typical hotspot login screen.

Figure 3-1. Typical hotspot login to a captive portal

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

With commercial hotspot providers, you have a number of payment choices for access. The large operators all offer
monthly subscriptions in addition to pay-as-you-go pricing. This is convenient if you don't want to sign up with a specific
provider or if you don't travel enough to justify the $20-40 per month that most monthly subscriptions cost.

If you travel frequently, you may want to sign up with one of the wireless hotspot providers. Deciding which one to use
is tricky. It really depends on where you think you may spend the most time. T-Mobile provides access in nearly all
Starbucks coffee shops, as well as Borders bookstores, Kinko's copy centers, and many airports. Surf and Sip has
neatly taken up many of the non-Starbucks coffee shops in major cities. WayPort is a good choice if you need hotel or
airport access.

Associating with a hotspot provider is easy. They all have easy-to-identify SSIDs. You can also locate their hotspots
ahead of time using their web pages. Table 3-1 lists some major hotspot providers, their SSIDs, and their web pages
for locating their hotspots.

Table 3-1. Hotspot providers, SSIDs, and location finders
Hotspot provider SSID Web location finder

Cometa Cometa-Hotspot http://www.cometa-hotspot.com/locations/

STSN STSN http://www.stsn.com/hotel_locator.php

Surf and Sip SurfandSip http://www.surfandsip.com

T-Mobile tmobile http://locations.hotspot.t-mobile.com/

Verizon Wireless Verizon http://www.verizonwireless.com/wifi/hot_spot/

WayPort wayport http://www.wayport.com/locations

3.1.2 Wireless Aggregators

With the rise in availability of commercial hotspot providers comes a conundrum: which hotspot provider do you sign up
with? As you've seen, there are many providers, and each of them has different coverage. If you're a real road warrior,
using several different hotspots could cost quite a bit.

Wireless aggregators have come into the market to address this problem. You sign up for an account with the
aggregator, and through its revenue-sharing agreements with different hotspot providers, you are able to use many
different hotspots while maintaining a single account with one company.

That's the theory. In practice, roaming is still very difficult, especially for non-Windows users. Boingo
(http://www.boingo.com), the largest aggregator, requires the use of proprietary software on your notebook, and as of
this writing, that software is Windows-only. There are reports of adventurous people running the Boingo software using
a Windows emulator like Wine, but we're not going to attempt to cover that here. Unless the web-based captive portal
offers a roaming option, roaming with Boingo and Linux isn't possible at this time.

Two other aggregators fall into the same category: Trustive (http://www.trustive.com/) provides only a Windows client
software package, and iPass (http://www.ipass.com), while providing clients for Windows, Windows CE/Pocket PC, Mac
OS X, and Mac OS, does not provide a Linux software client.

Fortunately, there is at least one roaming company that has gotten it right: FatPort. FatPort's roaming customers don't
need any special software. Its locations and partner locations all use captive portal software that requires only a web
browser.

Although FatPort is based primarily in Canada, it has a wide range of partner agreements with Surf and Sip, Boingo, and
iPass. While not a complete coverage of all roaming sites, this is an excellent option for the Linux user who is constantly
on the road. FatPort accounts range from hourly rates to yearly subscriptions. Check out http://www.fatport.com for
more details.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.1.3 Open Hotspots

Just as the software world is split into proprietary and open source, the hotspot world is populated with commercial
hotspots (which we've covered) and open hotspots. These open wireless networks span a wide range of locations and
philosophies:

Businesses providing free wireless access as an incentive to customers. Hotels, coffee shops, restaurants,
bookstores, and other businesses are all using free wireless access as a way to bring in customers and entice
them to stay.

Public places serving up hotspots as a public service. Libraries, city parks, town squares, city halls, and other
publicly owned spaces view free wireless access as a way of promoting their city, county, or other locations, and
attracting visitors.

Community wireless groups working with businesses, governments, and private citizens placing hotspots in all
sorts of locations, including apartment buildings, parks, downtown areas, and any place that would benefit from
free wireless access. Many community groups view this as a way to better their neighborhoods.

Open hotspots are a mixed bag. You may simply be associating with a wireless router in someone's apartment,
connected to his DSL line. On the other hand, it may be a custom-built Linux-based access point in a New York City
park, installed by NYCWireless (http://www.nycwireless.net), with a T1 or DSL backhaul.

Access control is also going to vary. If you connect to someone's home network with an SSID of "default" or "linksys,"
chances are you won't find a captive portal or any other form of access control in place. Many community and business
that open hotspots have some sort of access control in place, such as a web page that asks you to agree to a Terms of
Service (ToS) agreement before you are allowed to use the network.

A good place to locate open hotspots is the Personal Telco Project in Portland, Oregon. Visit its Wireless Communities
site at http://www.personaltelco.net/index.cgi/WirelessCommunities. A second place to look for hotspots is WiFiMaps at
http://www.wifimaps.com. This site, while still in development, shows you hotspots all over the world.

3.1.4 Associating with Hotspots

To associate your Linux notebook with an open or commercial hotspot, you have a couple of options. If you know the
SSID of the hotspot, simply set the SSID using iwconfig:

$ iwconfig eth1 ESSID SurfandSip

Once you've done this, fire up your favorite web browser, attempt to navigate to any web page, and you will be
redirected to the hotspot captive portal login, as shown in Figure 3-1.

If you've settled in a coffee shop that has an unknown hotspot provider, the first thing you can try is:

$ iwconfig eth1 ESSID any

If there is a hotspot in range, your card should find and associate with it. This can be tricky, especially if you're in a
densely populated urban area. For example, sitting in a coffee shop in San Francisco, we were able to associate with
four different SSIDs. The signal strength from the coffee shop hotspot was not as strong as a neighboring open hotspot
located in someone's apartment.

In these cases, you want to identify all of the access points in your immediate area before you decide which one to
associate with. There are several methods of finding access points with Linux, and we cover each one in turn.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.2 Wireless Network Discovery
If your network card supports it, the easiest method of locating available wireless networks is included with the Wireless
Tools, which you installed in Chapter 2. The iwlist command supports a scanning parameter that lists any access points in
range. It's worth noting, however, that some wireless card drivers do not support this feature. Chief among them is the
orinoco_cs driver. If you're using this driver, you must use one of the alternative discovery methods next.

To determine if your card and driver support scanning, execute the iwlist command with no other parameters. If you see
"scanning" listed in the output, you should be able to scan for available access points. Note that you must have root
access to use this command.

iwlist

Usage: iwlist [interface] frequency

 [interface] channel

 [interface] ap

 [interface] accesspoints

 [interface] bitrate

 [interface] rate

 [interface] encryption

 [interface] key

 [interface] power

 [interface] txpower

 [interface] retry

 [interface] scanning

Once you've determined that you can use the scanning parameter, execute the command. You must specify the network
adapter that corresponds to your wireless card (eth1 in the following example). Again, you must have root access.

iwlist eth1 scanning

eth1 Scan completed :

 Cell 01 - Address: 00:02:6F:01:76:31

 ESSID:"NoCat "

 Mode:Master

 Frequency: 2.462GHz

 Quality:0/92 Signal level:-50 dBm Noise level:-100 dBm

 Encryption key:off

 Bit Rate:1Mb/s

 Bit Rate:2Mb/s

 Bit Rate:5.5Mb/s

 Bit Rate:11Mb/s

 Cell 02 - Address: 00:30:65:03:E7:0A

 Essid:"SurfandSip "

 Mode:Master

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Frequency:2.422GHz

 Quality:0/92 Signal level:-66 dBm Noise level:-96 dBm

 Encryption key:off

 Bit Rate:1Mb/s

 Bit Rate:2Mb/s

 Bit Rate:5.5Mb/s

 Bit Rate:11Mb/s

Now that you've obtained a list of available networks, see what providers are in your area, and make a decision on the
hotspot to use. scanning shows you relative signal strengths, so pay attention. You don't necessarily want to associate
with the weakest hotspot in the area.

Note also that the scanning output gives you the frequency of each hotspot as well as whether encryption (WEP) is
enabled.

3.2.1 Kismet

In contrast to the small bit of information you can glean by using iwlist scanning, Kismet is a seriously advanced wireless
diagnostic tool. It is a passive network scanner, similar to commercial tools such as Network Associates' Sniffer Wireless
and Airopeek. It is designed from the ground up specifically for scanning wireless networks, so it detects all 802.11
traffic from both access points and wireless clients. It can find "closed" networks (some access points allow you to
disable the broadcast of the SSID) by monitoring traffic sent from clients, and it logs all raw 802.11 frames in standard
pcap(3) format for later use with other specialized tools such as Ethereal, an open source network protocol analyzer.

To take advantage of Kismet's advanced features, you need a wireless card and driver capable of entering RF Monitor or
promiscuous mode. Cards in this category include the Prism-based cards using the host_ap driver and the Cisco Aironet
cards using the airo driver. Kismet also works well with Atheros-based 802.11a/g cards using the madwifi driver.
However, if you need monitor mode in the madwifi driver, download the latest CVS driver code. Finally, you'll need a
patched orinoco_cs driver or the latest CVS version of the orinoco_cs code to support monitor mode with Orinoco cards.
We covered this in detail in Chapter 2.

Kismet is available as a package with most distributions. Debian users can install Kismet using apt-get:

apt-get install kismet

Red Hat and Fedora users can obtain RPM packages from http://www.rpmfind.net. Mandrake users can install Kismet
using urpmi:

urpmi kismet

If you want to read Kismet's dump files in Ethereal, you must download the source code for Kismet from
http://www.kismetwireless.net. Also, Ethereal must be installed from source, and the Ethereal source code tree must
be available. Change into the Kismet source directory, and configure Kismet as follows:

./configure --with-ethereal=/your/ethereal/source/path/here

Once that is done, build Kismet with standard compile commands:

make

make dep

make install

Once Kismet is compiled or installed from source, you must edit /usr/local/etc/kismet.conf to suit your system. If
you've installed from package, the file is probably located in /etc/kismet.conf. At a minimum, you must edit the source=
line to match your hardware. The format for this line is driver,device,description. For example, with a Prism card, edit
the line to read:

source=hostap_cs,wlan0,Prism

See the comments in the kismet.conf file for more information on supported drivers.

If you want Kismet to play sound effects when it finds new SSIDs, it will. By default, it expects /usr/bin/play to be
installed, which is part of the Sox sound utilities, but any command-line audio player works. All of the audio and other
display parameters are configured in /usr/local/etc/kismet_ui.conf.

When Kismet is running, your wireless card will be in RF monitoring mode. Note that once in this mode, your card can
no longer associate with wireless networks, so you may not have a network connection.

Now execute the kismet command using your normal user ID. You don't have to run the Kismet user interface as root.
You should see the Kismet screen as shown in Figure 3-2.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You should see the Kismet screen as shown in Figure 3-2.

Figure 3-2. The main Kismet screen

Kismet incorporates a hopping algorithm to switch between radio channels in order to find all the networks in your
locations. This makes your card hop between radio channels. The hop pattern is configurable to your needs. See the
kismet_hopper manpage for details. Note that newer versions of Kismet call kismet_hopper automatically

By default, Kismet initially scans the network list based on the last time it saw traffic from each network. This list
constantly changes, making it difficult, if not impossible, to select any one network for more detailed information.

To keep the list from constantly changing, manage the scanning sort order by hitting s at any time, followed by the
desired sort order. For example, to sort by SSID, hit ss. Now use the arrow keys to select a network for further details.
Press h at any time to see keystroke help and q to close any pop-up windows.

To get more information on a specific network, select it using the arrow keys and press i. You will see a more detailed
screen as shown in Figure 3-3.

Figure 3-3. Kismet's detailed network information

Kismet finds closed networks (networks that do not broadcast their SSID). If there is no network traffic coming from a
client of that network, Kismet lists the SSID with a name of <no_ssid>. Once Kismet sees a frame of traffic from a
client, the SSID updates.

Note that your card is now out of monitor mode, but the original network settings are not returned. You can physically
eject the card and reinsert or execute:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

cardctl reset

3.2.2 AP Radar

The previous methods are perfectly usable and provide you with all sorts of information regarding the available wireless
networks near you. These are manual methods that don't approach the level of ease in wireless detection and
configuration that is offered with other operating systems.

AP Radar is an attempt to make detection of and connecting to wireless networks easier and more manageable. It is
both a graphical network discovery tool and a wireless profile manager. Using the Wireless Extensions, it has the ability
to watch for wireless networks while staying associated to your existing network. It focuses on automating tasks, so
that when you come in range of your home network, you are automatically connected.

AP Radar is the work of Don Park, and you can obtain it from the project's SourceForge development site at
http://apradar.sourceforge.net. Currently, it is available as an RPM package or as a source file. In order to get the
package running, you must have GNOME Version 2. You'll also need a 2.4.20 kernel or higher, or any 2.6 kernel.

To compile AP Radar from source, you must have the GTK+ header files and libraries, as well as the GTKmm header
files and libraries. Users of Mandrake, RedHat, and other distributions that use RPM should see the AP Radar README
file for a list of required RPMs.

Debian users should be able to install the same packages via apt-get; however, you must set up apt to obtain packages
from the testing or unstable trees. See the sources.list manpage for details.

To build AP Radar from source, uncompress the source code file and change into the newly created directory. The
commands to compile are standard, although the filename and top-level directory name will differ if you are using a
newer version than we did:

$ tar xzvf apradar-0.50.tar.gz

$ cd apradar-0.50

$./configure

$ make

$ su -c "make install"

AP Radar works with a number of wireless cards and drivers. To determine whether AP Radar will run with your card
and driver, execute iwlist scanning:

iwlist wlan0 scanning

You should see some output like the following:

eth1 Scan completed :

 Cell 01 - Address: 00:02:6F:01:76:31

 ESSID:"NoCat "

 Mode:Master

 Frequency: 2.462GHz

 Quality:0/92 Signal level:-50 dBm Noise level:-100 dBm

 Encryption key:off

 Bit Rate:1Mb/s

 Bit Rate:2Mb/s

 Bit Rate:5.5Mb/s

 Bit Rate:11Mb/s

If you see anything else, chances are AP Radar will not function with your card. Some reasons for this include the use of
the following drivers:

Orinoco_cs driver, wvlan, wavelan, and wavelan2 drivers

None of these drivers currently support wireless scanning. Patches are available for the orinoco_cs driver to
enable scanning, and the CVS code for orinoco_cs also supports scanning. See Chapter 2 for more details.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

enable scanning, and the CVS code for orinoco_cs also supports scanning. See Chapter 2 for more details.

host_ap driver

If you are using the newest host_ap code, Version 0.1.3 (as of this writing), you must execute the following
command as root for AP Radar to function properly:

iwpriv wlan0 host_roaming 1

Once you install AP Radar and determine that it will function with your wireless card/driver, simply start it as root:

apradar

If you experience problems starting AP Radar, it may be due to oddities in your wireless card driver and how it writes
status to /proc/net/wireless. In order to avoid this problem, start AP Radar by specifying the interface name (ath0 in
the following example):

apradar -i ath0

The AP Radar main screen appears, as shown in Figure 3-4.

Figure 3-4. AP Radar main screen

AP Radar shows all access points that are in range. Almost every field on the screen is either clickable or provides you
with information when you hover the mouse over it.

To associate with any of the access points shown under Access Point List, simply click on the name of the access point.
By default, AP Radar not only associates your wireless card with the selected AP, but it runs dhclient to obtain an IP
address via DHCP.

This and one other option can be set by clicking on the red symbol at the top of the AP Radar screen. You can set two
options:

Ping default gateway

This monitors the gateway that you receive from DHCP. When it does not receive a response from a ping after
more than a second, AP Radar assumes that the gateway is out of range.

Run dhclient on associate

This allows you to specify whether you want AP Radar to obtain a DHCP address for your PC after it associates
with an access point. Turn this off if you need to use static addressing.

In addition to displaying the SSID, mode, and channel and signal strength for each access point, AP Radar also displays
whether WEP is enabled by displaying the warchalking symbol for the network. See the later Section 3.2.5.

3.2.3 Wardriving

Back in the good ol' days of hacking, wardialing was (and still is) the act of having a computer use a modem to dial
phone numbers from a list or mathematically step through all possible numbers in a telephone exchange. Malicious
hackers noted each line that had an answering modem and went back to those numbers to find systems that could be
compromised.

With the proliferation of notebook computers, handheld computers, and wireless network cards, the term wardriving

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

With the proliferation of notebook computers, handheld computers, and wireless network cards, the term wardriving
has been coined. When you wardrive, usually a two-man team takes off: one driving and the other handling the
wireless scanning. In dense urban areas, a wardrive can locate hundreds if not thousands of active SSIDs.

With some added equipment such as external antennas and a GPS receiver, wardrivers can log each wireless network
and place them on a physical map. http://www.wifimaps.com is just one example of a collaborative effort to place
wardriving maps from all over the world in an online database. Kismet (discussed previously) makes an excellent tool
for wardriving, and it interfaces with GPS systems. See Chapter 10 and the Kismet documentation for details.

People wardrive for different reasons. While many people do it simply for enjoyment or for the technical knowledge
gained, there are also those who have more illicit purposes in mind. Some wardrivers are specifically out there looking
for insecure networks that can be compromised for various purposes.

Wardriving may not be legal in your area. While it does not appear to be illegal in the United States, there are many
countries where it is considered a crime.

3.2.4 Warflying

In the same vein, warflying is conducted by those lucky people who can afford to rent a plane for a few hours or who
actually have their own plane. Warflyers generally need external antennas to pick up wireless networks below the
plane.

If you think this practice sounds too far-fetched to be true, Google for the phrase "warflying". You'll be surprised at how
many people do this.

3.2.5 Warchalking

During the Great Depression, many people in the United States were homeless because of economic conditions. Tramps
and hobos traveled the country looking for work and food. Due to scarcity of work, hobos were not welcome in many
places. Over time, hobos devised a set of logos that could be written in chalk or stone, or carved in trees near various
houses, restaurants, and other places. These logos could communicate everything from "free food" to "you will be
beaten."

You can visit the following web sites for more symbols used by the hobos:

http://www.slackaction.com/signroll.htm

http://sedaliakatydepot.com/hobo.htm

Matt Jones, an Internet product designer, operates a web site (http://blackbeltjones.com) that serves primarily as the
Londoner's online resume and portfolio. In 2002, Jones combined the practice of using a sniffer tool to detect a wireless
network with the hobos' set of logos to come up with the symbols for wireless networks (see Figure 3-5).

Figure 3-5. Warchalking symbols

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using these symbols, wireless users can discover if there is an available wireless network for their use. He was inspired
by architecture students "chalking up the pavement" on his way to lunch. During a lunch, Jones and a friend, who had
recently been discussing hobo signs, called their idea warchalking. You can learn more at http://www.warchalking.org.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 3. Getting On the Network
Assuming that you didn't encounter any problems in Chapter 2, you should now have a functional wireless network
adapter, and the knowledge to configure and use it under Linux. If you have a wireless network set up at home or at
work, chances are you will use this network most of the time.

If, however, you have Linux installed on a notebook PC, chances are you're often in transit, and you probably want to
find and use wireless networks in cities, airports, hotels, and conferences.

This chapter discusses tools and techniques that allow you to find available wireless networks, whether they are fee-
based or free.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.1 The Pitfalls of WEP
The IEEE specifications for 802.11a/b/g all provide a form of encryption called Wired Equivalent Privacy (WEP). WEP
operates at the Media Access Control (MAC) layer, or the Data Link layer, between the Physical Layer (radio waves) and
the Network Layer (TCP). WEP encryption is based on the RC4 algorithm from RSA Data Security and employs a 40-bit
encryption key.

Anyone who knows the secret key (unless you're the only user on the network, this key is shared, so it's not all that
secret) can participate in a WEP network. Secret keys are generally either plaintext words or somewhat longer
combinations of hexadecimal numbers.

There are two major problems with WEP:

Encryption is handled at the Data Link layer, so if you connect to a WEP network with your notebook, the
communication between your notebook and the access point is encrypted. All packets are decrypted at the
access point and sent from there in the clear.

Other computers that also have the secret key for this WEP network can read all packets sent to and from your
computer. The secret key is a "shared" key, which means that all devices that encrypt packets must use the
same key. Some access points use a passphrase to generate the WEP key, making the key even easier to
deduce. Once you are connected to a WEP network, you can do all the packet sniffing you want with a tool like
Ethereal.

A team of cryptographers from the University of California at Berkeley, as well as several other groups (see the
references at the end of this section), have identified weaknesses in the way that WEP keys are generated and used,
effectively making the number of bits in the key immaterial. Even though many manufacturers have added extra bits to
the key length, up to 152 bits, the longer key length provides minimal protection, because WEP is not a well-designed
cryptographic system.

With all of these problems, why is WEP still supported by wireless equipment manufacturers? Until recently, there had
not been another standard for wireless encryption. You could have run a Virtual Private Network (VPN) on top of your
wireless network, but this would have presented its own set of challenges, and it is not practical for home or even
small-business users. The Wi-Fi Alliance announced a standard called Wireless Protected Access (WPA) in mid-2002.
WPA is based on a draft of the IEEE 802.11i specification, which will probably be ratified in mid-2004. We cover WPA a
bit later in the chapter.

So why would you want to use WEP on your wireless network at all? Consider it a first line of defense. While it is
definitely possible to crack its keys and gain access to a WEP network, someone who is looking for free wireless access
will choose an open network when given the choice. However, if you are worried about an attacker specifically targeting
your network, you must take stronger measures.

Consider not using WEP at all. There are other alternatives that provide stronger encryption and authentication, and we
cover those in this chapter. However, if you want an easy out-of-the-box setup, WEP is your ticket. To keep your WEP
network as secure as possible, keep these guidelines in mind:

Make your secret key difficult to crack. Once a hacker has captured enough frames from your encrypted
network, he needs to run a tool to guess your secret key. This is no different from a hacker running crack
against a password database. The more complex your key, the less likely a standard dictionary attack will crack
it. Choose a long, complex key that utilizes nonalphanumeric characters. If you can, use hexadecimal strings.
Use the longest key that your hardware will support. If you have access points and clients that support 128-bit
WEP, by all means use it. However, some implementations of WEP have weaknesses that allow attackers to
recover the key even without mounting a dictionary attack.

Change your secret key often. WEP key attacks rely on two methods: a dictionary attack or the collection of
large amounts of frames data in order to deduce the secret key. Obviously, you provide less of a chance for an
attacker to break your key when you change it often. However, this option becomes more cumbersome with
larger networks, giving you the classic key-distribution problem.

Use WEP in combination with other security measures. If your network uses equipment from a single
manufacturer, you may be able to take advantage of nonstandard security features. Cisco and Proxim, for
example, support rapid WEP key rotation and dynamic rekeying. If all of your clients can take advantage of
these features, use them. You should also consider whether the various IP tunneling or VPN solutions will fit into
your network infrastructure.

Several security measures that come standard with many access points are almost useless in protecting your wireless
network:

Disabling SSID broadcast

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Disabling SSID broadcast

This creates a "hidden" network by causing the access point to suppress the broadcast of SSID information. In
order to join a network with SSID broadcast disabled, the client must manually enter the SSID.

Premise: if you don't know the SSID, you can't join the network.

Reality: Kismet and other wireless network scanners can easily pick up the SSID by monitoring traffic from
clients of the "hidden" network.

MAC address filtering

Most access points allow you to set up a list of allowed network cards by entering their MAC address. If the
access point sees a MAC address that is not on the list, it will not allow that device to associate.

Premise: only authorized network cards can join the network.

Reality: Kismet and other wireless scanners can easily pick up MAC addresses by monitoring client traffic on the
wireless network. Spoofing a MAC address is very easy under Linux and other operating systems, allowing easy
access to the network. Also, wireless network cards can easily be stolen. The MAC address filter only
authenticates a device, so anyone can use it.

IP address filtering

Similar to MAC address filtering, this technique allows you to set up a list of allowed IP addresses that can send
TCP/IP traffic on the network. Other machines may be allowed to associate with the access point, but they
would not be able to participate in any TCP/IP network.

Premise: only known IP addresses are allowed to communicate on the network.

Reality: any network sniffer or analyzer, such as Ethereal or tcpdump, can easily find IP addresses in use on
any given network. Spoofing IP addresses is even easier than spoofing MAC addresses.

4.1.1 References

As mentioned previously, several groups have identified weaknesses in the way that WEP keys are generated and used.
To learn more, consult the following sources:

Your 802.11 Wireless Network has No Clothes (http://www.cs.umd.edu/~waa/wireless.pdf) by Arbaugh,
Shankar, and Wan. University of Maryland, March 30, 2001.

Weaknesses in the Key Scheduling Algorithm of RC4 (http://www.crypto.com/papers/others/rc4_ksaproc.ps) by
Fluhrer, Mantin, and Shamir. July 25, 2001.

Using the Fluhrer, Mantin, and Shamir Attack to Break WEP (http://www.cs.rice.edu/~astubble/wep). AT&T
Labs Technical Report by Stubblefield, Ioannidis, and Rubin. August 21, 2001.

Security of the WEP Algorithm (http://www.isaac.cs.berkeley.edu/isaac/wep-faq.html) by Borisov, Goldberg,
and Wagner, UC Berkeley. April 1, 2001.

4.1.2 WEP with Linux

Back in Chapter 2, we covered the use of schemes to set up multiple wireless networks on your PC with the ability to
switch between them as needed. Here again is a sample /etc/pcmcia/wireless.opts that contains schemes for two
networks and includes the use of a WEP key:

case "$ADDRESS" in

home,0,*,*)

 INFO="Home wireless setup"

 ESSID="home"

 MODE="managed"

 CHANNEL="11"

 RATE="auto"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ;;

yourjob,0,*,*)

 INFO="Work wireless setup"

 ESSID="BigCorp"

 MODE="managed"

 CHANNEL="4"

 RATE="auto"

 KEY="s:bigsecret"

esac

Use cardctl yourjob to switch to the WEP-enabled scheme.

The corresponding iwconfig command to configure a WEP key is iwconfig enc or iwconfig key. This command accepts
several parameters:

iwconfig eth1 key [on|off]

on and off enable and disable encryption, respectively.

iwconfig eth1 key 0a12fc132

Secret keys can be entered as hex strings with or without separating dashes.

iwconfig eth1 key s:supersecret

ASCII secret keys can be entered in the form of s:secretkey.

iwconfig eth1 key s:supersecret [2]

An index of keys can be generated by appending an index number in brackets ([]) to the key when it is
entered.

iwconfig eth1 key [2]

You can change secret keys by passing the index number of the key as an option.

iwconfig eth1 key [open|restricted]

Two operating modes are available: open accepts nonencrypted traffic, and restricted accepts only encrypted
packets.

Using NoCatAuth
If WPA isn't an option for you, you may want to consider setting up a captive portal (see Section 3.1.1 in
Chapter 3).

NoCatAuth, which ships with Pebble Linux (see Chapter 6), is a captive portal that offers two modes of
operation: open and authenticated. Open mode intercepts a user's first web request with a simple splash
page and a Click here to continue button. Authenticated mode relies on both the local NoCatAuth daemon
and an authentication service on another machine. The daemon and authentication service communicate
via an encrypted channel, so passwords are never sent in the clear.

NoCatAuth can be downloaded from http://nocat.net, and there is also a wiki and a fairly high volume
development mailing list. Other captive portal systems are available for Linux, as well. You can find out
more about them on the Personal Telco Project's portal software page at
http://www.personaltelco.net/index.cgi/PortalSoftware.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.2 The Future Is 802.11i
The future solution from the IEEE to provide real wireless security and a strong cryptographic system is the proposed
802.11i standard. The IEEE Task Group responsible for this standard maintains a web page at
http://grouper.ieee.org/groups/802/11/Reports/tgi_update.htm. As of December 2003, draft 7 of this proposal has
been sent to a "sponsor ballot," and the results are not yet available. The word on the street is that 802.11i will become
a ratified standard sometime in mid-2004.

The final standard of 802.11i will likely address the following:

Use of 802.1x for authentication

802.1x is a specification framework for mutual authentication between a client and an access point. 802.1x may
also use a backend authentication server such as RADIUS and take advantage of one of the Extensible
Authentication Protocol (EAP) variations. 802.1x uses a new key for each session, so it resolves the issue of a
single static WEP key.

Use of the Temporal Key Integrity Protocol (TKIP)

TKIP uses 128-bit dynamic keys that are changed at random times. Because of the constantly changing keys,
intruders would be hard pressed to collect enough radio frames to compromise the keys.

Use of the Advanced Encryption Standard (AES)

The full implementation of 802.11i will utilize AES encryption to make a very strong cryptographic system.
However, using AES requires significant computational horsepower. Current models of access points will not be
able to handle AES due to limited processors. Expect new models that are "802.11i ready" to arrive on the
market in 2004.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.3 WPA: a Subset of 802.11i
Work on 802.11i began in 2001 after the weaknesses in WEP were made public by several teams of researchers.
However, as with any standards body, the IEEE does not always work as fast as some people would like.

In mid-2002, the Wi-Fi Alliance, an industry consortium, proposed a subset of 802.11i, based on draft 3 from the IEEE
working group, and called it Wireless Protected Access (WPA). The upcoming full IEEE implementation is also being
referred to as WPA v2.

WPA, as a subset of the 802.11i proposed standard, incorporates two major features:

Use of 802.1x for authentication

Use of the Temporal Key Integrity Protocol (TKIP)

Chipsets supporting WPA began to become available in 2003. As of this writing, many access points either support WPA
out of the box or have firmware updates available that include WPA.

WPA is not only an encryption mechanism but also includes 802.1x authentication, so support is required on the client
for the authentication mechanism. As of this writing, your options are very limited regarding WPA support in Linux.

A few vendors have released updated firmware for older radio cards with WPA support; Apple AirPort cards, the Linksys
WPC-11, and the Dell TrueMobile 1150 all have updates available.

WPA Support in Access Points
WPA and 802.1x are starting to become available in new access points, and earlier models are getting
firmware updates that support WPA. The Linksys WRT54G and D-Link 900AP+ can both support WPA after
a firmware upgrade. Newer Linksys and D-Link models are packaged with this support already enabled.
Enterprise-level access points from Cisco, Proxim, and others also support WPA and are starting to
advertise themselves as "802.11i-ready."

The Dell 1150 card is a rebranded Orinoco card; Agere has drivers on its web site listed
"for evaluation only" that include this same update. However, Proxim, the new owner of
the Orinoco brand, has nothing on its web site about WPA for older cards.

All of this is interesting but not immediately useful, however, because you can't use any of these cards under Linux and
take advantage of the WPA code in the cards. Why? Because their associated Linux drivers do not support WPA. As of
early 2004, you have two options if you want to use WPA under Linux, which we discuss below. In order to take
advantage of these methods, you should understand how 802.1x works.

4.3.1 802.1x Authentication

802.1x was originally designed for wired Ethernet networks. It is a port-based authentication mechanism; when a client
is authenticated, traffic is allowed to flow from the Ethernet port of the client through the authenticating device and out
into the secured network.

In a wireless network, the principle is the same. Your notebook client is required to authenticate to the access point. If
authentication does not occur, wireless frames are not allowed to be sent through the access point to the wired
network.

802.1x authenticates users via a four-part process:

1. The Supplicant (the client that wants to access a network resource) connects to the Authenticator (whose
resource is needed).

2. The Authenticator asks for credentials from the Supplicant and passes the credentials to the Authenticating
Server.

3. The Authenticating Server authenticates the Supplicant on behalf of the Authenticator.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4. If the Supplicant is authenticated, access is then granted.

Note that before the authentication is performed, all the communications go through an uncontrolled port. After
authentication, the controlled port is used.

For the Authenticating Server to authenticate the Supplicant, the Extensible Authentication Protocol (EAP) is used. EAP
supports multiple authentication mechanisms and was originally developed for PPP.

There are many variants of EAP. Here are some that you may come across in wireless security literature:

EAP-MD5

EAP-MD5 uses the challenge/response method to allow a server to authenticate a user by requesting a
username and password. EAP-MD5 does not provide mutual authentication and is vulnerable to an offline
dictionary attack.

EAP-Transport Layer Security (EAP-TLS)

EAP-TLS is based on X.509 (an ITU standard specifying the contents of a digital certificate) certificates. It is
currently the most commonly used EAP type for securing wireless networks. However, EAP-TLS requires the use
of Public Key Infrastructure (PKI), which is not feasible to be implemented on small networks.

Protected EAP (PEAP)

To counter the complexity of using EAP-TLS, PEAP was proposed as an alternative. PEAP uses a server-side
certificate to allow the authentication of the server. It creates an EAP-TLS tunnel and then uses other
authentication methods over the tunnel. EAP methods such as MD5, MS-CHAP, and MS-CHAP v2 are supported.
PEAP was proposed as an IETF standard by Microsoft, Cisco, and RSA.

EAP Tunneled TLS (EAP-TTLS)

EAP-TTLS is similar to PEAP. It creates a tunnel between the user and the RADIUS server. It supports EAP
methods such as MD5, MS-CHAP, and MS-CHAP v2.

Lightweight EAP (LEAP)

LEAP is Cisco's proprietary version of EAP, which works mostly with Cisco's wireless cards, RADIUS servers, and
access points.

Microsoft Challenge-Handshake Authentication Protocol Version 2 (MS-CHAP v2)

Originally designed by Microsoft as a PPP authentication protocol, MSCHAP v2 is a password-based, challenge-
response, mutual authentication protocol that uses the Message Digest 4 (MD4) and Data Encryption Standard
(DES) algorithms to encrypt responses. MS-CHAP v2 is now an EAP type in Windows XP.

In the wireless world, suppose a notebook PC needs to connect to an access point. The notebook PC is the Supplicant,
and the access point is the Authenticator. The access point, as the Authenticator, maintains a list of users and
passwords and acts as the Authenticating Server. For small networks, this is not an issue; for large networks, however,
this is an additional overhead in maintenance and a potential security risk, because it means that users must have
another account and password.

In this case, the access point is told to refer to an external RADIUS server. RADIUS was developed by Livingston (now
part of Lucent) for use in large dial-up modem pools, and is widely used by ISPs as the authentication mechanism for
PPP and PPPoE users. The protocol is now defined by RFCs 2058, 2138, and 2139.

A RADIUS server maintains the user and password list, and performs authentication on behalf of the access point. The
RADIUS server in this scenario is the Authenticating Server. Frequently, a RADIUS server is merely a method to
transform authentication from some other source—for example, NIS, LDAP, or Kerberos authentication from a corporate
network, which is then used by the RADIUS server to authenticate clients.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.4 WPA on Linux
As of this writing, if you want to use WPA and/or 802.1x as a client on Linux, you have two options:

Obtain the WLAN Driver Loader from Linuxant. This is a compatibility wrapper that allows you to use the
standard Windows NDIS drivers that ship with wireless network cards. The advantage to this is that you can use
a wide array of WiFi cards that currently do not have open source drivers available.

Use a Prism-based Wi-Fi card with the latest HostAP CVS code. The newest versions of HostAP contain a WPA
Supplicant in software that allows you to connect to WPA-protected networks.

If you want to use your Linux box as a WPA Authenticator, you're currently out of luck. The HostAP development team
is working towards a full implementation of a WPA Authenticator. Right now, however, the hostapd daemon acts as an
802.1x Authenticator and authenticates against a RADIUS database.

Windows XP and Mac OS X both include support for 802.1x Supplicants. There is an open source implementation
available for Linux called Xsupplicant, which is located at http://www.open1x.org.

A last option is to use your Linux box as the RADIUS server (Authenticating Server), and use an inexpensive access
point as the WPA Authenticator. You can then use any WPA Supplicant to connect to the access points, and the backend
authentication is handled by Linux/RADIUS.

4.4.1 WLAN Driver Loader

The Linuxant WLAN Driver Loader is a compatibility wrapper that allows the use of Windows NDIS wireless network
drivers under Linux. Open source purists have issues with this software, because parts of it are released only in binary
form, and after 30 days you must pay $20 for a permanent license. If you're completely opposed to anything Windows-
related, keep in mind that this solution requires you to run Windows binary drivers, so this option may not be for you.

However, at this point in time, Linuxant is the only game in town if you need access to WPA-protected networks from a
Linux box and you don't have a Prism-based wireless card. More to the point, the WLAN Driver Loader software allows
you to use WiFi cards that do not have any open source drivers, including cards with chipsets from Broadcom and Texas
Instruments. For many of the popular 802.11g cards, this may be your only option in Linux.

A completely open source project to provide NDIS driver loading for Linux is located at
http://ndiswrapper.sourceforge.net. As of this writing, support for radio chipsets is limited
and there is no support for WPA.

You can obtain the software from the Linuxant web site at
http://www.linuxant.com/driverloader/wlan/full/downloads.php. Linuxant provides RPM packages for Fedora, Red Hat,
Mandrake, SuSE, and Turbolinux, and has built them for various architectures. Debian users can download a
driverloader.deb package for installation with dpkg. For other systems, or if you wish to compile the driver, the source
code can be downloaded as well.

In order to use the WLAN Driver Loader with WPA-PSK (personal) authentication, Linuxant provides a wpa_supplicant
daemon that is also available in its downloads section. If you need to have WPA-EAP authentication, the Xsupplicant
from open1x.org is required in addition to the wpa_supplicant from Linuxant. We cover installation of both supplicants
next.

To compile the Driver Loader software from source, extract the package and change into the newly created directory. A
single make command compiles and installs:

$ tar -xzf driverloader- version .tar.gz
$ cd driverloader- version
$ make install

By default, WLAN Driver Loader starts up a localhost web-based configuration tool on port 18020. You can access it by
pointing a web browser to http://127.0.0.1:18020 and logging in as root. You can also configure the software from a
shell by executing the dldrconfig command.

If you wish to disable the web configurator for security reasons, use dldrconfig --webconf=off. To reenable it, use dldrconfig
--webconf=127.0.0.1:18020. Note that this command enables you to choose an alternate port for web-based configuration.

The dldrconfig command can also be used to change certain configuration options or recompile (generic packages only)
the kernel modules after installation or kernel upgrades. Run dldrconfig --help for usage information.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the kernel modules after installation or kernel upgrades. Run dldrconfig --help for usage information.

If necessary, the device drivers can be unloaded using the dldrstop command.

Figure 4-1 shows the screen that you will see when you point a web browser at the localhost address created by the
WLAN Driver Loader installation.

Figure 4-1. DriverLoader initial configuration

As shown, the first thing you must do is provide the DriverLoader with Windows NDIS drivers for the device you want to
use. Click on the Upload Windows Driver link, and you will be presented with another screen, shown in Figure 4-2, that
allows you to browse the local filesystem for an .INF or .NTF file that comes in the Windows driver package for your
wireless card.

Figure 4-2. Browse for Windows driver files

In our example, we used a Linksys WPC55AG PC Card. We downloaded the latest driver in ZIP format from the Linksys
web site at http://www.linksys.com/download. The file we obtained was wpc55ag_driver_utility_v1.2.zip, which we
extracted using the unzip command. This created three subdirectories: Drivers, image, and utility. In the Drivers
subdirectory, we found two ar5211.sys files and a net5211.inf file, which are exactly what we needed to continue.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

subdirectory, we found two ar5211.sys files and a net5211.inf file, which are exactly what we needed to continue.
Obviously, this procedure will vary for each different wireless card. Linuxant maintains a list of wireless cards known to
work with WLAN Driver Loader and links to downloads of the associated Windows drivers. This list can be found at
http://www.linuxant.com/driverloader/drivers.php.

Using the browse function in Figure 4-2, we found the Drivers directory and selected net5211.inf. The program quickly
prompted us that the ar5211.sys file would be required and asked us to locate it. Once we clicked OK, the driver file
loaded, and we were presented with the screen in Figure 4-3.

Figure 4-3. DriverLoader shows a missing license for the newly installed driver

As we mentioned, the Linuxant software is proprietary. Permanent licenses can be purchased from Linuxant, and you
can also obtain a 30-day license for trial purposes from the Linuxant web site at http://www.linuxant.com/store. In
order to get a license, you must fill out a registration form, wait for an email from Linuxant with a verification code, and
enter that code. Once entered, you can generate a license. In order to do this, Linuxant requires the MAC address from
your wireless card. You can obtain this either from the web interface or by running:

dldrconfig -info
Linuxant DriverLoader for Wireless LAN devices, version 1.61

Web configurator: listening on 127.0.0.1:18020

Wireless interface name: eth1
 MAC address : 00:0C:41:0A:24:F8
 Device instance: PCI-0000:05:00.0-168c:0013-1737:0017
 Device driver : net5211
 License owner : unknown
 License key : none
 License status : MISSING

Enter the MAC address into the form on the Linuxant web site, and after a few seconds, you will be presented with a
30-day-trial license key, a 12-character hexadecimal string that needs to be entered either in the web configurator or
by executing dldrconfig --license. You'll be asked to enter the email address you used to register with Linuxant along with
the license key, as shown in Figure 4-4.

Figure 4-4. Entering the Linuxant license information

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4-4. Entering the Linuxant license information

Once you've entered the license information, you'll be returned to the main web screen, but this time it should show
that your driver is loaded. You can perform additional configuration on the card by clicking on Settings and then
selecting Advanced. Here you'll see the license information and any other configuration options that are supported by
the NDIS driver for your card. A sample screen is shown in Figure 4-5.

Figure 4-5. Advanced configuration under WLAN Driver Loader

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

After having made any changes in the Advanced configuration, exit the web-based configuration. Your wireless card
should now be active. In this example, you can see that our Linksys WPC55AG wireless card has been assigned to eth1:

iwconfig
lo no wireless extensions.

eth0 no wireless extensions.

eth1 IEEE 802.11g ESSID:"whitecottage-wpa" Nickname:"unknown"
 Mode:Managed Frequency:2.447GHz Access Point: 00:0C:41:D4:71:AB
 Bit Rate=54Mb/s Tx-Power=8 dBm
 RTS thr:off Fragment thr:off
 Encryption key:off
 Power Management:off
 Link Quality:1/1 Signal level:-38 dBm Noise level:-83 dBm
 Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0
 Tx excessive retries:0 Invalid misc:0 Missed beacon:0

As you can see from the ESSID, we are connected to a WPA-protected network. To authenticate, see Section 4.4.3 later
in this chapter. The next section describes how to connect to a WPA network with a Prism-based card and the HostAP
driver without using the WLAN Driver Loader.

Bleeding-Edge Warning
The Linuxant WLAN Driver Loader software is very new. As with any new software, particularly software
that allows cross-platform device drivers to work, you may run into problems. The first two cards we tried
with the Linuxant software did not work.

The Linksys WPC55AG card is based on the Atheros 5211 chipset and is compatible with 802.11a/b/g.
While it was easy to load the card driver and make it work with WLAN Driver Loader, further configuration
of the card was prohibited by the fact that we could not change operating modes. The card remained stuck
in 802.11a mode, making it impossible to test with our 802.11g access point that supports WPA. According
to Linuxant Support, the INF file included with the WPC55AG driver doesn't contain a section that deals
with changing the mode of the card; this is a bit odd, because the card does support this function in
Windows.

We then attempted to load the drivers for an Orinoco Gold 802.11b card. Agere has recently released
Windows drivers that support WPA on this card, available from http://www.agere.com/support/downloads.
While we were able to load the drivers, WLAN Driver Loader was not able to find any compatible devices
on the system. We suspect this is because our test system already had the orinoco_cs driver loaded, but
even by disabling orinoco_cs, we were unsuccessful.

Our last, and only, successful test used a Linksys WPC54G 802.11G radio card. This is based on a
Broadcom chipset and worked flawlessly, in both the setup and with the wpa_supplicant software.

4.4.2 HostAP

Jouni Malinen, the developer behind the HostAP project, has developed a package called wpa_supplicant. In this
section, we discuss how you can use a Prism-based wireless card, the HostAP driver, and the wpa_supplicant to connect
your Linux box to a WPA-protected network.

In order to use the wpa_supplicant in conjunction with HostAP, you must have a Prism-based Wi-Fi card with station
firmware Version 1.7 or later. The latest version of firmware as of this writing is 1.8.0, although Version 1.7.4 is more
widely available and works as well. The most complete collection of Prism firmware is located at http://www.red-
bean.com/~proski/firmware

To update your Prism card firmware, refer to the excellent tutorial at http://linux.junsun.net/intersil-prism. If you have
questions or problems with the firmware update process, we recommend that you check there first. However, we do go
over the basics of updating your firmware later in this section. To determine whether you need to update the firmware.

1. Build and install the hostap utilities (see Section 4.4.2.2 later in this chapter).

2. Use the hostap_diag wlan0 command to determine the current version of your Prism firmware. Alternatively, use
dmesg | grep wlan0. hostap_diag returns output similar to the following:

NICID: id=0x8013 v1.0.0 (PRISM II (2.5) Mini-PCI (SST parallel flash))
PRIID: id=0x0015 v1.1.0
STAID: id=0x001f v1.4.9 (station firmware)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. You should be concerned with the Station Firmware version, which must be at least Version 1.7.0. Chances are
that your card is below that version, and you will need to upgrade the firmware. Take note of the NICID in the
output of dmesg or hostap_diag. This is the ID of your Prism card and there are many different IDs. Some IDs
have only certain firmware versions available. To determine the software that is required for your card, consult
the tutorial at http://linux.junsun.net/intersil-prism.

Once you've determined which firmware you need, you can build hostap and its utilities, and then update the firmware,
as described in the following sections.

4.4.2.1 Building hostap from CVS

While you don't necessarily need the CVS version of the HostAP code to update your Prism firmware, you will need it to
use the wpa_supplicant features and to obtain the wpa_supplicant code.

You can obtain the CVS development snapshot from the HostAP web pages at http://hostap.epitest.fi. Select the link for
development branch in the section titled "CVS snapshot of the driver source code." You must have the development
branch of the code to get the WPA features.

Once you've downloaded the compressed file, extract it and change to the newly created directory:

tar xzvf hostap.tar.gz
cd hostap

You must edit the file drivers/modules/hostap_config.h and make sure these two items are uncommented: #define
PRISM2_DOWNLOAD_SUPPORT and #define PRISM2_NON_VOLATILE_DOWNLOAD. In the CVS version, the first #define
statement is already uncommented.

Once you have edited this file, go back to the hostap directory and build the software:

make
make install

To load the new HostAP drivers, stop and restart the PCMCIA services:

/etc/init.d/pcmcia restart

4.4.2.2 Building the hostap tools

In the hostap source directory is a subfolder containing the hostap utilities. Building them is easy:

cd utils
make

There is no make install command, so if you want the tools installed outside of the utils directory, you must move them
yourself. Our examples merely run the utilities out of the directory where they are compiled.

4.4.2.3 Updating the firmware

Copy the version of firmware files that you need for your prism card into the utils directory. The utility that manages
the firmware upgrade is prism2_srec. This utility not only updates the station firmware of your card, but also the primary
firmware. Updating the primary firmware is beyond the scope of your needs, so focus simply on updating the station
firmware.

Station firmware is always provided in the format s[platform][version].hex. The tutorial web pages at
http://linux.junsun.net/intersil-prism give you information on determining your platform. Make sure that you are using
the station firmware file and no other file. You could render your card useless if you were to update it with the wrong
firmware (the faint of heart may want to consider updating their card using a Windows-based updater from the
manufacturer, which is likely to be the only supported technique).

First, do a test run in verbose mode:

./prism2_srec -v wlan0 s1010701.hex

The -v argument specifies verbose mode, and because we have not called the tool with any other options, it simply
tests the firmware against the card. If at the end of the output you see OK, you can proceed to the next step. If you
see anything else at the end of the output, do not proceed. You will know that the firmware is not compatible with your
card if you see output like:

NICID was not found from the list of supported platforms. Incompatible update data

Assuming that your test run returned an OK, you can proceed to the next step, and write the firmware to the flash on
the Prism card. First, if you use a laptop, make sure it has a fully charged battery and is plugged into the wall outlet. If
your computer is a desktop, be sure that it is plugged into a UPS. (If the power fails during this step, your Wi-Fi card
will be useless.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

will be useless.)

./prism2_srec -v -f wlan0 s1010701.hex

The process takes about 30 seconds, and you should make sure that the card is not removed during the update. Once
finished, you should see output that shows the new firmware versions on the card and that should be returned to a
shell prompt:

Components after download:
 NICID: 0x8003 v1.0.0
 PRIID: 0x0015 v0.3.0
 STAID: 0x001f v1.7.1
#

The card driver is unloaded after the firmware update, so you should remove the card and reinsert it to reload the
driver.

4.4.3 Authenticating with wpa_supplicant

The supplicant software is included in the CVS releases of HostAP 0.2.x source, so you have already downloaded it
when you installed the CVS version of HostAP in the previous section. Linuxant also provides the source for
wpa_supplicant in the downloads section of its web site, but as of this writing, the version included with HostAP 0.2.x
source is more current. We recommend obtaining the HostAP source to build wpa_supplicant even if you plan on using
it with the WLAN Driver Loader.

Operating wpa_supplicant with either HostAP or the WLAN Driver Loader doesn't require a different setup. You must
make sure that the wireless card that you intend to use with WLAN Driver Loader supports WPA in both the card
firmware and the Windows NDIS driver. See the sidebar Bleeding-Edge Warning for details on how some WPA-enabled
cards may not work.

The only difference between running wpa_supplicant with HostAP and WLAN Driver Loader is what interface you call
from the shell. HostAP interfaces are always wlanX, typically wlan0. For all of the cards we tried with WLAN Driver
Loader, the interface came up as eth1.

In the hostap source directory is a subfolder that contains the wpa_supplicant. Building it from source is easy:

cd wpa_supplicant
make

Again, there is no make install, so you must copy the generated executables to where you want them: wpa_supplicant
and wpa_passphrase, and the configuration file wpa_supplicant.conf.

According to the README file included with the source, wpa_supplicant is designed to run as a background daemon. A
frontend program that provides a user interface is planned but is not yet available.

On currently available access points, there are two possible operating modes for WPA:

WPA-PSK (pre-shared key)

Also called "WPA-Personal" by the Wi-Fi Alliance; this somewhat resembles WEP in that it allows you to use an
identical key (a pre-shared key) on both the access point and the client. The access point, acting as the WPA
Authenticator, uses this pre-shared key to generate a master session key.

WPA-EAP

Also called "WPA-Enterprise" by the Wi-Fi Alliance; this relies on an external authentication server, most likely
RADIUS, and the EAP used by 802.1x. The master session key is generated by the Authentication Server and
then passed to the access point, which authenticates the client with that key.

In both cases, WPA implements a 4-Way Key Handshake and Group Key Handshake, which generates and exchanges
data encryption keys between the Authenticator (access point) and Supplicant (client). The only difference between the
two methods is where the master session key is generated.

You want to start wpa_supplicant as a daemon, give it the path to the configuration file, and specify the wireless
interface. In most cases, you can use the line shown in Example 4-1.

Example 4-1. Launching wpa_supplicant

/path/to/ wpa_supplicant -Bw -c /path/to/ wpa_supplicant.conf -iwlan0

This makes the process fork into the background and wait for the wlan0 interface, so you can insert this command into
an appropriate place in your startup environment. WPA handshakes must be complete before data frames can be
exchanged, so wpa_supplicant must be started before a DHCP client, for instance.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

exchanged, so wpa_supplicant must be started before a DHCP client, for instance.

wpa_supplicant must be running when using a WPA-protected wireless network, so it should be started from system
startup scripts using the command shown in Example 4-1, or it can be called from the pcmcia-cs scripts if you are using
a PC card.

To enable WPA support using the pcmcia-cs scripts, add these lines to /etc/pcmcia/wireless.opts:

MODE="Managed"
WPA="y"

Add the following code to the end of the start action handler in /etc/pcmcia/wireless:

if [$WPA = "y" -a -x /usr/local/bin/wpa_supplicant]; then
 /usr/local/bin/wpa_supplicant -Bw -c/etc/wpa_supplicant.conf \
 -i$DEVICE
fi

Finally, add the following code to the end of the stop action handler in /etc/pcmcia/wireless:

if [$WPA = "y" -a -x /usr/local/bin/wpa_supplicant]; then
 killall wpa_supplicant
fi

The combined effect of these changes make cardmgr start up wpa_supplicant when the card is plugged in.
wpa_supplicant waits until the interface is set up, and then negotiates keys with the access point.

The example wpa_supplicant.conf file can be used to generate a configuration for your environment. The file needs at
least two mandatory parameters, and it has several options depending on how your network is configured. The general
file format should be as in the example below. Empty lines and lines starting with # are ignored.

network={
 ssid="locked-down"
 psk="s00pers3cr3t"
 key_mgmt=WPA-PSK
 pairwise=CCMP TKIP
 group=CCMP TKIP
}

Here is a list of the possible fields in the configuration file:

ssid=

A mandatory field that can be either an ASCII string in quotes or a hex string.

bssid=

Optional, only needed if your network uses a BSSID.

key_mgmt=

A list of accepted key management protocols. Options are WPA-PSK, WPA-EAP, and NONE. If not set, this defaults
to WPA-PSK WPA-EAP.

pairwise=

A list of accepted pairwise (unicast) ciphers for WPA. Options are CCMP (AES encryption), TKIP, or NONE. If not
set, this defaults to CCMP TKIP.

group=

A list of accepted group (broadcast/multicast) ciphers for WPA. Options are CCMP, TKIP, WEP104, and WEP40. If
not set, this defaults to CCMP TKIP WEP104 WEP40.

psk=

A mandatory field when using WPA-PSK. This field can be entered as 64 hex digits or as an ASCII passphrase.
The ASCII passphrase must be at least 8 characters in length and can be a maximum of 63 characters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The ASCII passphrase must be at least 8 characters in length and can be a maximum of 63 characters.

In our example configuration, we are connecting to a WPA-PSK network, and we have chosen to put the ASCII
passphrase in the text configuration file. If you want more protection, the included tool wpa_passphrase can be used to
generate 256-bit keys from an ASCII passphrase. This tool uses a fair amount of CPU time, so it should be used only
when the passphrase has actually changed.

If you don't have WPA set up on your access point, see Section 4.4.3.2, which provides information on setting up a
Linksys access point for WPA.

wpa_supplicant has an experimental interface for integrating with Xsupplicant. This allows you to connect to a WPA-EAP
network by having Xsupplicant manage the 802.1x and EAP authentication. In order for this to work properly,
Xsupplicant must be modified to send the master session key to wpa_supplicant after successful EAP authentication.

The latest wpa_supplicant code includes an xsupplicant.patch that can be used to patch the source code for Xsupplicant.
However, this patch has been merged into the Xupplicant CVS code, so we recommend you check out CVS code instead
of dealing with the separate patch.

4.4.3.1 Xsupplicant

The folks at the Open1x project build the Xsupplicant software, available at http://www.open1x.org. The latest stable
release is Version 0.8b. However, for our purposes, we need the CVS code, which you can check out from the
SourceForge CVS server using the following commands (press Enter when prompted for a password):

cvs -d:pserver:anonymous@cvs.sourceforge.net:/cvsroot/open1x login
cvs -d:pserver:anonymous@cvs.sourceforge.net:/cvsroot/open1x co \
 xsupplicant

These commands check out the CVS code and deposit it in a newly created xsupplicant directory.

Xsupplicant requires that Openssl 0.9.7 or greater be installed. Mandrake, Fedora, and Red Hat users can install the
openssl package, Debian users can run apt-get install openssl, and the source can be downloaded from
http://www.openssl.org. Most distributions already have this package installed by default, but you may need to upgrade
it to ensure that you have the version required.

In order to get the CVS code running, you must install the automake1.7 and autoconf2.5 packages (or more recent
compatible versions). Once these are installed, compiling from source is straightforward:

cd xsupplicant
./configure
make
make install

This installs xsupplicant and some related tools in /usr/local/bin. However, the CVS make install does not install a config
file, so you must copy the sample etc/xsupplicant.conf to /etc/1x/1x.conf (this is the default location of the conf file).

Edit the 1x.conf file. Many of the defaults can be left in place, but you must change a few particulars starting with the
identity, then moving on to the EAP type. Although the sample configuration file gives you a starting point for each type
of EAP, we'll use EAP-MD5 because it's easy to implement and doesn't require us to generate a certificate. After that,
you need to configure the phase2 authentication type and chap:

identity =

What Xsupplicant responds with when presented with an EAP ID Request. This is typically the username, and
because this can be an arbitrary string, you should enclose it with a <BEGIN ID> and <END ID>.

eap-md5

In this section, you must enter a username and password.

phase2_type

Here you must specify the type of phase2 authentication. The default is chap, which we use for our example.

chap

In this section, you must enter a username and password.

If you're uncomfortable entering confidential information into clear text files, Xsupplicant can be called from the
command line with switches that allow you to enter your username and password with the -u and -p options. However,
these options allow anyone who can execute a ps command on your system to see your password.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

these options allow anyone who can execute a ps command on your system to see your password.

Xsupplicant can be used both to authenticate your Linux machine to an 802.1x server as well as in combination with
wpa_supplicant to connect to WPA networks.

In either case, Xsupplicant must be activated after the interface is brought up so it can transmit authentication
information; Xsupplicant is unlike wpa_supplicant, which must complete the WPA handshakes before any data can be
transmitted.

After you have entered all of the correct information into the 1x.conf file, call Xsupplicant from the command line:

xsupplicant -i wlan0 -D

This command line puts Xsupplicant into daemon mode after it receives the password. Put the 1x.conf file in the default
location so you don't need to specify the location of the conf file. This command allows you to authenticate against any
802.11x server.

To use Xsupplicant in combination with wpa_supplicant to connect to a WPA-EAP network, you must change a few
things:

1. First, you must edit the wpa_supplicant.conf file and change the key_mgmt entry to WPA-EAP.

2. Now you can start Xsupplicant, but it must be started with an extra command line switch:

xsupplicant -I wlan0 -D -W

The -W switch tells Xsupplicant that it must communicate the master session key that it obtains from the 802.11X/EAP
server back to wpa_supplicant.

Xsupplicant also comes with some example ifup and ifdown scripts in the tools directory of the source tarball. We
suggest that you use these scripts instead of the normal distribution scripts when you wish to bring up or down an
interface that uses 802.1x authentication.

4.4.3.2 Example WPA setup on a Linksys access point

All of our testing with WPA-PSK and WPA-EAP was done using a Linksys WRT54G Wireless Router. With Version 2.0 and
above of firmware, the WRT54G is capable of both WPA methods as well as TKIP and AES encryption.

Figure 4-6 shows the configuration necessary for a WPA-PSK setup.

Figure 4-6. WPA-PSK setup for a Linksys WRT54G

Figure 4-7 shows configuration for a WPA RADIUS setup.

Figure 4-7. WPA RADIUS setup for a Linksys WRT54G

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4-7. WPA RADIUS setup for a Linksys WRT54G

4.4.3.3 WPA RADIUS setup details

In order to make this work, we set up a Mandrake 9.2 system as a dedicated RADIUS server. For a RADIUS server, we
installed the freeradius packages and their dependencies with urpmi freeradius. RedHat, Fedora, and Debian users should
be able to install the freeradius packages similarly on their systems. We did not attempt to compile the source code for
our testing, but it can be downloaded from http://www.freeradius.org.

FreeRadius supports a wide variety of database backends, including LDAP, MySQL, and others. This was major overkill
for our purposes. In order to run FreeRadius, we had to edit two files:

/etc/raddb/users

We didn't use any backend database for users, so we simply added several test users to this file. A sample user
entry is shown here:

"roger" Auth-Type := Local, User-Password = = "useless"
 Reply-Message = "Hello, %u"

/etc/raddb/clients.conf

For each client of the RADIUS server, you can define an entry with a shared secret. This isn't particularly
secure, because RADIUS shared secrets are sent in the open with no encryption (for this reason, you should use
a wired link on a physically secured network between the RADIUS server and access point). If this shared secret
were compromised, it would not compromise the integrity of the 802.1x-protected communication. However, an
attacker with knowledge of the secret and physical access to your network could replace either the RADIUS
server or access point. We defined an entry for our Linksys WRT54G and made sure that we entered the same
shared secret here as we did in the Linksys setup:

client 10.42.7.14 {
 secret = s00pers3cr3t
 shortname = wrt54g
 nastype = other
}

Once we edited these files, we started FreeRadius manually with debugging enabled so we could watch for any
problems:

/usr/sbin/radiusd -x

At this point, we were able to use the combination of Xsupplicant and wpa_supplicant described earlier in the chapter to
establish a WPA link with the WRT54G, and authenticate through to the RADIUS server.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 4. Communicating Securely
In a wired network, physical security is complicated but manageable. You can restrict physical access to routers,
switches, and network hardware. You can provide a complex authentication mechanism for proving that users are who
they say they are. You can set up Virtual LANs or Virtual Private Networks for even more security. Even if an attacker
were to plug into your wireless network, it would be difficult to penetrate further with these kinds of security measures
in place.

The wireless network world is not nearly this secure. In fact, it's not secure at all. Disassembling your network packets
and transmitting them wirelessly means that anyone within reach can see them. A wily attacker could join or passively
monitor your network from a mile away with a high-gain antenna, and you would never see him.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.1 Linux-Friendly Wireless Vendors
While it is impossible to provide a complete and up-to-date list of all wireless vendors, Table 5-1 shows a list of many of
the major manufacturers, the types of equipment they sell, and how their equipment is configured.

Table 5-1. Linux-friendly wireless vendors
Vendor Equipment types Configuration methods

Linksys[1]

www.linksys.com
Access points, bridges, routers Web-based

Netgear

www.netgear.com
Access points, bridges, routers Web-based

D-Link

www.dlink.com
Access points, bridges, routers Web-based

Cisco

www.cisco.com
Access points, bridges Web-based, Telnet, SNMP

SMC

www.smc.com
Access points, bridges, routers Web-based

EnGenius

www.engeniustech.com
Access points, bridges, routers Web-based, Telnet, SNMP

Belkin

www.belkin.com
Access points, bridges, routers Web-based

US Robotics

www.usr.com
Access points, routers Web-based

Microsoft

www.microsoft.com
Access points Web-based

ActionTec

www.actiontec.com
Access points, routers Web-based

[1] Linksys was acquired by Cisco in June 2003.

Alternatively, Table 5-2 shows a list of vendors that are not configurable from Linux out of the box. However, with some
of this equipment, there are alternative methods of configuration, and even the ability to reflash the firmware to run
Linux or make the device act like a different model.

Table 5-2. Linux-less-than-friendly wireless vendors
Vendor Equipment types Configuration methods

Proxim Orinoco

www.proxim.com
Access points Windows GUI[2]

Apple

www.apple.com
Access points Apple GUI

Tranzeo Access points, bridges Windows GUI, limited telnet

SmartBridges

www.smartbridges.com
Access points, bridges Windows GUI

[2] Proxim makes available the Orinoco CLI Proxy, which is covered later in this chapter.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.2 Commercial Wireless Equipment Overview
With the explosion in Wi-Fi popularity, a corresponding plethora of vendors and equipment choices have surfaced. There
are an amazing number of access points, but there are also wireless routers, wireless bridges, wireless-to-Ethernet
bridges, and some Linux-powered equipment as well.

5.2.1 Access Points

In Chapter 1, we covered the basics of 802.11 and the two modes of operation it supports. Infrastructure Mode, the
most common mode, requires the use of a wireless access point.

Most access points on the market share a common number of connectors: at least one external antenna, one Ethernet
port, status LEDs, and an external power supply or wall wart. Other features you might find on some models include
connectors for attaching external antennas, a reset button to return the unit to factory settings, multiple Ethernet ports,
and support for Power Over Ethernet (POE).

Power over Ethernet
If you're familiar with network cabling, you know that Ethernet uses only two pairs of the wire inside a
standard Category 5 cable. Pairs 1-2 and 3-6 are used, leaving 4-5 and 7-8 available.

POE sends DC power over these unused pairs, enabling the placement of access points or other network
hardware away from power sources. This is especially useful if you need to mount your access point on a
pole, on the ceiling, or in other inaccessible places. Run CAT5 wire rather than going to the trouble of
running electrical conduit. You can now supply both Ethernet and power to the unit.

In June 2003, the IEEE released its specification for POE, 802.3af. More information on this standard can
be obtained from the IEEE web site at http://www.ieee802.org/3/af/.

The IEEE standard is only a few months old as of this writing, so most POE equipment available for
purchase will not meet the standard. There are excellent documents from community wireless
organizations available on building POE equipment. A few good examples are the Bay Area Wireless Users
Group (BAWUG) page at http://www.bawug.org/howto/hacks/PoE/ and the NYCWireless page at
http://www.nycwireless.net/poe/.

In order to make POE work, you need a power injector, which is referred to in the 802.3af standard as the
Power Sourcing Equipment (PSE), and a corresponding unit on the other end. The standard refers to the
end device as a PD.

If your equipment is designed to support POE out of the box, you need only a PSE. This unit typically has
three jacks: DC power, Ethernet IN, and Ethernet/power OUT. Connect power, Ethernet from your
network, and then connect Ethernet/power OUT to the Cat 5 cable running to your Powered Device.

On the other end, if your equipment does not natively support POE, what you need is a splitter, a reverse
of the PSE. It also has three jacks: Ethernet/power IN, Ethernet OUT, and DC power OUT. This device
takes your incoming Ethernet/power and splits it again for connection to your device.

WARNING: unless you have electrical and LAN wiring experience, making your own POE equipment can be
dangerous or fatal to you and your equipment.

Once you get past the outside connectors, the internal features of access points begin to vary widely. There are all sorts
of devices on the market, ranging from simple home-use devices to enterprise-class units designed for large
deployments. The following list describes various manufacturers and some of their equipment:

Apple AirPort

This was one of the first access points available. Apple brought this access point and the AirPort client cards to
market before the 802.11b standard was finalized. The internals of the unit are built by Lucent/Orinoco and are
identical to the Orinoco RG-1100. Note that this applies only to the original AirPort model. The second model
(Snow) and the subsequent AirPort Extreme are based on a different processor.

Chapter 6 covers some utilities that can be used to reflash the firmware on these units, allowing you to swap
personalities and even to run Linux on them. As shown in Table 5-2, the AirPort and the RG-1100 are not
configurable out of the box from Linux. This is easily remedied. Also, early versions of the AirPort had problems
with non-Apple wireless cards. Many of these cards would not associate with the access point. This has since
been fixed through firmware updates.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

been fixed through firmware updates.

Orinoco AP-series

This series includes some of the most popular enterprise-class access points. The AP-500 has a single radio
inside, an Orinoco PC Card. The AP-1000 was the first access point to feature two radios, again both in PC Card
format. Orinoco access points have a wide array of features: MAC address filtering, network protocol filtering to
enforce such policies as preventing IPX from traversing your wireless network, support for RADIUS
authentication, and custom power over Ethernet adapters. Orinoco calls these units "Active Ethernet," and they
are available in 1-, 6-, and 12-port models, so that you can power up to 12 access points using the same POE
adapter.

More recent models include the AP-2000, the successor model to the AP-1000 (which features upgradeability to
802.11a or 802.11g, or both), giving you a tri-mode access point with all of the Orinoco features, and the AP-
2500, which is a "hotspot-in-a-box" model that includes a captive portal and many other features necessary for
setting up a wireless hotspot.

Linksys

Linksys made a huge splash with its WAP-11 access point when it was first introduced. It had a good feature set
and external antenna adapters, and was priced for the home market. Unfortunately, it is mainly configurable
through a Linksys-specific setup program, which runs on Windows. There is an SNMP utility for Windows, and
Linksys did publish an SNMP Management Information Base (MIB) for Linux/Unix users. (An MIB is one or more
text files that allow Linux's SNMP tools to generate human-readable statistics from SNMP management strings.)

Later Linksys models still continue to ship with Windows-only setup programs. However, they now offer web-
based configuration that is easily accessible from Linux web browsers.

Much of the other consumer-level wireless gear can be placed in the same area as Linksys. D-Link, SMC, and
Netgear all offer models with nearly identical features and price points.

EnGenius/Senao

Early in 2002, rumors surfaced of a 200 mW radio card. While one manufacturer, Zcomax, had made these
available, they were hard to find and were expensive.

At that point, with a few exceptions, most radio cards and access points were powered by 30 mW radios. You
can imagine how excited the wireless users were at the thought of being able to expand their range.

Today, EnGenius/Senao offers several access points for indoor and outdoor use, all with 200 mW radios. Along
with Cisco, it is one of the few vendors to support Telnet access for configuration. Figure 5-1 shows a sample
web-based configuration screen from an EnGenius access point.

Tranzeo

Tranzeo is one of a number of vendors focused on supplying wireless Internet service providers. Tranzeo's
equipment is designed to work outdoors and comes in many models, some of which include an integrated
directional panel antenna. Its access points are accessible via Telnet as well as a Windows-based GUI. Many of
its models offer some routing features (see Section 5.2.2 later in this chapter).

Cisco

The 800-pound gorilla of networking, Cisco, entered the 802.11 market when it acquired Aironet in late 1999.
Aironet was already a manufacturer of 802.11 first-generation equipment, and Cisco bought Aironet at precisely
the right time to take advantage of the 802.11b introduction.

Cisco's access points, as expected, integrate extremely well into a Cisco network. They have a wide feature set
and compare well with the products from Orinoco in the enterprise space. Also, as expected, the Cisco units all
support Telnet as well as web-based configuration. Figure 5-2 shows the main Telnet screen from a Cisco AP.

Figure 5-1. Web-based configuration for an EnGenius/Senao access point

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5-1. Web-based configuration for an EnGenius/Senao access point

Figure 5-2. Cisco Telnet configuration window

5.2.2 Wireless Routers

The line between an access point and a wireless router is very blurry. Many devices sold as access points include
routing features. For example, the Apple AirPort models offer Network Address Translation and a DHCP server. Wireless
routers are basically a combination of home ADSL/cable routers and a wireless access point.

There are some key differences, however, between most of the wireless routers now available and standard access
points. You can expect to find at least some of these features on a wireless router:

Routing protocol support

RIP or RIPv2 on many models

Network services

DHCP, DNS, and others

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DHCP, DNS, and others

Encryption support

Client or router support for IPSec and PPTP VPNs

Limited firewalls

IP masquerading and some packet filtering

Port forwarding

Sending certain TCP or UDP ports to a specific machine

These units are really designed for home or small-office use. You'll find that the larger network vendors such as Cisco
don't manufacture this type of hardware, because they want you to purchase one of their full-fledged routers.

Security in many models of these routers is also questionable. The bugtraq mailing list at
http://www.securityfocus.com/archive shows you that the number of vulnerabilities in this type of consumer hardware
is fairly high. While these units increase security compared to a standalone PC connected to a DSL modem, they are not
the end-all be-all for network security.

Wireless routers are available from almost any manufacturer that also makes access points. An alternative to
commercial wireless routers is to build your own using Linux. Chapter 6 covers this topic in detail.

5.2.3 Wireless Bridges

Perhaps the most well-known wireless bridge is the Linksys WET-11. A wireless bridge takes in an Ethernet signal and
repeats it out to a wireless network, and vice versa.

A wireless bridge is not an access point, however. The bridge is only capable of acting as an infrastructure client to a
distant access point. The practical uses of these devices abound. If you want to connect your Ethernet-enabled PC to
your wireless network, attach it to a bridge. Wireless ISPs can install a wireless bridge as their customer premises
equipment (CPE), allowing the customer to have a wired Ethernet network in her home, bridged wirelessly to a remote
access point. Any device with an Ethernet port can be added to a wireless network using a wireless bridge.

As with wireless routers, most of the companies that manufacture access points have at least one model of wireless
bridge available. If you want an outdoor wireless bridge with an integrated antenna, excellent models are available from
Tranzeo at http://www.tranzeo.com. Models for home or office use can be found from Linksys, D-Link, SMC, and all the
other usual suspects.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.3 Configuring Access Points
While many of the manufacturers we've covered allow their wireless equipment to be configured through a web or
telnet interface, this is not an option for Orinoco or Apple access points. However, there are two options for configuring
Orinoco access points under Linux and at least one option for Apple AirPort configuration.

5.3.1 Orinoco CLI Proxy

Orinoco provides a program it calls the CLI Proxy. It's available at
http://www.proxim.com/support/all/orinoco/software/dl2002_orinoco_apcli_117_linux.html. If you look at the
accompanying README file, there appears to be support from Orinoco for this product.

The release notes and program are from 2002 and have not been updated in a while. The system requirements state
that the program runs under Red Hat Linux 6.1 or similar systems. We were able to successfully install and run the
package on both Red Hat 9 and Debian Woody distributions.

To install the CLI Proxy, download the .tgz file from the Orinoco web site. The help notes suggest unpacking it in the
/opt directory, but that's not necessary. The package can be unpacked in any location that makes sense for your
filesystem. For our purposes, we'll assume you're using /opt. You'll need 1.5 MB of disk space for installation.

To unpack, execute the following command as root:

tar xzvf clili117.tar.gz

The package is a compiled binary with no source, so at this point all you can do is execute the program with the
command /opt/cliproxy/cliproxy. You'll see this prompt:

[CLI]>

First, read through the HTML documentation that is installed with the program in the /opt/cliproxy/Help directory.

The program works by downloading a configuration from an Orinoco access point on your local subnet. The program
makes use of broadcast traffic, so your Linux box must be on the same physical network as the access point for it to
work. You can also open a local configuration file. This is done through the use of the configure command. Saving the file
is accomplished by writing the file to disk or writing it to the access point, and is done by issuing the command write.

The interface is very similar to Cisco IOS, along with tab-completion of commands and the use of the ? key to find
context sensitive help. For example, show ? gives you all of the options to the show command.

Once you have opened a configuration for editing, you can modify any of the access point features available, from the
wireless interface to TCP/IP options to setting up bridging. The Orinoco access points have a pretty broad set of
features.

The software ships with default configuration files for the Orinoco AP-1000 and AP-500, which you can open and modify
to fit your needs.

5.3.2 Airport/RG-1000 Configurator

Jon Sevy of Drexel University has built a Java-based configuration program for the Apple AirPort and the Orinoco RG-
1000 access point. He also has versions of this program for the newer AirPort models with two Ethernet ports and the
AirPort Extreme 802.11g model. The software can be downloaded from
http://edge.mcs.drexel.edu/GICL/people/sevy/airport/#Configurator.

There are versions for Unix as well as MacOS 9, Mac OS X, and Windows. You need a Java 1.2-compliant runtime
engine (JRE). The latest versions of Java for many platforms can be downloaded from Sun Microsystems at
http://java.sun.com/j2se/1.4.

Once you've downloaded the Configurator, unpack it in a directory of your choice and run the program using this
command line:

java -jar AirportConfigurator.jar

When Java starts, it executes the Java Archive (JAR) code, which will result in Figure 5-3.

Figure 5-3. Java AirPort/RG-1000 Configurator main screen

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5-3. Java AirPort/RG-1000 Configurator main screen

If you're familiar with either the Orinoco configuration programs available for Windows or the FreeBase configuration
software written to configure an Apple AirPort from Windows, this screen is very familiar.

As you can see, you have the option to discover compatible devices on your network or to specify the IP address of a
device you wish to configure. Configuration is handled through a series of tabs, giving you options for wireless and
wired network settings, bridging, DHCP, and a whole host of advanced settings.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.4 Flashing Your Access Point
One feature that is not immediately apparent in the Java Configurator is located in the drop-down File menu: Upload
New Base Station Firmware. This feature is also available in the Orinoco configuration software for Windows and in the
Apple AirPort software for Mac OS X, as well as in the FreeBase software mentioned earlier.

However, a neat hack that the Java configurator and FreeBase allow is the uploading of firmware to a device that does
not explicitly match the firmware in question.

For example, the original Apple AirPort and the Orinoco RG-1000 are identical hardware, so you can flash either unit
with the firmware image of the other. You can also flash both of these models and the Orinoco RG-1100 with the
Orinoco AP-500 or AP-1000 firmware (which is quite a feature upgrade because it supports bridging, protocol filtering,
RADIUS, and many other advanced configuration options).

To flash the firmware, you need the firmware images. The Orinoco CLI proxy software comes with binary (.bin)
firmware images for the AP-500 and AP-1000. The Orinoco AP Manager software for Windows comes with these images,
as well as the RG-1000 and RG-1100 images. It is available from
http://www.proxim.com/support/all/orinoco/software/dl2002_orinoco_ap_75.html.

Apple has built its firmware updates into the executables for its AirPort updater software. If you're a Mac-head, you can
use ResEdit to remove the binary firmware from the executable. However, we won't go into that here. There is a non-
Apple web page available that provides binary firmware images for the various AirPort versions:
http://www.icir.org/fenner/airport. Use these images at your own risk. For more information on creative ways to flash
an access point, see Chapter 6.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 5. Configuring Access Points with Linux
So you've purchased an access point. You brought it home from the store, broke open the packaging, discarded all of
the extraneous bits of fluff, and you're likely left with an access point, a power supply, an Ethernet cable and a CD that
says "Windows Software Installation."

This chapter explains how to avoid this scenario. While there are vendors of wireless equipment that still expect you to
configure their gear from a Windows PC, there are many alternatives for the Linux user.

Many of the early access points from vendors, such as WaveLAN/Lucent/Orinoco, Linksys, and others, required an
external setup program. With few exceptions, these setup and configuration programs ran only under Windows.
However, as the price of wireless equipment continued to drop and access points began to be marketed to home users,
a number of vendors chose to make their equipment configurable with a web browser.

There are also several manufacturers that allow Telnet access for configuration of their access points. One thing you're
unlikely to find, however, is SSH-enabled access. As of this writing, there are no commercial access points capable of
SSH. However, at least one company is producing wireless routers that operate using a Linux kernel. Several
organizations have built custom firmware for these boxes that include SSH daemons. See Chapter 6 for details.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.1 Hardware
As we mentioned, building an access point can be a useful way to resurrect old PC hardware you may have sitting
around. Depending on where you want to install it, you can leave it in that old bulky case or dress it up with a spiffy
waterproof case and install it outside.

One of the wireless routing nodes we built for the NoCat network (http://nocat.net) in Sonoma County, California, is a
beige Macintosh G3/266 desktop machine. It runs Yellow Dog Linux and has two PCI-PCMCIA converters and two Agere
Orinoco Silver 802.11b radio cards. An odd choice, you might think—but we had the hardware and it has already
functioned as a wireless router for over a year as of this writing.

There are a few things you'll want to keep in mind when deciding whether any given hardware is right for building an
access point:

Processor speed

While it might seem nostalgic to consider using a 386 or a non-PowerPC Mac for your access point project,
these machines are so slow and old that it can be painful running Linux on them. Once you do, they don't have
the horsepower to do many neat Linux tricks such as firewalling. Anything faster than a 486/33 is able to act as
an access point with little trouble.

Support

Older PCs can certainly be made into access points. Bear in mind, though, that you must dig up such ancient
artifacts as ISA network cards and SIMM memory. If you need to build on the cheap, this can be the way to go,
but all hardware ages and fails sooner or later. If you want reliability, you might want to think about newer
hardware. There's also the issue of relying on a PC with a spinning hard disk inside—they will fail, often when
you really need them.

Standardization

You might be expanding a larger network rather than just installing an access point in your closet. If you build
more than one access point for whatever reason, you've just crossed over into the zone of network
administration. In this world, standard hardware is the norm, because you can keep single types of replacement
hardware on hand, and if you're in a multisite network, it means that everyone who's responsible is familiar
with the same hardware.

Power

Depending on where you want to locate your access point, you must consider power requirements. Do you
really want a noisy old 486-power supply fan blowing in your closet? One alternative is to consider DC-powered
devices, which range from a dedicated embedded PC to an off-the-shelf access point.

Ports

In a nutshell, does the hardware you're considering have all the right ports? Does it have onboard Ethernet, or
do you need to add a network card? If you add that network card, do you have room for a radio card? Are there
enough memory slots? Does it have a serial interface for a console? Do you need a console?

6.1.1 Recycled Hardware

The first thing you should consider is whether you have any old PC hardware sitting around that can be dusted off,
turned on, and made into a Linux-powered access point. If you're on a budget, this may be one of the cheapest
solutions, but this depends on what hardware you have, and what you want to use it for.

At a minimum, your hardware should be able to accommodate a Wi-Fi card and an Ethernet card. As we've discussed
already, you should not consider using anything slower than a 486/33 processor. Additionally, if you have old Macintosh
hardware available, you can easily run Linux on systems such as a PowerMac 8500/120. It's also possible to run Linux
on the first generation of PowerMacs, but their motherboard are expandable only with NuBus interface cards, so you're
not going to find a radio for these models.

How much memory you need depends on what distribution you decide to run. If you choose to boot your system in

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

How much memory you need depends on what distribution you decide to run. If you choose to boot your system in
read-only mode from a CD or Compact Flash (CF) RAM, and use one of the custom distributions designed specifically to
be small, 16-32 MB of RAM will suffice. More RAM is always better, of course, and if you plan on doing anything
memory-intensive, such as web caching or intrusion detection, you'll want at least 128 MB.

The beauty of using your own or buying used hardware is that you need very few components to build a working
system:

Motherboard

Memory

Processor

Power supply

Bootable media drive: hard disk, CD, CF

Ethernet card

Radio card

All the other components you'd usually find on a regular PC are optional. A case is nice to keep dust off, but a box or a
large Rubbermaid container works just as well. You need a video card, keyboard, monitor, and (optionally) a mouse for
installation, but once the access point is operational, you can boot without them. If your hardware is really old, it may
not support booting without a keyboard. Check the options in your BIOS to see if it will ignore a missing keyboard on
boot.

All of the extraneous items that are in any old PCs can probably be removed: floppy drives, sound cards, modems, and
anything else not on the list above should all be taken out. You don't need them.

Another option that you should consider is an old laptop PC. The key concern here is PCMCIA slots. You want at least
two of them, unless the laptop has a built-in Ethernet port, which you probably won't find in older laptops. The beauty
of a used laptop is that they are inexpensive, especially if the LCD screen is dead (which you don't need!). As long as it
has an external video adapter or even a serial port that can be used as a console, you should be set.

Fujitsu Stylistic
These units definitely fall under the category of recycled hardware, because they have been out of
production for years. They are not laptops, but rather the predecessor of the Tablet PC. The Stylistic 1000
models are regularly available on Ebay for under $100. Fujitsu still manufactures PCs in the Stylistic
series, but all of its new models are Tablet PCs and cost as much as a new laptop.

The 1000 series have three PCMCIA slots, one of which is the boot device. The Stylistics shipped with
internal type III PCMCIA hard disks, but you can also boot the unit from a CF using a CF-PCMCIA adapter.

The 1000 models are powered by a 486 DX4/100 processor and expandable to 40 MB of RAM, and they
feature an integrated LCD display with cordless pen input and a 4-hour battery. The 1200 models are
identical except that they are powered by a 120 MHz Pentium processor.

We have successfully used Stylistic 1000 units for access points and wireless routers on the NoCat and
Seattle Wireless networks. A single Stylistic 1000 served as the primary Internet gateway for our Internet
coop (http://www.wscicc.org) for over a year.

6.1.2 Small Board and Embedded PCs

So you don't have any used hardware sitting around that is suitable for building an access point, or you want to build a
small unit that might be placed in a location where using a full-size PC is impractical, such as mounting it in a
waterproof enclosure or installing it on your roof with a directional antenna.

However, an outdoor enclosure is only one reason you might want to think small. Power consumption, noise levels, and
available space are all good reasons to consider a small board or embedded computer system for building your access
point. Be warned, however: building one of these systems from the ground up may cost you at least $400.

Your options in this arena range from custom-designed embedded PCs specifically built for communications and
networking to tiny PC motherboards that use the Mini-ITX form factor and measure only 17 x 17 centimeters. Some of
the more popular options include:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Soekris (http://www.soekris.com)

Packaged in a green metal case that is improbably the color of a refrigerator from the early 1970s, the Soekris
motherboards are a popular choice with do-it-yourself networkers. Soren Kristensen has designed and built
several custom motherboards based on the x86 architecture, and as of this writing, he has four different models
available for single purchase or bulk quantities. All of the Soekris units are DC-powered and wired to support
Power Over Ethernet. In addition, all units have a serial console port.

The net4801 is the newest addition to the Soekris line. It is powered by a 266 MHz GEODE Pentium-class
processor. It sports three 10/100 Ethernet ports, a CF slot, both MiniPCI and PCI slots, and up to 256 MB of
RAM soldered on board. See Figure 6-1 for a detailed picture. As of this writing, in single quantities a board and
case will cost you $265.

If you need PCMCIA support, you'll want to look at the net4521. It's a different form factor, because the
PCMCIA slots are positioned side-by-side rather than over-under as in most laptops. The net4521 has a 133
MHz AMD ELAN processor, which is equivalent inside to a 486. It has two 10/100 Ethernet ports, a CF slot, a
MiniPCI slot, and up to 64 MB of RAM soldered on board. See Figure 6-2. A board and case will cost you $235.

Figure 6-1. The Soekris net4801 embedded PC

Figure 6-2. The Soekris net4521 embedded PC

BARWN outdoor routers

BARWN is the Bay Area Research Wireless Network. Tim Pozar and Matt Peterson have created BARWN, which
has some interesting research projects, including an easy-to-build outdoor wireless router.

At the time this idea was conceived, few commercial products were available that fit the needs of an outdoor
weatherproof design. To this date, not many products are available that also allow you to run a Linux or BSD
operating system on the wireless router, and have it mounted outside.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

operating system on the wireless router, and have it mounted outside.

The BARWN guys put together a white paper based on Matt Peterson's initial prototype of an outdoor router,
and that white paper is available at http://www.barwn.org.

One fine, sunny day in May 2003, several interested groups of people converged at Tim Pozar's house in San
Francisco to assemble 30 or so of these outdoor routers. It was a messy job, because three holes had to be
drilled in each box, and those holes then had to be filed and sanded so that barrel connectors and RJ-45 twist-
lock connectors could be inserted.

Figure 6-3 shows a completed installation with the Soekris net4521 mounted inside a weatherproof box.

Figure 6-4 shows one of these boxes in action on San Bruno Mountain south of San Francisco, as part of the
BARWN network.

Figure 6-3. Completed BARWN Outdoor Router

Figure 6-4. A BARWN Outdoor Router in action

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

OpenBrick (http://www.openbrick.org)

The OpenBrick is a hybrid, a cross between a custom-designed embedded PC and one of the Mini-ITX
motherboards. It's designed to be a very small server or act as a workstation, so it has onboard video,
keyboard and mouse connectors, serial ports, USB ports, onboard sound, and a Small Form Factor (SFF) IDE
connector for a 2.5-inch laptop hard drive.

However, it does run on DC power, and it features a single PCMCIA slot, onboard 10/100 Ethernet and a CF
slot. It comes standard with 128 MB of RAM and is powered by a 300 MHz fanless Geode processor. Figure 6-5
shows the back of an OpenBrick. As of this writing, an OpenBrick will set you back a cool $360.

A newer model, the OpenBrick/E, is powered by a Via C3 533 MHz processor and features three Ethernet ports,
but has no PCMCIA or PCI bus slots, which makes it less useful for building an access point.

Figure 6-5. The OpenBrick

Via Mini-ITX PCs (http://www.viavpsd.com)

Via developed the Mini-ITX format, which defines a motherboard of 17 x 17 centimeters. It offers a range of
motherboards in the EPIA line, with processor speeds from 500 MHz to 1 GHz. They are intended to be general-
purpose PC workstations, so they come with a wide array of features: onboard Ethernet, video, sound, USB,
FireWire, IDE interface, and a single PCI slot.

The Via motherboards can all be powered by an external DC adapter if you wish, but their power requirements
are such that adapting them for use with Power Over Ethernet is not advised. You can simply boot from a
standard IDE hard disk, or if you are using a CF-to-IDE adapter, boot a Via (or any PC) from a CF card. (See
Section 6.1.3 later in this chapter.)

If you want a silent unit, make sure that the EPIA motherboard you buy is powered by the Eden ESP processor.
This is a low-power processor that requires cooling only from a heatsink instead of a processor fan. The Via C3
processors are available at higher clock speeds, but they require a fan.

Older models of the EPIA M motherboards are widely available, and you can find them with 500 MHz Eden
processors. If you buy them on eBay, these motherboards can be purchased for as little as $50. If you buy
them new, they are pretty easy to find for $100.

Via's newest EPIA motherboard is the EPIA MII, which seems to be designed specifically for our purposes. Not
only does it have a fanless Eden processor, it features a PCI slot, a CardBus slot, and a CF slot. All you need to
build an access point with this motherboard is a power supply, memory, radio card, and CF card. As of this
writing, the MII can be purchased at http://www.mini-itx.com for $218. Figure 6-6 shows the MII motherboard
in detail.

Figure 6-6. The Via EPIA MII motherboard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There are many other embedded PC designs on the market. One example is the PC-104 motherboard standard, which is
commonly used for industrial applications. However, obtaining PC-104 boards in small quantities is very expensive. The
motherboards offer low performance compared to the other options we've already discussed, and the cost alone is
prohibitive.

6.1.3 Bootable Media

Your new custom access point will run a general-purpose operating system rather than a custom operating system
designed for embedded processors, so you will need a bootable media device.

There's nothing wrong with using a hard disk. After all, they are inexpensive and reliable, and if you're using recycled
hardware, you probably already have one. Hard disks have their own set of problems, however. They are mechanical
devices, with limits to the temperature and humidity that they can withstand. They generate noise, draw a fair amount
of power, and are fragile. Mechanical devices, no matter how well-designed, are going to fail eventually. If your access
point needs to be small and quiet, or needs to run on Power Over Ethernet or be installed outside, you should consider
other bootable media options.

A CD drive shares some of the same caveats as a hard disk. It's a mechanical device, it isn't suited to run at high
temperatures, and it is fragile. The cost for generic CD drives is very low; they can be purchased new for less than $30.
Again, if you have recycled hardware, you may already have a spare unit.

Using a CD as bootable media is advantageous because the device is read-only. This makes it rather resistant to
malicious hackers, because system files cannot be changed without physical access to the machine. This is also a
disadvantage, because making configuration changes is rather difficult, and any configuration you do change won't be
saved if you need to reboot. There are several Linux distributions specifically built to boot from a CD, and we discuss
them in Section 6.2.

A third option is to skip using bootable media altogether and boot your device from the network. Several of the small
board PCs support Preboot eXecution Environment (PXE), which is a technology developed by Intel. You can find out
more on PXE at the following link: http://www.intel.com/labs/manage/wfm/wfmspecs.htm. Most PCs sold since 1999
support PXE booting in their BIOS.

PXE allows you to tell a device that it will obtain booting information from another device attached to a network. In
practice, this works only on a wired network, because PXE is designed for Ethernet cards. A PXE boot over a wireless
network would require wireless drivers to be built into a device BIOS. You would then have to set up a PXE boot server,
which answers requests from PXE boot clients and feeds them the code necessary to start up. This is a pretty advanced
setup. You can get tutorials on how to set up PXE here: http://www.kegel.com/linux/pxe.html.

Your last option, and one that we recommend, is to use flash RAM as the boot device. While PCMCIA flash cards are
available, they tend to be expensive and are not as widely available as the CF cards. CF cards are now available in sizes
up to 1 GB of storage. Several of the motherboards that we discussed earlier have CF slots included. 128 MB cards can
be found for less than $40, and 256 MB cards can be found for under $50.

Compact Flash cards have many advantages. While they aren't nearly as cost-effective as a hard disk, they are tiny,
lightweight, consume almost no power, can operate in high-temperature conditions, and can be dropped with no
consequence. They can be rewritten many thousands of times. However, CF cards can eventually be written too many
times, but you can avoid this by using a Linux distribution that mounts the CF as read-only. We cover how to do this
later in the chapter.

It's even possible to use CF cards on any system that has IDE connectors on the motherboard by utilizing a CF-IDE
adapter card. These devices have a slot for the CF card, an IDE connector, and a power connector. You attach the
adapter to the IDE bus on your PC with a standard IDE cable. The CF card should appear to your PCs BIOS as a
standard IDE device.

A great source for CF-IDE adapters is Mesa Electronics. You can find a whole range of adapters on its web page,
including adapters for Smart Media cards and Memory Sticks, and other small flash cards that are widely available.
Check out http://www.mesanet.com/diskcardinfo.html for more details on the cards it offers. Figure 6-7 shows the
model CFADPT1, which has both IDE and SFF-IDE connectors.

Figure 6-7. CF-IDE adapter

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6-7. CF-IDE adapter

The CF-IDE adapters from Mesa are something to consider if you want to build an access point from an old laptop.
Suppose you have a Pentium-based laptop with two PCMCIA slots. You will need one slot for a radio card and the other
for an Ethernet card. Mesa's adapters have an SFF-IDE connector for the small-form IDE cable that laptops use, so you
can boot your laptop from CF. Mesa also sells the SFF IDE cables, which can be hard to find in retail outlets.

6.1.4 Radio Cards

In Chapter 2, we covered all the steps you would need to get a number of different wireless cards working with various
Linux distributions. We showed you how to use the Wireless Tools to change operating modes of your radio card.

Most 802.11 Linux card drivers support at least two modes: client (Infrastructure) Mode, also called managed mode by
the Wireless Tools, and ad-hoc mode. Some cards and their drivers support a third monitor mode, which we discussed
in Chapter 3. There is a fourth mode, master mode, that is of prime importance when building your own access point.

6.1.4.1 Master mode

A commercial access point has multiple functions. Not only does it have an 802.11 radio of some kind, but it also
functions as the Master of any client radio that connects to it in Infrastructure mode. The access point broadcasts
beacon frames, which advertise the SSID of the access point to clients. Once a client associates with an access point,
the access point manages all radio communication. When multiple clients associate with an access point, the access
point follows a set of algorithms to control radio traffic.

These access points usually have a separate onboard chipset that provides the additional functionality besides the
802.11 radio, or the radio card inside the access point is loaded with tertiary firmware, which gives the card access
point capability.

In our case, we can't rely on custom chipsets to provide access point functionality to our radio cards. Depending on
your particular radio card, the tertiary firmware may be an option. We discuss the ins and outs of flashing tertiary
firmware to your radio card in Section 6.2.

So where does that leave us? There are at least two types of chipsets and associated drivers that allow the use of
master mode in the driver:

Prism 2/2.5/3-based radio cards with the HostAP driver

Atheros-based radio cards with the Madwifi driver

When set to master mode, these cards do not actually provide a full 802.11 access point. They only broadcast the
beacon frames that advertise an access point to clients. The HostAP and Madwifi drivers actually take care of the
802.11 management functionality that would otherwise require a separate chipset or tertiary firmware.

In addition, if you have a Lucent WaveLAN IEEE/Orinoco/Agere 802.11b radio card, there are a couple of options you
can use to have your card act as an access point. The HermesAP project is a modified version of the orinoco_cs driver
that allows use of the tertiary firmware for Orinoco cards. While the driver does not include the tertiary firmware, it
does provide instructions on where to obtain the firmware.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

does provide instructions on where to obtain the firmware.

The second option is an updated driver from Agere. This driver is not available from any of the other Orinoco
manufacturers, including Proxim. This driver is an updated version of the wavelan2_cs driver and has been renamed
wlags49_cs. The driver includes support for master mode. We set up these drivers in Section 6.2 of the chapter.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.2 Software
There are a number of ways you can set up Linux on any of the hardware we discussed in the previous section, ranging
from custom-built distributions specifically designed for a particular motherboard to simply installing a full Linux
distribution on the hard disk of your recycled PC. We discuss several of the most common distributions that you may
want to consider.

What all of these distributions share in common is, at least, the wireless drivers you need. As mentioned in Section
6.1.4.1, there are currently two drivers that support the use of master mode: the HostAP and Madwifi drivers. In
addition, there are two driver options you can use with a Hermes I (Lucent WaveLAN IEEE/Orinoco/Agere 802.11b) or
Hermes II (Agere/Proxim 802.11g) radio card to run in master mode. We cover all four of these driver options in detail.

6.2.1 Linux Distributions

There are several available versions of Linux that are specifically geared toward building your own Linux-powered
access point. Most of them have been under development for quite some time and are very stable. Wireless ISPs and
community network organizations use these distributions to power their access points.

6.2.1.1 Running Linux off a CF card

One thing you will need for many of these installations is a Linux system that can read a CF card. Don't panic! You don't
need a custom-built motherboard such as the Soekris or the Via MII. You need a CF adapter, and you can find it in
three flavors:

1. CF-to-PC Card adapter sleeves

2. USB CF reader

3. CF-to-IDE adapter

Any of these types of units will work fine for our purposes. The USB reader will obviously require that your Linux system
be configured properly for USB, and we don't have the space to go into those details here. However, most USB card
readers, once recognized, will use a device name of /dev/sd<x> where x=a-z. If you have other SCSI devices in your
system, the CF may not be recognized as /dev/sda.

The CF-to-PC Card adapter sleeve is your best option if you are working with a laptop system. You simply fit the CF
card into the end of the adapter, then insert the adapter like a regular PC Card. In order for this to work in Linux, you
must have pcmcia-cs installed or kernel tree PCMCIA configured in your kernel. We covered both of these in detail in
Chapter 2.

If you have a desktop system, the CF-to-IDE adapter is your other option if you don't have a USB reader. (We
discussed these adapters in Section 6.1.3.) We suggest using this type of adapter only if you don't need any special
drivers loaded. As long as your system recognizes an IDE device, you're set. Insert the CF into the adapter when your
system is powered off, and on boot, your Linux distribution should recognize the CF as an IDE device.

Almost all CF cards sold on the market come preformatted with the Microsoft FAT16
filesystem. Why? Because this has become the de facto filesystem that most digital
cameras read. Digital cameras are the primary users of CF cards, so it makes sense for the
CF manufacturers to have their media ready to play.

We have encountered problems off and on with getting some makes of CF cards to
reformat properly in Linux. After you fdisk the CF card and run mkfs to make a new
filesystem, everything appears to run smoothly. However, when you attempt to mount the
new filesystem, you receive an error similar to "FAT filesystem not supported."

On some Red Hat 8 and 9 systems, we were not able to resolve this problem. On other
distributions, we were able to use the cfdisk graphical partitioning utility instead of fdisk,
and that resolved the issue. One other workaround was to fdisk the CF card in a Sharp
Zaurus PDA.

6.2.1.2 Pebble

This distribution was developed by Terry Schmidt of NYCWireless. Terry has worked very hard on this distribution, and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This distribution was developed by Terry Schmidt of NYCWireless. Terry has worked very hard on this distribution, and
it shows. Pebble is designed specifically with the Soekris hardware in mind, but it also runs quite nicely on the Stylistic
and Via hardware.

The NoCat lab runs Pebble on various Pentium-era systems down to a Pentium 75 with an ISA 3Com Ethernet card and
an ISA PCMCIA adapter for an Orinoco wireless card. According to the README, Pebble has also been known to run on
1U servers, IBM ThinkPads, and a robot at the Defcon hacking conference.

Terry developed this distribution specifically for the Soekris, so it was built from the ground up to be run from a 128 MB
CF memory card. While you could strip out some functionality by removing Perl, NoCatAuth, djbdns, and a few other
utilities, and get the distro to fit on a 32 MB CF card, it's barely worth the effort because you can find 128 MB CF cards
for $30.

To prevent excessive writes to the CF card, Pebble is designed to boot read-only, and it creates a RAM disk for any
temporary files that need to be written in the course of regular system operation. This means that once the system is
configured, the flash is never written to, which will extend the life of your CF card. The other great advantage of a read-
only mounted operating system is that you can lose power at any time, and you won't corrupt any data.

Pebble is based on the Debian GNU/Linux 3.0r1 release, so customizing the installed software is easily done with the
included apt utilities. For example, the Pebble boxes on the NoCat network are customized from the standard pebble
release, so run apt-get install sudo ntp-simple bind9 bind9-host and apt-get remove djbdns ppp pppoe nano before you deploy a
new Pebble machine. This approach is much more flexible than some of the other small distributions we discuss later in
the chapter. While the apt databases do take up some space, the flexibility they offer is worth it.

Pebble is freely available at http://www.nycwireless.net/pebble. As of this writing, the latest version is
pebble.v39.tar.bz2. This release includes:

Linux Kernel 2.4.22 with Crypto modules

HostAP 0.1.2 and utils and hostapd

MadWiFi CVS version from 11/17/03

bridge-tools

djbdns caching dns server

elvis (tiny vi)

gnupg

iptables 1.2.6a

lilo

NoCatAuth, running as non-root user, post 0.81 nightly

ntpdate

openSSH server 3.4p1-1.woody.2 patched

openSSL 0.9.6c patched with security fixes backported by Debian

pcmcia-cs (kernel module pcmcia)

Perl 5.6.1

ISC dhcpd and dhclient

zebra 0.92a-5 (BGP, OSPF, RIP Routing Daemon)

Pebble has wireless card driver support for many but not all wireless cards. There are drivers for Orinoco, Cisco,
Atheros (madwifi), and Prism (HostAP). It supports a fairly wide variety of Ethernet drivers, including 3Com, Intel,
National Semiconductor (Soekris), and Via-Rhine (Via motherboards), as well as the Tulip driver, which supports a wide
range of Ethernet cards.

We assume for the purposes of this section that you will install Pebble on a CF card for use in a Soekris or other
machine that can boot from a CF. This shouldn't keep you from loading it on other media. It works well from a hard
disk, and you can simply substitute a mounted IDE hard disk for the CF card in the following instructions.

As Terry mentions in the README, there are many types of CF cards. He has had problems with Kingston flash cards
and recommends SanDisk CF cards. We concur, having had a few flash cards ourselves that simply would not boot

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and recommends SanDisk CF cards. We concur, having had a few flash cards ourselves that simply would not boot
properly. Pebble fits nicely on a 128 MB flash. We don't recommend anything smaller unless you plan to trim packages,
and we don't cover that here. See Section 6.2.1.1.

Once the CF card is in your system and is successfully recognized, there are several steps to obtaining a working Pebble
distribution on the CF. Terry has greatly improved this process over time, and the latest versions of Pebble have an
installation script that takes care of most of the heavy lifting for you.

Here's what you must do as root. These examples assume that your CF card is recognized as /dev/hde. This is the case
on a typical system with a single IDE hard disk and an IDE CD-ROM. Consult dmesg to make sure you know which
device your CF card is using.

1. Use fdisk to create one large partition. You don't need swap, because Pebble mounts read-only and writes
everything entirely to RAM.

fdisk /dev/hde

2. Next, use mkfs.ext2 to create an ext2 filesystem. You don't need or want a journaling filesystem such as ext3
or jfs. Again, Pebble mounts read-only, so the journal uses up space that you could use:

mkfs.ext2 /dev/hde1

3. Create a mount point for the CF card (you don't need to mount it, because the pebble.update script, which
you'll run later, takes care of this for you):

mkdir /mnt/cf

4. Make a directory to untar the Pebble distro so the install script can work:

mkdir /mnt/pebble

cd /mnt/pebble

5. Uncompress and untar the Pebble distro to the directory that you have just created (the actual version number
may be different):

tar jxvf /path/to/pebble.

v39.tar.bz2

If you want to do manual configuration of your Pebble install before invoking the installation scrip, there is an
opportunity here for editing filest. For instance, if you want to configure dhcpd or any of the other daemons that run at
startup, this is a good time to do so. In particular, you should consider editing etc/network/interfaces to define TCP/IP
for eth0, and also editing etc/pcmcia/network.opts and etc/pcmcia/wireless.opts to configure your radio cards. This
way, you can bring up a working system from the get-go.

We also recommend editing etc/inittab. Terry runs the NoCatAuth captive portal from inittab to make sure that it always
respawns if it dies unexpectedly. This is fine, but until you have a completely configured Pebble system with all of its
network interfaces active, you will receive garbage on the console while NoCatAuth tries to start, fails, and respawns.
The last line of etc/inittab reads:

NC:23:respawn:start-stop-daemon -S -c nocat -exec /usr/local/nocat/bin/

gateway -- -F

Comment this line out by placing a # at the beginning of the line. Then you can run:

./pebble.update

This is the installation script. It's interactive, so you must answer a few questions before it can start.

 Where is the pebble installer (this) directory? default=/mnt/pebble:

 Which device accesses the compact flash? default=/dev/hde:

 Which directory should I mount the FlashCard to? devfault=/mnt/cf:

 Which module? Enter 1 for pcmcia, 2 for net4501, or 3 for net4521/net4511 \

 default=net4501

You should know the answers to the first three questions, because we've discussed them in the previous steps. The last
question is critical, because the answer affects which modules load in the Pebble installation you create, as well as other
startup operations.

If you're setting up a Soekris system, the answers are obvious for any other system that uses a PC Card radio, you
must choose option #1. If you have a PCI or a MiniPCI radio card, none of these options will completely suit you.
Choose #1 and make some configuration changes later.

Once you have the questions answered, the installer script goes to work, making changes to the configuration files
depending on how you answered the last question. Once done, it copies the modified distribution from /mnt/pebble to
the mounted CF card at /mnt/cf.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the mounted CF card at /mnt/cf.

After copying, it performs ssh key generation for the sshd keys, so that there are no duplicate Pebble ssh keys running
in the world, and finally, it makes you change the root password. Once done, it unmounts the CF card, and you are
ready to insert the CF card into your chosen access point hardware.

If you have a Soekris system, this is the point where you'll want to hook up a serial cable to a PC and run some
terminal software at 9600 8-N-1, so you can see the console as Pebble boots. If you made configuration changes prior
to running the installation script, this is doubly important so you can make sure things start like you expect. If you're on
a PC system with video output, hook up a monitor.

At this point, you should have a working Pebble access point. If you happen to have a Prism-based card in your system,
it should come up in master mode and appear as an access point with an SSID of "Freenetworks." Later in this section,
we cover some specifics on configuration of the HostAP driver that makes this setup possible.

There are two places to get help with Pebble. First, read completely through the README, available at
http://www.nycwireless.net/pebble/pebble.README. If you can't resolve your issue with the help of the README,
subscribe to the Pebble mailing list at http://freenetworks.org/mailman/listinfo/pebble-linux. The list is active and full of
knowledgeable readers who should be able to provide you assistance.

6.2.1.3 LEAF/WISP-Dist

LEAF stands for the Linux Embedded Appliance Firewall. Rather than being a single distribution, LEAF has actually
become a clearinghouse of sorts for a number of related distributions, all of which are available from the LEAF pages:
http://leaf.sourceforge.net.

Most of the LEAF distributions are children of the Linux Router Project (LRP), which was designed as a single-floppy
bootable Linux-based router. As the project matured, spin-offs developed that included newer kernel support, among
other things. LEAF is now the parent organization for six active distributions and some inactive ones.

At one time, Wireless ISP Distribution (WISP-Dist) was an independent distribution, but recently it has moved under the
support of LEAF. For the purposes of building a custom access point, WISP-Dist is the only LEAF distribution we cover.

WISP-Dist is a modular embedded Linux distribution for wireless routers but can be used for other purposes as well.
The entire system fits in 8 MB flash/16 MB RAM, making it much smaller than Pebble. The stated goal of the project is
"to create an open, customizable, and easy to use embedded router for ISP needs."

As of this writing, the current version of WISP-Dist is 2624, but it is referred to in the documentation as WISP-2003,
because it was the only release in that year. Current features include:

Linux kernel 2.4

Simple to use menu-based configuration system for basic functionality

Command-line access for advanced configuration

The ability upgrade remotely via automatic script

Modularity: you can add/remove packages

Local access via console or serial port

Remote access via sshd

Statistics available via SNMP, including wireless statistics

Layer 3 bridging support based on proxy ARP

OSPF, RIPv2 dynamic routing support integrated with Zebra routing engine

NAT (with H.323, PPTP pass-through support)

Bandwidth shaping

PPP

PPPoE client

VTUN for encrypted PtP

VLAN trunking

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VLAN trunking

Access point support for Prism2/2.5/3/Atheros

MAC filter support for access point

Advanced network diagnostics: NTOP, tcpdump, bmon, etc.

The ability to log all system events to remote system with syslog

checkping: system reboots if some of the specified hosts are unreachable (useful when radios get stuck)

The ability to store all files, which makes it easy to service on standard FAT partition.

While WISP-Dist is very small, it runs on pretty much any x86-compatible CPU. The developers recommend at least a
100 MHz processor in addition to the minimum of 8 MB of disk space and 16 MB of RAM. WISP-Dist has been tested on
the Soekris hardware as well as several single-board computers designed for the ISP market. It includes drivers for
Cisco, Orinoco, Atheros, and Prism-based cards. There are two types of wireless cards that it does not support: cards
based on the Texas Instruments chipset (such as the D-Link DWL-520/650+) and USB wireless adapters.

As with Pebble, WISP-Dist is designed to be installed on a CF card. The size requirements are much smaller, however—
you can run WISP-Dist on as little as 8 MB of flash. You do need a system that can read CF cards. See Section 6.2.1.1,
earlier in this section.

The WISP-Dist installation is nowhere near the simplicity of the Pebble installation script. The distribution is provided in
two different types:

Partitionless installation from a .bin or .img file

Once you have downloaded the wisp-dist_2624_img_wdist.bin file (or a newer version) and have a CF card
inserted in your reader, you must use the dd command to copy the image to the CF card. dd makes a block-by-
block copy of the image, so you don't need to partition the CF. This invocation assumes your CF card is on
/dev/hde:

$ dd if=wisp-dist_ 2624

_img_wdist.bin of=/dev/ hde

Partition-based installation from package distribution .zip file

You must manually partition the CF card using the fdisk command. The first partition that you create should be
at least 6800 Kb in size, and you should set this partition to Active. You should also specify the partition type as
FAT. The second partition should be at least 1,300 Kb in size. If you have more than 16 MB RAM in your system,
you can skip the creation of the second partition, as WISP-Dist will create a RAMdisk on boot to use instead of a
second partition, similar to Pebble's operation.

Next, create the filesystem on the first partition:

mkfs.msdos /dev/ hde1

Now obtain the SYSLINUX bootloader from http://syslinux.zytor.com, and install it on the first partition.
SYSLINUX can also be installed in Debian using apt-get. Mandrake and Red Hat/Fedora users can install an
RPM. SYSLINUX is designed to boot Linux from a FAT filesystem. Once you have the SYSLINUX binary on your
system, execute this command:

syslinux /dev/ hde1

This creates a boot sector on the disk and copies a file named LDLINUX.SYS into the root directory.

Next, you should mount the CF card, unzip the wisp-dist_2624_pkg_wdist.zip file (or a newer version that
matches the version of the .bin file) into a temporary directory, and copy files from the temporary directory to
the root of the CF card:

mount -t vfat /dev/ hde1 /mnt/cf

cd wisp-dist

cp -a * /mnt/cf

Lastly, edit the syslinux.cfg file. If you did create the second partition in the first step, you must add the
statement rwfs=/dev/hda2. This assumes that on your target system, the CF card is the IDE primary master
/dev/hda. If your system is booting from a different device, you must also change any occurrence of
boot=/dev/hdaX in the syslinux.cfg file to the appropriate device.

At this point, you should be able to unmount /dev/<hde> (or whatever device your CF is on) from your system, eject

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

At this point, you should be able to unmount /dev/<hde> (or whatever device your CF is on) from your system, eject
the CF card, and place it in the system that will be running WISP-Dist. As with Pebble, it's a good idea to connect a
serial console or monitor to the system to watch the initial boot.

WISP-Dist should appear with a default configuration that has no root password, the eth0 Ethernet interface at
192.168.1.1 with a 255.255.255.0 netmask, and a serial console on ttyS0 at 9600 8N1. When you log in as root, you
are immediately presented with a menu, as shown in Figure 6-8.

Figure 6-8. WISP-Dist Configuration menu

The WISP-Dist configuration system is straightforward and easy to set up. If you want a command line for advanced
configuration, you can choose Quit from the menu and you will be presented with the root command line.

If you need help with WISP-Dist, you should first read through the User Guide, which is located at
http://leaf.sourceforge.net/devel/hzdrus/doc/html. For some reason, there is no WISP-Dist topic in the LEAF FAQs at
SourceForge, so the next place you should check is the leaf-user mailing list. You can search the archives at
http://www.mail-archive.com/leaf-user%40lists.sourceforge.net or subscribe to the list at
http://lists.sourceforge.net/lists/listinfo/leaf-user.

6.2.1.4 LinuxAP

The LinuxAP distribution began life as an upgrade to the OpenAP code, which was developed to run on certain access
point hardware. See Section 6.3.4 later in this chapter for details.

As of this writing, the current version of LinuxAP is based on the 2.4.20 kernel, and it supports both the Eumitcom
WL11000 motherboards that power some access points, as well as the Soekris hardware platform. The LinuxAP web
pages are at http://linuxap.ksmith.com, and as of this writing, the most current version of the LinuxAP source is
linuxAP-2003-09-13.tar.bz2.

Installation and compilation of LinuxAP is somewhat modular in that you can choose up front which daemons and
utilities you want to include with your compiled kernel. In addition to the LinuxAP source, you can download additional
compressed files from the LinuxAP web site, including:

Kernel 2.4.20

Bridge utilities

BusyBox shell/network utilities

C-Kermit

CRAMFS filesystem utilities

CIPE tunnel driver and utilities

HostAP driver

IP tables firewall

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IP tables firewall

pcmcia-cs

Tiny login

Uclibc compact C library

uDHCP client/server

UMSDOS enhanced FAT filesystem

Wireless tools

As with the previous two distributions, in order to get LinuxAP loaded on a CF card for use in a Soekris unit, you need a
CF card reader. See Section 6.2.1.1 earlier in this section.

1. First, uncompress the LinuxAP distribution. The developer recommends that you place the compressed file in
/usr/src so that your code tree resides in /usr/src/linuxAP. You must replace 2004-09-13 with whatever version
of LinuxAP you downloaded:

cd /usr/src

tar xjvf linuxAP- 2004-09-13 -tar.bz2

cd linuxAP

2. Next, make a directory for the utilities that you selected and downloaded:

mkdir tarfiles

3. Uncompress each source file for the utilities, but leave the .tar file intact, and copy the .tar files into the newly
created directory:

cd /usr/src

bunzip2 linux- 2.4.20 .tar.bz2

cp linux- 2.4.20 .tar linuxAP/tarfiles

4. Now, run make, which allows you to select the type of hardware, Eumitcom or Soekris, and also the utilities you
want to include:

cd linuxAP

make

5. Once the compile is completed, in the linuxAP directory you will have two created files: kernel and ramdisk. At
this point, prepare your target disk and install SYSLINUX. (See the Section 6.2.1.3 earlier in the chapter for
details on where to obtain SYSLINUX.) Set up the first partition as 8 MB, set it as Active, and make it a FAT16
partition. Make a new MSDOS partition, and then install SYSLINUX. If your CF card is on a different device,
replace /dev/hde with the appropriate device.

fdisk /dev/ hde

mkfs.msdos /dev/ hde1

syslinux /dev/ hde1

6. The last step is to mount your newly formatted CF card and copy the compiled kernel, ramdisk, and the
syslinux.cfg files over:

mount -t vfat /dev/ hde1 /mnt/cf

cd /usr/src/linuxAP

cp syslinux.cfg ramdisk /mnt/cf

cp kernel /mnt/cf/linux

umount /mnt/cf

7. Once again, you can now remove the CF card, insert it in your Soekris hardware, and boot it up with a serial
cable attached to observe the initial boot.

For help with LinuxAP, refer to the LinuxAP-dev mailing list, hosted at
http://linuxap.ksmith.com/mailman/listinfo/linuxap-dev. There is an active development and user community
who should be able to provide you with advanced assistance.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.2.1.5 Other distributions

As of this writing, Pebble and WISP-Dist are the two most full-featured distributions specifically aimed to make a small-
board computer into an access point. There are some other distributions you may want to investigate:

Sydney Wireless HostAP CD

The wireless folks down under have produced this ISO CDROM image of a Linux bootable CDROM installer. This
is not just a bootable CDROM; it will fdisk and format a hard disk or device that you choose and install a custom
version of Debian Linux. The distribution features support for PCI and PCMCIA Prism cards using the HostAP
driver, has support for a wide variety of Ethernet cards, does advanced routing with the Zebra routing engine,
and has IPv6 capabilities.

The installed distribution takes up approximately 43 MB, so you can consider this as another alternative
operating system to try on your CF card. The CD can be downloaded from http://www.sydneywireless.org/?
Projects.

LocustWorld MeshAP

MeshAP is a unique distribution in many respects. Jon Anderson, in the UK, created MeshAP and has added
some interesting features. First, MeshAP is designed from the ground up to actually build mesh networks using
the Ad-hoc On-demand Distance Vector (AODV) routing protocol. AODV builds routes between nodes on
demand, as desired by those nodes. You can get detailed information on AODV at
http://moment.cs.ucsb.edu/AODV/aodv.html.

Second, as part of the MeshAP project, Jon created the Wireless Internet Assigned Numbers Authority (WIANA),
found at http://www.wiana.org. This is slightly controversial, as WIANA will assign you a 1.x.x.x IPv4 address
for the wireless mesh portion of your MeshAP. WIANA certainly is not the first organization to assign unused
IPv4 address space to wireless networks; the folks at http://freenetworks.org have done the same with the
10.x.x.x address space. Both of these assignments are really hacks on the existing infrastructure, until IPv6 is
actually implemented on a larger basis.

MeshAP is provided in a similar format to the Sydney Wireless CD, in that you download an ISO CDROM image,
burn that image to CD, and boot from the CD. The installation process lets you select a device for installation,
and it then partitions and formats the destination device and installs a MeshAP distribution. Once you have
MeshAP installed, you must register at http://www.wiana.org to receive a 1.x.x.x address for your Mesh.

You can get documentation for MeshAP from the LocustWorld Wiki at http://www.locustworld.com/tracker/wiki?
p=WikiIndex. There is also a MeshAP User mailing list. To subscribe, send an empty email message to
meshapuser-subscribe@lists.locust.net.

6.2.2 HostAP

In Chapter 2, we covered in detail the compilation and installation of the HostAP driver, so all the examples from this
point on assume that you have compiled and installed HostAP (if necessary—some distributions include it), and then
configured the HostAP driver for your Prism-based radio card. Also, we assume that the driver works with your card in
managed mode.

As we've explained previously, the HostAP driver performs the 802.11 management functions that would normally be
performed in an access point by either tertiary firmware in a radio card or dedicated additional hardware.

Setting up HostAP to function this way is a simple matter of changing the card to master mode. You can do this through
the iwconfig tool (replace MyAP with the name you want to use for your access point):

iwconfig wlan0 essid myAP mode master

To bring up the HostAP driver in master mode during startup, modify /etc/pcmcia/wireless.opts. Here is an example
(you can change the ESSID and CHANNEL settings):

wireless.opts

case "$ADDRESS" in

,,*,*)

 INFO="Prism card in Master mode"

 ESSID="myAP"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ESSID="myAP"

 MODE="Master"

 CHANNEL="11"

 RATE="Auto"

 ;;

esac

Chapter 2 also discussed the address-matching syntax used in the wireless.opts and network.opts files. This syntax is:

scheme, socket, instance, MAC address

You can use this syntax in many different ways. Schemes are mostly useful for client-based laptops, where you need to
switch between different wireless settings for home and work. instance is supposed to be used for network cards that
have multiple interfaces. We've never found a wireless card that uses this parameter.

However, for an access point, it can be extremely useful to specify which slot should only hold the access point radio
card:

,0,.*)

This syntax would ensure that only a card in PCMCIA socket 0 would be given the master mode configuration. It would
even be more useful to add a wildcard MAC address match:

,0,,00:02:6F:*)

Now, any card that is inserted in slot 0 and is a Senao/EnGenius Prism-based card is given the master mode
configuration, and allowed to act as the access point card. If you're spending a lot of time futzing around with your
radio card configuration, this is one way to make sure that you know what to expect when you plug in a certain card.

Some machines, including the Stylistic and Soekris, have problems loading the HostAP
driver with high-power 100 mW and 200 mW Prism-based radio cards. The card is
detected on insert but fails to initialize, and it reports an obscure error: "GetNextTuple: No
more items." If you have this problem, add this line to /etc/pcmcia/hostap_cs.conf:

module "hostap_cs" opts "ignore_cis_vcc=1"

The driver attempts to verify that one entry on the card's acceptable voltage table
matches the voltage reported by your PC Card slot. In some cases, this voltage can be
reported incorrectly, causing the driver to fail. This option causes the driver to ignore the
reported voltage and load anyway.

If you have a PCI or MiniPCI Prism card, configuration is not handled via the pcmcia-cs configuration scripts, but is
handled like any other Ethernet interface. On Debian systems, you can add an up iwconfig line to the TCP/IP definition
for the radio card in /etc/network/interfaces:

iface wlan0 inet static

 address 192.168.1.1

 netmask 255.255.255.0

 broadcast 192.168.1.255

 up iwconfig wlan0 essid myAP mode master channel 11 rate auto

On Mandrake, RedHat, and Fedora systems, you can add radio configuration for PC Card, PCI, and MiniPCI Wi-Fi
adapters in /etc/sysconfig/network-scripts. This is a sample ifcfg-wlan0 script:

DEVICE=wlan0

BOOTPROTO=static

ADDRESS=192.168.1.1

NETMASK=255.255.255.0

BROADCAST=192.168.1.255

ONBOOT=yes

MODE=Master

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MODE=Master

ESSID=myAP

CHANNEL=11

RATE=AUTO

Once you have your card configured for master mode, you can now treat wlan0 as any other Ethernet interface. Assign
IP addresses, set up routing, and bind processes to the interface as needed. HostAP takes care of all the details of
managing wireless clients attached to your access point.

6.2.2.1 Bridging

In the previous examples, your Prism card on wlan0 has its own IP address. This requires you to set up routing on your
Linux system. While this really isn't a problem, there may be situations where you don't want routing, but rather want
to bridge all wireless traffic across to your wired Ethernet port.

Later in this chapter, we discuss setting up Wireless Distribution System (WDS), which bridges HostAP and a Linksys
access point. In order to set up bridging or WDS, we needed to install the bridge-utils package. On our Mandrake 9.2
system, this was installed using the command urpmi bridge-utils; Red Hat and Fedora users should be able to similarly
use the rpm installation, and Debian users can do apt-get install bridge-utils. You can also obtain the source code from
http://bridge.sourceforge.net. You must also make sure that your kernel has support for 802.1d Ethernet bridging. On
the factory kernels from Mandrake and Fedora, this was enabled by default, but for RedHat and Debian systems, we
needed to compile this option into the kernel ourselves.

To bridge your Prism card running in master mode with your first Ethernet card, use the following, preferably from the
console of your access point (if you try to mess with networking while you are connected via ssh, things will probably
become weird):

ifconfig eth0 0.0.0.0

ifconfig wlan0 0.0.0.0

brctl addbr br0

brctl addif br0 eth0

brctl addif br0 wlan0

ifconfig br0 192.168.1.2

route add default gw 192.168.1.1

As we report in the WDS section later in this chapter, it can take up to 30 seconds for the bridge to come up and began
passing TCP/IP traffic. Don't be alarmed if you can't ping across the bridge from your client immediately after pressing
Enter on the last command.

If you have only one bridge on your network, you can safely turn off the Spanning Tree protocol with:

brctl stp br0 off

This prevents the bridging code from needlessly sending 802.1d traffic to other nonexistent bridges. You can see the
configuration of your bridge at any time by using brctl show:

brctl show

bridge name bridge id STP enabled interfaces

br0 8000.00026f15423F no eth0

 wlan0

Bridges tend to be "set and forget" devices (although you must run the commands shown in this section after each
reboot, so you may want to put them in a startup script). Once configured, your bridge maintains itself, barring a huge
amount of traffic. Be sure to read the documentation available at http://bridge.sourceforge.net as well as the
documents listed at the end of this section.

Keep in mind that although a bridge is simple to configure, it isn't very secure. You don't have any control over the
packets that flow across your bridge. To use a bit of cliché, you may want to consider enacting a toll on your bridge by
implementing some firewalling. Unfortunately, standard iptables firewall commands don't work with bridging in the 2.4
kernels. Rob Flickenger has detailed how to bridge with a firewall in his excellent book, Wireless Hacks (O'Reilly).

For more information, please consult the following sources:

The Linux Bridge STP HOWTO (http://www.linux.org/docs/ldp/howto/BRIDGE-STP-HOWTO)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Linux Bridge STP HOWTO (http://www.linux.org/docs/ldp/howto/BRIDGE-STP-HOWTO)

The Linux Bridge and Firewall mini HOWTO (http://www.tldp.org/HOWTO/mini/Bridge+Firewall.html)

Wireless Hacks, by Rob Flickenger (O'Reilly)

6.2.2.2 MAC address filtering

We touched briefly on this subject in Chapter 4. MAC filtering does not offer much security, because a person running
Kismet can easily sit in range of your access point, capture a number of frames, and quickly deduce at least one MAC
address that is allowed to associate with your access point. It is pretty trivial under Linux to spoof a MAC address,
allowing an attacker to join your wireless network. You should combine MAC filtering with WEP and implement a captive
portal with authentication to provide a reasonable measure of security.

While the filtering of MAC addresses is certainly not the best security measure for your wireless network, it does at least
provide the first layer of defense. Filtering MAC addresses not only blocks traffic that is not destined for your network,
but also attempts to prevent other users from associating with your access point.

When using MAC filtering, make a list of wireless devices that you wish to allow, and then deny all others. With the
HostAP driver, this is done using the iwpriv command:

iwpriv wlan0 addmac 00:01:02:03:04:05

iwpriv wlan0 addmac 05:06:07:08:AA:BB

This adds MAC addresses to an internal table maintained by HostAP. You can add as many addresses to the table as you
like, one on each line, and then tell HostAP what to do with the table you've built:

iwpriv wlan0 maccmd 1

iwpriv wlan0 maccmd 4

The maccmd 1 tells HostAP to use the table as an allowed list and deny all other MAC addresses from associating. The
maccmd 4 disconnects all associated clients, forcing them to reassociate. At this point, only clients in the table are
allowed to reassociate with your access point.

Sometimes, you may only need to ban a troublemaker or two, rather than set up a list of permitted devices. Again, you
would use the iwpriv command:

iwpriv wlan0 addmac 01:10:20:02:30:03

iwpriv wlan0 maccmd 2

iwpriv wlan0 kickmac 01:10:20:02:30:03

As before, you can use addmac to add as many addresses to the table as you need. The maccmd 2 sets the policy for the
new table to deny, and kickmac boots the specific MAC immediately from the access point. This is nicer than booting
everybody and making them reassociate.

To disable MAC filtering, enter this command:

iwpriv wlan0 maccmd 0

If you make a mistake typing in a MAC address, you can use the delmac command just as you would addmac. Should you
ever need to flush the current MAC table entirely but keep a defined policy in place, issue:

iwpriv wlan0 maccmd 3

Finally, you can view the current MAC table in /proc:

cat /proc/net/hostap/wlan0/ap_control

While iwpriv manipulates the running HostAP driver, it doesn't preserve settings across reboots. Once you're happy with
your MAC filtering tables and policies, make sure you put the necessary commands in an rc script to run at boot.

6.2.3 Madwifi

Unfortunately, the Madwifi driver does not have nearly all of the bells and whistles of HostAP. However, if you want a
Linux-based 802.11a or 802.11g access point, this driver is really your only working option as of this writing.

Again, we covered the installation and compilation of the Madwifi driver in Chapter 2. We assume that you are able to
use the driver in managed mode.

The Madwifi driver, like HostAP, performs the 802.11 management functions that normally are performed in an access
point by either tertiary firmware in a radio card or dedicated additional hardware.

Setting up Madwifi to function this way is a simple matter of changing the card to master mode. You can do this through

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Setting up Madwifi to function this way is a simple matter of changing the card to master mode. You can do this through
the iwconfig tool (you can change myAP to whatever you prefer for the SSID):

iwconfig ath0 essid myAP mode master

To bring up the Madwifi driver in master mode during startup, you can modify /etc/pcmcia/wireless.opts. Here is an
example (you can replace ESSID and CHANNEL with your own settings):

wireless.opts

case "$ADDRESS" in

,,*,*)

 INFO="Atheros card in Master mode"

 ESSID="myAP"

 MODE="Master"

 CHANNEL="11"

 RATE="Auto"

 ;;

esac

The Atheros cards are all CardBus adapters, so they are treated as hotplug devices, and configuration can also be
handled like any other Ethernet interface. On Debian systems, you can add an up iwconfig line to the TCP/IP definition
for the radio card in /etc/network/interfaces:

iface ath0 inet static

 address 192.168.1.1

 netmask 255.255.255.0

 broadcast 192.168.1.255

 up iwconfig wlan0 essid myAP mode master channel 11 rate auto

On Mandrake, RedHat, and Fedora systems, you can add radio configuration for PC Card, PCI, and MiniPCI Wi-Fi
adapters in /etc/sysconfig/network-scripts. This is a sample ifcfg-ath0 script:

DEVICE=ath0

BOOTPROTO=static

ADDRESS=192.168.1.1

NETMASK=255.255.255.0

BROADCAST=192.168.1.255

ONBOOT=yes

MODE=Master

ESSID=myAP

CHANNEL=11

RATE=AUTO

Once you have your card configured for master mode, you can treat ath0 as any other Ethernet interface. Assign IP
addresses, set up routing, and bind processes to the interface as needed. Madwifi takes care of all the details of
managing wireless clients attached to your access point.

The Madwifi driver at this time does not support MAC address filtering, but you can set up bridging using an Atheros
card. (See the Section 6.2.2.1 previously in this chapter where we discussed setting up a bridge with HostAP and a
Prism card.) To set up a bridge with your Atheros card, simply substitute ath0 for wlan0 in the bridge setup.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.2.4 Hermes AP

Hermes-based radio cards (the tremendously popular but confusingly named Lucent/Orinoco/Avaya/Proxim silver and
gold cards) are notoriously difficult to operate as an access point. By design, the cards themselves are actually not able
to provide 802.11 BSS master services on their own. You might find this surprising, because they are the radio cards
embedded in the original AirPort AP, as well as the RG1000, RG1100, AP1000, and many others.

Before these cards can operate as a BSS master, they need additional firmware uploaded to the card. Orinoco and
many other cards originally based on the Prism designs can actually host three firmware images: primary or operating
firmware; station or client firmware; and tertiary firmware. This tertiary firmware is uploaded to the card's RAM and lost
if the card loses power. To make matters even more difficult, the firmware in question is licensed software and can't
legally be distributed by anyone but the manufacturer.

The ingenious Hermes AP project (http://hunz.org/hermesap.html) addresses both of these tricky issues. It consists of
a set of modified drivers, a utility for uploading the tertiary firmware, and a simple script that downloads the firmware
from Proxim's public FTP server. Running Hermes AP successfully is not trivial, but it can be the perfect piece of
software if you absolutely need a host-based Orinoco AP.

To get Hermes AP running, you need a kernel with Dev FS enabled. This allows the kernel to manage the /dev
directory, dynamically creating device files for every physical device that the kernel supports. Run a make menuconfig or
make xconfig, and select Code maturity level options Prompt for development and/or incomplete code/drivers. Now
go back to the main menu, and under File systems enable /dev file system support, as well as Automatically mount at
boot. When running Dev FS, it's also a good idea to disable /dev/pts filesystem support, as Dev FS automatically
manages your ptys for you.

Before you recompile your kernel, copy all of the source code under the drivers/ directory from Hermes AP over top of
the existing drivers in the kernel (right over the files in linux/drivers/net/wireless/). Now build your kernel and modules
as you normally would, and reboot.

Your Orinoco card should come up as normal with the new driver, but it won't support BSS master mode yet. First, cd to
the Hermes AP source directory. To download a copy of the tertiary firmware from Proxim's site, run the hfwget.sh
script in the firmware/ directory. Next, build the hfwload utility by running make in the hfw/ directory. This utility
uploads the tertiary firmware to your card. Copy the utility and the card firmware somewhere handy (we keep ours in
/usr/local/hermesap), and run a command like this at boot time, before the interface comes up, replacing eth1 with the
actual interface name and FIRMWARE with the firmware filename (such as T1085800.hfw):

cd /usr/local/hermesap; ./hfwload eth1 FIRMWARE

Note that the card must not be configured up when you load the firmware; if it is already up, an ifconfig eth1 down brings
it down for you. If all goes well, an iwconfig should show that eth1 is in master mode! You can now configure the radio
with an ESSID, WEP keys, and any other features as you normally would.

Hermes AP is still beta software, but it seems to run quite well. For situations where you don't have the option of using
HostAP and a Prism-based card, Hermes AP is a good alternative solution.

6.2.5 Agere Wlags49

Linux drivers for the Hermes cards have unfortunately hit a stopping point with the recent acquisition of the Orinoco line
by Proxim. If you look for any information about Linux support on the Proxim web site, you will find that the latest
Proxim-provided driver for Hermes-based cards is 6.20 from May 2002.

An interesting twist to this storyline is that Agere, who was originally spun off from Lucent and also produced Hermes-
based radio cards, has updated drivers available on its web site dating from September 2003. If you browse to
http://www.agere.com/support/drivers, you will find the Linux LKM Wireless Driver Source Code, Version 7.14 listed,
which you can download from http://www.agere.com/support/drivers/wl_lkm_714_release.tar.gz.

If you dig into the README, you will find that this is a major update of the previously provided wavelan2_cs driver. It
has been renamed wlags49, for reasons that are not clear. What is clear, however, is that the driver provides support
for not only the classic Hermes I chipset that powers Orinoco Gold/Silver cards, but the Hermes II chipset that is found
in newer 802.11b PC Cards, MiniPCI, and CF adapters from Agere and Proxim.

Even more interesting is the list of new features in the release:

Began updating the Wireless Extensions

Added support for access point (AP) mode

Added support for tertiary firmware downloads

Added support for WDS in AP mode

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Added support for WDS in AP mode

The requirement for the driver is a 2.4.x kernel. The README does say that this driver should compile under
architectures other than x86, but that has not been verified. You'll also need a working gcc compiler environment. If
you have been able to compile kernels, pcmcia-cs, and the HostAP driver to this point, compiling this driver will not be a
problem.

If you already have the standard orinoco_cs or a compiled HostAP driver on your system,
be warned: wlags49 does not play nice with these drivers. Once compiled and loaded as a
module, wlags49 will be the default driver for any Hermes or Prism-based card in your
system.

We recommend you use only wlags49 on a system where you are not going to use the
orinoco_cs or HostAP drivers.

Getting the driver to compile is rather tricky. In order to configure the source code for compilation, you must first
obtain the pcmcia-cs source code. In Chapter 2, we covered in detail how to compile and install pcmcia-cs. In brief, you
can obtain the source code from http://pcmcia-cs.sourceforge.net.

You'll want to unpack the pcmcia-cs source somewhere. (On our Mandrake 9.2 system, we put the source in
/usr/src/pcmcia-cs-3.2.7.) Once you have done that, copy the gzipped Agere source into the pcmcia-cs directory and
extract it:

cp /root/download/wl_lkm_ 714 _release.tar.gz pcmcia-cs-3.2.7

cd pcmcia-cs- 3.2.7

tar xzvf wl_lkm_ 714 _release.tar.gz

To configure the source for the driver, run ./Configure. This will look familiar to you if you have already compiled pcmcia-
cs, because the Configure script is part of the pcmcia-cs release. You must configure the wlags49 source this way, even
if you have kernel tree PCMCIA enabled.

You don't have to completely reinstall pcmcia-cs once the configuration is completed. To install the wlags49 default
driver, which supports Hermes I and II cards in both STA (station adapter or managed) mode and AP mode, run the
scripts that came with the wlags49 source:

./Build

./Install

Once installed, you must stop and restart the pcmcia-cs subsystem, unless you have a MiniPCI Hermes II card, in which
case you may want to simply reboot.

The wlags49 source also gives you the option of building a driver that supports either Hermes I or II in STA or AP mode
only. Instead of the ./Build command, you can issue one of the following commands before ./Install:

make -f wlags49.mk h1_cs_sta # Hermes I, STA mode

make -f wlags49.mk h1_cs_ap # Hermes I, AP mode

make -f wlags49.mk h2_cs_sta # Hermes II, STA mode

make -f wlags49.mk h2_cs_ap # Hermes II, AP mode

If you only wish to build the driver to support a PCI/MiniPCI card in either STA or AP modes, you can issue these
commands:

make -f wlags49.mk pci

make -f wlags49.mk pci_install

Once the driver is loaded, you have the option of configuring wireless parameters in three different ways. The
documentation seems to suggest that you should perform all wireless configuration in the /etc/pcmcia/config.opts file.
This is rather nonstandard, and we did not even attempt to go down this road.

The documentation goes on to say that you can also configure the driver using a file in /etc/agere/iwconfig-eth1. This
directory was not created as part of the installation, so we also did not attempt to use this method. We did not have a
Hermes II MiniPCI card to test with, but we suspect that this second method is the one that you would need to use.

Fortunately, the third method is to simply use the pcmcia-cs standard configuration by configuring the card in
/etc/pcmcia/wireless.opts and /etc/pcmcia/network.opts. The wlags49 driver takes advantage of the Wireless Tools, so
that setting up our Orinoco Silver card as an access point is just like using HostAP:

iwconfig eth1 essid myAP mode Master

As with Madwifi, the wlags49 driver does not support MAC address filtering. We were able to set up a bridge using the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As with Madwifi, the wlags49 driver does not support MAC address filtering. We were able to set up a bridge using the
Orinoco Silver card in master mode, using the example provided previously in the HostAP section of this chapter.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.3 Linux-Powered Off-the-Shelf
Electronics manufacturers are increasingly turning to Linux to power all sorts of devices: e.g., TV set-top boxes,
handheld computers, and mobile phones. Now wireless vendors have begun shipping products running a Linux kernel.

For example, Linksys is now selling the WRT54G Wireless Router. As the name implies, it uses an 802.11g radio.
However, the name doesn't tell you that the box is really running a custom Linux kernel based on the 2.4.5 kernel code,
running on a Broadcom processor, based on a 125 MHz MIPS processor core. As of this writing, a WRT54G can be
purchased for as little as $70, making it probably the cheapest project in this book.

The Seattle Wireless folks have an excellent page on their web site detailing the work they have done peeking into the
innards of this device. You can find it at http://www.seattlewireless.net/index.cgi/LinksysWrt54g. Even before Linksys
began releasing the source code, people were hacking away at the WRT54G, trying to get a login shell and figure out
what made it tick.

6.3.1 Hacking the WRT54G Hardware

In the fall of 2003, several of the NoCat folks were hacking away at a newly acquired WRT54G, attempting to learn how
to get a login shell on the box. Early on, the Seattle Wireless group had determined that you could execute arbitrary
code by using the Ping.asp web page, which is part of the administrative web pages shipped with the unit.

If you're just looking for a quick way to upload new firmware, such as a custom Linux
distribution, to the unit, skip ahead to "Hacking the WRT54G Firmware," later in this
chapter.

It was then possible to upload arbitrary files to the unit, which we don't recommend for this reason: we managed to
render our WRT54G completely useless by attempting to modify the administrative HTML pages. In other words, the
configuration on the box was stuck that way, and we couldn't change it. Due to our error, none of the web pages were
accessible, including Ping.asp, which was the only method at that time.

The box sat unhappily in a paper bag for a few months. Recently, while reading through the Seattle Wireless pages
again, we became aware that someone had managed to solder the correct components on the motherboard of a
WRT54G and had a working serial port. With a working serial console, you can interrupt the boot of the unit with Ctrl-C:

^C

PMON>

This puts you at the PMON bootloader prompt. From here, you can recover a crippled WRT54G by executing the
following commands:

PMON> set boot_wait on

PMON> set nvram boot_wait

These commands tell the unit to wait at boot and to attempt to load firmware via TFTP. In order to take advantage of
this, you need a tftp client that supports passwords. Standard tftp client software does not use authentication, and the
tftpd running on the WRT54G expects authentication. You can download a tftp client for Linux that supports
authentication from http://redsand.net/code/linksys-tftp.tar.bz2. The code can be compiled with a simple make. The
WRTG54 assigns itself the IP address 192.168.1.1, so to connect to it, you must assign an IP address from the same
subnet on the machine from which you want to run the tftp client.

When you are attempting a tftp upgrade of firmware or using the web-based firmware upgrade shown in the next
section, you must make sure you have a reliable power connection. Interrupting the firmware upgrade process can
corrupt the flash memory during a write and make your unit a very nice blue and black brick. It's also important to use
an Ethernet connection to one of the LAN ports of the WRT54G when upgrading the firmware. While it is possible to use
the wireless connection, if anything interrupts the wireless transmission, you again run the risk of killing your flash
memory and the unit.

Once you have set the boot_wait parameter, you can power-cycle the WRT54G. At this point, you have approximately
three seconds to start the tftp client. In these three seconds, you must execute the following commands:

$./linksys-tftp 192.168.1.1

linksys-tftp> put firmware_image password

In the next section, we discuss alternate firmware images for the WRT54G.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In the next section, we discuss alternate firmware images for the WRT54G.

Without a console on the Linksys unit, you cannot enter the bootloader. If you examine the motherboard of a WRT54G,
you will find several empty surface mount sockets, a mount for a crystal, and two sets of standard pinouts marked
UART1 and UART2 next to the WAN Ethernet port and the reset switch. Figure 6-9 shows a close-up of this area.

Figure 6-9. Close-up of WRT54G showing space for a UART

The Seattle Wireless web pages have a list of hardware that must be soldered on in the empty sockets:

UART: National Semi PC16552DV

Transceiver: Maxim MAS213CIA

XTAL: 12.75MHZ

The details in this section are relevant only for a Linksys WRT54GVersion 1.0. Version 1.1
hardware is different, and you can find a discussion on 1.1 serial port hardware at
http://www.sveasoft.com/postt44.html. Look on the bottom of the WRT54G case to
determine the hardware version: if your hardware is Version 1.1, it is printed there. 1.0
hardware has no identifier.

We ordered the first two sample parts from each manufacturer. For links to the order pages, see the Seattle Wireless
WRT54G web page: http://www.seattlewireless.net/index.cgi/LinksysWrt54g. Search for "14 Booting your own kernel"
to find the correct section.

As for the crystal, our hardware and soldering guru Brad Silva suggested that we should use an oscillator instead. This
required a slightly different approach when we began construction, as you'll see below, but it worked well. We ordered
a 12.8 MHz oscillator from Digikey (http://www.digikey.com).

Once all the parts had arrived, we set aside an evening to work on the unit in Brad's lab. He had the necessary
soldering equipment plus an oscilloscope and a number of other tools that came in handy.

Unless you really know what you're doing, soldering extra parts on your WRT54G is an
excellent way to void your warranty and potentially destroy the unit. You need exceptional
soldering skills for this project.

The first task was to solder the National Semi UART to the socket at U5. This was the most difficult part of the
operation, as the socket is surface-mount technology that is designed to be soldered by a machine. The UART uses J-
connectors, which curve inward under the chip. We held the chip in place with a piece of double-sided tape underneath,
but it was still difficult for Brad. However, his soldering skills won out in the end.

Once we had the UART in place, we pulled out the oscilloscope so we could determine which of the two smaller sockets
would need the Maxim transceiver installed. The correct socket turned out to be U1, which is strangely connected to the
pinout for UART2, not to the pinout marked UART1/CON1 (which would seem to be indicative of the console).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pinout for UART2, not to the pinout marked UART1/CON1 (which would seem to be indicative of the console).

We then soldered the transceiver in place at U1, and despite the small size, the soldering went much faster because the
soldering iron simply wicked the existing solder into place on the chip.

Next up was the oscillator. As stated earlier, we chose an oscillator in place of a crystal. Either one should work,
however. As Brad states, "Crystals are finicky devices. Oscillators are much more reliable and easier to work with." We
mounted the oscillator on a small piece of breadboard.

In order to get signal flowing to the oscillator, we had to remove a resistor and a capacitor from the motherboard.
These are located at R7 and C14 between the UART and the spot where a crystal would be mounted.

Lastly, we needed power and ground for the oscillator. We obtained these from ZN1 and DS1 next to the DC power
input. Figure 6-10 shows an image of the motherboard with all the work completed up to this point.

During this process, we stopped at each step to use the oscilloscope to look at output from each new chip. Checking the
output from the transceiver and doing a little math, we were able to determine that the eventual console serial speed
would be at least 115 kbps.

Figure 6-10. WRT54G with added UART, transceiver, and oscillator

The last requirement was to add a DB9 connector so we could connect to the serial port with a laptop. For this, we
needed pins 2, 3, and 5 from the pinout marked UART2. It is important to note that unlike a standard RS-232 DB9
pinout, pins 2 and 3 are not crossed. The pinout to the DB9 is as follows:

Pin 2: Pin 2 Transmit

Pin 3: Pin 3 Receive

Pin 5: Pin 5 Ground

Figure 6-11 shows the attached serial port close-up. We were not striving for attractiveness, just function. The intent
was not to have the serial port permanently attached, because if the whole exercise were a success, we wouldn't have
needed it afterwards.

Figure 6-11. WRT54G with attached DB9 serial port

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6-11. WRT54G with attached DB9 serial port

This was the magic moment. Our monitoring with the oscilloscope was promising, in that we were definitely seeing a
flood of output immediately after the unit was powered on. We hooked up a laptop to the DB9 port, fired up a minicom
session, set the port speed to 115200, no RTS/CTS, no Xon/Xoff, applied power to the WRT54G, and voila!

We were then able to use Ctrl-C to immediately interrupt the boot process, set the boot_wait parameter, and reboot.
This time, the console showed a message indicating that it was waiting for network boot. Following the previous
instructions, we ran the linksys_tftp client software and were able to flash the WRT54G with the latest Linksys
firmware. We then went on to try out some alternate firmware, which we describe in the next section.

6.3.2 Hacking the WRT54G Firmware

At the time of this writing, you can find Linksys source code modifications at http://www.linksys.com/support/gpl.asp.
Broadcom has not yet released any source code for the radio drivers, nor has it released the modifications that it has
made to the gcc compiler.

Several Linux distributions for the WRT54G are available. Some of these depend on execution of arbitrary commands
via Ping.asp. However, Linksys has fixed this "bug" with software release 1.42.2, which has made any release that
depends on this feature unusable.

With the release of the modified source code for the WRT54G, it is possible for interested parties to compile the source
themselves and learn how to build custom firmware that includes features that Linksys does not support in its product.

These new distributions are easy to install, because they are complete firmware releases based on the Linksys code.
Linksys includes a firmware upgrade option in the administrative web pages for the WRT54G. Figure 6-12 shows the
screen, which you can find by selecting the Administration tab in the web page and clicking on Firmware Upgrade.

Figure 6-12. WRT54G firmware upgrade

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can also upgrade the firmware via TFTP, as we described in the Section 6.1. Of course, on an unmodified WRT54G
running Linksys firmware, the TFTP option is not possible. You must have a soldered-on serial port to enable the
interrupt of the boot process, or you must flash the unit first with one of the alternative firmware images we discuss
below. They both provide support for enabling the boot_wait option from the administrative web pages.

As of this writing, there are two well-developed distributions available that are based on the latest Linksys 2.0 source
code. Each distribution appears to have a number of similar features, and as they continue to mature, it seems that
they will continue to become more similar. Right now, however, both have different feature sets and appeal to
somewhat different audiences. There is also a third distribution at sourgeforge.net (see Section 6.3.2.3 later in this
chapter), which is built from the ground up and is not based on Linksys source code.

Linksys doesn't support firmware that you receive from other sources. While you many not
be voiding your warranty by flashing the firmware with alternate versions from other
sources, you should be aware that the process is not perfect. There is a possibility of
corrupting the flash in your WRT54G and making it an expensive paperweight.

When you upgrade your firmware, whether it is a Linksys or alternative firmware file, the
configuration in the WRT54G is erased. There is no provision for saving a configuration to
NVRAM, so before you upgrade, make a note of all your settings.

Finally, it should be stressed that as of this writing, all of the alternative firmwares are in
beta or testing modes, and are not as stable as the Linksys firmware.

6.3.2.1 Sveasoft firmware

Sveasoft is a company with offices in Sweden and California. It has developed a very nice firmware package for the
WRT54G. The developers host an active forum at http://www.sveasoft.com/forums.html and are very responsive to bug
reports and feature requests. Sveasoft is also selling in Sweden an outdoor-mountable repackaged WRT54G with its
custom code, suitable for a wireless ISP or community network installation.

The Sveasoft firmware includes the following features:

Telnet daemon

SSH daemon

OSPF routing from the Bird routing daemon

20 new iptables filters to support filtering P2P and other protocols

QoS bandwidth management

Local DNS caching daemon

PPTP client and server capability

Radio transmit power adjustment

Antenna selection

Client radio mode

Signal strength and MAC addresses of radio clients

WDS

Added options in the Administrative web pages to enable/disable services

Command shell from the Administrative web pages

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Command shell from the Administrative web pages

Replaced openssl with maxssl to free up 1 MB of flash

Roaring Pengiun PPPoE module

Additional features planned for inclusion in the firmware are:

SNMP support

Kismet drone—a remote sniffer

Remote monitoring package

Dynamic DNS configuration

Shorewall firewall

NoCat-like captive portal

Snort intrusion detection engine

Complete IPSec client and server support

802.1X for client radio mode

Simplified web interface

Support for a dynamic download so that developers can update in packages rather than in a complete firmware
reflash.

You can obtain the latest Sveasoft firmware from its FTP site: ftp.sveasoft.com/pub. As of this writing, the most current
firmware is Satori_v2_2.00.8.7sv-pre1.bin.zip. When you uncompress this file:

$ unzip Satori_v2_2.00.8.7sv-pre1.bin.zip

you will receive a single .bin file that you can flash to the WRT54G using the Firmware Upgrade web page previously
shown. Once you've clicked on the Upgrade button, do not interrupt the upgrade. Make sure you have reliable power
and wired Ethernet connections to the unit from the PC that you are using.

Once the firmware upgrade is complete, you should hold down the reset button on the back of the unit for 8-10
seconds, until you see the LEDs on the front of the unit turn red and flash in a pattern. This ensures that you have
cleared anything out of NVRAM that might have been put there by the previous firmware version.

When the unit resets, connect to it from a web browser; http://192.168.1.1 is the default address for Linksys devices.
As you can see from Figure 6-13, the firmware version in the upper-right corner is now a non-Linksys version.

Figure 6-13. Sveasoft firmware main configuration screen

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Sveasoft firmware offers another nice feature: the ability to select the receive and transmit antennas, as well as
the ability to increase and decrease the transmit power of the radio card. In the web-based configuration, click on
Wireless, and then on Advanced Settings. As shown in Figure 6-14, the last three options allow TX and RX antenna
selection, and you can now increase the milliwatt output of the WRT54G radio card up to a maximum of 83 mW from
the default of 28.

Figure 6-14. Sveasoft Advanced wireless configuration settings

If you have two WRT54G units, a Linux box with a Prism card and the HostAP driver, or an access point running the
OpenAP/LinuxAP distributions (see Section 6.3.4 later in this chapter), you have the option of setting up WDS between
your access points. If you choose to use a Prism card, it must have station firmware Version 1.50 or higher. See
Chapter 4 for details on how to determine your station firmware version.

WDS is an 802.11 specification for using an 802.11 wireless connection as a distribution system. A special data frame
with four addresses is defined for WDS. This allows layer 2 bridging of packets between two addresses. In other words,
your access points continue to serve clients, but can also communicate with each other over a bridge. You can use this
to set up a second access point that has no wired connection, only the bridged connection to another access point. This
is most useful for extending the range of your network.

There are some caveats for using WDS. Your access points must use the same SSID, the same channel, and the same
WEP keys (if you're using WEP). Currently, using WPA to encrypt WDS communications is not possible. Unless you use
WEP, all of your bridged packets sent between the access points will be sent in the clear, and you could easily fall victim
to a classic "man in the middle" attack where one of your MAC addresses is spoofed.

Another side effect of WDS will be decreased throughput. If both of your access points are serving clients while they are
communicating via the WDS bridge, you will lose throughput due to increased radio utilization for WDS.

We did not have two WRT54G units with which to test this WDS, but we were able to set up a WDS link between our
WRT54G running the Sveasoft code, and a notebook with a Prism card and the HostAP driver.

In order to set up the WDS link, we needed to install the bridge-utils package. On our Mandrake 9.2 system, this was
installed using urpmi bridge-utils; Red Hat and Fedora users should be able to similarly use the rpm installation, and
Debian users can do apt-get install bridge-utils.

It took some fits and starts to get WDS working between the WRT54G and our Mandrake box running HostAP. Figure 6-
15 shows the WDS configuration screen in the Sveasoft firmware. Here, we entered the MAC address of the Prism card
on the Mandrake system and assigned the WDS bridge an IP address and subnet mask.

Figure 6-15. Sveasoft WDS configuration

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6-15. Sveasoft WDS configuration

However, when we first attempted to set this up and clicked on Save Settings on the WRT54G, our Prism card lost
wireless communication with the Linksys. We were not able to bring up a bridge at that point. Later, as we continued to
troubleshoot, we were able to figure out why: the MAC address we obtained from the WRT54G was not the MAC
address that the WRT54G assigned to the WDS bridge.

On our WRT54G, the wireless MAC address is 00:06:25:B2:6B:D5. We entered this initially in the WDS configuration for
the Prism card. However, once we obtained a console login on the Linksys, we found that the WDS interface was
actually given a MAC address of 00:06:25:B2:6B:D7. Once we set up WDS for the Prism card with this interface, we
were able to communicate over the WDS link.

Once the WDS commands were entered for the Prism card, it took approximately 30
seconds for the WDS link to begin working. Don't give up if you can't ping across the link
immediately.

In order to set up the WDS link on the Prism card running HostAP, we entered the following commands:

iwpriv wlan0 wds_add 00:06:25:B2:6B:D7

 # Creates a WDS interface

brctl addbr br0 # Creates a bridge interface

brctl addif wlan0 # Adds wlan0 to the bridge

brctl addif wlan0wds0 # Adds the WDS interface to the bridge

ifconfig wlan0 0.0.0.0 # Zeros out TCP/IP for wlan0

ifconfig wlan0wds0 0.0.0.0 # Zeros out TCP/IP for the WDS interface

ifconfig br0 192.168.255.2 # Assigns TCP/IP to the bridge interface

Note that you must have your Prism card in either managed or master mode for this to work. If you are in managed
mode, you are essentially acting as a client to the bridge, and you must add another Ethernet or radio interface to
make the bridge useful. If you are in master mode, your HostAP access point can continue to serve other clients while
still participating in the WDS bridge.

The Sveasoft firmware enables many other interesting features, including Quality of Service (QoS) for bandwidth
management, among other things. Those features are really outside the scope of this book, but one feature that is very
handy is the SSH daemon.

To set up the SSH daemon, navigate to the Administration tab, and click on Management. Scroll down to the section
titled SSHD. First, click on the radio button to Enable SSHD. Scroll down and click on Save Settings. Navigate back to
the SSHD section and similarly enable Password Login. Click on Save Settings again. Reboot the WRT54G.

You can now use ssh to log in to the router using root as a username and the administrative password that you set in

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can now use ssh to log in to the router using root as a username and the administrative password that you set in
the web interface. (You have changed your administrative password from the default, haven't you?)

6.3.2.2 Wifi-Box firmware

The Wifi-Box firmware distribution was developed by Augustin Vu. It is also now based on the Linksys 2.0 firmware
release, and the project web page is found at http://sourceforge.net/projects/wifi-box.

As we previously discussed, this project has much in common with the Sveasoft firmware, because many of the stated
end goals of the project are similar. The current implementations, however, differ somewhat in their feature sets.

The Wifi-Box software includes the following features:

Radio transmit power adjustment

Antenna selection

DHCP server can assign static DHCP addresses

Supports Class A and Class B subnets

Local caching DNS server

SNMP daemon

Support for VPN Passthrough—IPSec, PPTP, L2TP

Server Profiles for multiple IP forwarding

Telnet daemon

Remote wake on LAN support

Web-driven reboot and restart services commands

Enhanced status pages

Additional features planned for inclusion in the firmware include:

WDS bridging

SSH daemon

QoS bandwidth management

IPSec client and server

PPTP client

You can download the firmware from the SourceForge web site. As of this writing, the most current version is
code_2.02.pre1-wfb.zip. Use the unzip command to extract the single .bin file contained in the compressed download.

The procedure for installing the Wifi-Box firmware is identical to flashing any other firmware to the WRT54G (see
Section 6.3.2 and Section 6.3.2.1). You can use the web interface, or, if you have already tried the Sveasoft firmware,
you can set the boot_wait option in the Administration tab and flash the router via tftp on the next reboot.

As you can see from Figure 6-16, the only noticeable difference to the Wifi-Box firmware is again in the upper-right
corner of the main screen.

Figure 6-16. Wifi-Box firmware main configuration screen

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6-16. Wifi-Box firmware main configuration screen

The current Wifi-Box firmware has fewer enhancements to the wireless side of the router and more added features in
the TCP/IP department. Wifi-Box does include the antenna selection and radio transmit power adjustments in the same
location as Sveasoft: Click on the Wireless tab and select Advanced Wireless Settings.

One feature that will appeal to anyone already running MRTG, Cacti, or any other SNMP-based network data gathering
tool is the inclusion of an SNMP daemon. To configure SNMP, click on the Setup tab and then select SNMP. The
documentation is incomplete, and there is no help file for this page, so it is unclear if the SNMP daemon supports SNMP
v1, v2, v3, or a combination of these.

The Security tab adds new VPN settings to allow passthrough of the three most widely used VPN protocols. In the
Applications & Gaming tab you can define Server Profiles that allow you to forward many commonly used ports to
different servers on the LAN side of the WRT54G.

In the Administration section, you can enable the Telnet daemon. Here you can also click to reboot the router or restart
all services on the router without a reboot.

All in all, the Wifi-Box firmware is a nice upgrade from the standard Linksys firmware. As of this writing, it appears that
the Sveasoft firmware has more wireless features enabled, and it also does have the advantage of a working SSH
daemon. Both firmware packages are worth investigating for your use.

6.3.2.3 OpenWrt firmware

The OpenWrt firmware project is taking a completely different approach. Its firmware is not based on the Linksys code
at all, and its statement of goals at http://openwrt.sourceforge.net states some very specific goals:

Create a usable and functional development environment for the WRT54G that exposes the full capability of the
2.4.20 kernel.

Firmware must have failsafe modes so that configuration errors do not prevent the unit from booting.

As much flash as possible should be dedicated to read/write filesystems for installation of functional modules.

The Linksys/Broadcom/Cisco copyrighted configuration utilities are not included.

The OpenWrt developers are hard at work on the beta version of their firmware. As of this writing, they have not
released any packages on their SourceForge project site. Follow the directions at http://openwrt.sourceforge.net to
obtain their latest beta.

As the login file to the #wrt54g IRC channel states: "Newbies need not apply." The
OpenWrt firmware is not complete. OpenWrt is still working on a development platform
base. If you want a fully functional access point with all the features shipped in the Linksys
firmware, this is not for you. If, however, you want to hack on a fully open source Linux
distribution for the WRT54G, read on.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As with the previous firmwares, you can load the OpenWrt firmware by using the Upgrade Firmware option in the
Administration web pages, or, if you have loaded Sveasoft or Wifi-Box firmware, you can set boot_wait and use the tftp
client to flash the WRT54G firmware.

OpenWrt changes the flash filesystem layout of the Linksys firmware. It contains a small read-only squashfs filesystem
and a larger writable jffs2 (Journaling Flash Filesystem). The squashfs partition has a failsafe boot routine, which you
can trigger by holding the reset button during boot. This failsafe mode boots entirely from the squashfs partition, and
configures the LAN and wireless networks to 192.168.1.1. So if you manage to munge up the jffs2 partition, you can
always recover and start over.

OpenWrt attempts to set up the networking of the WRT54G using configuration stored in NVRAM. So your LAN, WAN,
and wireless network information should remain the same after flashing.

OpenWrt implements a Telnet daemon for administrative access. The developers plan to have ssh available as a
package once the basic development environment is done. The busybox environment implements telnetd by default, so
this is a simple way to proceed with development.

On the first boot after flashing, the jffs2 filesystem does not exist. You must telnet to 192.168.1.1, run the firstboot
command at this point, and then restart the system. This initializes the jffs2 filesystem and allows you to boot
completely into OpenWrt.

When fully booted, the squashfs partition is remounted as /rom with the jffs2 partition mounted as /. Symlinks are
made from the root filesystem to files contained in /rom. If you want to modify any of the files on jffs2, you must
remove the symlink and copy the file or create the file on the root partition.

OpenWrt uses VLAN interfaces to represent the LAN and WAN ports. On a v1.x WRT54G, the following interfaces are
created:

vlan1: WAN interface

vlan2: LAN interface

eth2: Wireless interface

For more detailed information on the innards of this beta version, you should consult the README. Check out the IRC
channel and the SourceForge project pages for updates. The developers hang out on #wrt54g, so it's the best place at
the moment for help with the firmware.

You now have a small Linux-powered router. Although the OpenWrt firmware is still in early development, we think it
has the most potential of the alternative firmwares currently available for the WRT54G. The Linksys-based firmware
version have some impressive features, to be sure, but OpenWrt will definitely be the most flexible firmware distribution
of the three, due to its stated goals.

6.3.3 Other Linux-Powered Devices

Aside from the WRT54G, there are other Linux-powered devices now on the market. Some of them appear to be even
more capable internally than the WRT54G. Some of them have serious limitations that would make it difficult or
impossible to modify the kernel source. We touch on a few of these devices here. If you're a dedicated hardware or
kernel hacker, these boxes could use your time and expertise.

The Linux-powered device world is constantly changing, so by the time you read this, other wireless devices with Linux
under the hood will probably be available.

6.3.3.1 Linksys WRV54G

This is a Linksys wireless VPN router. It has nothing in common with the WRT54G, in that the internal processor is a
266 MHz Intel ISP425 ARM-based CPU and the MiniPCI wireless card is a PrismGT 802.11G chipset. The MiniPCI card is
soldered to the MiniPCI connector for grounding purposes. There are open source issues with the Intel Ethernet driver
for the ISP425. The Intel Access Software Library license expressly forbids any code in the Library from being released
under the GPL or BSD licenses.

The Seattle Wireless folks have been hard at work on a WRV54G. As of this writing, however, there is no alternative
firmware available, and the firmware has not yet been hacked. You can find all of their current information at
http://seattlewireless.net/index.cgi/LinksysWrv54g. Linksys has released the source code, and the various versions are
available at http://www.linksys.com/support/opensourcecode/wrv54g.

6.3.3.2 Dell TrueMobile 1184

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.3.3.2 Dell TrueMobile 1184

The Dell TrueMobile 1184 was released in early 2003. It has a Prism 3 802.11b chipset inside and runs a 2.2 Linux
kernel. It appears that Dell contracted with another vendor to develop this product, and when it was released, there
was no acknowledgment that the device was Linux based, nor was there any source code released.

Dell was persuaded by a user to release the source code. However, since that time it has been discovered that the
released source is not actually the correct source for the internal ARM processor or Ethernet chipset.

As of this writing, there does not yet appear to be a viable solution to run any custom Linux kernels on the Dell
hardware. Dell has since discontinued this unit, and information and source code are no longer available on the Dell
web site. You can follow the Dell 1184 threads at the LinuxAP mailing list for more information:
http://ksmith.com/pipermail/linuxap-dev/2003-July. Lastly, if you follow this threaded discussion, it appears that the
Dell is so difficult to work with, any development has been abandoned to look for easier hardware to hack:
http://ksmith.com/pipermail/linuxap-dev/2003-October/000522.html.

6.3.4 Running Linux on Non-Linux Devices

Ever since 802.11b access points began shipping, people have been taking them apart to find out what makes them
tick. In many cases, especially with early models, the internals were i386-compatible chips, which made the challenge
of attempting to run Linux on these machines impossible to ignore. There are some serious caveats to running Linux on
any of these devices:

These systems need a small kernel. 2.4 series kernels, even stripped to the bare bones, just take up too much
space on a device that has 2 or 4 MB of RAM. 2.2 series kernels are then the choice for all of the following
distributions.

With some of these devices, there isn't enough room to store a usable Linux system on the flash, so the root
filesystem must be kept on an NFS server. While this isn't out of the question, it does mean you must have an
NFS server running.

The minimal amount of RAM in these systems means that application space is very limited. It's possible to run
things like telnetd, but sshd or any other larger applications are out of the question.

The cards in these access points are based on chipsets that do not support master mode. Even though you have
Linux running on them, you are restricted to managed or ad-hoc modes, and can't use the AP as an actual
access point.

6.3.4.1 Apple AirPort

When the Apple AirPort 802.11b access point was first released, people naturally opened it up to find out what was
inside. The guts of the unit are an AMD ELAN processor running at 33 MHz. The ELAN is an i386-compatible processor
that is very popular with embedded device manufacturers.

Of course someone took the challenge of getting the AirPort to run Linux, because it runs i386 binary code. Til
Straumann has an excellent web page detailing the steps necessary to run a Linux 2.2 kernel on the AirPort:
http://www-hft.ee.tu-berlin.de/~strauman/airport/airport.html.

The AirPort has only 4 MB of flash RAM, so you must boot and load software from a network share to make Linux run.
To do this, you need a tftp server, NFS server, and DHCP server. In addition, you must reflash your AP with boot code
that makes it look for the Linux software on the network. This is not easy to set up, so we recommend that you read
completely through the web page listed in the previous paragraph before attempting to run Linux on your AirPort or RG-
1000.

6.3.4.2 Orinoco RG-1000

The Lucent Orinoco RG-1000 is internally identical to the Apple AirPort. Seattle Wireless uses Linux-powered AirPorts
and RG-1000s extensively in its citywide wireless network. More information on its projects can be found at
http://www.seattlewireless.net/?AirportLinux.

Seattle Wireless AirportLinux is based on the code by Til Straumann for the AirPort, with some modifications. While both
of these distributions are fun hacks, they are not nearly as practical as using vanilla PC hardware or flashing a Linksys
router. They both require a dedicated server to boot from. If you have such an environment, great! You can pick up
used RG-1000 units on Ebay for very little money.

6.3.4.3 Eumitcom WL11000

While you will never find a consumer product with this name on it, this motherboard was the basis for these early
models of 802.11b access points:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

models of 802.11b access points:

US Robotics (USR 2450)

SMC EZconnect (2652W)

Addtron (AWS-100)

There have been two Linux distributions developed for these access points. They are both still available, although the
first, OpenAP, does not appear to be under active development. OpenAP is available from
http://opensource.instant802.com. As stated, it runs only on this single hardware platform. It is increasingly difficult to
find these access points, but if you have one, this is a fun little project.

In order to flash these access points, you need a linearly mapped memory card. The OpenAP site recommends a
MagicRAM Industrial SRAM Memory card that is 2 MB in size and readable at 3.3 V. You must also connect a null
modem cable to the RS-232 serial port on the access point, and a terminal program to communicate with the Linux
distribution.

For information and complete instructions, see the Getting Started page on the OpenAP web site:
http://opensource.instant802.com/getting_started.php.

We mentioned LinuxAP in Section 6.2 earlier in this chapter. While LinuxAP is designed to run on the Soekris hardware
platform, and indeed can be made to run on any Intel-compatible small-board PC, it also supports the WL11000-based
access points. You can find LinuxAP at http://linuxap.ksmith.com. This site also hosts an active mailing list at
http://linuxap.ksmith.com/mailman/listinfo/linuxap-dev, and a recent posting of the LinuxAP FAQ can be found in the
mailing list archives: http://ksmith.com/pipermail/linuxap-dev/2004-February/000675.html.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 6. Building Your Own Access Point
Wi-Fi access points are inexpensive, because they are now accepted as commodity hardware. You can buy them at
discount stores, warehouse clubs, and probably your local gas station. Models with many features and support for
802.11g can now be purchased for well under $100.

Why then would you want to build your own access point? Aside from the usual geek reason ("because you can," a.k.a.
"why even ask?"), there are many practical reasons:

Make use of old or surplus PC hardware. An effective access point can be built with a 486/33 and 16 MB of
RAM. Many commercial access points are not any more powerful inside. Don't know what to do with that old
Pentium? Stick a radio card in it and unwire your house.

Take advantage of a complete Linux installation. Run an iptables firewall to protect your network, build a
web caching server, and set up intrusion detection. If you build a Linux-based access point, you can do almost
anything with it.

Run a customized Linux kernel on off-the-shelf hardware. Wireless access point/routers from Linksys and
other manufacturers are actually running Linux kernels inside. Several groups of people have put out alternative
firmware for these units. You can build your own custom firmware if you want.

These are only a few good reasons to build your own access point. In order to get started, you need some hardware, a
Linux distribution, and some configuration basics. We cover each in turn.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

7.1 Quick Start
We tested a Belkin Bluetooth USB adapter with several Linux distributions on an IBM ThinkPad A20m. In all cases, we
got it up and running to the point where we created a serial port connection between a Bluetooth cell phone (Nokia
3650) and the Linux machine.

After we set up Bluetooth on each distribution, we completed the following steps (all of this is explained in detail
throughout the chapter):

1. Set the pinin /etc/bluetooth/pin to a numeric-only pin (1234)

2. Restarted the hcid daemon with killall -HUP hcid

3. Plugged in the adapter

4. Discovered the cell phone's Bluetooth address with hcitool scan

5. Configured the serial port (/dev/rfcomm0) with:

rfcomm bind 0 bluetooth_address

Upon completion, we conversed with the phone over the serial port using Kermit (see Section 9.3).

The following sections describe our distribution-specific notes. Even if your distribution isn't listed here, check these
notes out.

7.1.1 Debian 3.0r1

We abandoned the older 2.4.18 kernel that was the latest 2.4 kernel available for Debian 3.0, and we compiled kernel
2.4.24 according to the instructions in "Configuring the kernel," later in this chapter. To get Bluetooth to the point
where we could make an rfcomm connection, we follow these steps:

1. Edited /etc/apt/sources.list according to the instructions at http://bluez.sourceforge.net/download/debian/APT-
README.

2. Next, we completed an apt-get update and then installed the following packages:

bluez-hcidump

bluez-pan

bluez-sdp

bluez-utils

hotplug

3. The bluez-utils and bluez-sdp packages configured themselves to start in runlevel 3 and 5. After installing these
packages, we started them with the following commands (but we could also have rebooted):

/etc/init.d/bluez-utils start

/etc/init.d/bluez-sdp start

4. The /dev/rfcomm* devices already exist, so we didn't need to create them.

7.1.2 SuSE 9.0

We used SuSE 9.0 (FTP install) with the latest available kernel package (2.4.21-166-default). To enable Bluetooth, we
followed these steps:

1. Installed the following packages using YaST:

bluez-bluefw

bluez-libs

bluez-pan

bluez-sdp

bluez-utils

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. The packages configured themselves to start in runlevels 3 and 5. After installing these packages, we started
them with /etc/init.d/bluetooth start (but we could also have rebooted).

3. The /dev/rfcomm* devicesdid not exist, so we created them as shown in Example 7-4.

7.1.3 Mandrake 9.2 and RedHat 9

On Mandrake, we used the latest available kernel package (2.4.22-10mdk), but on Red Hat, we rebuilt the kernel the
same way we built it for Debian. For rfcomm to work on RedHat and Mandrake, we followed these steps:

1. Downloaded the following RedHat RPMs from http://bluez.sourceforge.net:

bluez-bluefw

bluez-hcidump

bluez-libs

bluez-pan

bluez-sdp

bluez-utils

2. Next, we ran rpm --test -ivh bluez-*, and all looked well, so we installed them with rpm -ivh bluez-*.

3. To make sure that the Bluetooth scripts were started on boot, we ran chkconfig --add bluetooth.

4. We ran /etc/init.d/bluetooth start (we could also have rebooted).

5. The /dev/rfcomm* devices did not exist, so we created them as shown in Example 7-4.

7.1.4 Troubleshooting

Generally, following the previous steps went smoothly, but we did run into some problems. Here are some tips that
should help you out:

Start hcid in the foreground

By default, the startup scripts launch hcid in the background. If you want to see verbose messages from it, kill
it and then start it with -n:

killall hcid

hcid -n

This helps you figure out what's going on with failed PIN requests.

Restart hcid after PIN changes

If you edit the PIN in /etc/bluetooth/pin, restart hcid (killall -HUP hcid should do the trick).

Replace bluepin

In theory, the bluepin utility should either use the PIN in /etc/bluetooth/pin or prompt you when it needs a PIN.
However, on Mandrake, the PIN exchange was silently failing. So, we replaced bluepin with a script that spat
out the PIN in /etc/bluetooth/pin:

#!/bin/sh

file: /usr/local/bin/bluepincat

echo -n "PIN:"

cat /etc/bluetooth/pin

Then we set the pin_helper line in /etc/bluetooth/hcid.conf:

pin_helper /usr/local/bin/bluepincat

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pin_helper /usr/local/bin/bluepincat

Make sure the rfcomm module is loaded

When we installed Bluetooth support on Mandrake and Red Hat, the rfcomm module wasn't loaded
automatically, so we received a complaint when we ran /etc/init.d/bluetooth start:

"Can't open RFCOMM control socket: Address family not supported by protocol"

So, we added modprobe rfcomm to the start() section of the /etc/init.d/bluetooth script and rebooted to make
sure everything worked OK.

Double-check your kernel configuration

If you're compiling the kernel from source, be sure everything is configured the way it should be. For example,
one of us was testing the examples in this chapter and received an Operation not supported error when we tried to
make a connection over /dev/rfcomm0. We hadn't configured RFCOMM TTY support
(CONFIG_BLUEZ_RFCOMM_TTY) in the kernel. Well, we had, but it was configured as a module rather than
statically compiled into the kernel. Although make menuconfig showed [*], a peek inside our .config file showed:

CONFIG_BLUEZ_RFCOMM_TTY=m

So we changed m to y, recompiled the kernel, installed it, and rebooted, and all was well.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

7.2 Bluetooth Basics
Bluetooth Special Interest Group (SIG), a consortium of telecommunications, electronics, and computer manufacturers,
develops Bluetooth. The founding members were Ericsson, Nokia, IBM, Intel, and Toshiba. The first version of the
Bluetooth specification was formally adopted by the SIG in 1999.

The first revisions of the Bluetooth specification had a mixed reception, because implementations were dogged by
interoperability problems. The 1.1 release, published in 2001, eliminated the gray areas from the 1.0b specification
and, as a result, improved device interoperability. Over two years since the 1.1 release, Bluetooth is well on its way to
becoming a ubiquitous technology in portable devices. At the time of writing, the current approved revision of the
Bluetooth specification is Version 1.2, released in November 2003.

The Bluetooth specification itself covers the many levels involved in getting a signal between two applications, from the
radio through link control to application-level protocols. Figure 7-1 shows just some of the various strata specified by
Bluetooth, which we encounter in this chapter. Further details, including the specifications themselves, can be obtained
from http://www.bluetooth.org.

Figure 7-1. Some layers of the Bluetooth specification

Bluetooth hardware typically takes the form of one or two microchips, which are embedded in devices. Computers are
increasingly shipping with integrated Bluetooth adapters, but the prevailing way of adding Bluetooth support is by
adding an external adapter, typically via the USB or PC card ports. Before a device can sport the Bluetooth logo and use
the Bluetooth trademarks, it must be put through a series of tests known as qualification. Qualification involves tests for
all parts of the Bluetooth specification, from radio testing to protocol conformance.

7.2.1 What You Can Do with Bluetooth

As Bluetooth is intended to replace cable, it can be used for more or less the same purposes as a cable, within the
bandwidth constraints of the technology. All the following usage scenarios are supported within Linux and are discussed
in this chapter:

Serial port

Bluetooth's serial port emulation enables the connection of modems (such as in cell phones) and printers. Serial
emulation is also an easy way of writing simple data exchange applications using Bluetooth.

Object exchange (OBEX)

Facilitated by implementing the OBEX protocol, object exchange is used for "beaming" data objects between
devices, such as contacts from address books. It is the main way that cell phones exchange data and is often
implemented by Bluetooth-enabled printers.

Synchronization

Devices that implement the IrMC specification permit synchronization of data sources, such as calendars and
address books. Many Bluetooth-enabled cell phones have this feature. More modern devices implement the
SyncML specification, which requires a networking connection.

Networking

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Networking

Bluetooth supports two different forms of networking. The most basic and commonly implemented form is dial-
up networking using PPP over a serial connection. In addition, there is BNEP, an encapsulation of Ethernet
networking, which allows Bluetooth devices to join a network in a manner much more analogous to Wi-Fi
networking.

Input devices

Bluetooth supports an array of input devices similar to USB. Major manufacturers such as Apple and Microsoft
are shipping Bluetooth-enabled mice and keyboards.

Audio

Audio is one of the most-promoted aspects of Bluetooth by cell phone manufacturers; it is possible to support
bi-directional audio connections to headsets over Bluetooth.

7.2.2 Concepts

The following sections describe essential Bluetooth concepts that you need to be aware of. These include the Bluetooth
address, which uniquely identifies a Bluetooth adapter; the protocols and profiles that define the communication
techniques and device capabilities; bonding, discoverability, and device classes, which Bluetooth devices use to find
each other and communicate their abilities; and piconets, scatternets, masters, and slaves, which describe the topology
of Bluetooth networks and the relationships of one device to another.

7.2.2.1 Bluetooth address

Each Bluetooth interface has a Bluetooth address, also known as its BDADDR. These addresses look very much like
Ethernet interface MAC addresses, and follow the same address allotments that the ANSI/IEEE 802 standard,
administered by the IEEE, has laid down. The first three octets of the Bluetooth address denote the organizationally
unique identifier (OUI). For instance, the address 00:80:98:23:15:6E has an OUI of 008098, which is registered to the
TDK Corporation.

OUIs can be looked up online using the IEEE's search interface at
http://standards.ieee.org/regauth/oui/. As some device manufacturers subcontract to
others, it may not always be possible to determine the manufacturer of a device from its
OUI.

In addition, Bluetooth adapters have a programmable name used to present to the user in interactions. Example 7-2
shows both the Bluetooth addresses and the names that are discovered in a device scan.

7.2.2.2 Protocols

The Bluetooth specification defines some protocols of its own and also reuses some existing standards. A protocol is an
agreement about the way data is exchanged. It is on top of these protocols that all applications of Bluetooth are built.
An in-depth knowledge of the protocols is not necessary to deploy Bluetooth, but passing familiarity with them helps in
troubleshooting situations.

Confusingly, some of the protocols have very similar names to the profiles in which they are used and are listed next.
(Additionally, some protocols are layered on top of lower-level protocols. This happens elsewhere in computing—for
example, when a computer connects to the Internet via a modem, it uses the RS232 protocol to communicate serial
port data, the PPP protocol on top of that to facilitate a network connection, and TCP/IP on top of that to carry the
data.)

Link Manager Protocol (LMP)

Provides basic control of interdevice communication links

Logical Link Control and Adaptation Protocol (L2CAP)

Provides logical channels of communication to higher protocol layers

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Provides logical channels of communication to higher protocol layers

Radio Frequency Communication (RFCOMM)

Provides emulated serial connections

Object Exchange (OBEX)

A simple file transfer protocol

Bluetooth Network Encapsulation Protocol (BNEP)

Provides Ethernet encapsulation for wireless networking

Service Discovery Protocol (SDP)

Enables the querying and reporting of services that a device supports

Telephony Control Protocol Specification (TCS)

Provides call control for voice and data telephone calls

7.2.2.3 Profiles

A profile is the name given to the implementation of one more protocols to provide a particular application service.
Bluetooth devices advertise profiles. Many of the profiles build on each other—for instance, the OBEX profile builds on
the serial port profile.

Commonly implemented profiles include:

Service Discovery Access Profile (SDAP)

Enables a device to discover the profiles supported by other devices

Serial Port Profile (SPP)

Emulates a serial port connection

Hardcopy Cable Replacement (HCRP)

Emulates a parallel port connection for the purposes of printing

Dial-up Networking Profile (DUN)

A connection to a modem or cell phone, which connects to an Internet access point

LAN Access Profile (LAP)

A point-to-point (PPP) access to a network

Headset Profile (HS)

A combination voice and control channel, which provides a link between a cell phone and audio headset

Generic Object Exchange Profile (GOEP)

A file exchange, which exchanges business cards on cell phones

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

File Transfer Profile (FTP)

Analogous to Internet FTP, which allows navigation and access to a filesystem

Synchronization Profile (SP)

An address book and calendar synchronization, which uses the IrMC protocol

Human Interface Device Profile (HID)

A connection to a keyboard, mouse, joystick, barcode scanner, or other input devices

Personal Area Networking (PAN)

An Ethernet-like access to a network

Basic Printing Profile (BPP)

Enables devices to print text, as well as formatted documents; useful for low-powered devices such as phones
or pagers

7.2.2.4 Bonding

Bonding, also called pairing, is the process by which trust is established between two Bluetooth devices. The user is
required to input matching codes, called personal identification numbers (PINs), into the two devices. In some
situations, one of the devices may have the PIN pre-set—for example, some headsets come with a PIN of 0000. PINs
are typically a sequence of digits; they provide little security, and they are intended only for the initial pairing.

Given a successful match of PIN, the devices negotiate a link key, a much more cryptographically secure code, which is
used thereafter as an access control mechanism between the two devices.

7.2.2.5 Discoverability

A Bluetooth device is discoverable if it can be found by another device's inquiry. During discovery, the inquiring device
broadcasts a specially coded message. As remote devices receive the message, they send a return message indicating
their presence. In most circumstances, you must make a device discoverable in order to initiate bonding.

Bluejacking
Cell phone owners who inadvertently leave their phones discoverable may suffer from "bluejacking," the
phenomenon in which unknown people send data transfers such as address cards. The address card
carries a message in place of contact details. Although a remote device can never force a data transfer on
another device, leaving devices discoverable makes the user vulnerable to these half technical, half social-
engineering attacks. And it's possible for bluejacking to go beyond pranks: one early smartphone
operating system had a bug that caused the phone to lock up if it was sent a GIF image file constructed in
a particular way.

7.2.2.6 Device classes

Bluetooth devices fulfill many functions, so there should be a way that a device can quickly indicate its primary function.
As we have already mentioned, the SDP exists to provide a complete description of running services. However,
Bluetooth provides an additional way for a device to describe itself: the device class. Although the SDP provides the
description of the running services, the device class provides the purpose of them.

The device class code is a 24-bit number that incorporates three subcodes: the major device type, the minor device
type, and additional service codes, which broadly indicate the services available. Table 7-1 shows the meaning of the
useful major device types (other types are reserved or undefined), and Table 7-2 shows the useful service class bits.
The meaning of the minor device type bits (bits 7-0) depends on the major device type. You can find a full explanation
of these values on the Bluetooth Special Interest Group web site at http://www.bluetoothsig.org/assigned-
numbers/baseband.htm.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 7-1. Major device types as expressed in the device class
Bit pattern (bits 12-8) Meaning

0 0 0 0 0 Miscellaneous

0 0 0 0 1 Computer (from desktop to PDA)

0 0 0 1 0 Telephone (cell phone, payphone, cordless phone)

0 0 0 1 1 Network access point

0 0 1 0 0 Audio/video device (headset, speakers)

0 0 1 0 1 Peripheral (keyboard, mouse, joystick)

0 0 1 1 0 Imaging (printer, camera, scanner)

1 1 1 1 1 Uncategorized

Table 7-2. Service classes as expressed in the device class
Bit Meaning if set

16 Positioning (location information, e.g., GPS)

17 Networking

18 Rendering (printer, speakers)

19 Capturing (scanner, microphone)

20 Object transfer

21 Audio (speaker, microphone, headset)

22 Telephone (modem, cordless telephone, headset)

23 Information (web server)

7.2.2.7 Piconets and scatternets, and masters and slaves

A piconet is a network of Bluetooth devices created by a master connecting to one or more slaves. The master is the
device that initiates the connection. Figure 7-2 shows the topology of a piconet. A master may be connected to as many
as seven slaves simultaneously.

Figure 7-2. Topology of a piconet

Various applications such as LAN access points require the master/slave relationship to be the same as the server/client
relationship. For this reason, a client device, which serves as a master, initiates a connection to the access point; once
connected, a role-switch occurs, and the client device now becomes a slave. For most applications of Bluetooth on
Linux, you do not need to be aware of these distinctions, but the knowledge of their existence may be useful in
debugging scenarios. Some Bluetooth hardware has restricted role-switching ability.

Sometimes, a slave in one piconet is connected to a master of another piconet. The linking together of multiple piconets
in this way is called a scatternet.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

7.3 Bluetooth Hardware
There is a wide variety of hardware available for adding Bluetooth support to your computer. Devices fall into several
categories:

USB dongle

Plugs into the USB port. This device is the most common and economical.

Built-in

Increasingly, laptops are shipping with a Bluetooth transmitter built in. Typically this device appears to the
operating system as if it were a USB device.

PC card

Plugs into a laptop's PCMCIA slot and provides a serial interface to the Bluetooth transmitter.

CF card

Behaves in the same way as a PCMCIA card, and it is used with PDA devices.

Serial dongle

A Bluetooth transmitter that plugs into the serial port. In the early days of Bluetooth deployment, it was a
popular choice; today, however, it is not a recommended option.

Compatibility between Linux and Bluetooth hardware is good. A comprehensive table of verified device compatibility can
be found on Marcel Holtmann's web site, at http://www.holtmann.org/linux/bluetooth/devices.html. This table includes
information for laptops with built-in Bluetooth, too. If you have no specific overriding criteria, it is best to choose a USB
dongle. Due to the standardization of the Bluetooth USB interface, compatibility is very good.

If you dual-boot your computer between Linux and the manufacturer's operating system,
such as Windows XP or Mac OS X, you may want to use the Bluetooth device your vendor
recommends. Both the Apple-sold D-Link USB dongle and Microsoft-manufactured USB
dongle are known to work with Linux. If in doubt, consult the Linux device compatibility
list.

When choosing a Bluetooth device, be aware of the difference between Class 1 and Class 2 Bluetooth devices. Class 1
devices have a more sensitive radio and work up to distances of 100 meters, whereas Class 2 devices work up to 10
meters and are cheaper.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

7.4 Linux Bluetooth Support
As with many emerging technologies, there are competing implementations of Linux Bluetooth support. The main two
implementations are Affix and BlueZ. Affix was originally developed by Nokia and is now hosted as an open source
project at SourceForge (http://affix.sourceforge.net). BlueZ is also hosted at SourceForge is
(http://bluez.sourceforge.net) and the official Bluetooth stack of the Linux kernel.

Although Affix is a mature and functional project, BlueZ receives more testing and has more widespread adoption. For
this reason, this chapter focuses on the uses of the BlueZ Linux Bluetooth stack and libraries.

This section includes all the information that you need to install and configure Bluetooth support from scratch. It is
possible that your Linux distribution already contains preconfigured Bluetooth support, which will save you effort.
However, the installation instructions provide useful background information for troubleshooting.

7.4.1 Distributions

As Bluetooth is a relative newcomer to Linux, BlueZ support across commercial distributions varies. Generally speaking,
if the kernel shipping with your distribution is older than 2.4.22, it is a good idea to upgrade it. Users of "bleeding-edge"
distributions such as Debian Unstable and Gentoo should find that Bluetooth is adequately supported.

7.4.2 Configuring the Kernel

Bluetooth support under Linux requires a recent kernel. If your kernel is Version 2.4.22 or better, or a 2.6 series kernel,
then you're all set. Otherwise, you must upgrade your kernel. Alternatively, if you do not wish to upgrade, and have
kernel 2.4.18 or better compiled from source, you can apply the patches from the "kernel patches" area of the BlueZ
web site (http://bluez.sourceforge.net). Regardless, it's worth checking out the patches, because there are often
improvements available that have not yet been merged into the main Linux kernel source.

Patching the Kernel
To patch the kernel, first download the most recent patch for your kernel version from the BlueZ web site
(for example, patch-2.4.22-mh1.gz), and place it somewhere convenient, such as /usr/src/. Change into
the directory where your kernel source is unpacked, typically /usr/src/linux, and apply the patch:

cd /usr/src/linux

gzip -dc .. /patch-2.4.22-mh1.gz | patch -p1

Next, run this command:

find . -name '*rej'

If any of the patches were rejected, you'll find some files ending in .rej. If they were, delete the kernel
source, extract it again (be sure that you have the correct patch for your kernel version), and try the
patch again.

You can then proceed with configuring your kernel for Bluetooth by running make menuconfig, make xconfig,
or make config.

Chapter 2 explains how to configure and compile a kernel. Table 7-3 and Table 7-4 show the options that must be set in
your kernel configuration to enable Bluetooth support. You can either configure Bluetooth support to be compiled into
the kernel or to be loadable on-demand in the form of modules. Many Linux distributions choose to ship with modules,
so we proceed on the assumption that you will use modules. This removes the need to recompile your kernel if you
acquire a different type of Bluetooth device.

Figure 7-3 and Figure 7-4 show the Bluetooth configuration options from the 2.4.24 kernel.

Figure 7-3. Configuring Bluetooth support in the Linux kernel

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 7-3. Configuring Bluetooth support in the Linux kernel

Figure 7-4. Configuring Bluetooth hardware support in the Linux kernel

Table 7-3. BlueZ protocol configuration options

Option Purpose Recommended
value

Bluetooth subsystem support Enables the entire BlueZ stack m

L2CAP protocol support A basic Bluetooth protocol m

SCO links support Bluetooth Audio m

RFCOMM protocol support Serial data transfer m

RFCOMM TTY support Maps Linux terminal devices (e.g., /dev/rfcomm0) to
Bluetooth serial ports y

BNEP protocol support Personal area networking m

BNEP Multicast filter support, protocol
filter support Advanced filtering for networking y

Table 7-4. BlueZ hardware support configuration options

Option Purpose Recommended
value

HCI USB driver Support for USB dongles m

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SCO (voice) support Audio transmission support y

USB zero packet support Workaround for buggy USB devices n

HCI UART driver Support for serial dongles: either PCMCIA, CF, or RS232 serial
port y

UART (H4) protocol support Serial protocol used for most PCMCIA and CF cards y

BCSP protocol support Serial protocol used for PCMCIA and CF cards based on the CSR
BlueCore chipset y

Transmit CRC with every
BCSP packet Improves reliability of BCSP support, at a slight cost to efficiency y

HCI BlueFRITZ! USB driver Support for BlueFRITZ! Bluetooth ISDN m

HCI VHCI (Virtual HCI device)
driver Support for a virtual Bluetooth device for testing purposes m

You should not enable the Bluetooth device support in the USB drivers section of your
kernel configuration (CONFIG_USB_BLUETOOTH). This is a vestigial driver from very early
Bluetooth work and will prevent the BlueZ Bluetooth stack from operating. If you are using
a distribution's precompiled kernel, this corresponds to the bluetooth kernel module, and
you should prevent it from being loaded. This can be done either by ensuring the BlueZ
hci_usb module is loaded instead of the USB Bluetooth module or by disabling the module
by adding its name to hotplug's configuration list (/etc/hotplug/blacklist).

Once your kernel is compiled and you have rebooted, you must configure Linux so it knows how to load the appropriate
Bluetooth protocol modules. Most modern distributions come with /etc/modules.conf already set up for Bluetooth use,
but you may be missing the required configuration.

To verify this, ensure that the contents of Example 7-1 are present in /etc/modules.conf. If you need to change this file,
run depmod -a to ensure automatic loading of modules by the kernel. You must be the root user to perform this
operation.

Example 7-1. Module configuration for BlueZ

BlueZ modules

alias net-pf-31 bluez

alias bt-proto-0 l2cap

alias bt-proto-2 sco

alias bt-proto-3 rfcomm

alias bt-proto-4 bnep

alias tty-ldisc-15 hci_uart

alias char-major-10-250 hci_vhci

Linux distributions may vary in the way they manage the /etc/modules.conf file. Debian
GNU/Linux, for example, requires you put the contents of Example 7-1 in a separate file in
/etc/modutils and run /sbin/update-modules; however, if you use the pre-packaged Debian
BlueZ utilities, this file is already provided for you.

7.4.3 Supporting Subsystems

Depending on your hardware configuration, you must ensure you are running some extra supporting software to
initialize your Bluetooth device.

7.4.3.1 PCMCIA

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.4.3.1 PCMCIA

If your Bluetooth adapter is a PC card or a CF card, you must have kernel support for PCMCIA and the PCMCIA card
services software installed. This software is responsible for initializing your adapter when it is plugged in and loading the
required drivers into the kernel.

BlueZ requires PCMCIA card services to be Version 3.2.2 or higher. If your Linux distribution has an older version, you
can update it from http://pcmcia-cs.sourceforge.net. See Chapter 2 for complete instructions on compiling pcmcia-cs
from source.

7.4.3.2 Hotplug

The Linux hotplug subsystem enables you to plug in a device and have it immediately ready to use. It is similar in
function to the card manager from PCMCIA card services, except it is generalized to include USB, Firewire (IEEE 1394),
and network devices. The 2.6 series of Linux kernels adds hotplug capability to even more subsystems, such as SCSI
and input devices.

When hotplug detects a new device, it loads the necessary driver modules into the kernel, and it runs any scripts the
user has configured. In the case of BlueZ, hotplug is required for certain Bluetooth devices that require firmware
downloaded to them, such as the USB dongles based on the Broadcom chipset.

Hotplug ships with most Linux distributions. Version 2002_08_26 or later is required. If you need to install it separately,
download it from http://linux-hotplug.sourceforge.net/.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

7.5 Installing the BlueZ Utilities
In addition to the kernel support, you must install a set of utility programs to help you manage your Bluetooth devices.
Table 7-5 shows the names of the packages and their purpose. You can either install the versions of these tools that
come with your Linux distribution, or compile and install them from source.

Table 7-5. BlueZ software packages
Package Purpose

bluez-libs The application library that all other Bluetooth tools require in order to function

bluez-utils Main utilities that enable you to initialize and control Bluetooth devices

bluez-sdp Service discovery protocol tools that enable the advertisement and discovery of Bluetooth services

bluez-pan Tools that enable personal area networking using Bluetooth

bluez-hcidump A debugging tool that permits the monitoring of Bluetooth packets

bluez-bluefw The firmware for Broadcom chipset-based Bluetooth devices

If you are compiling the tools from source code, compile and install in the order shown in Table 7-5 to avoid
dependency problems.

Precompiled version of the utilities can be obtained for Red Hat Linux as RPMs, for Debian stable as .deb packages (the
latest BlueZ utilities are an integral part of Debian unstable), and as packages suitable for the Sharp Zaurus Linux PDA.
These can be downloaded, along with the source code packages, from the BlueZ download page at
http://bluez.sourceforge.net/.

In order to determine whether your Bluetooth system is working, you only need to install the bluez-libs and bluez-utils
packages, and also bluez-bluefw if your dongle contains a Broadcom chip (you can determine this from Marcel
Holtmann's Bluetooth hardware page at http://www.holtmann.org/linux/bluetooth/devices.html). Install the rest when
you have verified that everything is working properly.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

7.6 Basic Configuration and Operation
The bluez-utils package contains the tools you need to configure and test your Bluetooth setup. Once you've installed
the package, run the init script (/etc/init.d/bluez-utils start on Debian, /etc/init.d/bluetooth start on Red Hat) to start the
Bluetooth subsystem. These scripts normally run on boot, so they may have been started already if you installed from
RPMs or Debian packages.

The hcid daemon should now be running. This program controls the initialization of Bluetooth devices on the system and
handles the bonding process with other devices. We discuss configuration of hcid later in this chapter.

The prefix "hci" derives from the name of the interface between the computer and the Bluetooth device, the Host
Controller Interface.

7.6.1 Examining Local Devices

The hciconfig tool allows the configuration of the characteristics of your Bluetooth adapter. If you are familiar with the
configuration of network interfaces, you will find it parallel in operation to ifconfig. Use -a to display extended
information about each Bluetooth device attached to the computer:

hciconfig -a

hci0: Type: USB

 BD Address: 00:80:98:24:15:6D ACL MTU: 128:8 SCO MTU: 64:8

 UP RUNNING PSCAN ISCAN

 RX bytes:4923 acl:129 sco:0 events:168 errors:0

 TX bytes:2326 acl:87 sco:0 commands:40 errors:0

 Features: 0xff 0xff 0x05 0x00

 Packet type: DM1 DM3 DM5 DH1 DH3 DH5 HV1 HV2 HV3

 Link policy: HOLD SNIFF PARK

 Link mode: SLAVE ACCEPT

 Name: 'saag-0'

 Class: 0x100100

 Service Classes: Object Transfer

 Device Class: Computer, Uncategorized

 HCI Ver: 1.1 (0x1) HCI Rev: 0x73 LMP Ver: 1.1 (0x1) LMP Subver: 0x73

 Manufacturer: Cambridge Silicon Radio (10)

From this output, you can observe several things, which have been rendered in bold text in the example.

Bluetooth interfaces are referred to as hci0, hci1, etc. in the same way as Ethernet interfaces are generally
named eth0, eth1, etc.

The unique Bluetooth address of our device is 00:80:98:24:15:6D.

The hci0 device in question is activated, that is, UP.

Other Bluetooth devices will see this computer as saag-0. This name is configurable, as explained in Table 7-6.

The chipset is manufactured by Cambridge Silicon Radio (CSR). The CSR chipset is the most commonly used
chipset for USB dongles.

When diagnosing and reporting problems to kernel driver authors, you may be asked for the output of hciconfig -a. Note
that you must be the root user to use some of the features of hciconfig.

Table 7-6 shows the most useful options of the hciconfig tool.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 7-6 shows the most useful options of the hciconfig tool.

Table 7-6. Common usages of the hciconfig tool
Command Description

hciconfig hci0 up

hciconfig hci0 down
Activates or deactivates the Bluetooth device. Normally, in hcid does this for you when you
plug the device.

hciconfig hci0 reset Sends a reset command to the Bluetooth device.

hciconfig hci0 name myname Sets the device's public name to myname.

hciconfig hci0 features Shows a human-readable list of the Bluetooth features the device supports. The most
useful feature is SCO link, required in order to use audio.

7.6.2 Scanning for Remote Devices

The acid test is, of course, to see if your computer can detect other Bluetooth devices. The hcitool toolcan be used to do
this. Switch on your other Bluetooth device, and ensure it is in "discoverable" mode. Issue the command hcitool scan and
wait (see Example 7-2). You don't need to be root in order to run this command.

Example 7-2. An example scan of remote Bluetooth devices

$ hcitool scan

Scanning ...

 00:0A:D9:15:CB:B4 ED P800

 00:40:05:D0:DD:69 saag-1

Example 7-2 shows a typical output of a scan. In this case, the author's cell phone, "ED P800," and second Bluetooth
adapter, "saag-1," are shown as discoverable.

Why Isn't Scanning Instantaneous?
The reason scanning can take a long time is because a Bluetooth inquiry is being performed. As Bluetooth
devices frequency-hop, inquiry cannot be instantaneous. The device performing the inquiry transmits a
special code on two consecutive frequencies. When the other devices' hop patterns take them onto those
frequencies, they listen for a repetition of that code and then indicate their presence to the inquirer.

The hcitool and hciconfig programs produce similar output for the remote devices. You must be root to use this option
of hcitool. Here's an example session with hcitool where we specify the Bluetooth address of the P800 cell phone
discovered in Example 7-2:

hcitool info 00:0A:D9:15:CB:B4

Requesting information ...

 BD Address: 00:0A:D9:15:CB:B4

 Device Name: ED P800

 LMP Version: 1.1 (0x1) LMP Subversion: 0x9040

 Manufacturer: Ericsson Mobile Comunications (0)

 Features: 0xff 0xfb 0x01 0x00

 <3-slot packets> <5-slot packets> <encryption> <slot offset>

 <timing accuracy> <role switch> <hold mode> <sniff mode>

 <park mode> <RSSI> <SCO link> <HV2 packets>

 <HV3 packets> <u-law log> <A-law log> <CVSD>

7.6.3 Pinging a Remote Device

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The ping command is an incredibly useful tool for discovering whether remote computers are reachable over a TCP/IP
network. BlueZ has an analog to ping, called l2ping. Its name refers to the fact that it attempts to create a connection
to the device using the logical link control and adaptation protocol (L2CAP), the lowest-level link-based protocol in
Bluetooth.

In other words, before despairing because you cannot connect to a device, check it with l2ping. There may be a fault
with software higher up the chain; l2ping enables you to determine whether a basic connection can be established with
a remote device. Here's an example of l2ping in action (you need to run l2ping as root):

l2ping 00:0A:D9:15:CB:B4

Ping: 00:0A:D9:15:CB:B4 from 00:80:98:24:15:6D (data size 20) ...

0 bytes from 00:0A:D9:15:CB:B4 id 200 time 54.85ms

0 bytes from 00:0A:D9:15:CB:B4 id 201 time 49.35ms

0 bytes from 00:0A:D9:15:CB:B4 id 202 time 34.35ms

0 bytes from 00:0A:D9:15:CB:B4 id 203 time 28.33ms

4 sent, 4 received, 0% loss

If you have not yet paired your computer with the device with which you are testing, using
l2ping may result in a "permission denied" error. To remedy this, you must either pair your
device with the computer (see Section 7.6.5 later in this chapter) or ensure that the
remote device is discoverable.

7.6.4 Configuring hcid

The hcid daemon handles various low-level aspects of a system's Bluetooth devices, including activating and configuring
the Bluetooth interfaces, and handling device bonding. hcid should be running at all times on your system, and it is
usually started by initialization scripts installed along with the rest of the tools from the bluez-utils package.

The configuration file for hcid, /etc/bluetooth/hcid.conf, has two parts: global configuration and Bluetooth device
configuration. In normal operation, most of the default options are acceptable. In this chapter, we cover only the
options that are most useful to change.

7.6.4.1 Global options

This section is introduced by the options keyword in the configuration file and controls the behavior of the hcid program.
The most useful option in this section is pin_helper, which tells the computer the program to run in order to obtain a PIN
code when pairing. The default PIN helper that ships with bluez-utils is a Python script, which uses the Python bindings
to the GTK graphical toolkit. Unless you have Python and the Python-GTK package installed on your computer, this
helper will not work, and you will not be able to pair your computer with other Bluetooth devices. (See the Section
7.1.4 earlier in this chapter for instructions on replacing the PIN helper with one that returns the same PIN code every
time.)

A better-looking PIN helper is available separately from bluez-utils, in a package called bluez-pin. Installing this package
is recommended, and several Linux distributions ship it as a default. If you install bluez-pin, you must amend the
pin_helper option accordingly. Figure 7-5 shows bluez-pin in action.

Figure 7-5. A request for a PIN from bluez-pin

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.6.4.2 Device options

This section is introduced by the devices keyword, which controls the configuration that hcid gives to each Bluetooth
device as it is activated. This has the same effect as if you were to manually configure the device with hciconfig. Table
7-7 explains the most useful options available in this section.

Table 7-7. Useful device-level options from /etc/bluetooth/hcid.conf
Option Explanation

name The name of the adapter as it appears to other devices. The special sequence %h is replaced by the
machine's hostname, and %d is replaced by the interface number.

class
The Bluetooth device and service class advertised to other devices. The default is hex 0x000100, indicating a
computer device class, with no special service class. Depending on how the Bluetooth adapter is to be used,
it may be helpful to amend this value. For more information, see Section 7.2.2.6.

iscan
pscan

These two options control whether the adapter responds to inquiry and page scans. If inquiry scanning
(iscan) is enabled, the adapter is discoverable by other devices. If page scanning (pscan) is enabled, the
computer permits adapter connections from remote devices.

7.6.5 Bonding/Pairing

Many devices require that bonding, or pairing, is performed before a Bluetooth connection is established. Bonding may
be initiated by the computer or by the remote device.

If the computer initiates bonding—usually by making an outgoing connection—then the pin_helper program (usually
bluepin) will present a graphical dialog box to the user requesting that he input a PIN, which should match the code set
on the remote device. If the remote device initiates bonding, then the remote device is required to provide a PIN to
match that set in the file /etc/bluetooth/pin.

In some distributions of bluez-utils, the PIN code is set to the alphabetical string BlueZ.
This is troublesome, because many Bluetooth devices, including most cell phones, are only
capable of delivering numeric PINs. It is therefore recommended that you alter the
contents of /etc/bluetooth/pin to a numeric code.

If bonding is successful, the hcid daemon will store the resulting link key, used to authenticate all future connections
between the two devices concerned, in the database file /etc/bluetooth/link_key.

7.6.6 Service Discovery

Bluetooth devices implement the service discovery profile (SDP) in order to describe to other devices how their services
may be accessed. SDP is generally used in two ways: browsing and searching. An SDP browse request causes a device
to respond with a list of services that it supports. A search request is a query for details of a particular service.

Two tools found in the bluez-sdp package handle SDP on Linux. The first is sdpd, which provides an SDP server and
allows remote devices to query the computer. The second, sdptool, allows administration of the SDP server and
querying of the remote device.

Not all Bluetooth-enabled devices support SDP browsing—for example, the Palm Tungsten-
T PDA. Applications that wish to connect to these devices must instead search for the
services they wish to use, as shown in the following section.

7.6.6.1 Using sdptool

The simplest invocation of sdptool is sdptool browse. This performs an inquiry and then browses each available device.
Example 7-3 shows the result of this command.

Example 7-3. Results of an SDP browse

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 7-3. Results of an SDP browse

$ sdptool browse

Inquiring ...

Browsing 00:80:98:24:15:6D ...

Service Name: SDP Server

Service Description: Bluetooth service discovery server

Service Provider: BlueZ

Service RecHandle: 0x0

Service Class ID List:

 "SDP Server" (0x1000)

Protocol Descriptor List:

 "L2CAP" (0x0100)

 PSM: 1

 Version: 0x0001

Language Base Attr List:

 code_ISO639: 0x656e

 encoding: 0x6a

 base_offset: 0x100

Service Name: Public Browse Group Root

Service Description: Root of public browse hierarchy

Service Provider: BlueZ

Service RecHandle: 0x804d008

Service Class ID List:

 "Browse Group Descriptor" (0x1001)

Language Base Attr List:

 code_ISO639: 0x656e

 encoding: 0x6a

 base_offset: 0x100

Service Name: LAN Access Point

Service RecHandle: 0x804d6f0

Service Class ID List:

 "LAN Access Using PPP" (0x1102)

Protocol Descriptor List:

 "L2CAP" (0x0100)

 "RFCOMM" (0x0003)

 Channel: 3

Profile Descriptor List:

 "LAN Access Using PPP" (0x1102)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 "LAN Access Using PPP" (0x1102)

 Version: 0x0100

Service Name: OBEX Object Push

Service RecHandle: 0x804d7f0

Service Class ID List:

 "OBEX Object Push" (0x1105)

Protocol Descriptor List:

 "L2CAP" (0x0100)

 "RFCOMM" (0x0003)

 Channel: 4

 "OBEX" (0x0008)

Profile Descriptor List:

 "OBEX Object Push" (0x1105)

 Version: 0x0100

The output from the browse command shows a list of service descriptions obtained from the SDP server. In this case,
you can see that the device is running an SDP server, has support for public browsing of the SDP server contents, is
offering network access via PPP, and supports OBEX via OBEX PUSH. The two profiles that use RFCOMM as a base
protocol also indicate the RFCOMM channel on which the service is available. The term "channel" is somewhat
overloaded in radio technologies such as Bluetooth, so you may find it helpful to consider each RFCOMM channel a
virtual serial port number.

If the BDADDR of the device to query is known, it can be specified on the command line: sdptool browse
00:80:98:24:15:6D.

The sdptool program is also used to search for devices supporting a particular service. For instance, sdptool search OPUSH
returns the service descriptor for OBEX PUSH support from any available device supporting it. Unfortunately, unlike the
browse command, there is no way of searching only one device with the current version of sdptool; it must perform an
inquiry and search for the service on every device. Table 7-8 shows the service abbreviations that sdptool understands.

Table 7-8. Service abbreviations for sdptool
Abbreviation Service

SP Serial port

DUN Dial-up networking

LAN LAN access

HSET Headset profile

FAX Fax profile

OPUSH Object push

FTRN Object file transfer protocol

NAP Network access point

GN Ad-hoc peer networking

HID Human interface device

CIP Common ISDN access

CTP Cordless telephony

Although the use of sdptool appears clumsy, in practice it is normally required only for diagnostic purposes. Bluetooth
application software generally performs its own SDP requests to determine how to connect to a service on a remote
device.

7.6.6.2 Configuring sdpd with sdptool

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.6.6.2 Configuring sdpd with sdptool

Unlike hcid, sdpd does not remember its settings by use of a static configuration file. The service directory is dynamic,
allowing services to register and deregister themselves as they come and go. Most applications do this by using the
BlueZ SDP libraries, but on occasion, it is useful to configure this manually using sdptool.

To see which services the system's SDP daemon is advertising, use the special Bluetooth address FF:FF:FF:00:00:00,
which refers to the local Bluetooth device: sdptool browse FF:FF:FF:00:00:00.

The add subcommand of sdptool registers a service via SDP. It takes the service name as a parameter, with an optional
parameter for the RFCOMM channel. For instance, to advertise a serial port connection on RFCOMM channel 3, use the
following command: sdptool add --channel=3 SP. Obviously, the channel option makes sense only for those services based
on serial emulation, such as dial-up networking, OBEX, and fax.

Removing a service is slightly more complex, requiring the identifying "handle" of the record. In the output from an SDP
browse in Example 7-3, there is a Service RecHandle entry for each record; the del command requires this number. So,
assuming Example 7-3 refers to a local SDP server, you could remove the object push record with the command sdptool
del 0x804d7f0.

The sdptool command provides even more granular control over the SDP records through the use of setattr and setseq,
which adjust particular parameters. Use of setattr and setseq require knowledge that is likely to be useful only if you are
writing sophisticated Bluetooth programs.

7.6.7 Serial Connections

Using BlueZ's RFCOMM implementation, it is possible to create and use emulated serial port connections over Bluetooth.
RFCOMM actually underlies many Bluetooth profiles such as dial-up networking and OBEX.

As with SDP, BlueZ provides both application libraries, so programs can create and utilize RFCOMM connections and an
administrative tool for the user to set up connections herself.

7.6.7.1 Ensuring RFCOMM is set up

To use RFCOMM connections, you must ensure that:

The rfcomm kernel module is either compiled into the kernel or available to load

The /dev/rfcomm* devices exist on your machine

Kernel configuration was covered in Section 7.4.2 earlier in this chapter. Most Linux distributions should automatically
create the RFCOMM device entries for you, but if they don't exist, create them using the script in Example 7-4, which
must be run as the root user.

Example 7-4. Creating the /dev/rfcomm devices

#!/bin/sh

script: mkrfcomm

C=0;

while [$C -lt 256]; do

 if [! -c /dev/rfcomm$C]; then

 mknod -m 666 /dev/rfcomm$C c 216 $C

 fi

C=`expr $C + 1`

done

7.6.7.2 Connecting to a cell phone

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.6.7.2 Connecting to a cell phone

To see an example of RFCOMM usage, you could set up a serial connection to a cell phone's modem and try some
commands on it. First, you must discover the RFCOMM channel that dial-up networking uses on the phone. For this, use
sdptool browse ADDR (where ADDR is a Bluetooth address you retrieved with sdptool browse):

$ sdptool browse

00:0A:D9:15:CB:B4

...

Service Name: Dial-up Networking

Service Description: Dial-up Networking

Service Provider: Sony Ericsson

Service RecHandle: 0x10002

Service Class ID List:

 "Dialup Networking" (0x1103)

Protocol Descriptor List:

 "L2CAP" (0x0100)

 "RFCOMM" (0x0003)

 Channel: 3

The phone uses channel 3 for dial-up networking. A virtual serial port on the Linux machine must be bound to this
channel on the phone. As the root user, use the rfcomm command to bind the port and then again to confirm that the
port is bound, as shown in Example 7-5.

Example 7-5. Binding to and checking an RFCOMM serial port

rfcomm bind 0 00:0A:D9:15:CB:B4 3

rfcomm

rfcomm0: 00:0A:D9:15:CB:B4 channel 3 clean

The 0 in bind 0 corresponds to the 0 in the device /dev/rfcomm0, which can now be used with applications in the same
way that traditional serial ports (known as /dev/ttyS0, etc.) are used. A terminal emulation package, such as the
popular minicom, can be used to confirm that the phone's modem is working, as shown in the following listing. The
command ATI3 usually returns useful model information for a remote modem.

OK

ATI3

P800 Bluetooth (TM) Modem

OK

For more information on minicom, see http://alioth.debian.org/projects/minicom/. You
must create a configuration file for minicom referencing /dev/rfcomm0 or change the serial
device to /dev/rfcomm0 from within minicom's option screens, which you can find by
running minicom -s. You can also use Kermit, as shown in Chapter 9.

7.6.7.3 Internet access via a cell phone

By creating PPP connections with RFCOMM serial ports, you can use your cell phone for Internet access. (To learn how
to do this with GPRS cell phones, see Chapter 9.) For example, to connect to AT&T Wireless's GPRS network with a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

to do this with GPRS cell phones, see Chapter 9.) For example, to connect to AT&T Wireless's GPRS network with a
Nokia 3650 (see "GSM/GPRS Phone with Data Cable" in Chapter 9), use the peers script shown in Example 7-6. Be sure
to use rfcomm bind as shown in Example 7-6. You can use the attws-connect and attws-disconnect scripts from Chapter
9.

Example 7-6. PPP peer settings for AT&T Wireless and the Nokia 3650 over
Bluetooth

File: /etc/ppp/peers/attws-rfcomm

#

/dev/rfcomm0 # Nokia 3650

115200 # speed

defaultroute # use the cellular network for the default route

usepeerdns # use the DNS servers from the remote network

nodetach # keep pppd in the foreground

nocrtscts # no hardware flow control

lock # lock the serial port

noauth # don't expect the modem to authenticate itself

local # don't use Carrier Detect or Data Terminal Ready

connect "/usr/sbin/chat -v -f /etc/chatscripts/attws-connect"

disconnect "/usr/sbin/chat -v -f

/etc/chatscripts/attws-disconnect"

7.6.8 Object Exchange

OBEX is a simple file transfer protocol. It is used when you "beam" files from one device to another. This is known as
OBEX PUSH. Some devices also support OBEX FTP. As its name suggests, OBEX FTP behaves similarly to the Internet
FTP protocol, allowing file uploads and downloads to a device.

The OBEX protocol was introduced as part of the group of technologies created for infrared device connections. Its
implementation in devices such as cell phones is widespread but not without its quirks. OBEX itself is a binary protocol
layered on top of a serial connection. With Bluetooth, it is layered on top of an RFCOMM connection. Example 7-3 shows
an entry for the OBEX PUSH profile, using RFCOMM channel 4.

Some older cell phones don't actually provide OBEX implementation in this way. Instead, they have extended AT
commands accessible from a serial connection to their internal modem, as described in the previous section. These
commands place the connection into OBEX mode. We do not cover this use, often called "cable OBEX," but rather focus
on the Bluetooth OBEX profiles.

OBEX FTP over Bluetooth is not very well supported on Linux. The most popular package, obexftp, still has Bluetooth
support in development at the time of writing. We advise you to check the project's home page at http://triq.net/obex.

OBEX PUSH is better supported and is more practical since it is consistently implemented in consumer devices such as
cell phones. There are several graphical programs available to support OBEX PUSH on Linux, as we shall see later. First,
we look at the command-line tools available to perform file transfers.

7.6.8.1 Basic support

OBEX support on Linux is implemented through a project called OpenOBEX. Any OBEX-related program requires you to
have these libraries installed. They can be obtained and compiled from the project's home page at
http://openobex.sourceforge.net/ or installed through your Linux system's package management system.

If your Linux distribution is relatively old, be aware that OpenOBEX might not have been
compiled with Bluetooth enabled. If you are encountering inexplicable errors in starting up
OBEX applications, this may well be the case, and you should contact your Linux
distribution vendor.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The OpenOBEX libraries have a companion package called openobex-apps. The openobex-apps package contains a set
of basic test programs that you can use to get started. They are by no means production quality, but they enable you to
test your setup. We'll use the obex_test program to test receiving and sending files.

To send a file to a remote device, you must first discover the RFCOMM port the OBEX PUSH support uses, as shown in
Example 7-3. Use sdptool to discover this, and then run obex_test. Let's suppose our remote device has the address
11:22:33:44:55:66 and uses RFCOMM port 3 for OBEX PUSH. Here is an imaginary session:

$ obex_test -b 11:22:33:44:55:66 3

> c

> p localfilename remotefilename

This session presents two arguments to the p command: the location of the file you want to send and the name of the
file to use when it reaches the remote device.

To receive a file from a remote device, use the test program in server mode. (This is shown in the following listing.) You
can then push a file to your computer from a remote device.

$ sdptool add --channel=4 OPUSH

$ obex_test -b ff:ff:ff:00:00:00 4

> s

Note that some devices require the OBEX capability to be reflected in your Bluetooth device's device class setting before
they allow transfers to be made to your computer. (See the section Section 7.2.2.6 for a detailed discussion on the
exact values that this can take.) In most cases, it is sufficient to set the class to service_class_obex | device_class_computer
(0x100100). This can be set in /etc/bluetooth/hcid.conf or by dynamically using the hciconfig command.

The test applications that come with the OpenOBEX libraries are necessarily very rough and require you to do the
legwork. Happily, more polished applications are available. These applications form part of the KDE and GNOME desktop
projects, and are mentioned later in this chapter.

Other software meriting investigation can be found on the Web. These programs include ussp-push, obextool, and the
OBEX PUSH daemon. They can be found either by searching the Web or visiting a page on Linux and Bluetooth, created
by BlueZ maintainer Marcel Holtmann, at http://www.holtmann.org/linux/bluetooth.

7.6.9 PPP Networking

Point-to-point networking is useful for networking two computers together. If one of the peers permits routing or
bridging to a wider network, then the other gains access to that network. This is what happens when you dial up your
Internet service provider on a traditional modem.

PPP networking is used in the implementation of the Bluetooth LAN access profile. Here is what an SDP record for the
LAN access profile looks like:

Service Name: LAN Access over PPP

Service RecHandle: 0x804dae0

Service Class ID List:

 "LAN Access Using PPP" (0x1102)

Protocol Descriptor List:

 "L2CAP" (0x0100)

 "RFCOMM" (0x0003)

 Channel: 2

Profile Descriptor List:

 "LAN Access Using PPP" (0x1102)

 Version: 0x0100

You can use LAN access to provide Bluetooth devices with access to your local network. Many PDA devices support this
connection method, both for purposes of synchronization over TCP/IP and general Internet access.

In order to use LAN access, you need the bluez-pan package installed on your computer. This contains two tools: dund

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In order to use LAN access, you need the bluez-pan package installed on your computer. This contains two tools: dund
and pand. LAN access is provided by dund, which we discuss here. You also need PPP support in your Linux kernel, and
the PPP daemon pppd installed on your computer. With most Linux distributions, this is already installed.

While no pppd expertise is assumed in this section, you are strongly recommended to familiarize yourself with its
documentation. The Linux PPP HOWTO at http://www.linux.org/docs/ldp/howto/PPP-HOWTO is a good starting point.

The dund daemon can be used to manage both sides of the LAN connection. It provides PPP access to a remote device
or connects to a provider. Acting as the server, it listens on a specific RFCOMM channel, and when a connection is
made, it invokes pppd to establish the network connection. Acting as the client, it establishes a connection over
Bluetooth to a remote device and then invokes pppd to handle the network connection.

7.6.9.1 Creating a LAN access server

The simplest invocation of dund is dund --listen --persist. You should run this command from the account of a user with
permission to run pppd (as a fallback, you can always run it as the root user.) This command line causes dund to
register the LAN access profile with the local SDP server and listen for incoming connections as a daemon. (For
debugging purposes, dund can be given the --nodetach argument, which causes it to run in the foreground like a normal
program.) The persist option causes the daemon to continue running after a connection has terminated and await new
connections. You can check the system log /var/log/syslog for status messages from dund.

When a connection is established, dund invokes pppd with its default options. You can normally find these in
/etc/ppp/options. Some systems use /etc/pppd instead of /etc/ppp. However, it's better to create a separate
configuration file especially for your connections. Anything you pass to dund on the command line after its own
configuration options is sent straight to pppd. Create a file called dun in /etc/ppp/peers with the content shown in
Example 7-7.

Example 7-7. PPP daemon configuration for LAN access

noauth

debug

crtscts

lock

local

proxyarp

ms-dns 192.168.0.5

local : remote

192.168.7.1:192.168.7.2

You may want to adjust the last two entries in the configuration to suit your setup: the ms-dns line specifies the IP
address of your DNS server. This will become useful when you enable routing. The two colon-separated addresses are
the local IP address and the IP address to give the remote device. You should choose addresses in the 10.x.x.x or
192.168.x.x ranges that don't clash with any of your internal subnets.

The dund program can then be invoked with dund --listen --persist call dun. When a remote device connects, the PPP
connection is brought up. Because of the "debug" option to pppd, you should see a verbose report of the connection in
the system log. To confirm that a connection has been established, run the ifconfig command and look for the ppp0
network interface. Invoke the ping command to confirm that your remote device is reachable:

$ ping 192.168.7.2

PING 192.168.7.2 (192.168.7.2): 56 data bytes

64 bytes from 192.168.7.2: icmp_seq=0 ttl=255 time=77.8 ms

64 bytes from 192.168.7.2: icmp_seq=1 ttl=255 time=80.5 ms

64 bytes from 192.168.7.2: icmp_seq=2 ttl=255 time=78.3 ms

The final step is to ensure that your Linux box can route for the remote device, so it can take advantage of your
network facilities. Various Linux distributions have their own way of doing this in their network configuration, but to test
you can enable it by issuing the command echo 1 > /proc/sys/net/ipv4/ip_forward. Further instructions on routing can be
found on the iptables home page (http://www.netfilter.org) and also in "Sharing a Network Connection over IrDA" in
Chapter 8. There are a few ways to set up this kind of routing, depending on your distribution and kernel version, but
make sure that other machines on your network know how to route to your connected Bluetooth device.

If you are connecting to a device running Microsoft software, you should pass the --ms-dun

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you are connecting to a device running Microsoft software, you should pass the --ms-dun
option to dund. This enables the extra negotiation required to talk to the Windows dial-up
networking implementation.

Our setup so far has no security considerations. There are several steps one can take to improve the security situation:

Require username/password authentication for the PPP setup; see the pppd documentation for how to do this.

Configure your Bluetooth device to always use link-level encryption in hcid.conf.

You should rely on neither of these to provide more than basic security. Bluetooth is still a relatively new technology,
and its security measures have not yet been subjected to many attacks in the wild. It's always best, if the remote
device is capable of it, to assume link-level security is weak and to use secure connection tools such as ssh to encrypt
your network traffic at the application layer.

7.6.9.2 Connecting to a LAN access server

The dund program can be configured to connect to a known LAN access point or to search for one and connect to it.
Here are the command lines for these two functions:

dund --connect 11:22:33:44:55:66

dund --search

You can also specify a PPP configuration file by appending the call keyword and the name of the configuration in
/etc/ppp/peers/ to the command line.

7.6.10 Personal Area Networking

While you can achieve much with file transfers via OBEX and point-to-point networking with PPP, devices can take the
full advantage of being interlinked in the same way that Ethernet networks are. They can then run protocols such as
IPv4, IPv6, and IPX. For this reason, the Bluetooth specifications define a protocol called Bluetooth Network
Encapsulation (BNEP). BNEP is used by the Personal Area Networking (PAN) profiles.

The PAN profiles cover two basic modes of networking. The first profile is a network access point (NAP). NAPs provide
network access in the same way that an access point for a Wi-Fi network does. They are typically connected to a wider
network and provide bridging. Figure 7-6 shows the structure of a NAP network. Clients connect using a profile called
PAN user (PANU).

Figure 7-6. Structure of a network connected to a NAP

The second PAN profile is a group ad-hoc network (GN). GNs are not intended to provide access to any further network
but can be used to create ad-hoc networks among a group of devices. Figure 7-7 shows the structure of a GN.

Figure 7-7. Structure of a GN

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 7-7. Structure of a GN

Both of these types of network are supported under Linux. To set them up, you must have some familiarity with Linux
network administration.

7.6.10.1 Creating a GN

GNs are easier to create, so they are good starting points to test PAN functionality. To set up a GN or NAP, the bluez-
pan package must be compiled and installed. You must also ensure that your kernel has the BNEP module compiled
(Table 7-3). Load the BNEP module with modprobe bnep.

On the server machine, run this command as root:

pand --master --listen --role GN

On the client machine, run this command, substituting the Bluetooth address of the master machine:

pand --connect 11:22:33:44:55:66

As usual, you can check for status reports from pand in the system log file. To bring a network up, configure the
interfaces' network addresses. On the master:

ifconfig bnep0 192.168.7.1

and on the client:

ifconfig bnep0 192.168.7.2

If you use the 192.168.7.x network locally, substitute other suitable IP addresses. Test the connection by using ping to
verify the connection from each end. Use ifconfig to display the interface configuration:

ifconfig bnep0

bnep0 Link encap:Ethernet HWaddr 00:80:98:24:15:6D

 inet addr:192.168.7.1 Bcast:192.168.7.255 Mask:255.255.255.0

 inet6 addr: fe80::280:98ff:fe24:156d/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:0 errors:0 dropped:0 overruns:0 frame:0

 TX packets:5 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:20 (20.0 b) TX bytes:188 (188.0 b)

You may not want to specify the GN host's Bluetooth address on the client. By default, pand registers the GN or NAP
service with the master host's SDP server. To make the client find its access point via SDP, give the client the following
command line:

pand --role PANU --search --service GN

Omitting the service argument causes pand to search for the NAP by default. Specifying the --persist option to the
client's pand line causes it to search for the GN whenever it is not connected. Using this option, you can configure a
machine to automatically connect to the network whenever it comes in range of the master machine.

To automate the IP address configuration, use the methods provided by your Linux distribution. On Red Hat, this means
creating suitable scripts to go into /etc/sysconfig/network-scripts. On Debian, you should edit /etc/network/interfaces.
The BNEP network interfaces are not present at boot time, but they will be initialized by the hotplug utility when a BNEP
connection is made. For further details of this configuration, read the manpages on your system for ifup, interfaces
(Debian only), and hotplug.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(Debian only), and hotplug.

The ideal configuration is to give the GN master a static IP address and require the clients to use DHCP. If your DHCP
server is running on the GN master, you may need to run a command to cause it to take note of the new network
interface to listen on. This should be possible through your system's network configuration.

7.6.10.2 Bridging interfaces

As you will discover if you attempt to connect more than one client machine to your host, each connection is given its
own network interface: bnep0, bnep1, bnep2 and so on. Not only is it a nuisance to specify multiple configurations on
the master side for each interface, but it leaves the client devices unable to communicate with each other. The solution
to this is called bridging. Bridging enables multiple network devices to appear as one interface on a network by tying,
on the master side, all the bnep* devices into one interface.

The first step is to ensure that bridging is enabled in your Linux kernel; bridging is supported in both the 2.4 and 2.6
series of kernels. This option can be found under "Networking options" from the kernel's menu configuration and is
called 802.1d Ethernet Bridging. You also need the bridge-utils software package installed. If this is not part of your
Linux distribution, download it from http://bridge.sourceforge.net/.

Once you have the kernel modules and tools installed, you can bring up and configure a bridge interface:

brctl addbr pan0

ifconfig pan0

192.168.7.1

brctl setfd pan0 0

brctl stp pan0 disable

This bridged interface then handles all the BNEP interfaces. The latter two commands disable two features of Ethernet
bridging known as Listening and Learning States and Spanning Tree Protocol. For noncomplex networks, they are not
required and may cause delays to initializing the network. Further information on these features can be found on the
O'Reilly Network web site at http://www.oreillynet.com/pub/a/network/2001/03/30/net_2nd_lang.html.

The second part of the trick is to get pand to add each interface to the bridge as it comes up. Create a script, as shown
in Example 7-8, and save it to /etc/bluetooth/pan/dev-up. Ensure it is executable.

Example 7-8. A script to add each BNEP network interface to the bridge

#!/bin/sh

brctl addif pan0 $1

ifconfig $1 0.0.0.0

The bridging method provides another advantage: you don't need to inform your DHCP server of the existence of a new
interface whenever a BNEP connection is made.

Here is the configuration of the network interfaces after a bridged network connection has been established with one
NAP and two PANU clients:

bnep0 Link encap:Ethernet HWaddr 00:40:05:D0:DD:69

 inet6 addr: fe80::240:5ff:fed0:dd69/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:11 errors:0 dropped:0 overruns:0 frame:0

 TX packets:13 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:789 (789.0 b) TX bytes:880 (880.0 b)

bnep1 Link encap:Ethernet HWaddr 00:80:98:24:15:6D

 inet6 addr: fe80::280:98ff:fe24:156d/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:49 errors:0 dropped:0 overruns:0 frame:0

 TX packets:72 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:6453 (6.3 KiB) TX bytes:9019 (8.8 KiB)

pan0 Link encap:Ethernet HWaddr 00:40:05:D0:DD:69

 inet addr:192.168.7.1 Bcast:192.168.7.255 Mask:255.255.255.0

 inet6 addr: fe80::200:ff:fe00:0/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:11 errors:0 dropped:0 overruns:0 frame:0

 TX packets:13 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

 RX bytes:700 (700.0 b) TX bytes:1254 (1.2 KiB)

7.6.10.3 Creating a network access point

If you intend to incorporate PAN networking as part of your network's infrastructure, you will want to set up a NAP. The
initial part of NAP configuration is exactly the same as for the aforementioned GN configuration, except it specifies --role
NAP to the pand command line rather than --role GN.

The remaining configuration required is to set up the routing in your network to ensure that the client machines and the
rest of your LAN know how to reach each other. To illustrate, consider a network where the LAN uses the 10.x.x.x
subnet and your NAP machine has the IP 10.0.3.2. The Bluetooth access point you just set up uses the 192.168.7.x
subnet with 192.168.7.1 as your NAP machine. On your client machines, you must run:

route add -net 10.0.0.0 netmask 255.0.0.0 gw 192.168.7.1

On the LAN router, you must run the following command, or insert an equivalent configuration in the case of a non-
Linux router:

route add -net 192.168.7.0 netmask 255.255.255.0 gw 10.0.3.2

As with the configuration for dund, you must also ensure your NAP machine has IP forwarding enabled.

Finally, for further information, you should consult the "PAN HOWTO" document, available from the documentation area
of the BlueZ web site (http://www.bluez.org/documentation.html). This document serves as the source for much of the
information in this section.

7.6.11 Experimental Features

The uses of Bluetooth covered so far in this chapter are the widespread applications of the BlueZ stack. In this section,
we cover the more experimental uses: printing over Bluetooth, connecting Bluetooth mice and keyboards, and using
audio with Bluetooth headsets. If you're not afraid of some system configuration, happy with compiling programs from
source, and understand how to use CVS, this section is for you.

7.6.11.1 Printing over Bluetooth

The Common Unix Printing System (CUPS) is a popular solution for managing printers on Linux systems. If you run
CUPS, you can add a Bluetooth printer to your system. Assuming you don't already have a Bluetooth-enabled printer,
you can buy Bluetooth-to-Centronics dongles that plug into the back of your printer. These devices are produced by
several manufacturers, which include AnyCom, Axis, HP, and TDK.

To configure CUPS to use a Bluetooth printer, you must first download and install Marcel Holtmann's software from
http://www.holtmann.org/linux/bluetooth/cups.html. Once you have compiled and installed the software as per Marcel's
instructions, you can configure the CUPS backend.

Edit the file /etc/bluetooth/printers.conf and add an entry similar to the following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Edit the file /etc/bluetooth/printers.conf and add an entry similar to the following:

default {

 # Bluetooth address of the device

 device 00:40:8C:5E:5D:A4;

 # Bluetooth printing protocol

 protocol serial;

 # Description of the connection

 comment "My Bluetooth printer";

}

Restart your CUPS system, and you should then see the printer ready for administration. The Bluetooth backend
performs an SDP inquiry on the target printer to discover the RFCOMM channel on which to send data.

7.6.11.2 Connecting input devices

Vendors such as Apple and Microsoft both produce Bluetooth-connected mice and keyboards. There is experimental
support available from the BlueZ project for these devices, and they will be supported more fully in the 2.0 release of
the BlueZ tools.

Input device support entails enabling the user-level driver support in the Input device drivers section of your Linux
kernel. As its name suggests, this allows regular programs to inject events into the system's input device channels.
Secondly, you must compile and configure the development version of BlueZ:

cvs -d :pserver:anonymous@cvs.bluez.sourceforge.net login

cvs -z3 -d :pserver:anonymous@cvs.bluez.sourceforge.net \

 co libs2 utils2

cd libs2

./bootstrap

./configure --prefix=/opt/bluez2

make && make install

cd ../utils2

./bootstrap

./configure --prefix=/opt/bluez2 --with-bluetooth=/opt/bluez2

make && make install

echo /opt/bluez2/lib >> /etc/ld.so.conf

ldconfig

Put BlueZ into /opt/bluez2 to avoid conflict with earlier, production-quality versions of the
BlueZ tools. We suggest that you don't put /opt/bluez2/bin in your path, but invoke the
2.0 tools with their full path. When BlueZ 2.0 is released, however, feel free to use them
with wild abandon.

Next, you must verify that the user-level input module is working. Check that the device /dev/misc/uinput exists. If not,
create it with mknod /dev/misc/uinput c 10 223. Load the module with modprobe uinput.

If you use your mouse with the XFree86 windowing system, ensure that it has a suitable entry. If you already use a
USB mouse, you should have this already. Here is a configuration appropriate for the Microsoft Bluetooth mouse,
supporting its scroll wheel:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

supporting its scroll wheel:

Section "InputDevice"

 Identifier "MSMouse"

 Driver "mouse"

 Option "Protocol" "IMPS/2"

 Option "Device" "/dev/input/mice"

 Option "ZAxisMapping" "4 5"

 Option "Buttons" "5"

 Option "Emulate3Buttons" "false"

EndSection

Additionally, ensure that InputDevice "MSMouse" "SendCoreEvents" is added to the ServerLayout section of your XFree86
configuration.

Adding Bluetooth input devices to your system is now a matter of invoking the /opt/bluez2/bthid program. This runs
once as a daemon, and then you should invoke it again, each time to add a device:

/opt/bluez2/bin/bthid -d

/opt/bluez2/bin/bthid -c 11:22:33:44:55:66

Note that the input devices need to be paired before they will connect. With mice, the manufacturer presets the PIN,
usually to 0000. With keyboards, you enter a PIN and press return on the Bluetooth keyboard. As ever, keep an eye on
the system log to help diagnose failures.

7.6.11.3 Connecting to Bluetooth ISDN modems

Marcel Holtmann has written the necessary tools to interface with Bluetooth-enabled ISDN modems. The relevant
software and instructions can be found on his web site at http://www.holtmann.org/linux/bluetooth/cmtp.html.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

7.7 Graphical Applications
Linux has several popular graphical user interface systems, the most well-known being KDE and GNOME. These projects
both have tools that provide an easy-to-use interface to your system's Bluetooth devices. At the time of writing, neither
project is an official part of the KDE or GNOME desktop, but both will be integrated in future. This section presents a
brief survey of the tools available and where to get them.

7.7.1 KDE

The KDE Bluetooth Framework's home page is at http://kde-bluetooth.sourceforge.net/. Its features include:

A control center plug-in to configure Bluetooth devices

An OBEX server application

An OBEX sending client

Graphical exploration of remote devices

Cell phone handsfree implementation using your computer's microphone and speakers

Proximity-based screen locking

The KDE Bluetooth Framework can be downloaded from the project's web page. Figure 7-8 and Figure 7-9 show KDE's
Bluetooth applications in action.

Figure 7-8. Browsing a device's services in KDE

Figure 7-9. Receiving a file via OBEX in KDE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 7-9. Receiving a file via OBEX in KDE

7.7.2 GNOME

The GNOME Bluetooth subsystem's home page is available at http://usefulinc.com/software/gnome-bluetooth.
Download it from the project's home page. RPM and Debian packages are also available. Features of the GNOME
Bluetooth subsystem include:

An OBEX server application

An OBEX sending client

A phone manager application allowing sending and receiving of SMS messages

Graphical exploration of remote devices

Programming libraries for creating Bluetooth-aware applications in C, Python, or C#

Figure 7-10 and Figure 7-11 show GNOME's Bluetooth features in action.

Figure 7-10. Exploring nearby Bluetooth devices in GNOME

Figure 7-11. Sending a file via OBEX in GNOME

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 7-11. Sending a file via OBEX in GNOME

7.7.2.1 Synchronization

If your PDA uses Bluetooth and you use Ximian Evolution as your calendar and contacts management tool, you can
synchronize the two over Bluetooth using the Multisync application. Multisync is available in most Linux distributions,
and you can download it from its home page at http://multisync.sourceforge.net.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

7.8 Cool Bluetooth Tricks
Aside from the everyday file management and connectivity, Bluetooth on Linux provides scope for some fun
applications. This section outlines a few of them, mostly involving interfacing a cell phone with your computer.

7.8.1 Use a Bluetooth Cell Phone to Control Presentations

Wireless devices that control presentations have been available for some time, but at a relatively hefty price tag,
they're probably not worth the investment for the occasional presenter. Instead, why not program your cell phone to do
the work?

This trick works with Ericsson phones, such as the T610, T68i, and R520m. These phones provide an advanced ability to
map keypad presses to output over an RFCOMM serial connection. In turn, a program running on the Linux side can
translate these codes into system input events.

You can find the code at http://www.hackdiary.com/projects/bluetoothremote.

7.8.2 Controlling Music Players

Using a similar trick as mentioned previously, the popular MP3-playing application XMMS can be controlled from a
suitable Ericsson phone. The bluexmms program even supports display of the MP3 playlist on the phone's screen. You
can find instructions and a download at http://linuxbrit.co.uk/bluexmms.

7.8.3 Proximity-Sensitive Screen Blanking

The BlueZ Bluetooth stack reports the signal strength of an active Bluetooth connection. The KDE Bluetooth Framework
has a program that takes advantage of this and activates your screensaver when you take your cell phone out of range.

If you don't run the KDE desktop, then try Jon Allen's Perl script to do a similar task, available from
http://perl.jonallen.info/bin/view/Main/BluetoothProximityDetection.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 7. Bluetooth
Bluetooth is a wireless cable-replacement technology that uses low-power signals in the 2.4 GHz band. Using Bluetooth,
devices can transfer up to 720 kbps. This bandwidth is restricted in comparison to those obtainable from 802.11
wireless technology, and while networking is one application of Bluetooth, it is not the primary application area.

Bluetooth's goal is to be a low-cost, low-power, and, above all, pervasive technology. As well as to increase
convenience for the user, its aim is also to reduce the cost to the manufacturer by eliminating the need to supply cables
with devices. As opposed to single-use cables, a Bluetooth transceiver sustains multiple connections, and, for most
applications, the bandwidth constraints are not an issue.

As befits a cable-replacement technology, many of Bluetooth's applications are in areas where infrared, USB, or serial
connections were previously used: in connecting peripherals, PDAs, cell phones, and other portable devices. One much-
trumpeted application that bucks this general trend is mobile phone headsets, which use Bluetooth to carry the audio to
and from the user, who is liberated from the tiresome cable.

Support for Bluetooth in the Linux kernel is mature, being present in both the 2.4 and 2.6 series of stable kernels.
Popular core functions of Bluetooth, such as emulated serial connections and networking, are well-supported. More
recent Bluetooth technologies, such as keyboard and mice support, have less well-developed support and require more
involvement from the user. User-level applications that support Bluetooth on Linux are of varying maturity: applications
simply requiring an emulated serial port work out of the box, whereas specialized Bluetooth tools are under heavy
development.

This chapter first introduces the core Bluetooth concepts that will aid a Linux system administrator in his deployment,
discusses kernel configuration and system-level tools, and finally covers user-level applications.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

8.1 IrDA in the Kernel
Most modern kernels have all the support that you need to get infrared to work. If you build your own kernel, make
sure that you've enabled infrared support. Most of the infrared support is configured under the IrDA (Infrared) Support
section that appears in the kernel configuration. Figure 8-2 shows the make menuconfig kernel configuration screen
open to the IrDA Support section. (You may need to select Prompt for development and/or incomplete code/drivers
under the top-level Code maturity level options section of the kernel configuration to see all the available options.)

Figure 8-2. Configuring IrDA support with make menuconfig

You'll definitely want to configure IrDA Subsystem Support (CONFIG_IRDA) as well as the IrCOMM Protocol
(CONFIG_IRCOMM), which lets you use the IrDA port as a serial port via one of the /dev/ircommN ports. We suggest
that you compile these as modules and go into Infrared-port Device Drivers and select every driver that it offers you,
configuring each as a module.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

8.2 PC Laptop with Built-In IrDA
There is a lot of hardware out there, and it's all put together slightly differently. We got infrared working under a couple
of different distributions, both with a dongle and the internal infrared. Your configuration should be similar, but if you
run into any trouble, check out Jean Tourrilhes's Linux-IrDA Quick Tutorial at
http://www.hpl.hp.com/personal/Jean_Tourrilhes/IrDA/IrDA.html.

To make sure you are up to date with the most recent bug and security fixes, make sure
you've installed the most recent updates that are available for your Linux distribution,
especially for the kernel and associated modules.

Out of the box, we were unable to get infrared working in SIR or FIR mode on our computer, a ThinkPad A20m. On a
whim, we went into the BIOS and tried different IRQ and port settings. The combination of IRQ 4 and port 0x3E8 did
the trick. The ThinkPad didn't let us switch from FIR to SIR mode in the BIOS, but it let us use SIR mode without any
complaints under several Linux distributions.

On all of the Linux distributions described in the following list, we performed some initial steps to discover the infrared
port. First, we booted the system, and then inspected the output of dmesg to get a list of serial ports:

debian:~# dmesg | grep tty

ttyS01 at 0x02f8 (irq = 3) is a 16550A

ttyS02 at 0x03e8 (irq = 4) is a 16550A

We used this information to figure out which serial devices corresponded to the infrared hardware. If there are a lot of
serial devices on your system, this may involve some guesswork or at least a look around the BIOS settings. In this
infrared port, we knew that the first serial devices listed (/dev/ttyS1) corresponds to the 9-pin serial port on the back of
the computer, so that left /dev/ttyS2.

In each of the following examples, we rebooted after making the changes to ensure that everything worked. If you'd
like to preserve your uptime, try running /etc/init.d/irda restart after making the changes instead of rebooting.

Debian 3.0r1

Because the latest 2.4 kernel-image package (2.4.18-14.1) was showing its age, we compiled and installed the
latest kernel from source (2.4.24). Other than that, we worked with a stock 3.0r1 install with the latest
updates. To get infrared working, we installed the irda-common and irda-tools packages, and edited
/etc/irda.conf, setting IRDADEV=/dev/ttyS2. irda-common sets up /etc/init.d/irda to start in all runlevels, so we
didn't need to modify any startup scripts. However, Debian did not put our mortal user into the correct group
(dialout) to access serial ports, so we fixed that with usermod -G dialout username.

SuSE 9.0

The irda package, which was installed by default, provided all the utilities we needed for IrDA support. We set
IRDA_PORT="/dev/ttyS2" in /etc/sysconfig/irda. Next, we ran insserv /etc/init.d/irda to enable IrDA support to start
at boot time.

Mandrake 9.2

To get infrared working, we installed the irda-utils package and edited /etc/sysconfig/irda, setting
DEVICE=/dev/ttyS2. irda-utils sets up /etc/init.d/irda to start in all runlevels, so we didn't need to modify any
startup scripts. Mandrake did not put our mortal user into the correct group (uucp) to access serial ports, so we
fixed that with usermod -G uucp username.

RedHat 9

The irda-utils package, which was installed by default, provided all the utilities we needed for IrDA support. We
set DEVICE=/dev/ttyS2 in /etc/sysconfig/irda. Next, we ran chkconfig --level 5 irda on to enable IrDA support to start
in runlevel 5, the default runlevel for Red Hat Linux running in graphical mode (check your /etc/inittab to see
the default runlevel for your system or use the runlevel command to see your current runlevel). Red Hat did not
put our mortal user into the correct group (uucp) to access serial ports, so we fixed that with usermod -G uucp

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

put our mortal user into the correct group (uucp) to access serial ports, so we fixed that with usermod -G uucp
username.

Gentoo 1.4

We installed the infrared utilities with emerge irda-utils and set IRDADEV=/dev/ttyS2 in /etc/conf.d/irda. Next, we
enabled the irda startup script with rc-update add irda default. The ircomm devices were owned by root, so we
gave the uucp group access to them with chgrp uucp /dev/ircomm* and chmod g+rw /dev/ircomm*, and then gave
our mortal user access with usermod -G uucp username.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

8.3 Infrared Dongle
If you don't have built-in infrared support, or if you can't get the built-in infrared to work, use an infrared dongle. If
your dongle is compatible with the USB and IrDA specifications, it should just work. We tested the WINIC W-USB-180
IrDA dongle (http://www.winic.com.tw/180.htm), which is available in the U.S. from MadsonLine
(http://www.madsonline.com/).

The most compelling reason to use an external dongle is the awkward placement of infrared ports on devices. Figure 8-
3 shows how we had to position an HP iPaq upside down to use it with the ThinkPad's built-in IrDA port. Figure 8-4
shows a much more relaxed positioning using the W-USB-180..

Figure 8-3. Awkward infrared port placement

Figure 8-4. Taking things into your own hands with an external IrDA adapter

At the time of this writing, support for USB infrared dongles was experimental. We suggest
you compile the latest kernel available in the series you are using and configure irda-usb
as a module (CONFIG_USB_IRDA). You should also disable ir-usb, which conflicts with irda-
usb. See "IrDA in the Kernel" earlier in this chapter

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We got the W-USB-180 adapter to work by following these steps:

1. We stopped irda, just in case it had been started earlier:

/etc/init.d/irda stop

2. We disabled the ir-usb module, which appears in some recent kernels and conflicts with the driver that we
should be using, irda-usb:

cd /lib/modules/

find . -name ir-usb.o

cd ./2.4.21-166-default/kernel/drivers/usb/serial/

mv ir-usb.o ir-usb.o.unused

3. (Optional.) If you've already plugged in the dongle in the ir-usb module may have already claimed it. You can
convince that module to release the dongle with this command (you may have to run it more than once if there
are some other dependencies that prevent the modules from unloading):

rmmod ircomm-tty ircomm irtty ir-usb irda-usb irda

4. Next, we modprobeed the irda-usb module, and dmesg showed that the device irda0 had come up (the actual
device name may vary on your system):

modprobe irda-usb

dmesg | grep irda

usb.c: registered new driver irda-usb

IrDA: Registered device irda0

5. A device name of irdaX (where X is some number) indicates that you've loaded the IrDA device as a network
device. So, instead of putting the pathname to a device (such as /dev/ttyS2) in your IrDA configuration file, you
should put just the device name alone. For example, under Debian 3.0r1, we set IRDADEV=irda0 in /etc/irda.conf
(for a list of some Linux distributions and the IrDA configuration files used by each, see the Debian entry in
Section 8.2 earlier in this chapter).

6. After this, we rebooted, but we could have also started IrDA support with /etc/init.d/irda start.

For more information on using infrared dongles with Linux, including serial port dongles, see the sections on dongles in
the Linux Infrared HOWTO (http://www.tuxmobil.com/Infrared-HOWTO/Infrared-HOWTO.html).

For specific details on using USB dongles, see the IrDA and USB section of the Linux Infrared HOWTO at
http://www.tuxmobil.com/Infrared-HOWTO/infrared-howto-s-irda-usb.html.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

8.4 Sharing a Network Connection over IrDA
If you want to accept PPP connections from other IrDA-enabled devices, start pppd listening on the ircomm device that
corresponds to your IrDA adapter (these devices are numbered ircommN, where N is a number from 0 to one less than
the number of IrDA adapters on your system). See Chapter 7.

In most cases, you'll want more than just a PPP connection. If you want to connect to the Internet from the other
device, you'll need your Linux box to act as a NAT router, and you'll also need to tell the PPP client device where it can
find its name server. We've found that the following script works well (you may need to customize $LOCAL, $REMOTE,
$DNS, $INTERFACE, and $IRDEV):

#!/bin/sh

LOCAL=192.168.2.1 # IP address for the server running pppd

REMOTE=192.168.2.2 # IP address for the device

DNS=192.168.254.1 # A DNS server

INTERFACE=wlan0 # Interface that connects to the network

IRDEV=/dev/ircomm0 # Infrared device

Set up forwarding.

#

echo 1 > /proc/sys/net/ipv4/ip_forward

/usr/sbin/iptables -t nat --flush

/usr/sbin/iptables -t nat -A POSTROUTING -o "$INTERFACE" -j MASQUERADE

Start the PPP link.

#

/usr/sbin/pppd $IRDEV 115200 local \

 $LOCAL:$REMOTE ms-dns $DNS \

 silent noauth persist nodetach \

8.4.1 Connecting from Linux

To connect from another IrDA-enabled Linux device, align the infrared ports and then issue the following command:

pppd /dev/ircomm0 115200 usepeerdns local nodetach defaultroute

You may need to bring down any existing network interfaces, because the defaultroute option generally does not override
existing default routes. Some versions of Linux ship with a modified pppd that lets you use the replacedefaultroute option
to replace any existing default route.

8.4.2 Connecting from Palm OS

To set up the connection to the Linux system:

1. Select Prefs Communication Network (Figure 8-5)

2. The Network preferences appear, which list the existing services; click New.

3. Give the new service a name and select IR to a PC/Handheld under Connection as shown in Figure 8-6.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8-5. Opening Network Preferences on the Palm

Figure 8-6. Setting up a new network connection on the Palm

To connect, align the infrared ports of your Linux system and the Palm. Return to Network preferences, select the
service you created in Step 3, and click Connect. When you are done with the network connection, return to the
Network preferences and click Disconnect.

To test out your connection, ping a remote host. To do this, stay in the Network preferences after the connection is
made and select Menu Options View Log. Scroll to the bottom of the log, use Graffiti to write ping hostname
and then use the Graffiti stroke for a carriage return (a diagonal stroke in the ABC region from upper right to lower
left). If you've made the network connection successfully, you'll be able to ping a remote host, as shown in Figure 8-7.
(Be sure that the remote host accepts pings and that your network does not block them).

Figure 8-7. Pinging a remote host from the Palm

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.4.3 Connecting from Pocket PC

Making a simple PPP connection is more complicated under the Pocket PC than under Palm OS. To set up the connection
to the Linux system with Windows Mobile 2003.

1. Click the Start menu, and choose Settings Connections. The Connections settings will appear, as shown in
Figure 8-8. Click Add a New Modem Connection.

Figure 8-8. Connection settings on the Pocket PC

2. You'll be prompted to choose a name for the connection and to select a modem. Select Generic IrDA and click
Next.

3. You'll be prompted to type in a phone number. Pick anything you want—it's just a placeholder—and then click
Next.

4. On the next screen, you'll be asked to supply a username, password, and domain. Leave these all blank and
click Advanced.

5. On the General tab of the advanced settings, set the Baud rate to 115200 and uncheck Wait for Dial Tone
before Dialing, as shown in Figure 8-9.

Figure 8-9. Specifying general settings on the Pocket PC

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6. Click the Port Settings tab and check the box labeled Enter Dialing Commands Manually, as shown in Figure 8-
10. Click OK.

7. You'll be back at the dialog (username, password, and domain) that you originally saw in Step 4. Click Finish to
return to the Connections settings.

Figure 8-10. Specifying port settings on the Pocket PC

To connect to the Linux system, align your infrared ports, and then:

1. Click the Start menu and choose Settings Connections. Click Manage Existing Connections under the same
section where you created the connection originally.

2. A list of connections appears, showing the connection that you created. Tap and hold on it to bring up a context
menu and select Connect, as shown in Figure 8-11.

Figure 8-11. Making the connection on the Pocket PC

3. You'll be prompted for a username, password, and domain. Leave these blank and click Save Password to have
this (hopefully) never bother you again, and then click OK.

4. After a few seconds, the Manual Dial Terminal should appear full of PPP gibberish, as shown in Figure 8-12.
Click OK, and you should get confirmation of your connection, as shown in Figure 8-13.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8-12. The Manual Dial Terminal on the Pocket PC

Figure 8-13. Confirming the connection on the Pocket PC

You can hide this notification and make it reappear by clicking its icon at the top of the screen. Use the Disconnect
button to disconnect when you are finished. Test your connection by visiting a web site with Pocket Internet Explorer.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

8.5 Connecting to the Internet with a Cell Phone
Making an Internet connection over infrared is really no different from making it over any other serial port, which is
described in detail in Chapter 9. For example, to connect to AT&T Wireless's EDGE network with a Nokia 6200 (see
"GSM/GPRS Phone with Data Cable" in Chapter 9), use the peers script as shown in Example 8-1. You can use the same
attws-connect and attws-disconnect scripts as shown in Chapter 9.

Example 8-1. PPP peer settings for AT&T Wireless and the Nokia 6200 over IrDA

File: /etc/ppp/peers/attws-irda

#

/dev/ircomm0 # Nokia 6200

115200 # speed

defaultroute # use the cellular network for the default route

usepeerdns # use the DNS servers from the remote network

nodetach # keep pppd in the foreground

nocrtscts # no hardware flow control

lock # lock the serial port

noauth # don't expect the modem to authenticate itself

local # don't use Carrier Detect or Data Terminal Ready

connect "/usr/sbin/chat -v -f /etc/chatscripts/attws-connect"

disconnect "/usr/sbin/chat -v -f /etc/chatscripts/attws-disconnect"
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

8.6 Transferring Files with OpenOBEX
OBEX (Object Exchange) is an IrDA standard (http://www.irda.org/standards/standards.asp) for transferring files
between devices. OpenOBEX (http://sourceforge.net/projects/openobex/) is an open source implementation of this
standard. To install OpenOBEX, download the latest release (openobex-x.y.z.tar.gz), extract the tarball, then configure,
compile, and install it:

bjepson@linux:~/Documents> tar xfz openobex-1.0.1.tar.gz

bjepson@linux:~/Documents> cd openobex-1.0.1/

bjepson@linux:~/Documents/openobex-1.0.1> ./configure

bjepson@linux:~/Documents/openobex-1.0.1> make

bjepson@linux:~/Documents/openobex-1.0.1> sudo make install

You'll also want the applications, so download the latest release of the apps (openobex-apps-x.y.z.tar.gz), and go
through the same steps:

bjepson@linux:~/Documents> tar xfz openobex-apps-1.0.0.tar.gz

bjepson@linux:~/Documents> cd openobex-apps-1.0.0/

bjepson@linux:~/Documents/ openobex-apps-1.0.0> ./configure

bjepson@linux:~/Documents/ openobex-apps-1.0.0> make

bjepson@linux:~/Documents/ openobex-apps-1.0.0> sudo make install

(You may need to add /usr/local/lib to /etc/ld.so.conf and run ldconfig as root for everything to work.)

After you've installed the applications, you can transfer files with the irobex_palm3 utility. Don't let the "palm" in the
name put you off; we've used it with cellular phones as with well as a Palm (you should be able to use any infrared
device that supports OBEX). To receive files, start irobex_palm3, initiate sending a file from your device, and align the
ports. After irobex_palm3 receives the file, it exits. Here's a session where irobex_palm3 receives a business card from
a Nokia phone:

bjepson@linux:~ > irobex_palm3

 Send and receive files to Palm3

Waiting for files

..HEADER_LENGTH = 220

Filename = Nokia.vcf

Wrote /tmp/Nokia.vcf (108 bytes)

To send a file, be sure that your device is configured to receive files via infrared, align the ports, and use irobex_palm3
filename:

bjepson@linux:~> irobex_palm3 sample.png

Send and receive files to Palm3

name=sample.png, size=11439

...........

PUT successful
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

8.7 Synchronizing with a Palm
There are several tools that you can use to synchronize your Palm and Linux system. pilot-xfer, which is part of the
pilot-link (http://www.pilot-link.org/) package, lets you synchronize your Palm to a directory. You can synchronize to
KDE address books, calendars, etc. with KPilot (http://www.slac.com/pilone/kpilot_home/). GNOME-Pilot
(http://www.gnome.org/projects/gnome-pilot/) lets you do the same with GNOME applications.

In each of these applications, you'll be asked to press the HotSync button somewhere
along the way. When this happens, launch HotSync on your Palm, select IR to a
PC/Handheld, and click the on-screen HotSync button (not the HotSync button on your
cable or cradle), as shown in Figure 8-17.

8.7.1 KPilot

You can use KPilot as a free alternative to the Palm Desktop software for Windows and Mac OS X. To set up KPilot with
your Palm over infrared:

1. Launch KPilot (select it from a menu or run the command kpilot). The main window appears as shown in Figure
8-14.

Figure 8-14. The KPilot main window

2. Click Settings Configure KPilot. The settings window appears, as shown in Figure 8-15. Specify
/dev/ircommN (where N is the number of your infrared device, usually 0) as the Pilot device and click OK.

Figure 8-15. Setting the Pilot device in KPilot

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8-15. Setting the Pilot device in KPilot

3. The main window should update to display the following (if it doesn't, check your IrDA configuration):

13:05:54 Trying to open device...

13:05:54 Device link ready.

4. Next, click Settings Configure Conduits to choose the kind of information you want to synchronize. The
conduit configuration window appears, as shown in Figure 8-16. Select each conduit you want, and click Enable.
Click OK when you are done.

Figure 8-16. Selecting which conduits to use in KPilot

To synchronize with your Palm:

1. Place your Palm's infrared port in range of that of your Linux system.

2. On your Palm, click the on-screen HotSync button as shown in Figure 8-17.

3. The first time you sync, you may get a dialog indicating that the Palm already has a username associated with
it. If you haven't synced the Palm before, the dialog may be slightly different.

The KPilot window shows the progress of the HotSync as it continues.

Figure 8-17. Starting a HotSync from the Palm

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8-17. Starting a HotSync from the Palm

8.7.2 pilot-link

Use the pilot-xfer utility to back up, sync, or restore your Palm (see the pilot-xfer manpage for a complete list of
options and features). For example, to sync your Palm into the ~/Palm directory, use the --sync option and specify
/dev/ircommN (where N is the number of your infrared device, usually 0) as the port with the -p option:

bjepson@linux:~> pilot-xfer -p /dev/ircomm0 --sync ~/Palm

 Listening to port: /dev/ircomm0

Please press the HotSync button now... Connected

Synchronizing /home/bjepson/Palm/Novarra-19.txt.pdb

Synchronizing /home/bjepson/Palm/Novarra-19.nod.pdb

...

You can use the --backup option to back up your Palm and the --restore option to restore it.

8.7.3 GNOME-Pilot

GNOME-Pilot lets you synchronize your Palm to various components of the GNOME desktop, including Evolution. To
configure GNOME-Pilot:

1. Launch GNOME-Pilot (gpilotd-control-applet). You'll see a Welcome screen. Click Next.

2. The Cradle Settings appear (Figure 8-18). Give your settings a name, then select the port, such as
/dev/ircommN (where N is the number of your infrared device, usually 0), and speed (115200). Specify a type
of IrDA and click Next.

Figure 8-18. GNOME-Pilot cradle settings

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. The Pilot Identification appears. Here you must specify whether you've synced this Palm before. If not, provide
a username and ID. Click Next.

4. If you have synced the Palm before, the Initial Sync screen appears, and GNOME-Pilot will try to retrieve the
username and ID. Click Next after it has retrieved the name and ID (see Figure 8-19).

Figure 8-19. GNOME-Pilot retrieving the username and ID

5. The Pilot Attributes screen appears, as shown in Figure 8-20. You can specify a name, working directory, and
action to perform on syncing. You should set the Sync Action to Use conduit settings and click Next.

Figure 8-20. GNOME-Pilot displaying the Pilot Attributes

6. The final screen appears, which should indicate success. Click Finish, and the Pilot Link dialog appears, as
shown in Figure 8-21.

7. (Optional.) If GNOME-Pilot retrieved a negative ID in Step 3, you should change it now. Select your Palm in the
Pilot Link dialog and click Edit.

8. The Pilot Settings appear, as shown in Figure 8-22. Set the ID to a reasonable number (just to be safe, choose
an integer between 1 and 254) and click Send to Pilot. You'll need to press the on-screen HotSync as shown
earlier in Figure 8-17.

Figure 8-21. The Pilot Link dialog

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8-22. Setting a new ID with GNOME-Pilot

9. Select the Conduits tab (see Figure 8-23), and for each conduit you want to enable, select the conduit name
and click Enable.

10. Click OK when you are done.

Now, when you press the onscreen HotSync button, you may not see anything on the screen unless you've added a
panel item for GNOME-Pilot. However, the Palm will show you what's happening as the HotSync progresses.

Figure 8-23. Specifying conduit settings in GNOME-Pilot

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

8.8 Pocket PC
You can sync with a Pocket PC using SynCE (http://synce.sourceforge.net/synce/). If SynCE is not available with your
distribution, follow the excellent instructions at the SynCE site for installing and configuring the software.

After it's installed, you can generally start SynCE with synce-serial-config ircommN (where N is the number of your infrared
device, usually 0) and then use synce-serial-start (run these as root):

synce-serial-config ircomm0

You can now run synce-serial-start to start a serial connection.

synce-serial-start

Once synce-serial-start is running, you should run the dccm utility as the mortal user who wants to play with the Pocket
PC (this utility communicates with the synce process that you started as root):

bjepson@linux:~> dccm

Now, align your Pocket PC's infrared port with that of your Linux system, and launch ActiveSync. Click Tools
Connect via IR, and your Pocket PC should make an ActiveSync connection, as shown in Figure 8-24. Note that the
progress bar never goes anywhere. It's just a live link between the two; it's not actually syncing.

Figure 8-24. Never-ending ActiveSync

To move data between your Linux system and your Pocket PC, you can use commands like pls to list files on the Pocket
PC and pcp (may be Pcp on some systems) to copy files to and from the Pocket PC. Note that you must prefix the root of
the filesystem with ":" when you use pcp.

bjepson@linux:~> pls /My\ Documents/

AC-------- 57727 Thu Jul 31 20:00:02 2003 000013a8 Sample4.jpg

AC-------- 67617 Thu Jul 31 20:00:02 2003 00001393 Sample3.jpg

AC-------- 45053 Thu Jul 31 20:00:02 2003 00001386 Sample2.jpg

AC-------- 64168 Thu Jul 31 20:00:02 2003 00001374 Sample1.jpg

Directory Thu Jul 31 20:00:02 2003 0000134a Business/

Directory Thu Jul 31 20:00:02 2003 00001349 Personal/

Directory Thu Jul 31 20:00:02 2003 00001287 Templates/

bjepson@linux:~> Pcp ":/My Documents/Sample1.jpg"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

bjepson@linux:~> Pcp ":/My Documents/Sample1.jpg"

File copy of 64168 bytes took 0 minutes and 7 seconds, that's 9166 bytes/s.

The SynCE site includes a number of other tools, such as Orange (extract .cab files from Pocket PC installation
packages) and a plug-in for MultiSync (http://multisync.sourceforge.net/).

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 8. Infrared
Infrared is a legacy technology that won't die any time soon. Sure, it has lousy range and can be a hassle to set up, but
sometimes, it's the only common communications medium between your Linux box and something you want to talk to.

If you have ever used a remote control, you have used infrared technology. Infrared is a wireless communication
technology that makes use of the invisible spectrum of light that is just beyond red in the visible spectrum. It's suitable
for applications that require short-range, point-to-point data transfer. Because it uses light, line of sight is a
prerequisite for using infrared. Despite this limitation, infrared is widely used in household equipment and is
increasingly popular in devices such as digital cameras, PDAs, and notebook computers.

Founded in 1993 as a nonprofit organization, the Infrared Data Association (IrDA) is an international organization that
creates and promotes interoperable, low-cost infrared data interconnection standards that allow users to transfer data
from one device to another. The Infrared Data Association standards support a broad range of appliances, computing,
and communications devices.

The term IrDA is typically used to refer to the protocols for infrared communications, not
exclusively to the nonprofit body.

There are currently four versions of IrDA; their differences are mainly in the transfer speed:

Serial Infrared (SIR)

The original standard with a transfer speed of up to 115 kbps

Medium Infrared (MIR)

Improved transfer speed of 1.152 Mbps; it is not widely implemented

Fast Infrared (FIR)

Speed of up to 4 Mbps; most new computers implement this standard

Very Fast Infrared (VFIR)

Speed of up to 16 Mbps; it is not widely implemented yet

When two devices with two different IrDA implementations communicate, one steps down to the lower transfer speed.

In terms of operating range, infrared devices can communicate up to one or two meters. Depending on the
implementation, if a device uses a lower power version, the range can be stepped down to a mere 20 to 30 cm. This is
crucial for low-power devices.

A Cyclic Redundancy Check (CRC), which uses a number derived from the transmitted data to verify its integrity,
protects all exchanged data packets. CRC-16 is used for speeds up to 1.152 Mbps, and CRC-32 is used for speeds up to
4 Mbps. The IrDA also defines a bi-directional communication for infrared communications.

An infrared connection operates at a range of 0 to 1 meter, with peak intensity within a 30-degree cone (see Figure 8-
1). With more power, a longer operating range is possible with a reduction in transfer speed. In addition, an infrared
connection requires a visual line of sight in order to work, so there cannot be any direct obstruction between the two
communicating devices.

Figure 8-1. The 30-degree cone for peak power intensity of an infrared port

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8-1. The 30-degree cone for peak power intensity of an infrared port

Setting up Infrared with Linux can be tricky. Jean Tourrilhes's Linux-IrDA Quick Tutorial
(http://www.hpl.hp.com/personal/Jean_Tourrilhes/IrDA/IrDA.html) lists 24 common pitfalls that await the unsuspecting
user.

If your hardware supports SIR mode, this is usually straightforward. FIR configuration is still somewhat arcane, unless
you have a system that's supported right out of the box. Most modern notebooks support FIR by default, but you can
often go into the BIOS setup and change it to SIR. Even if you want FIR to work, be sure to try SIR first, because it's
usually the simplest.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.1 Cellular Data
There are several types of cellular data networks. The most popular are General Packet Radio Services (GPRS) and 1x
Radio Transmission Technology (1xRTT). At the time of this writing, slightly faster Enhanced Data rates for GSM
Evolution (EDGE) and 1x Evolution Data Only (1xEV-DO) networks are emerging.

9.1.1 CSD

You use Circuit Switched Data (CSD) when you use your cellular phone as a dial-up modem. When you do this, you use
your voice plan. Generally, this is not the best option: CSD calls typically don't receive the full throughput that's
available to a data connection. However, there is a high-speed variant called High Speed CSD (HSCSD) that can provide
you with better speeds.

Unless you need to dial into a private network using a modem, we suggest that you use a packet-switched protocol,
such as GPRS, EDGE, 1xRTT, or 1xEV-DO, to make your data connection. With these technologies, you're not dialing a
bank of modems; rather, you're effectively using your cellular carrier as your ISP and your phone as a network adapter.
Additionally, CSD calls are billed by the minute; with the exception of one plan offering from Verizon Wireless (Express
Network NationalAccess) that we're aware of, packet-switched data connections are billed by the amount of data used,
rather than the amount of time you spend online (unless you have an unlimited plan, in which case you are paying a
flat rate).

If your cellular carrier and GSM device supports it, you can make an HSCSD at speeds up to 40 kbps. To enable this
capability, you must issue the command AT+CBST=speed,0,1, where speed is a value supported by your phone (you can
enumerate the supported values by issuing the AT+CBST=? command). For example, request 14.4 kbps with
AT+CBST=14,0,1.

The isdn4linux FAQ has some information on using HSCSD with ISDN: http://www.mhessler.de/i4lfaq/i4lfaq-
6.html#config_gsmv110. The following sites have information on HSCD commands, although support varies from
device to device, and some providers do not support HSCD at all (contact your cellular provider if you are unsure):

http://www.gcrsoft.com/data.html
http://www.nc9210.de/9210/tipps/at_hscsd.htm
http://www.zelaskowski.de/pda/hscsd.html

9.1.2 GPRS and EDGE

GPRS sits on top of Global System for Mobile communications (GSM), a cellular networking protocol that breaks a
channel into timeslots so that up to eight users can share the same channel; at any given time, a channel is dedicated
to one user only. A channel is 200 kHz of bandwidth within the 850, 900, 1,800, or 1,900 MHz bands. GSM is the most
widespread digital cellular technology with 970 million users at the end of 2003. It's available in the U.S., much of Asia,
Europe, and many other places.

Although a given timeslot supports a slow data rate (typically between 9.6 and 13.4 kbps), one timeslot is sufficient for
each side of a voice conversation. GPRS phones and PC Cards combine multiple GSM timeslots (up to eight in theory,
but the equipment we've seen maxes out at four) and typically support a downstream data rate of 40 kbps (we have
found that this translates to a peak of 30 kbps for HTTP transfers). Upstream data rates are typically less, as low as 9.6
kbps, but this is governed by the number of timeslots your device supports for upstream data, as well as by the number
of timeslots your cellular carrier makes available for this purpose.

EDGE is an improvement over GSM in that it increases the data rate per timeslot significantly. Instead of 9.6 kbps to
13.4 kbps, EDGE supports between 48 and 70 kbps per timeslot. However, to take advantage of EDGE speeds, you
need a handset or PC Card that supports EDGE, such as the Nokia 6200 cell phone or the Sony Ericsson GC82 PC Card
Modem. EDGE devices are backward-compatible with GSM and GPRS, so if you're in a location without EDGE coverage,
you can still connect at the slower GPRS speeds.

GSM devices require the installation of a Subscriber Identity Module (SIM). You (or the salesperson) insert this card
when you first get the phone. If you have more than one phone, you can swap SIMs and use the phone that is currently
holding the SIM. However, most cellular providers lock the device to their network, so you can use the phone onlwith
them. So, if you buy a phone from AT&T Wireless and insert the SIM you bought from T-Mobile, you'll receive an error
message. However, there are many ways to remove this lock. Some carriers will do it for you if you contact their
customer support and ask; this is usually done for customers who have been with the carrier for a while, have an
account in good standing, and are planning to use the phone overseas (you can save money by buying a pay-as-you-go
SIM from a local cellular provider and swapping SIMs while you are abroad). Figure 9-1 shows a Nokia 6200 that is
being inserted with an AT&T Wireless SIM card (that's the battery next to it, which we had to remove to get at the
SIM).

Figure 9-1. Inserting a SIM card into a Nokia 6200

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9-1. Inserting a SIM card into a Nokia 6200

9.1.3 1xRTT and 1xEV-DO

1xRTT is an improvement to CDMAone, the first version of Code Division Multiple Access (CDMA), a digital cellular
protocol that supported data rates up to 14.4 kbps. 1xRTT cranks it up to 144 kbps upstream and downstream. Instead
of slicing up cellular channels by timeslots, CDMA uses spread-spectrum technology to support multiple users in each
1.25 MH-wide CDMA channel within the 800 and 1900 MHz bands. Each user within a given CDMA channel is associated
with a code, and their signals (tagged with the associated code) are spread across the channel. although CDMA is not as
widespread as GSM, there are still many users (188 million at the end of 2003). It's available in the U.S., parts of Asia,
Latin America, and Europe.

1xEV-DO improves on 1xRTT by supporting burst speeds up to 2.4 Mbps while still keeping channels only 1.25 MHz
wide. At the time of this writing, Verizon Wireless has begun 1xEV-DO trials in San Diego and Washington, D.C. (priced
the same as its 1xRTT offering). Initial reports indicate that 300-500 kbps are the likely real-world speeds.

CDMA phones do not use SIM cards. As a result, you can't move your account to a new phone as easily as you can with
GSM phones. You must contact your cellular provider, deactivate the old phone, and activate the new one. (Your carrier
may also allow you to do this through its customer support web site).

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.2 Some Cellular Carriers
There are major cellular carriers around the world; This section looks at some of the major U.S. providers. Of the ones
described here, we have hands-on experience with Sprint, Verizon Wireless, AT&T Wireless, and T-Mobile.

To connect to the Internet using a GPRS carrier, you must specify an Access Point Name (APN), which is the name of a
gateway on the carrier's network that gets you on the Internet. After that, dial *99#***1# to connect. APNs for
networks not listed here can be found in a variety of places online, but your best bet is to contact your cellular provider.
Opera Software maintains a list of user-submitted carriers and APNs at
http://www.opera.com/products/smartphone/docs/connect/.

All plans and prices listed in the following sections are accurate as of this writing, but are subject to change.

9.2.1 AT&T Wireless

AT&T Wireless (http://www.attwireless.com) offers GSM service with GPRS under a variety of plans. Its consumer-
oriented mMode plan tops out at 8 megabytes of data per month for $19.99, with additional megabytes costing about
six dollars each.

mMode plans must be accompanied by a voice plan. However, AT&T Wireless offers standalone Mobile Internet data
plans starting at $29.99 for 10 megabytes (about three dollars per additional megabyte), going up to $79.99 a month
for unlimited data (you can also add these plans to service with an existing voice plan). In late 2003, AT&T rolled out
support for EDGE on its North American network.

AT&T Wireless uses a GPRS APN named proxy, which also works with its EDGE data service. You can set your APN with
the following AT command sequence:

AT+CGDCONT=1,"IP","proxy"

AT&T Wireless maintains online support forums at http://forums.attwireless.com/attws that are valuable more for the
community discussion than for the actual tech support that goes on there. Check out the mMode and
GSM(TM)/GPRS/EDGE General Discussion forums for insights into AT&T Wireless' data services.

At the time of this writing, Cingular has just purchased AT&T Wireless, and it is expected to merge its network with
AT&T's by the end of 2004. Whether that changes any of the AT&T Wireless-related instructions in this chapter remains
to be seen. For more information, consult this book's errata at http://www.oreilly.com/catalog/lnxunwired.

9.2.2 T-Mobile

T-Mobile (http://www.t-mobile.com), formerly VoiceStream, offers GSM and GPRS in a number of markets across the
globe. Its unlimited (T-Mobile Internet Unlimited) data plans are available as an add-on to voice service or as separate
plans. You can add unlimited GPRS data for $19.99 a month with a qualifying voice plan ($29.99 and higher).
Otherwise, unlimited GPRS data is $29.99 a month.

Don't confuse T-Mobile's t-zones plan with its T-Mobile Internet Unlimited plan. The $4.99 and $9.99 a month t-zones
plans are designed for users who use the Internet exclusively from their handset, and some users have reported that
services such as SSH (and practically anything that isn't HTTP, SMTP, or POP3) don't work with these plans.

As of late 2003, T-Mobile had not rolled out EDGE in any of the markets we tested.

T-Mobile uses two different APNs: internet2.voicestream.com and internet3.voicestream.com. internet2.voicestream.com gives
you a private network IP address, which may cause headaches with VPN connections, and internet3.voicestream.com gives
you a public IP address, which may cause headaches when people to try break into your machine. If you want to use
internet3.voicestream.com, you must be on the T-Mobile Internet Unlimited VPN plan, which costs the same as T-Mobile
Internet Unlimited. If you aren't sure which plan you are on, contact T-Mobile customer service to find out. You can set
your APN with one of the following AT command sequences:

AT+CGDCONT=1,"IP","internet2.voicestream.com"

AT+CGDCONT=1,"IP","internet3.voicestream.com"

9.2.3 Cingular Wireless

Cingular Wireless (http://www.cingular.com) is also a GSM/GPRS provider. Its Wireless Internet Express pricing plans
are similar to AT&T's mMode and Mobile Internet plans: for $24.99 a month, you can get 10 megabytes of data, and
each additional megabyte is about four dollars. Its unlimited plan is $74.99 per month.

As of late 2003, Cingular Wireless had rolled out trial EDGE support in one market (Indianapolis).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As of late 2003, Cingular Wireless had rolled out trial EDGE support in one market (Indianapolis).

Cingular Wireless uses a GPRS APN named isp.cingular. You can set your APN with the following AT command sequence:

AT+CGDCONT=1,"IP","isp.cingular"

9.2.4 Verizon Wireless

Verizon Wireless (http://www.verizonwireless.com) offers CDMA service with 1xRTT and 1xEV-DO for data. Its
advertised data plans are available as add-ons to a voice plan or as standalone data plans. Although it is not advertised
on its site, many users have reported that the America's Choice voice plan minutes can be used for data; but many
users have reported that Verizon does not permit this, so unless you get something in writing that indicates your plan
allows this, we suggest that you use an add-on data plan.

Verizon Wireless has a number of data plans. Its NationalAccess plan lets you pay by the minute. This means that
you're paying even when your network connection is idle. However, it also has plans that let you pay by the megabyte,
starting at 20 megabytes for $40 a month with each additional megabyte for about four dollars. You can go up from
there to unlimited data for $79.99 a month.

Verizon Wireless' 1xRTT service is available across its national network. As of late 2003, 1xEV-DO trials were underway
in San Diego and Washington, DC.

An APN is not required for 1xRTT or 1xEV-DO; you can generally just dial #777 to make
the connection. For more details, see "CDMA Phone with Data Cable" and "CDMA PC Card"
later in this chapter.

9.2.5 Sprint

Sprint PCS (http://www.pcsvision.com) offers CDMA cellular service. It offers unlimited 1xRTT data service, which it
calls PCS Vision, as an add-on to a voice plan for $15 a month. However, there are reports that say that these plans are
not intended for users who want to connect a laptop to their cell phone, and that Sprint may charge users who use the
service in this way as much as $10 a megabyte.

However, Sprint does offer by-the-megabyte plans starting from $40 a month for 20 megabytes, going up to $100 for
300 megabytes. Additional megabytes are two dollars each under all their megabyte plans. Although Sprint had offered
an unlimited data plan for $80 a month in the past, it is not advertising such a plan at the time of this writing.

As of late 2003, Sprint was reported to be testing 1xEV-DO, but it was not marketing it or selling 1xEV-DO cards or
phones.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.3 Phones and Cards
The following sections describe the cards and phones that we tested with Linux. They include an assortment of devices
that can talk CDMA 1xRTT, GPRS, and EDGE. Each section includes the information you need to make a data call.

Table 9-1 contains the results of the testing with these devices. In each download test, we moved a 384 KB compressed
datafile down from an HTTP server using wget 1.8.1 (wget_1.8.1-6.1_i386.deb) and recorded the transfer rate. In each
upload test, we uploaded the same file using Debian's ftp client (ftp_0.17-9_i386.deb) and recorded the transfer rate.

Table 9-1. Download and upload speeds with various devices

Device Carrier Signal[1] Download test
1

Upload test
1

Download test
2

Upload test
2

Merlin C201 Sprint 65% 12.64 KB/sec 8.7 KB/sec 12.86 KB/sec 9.0 KB/sec

Motorola
v120e Verizon Wireless 97% 13.94 KB/sec 5.7 KB/sec 13.3 KB/sec 7.5 KB/sec

Nokia 6200
AT&T
Wireless[2] 55% 11.05 KB/sec 6.0 KB/sec 11.31 KB/sec 6.0 KB/sec

Nokia 6200 T-Mobile[3] 65% 2.61 KB/sec 2.8 KB/sec 1.74 KB/sec 2.6 KB/sec

Merlin G100 T-Mobile 32-54% 4.26 KB/sec 1.4 KB/sec 5.09 KB/sec 1.4 KB/sec

[1] Reported by AT+CSQ and divided by 31.

[2] Connected in an EDGE-enabled AT&T Wireless market.

[3] At the time of this writing, T-Mobile does not support EDGE.

These devices use a basic Hayes command set but also support an extended command set (IS-707 AT command set).
You can use this command set to ask the modem about signal strength and the type of network to which it's connected.
For example, if you issue the command AT+CSQ?, the phone will respond with the signal strength (on a scale of 0-31)
and the frame error rate, which will be zero if you haven't had any network activity.

Table 9-2 shows some of the commands and sample responses from the Novatel Wireless Merlin C201 (you should be
able to use these commands with any CDMA or GPRS device described later in this chapter). To issue one of these
commands, use minicom or Kermit; type the command and then press Enter. Example 9-1 shows a session where we
set the serial speed and then run Kermit to have a conversation with the modem. If your user account does not have
the correct permissions, you must set the permisions appropriately (on Debian, we add the bjepson user to the dialout
group).

Example 9-1. Kermit session with the Novatel Wireless Merlin C201

bjepson@debian:~$ setserial /dev/ttyS2 baud_base 230400

bjepson@debian:~$ kermit

C-Kermit 7.0.196, 1 Jan 2000, for Linux

 Copyright (C) 1985, 2000,

 Trustees of Columbia University in the City of New York.

Type ? or HELP for help.

(/home/bjepson/) C-Kermit>set line /dev/ttyS2

(/home/bjepson/) C-Kermit>set speed 115200

/dev/ttyS2, 115200 bps

(/home/bjepson/) C-Kermit>connect

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(/home/bjepson/) C-Kermit>connect

Connecting to /dev/ttyS2, speed 115200.

The escape character is Ctrl-\ (ASCII 28, FS)

Type the escape character followed by C to get back,

or followed by ? to see other options.

--

at

OK

at+csq?

+CSQ: 22, 00000000,00000000

OK

If you can't see the commands you are typing but are still getting a response, the modem
is probably set to not echo the commands that you type. You can reset this with the
command ATE1 or reset the modem to its defaults with ATZ.

Table 9-2. Some of the AT commands recognized by cellular modems
Command Syntax Sample response from C201

Get battery
charge
information

AT+CBC?[4]
+CBC: 0,65 (First integer: 0=running on battery, 1=charging, 2=status no
available, 3=power fault; second integer: percentage charge remaining) Not
applicable to the C201, because it's powered by the PCMCIA bus

Get
manufacturer
information

AT+GMI +GMI: Novatel Wireless Inc.

Get mobile
model AT+GMM +GMM: CDMA Merlin 1900MHz

Get model
revision AT+GMR +GMR: F/W VER: 1065 S/W VER: BM3.0.10 Jun 11 03 14:45:56 BOOT VER: 1-1

Get serial
number AT+GSN +GSN: 00000000

Get service
information
(analog or
digital)

AT+CAD?[5] +CAD: 1 (0=no service, 1=CDMA digital, 2=TDMA digital, 3=analog)

Get serving
system
information

AT+CSS?Footnote
5

+CSS: 1,1 4106 (First integer: 0=unknown band, 1=800MHz, 2=1900MHz;
second integer: mobile station block; third integer: system identifier)

Get signal
quality

AT+CSQ?Footnote
4

+CSQ: 5, 00000291,00000241 (First integer: signal strength from 0-31; last
integers: frame error rate)

[4] Do not include the ? for GSM phones or modems.

[5] Not supported by the GSM phones or modems that we tested.

The Tao of Mac maintains a list of GSM AT commands at http://the.taoofmac.com/space/AT%20Commands.

Although the example PPP peers file and chat scripts show examples for a particular provider, you should be able to
adapt these to providers and phones other than the ones covered in this chapter. If you decide to change the name of
the files, be sure that the connect and disconnect entries in your peers file match the new filenames. For CDMA
providers, you shouldn't need to make any change unless your cellular carrier requires a username and password. For
GSM providers other than the ones described in this chapter, you need to change the APN (and perhaps set a username
and password). If you are using a different type of phone that uses a different file in the /dev directory, you need to
change the device name.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

change the device name.

When you make a connection as directed in the following sections (running the command pppd call provider as root), you
should see something similar to the following:

Serial port initialized.

Starting CDMA connect script

Dialing...

Serial connection established.

Using interface ppp0

Connect: ppp0 <--> /dev/ttyS2

kernel does not support PPP filtering

Cannot determine ethernet address for proxy ARP

local IP address 68.29.37.40

remote IP address 68.28.97.6

primary DNS address 68.28.122.11

secondary DNS address 68.28.114.11

When you're done with your connection, press Ctrl-C to disconnect.

9.3.1 PPP Troubleshooting

If you see a message that the pppd command is "not replacing existing default route," it means you have another
network connection active. You should temporarily bring this network connection down before making the PPP
connection or manually adjust the routing to your liking.

If your link is dropping due to LCP Echo errors, try setting the interval to something really high in the /etc/ppp/peers
file:

lcp-echo-failure 4

lcp-echo-interval 65535

Also, some phones may have trouble with the default compression scheme that PPP uses. If you are having problems
negotiating a connection, try adding novj and novjccomp, as shown in Example 9-5 later in this chapter.

For more information on PPP configuration, see the Linux PPP HOWTO: https://secure.linuxports.com/howto/ppp/.

9.3.2 CDMA PC Card

The Novatel Wireless Merlin C201 (Figure 9-2) is a CDMA 1xRTT PC Card offered by Sprint that is automatically
recognized by all the versions of Linux we tested (Mandrake 9.2, Gentoo 1.4, and Debian 3.0). It appears as two serial
ports starting at the highest unused serial port. So, on a ThinkPad A20m running Debian 3.0, there were already two
serial ports (ttyS0 and ttyS1). When we plugged in the C201 card, two more were detected: ttyS2, which is the CDMA
modem, and ttyS3, a status port for the modem (whose purpose is unknown to us but is not necessary to connect to
the Internet).

Figure 9-2. The Novatel Wireless Merlin C201 card

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As of this writing, there is no way to provision (perform the initial activation with the Sprint network) this card without a
PC running Microsoft Windows. Novatel Wireless technical support confirmed this but mentioned that upcoming
firmware may come out that supports provisioning on any operating system. Unless that happens, you must get access
to a Windows notebook long enough to install the software that comes with the card, activate it, and verify that you can
connect to the network before trying it with Linux.

To get online with the Merlin C201, use a PPP connection and the phone number #777. If you use a regular phone
number, you'll end up making a CSD call, which may incur per-minute charges. When you dial #777, you'll incur
whatever charges are applicable under your data plan. To set up a data connection with the C201, first create the
/etc/ppp/peers/sprint-pcs file shown in Example 9-2. You must change the first two lines to specify your device (for
example, /dev/ttyS2).

Example 9-2. PPP peer settings for Sprint PCS and the Merlin C201

File: /etc/ppp/peers/sprint-pcs

#

/dev/YOUR_DEVICE # device

init "setserial /dev/YOUR_DEVICE baud_base 230400"

115200 # speed

defaultroute # use the cellular network for the default route

usepeerdns # use the DNS servers from the remote network

nodetach # keep pppd in the foreground

crtscts # hardware flow control

lock # lock the serial port

noauth # don't expect the modem to authenticate itself

scripts for connection/disconnection

connect "/usr/sbin/chat -v -f /etc/chatscripts/sprint-connect"

disconnect "/usr/sbin/chat -v -f /etc/chatscripts/sprint-disconnect"

The Merlin C201 is a bit of an oddball. You must use setserial to specify twice the actual
speed you want to use. (Thanks to the folks at tummy.com for this information, found on
http://www.tummy.com/articles/laptops/merlin-c201/)

Next, create the /etc/chatscripts/sprint-connect and /etc/chatscripts/sprint-disconnect scripts, shown in Example 9-3

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next, create the /etc/chatscripts/sprint-connect and /etc/chatscripts/sprint-disconnect scripts, shown in Example 9-3
and Example 9-4.

Example 9-3. PPP connect script for Sprint PCS and the Merlin C201

File: /etc/chatscripts/sprint-connect

#

TIMEOUT 10

ABORT 'BUSY'

ABORT 'NO ANSWER'

ABORT 'NO CARRIER'

SAY 'Starting CDMA connect script\n'

Get the modem's attention and reset it.

'' 'ATZ'

E0=No echo, V1=English result codes

OK 'ATE0V1'

Dial the number

SAY 'Dialing...\n'

OK 'ATD#777'

CONNECT ''

Example 9-4. PPP disconnect script for Sprint PCS and the Merlin C201

File: /etc/chatscripts/sprint-disconnect

#

"" "\K"

"" "+++ATH0"

SAY "CDMA disconnected."

After you've set up these scripts, issue the command pppd call sprint-pcs as root. Press Ctrl-C to invoke the disconnect
script and hang up the PPP connection.

If your carrier requires a username and password, set the user and remote_name options as
shown in Example 9-5, and create a chap_secrets file, as shown in Example 9-6.

9.3.3 CDMA Phone with Data Cable

The Motorola v120e (see Figure 9-3) is a CDMA 1xRTT phone offered by Verizon Wireless. You must modprobe or insmod
the acm.o (the USB Abstract Control Model drive) module for this phone to be recognized. The v120e appears as a
serial port named /dev/ttyACM0.

Figure 9-3. The Motorola v120e CDMA phone

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9-3. The Motorola v120e CDMA phone

The Motorola v120e does not require the provisioning step typically required of PCMCIA
cards (see Section 9.3.2 earlier in this chapter). Simply using the data connection for the
first time provisions the phone.

To get online with this phone, create a PPP connection using the phone number #777. You can also use this phone to
connect to dial-up service (see Section 9.1.1 earlier in this chapter), but per-minute charges will apply, and you'll get a
maximum speed of 14.4 kbps. To set up a data connection for this phone, first create the /etc/ppp/peers/verizon file
shown in Example 9-5. Be sure the device name corresponds to that of your phone (use dmesg to see which device the
phone was associated with), although it will probably be /dev/ttyACM0. You must supply your phone number followed
by @vzw3g.com as your username in the verizon file, and specify vzw as your password in the /etc/ppp/chap-secrets file
shown in Example 9-6 (the verizon in the server column in chap-secrets corresponds to the remote_name specified in the
/etc/ppp/peers/verizon file).

Example 9-5. PPP peer settings for Verizon Wireless and the Motorola v120e

File: /etc/ppp/peers/verizon

#

/dev/ttyACM0 # device

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

/dev/ttyACM0 # device

The following two settings need a corresponding entry in

/etc/ppp/chap-secrets.

user YOUR_CELLULAR_PHONE_NUMBER@vzw3g.com

remotename verizon

115200 # speed

defaultroute # use the cellular network for the default route

usepeerdns # use the DNS servers from the remote network

nodetach # keep pppd in the foreground

crtscts # hardware flow control

lock # lock the serial port

noauth # don't expect the modem to authenticate itself

novj

novjccomp

scripts for connection/disconnection

connect "/usr/sbin/chat -v -f /etc/chatscripts/verizon-connect"

disconnect "/usr/sbin/chat -v -f /etc/chatscripts/verizon-disconnect"

Example 9-6. CHAP password for Verizon wireless connection

File: /etc/ppp/chap-secrets

#

Secrets for authentication using CHAP

client server secret IP addresses

YOUR_CELLULAR_PHONE_NUMBER@vzw3g.com verizon vzw *

Next, create the /etc/chatscripts/verizon-connect and /etc/chatscripts/verizon-disconnect scripts, shown in Example 9-7
and Example 9-8.

Example 9-7. PPP connect script for Verizon Wireless and Motorola v120e

File: /etc/chatscripts/verizon-connect

#

TIMEOUT 10

ABORT 'BUSY'

ABORT 'NO ANSWER'

ABORT 'NO CARRIER'

SAY 'Starting CDMA connect script\n'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Get the modem's attention and reset it.

'' 'ATZ'

E0=No echo, V1=English result codes

OK 'ATE0V1'

Dial the number

SAY 'Dialing...\n'

OK 'ATD#777'

CONNECT ''

Example 9-8. PPP disconnect script for Verizon Wireless and Motorola v120e

File: /etc/chatscripts/verizon-disconnect

#

"" "\K"

"" "+++ATH0"

SAY "CDMA disconnected."

After you've set up these scripts, issue the command pppd call verizon as root (if you haven't configured Linux to
automatically load the acm.o module, you must issue the command modprobe acm first). Usage charges will apply
according to your data plan. When you are done, press Ctrl-C to invoke the disconnect script and hang up the PPP
connection.

9.3.4 GSM/GPRS Phone with Data Cable

The Nokia 6200 (Figure 9-4) was the first phone on the market to support EDGE, an enhancement to GSM that
increases the data rate per timeslot up to 48 kbps (higher in ideal network conditions). With two EDGE timeslots for
uploads and downloads, the Nokia 6200 can achieve data rates of 96 kbps or higher. The Nokia 6200 is offered by AT&T
Wireless.

Figure 9-4. The Nokia 6200 EDGE/GPRS phone

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EDGE-capable phones are compatible with GSM/GPRS networks. If the cellular base station you connect to does not
support EDGE, the phone will fall back to regular GSM data rates.

Unfortunately, the Nokia 6200 does not support Bluetooth, so you must use either IrDA or a data cable. Linux does not
recognize the Nokia data cable (DKU-5), but it does recognize the cable that comes with the SmithMicro QuickLink
Mobile for Mac OS X kit (available for $59.95 at http://www.smithmicro.com) as a Prolific 2303. However, we had
trouble with some of the 2.4 kernels that we had tested with 2.4.20 through 2.4.22: the driver (pl2303.o) would trigger
a kernel oops when hanging up the connection. However, we tested a prerelease version of 2.4.23 (rc3), which solved
this problem.

To connect to the Internet with this phone, you must set up a PPP connection that sets the APN (see Section 9.2 earlier
in this chapter) and dials the number (*99***1#) for making a GPRS connection. In theory, you can use this phone to
connect to a dialup service (see Section 9.1.1 earlier in this chapter).

To set up your PPP connection, first create the /etc/ppp/peers/attws file shown in Example 9-9. Be sure the device
name corresponds to that of your phone (use dmesg to look at the device that the phone was assigned to), although it
will probably be /dev/ttyUSB0.

Example 9-9. PPP peer settings for AT&T Wireless and the Nokia 6200

/dev/ttyUSB0 # USB-serial port

230400 # speed

defaultroute # use the cellular network for the default route

usepeerdns # use the DNS servers from the remote network

nodetach # keep pppd in the foreground

crtscts # hardware flow control

lock # lock the serial port

noauth # don't expect the modem to authenticate itself

connect "/usr/sbin/chat -v -f /etc/chatscripts/attws-connect"

disconnect "/usr/sbin/chat -v -f /etc/chatscripts/attws-disconnect"

Next, create the /etc/chatscripts/attws-connect and /etc/chatscripts/attws-disconnect scripts, shown in Example 9-10
and Example 9-11. If you are using a GPRS cellular provider other than AT&T Wireless, you will probably have to
change the APN (proxy in Example 9-10).

Example 9-10. PPP connect script for AT&T Wireless and the Nokia 6200

File: /etc/chatscripts/attws-connect

#

TIMEOUT 10

ABORT 'BUSY'

ABORT 'NO ANSWER'

ABORT 'NO CARRIER'

SAY 'Starting GPRS connect script\n'

Get the modem's attention and reset it.

'' 'ATZ'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

E0=No echo, V1=English result codes

OK 'ATE0V1'

Set Access Point Name (APN)

SAY 'Setting APN\n'

OK 'AT+CGDCONT=1,"IP","proxy"'

Dial the number

SAY 'Dialing...\n'

OK 'ATD*99***1#'

CONNECT ''

Example 9-11. PPP disconnect script for AT&T Wireless and the Nokia 6200

File: /etc/chatscripts/attws-disconnect

#

"" "\K"

"" "+++ATH0"

SAY "GPRS disconnected."

After you've set up these scripts, issue the command pppd call attws as root. Usage charges will apply according to your
data plan. Press Ctrl-C to invoke the disconnect script and hang up the PPP connection.

If your carrier requires a username and password, set the user and remote_name options, as
shown in Example 9-5 and create a chap_secrets file, as shown in Example 9-6.

9.3.5 GPRS PC Card

T-Mobile once operated in the United States under the VoiceStream brand. In fact, you still see voicestream.com on T-
Mobile's APNs, and a USENET group that discusses T-Mobile is alt.cellular.gsm.carriers.voicestream. Back when it
operated as VoiceStream, it offered a great cellular card that was branded iStream (see Figure 9-5). Under the hood,
it's a Novatel Wireless Merlin G100 GPRS PCMCIA modem. We like this card because it's cheap (we picked ours up for
$50 on eBay) and we have received faster downloads with it than with other GPRS phones that we've used.

Figure 9-5. The (VoiceStream branded) Novatel Wireless Merlin G100 GPRS card

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Linux automatically detects this as a serial card; when you insert the card, look for messages in the system log or the
output of dmesg to see the port it's assigned to. On our system, it shows up as /dev/ttyS2 (dmesg reports "ttyS02 at
port 0x03e8," and ttyS02 corresponds to /dev/ttyS2).

To connect to the Internet with this phone, you must set up a PPP connection that sets the APN (see Section 9.2 earlier
in this chapter) and dials the number (*99***1#) for making a GPRS connection. In theory, you could dial the number of
a dialup ISP (see Section 9.1.1 earlier in this chapter).

To set up your PPP connection, first create the /etc/ppp/peers/tmobile file shown in Example 9-12 Be sure the device
name corresponds to that of the PCMCIA card.

Example 9-12. PPP peer settings for T-Mobileand the Merlin G100

/dev/ttyS2 # G100 modem

115200 # speed

defaultroute # use the cellular network for the default route

usepeerdns # use the DNS servers from the remote network

nodetach # keep pppd in the foreground

crtscts # hardware flow control

lock # lock the serial port

noauth # don't expect the modem to authenticate itself

local # don't use Carrier Detect or Data Terminal Ready

debug

Use the next two lines if you receive the dreaded messages:

#

No response to n echo-requests

Serial link appears to be disconnected.

Connection terminated.

#

lcp-echo-failure 4

lcp-echo-interval 65535

connect "/usr/sbin/chat -v -f /etc/chatscripts/tmobile-connect"

disconnect "/usr/sbin/chat -v -f /etc/chatscripts/tmobile-disconnect"

Next, create the /etc/chatscripts/tmobile-connect and /etc/chatscripts/tmobile-disconnect scripts, shown in Example 9-
13 and Example 9-14. If you are using a GPRS cellular provider other than T-Mobile, you will probably have to change
the APN (internet3.voicestream.com). Also, T-Mobile offers two options on its T-Mobile Internet plan. By default, you
should use the internet2.voicestream.com APN. However, if you've opted for VPN support (you receive a public IP address),

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

should use the internet2.voicestream.com APN. However, if you've opted for VPN support (you receive a public IP address),
use internet3.voicestream.com.

Example 9-13. PPP connect script for T-Mobile and the Merlin G100

File: /etc/chatscripts/tmobile-connect

#

TIMEOUT 10

ABORT 'BUSY'

ABORT 'NO ANSWER'

ABORT 'ERROR'

SAY 'Starting GPRS connect script\n'

Get the modem's attention and reset it.

"" 'ATZ'

E0=No echo, V1=English result codes

OK 'ATE0V1'

Set Access Point Name (APN)

SAY 'Setting APN\n'

OK 'AT+CGDCONT=1,"IP","internet3.voicestream.com"'

Dial the number

ABORT 'NO CARRIER'

SAY 'Dialing...\n'

OK 'ATD*99***1#'

CONNECT ''

Example 9-14. PPP disconnect script for T-Mobile and the Merlin G100

File: /etc/chatscripts/tmobile-disconnect

#

"" "\K"

"" "+++ATH0"

SAY "GPRS disconnected."

After you've set up these scripts, issue the command pppd call tmobile as root. Usage charges will apply according to your
data plan. Press Ctrl-C to invoke the disconnect script and hang up the PPP connection.

If your carrier requires a username and password, set the user and remote_name options, as
shown in Example 9-5 and create a chap_secrets file, as shown in Example 9-6.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.4 Sending a Fax
You can send a fax from your cell phone if both your cellular carrier and your cell phone support it. You can figure out
quickly whether your phone supports it by making a Kermit connection (see Section 9.3 earlier in this chapter). Here's a
session with a Motorola v120e in which the phone acknowledges that it's capable of Class 2 fax modem commands:

bjepson@debian:~$ kermit -l /dev/ttyACM0 -b 115200

C-Kermit 7.0.196, 1 Jan 2000, for Linux

 Copyright (C) 1985, 2000,

 Trustees of Columbia University in the City of New York.

Type ? or HELP for help.

(/home/bjepson/) C-Kermit>connect

Connecting to /dev/ttyACM0, speed 115200.

The escape character is Ctrl-\ (ASCII 28, FS)

Type the escape character followed by C to get back,

or followed by ? to see other options.

--

AT+FCLASS=?

0,2.0

OK

However, the following session with the Nokia 6200 shows that it doesn't have any fax modem capabilities:

bjepson@debian:~$ kermit -l /dev/ttyUSB0 -b 115200

C-Kermit 7.0.196, 1 Jan 2000, for Linux

 Copyright (C) 1985, 2000,

 Trustees of Columbia University in the City of New York.

Type ? or HELP for help.

(/home/bjepson/) C-Kermit>set carrier-watch off # required for some phones

(/home/bjepson/) C-Kermit>connect

Connecting to /dev/ttyUSB0, speed 115200.

The escape character is Ctrl-\ (ASCII 28, FS)

Type the escape character followed by C to get back,

or followed by ? to see other options.

--

AT+FCLASS=?

0

OK

To send a fax with your cell phone, install a package such as efax (http://www.cce.com/efax/) and configure it for your
modem. In the case of efax, you must edit /etc/efax.rc. At a minimum, you should set the device (DEV), your phone
number (FROM), and name (NAME):

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

number (FROM), and name (NAME):

DEV=ttyACM0

Your fax number in international format, 20 characters maximum.

Use only digits, spaces, and the "+" character.

FROM="+1 401 555 1234"

Your name as it should appear on the page header.

NAME="Brian Jepson"

Once you've done this, you can use a client program, such as fax (included as part of the efax package), to send a file:

bjepson@debian:~$ fax send 4015555678 Letter.ps

Letter.ps is postscript or pdf ...

efax: Sun Nov 23 16:39:16 2003 efax v 0.9a-001114 Copyright 1999 Ed Casas

efax: 39:16 opened /dev/ttyACM0

efax: 39:21 using in class 2.0

efax: 39:22 dialing T4015555678

efax: 39:43 remote ID -> " 401 555 5678"

efax: 39:43 connected

efax: 39:51 session 196lpi 4800bps 8.5"/215mm 11"/A4 1D - - 0ms

efax: 39:51 header:[2003/11/23 16:39 +1 401 555 1234 Brian Jepson p. 1/1]

efax: 41:52 sent 20+2156 lines, 61097+0 bytes, 121 s 4039 bps

efax: 41:52 sent -> Letter.ps.001

efax: 41:57 done, returning 0 (success)
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.5 Text Messaging
Some phones and modems let you send a text message via Short Message Service (SMS) using AT commands. To find
out whether your device supports this (nearly all GSM devices do), connect with Kermit, as shown in Example 9-1, and
issue the query AT+CSMS=0 (the three columns indicate whether the device is capable of receiving messages, sending
messages, or sending broadcast messages):

AT+CSMS=0

+CSMS: 1,1,1

OK

If your cell phone supports this capability, you can work with text messages using AT commands. You can list your text
messages with AT+CMGL=4 (the 4 indicates all messages: use 0 for unread, 1 for read, 2 for unsent, and 3 for sent
messages) and read a message with AT+CMGR=MESSAGE_NUMBER:

AT+CMGL=4

+CMGL: 1,1,,28

07919170389103F2040B91XXXXXXXXXXF100013011320211500A0AD3771D7E9A83DEEE10

+CMGL: 2,1,,25

07919170389103F2040B91XXXXXXXXXXF100013011329135610A06C8F79D9C0F01

OK

AT+CMGR=1

+CMGR: 1,,28

07919170389103F2040B91XXXXXXXXXXF100013011320211500A0AD3771D7E9A83DEEE10

OK

However, you'll want to put the phone into text mode, so the responses that you receive are human-readable. Use
AT+CMGF=1 for this, and try reading the message again:

AT+CMGF=1

OK

AT+CMGR=1

+CMGR: "REC READ","+14015559000",,"03/11/23,20:11:05-20"

Soup's on!

OK

You can send a message with AT+CMGS="PHONE_NUMBER" (but make sure you've set responses to be human-readable
with AT+CMGF=1). You'll be prompted for the message; type it and press Ctrl-Z when you are finished:

AT+CMGF=1

OK

AT+CMGS="4015559000"

> Hello, world!^Z

OK

You can also use the gsmsendsms utility from gsmlib (http://www.pxh.de/fs/gsmlib/index.html) to send the message:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can also use the gsmsendsms utility from gsmlib (http://www.pxh.de/fs/gsmlib/index.html) to send the message:

bjepson@debian:~$ gsmsendsms -d /dev/ttyUSB0 4015559000 "Hello, World"
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

9.6 Acceleration
Although GPRS and CDMA are pretty slow, some providers have put compression servers on their network to compress
documents before they make it to your computer.

Verizon Wireless uses a two-tier proxy server called Venturi (http://www.venturiwireless.com/products.html). One tier
of the proxy server sits on the cellular carrier's network and compresses documents before they come down to your
machine. The other tier is a local proxy server that runs on your machine and decompresses the content on the fly
before presenting it to your web browser or any other application. (Venturi can compress data sent over a number of
protocols including SMTP and POP3.) AT&T Wireless uses something similar, but we do not know what it is. At the time
of this writing, there isn't a Linux client for either Venturi (or whatever it is that AT&T Wireless uses). But that shouldn't
stop you from asking customer support about it, because it may have changed (at the very least, you should let them
know the demand exists).

Sprint and T-Mobile have transparent acceleration on their networks. The nice thing about this approach is that it
should, in theory, obey web standards without requiring any fiddling on the client side; so it doesn't matter what
operating system you're on. To compress HTML, the compression server can use gzip compression; to compress
images, it can reduce the image quality. Figure 9-6 shows the T-Mobile Internet Accelerator configuration page
(http://getmorespeed.t-mobile.com). You will not be able to reach this page unless you are connected to the
internet2.voicestream.com or internet3.voicestream.com APNs on T-Mobile's GPRS network.

Figure 9-6. Configuring the T-Mobile Internet Accelerator

Figure 9-7 shows detail from an image that was sent across T-Mobile's network with compression disabled. Figure 9-8
shows that same detail with maximum compression. Although some artifacts appear in the image, the differences
should not annoy most users. This 799 x 599 pixel image started out at 96 KB; compression reduced it to 48 KB.

Figure 9-7. Photograph with no compression

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9-7. Photograph with no compression

Figure 9-8. Photograph with maximum compression

Your mileage will vary using acceleration; in theory, it should speed things up. We've found this to be the case most of
the time.

However, we've also found cases where the compression server was having a bad day, and the amount of time it took
to do its thing exceeded the acceleration we received from the compression. Try it out and see how it works, and
disable it if it's a problem. Contact your cellular carrier for instructions on turning compression on and off.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 9. Cellular Networking
The widest of the wide area wireless networks are the cellular networks. They're also among the slowest, unless you're
in one of the markets where third-generation (3G) cellular networks are available. At the time of this writing, San Diego
and Washington, D.C. users could receive between 300 and 500 kbps from Verizon for $80 a month. The rest of the
United States, and much of the world, is still plodding along at between 30 and 130 kbps, depending on several
variables: the type of network, capabilities of their terminal (a phone or PC Card), and quality of coverage. This chapter
explains these variables to help you make the best choice in cellular data service, and also talks about configuring a
cellular phone or PC Card with Linux (although this is usually just a small matter of PPP chat scripting).

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Colophon
Our look is the result of reader comments, our own experimentation, and feedback from distribution channels.
Distinctive covers complement our distinctive approach to technical topics, breathing personality and life into potentially
dry subjects.

The image on the cover of Linux Unwired is cattle ropers. Ropers were cowboys who snared calves and dragged them
to the fire for branding. Branding was the act of applying a red-hot branding iron to a calf's flank to mark the animal.
Each ranch had a marking that identified cattle belonging to its herd, and this was thought to discourage theft.

Sarah Sherman was the production editor and copyeditor for Linux Unwired. Matt Hutchinson was the proofreader.
Colleen Gorman and Claire Cloutier provided quality control. Julie Hawks wrote the index.

Emma Colby designed the cover of this book, based on a series design by Hanna Dyer and Edie Freedman. The cover
image is a 19th-century engraving from The Book of the American West (Bonanza Books, 1963). Emma Colby produced
the cover layout with QuarkXPress 4.1 using Adobe's ITC Garamond font.

David Futato designed the interior layout. The chapter opening images are from the Dover Pictorial Archive, Marvels of
the New West: A Vivid Portrayal of the Stupendous Marvels in the Vast Wonderland West of the Missouri River, by
William Thayer (The Henry Bill Publishing Co., 1888), and The Pioneer History of America: A Popular Account of the
Heroes and Adventures, by Augustus Lynch Mason, A.M. (The Jones Brothers Publishing Company, 1884). This book
was converted by Joe Wizda to FrameMaker 5.5.6 with a format conversion tool created by Erik Ray, Jason McIntosh,
Neil Walls, and Mike Sierra that uses Perl and XML technologies. The text font is Linotype Birka; the heading font is
Adobe Myriad Condensed; and the code font is LucasFont's TheSans Mono Condensed. The illustrations that appear in
the book were produced by Robert Romano and Jessamyn Read using Macromedia FreeHand 9 and Adobe Photoshop 6.
The tip and warning icons were drawn by Christopher Bing. This colophon was written by Sarah Sherman.

The online edition of this book was created by the Safari production group (John Chodacki, Becki Maisch, and Madeleine
Newell) using a set of Frame-to-XML conversion and cleanup tools written and maintained by Erik Ray, Benn Salter,
John Chodacki, and Jeff Liggett.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Copyright © 2004 O'Reilly Media, Inc.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safari.oreilly.com). For more information, contact our corporate/institutional sales
department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Reilly Media, Inc.
The Linux series designations, Linux Unwired, images of the American West, and related trade dress are trademarks of
O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and O'Reilly Media, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Foreword
This is a book about two revolutions: free software and free wireless networking.

The first revolution was born in 1991, when a lone Finnish hacker named Linus Torvalds used the GNU Project's free C
compiler to build Linux, a free Unix-like operating system kernel. One of the hallmarks of this kernel was its release
under the GNU Public License, which guaranteed that anyone would be able to customize and improve the Linux kernel
to suit their computing needs, and that those improvements would be shared with the other users of the Linux kernel.

Today, Linus Torvalds is virtually a household name, and his brainchild has gone on to star in millions of personal
computers, web servers, supercomputing clusters, embedded devices, mainframes, and more. Bolstered by the success
of Linux and its BSD-derived cousins, a globe-spanning Free Software movement has taken hold, spawning thousands
of community-supported projects, and fundamentally altering how software is made and distributed in the 21st century.

Although the second revolution has been lurking in the background for years, it received a major boost in 1999 from
the publication of the IEEE 802.11b standard, a specification for wireless data networking that made use of the 2.4 GHz
microwave band, which had long been considered "junk" spectrum in the U.S. As consumer 802.11b devices hit the
market, more and more people were able to use computers and access the network from an ever widening array of
locales—living room couches, conference rooms, coffee shops, and even sunny park benches.

Meanwhile, ordinary individuals were discovering that, using nothing more than off-the-shelf radio hardware and the
right antennas, they could build wide-area—and even metropolitan-area—IP network infrastructure for the first time
ever, without the need for costly or restrictive government licenses. The result has been a quantum leap in ubiquitous
computing, with millions of 802.11 devices in use across the world. The newer IEEE 802.11a and 802.11g standards are
now implemented to offer even more possibilities for free data networking.

The operative word at the heart of both of these revolutions is the word "free," but the concept it refers to is freedom.
Trivially, they offer the opportunity to download an operating system free of charge or perhaps to escape the tyranny of
Ethernet cables. But on a deeper level, these revolutions promise basic freedoms of action and of speech—the freedom
to employ your computing hardware to communicate with others as you see fit, and not merely as commercial interests
dictate. Unlike many of the technical choices available to you today, Linux and 802.11 serve to enhance your freedom
and expand your options, rather than to constrain them.

As the title implies, Linux Unwired guides you through configuring and using Linux with the 802.11 protocols, as well as
Bluetooth, IR, cellular data networking, and GPS. Ultimately, though, this is a book about freedom. This book shows
you how to harness the combined power of these technologies to expand your options and your technical horizons.

Welcome to the revolution(s). May you do good work!

—Schuyler Erle
February, 2004

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

What This Book Covers
This book explains how to use the following wireless technologies with Linux:

Wireless Fidelity (Wi-Fi)

Wi-Fi is short-range wireless networking that supports raw speeds up to 54 Mbps (about 20-25 Mbps actual
speeds). It's an affordable replacement for wired Ethernet, and includes the 802.11b, 802.11g, and 802.11a
protocols. Chapter 1 through Chapter 6 discuss Wi-Fi.

Bluetooth

Bluetooth is a wireless cable-replacement that allows you to get rid of USB and serial cables. You can use it to
connect a Personal Digital Assistant (PDA), such as a Palm or Pocket PC, to Linux; create an ad-hoc network; or
transfer files between computers. Bluetooth is covered in Chapter 7.

Infrared

Infrared has been available for a long time, and in some cases, it's the only way that two devices will talk to
each other, particularly with older PDAs. Infrared uses light waves that are just outside the range of visible
light. Infrared is covered in Chapter 8.

Cellular networking

Although Wi-Fi is fast and reliable, it disappears the moment you leave its useful range. Cellular networks cover
large areas, reach speeds between 40 kbps and 100 kbps, and even work reliably while you are in a moving
vehicle. With unlimited data plans starting at $19.99 a month from some providers, cellular data plans can be a
useful complement to Wi-Fi. Chapter 9 covers cellular data.

Global Positioning System (GPS)

Use a GPS to figure out your location in two or three dimensions. Plugged into a Linux computer, a GPS device
becomes a source of location data that can be combined with freely available maps to plot locations of wireless
networks, figure out where you are, or map out whatever interests you. GPS is covered in Chapter 10.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Conventions Used in This Book
This book uses the following abbreviations:

Hz, kHz, MHz, and GHz

Hertz (cycles per second), kilohertz (one thousand hertz), megahertz (one million hertz), and gigahertz (one
billion, or 109 hertz)

bps, kbps, Mbps

Bits per second, kilobits (1,024 bits) per second, and megabits (1,048,576 bits) per second

KB/s, MB/s

Kilobytes (1,024 bytes) per second and megabytes (1,048,576 bytes) per second

MB

Megabytes (1,048,576 bytes) of hard disk or RAM storage

mW

Milliwatts; one thousandth of a watt of power output

This book uses the following typographic conventions:

Constant width

Used for listing the output of command-line utilities

Constant width italic

Used to show items that need to be replaced in commands

Italic

Used for emphasis, for first use of a technical term, and for example URLs

...

Indicates text that has been omitted for clarity

This icon indicates a tip, suggestion, or general note.

This icon indicates a warning or caution.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Comments and Questions
Please address any comments or questions concerning this book to the publisher:

O'Reilly & Associates
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the U.S. or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

O'Reilly has a web site for this book where examples, errata, and any plans for future editions are listed. You can
access this site at:

http://www.oreilly.com/catalog/lnxunwired

For more information about this book and others, see the O'Reilly web site:

http://www.oreilly.com

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Acknowledgments

Roger Weeks

Writing this book would not have been possible without the backing and inspiration of my wife, Cynthia. Despite a
house sometimes too cluttered with geek gear, long technical conversations, and more than one late night, she's always
there for me.

Many thanks also to Schuyler Erle, who not only got the book approved by O'Reilly, but somehow managed to convince
them that I should be the author.

All of the "Cats" should be thanked publicly for their amazing amounts of knowledge, friendship, and hard work: Rob
Flickenger, Schuyler Erle, Adam Flaherty, Nate Boblitt, Jim Rosenbaum, and Rich Gibson. Without them, significant
parts of the West Coast would be very boring, and the wireless community would be much poorer.

Finally, many thanks to Brad Silva for excellent hardware advice and soldering skills.

Edd Dumbill

I would like to thank Marcel Holtmann and Maxim Krasnyansky for their devoted work on the BlueZ Linux Bluetooth
stack and, of course my wife Rachael for her patient support.

Brian Jepson

My thanks go out to Schuyler Erle and Rob Flickenger for helping to develop the original outline of this book and for
technical review. Thanks also to Adam Flaherty for technical review. I'm very grateful to Roger and Edd for being such
great coauthors.

I'd especially like to thank my wife, Joan, and my stepsons, Seiji and Yeuhi, for their support and encouragement
through my late night and weekend writing sessions, my occasional trips around town in a car full of Wi-Fi and GPS
equipment, and the various milliwattage that soaked through the walls of my home office while I worked on this book.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Preface
Take a trip to the computer store, buy a Wi-Fi card, and insert it into your Linux notebook. You will probably hear two
beeps; are they both happy beeps, or is one of them an angry beep? It's possible that you will receive a happy beep,
but with the variety of hardware, firmware, and software drivers for Wi-Fi cards, it's quite likely that you will receive the
angry beep. Next, go through this exercise with a Bluetooth adapter, cell phone, and some other random wireless
hardware.

This book is all about hearing the happy beeps.

Wireless networks are popping up everywhere; from Wi-Fi hotspots to cellular data plans, you can connect to the
Internet virtually anywhere. You can even cut more cables with technologies like Bluetooth and Infrared. Linux is
already an amazing operating system, and combined with wireless, its strengths are amplified.

But things really shine when you combine wireless technologies. This book also discusses using wireless technology in
combination, whether you want to share your Wi-Fi connection to Bluetooth devices or map out Wi-Fi networks with a
Global Positioning System (GPS) device.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

• Table of Contents
• Index
• Reviews
• Reader Reviews
• Errata
• Academic
Linux Unwired

By Edd Dumbill, Brian Jepson, Roger Weeks

Publisher: O'Reilly

Pub Date: April 2004

ISBN: 0-596-00583-0

Pages: 312

Slots: 1.0

Linux Unwired is a one-stop wireless information source for on-the-go Linux users. Whether you're considering Wi-Fi as
a supplement or alternative to cable and DSL, using Bluetooth to network devices in your home or office,or want to use
cellular data plans for access to data nearly everywhere, this book will show you the full-spectrum view of wireless
capabilities of Linux, and how to take advantage of them.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

• Table of Contents
• Index
• Reviews
• Reader Reviews
• Errata
• Academic
Linux Unwired

By Edd Dumbill, Brian Jepson, Roger Weeks

Publisher: O'Reilly

Pub Date: April 2004

ISBN: 0-596-00583-0

Pages: 312

Slots: 1.0

 Copyright

 Foreword

 Preface

 What This Book Covers

 Conventions Used in This Book

 Comments and Questions

 Acknowledgments

 Chapter 1. Introduction to Wireless

 Section 1.1. Radio Waves

 Section 1.2. Connections Without Wires

 Section 1.3. Wireless Alphabet Soup

 Section 1.4. Bluetooth

 Section 1.5. Cellular Data

 Section 1.6. Infrared

 Chapter 2. Wi-Fi on Your Linux Box

 Section 2.1. Quick Start

 Section 2.2. Chipset Compatibility

 Section 2.3. Four Steps to Wi-Fi

 Section 2.4. Linux Wi-Fi Drivers in Depth

 Chapter 3. Getting On the Network

 Section 3.1. Hotspots

 Section 3.2. Wireless Network Discovery

 Chapter 4. Communicating Securely

 Section 4.1. The Pitfalls of WEP

 Section 4.2. The Future Is 802.11i

 Section 4.3. WPA: a Subset of 802.11i

 Section 4.4. WPA on Linux

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Chapter 5. Configuring Access Points with Linux

 Section 5.1. Linux-Friendly Wireless Vendors

 Section 5.2. Commercial Wireless Equipment Overview

 Section 5.3. Configuring Access Points

 Section 5.4. Flashing Your Access Point

 Chapter 6. Building Your Own Access Point

 Section 6.1. Hardware

 Section 6.2. Software

 Section 6.3. Linux-Powered Off-the-Shelf

 Chapter 7. Bluetooth

 Section 7.1. Quick Start

 Section 7.2. Bluetooth Basics

 Section 7.3. Bluetooth Hardware

 Section 7.4. Linux Bluetooth Support

 Section 7.5. Installing the BlueZ Utilities

 Section 7.6. Basic Configuration and Operation

 Section 7.7. Graphical Applications

 Section 7.8. Cool Bluetooth Tricks

 Chapter 8. Infrared

 Section 8.1. IrDA in the Kernel

 Section 8.2. PC Laptop with Built-In IrDA

 Section 8.3. Infrared Dongle

 Section 8.4. Sharing a Network Connection over IrDA

 Section 8.5. Connecting to the Internet with a Cell Phone

 Section 8.6. Transferring Files with OpenOBEX

 Section 8.7. Synchronizing with a Palm

 Section 8.8. Pocket PC

 Chapter 9. Cellular Networking

 Section 9.1. Cellular Data

 Section 9.2. Some Cellular Carriers

 Section 9.3. Phones and Cards

 Section 9.4. Sending a Fax

 Section 9.5. Text Messaging

 Section 9.6. Acceleration

 Chapter 10. GPS

 Section 10.1. Uses of GPS

 Section 10.2. A GPS Glossary

 Section 10.3. GPS Devices

 Section 10.4. Listening to a GPS

 Section 10.5. Mapping Wi-Fi Networks with Kismet

 Section 10.6. GpsDrive

 Section 10.7. Other Applications

 Colophon

 Index

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

