
[Team LiB]

• Table of Contents
• Index
• Reviews
• Reader Reviews
• Errata

Mac OS X for Java™ Geeks
By Will Iverson

Publisher : O'Reilly

Pub Date : April 2003

ISBN : 0-596-00400-1
Pages : 296

Mac OS X for Java Geeks delivers a complete and detailed look at the Mac OS X platform, geared
specifically at Java developers. Programmers using the 10.2 (Jaguar) release of Mac OS X, and the
new JDK 1.4, have unprecedented new functionality available to them. Whether you are a Java
newbie, working your way through Java Swing and classpath issues, or you are a Java guru,
comfortable with digital media, reflection, and J2EE, this book will teach you how to get around on
Mac OS X. You'll also get the latest information on how to build applications that run seamlessly, and
identically, on Windows, Linux, Unix, and the Mac.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

• Table of Contents
• Index
• Reviews
• Reader Reviews
• Errata

Mac OS X for Java™ Geeks
By Will Iverson

Publisher : O'Reilly

Pub Date : April 2003

ISBN : 0-596-00400-1
Pages : 296

 Copyright

 Preface

 Organization

 Conventions Used in This Book

 Comments and Questions

 Acknowledgments

 Chapter 1. Getting Oriented

 Section 1.1. All Those Confusing Names

 Section 1.2. Why Now?

 Chapter 2. Apple's Java Platform

 Section 2.1. Apple JVM Basics

 Section 2.2. Apple's JVM Directory Layout

 Section 2.3. Additional APIs and Services

 Section 2.4. Going Forward

 Chapter 3. Java Tools

 Section 3.1. Terminal

 Section 3.2. Code Editors

 Section 3.3. Jakarta Ant

 Section 3.4. Additional Tools

 Chapter 4. GUI Applications

 Section 4.1. Swing and Aqua

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 4.2. An Example Swing Application

 Chapter 5. Apple Extensions

 Section 5.1. The Mac OS X Finder

 Section 5.2. Native Access

 Chapter 6. Cross-Platform Programming

 Section 6.1. GUI Construction

 Section 6.2. New Line

 Section 6.3. File Encoding

 Section 6.4. Threading

 Section 6.5. File Separator

 Section 6.6. Testing Cross-Platform Compatibility

 Section 6.7. For More Information

 Chapter 7. Standalone Applications

 Section 7.1. Packaging

 Section 7.2. JAR Files

 Section 7.3. Application Bundles

 Section 7.4. Building an Application from Scratch

 Section 7.5. MRJAppBuilder

 Section 7.6. Next Steps

 Chapter 8. Web-Delivered Applications

 Section 8.1. Applets

 Section 8.2. Java Web Start

 Section 8.3. GUI Application Delivery Comparison

 Section 8.4. Next Steps

 Chapter 9. The Mac OS X Speech Framework

 Section 9.1. The Speech API

 Section 9.2. Putting Speech to Work

 Chapter 10. QuickTime for Java

 Section 10.1. Getting Started

 Section 10.2. The QuickTime API

 Section 10.3. The SimplePlayer Application

 Chapter 11. The Mac OS X Spelling Framework

 Section 11.1. Getting Set Up

 Section 11.2. The Spelling API

 Section 11.3. Spelling in Action

 Chapter 12. Databases

 Section 12.1. Basic Concepts

 Section 12.2. Mac OS X Databases

 Section 12.3. Next Steps

 Chapter 13. Servlets, JSP, and Tomcat

 Section 13.1. Apache Tomcat

 Section 13.2. Database-Driven JSP Applications

 Section 13.3. Frontending Tomcat with Apache

 Section 13.4. Next Steps

 Chapter 14. EJB and JBoss

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Chapter 14. EJB and JBoss

 Section 14.1. JBoss

 Section 14.2. Getting Started with J2EE

 Section 14.3. Pushing the Envelope

 Chapter 15. Web Services

 Section 15.1. RPC

 Section 15.2. XML-RPC

 Section 15.3. SOAP

 Section 15.4. Additional Reading

 Section 15.5. Final Thoughts

 Colophon

 Index

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Copyright

Copyright © 2003 O'Reilly & Associates, Inc.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safari.oreilly.com). For more information,
contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly & Associates, Inc. The association between the image of a striped hyena and the topic of Mac
OS X for Java geeks is a trademark of O'Reilly & Associates, Inc.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc., in the United States and other countries. O'Reilly & Associates, Inc. is
independent of Sun Microsystems.

Apple, the Apple logo, AppleScript, AppleTalk, AppleWorks, Carbon, Cocoa, Finder, FireWire, iBook,
iMac, iPod, Mac, Mac logo, Macintosh, PowerBook, QuickTime, QuickTime logo, and WebObjects are
trademarks of Apple Computer, Inc., registered in the United States and other countries.

While every precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Preface

This was a surprisingly difficult book to write. It was difficult not because of the topic's technical
complexity—after all, I've been working with Java™ since before the release of JDK 1.0 and
developing on the Mac for over a decade. No, the hard part was deciding what should actually go into
a book called Mac OS X for Java Geeks.

The unknown element of this book is the skill set possessed by the reader. If you're an expert on
Swing looking for tips on how to build a Java application, you won't want to slog through pages of
duplicated content explaining how to build such an application. The same goes for readers interested
in JSP™, EJB™, SQL, and everything else related to the Java platform.

In the end, I relied on two main guides. First, I leaned on conversations with other developers
(particularly developers who were unfamiliar with Mac OS X and interested in switching platforms).
Second, much time was spent with the broad array of excellent existing Java development texts. If
you've never developed an application in Swing, this text won't teach you everything you need to
know, but it will teach you how to transfer that application to Mac OS X, package it, and generally
make it behave in a first-class manner while maintaining cross-platform compatibility. If you really
have never built an application in Swing, this book provides an annotated working example.

If you're just beginning to develop applications in Java on the Mac OS X platform, you'll find an
excellent survey of Java development by installing and working your way through the examples in this
text, following the suggestions for further reading when appropriate. Fortunately, O'Reilly provides an
excellent library from which to choose.

This book, then, is meant to supplement the Java programmer's library. If you're a Java developer
and want to see what Mac OS X can do, or are just getting into Java and want to ensure that Mac OS
X is a viable development platform, I think you'll find your answers in this work. Enjoy!
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Organization

This book provides a learning path for a Java developer new to the Mac OS X platform. It assumes a
basic working familiarity with Java.

Chapter 1

Covers the history of Mac OS X and provides a preliminary introduction to the platform.

Chapter 2

Explores the technical underpinnings of the Mac OS X Java implementation, including the
layout, classpath, and additions to the standard Java environment.

Chapter 3

Explores the pragmatics of Java development, including how to set up your development
environment, and an overview of available tools.

Chapter 4

Builds a local desktop application in Swing and examines how to extend this application while
still retaining cross-platform capability.

Chapter 5

Discusses and gives examples of Apple's various additions to the Java platform.

Chapter 6

Looks at the potential pitfalls of developing applications that are intended for multiple platforms
and examines how to mitigate them.

Chapter 7

Describes how to package and deliver an application to end users that looks and behaves like a
native Mac OS X application.

Chapter 8

Examines how to build client applications that are delivered via the Web, including applets and
Web Start applications.

Chapter 9

Discusses how to make an application generate human speech and respond to your speech.

Chapter 10

Examines an application that provides support for rich multimedia.

Chapter 11

Adds real-time support and interactive spellchecking to an application.

Chapter 12

Provides basic information on installation, setup, and usage of the popular MySQL and
PostgreSQL databases.

Chapter 13

Builds and debugs a web application using standard Java presentation technologies.

Chapter 14

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Examines the development process for creating Enterprise JavaBeans™ on Mac OS X, and
details installation of the JBoss application server.

Chapter 15

Builds XML-RPC and SOAP web services and communicates with these services by using Apple's
AppleScript scripting package.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Conventions Used in This Book

The following font conventions are used in this book:

Italic is used forUnix pathnames, filenames, and program names; for Internet addresses, such
as domain names and URLs; and for new terms where they are defined.

Constant Width is used for command lines and options that should be typed verbatim; and for
names and keywords in Java programs, including method names, variable names, and class
names.

Constant Width Bold is used occasionally for emphasis in code.

Indicates a tip, suggestion, or general note.

Indicates a warning or caution.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

There is a web page for this book, which lists errata, examples, or any additional information. You can
access this page at:

http://www.oreilly.com/catalog/macxjvgks

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O'Reilly Network, see the
O'Reilly web site at:

http://www.oreilly.com/

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Acknowledgments

One person can write a book, but alone, one person cannot write a book like the one you hold in your
hand. I send my appreciation to the oft-unseen engine behind the production, marketing, and sales of
this book. I know you're there and appreciate all of your effort.

This book wouldn't be what it is without the valiant efforts of my editor, Brett McLaughlin. His tireless
effort has made it a far better work than it might have been.

Thanks to Michael Loukides for entertaining and supporting the idea behind this book, and for making
it possible to work with Brett.

Thanks to Tim O'Reilly for all the fine tomes that grace my bookshelf, and for allowing me to add my
own title to O'Reilly's great library.

For their time, feedback and enthusiasm, I would like to thank James Duncan Davidson and Daniel
Steinberg. Both could have written this book with their eyes shut—I just got lucky, I guess.

Thanks to Allen Denison for his support and enthusiasm; Bodhi for taking the time to provide
feedback; the MRJ-Dev mailing list for asking and answering all my questions before I even knew to
articulate them; and everyone at Apple Computer—many long hours go into building your beautiful
software.

On a personal note, thanks to the entire B-night crew, the Anagamin players, and the LJ crowd.

And finally, thanks to Mom, Diane, and Cynthia. You are simply amazing.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 1. Getting Oriented

Mac OS X is, in many ways, a new paint job on a 30-year-old operating system. BSD (the Berkeley
Software Distribution), the Unix root of Mac OS X, has been around since the 1960s. The Mach kernel
was developed in the 1990s, and the underlying user interface was created in early 1980s along with
Lisa (Apple's ill-fated precursor to the Macintosh). In other words, everything old is new again.

Mac OS X doesn't feel like a 30-year-old clunker, though, but the culmination of countless hours of
experimentation and refinement in desktop and workstation operating systems. To a Unix expert, Mac
OS X is much like a solid distribution of a classic BSD system with the most egregiously beautiful
window manager you've ever seen. For the Windows veteran, it is a simplified beast—a pure
workhorse of modern productivity stripped of decades of anachronisms and distilled until it has an
almost Zen-like simplicity. For the Mac OS 9 user, it represents an even more significant change.
Nasty crashes and ridiculous extension conflicts are now a thing of the past, while Aqua, Mac OS X's
new user interface, is clearly the look of the future.

Most importantly, though, Mac OS X is finally a developer's platform. With the melding of BSD, a killer
user interface, and unprecedented stability, code can finally be written on the Mac OS X platform and
deployed to Windows, Linux, Unix, or other Mac OS X servers. This book was written with the Java
developer in mind. It assumes some degree of Java experience and familiarity with basic Unix
commands such as cd, ls, and pwd. Maybe you are interested in porting an existing Java application to
Mac OS X (perhaps because your customers asked for a Mac OS X version). Or maybe Linux is your
development platform, but you are interested in moving to Mac OS X to access powerful graphics
applications such as Adobe Photoshop. Maybe you're a bored Windows user, or are philosophically
opposed to the Microsoft hegemony.

Your degree of experience really doesn't matter; Mac OS X is a great Java development platform for
people of all programming and operating system backgrounds.
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.1 All Those Confusing Names

Mac OS X has, at different times, been associated with several different names. At one point it was
called Rhapsody. Prior to that, it was NeXT's OpenStep and NeXTStep platform. The underlying Unix
guts were also released as an open source project, Darwin, which includes BSD and the Mach kernel.
With that in mind, explaining where Mac OS X started and where it is now will contextualize Mac OS X
in its current incarnation.

1.1.1 Mac OS X 10.0

Mac OS X 10.0 was the first commercial release of Mac OS X. That release, however, wasn't
particularly usable.

Convincing a large body of developers to embrace a new platform is not easy. You can release
developer seeds, betas, and prereleases all you want, but at the end of the day, major operating
system vendors have to release something that can be called a 1.0 product (or, in the case of Mac OS
X, a 10.0 product). Releasing this product lets users know that you're transitioning from testing to
"prime time."

The commercial release of Mac OS X 10.0 was just that: it was Apple's way of telling developers that
the system was ready to go and that they should get on board. At this point, Apple began shipping
Mac OS X 10.0 with their hardware, but didn't make it the default operating system. The release was
lacking in quality, features, and supported applications, and everyone knew that the product needed
more work.

1.1.2 Mac OS X 10.1

Mac OS X 10.1 marks what most people consider the first usable version of Mac OS X. Developers
fixed a lot of important bugs, addressed performance issues, and added missing features.

Even more significant, however, was an Apple announcement at Macworld in January 2002. During
one of the conference's keynote addresses, Steve Jobs announced that Apple would begin shipping
Mac OS X as the default operating system. Users could still switch back to Mac OS 9 if they wanted,
but when someone took that shiny new iMac out of the box, Mac OS X's Aqua greeted them. Apple's
commitment to Mac OS X as their default platform was a clear message—developers and users both
were assured of Apple's commitment to Mac OS X as an operating system for mainstream use.

1.1.3 Mac OS X 10.1.x

A few patches quickly followed the 10.1 release. Mac OS X 10.1.1 became Mac OS X 10.1.4. More
importantly, a large number of critical applications became available, such as Microsoft Office and
Adobe Photoshop. For developers, a large number of open source projects started to make regular
binary builds available for the Mac OS X platform. Are you interested in MySQL, Apache, PHP, or
Tomcat? All are now available, prebuilt specifically for Mac OS X. Some open source projects (such as
PostgreSQL) that weren't even available for Windows have become available for Mac OS X.

Then Macromedia announced that their MX line (products like Flash, Dreamweaver, and Fireworks)
were to be made Mac OS X-native via Carbon. Suddenly, the best platform for Unix and web
application development started to resemble Mac OS X. Furthermore, several Java applications
became available for Mac OS X. Many were server applications or developer products, but their
appearance started to convince users that Mac OS X was becoming a friendly platform for developers.

1.1.4 Mac OS X 10.2 (Jaguar)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This release, despite being the first major release to not offer upgrade pricing, was in many ways a
major infrastructural improvement. Much of the technology included in this release, such as
Rendezvous (Mac OS X's autoconfigurable networking), had a distinctly infrastructural feel. Most
significantly, this release included several low-level improvements required for Apple's JDK 1.4
implementation. Although Jaguar shipped with a JDK 1.3 implementation, JDK 1.4 can be installed on
Jaguar.

Chapter 2 details the installation of both 1.3 and 1.4 JDK runtimes.

1.1.5 Beyond Mac OS X 10.2

Future releases of Mac OS X will ship with JDK 1.4 support (or whatever the latest JDK version is at
release time). As of this writing, the contents of the J2SE 1.5 release are already under discussion for
inclusion in Panther, the code name for what will most likely be Mac OS X 10.3.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.2 Why Now?

Apple has shipped Macintosh computers since 1984, but my tale of the Mac OS begins with Mac OS X.
Describing all of the prior releases and their features is beyond the scope of this book, but all "Classic
Mac" operating systems share a common set of weaknesses, including:

A lack of memory protection

Explicit shared memory for important structures

An overburdened, fragile, and inadequate system-extending mechanism

A lack of true multiprocessing

An amazing legacy of cruft, including the Motorola 680x0 emulator and various other obsolete
or cancelled technologies

The list could go on. Every Mac OS X installation includes a complete working copy of this Classic Mac
OS, and when you launch an old-style Classic Mac OS application, you actually launch a complete
working copy of this environment as a process for Mac OS X.

However, with the release of Mac OS X, Java development is finally a reality, rather than a marketing
ploy or an Apple employee's pipe dream. So let's dive right into Java development on the Mac.
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 2. Apple's Java Platform

With a basic understanding of the Mac OS X platform, you're ready to get down to some bits and
bytes . . . well, almost. First, you need to make sure you've got your Java compiler running properly,
your environment variables set, and all program directories in the right place. We'll deal with all of
that in this chapter.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

2.1 Apple JVM Basics

First, make sure you have a Java Virtual Machine (JVM). Open up the Terminal application, type java -
version, and you'll see the following message (or something similar):

java version "1.3.1"
Java(TM) 2 Runtime Environment,
 Standard Edition (build 1.3.1-root-020219-20:07)
Java HotSpot(TM) Client VM (build 1.3.1, mixed mode)

This message indicates that your JVM is set up and working, and that may seem like all you need to
know. However, there is much more to a JVM than the ability to fire up a Java process. For starters,
Apple preinstalls the JVM in a specific location, automatically including a number of additional classes.
These classes number in the hundreds and add Apple-specific functionality to the core Java
distributions.

In this section we'll look at Apple's JDK 1.3.1 installation, which is included
with all Mac OS X 10.1 systems and beyond. The JDK 1.4.1 release is
available for download via Apple's Software Update feature or
http://www.apple.com/macosx/downloads. It will install only on Mac OS X
Version 10.2.3 or later.

The Swing settings are also unique to the Apple JVM: the default look and feel corresponds to the
Aqua user interface, which has quite an effect on your graphical applications. Apple also added
hardware acceleration (for JDK 1.3) and implemented a shared memory model for reducing the
overhead of running multiple Java applications. Although you've got the same basic JVM as on a Unix,
Linux, or Windows platform, you should pay attention to some additions and differences.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

2.2 Apple's JVM Directory Layout

Even if you're an experienced Java developer, it can be a bit difficult to understand exactly where and
how the Apple JVM is installed and configured. Apple has carefully hidden some of its files and
libraries to keep users from accidentally wiping out their data and to manage the complexity of
upgrading the Mac OS X operating system.

Although its philosophy is unlike that of Windows, Mac OS X tries to maintain
a high level of integration between the OS and the programs that run on it.
Java is no exception, and the Apple JVM was created with integration and
ease of upgrade in mind.

Begin your system tour by opening the Terminal application and going to your hard drive's root
directory (or folder). The quickest way to get there is to open a new Finder window and click
Computer in the toolbar, and then double-click on the Hard Drive icon. This is the Mac OS X "root"
location, which is what you would see from the terminal by typing cd / and then ls:

[Wills-Laptop:/] wiverson% ls
AppleShare PDS SimpleClass.java etc
Applications System mach
Desktop DB TheVolumeSettingsFolder mach.sym
Desktop DF Trash mach_kernel
Desktop Folder Users private
Developer Volumes sbin
IE Install Log File automount tmp
Library bin usr
Network cores var
Office X SR1 Updater Log dev
[Wills-Laptop:/] wiverson%

2.2.1 Libraries

You'll find a folder called Library immediately inside the root directory. This folder contains several
default directories. When you install Mac OS X, these directories are created automatically so that the
applications will have appropriate default directories available to them.

For Unix users, Mac OS X's default directory structure is similar to having
/usr/local and /usr/local/bin created by default rather than forcing make or a
configure script to handle the task.

Each user will also have a Library directory in their home directory. Items in the root Library directory
are shared between users, whereas items in the users' Library directories are specific to each user.

Immediately inside the root Library directory, you will find a Java directory. Inside this directory,
you'll find two folders: a Home directory (which is really an alias to another location) and an
Extensions folder (which is a real directory).

2.2.1.1 Extensions

The Extensions directory is empty, and is one of several locations where you can drop JAR files that
you want to make universally accessible. There is only one systemwide JVM, however; you may not
want to make a library (for example, an XML parser) broadly accessible, as doing so might cause
versioning conflicts with application expectations.

2.2.1.2 The core JVM

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.2.1.2 The core JVM

Inside the Home directory, you'll see a familiar layout if you've worked with other Java distributions.
The bin directory contains all standard Java tools, such as javac and jar. You'll need to drop out to the
Terminal to use these tools effectively. Double-clicking on these tools from the Finder won't give you
anything but a strange error message.

If you're paying attention to the file descriptions, you may notice that the bin
directory is a sham: all items in the directory actually point to files in a
different location. To see these links, use the command ls -l from the
Terminal.

2.2.2 The JavaVM.framework Directory

Navigate back to the root directory, and this time go to the /System/Library/Frameworks directory.
Inside, you'll see many folders. For now, navigate inside the JavaVM.framework folder.

This directory might be listed just as JavaVM if you've turned off file
extensions.

Now you'll see what appears to be yet another directory mostly filled with symbolic links (again, use ls
-l to see the links). You may start to wonder when this house of mirrors will actually end, but all of
this redirection is important to ensure the proper flexibility when the system JVM is updated. By
setting up this structure, Mac OS X applications can be assigned preset locations for finding things,
which simplifies operating system updates and upgrades.

Inside the /System/Library/Frameworks/JavaVM.framework/Versions directory, you'll find a link to the
CurrentJDK directory, as well as a real folder (one that isn't a symbolic link) labeled 1.3.1 (as well as
1.2 and 1.3). By the time you read this book, you may have a different operating system update
installed and see a different version of Java, such as 1.4 or even 1.5. The CurrentJDK directory will
point to the currently used JVM, generally the latest version folder.

2.2.2.1 The "real" files

Open the /System/Library/Frameworks/JavaVM.framework/Versions/CurrentJDK directory. Now things
will get more interesting. Instead of a JRE directory or a lib directory with rt.jar, you will find:

A Classes directory containing a few JAR files

A Libraries directory containing some Mac OS X native libraries

A Commands directory containing the actual files for the items traditionally inside the Java bin
directory (e.g., appletviewer, jar, java, javac, or javadoc)

2.2.2.2 Missing items

You'll notice that the traditional lib directory is missing, as are the property files you would typically
expect to find.

To find the "missing" lib directory and property files, look in the JDK Home directory
(/System/Library/Frameworks/JavaVM.framework/Versions/1.3.1/Home). You'll see a lib subdirectory,
with all the files you would expect. Also notice that the items in the bin subdirectory point back to the
/System/Library/Frameworks/JavaVM.framework/Versions/1.3.1/Commands directory. While you
don't need to distinguish between real files and symbolic links in your programming, understanding
the Mac OS X directory structure aids in getting the most out of Apple's JDK.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.2.3 The Big Picture

You may want to explore JAR files and directories in different locations to better understand how the
pieces fit together. Figure 2-1 shows this entire layout in pictorial form.

Figure 2-1. Apple's JVM layout

Another good way to understand the JVM directory layout is to use the
JavaBrowser utility included in the Apple Developer Tools, as described in
Chapter 3.

Apple's JVM layout may seem confusing, but it simplifies the use of the JDK. For example, by
including the core java JVM executable on the path, you don't have to install it or worry about which
version you have. You can just rely on the presence of certain paths (such as /Library/Java/Home/).
Conversely, if you want multiple JVMs on your machine (for example, if you use a beta version of a
future JDK), the default system JVM will be available in a pristine state. You can also point the
CurrentJDK directory to another version and easily change the system's JDK.

For this very reason, I strongly advise you not to throw lots of directories into
your system JVM classpath. Instead, consider application-specific scripts that
set the classpath.

2.2.4 Handling Classpath Issues

For Java libraries that you wish to place on the classpath for all users, Apple recommends the
/Library/Java/Extensions/ directory. If you wish to place the library only on a specific user's classpath,
put the file in the ~/Library/Java/Extensions/ directory. This directory may not exist, so you or your
software's installation program may need to create the directory before installing files within it.

Per the Apple documentation, the Java library search order is as follows:

1. User's home directory (~/Library/Java/Extensions/)

2. Local domain (/Library/Java/Extensions/)

3. Network domain (/Network/Library/Java/Extensions/)

4. System domain (/System/Library/Java/Extensions/)

5. $JAVA_HOME/lib/ext
(/System/Library/Frameworks/JavaVM.framework/Versions/CurrentJDK/Home/lib/ext/)

You'll note that the user's home directory takes precedence over the other locations; this helps a
developer working on a system to easily share a machine with other users and avoid classpath
difficulties.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

2.3 Additional APIs and Services

The Mac OS X Java installation includes several additional APIs and services besides the default JDK
installations available from Sun for Unix and Windows. In theory, you could build applications for the
Mac OS X Java platform that won't run on other platforms. Purists may argue that Apple's JVM is
therefore no different from the infamous Microsoft JVM and its incompatibilities. It is very different,
however.

Apple hasn't removed anything from their JVM implementation. All the expected services, including
the politically contentious RMI, are available on the Mac OS X Java platform. If you build your
application against normal J2SE APIs, you will have no problem porting your applications to other
platforms. For more information on cross-platform compatibility, check out Chapter 9.

However, Apple provides many features in addition to the core Java APIs. Spelling, integration with
QuickTime, and the Apple look and feel, for example, are specific to the Macintosh, and you will have
trouble porting applications that use them to another platform unless you're willing to change some of
your application's code. However, this book will help you recognize what is Mac-specific, and you'll
soon avoid these APIs or adjust them for use on other platforms when cross-platform compatibility is
a concern.

Later chapters cover many additional services, such as the Java Speech and Spelling Frameworks and
application bundling. For now, though, here's a summary of what the Mac OS X JVM adds to the
standard Java bundle:

Support for Aqua, the translucent, swooshing, pulsing user interface Apple introduced with Mac
OS X (as well as Metal, the default Java look and feel)

External BSD tool support (significant if you need man, ifconfig, or other unusual BSD tools)

Java interfaces to QuickTime, for multimedia support

Java interfaces to OpenGL, for sophisticated 3D graphics

Java APIs for the Foundation and Application Kit frameworks in Cocoa

Some J2EE packages, including RMI over IIOP, JNDI, JDBC, and JSSE

Java threads implemented as native Mach threads, which provides free symmetric
multiprocessing

Automatic sharing of Java class data and HotSpot-compiled code across instances, which
dramatically reduces overhead for running multiple Java applications (reducing memory and
increasing performance)

Automatic double-buffering of all windows

Hardware acceleration availability for Swing applications

MRJAppBuilder support, allowing you to create a seamless integration with the Mac OS X Finder
GUI shell

Integrated support for XML-RPC and SOAP

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Integrated support for XML-RPC and SOAP

If you're already a Java developer, most of your standard cross-platform development efforts will
remain unchanged. If you're building Swing applications, you'll continue to develop them the way you
always have. If you're building server-based applications (for example, with Apache Tomcat), you'll
use the same commands and the same packages. The most significant changes will apply to
configuring and installing, as well as deciding which Apple-specific features will be easy to add and
will provide real value for your users and customers. You should be concerned about cross-platform
techniques only when using Mac-specific features, like those in the list above.

However, many of these technologies are already cross-platform, despite their nonstandard
functionality. For example, you might add QuickTime support for Java first on Mac OS X, and then
decide to make that support available for your Windows users. The rule, then, is not to avoid these
extensions like the plague, but to be aware of when you use them. Learning more about these
features will help you decide when to use them.

2.3.1 Hardware Acceleration

One interesting feature of the Mac OS X Java implementation is its support for hardware acceleration.
When you work with a release prior to JDK 1.4, you'll want to manually enable hardware acceleration.
On more current versions of the Mac OS X JDK, though, this support is turned on by default.

2.3.2 Multiple Mouse Buttons

The hardware Apple ships includes only mice with a single button. This limitation is unfortunate, as
the second mouse button has become an important GUI standard on most platforms.

On non-Mac platforms, icons often serve as "nouns," and right-clicking typically activates a pop-up
menu that provides a list of "verbs" or actions that can be performed on that noun. In many ways,
this approach is more intuitive than clicking an object to select it and then traveling to a distant menu
bar to actually perform the action.

In any event, you may want to buy an inexpensive two-button USB mouse to use with your Mac OS X
machine, especially if you plan to use the popular Java-based IDEs. Although two-button mice are not
Mac standards, Mac OS X ships with support for two-button mice, as well as mice with scroll wheels.

If you are unwilling or unable to use a two-button mouse (for example, on
your iBook or PowerBook when traveling), you can simulate the second
mouse button by holding down the Control button while you click.

An application could be written for another platform that actually maps a Control-click with the single
button to one action and clicking with the second button to a different action. This situation would be
unusual, but you should be able to check the configuration options for that application to set different
modifiers (and write a note to the application's developer asking for a more manageable control
mechanism).

2.3.3 Java on Classic (MRJ)

Java isn't new to the Mac OS platform; the previous version, now dubbed Classic, included a Java
Virtual Machine. To distinguish from other JVMs, the Classic Mac OS implementation was called the
Mac OS Runtime for Java (MRJ). That JVM never progressed beyond support for JDK 1.1, even though
the MRJ version number eventually crept up to 2.2.5. Because every Mac OS X machine includes
Classic, each Mac OS X machine technically includes two JVMs: the JDK 1.3.1 (or later) version
running native on Mac OS X and the JDK 1.1.8 JVM running in the Mac OS 9 Classic environment.

If you are new to the Mac OS X environment, Mac OS Classic might seem bizarre. Open the Apple
Applet Runner, located in /Applications (Mac OS 9)/Apple Extras/Mac OS Runtime for Java/Apple
Applet Runner.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you have Mac OS 9 installed on another partition or hard drive, you will
need to change to that volume or click on the appropriate hard drive icon in
the Finder.

If Classic isn't already running, you will see a dialog noting that the Classic environment is starting.
Click on the "Show Mac OS 9 desktop window" triangle, and you will see the old Mac OS 9 boot screen
with a series of extensions marching across the bottom, as shown in Figure 2-2. Congratulations!
You've just booted an entire alternate operating system as a process in Mac OS X.

Figure 2-2. Launching Classic

This environment is known as True Blue (TruBlueEnvironment in the process viewer). Eventually, the
Classic Mac OS will finish booting and the Applet Viewer will appear in the Dock. Its appearance is the
first sign of a set of interesting hacks that Apple has made to make the visual appearance of the two
environments coexist more peacefully. Clicking on the Applet Viewer Dock icon, however, reveals a
radically different menu bar (visually and in terms of the layout) from the standard Mac OS X menus.

From the Applet Viewer, click on the Applets menu, and select "Lightweight Gauge example1".

As shown in Figure 2-3, you'll see a series of shifting bars over the face of a colorful coworker (er,
primate). When you click on a menu item in the Applet Runner, the bars stop moving; simply clicking
a menu item blocks the environment.

Figure 2-3. Applet Viewer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Mac OS X equivalent to the Apple Applet Runner is called Applet Launcher, and you can find it in
/Applications/Utilities/Java. To run the Lightweight Gauge demo, as shown in Figure 2-4, you'll need
to open the following URL (you can navigate to it using the "Open..." button):

file:///Applications (Mac OS 9)/Apple Extras/Mac OS Runtime For Java/Apple
Applet Runner/Applets/Lightweight Gauge/example1.html

Figure 2-4. Mac OS X Applet Viewer

In comparison to the Classic MRJ, clicking on the menu bar in a native Mac OS X applet will show off
both Mac OS X's slightly translucent windows and its multithreaded nature. The bars continue to
move, and no blocking occurs.

You can also find an MRJ SDK at http://developer.apple.com/java/text/download.html. It includes a
variety of tools, including a wrapper mechanism for launching command-line-based tools. MRJ has
some interesting features, including a JAR caching mechanism for improving network performance of
applets, which may be a required environment for legacy system support.

Ultimately, there is little reason to invest a lot of time and energy in the Mac OS Classic environment.
It's a very difficult environment, since it runs an obsolete version of the JDK. Apple has clearly stated
that the future direction of the Macintosh platform is Mac OS X, and unless you have significant
development and testing resources, you probably shouldn't spend time or money on what even Apple
considers a dead platform.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

2.4 Going Forward

Now you've explored the basic foundations of the Mac OS X Java platform. The next few chapters
cover different aspects of Java development, from IDEs and tools, rich desktop application GUIs, and
application packaging to Apple-specific technologies such as QuickTime and the Speech Framework.

If you are interested in desktop (also known as client-side) development, start with Chapter 4 and
Chapter 5, which cover GUI applications and Apple extensions. From there, you may want to move on
to standalone applications in Chapter 7. Then you might benefit from exploring other Apple
technologies, such as Speech, QuickTime, and Spelling.

There is also a lot to be said about Mac OS X's enterprise support for Java. If you are primarily
interested in web-delivered client applications, look at Chapter 8. If you want to learn more about
web application development, concentrate on Chapter 12 through Chapter 15.

No matter what sort of application you're building, if maintaining cross-platform compatibility is
important, be sure to review the material in Chapter 6.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 3. Java Tools

One of the nicest things about Mac OS X is its very broad range of tools. The Classic Mac OS platform
had many software development tools, of which the most popular and flexible was Metrowerks
CodeWarrior. The release of Mac OS X, however, has broadened the range of available tools
tremendously, and a large set of Java- and Unix-based tools is now available. Mac OS X also ships
with Project Builder, an integrated desktop environment for programming in several languages,
including Java.

It's worth taking the time to review the various tools. If you're an old emacs or vi hand, you'll be able
to access those tools (just fire up the Terminal). Even if you're an emacs or vi addict, you still might
want to browse through the tools just to get an idea of what folks are talking about.
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

3.1 Terminal

The revolutionary thing about Mac OS X for a developer is a single, boring window with a blinking
cursor. Double-click on the main icon for your computer on the desktop, navigate into the Applications
directory, and then into Utilities. Inside this folder, you'll see a Terminal icon. Double-click on this icon
to open the application.

You'll then see a "Welcome to Darwin!" message and a localhost prompt. The shell is the Unix
standard tcsh, which stands for "Tenex csh." csh was the default shell for BSD Unix through the 1980s
(and Mac OS X is based on BSD Unix). tcsh is an upward-compatible enhancement of csh, which
includes "command completion" borrowed from an early 1970s experimental operating system called
Tenex.

If you're an emacs user, turn on emulation of the Meta (alt) key in the
"Terminal Preferences... Emulation" screen (or by selecting "Shell

 Inspector... Emulation" for a per-window modification).

3.1.1 Basic Terminal Commands

Learning to use the Terminal is far beyond the scope of this text, but a few basic commands are
required for basic system navigation. These common commands are listed here:

cd

Change directory.

ls

List the contents of the current working directory.

pwd

Print the current working directory.

man

Enter the manual (documentation) system.

more

Format output to display a page at a time.

When you first launch the Terminal, you are presented with a blinking cursor. Type pwd and press
return. You will have started in your specific user's home directory (for example, my username is
wiverson, so my Terminal starts in /Users/wiverson).

Now type ls. This will print a directory listing to your screen. Then type cd Desktop and hit return.
Type pwd, and you will see that you have changed your current working directory to
/Users/[username]/Desktop. Type ls and you will see files on your Desktop. Type cd ~ (on many
English QWERTY keyboards, this is the shifted version of the key to the left of the number "1"). This
command will return you to the home directory.

3.1.2 A Simple Java Class

Now enter pico HelloWorld.java. This command launches the pico application, a simple terminal-based
text editor. The editor is now ready to work on a file called HelloWorld.java. Enter the text shown in
Example 3-1.

Example 3-1. A simple HelloWorld class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 3-1. A simple HelloWorld class

class HelloWorld
{
 public static void main(String[] args)
 {
 System.out.println("Hello World!");
 }
}

Press Control-O to save the file (or "WriteOut", as the command is labeled). Then use Control-X to
quit pico.

Type javac *.java at the command line and hit return. It may take a moment, but assuming there are
no errors, the HelloWorld.java file will compile and a HelloWorld.class file will appear (use ls to
confirm the new file in your working directory). If you have problems, type pico HelloWorld.java again
to open the file and make changes.

If you've installed JDK 1.4.1, the system will have updated the command-line
tools to point to the JDK 1.4.1 versions of the tools such as javac. If you want
to use the JDK 1.3.1 tools after you've installed JDK 1.4.1, you'll need to
refer to them using their full path in
/System/Library/Frameworks/JavaVM.framework/Versions/1.3.1/Commands.

Once the file compiles, type java HelloWorld from the command line (don't add the .class extension).
It should now print out "Hello World!" You can take this HelloWorld.class file, and any computer that
has a Java Virtual Machine should be able to run it.

This section has reviewed a very basic set of operations. If you need more information, consult one of
several excellent texts on Java and Unix:

Learning Unix for Mac OS X, by Dave Taylor and Jerry Peek (O'Reilly)

Mac OS X for Unix Geeks, by Brian Jepson and Ernest E. Rothman (O'Reilly)

3.1.3 Environment Variables

You may want to define some common environment variables for use in later sessions. Assuming
you're sticking to the standard tsch shell, you can create a file called .tcshrc in your home directory.
The contents of this file will be executed when you create a new tsch shell (for example, by opening a
new Terminal window). Remember that files beginning with a period (.) will not appear in Finder
windows or in ls views by default. Use the ls -a command to see all files, including those with periods.

One common convention is to set the JAVA_HOME environment variable, which on a Mac OS X
machine is particularly relevant, considering that there is a single standard JVM directory. To set the
JAVA_HOME environment variable, put the following contents in the .tcshrc file:

setenv JAVA_HOME /Library/Java/Home

If you use a different shell, then the .tcshrc file won't execute. You can check
your shell's documentation or use .login, which almost all shells execute on
startup.

A common bugaboo is the CLASSPATH environment variable, a source of much Java heartache.
Whenever possible, I recommend putting CLASSPATH environment variable settings into shell scripts
specific to each application. Doing so will keep your single JDK installation healthier and more
pristine. Debugging CLASSPATH problems is one of the most thankless tasks around, and is best
avoided whenever possible.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

3.2 Code Editors

More than a few code editors are available for Mac OS X, and no work on Java would be complete
without at least mentioning these integrated development environments (IDEs). I've broken them up
into several categories: those that are open source, those that are free, and those that are sold
commercially. I'm a big fan of open source tools, but all the tools mentioned here get the job done, so
pick your own poison.

3.2.1 Open Source Tools

Many available open source tools have been ported to or run under Mac OS X. These tools are all free
(as are the tools in the next section), but also make their source code available.

3.2.1.1 NetBeans

NetBeans™ is a full-featured, commercial-grade IDE that was acquired and open-sourced by Sun
Microsystems. Written in Java, it's easily configured to run on Mac OS X. You can download it for free
from http://www.netbeans.com/.

To install and configure NetBeans, pull down a current version of the software. I'm currently using
NetBeans 3.4.1. Go to the NetBeans web site, click on the download link, and agree to the NetBeans
license. You can then download a release for Mac OS X in disk image format. On my system, the
downloaded file was called NetBeansIDE-release341-MacOSX.dmg. Mac OS X will mount it, and you
can then launch NetBeans from the disk image.

Before starting up NetBeans, though, you should copy the contents of the disk image into a folder on
your hard drive, such as /Applications/netbeans. I created this folder in the Finder and then copied
the contents of the NetBeans disk image into the new folder. You can then drag the disk image to the
trash to "eject" it.

NetBeans comes in a Mac OS X package called NetBeans Launcher. However, since we're all geeks
here, let's look more closely inside this package. Control-click the launcher icon and select Show
Package Contents. Navigate inside the revealed Contents directory. You'll see several files associated
with Mac OS X packages (many of which are discussed in detail in Chapter 7), as well as MacOS and
Resources folders. Open Resources, and then netbeans, and you'll find yourself in the actual NetBeans
distribution. Figure 3-1 shows this directory structure.

Figure 3-1. NetBeans directory structure

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Inside the distribution's bin directory, you will find several scripts and other files. Modify the contents
for the ide.cfg file as follows:

-J-Xverify:none -J-Xdock:name=NetBeans -J-Xms64m -J-Xmx250m -J-Dcom.apple.
hwaccellist=ATIRage128_8388608 -jdkhome /Library/Java/Home

In this and other examples in this book, a single line has been broken into
multiple lines due to the constraints of the printed page. Be sure to type
commands like this all on a single line in your configuration file.

The -J option specifies that the following option should be passed to the underlying JVM. Note that
I've extended the maximum amount of memory available by default to 250 MB by using the -Xmx
switch. You can play around with similar options, depending on your system's configuration.

If you're working on a JDK 1.3, you'll want to change the -J-
Dcom.apple.hwaccellist=ATIRage128_8388608 portion to match your video
card and enable video acceleration (see Section 2.3.1). You can put in
multiple strings separated by commas if you want.

Later versions of the Mac OS X JVM enable hardware acceleration by default.

You can actually run NetBeans with either the Apple look and feel (also known as Aqua) or with the
Swing-standard Metal look and feel. There are advantages to both approaches. The Metal look and
feel includes a user interface that is identical to the one you would see on other platforms, and also
seems to be more stable than Aqua. The Aqua interface, though, is much more familiar to the Mac OS
X user, and some native widgets seem to work better under Aqua than Metal (for example, the
scrollbar). Note that NetBeans relies heavily on the second mouse button, which can be emulated on
Mac OS X using Control-click on a single mouse button system.

To actually launch the IDE, you should specify a look and feel and a user directory. The default look
and feel is Metal. As of this writing, user directories are incompatible between Metal and Aqua. I
created two files and two directories to test the various options; you can do the same. Figure 3-2
shows NetBeans running with the Metal look and feel.

Figure 3-2. NetBeans running with the Metal look and feel

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 3-2. NetBeans running with the Metal look and feel

To launch NetBeans using the Metal look and feel, I first created an empty directory,
/netbeans_userdir, on my system. Then I created a launch_metal.sh script with the contents shown in
Example 3-2.

Example 3-2. Launching NetBeans with the Metal look and feel

./runide.sh -userdir /netbeans_userdir

To launch the Aqua look and feel, I created a launch_aqua.sh script with the options shown in
Example 3-3. As with the Metal setup, you should create a directory for these settings. I used
/netbeans_aqua.

Example 3-3. Launching NetBeans with the Aqua look and feel

./runide.sh -userdir /netbeans_aqua
 -ui com.apple.mrj.swing.MacLookAndFeel -fontsize 11

For Aqua fans, Figure 3-3 shows NetBeans running with that look and feel.

Figure 3-3. NetBeans running with the Aqua look and feel

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In this and other code examples, I inserted line breaks to increase the code's
readability. However, you should not insert a line break in your own script,
but should type the entire line continuously.

Try both versions and see which one you prefer. Note that the form designer will draw user interface
widgets in the selected user interface as well.

To build applications that take advantage of Apple-specific options and to activate the NetBeans type-
ahead feature in the text editor for the Apple extensions, add the following JAR file to the
"Filesystems" tab:

/System/Library/Frameworks/JavaVM.framework/Versions/CurrentJDK/Classes/ui.jar

You can then right-click on the "JAR" entry and choose "Tools Update Parser Database." This will
bring up a dialog box, allowing you to name the parser database (for example, apple_prefix). The
parser database may take a few moments to update, but you'll need to update this database only
once. Then NetBeans will know about Apple's Java extensions. Figure 3-4 illustrates this process.

Figure 3-4. Adding Mac OS-specific type-ahead

NetBeans is probably one of my favorite IDEs. It's multiplatform, free, and the source is available. It's
got a great API for writing extension modules. It supports CVS, and it's got a free, built-in auto-
update mechanism. That said, it's also a bit of a Mac OS X newcomer, and rough edges pop up
occasionally; still, a number of active NetBeans developers now use Mac OS X as their primary
development environment. For more information on NetBeans, check out NetBeans: The Definitive
Guide, by Boudreau, Glick, Greene, Spurlin, and Woehr (O'Reilly).

3.2.2 Free Tools

Somewhere between open source and commercial tools lies freeware commercial software. You can't
download the source code, but the price certainly can't be beat.

3.2.2.1 JBuilder Personal

Borland's JBuilder is another Java IDE that migrated over to Mac OS X. Borland officially supports Mac
OS X as a release platform, meaning that if you purchase JBuilder, you can obtain support using it on
a Mac. It has a wide, interesting feature set, and the Personal edition is free. You could purchase
versions with additional features and commercial support, but you could also just play around with the
Personal edition and get a feel for the editor and its overall responsiveness.

Figure 3-5 shows JBuilder in action. For more information on Borland's JBuilder or to download a copy,
visit http://www.jbuilder.com/.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 3-5. Borland JBuilder Personal edition

3.2.2.2 Project Builder

Project Builder is the latest incarnation of a set of GUI tools originally developed for the NeXT
operating systems, now available for free to Mac OS X developers. It has interesting features and
some curious omissions, but it also happens to be free, which gives it a certain appeal. Even if you
don't use Project Builder for day-to-day development, you may want to use the default code
generated by the assistants to give you a head start on application building.

If you've installed the Developer Tools CD,[1] you'll find Project Builder in the /Developer/Applications
directory. Start up Project Builder and select "File New Project"; the resulting dialog box is shown
in Figure 3-6.

[1] The Developer Tools CD is included with any purchase of Mac OS X, and has a large
suite of tools that aren't installed with the default operating system. This suite
includes compilers, code editors, and other useful tools. If you don't have this CD, you
may have to download the tools from http://developer.apple.com/macosx. Apple
tends to update these tools fairly frequently, so you should check this site regularly.

Figure 3-6. Creating a new project with Project Builder

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When given a choice, choose "Pure Java Java Swing Application." Then save the generated
project in a new directory. You may wish to get in the habit of saving files without spaces or unusual
characters, as it tends to prevent problems later. In this example, I name my new project
TestSwingApp.

Project Builder indexes and updates the parser database at project creation, and occasionally when
you write code. You can more or less ignore this update. Although it takes time, it runs in the
background, so you can still open Java source files while it's working. Once you've gotten past these
steps, you'll see an editor window similar to that shown in Figure 3-7.

Figure 3-7. The Project Builder user interface

Be aware of the extent to which Project Builder focuses on Mac OS X development. For example, while
browsing the source of the generated "Pure Java Swing Application", you'll see this line in your code:

import com.apple.mrj.*;

Several other Apple-specific classes are imported by default. Thus, using Project Builder's templates is
a great way to get a feel for Apple extensions to the Java platform, but unless you pay attention, it
can be a rude shock to see com.apple.* ClassNotFoundExceptions when you try to run your "Pure Java"
application on another platform.

For now, select "Build Build and Run..." to launch the application. You'll notice an "About
TestSwingApp..." menu item under the TestSwingApp application menu, which opens a simple "About"
dialog box when selected (as shown in Figure 3-8). This menu item and the related handler are Apple-
specific extensions. Chapter 5 will look at these extensions more closely.

Figure 3-8. A simple "About" dialog box

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 3-8. A simple "About" dialog box

Many other build options are also available. Go to the Project menu, select "Edit Active Target," and
click on the "Application Settings" tab. Then click on the "Expert" button and change the "Java
Properties com.apple.macos.useScreenMenuBar" value from true to false. Then click on the Java
source file to return to the main display, and select "Build Build and Run..." again. This time, the
menu bar will appear in the window instead of in the Mac OS X menu bar, as shown in Figure 3-9.

Figure 3-9. Per-window menu bar

Project Builder is a sophisticated tool, but this text tries to be as IDE-neutral as possible, focusing on
the underlying code rather than development tools. That said, you should explore Project Builder
further, especially if you expect to develop several Mac OS X-specific applications, or if you use
multiple programming languages.

3.2.2.3 JavaBrowser

In addition to Project Builder, Apple includes a tool called JavaBrowser (found in
/Developer/Applications/) for inspecting Java libraries, which are generally housed in JAR, ZIP, and
class files. While this tool has only a few of these archives installed initially, you can easily add your
own libraries to browse with this tool. Use the "File Add Classes..." command to install any
additional code you'd like to be able to browse. This installation lets you build your own library of Java
classes to search and inspect, forming a nice Java API repository. Figure 3-10 shows an example of
using JavaBrowser when navigating through packages, classes, and even methods.

Figure 3-10. JavaBrowser navigation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As shown in Figure 3-11, JavaBrowser can search for specific details very quickly, and results can be
double-clicked to find additional information. This goes well beyond the class names, and even into
the types of parameters and return values from methods.

Figure 3-11. JavaBrowser Find capabilities

I strongly recommend you use JavaBrowser, and always add the latest versions of your source files
and classes to it; you'll have your own library of code that you've written, which can really help when
you've forgotten the signature of that odd method you wrote a few months ago.

3.2.3 Commercial Tools

Last but not least, plenty of not-free, not-open-source tools are out there. Don't let my description
prejudice you, though; these tools can be very useful. First, paying for a tool generally means that
you get some form of professional support. This support can be valuable at 2:00 A.M., when you can't
get something seemingly trivial to work. Having someone a phone call away can save the day.

Descriptions and screenshots in this section are intentionally sparse. I don't
want to give you the impression that you must have these tools, or dissuade
you twilight hackers from working through this book with nothing but Project
Builder or a text editor.

3.2.3.1 Metrowerks CodeWarrior

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Metrowerks CodeWarrior is excellent native IDE for Mac OS X, and I strongly recommend it for Mac
OS X development (especially if you will target multiple languages). Metrowerks earned tremendous
respect back when Apple transitioned to the PowerPC chip for providing a compiler and IDE in the
early through mid-1990s, and they have done an excellent job of tracking Apple technologies ever
since.

For more information on Metrowerks CodeWarrior, visit http://www.metrowerks.com/.

3.2.3.2 Macromedia Dreamweaver MX

Macromedia Dreamweaver is principally a tool for building HTML-based user interfaces, but it includes
support for building JSP-based web applications as well. It understands JavaBeans, JSP tags, JDBC,
and web services, and it can build surprisingly sophisticated applications quickly. It also features
integration with other tools such as Fireworks and Flash.

Chapter 12 describes how to install popular databases, and Chapter 13 connects to these databases
by using JavaServer Pages (JSP). Macromedia Dreamweaver MX lets you do this visually by defining a
connection and a query, as shown in Figure 3-12.

Figure 3-12. Setting up a Dreamweaver database connection

This connection, once defined, can create complex, interactive web pages visually, as shown in Figure
3-13.

Figure 3-13. Dreamweaver interface construction

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you are using a web server locally, you can configure Dreamweaver MX to preview the application
inside of the tool, as shown in Figure 3-14.

Figure 3-14. Dreamweaver preview

Dreamweaver MX is a highly productive tool used to create simple web applications very quickly. If
most of your web application development consists of simple web user interface construction with lots
of queries, you should probably evaluate Dreamweaver MX. For more information on the MX product
line, visit http://www.macromedia.com/.
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

3.3 Jakarta Ant

As you work with Java, you'll often encounter references to Ant, an open source tool for managing
build processes and other tasks. Ant is a great companion tool to IDEs and text editors, as it can
manage complex build tasks, compilation, and even those nasty classpath issues discussed earlier.
This section will describe Ant in some detail.

Ant is part of Apache's Jakarta project. Originally created to provide a cross-platform, portable
replacement for the Unix make command, it has become a powerful development, deployment, and
installation tool. To use Ant, run scripts from the command line, passing in an XML build file. Inside
the build file, you can define variables and tasks to be performed at build time.

3.3.1 Installation and Setup

You can download Ant from http://ant.apache.org/. The latest version as of this writing is 1.5.1, and
you can select a ZIP file or a gzipped version. I downloaded jakarta-ant-1.5.1-bin.tar.gz. Expand the
file to jakarta-ant-1.5.1 and copy the resultant directory somewhere easily accessible (I used ~/dev
for a user-specific installation). Then put the bin subdirectory in your path:

[Wills-Laptop:~] wiverson% setenv PATH ~/dev/jakarta-ant-1.5.1/bin:$PATH

To run Ant, use the ant script (ant.bat on Windows, and just plain ant on Unix-based systems such as
Mac OS X):

[Wills-Laptop:~] wiverson% ant
Buildfile: build.xml does not exist!
Build failed

As the message here indicates, Ant expects a build file, generally called build.xml, to give it
instructions.

3.3.2 Ant Basics

Let's look at writing a simple Ant project and building a file. Suppose you want to write a single Ant
file that handles the drudgery of compiling an application, bundles the results into a JAR file, and then
copies the resulting files into a new distribution directory.

First, create a new file and call it build.xml. As shown in Example 3-4, this file is perhaps one of the
smallest possible useful build scripts.

Example 3-4. A simple build script

<project default="compile" basedir=".">
 <property name="src" location="src"/>
 <property name="build" location="build"/>

 <target name="compile">
 <javac srcdir="${src}" destdir="${build}"/>
 </target>
</project>

In this example, anything in the src directory is compiled, and the resulting class files are placed in
the build directory. Both paths are based on the current working directory. This is a pretty
complicated way to tell javac to compile a directory and place the results in another directory, but it's
also very flexible. Let's look at some of the key syntax elements.

First, you'll notice that two property tags are supplied just inside the project tag. They are then
referenced and expanded below by using the ${...} syntax. In addition to the properties you specify,
you could also use ${basedir} to refer to the project base directory, as well as the different values

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

you could also use ${basedir} to refer to the project base directory, as well as the different values
available to the Ant JVM. These values would be available programmatically through
System.getProperties() and related methods. For example, ${os.name} retrieves the operating system,
and ${file.separator} retrieves the pesky file separator, which is platform-specific.

The next thing you'll notice is a target tag, which is named "compile". This is the default target (or
task) that will be executed by the build.xml file. Target names are a way of breaking the Ant build file
into different sections. Using these names can be useful for different stages in the development
process, such as cleaning up, compiling, and deploying an application.

The javac task is a built-in task for Ant. You will find one or more tasks inside a target. A number of
tasks are available from within Ant 1.5; popular tasks include creating JAR files and copying files to
other locations.

3.3.3 Running the Build

Assuming that you've installed Ant as described above, an installation of Ant is available in your path.
To give you an idea of how things work, assume the directory structure shown in Figure 3-15.

Figure 3-15. Ant sample directory

Given this structure, you can execute the following commands to build the single Java source file:

[Localhost:~] wiverson% cd antsample/
[Localhost:~/antsample] wiverson% ls
build build.xml src
[Localhost:~/antsample] wiverson% /usr/local/ant/bin/ant
Buildfile: build.xml

compile:

BUILD SUCCESSFUL
Total time: 5 seconds
[Localhost:~/antsample] wiverson%

You'll notice the cd command at the beginning of this output. This command sets the current working
directory, and Ant will automatically look for a file called build.xml to use as its instruction set.

If you have a more complex build script and would like to be able to call Ant scripts from within them
without changing the current working directory, you can use the -buildfile option:

[Localhost:~] wiverson% ant -buildfile ~/antsample/build.xml
Buildfile: /Users/wiverson/antsample/build.xml

compile:

BUILD SUCCESSFUL
Total time: 4 seconds
[Localhost:~] wiverson%

3.3.4 Ant Documentation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For a complete reference on Ant, you should pick up Ant: The Definitive Guide, by Jesse Tilly and Eric
Burke (O'Reilly). This book includes sections that explain how to expand Ant with your own custom
tasks, as well as a wealth of information on Ant's built-in features.

Probably the most commonly requested item is a list of Ant tasks. For a complete list of these tasks,
visit the Apache web site at http://jakarta.apache.org/ant/manual/tasksoverview.html. You'll also find
a complete online manual at http://jakarta.apache.org/ant/manual. However, much of this
information is available in printed form from O'Reilly.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

3.4 Additional Tools

People get into bar fights over their choice of tools and IDEs. Here are some additional popular tools:

 IDEA IntelliJ (http://www.intellij.com/idea/), a commercial IDE that includes support for easily
refactoring your application code.

 Eclipse (http://www.eclipse.org/), an open source IDE that also includes support for code
refactoring.

 TogetherSoft Control Center (http://www.togethersoft.com/), a commercial development
environment with support for Unified Modeling Language (UML).

 Bare Bones Software's BBEdit (http://www.barebones.com/), an excellent text editor.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 4. GUI Applications

Question: How many lines of code does it take to display a window?

Answer: One, but you'll spend the rest of your life rewriting it.

OK, so it's not a particularly funny joke, but it does get to the heart of why so many people originally
embraced the Java platform's promise of "write once, run anywhere." Here's a graphical user interface
(GUI) development conundrum: each platform has a set of specific guidelines for what is considered
the proper look and feel, yet users often want to access an application across multiple platforms. Just
look at the variety of development tools described earlier; the installation for many IDEs, such as
NetBeans, involves selecting which user interface you'd like to work with.

The long and the short of it is that there is no one right answer for GUI construction. From overt
issues, such as the menu structure defaults (where is the placement of the Preferences menu item:
the File, Edit, or Application menu?), to subtle ones, such as the default layout for dialog buttons, to
paradigm decisions, such as requiring the use of the second mouse button—it's hard to imagine a
single approach to GUI application programming that would satisfy all application development needs.

Instead of focusing on the theoretical debate, it is often more useful to consider two key factors: the
intended audience and the available resources. If you know that you will develop a consumer
application on a large budget, you may wish to build a multimedia-style interface, with an emphasis
on graphics, single-click actions, and lots of mouse-rollover responses. If you're building a developer
tool in your spare time, you'll probably want to rely on standard Java Metal user interface objects. If
you're developing a general productivity application or an in-house application for a corporate
environment, you may want to build and test for both Metal on Windows and Unix and Aqua on Mac
OS X.

That said, it's often easiest for GUI programmers to begin with the Mac OS X Aqua interface rather
than the standard Metal look and feel. Perhaps the best reason to start with Aqua is its sheer number
of default components. Aqua has one of the largest sets of defaults for spacing and fonts of any
platform. If you start with Aqua, you're less likely to have problems with other platforms (including
both Motif and Windows) when you switch to Metal, because your defaults will all be set correctly. In
addition, the graphics-intensive nature of the Aqua platform tends to push the limits of a graphics
card; if your application responds well under Aqua, less sophisticated user interfaces should be at
least as responsive, if not more so.
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

4.1 Swing and Aqua

Swing is the user interface toolkit of Java Foundation Classes (JFC). When Sun developed the original
version of Java, it introduced the Abstract Windowing Toolkit (AWT), which drew user interfaces based
on an abstract layer that sat on top of the native windowing toolkit. This caused many problems, as
the abstraction tended to blur when faced with the peculiarities of many windowing platforms. To
resolve these issues, JFC and Swing were introduced as a more sophisticated toolkit with much better
cross-platform support. JFC and Swing are based on AWT, so the core AWT is still part of Java. You
could even write a pure AWT application, although there's really no good reason to: if you're
developing a rich user interface you'll want to stick to Swing APIs.

One of Swing's most interesting aspects is its notion of a "pluggable" look and feel. The entire Unix
world has a high degree of customizability, at the cost of a staggering variety of different approaches
to user interface design. At first, these custom behaviors and functionality seem ideal, but they soon
become a headache for developers and users. To deal with this issue, Swing introduced a standard
look and feel called "Metal" that provides a reasonably attractive user interface for all platforms. Metal
looks the same, more or less pixel-for-pixel, on all supported platforms.

However, it is still possible to override Metal and use a custom look and feel instead. Windows users
may choose to add a Windows-specific look and feel to their application instead of going with the
standard Metal. On Mac OS X, the obvious choice is the native Aqua look and feel. Apple has done an
excellent job with their implementation of the Java-based Aqua look and feel, with many graphical
operations featuring native hardware acceleration.

Therefore, when developing applications in Java, it is useful to determine what your supported look
and feel options are going to be. While it's possible to say that you intend to support Metal, Aqua,
Motif, and Windows look and feel selections, you'll wind up having to test your application's
appearance (including the length of localized strings—you were planning on making your application
localizable, right?) on each supported look and feel. This is largely a matter of budget and resources,
but in this section we will focus on comparisons between the standard Metal look and feel and the Mac
OS X Aqua look and feel.

You may notice that, by default, Java applications on Mac OS X have the Aqua look and feel instead of
Metal. This is a result of the default being set in a Mac OS X properties file
(/Library/Java/Home/lib/swing.properties). If you wish, you could change the look and feel default to
Metal, but in the interests of keeping your system as "virginal" as possible, it is probably best to
change the settings on a per-application basis.

You'll notice that this chapter does not detail the basics of Swing
programming; instead, I've focused on the specifics of Swing as they relate
to Aqua. If you're not comfortable in Swing land, you might want to pick up
Java Swing, by Eckstein, Loy, and Wood (O'Reilly).

You can specify the default look and feel for a specific application in several different ways. Chapter 3
created scripts that specified two ways to launch the NetBeans IDE. Looking at the scripts, you can
learn how to set the JDK and the default look and feel. While this may work for some applications,
scripts like this are poor form and should be avoided for commercial (or even in-house) deployment.
Instead, use global properties files (as Mac OS X does) or some other static method. It's a real pain to
have to keep multiple versions of startup scripts, or to select a look and feel every time you start up
an application.

4.1.1 A First Look at Aqua

The best way to get a sense of the Aqua look and feel is to examine the SwingSet2 demo application.
On Mac OS X, you should find this application at
/Developer/Examples/Java/JFC/SwingSet2/SwingSet2.

If you view the application with the Terminal, you will notice that SwingSet2 actually appears as
SwingSet2.app, which is in turn a directory. Chapter 10 will explore this topic more thoroughly. For

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SwingSet2.app, which is in turn a directory. Chapter 10 will explore this topic more thoroughly. For
now, double-click the SwingSet2 icon in the Finder.

The application may take some time to launch, but when it does, you should see the sample output
shown in Figure 4-1.

Figure 4-1. The SwingSet sample application

Playing around a bit with this application, you'll see that it is built on an instance of JDesktopPane. You
should also notice that the application is a miniature version of a Mac OS X desktop, complete with a
rather strange "mini-dock" at the top of the application interface. This is an odd arrangement, and it's
a user interface concept you won't find referenced anywhere in Apple's documentation (aside from an
admonishment in a README file against using it!). It's clearly provided for compatibility with multiple
document interface (MDI) applications from other platforms, but is unlikely to be satisfactory for any
real GUI programming task.

If you're wondering how I knew that this application used a JDesktopPane, I
simply clicked the "Source Code" tab on the application. There is also a src
folder in the SwingSet2 directory, which includes the source for the
application.

Clicking on the second icon in the SwingSet2 button bar, we immediately confront the largest issue of
the Aqua GUI: the radical difference in size required by common user-interface elements.

As you can see by comparing Figure 4-2 and Figure 4-3, the Aqua version of these buttons requires
almost 50 percent more horizontal screen space than does the Metal version. This can reduce a nicely
laid out Metal interface to a jumble of clipped text and ugly ellipses when converted to Aqua.

Figure 4-2. Metal buttons

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4-2. Metal buttons

Figure 4-3. Aqua buttons

In Aqua, buttons by default have a gap of 12 pixels between them and are based on a 13-point font.
This font can be a bit large when compared with other platform defaults. Rather than settling for a
nasty-looking Metal interface based on these patterns, you may wish to standardize the "utility" UI
patterns in Aqua for your Java applications. These smaller controls are closer to the control sizes of
other platforms, and look good on Metal as well as Aqua. To support this smaller utility user interface,
use controls based on an 11-point font and use a default control spacing of 8 pixels.

Another interesting contrast between Aqua and Metal can be found when comparing JList
implementations (the seventh button from the left in the SwingSet2 mini-dock).

If you compare the user interface components in Figure 4-4 with those in Figure 4-5, you can see that
while elements in the Aqua implementation are generally wider than those in Metal, they are often
vertically shorter. So although Aqua interface widgets generally require more space than their Metal
counterparts, this is not always the case.

Figure 4-4. Metal JList component

Figure 4-5. Aqua JList component

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The moral here is to be extremely careful when designing user interfaces for multiple look and feel
motifs. The next section shows how you can minimize these problems.

4.1.2 Look and Feel "Gotchas"

Unfortunately, many developers test their applications with the Metal look and feel, ignoring other
platforms and look and feel packages. While that may be acceptable for Windows or Motif users, the
Aqua look and feel implementation is excellent, and there is no reason not to test for and support it.

4.1.2.1 Sizing of elements

As pointed out so glaringly in the last section, the biggest issue you need to deal with is sizing
elements. When you first run your application under Aqua, you may be taken aback by the number of
places where element size will affect you—from buttons that are clipped short with an ellipse, to
navigation tabs that are now centered and occupying two levels, to portions of the user interface that
are now unusable or even completely hidden. All things are not created equal on Aqua and Metal.

If you are bringing an application over from another platform, this may be a good time to examine the
interface. Often, an application that looks too busy on Aqua is actually too busy on all platforms; Aqua
is just driving the point home, especially when compared to the quality of the user interface work put
into other Mac OS X applications.

The bad news is that no mantra or special set of steps can convert a Metal-size application to an
Aqua-size one. That means that you'll have to dig into your code by hand and space things out until
they look good on Aqua. Be sure to use the "utility" UI patterns, which dictate 11-point fonts and 8-
pixel spacings. The good news, though, is that you'll end up with a better-designed application, and
reap the benefits of both look and feel motifs.

4.1.2.2 Background color

The default Aqua implementation of a JFrame is set to the textured background common to many
Aqua applications. However, most developers prefer to use a plain white background, like one you'd
see in a Finder folder or the various mail applications. To set the background to white (or some other
color), you will need to use the following in your Swing code:

myJFrame.getContentPane().setBackground(java.awt.Color.white);

This explicit color setting ensures that defaults on different platforms don't change your application's
background color without your knowing about it.

4.1.2.3 Dirty windows

Another difference between Mac OS X and other platforms is that Mac OS X applications consistently
use a small dot to indicate when a window is "dirty," meaning that information has been changed and
a save is in order. Figure 4-6 shows a "dirty" window icon, and Figure 4-7 shows the same icon once a
save has been completed.

Figure 4-6. A "dirty" window

Figure 4-7. A window after saving

To set this "dirty" dot, use the following code:

myJFrame.getRootPane().putClientProperty("windowModified", Boolean.TRUE);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

myJFrame.getRootPane().putClientProperty("windowModified", Boolean.TRUE);

Use the following line to clear the dot after a save has occurred:

myJFrame.getRootPane().putClientProperty("windowModified", Boolean.FALSE);

4.1.2.4 Menu bars

The last major issue to think about is the location of actions on a menu bar. The standard Mac OS X
menu bar is typically organized by the scope of the action. For example, consider the menu hierarchy
detailed in Table 4-1, which indicates a menu bar's headings and the scope that each heading's
actions should govern.

Table 4-1. Menu headings and their scope
Menu heading Scope Examples

Apple menu Entire system (including global actions) Restart, Sleep
Application Entire application Quit, Preferences, Hide, About
File Entire document New, Save, Print
Edit Section of document Find, Replace
Format Changes appearance but not data Font, Alignment
Window Switches between documents Tile, Cascade, Go To
Help No effect on application, but easy to find Help, Documentation

If you use these scopes as a standard set of rules for your own menu locations and choices, you'll find
that users intuitively know where to look for items and will feel at home with your application quickly.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

4.2 An Example Swing Application

This section introduces a fairly comprehensive Swing application and details its various components.
This application is used throughout the rest of this book as the foundation application (so you can run
each sample without having to create new windows, set up the menu bar, and perform other
mundane tasks). For that reason, be sure to code and compile the application and have the source
code handy before diving into future chapters.

For those of you who don't like large code blocks, especially when it's mostly
GUI setup code, understand that this section is a necessary evil; it's the basis
for several future applications, all of which are made up of more interesting
code fragments and concepts.

4.2.1 Source Code Listing

This application also demonstrates techniques that factor out and partition portions of your application
to increase team development, as well as an introduction to concepts (such as dynamic class loading)
used in later chapters. In this example, these modules are referred to as plug-ins. If you've used an
application such as Adobe Photoshop or the NetBeans development environment, you've been
exposed to applications that serve as a framework and then load other modules. Example 4-1 shows
the entire class listing.

Example 4-1. The sample Swing application

package com.wiverson.macosbook;

import javax.swing.JMenuItem;
import javax.swing.JButton;
import javax.swing.JComponent;
import javax.swing.JMenu;
import java.awt.Cursor;
import java.awt.BorderLayout;
import java.util.Hashtable;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.awt.event.KeyEvent;
import javax.swing.KeyStroke;

public class SimpleEdit extends javax.swing.JFrame
{
 // Used to set the number for new untitled windows
 private static int newWindows = -1;

 // Used to track all of the currently installed plugins
 private static Hashtable plugins = null;

 // The initial plugin configuration
 private static String[] argsconfig;

 /** Creates a new instance of SimpleEdit */
 public SimpleEdit()
 {
 init();
 }

/* --------------------- Application APIs ------------------------------------ */

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

/* --------------------- Application APIs ------------------------------------ */

 /** Used by tools to get the text actual text area.
 * This wouldn't generally be recommended, but in this
 * case it's ok.
 *
 * In general, you'd want to use something to make the
 * interface more opaque (thereby freeing up options to
 * switch to a different underlying toolkit), but in this
 * case it would cost readability (since everyone can look
 * up a JTextArea).
 */
 public javax.swing.JTextArea getJTextArea()
 {
 return this.mainTextArea;
 }

 /** Used by tools to get the current text */
 public String getDocumentText()
 {
 return this.mainTextArea.getText();
 }

 /** Used by tools to set the current text */
 public void setDocumentText(String in)
 {
 mainTextArea.setText(in);
 mainTextArea.setCaretPosition(mainTextArea.getText().length());
 mainTextArea.requestFocus();
 }

 /** Used by tools to add to the current text */
 public void appendDocumentText(String in)
 {
 setDocumentText(mainTextArea.getText() + in);
 }

 /** Used by tools to set the status text at the bottom
 * of a frame.
 */
 public void setStatusText(String in)
 {
 this.mainStatusText.setText(in);
 }

/* --------------------- Initialization ------------------------------------ */

 // Sets up and creates a "pristine" window environment
 private void init()
 {
 if(newWindows++ < 0)
 setTitle("Untitled");
 else
 setTitle("Untitled-" + newWindows);

 initPlugins();
 initComponents();
 initMenuBar();
 }

/* --------------------- Initialization: Plugins ---------------------------- */

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

/* --------------------- Initialization: Plugins ---------------------------- */

 // Installs all plugins as currently defined by the
 // private argsconfig.
 private void initPlugins()
 {
 if(plugins != null)
 return;
 if(argsconfig == null)
 return;
 if(argsconfig.length == 0)
 return;
 plugins = new Hashtable();

 for(int i = 0; i < argsconfig.length; i++)
 {
 // This may very well fail, as we are going
 // to be loading classes by name, which is
 // prone to errors (e.g. typos, etc.)
 try
 {
 // This requests the classloader to find a
 // given class by name. We are using this to
 // implement a plugin architecture, based on
 // expecting classes to implement a specific
 // interface (SimpleEditPlugin). If the class
 // can be loaded and cast without failure,
 // we are good to go.
 Class myClass = Class.forName(argsconfig[i]);
 SimpleEditPlugin myPlugin =
 (SimpleEditPlugin)myClass.getConstructor(null).newInstance(null);

 // Don't add the plugin if already installed. Allows for
 // eventual support for dynamically adding new plugins later.
 // Calls the Plugin init if this is the first time
 // it's being loaded.
 if(plugins.containsKey(myPlugin.getAction()))
 {
 return;
 } else
 {
 myPlugin.init(this);
 }

 // If we made it this far, the plugin has been loaded
 // and initialized, so it's ok to add to the list of
 // valid plugins.
 plugins.put(myPlugin.getAction(), myPlugin);
 }
 catch(Exception e)
 {
 // This is not really adequate for a quality client
 // application, but it's acceptable for our purposes.
 System.out.println("Couldn't load Plugin: " + argsconfig[i]);
 System.out.println(e.getMessage());
 e.printStackTrace();
 }
 }
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

/* --------------------- Initialization: GUI Components---------------------- */

 // The main visual components
 private javax.swing.JScrollPane mainScrollPane = new javax.swing.JScrollPane();
 private javax.swing.JTextArea mainTextArea = new javax.swing.JTextArea();
 private javax.swing.JToolBar mainToolBar = new javax.swing.JToolBar();
 private javax.swing.JTextField mainStatusText= new javax.swing.JTextField();

 private void initComponents()
 {
 this.getContentPane().setBackground(java.awt.Color.white);
 this.getContentPane().setLayout(new BorderLayout());
 this.getContentPane().add(mainScrollPane, BorderLayout.CENTER);
 this.getContentPane().add(mainToolBar, BorderLayout.NORTH);
 this.getContentPane().add(mainStatusText, BorderLayout.SOUTH);

 // This text field serves two purposes. It provides useful information
 // to the user, and also serves as a graceful "bump" for the Mac OS
 // grow box on the Mac OS platform.
 mainStatusText.setText("Ready.");

 mainStatusText.setCursor(
 Cursor.getPredefinedCursor(Cursor.DEFAULT_CURSOR));

 mainScrollPane.setViewportView(mainTextArea);

 mainTextArea.setEditable(true);
 mainTextArea.setCursor(Cursor.getPredefinedCursor(Cursor.TEXT_CURSOR));
 mainTextArea.setFont(

 // Perhaps a tool might be added later to control this dynamically?
 mainTextArea.setLineWrap(true);

 // Generally looks terrible on all platforms, and requires
 // a fair amount of work to get it to work right.
 mainToolBar.setFloatable(false);
 initToolBar(mainToolBar, this);

 // Determine the offset value and stagger new windows
 // (with a reset every ten windows). A somewhat
 // unscientific mechanism, but it works well enough.
 int top_offset = 0;
 if((newWindows % 10) > 0)
 {
 top_offset =((this.newWindows) % 10) * 20 + 20;

 this.setLocation(
 new Double(getLocation().getX() + top_offset - 20).intValue(),
 new Double(getLocation().getY() + top_offset).intValue()
);
 }
 int bottom_offset = 0;
 if (top_offset > 0)
 bottom_offset = top_offset - 20;

 // In a later chapter, we can use the JDirect and the
 // Carbon API GetAvailableWindowPositioningBounds()
 // to properly position this.
 java.awt.Dimension screensize =
 java.awt.Toolkit.getDefaultToolkit().getScreenSize();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 java.awt.Toolkit.getDefaultToolkit().getScreenSize();
 screensize =
 new java.awt.Dimension(640, screensize.height -128 - bottom_offset);
 this.setSize(screensize);
 }

 // Default items that always appear on the toolbar.
 // null items are treated as separators.
 String[] toolbarItems = {"New", "Open", null, "Timestamp"};

 private void initToolBar(javax.swing.JToolBar myToolBar, SimpleEdit myFrame)
 {
 JButton newButton;
 for(int i = 0; i < toolbarItems.length; i++)
 {
 if(toolbarItems[i] != null)
 {
 // It would be nice to provide icons
 // instead of just text labels.
 newButton = new JButton(toolbarItems[i]);

 // Used to track the targets more easily
 newButton.putClientProperty("window", myFrame);
 newButton.addActionListener(actionListenerHandler);
 myToolBar.add(newButton);
 } else
 {
 myToolBar.add(new javax.swing.JToolBar.Separator());
 }
 }

 // Load all plugins into the toolbar
 if(plugins != null)
 if(plugins.size() > 0)
 {
 java.util.Enumeration e = plugins.elements();
 SimpleEditPlugin currentPlugin;
 while(e.hasMoreElements())
 {
 currentPlugin = (SimpleEditPlugin)e.nextElement();
 newButton = new JButton(currentPlugin.getAction());
 // We are using Swing client properties to
 // track additional information without having
 // to subclass - in effect, using the
 // client properties mechanism as a form of
 // delegation.
 newButton.putClientProperty("window", myFrame);
 newButton.putClientProperty("plugin", currentPlugin);
 newButton.addActionListener(actionListenerHandler);
 myToolBar.add(newButton);
 }
 }
 }

/* --------------------- Initialization: Menu Bar ---------------------------- */

 // The menu bar for the window
 private javax.swing.JMenuBar mainMenuBar = new javax.swing.JMenuBar();

 // The menus attached to the menu bar
 private JMenu menuFile = new JMenu();
 private JMenu menuEdit = new JMenu();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 private JMenu menuEdit = new JMenu();
 private JMenu menuTools = new JMenu();

 // A Hashtable holding all of the default menu items, keyed by title
 protected static Hashtable menuItemsHashtable = new Hashtable();

 /*
 * The items to be installed into the menus.
 * Each item consists of an identification string and
 * a corresponding virtual key.
 *
 * For a "real" application, the default item titles
 * and virtual keys would be loaded from resource bundles,
 * and ideally the user would be able to configure their
 * own toolbar and menu structure.
 *
 * For this demonstration, however, this is adequate.
 */
 private Object[][] fileItems =
 {
 {"New", new Integer(KeyEvent.VK_N)},
 {"Open", new Integer(KeyEvent.VK_O)},
 {"Close", new Integer(KeyEvent.VK_W)},
 {null, null},
 {"Save", new Integer(KeyEvent.VK_S)},
 {"Revert to Saved", null},
 {null, null},
 {"Print...", new Integer(KeyEvent.VK_P)},
 {"Print Setup...", null}
 };
 private Object[][] editItems =
 {
 {"Undo", new Integer(KeyEvent.VK_Z)},
 {"Redo", new Integer(KeyEvent.VK_Y)},
 {null, null},
 {"Cut", new Integer(KeyEvent.VK_X)},
 {"Copy", new Integer(KeyEvent.VK_C)},
 {"Paste", new Integer(KeyEvent.VK_V)},
 {"Delete", null},
 {"Select All", new Integer(KeyEvent.VK_A)}
 };
 private Object[][] toolItems =
 {
 {"Timestamp", null}
 };

 private void dispatchEvent(ActionEvent evt, String tag)
 {
 SimpleEdit myFrame = null;
 SimpleEditPlugin myPlugin = null;
 if(evt.getSource() instanceof JComponent)
 {
 myFrame = (SimpleEdit)
 (((JComponent)evt.getSource()).getClientProperty("window"));
 myPlugin = (SimpleEditPlugin)
 (((JComponent)evt.getSource()).getClientProperty("plugin"));
 }

 // If it's a plugin, hand off to the plugin to handle
 if(myPlugin != null)
 {
 myPlugin.doAction(myFrame, evt);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 myPlugin.doAction(myFrame, evt);
 return;
 }

 // Handle minimal required functionality.
 // It could legitimately be argued that even this
 // functionality should be split off into an
 // overarching set of plugin functionality...
 // but this is adequate for now, and reinforces
 // the notion of certain "default" services.
 if(tag.compareTo("New") == 0)
 doNew();
 if(tag.compareTo("Close") == 0)
 doClose(myFrame);
 if(tag.compareTo("Timestamp") == 0)
 doTimestamp(myFrame);
 }

 /*
 * Default event processing.
 */
 private void doNew()
 {
 (new SimpleEdit()).show();
 }

 private void doTimestamp(SimpleEdit myFrame)
 {
 if(myFrame != null)
 myFrame.mainTextArea.setText(myFrame.mainTextArea.getText() +
 System.getProperty("line.separator") + new java.util.Date() + " : ");

 myFrame.mainTextArea.setCaretPosition(
 myFrame.mainTextArea.getText().length());
 myFrame.mainTextArea.requestFocus();
 }

 // Used to track the number of open windows, and
 // automatically quit when they are all closed.
 private static int openWindows = 0;

 // Overrides the default hide to see how many windows are currently
 // showing. If none are visible, quit the app.
 /** Hides the window. If no windows are visible, terminates quietly. */
 public void hide()
 {
 super.hide();
 openWindows--;
 if(openWindows == 0)
 System.exit(0);
 }

 public void show()
 {
 super.show();
 openWindows++;
 // All ready to go, go ahead and get ready for input.
 this.appendDocumentText("");
 }

 private void doClose(SimpleEdit myFrame)
 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {
 myFrame.hide();
 }

 /* This variable is used to track the default accelerator
 * key for this platform.
 */
 private int preferredMetaKey =
 Toolkit.getDefaultToolkit().getMenuShortcutKeyMask();

 private void setupMenu(JMenu myMenu, Object[][] menuconfig,
 SimpleEdit thisFrame)
 {
 JMenuItem currentMenuItem;
 for(int i = 0; i < menuconfig.length; i++)
 {
 if(menuconfig[i][0] != null)
 {
 currentMenuItem = new JMenuItem();
 currentMenuItem.setLabel((String)menuconfig[i][0]);

 if(menuconfig[i][1] != null)
 {
 int keyCode = ((Integer)menuconfig[i][1]).intValue();
 KeyStroke key =
 KeyStroke.getKeyStroke(keyCode, preferredMetaKey);
 currentMenuItem.setAccelerator(key);
 }

 currentMenuItem.setEnabled(false);
 currentMenuItem.setActionCommand((String)menuconfig[i][0]);
 currentMenuItem.putClientProperty("window", thisFrame);

 currentMenuItem.addActionListener(actionListenerHandler);

 // Put the menu item into the menu hash to add handlers later
 menuItemsHashtable.put((String)menuconfig[i][0], currentMenuItem);
 myMenu.add(currentMenuItem);
 } else
 {
 javax.swing.JSeparator sep = new javax.swing.JSeparator();
 myMenu.add(sep);
 }
 }
 }

 // A single default ActionListener that punts to dispatchEvent().
 private ActionListener actionListenerHandler = new ActionListener()
 {
 public void actionPerformed(ActionEvent evt)
 {
 Object src = evt.getSource();
 if(src instanceof JMenuItem)
 {
 String input = ((JMenuItem)src).getLabel();
 dispatchEvent(evt, input);
 }
 if(src instanceof JButton)
 {
 String input = ((JButton)src).getLabel();
 dispatchEvent(evt, input);
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
 }
 };

 private void initMenuBar()
 {
 mainMenuBar = new javax.swing.JMenuBar();

 menuFile = new JMenu("File");
 setupMenu(menuFile, fileItems, this);
 mainMenuBar.add(menuFile);

 menuEdit = new JMenu("Edit");
 setupMenu(menuEdit, editItems, this);
 mainMenuBar.add(menuEdit);

 menuTools = new JMenu("Tools");
 setupMenu(menuTools, toolItems, this);
 mainMenuBar.add(menuTools);

 JMenuItem newMenuItem;
 if(plugins != null)
 if(plugins.size() > 0)
 {
 java.util.Enumeration e = plugins.elements();
 SimpleEditPlugin currentPlugin;
 while(e.hasMoreElements())
 {
 currentPlugin = (SimpleEditPlugin)e.nextElement();
 newMenuItem = new JMenuItem();
 newMenuItem.setLabel(currentPlugin.getAction());
 newMenuItem.setEnabled(true);
 newMenuItem.setActionCommand(currentPlugin.getAction());
 newMenuItem.putClientProperty("window", this);
 newMenuItem.putClientProperty("plugin", currentPlugin);
 newMenuItem.addActionListener(actionListenerHandler);
 menuTools.add(newMenuItem);
 }
 }

 ((JMenuItem)menuItemsHashtable.get("New")).setEnabled(true);
 ((JMenuItem)menuItemsHashtable.get("Timestamp")).setEnabled(true);
 ((JMenuItem)menuItemsHashtable.get("Close")).setEnabled(true);

 setJMenuBar(mainMenuBar);

 }
/* ----------------- The Main Method: Menu Bar ---------------------------- */

 public static void main(String[] args)
 {
 argsconfig = args;
 (new SimpleEdit()).show();
 }
}

If you're new to Swing, you may wish to look up the reference material for imported classes. You'll
also see several other classes named explicitly in the code (like javax.swing.JScrollPane) rather than
imported, chiefly for self-documentation (and also because Swing occasionally has duplicate names in
multiple packages). You'll also notice that the example class extends JFrame, a pretty standard
technique in Swing, and calls an initialization routine in its constructor.

Using an init() method instead of working in the constructor allows you to recycle an object instead of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using an init() method instead of working in the constructor allows you to recycle an object instead of
allocating a new one:

// Create the object the first time
SimpleEdit editor = new SimpleEdit();

// Do some work that changes the state of the editor object

// This takes more time and memory, depending on the JVM
editor = new SimpleEdit();

// This approach is better and faster (instead of using new)
editor.init();

Using an init() method is not actually required in this implementation, but it's a good pattern for
instances in which you might reuse the object without creating a new one. For example, you could use
the init() method to reset the window to a "pristine" state before loading a file from disk.

4.2.2 The Application API

After the constructor, you'll see several methods that aid in text manipulation (such as
getDocumentText() or getJTextArea()). While these examples could be considered utility methods,
they form the backbone of this application's application programming interface (API). In other words,
other applications could use this class as a module, with text editing capability, through these
methods. The class provides a notebook-style framework that you could use in a code editor or
journaling software, for instance. As a result, these utility methods become very important—
applications using this class will depend on the methods for interaction with SimpleEdit.

4.2.3 Initialization

Moving back into the variable declaration section of the class, you'll see a private counter that keeps
track of new and untitled document names:

// Used to set the number for new untitled windows
private static int newWindows = -1;

This counter determines the offset at which to place the document window, as well as the window
identifier (to help the user keep multiple untitled windows distinct). It is also critical for the init()
method:

 // Sets up and creates a "pristine" window environment
 private void init()
 {
 if(newWindows++ < 0)
 setTitle("Untitled");
 else
 setTitle("Untitled-" + newWindows);

 initPlugins();
 initComponents();
 initMenuBar();
 }

4.2.3.1 Loading plug-ins

What happens next is interesting: the init() method calls initPlugins(), which then loads any plug-ins

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

What happens next is interesting: the init() method calls initPlugins(), which then loads any plug-ins
that the class is instructed to bring online (more on that in a minute). Of course, I just told you that
this class has an API that other applications can use for accessing it. This means that the sample class
suddenly has dual uses: as a framework to be used by other applications (basically a plug-in), and as
an application in its own right, able to load its own plug-ins. This is a common concept in GUI
programming: components are both containers and units that are contained. The API methods
become more critical as applications external to the class use them to operate on the framework, and
plug-ins internal to it might need to call back to them.

In the initPlugins() method, you'll see much of the heavy lifting performed as plug-ins are loaded. The
plug-ins are specified by a set of command-line arguments that specify the class name of each
desired plug-in. The JVM class loader then has to find the class by name.

Classes are loaded and then cached in a Hashtable (called, not surprisingly, plugins). This improves
performance: the plug-ins are loaded only when the application is first launched. Traditionally, Mac
OS users often expect delays when an application initially starts, but once they begin to work, lengthy
delays are unacceptable.

You'll note that the plug-in classes are cast to the type SimpleEditPlugin (the next section deals with
this interface, so don't get too impatient). Plug-ins are expected to implement this interface. Plug-in
authors are given this interface and the application APIs, which are sufficient for writing additional
modules that this framework can use.

4.2.3.2 GUI components

Next comes the initComponents() method, which creates the core interface of the application's main
window. It's fairly straightforward. Check the Swing documentation for details on how the specific
APIs are used.

This method then delegates additional GUI processing to initToolbar() , which does what it says it
does: it deals with the application toolbar and its buttons. The application uses both the default
application actions and the plug-in configuration options to create a user toolbar.

4.2.3.3 Menu bars

The menu bar configuration is handled via multiple-dimension arrays:

private Object[][] fileItems =
 {
 {"New", new Integer(KeyEvent.VK_N)},
 {"Open", new Integer(KeyEvent.VK_O)},
 {"Close", new Integer(KeyEvent.VK_W)},
 {null, null},
 {"Save", new Integer(KeyEvent.VK_S)},
 {"Revert to Saved", null},
 {null, null},
 {"Print...", new Integer(KeyEvent.VK_P)},
 {"Print Setup...", null}
 };
 private Object[][] editItems =
 {
 {"Undo", new Integer(KeyEvent.VK_Z)},
 {"Redo", new Integer(KeyEvent.VK_Y)},
 {null, null},
 {"Cut", new Integer(KeyEvent.VK_X)},
 {"Copy", new Integer(KeyEvent.VK_C)},
 {"Paste", new Integer(KeyEvent.VK_V)},
 {"Delete", null},
 {"Select All", new Integer(KeyEvent.VK_A)}
 };
 private Object[][] toolItems =

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 private Object[][] toolItems =
 {
 {"Timestamp", null}
 };

This technique isn't very object-oriented, but it lays out the menu visually in the code, making it easy
to see how the menu bar will look when rendered graphically.

Items defined as {null, null} are treated as separator bars. The action name is defined by the first
element in each mini-array, and the second Integer element specifies the keyboard accelerator
constant.

You can look up these key constants in any good Swing reference.

A lot of code is associated with getting these menu bars to actually do something useful, beginning
with the dispatchEvent() method. The event handling is performed mainly by a single handler, with
Swing client property values used to store and handle event dispatching. Basically, the framework
handles the most basic actions (calling upon the doNew() , doTimeStamp(), and doClose() methods),
while everything else is handed off to the appropriate plug-in to handle on its own.

Once event handling is dealt with, add this trick to your toolkit:

 /* This variable is used to track the default accelerator
 * key for this platform.
 */
 private int preferredMetaKey =
 Toolkit.getDefaultToolkit().getMenuShortcutKeyMask();

This little-known API is critical for proper cross-platform user interface application development. Mac
OS X users expect to use the Meta key, officially referred to as the Command key (although I still
tend to call it the "open apple" key). Windows applications, however, typically use the Control key.
This application allows both options to map to the same UI action.

Many Java applications are hardcoded to use the control character as their default keyboard
accelerator. Ironically, a user (or developer) used to Windows would consider this situation an
ordinary feature: the same application running on two different platforms uses the same keyboard
commands. However, it's terrible for any real Mac OS X user. Use this API when determining the
default keyboard shortcuts and, if possible, include an interface that reassigns keyboard commands.

Finally, the menu can actually be created with the setupMenu() and initMenuBar() methods (the latter
of which was called in the init() method). These methods use the arrays defined earlier to set up the
menus, and the various event handlers to react to them. Some additional Swing client properties
assist with event dispatching.

This menu bar is created and set for each window whenever a window is created. This serves an
important purpose: on Windows and other windowing toolkits, each window is given a specific menu
bar within the bounds of the window itself. On Mac OS X, a proper application has a single global
menu bar shared by all windows. This application doesn't care which model is selected, and functions
identically on all platforms.

4.2.3.4 Event processing

You learned about event processing and the dispatchEvent() method earlier, but now let's look at the
doClose() method and its two helpers, hide() and show():

 public void hide()
 {
 super.hide();
 openWindows--;
 if(openWindows == 0)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if(openWindows == 0)
 System.exit(0);
 }

 public void show()
 {
 super.show();
 openWindows++;
 // All ready to go, go ahead and get ready for input.
 this.appendDocumentText("");
 }

 private void doClose(SimpleEdit myFrame)
 {
 myFrame.hide();
 }

Note that the application terminates automatically when the final window is closed. This termination
provides a relatively seamless user experience, minimizing the user's awareness of the application as
a process that runs independently of any documents.

To get an idea of how this scenario affects your system, open Calculator,
Address Book, and Internet Explorer. Now close out all your windows; note
that while Calculator and Address Book are no longer running, Internet
Explorer still waits for a "Quit" command. The example application behaves
like Calculator and Address Book, assuming that when all windows are
closed, the application should follow suit.

Last but not least, at the end of the code lies a simple main() method:

public static void main(String[] args)
 {
 argsconfig = args;
 (new SimpleEdit()).show();
 }

With a solid set of methods already in hand, the main() method only has to configure the application
and open a single window. It calls the constructor for the SimpleEdit class, which in turn calls the init()
method, which then sets up the various plug-ins for the application.

4.2.4 The SimpleEditPlugin Interface

The SimpleEditPlugin interface allows the SimpleEdit application to deal with plug-ins at runtime,
assuming that they implement this public interface. I've left the discussion of this interface for the end
of this chapter so that you first learn how to use Swing with Mac OS X and don't get too hung up in
inheritance and polymorphism.

This application demonstrates how to use dynamic class loading to let the same system add additional
functionality without changing the core application. Chapter 5 uses a similar technique to isolate Mac
OS X-specific code from the rest of the application. In a nutshell, the SimpleEditPlugin interface
abstracts plug-in-specific (or platform-specific) details from SimpleEdit, and lets SimpleEdit handle all
plug-ins generically.

The code shown in the initPlugins() method (see Example 4-1) relies on the fact that each plug-in
implements a specific interface so it can easily call methods on a loaded class, as shown here:

Class myClass = Class.forName(argsconfig[i]);
 SimpleEditPlugin myPlugin =
 (SimpleEditPlugin)myClass.getConstructor(null).newInstance(null);

Example 4-2 shows the actual SimpleEditPlugin interface. As you can see, it is remarkably simple.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 4-2. The SimpleEditPlugin interface

package com.wiverson.macosbook;

public interface SimpleEditPlugin
{
 // Returns a list of actions which will be registered
 // The tool will then be notified if an action is
 // selected.
 public String getAction();

 // Notification of an action which was registered by
 // this tool.
 public void doAction(SimpleEdit frame, java.awt.event.ActionEvent evt);

 // Called once when the plugin is first loaded
 public void init(SimpleEdit frame);

}

Code that implements this interface is loaded by SimpleEdit when it is launched with one or more
command-line parameters with the fully qualified class name. As long as the interface is followed,
SimpleEdit can interact with the plug-in.

4.2.4.1 Writing a plug-in

An example of a simple plug-in is one that simply beeps when the user invokes it from the menu bar
or toolbar. Example 4-3 shows how easily you can code up such a plug-in.

Example 4-3. A beeping plug-in

package com.wiverson.macosbook.plugin;

import com.wiverson.macosbook.SimpleEdit;

public class BeepPlugin implements com.wiverson.macosbook.SimpleEditPlugin
{

 public BeepPlugin()
 {
 }

 public void doAction(SimpleEdit frame, java.awt.event.ActionEvent evt)
 {
 java.awt.Toolkit.getDefaultToolkit().beep();
 frame.setStatusText("Beep!");

 }

 public String getAction()
 {
 return "Beep";
 }

 public void init(SimpleEdit frame)
 {
 frame.setStatusText("Loaded BeepPlugin");
 }

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

Assuming that this plug-in was compiled successfully, it is possible to launch SimpleEdit with this
installed plug-in by executing the following command:

java com.wiverson.macosbook.SimpleEdit com.wiverson.macosbook.plugin.
BeepPlugin

Once the SimpleEdit application starts up and detects a command-line argument, it loads the named
plug-in. The getAction() method tells SimpleEdit which text to display in the user interface, and when
the user selects this option, the doAction() method is called. The arguments passed in allow the plug-
in to affect the window and text area by working with the passed-in SimpleEdit object. In this
manner, the plug-in is isolated from all user interface details of SimpleEdit.

In later chapters we will use this plug-in architecture to add everything from spellcheck capabilities to
communication with web services. The next chapter uses this mechanism to add support for Apple-
specific extensions to the Java platform.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 5. Apple Extensions

Apple ships a nonstandard JVM with proprietary extensions. There—I've said it, and the cat is out of
the bag. So why isn't Apple lumped into the same category as other vendors that ship proprietary
JVMs? Why has Apple not been accused of trying to co-opt Java for sinister purposes? Put simply,
Apple's JVM extensions are just that—extensions. They don't change what Java is, but add additional
functionality on top of and around a normal Java environment. Apple ships a complete implementation
of not just the Java Runtime Environment (JRE), but a full Java Development Kit (JDK). The
extensions just include some icing on the standard Java cake.

Apple's Java implementation is fully compliant with any Java 2/JDK 1.3/4-based "pure" Java
application. Certain vendors ship incomplete JVM implementations for strategically competitive
reasons, in opposition to technologies such as RMI and CORBA. Apple's extensions to Java, however,
principally address weaknesses in the Java platform. Careful application development lets you support
these extensions while still maintaining excellent cross-platform compatibility. This chapter explores
these extensions and shows how they can add to standard Java programs (like the editor from the
last chapter).

When comparing Apple's extensions to the efforts of other vendors (Microsoft
in particular), keep the following in mind:

Apple's extensions are (to the developer) just classes that allow you to
more easily access Mac OS X functionality.

The extensions do not add to the language model itself (e.g.,
additional keywords).

The full Java 2 Standard Edition stack is included.

Apple's JVM is compliant with all relevant Java specifications.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

5.1 The Mac OS X Finder

Virtually every desktop client platform provides a standard that specifies application icons, associates
documents with the application, and notifies the application of user requests generated by the
desktop shell, be it the Finder, Explorer, or some X Windows-based system. However, the standard
Java environment lacks mechanisms and APIs to deal with many of these conventions. Instead, you
are given a main() method and the assumption that users can figure out what to do on their own. The
result is a Java program that looks like Java, instead of a seamlessly integrated part of the user's
desktop experience.

This section examines Apple's extensions that provide APIs for this desktop shell integration and
describes how to support them while maintaining cross-platform compatibility.

Apple provides new interfaces for these interactions under JDK 1.4.1 using a
different set of packages (com.apple.eio and com.apple.eawt). However, the
existing interfaces, described below, work under both JDK 1.3.1 and JDK
1.4.1. In addition, users are required to download JDK 1.4.1 separately, as it
is not available for redistribution. Therefore, this section will focus on the JDK
1.3.1 extension mechanisms.

5.1.1 Finder Integration

When a Java application runs on Mac OS X, the system creates the default application menu shown in
Figure 5-1. The default application name is the fully qualified class name of the launching main() class
(which is really only acceptable during development, if at all).

Figure 5-1. Default application menu

Each menu item needs to be accessible and integrated into the program so that code can respond to
user actions. Apple provides hooks for integrating with these menu items via callbacks (or handlers).
To implement these callbacks for the SimpleEdit application developed in Chapter 4, you will create a
SimpleEditPlugin through the Java source file FinderIntegrationPlugin.java. This code, once compiled,
will display the dialogs shown in Figure 5-2.

Figure 5-2. Menu callbacks trigger dialog boxes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

While this process isn't overly complex, it does begin to add some polish to the application.

5.1.2 The Finder Plug-in

Launch this application from the Terminal. Use the cd command to navigate to the application's root
directory (which should be in your classpath) and launch this application with the command shown
here:

java -Dcom.apple.mrj.application.apple.menu.about.name=SimpleEdit com.
wiverson.macosbook.SimpleEdit com.wiverson.macosbook.plugin.
FinderIntegrationPlugin

As noted before, this is actually one long line of typing, broken up for
readability. Do not use line breaks when typing the command into your
Terminal window.

In addition to starting the program, this command sets and displays the name of the "About" menu
item. You can do this for any OS X Swing application by using the
com.apple.mrj.application.apple.menu.about.name property.

The plug-in shown in Example 5-1 interacts with the Mac OS X Finder, but it also introduces some
important cross-platform considerations. Check out the source code, and soon you'll learn to handle
non-Mac OS X platforms.

Example 5-1. The plug-in for Finder interaction

import com.wiverson.macosbook.SimpleEdit;

public class FinderIntegrationPlugin
 implements com.wiverson.macosbook.SimpleEditPlugin
{

 /** Creates a new instance of FinderIntegrationPlugin */
 public FinderIntegrationPlugin()
 {
 }

 // Does nothing useful in this context.
 public void doAction(SimpleEdit frame, java.awt.event.ActionEvent evt)
 {
 return;
 }

 // Returns a status string only.
 public String getAction()
 {
 if(isMacOS)
 return "Mac OS Installed";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return "Mac OS Installed";
 else
 return "Mac OS Not Available";
 }

 boolean isMacOS = false;

 /** Checks to see if Mac OS is available. If so,
 * goes ahead and loads the class by name that
 * actually performs the initialization. If not,
 * the class is never loaded. This helps prevent
 * classloader problems on non-Mac OS systems.
 */

 public void init(SimpleEdit frame)
 {
 if(System.getProperty("mrj.version") != null)
 isMacOS = true;

 if(isMacOS)
 {
 try
 {
 // This requests the classloader to find a
 // given class by name. We are using this to
 // establish a firewall between the application
 // and Mac OS X dependencies. This helps isolate
 // the application logic for organizational purposes,
 // as well as ensure that we won't try to drag Mac OS
 // references into our crossplatform code.
 Class myClass =
 Class.forName("com.wiverson.macosbook.plugin.FinderIntegration");

 Object myObject = myClass.getConstructor(null).newInstance(null);
 myClass.getDeclaredMethod("execute", null).invoke(myObject, null);;
 } catch (Exception e)
 {
 System.out.println("Unable to load FinderIntegration module.");
 e.printStackTrace();
 }
 }
 }
}

This plug-in implements the SimpleEditPlugin interface from the last chapter,
allowing it to integrate into SimpleEdit easily. Make sure you've got that
interface compiled and on your classpath before compiling this class.

When reviewing the code for the plug-in shown in Example 5-1, you'll notice a lack of imports or
references to Mac OS X-specific libraries; the code checks to see if it is running on a Mac OS system,
and then loads the needed classes explicitly by name. This avoids ClassDefNotFound exceptions when
running on platforms other than Mac OS X, as well as a miserable user experience.

Apple provides a stubs-only version of their MRJ classes that can be bundled
with your application for distribution on non-Mac OS X platforms. However,
using this version will make your application larger and require careful
classpath management. You might find it easier to understand and maintain
platform-specific code independently from your core application logic.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Once the plug-in is sure that it is running on an OS X platform, it begins to deal with Finder
integration. Instead of handling this itself, though, it loads up another class, FinderIntegration, which
does all the heavy lifting.

5.1.3 The FinderIntegration Support Class

To actually support the integration, the FinderIntegration class is filled with platform-specific code for
handling Apple extensions. Example 5-2 shows the source code for this class.

Example 5-2. OS X-specific Finder functionality

/** In order for this plugin to function properly,
 * it must be loaded by the SimpleEdit application
 * and the proper system properties set before execution.
 *
 * For example, the following command, entered on a single line,
 * invokes the JVM and tells the system to display the About menu item
 * in the Mac OS X application menu.
 *
 * java -Dcom.apple.mrj.application.apple.menu.about.name=SimpleEdit
 * com.wiverson.macosbook.plugin.FinderIntegrationPlugin
 */
package com.wiverson.macosbook.plugin;

import javax.swing.JDialog;
import javax.swing.JLabel;
import java.awt.Dimension;
import java.awt.event.ItemEvent;
import java.awt.event.ItemListener;

import com.apple.mrj.MRJApplicationUtils;

import com.apple.mrj.MRJOpenApplicationHandler;
import com.apple.mrj.MRJPrefsHandler;
import com.apple.mrj.MRJQuitHandler;
import com.apple.mrj.MRJOpenDocumentHandler;
import com.apple.mrj.MRJAboutHandler;

public class FinderIntegration
 implements MRJOpenApplicationHandler,
 MRJQuitHandler,
 MRJPrefsHandler,
 MRJOpenDocumentHandler,
 MRJAboutHandler
{

 /** Creates a new instance of FinderIntegration */
 public FinderIntegration()
 {
 }

 // Only want to install this once per application
 // to avoid getting multiple event notifications
 private static boolean installed = false;

 public void execute()
 {
 if(!installed)
 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {
 // Enables the menu item
 MRJApplicationUtils.registerPrefsHandler(this);

 // Overrides the default System.exit() behavior.
 MRJApplicationUtils.registerQuitHandler(this);

 // Requires com.apple.mrj.application.apple.menu.about.name=Application
 // system property to be set to appear.
 MRJApplicationUtils.registerAboutHandler(this);

 // These require the application to be properly bundled for Mac OS X
 // for the events to be dispatched
 MRJApplicationUtils.registerOpenApplicationHandler(this);
 MRJApplicationUtils.registerOpenDocumentHandler(this);

 installed = true;
 }
 }

 // We only need one instance of the About dialog.
 static JDialog AboutDialog = null;

 public void handleAbout()
 {
 new DoAbout().start();
 }

 /** It may seem a bit strange to create a new Thread
 * just to display an about box.
 *
 * Unfortunately, due to the way the System interacts
 * between the native Carbon libraries and the JVM,
 * displaying a dialog will lock the user interface,
 * leaving kill to terminate the app.
 *
 * This simple thread just hangs on to a singleton
 * dialog, creating a new dialog if it's the first
 * time the dialog is displayed, hiding and reshowing
 * the dialog as needed.
 *
 * This isn't needed in the later Apple JVM's (including
 * JDK 1.4), but some earlier releases required this.
 *
 */
 class DoAbout extends Thread
 {
 public void run()
 {
 if(AboutDialog == null)
 {
 AboutDialog = new JDialog();
 AboutDialog.setResizable(false);
 AboutDialog.setTitle("About Simple Edit");
 AboutDialog.setSize(350, 150);
 Dimension screensize =
 java.awt.Toolkit.getDefaultToolkit().getScreenSize();
 int width =
 new Double((screensize.getWidth() - 350) / 2).intValue();
 int height =
 new Double((screensize.getHeight() / 2) - 150).intValue();
 AboutDialog.move(width, height);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 AboutDialog.move(width, height);
 JLabel myAppTitle = new JLabel();
 myAppTitle.setHorizontalAlignment(myAppTitle.CENTER);
 myAppTitle.setText("Simple Edit (c) 2002");
 AboutDialog.getContentPane().add(myAppTitle);
 }
 AboutDialog.show();
 }
 }

 /** Note that the application requires Mac OS X bundling
 * (as described in a later chapter) to be enabled.
 * The techniques for writing these handlers are similar
 * to the rest of the add-ons.
 *
 * Typically, you will want to use these handlers to call
 * your standard File -> Open... routines, simply bypassing
 * the standard file dialogs.
 * /
 public void handleOpenApplication()
 {
 new DoOpenApplication().start();
 }

 class DoOpenApplication extends Thread
 {
 public void run()
 {
 System.out.println("Open Application");
 }
 }

 public void handleOpenFile(java.io.File file)
 {
 DoOpenFile myHandler = new DoOpenFile();
 myHandler.setFile(file);
 myHandler.start();
 }

 class DoOpenFile extends Thread
 {
 private java.io.File theFile = null;
 public void setFile(java.io.File inFile)
 {
 theFile = inFile;
 }

 public void run()
 {
 if(theFile == null)
 return;

 JDialog openedFileDialog = new JDialog();
 openedFileDialog.setResizable(false);
 openedFileDialog.setTitle("File Open Request...");
 openedFileDialog.setSize(350, 150);
 Dimension screensize =
 java.awt.Toolkit.getDefaultToolkit().getScreenSize();
 int width =
 int height =
 openedFileDialog.move(width, height);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 JLabel myFileName = new JLabel();
 myFileName.setHorizontalAlignment(JLabel.CENTER);
 myFileName.setText("File name: " + theFile.getName());
 openedFileDialog.getContentPane().add(myFileName);

 JLabel myFilePath = new JLabel();
 myFilePath.setHorizontalAlignment(JLabel.CENTER);
 myFilePath.setText("File path: " + theFile.getPath());
 openedFileDialog.getContentPane().add(myFilePath);

 openedFileDialog.show();
 }
 }

 public void handlePrefs() throws java.lang.IllegalStateException
 {
 new com.wiverson.macosbook.plugin.FinderIntegration.DoPrefs().start();
 }

 // This is the one preference we are tracking, which
 // only relates to Mac OS X specific behavior anyways.
 // Note that we aren't persisting the user's preferences.
 public static boolean pref_askToClose = true;

 static JDialog PrefsDialog = null;
 class DoPrefs extends Thread
 {
 public void run()
 {
 if(PrefsDialog == null)
 {
 PrefsDialog = new JDialog();
 PrefsDialog.setResizable(false);
 PrefsDialog.setTitle("Simple Edit Preferences");
 PrefsDialog.setSize(300, 150);
 Dimension screensize =
 java.awt.Toolkit.getDefaultToolkit().getScreenSize();
 int width =
 new Double((screensize.getWidth() - 300) / 2).intValue();
 int height =
 new Double((screensize.getHeight() / 2) - 150).intValue();
 PrefsDialog.move(width, height);

 javax.swing.JCheckBox myQuitPrefButton =
 new javax.swing.JCheckBox("Confirm Before Quit");
 myQuitPrefButton.setHorizontalAlignment(
 javax.swing.SwingConstants.CENTER);
 myQuitPrefButton.setSelected(true);
 myQuitPrefButton.addItemListener(new ItemListener()
 {
 public void itemStateChanged(ItemEvent evt)
 {
 pref_askToClose =
 (evt.getStateChange() == ItemEvent.SELECTED);
 }
 });
 PrefsDialog.getContentPane().add(myQuitPrefButton);
 }

 PrefsDialog.show();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 PrefsDialog.show();
 }
 }

 /* Note that the Quit thread is slightly more complex
 * than the other threads.
 *
 * There is a bug which manifests as of Mac OS X 10.1, JDK 1.3.1
 * Update 1 which causes it to generate multiple events
 * for a single selection of the Quit menu item on the native
 * application menu.
 *
 * If you know you'll only be running on JDK 1.4 or later, this
 * isn't necessary.
 *
 * Therefore, to avoid a deadlock, a new thread is created,
 * tracked, and communicated with. It's arguably overkill for
 * what is supposed to be a modal quit confirmation dialog...
 * but it works.
 */
 com.wiverson.macosbook.plugin.FinderIntegration.DoQuit quitThread = null;

 public void handleQuit() throws java.lang.IllegalStateException
 {
 if(pref_askToClose)
 {
 if(quitThread == null)
 {
 quitThread = new DoQuit();
 // Make sure the application doesn't hang around
 // waiting for this thread.
 quitThread.setDaemon(true);
 quitThread.start();
 }
 else
 quitThread.show();
 } else
 {
 // If the user set a preference not to be
 // prompted, go ahead and bail out.
 System.exit(0);
 }
 }

 class DoQuit extends Thread
 {
 private QuitConfirmJDialog myQuitDialog = null;
 // Operations on ints are inherently atomic,
 // and we aren't doing anything too fancy
 // requires fancier semaphores & locking.
 int showDialog = 0;
 public void show()
 {
 showDialog = 1;
 }

 public void run()
 {
 if(myQuitDialog == null)
 myQuitDialog =
 new QuitConfirmJDialog(new javax.swing.JFrame(), true);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 showDialog = 1;
 // Now that the Quit dialog is ready, go ahead and sit
 // around waiting for a semaphore notification to redisplay.
 while(true)
 {
 if(showDialog == 1)
 {
 myQuitDialog.show();
 showDialog = 0;
 }
 };
 }
 }
}

You'll notice several Apple-specific imports. Each imported handler describes specific methods that
must be implemented and ensures that the class can be cast properly. Additionally, Apple provides a
lot of "out-of-the-box" functionality for working with GUIs, so it makes no sense to reinvent these
pieces of code when you can simply implement some standard interfaces.

5.1.3.1 Registering handlers

The class uses the Apple-supplied MRJApplicationUtils class to register this class as an implementation
of the various handlers:

// Enables the menu item
MRJApplicationUtils.registerPrefsHandler(this);

// Overrides the default System.exit() behavior.
MRJApplicationUtils.registerQuitHandler(this);

// Requires com.apple.mrj.application.apple.menu.about.name=Application
// system property to be set to appear.
MRJApplicationUtils.registerAboutHandler(this);

// These require the application to be properly bundled for Mac OS X
// for the events to be dispatched
MRJApplicationUtils.registerOpenApplicationHandler(this);
MRJApplicationUtils.registerOpenDocumentHandler(this);

This class lets any other application using standard Apple controls know that the application can work
seamlessly with this class (and the plug-in that uses it).

5.1.3.2 The "About" dialog box

Like other menu items that have event handlers associated with them, you can use a simple callback
method to deal with the "About" dialog box. One of its unusual features, though, is the creation of a
new thread that displays the dialog box:

public void handleAbout()
{
 new DoAbout().start();
}

class DoAbout extends Thread

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

class DoAbout extends Thread
{
 public void run()
 {
 if(AboutDialog == null)
 {
 AboutDialog = new JDialog();
 AboutDialog.setResizable(false);
 AboutDialog.setTitle("About Simple Edit");
 AboutDialog.setSize(350, 150);
 Dimension screensize =
 java.awt.Toolkit.getDefaultToolkit().getScreenSize();
 int width =
 new Double((screensize.getWidth() - 350) / 2).intValue();
 int height =
 new Double((screensize.getHeight() / 2) - 150).intValue();
 AboutDialog.move(width, height);
 JLabel myAppTitle = new JLabel();
 myAppTitle.setHorizontalAlignment(myAppTitle.CENTER);
 myAppTitle.setText("Simple Edit (c) 2002");
 AboutDialog.getContentPane().add(myAppTitle);
 }
 AboutDialog.show();
 }
}

This use of threading is a result of interactions with Mac OS X's native libraries. Threading is not
necessary when using Apple's JDK 1.4 implementation, but the limitation does exist on JDK 1.3, and
the required overhead is relatively trivial. If your "About" box does perform more sophisticated work
across threads, however, you might need to pay attention to synchronization and other threading
issues. Of course, getting your system upgraded to JDK 1.4 takes care of this problem, so these
threading concerns will only be a legacy issue for most Mac OS X developers.

5.1.3.3 The "Open" and "Preferences" handlers

Once you've gotten the "About" box handled, you can move on to more standard handlers such as the
"Open" and "Preferences" menu items. In each, the same basic threading principles are applied: the
handler starts a thread, and then the thread handles the actual actions associated with the requested
action.

To enable the handlers registered for the "Open" item, you'll need to launch
the application using Apple's packaging format as described in Chapter 7.
While launching is an inconvenience now (you'll have to get a little further in
the book to use these features), it results in much better application code.

The preferences dialog created by the DoPrefs thread is very basic and doesn't actually do much. In
fact, the settings it allows are not persisted, so they would have to be reset each time the application
is restarted. Several strategies are available for persisting user preferences, from the Preferences API
included in JDK 1.4 to Java serialization and JDBC. The actual selected mechanism depends on the
overall use of the application. Regardless of the mechanism, options available from this dialog should
be global to the application, not specific to the current running instance.

5.1.3.4 The "Quit" handler

The "Quit" handler shown in Example 5-2 is perhaps the most complex example of a "Quit" dialog
you'll see, but it's necessary in applications that are backward-compatible with Apple's JDK 1.3
implementation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This text often discusses how to make code work on JDK 1.3. While you
probably keep up with the latest versions and system upgrades and have JDK
1.4 installed, you shouldn't expect your user base to do the same. Building in
support for JDK 1.3 is generally simple and well worth a little extra effort.
The end result is code that works on nearly all Mac OS X systems, not just on
systems that are completely up to date.

Consider this unusual bit of code:

if(pref_askToClose)
{
 if(quitThread == null)
 {
 quitThread = new DoQuit();
 // Make sure the application doesn't hang around
 // waiting for this thread.
 quitThread.setDaemon(true);
 quitThread.start();
 }
 else
 quitThread.show();
} else
{
 // If the user set a preference not to be
 // prompted, go ahead and bail out.
 System.exit(0);
}

A bug in Mac OS X 10.1 and JDK 1.3.1 (including Update 1) requires a lot of extra work. On those
platforms and JDKs, multiple events are fired off for a single selection of the "Quit" menu item.
Consequently, multiple threads can be created and deadlocked, resulting in an apparently frozen
application. This turns out to be a lot of work for such a simple task, but if anything annoys a user, it
is the thought that his or her application has locked up (even if the user was just trying to quit).

If your application doesn't provide a "Quit" handler, the "Quit" menu item is
still available to the user. When the user selects it, System.exit(0) is
automatically called (which can have undesirable effects if you haven't saved
your work).

To make things easier, a dialog pops up to ensure that the user wants to quit:

if(myQuitDialog == null)
 myQuitDialog = new QuitConfirmJDialog(new javax.swing.JFrame(), true);

Example 5-3 is the code for the "Quit" confirmation dialog.

Example 5-3. The "Quit" confirmation dialog box

package com.wiverson.macosbook.plugin;

import javax.swing.JDialog;
import javax.swing.JFrame;
import java.awt.Frame;

public class QuitConfirmJDialog extends JDialog
{

 /** Creates new form QuitConfirmJDialog */

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 /** Creates new form QuitConfirmJDialog */
 public QuitConfirmJDialog(Frame parent, boolean modal)
 {
 super(parent, modal);
 initComponents();
 }

 private void initComponents()
 {
 buttonPanel = new javax.swing.JPanel();
 cancelButton = new javax.swing.JButton();
 okButton = new javax.swing.JButton();
 jLabel1 = new javax.swing.JLabel();

 setTitle("Confirm Quit");
 setModal(true);
 setResizable(false);
 addFocusListener(new java.awt.event.FocusAdapter()
 {
 public void focusGained(java.awt.event.FocusEvent evt)
 {
 formFocusHandler(evt);
 }
 });

 addWindowListener(new java.awt.event.WindowAdapter()
 {
 public void windowClosing(java.awt.event.WindowEvent evt)
 {
 closeDialog(evt);
 }
 });

 cancelButton.setText("Cancel");
 cancelButton.addActionListener(new java.awt.event.ActionListener()
 {
 public void actionPerformed(java.awt.event.ActionEvent evt)
 {
 cancelButtonHandler(evt);
 }
 });

 buttonPanel.add(cancelButton);

 okButton.setText("OK");
 this.getRootPane().setDefaultButton(okButton);
 okButton.addActionListener(new java.awt.event.ActionListener()
 {
 public void actionPerformed(java.awt.event.ActionEvent evt)
 {
 okButtonHandler(evt);
 }
 });

 buttonPanel.add(okButton);

 getContentPane().add(buttonPanel, java.awt.BorderLayout.SOUTH);

 jLabel1.setText("Are you sure you want to quit?");
 jLabel1.setHorizontalAlignment(javax.swing.SwingConstants.CENTER);
 jLabel1.setHorizontalTextPosition(javax.swing.SwingConstants.CENTER);
 getContentPane().add(jLabel1, java.awt.BorderLayout.CENTER);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 getContentPane().add(jLabel1, java.awt.BorderLayout.CENTER);

 pack();
 java.awt.Dimension screenSize =
 java.awt.Toolkit.getDefaultToolkit().getScreenSize();
 setSize(new java.awt.Dimension(366, 116));
 setLocation((screenSize.width-366)/2,(screenSize.height-116)/2);
 }

 private void formFocusHandler(java.awt.event.FocusEvent evt)
 {
 okButton.requestFocus();
 }

 private void cancelButtonHandler(java.awt.event.ActionEvent evt)
 {
 okButton.requestFocus();
 this.hide();
 }

 private void okButtonHandler(java.awt.event.ActionEvent evt)
 {
 System.exit(0);
 }

 private void closeDialog(java.awt.event.WindowEvent evt)
 {
 this.hide();
 }

 public static void main(String args[])
 {
 new QuitConfirmJDialog(new JFrame(), false).show();
 }

 private javax.swing.JPanel buttonPanel;
 private javax.swing.JButton okButton;
 private javax.swing.JButton cancelButton;
 private javax.swing.JLabel jLabel1;

}

It should be fairly easy to adapt these classes to your own application, providing Mac OS X-specific
features while maintaining seamless cross-platform compatibility. As long as you use the
FinderIntegrationPlugin or something similar, you can check for the existence of a Mac OS X platform
and respond to it quickly and efficiently.
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

5.2 Native Access

The preferred mechanism for accessing native functionality on Mac OS X is the standard Java Native
Interface (JNI). This section builds a simple JNI library using Apple's Project Builder tool, found in
/Developer/Applications/.

In the past, Apple supplied a technology known as JDirect, a set of bindings
between native code and Java that is much simpler than JNI. Specifically,
JDirect allows access to native libraries without the cumbersome header
generation of JNI. Apple has deprecated JDirect, however, and strongly
encourages the use of JNI. In fact, the latest versions of the JDK (1.4+)
remove JDirect altogether.

To begin, launch Project Builder and select "File New Project." Select the "Java Java JNI
Application" option, as shown in Figure 5-3. On the next panel, name your project and give it a
location (here, we'll name it "JNIExample"). Then save it in ~/JNIExample/.

Figure 5-3. JNI's new project

The assistant will generate several files for you automatically, as shown in Figure 5-4. Before looking
at the files, however, consider the build process and the targets, as shown in Figure 5-5. When
building applications with JNI, you should usually first write Java application code, and then flag
methods that will have a native implementation using the native keyword:

native boolean loginAsRoot(String username, String password);

Figure 5-4. JNI files

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5-4. JNI files

Figure 5-5. JNI targets

This Java source file is then read by the javah tool (a standard JDK command-line tool), and an
appropriate C header file is generated. You then write a native implementation in C, build a library
appropriate for the target platform, and ship both the original Java source file and the native library.

For occasional use of native functionality, or when it's easy to segment the
Java and native portions of an application, this model works fairly well. In
particular, it allows shipment of identical Java code on multiple platforms as
long as an appropriately built native library is present and accessible by the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

long as an appropriately built native library is present and accessible by the
JVM. Unfortunately, no existing tool easily handles the other, rather common
scenario: quickly and easily building Java bindings for existing C- and C++ -
based native libraries. For those situations, either contact the vendor of the
native library or build JNI wrappers yourself—and consider sharing them.

The project generated by Project Builder includes all these steps as targets in its build process. The
JNIWrapper target compiles the JNIWrapper.java source file and archives it into a JAR. The
CreateHeaders target calls javah on that JAR file. This scenario is shown in Figure 5-6, accessible by
clicking on the "Targets" tab, and then clicking on CreateHeaders.

Figure 5-6. JNI CreateHeaders target

The final stage is building a JNI library and creating a sample dylib library. The JNI library conforms to
library conventions as required by JNI, whereas a dylib is the preferred format for Mac OS X native
libraries (similar to a DLL on Windows). Mac OS X native libraries are typically shipped as dylib
libraries, and it's important to know how to call from a JNI library to a dylib library so you can access
most Mac OS X native functionality. To facilitate this process, Project Builder provides the JNILib
target, which builds the JNI library, and the Dylib target, which builds a sample dylib library.

JNI and Dependencies

A common problem for JNI developers coming from other platforms is an assumption that
JNI dynamic libraries can be built with interdependencies. For example, libA.jnilib contains
a function foo(). libB.jnilib needs to link against libA.jnilib in order to use foo(). This
linkage will not work on Mac OS X because JNI libraries are bundles, and all symbols are
private to a bundle. This effectively makes the foo() method private and inaccessible by
libB.

One way to solve this dependency problem is to put the common functions into separate
dynamic libraries (libC.dylib, for example) rather than JNI libraries, and link both libA.jnilib
and libB.jnilib to libC.dylib. In other words, JNI native libraries can link only to external
native functions in dynamic libraries, not to other JNI library functions.

The rest of this section adds a new native method to access a system function to the JNIExample
application. First, create a new method called test_method() in a JNIWrapper.java source file, as
shown in Example 5-4. Be sure and do this in your new JNI Application project in Project Builder to
avoid having to perform the JNI setup steps manually.

Example 5-4. The JNIWrapper source file

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 5-4. The JNIWrapper source file

import java.util.*;

public class JNIWrapper {

 static {
 // Ensure native JNI library is loaded
 System.loadLibrary("JNIExample");
 }

 public JNIWrapper() {
 System.out.println("JNIWrapper instance created");
 }

 native int native_method(String arg);
 native String test_method(String arg, int arg2);

 public static void main (String args[]) {
 // insert code here...
 System.out.println("Started JNIWrapper");
 JNIWrapper newjni = new JNIWrapper();
 int result = newjni.native_method("Hello World !");

 System.out.println(newjni.test_method("Test", 1));

 System.out.println("Finished JNIWrapper. Answer is " + result);
 }

}

Build the application in Project Builder by selecting "Build Build." The application will rebuild, but
its execution will result in a java.lang.UnsatisfiedLinkError. To get the application to build properly, add
the native implementation for the native_method() and test_method() methods.

When you build the project, Project Builder generates a JNIWrapper.h file, which can be found in
~/JNIExample/build/Headers/. After opening this file, you'll see the declarations shown here:

/* DO NOT EDIT THIS FILE - it is machine generated */
#include <jni.h>
/* Header for class JNIWrapper */

#ifndef _Included_JNIWrapper
#define _Included_JNIWrapper
#ifdef _ _cplusplus
extern "C" {
#endif
/*
 * Class: JNIWrapper
 * Method: native_method
 * Signature: (Ljava/lang/String;)I
 */
JNIEXPORT jint JNICALL Java_JNIWrapper_native_1method
 (JNIEnv *, jobject, jstring);

/*
 * Class: JNIWrapper
 * Method: test_method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 * Method: test_method
 * Signature: (Ljava/lang/String;I)Ljava/lang/String;
 */
JNIEXPORT jstring JNICALL Java_JNIWrapper_test_1method
 (JNIEnv *, jobject, jstring, jint);

#ifdef _ _cplusplus
}
#endif
#endif

Of particular interest is the declaration for test_method. Copy and paste this declaration into the
JNIExamplejnilib.c file, and add arguments and an implementation to the method, as shown in
Example 5-5.

Example 5-5. Adding native code

/*
 * JNIExamplejnilib.c
 * JNIExample
 *
 * Created by Will Iverson on Mon Dec 16 2002.
 * Copyright (c) 2002 __MyCompanyName_ _. All rights reserved.
 *
 */

#include "JNIWrapper.h"
#include "JNIExampledylib.h"

JNIEXPORT jint JNICALL Java_JNIWrapper_native_1method(JNIEnv *env, jobject this,
 jstring arg) {
 /* Convert to UTF8 */
 const char *argutf = (*env)->GetStringUTFChars(env, arg, JNI_FALSE);

 /* Call into external dylib function */
 jint rc = shared_function(argutf);

 /* Release created UTF8 string */
 (*env)->ReleaseStringUTFChars(env, arg, argutf);

 return rc;
}

JNIEXPORT jstring JNICALL Java_JNIWrapper_test_1method
 (JNIEnv * env, jobject argObject, jstring argString, jint argInt)
{
 return (*env)->NewStringUTF(env, "Greetings from the native library.");
}

You'll notice that the implementation for the other method
(Java_JNIWrapper_native_1method, which translates to native_method() in
Java) uses GetStringUTFChars() and ReleaseStringUTFChars(). The
implementation of the new method also uses a NewStringUTF() method to
convert the native code string to a regular Java String. Using these UTF
methods ensures that you don't get unexpected results when converting
between programming languages.

With these methods defined, you can now compile and run the application. Select "Build Build
and Run..." and you will see the output shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Started JNIWrapper
JNIWrapper instance created
Greetings from the native library.
Finished JNIWrapper. Answer is 42
shared_function called with Hello World !

JNIWrapper has exited with status 0.

When working with native application code, you need to pay attention to the rest of the native
environment you're working in. As shown in Figure 5-7, the Mac OS X JDK 1.3 user interface
implementation relies on Carbon. Carbon is Apple's legacy interface provided for compatibility with
Mac OS Classic applications that are recompiled (but not rewritten) for Mac OS X.

Figure 5-7. JDK 1.3 JVM implementation

If your JDK 1.3 application uses the Carbon layer, you may need to perform
locking (as described in Apple's tech note at
http://developer.apple.com/technotes/tn/tn1153.html).

Apple's JDK 1.4 implementation replaces the Carbon layer with an implementation based on Cocoa.
For information on Cocoa and Mac OS X Unix interfaces, visit Apple's web site at
http://developer.apple.com/, or check out Learning Cocoa with Objective-C, by James Duncan
Davidson and Apple Computer, Inc.
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 6. Cross-Platform Programming

In the last chapter, you learned how to provide users with Mac OS X features "on the fly," depending
on what platform an application runs on. While that chapter focused on menuing options, you can
apply the same techniques to any of the other Mac OS X features (such as QuickTime or Spelling,
both discussed in future chapters). However, you need to consider a lot of other issues when writing a
cross-platform application. While some techniques require code to determine what platform is used,
others are simply good programming practices that make any application run better, on any platform.

This chapter, then, is a mixed bag of suggestions and tricks. It's organized by problem area: each
section deals with one particular aspect of cross-platform programming. Generally, these are areas of
concern where things can go wrong if you aren't careful. Occasionally, you may see some general
programming tips mixed in with them, as good development practices often take care of many of
these issues implicitly.
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.1 GUI Construction

Chapter 4 covered this topic in detail, but it's worth reviewing. Generically, for maximum cross-
platform compatibility, stick with the Metal look and feel, and perform sanity checking to ensure that
the user interface operates correctly on both platforms. For the best performance (and user
experience) on Mac OS X, however, be sure to let users run the application with the Aqua look and
feel. Doing so involves using appropriate fonts and spacing so that Metal and Aqua interfaces look
good on every platform.

While Apple's Aqua GUI is excellent and the implementation allows first-class application appearances,
the same cannot be said for the standard Windows look and feel. Determining whether you want to
support one or more native look and feel targets is largely a matter of budget and resources (mostly
consumed by the testing personnel). Whatever you decide, though, you need to test your GUI
applications on every platform they will run on. This might mean buying some extra hardware (or
better yet, salvaging those old 486 and Pentium II machines), installing Windows and Linux, and
actually seeing what your application looks like on each platform. Despite the best advice from this
book, things can go wrong when running an application on a platform it wasn't designed for or
developed on. Your own eyes are always the best verification.
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.2 New Line

In the old days, developers built applications for terminal and simple daisy-wheel feed printers. They
had agreed on the ASCII standard for 7-bit text encoding, with the eighth bit reserved for system
specific uses (such as character-based graphics). These developers neglected, however, to specify the
precise encoding for generating a new line. Some systems used a carriage return (CR) to return the
printer head to the start of a new line, and then a line feed (LF) to tell the printer to roll up the paper
a line.

However, many developers decided that using two characters for a line feed was wasteful and
redundant. This led to the use of either a CR or LF code (but not both) to indicate the end of a line.
For these developers, the single character was sufficient to tell the printer or terminal character
generator that a new line should be generated. Of course, fragmentation occurred and applications
didn't always use the same line feed character, or didn't correctly interpret documents and
applications that used a different character than they were programmed to interpret.

Since then, we've moved to a world of WYSIWYG and GUI, where users typically associate the return
key with a new paragraph break, not a new line. Today, the Windows environment is standardized on
the CR/LF value (the original double-character line feed), the Classic Mac OS is standardized on the
CR value, and the Unix world on LF. As you can see, this is the worst possible scenario—three major
platforms with three different line feed standards. Therefore, a Java developer doesn't know which of
these bits actually renders the proper logical result. Since Java is intended to be a multiplatform
language, this situation can be quite a problem.

Fortunately, Java developers have a standard mechanism that queries the system's properties for the
current system's correct value:

System.getProperty("line.separator",".");

However, this mechanism doesn't help text-file users copy one system to another. Many of today's
popular text editors take a "best guess" by scanning through the document until they find a CR, LF, or
CR/LF sequence, and then assuming that what they find is the proper new line sequence for the file.
This can lead to problems, however, if the user opens the file with one line feed syntax and then
pastes in data from an application that uses a different line feed syntax.

For general text processing, the best solution is to keep track of the original line break preference of
the text document, normalize the line breaks in memory to the platform standard, and then convert
the output back to the original when the document is saved. You may wish to expose new line
preferences to the user as well. This means that you have to work harder at opening and saving
documents. Opening now involves an initial scan to get the line feed syntax, a possible conversion,
and then any normal opening steps; saving involves the same process in reverse. However, your
users will never notice your work (which may seem frustrating) and never have problems with your
applications (which is definitely good).

You will also encounter this issue in the source files of the code you write. A variety of tools is
available for dealing with this, including several programming text editors for Mac OS X and other
platforms that can deal with these issues seamlessly. If you're aware of the problem, though, it's
much easier to avoid.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.3 File Encoding

This surprisingly critical issue gets slighted in most application development texts. Normally, it comes
up in discussions of multiple-language support, but even if you target only English-speaking users,
you'll run into encoding when multiple platforms are taken into account.

In its simplest form, ASCII text is a slightly more elaborate version of the simple "secret decoder" that
kids play with. The decoder rings would let you map a letter to a number, and you would need the
right decoder rings to convert a string of text to numbers (and back to text). ASCII defines a standard
set of characters that convert to numbers, with uppercase and lowercase letters, numbers, spaces,
and a few extra symbols thrown into the mix.

That said, only seven bits of a number are defined. The eighth bit, often called the high bit, is
unspecified. Some systems, such as the Apple II series or the Commodore PET line, use these so-
called high-bit characters to generate graphics onscreen. For example, the high-bit letter "r" might
draw a smiley face character. There are many high-bit encodings with systems sold to non-English-
speaking users who need extra characters for certain languages. Other non-English systems throw out
ASCII entirely and use their own character encodings.

When the original Macintosh was released, graphics could be drawn in multiple fonts simultaneously.
The smiley face character (and all of its friends) was moved to the Dingbats fonts. Normal user fonts,
such as Times, now used the high-bit characters for accents and non-English punctuation. Apple could
sell a Macintosh in France with a different keyboard that would generate the proper high-bit
characters, and French users could now enter text and share that text with English users without any
additional software. Users of Chinese, Japanese, and other pictographic-based systems ended up
using double-byte systems, as the 256 slots available to a single 8-bit value could not adequately
represent their character sets.

These encodings made multiple-language management a huge undertaking. Developers wound up
having to support multiple custom encoding import and export tables, with no standard for
normalizing the data.

6.3.1 Enter Unicode

At this point, Unicode entered the scene in an attempt to clear up this large and confusing mess.
Unicode defines a single "decoder ring" set of values for pretty much any language you're likely to
support (and a great deal beyond, including several dead languages). Thus, a Unicode-aware system
maps the A to the number 35, the Japanese character for rice to 11263, and so on. You can be sure
that this system will be consistent across character sets, in any language.

However, the Unicode character set is not a standard means of writing (or encoding) these values to
disk, or even specifying a method for storing the values in memory. The most popular method for
saving and reading Unicode text for persistence (e.g., writing to disk or sending text to another
system on the network) is a format called UTF-8. UTF-8 is a multi-byte format, which means that the
amount of storage required to save a specific character varies depending on the location of the
character in the Unicode number chart. The lower, English values map to the old 7-bit ASCII values.
Higher values are "escaped" and represented by two, three, or four characters.

The big problem with UTF-8 is that it is impossible to access linearly; that is, if you load a UTF-8
character stream into memory, you don't know if the 8-bit character at offset 48 is actually character
12, 24, 48, or something else. Java takes care of this by converting all character data internally into
UTF-16, a double-byte format. This is what the Java marketing folk mean by Unicode-enabled Java. A
Java developer can specify an encoding format, open a text file, and the JVM will convert the text
internally from whatever the original text was to UTF-16.

6.3.2 Java, Unicode, and UTF

It's possible to use the standard Java APIs with a character set that is specified programmatically:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

java.io.OutputStreamWriter.OutputStreamWriter(
 OutputStream out, String charsetName
)

For information on all of the available character sets and their names, check Sun's online
documentation at http://java.sun.com/j2se/1.4.1/docs/guide/intl/encoding.doc.html.

Unfortunately, there is no consistent way for a developer to auto-detect the encoding format of a text
file, which means that you'll have to either guess or require that your users know their encoding
format. To see how unlikely this latter prospect is, ask your Windows users if they are aware that
"Cp1252" is the standard Windows text file encoding format. That said, you can usually assume that a
file uses the system's default encoding, which is obtained through the following system property:

System.getProperty("file.encoding")

You can also set the character set for the entire JVM by specifying the system
property file.encoding.

Windows and Mac OS X systems have different defaults for this property, which explains why the topic
comes up in a discussion of cross-platform compatibility. You can assume that any high-bit characters
a user specifies will cause problems, and with tools like Word and AppleWorks automatically
converting straight quotes to curly quotes even for English users, there will probably be high-bit
characters sneaking into your text files for any but the most basic applications.

If you expect users to share text files between different platforms, you'll need to decide how you want
to manage these encoding issues. If users move files across platforms (or different language
operating systems), they will at least have a rudimentary familiarity with language encodings.
Consider Figure 6-1, an example of what is presented to a user when he or she saves a text file. In
this case, the default encoding is UTF-8, which is probably a safe bet for most operations (especially
for exported files and your application's default document saving functionality). UTF-8 shares the
same text encoding for the first 127 characters as for normal ASCII; this fact in addition to UTF-8's
flexibility and growing popularity make it an ideal choice for your application's default. For
sophisticated applications, you should probably add the ability to specify file encodings on a per-file
basis as well.

Figure 6-1. TextEdit encodings

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.4 Threading

It's beyond the scope of this book to fully cover threads and the difficulties surrounding their use.
However, the threading models that underlie different JVMs (even on the same OS) can exhibit
different behavior. If your application is not properly designed, previously unexposed issues might
appear due to thread scheduler differences resulting from a move to another platform (or a different
JVM).

For more information on problems (and solutions) to threading issues, read Java Threads by Scott
Oaks and Henry Wong (O'Reilly) and Concurrent Programming in Java by Doug Lea (Addison-Wesley).
The threading issues that appear result from (incorrect) assumptions—that the threading model is
based on the underlying JVM implementation, or regarding the use of deprecated threading APIs, such
as Thread.stop(), Thread.resume(), and Thread.suspend().

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.5 File Separator

You should also learn to use characters in different operating systems to represent a directory path in
a file hierarchy. The file separator is always a problem when dealing with multiple platforms.

Consider the following paths, all valid for their respective operating systems:

Windows: C:\myfolder\mydocument.txt

Unix: /usr/myuser/mydocument.txt

 Classic Mac OS: Hard Drive:My Folder:My Document

Each path describes a typical location for a user document, located in a nested folder. Each OS uses a
different character to represent a directory: \, /, or :. Make sure your application does not make
assumptions about which of these characters to use, but rather relies on the value returned by the
system specific to that platform:

System.getProperty("file.separator");
System.getProperty("path.separator");

The file.separator is the system property containing the character (or characters) that delimits file and
directory names. This character is usually / or \. The path.separator is the character used to separate
path entries on a single line (such as multiple entries in the system's classpath).

Generally, either you will have a base directory and need to construct paths relative to this directory,
or you will work with user-specified files and use standard file dialogs.

6.5.1 Class Loader Issues

When writing Java applications, it's common to write code that contains a reference to a platform-
specific class and then dynamically load that class. Consider the following pseudo-code snippet:

if(ismacos)
{
 com.apple.system.Utility myAppleClass= new Utility();
 myAppleClass.beep();
} else
{
 doSomething;
}

In the case above, even if the code is run on Windows (and therefore the ismacos variable never
evaluates to true), the com.apple.system.Utility class will still be loaded by reference by the class
loader, which in turn will throw a ClassDefNotFound or similar exception. At compile time, this action
will create errors and can be caught and dealt with. However, developing on a system where the
dynamically loaded class is present can be worse—in this case, compilation succeeds, and it isn't until
the application is run on a different platform that errors occur. The result, unsurprisingly, is often an
unhappy user.

One way to solve this problem is to place platform-specific code into another set of classes and then
load them dynamically. There are a couple of strategies for dealing with this, depending on the range
and scope of the classes to be loaded dynamically.

One strategy is simply to load a single class by name, construct method references, and then call that
class as needed. Consider the following code snippet:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Class myClass = null;
try
{
 myClass = Class.forName("java.lang.String");
 java.lang.reflect.Method myMethod = myClass.getMethod("length", null);
 Object myString = myClass.getConstructor(null).newInstance(null);
 Object myResult = myMethod.invoke(myString, null);
 System.out.println(myResult);
} catch (Exception e)
{
 e.printStackTrace();
}
if(myClass == null)
 System.out.println("java.lang.String unavailable!");

Since there is no explicit reference to the class java.lang.String, if java.lang.String were unavailable,
the application would merely report the exception and continue. Obviously, building the references to
the various methods manually (not to mention the laboriousness of building the parameter lists) can
become oppressive with this method. Therefore, you may wish to cast dynamically loaded objects to a
specific, required interface, as the following code snippet (taken from Chapter 4) shows:

Class myClass = Class.forName(argsconfig[i]);
SimpleEditPlugin myPlugin =
 (SimpleEditPlugin)myClass.getConstructor(null).newInstance(null);
...
// Call methods from the SimpleEditPlugin interface on myPlugin as you wish.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.6 Testing Cross-Platform Compatibility

The most reliable way to ensure that your application runs on another platform is to test it out—run
your code on as many platforms as possible before releasing it or considering the development
complete. Testing compatibility will reveal some of your most obvious problems, such as GUI
elements that don't display correctly. That said, some specific areas of your application should be
tested rigorously.

6.6.1 File I/O

Make sure your application can read and write files correctly. If the platform supports path or file
names with spaces (such as on Mac OS X), see if your application handles this task correctly. Also,
find out how the application handles high-bit characters (for example, ™, ä, ê, and ó).

6.6.2 Preference and Resource Files

You'd be surprised how often you'll see a hardcoded reference to a path in a Java application. Try
opening the preferences dialog, changing and saving preferences, and quitting and reopening the
application. If you use JDK 1.4's Preferences API, be aware that preferences are not guaranteed to
migrate across platforms (or even different systems running the same platform). If migration is a
requirement, you might want to consider a different preferences mechanism. If you're using ordinary
Java property files, remember that they are saved to disk as 7-bit text files, and users who try to edit
them manually might encounter difficulties with high-bit characters.

Instead, rely on JAR files to contain resources and values returned from standard file dialogs. For
more information on packaging applications with relative links and storing resources in JAR files,
consult Chapter 7 and Chapter 8.

6.6.3 Native Code

When building cross-platform applications, anything that interacts with native or platform-specific
code is obviously at risk. If you've written native code, you're probably breaking portability, but if
your application should still function on a pure Java environment, make sure it does. Add checks to
your code to verify that classes that rely on native code can actually be loaded (fortunately, you can
use the same dynamic class loading techniques described above).

If at all possible, try to build a version of your application that still runs (perhaps with limited
functionality) in a so-called "pure" Java environment. To test this application, remove the native
library from the JVM search path and try to launch the application. Depending on the application, you
may wish to display a dialog to the user indicating that some functionality is not available on this
platform, or simply note the reduced functionality in a log. You might also want to include a
mechanism for users to report their desired platform so you can get a sense of the demand for your
application on that environment.

6.6.4 Native GUI Elements

Besides the guidelines and suggestions described in Chapter 4 and Chapter 5, test the various
"Minimize" and "Maximize" controls and other native user interface elements. On Mac OS X, this will
require testing the application's behavior for the red, yellow, and green buttons in various
combinations. You'll also want to test the application's response to messages sent from the Dock and
various system events (for example, if a user tries to shut down). You should duplicate these tests on
other supported platforms as well.

6.6.5 Threading

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If your application uses threads extensively, stress-test it on different platforms to see if you can
force deadlocks or other issues to appear. For example, if your application is a multithreaded GUI FTP
client, try to initiate as many downloads as possible. If it's a web application, use a web testing tool
such as Apache Jakarta's JMeter (http://jakarta.apache.org/jmeter).

If your application allows user-controlled thread generation, you may wish to provide more graceful
handling of thread generation control than merely allowing the user to continue creating threads until
the JVM fails. For example, you may wish to limit the number of simultaneous downloads in your FTP
client to a maximum of ten. Unfortunately, it's almost impossible to determine in advance the specific
number of threads that will result in failure. Some applications, such as web servers, let users control
the maximum number of threads that may be created via a preference (defaulting to a fairly
conservative value), and if your system administrator intends to make your application highly tunable,
you may wish to offer a similar option.
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.7 For More Information

Cross-platform application development is a rich and interesting field, and generally, your application
will be more robust if you test it on several different platforms. This chapter discussed the possibility
of targeting multiple platforms, but you might work on a team that also develops on multiple
platforms; in this case, you'll probably want to verify that your version-control systems and
development tools are configured properly. The issues involved are generally similar to those
described above—in particular, you might need to consider file encodings. To better understand this
topic, consider reading Crossing Platforms: A Macintosh/Windows Phrasebook (A Dictionary for
Strangers in a Strange Land), by Adam Engst and David Pogue (O'Reilly).
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 7. Standalone Applications

Even if you manage to nail all aspects of cross-platform programming and write a great application,
you can still create a horrendous user experience through poor application packaging. The delivery of
an application, its installation, and even the way it is launched affect what a user thinks about an
application. You'll want to spend as much time packaging up your application as you do tweaking
control and font sizes, editing line separators, and monitoring threads in your code.

When actually packaging and delivering an application experience to an end user, several different
options are available to developers on the Java platform. However, when boiled down to their basic
states, there are really just two categories of application delivery:

Standalone applications

These applications are installed and run completely on the end user's physical machine. The
user buys a CD, runs an installation program, and buys new software to perform an upgrade.
Typical examples are word processors, spreadsheets, music players, and anything else you
might buy in a box at your local computer store.

Web-delivered applications

Web-delivered applications may run on a user's machine, but are installed from an online web
site. They are often more volatile in nature, releasing upgrades (also installed from a web site)
every few months, if not every few weeks. All the updates installed via the Mac OS X System
Preferences control panel are web delivered.

This chapter looks at the first of these two categories and details Mac OS X support for standalone
applications. The next chapter explores web-delivered applications. You'll understand how both are
options on a Mac OS X platform, as well as how to package and deliver each.
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

7.1 Packaging

The first issue you must consider when dealing with a standalone application is its packaging. End
users are used to loading a CD, installing a program, and then clicking an icon that launches the
application. These users of desktop software typically don't want to deal with lots of configuration files
and subdirectories, or with components of an application scattered all over a hard drive. Developers,
however, need to be able to create applications with some degree of sophistication, which often
means including a large number of files in a single distribution of an application. Trying to balance
these conflicting desires is the first goal in application packaging.

7.1.1 Packaging on Windows

The latest versions of Java support a more or less cross-platform approach through the Java JAR
mechanism, whereby JAR files are launched by an application distributed as part of the JDK. On
Windows, this application is called javaw, and is also used to launch Java applications for which one
does not want a DOS terminal to appear.

The "double-clickable JAR" approach lacks sophistication, however. For example, it has no support for
defining an icon, for binding the application to specific documents, or other application packaging
details. These deficiencies lead to a less than stellar user experience.

7.1.2 Packaging on Mac OS X

Native Mac OS X applications, on the other hand, use a specific application packaging format for
delivering desktop applications. At the core of this format, the base desktop navigation user interface
(the Finder) maintains the illusion that directories with specific names or settings should be treated as
applications. There are no fancy resource forks to be dealt with, and generally, application directory
packages can be copied across foreign filesystems without damage.

This chapter looks at how to build double-clickable applications and how to create Mac OS X directory
packages.
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

7.2 JAR Files

Virtually all delivery mechanisms for Java applications depend on packaging the .class files created
from your .java source files into one or more Java Archive (JAR) files. Think of a JAR file as a special
sort of ZIP archive, with a very specific set of expected characteristics and layout. You can use the jar
tool included with the JDK, an Ant task, or the specific capabilities of your preferred Java development
environment to create a JAR file.

The standard way to create a JAR file, of course, is to use the command-line jar command included
with Mac OS X's JDK. Open the Terminal, type jar, and a list of options will appear:

Usage: jar {ctxu}[vfm0M] [jar-file] [manifest-file] [-C dir] files ...
Options:
 -c create new archive
 -t list table of contents for archive
 -x extract named (or all) files from archive
 -u update existing archive
 -v generate verbose output on standard output
 -f specify archive file name
 -m include manifest information from specified manifest file
 -0 store only; use no ZIP compression
 -M do not create a manifest file for the entries
 -i generate index information for the specified jar files
 -C change to the specified directory and include the following file
If any file is a directory then it is processed recursively.
The manifest file name and the archive file name needs to be specified
in the same order the 'm' and 'f' flags are specified.

Example 1: to archive two class files into an archive called classes.jar:
 jar cvf classes.jar Foo.class Bar.class
Example 2: use an existing manifest file 'mymanifest' and archive all the
 files in the foo/ directory into 'classes.jar':
 jar cvfm classes.jar mymanifest -C foo/ .

7.2.1 Creating a JAR File

If you work with the source for the SimpleEdit application presented in Chapter 4, you should have it
organized as shown in Figure 7-1.

Figure 7-1. SimpleEdit source tree

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Let's package the core SimpleEdit files into a single JAR, which you will make double-clickable (and
therefore executable by an end user). Suppose that you have compiled the source files already, either
using javac, Ant, or an IDE.

To make the JAR double-clickable, you'll need a manifest file to specify the main class in the JAR.
Create a text file called manifest.mf with contents as shown in Example 7-1. Save this file inside the
src directory of your application folder. Note that this manifest.mf file is very particular about the
carriage return sequence used (see Chapter 6 for more information about carriage returns). You may
wish to use the Terminal's more command to display your manifest.mf file—if you see any ^M
characters in it using that command or when viewing the file with vi or emacs, you've got a problem.

Example 7-1. A simple manifest file

Main-Class:com/wiverson/macosbook/SimpleEdit

This scenario is pretty self-explanatory: the manifest file will instruct Java on the class to launch when
the JAR it is included within is double-clicked. You can specify any Java class as the main class, but
make sure that it's a class that actually has a main() method, or you'll encounter errors when
distributing your application.

Open the Terminal and use the cd and pwd commands to navigate to the src directory. In this
directory, type the JAR command as shown:

jar cvfm SimpleEdit.jar manifest.mf ./com/wiverson/macosbook/*.class
 ./com/wiverson/macosbook/plugin/*.class

After entering this command and pressing return, you should see something similar to the following
output:

added manifest
adding: com/wiverson/macosbook/SimpleApplet$1.class(in = 770) (out=
425)(deflated 44%)
adding: com/wiverson/macosbook/SimpleApplet.class(in = 909) (out=
527)(deflated 42%)
adding: com/wiverson/macosbook/SimpleEdit$1.class(in = 1187) (out=
625)(deflated 47%)
adding: com/wiverson/macosbook/SimpleEdit.class(in = 11062) (out=
5521)(deflated 50%)
adding: com/wiverson/macosbook/SimpleEditPlugin.class(in = 323) (out=
206)(deflated 36%)

... omitted for space...

adding: com/wiverson/macosbook/plugin/QuitConfirmJDialog.class(in = 4367)
(out= 1917)(deflated 56%)
adding: com/wiverson/macosbook/plugin/SystemPropsPlugin.class(in = 1827)
(out= 892)(deflated 51%)

7.2.2 Launching the JAR File

If all goes well, double-clicking on the generated JAR file will automatically launch the SimpleEdit
application. This JAR file can be moved to other platforms, and users of JDK 1.2 or later should be
able to move it as well.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Even if you distribute the JAR file by using another mechanism (for example,
as part of an application bundle, delivered as a web applet, or as a Web Start
application), it's often useful to deliver the JAR file with a Main-Class specified
in a manifest file for development and testing purposes.

Applications launched as double-clickable JARs will use the most recent Mac
OS X JDK installed (either JDK 1.3.1 or JDK 1.4.1). If you distribute your
application in this manner, you should therefore test it on both JVMs. If you
wish to force JDK 1.3.1 or require JDK 1.4.1, you should use an application
bundle, as described in the next section.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

7.3 Application Bundles

Native Mac OS X applications are delivered in packages known as application bundles. These packages
contain the application's executable code, images, sounds, icons, localizable strings, and other
resources. An application, as shown in the Finder, is actually just a specific directory structure with a
few additional attributes.

These application bundles are displayed in the Finder with a simple name (for example, TextEdit).
Users can double-click on these application names, complete with colorful icons, and the system
automatically launches the application. Alternatively, users can drop documents on the application,
and the launched application will attempt to open the selected document.

For a developer, however, an application bundle is a directory with an .app suffix and a specific
internal file structure. You can explore these bundles on your system from the Finder by Control-
clicking on an application and selecting "Show Package Contents," as shown in Figure 7-2.

Figure 7-2. Opening an application package

7.3.1 Layout of an Application Bundle

Once you peel back the layers of an application bundle, you'll find quite a few directories, each with
several files. Figure 7-3 shows the structure of a typical application bundle for a Java application (in
this case, the open source Java application PCGen; for more information on PCGen, visit
http://sourceforge.net/projects/pcgen/).

Figure 7-3. Sample application bundle

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you installed NetBeans according to the instructions in Chapter 2, you saw
another example of an application bundle.

The Info.plist file in the Contents folder is probably the most significant element of any Mac OS X
application. For Java applications, this file is used to specify information for the JVM execution of the
application.

Icons for the Mac OS X Finder are placed in the Resources folder. The preferred format is the
proprietary Mac OS X file type designated by the .icns suffix, as this file type includes support for
different bit depths and icon sizes in a single file. Use the Icon Composer application installed in
/Developer/Applications to create icon files, or investigate online for freeware and shareware tools
that accomplish the same task.

Your Java code, in either JAR or class files, is put into Resources/Java. A native executable file in the
MacOS folder launches the appropriate classes. This native stub library, referenced by the Info.plist
file, is the component that actually launches the application.

While understanding all of these steps is useful (especially in an automated build environment), a
couple of different tools allow you to set up and work with application bundles without having to work
through these details manually. One tool, MRJAppBuilder, is included with Apple's tool set. This
chapter covers this tool in more detail later.

7.3.2 Property List Attributes for Java Applications

Before digging into specific tools, though, you need to understand the Info.plist file that keeps coming
up. In fact, by browsing through applications and various configuration directories on Mac OS X, you'll
notice the frequent use of XML files with a .plist extension. These files are called property lists, and
can be edited easily with the bundled Mac OS X Property List Editor (as shown in Figure 7-4).

Figure 7-4. Mac OS X Property List Editor

The Info.plist file in a Mac OS X application's Contents folder is no different from these other property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Info.plist file in a Mac OS X application's Contents folder is no different from these other property
lists. While you can use tools to generate these files, try to understand what was created for you and
how to modify the auto-generated files.

Since the various .plist files are in XML, you can modify them with any text
editor. The Property List Editor is generally a better option, though, as it
ensures that you maintain well-formed XML.

Example 7-2 shows an example property list for the SimpleEdit application created in Chapter 4.

Example 7-2. Info.plist for SimpleEdit

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
 "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>CFBundleDevelopmentRegion</key>
 <string>English</string>
 <key>CFBundleDocumentTypes</key>
 <array>
 <dict>
 <key>CFBundleTypeExtensions</key>
 <array>
 <string>text</string>
 <string>txt</string>
 <string>*</string>
 </array>
 <key>CFBundleTypeMIMETypes</key>
 <array>
 <string>text/plain</string>
 </array>
 <key>CFBundleTypeName</key>
 <string>Text File</string>
 <key>CFBundleTypeOSTypes</key>
 <array>
 <string>****</string>
 </array>
 <key>CFBundleTypeRole</key>
 <string>Editor</string>
 </dict>
 </array>
 <key>CFBundleExecutable</key>
 <string>SimpleEdit</string>
 <key>CFBundleIconFile</key>
 <string>JavaApp.icns</string>
 <key>CFBundleInfoDictionaryVersion</key>
 <string>6.0</string>
 <key>CFBundlePackageType</key>
 <string>APPL</string>
 <key>CFBundleSignature</key>
 <string>????</string>
 <key>CFBundleVersion</key>
 <string>0.1</string>
 <key>Java</key>
 <dict>
 <key>Arguments</key>
 <string>com.wiverson.macosbook.plugin.AquaPLAFPlugin
com.wiverson.plugin.BeepPlugin
com.wiverson.macosbook.plugin.FinderIntegrationPlugin

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

com.wiverson.macosbook.plugin.FinderIntegrationPlugin
com.wiverson.macosbook.plugin.SystemPropsPlugin</string>
 <key>ClassPath</key>
 <string>$JAVAROOT/SimpleEdit.jar</string>
 <key>MainClass</key>
 <string>com.wiverson.macosbook.SimpleEdit</string>
 <key>Properties</key>
 <dict>
 <key>com.apple.macos.use-file-dialog-packages</key>
 <string>true</string>
 <key>com.apple.macos.useScreenMenuBar</key>
 <string>true</string>
 <key>com.apple.macos.useSmallTabs</key>
 <string>true</string>

 <key>com.apple.mrj.application.apple.menu.about.name</key>
 <string>SimpleEdit</string>
 </dict>
 </dict>
</dict>
</plist>

7.3.2.1 About dictionaries

This property list is divided into hierarchical dictionaries. The top-level dictionary contains the
information that the operating system needs to launch the application. The keys in this section are
prefixed by CFBundle and are more or less self-explanatory. One exception is CFBundleDocumentTypes
, which tells the system that this particular application will open any file as a text document by
default. Identifying files in this manner lets users drag and drop files on your application's icon, either
in the Finder or the Dock. You'll want to create a new file type and extension if you want to handle
custom data file types. Finally, you should set the proper options for the Java dictionary.

7.3.2.2 CFBundle dictionary keys

Per Apple's documentation (installed at
/Developer/Documentation/Essentials/SystemOverview/PropertyListKeys/Bundle_Keys.html), the keys
in Table 7-1 are used to build Java applications. The comments shown below are based on Apple's
documentation. Keys not used by Java applications have been omitted.

Table 7-1. CFBundle dictionary keys
Key Type Required Summary

CFBundleDevelopmentRegion String No The native region for the bundle. Usually corresponds
to the author's native language.

CFBundleDisplayName String No The bundle's localized display name.

CFBundleDocumentTypes Array No
An array of dictionaries describing the document
types supported by the bundle. For more information,
see the next section.

CFBundleExecutable String Yes Name of the bundle's executable file.

CFBundleGetInfoHTML String No A string for displaying richer (HTML) content in the
Finder's "Get Info" panel.

CFBundleGetInfoString String No A string for display in the Finder's "Get Info" panel.
CFBundleIconFile String Yes The filename for an icon image file.

CFBundleIdentifier String Yes
A unique identifier string for the bundle. This string
should be in the form of a Java package name, such
as com.apple.myapp.

CFBundleInfoDictionaryVersion String Yes Version information for the Info.plist format.

CFBundleName String Yes The short display name of the bundle. Should be less
than 16 characters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CFBundlePackageType String Yes
The four-letter code identifying the bundle type. For
applications (including Java applications) you should
set this value to "AAPL".

CFBundleShortVersionString String Yes The marketing-style version string for the bundle
CFBundleSignature String Yes The four-letter code identifying the bundlecreator.
CFBundleVersion String Yes The executable's build number.

7.3.2.3 CFBundleDocumentTypes dictionary keys

Per Apple's documentation (installed at
/Developer/Documentation/Essentials/SystemOverview/PropertyListKeys/Bundle_Keys.html), the keys
in Table 7-2 describe the kinds of documents that your application supports.

Table 7-2. CFBundleDocumentTypes dictionary keys
Key Type Description

CFBundleTypeExtensions Array
This key contains an array of filename extensions that map to this
type. To open documents with any extension, specify an extension
with a single asterisk (*). This key is required.

CFBundleTypeIconFile String

This key specifies the name of the icon file to be used when displaying
documents of this type. The icon filename can have an extension or
be without one. If it is without an extension, the system appends an
extension appropriate to the platform (for example, .icns in Mac OS
9).

CFBundleTypeName String

This key contains the abstract name for the document type and is
used to refer to the type. This key is required and can be localized by
including it in the corresponding InfoPlist.strings files. This value is
the main way to refer to a type, and it is recommended that you use
a Java-style package identifier to ensure its uniqueness. If the type is
a common Clipboard type supported by the system, you can use one
of the standard types listed in the NSPasteboard class description.

CFBundleTypeOSTypes Array
This key contains an array of four-letter type codes that map to this
type. To open documents of any type, specify the four-letter type
code `****'. This key is required.

CFBundleTypeRole String
This key specifies the application's role with respect to the type. The
value can be Editor, Viewer, Printer, Shell, or None. This key is
required.

Generally, most Mac OS X Java applications work with document types based on file extension (as
opposed to the four-letter creator codes), as file extensions survive cross-platform exchange.
Therefore, to support a launch of your application types, register the file extensions that your
application supports (for example, .txt, .gif, .jpg, and .jpeg). It's usually best to err on the side of
supporting a larger variety of document file extensions and file types for the purposes of receiving
Finder notifications (relying on the wildcard options above). Then you should perform error checking
on the data files from within your application.

For more information on how your Java application is notified of opening
files, see Chapter 5.

7.3.2.4 Java dictionary keys

At the end of the CFBundle keys, a Java key designates the beginning of the Java dictionary. Two top-
level keys in the Java dictionary are required in the property list of a Java application bundle:

MainClass

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This key value should be set to the fully qualified class name of the application's main entry
method. The value of this key can be retrieved at runtime by querying the
com.apple.mrj.application.main system property.

ClassPath

This key lets you set the classpath for your application. The string value for this key should
specify the fully qualified path to the directories where your class files are, or to your JAR files.
You'll note the use of the $JAVAROOT variable to point to the Resources/Java directory. If your
application bundles third-party JAR files, you'll want to include them here and reference them
with the $JAVAROOT variable. You can discover this value by querying the
com.apple.mrj.application.classpath system property.

In addition to these required keys, you may wish to specify additional keys in the Java dictionary:

Arguments

This value is tokenized into a String array, and passed into the application's main() method.
This can be a convenient way to package applications that expect specific command-line
arguments. This value can be introspected through the com.apple.mrj.application.parameters
system property.

WorkingDirectory

When an application is launched, this key sets the working directory. By default, the current
working directory is set to the application bundle's parent directory. You can use the
$APP_PACKAGE variable to refer to the root of the application bundle. The value of this key is
available via introspection through the com.apple.mrj.application.workingdirectory system
property.

You may prefer to use the standard Java APIs for determining the
user's home and working directory. This has the added flexibility of
adapting to changes the user makes to the working directory while the
application is running.

VMOptions

The space-delimited value of the VMOptions key can set the JVM options normally referred to
by the -X and -XX options. The typical use of this key is to set the minimum and maximum
heap size for the JVM launching the application. Your application can read this value by looking
at the com.apple.mrj.application.vm.options system property.

JVMVersion

This can be used to specify either a specific version of the JVM to use (e.g., "1.3.1" or "1.4.1")
or the latest version in a series (e.g., "1.3+" or "1.4+"). Note that even if the user has installed
JDK 1.4.1, your application will default to the latest JDK 1.3 JVM.

This means that if you are building an application that requires JDK 1.4.1 or
later, be sure to include the JVMVersion key!

7.3.2.5 The Properties dictionary

The keys in the Properties dictionary include both Mac OS X-specific options and general Java options.
Mac OS X-specific keys and values that you may add to this dictionary of the property list include:

com.apple.hwaccel

This property defaults to true. It turns on hardware graphics acceleration for the video cards
not commented out of the /Library/Java/Home/lib/hwexclude.properties file. If it is set to false,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

not commented out of the /Library/Java/Home/lib/hwexclude.properties file. If it is set to false,
hardware acceleration is turned off. You can use it in conjunction with the
com.apple.hwaccelexclude property.

com.apple.hwexclude

This property defaults to none. When specific video card designation strings are passed in with
this property, hardware graphics acceleration is not turned on for the specified video cards.
When this property is set, /Library/Java/Home/lib/hwexclude.properties is ignored.

This property is useful when you know that specific video cards
(hopefully just one or two) cause problems with your application when
hardware acceleration is turned on. You are testing for this, right?

com.apple.macos.use-file-dialog-packages

This property defaults to false. When set to true, it causes java.awt.FileDialog to show
application packages (with both .app and .pkg extensions) as if they were files, prohibiting the
user from selecting specific files inside the application bundle. This option is not available for
use on JDK 1.4.1.

com.apple.macos.useScreenMenuBar

This property defaults to false. Setting it to true causes Swing menus that use the Aqua look
and feel to appear in the global application menu bar at the top of the screen (instead of inside
the window). This is the proper behavior for Mac OS X applications, but may require some
testing before your application supports it properly. Note that JMenuBars in JDialogs are not
moved to the Mac OS X menu bar. Under JDK 1.4.1, use apple.laf.useScreenMenuBar instead.
Note that you can include both properties with no ill effects.

com.apple.macos.smallTabs

This property is not defined by default. If defined and set to true, tab controls in Swing
applications more closely resemble the Metal look and feel (which can be very helpful if your
application expects smaller tabs). If the property is set to false, the tabs assume a larger size
that is similar to the default Aqua controls. This option is not available for use on JDK 1.4.1.

com.apple.macosx.AntiAliasedTextOn

This property defaults to true. When rendering text, it tells the application to use anti-aliasing.
Occasionally you might want to switch this value to false. If your application draws text to the
same location twice, it can look blurry, as each application of the text to the screen is
incrementally darker. Conversely, if your application expects to erase text by drawing the
background color over previously rendered text, anti-aliasing artifacts can be left over. Under
JDK 1.4.1, use apple.awt.textantialiasing instead (as described in the next section). Note that
you can include both properties with no ill effects.

com.apple.macosx.AntiAliasedGraphicsOn

This property also defaults to true. Like the potential issues around anti-aliased text, the
default Mac OS X rendering of graphics can lead to blurry graphics. You may see a small
performance increase by setting this property to false.

com.apple.mrj.application.apple.menu.about.name

If defined, this property adds an "About" command to the top of the application menu. Your
application can be notified when the user selects this menu item by registering a
com.apple.mrj.AboutHandler, as described in Chapter 5.

com.apple.mrj.application.growbox.intrudes

This property defaults to true and causes a growbox (a resizing control) to intrude into AWT
frames. For certain applications, this growbox can obscure other important GUI features, such
as scrollbars. If turned off (by setting the value to false), the bottom of the window is pushed
down 15 pixels. Setting this value to false is appropriate only as an intermediate stopgap—you

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

down 15 pixels. Setting this value to false is appropriate only as an intermediate stopgap—you
are strongly encouraged to rework your application's user interface so the growbox control
looks natural and doesn't block other important controls. Under JDK 1.4.1, use
apple.awt.showGrowBox instead. Note that you can include both properties with no ill effects.

com.apple.mrj.application.live-resize

This property defaults to false, but setting it to true enables live resizing of windows. You
should test this property on a variety of machines (and perhaps make it a user-configurable
preference), as the performance of live window resizing for your application can vary
dramatically between different systems and JVMs. This option is not available for use on JDK
1.4.1.

apple.awt.brushMetalLook

Allows you to specify that your main application window should use the brushed Metal
appearance, similar to that used by Apple applications such as iTunes and Safari. This is set to
false by default. It is available only on JDK 1.4.1.

7.3.2.6 JDK 1.4.1 rendering

JDK 1.4.1 introduces more sophisticated control over rendering via Java 2D. For more information on
Java 2D, examine the standard Java documentation on java.awt.Graphics2D . In the section below,
references are made to various rendering hints via settings such as KEY_ANTIALIASING and
KEY_TEXT_ANTIALIASING—these are references to the Java 2D APIs.

The following properties are available only when using JDK 1.4.1 or a later JVM.

apple.awt.antialiasing

Specifies that standard graphic primitives (such as line, arc, rectangle, etc.) are drawn anti-
aliased. By default, text will also take this setting, but you can override that using
apple.awt.textantialiasing. You can override this setting via the KEY_ANTIALIASING rendering
hint for specific objects. By default this is set to false for Metal applications, and to true for
Aqua applications. Even if it is set to false, standard Aqua user interface components will still
be drawn anti-aliased.

apple.awt.textantialiasing

Sets the default Java 2D rendering hint for KEY_TEXT_ANTIALIASING. Although this inherits the
same setting as apple.awt.antialiasing, you can override that setting explicitly. The default value
is false unless you are using the Aqua look and feel.

apple.awt.rendering

Determines whether Graphics 2D objects prioritize speed or quality. It sets the Java 2D hint
KEY_RENDERING so that it accepts either VALUE_RENDER_SPEED or VALUE_RENDER_QUALITY
as an argument.

apple.awt.interpolation

Allows you to set the Java 2D KEY_INTERPOLATION rendering hint to determine which
algorithm is used in image transformations. Options include
VALUE_INTERPOLATION_NEAREST_NEIGHBOR, VALUE_INTERPOLATION_BILINEAR, and
VALUE_NTERPOLATION_BICUBIC.

apple.awt.fractionalmetrics

Allows you to specify that the Java 2D KEY_FRACTIONALMETRICS hint should use floating-point
font metrics instead of the default integer metrics. Options include
VALUE_FRACTIONALMETRICS_ON and VALUE_FRACTIONALMETRICS_OFF.

7.3.2.7 JDK 1.4 full screen display

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

JDK 1.4 introduces the ability to run your application in "full screen" mode, where the application
takes over the entire screen, hiding default user interface elements such as the menu bar. This can be
particularly useful for such applications as kiosk displays and games.

apple.awt.fakefullscreen

This flag causes full screen applications to be displayed in a window. You may wish to make
this a user preference, or use it to assist with debugging. The default value is false.

apple.awt.fullscreencapturealldisplays

When you have multiple displays, entering full screen mode darkens any secondary screens
that might be attached to the system. Setting this to false overrides this default behavior so
that secondary screens are not darkened (allowing you to still see the content displayed, such
as debugging output or logs). The default value is true.

apple.awt.fullscreenhidecursor

Hides the mouse cursor when in full screen mode. Many entertainment applications, such as
games, may wish to hide the mouse. The default value is true.

apple.awt.fullscreenusefade

Mac OS X automatically provides a "fade" effect when changing screen resolutions. You may
find it more aesthetically pleasing to see this fade effect whenever you switch to full screen
mode, even if you don't initiate a resolution change. To do this, set this property to true
instead of the default value of false.

7.3.2.8 JDK 1.4 window positioning

In the JDK 1.4 release, Apple provides additional functionality to assist with window positioning. This
is particularly useful for when you store the current window position, and the user changes the screen
to a smaller resolution—the window may no longer appear on screen! This functionality is controlled
via the following properties:

apple.awt.window.position.forceSafeCreation

New windows are always created on screen, not outside the desktop where users would not be
able to access them. The default value is false.

apple.awt.window.position.forceSafeUserPositioning

This option disallows users from moving windows into a position where they would no longer be
able to access them. The default value is false.

You can test any of these options from the command line by using the -D option to the java command.
For example, if you want to run an application with standard Aqua menu styles and the name
"SimpleEdit", you could pass in two keys, com.apple.macos.usescreenmenubar and
com.apple.mrj.application.apple.menu.about.name, as shown here:

java -Dcom.apple.macos.useScreenMenuBar=true
 -Dcom.apple.mrj.application.apple.menu.about.name=SimpleEdit
 com.wiverson.macosbook.SimpleEdit

If you get the results that you expect, you can then add these two properties into your Properties
dictionary in the Info.plist file. Using the -D option allows you to test options quickly before editing
your property lists.

7.3.3 Why Use Application Bundles?

Using double-clickable JAR files is easy, so why bother with application bundles? Bundles require a lot
of properties to be set, and it takes time to get used to property lists. However, you can benefit from
packaging your application as a Mac OS X application bundle:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The application launches on a double-click (as a JAR file would).

The application becomes a single, self-contained structure that is portable across different
filesystems.

You can optionally specify a custom icon to appear in the Dock and the Finder.

You can set specific system properties to more closely emulate the behavior of a native
application.

You can bind specific document types to the application. The Finder keeps track of which
applications can open which documents and document types, which lets users double-click on a
document in the Finder to open your application, drag and drop a document on your
application, or use the "Open With" command in the Finder.

To take full advantage of document type bindings, implement the
document event handlers in your application as described in Chapter 5.

You can set specific configuration and runtime details that would otherwise require the user to
enter a complex command-line command (such as memory configuration or default file
encoding).

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

7.4 Building an Application from Scratch

This section builds a Mac OS X application from scratch. It will start with the base SimpleEdit JAR file
that was built in Chapter 4 and Chapter 5, and then add the necessary elements to convert it to a full
Mac OS X application bundle. It will build out the directory structure shown in Figure 7-5; you might
want to refer to this figure as you walk through this example.

Figure 7-5. Minimal directory structure

7.4.1 Directory Layout

Create a new folder called SimpleEdit in your home directory (~) by using the Finder. Add a folder
inside this new directory called Contents. This is where you'll add the Info.plist file. Next, create a
MacOS folder (no space) inside the Contents directory. Here, add a "stub" file that acts as a native
launcher stub for the application.

Create a Resources folder inside Contents. This is where you will add an icns file, an icon that will be
displayed in the Finder and standard file dialogs. Finally, add a Java directory to the Resources folder.
This is where you'll put the required Java libraries (JAR files).

7.4.2 Property List

Directly inside the Contents folder, add an Info.plist file with the contents shown back in Example 7-2.

Several of the properties are already set, including the main class and some
arguments passed in to load SimpleEdit plug-ins (specifically, the SimpleEdit
plug-ins developed in Chapter 9). Understanding this point will help you
understand how plug-ins affect your property lists. If you don't want to jump
to Chapter 9, you can always comment out these portions of the file.

Once you have a base Info.plist file, use the Property List Editor to make any necessary additions or
changes.

7.4.3 Launcher Stub

To launch your application, you'll need a small native stub file. Copy the file JavaApplicationStub from
the directory /System/Library/Frameworks/JavaVM.framework/Versions/A/Resources/MacOS. You can
rename this stub whatever you want, as long as the stub file matches the entry for
CFBundleExecutable in Info.plist. A new stub is included with each JVM release from Apple, and you'll
generally want to use the latest available stub.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.4.4 Application Icon

In the Resources folder inside Contents, add an icns file (a Mac OS X icon file). For development
purposes, you can borrow an icon file from another application to test, but you should eventually use
the IconComposer tool (shown in Figure 7-6) to create attractive icons. You can find IconComposer in
/Developer/Applications/.

Figure 7-6. IconComposer

It's also worth pointing out that the photorealistic icons used by Mac OS X are sometimes best created
in a commercial application and then imported into IconComposer. Specifically, Adobe Photoshop does
an excellent job of creating an application icon, including generating transparency masks, and
IconComposer will import Photoshop's PSD files.

7.4.5 Java Libraries

Obviously, you need to add your Java application code to the package. Copy the SimpleEdit.jar file
into the Java directory inside the Resources folder. If you were building an application that relied on
several other Java libraries, you'd want to place those libraries here as well, and update the Info.plist
classpath entry (using the $JAVAROOT/ directive to indicate this relative, dynamic path).

7.4.6 Finder Recognition

Finally, rename the base directory from SimpleEdit as SimpleEdit.app. The Finder will automatically
recognize the new folder name and display the folder as an application (hiding the .app extension,
even if the Finder preferences are set to always show file extensions).

You can now use the Finder to drag and drop files on the application's icon. Assuming you've added
the Finder "Open" file handlers (as described in Chapter 5), you'll also be able to open files by using
standard features such as the Finder's "Open With" command (as shown in Figure 7-7). The default
handler in Chapter 5 displays a dialog showing the path of the file shown in Figure 7-8. Depending on
your application, you'll probably want to use the passed-in path to open the file and read the data by
using standard Java file I/O APIs.

Figure 7-7. Open With command

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 7-7. Open With command

Figure 7-8. SimpleEdit "Open File" notification

Congratulations! You've now built a complete Mac OS X application.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

7.5 MRJAppBuilder

MRJAppBuilder is a utility that packages already-compiled Java applications to run as Mac OS X
applications. When you first convert your application to Mac OS X, it may be useful to create a
skeleton application with MRJAppBuilder rather than creating one from scratch, as described in the
last section. However, MRJAppBuilder has a serious limitation—once you've used the utility to
generate your application wrapper and quit MRJAppBuilder, you'll have to make changes by hand or
re-enter everything.

JDK 1.4.1 includes a very similar replacement to MRJAppBuilder called "Jar
Bundler." The steps for using Jar Bundler are very similar to those for
MRJAppBuilder.

MRJAppBuilder can be found in your /Developer/Applications directory. When you launch the
application, you'll see the interface shown in Figure 7-9.

Figure 7-9. MRJAppBuilder main properties

Technically, the information in the "Application" pane is all you need to make a Mac OS X application.
All three fields are required. The "Main classname" field lets you specify the fully qualified class that
contains the main() method you want executed on application startup. This field represents the value
of the property com.apple.mrj.application.main (in effect, it sets the MainClass key). Whatever JAR file
you select when you follow the dialog is added to the "Classpath" field automatically.

If you want to use JAR or class files that will not be included in the resulting application bundle, add
the following classpath entry:

$APP_PACKAGE/../SimpleEdit.jar

$APP_PACKAGE is a special path string that represents the application bundle directory.

The last required field is the "Output file" field. This specifies the directory where the resulting
application bundle will be built. You can also set the application icon in this pane, which is optional
(but recommended). Click the icon in the "Output file" section to bring up a file chooser dialog for
selecting an .icns file.

Settings in the "Mac OS X," "Java Properties," and "Merge Files" panes are all optional. The "Mac OS
X" pane, shown in Figure 7-10, lets you set values specific to the Mac OS X application bundle format.
If you do not specify CFBundleExecutable or CFBundleName, they are set based on the name of the
output file you choose.

Figure 7-10. MRJAppBuilder application properties

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 7-10. MRJAppBuilder application properties

The "Java Properties" pane, shown in Figure 7-11, lets you set specific runtime properties as
described earlier in this chapter.

Figure 7-11. MRJAppBuilder Java properties

The "Merge Files" pane provides a way to add files, such as ZIP or JAR files, to the application bundle.
Each item added to the merge list is copied into the application's Contents/Resources/Java directory.
Each item you add to the merge list is automatically added to the classpath. Since .class files aren't
supported here, you'll need to package your class files as a ZIP or JAR for inclusion.

When you finish making your selections, click "Build Application." MRJAppBuilder does not provide an
import mechanism or other ability to save your choices; once you build your application and quit,
you'll need to make all your selections in MRJAppBuilder again, or modify the Info.plist and
MRJApp.properties files by hand.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

7.6 Next Steps

Applications built in this manner are static, standalone desktop applications. When the user installs
the application, either by copying it from a CD-ROM or downloading a compressed archive, the
application no longer has contact with the publisher (unless it is added by custom application
development).

For small utilities or very large monolithic applications, this technique works well. For many classes of
software, however, you might want to deploy your applications via the Web, as discussed in the next
chapter.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 8. Web-Delivered Applications

In the last chapter, you learned how to package and distribute standalone applications, where most
bytecode was delivered to and ran on an end user's desktop machine. This chapter examines the
other delivery option—web- delivered applications. This type of application, which is housed on
remote servers rather than on a CD in a box (in a store), avoids some problems associated with
standalone applications. The primary disadvantage of a standalone application is that it is typically
"cut off" from further updates (without extensive additional work and/or a commercial update
system). Users have to buy new versions of software to get new features, bug fixes, and updated
documentation. This difference is one of the core strengths of a web-delivered application, which
allows web updates (and it even auto-updates itself).

When Java was first introduced, small applications were often delivered via the Web; these mini-
applications were called applets. The idea was for a web browser to automatically load and execute
Java applets in a secure sandbox, where the applets would run inside a web page. Unfortunately,
many issues—some technical, some political—led to the untimely death of applets for most Java
developers.

Sun has since introduced a new model, under the name Web Start, that delivers Java applications via
the Web. Web Start eliminates many problems associated with desktop applications (developing an
auto-updatable application is fairly straightforward) while cutting the browser out of the equation,
vastly improving cross-platform compatibility.

This section looks at how the applet and Web Start models distribute a web-based application and
compares the advantages and disadvantages of each approach.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

8.1 Applets

An applet is a restricted Java application invoked by and running inside of an ordinary web browser. It
has a specific base class (java.applet.Applet) with some lifecycle APIs added to interact with the
browser. Most of the complexity associated with developing applets (as opposed to ordinary Java
applications) derives from the interface and interactions between the JVM and the HTML-based web
browser. The basic delivery model for an applet is illustrated in Figure 8-1.

Figure 8-1. Applet delivery

Note that the browser controls resource loading and the manner in which the JVM is embedded. There
is no support for running an application if the user is not connected to the Web.

8.1.1 Mac OS X Web Browsers

Several different browsers are available for Mac OS X, each with a different level of support for
applets. All rely on the underlying JDK installed with Mac OS X.

For applets, the JVM version used is completely under the control of the
browser, with no way to specify older or newer JVMs. As of March 2003, all of
the popular Mac OS X browsers support at least JDK 1.3.1. However, if you
have Safari and JDK 1.4.1 installed, your applets will only run using JDK
1.4.1—there is no way to tell Safari that your applet requires JDK 1.3.1
instead.

Mac OS X provides a robust environment for applet development through the use of Sun's Java Plug-
in (although some browsers rely on the Java Embedding Framework). This means that applets use the
same VM used by Java applications. Unfortunately, the default Java installation included with other
operating systems (notably, most releases of Windows) is woefully out of date, and typically based on
JDK 1.1.7 or 1.1.8 releases. You'll need to pay careful attention to the APIs used if you wish to
maintain compatibility with these ancient releases. You may consider requiring that your users
upgrade to JDK 1.3 or 1.4, in which case you might consider migration to Java Web Start, discussed
later in this chapter.

If you do decide to use applets, you should expect behavior similar to that of applets running on other
platforms that use Sun's Java Plug-in. To properly manage the execution of your applet, you'll need to
understand how web browsers interpret your HTML code to launch the applet.

8.1.2 Creating an Applet

Example 8-1 shows the source code for a simple applet. It defines an applet and adds a button that,
when pressed, launches the SimpleEdit application developed in Chapter 4.

Example 8-1. A simple applet

package com.wiverson.macosbook;
public class SimpleApplet extends javax.swing.JApplet
{
 private javax.swing.JButton launchButton;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 private javax.swing.JButton launchButton;

 public SimpleApplet()
 {
 launchButton = new javax.swing.JButton();
 launchButton.setText("Launch SimpleEdit");
 launchButton.addActionListener(new java.awt.event.ActionListener()
 {
 public void actionPerformed(java.awt.event.ActionEvent evt)
 {
 com.wiverson.macosbook.SimpleEdit.main(null);
 }
 });

 getContentPane().add(launchButton, java.awt.BorderLayout.CENTER);
 }
}

To launch the applet, you will use a set of tags within an HTML page. You'll structure the HTML as
shown in Example 8-2. You should then place this file, saved as SimpleEditLauncher.html, in a ~/Sites
directory.

Example 8-2. HTML for launching an applet

<HTML>
<HEAD>
 <TITLE>Applet HTML Page</TITLE>
</HEAD>
<BODY>
<H3><HR WIDTH="100%">SimpleEdit<HR WIDTH="100%"></H3>
<P>
<APPLET archive="SimpleEdit.jar"
 code="com/wiverson/macosbook/SimpleApplet"
 width="160" height="35">
</APPLET>
</P>
</BODY>
</HTML>

8.1.3 Deploying an Applet

To deploy the application, place the SimpleEdit.jar file created in Chapter 7 and the launcher HTML file
into your ~/Sites directory, and turn on Personal Web Sharing via "System Preferences Sharing

 Services" (as shown in Figure 8-2).

Figure 8-2. Apache Personal Web Sharing

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you want to place content in the "root" of your system, not in a specific
user's directory, use /Library/WebServer/Documents/ instead.

Assuming you have placed the files in the ~/Sites directory, you should be able to view the applet by
going to http://127.0.0.1/~username/SimpleEditApplet.html. This 127.0.0.1 (or loopback) IP address
won't work for deployment, but it is useful when developing and testing an application.

When the applet is run, clicking on the button will launch a new window from inside the browser. This
is shown in Figure 8-3 on Internet Explorer (the default web browser that ships with Mac OS X), and
in Figure 8-4 on Camino (a Mozilla/Gecko-based browser).

Figure 8-3. Applet running in Internet Explorer

Camino, available at http://www.mozilla.org/projects/camino/, is an
excellent Cocoa-based web browser that uses the Gecko HTML rendering
engine from the Mozilla open source project.

Figure 8-4. Applet running in Camino

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8-4. Applet running in Camino

8.1.4 Accessing Mac OS X-Specific Properties from Applets

Mac OS X includes specific system properties that you might want to use in your applets, as described
in Chapter 7. Except for the com.apple.macos.useScreenMenuBar and mrj.version properties, unsigned
applets cannot access these Mac OS X-specific properties (and useScreenMenuBar is ignored by most
current browsers). If you want to use any of the properties discussed in Chapter 7, you must grant
permission to access them by adding a line to your systemwide java.policy file located at
/Library/Java/Home/lib/security/. The line should be in the following form:

java.util.PropertyPermission systemPropertyName, read ;

8.1.5 The Java Applet Plug-in

Some web browsers use the Java Embedding Framework (based on Sun's reference appletviewer
class) to embed Java applets in web pages, and other browsers rely on the Java Plug-in. The Java
Plug-in is considered a superior solution, but unfortunately you usually have little control over the
installation and configuration of this plug-in in user desktop browsers. When examining interactions
between the applet and the browser, this is another variable to keep in mind.

The default tag for an applet, for both the Java Plug-in and the Java Embedding Framework, is the
well-known <APPLET> . However, this tag does not always work as well as the <OBJECT> or
<EMBED> tags in different situations.

Figure 8-5 shows the effect of the <APPLET> tag compared to the <OBJECT> and <EMBED> tags. You
can see that the <APPLET> tag maps to the Java Plug-in only for users of Mozilla, Netscape, or
Camino browsers. This means that you may get different results on an Internet Explorer browser than
on a Mozilla or Camino browser (a very bad thing!).

Figure 8-5. Applet functionality based on tag usage

To work around the different interpretations of the <APPLET> tag, you have a few options. If you

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To work around the different interpretations of the <APPLET> tag, you have a few options. If you
know that your application is targeted for a specific web browser, you can use the appropriate tag, as
listed in Table 8-1. This assumes that one specific browser is targeted, though, and that is an
extremely rare situation. A better approach is to use a tool that creates HTML that works in any
browser. This tool, called the HTML Converter, is provided by Sun and is available online at
http://java.sun.com/products/plugin/1.3/docs/htmlconv.html. This converter processes an HTML file
and generates HTML and JavaScript that should work across any platform. Using this tool will ensure
that the Java Plug-in is activated, regardless of the browser used.

Sun's HTML Converter is reliable, but you should still perform extensive
testing on multiple browsers to make sure you get the results you expect.

Table 8-1. Applet HTML tags for common browsers
Browser <APPLET> <OBJECT> <EMBED>

Microsoft Internet
Explorer 5.2.x Targets the Java Embedding Framework Functions

normally
Functions
normally

Netscape / Mozilla /
Camino

Treated as <EMBED> tag, which maps to
application/x-java-applet mime type

Functions
normally

Targets the
Java Plug-in

OmniWeb Functions normally Targets the
Java Plug-in

Opera Functions normally Targets the
Java Plug-in

Functions
normally

Generally, applets that run with the Java Plug-in have more functionality than those that run within
the Java Embedding Framework. The following sections deal with the specific affected areas. Because
of these features, you'll want to target the Java Plug-in whenever possible.

8.1.5.1 JAR caching

The Java Plug-in is smart enough to cache JAR files for repeated use. This cache is stored in the user's
home folder in Library/Caches/Java. To take advantage of JAR file caching, you may need to modify
your HTML with the tag shown here:

<!-- Turns on JAR caching -->
<PARAM NAME ="cache_option" VALUE="plugin">

<!-- Optional tag, identifies specific JAR files to cache
<PARAM NAME ="cache_archive" VALUE="SimpleEdit.jar">

8.1.5.2 JAR cache versioning

You can also use the Java Plug-in to cache certain versions of JAR files, and download new files only if
needed. The following HTML shows an optional tag used to specify the version number of the JAR files
an applet uses:

<!-- Turns on JAR caching -->
<PARAM NAME ="cache_option" VALUE="plugin">

<!-- Optional tag, identifies specific JAR files to cache
<PARAM NAME ="cache_archive" VALUE="SimpleEdit.jar">

<PARAM NAME ="cache_version" VALUE="1.0">

The version number is designated with the cache_archive attribute. Each value corresponds to the
respective JAR files designated with cache_archive. If the version value is higher than the value of the
cached JAR file, the JAR is downloaded again. Thus, if a new version of the SimpleEdit.jar file were
published, you would increment the cache_version to 1.0.0.1 or some other appropriate value. If this

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

published, you would increment the cache_version to 1.0.0.1 or some other appropriate value. If this
tag is omitted, the plug-in always checks the server to see if a newer version is available and then
caches that version.

The default JAR-caching implementation for Mac OS 10.2 conforms to the
Java 1.3.1_03 standard, not Java 1.4 (unless the browser vendor has
updated to support the 1.4 release). When developing for this target,
therefore, you should remember that:

JAR files specified with the ARCHIVE tag are not cached.

The cache_version_ex parameter is not supported.

There is no JAR file indexing support.

For better forward compatibility, you should use the cache_archive and
cache_version parameters instead of these other, now unsupported, options.

8.1.5.3 The Java Plug-in settings application

The Java Plug-in settings application is a useful utility found in /Applications/Utilities/Java/. Installed
on every Mac OS X system by default, it allows users to configure options related to applet behavior.
However, users may have different settings than those you have on your development system, and
you need to test for those settings as well as your own. You may even want to create multiple users
on your own system and give each user different preferences. Each user's settings are stored in
~/Library/Preferences/com.apple.java.plugin.properties131. Figure 8-6 shows the settings application
in action.

Figure 8-6. Java Plug-in settings

Turning on the option "Show Java Console" is particularly relevant. This console views any text output
your applet generates (including the System.out and System.err streams). It can also be used to view
thread information interactively and force garbage collection. To enable viewing the console, select
"Show Java Console" in the Java Plug-in settings application.
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

8.2 Java Web Start

Java Web Start is a new standard for distributing Java applications, based on a blend between applet
advantages (delivered and automatically updated via the Web) and standalone applications (without
any dependencies on a web browser). The documentation, several demonstrations, and
implementations for Windows and Solaris users are available for download from
http://java.sun.com/products/javawebstart/. Fortunately for Mac OS X users, an implementation of
Java Web Start is included in every distribution of Mac OS X (specifically, Java Network Launching
Protocol & API (JNLP) Specification, v1.0.1). There's nothing to configure and nothing to set up—it's
just there, waiting for you to take advantage of it!

As shown in Figure 8-7, users will typically first encounter a Web Start application while browsing the
Web. Clicking on a link to a Web Start JNLP file causes the browser to launch a helper application,
which in turn downloads the resources for the Java application and then launches it. From that point
on, users can launch a Web Start application without launching a web browser. In addition, if the
application is properly designed and makes sense, Web Start applications can be launched
independently of a network connection.

Figure 8-7. Web Start delivery

Consider, for example, a Tic-Tac-Toe game in which the user plays against the computer or a remote
opponent. A user surfing the Web with a laptop clicks a link to a JNLP file to launch the game. The
browser downloads the JNLP file, which is then launched by Web Start. Web Start downloads the
game resources, saves them in a cache, and then launches the application. The user can play the
game against remote opponents and the computer, quitting the browser if desired. Later, the user
disconnects the laptop from the network and gets on a plane. The user can still launch the game by
using the Java Web Start utility (located in /Applications/Utilities/Java/), even without a network
connection. The user can only play against the computer, however, as no network connection is
available.

At the heart of Web Start is the JNLP file (essentially, an XML configuration file that describes the
application and application resources). This section will turn the previously developed SimpleEdit
application into a Web Start-packaged application.

Before starting, it's worth spending some time looking at the Web Start management application
stored in /Applications/Utilities/Java (shown in Figure 8-8). This is the only real user interface to Web
Start beyond whatever interface you present as part of your application.

Figure 8-8. The WebStart user interface

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8-8. The WebStart user interface

By default, users who launch a Java Web Start application more than twice are prompted to save the
application as a standard Mac OS X application, as shown in Figure 8-9. This is a standard Web Start
behavior, designed to encourage use of Web Start applications outside the confines of the browser.
The application is still a Java Web Start application, but now users can work with the application like
other Mac OS X applications (for example, by adding its icon to the Dock).

Figure 8-9. Java Web Start desktop integration

Note that even though users won't have to launch a web browser every time a Web Start application
is launched, Web Start checks the network connection and attempts to download any updates. If an
update is available, Web Start automatically downloads and installs the latest version of the
application before launching.

Java Web Start caches its data in the user's /Library/Caches/Java Web Start
directory, which can be managed directly via the Web Start GUI; you
shouldn't need to work with this directory manually.

8.2.1 Web Start Runtime Environment

When building JNLP-based applications, consider the restrictions on the environment and the
packaging. From Sun's Web Start documentation (at
http://java.sun.com/products/javawebstart/1.2/docs/developersguide.html#dev), the following list
details the required attributes of JNLP-delivered applications:

An application must be delivered as a set of JAR files.

All application resources, such as files and images, must be stored in JAR files, and they must
be referred to by using the getResource() mechanism in the Java 2 platform (see Section 8.2.3
below).

An application is allowed to use the System.exit() call.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An application is allowed to use the System.exit() call.

An application that needs unrestricted access to the system must be delivered in a set of
signed JAR files. All entries in each JAR file must be signed.

If an application is written to run in a secure sandbox, it must follow these additional restrictions:

No access to local disk is available.

All JAR files must be downloaded from the same host.

Network connections are enabled only to the host from which the JAR files are downloaded.

No security manager can be installed.

No native libraries can be installed or utilized.

Limited access is provided to system properties. The application has read/write access to all
system properties defined in the JNLP file, as well as read-only access to the same set of
properties that an applet has access to.

8.2.2 Mac OS X Web Start Differences

You need to be aware of only a few differences between the Mac OS X implementation of Java Web
Start and that of the Windows and Solaris versions. First, Mac OS X does not support dynamic
downloading of additional Java Runtime Environments (JREs). Mac OS X includes J2SE 1.4 (and 1.3.1
is easily available), so if your application specifically requires JRE 1.2 or prior, it will not work. Users
who need the latest JVM should use their standard Mac OS X Software Update functionality (available
in System Preferences) to download Apple JDK releases. Specifications for version numbers that can
expand to include 1.4 will work, though (for example, 1.2+ or 1.3+). It also isn't necessary to set up
proxy information explicitly in the Web Start application on Mac OS X—this is automatically configured
via the Network control panel proxy settings.

8.2.3 JAR Resources

Java Web Start maintains strict control over the class loading configuration. It transfers JAR files from
the web server to the client machine, and chooses where to store the JAR files; an application cannot
use disk-relative references to resources such as images and configuration files.

Therefore, application resources should be retrieved from the JAR files specified in the resources
section of the JNLP file, or retrieved explicitly by an HTTP request to the web server. It's easiest to
store resources directly in the JAR files, since they will be cached on the local machine by Java Web
Start (preventing a potentially expensive or even unreachable network connection).

The code example shown in Example 8-3 shows how to retrieve images from a JAR file. The example
assumes that the entries images/save.gif and images/cut.gif exist in the application's JAR files.

Example 8-3. Accessing resources in a JAR

// Get current classloader
ClassLoader cl = this.getClass().getClassLoader();
// Create icons
Icon saveIcon = new ImageIcon(cl.getResource("images/save.gif"));
Icon cutIcon = new ImageIcon(cl.getResource("images/cut.gif"));

Developers sign code for use with Java Web Start much like they do for Java applets: by using the
standard jarsigner tool from the Java 2 SDK. The documentation for the jarsigner tool shows how to
sign code, create test certificates, and other signing-related issues. For more on jarsigner, visit
http://java.sun.com/j2se/1.3/docs/tooldocs/win32/jarsigner.html.

8.2.4 Delivering a Web Start Application

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In this case, you'll use the built-in Mac OS X implementation of Apache to serve JNLP files. To do this,
you need to add the line shown below to your mime.types file, located in /etc/httpd/.

application/x-java-jnlp-file jnlp

Using this implementation will ensure that Web Start applications are associated with JNLP and the
proper programs on your Mac OS X machine. The easiest way to ensure this is to use a one-time
execution of a command-line text editor from within Terminal:

cd /etc/httpd/
sudo pico mime.types

You'll need to enter your password, and you'll see the text editor shown in Figure 8-10. Make the
needed changes and quit out of Pico.

Figure 8-10. Using Pico to edit mime.types

To save the file, type Control-X and press return.

You'll then want to restart Apache in the "System Preferences Sharing" control panel (as shown
back in Figure 8-2).

8.2.5 Creating a JNLP File

Before building a Web Start-based application, you'll need a JAR file. In this case, use the JAR file
built in Chapter 7. You've been getting some mileage out of this application, as it was already
deployed earlier in this chapter as an applet.

Then create a JNLP configuration text file, as shown in Example 8-4. Save this file as SimpleEdit.jnlp
in your ~/Sites directory.

Example 8-4. JNLP configuration file

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 8-4. JNLP configuration file

<?xml version="1.0" encoding="utf-8"?>
<!-- JNLP File for SimpleEdit -->
<jnlp
 spec="1.0+"
 codebase="http://127.0.0.1/~wiverson/"
 href="SimpleEdit.jnlp">
 <information>
 <title>SimpleEdit</title>
 <vendor>Will Iverson</vendor>
 <homepage href="http://127.0.0.1"/>
 <description>An extremely minimal text editor</description>
 <description kind="short">An extremely minimal (but extensible) text editor.
</description>
 <icon href="images/notset.jpg"/>
 <icon kind="splash" href="images/notset.gif"/>
 <offline-allowed/>
 </information>
 <resources>
 <j2se version="1.3"/>
 <jar href="SimpleEdit.jar"/>
 </resources>
 <application-desc main-class="com.wiverson.macosbook.SimpleEdit"/>
</jnlp>

If you do not specify <j2se version="1.4+"/> or a similar key, Mac OS X will
default to JDK 1.3.1 even if JDK 1.4.1 is installed.

Next, create a simple HTML file to link to this JNLP file (so users have something to click on in their
web browser). Save the contents of Example 8-5 as SimpleEditWebStart.html in the ~/Sites directory.

Example 8-5. HTML to launch a JNLP application

<HTML>
<HEAD>
<TITLE>SimpleEdit WebStart</TITLE>
</HEAD>
<BODY>
Launch SimpleEdit
</BODY>
</HTML>

You should now be able to view the HTML page in your web browser by viewing
http://127.0.0.1/~username/SimpleEditWebStart.html. Clicking on the "Launch SimpleEdit" link will,
depending on your web browser, prompt the user to save the JNLP file to disk or automatically launch
Web Start. If the file is saved to disk, the user can then launch Web Start (and the SimpleEdit
application) by double-clicking on the JNLP file.

8.2.6 JNLP in Detail

As you can see from the example, a JNLP file is a standard XML file. Most of the information contained
in the file is fairly self-explanatory, but you'll need to modify some items to deploy your application on
a "real-world" server. These items are listed here:

jnlp element, codebase attribute

The base URL for all relative HREF URLs in the rest of the JNLP file. If your test system is
http://127.0.0.1/~wiverson but your production system is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

http://127.0.0.1/~wiverson but your production system is
http://www.mycompany.com/games/, you can change just this attribute's value.

jnlp element, href attribute

This attribute's value should be set to the name of the JNLP file.

jnlp/information/title

This element should indicate the application's human-readable name. This becomes the default
name for the application, and should be kept short.

jnlp/information/homepage

This URL appears automatically in the Java Web Start management application as a clickable
link.

jnlp/information/icon

This graphic is automatically converted to a local system icon if users save an application to
their system. The graphic should be square, 64 x 64 pixels (Java Web Start will automatically
resize this graphic as needed).

If an icon with the splash attribute is provided, this icon will be used when Java Web Start
downloads or updates the application.

jnlp/information/offline-allowed

This tag must be present if the application is to be launched when not connected to the
network. There are no configurable options; for more sophisticated control, you will probably
want to include this option and then perform network availability checks within your
application.

jnlp/resources/jar

You should include one or more of these entries to refer to the various JAR files required by
your application.

jnlp/application-desc

This entry is used to specify the main class for your application. Subentries can be provided to
pass arguments to the application via argument tags. For example, if you wanted to load a
SimpleEdit plug-in, you might pass in an argument as shown below:

<application-desc main-class="com.wiverson.macosbook.SimpleEdit">
 <argument>
 com.wiverson.macosbook.webservices.XmlRpcAsynchClientPlugin
 </argument>
</application-desc>

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

8.3 GUI Application Delivery Comparison

Several options are available for delivering your Java-based, client-side GUI application on Mac OS X.
Table 8-2 provides a chart comparing these various delivery mechanisms.

Table 8-2. Packaging options for GUI applications

 Double-
clickable JAR

Mac OS X bundled
application Applet Web Start

Packaging
requirements

Entry in JAR
manifest

Specific directory and
packaging requirements HTML file HTML file and JNLP file

Development
complexity

Minimal
(standard Java
development)

Additional Mac OS X
configuration

Use Applet
Runner

Significant relaunching
within Web Start

Portability Closest to
"pure" Java

Doesn't force
incompatibility; unfamiliar
to non-Mac OS X users

Extensive
browser
testing
required

Closest to "pure" Java with
network connectivity

Functionality Full Full
Limited by
Sandbox,
browser JVM

Limited by digital signature

Sandbox None None Browser Web Start
Mac OS X
user
experience

Varies per
testing on Mac
OS X

Preferred
Varies per
testing on
Mac OS X

Generally preferred over
applets for network-
delivered applications

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

8.4 Next Steps

These solutions offer the richest possible user experience, but at a cost—both development and use
are complicated. Many applications can be delivered more simply, to a greater range of users and
platforms, by using standard HTML and a web browser.

These delivery mechanisms all assume that you've written your application properly. Although this
book has covered the basics of Java on Mac OS X, it has yet to delve into the system's real bells and
whistles. The next several chapters do this by looking at Mac OS X's support for speech, QuickTime,
and spelling. It then continues its exploration of Java on the Mac by examining platform enterprise
applications.
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 9. The Mac OS X Speech Framework

Your Macintosh wants to talk to you . . . and it's even willing to listen to what you have to say. Mac
OS computers have been able to speak for a long time—ever since the introduction of PlainTalk and
Speech Recognition in the pre-Mac OS 8 days (the early 1990s).

Speech is a very interesting concept, but it's one that has been sadly under-supported by most Mac
OS applications. One of Classic Mac OS's most interesting features was its support for a feature called
" talking dialogs." You could specify a few basic options, and the alerts that appeared would be
spoken automatically. No application support was needed, as the appropriate text string was detected
automatically by the alert/dialog API. This feature wasn't reimplemented for Mac OS X until the
release of Jaguar (Mac OS 10.2). In addition to this basic functionality, Mac OS X features a number
of other speech capabilities.

First, Mac OS X can perform speech recognition. Broadly speaking, there are two classes of speech
recognition: systems that can understand specific words or phrases (such as the engine in Mac OS X)
and systems that are capable of full dictation services. Some packages available from third parties
provide full dictation for Mac OS X, but they require an independent commercial license and are
beyond the scope of this book. This chapter focuses on the ability of an OS X system to recognize
words and on how your Java programs can use that functionality.

Additionally, Mac OS X still supports text-to-speech conversion. This conversion allows plain text, such
as that typed into TextPad or a Microsoft Word document, to be converted into a binary audio format
and read back to the user. This conversion is a bit of a niche feature, but is pretty cool and worth
knowing about.

Apple has made Java-based frameworks for both text-to-speech and voice recognition available as
freely downloadable packages from the Apple Developer Connection (ADC). The native support is
already included in Mac OS X, but the downloadable frameworks include the required Java bindings
and documentation to make them useful programmatically. You'll need to register with the ADC to
download the toolkit; free registration is available at http://www.apple.com/developer/.

Currently, the Speech Framework relies on Apple's JDirect implementation
(as described in Chapter 5). Since JDirect isn't included in the Mac OS X JDK
1.4 implementation, it may be some time before an implementation of the
Speech Framework is made available for JDK 1.4-based applications. Visit
http://developer.apple.com/java/ for the latest information. In the
meantime, you'll have to consider speech a JDK 1.3-only feature.

Before diving into the code, consider this advice before using speech in your applications:

You can't require speech input for your application unless you are willing to constrain the use of
your application. I wrote most of this chapter in a coffee shop. Text-to-speech worked well with
my headphones, but I wasn't bold enough to talk to my iBook in public. If I'm hesitant, your
users might be, too.

It's easier and (arguably) more useful to add text-to-speech to your application than to add
speech recognition. Also, just because you add one, it doesn't mean that you must add both.
I'd suggest adding text-to-speech capabilities first and speech recognition second.

When using text-to-speech, include an easy way for the user to stop the system from speaking.
If you use a talking alert dialog, turn off the sound if the user clicks the mouse anywhere, not
just on a button. Include an option that turns speech off and on easily and globally in your
application. If you're working on a game, pause the speech engine when you pause the rest of
the game.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Don't forget that the hardware and environment can affect the utility of both technologies.
Also, non-native English speakers can sometimes find speaking systems difficult to use or
understand.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

9.1 The Speech API

Two main sections in the Speech API are used to create spoken words from text strings and to listen
to words spoken by the user. This section covers a few basic classes you should be familiar with when
working with the Speech API.

9.1.1 The Synthesizer Class

When you simply want Mac OS X to speak text, you'll work primarily with the
com.apple.speech.synthesis package. Synthesizer is the most important class for converting text to
spoken words. This class has a few basic methods to work with, such as speakText(String) and
stopSpeech(). In addition, several methods allow control over other speech options, including:

Notification of specific events while speaking text, including when individual words or individual
phonemes are spoken, or when speech is started, finished, or paused.

The ability to embed special commands via delimiters
(http://developer.apple.com/techpubs/mac/Sound/Sound-200.html#HEADING200-0).

Changing of pitch, pitch modulation, rate, voice, and volume.

Pausing of the current speech synthesis immediately, or at the end of the current sentence or
word.

All methods for these classes are detailed in the included Javadoc documentation for the Speech
Framework. Rather than deal with each individually, the rest of this chapter will put the framework
into action, giving you practical experience in working with OS X, Java, and speech.

9.1.2 Setting Speech Defaults

Although programmatic options control the speech playback as described above, the "System
Preferences Speech" control panel sets default speech configuration, as shown in Figure 9-1.

Figure 9-1. Speech preferences

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.1.3 Speech Recognition

Recognizing speech from a user is a bit trickier than generating speech from text, and is handled by
the com.apple.speech.recognition package. The package's core class is Recognizer, which lets you
specify which words and phrases are known by the recognition package. You also need to specify the
language style to be used, through the LanguageModel class. This class allows you to specify the type
of speech so the recognition engine can try to make intelligent decisions about combinations of words
it "hears." You'll then add phrases to the model and add that model to the Recognizer
(Recognizer.setLanguageModel()).

Once you've registered all the words and phrases, you then need to add event handlers to the
Recognizer. This class lets you deal with recognized and unrecognized events. You can launch
programs, continue listening, show (or speak) error messages if a phrase isn't understood, and do
anything else that Java programming supports.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

9.2 Putting Speech to Work

Once you've decided that you want to play around with the speech API, it's actually pretty simple to put
it into action. This section will discuss how to put speech into basic dialog boxes, as well as more useful
applications of text-to-speech and speech recognition.

9.2.1 Getting Set Up

As mentioned earlier, these steps assume that you are a member of the Apple Developer Connection
(ADC), for which you can sign up for free. Visit https://connect.apple.com and log in to the developer
connection. You'll be given several menus and submenus on the left. Select "Download Software" and
then "Java." Then download the Speech Framework as a Mac binary file (in .dmg format). Once you
have mounted the disk image, start the included installer.

The installer will place several items of interest on your disk. First, it will place a JAR file,
JavaSpeechFramework.jar, in the standard extensions directory of your JavaVM.framework folder, at
/System/Library/Frameworks/JavaVM.framework/Versions/CurrentJDK/Home/lib/ext/ (see Chapter 2 for
more information on the Mac OS X JVM directory layout). It will place documentation in the directory
/Developer/Research/JavaSpeechFramework/Documentation/, and sample code in the directory
/Developer/Research/JavaSpeechFramework/Examples/.

The JavaSpeechFramework.jar file, therefore, is of great interest. You'll need to make sure this library
is on the classpath for your compiler and application before you use the framework.

You can put this JAR file in the ext directory and not worry about classpath
issues.

9.2.2 The TalkingJDialog Class

The class TalkingJDialog, shown in Example 9-1, is a simple extension to the standard Swing JDialog.
This class extends the basic JDialog dialog box with additional information to provide for spoken text.

This class is not cross-platform and will fail on non-Mac OS X systems. Chapter
5 and Chapter 6 show how to provide support for Apple-specific extensions
while retaining cross-platform compatibility.

Check for both the Speech Framework and the Mac OS X platform to ensure
that users who don't have the update won't be confused by error messages.

Example 9-1. Extending JDialog for speech

package com.wiverson.macosbook.speech;

/* This single class does the vast bulk of the
 heavy lifting of actually making Mac OS X talk.

 Don't blink or you'll miss it.
 */
import com.apple.speech.synthesis.Synthesizer;

/* This class describes a very generic version of
 JDialog with a few methods added for speech recognition
 and related user interface. It's extraordinarily
 straightforward.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 straightforward.
 */

public class TalkingJDialog extends javax.swing.JDialog
 implements java.awt.event.MouseListener
{

 public TalkingJDialog()
 {
 this.setResizable(false);
 this.addMouseListener(this);
 }

 /* This method is used to allow the user to click
 anywhere and immediately cancel out of the
 speech playback - even if the dialog isn't
 dismissed
 */
 public void mousePressed(java.awt.event.MouseEvent mouseEvent)
 {
 if(mySynthesizer != null)
 mySynthesizer.stopSpeech();
 }

 // Needed to complete the MouseListener interface
 public void mouseReleased(java.awt.event.MouseEvent mouseEvent)
 {}
 public void mouseExited(java.awt.event.MouseEvent mouseEvent)
 {}
 public void mouseEntered(java.awt.event.MouseEvent mouseEvent)
 {}
 public void mouseClicked(java.awt.event.MouseEvent mouseEvent)
 {}

 public void dispose()
 {
 super.dispose();
 }

 public void hide()
 {
 super.hide();
 // If the dialog goes away, be sure to stop talking.
 mySynthesizer.stopSpeech();
 }

 private Synthesizer mySynthesizer = null;

 public void show()
 {
 super.show();
 // Get a synthesizer for this dialog
 // if one isn't already available
 if(mySynthesizer == null)
 mySynthesizer = new Synthesizer();
 // Start talking!
 mySynthesizer.speakText(getNotificationText());
 }

 // Storage & accessors for the text to be spoken
 private String spokenText;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 private String spokenText;
 public void setNotificationText(String inString)
 {
 spokenText = inString;
 }
 public String getNotificationText()
 {
 return spokenText;
 }
}

9.2.3 A Talking Dialog Box

On its own, this class is pretty useless, as is JDialog without an additional extension. To use it, extend
TalkingJDialog with your own dialog box and listen to Mac OS X read your messages. Example 9-2
provides a simple, user-friendly standalone example of a talking dialog.

Example 9-2. A simple talking alert box

package com.wiverson.macosbook.speech;

public class TalkingAlertJDialog
 extends com.wiverson.macosbook.speech.TalkingJDialog
{

 /** Creates new form TalkingAlertJDialog */
 public TalkingAlertJDialog(String alert)
 {
 setNotificationText(alert);
 initComponents();
 this.getRootPane().setDefaultButton(okButton);
 pack();
 java.awt.Dimension screenSize =
 java.awt.Toolkit.getDefaultToolkit().getScreenSize();
 setSize(new java.awt.Dimension(374, 128));
 setLocation((screenSize.width-374)/2,(screenSize.height-128)/4);
 }

 private void initComponents()
 {
 alertText = new javax.swing.JLabel();
 stylePanel = new javax.swing.JPanel();
 okButton = new javax.swing.JButton();

 setTitle("Alert");
 setResizable(false);
 alertText.setText(getNotificationText());
 alertText.setHorizontalAlignment(javax.swing.SwingConstants.CENTER);
 getContentPane().add(alertText, java.awt.BorderLayout.CENTER);

 okButton.setText("OK");
 okButton.addActionListener(new java.awt.event.ActionListener()
 {
 public void actionPerformed(java.awt.event.ActionEvent evt)
 {
 okButtonActionPerformed(evt);
 }
 });

 stylePanel.add(okButton);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 getContentPane().add(stylePanel, java.awt.BorderLayout.SOUTH);

 }

 private void okButtonActionPerformed(java.awt.event.ActionEvent evt)
 {
 setVisible(false);
 }

 public static void main(String args[])
 {
 new TalkingAlertJDialog("Help! I've fallen and I can't get up!").show();
 }

 private javax.swing.JLabel alertText;
 private javax.swing.JPanel stylePanel;
 private javax.swing.JButton okButton;
}

While a picture may be worth a thousand words, you'll have to try this one out on your own to really
appreciate Mac OS X's speech features. Still, Figure 9-2 shows TalkingAlertJDialog in action.

Figure 9-2. A talking alert box

9.2.4 Ask Mac OS X

Next, write a small utility application that sits in the background and answers common questions. This
section shows you how to set up the voice recognizer, teach it a few phrases, and make it answer
common questions. This lesson should familiarize you with other useful applications of the Speech
Framework. Example 9-3 includes the source listing for this utility.

Example 9-3. Speech utility listener

package com.wiverson.macosbook.speech;

import javax.swing.JLabel;
import javax.swing.JComboBox;
import java.awt.BorderLayout;

public class SpeechListener
 extends javax.swing.JDialog
 implements java.awt.event.ActionListener,
 com.apple.speech.recognition.UnrecognizedEventListener,
 com.apple.speech.recognition.DetectedEventListener,
 com.apple.speech.recognition.DoneEventListener
{

 // Set up the speech recognition engine
 static com.apple.speech.recognition.Recognizer mySpeechRecognizer = null;
 static com.apple.speech.recognition.LanguageModel myLanguageModel = null;

 // Set up the text-to-speech engine

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // Set up the text-to-speech engine
 static com.apple.speech.synthesis.Synthesizer mySynthesizer = null;

 public SpeechListener()
 {
 this.getContentPane().setLayout(new BorderLayout());
 statusLabel = new JLabel("Ready.");
 statusLabel.setHorizontalTextPosition(statusLabel.LEFT);
 this.getContentPane().add(statusLabel, BorderLayout.CENTER);

 manualCommandMenu = new JComboBox();
 manualCommandMenu.setModel(new javax.swing.DefaultComboBoxModel(tasks));
 manualCommandMenu.addActionListener(this);

 this.getContentPane().add(manualCommandMenu, BorderLayout.EAST);

 this.pack();
 this.setSize(300, 50);
 this.setTitle("Address me as " + computerName);

 // Set up to talk have the computer talk back.
 if(mySynthesizer == null)
 mySynthesizer = new com.apple.speech.synthesis.Synthesizer();

 try
 {
 // Hack for workaround of bug which
 // prevents Java apps from receiving
 // AppleEvents in Mac OS X 10.0
 com.apple.ae.AppleEventFunctions.initAE();

 // Create the SpeechRecoginizer.
 // Speech is activated lazily upon startup.
 mySpeechRecognizer = new com.apple.speech.recognition.Recognizer();

 // Create & setup the LanguageModel which we will add our phrases to.
 myLanguageModel = new com.apple.speech.recognition.LanguageModel();
 mySpeechRecognizer.setLanguageModel(myLanguageModel);

 // Add the phrases we are looking for.
 // Note that we need to add the computer's address first.
 // Still, easier than using the more complex API
 String[] full_tasks = new String[tasks.length];
 for(int i = 0; i < tasks.length; i++)
 full_tasks[i] = computerName + tasks[i];

 myLanguageModel.setPhrases(full_tasks);

 // Start the recoginizer
 mySpeechRecognizer.start();

 // Listen for speech events
 mySpeechRecognizer.addDoneEventListener(this);
 mySpeechRecognizer.addUnrecognizedEventListener(this);
 mySpeechRecognizer.addDetectedEventListener(this);
 }
 catch(Exception e)
 {
 e.printStackTrace();
 }
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

 private JLabel statusLabel;
 private JComboBox manualCommandMenu;
 private String computerName = "Computer ";

 static final private int DAY = 0;
 static final private int SONG = 1;
 static final private int QUIT = 2;
 static final private int BEEP = 3;

 private String[] tasks =
 {
 "what day is it",
 "sing a song",
 "quit",
 "beep"
 };

 static void main(String[] args)
 {
 (new SpeechListener()).show();
 }

 public void doCommand(String input)
 {
 statusLabel.setText("I heard " + input);

 if(input.compareTo(tasks[DAY]) == 0)
 {
 mySynthesizer.speakText(new java.util.Date().toString());
 }

 if(input.compareTo(tasks[SONG]) == 0)
 {
 mySynthesizer.speakText("Sorry, I'm shy");
 }

 if(input.compareTo(tasks[QUIT]) == 0)
 {
 System.exit(0);
 }

 if(input.compareTo(tasks[BEEP]) == 0)
 {
 java.awt.Toolkit.getDefaultToolkit().beep();
 }
 }

 public void handleDoneEvent(com.apple.speech.recognition.DoneEvent doneEvent)
 {
 String command = doneEvent.getPhraseRecognized();
 if(command != null)
 {
 command = command.substring(computerName.length(), command.length());
 doCommand(command);
 } else
 {
 statusLabel.setText("Can't understand...?");
 }
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public void actionPerformed(java.awt.event.ActionEvent actionEvent)
 {
 if(actionEvent.getSource() instanceof JComboBox)
 {
 doCommand
 (
 (
 (JComboBox)actionEvent.getSource()
).getSelectedItem().toString()
);
 }
 }

 public void handleDetectedEvent(
 com.apple.speech.recognition.DetectedEvent detectedEvent)
 {
 statusLabel.setText("Listening...");
 }

 public void handleUnrecognizedEvent(
 com.apple.speech.recognition.UnrecognizedEvent unrecognizedEvent)
 {
 statusLabel.setText("Unrecognized...");
 }
}

Fire up this application:

java com.wiverson.macosbook.speech.SpeechListener

Make sure you've got the Mac OS X speech packages in your classpath before
using this program, or you won't be able to compile or execute it.

Once started, the program sits quietly in the background, waiting for the user to speak a phrase such as
"Computer, what day is it?" The computer will then respond, using the voice synthesizer to answer the
question.

To add additional tasks to the example above, you'll need to add additional
phrases to the tasks array, branching logic to the doCommand() method and
the relevant implementation.

If you're adding support for voice recognition, you'll probably want to integrate the voice commands
into your application's existing event dispatching system. Ideally, you should provide a customizable
interface for users to specify the specific phrases they'd like to use to trigger events.

9.2.5 Custom Language Models

Besides adding tasks, you can install your own "grammar" by creating more complex language models.
This allows you to build much more sophisticated applications, but it is also considerably more difficult
to configure and develop.

A custom language model, represented by the com.apple.speech.recognition.LanguageModel class, has a
list of zero or more words, phrases, or paths. For example, suppose that you want the system to handle
commands such as "call Will" and "schedule a lunch with Brent next Tuesday" (perhaps with other
names and days as well). Displaying the model in Backus-Naur Form (BNF) is one way to specify
language models. Example 9-4 shows a BNF description of a relatively simple language model.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 9-4. A BNF description of a language model

<TopLM> = <call> <person> | schedule meeting with <person> |view today's
schedule;
<call> = call | phone| dial;
<person> = Will | Brent | Cynthia | Diane;

Building up a custom language model allows your application to mix and match names and phrases,
rather than learning each phrase with each possible name and action.

If your application requires this sort of sophistication, investigate the installed documentation at
/Developer/Research/JavaSpeechFramework/Documentation/com/apple/speech/recognition/Model.html.
The use of this model precludes the use of the simpler API from the sample applications. It was left out
of this book, largely because of the still-missing support for speech in JDK 1.4. For projects complex
enough to require the sophistication of custom language models, you'll probably want to investigate a
commercial package such as IBM's ViaVoice (http://www.apple.com/macosx/applications/viavoice/).

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 10. QuickTime for Java

When Java first came out, multimedia APIs were relatively weak; scratchy 8-bit sound just doesn't cut
it in today's world. Users had rich media on their desktops and laptops, and the Java world quickly
scrambled to find a better media API. Unsurprisingly, Java turned to QuickTime, one of the oldest and
most sophisticated media APIs available.

Apple has ported QuickTime to Windows and released a set of Java APIs that provide users who would
have to write their own native wrappers an easier interface to QuickTime. The APIs are still relatively
"C-like," but using them is much easier than writing your own bridge. Applications built using the
QuickTime for Java technology are also cross-platform, as long as the only platforms you consider are
Windows and Mac OS; Unix users are still out of luck when it comes to QuickTime. The examples in
this chapter will run on Windows as well as on Mac OS X.

One of QuickTime's most interesting features is its sheer scope of available functionality. The rich
range of supported media types can be overwhelming. This chapter explores the available range of
media and demonstrates how to play that media back from within Java applications.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

10.1 Getting Started

The QuickTime API has two basic components: the documentation, which was designed for you, and a
set of Java classes, which are for your Java compiler. To make the most out of QuickTime, make sure
you can access both.

10.1.1 Documentation

When you install Mac OS X and the included developer tools, QuickTime is installed by default.
Therefore, you don't have to download separate archives when you start. Before diving into
QuickTime's classes, browse the documentation, located at
/Developer/Documentation/QuickTime/index.html. As you can tell from the filename, this material is
in HTML, which is simple to browse through and utilize. Figure 10-1 shows the initial index page with
its content pane and table of contents.

Figure 10-1. QuickTime documentation

You'll notice that there are a lot of links to follow; you could probably spend several days reading
through all the included documents. When browsing through the HTML, you'll quickly realize that
QuickTime supports a broad range of rich APIs. Its complexity has been compared to a complete
operating system. Of particular interest is the Java-specific information it links to on this first page, as
shown in Figure 10-2.

Figure 10-2. QuickTime for Java documentation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 10-2. QuickTime for Java documentation

This chapter assumes that you are working with QuickTime for Java on the
Mac OS X JDK 1.3.1 JVM. Currently, QuickTime hasn't been brought up to
speed for JDK 1.4; be sure to check http://developer.apple.com/java/ for the
latest information on QuickTime for Java and JDK 1.4.

10.1.2 Class Files

Once you've gotten the lay of the land, you'll want to locate the actual QuickTime classes and ensure
that they are available on your compiler and runtime environment. Navigate to
/System/Library/Java/Extensions/ and look for QTJava.zip. Then add this archive to your classpath,
through either a script or the command line:

setenv CLASSPATH /System/Library/Java/Extensions/QTJava.zip:$CLASSPATH

This step will give you access to the APIs themselves, allowing you to code to your heart's content.
Note that QuickTime presents an unusually "close to the metal" implementation that exposes a lot of
C-based functionality. Put bluntly, it's a bit easier to shoot your application in the head with
QuickTime for Java than with almost any other Java API.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

10.2 The QuickTime API

The QuickTime API is large and complex, and the underlying API's original native heritage makes it
especially hard for a Java developer to get a handle on it. Fortunately, the QuickTime for Java
bindings help you write your application, but they can be difficult to understand without first
examining the native layer.

10.2.1 Native Origins

QuickTime's architecture is based on the original Mac OS APIs, in which each API cluster was referred
to as a "toolbox" or a "manager." This section looks at the overall architecture of QuickTime and walks
through some of the fundamental building blocks. This book cannot explore every nuance of
QuickTime, but this section should help you understand how all the pieces fit together.

A few basic packages provide the conceptual underpinnings for QuickTime: Movie Toolbox, Image
Compression Manager, Image Decompressor Manager, and Component Manager. A set of predefined
components provides much of the implementation. Figure 10-3 shows how these elements relate to
an application that is playing a movie.

Figure 10-3. QuickTime architecture

10.2.1.1 The Movie Toolbox

A native application's primary interface to QuickTime is the Movie Toolbox. This API set lets you store,
retrieve, and manipulate time-based data stored in QuickTime movies. A single movie may contain
several types of data. For example, a movie that contains video information might include both video
data and the sound data that accompanies that video.

The Movie Toolbox also provides functionality for editing movies. For example, editing functions
shorten a movie by removing portions of the video and sound tracks, and other functions extend a
movie by adding new data from other QuickTime movies.

10.2.1.2 The Image Compression Manager

Image data requires a large amount of storage space. Storing a single 640 x 480 pixel image in 32-bit
color can require as much as 1.2 MB of disk space. Sequences of images, like those that might be
contained in a QuickTime movie, demand substantially more storage than do single images. This is
true even for sequences that consist of fairly small images because the movie consists of a large
number of those images. Consequently, minimizing the storage requirements for image data is an
important consideration for any application that works with images or sequences of images.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Image Compression Manager provides a device-independent and driver-independent means of
compressing and decompressing images and image sequences. It also contains a simple interface for
implementing software and hardware image-compression algorithms. Images can be imported and
exported easily from many formats. In most cases, applications use the Image Compression Manager
indirectly by calling Movie Toolbox functions or displaying a compressed picture.

10.2.1.3 The Component Manager

QuickTime provides components as an abstraction so that every application doesn't need to know
about all possible types of audio, visual, and storage devices. A component is essentially a library or
plug-in registered by the Component Manager. The component's code can be available as a system-
wide resource, or in a resource that is local to a particular application.

QuickTime provides a number of useful default components for application developers. These
components provide essential services to your application and to the managers that comprise the
QuickTime architecture. QuickTime uses the following Apple-defined components:

Movie controller components, which allow applications to play movies by using a standard user
interface

Standard image-compression dialog components, which allow the user to specify the
parameters for a compression operation through a dialog box or similar mechanism

Image compressor components, which compress and decompress image data

Sequence grabber components, which allow applications to preview and record video and
sound data as QuickTime movies

Video digitizer components, which allow applications to control video digitization by an external
device

Media data-exchange components, which allow applications to move various types of data in
and out of a QuickTime movie

Derived media handler components, which allow QuickTime to support new types of data in
QuickTime movies

Clock components, which provide timing services defined for QuickTime applications

Preview components, which the Movie Toolbox's standard file preview functions use to display
and create visual previews for files

Sequence grabber channel components, which manipulate captured data for a sequence
grabber component

Sequence grabber panel components, which allow sequence grabber components to obtain
configuration information from the user for a particular sequence grabber channel component

Applications gain access to components by calling the Component Manager. Once an application
connects to a component, it calls that component directly.

10.2.1.4 Atoms

QuickTime stores most of its data by using its own custom memory structures called atoms. Movies
and each of their individual tracks are organized and stored as atoms, as are various media and data
samples. In fact, this is the last step before actually writing a movie file to disk. In this way, many
atoms, called classic atoms (or simply "atoms"), contain both data and references to other atoms.

Atoms that contain only data and not other atoms are called leaf atoms. QuickTime in particular uses

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Atoms that contain only data and not other atoms are called leaf atoms. QuickTime in particular uses
both classic and leaf atoms to form hierarchies of data, treelike structures that represent complex
media files. QuickTime provides a complete API set for accessing and manipulating both types of
atoms.

10.2.2 QuickTime for Java

To allow Java programmers access to QuickTime's native APIs, Apple provides bindings for the
underlying QuickTime components. Fortunately, Apple's bindings between QuickTime and Java are
more sophisticated than a simple API translation. In addition to providing simple APIs, QuickTime for
Java provides an additional application framework to assist with integration into Java applications.

The quicktime.app package is the core of the QuickTime and Java binding set. The classes in this
package present different kinds of media. The framework uses the interfaces in quicktime.app to
abstract and express common functionality that exists between different QuickTime objects.

As such, the services that the QuickTime for Java application framework renders to the developer
belong to the following categories:

Integration of QuickTime with the Java runtime environment, which includes sharing display
space between Java and QuickTime and passing events from Java into QuickTime

A set of classes that provides services that simplify the authoring of QuickTime content and
operation

Creation of objects that present different forms of media, using QTFactory.makeDrawable()
methods

Various utilities (classes and methods) that deal with single images as well as groups of related
images

Spaces and controllers architecture, which allows you to deal with complex data-generation or
presentation requirements

Composition services that allow complex layering and blending of different image sources

Timing services that let you schedule and control time-related activities

Video and audio media capturing from external sources

Exposure of the QuickTime visual effects architecture

10.2.2.1 Understanding the Java bindings

The QuickTime Java classes that represent media types are created from structures and data types
from the standard QuickTime C language header files. These data types provide the QuickTime for
Java API basic class structure. For example, the Movie data type in Movies.h becomes the Movie class
in Java; functions in C become methods in Java; and capitalization and notation conventions are
changed to match the Java language. However, there is a slight twist—most QuickTime C functions
have in the method name the object being operated on (remember that C is not object-oriented),
creating a more procedural approach. To translate this approach to an object-oriented Java
environment, classes are created for each object, and methods are bound to that object.

For example, the QuickTime native function SetMovieGWorld logically translates (or is bound by) the
Java method setGWorld() on the Movie class. Similarly, the QuickTime native function
MCSetControllerPort logically translates (or is bound by) the Java method setPort() on the
MovieController class.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The QuickTime for Java SDK provides a complete list of the QuickTime functions that QuickTime for
Java binds. The supplied HTML documentation for these binding calls provides only brief descriptions,
often little more than function names and parameter lists. Therefore, you'll often need to refer to the
native documentation to understand the use of a given class or method, or even the general purpose
of the API.

10.2.3 Supported Media Types

Supported media types for QuickTime include (but are not limited to):

MPEG-4 (including streaming and QuickTime Movies)

AAC Audio codec for QuickTime Movies

MP3, including access to ID3v2 metadata

Flash 5

JFIF/JPEG/JPEG 2000

Digital Video (DV)

QuickDraw PICT

QuickTime Image

Photoshop (Versions 2.5 and 3.0)

Silicon Graphics

GIF

BMP

PNG

Audio CD (import as AIFF)

TGA

TIFF

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

10.3 The SimplePlayer Application

As discussed in the last chapter, using these APIs is the best way to get a feel for them. To
demonstrate QuickTime, look at the SimplePlayer example. This player can load and play a variety of
media formats, including QuickTime movies and MP3 audio files. Additionally, the application allows
you to export files to other formats, demonstrating that facet of the QuickTime API. As they are put to
use in SimplePlayer, try to recognize the key classes and methods from the last section.

The source for this application, shown in Example 10-1, is surprisingly concise. Much of this code is
actually spent in setup and user interface. The actual QuickTime APIs used are fairly simple to
understand.

Example 10-1. The SimplePlayer application

package com.wiverson.macosbook.quicktime;

import quicktime.std.movies.Movie;

import java.awt.event.*;
import quicktime.QTException;
import quicktime.io.QTFile;
import java.awt.FileDialog;
import java.awt.Frame;
import javax.swing.JButton;
import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JDialog;

public class SimpleMoviePlayer
 extends javax.swing.JFrame
 implements quicktime.std.StdQTConstants,
 quicktime.Errors,
 quicktime.io.IOConstants
{
 public static void main(String args[])
 {
 try
 {
 // Required to initialize the QuickTime environment.
 // Performs checks to ensure QuickTime is installed and
 // also loads and sets up QuickTime.
 quicktime.QTSession.open();

 SimpleMoviePlayer myPlayer = new SimpleMoviePlayer("Simple Player");

 myPlayer.pack();
 myPlayer.show();
 myPlayer.toFront();
 } catch (Exception e)
 {
 e.printStackTrace();
 quicktime.QTSession.close();
 }
 }

/* ------------------- User interface ------------------------------------ */

 JButton importButton = new JButton("Import Media...");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 JButton importButton = new JButton("Import Media...");
 JButton referenceButton = new JButton("Export Reference Media...");
 JButton exportButton = new JButton("Export Full Media...");
 JPanel commandPanel = new JPanel();
 JLabel statusLabel = new JLabel("Ready.");

 // The QTCanvas is the "heavy lifter" QuickTime component
 // that does all the hard work for punching the QuickTime
 // viewer through and into the JFrame.
 quicktime.app.display.QTCanvas myQTCanvas;

 /* Creates the application user interface. You'll
 * notice that there is no reference to new user interface
 * options for QuickTime features - those are controlled by
 * the "punched through" QuickTime capabilities.
 */
 SimpleMoviePlayer(String title)
 {
 super(title);

 getContentPane().add(statusLabel, "North");

 importButton.addActionListener(new ActionListener()
 {
 public void actionPerformed(java.awt.event.ActionEvent ae)
 {
 importMedia();
 }
 });
 commandPanel.add(importButton);

 referenceButton.addActionListener(new ActionListener()
 {
 public void actionPerformed(java.awt.event.ActionEvent ae)
 {
 makeReferenceMovie();
 }
 });
 commandPanel.add(referenceButton);

 exportButton.addActionListener(new ActionListener()
 {
 public void actionPerformed(java.awt.event.ActionEvent ae)
 {
 exportMovie();
 }
 });

 commandPanel.add(exportButton);

 this.getContentPane().add(commandPanel, "South");

 addWindowListener(new WindowAdapter()
 {
 public void windowClosing(WindowEvent e)
 {
 // Go ahead and clean up the QuickTime layer
 quicktime.QTSession.close();
 dispose();
 }

 public void windowClosed(WindowEvent e)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public void windowClosed(WindowEvent e)
 {
 System.exit(0);
 }
 });
 }

/* ------------------------- Importing Media ------------------------------- */

 public void importMedia()
 {
 try
 {
 FileDialog myFileDialog =
 new FileDialog(this, "Choose Media to Import...", FileDialog.LOAD);

 myFileDialog.show();

 if (myFileDialog.getFile() == null)
 return;

 QTFile importFile =
 new QTFile(myFileDialog.getDirectory() + myFileDialog.getFile());

 // You can import any supported media type into QuickTime using
 // the QTFactory.

 // QTFactory.makeDrawable() methods take a variety of inputs,
 // from URLs to an InputStream, and produce a usable media object.
 // The media object might represent a sound file (such as an MP3),
 // a picture (such as a GIF), or a full movie (such as a
 // QuickTime .mov)

 quicktime.app.display.QTDrawable media = null;

 try
 {
 media = quicktime.app.QTFactory.makeDrawable(importFile);
 } catch (quicktime.QTException qtException)
 {
 // If not a user cancel, go ahead and report error
 if(qtException.getMessage().indexOf("cantFindHandler") > 0)
 qtException.printStackTrace();
 else
 {
 java.awt.Toolkit.getDefaultToolkit().beep();
 statusLabel.setText("Unable to open this file type.");
 }
 }

 if(media != null)
 {
 if (myQTCanvas == null)
 {
 myQTCanvas = new quicktime.app.display.QTCanvas();
 this.getContentPane().add(myQTCanvas, "Center");
 }
 myQTCanvas.setClient(media, true);
 statusLabel.setText(importFile.getPath());

 // This resizes the UI. Note that the "preferred" size
 // for myQTCanvas has been changed to whatever works for

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // for myQTCanvas has been changed to whatever works for
 // the player.
 pack();
 }
 } catch (QTException err)
 {
 if (err.errorCode() == userCanceledErr) return;
 err.printStackTrace();
 } catch (java.io.IOException ie)
 {}
 }

/* ------------------------- Playing Movies ------------------------------- */

 public void displayMovie(Movie m) throws QTException
 {
 // make a QTPlayer out of the Movie and set it as the
 // client of the QTCanvas

 quicktime.app.players.QTPlayer p =
 new quicktime.app.players.QTPlayer(
 new quicktime.std.movies.MovieController(m)
);

 if (myQTCanvas == null)
 {
 myQTCanvas = new quicktime.app.display.QTCanvas();
 getContentPane().add(myQTCanvas, "Center");
 }

 myQTCanvas.setClient(p, true);
 pack();
 }

/* ------------------------ QuickTime References ------------------------ */

 public void makeReferenceMovie()
 {
 try
 {
 FileDialog rfd =
 new FileDialog(this, "Choose Movie to Reference...", FileDialog.LOAD);
 rfd.show();

 if (rfd.getFile() == null)
 return;

 QTFile movieFile = new QTFile(rfd.getDirectory() + rfd.getFile());

 FileDialog ofd =
 new FileDialog(this, "New Movie to create...", FileDialog.SAVE);

 ofd.show();

 if (ofd.getFile() == null)
 {
 return;
 }

 makeReferenceMovie(movieFile, ofd.getDirectory() + ofd.getFile());
 } catch (QTException err)
 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {
 if (err.errorCode() == userCanceledErr)
 return;
 err.printStackTrace();
 }
 }

 //makes a new movie that references the data in an existing movie
 public void makeReferenceMovie(QTFile movieFile, String outputPath)
 throws QTException
 {

 // Create the movie object from the original movie
 Movie theMovie = Movie.fromFile(quicktime.io.OpenMovieFile.asRead(movieFile));

 displayMovie(theMovie);
 QTFile outputMovie = new QTFile(outputPath);

 //shortcut movies are movies that just contain a reference
 //to another movie. It can begin to be complicated for users
 //to track which is which - you may wish to expose a flag
 //indicating handles to movies as opposed to flattened
 //movies in your user interface.

 //make a Data ref out of a URL that references the movie
 quicktime.std.movies.media.DataRef targetDataRef =
 new quicktime.std.movies.media.DataRef("file://" + movieFile.getPath());

 //make the very small short cut movie
 outputMovie.createShortcutMovieFile(
 kMoviePlayer, smSystemScript, createMovieFileDeleteCurFile, targetDataRef);
 }

/* ------------------------ Exporting Movies ------------------------ */

 public void exportMovie()
 {
 try
 {

 FileDialog efd =
 new FileDialog(this, "Choose Movie to Export...", FileDialog.LOAD);

 efd.show();

 if (efd.getFile() == null)
 return;

 QTFile movieFile = new QTFile(efd.getDirectory() + efd.getFile());

 exportMovie(movieFile);
 } catch (QTException err)
 {
 err.printStackTrace();
 }
 }

 // export (to a movie) the incoming movie
 // user dialog allows user to customise media formats and
 // tracks that are exported

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public void exportMovie(QTFile movieFile) throws QTException
 {
 // Create the movie object from the original movie
 Movie theMovie =
 Movie.fromFile(quicktime.io.OpenMovieFile.asRead(movieFile));

 displayMovie(theMovie);

 // we do this in a different thread because exporting can take some time
 // and the event thread should not be blocked for so long... but it tends
 // to really drag the UI anyways on Mac OS X for serious exporting.

 new Thread(
 new com.wiverson.macosbook.quicktime.SimpleMoviePlayer.Runner(
 theMovie, statusLabel)
).start();
 }

 static class Runner implements Runnable
 {
 Runner(Movie mov, JLabel inStatus)
 {
 theInputMovie = mov;
 status = inStatus;
 }

 Movie theInputMovie;
 JLabel status;

 public void run()
 {

 try
 {
 // this determines both the exporter type, the resulting file type.
 // thus one could specify this to be AIFF and the resulting file will
 // be an AIFF file - in this case the result will be a movie.

 int exportType = kQTFileTypeMovie;

 //an application can alternatively configure exporter through setting
 //up the exporter in code to conform to the format appropriate

 FileDialog ofd =
 new FileDialog(new Frame(), "Export Movie to...", FileDialog.SAVE);
 ofd.show();
 if (ofd.getFile() == null)
 return;

 QTFile outFile = new QTFile(ofd.getDirectory() + ofd.getFile());

 // Create a movie exporter so we can customise its settings
 // this could also be used in the convertToFile version, but
 // if we don't have custom settings then we allow the convertToFile
 // to create the exporter for us-based on the exportType we pass to it

 quicktime.std.qtcomponents.MovieExporter theMovieExp =
 new quicktime.std.qtcomponents.MovieExporter(exportType);

 // Set export settings from the user.
 theMovieExp.doUserDialog(

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 theMovieExp.doUserDialog(
 theInputMovie, null, 0, theInputMovie.getDuration());

 //this returns a dupFNErr on windows and is also more work for
 //the application create the output file but don't open it
 outFile.createMovieFile(kMoviePlayer,

 status.setText("Starting export...");
 // do the export of the movie
 theMovieExp.toFile(
 outFile, theInputMovie, null, 0, theInputMovie.getDuration());
 status.setText("Export complete.");
 } catch (QTException e)
 {
 e.printStackTrace();
 }
 }
 }
}

10.3.1 Imports and Startup

The class begins with a few basic QuickTime imports, including quicktime.std.movies.Movie (a core
class that encapsulates a great deal of abstract media information). Then the main() method merely
sets the application up, initializing the QuickTime environment and then creating the user interface.
The interest lies in the actual methods, as usual.

10.3.2 User Interface

The next chunk of code sets up the player's user interface, which has been kept simple so you can get
to the good stuff. A few buttons are added to a window to let you select media types, and a few event
listeners are created and attached. The most interesting portion of this code is the reference to
quicktime.app.display.QTCanvas:

// The QTCanvas is the "heavy lifter" QuickTime component
// that does all the hard work for punching the QuickTime
// viewer through and into the JFrame.
quicktime.app.display.QTCanvas myQTCanvas;

This panel represents the QuickTime interface to media types. It's not actually added to the user
interface until a user decides to load data, which you'll see in the next method, importMedia().

10.3.3 Importing Media

The importMedia() method lets you open any supported media type, not just a movie. Regardless of
the format being loaded, it displays a standard file dialog box (configured by QuickTime), as shown in
Figure 10-4.

Figure 10-4. Selecting media to load

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Assuming that the user selects a valid media file, the quicktime.app.display.QTCanvas object instance
(discussed in the last section) is created and added to the Swing user interface, and the media file is
set for that canvas (similar to a standard Java panel).

Look at the quicktime.app.display.QTDrawable object below. This object is the representation of a
QuickTime data type. The media object might represent a sound file (such as an MP3), a picture (such
as a GIF), or a full movie (such as a QuickTime .mov file). The QTFactory returns a playable
QTDrawable media object when it's able to import from a URL successfully:

 quicktime.app.display.QTDrawable media = null;

 try
 {
 media = quicktime.app.QTFactory.makeDrawable(importFile);
 } catch (quicktime.QTException qtException)
 {
 // If not a user cancel, go ahead and report error
 if(qtException.getMessage().indexOf("cantFindHandler") > 0)
 qtException.printStackTrace();
 else
 {
 java.awt.Toolkit.getDefaultToolkit().beep();
 statusLabel.setText("Unable to open this file type.");
 }
 }

 if(media != null)
 {
 if (myQTCanvas == null)
 {
 myQTCanvas = new quicktime.app.display.QTCanvas();
 this.getContentPane().add(myQTCanvas, "Center");
 }
 myQTCanvas.setClient(media, true);
 statusLabel.setText(importFile.getPath());

 // This resizes the UI. Note that the "preferred" size
 // for myQTCanvas has been changed to whatever works for
 // the player.
 pack();
 }
} catch (QTException err)
{
 if (err.errorCode() == userCanceledErr) return;
 err.printStackTrace();
} catch (java.io.IOException ie)
{}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

{}

The complicated process of loading a file now becomes a matter of about 50 lines of code (including
the user interface manipulation). This is one of the draws of the QuickTime APIs: they do a lot of the
work for you, with minimal developer coding.

10.3.4 Playing a Movie

Once you've loaded the appropriate media types, playing them is simple. The displayMovie() method
plays a QuickTime movie and is centered around the QTPlayer and QTCanvas objects:

 public void displayMovie(Movie m) throws QTException
 {
 // make a QTPlayer out of the Movie and set it as the
 // client of the QTCanvas

 quicktime.app.players.QTPlayer p =
 new quicktime.app.players.QTPlayer(
 new quicktime.std.movies.MovieController(m)
);

 if (myQTCanvas == null)
 {
 myQTCanvas = new quicktime.app.display.QTCanvas();
 getContentPane().add(myQTCanvas, "Center");
 }

 myQTCanvas.setClient(p, true);
 pack();
 }

This method is largely a utility function, called when the current movie is changed. This method is
called when the user loads another movie or changes the reference being used.

10.3.5 QuickTime References

QuickTime movies support the notion of references as well as direct data representations of media
types. Imagine that you're editing a movie, and hours of video are stored on your hard drive. While
you're working with the movie, you cut and paste several smaller movie pieces. It would be terribly
inconvenient to copy hundreds of megabytes between files every time you select a section of video
and then copy and paste; you'd have to watch your computer export the data, recompress it to fit into
the rest of the stream, and then save the modified movie to disk again. This task would be very time
consuming, as well as an inefficient use of your drive space.

A QuickTime reference, therefore, is an indirect way to point to a large media set without actually
pointing to the entire set. It's very useful when you're editing a video or other large multimedia file.
In fact, this player lets you create references for movies, which is accomplished programmatically
through the makeReferenceMovie() methods. The first version, with no parameters, simply determines
those parameters and calls the second overloaded version. In the overloaded version of this method,
the movie is loaded and played, and then a reference is created:

 //make a Data ref out of a URL that references the movie
 quicktime.std.movies.media.DataRef targetDataRef =
 new quicktime.std.movies.media.DataRef("file://" +
 movieFile.getPath());

 //make the very small short cut movie
 outputMovie.createShortcutMovieFile(
 kMoviePlayer, smSystemScript,
 createMovieFileDeleteCurFile, targetDataRef);
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

Ultimately, the QuickTime API exports a movie as a reference rather than as a full copy. This is a fast
operation—don't by shy about creating and using references this way.

10.3.6 Exporting Movies

The final portion of the application exports movies. This is the most complex part of the code, as quite
a bit of work is involved in taking a movie and converting it into another format. First, the movie must
be flattened. A flattened media file is self-contained, without references to other files on disk. This
type of file is basically the converse of the references we just talked about—the flattened version is a
single file with all of its movie content represented physically on disk (rather than with references to
other files). Fortunately, the QuickTime API handles this task implicitly; you won't see any line of code
like this:

theInputMovie.flatten();

Instead, when you convert the movie to another format, the API handles this task transparently. This
also happens automatically when you save the file out to disk, which is important for distribution of
movies; you can't burn a reference of a movie onto a DVD, for example.

Flattening and exporting were handled in a separate thread. Unlike creating references, flattening
takes a lot of time, especially when export formats are specified (for example, converting from one
format of high-resolution video to another). While this separate thread still may not let a user do
much other work, it at least keeps the player from "freezing" until the export is done, and even lets
you create a nice process indicator for the user.

Don't be too careless when flattening movies; the process is intensive and
can take a lot of time. If you try to preempt the user and flatten movies with
every edit, for example, you'll end up with a very unpleasant movie editing
experience.

10.3.7 Running the Player

Once you've gotten the code entered, compiled, and ready to roll, fire up SimplePlayer. You should
see the simple Swing interface, illustrated in Figure 10-5.

Figure 10-5. The Simple Player

Load up some QuickTime files (which have a .mov extension) and look at what the player can do. If
you don't have any video available, you'll find some samples in /Applications (Mac OS
9)/iMovie/iMovie Tutorial/Media. One is shown in the player in Figure 10-6.

Figure 10-6. Movie playback

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As mentioned back in this section's introduction, SimplePlayer can also play back other media types,
such as MP3 files. Figure 10-7 shows a little Johnny Cash blaring out of my Apple speakers. If you can
play an audio or video format through your normal QuickTime player included with OS X, then you
can play it with SimplePlayer.

Figure 10-7. MP3 playback

Figure 10-8 demonstrates the player's export features, showing you the output file, as well as the
export format and what encoding to use. You'll also see an "Options" button that you can select, and
the resultant screen is shown in Figure 10-9. All these options are essentially "freebies"; the
QuickTime API handles them automatically, and you don't have to add any extra code to deal with
them. In this way, users can adapt their multimedia to different outputs. For example, you could
export a video clip in one format to support playback via the Web, or another for playback on a
custom DVD.

Figure 10-8. Export media

Figure 10-9. Export options

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

While these options don't require extra code, they do require extra
processing time. You may want to test them to see how they affect exporting
video, but always be aware that advanced options can require extra time to
execute.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 11. The Mac OS X Spelling Framework

Users (and developers) tend to be imperfect. In particular, most folks upon occasion miszpell a word
or two. Because of this, integrated spellchecking is one of Mac OS X's most useful native APIs. Apple
also makes available the Java Spelling Framework, a set of wrappers for the native spelling libraries
included in your Mac OS X distribution. Like the Speech API and QuickTime, these wrappers are part
of the platform, and no special steps for using spelling are required beyond an extra download or two.

At its core, the Java Spelling Framework is refreshingly straightforward. It can be attached directly to
a Swing text component to provide either interactive or real-time spellchecking. It can handle user
interface complexity either automatically, or in a more programmatic fashion suitable for more
sophisticated applications. It's easy to imagine using the Spelling API and the Java Servlet API to
construct a web-based spellchecker for user-submitted text. You could aid users in searches, for
example, by suggesting corrected spellings for misspelled words. You could even use this framework
to build a fully featured GUI word processor. The possibilities are nearly limitless.

This chapter adds interactive and real-time spellcheck functionality to the SimpleEdit application
constructed in Chapter 4 and Chapter 5. This functionality will give you a feel for the Spelling
Framework and help you understand how it integrates into existing programs.

If you've been browsing but haven't kept your code up to date with the
examples, you'll need the example code from Chapter 4, along with the
updates detailed in Chapter 5, to build the sample application in this chapter.
You can also download this code online at the book's web site.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

11.1 Getting Set Up

To get started, download the Spelling Framework from
ftp://ftp.apple.com/developer/Sample_Code/Java/JavaSpellingFramework.sit. Expanding the archive
creates a folder called JavaSpellingFramework with the following contents:

build/
com/
doc/
Images/
Native/
JavaSpellingFramework.pbproj
ReadMe.txt

The build directory contains an example and is the target for other examples and compilation targets
within the distribution. You'll find the source in the com directory, Javadoc for the source in the doc
directory, and support files in the Images and Native directories. Project Builder uses the .pbproj file
to assemble the project, and I'm sure you know what ReadMe.txt is all about.

Once you've expanded these files, build the project to create classes for use by your application. First,
though, you might need to perform a few tweaks to get the code in the proper state for your platform.

11.1.1 Mac OS X 10.2

If you're running Mac OS X 10.2 or later, you'll need to take care of a few extra steps. First, rebuild
the libraries to get them to work properly. Expand the JavaSpellingFramework.sit archive, and double-
click on JavaSpellingFramework.pbproj to open the application in Project Builder. This will load up the
entire framework, including its source files and images. In fact, the directory pane in Project Builder
will look just like your Finder window, complete with all Spelling Framework directories and files, plus
a few extras (the .framework files).

Once you open the project, navigate to the JTxtCmpontDrvr.java source file, as shown in Figure 11-1.
You'll find this file in Classes/com/apple/spell/ui. Clicking on the file will open up the source in Project
Builder. You should then navigate to line 230 or so, and uncomment lines 236 and 237:

if ((!ignoreWSIssue) && (!Character.isWhitespace(s.array[posOfChange])))
 return;

Figure 11-1. JtxtCmpontDrvr.java in Project Builder

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Option-L in Project Builder is the shortcut to move to a specific line of code.

You also need to change line 247:

while ((p0 < d.getLength())&& (!Character.isWhitespace(s.array[p1]))
 && (p1 < d.getLength()))
 p1++;

The first change fixes a problem in which words are prematurely marked as errors, and the second
change fixes an array-out-of-bounds error. By the time you read this, these errors may already be
fixed in the code; just check it out in your own downloaded version. At this point, you're ready to
build the framework.

11.1.2 Building the Framework

To compile the Spelling API, open the project in Project Builder (if you haven't already). Simply select
"Build Build...", as shown in Figure 11-2.

Figure 11-2. Building the framework

In my compilation, I received 10 warnings and no errors. You should expect similar results. If you do
encounter errors, you may have introduced a typo when you made a change specified in the previous
section. Check your changes and build again.

Once the build is successful, you will have libraries and samples in the target directory, build. Open
this folder in the Finder, and you should see the generated files as shown in Figure 11-3.

Figure 11-3. The spelling libraries after building

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.1.3 Setting Up the Java Environment

Now you need to ensure that your Java environment can access these libraries. The two files you
should focus on are the native portion of the framework (packaged as a Java Native Interface library),
libspeller.jnilib, and the Java classes, in JavaSpellingFramework.jar. Copy the libspeller.jnilib file to
your ~/Library/Java/Extensions directory (you'll need to create the Java and Extensions directories
yourself), as shown in Figure 11-4.

Figure 11-4. Installing the JNI Library

Now, as long as the JavaSpellingFramework.jar file is on your application's classpath, you'll be able to
access the spelling functionality.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

11.2 The Spelling API

The spelling kit offers several different layers of API. The selection of an API depends on the
customization you wish to offer and the type of application you are building.

The com.apple.spell.SpellChecker class is the fundamental building block for spelling. This class
contains several static methods that work with ordinary Java Strings. It lets you search for misspelled
words, which are then returned as com.apple.spell.MisspelledWord objects. You can work with multiple
languages, ask for suggestions, and add and remove words from the dictionary—all without worrying
about the details of the underlying spellchecking engine. These classes do not, however, provide any
sort of user interface.

The next layer of the API calls the method com.apple.spell.ui.JTextComponentDriver.checkSpelling() ,
passing in a javax.swing.JTextComponent to the method. This step invokes a standard spelling dialog
(as shown in Figure 11-5). Alternatively, you can call
com.apple.spell.ui.JTextComponentDriver.startRealtimeChecking() on a JTextComponent to get real-time
spellchecking (in which spelling mistakes are underlined in red as the user enters incorrect words).

The third layer of the API registers event handlers to receive notifications when the
com.apple.spell.ui.JTextComponentDriver class processes events such as finding a misspelled word or
changing, correcting, or ignoring a word.

This design is attractive because it lets Swing applications add support for spellchecking. At the same
time, less conventional applications can rely on the same underlying functionality to perform
spellcheck with whatever custom user interface is desired.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

11.3 Spelling in Action

Now that you have a basic understanding of the Spelling API, consider the actual code that uses it. As
in previous chapters, this code should address any questions you might have and detail the use of
spelling from a Java application.

11.3.1 User-Requested Spellchecking

You'll now add the ability to spellcheck the JTextArea of the SimpleEdit application created in Chapter
4. This modification allows the user to select "Spelling" from the "Tools" menu and run a spellcheck on
SimpleEdit application text.

The plug-in mechanism adds this functionality, implementing the SimpleEditPlugin interface again. This
makes interaction with SimpleEdit a piece of cake. Example 11-1 is the source code for this plug-in.

Example 11-1. A spellchecking plug-in

package com.wiverson.macosbook.spelling;

import com.wiverson.macosbook.SimpleEdit;

public class SpellCheckPlugin implements
 com.wiverson.macosbook.SimpleEditPlugin
{

 public SpellCheckPlugin()
 {
 }

 public void doAction(SimpleEdit frame, java.awt.event.ActionEvent evt)
 {
 com.apple.spell.ui.JTxtCmpontDrvr mySpellchecker =
 new com.apple.spell.ui.JTxtCmpontDrvr();
 mySpellchecker.checkSpelling(frame.getJTextArea());
 }

 public String getAction()
 {
 return "Check Spelling...";
 }

 public void init(SimpleEdit frame)
 {
 }

}

There's very little to this code; no initialization is required, so only the doAction() method and a short
getAction() method body need to be implemented. getAction() is self-explanatory, and doAction()
just loads a text-area spellchecker and uses it to check spelling in the SimpleEdit text box.

To use this plug-in, make sure the JavaSpellingFramework.jar is on the classpath when you start the
SimpleEdit application. Then launch the application, passing in the name of the plug-in as an
argument. To launch from the command line, use a command like this:

java -cp .:JavaSpellingFramework.jar
 com.wiverson.macosbook.SimpleEdit
 com.wiverson.macosbook.spelling.SpellCheckPlugin

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 com.wiverson.macosbook.spelling.SpellCheckPlugin

As shown in Figure 11-5, the spellchecking facility integrates seamlessly with the SimpleEdit
application.

Figure 11-5. Interactive spellchecking

If more control over the modifications made by the spellchecker is needed, you can subclass the
com.apple.spell.ui.JTxtCmpontDrvr class and override the methods handleFindNextEvent() ,
handleFoundMisspellingEvent(), handleIgnoreEvent(), and handleCorrectEvent() for notification as the
user interacts with the dialog.

11.3.2 Real-Time Spellchecking

As computers have gotten faster, the ability to perform real-time spellchecking in word processors has
become increasingly popular. Real-time spellchecking simply means that the application checks
spelling as you type without you having to make a specific request for this behavior. This feature is
most commonly implemented by underlining misspelled words in red as the user types them. The
spelling toolkit that Apple provides is powerful enough to support this feature, and you'll want to
implement it in any word-processing applications you produce.

Use SimpleEdit's plug-in mechanism to add this functionality again, and the code turns out to be as
simple as user-requested spell checking. Example 11-2 is the relevant plug-in code.

Example 11-2. Real-time spellchecking plug-in

package com.wiverson.macosbook.spelling;

import com.wiverson.macosbook.SimpleEdit;

public class RuntimeSpellPlugin implements
 com.wiverson.macosbook.SimpleEditPlugin
{

 public RuntimeSpellPlugin()
 {
 }

 private boolean runtimespell = false;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 private boolean runtimespell = false;
 com.apple.spell.ui.JTxtCmpontDrvr mySpellchecker =
 new com.apple.spell.ui.JTxtCmpontDrvr();

 public void doAction(SimpleEdit frame, java.awt.event.ActionEvent evt)
 {
 if(!runtimespell)
 {
 mySpellchecker.startRealtimeChecking(frame.getJTextArea());
 } else
 {
 mySpellchecker.stopRealtimeChecking();
 }
 runtimespell = !runtimespell;
 }

 public String getAction()
 {
 return "Toggle Realtime Spelling";
 }

 public void init(SimpleEdit frame)
 {
 }
}

The doAction() method handles the important work. It merely has to start and stop the interactive
spellchecker based upon the state of the runtimespell flag. This step lets the user turn real-time
spellchecking on and off easily without adding complexity to your plug-in code.

As shown in Figure 11-6, words that the user types are now highlighted with a dotted red underscore.
If the user Control-clicks (or, if using a two-button mouse, right-clicks) on a word, a pop-up menu
with suggestions appears. It's a lot of functionality for such a minor addition.

Figure 11-6. Real-time spellcheck

When you use the real-time spellcheck capability, new words that the user types are checked, but
cut-and-pasted words are not, and words are not rechecked if the real-time checking is turned off and
then back on. Fortunately, the Java source layer provided by Apple's toolkit controls this behavior,
and you can customize it to add more functionality (for example, by integrating default language
choices into your own preferences).

11.3.3 Custom Spellchecking

So far, you've dealt with spelling only in GUI applications. However, you might want to implement
spellchecking in an application that doesn't use Swing controls or that operates at a lower level. In
these cases, you should bypass the com.apple.spell.ui package and drop into the base spelling
package, com.apple.spell. Here, you'll find several useful items that don't assume the existence of a
user interface.

The com.apple.spell.SpellingChecker class provides lower-level access to the Mac OS X Spelling API. It's
simple to use, as it's simply comprised of several static methods. The method signatures are shown
here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// Locates the first misspelled word in a String
MisspelledWord findMisspelledWordInString(String in, String language);

// Finds a misspelled word with an offset.
MisspelledWord findFirstMisspelledWord(String in, int startingAt, String langauge);

// Gives suggestions for a word, or use the method on MisspelledWord
String[] suggestGuessesForWord(String word, String language);

// Adds a custom word to the dictionary, useful for jargon.
boolean learnWord(String word, String language);

// Removes a custom word from the dictionary.
boolean forgetWord(String word, String language);

If you want to work with these APIs, first call SpellingChecker.getAvailableLanguages() to identify the
installed languages on the system you're working with. Then the other static methods can be called;
each is used by passing in a section of text and the preferred language to spell in.

These APIs work naturally with ordinary Java Strings. If you expect to deal with large quantities of
text, develop a model in which spellchecking operates on another thread to avoid user interface
deadlocks, passing in a paragraph or a fixed quantity of text to be checked.

Imagine using this API to provide a variety of interesting services, such as adding spellchecking
capabilities to web applications via JSP or servlets—which would allow users of non-Mac OS X
platforms to enjoy one of Mac OS X's most useful features. Familiarizing yourself with the Spelling API
does more than just improve your Swing applications; it can make your programming more user-
friendly.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 12. Databases

The last few chapters have dealt largely with features specific to GUI applications. Speech, spelling,
and QuickTime are generally used to provide rich desktop experiences. As you might expect, these
applications are commonly packaged as standalone applications (detailed in Chapter 7), or at least as
desktop applications delivered via the Web (detailed in Chapter 8).

However, sometimes an application needs to be controlled by, and staged on, a remote server. Online
stores like Amazon.com come immediately to mind here—these applications cannot reside on a user's
desktop. Additionally, speech and QuickTime become non-choices, as the remote application knows
little (if anything) about the users visiting their web sites. These applications, when housed on remote
servers, are called web applications. They are generally more complex than the applications discussed
so far, both in development and packaging. They spread out over multiple servers in many cases, and
involve the enterprise Java APIs. Of course, Mac OS X is still a great platform on which to develop
these applications, and the next several chapters will explore this aspect of the Mac.

Once you move into the world of web applications, you'll begin to hear about databases. Like any
good operating system, Mac OS X boasts several good database products, most notably from the open
source suite of software. This chapter explains the basics of databases, and then takes a brief survey
of popular databases for the Mac OS X platform.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.1 Basic Concepts

A database, at its simplest, is an application that keeps track of data in a structured manner. By this
definition, you could think of a spreadsheet as a type of database—you work with data in rows,
columns, and tables. You input data, and then add functions to perform sums and other calculations
on the data. In the Java world, however, a database typically refers to a relational database. A
relational database also stores data in rows and columns, but locates them within larger data
components called tables. Additionally, relational databases allow keys between these tables, building
the relationships for which the database type is named.

12.1.1 SQL

When learning about relational databases, you'll hear the term Structured Query Language (SQL),
which is the language you will use to access a relational database. SQL works with any relational
database and underlies the many GUI tools you will see for working with these types of databases.

To solidify these concepts, look at some examples. Consider a simple database table, as defined in
Table 12-1.

Table 12-1. A simple database table
ID First Last Email

1 Will Iverson wiverson@ix.netcom.com
2 Bob Smith bob@bobsmith.com

Much like a spreadsheet, the data in the database is stored in columns (ID, First, Last, Email) and rows
(in this case, two rows of data). The ID column is commonly used when working with relational
databases. It generally provides a unique ID for each row, used by other tables that may need to
reference that row.

While an ID column is almost always used in relational databases, it is not
required. Additionally, it sometimes exists but has a different name, such as
row-id or identifier.

When communicating with a relational database, send SQL commands like:

SELECT ID, First, Last
 FROM SimpleTable
 WHERE ID=1

Essentially, the first line specifies the columns to select, the second line indicates which database
table is desired, and the third line indicates a selection criterion. Using the sample data in Table 12-1
would return the first row of data. Here are several other simple SQL statements:

SELECT Email
 FROM SimpleTable
 WHERE Last = 'Smith'

SELECT First, Last
 FROM SimpleTable
 WHERE Email LIKE '%netcom.com'
ORDER BY Last, First

The real strength of relational databases, however, lies in their ability to issue relational queries—in
effect "stitching" together the data in two or more tables with a single query:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT s.First, s.Last, p.PhoneNumber
 FROM SimpleTable s, PhoneNumberTable p
 WHERE p.PersonID = s.ID
 AND s.Last = 'Iverson'

For example, suppose you have a customers table and an orders table. You could issue a single query
against both tables, asking for the most recent order for each customer:

SELECT c.first, c.last, o.description
 FROM customers c, orders o
 WHERE o.customerID = c.ID
GROUP BY o.customerID
HAVING MAX(o.orderDate)

An in-depth description of SQL is beyond the scope of this book, but it's a powerful, popular way to
express data and queries against that data.

Having to learn another programming language (such as SQL) when you start working with Java can
be daunting, but learning SQL is easier than writing your own database. SQL has also become an
extremely popular language; even if you decide to switch to another programming language in the
future, that new language will probably possess a mechanism for interacting with databases via SQL.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.2 Mac OS X Databases

The rest of this chapter will walk through the installation of popular databases on the Mac OS X
platform. Each database has pros and cons, and your decision to use a specific database will probably
depend on its performance, functionality, and price. You should browse the O'Reilly library for more
extensive coverage of these databases before making your final decision.

12.2.1 MySQL

MySQL is a popular, lightweight, open source relational database. Many developers support it, which
makes it an ideal database on which to start the RDBMS learning process. Over the years, MySQL has
evolved, adding an increasingly broad range of sophisticated features. Still, its most popular use is as
a storage mechanism for dynamic web applications—specifically those built using open source
languages such as Perl and PHP. It is also an extraordinarily solid database for small, JSP-based web
applications.

12.2.1.1 Installation

Installing MySQL on Mac OS X is fairly straightforward. First download a distribution of MySQL. A
prebuilt Mac OS X binary is available at http://www.mysql.com/downloads/.

Currently, an ideal download is MySQL 3.23, which is the one you'll use here.
You can get it at http://www.mysql.com/downloads/mysql-3.23.html.

Scrolling through the list, you'll notice versions available for Windows, Solaris, FreeBSD, and Mac OS
X. The availability of a Windows version sometimes makes MySQL a better choice than PostgreSQL
(discussed later in this chapter).

The specific version used here is MySQL 3.23.55 for Mac OS X 10.2. You might notice that the last
revision number for MySQL is updated frequently. Be sure to stay on top of the release notes to look
for bug fixes for problems you may have.

When you click on the download link (I grabbed the "Standard" version rather than the "Max" version)
and select a mirror site, you'll end up with a .tar.gz file. Double-click on it, and assuming your StuffIt
Expander is installed, the file will be expanded into a new folder called mysql-3.23.55-apple-
darwin6.1-powerpc. Move this folder into a location you can remember. For the rest of this discussion,
assume that the files are installed in /Developer/mysql-3.23.

The folder/directory name is shortened to make it easier to type, but the
version number remains to ensure that you can easily remember which
version you are using. Later, you may wish to test or upgrade to another
version, and you'll want this version information to keep things straight.

Next, go to the Apple menu, select "System Preferences . . . ", and click on "Users." Add a new user,
name the user mysql (for both the full name and the short name), and select an icon for that user.

Don't forget to assign a password to the mysql user (and remember the
password). You can also use the NetInfo Manager to create new users that
won't be visible in login screens, without a home directory, etc. For more
information on NetInfo, consult Mac OS X for Unix Geeks by Brian Jepson and
Ernest E. Rothman (O'Reilly).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Once you've installed MySQL, you'll need to perform some additional steps to get it running on your
system. Open up the terminal, and navigate to the bin directory of the folder where you placed your
MySQL installation.

Issue the commands as shown here to complete the software portion of the installation:

[localhost:~] wiverson% cd /Developer/mysql-3.23
[localhost:/Developer/mysql-3.23] wiverson% ./scripts/mysql_install_db

Now, set the permissions for the various directories:

[localhost:/Developer/mysql-3.23] wiverson% sudo chown -R mysql ./data
[localhost:/Developer/mysql-3.23] wiverson% sudo chown -R mysql *
[localhost:/Developer/mysql-3.23] wiverson% sudo chown -R root ./bin/*

This code assumes you created the mysql user, so be sure it is created before attempting these steps.

12.2.1.2 Starting MySQL

Now launch the server:

[localhost:/Developer/mysql-3.23] wiverson% sudo ./bin/safe_mysqld &

If you have already performed a sudo in the last five minutes or so, you'll be
able to execute this command with the & to put it in the background. If a
longer time period has elapsed since sudo-ing in, though, you may be
prompted for an administrative password. If you're having trouble, open a
new terminal and execute the command without the &, or execute a sudo ls
to force a password check.

Next, set passwords for MySQL's default administrator account. Follow the steps shown here (replace
the text "groovy" with your choice of password, but retain the quotation marks):

[localhost:/Developer/mysql-3.23.47] wiverson% sudo ./bin/mysqladmin -u root
-p password 'groovy'
[localhost:/Developer/mysql-3.23.47] wiverson% sudo ./bin/mysqladmin -u root
-h localhost -p password 'groovy'

Now test the connection to the database:

[localhost:/Developer/mysql-3.23.47] wiverson% ./bin/mysql --user root --
password
Enter password:
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 6 to server version: 3.23.54

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

After being prompted for the administrator password, you should see a MySQL status message go by
that displays the database connection ID and server version. At the mysql> prompt, enter the show
databases; command:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

mysql> show databases;
+----------+
| Database |
+----------+
| macjava |
| mysql |
| test |
+----------+
3 rows in set (0.00 sec)

mysql>

You should see a formatted display listing the mysql and test databases. Type exit at the prompt, and
you'll return to the command shell.

12.2.1.3 Stopping MySQL

Shut down the database by entering the following command:

[localhost:/Developer/mysql-3.23.47] wiverson% ./bin/mysqladmin --user=root
--password shutdown

As you can see, most of the work around MySQL involves the mysqladmin and mysql commands. You
should play around and become familiar with them, as they will be your mainstay in database work.

12.2.1.4 Creating a database

Now that you've gotten a handle on the basics, restart the database and get back into the MySQL
monitor shell by executing the commands shown here:

[localhost:/Developer/mysql-3.23.47] wiverson% sudo ./bin/safe_mysqld &
[localhost:/Developer/mysql-3.23.47] wiverson% ./bin/mysql --user root -passwords

You'll be prompted again for a password. At the MySQL prompt, create a new database and user.
Replace the text "special" with your own password, retaining the quotation marks:

mysql> create database macjava
Query OK, 1 row affected (0.00 sec)
mysql> grant all on macjava.* to javadev@localhost identified by "special";
Query OK, 0 rows affected (0.00 sec)
mysql> exit

12.2.1.5 Working with a database

Before issuing SQL commands to work with a database, log back in to the database:

[localhost:/Developer/mysql-3.23.47] wiverson% ./bin/mysql --user javadev --
password macjava

After entering your password again, you'll see the mysql> prompt. To start working with the macjava
database, type the following command:

mysql> use macjava
Database changed

You're now all set to begin adding tables, columns, and data to the database. To test this code, enter
some SQL as shown:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

mysql> select now();
+---------------------+
| now() |
+---------------------+
| 2003-01-05 00:02:34 |
+---------------------+
1 row in set (0.14 sec)

mysql>

To learn how to create tables and add sample data, see the next chapter.

12.2.1.6 MySQL JDBC configuration

You can download the MySQL JDBC driver (now known as Connector/J) from
http://www.mysql.com/downloads/api-jdbc-stable.html (follow the links to a local mirror). Make sure
the resultant JAR file (mysql-connector-java-2.0.14-bin.jar in my case) is on your classpath.

If using Version 2.0.14 or later, you'll use com.mysql.jdbc.Driver as your driver class (prior releases
used org.gjt.mm.mysql.Driver). The JDBC connection URL is in the form
jdbc:mysql://127.0.0.1/databasename. Replace 127.0.0.1 with the hostname of your MySQL server,
and you know what to do with databasename.

12.2.2 PostgreSQL

PostgreSQL is another popular open source database. Like MySQL, PostgreSQL is free, easy to run,
and great for development work. While it doesn't offer a native installation for the Windows platforms,
it is a little heavier-duty than MySQL, so it often finds a place in open source production
environments.

12.2.2.1 Installation

The easiest way to install PostgreSQL is to download a prebuilt package from
http://www.osxgnu.org/software/Database/postgresql/. PostgreSQL prebuilt binaries for Mac OS X
currently have some serious problems, though.

As of February 2003, the latest posted version (7.1.3) was built with support
for a command history in the interactive "psql" interpreter using the up and
down keys, and it includes the JDBC drivers (in /usr/local/pgsql/share/java).
Unfortunately, this package is not currently compatible with Mac OS X 10.2.

Therefore, the other way to install PostgreSQL on Mac OS X is to download and install it from the
source available at http://www.postgresql.org/. Select a mirror location close to you, and then
download the source for the database project. In this instance, you'll use the postgres-7.2.3.tar.gz
release.

Create a new user in the "Users" System Preferences pane with the name "PostgreSQL User", the
short name "postgres", and whatever password you want. Log out of Mac OS X, log back in as this
user, and uncompress the postgres-7.2.3.tar.gz file in your ~/Documents directory.

As noted in the MySQL section, using NetInfo to create a user without a
home directory is a good security practice.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Then open the Terminal and execute the commands shown here from the new PostgreSQL installation
directory:

[localhost:~/Documents/postgresql-7.2.3] wiverson% cd src/include/port/
darwin
[localhost:include/port/darwin] wiverson% mv sem.h sem.orig.h
[localhost:include/port/darwin] wiverson% echo '#include <sys/sem.h>' >
sem.h
[localhost:include/port/darwin] wiverson% more sem.h
#include <sys/sem.h>
[localhost:include/port/darwin] wiverson% cd ../../../backend/port

This code fixes some issues in the sem.h file included with the distribution; these fixes are critical, so
don't omit this step!

Next, comment out a few lines in the file Makefile.in , located in your installation's src/backend/port
directory. If you have followed these instructions, the complete path to this file would be
~/Documents/postgresql-7.2.3/src/backend/port/Makefile.in. Use the # character to comment out the
lines shown here:

...
#ifeq ($(PORTNAME), darwin)
#OBJS += darwin/SUBSYS.o
#endif
...

The easiest way to do this from the command line is to use the pico text
editor. You can search for this text and quickly find it using pico and the
Control-W "Where is" shortcut.

Finally, after making these fixes, you can compile and install the database:

[localhost:src/backend/port] wiverson% cd ~/Documents/postgresql-7.2.3
[localhost:~/Documents/postgresql-7.2.3] wiverson% ./configure --mandir=/
usr/local/share/man --with-openssl=/usr/lib --enable-recode
creating cache ./config.cache
checking host system type... powerpc-apple-darwin6.3
checking which template to use... darwin
checking whether to build with locale support... no
checking whether to build with recode support... yes
checking whether to build with multibyte character support... no
checking whether NLS is wanted... no

...omitted for brevity...

linking ./src/include/port/darwin.h to src/include/pg_config_os.h
linking ./src/makefiles/Makefile.darwin to src/Makefile.port
linking ./src/backend/port/tas/dummy.s to src/backend/port/tas.s
[localhost:~/Documents/postgresql-7.2.3] wiverson% make
make -C doc all
gzip -d -c man.tar.gz | /usr/bin/tar xf -
for file in man1/*.1; do \
 mv $file $file.bak && \
 sed -e 's/\\fR(l)/\\fR(7)/' $file.bak >$file && \
 rm $file.bak || exit; \
done
/bin/sh ../config/mkinstalldirs man7
mkdir man7
for file in manl/*.l; do \
 sed -e '/^\.TH/s/"l"/"7"/' \

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 sed -e '/^\.TH/s/"l"/"7"/' \
 -e 's/\\fR(l)/\\fR(7)/' \
 $file >man7/`basename $file | sed 's/.l$/.7/'` || exit; \
done
make -C src all

...omitted for brevity...

tsort: pl_comp.o
ranlib libplpgsql.a
gcc -traditional-cpp -g -O2 -Wall -Wmissing-prototypes -Wmissing-
declarations -Wno-error -flat_namespace -bundle -undefined suppress pl_
gram.o pl_scan.o pl_handler.o pl_comp.o pl_exec.o pl_funcs.o -o
libplpgsql.so.1.0
rm -f libplpgsql.so.1
ln -s libplpgsql.so.1.0 libplpgsql.so.1
rm -f libplpgsql.so
ln -s libplpgsql.so.1.0 libplpgsql.so
All of PostgreSQL successfully made. Ready to install.
[localhost:~/Documents/postgresql-7.2.3] wiverson% sudo make install
make -C doc install
gzip -d -c postgres.tar.gz | (cd /usr/local/pgsql/doc/html && /usr/bin/tar
xf -)
for file in man1/*.1 man7/*.7 ; do \
 /bin/sh ../config/install-sh -c -m 644 $file /usr/local/share/man/$file ||
exit; \
done
make -C src install

...omitted for brevity...

Thank you for choosing PostgreSQL, the most advanced open source database
engine.

[localhost:~/Documents/postgresql-7.2.3] wiverson%

Some of these commands can take time to execute (several minutes or
more), and no user feedback will be provided.

You've now installed PostgreSQL on your system. When you're done, the resulting PostgreSQL
installation is stored at /usr/local/pgsql, with the relevant PostgreSQL commands available at
/usr/local/pgsql/bin.

12.2.2.2 Initializing PostgreSQL

Next, configure a test data set. Execute the following commands to initialize a database:

[localhost:local/pgsql/bin] wiverson% su - postgres
Password:
[localhost:~] postgres% mkdir ~/pgsql
[localhost:~] postgres% mkdir ~/pgsql/data
[localhost:~] postgres% cd /usr/local/pgsql/bin/
[localhost:local/pgsql/bin] postgres% ./initdb -D ~/pgsql/data
The files belonging to this database system will be owned by user "postgres".
This user must also own the server process.

Fixing permissions on existing directory /Users/postgres/pgsql/data... ok

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Fixing permissions on existing directory /Users/postgres/pgsql/data... ok
creating directory /Users/postgres/pgsql/data/base... ok
creating directory /Users/postgres/pgsql/data/global... ok
creating directory /Users/postgres/pgsql/data/pg_xlog... ok
creating directory /Users/postgres/pgsql/data/pg_clog... ok
creating template1 database in /Users/postgres/pgsql/data/base/1... ok
creating configuration files... ok
initializing pg_shadow... ok
enabling unlimited row size for system tables... ok
creating system views... ok
loading pg_description... ok
vacuuming database template1... ok
copying template1 to template0... ok

Success. You can now start the database server using:

 ./postmaster -D /Users/postgres/pgsql/data
or
 ./pg_ctl -D /Users/postgres/pgsql/data -l logfile start

[localhost:local/pgsql/bin] postgres% ./postmaster -D /Users/postgres/pgsql/data
DEBUG: database system was shut down at 2003-01-04 23:38:21 PST
DEBUG: checkpoint record is at 0/1096F4
DEBUG: redo record is at 0/1096F4; undo record is at 0/0; shutdown TRUE
DEBUG: next transaction id: 89; next oid: 16556
DEBUG: database system is ready

You're now running the PostgreSQL server, and any status information will be echoed to the console.
Press Control-C in the terminal; this will cause PostgreSQL to shut down. If you haven't already, log
out of the postgres user account and log back in with your regular account.

12.2.2.3 Starting PostgreSQL

Open a new Terminal window and execute the commands shown below to start PostgreSQL:

[localhost:/usr/local/pgsql] postgres% cd /usr/local/pgsql/
[localhost:/usr/local/pgsql] postgres% ./bin/postmaster -i -D ~/pgsql/data/
>& ~/pgsql/log &
[1] 10524
[localhost:/usr/local/pgsql] postgres%

The su - postgres command lets you masquerade as the postgres user (you'll need to enter the
postgres user's password as well), so you don't have to constantly log out and log in as different
users. When you execute the postmaster command, the server's output will be sent to the ~/pgsql/log
file.

PostgreSQL reports much of its information by using the STDERR output
stream (not just STDOUT), and the >&~/pgsql/log sequence tells the shell to
redirect output to a file instead of to these output streams. The final & tells
the shell that this process should be run in the background.

You can monitor the output of this file by executing the command tail -501f ~/pgsql/log:

[localhost:~] postgres% tail -501f ~/pgsql/log
DEBUG: database system was shut down at 2003-01-04 23:42:58 PST
DEBUG: checkpoint record is at 0/109734
DEBUG: redo record is at 0/109734; undo record is at 0/0; shutdown TRUE
DEBUG: next transaction id: 89; next oid: 16556
DEBUG: database system is ready

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.2.2.4 Stopping PostgreSQL

You can shut the server down by executing the command ps to find the process ID (PID) of the
postmaster process, which you can then terminate by issuing a kill PID command, where PID is the
postmaster process ID:

 [localhost:/usr/local/pgsql] postgres% ps | grep postmaster
10524 std S 0:00.05 ./bin/postmaster -i -D /Users/postgres/pgsql/data/
10531 std R+ 0:00.00 grep postmaster
[localhost:/usr/local/pgsql] postgres% kill 10524
[localhost:/usr/local/pgsql] postgres%

12.2.2.5 Creating a database

Now you can work with PostgreSQL data as a user. Make sure the database is running as described
above. As the postgres user, execute the /usr/local/pgsql/bin/createuser command. Use your main
account's short name from the "System Preferences Accounts" dialog for the username, and
allow database creation for new users.

Next, open a new Terminal window and execute the createdb command to create your own database.
You'll want to supply your own database name, of course:

[localhost:/usr/local/pgsql] postgres% ./bin/createdb macjava
CREATE DATABASE
[localhost:/usr/local/pgsql] postgres%

12.2.2.6 Working with a database

Now you're ready to work with the psql program, an interactive SQL tool:

[localhost:/usr/local/pgsql] postgres% ./bin/psql macjava
Welcome to psql, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
 \h for help with SQL commands
 \? for help on internal slash commands
 \g or terminate with semicolon to execute query
 \q to quit

macjava=#

Use the name of the database you just created. You can use this program to enter SQL commands
that execute directly against the database:

macjava=# select now();
 now

 2003-01-04 23:59:14.946273-08
(1 row)

macjava=#

When you're done working in the psql shell, enter \q and press return.

12.2.2.7 PostgreSQL JDBC configuration

To start working with PostgreSQL via JDBC, you will need the JDBC drivers available at
http://jdbc.postgresql.org/download.html and the Postgres 7.2 JDBC 2 release (pgjdbc2.jar). To work
with PostgreSQL, make sure that this file is on your classpath.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The driver name is org.postgresql.Driver, and the JDBC connection URL (which connects to the
database you just created) is in the form jdbc:postgresql://127.0.0.1/databasename.

12.2.3 Oracle 9i

One important validation of Mac OS X has been its release of commercial database products for the
platform. The database world still largely revolves around the folks at Oracle, so there is perhaps no
more important database product for Mac OS X than a release of Oracle. Happily, it's now possible to
download a developer version of Oracle 9i specifically tailored for use with Mac OS X 10.2 from
http://otn.oracle.com/software/products/oracle9i/content.html. Click on the "Take a Survey" link to
register, and you can then download the software. If you're connecting to an existing Oracle 9i
instance, you'll just need the JDBC drivers; otherwise, download the entire database for installation
on your platform.

Oracle 9i is a very complex product, so if you're just starting to work with SQL databases, it is not the
easiest place to begin. Beginning with MySQL or PostgreSQL is much easier.

To get an idea of how complex Oracle is, note that the PostgreSQL 7.1.2
release is a little over 5 MB, whereas Oracle 9i weighs 345 MB. While a
release's size isn't always indicative of its productivity, it usually says
something about the complexity of the software involved.

For more information on Oracle 9i, and for guidelines on adopting it for your application development,
read the overview at O'Reilly's MacDevCenter.com:
http://www.macdevcenter.com/pub/a/mac/2002/11/12/oracle_part1.html. You should also check out
Oracle in a Nutshell, by Rick Greenwald and David Kreines, and Java Programming with Oracle JDBC,
by Donald Bales (both from O'Reilly).
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.3 Next Steps

This chapter introduces you to SQL and helps you install two popular (and free) databases for Mac OS
X. SQL is a rich language for working with very large data sets, and you are strongly encouraged to
look at the following O'Reilly texts for more information:

Database Programming with JDBC and Java, by George Reese

Managing & Using MySQL, by George Reese, Randy Jay Yarger, and Tim King

SQL in a Nutshell, by Kevin Kline

Practical PostgreSQL, by John C. Worsley and Joshua D. Drake

The following chapter uses the MySQL database to build a simple web application.
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 13. Servlets, JSP, and Tomcat

Most users are familiar with HTML, and virtually everyone who owns a computer today is familiar with
web browsers. The previous chapter introduced relational databases, but didn't discuss how to web-
enable the information you're storing. This chapter covers that topic and provides a way for you to put
a face on your web application. If you're already a web or J2EE developer, much of this material will
be familiar, although you'll encounter several Mac OS X twists along the way. If you've never played
in the enterprise Java space, this chapter should whet your appetite for Mac OS X and get you moving
in the right direction.

This chapter assumes that you've installed a database (in particular, MySQL) and that you'd now like
to present information to the end user. Two Java technologies are ideal for this task: JavaServer
Pages (JSP) and Java servlets. JSP is a specification and technology that lets a developer create HTML
pages with embedded bits of Java code. Servlets are a more code-oriented technology and are not
based on HTML pages; however, they still simplify HTML generation, and are excellent for producing
web-based user interfaces. This chapter details how to run these components in your Mac OS X
environment.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

13.1 Apache Tomcat

To run JSPs and servlets, you'll need a container that takes the output of these components and
displays it to the user. The ideal choice for this task is the Tomcat web container. Tomcat is the
Apache-sponsored, open source, official reference servlet container implementation of the Java servlet
and JavaServer Pages technologies. Those of you who know this topic well can skip to the next
section. For those of you who are new to Tomcat, a few words are in order.

13.1.1 A Brief History of Tomcat

Originally, simple web servers delivered static HTML documents to web browsers. An important legacy
of this era can be found on every Mac OS X machine: the web-sharing feature under "System
Preferences Sharing File & Web" is a full version of the famous Apache httpd, one of the
original web servers. Apache is a robust, powerful, well-supported web server, but on its own, its
capabilities for serving dynamic content are limited. A web page returned by Apache is (mostly) the
static document on disk.

To address the increasing need for dynamic content, a number of technologies were developed for
Apache. They were integrated into the server as plug-ins, and allowed Apache to add to its feature
set. These plug-ins ranged from support for Perl-based CGI scripts to the ability to run C++-based
extensions. Many extensions were limited, however. They often introduced additional overhead, many
times disproportional to the amount of functionality added. A growing number of common tasks were
also of interest, such as standardized mechanisms for connecting to a database and presenting
dynamically generated documents.

Further down the web-container timeline, developers began to notice that Java had several
advantages for these sorts of tasks. The Java runtime environment had many desirable features, the
most significant of which were integrated support for a rich threading model, a rich exception model
for handling failure states, and an existing API for connection to relational databases (referred to as
JDBC). The threading model reduced the large overhead that CGI scripts were creating on Apache,
and the core Java API simplified common tasks such as database access and content generation.
However, the core Java API still did not integrate tightly with HTML, and forced developers to handle a
lot of common networking tasks on their own.

At this point, the Java Servlet specification entered the scene. In many ways, this specification
developed as a standard way to write Java-based plug-ins for web servers. Today, these servlets are
typically installed in their own specialized server, called an application server or web container. A
servlet is essentially a lump of Java code that takes in a request (usually via HTTP) and writes out a
response (usually delivered by HTTP). Generally, users would form their response with an output
stream, as in the following Java code:

out.print("");
out.print("");
out.println("");
for(int i = 0; i < 5; i++)
 out.println(i + "
");

As you can see, this API hides all the details of network connection and buffering output formation;
the developer simply spits out HTML, and the web container converts it to a graphical interface.
However, Java was still largely a developer language. Web designers wanted the same ability to
produce dynamic content, and Java and servlets were too complex for the typical HTML designer.

Additionally, developers using servlets soon noticed that they spent significant amounts of time
massaging their HTML to fit in Java source, which was a poor way to encourage a division of labor
between the HTML web monkeys and the Java coders. This (and the growing popularity of a similar
technology from Microsoft, ASP) led to the development of JavaServer Pages. In a very real sense,
JSP is an inverted version of a servlet. The code above written as a JSP fragment would look like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<%
for(int i = 0; i < 5; i++) {
%>
<%= i %>

<% } %>

Note that you are now writing HTML, with the Java code broken out into script sections identified by
<% ... %> and <%= ... %>.

At first, the advantage of this JSP syntax over the servlet code may not be obvious. However, the
advantages can be significant, especially if you are doing a lot of web design and interface creation.
One of the most important differences is that most web developers (as well as web design tools, such
as Macromedia's Dreamweaver MX) are comfortable working with the bits of escaped Java source in a
JSP page, but there is no such thing as a visual layout tool for servlets.

The final piece of this puzzle, and history, is the entry of Tomcat. Tomcat is an open source version of
the code that was originally part of Sun's Java Web Server Development Kit. It has now moved far
beyond those initial pieces of code and become a rich, complex web container within which servlets
and JSP pages can run.

13.1.2 Installing and Starting Tomcat

To get started with Tomcat, download the latest stable release of Tomcat, currently Version 4.1.8,
located at http://jakarta.apache.org/tomcat/. Click on the Binaries link under the Download section to
visit another section, which describes the meanings of various builds and a list of other Apache
projects. Click on the Tomcat link under Release Builds to see a list of the current builds, with links
determined by the mirrored site you prefer.

You could encounter a bug in some implementations of the default Mac OS X un-tarring utility, so err
on the side of caution and download the ZIP version rather than a TAR distribution. These instructions
download the file http://www.rge.com/pub/infosystems/apache/jakarta/tomcat-4/binaries/tomcat-
4.1.18.zip. Make sure you know where on your system the downloaded file is, and then unzip the
archive to create an expanded directory structure.

If you use Internet Explorer and it automatically triggers StuffIt Expander,
locate the folder where the archive was automatically expanded. This is your
desktop by default, or a location specified in the "Preferences" dialog box.

Now move the properly unzipped directory structure into an appropriate location. The following
directions assume that you have placed the resulting files into the directory /Developer/tomcat-
4.1.18.

Open up an instance of Terminal and issue the commands shown here:

[Localhost:~] wiverson% cd /Developer/tomcat-4.1.18/bin/
[Localhost:/Developer/tomcat-4.1.18/bin] wiverson% ls -l
total 392
-rwxr-xr-x 1 wiverson admin 24659 Dec 19 14:49 bootstrap.jar
-rwxr-xr-x 1 wiverson admin 7400 Dec 19 14:49 catalina.bat
-rwxr-xr-x 1 wiverson admin 8618 Dec 19 14:49 catalina.sh
-rwxr-xr-x 1 wiverson admin 9034 Dec 19 14:49 commons-daemon.jar
-rwxr-xr-x 1 wiverson admin 511 Dec 19 14:49 cpappend.bat
-rwxr-xr-x 1 wiverson admin 1284 Dec 19 14:49 digest.bat
-rwxr-xr-x 1 wiverson admin 848 Dec 19 14:49 digest.sh
-rwxr-xr-x 1 wiverson admin 2546 Dec 19 14:49 jasper.bat
-rwxr-xr-x 1 wiverson admin 2833 Dec 19 14:49 jasper.sh

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

-rwxr-xr-x 1 wiverson admin 2833 Dec 19 14:49 jasper.sh
-rwxr-xr-x 1 wiverson admin 1199 Dec 19 14:49 jspc.bat
-rwxr-xr-x 1 wiverson admin 795 Dec 19 14:49 jspc.sh
-rwxr-xr-x 1 wiverson admin 1942 Dec 19 14:49 setclasspath.bat
-rwxr-xr-x 1 wiverson admin 1661 Dec 19 14:49 setclasspath.sh
-rwxr-xr-x 1 wiverson admin 1215 Dec 19 14:49 shutdown.bat
-rwxr-xr-x 1 wiverson admin 787 Dec 19 14:49 shutdown.sh
-rwxr-xr-x 1 wiverson admin 1216 Dec 19 14:49 startup.bat
-rwxr-xr-x 1 wiverson admin 788 Dec 19 14:49 startup.sh
-rwxr-xr-x 1 wiverson admin 10593 Dec 19 14:49 tomcat-jni.jar
-rwxr-xr-x 1 wiverson admin 65536 Dec 19 14:50 tomcat.exe
-rwxr-xr-x 1 wiverson admin 2168 Dec 19 14:49 tool-wrapper.bat
-rwxr-xr-x 1 wiverson admin 2484 Dec 19 14:49 tool-wrapper.sh
[Localhost:/Developer/tomcat-4.1.18/bin] wiverson%

Your directory listing should look similar to this output. Note that all of these files are already set to
be executable.

If you download a newer version of Tomcat, expect to see some minor
differences, especially in the timestamps on these files.

13.1.3 Starting Tomcat

Next, use the startup script in the bin directory to fire up Tomcat:

[Localhost:/Developer/tomcat-4.1.18/bin] wiverson% env
 JAVA_HOME=/Library/Java/Home ./startup.sh
Using CATALINA_BASE: /Developer/tomcat-4.1.18
Using CATALINA_HOME: /Developer/tomcat-4.1.18
Using CATALINA_TMPDIR: /Developer/tomcat-4.1.18/temp
Using JAVA_HOME: /Library/Java/Home
[Localhost:/Developer/tomcat-4.1.18/bin] wiverson% ps -a
 PID TT STAT TIME COMMAND
 601 std Ss 0:00.78 login -pf wiverson
 602 std S 0:00.05 -tcsh (tcsh)
 616 std R 0:04.13 /Library/Java/Home/bin/java
 619 std R+ 0:00.01 ps -a
[Localhost:/Developer/tomcat-4.1.18/bin] wiverson%

The JAVA_HOME environment variable is specified in this execution; Tomcat will not run without this
variable set properly. Note the use of the ps -a command to see the started server.

You may wish to set the JAVA_HOME environment variable in your shell
profile, or in another generic script that you can use, before running Java
programs. If you use this setting, you won't have to constantly set this
variable.

If all is well, launch your browser and point it at the URL http://localhost:8080/. Assuming Tomcat is
running properly, you should see a cheery message like that illustrated in Figure 13-1.

Figure 13-1. Tomcat success screen

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 13-1. Tomcat success screen

13.1.4 Shutting Tomcat Down

Tomcat expects a specific signal to shut down in an orderly fashion. You can tell Tomcat to shut down
cleanly by executing the following command:

 [Localhost:/Developer/tomcat-4.1.18/bin] wiverson% env JAVA_HOME=/Library/
Java/Home ./shutdown.sh

This shutdown script ensures that Tomcat releases the resources it has tied up and stops all related
processes.

Because of the scripts used, it can be difficult to tell which particular Java
process was used to launch Tomcat (either with a ps command or Mac OS X's
ProcessViewer). Therefore, pay attention to which process ID is used to
launch Tomcat (just in case you need to kill it manually).

13.1.5 Understanding JSP Compilation

Tomcat consists of two main architectural components: Catalina (a servlet container) and Jasper (a
servlet that serves as the JSP compiler and default handler for JSP files).

When Catalina is launched, it waits for requests for resources in its webapps directory (or wherever
the web content is located on your installation). If a request for a JSP is made, Catalina hands the
request off to the servlet implementation of Jasper. If this is the first time the request is made, Jasper
compiles the JSP into a Java source file, and then compiles this file by using the javac compiler in a
binary Java class file. Finally, Jasper loads and executes this class file, returning the result. Future
requests for the JSP page causes Jasper to compare the class file on disk to the JSP page on disk. If
the timestamps don't match, Jasper recompiles the page dynamically and repeats the process.

It sounds a lot more complicated than it really is, but JSP compilation can make debugging JSP pages
somewhat difficult. Because the original JSP is translated into Java source and then compiled into
class files, the line numbers reported for errors sometimes correspond to the original JSP source.
However, they usually map to the line numbers in the generated Java source. Be sure to fix bugs in
the original JSP source, not in the Jasper-generated Java files.

13.1.6 Getting to Know Tomcat

Tomcat has a specific set of directories and configuration files, as shown in Figure 13-2. Take the time

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Tomcat has a specific set of directories and configuration files, as shown in Figure 13-2. Take the time
to become familiar with the various files and directories and to understand what goes where (and
why). The next several subsections list important directories in this structure and their contents and
usage.

Figure 13-2. Tomcat installation layout

13.1.6.1 bin

The bin directory contains the scripts used to start and stop Tomcat, as well as scripts for the JSP
precompiler (jasper/jspc). Under normal circumstances, you need only the startup.sh and
shutdown.sh scripts.

13.1.6.2 common

The two subdirectories of the common directory contain code and libraries that are made available to
all installed web applications. Place raw class files in the proper directories under the
common/classes/ directory. For example, if your class file is MyNiftyObject.class in the package
com.wiverson.utils, the path to the class file is
common/classes/com/wiverson/utils/MyNiftyObject.class.

JAR libraries can be placed inside the common/lib/ directory. They will be added automatically to the
classpath for all your web applications.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Use this facility as sparingly as possible. Tomcat can be unpredictable when
you have multiple versions of libraries in the common directories. If only one
or two applications need a library or set of classes, consider placing those
resources in the web application itself, rather than in the common sub-
directories.

13.1.6.3 conf

Of most significant interest in this directory is a series of XML files that allow configuration of the
Tomcat (Catalina) server. These files serve a function for Tomcat that is similar to the functions that
the httpd.conf files serve for Apache.

server.xml

This file contains basic root configuration options for Tomcat. Try to use a text editor other than
TextEdit for viewing and editing these files to avoid the line feed problems discussed in
previous chapters.

The default connector point for the non-SSL channel is one of the most important values in this
file. If you decide to use Tomcat instead of Apache to handle all your web services, change the
value 8080 to 80 and use root access to bind to that port.

Pay special attention to the Context elements, which describe what content directories to serve
and what the permissions are for those directories. For a production server, strip out the
example contexts as well.

tomcat-users.xml

This file can manage users and roles for administration of the Tomcat server. In particular, if
you wish to use the "manager" web application for remote administration, check the
permissions listed here. As of this writing, the best (and only) place for documentation on this
functionality is the official documentation on the Apache web site
(http://jakarta.apache.org/tomcat/). However, I'm happy to report that O'Reilly's upcoming
Tomcat: The Definitive Guide will clarify this topic once and for all.

web.xml

This file is pretty significant, as it configures the core component of Tomcat (Catalina) and
binds the JSP compilation engine (Jasper) as a servlet. You can look here to add support for
CGI scripts, set the default timeout for user sessions, and define file extension and MIME
mappings, for example. This file, however, is beyond the scope of this book—visit the Tomcat
web site for more information (and to inspect the file itself).

13.1.6.4 lib

This directory stores Java libraries used by the jspc tool (JSP compiler) and Tomcat. It has very little
impact on normal web-based JSP application development.

13.1.6.5 logs

Not surprisingly, this is where Tomcat's log data is stored. When the system has problems, look here
to see what's going on; you can often find useful nuggets of information about exceptions and other
problems, as well as an access log.

13.1.6.6 server/lib

The two subdirectories under the server/lib directory contain code and libraries that are accessible to
the server but not to your web applications (assuming you're using the startup.sh script). Unless you

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the server but not to your web applications (assuming you're using the startup.sh script). Unless you
are working on Tomcat, you probably won't need or want to place files in these directories.

13.1.6.7 webapps

This directory contains the web applications that Tomcat is currently publishing to the Web. Each of
these web applications typically corresponds to a standard directory layout.

You may see references to web application resource (WAR) files, which are
essentially JAR files with additional semantics and structure for packaging
web applications. If you decide to use a WAR or to create your own WAR
files, drop them in this directory.

13.1.6.8 work

This directory is actually one of JSP's most important directories. It's where you put the intermediate
files that handle a lot of the Tomcat work. The next section covers this topic in greater detail.
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

13.2 Database-Driven JSP Applications

This section outlines what is probably one of the most excruciatingly difficult ways to build a web
application. There are lots of other, better ways to do it. If you are a web developer who is
comfortable with talking to a relational database directly from JSP, I'd strongly recommend a
commercial product such as Macromedia's Dreamweaver MX. If you're building database-driven Swing
applications, look at some of the tools described in Chapter 2. If you're working on a larger site with
several developers in different roles, consider using XML and XSLT, possibly in conjunction with
Apache Cocoon (http://xml.apache.org/cocoon) and/or Struts (http://jakarta.apache.org/struts).

These disclaimers aside (hopefully delivering me from a thousand emails about what I am about to
write), this application-building process is a very useful learning tool. Now let's discuss how to build
and debug a simple JSP application.

The concept is to build a simple web application that executes simple SQL commands via a web
browser using JSP. This section uses the MySQL database installation created in Chapter 12. The rest
of this chapter assumes that you've installed MySQL as described and created the macjava database.
See Chapter 12 for more details if you need a quick review.

13.2.1 Setting Up the Database

Before getting data to display with your web application, you need to put some data into the
database. Save the contents of Example 13-1 as init.sql in your home directory (or somewhere you
can easily locate).

Example 13-1. Setting up the database

USE macjava;

DROP TABLE IF EXISTS Contact;
DROP TABLE IF EXISTS Company;
CREATE TABLE Contact
(
 ID BIGINT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY
);

ALTER TABLE Contact ADD firstName CHAR(50); /* First name */
ALTER TABLE Contact ADD lastName CHAR(50); /* Last name */

ALTER TABLE Contact ADD email CHAR(255) NOT NULL;/* email address */

ALTER TABLE Contact ADD companyID BIGINT NOT NULL;/* company worked for */
CREATE TABLE Company
(
 ID BIGINT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY
);
ALTER TABLE Company ADD name CHAR(255); /* Company public name */

INSERT INTO Company (ID, name) VALUES (1, "Big Dog Corp");
INSERT INTO Company (ID, name) VALUES (2, "Little Hampster Inc");

INSERT INTO Contact (ID, firstName, lastName, email, companyID)
 VALUES (1, "Biff", "Beefeater", "biff@null.com", 1);
INSERT INTO Contact (ID, firstName, lastName, email, companyID)
 VALUES (2, "Angry", "Master", "darkone@null.com", 1);
INSERT INTO Contact (ID, firstName, lastName, email, companyID)
 VALUES (3, "Smooth", "Slinker", "smooth@null.com", 2);
INSERT INTO Contact (ID, firstName, lastName, email, companyID)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

INSERT INTO Contact (ID, firstName, lastName, email, companyID)
 VALUES (4, "Glass", "Opal", "shatter@null.com", 2);

These commands describe how to set up two tables in MySQL and add a small amount of data to
these tables. To actually add the data, execute the following command:

/Developer/mysql-3.23/bin/mysql --user javadev --password < ~/init.sql

Note the use of the < directive to "pipe" the file into the mysql monitor.

Running this script should prompt you for the javadev user's password and then run silently. Any
errors will be reported by line number. Note that the first two commands (DROP TABLE IF EXISTS)
wipe out these tables and their data each time this script is run. This means that if you make a
mistake, you can simply rerun the command to reenter the data, but any changes that are made later
to the database will be destroyed without warning if this script is rerun.

13.2.2 Building the Web Application

The rest of this chapter shows how to build a web application from scratch. The process is time-
consuming, but it should help you understand the different files and directories involved.

Start by creating a few supporting directories, as shown in Figure 13-3. Inside the webapps directory,
create a directory called jspdbtodo. Inside that directory, create a directory called WEB-INF . Inside
that directory, create another directory called lib. Remember that capitalization matters!

Figure 13-3. Initial directory layout

The WEB-INF directory is a special directory that is hidden to remote clients (such as web browsers)
and lets you add protected resources specific to this application, such as configuration files that might
store sensitive information (like passwords used to connect to a database). The lib directory inside
WEB-INF contains JAR files that will automatically be added to this web application's classpath.

13.2.2.1 Creating your first JSP

Create a text file immediately inside the jspdbtodo directory called index.jsp. Enter the contents of
this text file as shown in Example 13-2.

Example 13-2. A "Hello World" JSP page

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 13-2. A "Hello World" JSP page

<%@ page language="java" %>
<HTML>
<BODY>
Hello World!

<%= new java.util.Date().toString() %>
</BODY>
</HTML>

The first, slightly odd-looking tag is a page directive that tells Tomcat that the scripts in the page are
Java. The page directive isn't strictly necessary, but is good form for adhering to the JSP specification.

Next, you'll notice what looks like a bit of Java code that creates a new java.util.Date object and
converts it to a String, embedded within a <%= %> tag. This tag tells Tomcat to evaluate whatever
code is placed inside as a String and to output the results of that expression to the page.

Experiment a bit and use your favorite browser to open this file directly from the filesystem (without it
being translated by Tomcat). If you've installed things in the locations shown in this chapter, you
should be able to simulate this effect by opening the URL file:///Developer/tomcat-
4.1.8/webapps/jspdbtodo/index.jsp in your browser.

The file:// prefix tells your web browser to open a local file instead of using
the HTTP protocol (denoted by the http:// prefix to the URL).

Depending on your browser, you may get a timeout, see the "Hello World!" test but no date and time,
or see "Hello World!" and the page's raw JSP scripts. Your browser gets the information directly from
the disk and attempts to parse it, but browsers don't understand JSP pages. For this reason, your
results are unpredictable and often inconsistent. What you need, of course, is for a web container to
translate this page into standard HTML, which your browser can understand.

Try to view the same page rendered through the JSP engine. Make sure that Tomcat is running, and
go to http://localhost:8080/jspdbtodo/index.jsp. This time, you should see "Hello World!" and the
current date and time, as shown in Figure 13-4.

Figure 13-4. Hello World in a JSP

13.2.2.2 Debugging JSP pages

Now that you've gotten started with JSP, you need to learn how to figure out what's happening when
things go wrong. Using the Terminal, cd to the work directory inside your Tomcat installation. You
should see a series of directories that correspond to the JSP you were just working with. Inside these
directories, you'll see two files: index$jsp.java and index$jsp.class. These are also shown in the
Finder, as seen in Figure 13-5.

Figure 13-5. A JSP's compiled files

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 13-5. A JSP's compiled files

As mentioned earlier, when you first view a JSP using Tomcat, it will automatically translate the JSP
into a Java servlet source file (the index$jsp.java file) using Jasper, and then use the javac compiler
included with the Mac OS X JDK to compile that Java source file into the corresponding index$jsp.class
file. This class file will be loaded and executed, and if the JSP is then modified, the corresponding
source files will be regenerated.

When a problem arises, you will get an exception and stack trace that correspond to this Java source
file, not your original JSP. Open the corresponding Java source to find the offending line.

Try to "break" your JSP—don't terminate a String, or put gibberish inside the <% ... %> tags. Watch
and see what happens, and take note of the displayed error message. Look at the .java source
generated by your .jsp file, and try to understand the relationship between the different errors you
get and the different places where files are generated. If the JSP precompiler reports an error, you'll
get an error notification with a line number that corresponds to the original JSP file; however, runtime
errors are reported against the Java source file.

13.2.3 Talking to the Database

After covering the basics of JSP, you're ready to write a JSP that accesses your MySQL database. As
described in the last chapter, the Connector/J JDBC driver is perfect for using Java to talk to a MySQL
database.

Copy the JDBC driver JAR file, mysql-connector-java-2.0.14-bin.jar, to your web application's WEB-
INF/lib directory, as shown in Figure 13-6. This will make the driver available to your web application.

Figure 13-6. Installing the MySQL JDBC driver

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 13-6. Installing the MySQL JDBC driver

Next, alongside the "Hello World" index.jsp file, add a new file called test.jsp with the code shown in
Example 13-3 (using the proper password for the javadev MySQL user instead of "special", of course).

Example 13-3. A database-driven JSP

<%@ page language="java" import="java.sql.*" %>
<HTML>
<BODY>
<%
 Driver myDriver = null;
 Connection myConnection = null;
 String SQLstatement = "select now()";
 try
 {
 String jdbcURL = "jdbc:mysql://127.0.0.1/macjava";
 String jdbcUsername = "javadev";
 String jdbcPassword = "special";
 myDriver =
 (Driver)Class.forName("com.mysql.jdbc.Driver").newInstance();
 myConnection =
 DriverManager.getConnection(
 jdbcURL, jdbcUsername, jdbcPassword);

 PreparedStatement myStatement;
 ResultSet myResults;

 myStatement = myConnection.prepareStatement(SQLstatement);
 myResults = myStatement.executeQuery();

 while(myResults.next())
 {
 %>
 <%= myResults.getString(1) %>
 <%
 }

 } catch (Exception e)
 {
 %>
 <%= e.getMessage() %>
 <%
 e.printStackTrace();
 System.out.println(SQLstatement);
 return;
 } finally
 {
 try
 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {
 myConnection.close();
 } catch (Exception e)
 { /* Silent failure */}
 }
%>
</BODY>
</HTML>

Before going any further, note that this situation is probably the worst possible case for using JSP.
There is virtually no HTML—all you have done here is put a bunch of Java code in a tiny bit of HTML.
Also, most of this code accesses the database directly, which is another violation of good coding
principles. In a more realistic application, you would probably write helper Java classes to access the
database, and make these classes available through JSP tag libraries. Then you could access the tag
libraries from an HTML interface using JSP. However, that scenario is beyond the scope of this book,
and has little to do with Mac OS X. Try to follow along, but understand that this example of using JSP
on Mac OS X is not necessarily the ideal guide for great Java coding practices.

That said, it works, and it's pretty easy to understand. Ironically, the output is virtually identical to
the previous JSP except that the current date and time are retrieved from the database instead of the
Java runtime. This JSP is also a great way to test that everything is installed properly—that your JSPs
are compiled properly, that the connection with the database works, and so forth.

13.2.4 Retrieving Data

This section builds two pages that talk to the database. The first lets users view a list of companies
within the database. Clicking on a company name tunnels you down into a detail page, which shows
all contacts for that company.

For a real project, you would factor out all of the logic into JavaBeans, or break it out into custom
tags. This project, however, will make a very simple set of JSP pages. You shouldn't duplicate our
database connection logic, however, so you'll actually create four pages:

company.jsp, the page that users will first visit

contact.jsp, a detail page that shows a list of contacts for a given company

header.jsp, which contains the database connection logic

footer.jsp, which contains cleanup code for the database connection

Place all four files directly in the web application directory itself. When you're done, the directory
structure will look like Figure 13-7.

Figure 13-7. Database web application layout

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The index.jsp page and the test.jsp page are left over from the earlier examples.

Enter the text shown in Example 13-4 and save it as header.jsp. You'll note that the code is
apparently a snippet of Java source inside a set of brackets. You'll also notice that the variable
SQLstatement is used but never declared or initialized—the subpages will handle that step. The try
block is incomplete; it will be closed off in the footer.jsp file. Also, the myResults variable is initialized
but never used.

Example 13-4. Opening a database connection

<%
 Driver myDriver = null;
 Connection myConnection = null;
 try
 {
 String jdbcURL = "jdbc:mysql://localhost/macjava";
 String jdbcUsername = "javadev";
 String jdbcPassword = "special";
 myDriver =
 (Driver)Class.forName("org.gjt.mm.mysql.Driver").newInstance();
 myConnection = DriverManager.getConnection(jdbcURL,
 jdbcUsername, jdbcPassword);

 PreparedStatement myStatement;
 ResultSet myResults;

 myStatement = myConnection.prepareStatement(SQLstatement);
 myResults = myStatement.executeQuery();
%>

Next, create the corresponding footer.jsp file with the contents shown in Example 13-5.

Example 13-5. Closing the database connection

<%
} catch (Exception e)
 {
 %>
 <%= e.getMessage() %>
 <%
 e.printStackTrace();
 System.out.println(SQLstatement);
 return;
 } finally
 {
 try
 {
 myConnection.close();
 } catch (Exception e)
 { /* Silent failure */}
 }
%>

Here, you'll do some basic error handling and cleanup. You'll notice that a catch and finally match the
try block from header.jsp .

A key point here is that you can't use the header.jsp and footer.jsp without being aware of the
expectations (for example, an input SQLstatement variable) and the outcome (a ResultSet object
declared as myResults). This sort of variable management can be used for a variety of JSP tricks, not

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

declared as myResults). This sort of variable management can be used for a variety of JSP tricks, not
the least of which is the enforcement of compile-time rules about your pages. In essence, then, these
two components are hardcoded to depend on each other, as well as on certain aspects of pages that
will include them. Take care to document these requirements so other developers don't misuse these
components.

Now create the company.jsp file shown in Example 13-6.

Example 13-6. JSP for listing companies

<%@ page language="java" import="java.sql.*" %>
<HTML>
<BODY>
<% String SQLstatement = "select ID, name from Company"; %>
<%@ include file="header.jsp" %>

<H1>Company List Report</H1>

<TABLE border="1" cellpadding="3" width="50%">
<% while(myResults.next())
 {
 %>
 <TR>
 <TD>

 <%= myResults.getString("ID") %>
 </TD><TD>
 <A HREF="contact.jsp?companyID=<%=myResults.getString("ID") %>">
 <%= myResults.getString("name") %>

 </TD>
 </TR>
 <%
 }
%>
</TABLE>

<%@ include file="footer.jsp" %>
</BODY>
</HTML>

This page is starting to look more like normal HTML. It still has a bit of Java in it, but nowhere near as
much as the prior test.jsp example. Most heavy lifting is done in the include files (header.jsp and
footer.jsp). You'll notice that the SQLstatement variable is initialized here, and that the myResults
object is used to iterate over the resulting data. The resulting data is massaged into a HTML TABLE,
and links are created to the contact.jsp subpage with the specified company ID value appended as a
parameter.

Create the final detail page, contact.jsp, as detailed in Example 13-7.

Example 13-7. The company detail page

<%@ page language="java" import="java.sql.*" %>
<HTML>
<BODY>
<%
long companyID = new Long(request.getParameter("companyID")).longValue();
String SQLstatement = "select firstName, lastName, email, companyID from Contact
where companyID = " + companyID; %>
<%@ include file="header.jsp" %>

<H1>Contact List for Company</H1>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<H1>Contact List for Company</H1>

<TABLE border="1" cellpadding="3" width="50%">
<% while(myResults.next())
 {
 %>
 <TR>
 <TD>
 <%= myResults.getString("firstName") %>
 </TD><TD>
 <%= myResults.getString("lastName") %>
 </TD><TD>
 <%= myResults.getString("email") %>
 </TD><TD>
 </TR>
 <%
 }
%>
</TABLE>

Return to Company List

<%@ include file="footer.jsp" %>
</BODY>
</HTML>

This page is similar to the previous company.jsp page. The SQLstatement is initialized against the
incoming company ID. A link provided at the bottom of the page lets users bounce back to the
opening page.

This sort of JSP application is created visually by integrating the database
functionality into Macromedia Dreamweaver MX. Everything built here, and
significantly more, could be constructed via drag and drop and by setting
options visually—but that wouldn't be half as fun, right?

You'll quickly see several different aspects to the development of web applications: tracking user input
in the form of links and forms, retrieving data, formatting the results for different browsers or
devices, handling multiple languages, allowing user defined layouts, and so on. Designing web
applications and user interfaces can quickly become complicated. Having a clear idea of what JSP and
Tomcat let you do is the first step in getting a handle on these programming topics.

13.2.5 Reviewing the Application

Look at the final arrangement of the files on disk. As shown in Figure 13-7, you've got several files in
your web directory. Visiting the http://localhost:8080/jspdbtodo/company.jsp URL displays the output
shown in Figure 13-8.

Figure 13-8. Company HTML page

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Clicking the links on this page take you to a detail page that provides information on the company's
contacts, as shown in Figure 13-9.

Figure 13-9. Contact HTML page

It's easy to imagine building a web application with tremendous additional functionality, such as
search or the ability to add contacts.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

13.3 Frontending Tomcat with Apache

Mac OS X includes a default installation of the popular, effective web server Apache. In fact, the "
personal web sharing" functionality of Mac OS X, available from the Network control panel, merely
provides a nice graphical user interface on top of the Apache web server.

Figure 13-10 illustrates the browser and servers installed to handle a Java-based n-tier web
application. Apache receives requests from the client browser for dynamically generated application
content and then forwards them to the Java application server, which can then build a response from
the SQL database. Apache handles client-browser requests for static content (such as images or large
downloadable files) directly.

Figure 13-10. Four-tier application

To get Tomcat 4.0.4 and Apache to talk to each other, either download and build the source for the
connector yourself or download a prebuilt binary. Fortunately, Chad Thompson has already provided
instructions on how to do this at O'Reilly's macdevcenter.com, available at
http://www.macdevcenter.com/pub/a/mac/2002/08/20/tomcat_integration.html.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

13.4 Next Steps

Now that you've seen how to build simple web applications that generate web pages, you can learn
more about JSP, SQL, Tomcat, and MySQL by consulting the following texts:

MySQL Cookbook, by Paul DuBois (O'Reilly)

JavaServer Pages, by Hans Bergsten (O'Reilly)

Java Servlet Programming, by Jason Hunter (O'Reilly)

Tomcat: The Definitive Guide, by Jason Brittain and Ian Darwin (O'Reilly)

The next two chapters look at how to install and work with Enterprise JavaBeans and JBoss to build
more complex web applications, and how to use web services to integrate different web-based
systems.
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 14. EJB and JBoss

Once you move into the world of web applications, you'll find tasks that aren't well suited for servlets
and especially for JSPs. In particular, the most complicated business processes in enterprise Java are
not easily coded up in a JavaServer Page. Dealing with complicated financial transactions, for
example, isn't something that fits well into a page of mostly HTML, or even into a servlet that is
geared toward a request/response model. Instead, you need technology that provides security,
transactions, and a strong server-side component model.

Enterprise JavaBeans (EJB) refers to a specification that builds these types of server-side
components. These components are installed into a J2EE application server. By writing Java
components that conform to this specification, you take advantage of the application server's
sophisticated functionality as well as a known set of interfaces.

The specific functionality offered by a particular J2EE application server varies, but generally the use
of EJB features prominently in J2EE applications. In the last chapter, you saw a simpler form of a web
application based on JSP pages, servlets, and often a database and some helper classes. J2EE
applications are a bit more complex, often having three, four, or more application tiers and involving
five, six, or even ten different Java APIs. In these more complex cases, you need a J2EE application
server instead of (or in addition to) a simple web container like Tomcat.

This chapter shows you how to install JBoss, a popular open source J2EE application server. Like
Tomcat, JBoss runs smoothly on Mac OS X and offers enterprise-level services for Apple's newest
platform. It also examines some basic examples that come with JBoss to give you a feel for how EJBs
function on Mac OS X. Like the last chapter, EJB aficionados can skim the chapter looking for Mac OS
X specifics, while newbies can learn enough about EJB to get started in J2EE development.

It's far beyond the scope of this text to describe EJB application development, design, and
architecture. Instead, this chapter will help you get JBoss installed and a sample application installed
and working. For a more thorough investigation of EJB, consult O'Reilly's Enterprise JavaBeans by
Richard Monson-Haefel.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

14.1 JBoss

Although numerous commercial J2EE server offerings are available, few of them (as of this writing) have releases built
specifically for Mac OS X. Many have Linux and Unix versions of their products, but Mac OS X offerings remain sparse. This
situation is expected to change as Mac OS X gains momentum, but for now it creates a problem for enterprise Java
developers. To deal with this problem, you need to obtain a server that can be built from source, and therefore optimized
for Mac OS X. Since commercial offerings don't make source available, JBoss quickly rises to the top of the heap. Freely
available and completely open source, JBoss works beautifully on Mac OS X. This chapter will show you how to get it
running.

14.1.1 Downloading a Release

You can download releases of JBoss from http://www.jboss.org/. The release used here is 3.0.4, which uses the default
JBoss web server.

Some releases of JBoss are bundled with the Tomcat web server, which functions as detailed in
the last chapter. You are welcome to use that release, and it works well on Mac OS X. However,
this chapter assumes the "pure" JBoss release.

You should download the JBoss-3.0.4.zip file, weighing in at 28.7 MB. This release of JBoss includes a web (HTTP) server, a
JSP and servlet container, and support for EJB, CMP 2.0, RMI, IIOP, Clustering, JTS, and JMX.

Acronym Frenzy

Lest all the acronyms overwhelm you, here is a brief rundown of some of the common ones in J2EE:

CMP: Container Managed Persistence, a feature of EJB that allows persisting data to a database

EJB: Enterprise JavaBeans

IIOP: Internet Inter-Orb Protocol, a more traditional protocol for communication over distributed
architectures

J2EE: Java 2 Enterprise Edition

 JMX: Java Management Extensions, an API that allows other Java applications to interface with a J2EE
server programmatically through a standard set of coding paradigms

JSP: JavaServer Pages

 JTS: Java Transaction Service, the Java API for handling transactions, committals, and rollbacks of
database communication

RMI: Remote Method Invocation, which allows remote components to be interacted with as if they were
local objects

14.1.2 Installation

Assuming you've downloaded the JBoss-3.0.4.zip file into your home directory (~), execute the commands below to expand
the JBoss distribution:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Localhost:~] wiverson% ls -l jboss-3.0.4.zip
-rw-r--r-- 1 wiverson staff 28711934 Nov 20 16:33 jboss-3.0.4.zip

[Localhost:~] wiverson% sudo mkdir /usr/local/jboss

[Localhost:~] wiverson% sudo chown wiverson:staff /usr/local/jboss

[Localhost:~] wiverson% cd /usr/local/jboss

[Localhost:/usr/local/jboss] wiverson% cp ~/jboss-3.0.4.zip .

[Localhost:/usr/local/jboss] wiverson% unzip jboss-3.0.4.zip
Archive: jboss-3.0.4.zip
 creating: jboss-3.0.4/
 creating: jboss-3.0.4/bin/
 creating: jboss-3.0.4/client/
 creating: jboss-3.0.4/docs/
 creating: jboss-3.0.4/docs/dtd/
 creating: jboss-3.0.4/docs/examples/
 creating: jboss-3.0.4/docs/examples/jca/
 creating: jboss-3.0.4/lib/
 creating: jboss-3.0.4/server/
 ...
 omitted for brevity
 ...
 inflating: jboss-3.0.4/docs/tests/overview-frame.html
 inflating: jboss-3.0.4/docs/tests/overview-summary.html
 inflating: jboss-3.0.4/docs/tests/stylesheet.css

[Localhost:/usr/local/jboss] wiverson% cd /usr/local/jboss/jboss-3.0.4

[Localhost:local/jboss/jboss-3.0.4] wiverson% mv ./* ../

[Localhost:local/jboss/jboss-3.0.4] wiverson% cd ..

[Localhost:/usr/local/jboss] wiverson% rmdir jboss-3.0.4

[Localhost:/usr/local/jboss] wiverson% ls
bin docs lib
client jboss-3.0.4.zip server

You'll need to replace the bolded username (wiverson) with the username you want to run JBoss as. This name could be a
special user account you created just for this purpose, or your own user account. When you are done, you'll have a
complete JBoss installation in the /usr/local/jboss/ directory.

Using NetInfo to create a "homeless" user is a good way to protect JBoss user accounts. (Refer
to O'Reilly's Mac OS X for Unix Geeks for more information.)

14.1.3 Starting JBoss

To start JBoss, simply enter the following command:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Localhost:/usr/local/jboss] wiverson% /usr/local/jboss/bin/run.sh
===

 JBoss Bootstrap Environment

 JBOSS_HOME: /usr/local/jboss

 JAVA: java

 JAVA_OPTS: -Dprogram.name=run.sh

 CLASSPATH: /usr/local/jboss/bin/run.jar:/lib/tools.jar

===

18:09:09,910 INFO [Server] JBoss Release: JBoss-3.0.4 CVSTag=JBoss_3_0_4
18:09:10,091 INFO [Server] Home Dir: /usr/local/jboss
18:09:10,093 INFO [Server] Home URL: file:/usr/local/jboss/
18:09:10,096 INFO [Server] Library URL: file:/usr/local/jboss/lib/
18:09:10,105 INFO [Server] Patch URL: null
18:09:10,107 INFO [Server] Server Name: default
...
omitted for brevity
...
18:09:53,489 INFO [jbossweb] Started WebApplicationContext[/jmx-
console,file:/usr/local/jboss/server/default/deploy/jmx-console.war/]
18:09:53,706 INFO [jbossweb] successfully deployed file:/usr/local/jboss/
server/default/deploy/jmx-console.war/ to /jmx-console
18:09:53,709 INFO [MainDeployer] Deployed package: file:/usr/local/jboss/
server/default/deploy/jmx-console.war/
18:09:53,719 INFO [URLDeploymentScanner] Started
18:09:53,721 INFO [MainDeployer] Deployed package: file:/usr/local/jboss/
server/default/conf/jboss-service.xml
18:09:53,838 INFO [Server] JBoss (MX MicroKernel) [3.0.4 Date:200211021607]
Started in 0m:43s:637ms

After a lot of messages scroll past, you will see a status message along the lines of:

[Server] JBoss (MX MicroKernel) [3.0.4 Date:200211021607] Started in 0m:22s:871ms

This indicates that JBoss is now running. To verify that it is working properly, open the administrative console at
http://localhost:8080/jmx-console/. You should see something similar to Figure 14-1.

Figure 14-1. The JBoss administrative console

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

JBoss ships with three different configurations: "minimal," "default," and "all." These
configurations are stored in the directory /usr/local/jboss/server/. When you start up the server
with the default run.sh command, you imply that you wish to use the
/usr/local/jboss/server/default directory as your server directory.

This is particularly relevant if you want to deploy JBoss with the absolute minimal server
configuration. In that event, copy the minimal configuration directory, and then add library and
configuration data to support your application as you add functionality.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

14.2 Getting Started with J2EE

When starting a new application or development environment, first build the proverbial "Hello World"
example. This step is instructional when working with J2EE, as it was for JSP in Chapter 13.

14.2.1 "Hello World" in J2EE

Start by building the simplest of all possible web applications: a "Hello World" JSP file. You created a
similar JSP in the last chapter, but deploying a JSP as part of a J2EE application is different from
deploying a JSP as a simpler web application. You will get a feel for these differences by working
through these basic steps.

Create a file called index.jsp, with the contents shown in Example 14-1.

Example 14-1. A Hello World JSP

<HTML>
 <HEAD>
 <TITLE>Test</TITLE>
 </HEAD>
 <BODY>
 Hello World!

 <%= new java.util.Date().toString() %>
 </BODY>
</HTML>

To deploy this file, create a WAR file. A WAR is just a ZIP file with a specific encoding, and in this case
you can get away with not creating a web.xml file or any other supporting configuration or property
files. Copy the index.jsp file to the /usr/local/jboss/server/default/deploy directory, and then issue the
following command:

[Localhost:~/Documents] wiverson% ls index.jsp
index.jsp

[Localhost:~/Documents] wiverson% zip test.war index.jsp
 adding: index.jsp (deflated 19%)

[Localhost:~/Documents] wiverson% mv test.war /usr/local/jboss/server/default/deploy/

[Localhost:~/Documents] wiverson%

This command creates the needed WAR file and places it in JBoss's deployment directory
(/usr/local/jboss/server/default/deploy). Any WAR or EAR (another type of archive specifically used
for J2EE applications) file in this directory is automatically deployed by the JBoss application server
without any further user intervention.

The JBoss terminal will notify you that the application has been deployed with the following message:

18:30:29,809 INFO [MainDeployer] Starting deployment of package: file:/usr/
local/jboss/server/default/deploy/test.war
18:30:30,412 INFO [jbossweb] Registered jboss.web:
Jetty=0,JBossWebApplicationContext=2,context=/test
18:30:30,618 INFO [jbossweb] Extract jar:file:/usr/local/jboss/server/
default/tmp/deploy/server/default/deploy
/test.war/58.test.war!/ to /tmp/Jetty_0_0_0_0_8080_ _test/webapp
18:30:31,609 INFO [jbossweb] Started WebApplicationContext[/test,jar:file:/
usr/local/jboss/server/default/tmp
/deploy/server/default/deploy/test.war/58.test.war!/]
18:30:31,760 INFO [jbossweb] Internal Error: File /WEB-INF/web.xml not

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18:30:31,760 INFO [jbossweb] Internal Error: File /WEB-INF/web.xml not
found
18:30:31,774 INFO [jbossweb] successfully deployed file:/usr/local/jboss/
server/default/tmp/deploy/server/default/deploy
/test.war/58.test.war to /test
18:30:31,777 INFO [MainDeployer] Deployed package: file:/usr/local/jboss/
server/default/deploy/test.war

You can open a web browser to view http://localhost:8080/test/ and see the phrase "Hello World!"
and the current time displayed. Your output should be similar to that in Figure 14-2.

Figure 14-2. Hello World in J2EE

14.2.2 The JBoss Template Project

As you move beyond "Hello World" and into more complicated applications, you'll find that J2EE is a
pretty complex environment. Trying to get all the configuration files, property files, source, images,
HTML pages, classes, and JAR files into the right place can be a daunting task.

To help with this process, JBoss 3.0 has a default template for working with J2EE applications,
available at http://www.jboss.org/docs/#free-30x. This template application is ideal to start working
on, especially for EJB development, as it walks through the development and deployment of a minimal
EJB application.

14.2.2.1 Dependencies

The template project uses the open source tools shown in Table 14-1 in addition to JBoss, which you
should download before working with the template project.

Table 14-1. Supplemental tools required for the JBoss template project
Project Version required Version used Available from

Ant 1.4.1+ 1.5.1 http://jakarta.apache.org/ant
XDoclet 1.1.2+ 1.1.2 http://www.sf.net/projects/xdoclet

You should already have Ant set up if you followed the instructions back in Chapter 2. I put my
installation in /usr/local/ant, and I made sure that I included its bin directory in my path. I placed
XDoclet in the ~/xdoclet-1.1.2 directory.

14.2.2.2 The template directory structure

Download and uncompress the default template to a directory of choice; this case assumes that
you've installed it in your home directory. You should end up with the directory structure shown in
Figure 14-3.

Figure 14-3. Template directory structure

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 14-3. Template directory structure

In this case, you'll deal with only the template directory. Copy this directory to your working
environment and rename it. You should use the cp command in the Terminal, not the Finder, to copy
the template directory (the Finder won't copy files that start with .). This example assumes that
you've copied the contents of the template to ~/ejbproject:

[Localhost:~/JBoss.3.0TemplateAndExamples] wiverson% ls
cmp2 template transaction

[Localhost:~/JBoss.3.0TemplateAndExamples] wiverson% cp -r template ~/ejbproject/

[Localhost:~/ JBoss.3.0TemplateAndExamples] wiverson% cd ~/ejbproject/

[Localhost:~/ejbproject] wiverson% ls
Readme.txt build.xml src
build log4j.configuration template

[Localhost:~/ejbproject] wiverson% ls -a
. .ant.properties.example log4j.configuration
.. Readme.txt src
.DS_Store build template
.ant.properties build.xml

Now cd to the ~/ejbproject directory and execute an ls -l command. You should see an
.ant.properties.example file in the directory listing. If not, you didn't copy the template fully.

The Mac OS X Finder doesn't display files that begin with a period, and won't
copy them unless you copy the enclosing folder. For this reason, you should
get used to copying and listing directories with the Terminal application, at
least when developing applications.

Make a copy of this file called .ant.properties (note the period at the start of the filename). Update the
file to point to your own JBoss configuration. Example 14-2 shows how the configuration is set up on
my system.

Example 14-2. Ant properties for the template project

ATTENTION: this is an example file how to overwrite settings
in this project Please rename it to ".ant.properties" and adjust
the settings to your needs
Set the path to the runtime JBoss directory containing the
JBoss application server
ATTENTION: the one containing directories like "bin", "client", "server" etc.
jboss.home= /usr/local/jboss

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

jboss.home= /usr/local/jboss
Set the configuration name that must have a corresponding directory under
<jboss.home>/server
jboss.configuration=default
Set the path to the root directory of the XDoclet distribution (see
http://www.sf.net/projects/xdoclet)
xdoclet.home=/Users/wiverson/xdoclet-1.1.2/
Set this to "true" when you want to force the rebuild of the Xdoclet
generated files (see XDoclet's <ejbdoclet> attribute "force")
xdoclet.force=false
Set the EJB version you want to use (1.1 or 2.0, see XDoclet's
<ejbdoclet> attribute "ejbspec")
ejb.version=2.0
Set the JBoss version you want to use (2.4, 3.0 etc., see XDoclet's
<jboss> attribute "version")
jboss.version=3.0
Set the DB type mapping (Hypersonic SQL, PostgreSQL etc., see XDoclet's
<jboss > attribute "typemapping")
type.mapping=Hypersonic SQL
Set the DataSource name your are going to use
(java:/DefaultDS etc., see XDoclet's <jboss> attribute "datasource")
datasource.name=java:/DefaultDS
Uncomment this and adjust the path to point directly to JAR file
containing the servlet classes
Attention: By uncommenting this line you start the creation of a WAR file
servlet-lib.path= /usr/local/jboss/server/default/lib /javax.servlet.jar

If you are familiar with JBoss, remember that you can also modify these
properties through JBoss's build.xml file or an individual project's build.xml
file. However, doing so presumes that the next developer will know to look in
the build file, and is generally not a good idea. Stick to the properties files for
a consistent build environment.

Next, look at the directory structure of the project's src folder, which is where all the interesting
action occurs. Your structure should look like Figure 14-4.

Figure 14-4. Source tree for the template project

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here is some information on this structure's most important files:

build.xml

This file tells Ant how to build the J2EE application.

etc/bin

This directory contains the run-client.sh file, which executes a test Java client. Ant copies this
file to the build/bin directory and updates it when you execute a build.

etc/WEB-INF

This directory contains the base configuration XML files for your application. Ant copies files in
this directory into the deployable WAR file when you execute a build.

main/client/test/client/TestClient.java

This source is a very simple command-line test program. It is used to test the TestSession EJB.

main/ejb/test/entity/TestBMPEntityBean.java
main/ejb/test/entity/TestEntityBean.java

These two beans are examples of entity EJBs. Entity EJBs represent persistent data, such as
user accounts and purchase orders. Typically, this data is stored in a database, although other
storage mechanisms are possible. Each entity is uniquely identifiable by a number, or key.
Entity EJBs fall into one of two categories: bean-managed persistence (BMP), for which the
code for the EJB is responsible for saving and loading any persistent data, and container-
managed persistence (CMP), for which the hosting server (or container) is responsible for
managing, saving, and loading any persistent data.

main/ejb/test/interfaces

The contents of this directory are utility classes. You can inspect them at your leisure, but this
chapter doesn't cover them.

main/ejb/test/message/TestMessageDrivenBean.java

This class is an example of a message-driven EJB. One of the newest aspects of the EJB
specification, these EJBs represent asynchronous messages.

main/ejb/test/session/SequenceGeneratorBean.java

This class is an example of a session EJB that returns a new sequence number for a given
named sequence. It's as much an example and tutorial as anything.

main/ejb/test/session/TestSessionBean.java

This Java class is an example of a minimal session EJB. Client/server sessions use session EJBs
to perform nonpersistent operations. A session EJB might be used to handle simple calculations
or other runtime utilities, but wouldn't represent something valuable and persistent such as a
purchase order. A session EJB could retain some state across calls, but might expire or
otherwise disappear.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

web/index.jsp

This file is a simple web user interface to the TestSessionBean EJB.

14.2.2.3 Building from the template application

Now build the application. Execute the commands shown here:

[Localhost:~/ejbproject] wiverson% /usr/local/ant/bin/ant
Buildfile: build.xml

check-environment:

check-jboss:
...
omitted for brevity
...

create-client:
 [echo] JBoss Home on Unix: /usr/local/jboss
 [echo] Java Home on Unix: /System/Library/Frameworks/JavaVM.framework/Versions/1.3.1/Home

main:

BUILD SUCCESSFUL
Total time: 26 seconds

When it's done, a "BUILD SUCCESSFUL" message will appear. You can verify that the build process
worked by opening the URL http://localhost:8080/web-client/. You should see the output shown in
Figure 14-5.

Figure 14-5. Output from sample application

The default generated web client path is named web-client, and the name is
hardcoded in the build.xml file. You can change this name in the build.xml
file itself by changing the JBoss configuration to point to a different path, or
by copying and changing the name of the WAR file after it's generated by the
default build.xml file. The best way to change it is through the .ant.properties
file, that's not currently an option. For now, the best way to change the
context of the deployed web client is to change the references to web-client in
the build.xml file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

After the running the build for the first time, you will see a build directory next to the src directory in
your project's directory structure. This is where the output of your build is placed, although files are
also placed in the JBoss deployment directory automatically. Like the src directory, this area is worth
exploring.

build/bin

This directory contains the final script files used to run the command-line Java client.

build/classes

This directory contains the compiled classes (both your source files and any autogenerated
Java classes).

build/deploy

This directory contains the files that are deployed automatically to your JBoss 3.0 distribution.
It's a bit redundant (these files are located both here and in the JBoss deploy directory), but it
is a good way to verify which files are published during the build process.

build/generate

This directory contains all the Java source files generated by XDoclet. This directory is
important, as stack trace information may point to line numbers of source files in it, or
compilation errors in XDoclet generated source.

build/META-INF

This directory contains the deployment descriptors generated by XDoclet.

build/war

This directory contains files used to construct the deployed WAR(s).

14.2.2.4 Adding functionality to the template

Normally, the development of EJB-based applications is complicated. This text will not teach you EJB
application development and architecture, but it will show you how to add a simple bit of functionality
to this template.

Now add another method to the TestSessionBean session bean and invoke that method from a client.
Open the file ~/ejbproject/src/main/ejb/test/session/TestSessionBean.java and add the method
shown here:

/**
* @ejb:interface-method view-type="remote"
**/
public String getCurrentTimestamp()
{
 return new java.util.Date().toString();
}

You'll notice the special comments at the start of the listing. These comments are an XDoclet
command that tells the build system to generate the proper wrapper code to make this method visible
to the remote client.

For more on XDoclet, check out the online documentation at
http://xdoclet.sourceforge.net.

Next, create a new clock.jsp file as shown in Example 14-3. Place this JSP in the template's /web

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next, create a new clock.jsp file as shown in Example 14-3. Place this JSP in the template's /web
directory, alongside /web/index.jsp.

Example 14-3. The clock JSP

<%@ page session="false"
 isThreadSafe="true"
 isErrorPage="false"
 import="javax.naming.*, test.interfaces.*"
%>
<HTML><HEAD><TITLE>EJB Clock</TITLE></HEAD>
<BODY>
<h4>World's Most Complex Clock</h4>
<p>The current server time is: </p>
<p><%
 try {
 Context myContext = new InitialContext();
 TestSessionHome myHome = (TestSessionHome) myContext.lookup(
 "java:comp/env/ejb/webtest/TestSession"
);
 TestSession mySession = myHome.create();
 %>
<%= mySession.getCurrentTimestamp() %>
 <%
 }
 catch(Exception e) {
 out.println("Caught exception: " + e.getMessage());
 e.printStackTrace();
 }
%>
</BODY>
</HTML>

Now open the Terminal, cd to the ~/ejbproject directory, and execute /usr/local/ant/bin/ant. These
steps will recompile the TestSessionBean, generate the proper client files, copy over clock.jsp, and
rebuild and deploy a new WAR file into JBoss.

As long as you place EJBs, JSPs, and other resources alongside like
components in the template project, no special steps are required to include
new components in the build process.

JBoss automatically detects and redeploys the new WAR file (you will see this in the JBoss log if you
are watching). You should now be able to open your web browser to the URL
http://localhost:8080/web-client/clock.jsp and see the new clock in action, as shown in Figure 14-6.

Figure 14-6. The clock JSP

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

14.3 Pushing the Envelope

EJB is a popular architecture for building web applications, but it suffers from one significant liability:
EJBs are accessible only from Java applications. While it is possible to use some arcane CORBA
techniques in conjunction with RMI/IIOP to get to EJBs from non-Java programs, it is rarely worth the
trouble. However, EJBs often expose functionality that you may want to make available to non-Java
clients.

The next chapter shows how to build web services that are accessible by other, non-Java, systems,
including Apple's proprietary scripting language, AppleScript. This lesson will round out your
enterprise development skills on Mac OS X, and probably make you all the rage at the water cooler as
well.
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 15. Web Services

Depending on who you talk to, web services are as simple as a set of remote interfaces for an
application or as complex as a complete reinvention of the Internet. As is generally the case, the truth
lies somewhere in between. As you write enterprise applications, you will find that you often want to
expose them to non-Java clients. This chapter details how to take on this task, at least within the
context of web services. It examines both simple and complex applications of web services, and gives
you a good idea of how to get started in this area of programming.

On the simple end of the spectrum, you can create a web service by providing an application
programming interface (API) that is exposed as a set of remote procedure calls (RPC) over the
Internet. An example of this is a wholesale business that wishes to provide a set of programmatic
interfaces for merchants to verify (in real time) the current inventory of a product, and then order
products that are in stock.

At the other end of the spectrum, web services can describe a complete framework for reworking the
Internet itself, where HTML and hyperlinks are replaced by a complex system of registries, portable
objects, XML-based interfaces to sites with dynamic discovery, or complex and hyper-intelligent
models for business-to-business transactions. Obviously this view is a bit extreme, and best avoided
for the sake of time, space, and general sanity.

This chapter looks at web services as an RPC mechanism. In particular, it focuses on one of RPC's
simplest mechanisms, XML-RPC, and describes the differences between XML-RPC and its more
sophisticated cousin, SOAP.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

15.1 RPC

The core of all web services is the ability for code on different machines to interact. There are as
many protocols, APIs, and solutions available for this task as there are developers, but remote
procedure calls are probably the most traditional approach to the problem.

15.1.1 RPC Basics

A brief discussion of the remote procedure call (RPC) is in order. Object-oriented developers work
with code such as that shown here:

Window myWindow = new Window();
myWindow.setTitle("Hello");

You'll notice that the details of how to actually set a window title are completely hidden from the
developer. Not just obvious details (such as the code for drawing the graphics) are hidden here, but
runtime details (such as how the methods are bound to the object or how memory is allocated) are
abstracted away. The details are typically a combination of runtime code, compilers, linkers, and
other tools.

Is RPC a Reality?

The idea that a local object is as easily accessible as a remote object has never been
verified, which makes a lot of the hype surrounding RPC irrelevant for client applications.
Except in highly controlled production server environments, networks tend to be available
in a spotty fashion, and the introduction of wireless devices makes it just that much worse.
In the long run, perhaps in my lifetime, I'll see networks that are fast and reliable enough
for me to trust as much as a local resource, but probably not. This is partly why
asynchronous messaging is so important—but then again, writing both the user interface
and the actual code for asynchronous RPC-based applications, including web services, is
also complicated.

The basic idea behind RPC is that a developer ought to be able to work with a remote object as
naturally as with a local object:

Window myWindow = RemoteWindowServer.getWindow();
myWindow.setTitle("Hello");

In this example, a window is created and runs on a remote server, and all the standard interfaces that
one would expect are now available, except now the actual drawing of the window occurs on the
remote server. The details of how the text string "Hello" is sent across the network are abstracted
away from the developer.

15.1.2 Java and RPC

Remote Method Invocation (RMI) is the built-in Java implementation of an RPC mechanism. RMI
works well, but it requires some setup and configuration, and, perhaps most importantly, it's a very
Java-specific way of performing RPC. The code that you write and expose as RMI services is readily
accessible only from another Java application.

Recently, CORBA was positioned as the next big thing in RPC mechanisms, but it suffered from its
complexity. In particular, a strong emphasis was placed on making CORBA a superset of several
different languages, including C++ and other languages such as Pascal. CORBA bindings are included
in the standard JDK distribution, but they have never seen the kind of popularity that its supporters
would like.
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

15.2 XML-RPC

. In 1998, Userland (http://www.userland.com) began working with Microsoft on a standard
mechanism for RPC. This mechanism worked across systems via TCP/IP, and was called XML-RPC. The
XML in XML-RPC is actually a commentary on the implementation of the protocol itself; developers
using XML-RPC client libraries should be familiar with the general XML-RPC format (much as a
HTTP/HTML developer should be familiar with the basic HTTP formats). However, it's possible to use
XML-RPC without ever having to worry about the underlying XML messages.

One of the most popular implementations of XML-RPC was the so-called Helma XML-RPC libraries,
which have since been donated to the Apache Software Foundation as Apache XML-RPC. Like all
Apache libraries and projects, Apache XML-RPC is free, open source, and runs well on Mac OS X.

Before using web services on Mac OS X, I'll show you a simple XML-RPC server and client
implemented with Apache XML-RPC.

15.2.1 Installation and Setup

This example builds on material taught earlier in the book, which created a web services server and a
graphical client.

The xmlrpc-1.1.jar file contains the Apache XML-RPC libraries. This file is available from
http://xml.apache.org/xmlrpc/ under the download binaries section
(http://xml.apache.org/dist/xmlrpc/release/v1.1/xmlrpc-1.1.zip as of this writing). Once you have
this file, set up the directory structure shown in Figure 15-1. You'll notice that the XML-RPC JAR file
was placed in the lib directory. It is then referenced in the build.xml file shown in Example 15-1.

Figure 15-1. XML-RPC example directory structure

Example 15-1. XML-RPC build file

<project default="compile" basedir=".">
 <property name="src" location="src"/>
 <property name="build" location="build"/>

 <target name="compile">
 <javac

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <javac
 srcdir="${src}"
 destdir="${build}"
 classpath="lib/xmlrpc-1.1.jar"
 />
 </target>
</project>

You'll use the SimpleEdit and SimpleEditPlugin classes developed in Chapter 4 for your client-side
graphical user interface.

The remaining files, XmlRpcAsynchClientPlugin.java, XmlRpcClientTestPlugin.java, and
XmlRpcMiniServer.java, will be added in the next few sections.

15.2.2 XML-RPC Basics

Figure 15-2 illustrates the basic model for working with XML-RPC (and SOAP). Server APIs and client
libraries hide the complexity required to make method calls across different systems. In the case of
Apache XML-RPC, you'll use the built-in web server to handle your server needs. Once you create a
web server (using the class org.apache.xmlrpc.XmlRpcServer), you'll just pass in an ordinary Java
object to handle the incoming requests. You will not need to interact with complex interfaces or APIs;
you'll just write ordinary Java application code.

Figure 15-2. Web Services development model

Clients, however, require slightly more preparation. You can make a remote call synchronously , in
which the execution of that thread stops until a response is returned, or asynchronously , in which
you pass an event notification handler that is called when the remote method call completes. The
advantage of asynchronous execution is that control returns to your application immediately; the
Apache XML-RPC libraries automatically create a new thread for the remote communication and let
your application know (via the handler) when a result has been returned. Either way, you'll want to
use the class org.apache.xmlrpc.XmlRpcClient for the actual request.

If you decide to support asynchronous clients, implement the interface
org.apache.xmlrpc.AsyncCallback, which has only two methods: handleError() , which lets you know
something went wrong, and handleResult(), which tells you that a request returned properly.

15.2.3 A Simple XML-RPC Application

The following subsections detail the process of building up an XML-RPC application. The Apache XML-
RPC framework handles much of the complexity involved in this process, leaving you to implement
application-specific functionality. This means that you get to focus on your business logic, rather than
the intricacies of HTTP, XML, sockets, and network programming.

15.2.3.1 XML-RPC servers

The code shown in Example 15-2 demonstrates a simple XML-RPC server. Note that this server is
written to be launched from the Terminal.

Example 15-2. XML-RPC mini-server

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 15-2. XML-RPC mini-server

package com.wiverson.macosbook.webservices;

public class XmlRpcMiniServer extends org.apache.xmlrpc.XmlRpcServer
{

 public static void main(String[] args)
 {
 System.out.print("Launching...");
 try
 {
 org.apache.xmlrpc.WebServer myWebServer =
 new org.apache.xmlrpc.WebServer(9000);
 myWebServer.addHandler("MiniServer ", new MiniServer());
 myWebServer.start();
 } catch (java.io.IOException e)
 {
 e.printStackTrace();
 }
 System.out.println("ready.");
 }

 public static class MiniServer
 {
 public String now()
 {
 synchronized(this)
 {
 try
 {
 this.wait(5000);
 } catch (java.lang.InterruptedException e)
 {}
 }
 return new java.util.Date().toString();
 }

 public String add (String a, String b)
 {
 return "" + (new Integer(a)).intValue() + (new Integer(b)).intValue();
 }
 }
}

You'll notice that this code is surprisingly sparse. It creates a server (assigned to port 9000) and then
defines a simple Java class (MiniServer) with only two methods.

The first method, MiniServer.now(), returns the current date and time as a String (although a this.wait(
) method causes it to take a few extra seconds to execute). The second method, MiniServer.add(),
takes two Strings, converts them to integers, and then returns the result as a String.

This class is then instantiated and has a handler attached to it through the addHandler() method. This
method makes the object available for remote access by an XML-RPC client. Finally, start() does just
what you would expect—it gets the server to listen for XML-RPC requests.

When you build and run the code, you won't see much—just a notice of when the server is ready to
accept communication:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Luthien:~/xmlrpc] wiverson% /usr/local/ant/bin/ant
Buildfile: build.xml

compile:

BUILD SUCCESSFUL
Total time: 5 seconds
[Luthien:~/xmlrpc] wiverson% java -classpath ./lib/xmlrpc-1.1.jar:./build
com.wiverson.macosbook.webservices.XmlRpcMiniServer
Launching...ready.

Assuming that you've placed the xmlrpc-1.1.jar file somewhere on the JVM classpath, you can verify
that the server is running with a simple command line in a new Terminal window:

[Luthien:~/xmlrpc] wiverson% java -classpath ./lib/xmlrpc-1.1.jar org.
apache.xmlrpc.XmlRpcClient http://localhost:9000/ MiniServer.add 1 2
3

The XML-RPC JAR must be on your command-line classpath (through the
CLASSPATH environment variable or the -cp argument to java) for clients, in
addition to being in the classpath of the JVM running the XML-RPC server.
Since running the example probably will involve two Terminal windows, it
might require setting the classpath in both windows before running any code.

You've now created a server that provides a programmatic API (in this case, the two methods now()
and add()), which is available over a network.

15.2.3.2 Synchronous XML-RPC clients

Next, add the ability to talk to this XML-RPC server to a Java application. Again, you'll build on the
SimpleEdit application developed in Chapter 4, starting with a synchronous client call to the XML-RPC
service.

Synchronous refers to the fact that the application waits for the remote method to return before
continuing program execution. For normal, local method calls, this behavior is usually acceptable, as
most operations can be completed very rapidly. However, as this exercise demonstrates, it can have
undesirable side effects if the application's user interface is waiting for a remote method to complete
(this is also referred to as being blocked). Still, the model is much easier and more deterministic. You
always know what is going on in your application because it proceeds linearly, method invocation by
method invocation, until all requests have been serviced and responded to.

Example 15-3 illustrates a simple XML-RPC client, which implements both a command-line version of
the client and a SimpleEditPlugin.

Example 15-3. A synchronous XML-RPC client

package com.wiverson.macosbook.webservices;

public class XmlRpcClientTestPlugin
 implements com.wiverson.macosbook.SimpleEditPlugin
{

 public XmlRpcClientTestPlugin()
 {
 }

 public static void main(String[] args)
 {
 System.out.print("Calling synch...");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 System.out.print("Calling synch...");
 System.out.println(new XmlRpcClientTestPlugin().callRemote());
 }

 public String callRemote()
 {
 try
 {
 org.apache.xmlrpc.XmlRpcClient xmlrpc =
 new org.apache.xmlrpc.XmlRpcClient
 ("http://localhost:9000/MiniServer");
 java.util.Vector params = new java.util.Vector();
 return (String) xmlrpc.execute("MiniServer.now", params);
 } catch (java.net.MalformedURLException e1)
 {
 e1.printStackTrace();
 } catch (java.io.IOException e2)
 {
 e2.printStackTrace();
 }catch (org.apache.xmlrpc.XmlRpcException e3)
 {
 e3.printStackTrace();
 }
 return "Unable to connect.";
 }

 public void doAction(com.wiverson.macosbook.SimpleEdit frame,
 java.awt.event.ActionEvent evt)
 {
 frame.appendDocumentText(this.callRemote());
 }

 public String getAction()
 {
 return "Test Synchronous XML-RPC";
 }

 public void init(com.wiverson.macosbook.SimpleEdit frame)
 {
 }
}

The actual web services work occurs in the callRemote() method. In this case, you make the remote
invocation with the org.apache.xmlrpc.XmlRpcClient class. Specify the remote server's address and the
object you wish to communicate with, and then call the execute() method to make the remote call.
Using this class from the command line is straightforward:

[Luthien:~/xmlrpc] wiverson% java -classpath ./lib/xmlrpc-1.1.jar:./build
com.wiverson.macosbook.webservices.XmlRpcClientTestPlugin
Calling synch...Sun Jan 12 21:03:36 PST 2003

When running this application, you'll notice that the application appears to freeze after the "Calling
synch..." is echoed to the screen and before the result is written out.

Similarly, you can launch the SimpleEdit application to see the interface (as shown in Figure 15-3):

[Luthien:~/xmlrpc] wiverson% java -classpath ./lib/xmlrpc-1.1.jar:./build
com.wiverson.macosbook.SimpleEdit com.wiverson.macosbook.webservices.
XmlRpcClientTestPlugin

Figure 15-3. XML-RPC SimpleEdit synchronous client

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 15-3. XML-RPC SimpleEdit synchronous client

You will notice that the SimpleEdit program appears to have locked up when accessing the remote
service (keeping in mind the delay introduced in the server to simulate a poor network). The solution
is to use asynchronous client services.

15.2.3.3 Asynchronous XML-RPC clients

This section builds a version of the client that takes advantage of the built-in support for
asynchronous remote method calls. In effect, the code says "Call this remote method and keep track
of the call for me. Let me know when something happens, but in the meantime I'll continue working."
Simply put, it takes care of the multithreading for you, leaving you to write a simple handler that
receives the notifications. This is shown in Example 15-4.

Example 15-4. An asynchronous XML-RPC client

package com.wiverson.macosbook.webservices;

public class XmlRpcAsynchClientPlugin
 implements com.wiverson.macosbook.SimpleEditPlugin
{
 public XmlRpcAsynchClientPlugin()
 {
 }

 public static void main(String[] args)
 {
 System.out.print("Calling asynch...");
 new XmlRpcAsynchClientPlugin().callRemote(null);
 System.out.println("ok...");
 }

 public void callRemote(com.wiverson.macosbook.SimpleEdit frame)
 {
 try
 {
 org.apache.xmlrpc.XmlRpcClient xmlrpc =
 new org.apache.xmlrpc.XmlRpcClient
 ("http://localhost:9000/MiniServer");
 java.util.Vector params = new java.util.Vector();
 AsynchTimeHandler myAsynchTimeHandler = new AsynchTimeHandler(frame);
 xmlrpc.executeAsync("MiniServer.now", params, myAsynchTimeHandler);
 } catch (java.net.MalformedURLException e1)
 {
 e1.printStackTrace();
 } catch (java.io.IOException e2)
 {
 e2.printStackTrace();
 }
 }

 public void doAction(com.wiverson.macosbook.SimpleEdit frame,
 java.awt.event.ActionEvent evt)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 java.awt.event.ActionEvent evt)
 {
 this.callRemote(frame);
 }

 public String getAction()
 {
 return "Test Async XML-RPC";
 }

 public void init(com.wiverson.macosbook.SimpleEdit frame)
 {
 }

 public class AsynchTimeHandler implements org.apache.xmlrpc.AsyncCallback
 {
 public AsynchTimeHandler(com.wiverson.macosbook.SimpleEdit frame)
 {
 myFrame = frame;
 }

 private com.wiverson.macosbook.SimpleEdit myFrame = null;

 public void handleError(Exception e, java.net.URL uRL, String str)
 {
 e.printStackTrace();
 }

 public void handleResult(Object obj, java.net.URL uRL, String str)
 {
 if(myFrame != null)
 myFrame.appendDocumentText((String) obj);
 else
 System.out.println((String) obj);
 }
 }
}

As you can see, this code is a bit more sophisticated than its synchronous counterpart. Most
importantly, there is an additional inner class, AsynchTimeHandler, to actually process the result
returned by the remote method. This inner class implements the interface
org.apache.xmlrpc.AsyncCallback , with the two methods handleError() and handleResult() supporting
either failures or successful completion.

15.2.4 Accessing XML-RPC Services from AppleScript

In the folder /Applications/AppleScript, you'll find a tool called Script Editor (shown in Figure 15-4)
that is used to work with Apple's proprietary AppleScript language. AppleScript is Apple's standard
language for handling interapplication scripting, with a long heritage on the Mac OS platform. If you're
coming from a Unix background, you might be used to stringing together multiple applications with
shell scripts. It may be useful to think of AppleScript as a way to create shell scripts that hook
together graphical applications.

Figure 15-4. AppleScript Script Editor

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 15-4. AppleScript Script Editor

A full introduction to AppleScript is beyond the scope of this book, but it is useful to know that you
can connect AppleScript to Java applications via XML-RPC. Example 15-5 shows how to connect to the
XML-RPC server you created earlier using AppleScript.

Example 15-5. An XML-RPC client in AppleScript

script MiniServer

 on now()
 tell application "http://localhost:9000/"
 return call xmlrpc {method name:"MiniServer.now"}
 end tell
 end now

 on add(s1, s2)
 tell application "http://localhost:9000/"
 return call xmlrpc
 {
 method name:"MiniServer.add", parameters:{s1, s2}
 }
 end tell
 end add

end script

display dialog MiniServer's add(1, 2)
display dialog MiniServer's now()

Running the script causes AppleScript to display two dialogs, as shown in Figure 15-5 and Figure 15-
6.

Figure 15-5. AppleScript and the XML-RPC addition functionality

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 15-5. AppleScript and the XML-RPC addition functionality

Figure 15-6. AppleScript and the XML-RPC "now" functionality

For more information on building applications with AppleScript, visit http://www.macdevcenter.com
for some excellent introductory articles.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

15.3 SOAP

The Simple Object Access Protocol (SOAP) is a more complex RPC mechanism than XML-RPC, but
both share a common basis (an underlying protocol based on XML and HTTP) and conceptual model.
SOAP adds many features to RPC, including explicit support for asynchronous message delivery via
the Simple Mail Transport Protocol (SMTP), the basis for delivery of Internet email.

The use of SOAP versus XML-RPC depends largely on the eventual target use of your application and
who or what you're communicating with. Generally, the simplicity of XML-RPC has led to widespread
adoption, whereas the overall sophistication and capabilities of SOAP have led to broader adoption in
the enterprise (not to mention the explicit endorsement of SOAP by entities such as Microsoft and
IBM).

This chapter looks at Apache Axis 1.0, an open source implementation of the SOAP 1.1 specification
providing both server and client capabilities.

15.3.1 Obtaining Axis

You can download Apache Axis 1.0 from http://xml.apache.org/axis/. The download used here is
Release 1.0 from http://xml.apache.org/axis/releases.html.

15.3.2 Installation

The rest of this chapter assumes that you are working with JBoss, installed as described in Chapter
14.

The process of installing Axis under Tomcat is similar to installation under
JBoss. For complete instructions, refer to
http://cvs.apache.org/viewcvs.cgi/~checkout~/xml-
axis/java/docs/install.html.

SOAP requires a servlet (or, sometimes, several servlets) to receive requests, and then respond to
those requests, via HTTP. Using a servlet lets you avoid dealing with network sockets manually, which
is always a hassle.

Axis comes prepackaged with a WAR directory, ready to install in a web container or application
server.

If you decide to install Axis manually or on another system later, the core
libraries are in the following JAR files:

axis-1_0/lib/axis.jar

axis-1_0/lib/jaxrpc.jar

axis-1_0/lib/saaj.jar

axis-1_0/lib/commons-logging.jar

axis-1_0/lib/commons-dicovery.jar

axis-1_0/lib/wsdl4j.jar

While you can set up Axis to expose any Java class as a web service, one of its best features is its
ability to expose Java Web Service files with little (or no) developer intervention.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

15.3.2.1 What is JWS?

A Java Web Service (JWS) file is an ordinary Java source file with a different extension (.jws), placed
in a specific directory exposed as part of a web application. When a request is made for a JWS file,
Axis compiles the file as if it were a Java file, adding additional wrappers to make the objects and
methods within available to the remote caller. In this way, it operates much like a JSP file, but instead
of providing HTML documents to web browsers, JWS files provide web services.

One of JWS's key advantages is that it is a much easier development model than a traditional
edit/compile cycle, like JSPs or servlets. Instead of packaging your files as a WAR file and then
deploying them, you can work directly on the files in a deployment directory, with Axis handling
compilation (and recompilation) as requests come in from clients, all due to the .jws extension.

15.3.2.2 Copying the files

To facilitate using JWS files, install Axis in JBoss not as a sealed WAR, but as a directory that you can
deploy directly, as shown below:

[Luthien:~/Public/xml-axis-10] wiverson% ls
README lib samples xmls
docs release-notes.html webapps

[Luthien:~/Public/xml-axis-10] wiverson% cd webapps/axis/

[Luthien:xml-axis-10/webapps/axis] wiverson% mkdir /usr/local/jboss/server/
default/deploy/axis.war

[Luthien:xml-axis-10/webapps/axis] wiverson% cp -r * /usr/local/jboss/
server/default/deploy/axis.war/

To support the dynamic compilation of JWS files with JBoss, add the servlet library to the Axis web
application's WEB-INF/lib directory:

[Luthien:xml-axis-10/webapps/axis] wiverson% cd /usr/local/jboss/server/
default/lib/

[Luthien:server/default/lib] wiverson% cp javax.servlet.jar ../deploy/axis.
war/WEB-INF/lib/

If JBoss isn't already running, start it now. You can verify that Axis is properly installed by viewing the
default Axis management page at http://localhost:8080/axis/. If everything is working properly, you'll
see the configuration page shown in Figure 15-7.

Figure 15-7. Axis configuration

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

15.3.3 SOAP Basics

SOAP is a direct descendent of XML-RPC, proposed by some of the same vendors that originally
worked on XML-RPC. It's been positioned as the enterprise version of web services, adding
functionality such as support for more complex objects, namespaces, and envelopes. It is also
associated with related technologies such as the Web Services Description Language (WSDL). This
topic is beyond the scope of this text, however. If you're interested in these advanced features of
SOAP, consult O'Reilly's Java Web Services, by David Chappell and Tyler Jewell.

For your purposes here, SOAP is just another RPC mechanism, similar to XML-RPC. There are
significant differences in the protocols used to communicate between systems and the implementation
libraries, but the conceptual model is the same as the one shown in Figure 15-2.

Server application development is most easily handled via JWS files, described above. Client
development is similar to that of XML-RPC, with a slightly different set of classes. An
org.apache.axis.client.Service object binds to a specific remote server, and an org.apache.axis.client.Call
object executes a remote method. This section creates a .jws file for your server and uses these client
APIs to retrieve the methods' results.

15.3.4 Building a SOAP Web Service

The web service you'll build for Axis is much like the one you built for XML-RPC. Add a file called
SimpleWebService.jws to the /usr/local/jboss/server/default/deploy/axis.war directory with the
contents shown in Example 15-6.

Example 15-6. A simple web service

public class SimpleWebService
{

 public SimpleWebService()
 {
 }

 public int add(int a, int b)
 {
 return a + b;
 }

 public String now()
 {
 return new java.util.Date().toString();
 }

 public String slownow()
 {
 synchronized(this)
 {
 try
 {
 this.wait(5000);
 } catch (java.lang.InterruptedException e)
 {}
 }
 return new java.util.Date().toString();
 }

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

You'll notice that the JWS appears to be an ordinary Java class. Axis offers other mechanisms for
handling SOAP requests that provide more control, but for many services, the JWS mechanism is
more than adequate.

15.3.5 Accessing a SOAP Web Service from Java

The easiest way to talk to the web service is directly from your browser's address bar. As shown in
Figure 15-8, you can simply request a web service via an HTML request, like
http://localhost:8080/axis/SimpleWebService.jws?method=now.

Figure 15-8. The "now" function via an HTTP GET request

You can also send parameters via the request parameters of a URL, such as
http://localhost:8080/axis/SimpleWebService.jws?method=add&a=1&b=2. In this example, the
parameter names provided on the URL (a and b) aren't significant. However, for more complex web
services they are important, as they associate values with specific parameters in code. Figure 15-9
shows the results of this request.

Figure 15-9. The "add" functionality via an HTTP GET request

Example 15-7 shows how to access SOAP via Java. SOAP is more complex than XML-RPC, and
therefore requires a bit more setup and configuration. It also affords a great deal more sophistication,
however, and if your application requires very specific details about the methods invoked and how
they are interacted with, it can be well worth the extra work.

Example 15-7. Accessing SOAP services

package com.wiverson.macosbook.webservices;

import org.apache.axis.client.Call;
import org.apache.axis.client.Service;
import javax.xml.namespace.QName;
import com.wiverson.macosbook.SimpleEdit;

public class SOAPClientPlugin implements
 com.wiverson.macosbook.SimpleEditPlugin
{
 public SOAPClientPlugin()
 {
 }

 public void doAction(SimpleEdit frame, java.awt.event.ActionEvent evt)
 {
 frame.appendDocumentText(this.remoteCall());
 }

 public String getAction()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public String getAction()
 {
 return "SOAP Client";
 }

 public void init(SimpleEdit frame)
 {
 }

 public static void main(String[] args)
 {
 System.out.println(new SOAPClientPlugin().remoteCall());
 }

 public String remoteCall()
 {
 try
 {
 String webserviceLocation =
 "http://localhost:8080/axis/SimpleWebService.jws";

 Service service = new Service();
 Call call = (Call) service.createCall();

 call.setTargetEndpointAddress(new java.net.URL(webserviceLocation));

 return (String) call.invoke("now", null);

 } catch (Exception e)
 {
 System.err.println(e.toString());
 }
 return "Unable to connect.";

 }

}

15.3.6 Accessing a SOAP Web Service from AppleScript

SOAP might be more complex than XML-RPC, but a SOAP client is built into AppleScript as well, as
shown in Figure 15-10.

Figure 15-10. Scripting a SOAP client

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 15-8 shows a client similar to the one you built earlier to access the XML-RPC service.
However, more detail is required (in particular, extra parameter information) for SOAP interaction. It
may seem a bit odd that the AppleScript client enforces this extra detail (when the browser's HTTP
GET was able to invoke the service without it), but that's the nature of SOAP—it's an evolving set of
standards.

Example 15-8. Scripting a SOAP client

script SoapServer

 on now()
 tell application "http://localhost:8080/axis/SimpleWebService.jws"
 return call soap {method name:"now"}
 end tell
 end now

 on add(s1, s2)
 tell application "http://localhost:8080/axis/SimpleWebService.jws"
 return call soap {method name:"add", parameters:{a:s1 as integer, b:s2 as integer}}
 end tell
 end add

end script

display dialog SoapServer's now()
display dialog SoapServer's add(1, 2)
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

15.4 Additional Reading

Web services are fairly new and still developing. O'Reilly dedicates an entire section of their web site
to this area, found at http://webservices.oreilly.com, and it's wise to watch web service developments
closely. You may also benefit from monitoring sites such as http://www.w3.org and
http://www.xml.org for information on the status of various proposed standards.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

15.5 Final Thoughts

In one volume, you've walked from "Hello World" through desktop application development, web
applications, enterprise application development, and finally web services. You've looked at how to
build applications that are custom-tailored to the Mac OS X platform and how to maintain cross-
platform compatibility.

In many ways, this book represents an eclectic overview of the Java application development world.
Perhaps one of the book's most interesting and impressive aspects is that it shows you how to build
all of these applications on a single operating system. Such an elegant operating system, combining
the best of a modern graphical operating system and solid Unix underpinnings, deserves excellent
applications.

"When I am working on a problem I never think about beauty. I only think about how to
solve the problem. But when I have finished, if the solution is not beautiful, I know it is
wrong."

—Buckminster Fuller (1895-1983)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, breathing
personality and life into potentially dry subjects.

The animal on the cover of Mac OS X for Java Geeks is a striped hyena (Hyaena hyaena). This
nomadic species is native to the arid savanna, thorny bush, and stony deserts of northern and eastern
Africa, the Middle East, India, and southern Asia. Striped hyenas have long coarse fur and are sandy-
gray in color; they feature black spots on their legs, dark stripes running down their backs, and a
heavy mane over their neck and shoulders. When threatened, their manes stand up, causing the
hyena to appear much larger than their average weight of 100 pounds. Adults grow to nearly four feet
long, not including their foot-long tails. These hyenas have pointed ears, a short muzzle, powerful
jaws, and sharp teeth. While they resemble dogs both physically and socially (they sniff one another
in greeting), hyenas belong to an entirely different animal family. Unlike the larger spotted hyena,
striped hyenas do not "laugh"—verbal communication is in the form of short soft growls.

Striped hyenas are primarily nocturnal, preferring to sleep in caves or shaded outcroppings during the
hot desert days. Small family groups may exist in these dens, but striped hyenas are not territorial;
they rest and eat in the same areas for a short period of time before moving on. At night, they
emerge to solitarily scavenge for carrion and other leftovers, even eating the bones from carcasses
with no meat remaining on them. They supplement this diet by preying on small animals such as
rodents, reptiles, and birds. As humans move into more and more of their habitat, it's become
increasingly common for spotted hyenas to rely on garbage dumps and crops (they are particularly
fond of fruit) for food. Human hunters are the largest threat to the striped hyena: some people
believe that the organs and other parts of the hyena have medicinal value. Striped hyenas are listed
as an endangered species, and populations in northern Africa are critically threatened.

Emily Quill was the production editor and proofreader for Mac OS X for Java Geeks. Ann Schirmer was
the copyeditor. Philip Dangler, Claire Cloutier, and Jane Ellin provided quality control. Philip Dangler
and Genevieve d'Entremont provided production assistance. Ellen Troutman-Zaig wrote the index.

Hanna Dyer designed the cover of this book, based on a series design by Edie Freedman. The cover
image is a 19th-century engraving from the Dover Pictorial Archive. Emma Colby produced the cover
layout with QuarkXPress 4.1, using Adobe's ITC Garamond font.

Bret Kerr designed the interior layout, based on a series design by David Futato. This book was
converted to FrameMaker 5.5.6 by Andrew Savikas with a format conversion tool created by Erik Ray,
Jason McIntosh, Neil Walls, and Mike Sierra that uses Perl and XML technologies. The text font is
Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is LucasFont's
TheSans Mono Condensed. The illustrations that appear in the book were produced by Robert Romano
and Jessamyn Read using Macromedia FreeHand 9 and Adobe Photoshop 6. The tip and warning icons
were drawn by Christopher Bing. This colophon was written by Philip Dangler.

The online edition of this book was created by the Safari production group (John Chodacki, Becki
Maisch, and Madeleine Newell) using a set of Frame-to-XML conversion and cleanup tools written and
maintained by Erik Ray, Benn Salter, John Chodacki, and Jeff Liggett.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

"About" command, adding to application menu
"About" dialog box for Finder integratation
"Hello World"
 deploying JSP file in J2EE
 HelloWorld.java file, editing in pico
 JSP page
"Open" and "Preferences" menu items
"Preferences" menu item
"root" location (Mac OS X)
${...} syntax in Ant tags
$APP_PACKAGE variable 2nd
$JAVAROOT variable
 editing classpath entry in Info.plist file
& (ampersand), running process in background
< > (angle brackets)
 >&~/pgsql/log sequence, redirecting PostgreSQL output to file
 < directive to pipe a file
 <% %> and <%= %>, in JSP tags
 <%= %> in JSP tags
<APPLET> tags
<EMBED> tags
<OBJECT> tags
. (dot), files beginning with
 listing with ls -a command
 Mac OS X Finder and
.ant.properties file [See Ant, properties file]
.class files
 adding to application bundle with MRJAppBuilder
 HelloWorld.class
 packaging in JAR files
.java source files
.login file
.pbproj file
.plist files
/Developer/Applications directory
 IconComposer application
 MRJAppBuilder tool
/lib directory
 Java, finding
 Tomcat, Java libraries used by jspc tool
 XML-RPC JAR file
/Library/Java/Extensions/ directory
/System/Library/Frameworks/JavaVM.framework/Versions
 1.3.1/Home
 CurrentJDK directory
 link to CurrentJDK directory
:// prefix (file)
^M characters, problems in JAR file manifests
~ (tilde), referring to home directory

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Abstract Windowing Toolkit (AWT) 2nd [See also GUIs]
 growbox
actions on a menu bar, scope of
ADC (Apple Developer Connection)
 downloading speech framework
 text-to-speech and voice recognition
administrator account for MySQL
Adobe Photoshop, creating an application icon
alt key emulation for emacs
ampersand (&), running process in background
angle brackets [See <, under Symbols]
Ant
 basics of
 building a file
 documentation
 installation and setup
 properties file
 changing web client path
 modifying with JBoss build.xml file
 running the build
anti-aliasing
 apple.awt.antialiasing property
 apple.awt.textantialiasing property
 com.apple.macosx.AntiAliasedTextOn property
Apache
 Axis [See Axis 1.0]
 Axis 1.0 implementation of SOAP 1.1 specification
 Cocoon
 Jakarta Ant [See Ant]
 Jakarta Struts
 Personal Web Sharing
 serving JNLP files
 Tomcat [See Tomcat]
 web server, GUI for
 XML-RPC libraries
 XmlRpcClient class
 XmlRpcServer class
Apple [See also Mac OS X]
 Applet Runner, Applet Launcher equivalent in OS X
 CFBundle dictionary keys, documentation
 documentation, Java library search order
 extensions to Java
 comparison to other vendors
 Mac OS X Finder [See Finder]
 Java platform
 additional APIs and services
 JDK 1.3.1 installation
 JVM (Java Virtual Machine)
 JVM directory layout
 Software Update feature
 stubs-only version of MRJ classes
Apple Developer Connection (ADC)
 downloading speech framework
 Java-based text-to-speech and voice recognition frameworks
Apple Developer Tools, JavaBrowser utility
apple.awt.antialiasing property
apple.awt.brushMetalLook property
apple.awt.fakefullscreen property
apple.awt.fractionalmetrics property
apple.awt.fullscreencapturealldisplays property
apple.awt.fullscreenhidecursor property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

apple.awt.fullscreenusefade property
apple.awt.interpolation property
apple.awt.rendering property
apple.awt.textantialiasing property 2nd
apple.awt.window.position.forceSafeCreation property
apple.awt.window.position.forceSafeUserPositioning property
apple.laf.useScreenMenuBar property
AppleScript
 accessing SOAP web service from
 accessing XML-RPC web services
 XML-RPC client
 building applications with, web site information on
Applet Viewer
applets 2nd
 accessing Mac OS X-specific properties from
 creating
 launching, HTML page for
 deploying
 Java Plug-in
 caching JAR files
 JAR cache versioning
 settings application
 Mac OS X web browsers
application bundles
 $APP_PACKAGE variable referring to root 2nd
 .app suffix for directory
 benefits of
 layout of
 icons in Resources folder
 Info.plist file (Contents folder)
 Java code in Resources/Java directory
 property list attributes for Java applications
 CFBundle dictionary keys
 CFBundleDocumentTypes dictionary keys
 dictionaries 2nd
 Info.plist file
 tools for setting up
 ZIP or JAR files, adding to (MRJAppBuilder tool)
Application Kit framework, Java APIs for
application programming interface (API)
application servers, JBoss [See JBoss]
applications
 database-driven JSP applications
 default menu for Java on Mac OS X
 specifying look and feel
 standalone [See standalone applications]
 web-delivered [See web-delivered applications]
Aqua GUI 2nd
 cross-platform compatibility
 default components
 JList component
 look and feel gotchas
 background color
 dirty windows
 menu bars
 sizing of elements
 running NetBeans IDE with
 size of buttons
archives
 Java [See JAR files]
 web application resources [See WAR files]
Arguments key (Java dictionary)
arrays (multi-dimensional), in menu bar configuration
ASCII
AsyncCallback interface 2nd
asynchronous remote calls

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

asynchronous XML-RPC clients
atoms
AWT (Abstract Windowing Toolkit) 2nd [See also GUIs]
 growbox intrusion into frames
Axis 1.0 (Apache)
 building web service for
 downloading
 installing
 installing in JBoss

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

background color in Aqua and Swing GUIs
Backus-Naur Form (BNF) language model
BBEdit text editor (Bare Bones Software)
bean-managed persistence (BMP)
beeping plug-in, writing
Berkeley Software Distribution (BSD)
 external tool support in Mac OS X JVM
bin directory
 Tomcat
BMP (bean-managed persistence)
BNF (Backus-Naur Form) language model
Borland's JBuilder
brushed metal appearance for main application window
BSD (the Berkeley Software Distribution)
 external tool support in Mac OS X JVM
build directory (J2EE application)
 /bin directory
 /clases directory
 /deploy directory
 /generate directory
 /META-INF directory
 /war directory
build tasks, managing with Ant
 building a file (example)
 running the build
build.xml file
 web client path, modifying
 XML-RPC file referenced in
building application from JBoss template
buttons (Aqua GUI), large size of

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

C language
 functions in QuickTime
 header files in QuickTime
caching
 JAR files with Java Plug-in
 Java Web Start data
Camino web browser
carriage returns (CR)
 CR/LF value for Windows newlines
 in manifests for JAR files
casting dynamically loaded objects to a required interface
Catalina (Tomcat)
 configuration files
cd (change directory) command
CFBundleDocumentTypes
CFBundleDocumentTypes dictionary keys
CFBundleExecutable property 2nd
CFBundleName property
character encodings
character sets, specifying in Java
checkSpelling() (JTextComponentDriver)
class files, QuickTime
class loaders (cross-platform), issues with
classes
 "Main classname" field (MRJAppBuilder)
 build/classes directory (J2EE application)
 plug-in, loading (Swing application)
 Swing
 Tomcat directory for
Classes directory
classic atoms
Classic Mac OS
 booting
 file separators
 Java on (MRJ)
 newlines (CR)
 talking dialogs
 weaknesses of
ClassPath (Java dictionary key)
CLASSPATH environment variable
 XML RPC JAR file
classpaths
 Apple JVM, issues with
 editing Info.plist entry using $JAVAROOT/ directive
 managing with Ant
client-side GUI application (Java-based) on Mac OS X, delivery mechanisms
clients
 Java, executing test
 SOAP
 in AppleScript
 web-client path, changing
 XML-RPC
 asynchronous
 in AppleScript
 synchronous
 XmlRpcClient class
clock components (QuickTime)
clock.jsp file (example)
CMP (container-managed persistence)
Cocoa Foundation and Application Kit frameworks, Java APIs for
Cocoon (Apache)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

code editors
 commercial
 Macromedia Dreamweaver MX
 Metrowerks CodeWarrior
 freeware commercial 2nd
 JavaBrowser
 Project Builder
 open source
 NetBeans
color (background), in Aqua and Swing GUIs
com.apple.hwaccel property
com.apple.hwexclude property
com.apple.macos.smallTabs property
com.apple.macos.use-file-dialog-packages property
com.apple.macos.useScreenMenuBar property
com.apple.macosx.AntiAliasedGraphicsOn property
com.apple.macosx.AntiAliasedTextOn property
com.apple.mrj.AboutHandler
com.apple.mrj.application.apple.menu.about.name property 2nd
com.apple.mrj.application.classpath system property
com.apple.mrj.application.growbox.intrudes property
com.apple.mrj.application.live-resize property
com.apple.mrj.application.main property
com.apple.mrj.application.main system property
com.apple.mrj.application.parameters system property
com.apple.mrj.application.workingdirectory system property
com.apple.speech.recognition package
com.apple.speech.synthesis package
com.apple.spell package
com.apple.spell.ui package
command-line test program (TestClient.java)
commands
 keyboard, for different platforms
 Terminal
 Unix
Commands directory
comments (XDoclet command in)
commercial tools
 IDEA IntelliJ
 TogetherSoft Control Center development environment
common directory (Tomcat)
 /classes subdirectory
 /lib subdirectory
compatibility, testing for cross-platform applications
 file I/O
 preference and resource files
compilation
 JSP
 managing with Ant 2nd
compilers
 javac
 jspc (JSP compiler)
Component Manager (QuickTime)
components (Apple-defined), QuickTime
compression
 image-compression dialog components (QuickTime)
 Tomcat distribution
conf directory (Tomcat)
configuration files, Tomcat (Catalina) server
 server.xml
 tomcat-users.xml
 web.xml
configuration, JBoss
Connector/J driver for JDBC
container-managed persistence (CMP)
Contents folder

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Info.plist files 2nd
Contents/Resources/Java directory
Context elements (server.xml file)
control character as default keyboard accelerator
Control-click on a single mouse button, emulating second mouse button with
copying files with . (dot) in name
CORBA, RPC and
CR (carriage returns)
 CR/LF value for Windows newlines
 in JAR file manifests
createdb command
cross-platform compatibility
cross-platform programming
 class loader issues
 file encoding
 Java, Unicode, and UTF
 Unicode
 file separators
 GUI construction
 newlines
 resources for further information
 testing compatibility
 file I/O
 native code
 native GUI elements
 preference and resource files
 threading
 threads
CurrentJDK directory
cursor, hiding in full screen display
custom spellchecking

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Darwin
database-driven JSP applications
 building web application
 creating first JSP
 database connections
 debugging JSP pages
 retrieving data
 reviewing the application
 talking to the database
 setting up the database
databases
 Dreamweaver connection, setting up
 Java Database Connectivity [See JDBC]
 Mac OS X
 MySQL
 PostgreSQL
 relational
 Structured Query Language (SQL)
 queries involving multiple tables
dates, creating java.util.Date object and converting to String
debugging JSP pages
delivering applications [See web-delivered applications]
dependencies
 JBoss template project
 JNI and
deployment
 applets
 build/deploy directory (J2EE application)
deployment descriptors generated by XDoclet
desktop shell integration, Apple extensions
 Finder integration
Developer Tools CD
dialogs
 Quit handler for Finder integration
 spoken
 TalkingAlertJDialog class (example)
 TalkingJDialog class
 triggered by menu callbacks
dictation services on Mac OS X
dictionaries
 CFBundle dictionary keys
 CFBundleDocumentTypes dictionary keys
 Java dictionary keys
 Arguments
 ClassPath
 JVMVersion
 MainClass
 VMOptions
 WorkingDirectory
 Properties dictionary keys
 apple.awt.brushMetalLook
 com.apple.hwaccel
 com.apple.hwexclude
 com.apple.macos.smallTabs
 com.apple.macos.use-file-dialog-packages
 com.apple.macos.useScreenMenuBar
 com.apple.macosx.AntiAliasedGraphicsOn
 com.apple.macosx.AntiAliasedTextOn
 com.apple.mrj.application.apple.menu.about.name
 com.apple.mrj.application.growbox.intrudes
 com.apple.mrj.application.live-resize

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

digital signatures
 JAR files for JNLP-based applications
 jarsigner tool, using with Java Web Start code
directories
 Apple JVM
 classpath issues, handling
 entire layout
 JavaVM.framework directory
 libraries
 application bundle (with .app suffix)
 determining user's home and working directory with Java APIs
 J2EE application
 build directory
 build/bin
 build/classes
 build/deploy
 build/generate
 build/META-INF
 build/war
 JBoss template project
 etc/bin
 etc/WEB-INF
 JSP database-driven application
 Mac OS X application
 Tomcat
 bin
 common
 conf
 lib
 logs
 server/lib
 webapps
 work
 WEB-INF
dirty windows
dispatchEvent()
displayMovie()
doAction() 2nd 3rd
doClose() 2nd
document types
 based on file extension
 CFBundleDocumentTypes dictionary keys
documentation
 Apple, CFBundle dictionary keys
 Jakarta Ant
 man (manual) command
 QuickTime
 speech framework
 speech recognition with custom language model
doNew()
dot (.), files beginning with
 listing with ls -a command
 Mac OS Finder and
doTimeStamp()
double-byte format (UTF-16)
Dreamweaver MX [See Macromedia Dreamweaver MX]
dynamic class loading
 platform-specific code in
dynamic downloading of additional JREs

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Eclipse IDE
editors [See code editors text editors]
EJBs (Enterprise JavaBeans)
 entity beans
 bean-managed persistence (BMP)
 container-managed persistence (CMP)
 message-driven
 non-Java programs, lack of accessibility from
 session bean (example)
emacs, emulation of Meta (alt) key in Terminal
embedding Java applets in web pages
end of a line in different platforms
Enterprise JavaBeans [See EJBs]
entity EJBs
environment variables
 CLASSPATH
 XML-RPC JAR file
 JAVA_HOME 2nd
error handling in JSP pages
etc/bin directory (JBoss project)
etc/WEB-INF directory
event handlers, "Quit" handler for Finder integration
event handling
 Finder integration
 Open and Preferences handlers
 registering handlers with FinderIntegration class 2nd
 Swing GUI application
event notification handler, in asynchronous remote calls
exit() (System)
exporting movies from QuickTime application 2nd
 flattening media files
Extensions folder
extensions to Java (Apple)
 comparison to other vendors
 Mac OS X Finder [See Finder]

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

fade effect when changing screen resolutions
file dialogs, icons displayed in
file encoding
 Java, Unicode, and UTF
 Unicode
file extensions supported by an application
file I/O [See input/output]
file separators
 getting for different systems
file:// prefix
FileDialog class, showing application packages as files
files
 identifying types of in property list dictionaries
 opening (Finder handlers for)
Finder
 "Open" file handlers
 application bundles, display of
 application recognition
 desktop integration
 files beginning with dot (.)
 icons displayed in
 icons for, in Resources folder
 ingegration support class
 "About" dialog box
 integration plug-in
 integration support class
 "Quit" dialog
 Open and Preferences handlers
 registering handlers 2nd
FinderIntegration class
 registering handlers 2nd
FinderIntegrationPlugin class
FinderIntegrationPlugin.java file
flattened media files
floating-point font metrics
fonts
 Aqua GUI
 floating-point metrics
footer.jsp file 2nd
Foundation and Application Kit frameworks in Cocoa, Java APIs for
freeware commercial software
 JavaBrowser
 JBuilder IDE
 Project Builder
full screen display (JDK 1.4)
 apple.awt.fakefullscreen property
 apple.awt.fullscreencapturealldisplays property
 apple.awt.fullscreenhidecursor property
 apple.awt.fullscreenusefade property
functionality, adding to JBoss template
functions in C, becoming methods in Java

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Gecko HTML rendering engine
generate directory (J2EE application)
getAction() 2nd
getAvailableLanguages() (SpellChecker)
getProperties() (System)
getResource()
global properties files
graphics [See also GUIs]
 generation with high-bit characters
 Graphics2D (Java), rendering hints
 hardware acceleration
GUIs (graphical user interfaces)
 Aqua 2nd [See also Aqua GUI]
 constructing for cross-platform compatibility
 growbox intruding into AWT frames
 HTML-based, building with Macromedia Dreamweaver MX
 Java Web Start
 Java-based, client-side application delivery comparison
 Metal (default Java look and feel)
 native GUI elements and cross-platform compatibility
 player application (example)
 Swing and Aqua
 look and feel gotchas
 Swing application (example)
 application API
 dynamic class loading
 initialization
 plug-ins
 SimpleEditPlugin interface
 source code

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

handleCorrectEvent()
handleError() (AsyncCallback) 2nd
handleFindNextEvent()
handleFoundMisspellingEvent()
handleIgnoreEvent()
handleResult() (AsyncCallback) 2nd
hardware acceleration 2nd
hardware graphics acceleration
header.jsp file 2nd
hide()
high bit
home directory 2nd
HTML
 applet tags for common browsers
 file to launch JNLP application
 JavaServer Pages, handling with
 JSP page, translation into
 launching an applet
 user interfaces, building with Macromedia Dreamweaver MX
HTML Converter

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

IBM's ViaVoice application
IconComposer application 2nd
icons
 .icns files
 application
 for Mac OS X Finder
 icns files
ide.cfg file
IDEA IntelliJ
IDEs (integrated development environments)
 Eclipse open source IDE
 freeware commercial
 JBuilder
 Project Builder
 IDEA IntelliJ
 Metrowerks CodeWarrior commercial IDE
 open source
 NetBeans
IIOP (Internet Inter-Orb Protocol)
Image Compression Manager (QuickTime)
image transformations, interpolation in
importMedia()
include files [See header.jsp file footer.jsp file]
Info.plist files
 CFBundleExecutable property, matching launcher stub to
 classpath entry, editing with $JAVAROOT/ directive
 SimpleEdit application (example) 2nd
init() method
 use in Swing application
initComponents()
initialization, Swing application
 event processing
 GUI components
 loading plug-ins
 menu bars
initMenuBar()
initPlugins() 2nd
initToolbar()
input/output (I/O)
 Java APIs for
 Java file I/O APIs
 PostgreSQL database, use of STDERR for output
 testing for cross-platform compatibility
interfaces (Java) to QuickTime, for multimedia support
Internet Explorer
 <APPLET> tags and
 applet running in
interpolation in image transformations

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

J2EE (Java 2 Enterprise Edition)
 common acronyms used in
 getting started
 deploying JSP file "Hello World"
 JBoss template project
 JBoss application server [See JBoss]
 packages in Apple JVM
Jaguar (Mac OS X 10.2)
 talking dialogs
Jakarta Ant
 basics of
 building a file
 documentation on
 installation and setup
 running the build
Jakarta Struts
JAR (Java Archive) files
 Axis, core libraries
 caching by Java Plug-in
 JAR cache versioning
 Classes directory
 creating
 manifest file
 Java directory in Resources folder
 Java Web Start, control by
 JNLP, creating
 JNLP-based applications, use in
 launching
 libraries for Tomcat (common/lib/ directory)
 resources and values returned from file dialogs, storing in
 XML-RPC
Jar Bundler tool
jar command 2nd
jarsigner tool
Java
 /bin directory
 accessing SOAP web service from
 Apple platform
 hardware acceleration
 Java on Classic (MRJ)
 JDK 1.3.1
 JVM (Java Virtual Machine)
 multiple mouse buttons
 applets [See applets]
 application bundles
 dictionary keys
 Properties dictionary
 application code (JAR or class files) in Resources/Java directory
 connecting AppleScript to Java applications via XML-RPC
 Enterprise JavaBeans [See EJBs]
 file encodings
 file I/O APIs
 interfaces to QuickTime, for multimedia support
 library search order for Apple documentation
 newlines, mechanism querying system properties for
 PCGen application
 QuickTime [See QuickTime]
 RPC and
 text-to-speech and voice recognition frameworks from Apple
 threads, implemented as native Mach threads
 tools

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 additional
 code editors
 Jakarta Ant
 Terminal
 Unicode, handling of
Java 2 Enterprise Edition [See J2EE]
Java 2D (java.awt.Graphics2D)
Java Archive files [See JAR files]
java command
 -cp argument
 -D option
Java Database Connectivity [See JDBC]
Java Development Kit [See JDK]
Java Embedding Framework
Java Foundation Classes (JFC)
Java Management Extensions (JMX)
Java Naming and Directory Interface (JNDI)
Java Native Interface (JNI)
 accessing Mac OS X native functionality
 dependencies and
Java Native Interface (JNI) library
Java Network Launching Protocol [See JNLP]
Java Plug-in
 caching JAR files
 JAR cache versioning
 settings application
Java Runtime Environments (JREs)
 Apple extensions
 dynamically downloading
Java Spelling Framework
Java Transaction Service (JTS)
Java Virtual Machines [See JVMs]
Java Web Service (JWS) files
Java Web Start
 caching data
 creating JNLP file
 delivering an application
 JAR resources
 JNLP file, details of
 management application
 runtime environment
 JNLP-based application requirements
 Mac OS X Web Start vs.
 saving as standard Mac OS X application
java.policy file (applet permission to access Mac OS X system properties)
JAVA_HOME environment variable 2nd
JavaApplicationStub file
JavaBeans, Macromedia Dreamweaver MX support
JavaBrowser utility 2nd
javac
 built-in task for Ant
Javadoc (Speech Framework documentation)
JavaServer Pages [See JSP]
JavaSpeechFramework.jar file
JavaSpellingFramework.jar file
JavaVM.framework directory
 CurrentJDK directory
JBoss 2nd
 Apache Axis
 installing
 verifying installation of
 automatic detection and redeployment of new WAR file
 deploying WAR and EAR files
 downloading
 installation
 starting

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 configurations
 verifying proper working with administrative console
 template project
 building application from
 directory structure
 functionality, adding
 supplemental tools required for
JBuilder IDE
JDBC (Java Database Connectivity)
 driver, downloading
 Macromedia Dreamweaver MX, support of
 Oracle 9i, connecting to
 PostgreSQL via
JDesktopPane class
JDialog class, extending for speech
JDirect implementation (Apple)
JDK (Java Development Kit)
 Apple extensions with
 Mac OS X support
 Version 1.3.1, installing
 Version 1.4
 full screen display 2nd
 window positioning
 Version 1.4.1
 download site
 interfaces for desktop interactions
 Jar Bundler tool
 rendering via Java 2D
 Versions 1.3.1 (or later) on Mac OS X machines
JFC (Java Foundation Classes)
JFrame class (extended in Swing application example)
JList implementations
JMX (Java Management Extensions)
JNDI (Java Naming and Directory Interface)
JNI (Java Native Interface)
 accessing native Mac OS X functionality
 dependencies and
JNI (Java Native Interface) library
JNLP (Java Network Launching Protocol)
 configuration text file, creating
 creating a file
 details of JNLP file
 HTML file to launch JNLP application
 requirements for applications delivery
 serving files with Apache
JREs (Java Runtime Environments)
 Apple extensions
 dynamically downloading
JSP (JavaServer Pages)
 clock.jsp file (example)
 compilation
 database-driven applications
 creating your first JSP
 debugging JSP pages
 retrieving data
 reviewing the application
 setting up the database
 talking to the database
 deploying file as part of J2EE application
 Jasper (Tomcat), compiler and default handler for JSP files
 Macromedia Dreamweaver MX, support of
 Tomcat web container
 web applications, building with Macromedia Dreamweaver MX
jspc tool (JSP compiler)
JSSE
JTextComponent class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

JTextComponentDriver class
JTS (Java Transaction Service)
JTxtCmpontDrvr class
JVMs (Java Virtual Machines)
 Apple proprietary extensions, inclusion with
 Apple's directory layout
 classpath issues, handling
 entire layout
 JavaVM.framework directory
 libraries
 browser control of version used with applets
 JDK 1.3.1 (or later) and JDK 1.1.8 running on Mac OS X machines
 threading models, problems with
 VMOptions key (Java dictionary)
JVMVersion key (Java dictionary)
JWS (Java Web Service) files
 building SOAP web service for Axis
 copying

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

keyboard commands for different platforms
kill PID command

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

LanguageModel class 2nd
languages, file encoding and
launcher stub for Mac OS X application
launching an applet, HTML for
leaf atoms
LF (line feed)
libraries
 Apple JVM
 extensions
 Home directory, standard Java tools
 inspecting with JavaBrowser
 JAR files for Tomcat
 Java library search order for Apple documentation
 JVM classpath, putting into
 server/lib directory, Tomcat
Libraries directory, native Mac OS X in
line endings in different platforms
line feed (LF)
live resizing of windows
loading plug-ins
local file, opening
logs directory (Tomcat)
look and feel gotchas
 background color
 dirty windows
 menu bars
 sizing of elements
look and feel, cross-platform compatibility
ls (list) command
 -a option to see all files

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Mac OS Classic
 Java on (MRJ)
 SDK for
Mac OS X
 "root" location
 Applet Launcher
 applications [See also application bundles]
 applications, building from scratch
 Aqua GUI
 default directory structure
 different versions of
 Mac OS X 10.0
 Mac OS X 10.1
 Mac OS X 10.1.x
 Mac OS X 10.2 (Jaguar)
 Mac OS X 10.3 (Panther)
 dirty windows
 Finder [See Finder]
 Java-based, client-side GUI application delivery comparison
 JDK version for double-clickable JARs
 native access with JNI
 native libraries in Libraries directory
 packaging standalone applications
 Property List Editor
 Software Update functionality
 speech framework
 custom language models
 full dictation services
 setting up
 Speech API
 systems that understand specific words or phrases
 TalkingAlertJDialog class (example)
 TalkingJDialog class
 text-to-speech conversion
 utility that answers common questions
 text file encoding
 Version 10.2
 spelling framework
 talking dialogs
 web browsers
 Web Start, Java Web Start vs.
Mac OS, Classic
 booting
 file separators
 newlines (CR)
 weaknesses of versions before OS X
Mach threads
MacOS folder
 native executable file for application launching
Macromedia Dreamweaver MX 2nd
 database connection, setting up
 interface construction
 JSP database-driven application
 previewing application with
Main classname filed (MRJAppBuilder)
main()
 Arguments key (Java dictionary)
 classes in JAR files
 executed at application startup, class that contains
 Swing GUI application (example)
MainClass key (Java dictionary)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Makefile.in, editing for PostgreSQL
man (manual) command
manifest file
MDI (multiple document interface) applications
media data-exchange components (QuickTime)
media files, flattened
media player application [See player application]
media types supported by QuickTime
media, importing into QuickTime application
memory structures (custom), QuickTime
menu bars
 com.apple.macos.useScreenMenuBar property
 configuration, Swing GUI application
menu integration into program, callbacks for
message-driven EJBs
Meta (alt) key emulation for emacs
META-INF directory (J2EE application)
Metal GUI
 cross-platform compatibility
 JList component
 running NetBeans IDE with
methods (Java), converting C language functions to
Metrowerks CodeWarrior IDE
misspelled words, underlining in red
MisspelledWord class
modules (plug-ins in Swing application)
more (page display) command
mouse buttons, multiple
mouse cursor, hiding in full screen display
Movie class
Movie Toolbox (QuickTime)
movies
 controller components (QuickTime)
 exporting from QuickTime application
 flattening media files
 playback in QuickTime application
 playing with QuickTime application
 references in QuickTime
Mozilla/Gecko-based web browser
MP3 files, playback in QuickTime application
MRJ (Mac OS Runtime for Java)
 SDK, download site
 stubs-only version of classes
MRJAppBuilder tool 2nd
 limitations of
 main properties
MRJApplicationUtils class 2nd
multi-byte format
multimedia support (Java interfaces to QuickTime)
multiple document interface (MDI) applications
multiple mouse buttons, emulating on Mac OS X
MySQL database
 creating a database
 installing
 JDBC configuration
 setting up database for JSP application
 starting
 stopping
 working with a database

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

native code, cross-platform compatibility and
native functionality on Mac OS X, accessing with JNI
native GUI elements, cross-platform compatibility and
NetBeans IDE
 Apple Java extensions
 directory structure
 running with Aqua look and feel
 launch_aqua.sh script
 running with Metal look and feel
 launch_metal.sh script
NetInfo Manager
 creating user without home directory for JBoss
 creating users for MySQL
 creating users for PostgreSQL
network connections, restrictions on
newlines 2nd
NeXT's OpenStep and NeXTStep platform

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

open source tools
 Eclipse IDE
 NetBeans
opening files (Finder handlers for)
operating systems [See also individual operating system names]
 different file separators for
 property list information for launching applications

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

packages, QuickTime
packaging applications
 Java-based, client-side applications on Mac OS X
 relative links
packaging standalone applications
 application bundles
 benefits of
 layout of
 property list attributes for Java applications
 building an application from scratch
 application icon
 directory layout
 Finder recognition
 Java libraries
 launcher stub
 property list (Info.plist file)
 JAR files
 MRJAppBuilder tool
 on Mac OS X
 on Windows
page directive (JSP)
page display command (more)
Panther (Mac OS X 10.3)
parser database
 Project Builder, handling of
passwords (MySQL default administrator account)
paths for different operating systems
PCGen application (Java)
period (.) [See dot]
permissions (applet access to Mac OS X properties)
persistence, entity EJBs
 bean-managed (BMP)
 container-managed (CMP)
persisting user preferences
personal web sharing functionality, Mac OS X
Personal Web Sharing, turning on
Photoshop, creating application icon in
pico text editor 2nd
 editing Makefile.in for PostgreSQL
pictographic-based languages
PID (process ID)
 for Tomcat launch
piping files (< directive)
player application (example)
 exporting movies
 importing media
 imports and startup
 playing a movie
 references
 running the player
 export features
 movie playback
 MP3 playback
 user interface
plug-ins
 cast to SimpleEditPlugin type
 Finder integration
 Java Plug-in
 JAR cache versioning
 JAR caching
 settings application

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 loading (Swing application example)
 real-time spellchecking
 SimpleEditPlugin interface
 writing simple beeping plug-in
 spellchecking
 launching from command line
 Sun's Java Plug-in
 Swing application (example)
portability
positioning windows (JDK 1.4)
 apple.awt.window.position.forceSafeCreation property
 apple.awt.window.position.forceSafeUserPositioning property
PostgreSQL database
 creating a database
 initializing
 installation
 commenting out lines in Makefile.in
 compiling and installing
 fixes to sem.h file
 installing
 JDBC configuration
 starting
 stopping
 working with a database
precompiler (JSP)
preferences, testing for cross-platform compatibility
preview components (QuickTime)
process ID (PID)
 for Tomcat launch
programming, cross-platform
 class loader issues
 file encoding
 Java, Unicode, and UTF
 Unicode
 file separators
 GUI construction
 newlines
 resources for further information
 testing compatibility
 file I/O
 native code
 native GUI elements
 preference and resource files
 threading
 threads
Project Builder freeware 2nd 3rd
properties (Mac OS X-specific), accessing from applets
Properties dictionary
 apple.awt.brushMetalLook
 com.apple.hwaccel
 com.apple.hwexclude
 com.apple.macos.smallTabs
 com.apple.macos.use-file-dialog-packages
 com.apple.macos.useScreenMenuBar
 com.apple.macosx.AntiAliasedGraphicsOn
 com.apple.macosx.AntiAliasedTextOn
 com.apple.mrj.application.apple.menu.about.name
 com.apple.mrj.application.growbox.intrudes
 com.apple.mrj.application.live-resize property
properties file (Ant)
 modifying with JBoss's build.xml file
property attribute lists for Java applications 2nd [See also Properties dictionary]
 CFBundle dictionary keys
 CFBundleDocumentTypes dictionary keys
 dictionaries
 Info.plist file 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Java dictionary keys
 Arguments
 ClassPath
 JVMVersion
 MainClass
 VMOptions
 WorkingDirectory
 JDK 1.4 full screen display
 apple.awt.fakefullscreen
 apple.awt.fullscreencapturealldisplays
 apple.awt.fullscreenhidecursor
 apple.awt.fullscreenusefade
 MRJAppBuilder tool
 rendering in JDK 1.4.1
 apple.awt.antialiasing property
 apple.awt.fractionalmetrics property
 apple.awt.interpolation property
 apple.awt.rendering property
 apple.awt.textantialiasing property
 window positioning (JDK 1.4)
 apple.awt.window.position.forceSafeCreation
 apple.awt.window.position.forceSafeUserPositioning
property files
Property List Editor 2nd
property tags in Ant build file
psql program
pwd (print current working directory) command

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

QTCanvas class
QTDrawable class
QuickTime
 C functions
 class files
 documentation
 for Java
 understanding Java bindings
 Java interfaces to
 media types supported
 native origins
 atoms
 Component Manager
 Image Compression Manager
 Movie Toolbox
 SimplePlayer application (example)
 exporting movies
 importing media
 imports and startup
 playing a movie
 references
 running the player
 user interface
Quit confirmation dialog

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

real-time spellchecking
Recognizer class
redirect output to a file (PostgreSQL)
references, QuickTime movies
relational databases 2nd [See also databases; JDBC]
 accessing with SQL
 queries involving multiple tables
Remote Method Invocation [See RMI]
remote procedure calls [See RPC]
rendering via Java 2D
 apple.awt.antialiasing property
 apple.awt.fractionalmetrics property
 apple.awt.interpolation property
 apple.awt.rendering property
 apple.awt.textantialiasing property
resizing control, intruding into AWT frames
resizing windows (live)
resource files [See WAR files]
resource files, testing for cross-platform compatibility
Resources folder
 Finder, icons for
 icns file
Resources/Java directory
 JAR or class files (Java)
 referenced with $JAVAROOT variable
Rhapsody
RMI (Remote Method Invocation) 2nd
 over IIOP
roles, management in tomcat-users.xml file
RPC (remote procedure calls) 2nd
 basics of
 Java and
 SOAP 2nd [See also SOAP]
 Apache Axis implementation
 basics
 XML-RPC
 installation and setup
 simple application (example)
run-client.sh file

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

scopes, actions on menu bars
screen resolutions, fade effect when changing
Script Editor tool (for AppleScript)
SDK (Software Development Kit)
 MRJ, download site
secure sandbox
 for applets
 requirements for JNLP-delivered applications in
security
 creating users without home directories using NetInfo 2nd
 java.policy file
sem.h file, fixes for
separator characters in directory or file paths
sequence grabber components (QuickTime)
SequenceGeneratorBean.java file
server.xml (Tomcat configuration file)
server/lib directory (Tomcat)
servlet container [See Tomcat]
servlets
 Jasper (in Tomcat)
 JavaServer Pages (JSP) and
 JSP, translation into by Tomcat
 SOAP requirement of
session EJBs
 TestSessionBean.java (example)
 adding method to
 web user interface to
setLanguageModel() (Recognizer)
setupMenu()
shells
 tcsh
 tsch, creating
show()
shutting down MySQL
signed JAR files for JNLP-based applications
SimpleEditPlugin interface
 writing simple beeping plug-in
SimpleEditPlugin interface (example)
sizing elements in Aqua and Swing GUIs
SOAP (Simple Object Access Protocol)
 accessing web service from AppleScript
 accessing web service from Java
 Apache Axis implementation
 downloading
 installing
 basics
 building a web service
Software Update
 downloading Apple JDK releases
Solaris (Java Web Start for)
source code for applications
speakText(String) (Synthesizer)
speech framework, Mac OS X
 custom language models
 full dictation services
 setting up
 Speech API
 setting defaults
 speech recognition
 Synthesizer class
 systems understanding specific words or phrases

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 TalkingAlertJDialog class (example)
 TalkingJDialog class
 text-to-speech conversion
 utility that answers common questions, writing
SpellChecker class
spelling framework, Mac OS X
 building
 custom spellchecking
 Java environment, setting up
 real-time spellchecking
 plug-in (example)
 setting up
 Mac OS X 10.2
 Spelling API
 user-requested spellchecking
SpellingChecker class
SQL (Structured Query Language)
 psql tool
 queries involving multiple tables
src directory, JAR file manifest
standalone applications
 building from scratch
 application icon
 directory layout
 Finder recognition
 Java libraries
 launcher stub
 property list (Info.plist file)
 defined
 packaging
 application bundles
 JAR files
 JAR files, creating
 launching the JAR file
 MRJAppBuilder tool
 on Windows
startRealtimeChecking() (JTextComponentDriver)
STDERR output stream, use by PostgreSQL
stopSpeech() (Synthesizer)
Structured Query Language [See SQL]
Struts (Apache)
stub files for application launching
stubs-only version of Apple MRJ classes
sudo command
Swing GUI
 example application
 application API
 dynamic class loading
 initialization
 plug-ins
 SimpleEditPlugin interface
 source code
 look and feel gotchas
 background color
 dirty windows
 menu bars
 sizing of elements
SwingSet2 demo application
synchronous remote calls
synchronous XML-RPC clients
Synthesizer class
System class
 exit()
 getProperties()
system properties
 access by JNLP-based applications running in sandbox

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 file separator characters
 Mac OS X, accessing from applets
 text file encoding format

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

tables, database
tabs (com.apple.macos.smallTabs property)
tags
 Ant, ${...} syntax
 HTML applet tags for common browsers
 JSP 2nd
talking dialogs, Classic Mac OS
TalkingAlertJDialog class (example) 2nd
TalkingJDialog class
target (task) names in Ant build files
tcsh shell
Terminal
 basic commands
 environment variables
 Java tools, using
 navigating src directory
 pico text editor 2nd
terminating lines in different platforms
TestClient.java file
TestMessageDrivenBean.java file
TestSession EJB
 testing with TestClient.java
TestSessionBean.java
 adding method to
text document, opening files as
text editors
 BBEdit
 emacs
 pico 2nd
text, rendering with anti-aliasing 2nd
text-to-speech conversion [See also speech framework, Mac OS X]2nd
 Synthesizer class
threads
 cross-platform compatibility testing
 controlling user generation of threads
 deprecated threading APIs
 Java, implemented as native Mach threads
 spellchecking and
TogetherSoft Control Center (commercial development environment)
Tomcat
 Apache, frontending with
 Catalina (servlet container)
 configuration files
 directories
 bin
 common
 conf
 lib
 logs
 server/lib
 webapps
 work
 history of
 installing
 Jasper
 JBoss, using with
 JSP, translation into Java servlet source file
 shutting down
 starting
tomcat-users.xml file
toolbar, creating (Swing application)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

tools, Java 2nd
 additional
 code editors
 commercial tools
 JavaBrowser freeware
 JBuilder Personal freeware IDE
 NetBeans open source IDE
 Project Builder freeware
 Jakarta Ant
 basics of
 installation and setup
 Terminal
 basic commands
 environment variables
 pico text editor
transactions, JTS
True Blue environment
tsch shell, .tcshrc file
 JAVA_HOME environment variable, setting

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

underlining misspelled words in red
Unicode
Unified Modeling Language (UML)
Unix
 commands
 file separators
 Mac OS X default directory structure and
 newlines (LF)
 standard tcsh shell
user interfaces [See GUIs]
user preferences, persisting
user-controlled thread generation, control of
user-requested spellchecking
users
 creating for MySQL with NetInfo Manager
 creating for PostgreSQL
 tomcat-users.xml file
UTF-16
UTF-8 2nd

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

versioning, Java Plug-in JAR caches
ViaVoice application, IBM
video acceleration 2nd
video digitizer components (QuickTime)
virtual machines, Java [See JVMs]
VMOptions key (Java dictionary)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

WAR (web archive) files
 Axis directory for
 build/war directory (J2EE application)
 creating
 deployment by JBoss server
 detection and redeployment of new by JBoss
web applications
 building JSP database-driven application
 creating first JSP
 debugging JSP pages
 retrieving data
 reviewing the application
 talking to the database
 resource files [See WAR files]
web browsers
 <APPLET> tag mapped to Java Plug-in
 applets running in
 Camino, applet running in
 file:// prefix, opening a local file
 HTML Converter tool for cross-platform interoperability
 Internet Explorer, applet running in
 Mac OS X
web container [See Tomcat]
web servers
 JBoss
 XML-RPC mini server (example)
 XmpRpcServer class (Apache)
web services
 Java Web Services (JWS) files
 Macromedia Dreamweaver MX, support of
 online information about
 RPC
 basics of
 Java and RPC
 SOAP
 accessing from AppleScript
 accessing from Java
 Apache Axis implementation
 basics of
 building
 XML-RPC
 accessing from AppleScript
 basics
 installation and setup
 simple application (example)
Web Services Description Language (WSDL)
web user interface to session EJB
web-delivered applications 2nd
 applets
 accessing Mac OS X-specific properties from
 creating
 deploying
 Java Plug-in
 Mac OS X web browsers
 GUI application delivery comparison
 Java Web Start
 caching data
 creating JNLP file
 delivering an application
 JAR resources
 JNLP files, details of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Mac OS X Web Start vs.
 management application
 runtime environment
 saving as standard Mac OS X application
WEB-INF directory
 JBoss template project
web.xml (Tomcat configuration file)
webapps directory (Tomcat)
windows
 dirty
Windows
 file separators
 Java Web Start for
windows
 live resizing of
Windows
 look and feel
 MySQL database
 newlines (CR/LF)
 packaging standalone applications on
windows
 positioning properties (JDK 1.4)
 apple.awt.window.position.forceSafeCreation
 apple.awt.window.position.forceSafeUserPositioning
Windows
 text file encoding
work directory (Tomcat)
WorkingDirectory key (Java dictionary)
WSDL (Web Services Description Language)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

XDoclet
 build/generate directory (J2EE application)
 deployment descriptors generated by (META-INF directory)
 wrapper code for EJB session bean method
XML
 .plist files
 JNLP file
XML-RPC
 accessing services from AppleScript
 client in AppleScript
 application (example)
 clients, asynchronous
 clients, synchronous
 server
 basics
 asynchronous remote calls
 synchronous remote calls
 installation and setup
XmlRpcClient class 2nd
XmlRpcServer class

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Brought to You by

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

