

• Table of
Contents

• Index
• Reviews
• Examples

• Reader
Reviews

• Errata

Mastering Oracle SQL

By Alan Beaulieu, Sanjay Mishra

Publisher: O'Reilly
Pub Date: April 2002

ISBN: 0-596-00129-0
Pages: 336
Slots: 1

Few books on the market today go beyond discussing syntax and the barest
rudiments of using Oracle SQL. This book changes that. The authors cover
the full range of Oracle SQL features that apply to query writing. Learn to write
UNION queries that take full advantage of SQL's set orientation, and ways to
use Oracle's new analytic SQL features to write ranking queries, lag and lead
queries, and more.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

• Table of
Contents

• Index
• Reviews
• Examples

• Reader
Reviews

• Errata

Mastering Oracle SQL

By Alan Beaulieu, Sanjay Mishra

Publisher: O'Reilly
Pub Date: April 2002

ISBN: 0-596-00129-0
Pages: 336
Slots: 1

 Copyright

 Dedication

 Preface

 Why We Wrote This Book

 Objectives of This Book

 Audience for This Book

 Platform and Version

 Structure of This Book

 Conventions Used in This Book

 Comments and Questions

 Acknowledgments

 Chapter 1. Introduction to SQL

 Section 1.1. What Is SQL?

 Section 1.2. A Brief History of SQL

 Section 1.3. A Simple Database

 Section 1.4. DML Statements

 Chapter 2. The WHERE Clause

 Section 2.1. Life Without WHERE

 Section 2.2. WHERE to the Rescue

 Section 2.3. WHERE Clause Evaluation

 Section 2.4. Conditions and Expressions

 Section 2.5. WHERE to Go from Here

 Chapter 3. Joins

 Section 3.1. Inner Joins

 Section 3.2. Outer Joins

 Section 3.3. Self Joins

 Section 3.4. Joins and Subqueries

 Section 3.5. DML Statements on a Join View

 Section 3.6. ANSI-Standard Join Syntax in Oracle9i

 Chapter 4. Group Operations

 Section 4.1. Aggregate Functions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 4.2. The GROUP BY Clause

 Section 4.3. The HAVING Clause

 Chapter 5. Subqueries

 Section 5.1. What Is a Subquery?

 Section 5.2. Noncorrelated Subqueries

 Section 5.3. Correlated Subqueries

 Section 5.4. Inline Views

 Section 5.5. Subquery Case Study: The Top N Performers

 Chapter 6. Handling Temporal Data

 Section 6.1. Internal DATE Storage Format

 Section 6.2. Getting Dates In and Out of a Database

 Section 6.3. Date Manipulation

 Section 6.4. Oracle9i New DATETIME Features

 Section 6.5. INTERVAL Literals

 Chapter 7. Set Operations

 Section 7.1. Set Operators

 Section 7.2. Using Set Operations to Compare Two Tables

 Section 7.3. Using NULLs in Compound Queries

 Section 7.4. Rules and Restrictions on Set Operations

 Chapter 8. Hierarchical Queries

 Section 8.1. Representing Hierarchical Information

 Section 8.2. Simple Hierarchy Operations

 Section 8.3. Oracle SQL Extensions

 Section 8.4. Complex Hierarchy Operations

 Section 8.5. Restrictions on Hierarchical Queries

 Chapter 9. DECODE and CASE

 Section 9.1. DECODE, NVL, and NVL2

 Section 9.2. The Case for CASE

 Section 9.3. DECODE and CASE Examples

 Chapter 10. Partitions, Objects, and Collections

 Section 10.1. Table Partitioning

 Section 10.2. Objects and Collections

 Chapter 11. PL/SQL

 Section 11.1. What Is PL/SQL?

 Section 11.2. Procedures, Functions, and Packages

 Section 11.3. Calling Stored Functions from Queries

 Section 11.4. Restrictions on Calling PL/SQL from SQL

 Section 11.5. Stored Functions in DML Statements

 Section 11.6. The SQL Inside Your PL/SQL

 Chapter 12. Advanced Group Operations

 Section 12.1. ROLLUP

 Section 12.2. CUBE

 Section 12.3. The GROUPING Function

 Section 12.4. GROUPING SETS

 Section 12.5. Oracle9i Grouping Features

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 12.6. The GROUPING_ID and GROUP_ID Functions

 Chapter 13. Advanced Analytic SQL

 Section 13.1. Analytic SQL Overview

 Section 13.2. Ranking Functions

 Section 13.3. Windowing Functions

 Section 13.4. Reporting Functions

 Section 13.5. Summary

 Chapter 14. SQL Best Practices

 Section 14.1. Know When to Use Specific Constructs

 Section 14.2. Avoid Unnecessary Parsing

 Section 14.3. Consider Literal SQL for Decision Support Systems

 Colophon

 Index

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Copyright © 2002 O'Reilly & Associates, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional
use. Online editions are also available for most titles (http://safari.oreilly.com). For more
information contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks
of O'Reilly & Associates, Inc. Many of the designations used by manufacturers and sellers to
distinguish their products are claimed as trademarks. Where those designations appear in this
book, and O'Reilly & Associates, Inc. was aware of a trademark claim, the designations have
been printed in caps or initial caps. Oracle® and all Oracle-based trademarks and logos are
trademarks or registered trademarks of Oracle Corporation, Inc., in the United Status and other
countries. The association between the image of a lantern fly and the topic of mastering Oracle
SQL is a trademark of O'Reilly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher and the
authors assume no responsibility for errors or omissions, or for damages resulting from the use of
the information contained herein.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dedication

I dedicate this book to my father.

I wish he were alive to see this book.

—Sanjay Mishra

To my daughters, Michelle and Nicole.

—Alan Beaulieu

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Preface
SQL, which stands for Structured Query Language, is the language for accessing a relational
database. SQL provides a set of statements for storing and retrieving data to and from a relational
database. It has gained steadily in popularity ever since the first relational database was
unleashed upon the world. Other languages have been put forth, but SQL is now accepted as the
standard language for almost all relational database implementations, including Oracle.

SQL is different from other programming languages because it is nonprocedural. Unlike programs
in other languages, where you specify the sequence of steps to be performed, a SQL program
(more appropriately called a SQL statement) only expresses the desired result. The responsibility
for determining how the data will be processed in order to generate the desired result is left to the
database management system. The nonprocedural nature of SQL makes it easier to access data
in application programs.

If you are using an Oracle database, SQL is the interface you use to access the data stored in
your database. SQL allows you to create database structures such as tables (to store your data),
views, and indexes. SQL allows you to insert data into the database, and to retrieve that stored
data in a desired format (for example, you might sort it). Finally, SQL allows you to modify, delete,
and otherwise manipulate your stored data. SQL is the key to everything you do with the
database. It's important to know how to get the most out of that interface. Mastery over the SQL
language is one of the most vital requirements of a database developer or database
administrator.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Why We Wrote This Book

Our motivation for writing this book stems from our own experiences learning how to use the
Oracle database and Oracle's implementation of the SQL language. Oracle's SQL documentation
consists of a reference manual that doesn't go into details about the practical usefulness of the
various SQL features that Oracle supports. Nor does the manual present complex, real-life
examples.

When we looked for help with SQL in the computer book market, we found that there are really
two types of SQL books available. Most are the reference type that describe features and syntax,
but that don't tell you how to apply that knowledge to real-life problems. The other type of book,
very few in number, discusses the application of SQL in a dry and theoretical style without using
any particular vendor's implementation. Since every database vendor implements their own
variation of SQL, we find books based on "standard" SQL to be of limited usefulness.

In writing this book, we decided to write a practical book focused squarely on Oracle's version of
SQL. Oracle is the market-leading database, and it's also the database on which we've honed our
SQL expertise. In this book, we not only cover the most important and useful of Oracle's SQL
features, but we show ways to apply them to solve specific problems.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Objectives of This Book

The single most important objective of this book is to help you harness the power of Oracle SQL
to the maximum extent possible. You will learn to:

Understand the features and capabilities of the SQL language, as implemented by Oracle.

Use complex SQL features such as outer joins, correlated subqueries, hierarchical queries,
grouping operations, analytical queries, etc.

Use DECODE and CASE to implement conditional logic in your SQL queries.

Write SQL statements that operate against partitions, objects, and collections such as
nested tables and variable arrays.

Use the new SQL features introduced in Oracle9i, such as new date and time features,
ANSI-compliant joins, and new grouping and analytical functions.

Use best practices to write efficient, maintainable SQL queries.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Audience for This Book

This book is for Oracle developers and database administrators. Whether you are new to the
world of databases or a seasoned professional, if you use SQL to access an Oracle database,
this book is for you. Whether you use simple queries to access data or embed them in PL/SQL or
Java programs, SQL is the core of all data access tasks in your application. Knowing the power
and flexibility of SQL will improve your productivity, allowing you to get more done in less time,
and with increased certainty that the SQL statements you write are indeed correct.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Platform and Version

We used Oracle8i (releases 8.1.6 and 8.1.7) and Oracle9i (release 9.0.1) in this book. We've
covered many of Oracle9i's important new SQL features, including ANSI-standard join syntax,
new time/date datatypes, and various analytical functions. Most of the concepts, syntax, and
examples apply to earlier releases of Oracle as well. We specifically point out the new Oracle9i
features.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Structure of This Book

This book is divided into 14 chapters:

Chapter 1 introduces the SQL language and describes its brief history. This chapter is
primarily for those readers who have little or no prior SQL experience. You'll find simple
examples of the core SQL statements (SELECT, INSERT, UPDATE, and DELETE) and of
SQL's basic features.

Chapter 2 describes ways to filter data in your SQL statements. You'll learn to restrict the
results of a query to the rows you wish to see, and restrict the results of a data
manipulation statement to the rows you wish to modify.

Chapter 3 describes constructs used to access data from multiple, related tables. The
important concepts of inner join and outer join are discussed in this chapter. The new
ANSI-compliant join syntax introduced in Oracle9i is also discussed.

Chapter 4 shows you how to generate summary information, such as totals and subtotals,
from your data. Learn how to define groups of rows, and how to apply various aggregate
functions to summarize data in those groups.

Chapter 5 shows you how to use correlated and noncorrelated subqueries and inline views
to solve complex problems that would otherwise require procedural code together with
more than one query.

Chapter 6 talks about handling date and time information in an Oracle database. Learn the
tricks and traps of querying time-based data. Also learn about Oracle9i's many new date
and time datatypes.

Chapter 7 shows you how to use UNION, INTERSECT, and MINUS to combine results
from two or more independent component queries into one.

Chapter 8 shows you how to store and extract hierarchical information (such as in an
organizational chart) from a relational table. Oracle provides several features to facilitate
working with hierarchical data.

Chapter 9 talks about two very powerful yet simple features of Oracle SQL that enable you
to simulate conditional logic in what is otherwise a declarative language. CASE, an ANSI
standard construct, was first introduced in Oracle8i, and was enhanced in Oracle9i.

Chapter 10 discusses the issues involved with accessing partitions and collections using
SQL. Learn to write SQL statements that operate on specific partitions and subpartitions.
Also learn to query object data, nested tables, and variable arrays.

Chapter 11 explores the integration of SQL and PL/SQL. This chapter describes how to call
PL/SQL stored procedures and functions from SQL statements, and how to write efficient
SQL statements within PL/SQL programs.

Chapter 12 deals with complex grouping operations used mostly in decision support
systems. We show you how to use Oracle features such as ROLLUP, CUBE, and
GROUPING SETS to efficiently generate various levels of summary information required by
decision support applications. We also discuss the new Oracle9i grouping features that
enable composite and concatenated groupings, and the new GROUP_ID and
GROUPING_ID functions.

Chapter 13 deals with analytical queries and new analytic functions. Learn how to use

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 13 deals with analytical queries and new analytic functions. Learn how to use
ranking, windowing, and reporting functions to generate decision support information. This
chapter also covers the new analytic features introduced in Oracle9i.

Chapter 14 talks about best practices that you should follow in order to write efficient and
maintainable queries. Learn which SQL constructs are the most efficient for a given
situation. For example, we describe when it's better to use WHERE instead of HAVING to
restrict query results. We also discuss the performance implications of using bind variables
vis-à-vis literal SQL.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conventions Used in This Book

The following typographical conventions are used in this book.

Italic

Used for filenames, directory names, table names, field names, and URLs. It is also used
for emphasis and for the first use of a technical term.

Constant width

Used for examples and to show the contents of files and the output of commands.

Constant width italic

Used in syntax descriptions to indicate user-defined items.

Constant width bold
Indicates user input in examples showing an interaction. Also indicates emphasized code
elements to which you should pay particular attention.

Constant width bold italic

Used in code examples to emphasize aspects of the SQL statements, or results, that are
under discussion.

UPPERCASE

In syntax descriptions, indicates keywords.

lowercase

In syntax descriptions, indicates user-defined items such as variables.

[]

In syntax descriptions, square brackets enclose optional items.

{ }

In syntax descriptions, curly brackets enclose a set of items from which you must choose
only one.

|

In syntax descriptions, a vertical bar separates the items enclosed in curly brackets, as in
{TRUE | FALSE}.

...

In syntax descriptions, ellipses indicate repeating elements.

Indicates a tip, suggestion, or general note. For example, we use notes to
point you to useful new features in Oracle9i.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Indicates a warning or caution. For example, we'll tell you if a certain SQL
clause might have unintended consequences if not used carefully.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Comments and Questions

We have tested and verified the information in this book to the best of our ability, but you may find
that features have changed or that we have made mistakes. If so, please notify us by writing to:

O'Reilly & Associates
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (FAX)

You can also send messages electronically. To be put on the mailing list or request a catalog,
send email to:

info@oreilly.com

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

We have a web site for this book, where you can find examples and errata (previously reported
errors and corrections are available for public view there). You can access this page at:

http://www.oreilly.com/catalog/mastorasql

For more information about this book and others, see the O'Reilly web site:

http://www.oreilly.com

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Acknowledgments

We are indebted to a great many people who have contributed in the development and production
of this book. We owe a huge debt of gratitude to Jonathan Gennick, the editor of the book.
Jonathan's vision for this book, close attention to details, and exceptional editing skills are the
reasons this book is here today.

Our sincere thanks to our technical reviewers: Diana Lorentz, Jeff Cox, Stephan Andert, Rich
White, Peter Linsley, and Chris Lee, who generously gave their valuable time to read and
comment on a draft copy of this book. Their contributions have greatly improved its accuracy,
readability, and value.

This book certainly would not have been possible without a lot of hard work and support from the
skillful staff at O'Reilly & Associates, including Ellie Volckhausen and Emma Colby, the cover
designers, David Futato, the interior designer, Neil Walls, who converted the files, Colleen
Gorman, the copyeditor and production editor, Rob Romano and Jessamyn Read, the illustrators,
Sheryl Avruch and Ann Schirmer, who provided quality control, and Tom Dinse, the indexer. Also,
thanks to Tim O'Reilly for taking time to go through this book and providing valuable feedback.

From Sanjay

My heartfelt thanks to my coauthor Alan for his outstanding technical skills, and for his constant
cooperation during the writing of this book. Special thanks to Jonathan for not only editing this
book, but also for providing me with remote access to his Oracle9i database.

My adventure with Oracle started in the Tribology Workbench project at Tata Steel, Jamshedpur,
India. Sincere thanks to my co-workers in the Tribology Workbench project for all the experiments
and explorations we did during our learning days with Oracle. Special thanks to Sarosh Muncherji,
the Deputy Team Leader, for picking me up for the project and then pushing me into the Oracle
world by assigning me the responsibility of being the DBA. Ever since, Oracle database
technology has become a way of life for me.

Sincere thanks to my co-workers at i2 Technologies for support and encouragement.

Last, but not the least, I thank my wife, Sudipti, for her support, understanding, and constant
encouragement.

From Alan

I would like to thank my coauthor Sanjay and my editor Jonathan Gennick for sharing my vision
for this book, and for their technical and editorial prowess. I would never have reached the finish
line without your help and encouragement.

Most of all, I would like to thank my wife, Nancy, for her support, patience, and encouragement,
and my daughters, Michelle and Nicole, for their love and inspiration.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 1. Introduction to SQL
In this introductory chapter, we explore the origin and utility of the SQL language, demonstrate
some of the more useful features of the language, and define a simple database design from
which most examples in the book are derived.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.1 What Is SQL?

SQL, which stands for Structured Query Language, is a special-purpose language used to define,
access, and manipulate data. SQL is nonprocedural, meaning that it describes the necessary
components (i.e., tables) and desired results without dictating exactly how results should be
computed. Every SQL implementation sits atop a database engine, whose job it is to interpret
SQL statements and determine how the various data structures in the database should be
accessed in order to accurately and efficiently produce the desired outcome.

The SQL language includes two distinct sets of commands: Data Definition Language (DDL) is
the subset of SQL used to define and modify various data structures, while Data Manipulation
Language (DML) is the subset of SQL used to access and manipulate data contained within the
data structures previously defined via DDL. DDL includes numerous commands for handling such
tasks as creating tables, indexes, views, and constraints, while DML is comprised of just four
statements:

INSERT

Adds data to a database.

UPDATE

Modifies data in a database.

DELETE

Removes data from a database.

SELECT

Retrieves data from a database.

Some people feel that DDL is the sole property of database administrators, while database
developers are responsible for writing DML statements, but the two are not so easily separated. It
is difficult to efficiently access and manipulate data without an understanding of what data
structures are available and how they are related; likewise, it is difficult to design appropriate data
structures without knowledge of how the data will be accessed. That being said, this book deals
almost exclusively with DML, except where DDL is presented in order to set the stage for one or
more DML examples. The reasons for focusing on just the DML portion of SQL include:

DDL is well represented in various books on database design and administration as well as
in SQL reference guides.

Most database performance issues are the result of inefficient DML statements.

Even with a paltry four statements, DML is a rich enough topic to warrant not just one book,
but a whole series of books.[1]

[1] Anyone who writes SQL in an Oracle environment should be armed with the following three books: a
reference guide to the SQL language, such as Oracle SQL: The Essential Reference (O'Reilly), a
performance-tuning guide, such as Oracle SQL Tuning Pocket Reference (O'Reilly), and the book you are
holding, which shows how to best utilize and combine the various features of Oracle's SQL implementation.

So why should you care about SQL? In this age of Internet computing and n-tier architectures,
does anyone even care about data access anymore? Actually, efficient storage and retrieval of
information is more important than ever:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Many companies now offer services via the Internet. During peak hours, these services
may need to handle thousands of concurrent requests, and unacceptable response times
equate to lost revenue. For such systems, every SQL statement must be carefully crafted
to ensure acceptable performance as data volumes increase.

We can store a lot more data today than we could five years ago. A single disk array can
hold tens of terabytes of data, and the ability to store hundreds of terabytes is just around
the corner. Software used to load or analyze data in these environments must harness the
full power of SQL in order to process ever-increasing data volumes within constant (or
shrinking) time windows.

Hopefully, you now have an appreciation for what SQL is and why it is important. The next section
will explore the origins of the SQL language and the support for the SQL standard in Oracle's
products.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.2 A Brief History of SQL

In the early 1970s, an IBM research fellow named Dr. E. F. Codd endeavored to apply the rigors
of mathematics to the then-untamed world of data storage and retrieval. Codd's work led to the
definition of the relational data model and a language called DSL/Alpha for manipulating data in a
relational database. IBM liked what they saw, so they commissioned a project called System/R to
build a prototype based on Codd's work. Among other things, the System/R team developed a
simplified version of DSL called SQUARE, which was later renamed SEQUEL, and finally
renamed SQL.

The work done on System/R eventually led to the release of various IBM products based on the
relational model. Other companies, such as Oracle, rallied around the relational flag as well. By
the mid 1980's, SQL had gathered sufficient momentum in the marketplace to warrant oversight
by the American National Standards Institute (ANSI). ANSI released its first SQL standard in
1986, followed by updates in 1989, 1992, and 1999.

Thirty years after the System/R team began prototyping a relational database, SQL is still going
strong. While there have been numerous attempts to dethrone relational databases in the
marketplace, well-designed relational databases coupled with well-written SQL statements
continue to succeed in handling large, complex data sets where other methods fail.

1.2.1 Oracle's SQL Implementation

Given that Oracle was an early adopter of the relational model and SQL, one might think that they
would have put a great deal of effort into conforming with the various ANSI standards. For many
years, however, the folks at Oracle seemed content that their implementation of SQL was
functionally equivalent to the ANSI standards without being overly concerned with true
compliance. Beginning with the release of Oracle8i, however, Oracle has stepped up its efforts to
conform to ANSI standards and has tackled such features as the CASE statement and the
left/right/full outer join syntax.

Ironically, the business community seems to be moving in the opposite direction. A few years ago,
people were much more concerned with portability and would limit their developers to ANSI-
compliant SQL so that they could implement their systems on various database engines. Today,
companies tend to pick a database engine to use across the enterprise and allow their developers
to use the full range of available options without concern for ANSI-compliance. One reason for
this change in attitude is the advent of n-tier architectures, where all database access can be
contained within a single tier instead of being scattered throughout an application. Another
possible reason might be the emergence of clear leaders in the DBMS market over the last five
years, such that managers perceive less risk in which database engine they choose.

1.2.2 Theoretical Versus Practical Terminology

If you were to peruse the various writings on the relational model, you would come across
terminology that you will not find used in this book (such as relations and tuples). Instead, we use
practical terms such as tables and rows, and we refer to the various parts of an SQL statement by
name rather than by function (i.e., "SELECT clause" instead of projection). With all due respect to
Dr. Codd, you will never hear the word tuple used in a business setting, and, since this book is
targeted toward people who use Oracle products to solve business problems, you won't find it
here either.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.3 A Simple Database

Because this is a practical book, it contains numerous examples. Rather than fabricating different
sets of tables and columns for every chapter or section in the book, we have decided to draw from
a single, simple schema for most examples. The subject area that we chose to model is a parts
distributor, such as an auto-parts wholesaler or medical device distributor, in which the business
fills customer orders for one or more parts that are supplied by external suppliers. Figure 1-1
shows the entity-relationship model for this business.

Figure 1-1. The parts distributor model

If you are unfamiliar with entity-relationship models, here is a brief description of how they work.
Each box in the model represents an entity, which correlates to a database table.[2] The lines
between the entities represents the relationships between tables, which correlate to foreign keys.
For example, the CUST_ORDER table holds a foreign key to the employee table, which signifies

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For example, the CUST_ORDER table holds a foreign key to the employee table, which signifies
the salesperson responsible for a particular order. Physically, this means that the CUST_ORDER
table contains a column holding employee ID numbers, and that, for any given order, the
employee ID number indicates the employee who sold that order. If you find this confusing, simply
use the diagram as an illustration of the tables and columns found within our database. As you
work your way through the SQL examples in this book, return occasionally to the diagram, and
you should find that the relationships start making sense.

[2] Depending on the purpose of the model, entities may or may not correlate to database tables. For example, a
logical model depicts business entities and their relationships, whereas a physical model illustrates tables and their
primary/foreign keys. The model in Figure 1-1 is a physical model.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.4 DML Statements

In this section, we introduce the four statements that comprise the DML portion of SQL. The
information presented in this section should be enough to allow you to start writing DML
statements. As is discussed at the end of the section, however, DML can look deceptively simple,
so keep in mind while reading the section that there are many more facets to DML than are
discussed here.

1.4.1 The SELECT Statement

The SELECT statement is used to retrieve data from a database. The set of data retrieved via a
SELECT statement is referred to as a result set. Like a table, a result set is comprised of rows
and columns, making it possible to populate a table using the result set of a SELECT statement.
The SELECT statement can be summarized as follows:

SELECT <one or more things>

FROM <one or more places>

WHERE <zero, one, or more conditions apply>

While the SELECT and FROM clauses are required, the WHERE clause is optional (although you
will seldom see it omitted). We therefore begin with a simple example that retrieves three columns
from every row of the customer table:

SELECT cust_nbr, name, region_id
FROM customer;

 CUST_NBR NAME REGION_ID

---------- ------------------------------ ----------

 1 Cooper Industries 5

 2 Emblazon Corp. 5

 3 Ditech Corp. 5

 4 Flowtech Inc. 5

 5 Gentech Industries 5

 6 Spartan Industries 6

 7 Wallace Labs 6

 8 Zantech Inc. 6

 9 Cardinal Technologies 6

 10 Flowrite Corp. 6

 11 Glaven Technologies 7

 12 Johnson Labs 7

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 13 Kimball Corp. 7

 14 Madden Industries 7

 15 Turntech Inc. 7

 16 Paulson Labs 8

 17 Evans Supply Corp. 8

 18 Spalding Medical Inc. 8

 19 Kendall-Taylor Corp. 8

 20 Malden Labs 8

 21 Crimson Medical Inc. 9

 22 Nichols Industries 9

 23 Owens-Baxter Corp. 9

 24 Jackson Medical Inc. 9

 25 Worcester Technologies 9

 26 Alpha Technologies 10

 27 Phillips Labs 10

 28 Jaztech Corp. 10

 29 Madden-Taylor Inc. 10

 30 Wallace Industries 10

Since we neglected to impose any conditions via a WHERE clause, our query returns every row
from the customer table. If we want to restrict the set of data returned by the query, we could
include a WHERE clause with a single condition:

SELECT cust_nbr, name, region_id
FROM customer
WHERE region_id = 8;

 CUST_NBR NAME REGION_ID

---------- ------------------------------ ----------

 16 Paulson Labs 8

 17 Evans Supply Corp. 8

 18 Spalding Medical Inc. 8

 19 Kendall-Taylor Corp. 8

 20 Malden Labs 8

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 20 Malden Labs 8

Our result set now includes only those customers residing in the region with a region_id of 8. But
what if we want to specify a region by name instead of region_id? We could query the region table
for a particular name and then query the customer table using the retrieved region_id. Instead of
issuing two different queries, however, we could produce the same outcome using a single query
by introducing a join, as in:

SELECT customer.cust_nbr, customer.name, region.name
FROM customer, region
WHERE region.name = 'New England'
 AND region.region_id = customer.region_id;

 CUST_NBR NAME NAME

---------- ------------------------------ -----------

 1 Cooper Industries New England

 2 Emblazon Corp. New England

 3 Ditech Corp. New England

 4 Flowtech Inc. New England

 5 Gentech Industries New England

Our FROM clause now contains two tables instead of one, and the WHERE clause contains a join
condition that specifies that the customer and region tables are to be joined using the region_id
column found in both tables. Joins and join conditions will be explored in detail in Chapter 3.

Since both the customer and region tables contain a column called name, you must specify which
table's name column you are interested in. This is done in the previous example by using dot-
notation to append the table name in front of each column name. If you would rather not type the
full table names, you can assign table aliases to each table in the FROM clause and use those
aliases instead of the table names in the SELECT and WHERE clauses, as in:

SELECT c.cust_nbr, c.name, r.name

FROM customer c, region r

WHERE r.name = `New England'

 AND r.region_id = c.region_id;

In this example, we assigned the alias "c" to the customer table and the alias "r" to the region
table. Thus, we can use "c." and "r." instead of "customer." and "region." in the SELECT and
WHERE clauses.

1.4.1.1 SELECT clause elements

In the examples thus far, the result sets generated by our queries have contained columns from
one or more tables. While most elements in your SELECT clauses will typically be simple column
references, a SELECT clause may also include:

Literal values, such as numbers (1) or strings ('abc')

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Expressions, such as shape.diameter * 3.1415927

Functions, such as TO_DATE('01-JAN-2002','DD-MON-YYYY')

Pseudocolumns, such as ROWID, ROWNUM, or LEVEL

While the first three items in this list are fairly straightforward, the last item merits further
discussion. Oracle makes available several phantom columns, known as pseudocolumns, that do
not exist in any tables. Rather, they are values visible during query execution that can be helpful
in certain situations.

For example, the pseudocolumn ROWID represents the physical location of a row. This
information represents the fastest possible access mechanism. It can be useful if you plan to
delete or update a row retrieved via a query. However, you should never store ROWID values in
the database, nor should you reference them outside of the transaction in which they are
retrieved, since a row's ROWID can change in certain situations, and ROWIDs can be reused
after a row has been deleted.

The next example demonstrates each of the different elements from the previous list:

SELECT rownum,
 cust_nbr,
 1 multiplier,
 'cust # ' || cust_nbr cust_nbr_str,
 'hello' greeting,
 TO_CHAR(last_order_dt, 'DD-MON-YYYY') last_order
FROM customer;

ROWNUM CUST_NBR MULTIPLIER CUST_NBR_STR GREETING LAST_ORDER

------ -------- ---------- ------------ -------- -----------

 1 1 1 cust # 1 hello 15-JUN-2000

 2 2 1 cust # 2 hello 27-JUN-2000

 3 3 1 cust # 3 hello 07-JUL-2000

 4 4 1 cust # 4 hello 15-JUL-2000

 5 5 1 cust # 5 hello 01-JUN-2000

 6 6 1 cust # 6 hello 10-JUN-2000

 7 7 1 cust # 7 hello 17-JUN-2000

 8 8 1 cust # 8 hello 22-JUN-2000

 9 9 1 cust # 9 hello 25-JUN-2000

 10 10 1 cust # 10 hello 01-JUN-2000

 11 11 1 cust # 11 hello 05-JUN-2000

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 11 11 1 cust # 11 hello 05-JUN-2000

 12 12 1 cust # 12 hello 07-JUN-2000

 13 13 1 cust # 13 hello 07-JUN-2000

 14 14 1 cust # 14 hello 05-JUN-2000

 15 15 1 cust # 15 hello 01-JUN-2000

 16 16 1 cust # 16 hello 31-MAY-2000

 17 17 1 cust # 17 hello 28-MAY-2000

 18 18 1 cust # 18 hello 23-MAY-2000

 19 19 1 cust # 19 hello 16-MAY-2000

 20 20 1 cust # 20 hello 01-JUN-2000

 21 21 1 cust # 21 hello 26-MAY-2000

 22 22 1 cust # 22 hello 18-MAY-2000

 23 23 1 cust # 23 hello 08-MAY-2000

 24 24 1 cust # 24 hello 26-APR-2000

 25 25 1 cust # 25 hello 01-JUN-2000

 26 26 1 cust # 26 hello 21-MAY-2000

 27 27 1 cust # 27 hello 08-MAY-2000

 28 28 1 cust # 28 hello 23-APR-2000

 29 29 1 cust # 29 hello 06-APR-2000

 30 30 1 cust # 30 hello 01-JUN-2000

Interestingly, your SELECT clause is not required to reference columns from any of the tables in
the FROM clause. For example, the next query's result set is composed entirely of literals:

SELECT 1 num, 'abc' str
FROM customer;

 NUM STR

---------- ---

 1 abc

 1 abc

 1 abc

 1 abc

 1 abc

 1 abc

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 1 abc

 1 abc

 1 abc

 1 abc

 1 abc

 1 abc

 1 abc

 1 abc

 1 abc

 1 abc

 1 abc

 1 abc

 1 abc

 1 abc

 1 abc

 1 abc

 1 abc

 1 abc

 1 abc

 1 abc

 1 abc

 1 abc

 1 abc

 1 abc

Since there are 30 rows in the customer table, the query's result set includes 30 identical rows of
data.

1.4.1.2 Ordering your results

In general, there is no guarantee that the result set generated by your query will be in any
particular order. If you want your results to be sorted by one or more columns, you can add an
ORDER BY clause after the WHERE clause. The following example sorts the results from our
New England query by customer name:

SELECT c.cust_nbr, c.name, r.name

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT c.cust_nbr, c.name, r.name
FROM customer c, region r
WHERE r.name = 'New England'
 AND r.region_id = c.region_id
ORDER BY c.name;

CUST_NBR NAME NAME

-------- ------------------------------ -----------

 1 Cooper Industries New England

 3 Ditech Corp. New England

 2 Emblazon Corp. New England

 4 Flowtech Inc. New England

 5 Gentech Industries New England

You may also designate the sort column(s) by their position in the SELECT clause. To sort the
previous query by customer number, which is the first column in the SELECT clause, you could
issue the following statement:

SELECT c.cust_nbr, c.name, r.name
FROM customer c, region r
WHERE r.name = 'New England'
 AND r.region_id = c.region_id
ORDER BY 1;

 CUST_NBR NAME NAME

---------- ------------------------------ -----------

 1 Cooper Industries New England

 2 Emblazon Corp. New England

 3 Ditech Corp. New England

 4 Flowtech Inc. New England

 5 Gentech Industries New England

Specifying sort keys by position will certainly save you some typing, but it can often lead to errors
if you later change the order of the columns in your SELECT clause.

1.4.1.3 Removing duplicates

In some cases, your result set may contain duplicate data. For example, if you are compiling a list

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In some cases, your result set may contain duplicate data. For example, if you are compiling a list
of parts that were included in last month's orders, the same part number would appear multiple
times if more than one order included that part. If you want duplicates removed from your result
set, you can include the DISTINCT keyword in your SELECT clause, as in:

SELECT DISTINCT li.part_nbr
FROM cust_order co, line_item li

WHERE co.order_dt >= TO_DATE('01-JUL-2001','DD-MON-YYYY')

 AND co.order_dt < TO_DATE('01-AUG-2001','DD-MON-YYYY')

 AND co.order_nbr = li.order_nbr;

This query returns the distinct set of parts ordered during July of 2001. Without the DISTINCT
keyword, the result set would contain one row for every line-item of every order, and the same
part would appear multiple times if it was included in multiple orders. When deciding whether to
include DISTINCT in your SELECT clause, keep in mind that finding and removing duplicates
necessitates a sort operation, which can add quite a bit of overhead to your query.

1.4.2 The INSERT Statement

The INSERT statement is the mechanism for loading data into your database. Data can be
inserted into only one table at a time, although the data being loaded into the table can be pulled
from one or more additional tables. When inserting data into a table, you do not need to provide
values for every column in the table; however, you need to be aware of the columns that require
non-NULL[3] values and the ones that do not. Let's look at the definition of the employee table:

[3] NULL indicates the absence of a value. The use of NULL will be studied in Chapter 2.

describe employee

Name Null? Type

--- -------- ------------

EMP_ID NOT NULL NUMBER(5)

FNAME VARCHAR2(20)

LNAME NOT NULL VARCHAR2(20)

DEPT_ID NOT NULL NUMBER(5)

MANAGER_EMP_ID NUMBER(5)

SALARY NUMBER(5)

HIRE_DATE DATE

JOB_ID NUMBER(3)

The NOT NULL designation for the emp_id, lname, and dept_id columns indicates that values are
required for these three columns. Therefore, we must be sure to provide values for at least these
three columns in our INSERT statements, as demonstrated by the following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

INSERT INTO employee (emp_id, lname, dept_id)

VALUES (101, 'Smith', 2);

The VALUES clause must contain the same number of elements as the column list, and the data
types must match the column definitions. In the example, emp_id and dept_id hold numeric
values while lname holds character data, so our INSERT statement will execute without error.
Oracle always tries to convert data from one type to another automatically, however, so the
following statement will also run without errors:

INSERT INTO employee (emp_id, lname, dept_id)

VALUES ('101', 'Smith', '2');

Sometimes, the data to be inserted needs to be retrieved from one or more tables. Since the
SELECT statement generates a result set consisting of rows and columns of data, you can feed
the result set from a SELECT statement directly into an INSERT statement, as in:

INSERT INTO employee (emp_id, fname, lname, dept_id, hire_date)

SELECT 101, 'Dave', 'Smith', d.dept_id, SYSDATE
FROM department d

WHERE d.name = 'Accounting';

In this example, the purpose of the SELECT statement is to retrieve the department ID for the
Accounting department. The other four columns in the SELECT clause are supplied as literals.

1.4.3 The DELETE Statement

The DELETE statement facilitates the removal of data from the database. Like the SELECT
statement, the DELETE statement contains a WHERE clause that specifies the conditions used to
identify rows to be deleted. If you neglect to add a WHERE clause to your DELETE statement, all
rows will be deleted from the target table. The following statement will delete all employees with
the last name of Hooper from the employee table:

DELETE FROM employee

WHERE lname = 'Hooper';

In some cases, the values needed for one or more of the conditions in your WHERE clause exist
in another table. For example, your company may decide to outsource its accounting functions,
thereby necessitating the removal of all Accounting personnel from the employee table:

DELETE FROM employee

WHERE dept_id =

 (SELECT dept_id

 FROM department

 WHERE name = 'Accounting');

The use of the SELECT statement in this example is known as a subquery and will be studied in
detail in Chapter 5.

1.4.4 The UPDATE Statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Modifications to existing data are handled by the UPDATE statement. Like the DELETE
statement, the UPDATE statement includes a WHERE clause in order to specify which rows
should be targeted. The following example shows how you might give a 10% raise to everyone
making less than $40,000:

UPDATE employee

SET salary = salary * 1.1

WHERE salary < 40000;

If you want to modify more than one column in the table, you have two choices: provide a set of
column/value pairs separated by commas, or provide a set of columns and a subquery. The
following two UPDATE statements modify the inactive_dt and inactive_ind columns in the
customer table for any customer who hasn't placed an order in the past year:

UPDATE customer

SET inactive_dt = SYSDATE, inactive_ind = 'Y'

WHERE last_order_dt < SYSDATE -- 365;

UPDATE customer

SET (inactive_dt, inactive_ind) =

 (SELECT SYSDATE, 'Y' FROM dual)

WHERE last_order_dt < SYSDATE -- 365;

The subquery in the second example is a bit forced, since it uses a query against the dual[4] table
to build a result set containing two literals, but it should give you an idea of how you would use a
subquery in an UPDATE statement. In later chapters, you will see far more interesting uses for
subqueries.

[4] Dual is an Oracle-provided table containing exactly one row with one column. It comes in handy when you need to
construct a query that returns exactly one row.

1.4.5 So Why Are There 13 More Chapters?

After reading this chapter, you might think that SQL looks pretty simple (at least the DML portion).
At a high level, it is fairly simple, and you now know enough about the language to go write some
code. However, you will learn over time that there are numerous ways to arrive at the same end
point, and some are more efficient and elegant than others. The true test of SQL mastery is when
you no longer have the desire to return to what you were working on the previous year, rip out all
the SQL, and recode it. For one of us, it took about nine years to reach that point. Hopefully, this
book will help you reach that point in far less time.

While you are reading the rest of the book, you might notice that the majority of examples use
SELECT statements, with the remainder somewhat evenly distributed across INSERT, UPDATE,
and DELETE statements. This disparity is not indicative of the relative importance of SELECT
statements over the other three DML statements; rather, SELECT statements are favored
because we can show the query's result set, which should help you to better understand the
query, and because many of the points being made using SELECT statements can be applied to
UPDATE and DELETE statements as well.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 2. The WHERE Clause
Whether we are querying, modifying, or deleting data, the WHERE clause is the mechanism for
identifying the sets of data we want to work with. In this chapter, we explore the role of the
WHERE clause in SQL statements, as well as the various options available when building a
WHERE clause.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.1 Life Without WHERE

Before we delve into the WHERE clause, let's imagine life without it. Say that you are interested in
doing some maintenance on the data in the part table. In order to inspect the data in the table,
you issue the following query:

SELECT part_nbr, name, supplier_id, status, inventory_qty

FROM part;

If the part table contains 10,000 items, the result set returned by the query would consist of
10,000 rows, each with 5 columns. You would then load the 10,000 rows into memory and make
your modifications.

Once you have made the required modifications to your data in memory, it is time to apply the
changes to the part table. Without the ability to specify the rows to modify, you have no choice but
to delete all rows in the table and re-insert all 10,000 rows:

DELETE FROM part;

INSERT INTO part (part_nbr, name, supplier_id, status, inventory_qty)

VALUES ('XY5-1002', 'Wonder Widget', 1, 'IN-STOCK', 1);

/* 9,999 more INSERTs on the wall, 9,999 more INSERTS... */

While this approach works in theory, it wreaks havoc on performance, concurrency (the ability for
more than one user to modify data simultaneously), and scalability.

Now imagine that you want to modify data in the part table only for those parts supplied by Acme
Industries. Since the supplier's name is stored in the supplier table, you must include both the part
and supplier tables in the FROM clause:

SELECT p.part_nbr, p.name, p.supplier_id, p.status, p.inventory_qty,

 s.supplier_id, s.name

FROM part p, supplier s;

If 100 companies supply the 10,000 parts in the part table, this query will return 1,000,000 rows.
Known as the Cartesian product, this number equates to every possible combination of all rows
from the two tables. As you sift through the million rows, you would keep only those where the
values of p.supplier_id and s.supplier_id are identical and where the s.name column matches
'Acme Industries'. If Acme Industries supplies only 50 of the 10,000 parts in your database, you
will end up discarding 999,950 of the 1,000,000 rows returned by your query.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.2 WHERE to the Rescue

Hopefully, these scenarios give you some insight into the utility of the WHERE clause, including
the ability to:

1. Filter out unwanted data from a query's result set.

2. Isolate one or more rows of a table for modification.

3. Conditionally join two or more data sets together.

To see how these things are accomplished, let's add a WHERE clause to the previous SELECT
statement, which strives to locate all parts supplied by Acme Industries:

SELECT p.part_nbr, p.name, p.supplier_id, p.status, p.inventory_qty,

 s.supplier_id, s.name

FROM part p, supplier s

WHERE s.supplier_id = p.supplier_id

 AND s.name = 'Acme Industries';

The WHERE clause here is comprised of two parts, known as conditions, which are evaluated
separately. Conditions always evaluate to either TRUE or FALSE; if there are multiple conditions
in a WHERE clause, they all must evaluate to TRUE in order for a given row to be included in the
result set.[1] For this example, a row created by combining data from the part and supplier tables
will only be included in the final result set if both tables share a common value for the supplier_id
column, and if the value of the name column in the supplier tables matches 'Acme Industries'.[2]

Any other permutation of data from the two tables would evaluate to FALSE and be discarded.

[1] This is an oversimplification. As you will see later, using the OR and NOT operators allows the WHERE clause to
evaluate to TRUE even if individual conditions evaluate to FALSE.

[2] Another oversimplification. The Oracle optimizer (the component tasked with finding the most efficient way to
execute a query) doesn't first create every possible combination of rows from every table or view in the FROM clause
before it begins evaluating conditions. Rather, the optimizer chooses the order in which to evaluate conditions and join
data sets so execution time is (hopefully) minimized.

With the addition of the WHERE clause to the previous example, therefore, Oracle will take on the
work of discarding undesired rows from the result set, and only 50 rows will be returned by the
query, rather than 1,000,000. Now that you have retrieved the 50 rows of interest from the
database, you can begin the process of modifying the data. Keep in mind, however, that with the
WHERE clause at your disposal you will no longer need to delete and re-insert your modified
data; instead, you can use the UPDATE statement to modify specific rows based on the part_nbr
column, which is the unique identifier for the table:

UPDATE part

SET status = 'DISCONTINUED'

WHERE part_nbr = 'AI5-4557';

While this is certainly an improvement, we can do even better. If your intent is to modify the status
for all 50 parts supplied by Acme Industries, there is no need to execute a query at all. Simply
execute a single UPDATE statement that finds and modifies all 50 records:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

UPDATE part

SET status = 'DISCONTINUED'

WHERE supplier_id =

 (SELECT supplier_id

 FROM supplier

 WHERE name = 'Acme Industries');

The WHERE clause in this statement consists of a single condition that equates the supplier_id
column to the value returned by a query against the supplier table. A query wrapped in
parentheses inside another SQL statement is known as a subquery; subqueries will be studied
extensively in Chapter 5, so don't worry if this looks a bit intimidating. The net result is that the
condition will be rewritten to use the value returned by the subquery, as in:

UPDATE part

SET status = 'DISCONTINUED'

WHERE supplier_id = 1;

When executed, the condition evaluates to TRUE for exactly 50 of the 10,000 rows in the part
table, and the status of those 50 rows changes to DISCONTINUED.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.3 WHERE Clause Evaluation

Now that we have seen the WHERE clause in action, let's take a look at how it is evaluated. As
we mentioned, the WHERE clause consists of one or more conditions that evaluate independently
to TRUE or FALSE. If your WHERE clause consists of multiple conditions, the conditions are
separated by the logical operators AND and OR. Depending on the outcome of the individual
conditions and the placement of these logical operators, Oracle will assign a final value of TRUE
or FALSE to each candidate row, thereby determining whether a row will be included in the final
result set.

Let's look at the 'Acme Industries' query again:

SELECT p.part_nbr, p.name, p.supplier_id, p.status, p.inventory_qty,

 s.supplier_id, s.name

FROM part p, supplier s

WHERE s.supplier_id = p.supplier_id

 AND s.name = 'Acme Industries';

The WHERE clause consists of two conditions separated by AND. Thus, a row will only be
included if both conditions evaluate to TRUE. Table 2-1 shows the possible scenarios when
conditions are replaced by their possible outcomes.

Table 2-1. Multiple-condition evaluation using AND
Intermediate result Final result

WHERE TRUE AND TRUE TRUE
WHERE FALSE AND FALSE FALSE
WHERE FALSE AND TRUE FALSE
WHERE TRUE AND FALSE FALSE

Using basic logic rules, we can see that the only combination of outcomes that results in a final
value of TRUE being assigned to a candidate row is where both conditions evaluate to TRUE.
Table 2-2 demonstrates the possible outcomes if our conditions had been separated by OR rather
then AND.

Table 2-2. Multiple-condition evaluation using OR
Intermediate result Final result

WHERE TRUE OR TRUE TRUE
WHERE FALSE OR FALSE FALSE
WHERE FALSE OR TRUE TRUE
WHERE TRUE OR FALSE TRUE

Next, let's spice our query up a bit by including parts supplied by either Acme Industries or Tilton
Enterprises:

SELECT p.part_nbr, p.name, p.supplier_id, p.status, p.inventory_qty,

 s.supplier_id, s.name

FROM part p, supplier s

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FROM part p, supplier s

WHERE s.supplier_id = p.supplier_id

 AND (s.name = 'Acme Industries'

 OR s.name = 'Tilton Enterprises');

We now have three separate conditions separated by AND and OR with parentheses surrounding
two of the conditions. Table 2-3 illustrates the possible outcomes.

Table 2-3. Multiple-condition evaluation using AND and OR
Intermediate result Final result

WHERE TRUE AND (TRUE OR FALSE) TRUE
WHERE TRUE AND (FALSE OR TRUE) TRUE
WHERE TRUE AND (FALSE OR FALSE) FALSE
WHERE FALSE AND (TRUE OR FALSE) FALSE
WHERE FALSE AND (FALSE OR TRUE) FALSE
WHERE FALSE AND (FALSE OR FALSE) FALSE

Since a particular part cannot be supplied by both Acme Industries and Tilton Enterprises, the
intermediate results TRUE AND (TRUE AND TRUE) and FALSE AND (TRUE AND TRUE) were
not included in Table 2-3.

To liven things up even more, we can also throw in the NOT operator. The following query returns
data for parts supplied by anyone other than Acme Industries or Tilton Enterprises:

SELECT p.part_nbr, p.name, p.supplier_id, p.status, p.inventory_qty,

 s.supplier_id, s.name

FROM part p, supplier s

WHERE s.supplier_id = p.supplier_id

 AND NOT (s.name = 'Acme Industries'
 OR s.name = 'Tilton Enterprises');

Table 2-4 demonstrates how the addition of the NOT operator changes the outcome.

Table 2-4. Multiple-condition evaluation using AND, OR, and NOT
Intermediate result Final result

WHERE TRUE AND NOT (TRUE OR FALSE) FALSE
WHERE TRUE AND NOT (FALSE OR TRUE) FALSE
WHERE TRUE AND NOT (FALSE OR FALSE) TRUE
WHERE FALSE AND NOT (TRUE OR FALSE) FALSE
WHERE FALSE AND NOT (FALSE OR TRUE) FALSE
WHERE FALSE AND NOT (FALSE OR FALSE) FALSE

The use of the NOT operator in the previous example is a bit forced; we will see more natural
ways of expressing the same logic in later examples.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.4 Conditions and Expressions

Now that we understand how conditions are grouped together and evaluated, let's look at the
different elements that make up a condition. A condition is comprised of one or more expressions
along with one or more operators. Examples of expressions include:

Numbers

Columns, such as s.supplier_id

Literals, such as 'Acme Industries'

Functions, such as UPPER('abcd')

Lists of simple expressions, such as (1, 2, 3)

Subqueries

Examples of operators include:

Arithmetic operators, such as +, -, *, and /

Comparison operators, such as =, <, >=, !=, LIKE, and IN

The following sections explore many of the common condition types that use different
combinations of the above expression and operator types.

2.4.1 Equality/Inequality Conditions

Most of the conditions that we use when constructing a WHERE clause will be equality conditions
used to join data sets together or to isolate specific values. We have already encountered these
types of conditions numerous times in previous examples, including:

s.supplier_id = p.supplier_id

s.name = 'Acme Industries'

supplier_id = (SELECT supplier_id

 FROM supplier

 WHERE name = 'Acme Industries')

In all three cases, we have a column expression followed by a comparison operator (=) followed
by another expression. The conditions differ in the type of expression on the right side of the
comparison operator. The first example compares one column to another, the second example
compares a column to a literal, and the third example compares a column to the value returned
by a subquery.

We can also build conditions that use the inequality comparison operator "!=". In a previous

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We can also build conditions that use the inequality comparison operator "!=". In a previous
example, we used the NOT operator to find information about parts supplied by every supplier
other than Acme Industries and Tilton Enterprises. Using the != operator rather than using NOT
makes the query easier to understand and removes the need for the OR operator:

SELECT p.part_nbr, p.name, p.supplier_id, p.status, p.inventory_qty,

 s.supplier_id, s.name

FROM part p, supplier s

WHERE s.supplier_id = p.supplier_id

 AND s.name != 'Acme Industries'

 AND s.name != 'Tilton Enterprises';

While this is an improvement over the previous version, the next section shows an even cleaner
way to represent the same logic.

2.4.2 Membership Conditions

Along with determining whether two expressions are identical, it is often useful to determine
whether one expression can be found within a set of expressions. Using the IN operator, you can
build conditions that will evaluate to TRUE if a given expression exists in a set of expressions:

s.name IN ('Acme Industries', 'Tilton Enterprises')

You may also add the NOT operator to determine whether an expression does not exist in a set of
expressions:

s.name NOT IN ('Acme Industries', 'Tilton Enterprises')

Most people prefer to use a single condition with IN or NOT IN instead of writing multiple
conditions using = or !=, so we will take one last stab at our Acme/Tilton query:

SELECT p.part_nbr, p.name, p.supplier_id, p.status, p.inventory_qty,

 s.supplier_id, s.name

FROM part p, supplier s

WHERE s.supplier_id = p.supplier_id

 AND s.name NOT IN ('Acme Industries', 'Tilton Enterprises');

Along with prefabricated sets of expressions, subqueries may be employed to generate sets on
the fly. If a subquery returns exactly one row, you may use a comparison operator; if a subquery
returns more than one row, or if you're not sure whether the subquery might return more than one
row, use the IN operator. The following example updates all orders that contain parts supplied by
Eastern Importers:

UPDATE cust_order

SET sale_price = sale_price *1.1

WHERE cancelled_dt IS NULL

 AND ship_dt IS NULL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 AND ship_dt IS NULL

 AND order_nbr IN

 (SELECT li.order_nbr

 FROM line_item li,part p, supplier s

 WHERE s.name = 'Eastern Importers'

 AND s.supplier_id = p.supplier_id

 AND p.part_nbr = li.part_nbr);

The subquery evaluates to a (potentially empty) set of order numbers. All orders whose order
number exists in that set are then modified by the UPDATE statement.

2.4.3 Range Conditions

If you are dealing with dates or numeric data, you may be interested in whether a value falls within
a specified range rather than whether it matches a specific value or exists in a finite set. For such
cases, you may use the BETWEEN... AND operator, as in:

DELETE FROM cust_order

WHERE order_dt BETWEEN '01-JUL-2001' AND '31-JUL-2001';

To determine whether a value lies outside a specific range, you can add the NOT operator:

SELECT order_nbr, cust_nbr, sale_price

FROM cust_order

WHERE sale_price NOT BETWEEN 1000 AND 10000;

When using BETWEEN, make sure the first value is the lowest of the two values provided. While
"BETWEEN 1 AND 10" and "BETWEEN 10 AND 1" might seem logically equivalent, specifying
the higher value first guarantees that your condition will always evaluate to FALSE.

Ranges may also be specified using the operators <, >, <=, and >=, although doing so requires
writing two conditions rather than one. The previous query could also be expressed as:

SELECT order_nbr, cust_nbr, sale_price

FROM cust_order

WHERE sale_price < 1000 OR sale_price > 10000;

2.4.4 Matching Conditions

When dealing with character data, there are some situations where you are looking for an exact
string match, and others where a partial match is sufficient. For the latter case, you can use the
LIKE operator along with one or more pattern-matching characters, as in:

DELETE FROM part

WHERE part_nbr LIKE 'ABC%';

The pattern-matching character "%" matches strings of any length, so all of the following part
numbers would be deleted: 'ABC', 'ABC-123', 'ABC9999999'. If you need finer control, you can
use the underscore (_) pattern-matching character to match single characters, as in:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

use the underscore (_) pattern-matching character to match single characters, as in:

DELETE FROM part

WHERE part_nbr LIKE '_B_';

For this pattern, any part number with exactly 3 characters with a B in the middle would be
deleted. Both pattern-matching characters may be utilized in numerous combinations to find the
desired data. Additionally, the NOT operator may be employed to find strings that don't match a
specified pattern. The following example deletes all parts whose name does not contain a Z in the
third position followed later by the string "T1J":

DELETE FROM part

WHERE part_nbr NOT LIKE '_ _Z%T1J%';

Oracle provides a slew of built-in functions for handling character data that can be used to build
matching conditions. For example, the condition part_nbr LIKE 'ABC%' could be rewritten using
the SUBSTR function as SUBSTR(part_nbr, 1, 3) = 'ABC'. For definitions and examples for all
of Oracle's built-in functions, see Oracle SQL: The Essential Reference (O'Reilly).

2.4.5 Handling NULL

The NULL expression represents the absence of a value. If, when entering an order into the
database, you are uncertain when the order will be shipped, it is better to leave the ship date
undefined than to fabricate a value. Until the ship date has been determined, therefore, it is best
to leave the ship_dt column NULL. NULL is also useful for cases where data is not applicable. For
example, a cancelled order's shipping date is no longer applicable and should be set to NULL.

When working with NULL, the concept of equality does not apply; a column may be NULL, but it
will never equal NULL. Therefore, you will need to use the special operator IS when looking for
NULL data, as in:

UPDATE cust_order

SET expected_ship_dt = SYSDATE + 1

WHERE ship_dt IS NULL;

In this example, all orders whose shipping date hasn't been specified will have their expected
shipping date bumped forward by one day.

You may also use the NOT operator to locate non-NULL data:

UPDATE cust_order

SET expected_ship_dt = NULL

WHERE ship_dt IS NOT NULL;

This example sets the expected shipping date to NULL for all orders that have already shipped.
Notice that the SET clause uses the equality operator (=) with NULL, whereas the WHERE clause
uses the IS and NOT operators. The equality operator is used to set a column to NULL, whereas
the IS operator is used to evaluate whether a column is NULL. A great many mistakes might have
been avoided had the designers of SQL chosen a special operator to be utilized when setting a
column to NULL (i.e., SET expected_ship_dt TO NULL), but this is not the case. To make matters
worse, Oracle doesn't complain if you mistakenly use the equality operator when evaluating for
NULL. The following query will parse and execute but will never return rows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT order_nbr, cust_nbr, sale_price, order_dt

FROM cust_order

WHERE ship_dt = NULL;
Hopefully, you would quickly recognize that the previous query never returns data and replace the
equality operator with IS. However, there is a more subtle mistake involving NULL that is harder
to spot. Say you are looking for all employees who are not managed by Jeff Blake, whose
employee ID is 11. Your first instinct may be to run the following query:

SELECT fname, lname, manager_emp_id
FROM employee
WHERE manager_emp_id != 11;

FNAME LNAME MANAGER_EMP_ID

-------------------- -------------------- --------------

Alex Fox 28

Chris Anderson 28

Lynn Nichols 28

Eric Iverson 28

Laura Peters 28

Mark Russell 28

While this query returns rows, it leaves out those employees who are top-level managers and,
thus, are not managed by anyone. Since NULL is neither equal to 11 nor not equal to 11, this set
of employees is absent from the result set. In order to ensure that all employees are considered,
you will need to explicitly handle NULL, as in:

SELECT fname, lname, manager_emp_id
FROM employee
WHERE manager_emp_id IS NULL OR manager_emp_id != 11;

FNAME LNAME MANAGER_EMP_ID

-------------------- -------------------- --------------

Bob Brown

John Smith

Jeff Blake

Alex Fox 28

Chris Anderson 28

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Lynn Nichols 28

Eric Iverson 28

Laura Peters 28

Mark Russell 28

Including two conditions for every nullable column in your WHERE clause can get a bit tiresome.
Instead, you can use Oracle's built-in function NVL, which substitutes a specified value for
columns that are NULL, as in:

SELECT fname, lname, manager_emp_id
FROM employee
WHERE NVL(manager_emp_id, -999) != 11;

FNAME LNAME MANAGER_EMP_ID

-------------------- -------------------- --------------

Bob Brown

John Smith

Jeff Blake

Alex Fox 28

Chris Anderson 28

Lynn Nichols 28

Eric Iverson 28

Laura Peters 28

Mark Russell 28

In this example, the value -999 is substituted for all NULL values, which, since -999 is never
equal to 11, guarantees that all rows whose manager_emp_id column is NULL will be included in
the result set. Thus, all employees whose manager_emp_id column is NULL or is not NULL and
has a value other than 11 will be retrieved by the query.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.5 WHERE to Go from Here

This chapter has introduced the role of the WHERE clause in different types of SQL statements
as well as the various components used to build a WHERE clause. Because the WHERE clause
plays such an important role in many SQL statements, however, the topic is far from exhausted.
Additional coverage of WHERE clause topics may be found in:

Chapter 3, in which various flavors of join conditions are studied in detail

Chapter 5, which probes the different types of subqueries along with the appropriate
operators for evaluating their results

Chapter 6, in which various methods of handling date/time data are explored

Chapter 14, which explores certain aspects of the WHERE clause from the standpoint of
performance and efficiency

Additionally, here are a few tips to help you make the most of your WHERE clauses:

1. Check your join conditions carefully. Make sure that each data set in the FROM clause is
properly joined. Keep in mind that some joins require multiple conditions. See Chapter 3 for
more information.

2. Avoid unnecessary joins. Just because two data sets in your FROM clause contain the
same column does not necessitate a join condition be added to your WHERE clause. In
some designs, redundant data has been propagated to multiple tables through a process
called denormalization. Take the time to understand the database design, and ask your
DBA or database designer for a current data model.

3. Use parentheses. Oracle maintains both operator precedence and condition precedence,
meaning there are clearly defined rules for the order in which things will be evaluated, but
the safest route for you and for those who will later maintain your code is to dictate
evaluation order using parentheses. For operators, specifying (5 * p.inventory_qty) +
2 rather than 5 * p.inventory_qty + 2 makes the order in which the operations should
be performed clear. For conditions, use parentheses any time the OR operator is
employed.

4. Use consistent indentation. For example, if the previous line contains a left parenthesis
without a matching right parenthesis, indent the current line to show that it is a continuation
of the previous line.

5. When using OR, put the condition requiring the least effort to evaluate first. If the first
condition evaluates to TRUE, Oracle won't bother evaluating the remaining OR'd
conditions, possibly saving significant execution time. This strategy is useful with correlated
subqueries, which are generally executed once per candidate row.

6. Handle NULLs properly. After writing your WHERE clause, inspect each condition with
respect to its ability to properly handle NULL values. Take the time to understand the table
definitions in your database so that you know which columns allow NULLs.

7. Pick up introductory books on logic and set theory at your local library. While understanding
these two topics won't necessarily get you invited to more cocktail parties, it will certainly
make you a better SQL programmer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 3. Joins
Most of the things in life are not self-contained. There is not one shop where you will find all your
requirements. This is valid for database tables as well. Quite often, you need information from
more than one table. The SQL construct that combines data from two or more tables is called a
join. This chapter takes you into the details of joins, their types, and their usage.

A join is a SQL query that extracts information from two or more tables or views. When you
specify multiple tables or views in the FROM clause of a query, Oracle performs a join, linking
rows from multiple tables together. There are several types of joins to be aware of:

Inner joins

Inner joins are the regular joins. An inner join returns the rows that satisfy the join condition.
Each row returned by an inner join contains data from all tables involved in the join.

Outer joins

Outer joins are an extension to the inner joins. An outer join returns the rows that satisfy the
join condition and also the rows from one table for which no corresponding rows (i.e., that
satisfy the join condition) exist in the other table.

Self joins

A self join is a join of a table to itself.

The following sections discuss each of these joins with examples.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.1 Inner Joins

An inner join returns the rows that satisfy the join condition. Let's take an example to understand
the concept of a join. Say you want to list the name and department name for each employee. To
do this, you would use the following SQL statement:

SELECT E.LNAME, D.NAME
FROM EMPLOYEE E, DEPARTMENT D
WHERE E.DEPT_ID = D.DEPT_ID;

LNAME NAME

---------- --------------

SMITH RESEARCH

ALLEN SALES

WARD SALES

JONES RESEARCH

MARTIN SALES

BLAKE SALES

CLARK ACCOUNTING

SCOTT RESEARCH

KING ACCOUNTING

TURNER SALES

ADAMS RESEARCH

JAMES SALES

FORD RESEARCH

MILLER ACCOUNTING

14 rows selected.

This example queries two tables, because the employee name is stored in the EMPLOYEE table,
whereas the department name is stored in the DEPARTMENT table. Notice that the FROM
clause lists two tables EMPLOYEE and DEPARTMENT, separated by a comma (,). If you need
to join three or more tables, you have to specify all the tables in the FROM clause separated by
commas. The SELECT list may include columns from any of the tables specified in the FROM
clause.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note the use of table aliases in this query. It is common practice to use table aliases while
selecting data from multiple tables. Whenever there is an ambiguity in the column names, you
must use a table alias (or the table name) to qualify any ambiguous column names. For example,
the column name DEPT_ID appears in both the tables. Therefore, the table aliases E and D are
used in the WHERE clause to ask Oracle to equate DEPT_ID column from EMPLOYEE table with
the DEPT_ID column from the DEPARTMENT table. Note that the table aliases have been used
with the columns in the SELECT clause as well, even though the column names are
unambiguous. It is good practice to use table aliases everywhere in a query if you are using them
at all.

3.1.1 Cartesian Product

If you don't specify the join condition while joining two tables, Oracle combines each row from the
first table with each row of the second table. This type of result set is called as a Cartesian
product. The number of rows in a Cartesian product is the product of the number of rows in each
table. Here's an example of a Cartesian product:

SELECT E.LNAME, D.NAME
FROM EMPLOYEE E, DEPARTMENT D;

LNAME NAME

---------- --------------

SMITH ACCOUNTING

ALLEN ACCOUNTING

WARD ACCOUNTING

JONES ACCOUNTING

MARTIN ACCOUNTING

BLAKE ACCOUNTING

...

...

...

SCOTT OPERATIONS

KING OPERATIONS

TURNER OPERATIONS

ADAMS OPERATIONS

JAMES OPERATIONS

FORD OPERATIONS

MILLER OPERATIONS

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

56 rows selected.

Note that since the query didn't specify a join condition, each row from the EMPLOYEE table is
combined with each row from the DEPARTMENT table. Needless to say, this result set is of little
use. More often than not a Cartesian product produces a result set containing misleading rows.
Therefore, unless you are sure that you want a Cartesian product, don't forget to include the join
condition when you specify more than one table in the FROM clause.

3.1.2 Join Condition

Usually when you perform a join, you specify a condition in the WHERE clause that relates the
tables specified in the FROM clause. This condition is referred to as the join condition. The join
condition specifies how the rows from one table will be combined with the rows of another table.
Usually, the join condition is applied to the foreign key columns. In the first example in the
previous section, the WHERE clause specifies the join condition by which the DEPT_ID column of
the EMPLOYEE table is equated with the DEPT_ID column of the DEPARTMENT table:

WHERE E.DEPT_ID = D.DEPT_ID

To perform the join, Oracle picks up one combination of rows from the two tables, and checks to
see whether the join condition is true. If the join condition is true, Oracle includes this combination
of rows in the result set. The process is repeated for all combinations of rows from the two tables.
Some of the things that you should know about the join condition are discussed in the following
list.

The columns specified in the join condition need not be specified in the SELECT list. In the
following example, the join condition involves the DEPT_ID column from the EMPLOYEE
and DEPARTMENT tables; however, the DEPT_ID column is not selected:

SELECT E.LNAME, D.NAME

FROM EMPLOYEE E, DEPARTMENT D

WHERE E.DEPT_ID = D.DEPT_ID;

Usually the join condition is specified on the foreign key columns of one table and the
primary key or unique key columns of another table. However, you can specify other
columns as well. Each join condition involves columns that relate two tables.

A join condition may involve more than one column. This is usually the case when a foreign
key constraint consists of multiple columns.

The total number of join conditions is always equal to the total number of tables less one.

A join condition must involve columns with compatible datatypes. Note that the datatype of
the columns involved in a join condition need to be compatible, not the same. Oracle
performs automatic datatype conversion between the join columns, if required.

It is not necessary that a join condition involve the equal to (=) operator. A join condition
may contain other operators as well. Joins involving other operators are discussed later in
this section.

3.1.3 Equi-Join Versus Non-Equi-Join

The join condition determines whether the join is an equi-join or a non-equi-join. When a join
condition relates two tables by equating the columns from the tables, it is an equi-join. When a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

condition relates two tables by equating the columns from the tables, it is an equi-join. When a
join condition relates two tables by an operator other than equality, it is a non-equi-join. A query
may contain equi-joins as well as non-equi-joins.

Equi-joins are the most common join type. For example, if you want to list all the parts supplied by
all the suppliers, you can join the SUPPLIER table with the PART table by equating the
SUPPLIER_ID from one table to that of the other:

SELECT S.NAME SUPPLIER_NAME, P.NAME PART_NAME

FROM SUPPLIER S, PART P

WHERE S.SUPPLIER_ID = P.SUPPLIER_ID;

However, there are situations in which you need non-equi-joins to get the required information.
For example, if you want to list the INVENTORY_CLASS of each PART, you need to execute the
following query:

SELECT P.NAME PART_NAME, C.CLASS INV_CLASS

FROM PART P, INVENTORY_CLASS C

WHERE P.UNIT_COST BETWEEN C.LOW_COST AND C.HIGH_COST;

Note the use of the BETWEEN operator while relating the UNIT_COST column from the PART
table with the LOW_COST and HIGH_COST columns of the INVENTORY_CLASS table.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.2 Outer Joins

Sometimes while performing a join between two tables, you need to return all the rows from one table even when
there are no corresponding rows in the other table. Consider the following two tables, SUPPLIER and PART:

SELECT * FROM SUPPLIER;

SUPPLIER_ID NAME

----------- ------------------------------

 101 Pacific Disks, Inc.

 102 Silicon Valley MicroChips

 103 Blue River Electronics

SELECT * FROM PART;

PART_NBR NAME SUPPLIER_ID STATUS INVENTORY_QTY UNIT_COST RESUPPLY_DATE

-------- ------------------ ----------- ------ ------------- --------- -------------

HD211 20 GB Hard Disk 101 ACTIVE 5 2000 12-DEC-00

P3000 3000 MHz Processor 102 ACTIVE 12 600 03-NOV-00

If you want to list all the suppliers and all the parts supplied by them, it is natural to use the following query:

SELECT S.SUPPLIER_ID, S.NAME SUPPLIER_NAME, P.PART_NBR, P.NAME PART_NAME
FROM SUPPLIER S, PART P
WHERE S.SUPPLIER_ID = P.SUPPLIER_ID;

SUPPLIER_ID SUPPLIER_NAME PART_NBR PART_NAME

----------- ------------------------------ ---------- -------------------

 101 Pacific Disks, Inc. HD211 20 GB Hard Disk

 102 Silicon Valley MicroChips P3000 3000 MHz Processor

Note that even though we have three suppliers, this query lists only two of them, because the third supplier (Blue
River Electronics) doesn't currently supply any part. When Oracle performs the join between SUPPLIER table and
PART table, it matches the SUPPLIER_ID from these two tables (as specified by the join condition). Since
SUPPLIER_ID 103 doesn't have any corresponding record in the PART table, that supplier is not included
result set. This type of join is the most natural, and is known as an inner join.

The concept of the inner join is easier to understand in terms of the Cartesian product.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The concept of the inner join is easier to understand in terms of the Cartesian product.
While performing a join of SUPPLIER and PART tables, a Cartesian product is first
formed (conceptually, Oracle doesn't physically materialize this Cartesian product), and
then the conditions in the WHERE clause restrict the results to only those rows where
the SUPPLIER_ID values match.

However, we want to see all the suppliers even if they don't supply any parts. Oracle provides a special
join to include rows from one table that don't have matching rows from the other table. This type of join is known
as an outer join. An outer join allows us to return rows for all suppliers, and also for parts in cases where a
supplier currently supplies parts. In cases where a supplier doesn't supply parts, NULLs are returned
PART table columns in the result set.

The syntax of the outer join is a bit different from that of the inner join, because it includes a special operator
called the outer join operator. The outer join operator is a plus sign enclosed in parentheses, i.e., (+). This
operator is used in the join condition in the WHERE clause following a field name from the table that
be considered the optional table. In our suppliers and parts example, the PART table doesn't have information for
one supplier. Therefore, we will simply add a (+) operator to the join condition on the side of the PART table. The
query and the result set look as follows:

SELECT S.SUPPLIER_ID, S.NAME SUPPLIER_NAME, P.PART_NBR, P.NAME PART_NAME
FROM SUPPLIER S, PART P
WHERE S.SUPPLIER_ID = P.SUPPLIER_ID (+);

SUPPLIER_ID SUPPLIER_NAME PART_NBR PART_NAME

----------- ------------------------------ ---------- -------------------

 101 Pacific Disks, Inc. HD211 20 GB Hard Disk

 102 Silicon Valley MicroChips P3000 3000 MHz Processor

 103 Blue River Electronics

Note the (+) operator following P.SUPPLIER_ID. That makes PART the optional table in this join. If a supplier
does not currently supply any parts, Oracle will fabricate a PART record with all NULLs for that supplier. Thus, the
query results can include all suppliers, regardless of whether they currently supply parts. You can see that
PART columns for supplier 103 in this example all have NULL values.

The outer join operator (+) can appear on either the left or the right side of the join condition. However, make sure
you apply this operator to the appropriate table in the context of your query. For example, it makes no difference
to the result if you switch the two sides of the equality operator in the previous example:

SELECT S.SUPPLIER_ID, S.NAME SUPPLIER_NAME, P.PART_NBR, P.NAME PART_NAME
FROM SUPPLIER S, PART P
WHERE P.SUPPLIER_ID (+) = S.SUPPLIER_ID;

SUPPLIER_ID SUPPLIER_NAME PART_NBR PART_NAME

----------- ------------------------------ ---------- --------------------

 101 Pacific Disks, Inc. HD211 20 GB Hard Disk

 102 Silicon Valley MicroChips P3000 3000 MHz Processor

 103 Blue River Electronics

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 103 Blue River Electronics

However, if you associate the (+) operator with the wrong table, you may get unexpected results. For example:

SELECT S.SUPPLIER_ID, S.NAME SUPPLIER_NAME, P.PART_NBR, P.NAME PART_NAME
FROM SUPPLIER S, PART P
WHERE P.SUPPLIER_ID = S.SUPPLIER_ID (+);

SUPPLIER_ID SUPPLIER_NAME PART_NBR PART_NAME

----------- ------------------------------ ---------- --------------------

 101 Pacific Disks, Inc. HD211 20 GB Hard Disk

 102 Silicon Valley MicroChips P3000 3000 MHz Processor

Here, the outer join operator is placed on the side of the SUPPLIER table in the join condition. By doing this, you
are asking Oracle to print the parts and their corresponding suppliers, as well as the parts without a supplier.
However, in our example data, all the parts have a corresponding supplier. Therefore, the results are the same as
if we had done an inner join.

3.2.1 Restrictions on Outer Joins

There are some rules and restrictions on how you can use an outer join query. When you perform an outer join in
a query, Oracle doesn't allow you to perform certain other operations in the same query. We discuss these
restrictions and some of the work-arounds in this list.

The outer join operator can appear on only one side of an expression in the join condition. You get an
ORA-1468 error if you attempt to use it on both sides. For example:

SELECT S.SUPPLIER_ID, S.NAME SUPPLIER_NAME, P.PART_NBR, P.NAME PART_NAME
FROM SUPPLIER S, PART P
WHERE S.SUPPLIER_ID (+) = P.SUPPLIER_ID (+);

WHERE S.SUPPLIER_ID (+) = P.SUPPLIER_ID (+)

 *

ERROR at line 3:

ORA-01468: a predicate may reference only one outer-joined table

If you are attempting a two-sided outer join by placing the (+) operator on both
sides in the join condition, please refer to Section 3.2.2, which follows this section.

If a join involves more than two tables, then one table can't be outer joined with more than one other table
in the query. Let's look at the following example:

DESC EMPLOYEE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DESC EMPLOYEE
 Name Null? Type

 ------------------------------- -------- ----

 EMP_ID NOT NULL NUMBER(4)

 LNAME VARCHAR2(15)

 FNAME VARCHAR2(15)

 DEPT_ID NUMBER(2)

 MANAGER_EMP_ID NUMBER(4)

 SALARY NUMBER(7,2)

 HIRE_DATE DATE

 JOB_ID NUMBER(3)

DESC JOB
 Name Null? Type

 ------------------------------- -------- ----

 JOB_ID NOT NULL NUMBER(3)

 FUNCTION VARCHAR2(30)

DESC DEPARTMENT
 Name Null? Type

 ------------------------------- -------- ----

 DEPT_ID NOT NULL NUMBER(2)

 NAME VARCHAR2(14)

 LOCATION_ID NUMBER(3)

If you want to list the job function and department name of all the employees, and want to include all the
departments and jobs that don't have any corresponding employees, you would probably attempt to join the
EMPLOYEE table with the JOB table and the DEPARTMENT table, and make both the joins outer joins.
However, since one table can't be outer-joined with more than one table you get the following error:

SELECT E.LNAME, J.FUNCTION, D.NAME
FROM EMPLOYEE E, JOB J, DEPARTMENT D
WHERE E.JOB_ID (+) = J.JOB_ID
AND E.DEPT_ID (+) = D.DEPT_ID;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AND E.DEPT_ID (+) = D.DEPT_ID;

WHERE E.JOB_ID (+) = J.JOB_ID

 *

ERROR at line 3:

ORA-01417: a table may be outer joined to at most one other table

As a work around, you can create a view with an outer join between two tables, and then outer join the view
with the third table:

CREATE VIEW V_EMP_JOB

AS SELECT E.DEPT_ID, E.LNAME, J.FUNCTION

FROM EMPLOYEE E, JOB J

WHERE E.JOB_ID (+) = J.JOB_ID;

SELECT V.LNAME, V.FUNCTION, D.NAME

FROM V_EMP_JOB V, DEPARTMENT D

WHERE V.DEPT_ID (+) = D.DEPT_ID;

Instead of creating a view, you can use an inline view to achieve the same result:

SELECT V.LNAME, V.FUNCTION, D.NAME

FROM (SELECT E.DEPT_ID, E.LNAME, J.FUNCTION

 FROM EMPLOYEE E, JOB J

 WHERE E.JOB_ID (+) = J.JOB_ID) V, DEPARTMENT D

WHERE V.DEPT_ID (+) = D.DEPT_ID;

Inline views are discussed in Chapter 5.

An outer join condition containing the (+) operator may not use the IN operator. For example:

SELECT E.LNAME, J.FUNCTION
FROM EMPLOYEE E, JOB J
WHERE E.JOB_ID (+) IN (668, 670, 667);
WHERE E.JOB_ID (+) IN (668, 670, 667)

 *

ERROR at line 3:

ORA-01719: outer join operator (+) not allowed in operand of OR or IN

An outer join condition containing the OR operator may not be combined with another condition using the
OR operator. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT E.LNAME, D.NAME
FROM EMPLOYEE E, DEPARTMENT D
WHERE E.DEPT_ID = D.DEPT_ID (+)
OR D.DEPT_ID = 10;
WHERE E.DEPT_ID = D.DEPT_ID (+)

 *

ERROR at line 3:

ORA-01719: outer join operator (+) not allowed in operand of OR or IN

A condition containing the (+) operator may not involve a subquery. For example:

SELECT E.LNAME
FROM EMPLOYEE E
WHERE E.DEPT_ID (+) =
(SELECT DEPT_ID FROM DEPARTMENT WHERE NAME = 'ACCOUNTING');
(SELECT DEPT_ID FROM DEPARTMENT WHERE NAME = 'ACCOUNTING')

 *

ERROR at line 4:

ORA-01799: a column may not be outer-joined to a subquery

As a work around, you can use an inline view to achieve the desired effect:

SELECT E.LNAME

FROM EMPLOYEE E,

(SELECT DEPT_ID FROM DEPARTMENT WHERE NAME = 'ACCOUNTING') V

WHERE E.DEPT_ID (+) = V.DEPT_ID;

Inline views are discussed in Chapter 5.

3.2.2 Full Outer Joins

An outer join extends the result of an inner join by including rows from one table (table A, for example) that don't
have corresponding rows in another table (table B, for example). An important thing to note here is that the outer
join operation will not include the rows from table B that don't have corresponding rows in table A. In other words,
an outer join is unidirectional. There are situations when you may want a bidirectional outer join, i.e., you
include all the rows from A and B that are:

From the result of the inner join.

From A that don't have corresponding rows in B.

From B that don't have corresponding rows in A.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Let's take an example to understand this further. Consider the following two tables: LOCATION and
DEPARTMENT:

DESC LOCATION
 Name Null? Type

 ------------------------------- -------- ----

 LOCATION_ID NOT NULL NUMBER(3)

 REGIONAL_GROUP VARCHAR2(20)

DESC DEPARTMENT
 Name Null? Type

 ------------------------------- -------- ----

 DEPT_ID NOT NULL NUMBER(2)

 NAME VARCHAR2(14)

 LOCATION_ID NUMBER(3)

Assume there are locations in the LOCATION table that don't have corresponding departments in the
DEPARTMENT table, and that at the same time there are departments in the DEPARTMENT table without a
LOCATION_ID pointing to corresponding LOCATION rows. If you perform an inner join of these two tables, you
will get only the departments and locations that have corresponding rows in both the tables.

SELECT D.DEPT_ID, D.NAME, L.REGIONAL_GROUP
FROM DEPARTMENT D, LOCATION L
WHERE D.LOCATION_ID = L.LOCATION_ID;

 DEPT_ID NAME REGIONAL_GROUP

------------- -------------- --------------------

 10 ACCOUNTING NEW YORK

 20 RESEARCH DALLAS

 30 SALES CHICAGO

 40 OPERATIONS BOSTON

 12 RESEARCH NEW YORK

 13 SALES NEW YORK

 14 OPERATIONS NEW YORK

 23 SALES DALLAS

 24 OPERATIONS DALLAS

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 34 OPERATIONS CHICAGO

 43 SALES BOSTON

11 rows selected.

There are locations that don't have any departments. To include those locations in this list, you have to perform
an outer join with the (+) operator on the department side, making the DEPARTMENT table the optional table in
the query. Notice that Oracle supplies NULLs for missing DEPARTMENT data.

SELECT D.DEPT_ID, D.NAME, L.REGIONAL_GROUP
FROM DEPARTMENT D, LOCATION L
WHERE D.LOCATION_ID (+) = L.LOCATION_ID;

 DEPT_ID NAME REGIONAL_GROUP

------------- -------------- --------------------

 10 ACCOUNTING NEW YORK

 12 RESEARCH NEW YORK

 14 OPERATIONS NEW YORK

 13 SALES NEW YORK

 30 SALES CHICAGO

 34 OPERATIONS CHICAGO

 20 RESEARCH DALLAS

 23 SALES DALLAS

 24 OPERATIONS DALLAS

 SAN FRANCISCO

 40 OPERATIONS BOSTON

 43 SALES BOSTON

12 rows selected.

There are departments that don't belong to any location. If you want to include those departments in the result
set, perform an outer join with the (+) operator on the location side.

SELECT D.DEPT_ID, D.NAME, L.REGIONAL_GROUP
FROM DEPARTMENT D, LOCATION L
WHERE D.LOCATION_ID = L.LOCATION_ID (+) ;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WHERE D.LOCATION_ID = L.LOCATION_ID (+) ;

 DEPT_ID NAME REGIONAL_GROUP

------------- -------------- --------------------

 10 ACCOUNTING NEW YORK

 20 RESEARCH DALLAS

 30 SALES CHICAGO

 40 OPERATIONS BOSTON

 12 RESEARCH NEW YORK

 13 SALES NEW YORK

 14 OPERATIONS NEW YORK

 23 SALES DALLAS

 24 OPERATIONS DALLAS

 34 OPERATIONS CHICAGO

 43 SALES BOSTON

 50 MARKETING

 60 CONSULTING

13 rows selected.

However, the previous query excluded any location that doesn't have a department. If you want to include
departments without a location as well as the locations without a department, you will probably try to use a two-
sided outer join, correctly termed a full outer join, like the following:

SELECT D.DEPT_ID, D.NAME, L.REGIONAL_GROUP
FROM DEPARTMENT D, LOCATION L
WHERE D.LOCATION_ID (+) = L.LOCATION_ID (+);
WHERE D.LOCATION_ID (+) = L.LOCATION_ID (+)

 *

ERROR at line 3:

ORA-01468: a predicate may reference only one outer-joined table

As you can see, a two-sided outer join is not allowed. A UNION of two SELECT statements is a work around for
this problem. In the following example, the first SELECT represents an outer join in which DEPARTMENT is the
optional table. The second SELECT has the LOCATION table as the optional table. Between the two SELECTS,
you get all locations and all departments. The UNION operation eliminates duplicate rows, and the result is a full
outer join:

SELECT D.DEPT_ID, D.NAME, L.REGIONAL_GROUP

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT D.DEPT_ID, D.NAME, L.REGIONAL_GROUP
FROM DEPARTMENT D, LOCATION L
WHERE D.LOCATION_ID (+) = L.LOCATION_ID
UNION
SELECT D.DEPT_ID, D.NAME, L.REGIONAL_GROUP
FROM DEPARTMENT D, LOCATION L
WHERE D.LOCATION_ID = L.LOCATION_ID (+) ;

 DEPT_ID NAME REGIONAL_GROUP

------------- -------------- --------------------

 10 ACCOUNTING NEW YORK

 12 RESEARCH NEW YORK

 13 SALES NEW YORK

 14 OPERATIONS NEW YORK

 20 RESEARCH DALLAS

 23 SALES DALLAS

 24 OPERATIONS DALLAS

 30 SALES CHICAGO

 34 OPERATIONS CHICAGO

 40 OPERATIONS BOSTON

 43 SALES BOSTON

 50 MARKETING

 60 CONSULTING

 SAN FRANCISCO

14 rows selected.

As you can see, this UNION query includes all the rows you would expect to see in a full outer join. UNION
queries are discussed in more detail in Chapter 7.

Oracle9i introduces new ANSI-compatible join syntax that enables full outer joins in a
much more straightforward way than the previous example. The new syntax is
discussed at the end of this chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.3 Self Joins

There are situations in which one row of a table is related to another row of the same table. The
EMPLOYEE table is a good example. The manager of one employee is also an employee. The
rows for both are in the same EMPLOYEE table. This relationship is indicated in the
MANAGER_EMP_ID column:

CREATE TABLE EMPLOYEE (

EMP_ID NUMBER (4) NOT NULL PRIMARY KEY,

FNAME VARCHAR2 (15),

LNAME VARCHAR2 (15),

DEPT_ID NUMBER (2),

MANAGER_EMP_ID NUMBER (4) REFERENCES EMPLOYEE(EMP_ID),

SALARY NUMBER (7,2),

HIRE_DATE DATE,

JOB_ID NUMBER (3));

To get information about an employee and his manager, you have to join the EMPLOYEE table
with itself. This is achieved by specifying the EMPLOYEE table twice in the FROM clause and
using two different table aliases, thereby treating EMPLOYEE as if it were two separate tables.
The following example lists the name of each employee and his manager:

SELECT E.NAME EMPLOYEE, M.NAME MANAGER
FROM EMPLOYEE E, EMPLOYEE M
WHERE E.MANAGER_EMP_ID = M.EMP_ID;

EMPLOYEE MANAGER

---------- ----------

SMITH FORD

ALLEN BLAKE

WARD BLAKE

JONES KING

MARTIN BLAKE

BLAKE KING

CLARK KING

SCOTT JONES

TURNER BLAKE

ADAMS SCOTT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ADAMS SCOTT

JAMES BLAKE

FORD JONES

MILLER CLARK

13 rows selected.

Notice the use of the EMPLOYEE table twice in the FROM clause with two different aliases. Also
notice the join condition that reads as: "Where the employee's MANAGER_EMP_ID is the same
as his manager's EMP_ID."

3.3.1 Self Outer Joins

Even though the EMPLOYEE table has 14 rows, the previous query returned only 13 rows. This is
because there is an employee without a MANAGER_EMP_ID. Oracle excludes this row from the
result set while performing the self inner join. To include the employee(s) without a
MANAGER_EMP_ID, you need an outer join:

SELECT E.LNAME EMPLOYEE, M.LNAME MANAGER
FROM EMPLOYEE E, EMPLOYEE M
WHERE E.MANAGER_EMP_ID = M.EMP_ID (+);

EMPLOYEE MANAGER

---------- ----------

SMITH FORD

ALLEN BLAKE

WARD BLAKE

JONES KING

MARTIN BLAKE

BLAKE KING

CLARK KING

SCOTT JONES

KING

TURNER BLAKE

ADAMS SCOTT

JAMES BLAKE

FORD JONES

MILLER CLARK

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MILLER CLARK

14 rows selected.

Be careful when placing the (+) operator in a join condition. If you put the (+) on the wrong side,
you will get an absurd result set that makes no sense. In this case, the EMPLOYEE table we need
to make optional is the one from which we are drawing manager names.

3.3.2 Self Non-Equi-Joins

The previous example showed self-equi-joins. However, there are situations when you need to
perform self-non-equi-joins. We will illustrate this by an example. Let's assume that you are in
charge of organizing interdepartmental basket ball competition within your company. It is your
responsibility to draw the teams and schedule the competition. You query the DEPARTMENT
table and get the following result:

SELECT NAME FROM DEPARTMENT;

NAME

ACCOUNTING

RESEARCH

SALES

OPERATIONS

You find that there are four departments, and to make a fair competition, you decide that each
department plays against the other three departments once, and at the end the department with
the maximum wins is declared the winner. You have been to an Oracle SQL training class
recently, and decide to apply the concept of self join. You execute the following query:

SELECT D1.NAME TEAM1, D2.NAME TEAM2
FROM DEPARTMENT D1, DEPARTMENT D2;

TEAM1 TEAM2

-------------- --------------

ACCOUNTING ACCOUNTING

RESEARCH ACCOUNTING

SALES ACCOUNTING

OPERATIONS ACCOUNTING

ACCOUNTING RESEARCH

RESEARCH RESEARCH

SALES RESEARCH

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SALES RESEARCH

OPERATIONS RESEARCH

ACCOUNTING SALES

RESEARCH SALES

SALES SALES

OPERATIONS SALES

ACCOUNTING OPERATIONS

RESEARCH OPERATIONS

SALES OPERATIONS

OPERATIONS OPERATIONS

16 rows selected.

Disappointing results. From your knowledge of high school mathematics, you know that four
teams each playing once with the other three makes six combinations. However, your SQL query
returned 16 rows. Now you realize that since you didn't specify any join condition, you got a
Cartesian product from your query. You put in a join condition, and your query and results now
look as follows:

SELECT D1.NAME TEAM1, D2.NAME TEAM2
FROM DEPARTMENT D1, DEPARTMENT D2
WHERE D1.DEPT_ID = D2.DEPT_ID;

TEAM1 TEAM2

-------------- --------------

ACCOUNTING ACCOUNTING

RESEARCH RESEARCH

SALES SALES

OPERATIONS OPERATIONS

Oops! The equi-join returned a very unwanted result. A team can't play against itself. You realize
your mistake, and this sparks the idea that you can use non-equi-joins in this situation. You
rewrite the query as a non-equi-join. You don't want a team to play against itself, and therefore
replace the "=" operator in the join condition with "!=". Let's look at the results:

SELECT D1.NAME TEAM1, D2.NAME TEAM2
FROM DEPARTMENT D1, DEPARTMENT D2
WHERE D1.DEPT_ID != D2.DEPT_ID;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WHERE D1.DEPT_ID != D2.DEPT_ID;

TEAM1 TEAM2

-------------- --------------

RESEARCH ACCOUNTING

SALES ACCOUNTING

OPERATIONS ACCOUNTING

ACCOUNTING RESEARCH

SALES RESEARCH

OPERATIONS RESEARCH

ACCOUNTING SALES

RESEARCH SALES

OPERATIONS SALES

ACCOUNTING OPERATIONS

RESEARCH OPERATIONS

SALES OPERATIONS

12 rows selected.

Still not done. In this result set, you have permutations such as (RESEARCH, ACCOUNTING)
and (ACCOUNTING, RESEARCH), and so on. Therefore, each team plays against the others
twice. You need to remove these permutations, which you rightly consider to be duplicates. You
think about using DISTINCT. DISTINCT will not help here, because the row (RESEARCH,
ACCOUNTING) is different from the row (ACCOUNTING, RESEARCH) from the viewpoint of
DISTINCT; but not from the viewpoint of your requirement. After some thought, you want to try out
an inequality operator other than "!=". You decide to go with the less-than (<) operator. Here are
the results you get:

SELECT D1.NAME TEAM1, D2.NAME TEAM2
FROM DEPARTMENT D1, DEPARTMENT D2
WHERE D1.DEPT_ID < D2.DEPT_ID;

TEAM1 TEAM2

-------------- --------------

ACCOUNTING RESEARCH

ACCOUNTING SALES

RESEARCH SALES

ACCOUNTING OPERATIONS

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ACCOUNTING OPERATIONS

RESEARCH OPERATIONS

SALES OPERATIONS

6 rows selected.

That's it! Now you have six combinations: each team plays against the other three just once. Let's
examine why this version of the query works. Conceptually, when Oracle executes this query, a
Cartesian product is first formed with 16 rows. Then the less-than (<) operator in the join condition
restricts the result set to those rows in which the DEPT_ID of Team 1 is less than the DEPT_ID of
Team 2. The less-than (<) operator eliminates the duplicates, because for any given permutation
of two departments this condition is satisfied for only one. Using greater-than (>) instead of less-
than (<) will also give you the required result, but the TEAM1 and TEAM2 values will be reversed:

SELECT D1.NAME TEAM1, D2.NAME TEAM2
FROM DEPARTMENT D1, DEPARTMENT D2
WHERE D1.DEPT_ID > D2.DEPT_ID;

TEAM1 TEAM2

-------------- --------------

RESEARCH ACCOUNTING

SALES ACCOUNTING

OPERATIONS ACCOUNTING

SALES RESEARCH

OPERATIONS RESEARCH

OPERATIONS SALES

6 rows selected.

Don't be disheartened by the painful process you had to go through to get this result. Sometimes
you have to go through an agonizing experience to get simple results such as these. That's life.
Now that you have the team combinations right, go a bit further and assign a date for each match.
Use "tomorrow" as the starting date:

SELECT D1.NAME TEAM1, D2.NAME TEAM2, SYSDATE + ROWNUM MATCH_DATE
FROM DEPARTMENT D1, DEPARTMENT D2
WHERE D1.DEPT_ID < D2.DEPT_ID;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WHERE D1.DEPT_ID < D2.DEPT_ID;

TEAM1 TEAM2 MATCH_DATE

-------------- -------------- ---------

ACCOUNTING RESEARCH 30-APR-01

ACCOUNTING SALES 01-MAY-01

RESEARCH SALES 02-MAY-01

ACCOUNTING OPERATIONS 03-MAY-01

RESEARCH OPERATIONS 04-MAY-01

SALES OPERATIONS 05-MAY-01

6 rows selected.

Now publish these results on the corporate intranet along with the rules and regulations for the
competition, and you are done.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.4 Joins and Subqueries

Joins can sometimes be used to good advantage in reformulating SELECT statements that would
otherwise contain subqueries. Consider the problem of obtaining a list of suppliers of parts for
which your inventory has dropped below ten units. You might begin by writing a query such as the
following:

SELECT supplier_id, name

FROM supplier s

WHERE EXISTS (SELECT *

 FROM part p

 WHERE p.inventory_qty < 10

 AND p.supplier_id = s.supplier_id);

The subquery in this SELECT statement is a correlated subquery, which means that it will be
executed once for each row in the supplier table. Assuming that you have no indexes on the
INVENTORY_QTY and SUPPLIER_ID columns of the PART table, this query could result in
multiple, full-table scans of the PART table. It's possible to restate the query using a join, for
example:

SELECT s.supplier_id, s.name

FROM supplier s, part p

WHERE p.supplier_id = s.supplier_id

 AND p.inventory_qty < 10;

Whether the join version or the subquery version of a query is more efficient depends on the
specific situation. It may be worth your while to test both approaches to see which has a lower
cost.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.5 DML Statements on a Join View

A join view is a view based on a join. Special considerations apply when you issue a DML (INSERT,
UPDATE, or DELETE) statement against a join view. Ever thought about what happens when you
insert a row into a join view—which table does the row go into? And what happens when you delete
a row from a join view—which table does it gets deleted from? This section deals with these
questions.

To be modifiable, a join view must not contain any of the following:

Hierarchical query clauses, such as START WITH or CONNECT BY

GROUP BY or HAVING clauses

Set operations, such as UNION, UNION ALL, INTERSECT, MINUS

Aggregate functions, such as AVG, COUNT, MAX, MIN, SUM, and so forth

The DISTINCT operator

The ROWNUM pseudocolumn

A DML statement on a join view can modify only one base table of the view. Apart from these rules,
therefore, a join view must also have one key preserved table to be modified.

3.5.1 Key-Preserved Tables

A key-preserved table is the most important requirement in order for a join view to be modifiable. In
a join, a table is called a key-preserved table if its keys are preserved through the join—every key of
the table can also be a key of the resultant join result set. Every primary key or unique key value in
the base table must also be unique in the result set of the join. Let's take an example to understand
the concept of key preserved tables better.

DESC EMPLOYEE
 Name Null? Type

 ------------------------------- -------- ----

 EMP_ID NOT NULL NUMBER(4)

 LNAME VARCHAR2(15)

 FNAME VARCHAR2(15)

 DEPT_ID NUMBER(2)

 MANAGER_EMP_ID NUMBER(4)

 SALARY NUMBER(7,2)

 HIRE_DATE DATE

 JOB_ID NUMBER(3)

DESC RETAILER

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DESC RETAILER
 Name Null? Type

 ------------------------------- -------- ----

 RTLR_NBR NOT NULL NUMBER(6)

 NAME VARCHAR2(45)

 ADDRESS VARCHAR2(40)

 CITY VARCHAR2(30)

 STATE VARCHAR2(2)

 ZIP_CODE VARCHAR2(9)

 AREA_CODE NUMBER(3)

 PHONE_NUMBER NUMBER(7)

 SALESPERSON_ID NUMBER(4)

 CREDIT_LIMIT NUMBER(9,2)

 COMMENTS LONG

CREATE VIEW V_RTLR_EMP AS
SELECT C.RTLR_NBR, C.NAME, C.CITY, E.EMP_ID, E.LNAME SALES_REP
FROM RETAILER C, EMPLOYEE E
WHERE C.SALESPERSON_ID = E.EMP_ID;

View created.

SELECT * FROM V_RTLR_EMP;

 RTLR_NBR NAME CITY EMP_ SALES_REP

----------- ---------------------------- ------------------------------

 100 JOCKSPORTS BELMONT 7844 TURNER

 101 TKB SPORT SHOP REDWOOD CITY 7521 WARD

 102 VOLLYRITE BURLINGAME 7654 MARTIN

 103 JUST TENNIS BURLINGAME 7521 WARD

 104 EVERY MOUNTAIN CUPERTINO 7499 ALLEN

 105 K + T SPORTS SANTA CLARA 7844 TURNER

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 106 SHAPE UP PALO ALTO 7521 WARD

 107 WOMENS SPORTS SUNNYVALE 7499 ALLEN

 201 STADIUM SPORTS NEW YORK 7557 SHAW

 202 HOOPS LEICESTER 7820 ROSS

 203 REBOUND SPORTS NEW YORK 7557 SHAW

 204 THE POWER FORWARD DALLAS 7560 DUNCAN

 205 POINT GUARD YONKERS 7557 SHAW

 206 THE COLISEUM SCARSDALE 7557 SHAW

 207 FAST BREAK CONCORD 7820 ROSS

 208 AL AND BOB'S SPORTS AUSTIN 7560 DUNCAN

 211 AT BAT BROOKLINE 7820 ROSS

 212 ALL SPORT BROOKLYN 7600 PORTER

 213 GOOD SPORT SUNNYSIDE 7600 PORTER

 214 AL'S PRO SHOP SPRING 7564 LANGE

 215 BOB'S FAMILY SPORTS HOUSTON 7654 MARTIN

 216 THE ALL AMERICAN CHELSEA 7820 ROSS

 217 HIT, THROW, AND RUN GRAPEVINE 7564 LANGE

 218 THE OUTFIELD FLUSHING 7820 ROSS

 221 WHEELS AND DEALS HOUSTON 7789 WEST

 222 JUST BIKES DALLAS 7789 WEST

 223 VELO SPORTS MALDEN 7820 ROSS

 224 JOE'S BIKE SHOP GRAND PRARIE 7789 WEST

 225 BOB'S SWIM, CYCLE, AND RUN IRVING 7789 WEST

 226 CENTURY SHOP HUNTINGTON 7555 PETERS

 227 THE TOUR SOMERVILLE 7820 ROSS

 228 FITNESS FIRST JACKSON HEIGHTS 7555 PETERS

32 rows selected.

The view V_RTLR_EMP is a join of RETAILER and EMPLOYEE tables on the
RETAILER.SALESPERSON_ID and EMPLOYEE.EMP_ID columns. Is there a key-preserved table
in this join view? Which one—or is it both? If you observe the relationship between the two tables
and the join query, you will notice that RTLR_NBR is the key of the RETAILER table, as well as the
key of the result of the join. This is because there is only one row in the RETAILER table for every
row in the join view V_RTLR_EMP and every row in the view has a unique RTLR_NBR. Therefore,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

row in the join view V_RTLR_EMP and every row in the view has a unique RTLR_NBR. Therefore,
the table RETAILER is a key-preserved table in this join view. How about the EMPLOYEE table?
The key of the EMPLOYEE table is not preserved through the join because EMP_ID is not unique in
the view, consequently EMP_ID can't be a key for the result of the join. Therefore, the table
EMPLOYEE is not a key-preserved table in this view.

You must remember the following important points regarding key-preserved tables:

Key-preservation is a property of the table inside the join view, not the table itself
independently. A table may be key-preserved in one join view, and may not be key-preserved
in another join view. For example, if we create a join view by joining the EMPLOYEE table
with the DEPARTMENT table on the DEPT_ID column, then in the resulting view the
EMPLOYEE table will be key-preserved, but the DEPARTMENT table will not be a key-
preserved table.

It is not necessary for the key column(s) of a table to be SELECTed in the join view for the
table to be key-preserved. For example, in the V_RTLR_EMP view discussed previously, the
RETAILER table would have been the key-preserved table even if we had not included the
RTLR_NBR column in the SELECT list.

On the other hand, if we select the key column(s) of a table in the view definition, it doesn't
make that table key-preserved. In the V_RTLR_EMP view, even though we have included
EMP_ID in the SELECT list, the EMPLOYEE table is not key-preserved.

The key-preserved property of a table in a join view doesn't depend on the data inside the
table. It depends on the schema design and the relationship between the tables.

The following sections discuss how you can use INSERT, UPDATE, and DELETE statements on a
join view.

3.5.2 INSERT Statements on a Join View

Let's issue an INSERT statement against the join view V_RTLR_EMP that attempts to insert a
record into the RETAILER table:

INSERT INTO V_RTLR_EMP (RTLR_NBR, NAME, SALESPERSON_ID)
VALUES (345, 'X-MART STORES', 7820);

1 row created.

That worked. Now let's try this INSERT statement, which also supplies a value for a column from the
EMPLOYEE table:

INSERT INTO V_RTLR_EMP (RTLR_NBR, NAME, SALESPERSON_ID, SALES_REP)
VALUES (456, 'LEE PARK RECREATION CENTER', 7599, 'JAMES');
INSERT INTO V_RTLR_EMP (RTLR_NBR, NAME, SALESPERSON_ID, SALES_REP)

 *

ERROR at line 1:

ORA-01776: cannot modify more than one base table through a join view

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ORA-01776: cannot modify more than one base table through a join view

This INSERT statement attempts to insert values into two tables (RETAILER and EMPLOYEE),
which is not allowed. You can't refer to the columns of a non-key-preserved table in an INSERT
statement. Moreover, INSERT statements are not allowed on a join view if the view is created using
the WITH CHECK OPTION clause, even if you are attempting to insert into the key-preserved table
only. For example:

CREATE VIEW V_RTLR_EMP_WCO AS
SELECT C.RTLR_NBR, C.NAME, C.CITY, C.SALESPERSON_ID, E.LNAME SALES_REP
FROM RETAILER C, EMPLOYEE E
WHERE C.SALESPERSON_ID = E.EMP_ID
WITH CHECK OPTION;

View created.

INSERT INTO V_RTLR_EMP_WCO (RTLR_NBR, NAME, SALESPERSON_ID)
VALUES (345, 'X-MART STORES', 7820);
INSERT INTO V_RTLR_EMP_WCO (RTLR_NBR, NAME, SALESPERSON_ID)

 *

ERROR at line 1:

ORA-01733: virtual column not allowed here

The error message "ORA-01733: virtual column not allowed here" may not be very clear, but it
indicates that you are not allowed to insert into this join view.

3.5.3 DELETE Statements on a Join View

DELETE operations can be performed on a join view if the join view has one and only one key-
preserved table. The view V_RTLR_EMP discussed previously has only one key-preserved table,
RETAILER; therefore, you can delete from this join view as in the following example:

DELETE FROM V_RTLR_EMP
WHERE RTLR_NBR = 214;

1 row deleted.

Let's take another example where there is more than one key-preserved table. We will create a view
from the self join example we discussed earlier in this chapter and attempt to delete from the view.

CREATE VIEW V_DEPT_TEAM AS
SELECT D1.NAME TEAM1, D2.NAME TEAM2
FROM DEPARTMENT D1, DEPARTMENT D2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FROM DEPARTMENT D1, DEPARTMENT D2
WHERE D1.DEPT_ID > D2.DEPT_ID;

View created.

DELETE FROM V_DEPT_TEAM
WHERE TEAM1 = 'SALES';
DELETE FROM V_DEPT_TEAM

 *

ERROR at line 1:

ORA-01752: cannot delete from view without exactly one key-preserved table

3.5.4 UPDATE Statements on a Join View

An UPDATE operation can be performed on a join view if it attempts to update a column in the key-
preserved table. For example:

UPDATE V_RTLR_EMP
SET NAME = 'PRO SPORTS'
WHERE RTLR_NBR = 214;

1 row updated.

This UPDATE is successful since it updated the NAME column of the RETAILER table, which is
key-preserved. However, the following UPDATE statement will fail because it attempts to modify the
SALES_REP column that maps to the EMPLOYEE table, which is non-key-preserved:

UPDATE V_RTLR_EMP
SET SALES_REP = 'ANDREW'
WHERE RTLR_NBR = 214;
SET SALES_REP = 'ANDREW'

 *

ERROR at line 2:

ORA-01779: cannot modify a column which maps to a non key-preserved table

The WITH CHECK OPTION further restricts the ability to modify a join view. If a join view is created
using the WITH CHECK OPTION clause, you can't modify any of the join columns, nor any of the
columns from the repeated tables:

UPDATE V_RTLR_EMP_WCO
SET SALESPERSON_ID = 7784

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SET SALESPERSON_ID = 7784
WHERE RTLR_NBR = 214;
SET SALESPERSON_ID = 7784

 *

ERROR at line 2:

ORA-01733: virtual column not allowed here

The error message "ORA-01733: virtual column not allowed here" indicates that you are not allowed
to update the indicated column.

3.5.5 Data Dictionary Views to Find Updateable Columns

Oracle provides the data dictionary view USER_UPDATABLE_COLUMNS that shows all modifiable
columns in all tables and views in a user's schema. This can be helpful if you have a view that you
wish to update, but aren't sure whether it's updateable. USER_UPDATABLE_COLUMNS has the
following definition:

DESC USER_UPDATABLE_COLUMNS
 Name Null? Type

 -------------- -------- -------------

 OWNER NOT NULL VARCHAR2(30)

 TABLE_NAME NOT NULL VARCHAR2(30)

 COLUMN_NAME NOT NULL VARCHAR2(30)

 UPDATABLE VARCHAR2(3)

 INSERTABLE VARCHAR2(3)

 DELETABLE VARCHAR2(3)

ALL_UPDATABLE_COLUMNS shows all views you can access (as
opposed to just those you own), and DBA_UPDATABLE_COLUMNS (for
DBAs only) shows all views in the database.

The following example shows the view being queried for a list of updateable columns in the
V_RTLR_EMP_WCO view:

SELECT * FROM USER_UPDATABLE_COLUMNS
WHERE TABLE_NAME = 'V_RTLR_EMP_WCO';

OWNER TABLE_NAME COLUMN_NAME UPD INS DEL

------- ---------------- ---------------- --- --- ---

DEMO V_RTLR_EMP_WCO RTLR_NBR YES YES YES

DEMO V_RTLR_EMP_WCO NAME YES YES YES

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DEMO V_RTLR_EMP_WCO CITY YES YES YES

DEMO V_RTLR_EMP_WCO SALESPERSON_ID NO NO NO

DEMO V_RTLR_EMP_WCO SALES_REP NO NO NO

Compare the updateable columns of the view V_RTLR_EMP_WCO with those of the view
V_RTLR_EMP:

SELECT * FROM USER_UPDATABLE_COLUMNS
WHERE TABLE_NAME = 'V_RTLR_EMP';

OWNER TABLE_NAME COLUMN_NAME UPD INS DEL

------- ------------- ---------------- --- ---

DEMO V_RTLR_EMP RTLR_NBR YES YES YES

DEMO V_RTLR_EMP NAME YES YES YES

DEMO V_RTLR_EMP CITY YES YES YES

DEMO V_RTLR_EMP SALESPERSON_ID YES YES YES

DEMO V_RTLR_EMP SALES_REP NO NO NO

Notice that the column SALESPERSON_ID is modifiable in V_RTLR_EMP, but not in
V_RTLR_EMP_WCO.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.6 ANSI-Standard Join Syntax in Oracle9i

Oracle9i introduced new join syntax that is compliant to the ANSI SQL standard defined for
SQL/92. Prior to Oracle9i, Oracle supported the join syntax defined in the SQL/86 standard. In
addition, Oracle supported outer joins through the proprietary outer join operator (+), discussed
earlier in this chapter. The old join syntax and the proprietary outer join operator are still
supported in Oracle9i. However, the ANSI standard join syntax introduces several new keywords
and new ways to specify joins and join conditions.

3.6.1 New Join Syntax

With the traditional join syntax, you specify multiple tables in the FROM clause separated by
commas, as in the following example:

SELECT L.LOCATION_ID, D.NAME, L.REGIONAL_GROUP

FROM DEPARTMENT D, LOCATION L

WHERE D.LOCATION_ID = L.LOCATION_ID;

With the new syntax in Oracle9i, you specify the join type with the JOIN keyword in the FROM
clause. For example, to perform an inner join between tables DEPARTMENT and LOCATION,
you specify:

FROM DEPARTMENT D INNER JOIN LOCATION L

In the traditional join syntax, the join condition is specified in the WHERE clause. With the new
syntax in Oracle9i, the purpose of the WHERE clause is for filtering only. The join condition is
separated from the WHERE clause and put in a new ON clause, which appears as part of the
FROM clause. The join condition of the previous example will be specified using the new syntax
as:

ON D.LOCATION_ID = L.LOCATION_ID;

The complete join, using the new syntax, will be:

SELECT L.LOCATION_ID, D.NAME, L.REGIONAL_GROUP

FROM DEPARTMENT D INNER JOIN LOCATION L

ON D.LOCATION_ID = L.LOCATION_ID;

Specifying the join condition is further simplified if:

You use equi-joins, and

The column names are identical in both the tables.

If these two conditions are satisfied, you can apply the new USING clause to specify the join
condition. In the previous example, we used an equi-join. Also, the column involved in the join
condition (LOCATION_ID) is named identically in both the tables. Therefore, this join condition
can also be written as:

FROM DEPARTMENT D INNER JOIN LOCATION L

USING (LOCATION_ID);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

USING (LOCATION_ID);

The USING clause affects the semantics of the SELECT clause as well. The USING clause tells
Oracle that the tables in the join have identical names for the column in the USING clause. Now,
Oracle merges those two columns and recognizes only one such column. If you have included the
join column in the SELECT list, Oracle doesn't allow you to qualify the column with a table name
(or table alias). Our SELECT clause, then, needs to appear as follows:

SELECT LOCATION_ID, D.NAME, L.REGIONAL_GROUP

The complete syntax with the USING clause will be:

SELECT LOCATION_ID, D.NAME, L.REGIONAL_GROUP

FROM DEPARTMENT D INNER JOIN LOCATION L

USING (LOCATION_ID);

If you attempt to qualify the join column name in the SELECT list using either an alias or a table
name, you will get an error:

SELECT L.LOCATION_ID, D.NAME, L.REGIONAL_GROUP
FROM DEPARTMENT D INNER JOIN LOCATION L
USING (LOCATION_ID);
SELECT L.LOCATION_ID, D.NAME, L.REGIONAL_GROUP
 *

ERROR at line 1:

ORA-25154: column part of USING clause cannot have qualifier

The behavior of USING contrasts with the traditional join syntax, in which
you must qualify the identical column names with the table name or table
alias.

If a join condition consists of multiple columns, you need to specify all the column conditions in
the ON clause separated by AND. For example, if tables A and B are joined based on columns c1
and c2, the join condition would be:

SELECT ...

FROM A INNER JOIN B

ON A.c1 = B.c1 AND A.c2 = B.c2

If the column names are identical in the two tables, you can use the USING clause and specify all
the columns in one USING clause, separated by commas. The previous join condition can be
rewritten as:

SELECT ...

FROM A INNER JOIN B

USING (c1, c2)

Cross Joins

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An advantage of the new join syntax is that you can't accidentally generate a Cartesian
product by omitting join conditions. But what if you really do want a Cartesian product?
Are you forced to fall back on the old join syntax? That's certainly an option, but a
better approach is to explicitly specify a cross join. The term cross join is simply an
alternative reference to Cartesian product.

In Oracle9i, you can explicitly request a cross join by using the CROSS JOIN
keywords:

SELECT *

FROM A CROSS JOIN B;

The advantage of this new syntax is that it makes your request for a cross join (or
Cartesian product) explicit. Cartesian products are usually mistakes, and future
maintenance programmers may be tempted to correct such "mistakes." The explicit
CROSS JOIN syntax indicates to future maintenance programmers that a Cartesian
product is not an oversight.

The new join syntax doesn't allow you to accidentally forget the join
condition while performing a join, and thereby helps prevent you from
accidentally generating a Cartesian product. When you specify any of the
new join keywords in the FROM clause, you tell Oracle that you are going
to perform a JOIN, and Oracle insists that you specify the join condition in
an ON or USING clause.

3.6.2 ANSI Outer Join Syntax

We discussed Oracle's traditional outer join syntax earlier in this chapter. The ANSI outer join
syntax doesn't use the outer join operator (+) in the join condition; rather, it specifies the join type
in the FROM clause. The syntax of ANSI outer join is:

FROM table1 { LEFT | RIGHT | FULL } [OUTER] JOIN table2

The syntax elements are:

table1, table2

Specifies the tables on which you are performing the outer join.

LEFT

Specifies that the results be generated using all rows from table1. For those rows in table1
that don't have corresponding rows in table2, NULLs are returned in the result set for the
table2 columns. This is the equivalent of specifying (+) on the table2 side of the join
condition in the traditional syntax.

RIGHT

Specifies that the results be generated using all rows from table2. For those rows in table2
that don't have corresponding rows in table1, NULLs are returned in the result set for the
table1 columns. This is the equivalent of specifying (+) on the table1 side of the join
condition in the traditional syntax.

FULL

Specifies that the results be generated using all rows from table1 and table2. For those

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Specifies that the results be generated using all rows from table1 and table2. For those
rows in table1 that don't have corresponding rows in table2, NULLs are returned in the
result set for the table2 columns. Additionally, for those rows in table2 that don't have
corresponding rows in table1, NULLs are returned in the result set for the table1 columns.
There is no equivalent in the traditional syntax for a FULL OUTER JOIN.

OUTER

Specifies that you are performing an OUTER join. This keyword is optional. If you use
LEFT, RIGHT, or FULL, Oracle automatically assumes an outer join. The OUTER is for
completeness sake, and complements the INNER keyword.

To perform a LEFT OUTER JOIN between the DEPARTMENT and LOCATION tables, you can
use:

SELECT D.DEPT_ID, D.NAME, L.REGIONAL_GROUP
FROM DEPARTMENT D LEFT OUTER JOIN LOCATION L
ON D.LOCATION_ID = L.LOCATION_ID;

 DEPT_ID NAME REGIONAL_GROUP

------------- -------------- --------------------

 10 ACCOUNTING NEW YORK

 20 RESEARCH DALLAS

 30 SALES CHICAGO

 40 OPERATIONS BOSTON

 12 RESEARCH NEW YORK

 13 SALES NEW YORK

 14 OPERATIONS NEW YORK

 23 SALES DALLAS

 24 OPERATIONS DALLAS

 34 OPERATIONS CHICAGO

 43 SALES BOSTON

 50 MARKETING

 60 CONSULTING

13 rows selected.

This query lists all the rows from the DEPARTMENT table and the corresponding locations from
the LOCATION table. For the rows from DEPARTMENT with no corresponding rows in
LOCATION, NULLs are returned in the L.REGIONAL_GROUP column in the result set. It is
equivalent to the following traditional outer join query:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT D.DEPT_ID, D.NAME, L.REGIONAL_GROUP

FROM DEPARTMENT D, LOCATION L

WHERE D.LOCATION_ID = L.LOCATION_ID (+);

To perform a RIGHT OUTER JOIN between the DEPARTMENT and LOCATION tables, you can
use:

SELECT D.DEPT_ID, D.NAME, L.REGIONAL_GROUP
FROM DEPARTMENT D RIGHT OUTER JOIN LOCATION L
ON D.LOCATION_ID = L.LOCATION_ID;

 DEPT_ID NAME REGIONAL_GROUP

------------- -------------- --------------------

 10 ACCOUNTING NEW YORK

 12 RESEARCH NEW YORK

 14 OPERATIONS NEW YORK

 13 SALES NEW YORK

 30 SALES CHICAGO

 34 OPERATIONS CHICAGO

 20 RESEARCH DALLAS

 23 SALES DALLAS

 24 OPERATIONS DALLAS

 SAN FRANCISCO

 40 OPERATIONS BOSTON

 43 SALES BOSTON

12 rows selected.

This query lists all the rows from the LOCATION table, and their corresponding departments from
the DEPARTMENT table. For the rows from LOCATION that don't have corresponding rows in
DEPARTMENT, NULLs are returned in D.DEPT_ID and D.NAME columns in the result set. This
query is equivalent to the following traditional outer join query:

SELECT D.DEPT_ID, D.NAME, L.REGIONAL_GROUP

FROM DEPARTMENT D, LOCATION L

WHERE D.LOCATION_ID (+) = L.LOCATION_ID;

If you want to include the departments without a location, as well as the locations without a
department, you need to do a full outer join:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT D.DEPT_ID, D.NAME, L.REGIONAL_GROUP
FROM DEPARTMENT D FULL OUTER JOIN LOCATION L
ON D.LOCATION_ID = L.LOCATION_ID;

 DEPT_ID NAME REGIONAL_GROUP

------------- -------------- --------------------

 10 ACCOUNTING NEW YORK

 12 RESEARCH NEW YORK

 13 SALES NEW YORK

 14 OPERATIONS NEW YORK

 20 RESEARCH DALLAS

 23 SALES DALLAS

 24 OPERATIONS DALLAS

 30 SALES CHICAGO

 34 OPERATIONS CHICAGO

 40 OPERATIONS BOSTON

 43 SALES BOSTON

 50 MARKETING

 60 CONSULTING

 SAN FRANCISCO

14 rows selected.

We have seen earlier in this chapter that you can't perform a full outer join using the (+) operator
on both sides in the join condition. In Section 3.2.2, we showed how you can circumvent this
restriction by using a UNION query. With the new syntax in Oracle9i, you no longer need to
perform a UNION query to do a full outer join. The new syntax is not only ANSI-compliant, it is
elegant and efficient as well.

3.6.3 Advantages of the New Join Syntax

The new join syntax represents a bit of an adjustment to developers who are used to using
Oracle's traditional join syntax, including the outer join operator (+). However, there are several
advantages of using the new syntax:

The new join syntax follows the ANSI standard and therefore makes your code more
portable.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The new ON and USING clauses help in separating the join conditions from other filter
conditions in the WHERE clause. This enhances development productivity and
maintainability of your code.

The new syntax makes it possible to perform a full outer join without having to perform a
UNION of two SELECT queries.

We recommend that while working with Oracle9i, you use the new join syntax instead of the
traditional join syntax.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 4. Group Operations
Group operations are quite common in the day-to-day life of a SQL programmer. If we use SQL to
access a database, it is quite common to expect questions like:

What is the maximum salary in this department?

How many managers are there in each department?

What is the number of customers for each product?

Can we print the monthly aggregate sales for each region?

We need group operations to answer these questions. Oracle provides a rich set of features to
handle group operations. These features include aggregate functions, the GROUP BY clause, the
HAVING clause, the GROUPING function, and the extensions to the GROUP BY clause—
ROLLUP and CUBE.

This chapter deals with simple group operations involving the aggregate
functions, the GROUP BY and HAVING clauses. Advanced group
operations such as GROUPING, ROLLUP, and CUBE are discussed in
Chapter 12.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.1 Aggregate Functions

In essence, an aggregate function summarizes the results of an expression over a number of
rows, returning a single value. The general syntax for most of the aggregate functions is as
follows:

aggregate_function([DISTINCT | ALL] expression)

The syntax elements are:

aggregate_function

Gives the name of the function, e.g., SUM, COUNT, AVG, MAX, MIN, etc.

DISTINCT

Specifies that the aggregate function should consider only distinct values of the argument
expression.

ALL

Specifies that the aggregate function should consider all values, including all duplicate
values, of the argument expression. The default is ALL.

expression

Specifies a column, or any other expression, on which we want to perform the aggregation.

Let's look at a simple example. The following SQL uses the MAX function to find the maximum
salary of all employees:

SELECT MAX(SALARY) FROM EMPLOYEE;

MAX(SALARY)

 5000

In subsequent sections, we use a series of slightly more involved examples that illustrate various
aspects of aggregate function behavior. For those examples, we use the following CUST_ORDER
table:

DESC CUST_ORDER
 Name Null? Type

 -------------------------------- -------- --------------

 ORDER_NBR NOT NULL NUMBER(7)

 CUST_NBR NOT NULL NUMBER(5)

 SALES_EMP_ID NOT NULL NUMBER(5)

 SALE_PRICE NUMBER(9,2)

 ORDER_DT NOT NULL DATE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 EXPECTED_SHIP_DT NOT NULL DATE

 CANCELLED_DT DATE

 SHIP_DT DATE

 STATUS VARCHAR2(20)

SELECT ORDER_NBR, CUST_NBR, SALES_EMP_ID, SALE_PRICE,
ORDER_DT, EXPECTED_SHIP_DT
FROM CUST_ORDER;

ORDER_NBR CUST_NBR SALES_EMP_ID SALE_PRICE ORDER_DT EXPECTED_

---------- -------- ------------ ---------- --------- ---------

 1001 231 7354 99 22-JUL-01 23-JUL-01

 1000 201 7354 19-JUL-01 24-JUL-01

 1002 255 7368 12-JUL-01 25-JUL-01

 1003 264 7368 56 16-JUL-01 26-JUL-01

 1004 244 7368 34 18-JUL-01 27-JUL-01

 1005 288 7368 99 22-JUL-01 24-JUL-01

 1006 231 7354 22-JUL-01 28-JUL-01

 1007 255 7368 25 20-JUL-01 22-JUL-01

 1008 255 7368 25 21-JUL-01 23-JUL-01

 1009 231 7354 56 18-JUL-01 22-JUL-01

 1012 231 7354 99 22-JUL-01 23-JUL-01

 1011 201 7354 19-JUL-01 24-JUL-01

 1015 255 7368 12-JUL-01 25-JUL-01

 1017 264 7368 56 16-JUL-01 26-JUL-01

 1019 244 7368 34 18-JUL-01 27-JUL-01

 1021 288 7368 99 22-JUL-01 24-JUL-01

 1023 231 7354 22-JUL-01 28-JUL-01

 1025 255 7368 25 20-JUL-01 22-JUL-01

 1027 255 7368 25 21-JUL-01 23-JUL-01

 1029 231 7354 56 18-JUL-01 22-JUL-01

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

20 rows selected.

4.1.1 NULLs and Aggregate Functions

Notice that the column SALE_PRICE in the CUST_ORDER table is nullable, and that it contains
NULL values for some rows. To examine the effect of NULLs in an aggregate function, we
execute the following SQL:

SELECT COUNT(*), COUNT(SALE_PRICE) FROM CUST_ORDER;

COUNT(*) COUNT(SALE_PRICE)

-------- -----------------

 20 14

Notice the difference in the output of COUNT(*) and COUNT(SALE_PRICE). This is because
COUNT(SALE_PRICE) ignores NULLs, whereas COUNT(*) doesn't. The reason COUNT(*)
doesn't ignore NULLs is because it counts rows, not COLUMN values. The concept of NULL
doesn't apply to a row as a whole. Other than COUNT(*), there is only one other aggregate
function that doesn't ignore NULLs, and that is GROUPING. All other aggregate functions ignore
NULLs. We will discuss GROUPING in Chapter 12. For now, let's examine the effect of NULLs
when they are ignored.

SUM, MAX, MIN, AVG, etc. all ignore NULLs. Therefore, if we are trying to find a value such as
the average sale price in the CUST_ORDER table, the average will be of the 14 rows that have a
value for that column. The following example shows the count of all rows, the total of all sale
prices, and the average of all sale prices:

SELECT COUNT(*), SUM(SALE_PRICE), AVG(SALE_PRICE)
FROM CUST_ORDER;

 COUNT(*) SUM(SALE_PRICE) AVG(SALE_PRICE)

--------------- --------------- ---------------

 20 788 56.2857143

Note that AVG(SALE_PRICE) is not equal to SUM(SALE_PRICE) / COUNT(*). If it were, the
result of AVG(SALE_PRICE) would have been 788 / 20 = 39.4. But, since the AVG function
ignores NULLS, it divides the total sale price by 14, and not by 20 (788 / 14 = 56.2857143).

There may be situations where we want an average to be taken over all the rows in a table, not
just the rows with non-NULL values for the column in question. In these situations we have to use
the NVL function within the AVG function call to assign 0 (or some other useful value) to the
column in place of any NULL values. (DECODE or the new COALESCE function can be used in
place of NVL. See Chapter 9 for details.) Here's an example:

SELECT AVG(NVL(SALE_PRICE,0)) FROM CUST_ORDER;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT AVG(NVL(SALE_PRICE,0)) FROM CUST_ORDER;

AVG(NVL(SALE_PRICE,0))

 39.4

Notice that the use of NVL causes all 20 rows to be considered for average computation, and the
rows with NULL values for SALE_PRICE are assumed to have a 0 value for that column.

4.1.2 Use of DISTINCT and ALL

Most aggregate functions allow the use of DISTINCT or ALL along with the expression argument.
DISTINCT allows us to disregard duplicate expression values, while ALL causes duplicate
expression values to be included in the result. Notice that the column CUST_NBR has duplicate
values. Observe the result of the following SQL:

SELECT COUNT(CUST_NBR), COUNT(DISTINCT CUST_NBR), COUNT(ALL CUST_NBR)
FROM CUST_ORDER;

COUNT(CUST_NBR) COUNT(DISTINCTCUST_NBR) COUNT(ALLCUST_NBR)

--------------- ----------------------- ------------------

 20 6 20

There are six distinct values in the CUST_NBR column. Therefore, COUNT(DISTINCT
CUST_NBR) returns 6, whereas COUNT(CUST_NBR) and COUNT(ALL CUST_NBR) both return
20. ALL is the default, which means that if we don't specify either DISTINCT or ALL before the
expression argument in an aggregate function, the function will consider all the rows that have a
non-NULL value for the expression.

An important thing to note here is that ALL doesn't cause an aggregate function to consider NULL
values. For example, COUNT(ALL SALE_PRICE) in the following example still returns 14, and
not 20.

SELECT COUNT(ALL SALE_PRICE) FROM CUST_ORDER;

COUNT(ALLSALE_PRICE)

 14

Since ALL is the default, we can explicitly use ALL with every aggregate function. However, the
aggregate functions that take more than one argument as input don't allow the use of DISTINCT.
These include CORR, COVAR_POP, COVAR_SAMP, and all the linear regression functions.

In addition, some functions that take only one argument as input don't allow the use of DISTINCT.
This category includes STTDEV_POP, STDDEV_SAMP, VAR_POP, VAR_SAMP, and
GROUPING.

If we try to use DISTINCT with an aggregate function that doesn't allow it, we will get an error. For

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If we try to use DISTINCT with an aggregate function that doesn't allow it, we will get an error. For
example:

SELECT STDDEV_POP(DISTINCT SALE_PRICE)
FROM CUST_ORDER;
SELECT STDDEV_POP(DISTINCT SALE_PRICE)

 *

ERROR at line 1:

ORA-30482: DISTINCT option not allowed for this function

However, using ALL with such a function doesn't cause any error. For example:

SELECT STDDEV_POP(ALL SALE_PRICE)
FROM CUST_ORDER;

STDDEV_POP(ALLSALE_PRICE)

 29.5282639

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.2 The GROUP BY Clause

The GROUP BY clause, along with the aggregate functions, groups a result set into multiple
groups, and then produces a single row of summary information for each group. For example, if
we want to find the total number of orders for each customer, execute the following query:

SELECT CUST_NBR, COUNT(ORDER_NBR)
FROM CUST_ORDER
GROUP BY CUST_NBR;

 CUST_NBR COUNT(ORDER_NBR)

---------- ----------------

 201 2

 231 6

 244 2

 255 6

 264 2

 288 2

6 rows selected.

The query produces one summary line of output for each customer. This is the essence of a
GROUP BY query. We asked Oracle to GROUP the results BY CUST_NBR; therefore, it
produced one output row for each distinct value of CUST_NBR. Each data value for a given
customer represents a summary based on all rows for that customer.

The nonaggregate expression CUST_NBR in the SELECT list also appears in the GROUP BY
clause. If we have a mix of aggregate and nonaggregate expressions in the SELECT list, SQL
expects that we are trying to perform a GROUP BY operation, and we must also specify all
nonaggregate expressions in the GROUP BY clause. SQL returns an error if we fail to do so. For
example, if we omit the GROUP BY clause, the following error is returned:

SELECT CUST_NBR, SALES_EMP_ID, COUNT(ORDER_NBR)
FROM CUST_ORDER;
SELECT CUST_NBR, SALES_EMP_ID, COUNT(ORDER_NBR)

 *

ERROR at line 1:

ORA-00937: not a single-group group function

Similarly, if we forget to include all nonaggregate expressions from the SELECT list in the
GROUP BY clause, SQL returns the following error:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT CUST_NBR, SALES_EMP_ID, COUNT(ORDER_NBR)
FROM CUST_ORDER
GROUP BY CUST_NBR;
SELECT CUST_NBR, SALES_EMP_ID, COUNT(ORDER_NBR)

 *

ERROR at line 1:

ORA-00979: not a GROUP BY expression

Finally, we can't use a group function (aggregate function) in the GROUP BY clause. We will get
an error if we attempt to do so, as in the following example:

SELECT CUST_NBR, COUNT(ORDER_NBR)
FROM CUST_ORDER
GROUP BY CUST_NBR, COUNT(ORDER_NBR);
GROUP BY CUST_NBR, COUNT(ORDER_NBR)

 *

ERROR at line 3:

ORA-00934: group function is not allowed here

If we have a constant in our SELECT list, we don't need to include it in the GROUP BY clause.
However, including the constant in the GROUP BY clause doesn't alter the result. Therefore, both
the following statements will produce the same output:

SELECT 'CUSTOMER', CUST_NBR, COUNT(ORDER_NBR)
FROM CUST_ORDER
GROUP BY CUST_NBR;

SELECT 'CUSTOMER', CUST_NBR, COUNT(ORDER_NBR)
FROM CUST_ORDER
GROUP BY 'CUSTOMER', CUST_NBR;

'CUSTOME CUST_NBR COUNT(ORDER_NBR)

-------- ---------- ----------------

CUSTOMER 201 2

CUSTOMER 231 6

CUSTOMER 244 2

CUSTOMER 255 6

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CUSTOMER 255 6

CUSTOMER 264 2

CUSTOMER 288 2

6 rows selected.

There are certain situations when we want an expression in the select list, but don't want to group
by the same. For example, we might want to display a line number along with the summary
information for each customer. Attempt to do so using the following query, and we will get an
error:

SELECT ROWNUM, CUST_NBR, COUNT(ORDER_NBR)
FROM CUST_ORDER
GROUP BY CUST_NBR;
SELECT ROWNUM, CUST_NBR, COUNT(ORDER_NBR)

 *

ERROR at line 1:

ORA-00979: not a GROUP BY expression

If we include ROWNUM in the GROUP BY clause, we'll get the following, unexpected result:

SELECT ROWNUM, CUST_NBR, COUNT(ORDER_NBR)
FROM CUST_ORDER
GROUP BY ROWNUM, CUST_NBR;

 ROWNUM CUST_NBR COUNT(ORDER_NBR)

---------- ---------- ----------------

 1 231 1

 2 201 1

 3 255 1

 4 264 1

 5 244 1

 6 288 1

 7 231 1

 8 255 1

 9 255 1

 10 231 1

 11 231 1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 11 231 1

 12 201 1

 13 255 1

 14 264 1

 15 244 1

 16 288 1

 17 231 1

 18 255 1

 19 255 1

 20 231 1

20 rows selected.

We certainly didn't want this result, did we? We wanted to receive one summary row for each
customer, and then to display ROWNUM for those lines. But when we include ROWNUM in the
GROUP BY clause, it produces one summary row for each row selected from the table
CUST_ORDER. To get the expected result, we should use the following SQL:

SELECT ROWNUM, V.*
FROM (SELECT CUST_NBR, COUNT(ORDER_NBR)
 FROM CUST_ORDER GROUP BY CUST_NBR) V;

 ROWNUM CUST_NBR COUNT(ORDER_NBR)

---------- ---------- ----------------

 1 201 2

 2 231 6

 3 244 2

 4 255 6

 5 264 2

 6 288 2

6 rows selected.

The construct in the FROM clause is called an inline view. Read more about inline views in
Chapter 5.

Syntactically, it is not mandatory to include all the expressions of the GROUP BY clause in the
SELECT list. However, those expressions not in the SELECT list will not be represented in the
output; therefore, the output may not make much sense. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT COUNT(ORDER_NBR)
FROM CUST_ORDER
GROUP BY CUST_NBR;

COUNT(ORDER_NBR)

 2

 6

 2

 6

 2

 2

6 rows selected.

This query produces a count of orders for each customer (by grouping based on CUST_NBR), but
without the CUST_NBR in the output we can't associate the counts with the customers. Extending
the previous example, we can see that without a consistent SELECT list and GROUP BY clause,
the output may be a bit confusing. The following example produces output that at first glance
seems useful:

SELECT CUST_NBR, COUNT(ORDER_NBR)
FROM CUST_ORDER
GROUP BY CUST_NBR, ORDER_DT;

 CUST_NBR COUNT(ORDER_NBR)

---------- ----------------

 201 2

 231 2

 231 4

 244 2

 255 2

 255 2

 255 2

 264 2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 288 2

9 rows selected.

From the output, it appears that we are trying to obtain a count of orders for each customer.
However, there are multiple rows in the output for some CUST_NBR values. The fact that we
have included ORDER_DT in the GROUP BY clause, and therefore generated a summary result
for each combination of CUST_NBR and ORDER_DT, is missing from the output. We can't make
sense of the output unless the output and the SQL statement are looked at together. We can't
expect all readers of SQL output to understand SQL syntax, can we? Therefore, we always
recommend maintaining consistency between the nonaggregate expressions in the SELECT list
and the expressions in the GROUP BY clause. A more meaningful version of the previous SQL
statement would be as follows:

SELECT CUST_NBR, ORDER_DT, COUNT(ORDER_NBR)
FROM CUST_ORDER
GROUP BY CUST_NBR, ORDER_DT;

 CUST_NBR ORDER_DT COUNT(ORDER_NBR)

---------- --------- ----------------

 201 19-JUL-01 2

 231 18-JUL-01 2

 231 22-JUL-01 4

 244 18-JUL-01 2

 255 12-JUL-01 2

 255 20-JUL-01 2

 255 21-JUL-01 2

 264 16-JUL-01 2

 288 22-JUL-01 2

9 rows selected.

This output is consistent with the GROUP BY clause in the query. We're more likely to make the
correct assumption about what this output represents.

4.2.1 GROUP BY Clause and NULL Values

When we GROUP BY a column that contains NULL values for some rows, all the rows with NULL
values are placed into a single group and presented as one summary row in the output. For
example:

SELECT SALE_PRICE, COUNT(ORDER_NBR)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT SALE_PRICE, COUNT(ORDER_NBR)
FROM CUST_ORDER
GROUP BY SALE_PRICE;

SALE_PRICE COUNT(ORDER_NBR)

---------- ----------------

 25 4

 34 2

 56 4

 99 4

 6

Notice that the last row in the output consists of a NULL value for the column SALE_PRICE.
Since the GROUP BY clause inherently performs an ORDER BY on the group by columns, the
row containing the NULL value is put at the end. If we want this row to be the first row in the
output, we can perform an ORDER BY on SALE_PRICE in descending order:

SELECT SALE_PRICE, COUNT(ORDER_NBR)
FROM CUST_ORDER
GROUP BY SALE_PRICE
ORDER BY SALE_PRICE DESC;

SALE_PRICE COUNT(ORDER_NBR)

---------- ----------------

 6

 99 4

 56 4

 34 2

 25 4

4.2.2 GROUP BY Clause with WHERE Clause

While producing summary results using the GROUP BY clause, we can filter records from the
table based on a WHERE clause, as in the following example, which produces a count of orders
in which the sale price exceeds $25.00 for each customer:

SELECT CUST_NBR, COUNT(ORDER_NBR)
FROM CUST_ORDER
WHERE SALE_PRICE > 25

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WHERE SALE_PRICE > 25
GROUP BY CUST_NBR;

 CUST_NBR COUNT(ORDER_NBR)

---------- ----------------

 231 4

 244 2

 264 2

 288 2

While executing a SQL statement with a WHERE clause and a GROUP BY clause, Oracle first
applies the WHERE clause and filters out the rows that don't satisfy the WHERE condition. The
rows that satisfy the WHERE clause are then grouped using the GROUP BY clause.

The SQL syntax requires that the WHERE clause must come before the GROUP BY clause.
Otherwise, the following error is returned:

SELECT CUST_NBR, COUNT(ORDER_NBR)
FROM CUST_ORDER
GROUP BY CUST_NBR
WHERE SALE_PRICE > 25;
WHERE SALE_PRICE > 25

*

ERROR at line 4:

ORA-00933: SQL command not properly ended

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.3 The HAVING Clause

The HAVING clause is closely associated with the GROUP BY clause. The HAVING clause is
used to put a filter on the groups created by the GROUP BY clause. If a query has a HAVING
clause along with a GROUP BY clause, the result set will include only the groups that satisfy the
condition specified in the HAVING clause. Let's look at some examples that illustrate this. The
following query returns the number of orders per customer:

SELECT CUST_NBR, COUNT(ORDER_NBR)
FROM CUST_ORDER
GROUP BY CUST_NBR
HAVING CUST_NBR < 260;

 CUST_NBR COUNT(ORDER_NBR)

---------- ----------------

 201 2

 231 6

 244 2

 255 6

Notice that the output only includes customers with numbers below 260. That's because the
HAVING clause specified CUST_NBR < 260 as a condition. Orders for all customers were
counted, but only those groups that matched the specified HAVING condition were returned as
the result.

The previous example is a poor use of the HAVING clause, because that clause only references
unsummarized data. It's more efficient to use WHERE CUST_NBR < 260 instead of HAVING
CUST_NBR < 260, because the WHERE clause eliminates rows prior to summarization, whereas
HAVING eliminates groups post-summarization. A better version of the previous query would be:

SELECT CUST_NBR, COUNT(ORDER_NBR)

FROM CUST_ORDER

WHERE CUST_NBR < 260;

The next example shows a more appropriate use of the HAVING clause:

SELECT CUST_NBR, COUNT(ORDER_NBR)
FROM CUST_ORDER
GROUP BY CUST_NBR
HAVING COUNT(ORDER_NBR) > 2;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HAVING COUNT(ORDER_NBR) > 2;

 CUST_NBR COUNT(ORDER_NBR)

---------- ----------------

 231 6

 255 6

Note the use of an aggregate function in the HAVING clause. This is an appropriate use for
HAVING, because the results of the aggregate function cannot be determined until after the
grouping takes place.

The syntax for the HAVING clause is similar to that of the WHERE clause. However, there is one
restriction on the condition in the HAVING clause. The condition can only refer to expressions in
the SELECT list or the GROUP BY clause. If we specify an expression in the HAVING clause that
isn't in the SELECT list or the GROUP BY clause, we will get an error. For example:

SELECT CUST_NBR, COUNT(ORDER_NBR)
FROM CUST_ORDER
GROUP BY CUST_NBR
HAVING ORDER_DT < SYSDATE;
HAVING ORDER_DT < SYSDATE

 *

ERROR at line 4:

ORA-00979: not a GROUP BY expression

The order of the GROUP BY clause and the HAVING clause in a SELECT statement is not
important. We can specify the GROUP BY clause before the HAVING clause, or vice versa.
Therefore the following two queries are the same and produce the same result:

SELECT CUST_NBR, COUNT(ORDER_NBR)
FROM CUST_ORDER
GROUP BY CUST_NBR
HAVING COUNT(ORDER_NBR) > 1;

SELECT CUST_NBR, COUNT(ORDER_NBR)
FROM CUST_ORDER
HAVING COUNT(ORDER_NBR) > 1
GROUP BY CUST_NBR;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GROUP BY CUST_NBR;

 CUST_NBR COUNT(ORDER_NBR)

---------- ----------------

 231 6

 255 6

We can use a WHERE clause and a HAVING clause together in a query. When we do, it is
important to understand the impact of the two clauses. Note that the WHERE clause is executed
first, and the rows that don't satisfy the WHERE condition are not passed to the GROUP BY
clause. The GROUP BY clause summarizes the filtered data into groups, and then the HAVING
clause is applied to the groups to eliminate the groups that don't satisfy the HAVING condition.
The following example illustrates this:

SELECT CUST_NBR, COUNT(ORDER_NBR)
FROM CUST_ORDER
WHERE SALE_PRICE > 25
GROUP BY CUST_NBR
HAVING COUNT(ORDER_NBR) > 1;

 CUST_NBR COUNT(ORDER_NBR)

---------- ----------------

 231 4

 244 2

 264 2

 288 2

In this example, the WHERE clause first eliminates all the orders that don't satisfy the condition
SALE_PRICE > 25. The rest of the rows are grouped on CUST_NBR. The HAVING clause
eliminates the customers that don't have more than one order.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 5. Subqueries
Some endeavors require a certain level of preparation before the main activity can commence.
Cooking, for example, often involves pre-mixing sets of ingredients before they are combined.
Similarly, certain types of SQL statements benefit from the creation of intermediate result sets to
aid in statement execution. The structure responsible for generating intermediate result sets is the
subquery. This chapter will define and illustrate the use of subqueries in SQL statements.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.1 What Is a Subquery?

A subquery is a SELECT statement that is nested within another SQL statement. For the purpose
of this discussion, we will call the SQL statement that contains a subquery the containing
statement. Subqueries are executed prior to execution of the containing SQL statement (see
Section 5.3 later in this chapter for the exception to this rule), and the result set generated by the
subquery is discarded after the containing SQL statement has finished execution. Thus, a
subquery can be thought of as a temporary table with statement scope.

Syntactically, subqueries are enclosed within parentheses. For example, the following SELECT
statement contains a simple subquery in its WHERE clause:

SELECT * FROM customer

WHERE cust_nbr = (SELECT 123 FROM dual);

The subquery in this statement is absurdly simple, and completely unnecessary, but it does serve
to illustrate a point. When this statement is executed, the subquery is evaluated first. The result of
that subquery then becomes a value in the WHERE clause expression:

SELECT * FROM customer

WHERE cust_nbr = 123;

With the subquery out of the way, the containing query can now be evaluated. In this case, it
would bring back information about customer number 123.

Subqueries are most often found in the WHERE clause of a SELECT, UPDATE, or DELETE
statement. A subquery may either be correlated with its containing SQL statement, meaning that it
references one or more columns from the containing statement, or it might reference nothing
outside itself, in which case it is called a noncorrelated subquery. A less-commonly-used but
powerful variety of subquery, called the inline view, occurs in the FROM clause of a select
statement. Inline views are always noncorrelated; they are evaluated first and behave like
unindexed tables cached in memory for the remainder of the query.

Subqueries are useful because they allow comparisons to be made without changing the size of
the result set. For example, we might want to find all customers that placed orders last month, but
we might not want any given customer to be included more than once, regardless of the number
of orders placed by that customer. Whereas joining the customer and orders tables would expand
the result set by the number of orders placed by each customer, a subquery against the orders
table using the IN or EXISTS operator would determine whether each customer placed an order,
without regard for the number of orders placed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.2 Noncorrelated Subqueries

Noncorrelated subqueries allow each row from the containing SQL statement to be compared to a
set of values. Divide noncorrelated subqueries into the following three categories, depending on
the number of rows and columns returned in their result set:

Single-row, single-column subqueries

Multiple-row, single-column subqueries

Multiple-column subqueries

Depending on the category, different sets of operators may be employed by the containing SQL
statement to interact with the subquery.

5.2.1 Single-Row, Single-Column Subqueries

A subquery that returns a single row with a single column is treated like a scalar by the containing
statement; not surprisingly, these types of subqueries are known as scalar subqueries. The
subquery may appear on either side of a condition, and the usual comparison operators (=, <, >,
!=, <=, >=) are employed. The following query illustrates the utility of single-row, single-column
subqueries by finding all employees earning an above-average salary. The subquery returns the
average salary, and the containing query then returns all employees who earn more than that
amount.

SELECT lname
FROM employee
WHERE salary > (SELECT AVG(salary)
 FROM EMPLOYEE);

LNAME

Brown

Smith

Blake

Isaacs

Jacobs

King

Fox

Anderson

Nichols

Iverson

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Iverson

Peters

Russell

As this query demonstrates, it can be perfectly reasonable for a subquery to reference the same
tables as the containing query. In fact, subqueries are frequently used to isolate a subset of
records within a table. For example, many applications include maintenance routines that clean
up operational data, such as exception or load logs. Every week, a script might delete all but the
latest day's activity. For example:

DELETE FROM load_log

WHERE load_dt < (SELECT MAX(TRUNC(load_dt))

 FROM load_log);

Noncorrelated subqueries are also commonly found outside the WHERE clause, as illustrated by
the following query, which identifies the salesperson responsible for the most orders:

SELECT sales_emp_id, COUNT(*)
FROM cust_order
GROUP BY sales_emp_id
HAVING COUNT(*) = (SELECT MAX(COUNT(*))
 FROM cust_order
 GROUP BY sales_emp_id);

SALES_EMP_ID COUNT(*)

------------ ----------

 30 121

This subquery calculates the number of orders attributable to each salesperson, and then applies
the MAX function to return only the highest number of orders. The containing query performs the
same aggregation as the subquery and then keeps only those salespeople whose total sales
count matches the maximum value returned by the subquery. Interestingly, the containing query
can return more than one row if multiple salespeople tie for the maximum sales count, while the
subquery is guaranteed to return a single row and column. If it seems wasteful that the subquery
and containing query both perform the same aggregation, it is; see Chapter 13 for more efficient
ways to handle these types of queries.

So far, we have seen scalar subqueries in the WHERE and HAVING clauses of SELECT
statements, along with the WHERE clause of a DELETE statement. Before we delve deeper into
the different types of subqueries, let's explore where else subqueries can and can't be utilized in
SQL statements:

The FROM clause may contain any type of noncorrelated subquery.

The SELECT and ORDER BY clauses may contain scalar subqueries.

The GROUP BY clause may not contain subqueries.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The START WITH and CONNECT BY clauses, used for querying hierarchical data, may
contain subqueries and will be examined in detail in Chapter 8.

5.2.2 Multiple-Row Subqueries

Now that we know how to use single-row, single-column subqueries, let's explore how to use
subqueries that return multiple rows. When a subquery returns more than one row, it is not
possible to use only comparison operators, since a single value cannot be directly compared to a
set of values. However, a single value can be compared to each value in a set. To accomplish
this, the special keywords ANY and ALL may be used with comparison operators to determine if a
value is equal to (or less than, greater than, etc.) any members of the set or all members of the
set. Consider the following query:

SELECT fname, lname
FROM employee
WHERE dept_id = 3 AND salary >= ALL
 (SELECT salary
 FROM employee
 WHERE dept_id = 3);

FNAME LNAME

-------------------- --------------------

Mark Russell

The subquery returns the set of salaries for department 3, and the containing query checks each
employee in the department to see if her salary is greater or equal to every salary returned by the
subquery. Thus, this query retrieves the name of the highest paid person in department 3. While
everyone except the lowest paid employee has a salary >= some of the salaries in the
departement, only the highest paid employee has a salary >= all of the salaries in the department.
If multiple employees tie for the highest salary in the department, multiple names will be returned.

Another way to phrase the previous query is to find the employee whose salary is not less than
any other salary in the department. We can do this using the ANY operator:

SELECT fname, lname

FROM employee

WHERE dept_id = 3 AND NOT salary < ANY
 (SELECT salary

 FROM employee

 WHERE dept_id = 3);

There are almost always multiple ways to phrase the same query. One of the challenges of writing
SQL is striking the right balance between efficiency and readability. In this case, I might prefer
using AND salary >= ALL over AND NOT salary < ANY because the first variation is easier to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

using AND salary >= ALL over AND NOT salary < ANY because the first variation is easier to
understand; however, the latter form might prove more efficient, since each evaluation of the
subquery results requires from 1 to N comparisons when using ANY versus exactly N
comparisons when using ALL.[1]

[1] If there are 100 people in the department, each of the 100 salaries needs to be compared to the entire set of 100.
When using ANY, the comparison can be suspended as soon as a larger salary is identified in the set, whereas using
ALL requires 100 comparisons to ensure that there are no smaller salaries in the set.

The next query uses the ANY operator to find all employees whose salary exceeds that of any
top-level manager:

SELECT fname, lname
FROM employee
WHERE manager_emp_id IS NOT NULL
 AND salary > ANY
 (SELECT salary
 FROM employee
 WHERE manager_emp_id IS NULL);

FNAME LNAME

-------------------- --------------------

Laura Peters

Mark Russell

The subquery returns the set of salaries for all top-level managers, and the containing query
returns the names of non-top-level managers whose salary exceeds any of the salaries returned
by the subquery. Any time this query returns one or more rows, rest assured that top-level
management will vote themselves a pay increase.

For the previous three queries, failure to include either the ANY or ALL operators will result in the
following error:

ORA-01427: single-row subquery returns more than one row

The wording of this error message is a bit confusing. After all, how can a single-row subquery
return multiple rows? What the error message is trying to convey is that a multiple-row subquery
has been identified where only a single-row subquery is allowed. If we are not absolutely certain
that our subquery will return exactly one row, we must include ANY or ALL to ensure our code
doesn't fail in the future.

Along with ANY and ALL, we may also use the IN operator for working with multi-row subqueries.
Using IN with a subquery is functionally equivalent to using = ANY, and returns TRUE if a match
is found in the set returned by the subquery. The following query uses IN to postpone shipment of
all orders containing parts which are not currently in stock:

UPDATE cust_order

SET expected_ship_dt = TRUNC(SYSDATE) + 1

WHERE ship_dt IS NULL AND order_nbr IN

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WHERE ship_dt IS NULL AND order_nbr IN

 (SELECT l.order_nbr

 FROM line_item l, part p

 WHERE l.part_nbr = p.part_nbr AND p.inventory_qty = 0);

The subquery returns the set of orders requesting out-of-stock parts, and the containing UPDATE
statement modifies the expected ship date of all orders in the set. We think you will agree that IN
is more intuitive than = ANY, which is why IN is almost always used in such situations. Similarly,
we can use NOT IN instead of using != ANY as demonstrated by the next query, which deletes all
customers who haven't placed an order in the past five years:

DELETE FROM customer

WHERE cust_nbr NOT IN

 (SELECT cust_nbr

 FROM cust_order

 WHERE order_dt >= TRUNC(SYSDATE) -- (365 * 5));

The subquery returns the set of customers that have placed an order in the past five years, and
the containing DELETE statement removes all customers that are not in the set returned by the
subquery.

Finding members of one set that do not exist in another set is referred to as an anti-join. As the
name implies, an anti-join is the opposite of a join; rows from table A are returned if the specified
data is not found in table B. The Oracle optimizer can employ multiple strategies for executing
such queries, including a merge anti-join or a hash anti-join.[2]

[2] Since this is not a tuning book, I will refrain from delving into the inner workings of the Oracle optimizer and how the
optimizer can be influenced via hints. For more information, please see the Oracle SQL Tuning Pocket Reference by
Mark Gurry (O'Reilly).

5.2.3 Multiple-Column Subqueries

While all of the previous examples compare a single column from the containing SQL statement
to the result set returned by the subquery, it is also possible to issue a subquery against multiple
columns. Consider the following UPDATE statement, which rolls up data from an operational table
into an aggregate table:

UPDATE monthly_orders SET

 tot_orders = (SELECT COUNT(*)

 FROM cust_order

 WHERE order_dt >= TO_DATE('01-NOV-2001','DD-MON-YYYY')

 AND order_dt < TO_DATE('01-DEC-2001','DD-MON-YYYY')

 AND cancelled_dt IS NULL),

 max_order_amt = (SELECT MAX(sale_price)

 FROM cust_order

 WHERE order_dt >= TO_DATE('01-NOV-2001','DD-MON-YYYY')

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 AND order_dt < TO_DATE('01-DEC-2001','DD-MON-YYYY')

 AND cancelled_dt IS NULL),

 min_order_amt = (SELECT MIN(sale_price)

 FROM cust_order

 WHERE order_dt >= TO_DATE('01-NOV-2001','DD-MON-YYYY')

 AND order_dt < TO_DATE('01-DEC-2001','DD-MON-YYYY')

 AND cancelled_dt IS NULL),

 tot_amt = (SELECT SUM(sale_price)

 FROM cust_order

 WHERE order_dt >= TO_DATE('01-NOV-2001','DD-MON-YYYY')

 AND order_dt < TO_DATE('01-DEC-2001','DD-MON-YYYY')

 AND cancelled_dt IS NULL)

WHERE month = 11 and year = 2001;

The UPDATE statement modifies four columns in the monthly_orders table, and values for each
of the four columns are calculated by aggregating data in the cust_order table. Looking closely,
we see that the WHERE clauses for all four subqueries are identical; only the aggregation type
differs in the four queries. The next query demonstrates how all four columns can be populated
with a single trip through the cust_order table:

UPDATE monthly_orders

SET (tot_orders, max_order_amt, min_order_amt, tot_amt) =
 (SELECT COUNT(*), MAX(sale_price), MIN(sale_price), SUM(sale_price)

 FROM cust_order

 WHERE order_dt >= TO_DATE('01-NOV-2001','DD-MON-YYYY')

 AND order_dt < TO_DATE('01-DEC-2001','DD-MON-YYYY')

 AND cancelled_dt IS NULL)

WHERE month = 11 and year = 2001;

The second statement achieves the same result more efficiently than the first by performing four
aggregations during one trip through the cust_order table, rather than one aggregation during
each of four separate trips.

Whereas the previous example demonstrates the use of a multiple-column subquery in the SET
clause of an UPDATE statement, such subqueries may also be utilized in the WHERE clause of a
SELECT, UPDATE, or DELETE statement. The next statement deletes all items from open orders
that include discontinued parts:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DELETE FROM line_item

WHERE (order_nbr, part_nbr) IN

 (SELECT c.order_nbr, p.part_nbr

 FROM cust_order c, line_item li, part p

 WHERE c.ship_dt IS NULL AND c.cancelled_dt IS NULL

 AND c.order_nbr = li.order_nbr

 AND li.part_nbr = p.part_nbr

 AND p.status = 'DISCONTINUED');

Note the use of the IN operator in the WHERE clause. Two columns are listed together in
parentheses prior to the IN keyword. Values in these two columns are compared to the set of two
values returned by each row of the subquery. If a match is found, the row is removed from the
line_item table.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.3 Correlated Subqueries

A subquery that references one or more columns from its containing SQL statement is called a
correlated subquery. Unlike noncorrelated subqueries, which are executed exactly once prior to
execution of the containing statement, a correlated subquery is executed once for each candidate
row in the intermediate result set of the containing query. For example, consider the following
query, which locates all parts supplied by Acme Industries that have been purchased ten or more
times since December:

SELECT p.part_nbr, p.name

FROM supplier s, part p

WHERE s.name = 'Acme Industries'

 AND s.supplier_id = p.supplier_id

 AND 10 <=

 (SELECT COUNT(*)

 FROM cust_order co, line_item li

 WHERE li.part_nbr = p.part_nbr
 AND li.order_nbr = co.order_nbr

 AND co.order_dt >= TO_DATE('01-DEC-2001','DD-MON-YYYY'));

The reference to p.part_nbr is what makes the subquery correlated; values for p.part_nbr must be
supplied by the containing query before the subquery can execute. If there are 10,000 parts in the
part table, but only 100 are supplied by Acme Industries, the subquery will be executed once for
each of the 100 rows in the intermediate result set created by joining the part and supplier
tables.[3]

[3] It is possible to ask for the subquery to be evaluated earlier in the execution plan using the PUSH_SUBQ hint; once
again, we suggest you pick up a good book on Oracle tuning if you are interested in learning more.

Correlated subqueries are often used to test whether relationships exist without regard to
cardinality. We might, for example, want to find all parts that have shipped at least once in 2002.
The EXISTS operator is used for these types of queries, as illustrated by the following query:

SELECT p.part_nbr, p.name, p.unit_cost

FROM part p

WHERE EXISTS

 (SELECT 1 FROM line_item li, cust_order co

 WHERE li.part_nbr = p.part_nbr
 AND li.order_nbr = co.order_nbr

 AND co.ship_dt >= TO_DATE('01-JAN-2002','DD-MON-YYYY'));

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 AND co.ship_dt >= TO_DATE('01-JAN-2002','DD-MON-YYYY'));

As long as the subquery returns one or more rows, the EXISTS condition is satisfied without
regard for how many rows were actually returned by the subquery. Since the EXISTS operator
returns TRUE or FALSE depending on the number of rows returned by the subquery, the actual
columns returned by the subquery are irrelevant. The SELECT clause requires at least one
column, however, so it is common practice to use either the literal "1" or the wildcard " * ".

Conversely, we can test whether a relationship does not exist:

UPDATE customer c

SET c.inactive_ind = 'Y', c.inactive_dt = TRUNC(SYSDATE)

WHERE c.inactive_dt IS NULL

 AND NOT EXISTS (SELECT 1 FROM cust_order co
 WHERE co.cust_nbr = c.cust_nbr

 AND co.order_dt > TRUNC(SYSDATE) -- 365);

This statement makes all customer records inactive for those customers who haven't placed an
order in the past year. Such queries are commonly found in maintenance routines. For example,
foreign key constraints might prevent child records from referring to a nonexistent parent, but it is
possible to have parent records without children. If business rules prohibit this situation, we might
run a utility each week that removes these records, as in:

DELETE FROM cust_order co

WHERE co.order_dt > TRUNC(SYSDATE) -- 7

 AND co.cancelled_dt IS NULL

 AND NOT EXISTS

 (SELECT 1 FROM line_item li

 WHERE li.order_nbr = co.order_nbr);

A query that includes a correlated subquery using the EXISTS operator is referred to as a semi-
join. A semi-join includes rows in table A for which corresponding data is found one or more times
in table B. Thus, the size of the final result set is unaffected by the number of matches found in
table B. Similar to the anti-join discussed earlier, the Oracle optimizer can employ multiple
strategies for executing such queries, including a merge semi-join or a hash semi-join.

While they are very often used together, the use of correlated subqueries does not require the
EXISTS operator. If our database design includes denormalized columns, for example, we might
run nightly routines to recalculate the denormalized data, as in:

UPDATE customer c

SET (c.tot_orders, c.last_order_dt) =

 (SELECT COUNT(*), MAX(co.order_dt)

 FROM cust_order co

 WHERE co.cust_nbr = c.cust_nbr

 AND co.cancelled_dt IS NULL);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 AND co.cancelled_dt IS NULL);

Because a SET clause assigns values to columns in the table, the only operator allowed is "=".
The subquery returns exactly one row (thanks to the aggregation functions), so the results may be
safely assigned to the target columns. Rather than recalculating the entire sum each day, a more
efficient method might be to update only those customers who placed orders today:

UPDATE customer c SET (c.tot_orders, c.last_order_dt) =

 (SELECT c.tot_orders + COUNT(*), MAX(co.order_dt)
 FROM cust_order co

 WHERE co.cust_nbr = c.cust_nbr
 AND co.cancelled_dt IS NULL

 AND co.order_dt >= TRUNC(SYSDATE))

WHERE c.cust_nbr IN

 (SELECT co.cust_nbr FROM cust_order co

 WHERE co.order_dt >= TRUNC(SYSDATE)

 AND co.cancelled_dt IS NULL);

As the previous statement shows, data from the containing query can be used for other purposes
in the correlated subquery than just join conditions in the WHERE clause. In this example, the
SELECT clause of the correlated subquery adds today's sales totals to the previous value of
tot_orders in the customer table to arrive at the new value.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.4 Inline Views

Most texts covering SQL define the FROM clause of a SELECT statement as containing a list of
tables and/or views. Please abandon this definition and replace it with the following: the FROM
clause contains a list of data sets. In this light, it is easy to see how the FROM clause can contain
tables (permanent data sets), views (virtual data sets), and SELECT statements (temporary data
sets). A SELECT statement in the FROM clause of a containing SELECT statement is referred to
as an inline view:[4] it is one of the most powerful, underutilized features of Oracle SQL.

[4] In the authors' opinion, the name "inline view" is confusing and tends to intimidate people. Since it is a subquery that
executes prior to the containing query, a more palatable name might have been a "pre-query."

Here's a simple example:

SELECT d.dept_id, d.name, emp_cnt.tot
FROM department d,
 (SELECT dept_id, COUNT(*) tot
 FROM employee
 GROUP BY dept_id) emp_cnt
WHERE d.dept_id = emp_cnt.dept_id;

 DEPT_ID NAME TOT

---------- -------------------- ----------

 1 Human Resources 1

 2 Accounting 1

 3 Sales 24

In this example, the FROM clause references the department table and an inline view called
emp_cnt, which calculates the number of employees in each department. The two sets are joined
using dept_id and the ID, name, and employee count are returned for each department. While this
example is fairly simple, inline views allow us to do things in a single query that might otherwise
require multiple select statements or a procedural language to accomplish.

5.4.1 Inline View Basics

Because the result set from an inline view is referenced by other elements of the containing query,
we must give our inline view a name and provide aliases for all ambiguous columns. In the
previous example, the inline view was given the name "emp_cnt", and the alias "tot" was assigned
to the COUNT(*) column. Similar to other types of subqueries, inline views may join multiple tables,
call built-in and user-defined functions, specify optimizer hints, and include GROUP BY, HAVING,
and CONNECT BY clauses. Unlike other types of subqueries, an inline view may also contain an
ORDER BY clause, which opens several interesting possibilities (see Section 5.5 later in the
chapter for an example using ORDER BY in a subquery).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Inline views are particularly useful when we need to combine data at different levels of
aggregation. In the previous example, we needed to retrieve all rows from the department table
and include aggregated data from the employee table, so I chose to do the aggregation within an
inline view and join the results to the department table. Anyone involved in report generation or
data warehouse extraction, transformation, and load (ETL) applications has doubtless encountered
situations where data from various levels of aggregation needs to be combined; with inline views,
we should be able to produce the desired results in a single SQL statement rather than having to
break the logic into multiple pieces or write code in a procedural language.

When considering using an inline view, ask the following questions:

1. What value does the inline view add to the readability and, more importantly, the
performance of the containing query?

2. How large will the result set generated by the inline view be?

3. How often, if ever, will I have need of this particular data set?

In general, using an inline view should enhance the readability and performance of the query, and
it should generate a manageable data set that is of no value to other statements or sessions;
otherwise, we may want to consider building a permanent or temporary table so that we can share
the data between sessions and build additional indexes as needed.

5.4.2 Query Execution

Inline views are always executed prior to the containing query and, thus, may not reference
columns from other tables or inline views from the same query. After execution, the containing
query interacts with the inline view as if it were an unindexed, in-memory table. If inline views are
nested, the innermost inline view is executed first, followed by the next-innermost inline view, and
so on. Consider the following query:

SELECT d.dept_id dept_id, d.name dept_name,
 dept_orders.tot_orders tot_orders
FROM department d,
 (SELECT e.dept_id dept_id, SUM(emp_orders.tot_orders) tot_orders
 FROM employee e,
 (SELECT sales_emp_id, COUNT(*) tot_orders
 FROM cust_order
 WHERE order_dt >= TRUNC(SYSDATE) -- 365
 AND cancelled_dt IS NULL
 GROUP BY sales_emp_id
) emp_orders
 WHERE e.emp_id = emp_orders.sales_emp_id
 GROUP BY e.dept_id
) dept_orders

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

) dept_orders
WHERE d.dept_id = dept_orders.dept_id;

 DEPT_ID DEPT_NAME TOT_ORDERS

---------- -------------------- ----------

 3 Sales 2760

If you're new to inline views, this query might be intimidating. Start with the innermost query,
understand the result set generated by that query, and move outward to the next level. Since inline
views must be noncorrelated, you can run each inline view's SELECT statement individually and
look at the results.[5]

[5] From the standpoint of the inline view, this would constitute an "out-of-query experience."

For the previous query, executing the emp_orders inline view generates the following result set:

SELECT sales_emp_id, COUNT(*) tot_orders
FROM cust_order
WHERE order_dt >= TRUNC(SYSDATE) -- 365
 AND cancelled_dt IS NULL
GROUP BY sales_emp_id

SALES_EMP_ID TOT_ORDERS

------------ ----------

 11 115

 12 115

 13 115

 14 115

 15 115

 16 115

 17 115

 18 115

 19 115

 20 114

 21 115

 22 115

 23 115

 24 115

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 24 115

 25 115

 26 115

 27 115

 28 115

 29 115

 30 116

 31 115

 32 115

 33 115

 34 115

The emp_orders set contains all salespeople who booked orders in the last year, along with the
total number of orders booked. The next level up is the dept_orders inline view, which joins the
emp_orders data set to the employee table and aggregates the number of orders up to the
department level. The resulting data set looks as follows:

SELECT e.dept_id dept_id, SUM(emp_orders.tot_orders) tot_orders
FROM employee e,
 (SELECT sales_emp_id, COUNT(*) tot_orders
 FROM cust_order
 WHERE order_dt >= TRUNC(SYSDATE) -- 365
 AND cancelled_dt IS NULL
 GROUP BY sales_emp_id
) emp_orders
WHERE e.emp_id = emp_orders.sales_emp_id
GROUP BY e.dept_id

 DEPT_ID TOT_ORDERS

---------- ----------

 3 2185

 4 575

Finally, the dept_orders set is joined to the department table, and the final result set is:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 DEPT_ID DEPT_NAME TOT_ORDERS

---------- -------------------- ----------

 3 Domestic Sales 2185

 4 International Sales 575

After query execution completes, the emp_orders and dept_orders result sets are discarded.

5.4.3 Data Set Fabrication

Along with querying existing tables, inline views may be used to fabricate special-purpose data
sets that don't exist in the database. For example, we might want to aggregate orders over the last
year by small, medium, and large orders, but the concept of order sizes may not have been
defined in our database. We could build a table with three records to define the different sizes and
their boundaries, but we only need this information for a single query, and we don't want to clutter
our database with dozens of small, special-purpose tables. One solution is to use set operators like
UNION[6] to construct a custom-built data set, as in:

[6] Set operators will be covered in detail in Chapter 7. The UNION operator is used to combine individual sets of data
into a single set.

SELECT 'SMALL' name, 0 lower_bound, 999 upper_bound from dual
UNION ALL
SELECT 'MEDIUM' name, 1000 lower_bound, 24999 upper_bound from dual
UNION ALL
SELECT 'LARGE' name, 25000 lower_bound, 9999999 upper_bound from dual;

NAME LOWER_BOUND UPPER_BOUND

------ ----------- -----------

SMALL 0 999

MEDIUM 1000 24999

LARGE 25000 9999999

We can then wrap this query in an inline view and use it to do our aggregations:

SELECT sizes.name order_size, SUM(co.sale_price) tot_dollars
FROM cust_order co,
 (SELECT 'SMALL' name, 0 lower_bound, 999 upper_bound from dual
 UNION ALL
 SELECT 'MEDIUM' name, 1000 lower_bound, 24999 upper_bound from dual
 UNION ALL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 UNION ALL
 SELECT 'LARGE' name, 25000 lower_bound, 9999999 upper_bound from dual
) sizes
WHERE co.cancelled_dt IS NULL
 AND co.order_dt >= TO_DATE('01-JAN-2001','DD-MON-YYYY')
 AND co.order_dt < TO_DATE('01-JAN-2002','DD-MON-YYYY')
 AND co.sale_price BETWEEN sizes.lower_bound AND sizes.upper_bound
GROUP BY sizes.name;

ORDER_ TOT_DOLLARS

------ -----------

LARGE 7136214

MEDIUM 32395018

SMALL 63676

One word of caution: when constructing a set of ranges, make sure there are no gaps through
which data may slip. For example, an order totaling $999.50 would not appear in either the small or
medium categories, since $999.50 is neither between $0 and $999 nor between $1,000 and
$24,999. One solution is to overlap the region boundaries so that there is no gap through which
data can slip. Note that we can no longer use BETWEEN with this approach.

SELECT sizes.name order_size, SUM(co.sale_price) tot_dollars

FROM cust_order co,

 (SELECT 'SMALL' name, 0 lower_bound, 1000 upper_bound from dual
 UNION ALL

 SELECT 'MEDIUM' name, 1000 lower_bound, 25000 upper_bound from dual
 UNION ALL

 SELECT 'LARGE' name, 25000 lower_bound, 9999999 upper_bound from dual

) sizes

WHERE co.cancelled_dt IS NULL

 AND co.order_dt >= TO_DATE('01-JAN-2001', 'DD-MON-YYYY')

 AND co.order_dt < TO_DATE('01-JAN-2002', 'DD-MON-YYYY')

 AND co.sale_price >= sizes.lower_bound
 AND co.sale_price < sizes.upper_bound
GROUP BY sizes.name;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GROUP BY sizes.name;

Now that we have neither an overlap or gap between our buckets, we can be sure that no data will
be left out of the aggregations.

Fabricated data sets can also be useful for determining what data is not stored in our database.
For example, our manager might ask for a report listing the aggregate sales for each day of the
year 2000, including days with no sales. While our cust_order table contains records for every day
that had orders, there is no table in the database containing a record for every day of the year. In
order to provide our manager with an answer, we will need to fabricate a driving table containing a
record for every day in 2000, and then outer join it to the set of aggregated sales for the same
period.

Since a year contains either 365 or 366 days, we will build the set {0, 1, 2, ..., 399}, add each
member of the set to the start date of 01/01/2000, and let Oracle throw away the rows that don't
belong in 2000. To build the set {0, 1, 2, ..., 399}, we will create the sets {0, 1, 2, ..., 10}, {0, 10, 20,
30, ..., 90}, and {0, 100, 200, 300} and add members of the three sets across the Cartesian
product:

SELECT ones.x + tens.x + hundreds.x tot

FROM

 (SELECT 0 x FROM dual UNION ALL

 SELECT 1 x FROM dual UNION ALL

 SELECT 2 x FROM dual UNION ALL

 SELECT 3 x FROM dual UNION ALL

 SELECT 4 x FROM dual UNION ALL

 SELECT 5 x FROM dual UNION ALL

 SELECT 6 x FROM dual UNION ALL

 SELECT 7 x FROM dual UNION ALL

 SELECT 8 x FROM dual UNION ALL

 SELECT 9 x FROM dual) ones,

 (SELECT 0 x FROM dual UNION ALL

 SELECT 10 x FROM dual UNION ALL

 SELECT 20 x FROM dual UNION ALL

 SELECT 30 x FROM dual UNION ALL

 SELECT 40 x FROM dual UNION ALL

 SELECT 50 x FROM dual UNION ALL

 SELECT 60 x FROM dual UNION ALL

 SELECT 70 x FROM dual UNION ALL

 SELECT 80 x FROM dual UNION ALL

 SELECT 90 x FROM dual) tens,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 SELECT 90 x FROM dual) tens,

 (SELECT 0 x FROM dual UNION ALL

 SELECT 100 x FROM dual UNION ALL

 SELECT 200 x FROM dual UNION ALL

 SELECT 300 x FROM dual) hundreds

Since this query has no WHERE clause, every combination of the rows in the ones, tens, and
hundreds sets will be generated, and the sum of the three numbers in each row will produce the
set {0, 1, 2, ..., 399}. The next query generates the set of days in 2000 by adding each number in
the set to the base date and then discarding days that fall in 2001:

SELECT days.dt

FROM

 (SELECT TO_DATE('01-JAN-2000', 'DD-MON-YYYY') +

 ones.x + tens.x + hundreds.x dt

 FROM

 (SELECT 0 x FROM dual UNION ALL

 SELECT 1 x FROM dual UNION ALL

 SELECT 2 x FROM dual UNION ALL

 SELECT 3 x FROM dual UNION ALL

 SELECT 4 x FROM dual UNION ALL

 SELECT 5 x FROM dual UNION ALL

 SELECT 6 x FROM dual UNION ALL

 SELECT 7 x FROM dual UNION ALL

 SELECT 8 x FROM dual UNION ALL

 SELECT 9 x FROM dual) ones,

 (SELECT 0 x FROM dual UNION ALL

 SELECT 10 x FROM dual UNION ALL

 SELECT 20 x FROM dual UNION ALL

 SELECT 30 x FROM dual UNION ALL

 SELECT 40 x FROM dual UNION ALL

 SELECT 50 x FROM dual UNION ALL

 SELECT 60 x FROM dual UNION ALL

 SELECT 70 x FROM dual UNION ALL

 SELECT 80 x FROM dual UNION ALL

 SELECT 90 x FROM dual) tens,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 SELECT 90 x FROM dual) tens,

 (SELECT 0 x FROM dual UNION ALL

 SELECT 100 x FROM dual UNION ALL

 SELECT 200 x FROM dual UNION ALL

 SELECT 300 x FROM dual) hundreds) days

WHERE days.dt < TO_DATE('01-JAN-2001', 'DD-MON-YYYY');

Since 2000 happens to be a leap year, the result set will contain 366 rows, one for each day of
2000. This query can then be wrapped in another inline view and used as the driving table for
generating the report. Whether you would actually want to use such a strategy in your code is up to
you; the main purpose of this example is to help get the creative juices flowing.

5.4.4 Overcoming SQL Restrictions

The use of certain features of Oracle SQL can impose restrictions on our SQL statements. When
these features are isolated from the rest of the query inside an inline view, however, these
restrictions can be sidestepped. In this section, we explore how inline views can overcome
limitations with hierarchical and aggregation queries.

5.4.4.1 Hierarchical queries

Hierarchical queries allow recursive relationships to be traversed. As an example of a recursive
relationship, consider a table called "region" that holds data about sales territories. Regions are
arranged in a hierarchy, and each record in the region table references the region in which it is
contained, as illustrated by the following data:

SELECT * FROM region;

REGION_ID REGION_NAME SUPER_REGION_ID

--------- --------------- ---------------

 1 North America

 2 Canada 1

 3 United States 1

 4 Mexico 1

 5 New England 3

 6 Mid-Atlantic 3

 7 SouthEast US 3

 8 SouthWest US 3

 9 NorthWest US 3

 10 Central US 3

 11 Europe

 12 France 11

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 12 France 11

 13 Germany 11

 14 Spain 11

Each record in the customer table references the smallest of its applicable regions. Given a
particular region, it is possible to construct a query that traverses up or down the hierarchy by
utilizing the START WITH and CONNECT BY clauses:

SELECT region_id, name, super_region_id
 FROM region
 START WITH name = `North America'
 CONNECT BY PRIOR region_id = super_region_id;

REGION_ID NAME SUPER_REGION_ID

---------- -------------------- ---------------

 1 North America

 2 Canada 1

 3 United States 1

 5 New England 3

 6 Mid-Atlantic 3

 7 SouthEast US 3

 8 SouthWest US 3

 9 NorthWest US 3

 10 Central US 3

 4 Mexico 1

The query just shown traverses the region hierarchy starting with the North America region and
working down the tree. Looking carefully at the results, we see that the Canada, United States, and
Mexico regions all point to the North America region via the super_region_id field. The remainder
of the rows all point to the United States region. Thus, we have identified a three-level hierarchy
with one node at the top, three nodes in the second level, and six nodes in the third level
underneath the United States node. For a detailed look at hierarchical queries, see Chapter 8.

Imagine that we have been asked to generate a report showing total sales in 2001 for each sub-
region of North America. However, hierarchical queries have the restriction that the table being
traversed cannot be joined to other tables within the same query, so it might seem impossible to
generate the report from a single query. Using an inline view, however, we can isolate the
hierarchical query on the region table from the customer and cust_order tables, as in:

SELECT na_regions.name region_name,
 SUM(co.sale_price) total_sales
FROM cust_order co, customer c,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FROM cust_order co, customer c,
 (SELECT region_id, name
 FROM region
 START WITH name = 'North America'
 CONNECT BY PRIOR region_id = super_region_id) na_regions
WHERE co.cancelled_dt IS NULL
 AND co.order_dt >= TO_DATE('01-JAN-2001','DD-MON-YYYY')
 AND co.order_dt < TO_DATE('01-JAN-2002','DD-MON-YYYY')
 AND co.cust_nbr = c.cust_nbr
 AND c.region_id = na_regions.region_id
GROUP BY na_regions.name;

REGION_NAME TOTAL_SALES

-------------------- -----------

Central US 6238901

Mid-Atlantic 6307766

New England 6585641

NorthWest US 6739374

SouthEast US 6868495

SouthWest US 6854731

Even though the na_regions set includes the North America and United States regions, customer
records always point to the smallest applicable region, which is why these particular regions do not
show up in the final result set.

By placing the hierarchical query within an inline view, we are able to temporarily flatten the region
hierarchy to suit the purposes of the query, which allows us to bypass the restriction on hierarchical
queries without resorting to splitting the logic into multiple pieces. The next section will
demonstrate a similar strategy for working with aggregation queries.

5.4.4.2 Aggregate queries

Queries that perform aggregations have the following restriction: all nonaggregate columns in the
SELECT clause must be included in the GROUP BY clause. Consider the following query, which
aggregates sales data by customer and salesperson, and then adds supporting data from the
customer, region, employee, and department tables:

SELECT c.name customer, r.name region,

 e.fname || ' ' || e.lname salesperson, d.name department,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 e.fname || ' ' || e.lname salesperson, d.name department,

 SUM(co.sale_price) total_sales

FROM cust_order co, customer c, region r, employee e, department d

WHERE co.cust_nbr = c.cust_nbr

 AND c.region_id = r.region_id

 AND co.sales_emp_id = e.emp_id

 AND e.dept_id = d.dept_id

 AND co.cancelled_dt IS NULL

 AND co.order_dt >= TO_DATE('01-JAN-2001','DD-MON-YYYY')

GROUP BY c.name, r.name, e.fname || ' ' || e.lname, d.name;

Since every nonaggregate in the SELECT clause must be included in the GROUP BY clause, we
are forced to sort on five columns, since a sort is needed to generate the groupings. Because
every customer is in one and only one region and every employee is in one and only one
department, we really only need to sort on the customer and employee fields in order to produce
the desired results. Thus, the Oracle engine is wasting its time sorting on the region and
department names.

By isolating the aggregation from the supporting tables, however, we can create a more efficient
and more understandable query:

SELECT c.name customer, r.name region,

 e.fname || ' ' || e.lname salesperson, d.name department,

 cust_emp_orders.total total_sales

FROM customer c, region r, employee e, department d,

 (SELECT cust_nbr, sales_emp_id, SUM(sale_price) total

 FROM cust_order

 WHERE cancelled_dt IS NULL

 AND order_dt >= TO_DATE('01-JAN-2001','DD-MON-YYYY')

 GROUP BY cust_nbr, sales_emp_id) cust_emp_orders
WHERE cust_emp_orders.cust_nbr = c.cust_nbr

 AND c.region_id = r.region_id

 AND cust_emp_orders.sales_emp_id = e.emp_id

 AND e.dept_id = d.dept_id;

Since the cust_order table includes the customer number and salesperson ID, we can perform the
aggregation against these two columns without the need to include the other four tables. Not only
are we sorting on fewer columns, we are sorting on numeric fields (customer number and
employee ID) rather than potentially lengthy strings (customer name, region name, employee
name, and department name). The containing query uses the cust_nbr and sales_emp_id columns
from the inline view to join to the customer and employee tables, which in turn are used to join to
the region and department tables.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

By performing the aggregation within an inline view, we have sidestepped the restriction that all
nonaggregates be included in the GROUP BY clause. We have also shortened execution time by
eliminating unnecessary sorts, and we have minimized the number of joins to the customer, region,
employee, and department tables. Depending on the amount of data in the tables, these
improvements could yield significant performance gains.

5.4.5 Inline Views in DML Statements

Now that we are comfortable with inline views, it's time to add another wrinkle: inline views may
also be used in INSERT, UPDATE, and DELETE statements. In most cases, using an inline view
in a DML statement improves readability but otherwise adds little value to statement execution. To
illustrate, we'll begin with a fairly simple UPDATE statement and then show the equivalent
statement using an inline view:

UPDATE cust_order co SET co.expected_ship_dt = co.expected_ship_dt + 7

WHERE co.cancelled_dt IS NULL AND co.ship_dt IS NULL

 AND EXISTS (SELECT 1 FROM line_item li, part p

 WHERE li.order_nbr = co.order_nbr

 AND li.part_nbr = p.part_nbr

 AND p.inventory_qty = 0);

This statement uses an EXISTS condition to locate orders that include out-of-stock parts. The next
version uses an inline view called suspended_orders to identify the same set of orders:

UPDATE (SELECT co.expected_ship_dt exp_ship_dt

 FROM cust_order co

 WHERE co.cancelled_dt IS NULL AND co.ship_dt IS NULL

 AND EXISTS (SELECT 1 FROM line_item li, part p

 WHERE li.order_nbr = co.order_nbr

 AND li.part_nbr = p.part_nbr

 AND p.inventory_qty = 0)) suspended_orders
SET suspended_orders.exp_ship_dt = suspended_orders.exp_ship_dt + 7;

In the first statement, the WHERE clause of the UPDATE statement determines the set of rows to
be updated, whereas in the second statement, the result set returned by the SELECT statement
determines the target rows. Otherwise, they are identical. In order for the inline view to add extra
value to the statement, it must be able to do something that the simple update statement can not
do: join multiple tables. The following version attempts to do just that by replacing the subquery
with a three-table join:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

UPDATE (SELECT co.expected_ship_dt exp_ship_dt

 FROM cust_order co, line_item li, part p

 WHERE co.cancelled_dt IS NULL AND co.ship_dt IS NULL

 AND co.order_nbr = li.order_nbr AND li.part_nbr = p.part_nbr

 AND p.inventory_qty = 0) suspended_orders
SET suspended_orders.exp_ship_dt = suspended_orders.exp_ship_dt + 7;

However, statement execution results in the following error:

ORA-01779: cannot modify a column which maps to a non key-preserved table

As is often the case in life, we can't get something for nothing. In order to take advantage of the
ability to join multiple tables within a DML statement, we must abide by the following rules:

Only one of the joined tables in an inline view may be modified by the containing DML
statement.

In order to be modifiable, the target table's key must be preserved in the result set of the
inline view.

While the previous update statement attempts to modify only one table (cust_order), the key
(order_nbr) is not preserved in the result set, since an order has multiple line items. In other words,
rows in the result set generated by the three-table join cannot be uniquely identified using just the
order_nbr field, so it is not possible to update the cust_order table via this particular three table
join. However, it is possible to update or delete from the line_item table using the same join, since
the key of the line_item table matches the key of the result set returned from the inline view
(order_nbr and part_nbr). The next statement deletes rows from the line_item table using an inline
view nearly identical to the one that failed for the previous UPDATE attempt:

DELETE FROM (SELECT li.order_nbr order_nbr, li.part_nbr part_nbr

 FROM cust_order co, line_item li, part p

 WHERE co.cancelled_dt IS NULL AND co.ship_dt IS NULL

 AND co.order_nbr = li.order_nbr AND li.part_nbr = p.part_nbr

 AND p.inventory_qty = 0) suspended_orders;

The column(s) referenced in the SELECT clause of the inline view are actually irrelevant. Since the
line_item table is the only key-preserved table of the three tables listed in the FROM clause, this is
the table on which the DELETE statement operates. While utilizing an inline view in a DELETE
statement can be more efficient, it's somewhat disturbing that it is not immediately obvious which
table is the focus of the DELETE statement. A reasonable convention when writing such
statements would be to always select the key columns from the target table.

5.4.6 Restricting Access Using WITH CHECK OPTION

Another way in which inline views can add value to DML statements is by restricting both the rows
and columns that may be modified. For example, most companies only allow members of Human
Resources to see or modify salary information. By restricting the columns visible to the DML
statement, we can effectively hide the salary column:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

UPDATE (SELECT emp_id, fname, lname, dept_id, manager_emp_id

 FROM employee) emp

SET emp.manager_emp_id = 11

WHERE emp.dept_id = 4;

While the previous statement executes cleanly, attempting to add the salary column to the SET
clause would yield the following error:

UPDATE (SELECT emp_id, fname, lname, dept_id, manager_emp_id

 FROM employee) emp

SET emp.manager_emp_id = 11, emp.salary = 1000000000
WHERE emp.dept_id = 4;

ORA-00904: invalid column name

Of course, the person writing the UPDATE statement has full access to the table; the intent here is
to protect against unauthorized modifications by the users. This might prove useful in an n-tier
environment, where the interface layer interacts with a business-logic layer.

While this mechanism is useful for restricting access to particular columns, it does not limit access
to particular rows in the target table. In order to restrict the rows that may be modified using a DML
statement, we can add a WHERE clause to the inline view and specify WITH CHECK OPTION.
For example, we may want to restrict the users from modifying data for any employee in the HR
department:

UPDATE (SELECT emp_id, fname, lname, dept_id, manager_emp_id

 FROM employee

 WHERE dept_id !=

 (SELECT dept_id FROM department WHERE name = 'Human Resources')

 WITH CHECK OPTION) emp

SET emp.manager_emp_id = 11

WHERE emp.dept_id = 4;

The addition of WITH CHECK OPTION to the inline view constrains the DML statement to comply
with the WHERE clause of the inline view. An attempt to update or delete data for an employee in
the HR department will not succeed but will not raise an exception (updates/deletes 0 rows).
However, an attempt to add a new employee to the HR department will yield the following error:

ORA-01402: view WITH CHECK OPTION where-clause violation

Thus, the following statement will fail with ORA-01402 because it attempts to add an employee to
the Human Resources department:

INSERT INTO (SELECT emp_id, fname, lname, dept_id, manager_emp_id

 FROM employee

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 FROM employee

 WHERE dept_id !=

 (SELECT dept_id FROM department

 WHERE name = 'Human Resources')

 WITH CHECK OPTION) emp

SELECT 99, 'Charles', 'Brown', d.dept_id, NULL

FROM department d

WHERE d.name = 'Human Resources';

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.5 Subquery Case Study: The Top N Performers

Certain queries that are easily described in English have traditionally been difficult to formulate in
SQL. One common example is the "Find the top five salespeople" query. The complexity stems
from the fact that data from a table must first be aggregated, and then the aggregated values
must be sorted and compared to one another in order to identify the top or bottom performers. In
this section, you will see how subqueries may be used to answer such questions. At the end of
the section, we introduce ranking functions, a new feature of Oracle SQL that was specifically
designed for these types of queries.

5.5.1 A Look at the Data

Consider the problem of finding the top five sales people. Let's assume that we are basing our
evaluation on the amount of revenue each salesperson brought in during the previous year. Our
first task, then, would be to sum the dollar amount of all orders booked by each saleperson during
the year in question. The following query does this for the year 2001:

SELECT e.lname employee, SUM(co.sale_price) total_sales
FROM cust_order co, employee e
WHERE co.order_dt >= TO_DATE('01-JAN-2001','DD-MON-YYYY')
 AND co.order_dt < TO_DATE('01-JAN-2002','DD-MON-YYYY')
 AND co.ship_dt IS NOT NULL AND co.cancelled_dt IS NULL
 AND co.sales_emp_id = e.emp_id
GROUP BY e.lname
ORDER BY 2 DESC;

EMPLOYEE TOTAL_SALES

-------------------- -----------

Blake 1927580

Houseman 1814327

Russell 1784596

Boorman 1768813

Isaacs 1761814
McGowan 1761814

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

McGowan 1761814
Anderson 1757883

Evans 1737093

Fletcher 1735575

Dunn 1723305

Jacobs 1710831

Thomas 1695124

Powers 1688252

Walters 1672522

Fox 1645204

King 1625456

Nichols 1542152

Young 1516776

Grossman 1501039

Iverson 1468316

Freeman 1461898

Levitz 1458053

Peters 1443837

Jones 1392648

It appears that Isaacs and McGowan have tied for fifth place, which, as you will see, adds an
interesting wrinkle to the problem.

5.5.2 Your Assignment

It seems that the boss was so tickled with this year's sales that she has asked you, the IT
manager, to see that each of the top five salespeople receive a bonus equal to 1% of their yearly
sales. No problem, you say. You quickly throw together the following report using your favorite
feature, the inline view, and send it off to the boss:

SELECT e.lname employee, top5_emp_orders.tot_sales total_sales,
 ROUND(top5_emp_orders.tot_sales * 0.01) bonus
FROM
 (SELECT all_emp_orders.sales_emp_id emp_id,
 all_emp_orders.tot_sales tot_sales
 FROM
 (SELECT sales_emp_id, SUM(sale_price) tot_sales

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 (SELECT sales_emp_id, SUM(sale_price) tot_sales
 FROM cust_order
 WHERE order_dt >= TO_DATE('01-JAN-2001','DD-MON-YYYY')
 AND order_dt < TO_DATE('01-JAN-2002','DD-MON-YYYY')
 AND ship_dt IS NOT NULL AND cancelled_dt IS NULL
 GROUP BY sales_emp_id
 ORDER BY 2 DESC
) all_emp_orders
 WHERE ROWNUM <= 5
) top5_emp_orders, employee e
WHERE top5_emp_orders.emp_id = e.emp_id;

EMPLOYEE TOTAL_SALES BONUS

-------------------- ----------- ----------

Blake 1927580 19276

Houseman 1814327 18143

Russell 1784596 17846

Boorman 1768813 17688

McGowan 1761814 17618

The howl emitted by Isaacs can be heard for five square blocks. The boss, looking a bit harried,
asks you to take another stab at it. Upon reviewing your query, the problem becomes immediately
evident; the inline view aggregates the sales data and sorts the results, and the containing query
grabs the first five sorted rows and discards the rest. Although it could easily have been
McGowan, since there is no second sort column, Isaacs was arbitrarily omitted from the result set.

5.5.3 Second Attempt

You console yourself with the fact that you gave the boss exactly what she asked for: the top five
salespeople. However, you realize that part of your job as IT manager is to give people what they
need, not necessarily what they ask for, so you rephrase the boss's request as follows: give a
bonus to all salespeople whose total sales ranked in the top five last year. This will require two
steps: find the fifth highest sales total last year, and then find all salespeople whose total sales
meet or exceed that figure.

SELECT e.lname employee, top5_emp_orders.tot_sales total_sales,
 ROUND(top5_emp_orders.tot_sales * 0.01) bonus
FROM employee e,
 (SELECT sales_emp_id, SUM(sale_price) tot_sales

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 (SELECT sales_emp_id, SUM(sale_price) tot_sales
 FROM cust_order
 WHERE order_dt >= TO_DATE('01-JAN-2001','DD-MON-YYYY')
 AND order_dt < TO_DATE('01-JAN-2002','DD-MON-YYYY')
 AND ship_dt IS NOT NULL AND cancelled_dt IS NULL
 GROUP BY sales_emp_id
 HAVING SUM(sale_price) IN
 (SELECT all_emp_orders.tot_sales
 FROM
 (SELECT SUM(sale_price) tot_sales
 FROM cust_order
 WHERE order_dt >= TO_DATE('01-JAN-2001','DD-MON-YYYY')
 AND order_dt < TO_DATE('01-JAN-2002','DD-MON-YYYY')
 AND ship_dt IS NOT NULL AND cancelled_dt IS NULL
 GROUP BY sales_emp_id
 ORDER BY 1 DESC
) all_emp_orders
 WHERE ROWNUM <= 5)
) top5_emp_orders
WHERE top5_emp_orders.sales_emp_id = e.emp_id
ORDER BY 2 DESC;

EMPLOYEE TOTAL_SALES BONUS

-------------------- ----------- ----------

Blake 1927580 19276

Houseman 1814327 18143

Russell 1784596 17846

Boorman 1768813 17688

McGowan 1761814 17618

Isaacs 1761814 17618

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Isaacs 1761814 17618

Thus, there are actually six top five salespeople. The main difference between your first attempt
and the second is the addition of the HAVING clause in the inline view. The subquery in the
HAVING clause returns the five highest sales totals, and the inline view then returns all
salespeople (potentially more than five) whose total sales exist in the set returned by the
subquery.

While you are confident in your latest results, there are several aspects of the query that bother
you:

The aggregation of sales data is performed twice.

The query will never contend for Most Elegant Query of the Year.

You could've sworn you read about a new feature for handling these types of queries. . . .

In fact, there is a new feature for performing ranking queries that is available in release 8.1.6 and
later. That feature is the RANK function.

5.5.4 Final Answer

New in 8.1.6, the RANK function is specifically designed to help you write queries to answer
questions like the one posed in this case study. Part of a set of analytic functions (all of which will
be explored in Chapter 13), the RANK function may be used to assign a ranking to each element
of a set. The RANK function understands that there may be ties in the set of values being ranked
and leaves gaps in the ranking to compensate. The following query illustrates how rankings would
be assigned to the entire set of salespeople; notice how the RANK function leaves a gap between
the fifth and seventh rankings to compensate for the fact that two rows share the fifth spot in the
ranking:

SELECT sales_emp_id, SUM(sale_price) tot_sales,
 RANK() OVER (ORDER BY SUM(sale_price) DESC) sales_rank
FROM cust_order
WHERE order_dt >= TO_DATE('01-JAN-2001','DD-MON-YYYY')
 AND order_dt < TO_DATE('01-JAN-2002','DD-MON-YYYY')
 AND ship_dt IS NOT NULL AND cancelled_dt IS NULL
GROUP BY sales_emp_id;

SALES_EMP_ID TOT_SALES SALES_RANK

------------ ---------- ----------

 11 1927580 1

 24 1814327 2

 34 1784596 3

 18 1768813 4

 25 1761814 5

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 25 1761814 5
 26 1761814 5
 30 1757883 7
 21 1737093 8

 19 1735575 9

 20 1723305 10

 27 1710831 11

 14 1695124 12

 15 1688252 13

 22 1672522 14

 29 1645204 15

 28 1625456 16

 31 1542152 17

 23 1516776 18

 13 1501039 19

 32 1468316 20

 12 1461898 21

 17 1458053 22

 33 1443837 23

 16 1392648 24

Leaving gaps in the rankings whenever ties are encountered is critical for properly handling these
types of queries.[7] Table 5-1 shows the number of rows that would be returned for this data set
for various top-N queries.

[7] If we do not wish to have gaps in the ranking, we can use the DENSE_RANK function intead.

Table 5-1. Rows returned for N = {1,2,3,...,9}
Top-N salespeople Rows returned

1 1
2 2
3 3
4 4
5 6
6 6
7 7
8 8
9 9

As you can see, the result sets would be identical for both the "top five" and "top six" versions of
this query for this particular data set.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

By wrapping the previous RANK query in an inline view, we can retrieve the salespeople with a
ranking of five or less and join the results to the employee table to generate the final result set:

SELECT e.lname employee, top5_emp_orders.tot_sales total_sales,
 ROUND(top5_emp_orders.tot_sales * 0.01) bonus
FROM
 (SELECT all_emp_orders.sales_emp_id emp_id,
 all_emp_orders.tot_sales tot_sales
 FROM
 (SELECT sales_emp_id, SUM(sale_price) tot_sales,
 RANK() OVER (ORDER BY SUM(sale_price) DESC) sales_rank
 FROM cust_order
 WHERE order_dt >= TO_DATE('01-JAN-2001','DD-MON-YYYY')
 AND order_dt < TO_DATE('01-JAN-2002','DD-MON-YYYY')
 AND ship_dt IS NOT NULL AND cancelled_dt IS NULL
 GROUP BY sales_emp_id
) all_emp_orders
 WHERE all_emp_orders.sales_rank <= 5
) top5_emp_orders, employee e
WHERE top5_emp_orders.emp_id = e.emp_id
ORDER BY 2 DESC;

EMPLOYEE TOTAL_SALES BONUS

-------------------- ----------- ----------

Blake 1927580 19276

Houseman 1814327 18143

Russell 1784596 17846

Boorman 1768813 17688

McGowan 1761814 17618

Isaacs 1761814 17618

If this query is familiar, that's because it's almost identical to the first attempt, except that the
RANK function is used instead of the pseudocolumn ROWNUM to determine where to draw the
line between the top five salespeople and the rest of the pack.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now that you are happy with your query and confident in your results, you show your findings to
your boss. "Nice work," she says. "Why don't you give yourself a bonus as well? In fact, you can
have Isaacs's bonus, since he quit this morning." Salespeople can be so touchy.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 6. Handling Temporal Data
"Time and tide wait for none," goes the wise saying. As database developers, we may not deal
with tide-related information every day, but we need to deal with time-related information every
day. The hire date of an employee, your pay day, the rent or mortgage payment date, the time
duration required for a financial investment to mature, and the start date and time of your new car
insurance are all examples of temporal data that we deal with every single day.

The need for effective management of temporal information became critical at the turn of the
century, when most of us had to devise ways to handle the two-digit year correctly as it increased
from 99 to 00, and then to 01. In this age of global e-business, the concepts of time are even
more involved than ever before, because businesses are carried out around the clock across time
zone boundaries.

A database needs to effectively and efficiently handle the storage, retrieval, and manipulation of
the following types of temporal data:

Dates

Times

Date and time intervals

Time zones

Oracle's support for temporal data is mature and efficient. Oracle8i supports convenient
manipulation of date and time data. Oracle9i enhanced this support by introducing a new set of
features including the support for fractional seconds, date and time intervals, and time zones.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.1 Internal DATE Storage Format

Oracle's DATE datatype holds date as well as time information. Regardless of the date format we
use, Oracle stores dates internally in one standard format. Internal to the database a date is a
fixed-length, seven-byte field. The seven bytes represent the following pieces of information:

1. The Century

2. The Year

3. The Month

4. The Day

5. The Hour

6. The Minute

7. The Second

Note that even though the datatype is called a DATE, it also stores the time. We choose the
components to display (the date, the time, the date and the time, etc.) when we retrieve a DATE
value from the database. Or, if we are fetching a DATE value into a program (e.g., a Java
program) we might choose to extract the date elements of interest after transferring the entire
date/time value to that program.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.2 Getting Dates In and Out of a Database

In the real world, dates are not always represented using Oracle's DATE datatype. At various times, we'll
need to convert DATEs to other datatypes and vice versa. This is particularly true when we interface
Oracle database with an external system, for example when we are accepting date input from an external
system in which dates are represented as strings of characters (or even as numbers), or when we are
sending output from an Oracle database to another application that doesn't understand Oracle's DATE
datatype. We also need to convert DATE values to text when we display dates on a screen or generate a
printed report.

Oracle provides two extremely useful functions to convert dates:

TO_DATE

TO_CHAR

As their names suggest, TO_DATE is used to convert character data, or numeric data, into a DATE
and TO_CHAR is used to convert a DATE value into a string of characters. Date formats, discussed later
in this section, come in particularly handy for such conversions.

6.2.1 TO_DATE

TO_DATE is a built-in SQL function that converts a character string into a date. Input to the TO_DATE
function can be a string literal, a PL/SQL variable, or a database column of the CHAR or VARCHAR2
datatype.

Call TO_DATE as follows:

TO_DATE(string [,format])

The syntax elements are:

string

Specifies a string literal, a PL/SQL variable, or a database column containing character data (or
even numeric data) convertible to a date.

format

Specifies the format of the input string. The format must be a valid combination of format codes
shown later in this chapter in Section 6.2.3.

Specifying a date format is optional. When we don't specify a format, the input string is assumed to be in
the default date format (specified by the NLS_DATE_FORMAT parameter setting).

We can convert a number to a DATE using TO_DATE. When we supply a number
to the TO_DATE function, Oracle implicitly converts the input number into a string,
and then the resulting string gets passed as input to TO_DATE.

6.2.1.1 Using the default date format

Every Oracle database has a default date format. If our DBA has not specified anything different, the
default date format is as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DD-MON-YY

When we invoke TO_DATE without explicitly specifying a date format, Oracle expects our input string to be
in the default date format. The following INSERT statement converts a string in the default date format into
a date, which is then inserted into the EMPLOYEE table:

INSERT INTO EMPLOYEE
(EMP_ID, FNAME, LNAME, DEPT_ID, MANAGER_EMP_ID, SALARY, HIRE_DATE)
VALUES
(2304, 'John', 'Smith', 20, 1258, 20000, TO_DATE('22-OCT-99'));

1 row created.

SELECT * FROM EMPLOYEE;

 EMP_ID FNAME LNAME DEPT_ID MANAGER_EMP_ID SALARY HIRE_DATE

------- -------- ------- ---------- -------------- ---------- ---------

 2304 John Smith 20 1258 20000 22-OCT-99

Note the HIRE_DATE column is a DATE field, and the character string '22-OCT-99' was converted to a
date by the TO_DATE function. We don't need the format in this case, because the supplied string is in the
default date format. In fact, since the supplied string is in the default date format, we don't even need the
TO_DATE function. Oracle automatically performs an implicit type conversion, as in this example:

INSERT INTO EMPLOYEE
(EMP_ID, FNAME, LNAME, DEPT_ID, MANAGER_EMP_ID, SALARY, HIRE_DATE)
VALUES
(2304, 'John', 'Smith', 20, 1258, 20000, '22-OCT-99');

1 row created.

Even though Oracle provides means for implicit datatype conversions, we recommend always using
explicit conversions, because implicit conversions are not obvious and may lead to confusion. They may
also suddenly fail should a DBA change the database's default date format.

6.2.1.2 Specifying a date format

If we wish to specify a date format, there are at least two approaches we can take:

Specify the format at the session level, in which case it applies to all implicit conversions, and to all
TO_DATE conversions for which we do not explicitly specify some other format.

Specify the format as a parameter to a TO_DATE call.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following example changes the default date format for the session, and then uses TO_DATE to
convert a number to date.

ALTER SESSION SET NLS_DATE_FORMAT = 'MMDDYY';

Session altered.

INSERT INTO EMPLOYEE
(EMP_ID, FNAME, LNAME, DEPT_ID, MANAGER_EMP_ID, SALARY, HIRE_DATE)
VALUES
(2304, 'John', 'Smith', 20, 1258, 20000, TO_DATE(102299));

1 row created.

Since the default date format has been changed prior to the conversion, the conversion function TO_DATE
doesn't need the date format as an input parameter.

While it is possible to pass a number such as 102299 to the TO_DATE function,
relying on Oracle's implicit conversion to change the number to a string, and then
into a date, it's probably best to pass a string as input to the TO_DATE function.

If we attempt this insert without setting the default date format to match the format of the date in the input
string, we get an error when Oracle tries to convert the date:

ALTER SESSION SET NLS_DATE_FORMAT = 'DD-MON-YY';

Session altered.

INSERT INTO EMPLOYEE
(EMP_ID, FNAME, LNAME, DEPT_ID, MANAGER_EMP_ID, SALARY, HIRE_DATE)
VALUES
(2304, 'John', 'Smith', 20, 1258, 20000, TO_DATE('102299'));
(2304, 'John', 'Smith', 20, 1258, 20000, TO_DATE('102299'))

 *

ERROR at line 4:

ORA-01861: literal does not match format string

In such situations, if we do not wish to change our session's default date format, we must specify the
format as the second input parameter to the TO_DATE function:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ALTER SESSION SET NLS_DATE_FORMAT = 'DD-MON-YY';

Session altered.

INSERT INTO EMPLOYEE
(EMP_ID, FNAME, LNAME, DEPT_ID, MANAGER_EMP_ID, SALARY, HIRE_DATE)
VALUES
(2304, 'John', 'Smith', 20, 1258, 20000, TO_DATE('102299','MMDDYY'));

1 row created.

SELECT * FROM EMPLOYEE;

 EMP_ID FNAME LNAME DEPT_ID MANAGER_EMP_ID SALARY HIRE_DATE

------- ------- ------- ---------- -------------- ---------- ---------

 2304 John Smith 20 1258 20000 22-OCT-99

Note how TO_DATE interprets the string '102299' as being in the format 'MMDDYY'. Also note that in the
result of the SELECT, the date is displayed using the default date format of the session, not the format in
which it was inserted.

Let's look at one more example to see how a database character column can be converted to a DATE.
Let's assume that the REPORT_ID column in the REPORT table actually stores the date on which the
report was generated, and that the date is in the format 'MMDDYYYY'. Now, we can use TO_DATE on that
column to display the date on which the report was generated:

SELECT SENT_TO, REPORT_ID, TO_DATE(REPORT_ID,'MMDDYYYY') DATE_GENERATED
FROM REPORT;

SENT_TO REPORT_I DATE_GENE

---------------------------- ---------

Manager 01011999 01-JAN-99

Director 01121999 12-JAN-99

Vice President 01231999 23-JAN-99

In this example, the TO_DATE function converts the MMDDYYYY data in the column to a date. That date
is then implicitly converted into a character string for display purposes, using the default date format.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.2.2 TO_CHAR

The TO_CHAR function is the opposite of the TO_DATE function, and converts a date into a string of
characters. Call TO_CHAR as follows:

TO_CHAR(date [,format])

The syntax elements are:

date

Specifies a PL/SQL variable or a database column of the DATE datatype.

format

Specifies the desired format of the output string. The format must be a valid combination of date
format elements as described later in Section 6.2.3.

The format is optional. When the format is not specified, the date is output in the default date format (as
specified by NLS_DATE_FORMAT).

The following example uses TO_CHAR to convert an input date into a string using the default date format:

SELECT FNAME, TO_CHAR(HIRE_DATE) FROM EMPLOYEE;

FNAME TO_CHAR(H

-------------------- ---------

John 22-OCT-99

The following example uses TO_CHAR to convert a date into a string, and explicitly specifies a date
format:

SELECT FNAME, TO_CHAR(HIRE_DATE,'MM/DD/YY') FROM EMPLOYEE;

FNAME TO_CHAR(

-------------------- --------

John 10/22/99

There are situations when we may need to combine TO_CHAR with TO_DATE. For example, if we want to
know on what day of the week January 1, 2000 fell, we can use the following query:

SELECT TO_CHAR(TO_DATE('01-JAN-2000','DD-MON-YYYY'),'Day') FROM DUAL;

TO_CHAR(T

Saturday

In this example, the input string '01-JAN-2000' is first converted into a date and then the TO_CHAR
function is used to convert this date into a string representing the day of the week.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.2.3 Date Formats

We can display dates in a number of ways. Every country, every industry has its own standard of displaying
dates. Oracle provides us with date format codes so that we can interpret and display dates in a wide
variety of date formats.

A simple example of displaying a date is:

SELECT SYSDATE FROM DUAL;

SYSDATE

03-OCT-01

By default, the date is displayed using the DD-MON-YY format. This format uses two digits for the date
(zero padded on the left), three characters for the month (the first three characters of the English name of
the month in uppercase), and two digits for the year of the century (zero padded on the left). The default
date format for the database is controlled by the NLS_DATE_FORMAT initialization parameter. We can
use ALTER SYSTEM or ALTER SESSION commands to change the default date format for the instance or
the session respectively. Let's take another example to see how we can display a date in a format other
than the default format:

SELECT TO_CHAR(SYSDATE,'MM/DD/YYYY') FROM DUAL;

TO_CHAR(SY

10/03/2001

The example converts the date into the format 'MM/DD/YYYY' with the TO_CHAR function. There are
many ways to represent a date. These vary from country to country, from industry to industry, and from
application to application. Table 6-1 describes the various date formats. Most of the examples in Table 6-1
are based on 03-OCT-2001 03:34:48 PM. Those that involve B.C. dates use the year 2105 B.C. Those that
specifically demonstrate A.M. times are based on 03-OCT-2001 11:00:00 AM.

Table 6-1. Oracle date format codes
Component Options Example

 Format Date

Punctuation -/,;:.*Space"Text" DD-MON-YYDD MM
YYYYDD "of" Month

03-OCT-0103 10 200103
of October

Day DD(Day of the month) MM/DD/YY 10/03/01
 DDD(Day of the year) DDD/YY 276/01
 D(Day of the week) D MM/YY 4 10/01
 DAY(Name of the day) DAY MM/YY WEDNESDAY 10/01
 day(Name of the day, in lower case) day MM/YY wednesday 10/01
 Day(Name of the day, in mixed case) Day MM/YY Wednesday 10/01
 DY(Abbreviated name of the day) DY MM/YY WED 10/01
 Dy(Abbreviated name of the day) Dy MM/YY Wed 10/01

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Month MM(Two digit month) MM/DD/YY 10/03/01

 MONTH(Name of the month, in
upper case) MONTH YY OCTOBER 01

 Month(Name of the month, in mixed
case) Month YY October 01

 MON(Abbreviated name of the
month) MON YY OCT 01

 Mon(Name of the month, in mixed
case) Mon YY Oct 01

 RM(Roman Numeral Month) DD-RM-YY 03-X-01
Year Y(Last one digit of year) MM Y 10 1
 YY(Last two digit of year) MM YY 10 01
 YYY(Last three digits of year) MM YYY 10 001
 YYYY(Four digits of year) MM YYYY 10 2001
 Y,YYY(Year with comma) MM Y,YYY 10 2,001

 YEAR(Year spelled out) MM YEAR 10 TWO THOUSAND
ONE

 Year(Year spelled out, in mixed
case) MM Year 10 Two Thousand One

 SYYYY(Four digits of year with '-'
sign for BC) SYYYY -2105

 Y,YYY(Year with comma) MM Y,YYY 10 2,001

 RR(Round Year depending upon the
current year) DD-MON-RR 03-OCT-01

 RRRR(Round Year depending upon
the current year) DD-MON-RRRR 03-OCT-2001

 I(Last one digit of the ISO Standard
year) MM I 10 1

 IY(Last two digit of the ISO Standard
year) MM IY 10 01

 IYY(Last three digits of the ISO
Standard year) MM IYY 10 001

 IYYY(Four digits of the ISO Standard
year) MM IYYY 10 2001

Century CC(Century) CC 21
 SCC(Century with '-' sign for BC) SCC -22
Week W(Week of the month) W 1
 WW(Week of the year) WW 40

 IW(Week of the year in ISO
standard) IW 40

Quarter Q(Quarter of the year) Q 4
Hour HH(Hour of the day 1-12) HH 03
 HH12(Hour of the day 1-12) HH 03
 HH24(Hour of the day 0-23) HH24 15
Minute MI(Minute of hour 0-59) MI 34
Second SS(Second of minute 0-59) SS 48
 SSSSS(Seconds past midnight) SSSSS 42098
AM/PM AM(Meridian indicator) HH:MI AM 11:00 AM
 A.M.(Meridian indicator with dots) HH:MI A.M. 11:00 A.M.
 PM(Meridian indicator) HH:MI PM 03:34 PM

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

P.M.

(Meridian indicator with dots)
HH:MI P.M. 03:34 P.M.

AD/BC AD(AD indicator) YY AD 01 AD
 A.D.(AD indicator with dots) YY A.D. 01 A.D.
 BC(BC indicator) YY BC 05 BC
 B.C.(BC indicator with dots) YY B.C. 05 B.C.

Julian Day J(Number of days since January 1,
4712 BC) J 2452186

Suffix TH(Ordinal Number) DDTH 03RD
 SP(Spelled Number) MMSP TEN
 SPTH(Spelled Ordinal Number) DDSPTH THIRD
 THSP(Spelled Ordinal Number) DDTHSP THIRD

6.2.3.1 AD/BC indicators

Oracle provides two formats, AD and BC, to characterize a year (two more with dots—A.D., B.C.).
However, they both serve the same purpose, and we can use either of them with equivalent results. If we
have used the format BC in our query, and the date we are applying this format to comes out to be an AD
year, Oracle is intelligent enough to print AD instead of BC, and vice versa. For example:

SELECT TO_CHAR(SYSDATE, 'YYYY AD'),
 TO_CHAR(SYSDATE, 'YYYY BC') FROM DUAL;

TO_CHAR(TO_CHAR(

-------- --------

 2001 AD 2001 AD

SELECT TO_CHAR(ADD_MONTHS(SYSDATE,-50000), 'YYYY AD'),
 TO_CHAR(ADD_MONTHS(SYSDATE,-50000), 'YYYY BC') FROM DUAL;

TO_CHAR(TO_CHAR(

-------- --------

 2165 BC 2165 BC

In the first example, even though we supplied the BC format with the SYSDATE, it printed 2001 AD in the
output, and in the second example, even though we supplied AD with a date 50,000 months earlier (in the
BC), it printed BC in the output.

6.2.3.2 AM/PM indicators

The AM/PM indicators (as well as A.M. and P.M.) behave exactly the same as the AD/BC indicators. If we
have used the AM format in our query, and the time we are applying this format to comes out to be a PM
time, Oracle is intelligent enough to print PM instead of AM, and vice versa. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT TO_CHAR(SYSDATE, 'HH:MI:SS AM'),
 TO_CHAR(SYSDATE, 'HH:MI:SS PM'),
 TO_CHAR(SYSDATE - 8/24, 'HH:MI:SS AM'),
 TO_CHAR(SYSDATE - 8/24, 'HH:MI:SS PM')
FROM DUAL;

TO_CHAR(SYS TO_CHAR(SYS TO_CHAR(SYS TO_CHAR(SYS

----------- ----------- ----------- -----------

06:58:07 PM 06:58:07 PM 10:58:07 AM 10:58:07 AM

MINUTES: MI or MM
Many SQL beginners assume that since HH represents hours and SS represents seconds, MM
would represent minutes, and try to write the following SQL queries to print the current time:

SELECT TO_CHAR(SYSDATE, 'HH:MM:SS') FROM DUAL;
TO_CHAR(

02:10:32

However, this is wrong. MM represents months and not minutes. The format for minutes is MI.
Therefore, remember to use MI instead of MM when attempting to get the minutes part of the
date. The correct query is:

SELECT TO_CHAR(SYSDATE, 'HH:MI:SS') FROM DUAL;
TO_CHAR(

02:57:21

It becomes extremely difficult to debug an application if the MM format is embedded in the
code instead of MI.

6.2.3.3 Case-sensitivity of formats

Some date formats are case-sensitive while others aren't. The formats that represent numbers are not
case-sensitive. For example:

SELECT TO_CHAR(SYSDATE, 'HH:MI') UPPER,
TO_CHAR(SYSDATE, 'hh:mi') LOWER,
TO_CHAR(SYSDATE, 'Hh:mI') MIXED
FROM DUAL;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FROM DUAL;

UPPER LOWER MIXED

----- ----- -----

03:17 03:17 03:17

Note that the format HH:MI is case-insensitive—no matter which case we use for the format, the output is
the same. The same applies to all other formats that represent numbers, for example, DD, MM, YY,

Date formats that represent textual date components are case sensitive. For example, the format "DAY" is
different from "day." The following rules apply for determining the case of the output when a textual date
format is used:

If the first character of the format is lowercase, then the output will be lowercase, regardless of the
case of the other characters in the format.

SELECT TO_CHAR(SYSDATE, 'month'),
 TO_CHAR(SYSDATE, 'mONTH'),
 TO_CHAR(SYSDATE, 'moNTh')
FROM DUAL;

TO_CHAR(S TO_CHAR(S TO_CHAR(S

--------- --------- ---------

october october october

If the first character of the format mask is uppercase and the second character is also uppercase,
then the output will be uppercase, regardless of the case of the other characters in the format.

SELECT TO_CHAR(SYSDATE, 'MOnth'),
 TO_CHAR(SYSDATE, 'MONTH')
FROM DUAL;

TO_CHAR(S TO_CHAR(S

--------- ---------

OCTOBER OCTOBER

If the first character of the format mask is uppercase and the second character is lowercase, then
the output will have an uppercase first character and all other characters lowercase, regardless of
the case of the other characters in the format.

SELECT TO_CHAR(SYSDATE, 'MoNTH'), TO_CHAR(SYSDATE, 'Month')
FROM DUAL;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FROM DUAL;

TO_CHAR(S TO_CHAR(S

--------- ---------

October October

These rules apply to all text elements, such as those used to represent month names, day names, and so
forth.

6.2.3.4 Two-digit years

Even though Oracle stores the century of the year internally, it allows us to use two-digit years. Therefore,
it is important to know how the century is handled when we use a two-digit year. Oracle provides two
digit year formats that we can use: YY and RR.

With the YY year format, the first two digits are assumed to be the current date:

ALTER SESSION SET NLS_DATE_FORMAT = 'DD-MON-YY';

Session altered.

SELECT SYSDATE, TO_CHAR(SYSDATE,'DD-MON-YYYY') FROM DUAL;

SYSDATE TO_CHAR(SYS

--------- -----------

06-OCT-01 06-OCT-2001

SELECT TO_CHAR(TO_DATE('10-DEC-99'),'DD-MON-YYYY'),
 TO_CHAR(TO_DATE('10-DEC-01'),'DD-MON-YYYY') FROM DUAL;

TO_CHAR(TO_ TO_CHAR(TO_

----------- -----------

10-DEC-2099 10-DEC-2001

Since the current date was 06-OCT-2001 when this was written, the first two digits of the years in this
example are assumed to be 20.

With the RR year format, the first two digits of the specified year are determined based upon the last two
digits of the current year and the last two digits of year specified. The following rules apply:

If the specified year is less than 50, and the last two digits of the current year are less than 50, then
the first two digits of the return date are the same as the first two digits of the current date.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If the specified year is less than 50, and the last two digits of the current year are greater than or
equal to 50, then first two digits of the return date are 1 greater than the first two digits of the current
date.

If the specified year is greater than 50, and the last two digits of the current year are less than 50,
then first two digits of the return date are 1 less than the first two digits of the current date.

If the specified year is greater than 50, and the last two digits of the current year are greater than or
equal to 50, then the first two digits of the return date are the same as the first two digits of the
current date.

The following example demonstrates these rules:

ALTER SESSION SET NLS_DATE_FORMAT = 'DD-MON-RR';

Session altered.

SELECT SYSDATE, TO_CHAR(SYSDATE,'DD-MON-YYYY') FROM DUAL;

SYSDATE TO_CHAR(SYS

--------- -----------

06-OCT-01 06-OCT-2001

SELECT TO_CHAR(TO_DATE('10-DEC-99'),'DD-MON-YYYY'),
 TO_CHAR(TO_DATE('10-DEC-01'),'DD-MON-YYYY') FROM DUAL;

TO_CHAR(TO_ TO_CHAR(TO_

----------- -----------

10-DEC-1999 10-DEC-2001

The ALTER SESSION command sets the default date format to DD-MON-RR. The next SELECT uses
SYSDATE to show the current date at the time the example was executed. The final SELECT
demonstrates the use of the RR date format (both TO_DATE calls rely on the default format set earlier).
Note that the DD-MON-RR date format treats 10-DEC-99 as 10-DEC-1999, whereas treats 10-DEC-01 as
10-DEC-2001. Compare this output to the rules we just listed.

The year format RRRR (four Rs) allows us to enter either a two-digit year or a four-digit year. If we enter a
four-digit year, Oracle behaves as if the year format was YYYY. If we enter a two-digit year, Oracle
behaves as if the year format is RR. The RRRR format is rarely used. Most SQL programmers prefer to
use either YYYY, or to explicitly specify RR.

6.2.4 Date Literals

DATE literals are specified in the ANSI standard as a way of representing date constants, and take the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DATE literals are specified in the ANSI standard as a way of representing date constants, and take the
following form:

DATE 'YYYY-MM-DD'

Note that the ANSI date literal doesn't contain the time information. We also can't specify a format. If
want to specify a date literal using this ANSI syntax, we must always use the YYYY-MM-DD date format.
The following example illustrates the use of a DATE literal in a SQL statement:

INSERT INTO EMPLOYEE
(EMP_ID, FNAME, LNAME, DEPT_ID, MANAGER_EMP_ID, SALARY, HIRE_DATE)
VALUES
(2304, 'John', 'Smith', 20, 1258, 20000, DATE '1999-10-22');

1 row created.

SELECT * FROM EMPLOYEE;

 EMP_ID FNAME LNAME DEPT_ID MANAGER_EMP_ID SALARY HIRE_DATE

------- -------- ------- ---------- -------------- ---------- ---------

 2304 John Smith 20 1258 20000 22-OCT-99

In this example, the date literal DATE '1999-10-22' is interpreted as 22-OCT-99.

6.2.5 ISO Standard Issues

The ISO standard determines the start date of the first week of the year based upon whether most of the
days in the week belong to the new year or to the previous year. If January 1st is a Monday, Tuesday,
Wednesday, or a Thursday, then January 1st belongs to the first week of the new ISO year. The first day of
the ISO year is either January 1st (if it is a Monday) or the previous Monday (which actually goes back to
the last calendar year). For example, if January 1st is a Tuesday, then the first day of the ISO year is
Monday, December 31, of the prior calendar year.

If January 1st is a Friday, Saturday, or a Sunday, then January 1st belongs to the last week of the previous
ISO year. The first day of the first week of the new ISO year is then considered to be the Monday following
January 1st. For example, if January 1 falls on a Saturday, then the first day of the ISO year is considered
to be Monday, January 3.

If we need to work with ISO dates, Oracle provides date formats that treat ISO years differently from
calendar years. These ISO formats are:

IW

Represents the week of the year in ISO standard.

I, IY, IYY and IYYY

Represents the ISO year.

The following sections describe ISO weeks and years with examples.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.2.5.1 ISO standard weeks

In the ISO standard, weeks of the year are counted differently than regular calendar weeks. In a regular
calendar, the first week of the year starts on January 1st. 01-JAN is the first date of the first week.
However, in the ISO standard, a week always starts on a Monday and ends on a Sunday. Therefore, the
first date of the first week is considered to be the date of the nearest Monday. This date could be a couple
of days later than 01-JAN, or it could be a couple of days earlier (in the previous year).

The format WW returns the week of the year in terms of the regular calendar, and the format IW returns
the week of the year in terms of the ISO standard. Since 01-JAN-2001 was a Monday, it was considered
the start date of the first week in terms of the regular calendar as well as in terms of the ISO standard.
Therefore, if we compute the week number of any date in the year 2001, the results will be the same
whether we use the regular calendar or the ISO calendar. For example:

SELECT TO_CHAR(TO_DATE('10-DEC-01'),'WW'),
 TO_CHAR(TO_DATE('10-DEC-01'),'IW')
FROM DUAL;

TO TO

-- --

50 50

However, the year 1999 didn't start on a Monday. Therefore, for some dates, the week number in the ISO
standard could be different from that of the regular calendar. For example:

SELECT TO_CHAR(TO_DATE('10-DEC-99'),'WW'),
 TO_CHAR(TO_DATE('10-DEC-99'),'IW')
FROM DUAL;

TO TO

-- --

50 49

The ISO Standard can cause a year to have 53 weeks. Here's an example:

SELECT TO_CHAR(TO_DATE('01-JAN-99'),'IW'), TO_CHAR(TO_DATE('01-JAN-99'),'Day')
FROM DUAL;

TO TO_CHAR(T

-- ---------

53 Friday

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

53 Friday

Note that the ISO standard treats 1st January of 1999 to be in the 53rd week of 1998, because it falls on a
Friday. The first week of 1999 starts on the subsequent Monday, which is 4th January, as per the ISO
standard.

6.2.5.2 ISO standard year

The year formats I, IY, IYY, and IYYY represent the ISO year. IYYY represents the four digit ISO year, IYY
represents the last three digits of the ISO year, IY represents the last two digits of the ISO year, and I
represents the last digit of the ISO year. Remember that the start date of an ISO year is not necessarily
January 1. The following example returns the ISO and calendar years for January 1, 1999:

SELECT TO_CHAR(TO_DATE('01-JAN-99'),'IYYY'),
 TO_CHAR(TO_DATE('01-JAN-99'),'YYYY') FROM DUAL;

TO_C TO_C

---- ----

1998 1999

Notice that even though the calendar year is 1999, the ISO year is considered to be 1998. That's because
01-Jan-1999 fell on a Friday—late in the week, which causes the week to be considered part of the
previous ISO year. The following example demonstrates the opposite situation:

SELECT TO_CHAR(TO_DATE('31-DEC-90'),'IYYY'),
 TO_CHAR(TO_DATE('31-DEC-90'),'YYYY') FROM DUAL;

TO_C TO_C

---- ----

1991 1990

This time, the calendar year is 1990, but the date 31-Dec-1990 is considered to be in ISO year 1991. This
is because 01-Jan-1991 fell on a Tuesday, early enough in the week for the entire week to be considered
part of the next ISO year.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.3 Date Manipulation

Date arithmetic is an important aspect of our day-to-day life. We find the age of a person by subtracting his
date of birth from today's date. We compute the date a warranty expires by adding the warranty period
purchase date. Drivers' license expirations, bank interest calculation, and a host of other things all depend on
date arithmetic. It is extremely important for any database to support such common date arithmetic
operations.

Oracle provides some very good date arithmetic features. Not only can we add and subtract dates, but Oracle
also provides a number of other helpful functions for manipulating date values. We discuss these features in
detail in this section. Table 6-2 lists various date manipulation functions provided by Oracle SQL.

Table 6-2. Date functions
Function Use

ADD_MONTHS Adds months to a date
LAST_DAY Computes the last day of the month
MONTHS_BETWEEN Determines the number of months between two dates
NEW_TIME Translates a time to a new time zone
NEXT_DAY Returns the date of the next specified weekday
ROUND Rounds a date/time value to a specified element
SYSDATE Returns the current date and time
TO_CHAR Converts dates to strings
TO_DATE Converts strings and numbers to dates
TRUNC Truncates a date/time value to a specific element

6.3.1 Addition

Adding two dates doesn't make sense. However, we can add days, months, years, hours, minutes, and
seconds to a date to generate a future date and time. The "+" operator allows us to add numbers to a date.
The unit of a number added to a date is assumed to be days. Therefore, to find tomorrow's date, we can add
1 to SYSDATE:

SELECT SYSDATE, SYSDATE+1 FROM DUAL;

SYSDATE SYSDATE+1

--------- ---------

05-OCT-01 06-OCT-01

Any time we add a number to a date, Oracle assumes that the number represents a number of days.
Therefore, if we want to add multiples of a day (week, month, year, etc.) to a date, we first need to multiply by
a conversion factor. For example, to add one week to today's date, we add 7 (7 days in a week times 1 day)
to SYSDATE:

SELECT SYSDATE+7 FROM DUAL;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT SYSDATE+7 FROM DUAL;

SYSDATE+7

12-OCT-01

Similarly, if we want to add fractions of a day (hour, minute, second) to a date, we first need to convert such
fractions into a fractional number of days. Do this by dividing by a conversion factor. For example, to add 20
minutes to the current date and time, we need to add (20 minutes/1,440 minutes in a day) to SYSDATE:

SELECT TO_CHAR(SYSDATE,'DD-MON-YY HH:MI:SS'),
TO_CHAR(SYSDATE+(20/1440),'DD-MON-YY HH:MI:SS')
FROM DUAL;

TO_CHAR(SYSDATE,'D TO_CHAR(SYSDATE+(2

------------------ ------------------

05-OCT-01 01:22:03 05-OCT-01 01:42:03

Adding months to a date is not as easy as adding weeks, because all months don't have the same number of
days—some have 30, some 31, some 28, and at times even 29. To add one month to a date, we need to
know how many days that calendar month will have. Therefore, adding months to a date by converting those
months to a number of days involves lots of homework, which is error-prone. Fortunately, Oracle does all the
homework for us, and provides a built-in SQL function to add months to dates. This function is called
ADD_MONTHS, and we call it as follows:

ADD_MONTHS (date, number)

The syntax elements are:

date

Specifies a database column defined as type DATE or a string with a date in the default date format.

number

Specifies the number of months to add to the input date.

The following example shows the computation of an employee's biannual review date by using
ADD_MONTHS to add six months to the employee's HIRE_DATE:

SELECT FNAME, HIRE_DATE, ADD_MONTHS(HIRE_DATE, 6) REVIEW_DATE FROM EMPLOYEE;

FNAME HIRE_DATE REVIEW_DA

-------------------- --------- ---------

John 22-OCT-99 22-APR-00

Notice that in this example the input date and the result date both fall on the 22nd of the month. This would
not have happened if we had added 180 days to the input date. ADD_MONTHS is "smart" in one other way
too. The following example adds 6 months to 31st December, 1999:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT ADD_MONTHS('31-DEC-99',6) FROM DUAL;

ADD_MONTH

30-JUN-00

The ADD_MONTHS function is intelligent enough to know that adding 6 months to 31st December should
result in the last day of June. And since the last of June is 30th (not 31st), it returns 30th June, 2000.

6.3.2 Subtraction

Even though no other arithmetic operation (addition, multiplication, division) between two dates makes any
sense, subtracting one date from another date is a very common and useful operation. The "-" operator
allows us to subtract a date from a date, or a number from a date.

Subtracting one date from another date returns the number of days between those two dates. Subtracting a
number from a date returns a date that number of days in the past.

The following example displays the lead time of a set of orders by subtracting the date on which the order was
placed (ORDER_DT) from the expected ship date (EXPECTED_SHIP_DT):

SELECT ORDER_NBR, EXPECTED_SHIP_DT - ORDER_DT LEAD_TIME
FROM CUST_ORDER;

 ORDER_NBR LEAD_TIME

---------- ----------

 1001 1

 1000 5

 1002 13

 1003 10

 1004 9

 1005 2

 1006 6

 1007 2

 1008 2

 1009 4

 1012 1

 1011 5

 1015 13

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 1017 10

 1019 9

 1021 2

 1023 6

 1025 2

 1027 2

 1029 4

Along with subtracting one date from another, we can also subtract a number from a date. For example,
subtracting 1 from SYSDATE gives yesterday, and subtracting 7 from SYSDATE yields the same day last
week:

SELECT SYSDATE, SYSDATE - 1, SYSDATE - 7 FROM DUAL;

SYSDATE SYSDATE-1 SYSDATE-7

--------- --------- ---------

05-OCT-01 04-OCT-01 28-SEP-01

Unlike ADD_MONTHS, Oracle doesn't provide a SUBTRACT_MONTHS function. To subtract months from a
date, use the ADD_MONTHS function, and pass a negative number as the second parameter:

SELECT SYSDATE, ADD_MONTHS(SYSDATE, -6) FROM DUAL;

SYSDATE ADD_MONTH

--------- ---------

05-OCT-01 05-APR-01

Earlier in this section we saw that subtracting a date from another date returns the number of days between
the two dates. There are times when we may want to know the number of months between two dates.
Consider that subtracting an employee's HIRE_DATE from SYSDATE yields the number of days of
experience the employee has with her employer:

SELECT SYSDATE-HIRE_DATE FROM EMPLOYEE;

SYSDATE-HIRE_DATE

 714.0786

It's better, in most cases, to find the number of months of experience rather than the number of days. We
know that dividing the number of days between two dates by 30 won't accurately calculate the number of
months between those two dates. Therefore, Oracle provides the built-in SQL function MONTHS_BETWEEN
for finding the number of months between two dates. MONTHS_BETWEEN is called as follows:

MONTHS_BETWEEN (date1, date2)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MONTHS_BETWEEN (date1, date2)

The syntax elements are:

date1

Specifies the end of the time period in question. This should be either a DATE value or a string in the
default date format.

date2

Specifies the beginning of the time period in question. Like date1, this should also be a DATE value or
a string in the default date format.

MONTHS_BETWEEN subtracts date2 from date1. So, if date2 comes later than date1 in the chronology, then
MONTHS_BETWEEN will return a negative value. The following example demonstrates two calls to
MONTHS_BETWEEN. Both calls use the same two dates, but in different orders.

SELECT MONTHS_BETWEEN(SYSDATE,HIRE_DATE)
 MONTHS_BETWEEN(HIRE_DATE, SYSDATE)
FROM EMPLOYEE;

MONTHS_BETWEEN(SYSDATE,HIRE_DATE) MONTHS_BETWEEN(HIRE_DATE,SYSDATE)

--------------------------------- ---------------------------------

 23.4542111 -23.454218

There is no YEARS_BETWEEN function. To find the number of years between two dates, we can either
subtract the two dates to find the number of days and then divide by 365, or use MONTHS_BETWEEN to find
the number of months and then divide by 12. Years don't have the same number of days—some have 365
days and others have 366 days. Therefore, it is not accurate to divide the number of days by 365 to get the
number of years. On the other hand, all years have 12 months, whether a leap year or not. Therefore, the
most accurate way to calculate the number of years between two dates is to use the MONTHS_BETWEEN
function to find the number of months and then divide by 12 to get the number of years.

6.3.3 Last Day of the Month

Oracle provides a built-in function to get the last day of a month. The function is LAST_DAY,and it's called as
follows:

LAST_DAY (date)

The syntax element is:

date

Specifies a DATE value, or a string with a date in the default date format.

LAST_DAY returns the last day of the month containing the input date. For example, to find the last date of
the current month, we can use the following SQL statement:

SELECT LAST_DAY(SYSDATE) "Next Payment Date" FROM DUAL;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT LAST_DAY(SYSDATE) "Next Payment Date" FROM DUAL;

Next Paym

31-OCT-01

Sometimes it's useful to be able to determine the first day of a given month; it would be nice if Oracle would
provide a FIRST_DAY function. One approach to getting the first day of the month for a given date is to use
the following expression:

ADD_MONTHS((LAST_DAY(date)+1), -1)

This expression finds the last day of the month represented by date. It then adds 1 to get to the first day of the
subsequent month, and finally uses ADD_MONTHS with an argument of -1 to go back to the beginning of the
month in which we started. The result is the first day of the month in which the given date falls. Other
approaches to this problem are possible; this is just one that works well for us. This approach has the
advantage of preserving the time component of the date in question.

6.3.4 Next Day

Oracle provides a built-in function to get the date of the next occurrence of a specified day of the week. The
function is NEXT_DAY, and it's called as follows:

NEXT_DAY (date, string)

The syntax elements are:

date

Specifies a DATE value, or a string with a date in the default date format.

string

Specifies the name of a weekday.

To find the date of the next Friday, we can use the following SQL statement:

SELECT NEXT_DAY(SYSDATE, 'Friday') "Vacation Start Date" FROM DUAL;

Vacation

12-OCT-01

If the specified string is not a valid day of the week, we will get an error:

SELECT NEXT_DAY(SYSDATE, 'ABCD') FROM DUAL;
SELECT NEXT_DAY(SYSDATE, 'ABCD') FROM DUAL

 *

ERROR at line 1:

ORA-01846: not a valid day of the week

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ORA-01846: not a valid day of the week

6.3.5 Rounding and Truncating Dates

Rounding and truncating dates is similar in concept to the rounding and truncating of numbers, but more
involved because an Oracle DATE contains date as well as time information. Use the ROUND function to
round a date/time value to a specific element; use the TRUNC function to truncate a date/time value to a
specific element. Following is the syntax for invoking these two functions:

ROUND(date [, format])

TRUNC(date [, format])

The syntax elements are:

date

Specifies a DATE value.

format

Specifies the date element to round or truncate to.

The return value depends upon the specified format, which is an optional parameter. If we don't specify a
format in the call to ROUND, the function returns a date by rounding the input to the nearest day. If we don't
specify a format in the call to TRUNC, that function returns a date by removing the fractional part of the day.

When using ROUND and TRUNC to round to the nearest day, or to truncate a date, the functions set the time
fields of the return value to the beginning of the returned day, i.e., 12:00:00 AM (00:00:00 in HH24 format).
For example:

SELECT TO_CHAR(SYSDATE, 'DD-MON-YY HH:MI:SS AM'),
 TO_CHAR(ROUND(SYSDATE), 'DD-MON-YY HH:MI:SS AM'),
 TO_CHAR(TRUNC(SYSDATE), 'DD-MON-YY HH:MI:SS AM')
FROM DUAL;

TO_CHAR(SYSDATE,'DD-M TO_CHAR(ROUND(SYSDATE TO_CHAR(TRUNC(SYSDATE

--------------------- --------------------- ---------------------

06-OCT-01 07:35:48 AM 06-OCT-01 12:00:00 AM 06-OCT-01 12:00:00 AM

Notice that since the input time (SYSDATE) is before 12 noon, the output of ROUND and TRUNC are the
same. However, if the input time were after 12 noon, the output of ROUND and TRUNC would be different,
in the following example.

SELECT TO_CHAR(SYSDATE, 'DD-MON-YY HH:MI:SS AM'),
 TO_CHAR(ROUND(SYSDATE), 'DD-MON-YY HH:MI:SS AM'),
 TO_CHAR(TRUNC(SYSDATE), 'DD-MON-YY HH:MI:SS AM')
FROM DUAL;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FROM DUAL;

TO_CHAR(SYSDATE,'DD-M TO_CHAR(ROUND(SYSDATE TO_CHAR(TRUNC(SYSDATE

--------------------- --------------------- ---------------------

06-OCT-01 05:35:48 PM 07-OCT-01 12:00:00 AM 06-OCT-01 12:00:00 AM

Since the input time is past 12 noon, ROUND returns the beginning of the next day. However, TRUNC still
returns the beginning of the input date. This is similar to the rounding and truncating of numbers.

When we specify a format as an input to the ROUND and TRUNC functions, things become a bit more
involved, but the concepts of rounding and truncating still remain the same. The difference is that the
rounding and truncating are now based on the format we specify. For example, if we specify the format as
YYYY, the input date will be truncated based on the year, which means that if the input date is before the
middle of the year (July 1st), both ROUND and TRUNC will return the first day of the year. If the input
after July 1st, ROUND will return the first day of the next year, whereas TRUNC will return the first day of the
input year. For example:

SELECT TO_CHAR(SYSDATE-180, 'DD-MON-YYYY HH24:MI:SS'),
 TO_CHAR(ROUND(SYSDATE-180,'YYYY'),'DD-MON-YYYY HH24:MI:SS'),
 TO_CHAR(TRUNC(SYSDATE-180,'YYYY'),'DD-MON-YYYY HH24:MI:SS')
FROM DUAL;

TO_CHAR(SYSDATE-180, TO_CHAR(ROUND(SYSDAT TO_CHAR(TRUNC(SYSDAT

-------------------- -------------------- --------------------

09-APR-2001 20:58:33 01-JAN-2001 00:00:00 01-JAN-2001 00:00:00

SELECT TO_CHAR(SYSDATE, 'DD-MON-YYYY HH24:MI:SS'),
 TO_CHAR(ROUND(SYSDATE,'YYYY'),'DD-MON-YYYY HH24:MI:SS'),
 TO_CHAR(TRUNC(SYSDATE,'YYYY'),'DD-MON-YYYY HH24:MI:SS')
FROM DUAL;

TO_CHAR(SYSDATE,'DD- TO_CHAR(ROUND(SYSDAT TO_CHAR(TRUNC(SYSDAT

-------------------- -------------------- --------------------

06-OCT-2001 20:58:49 01-JAN-2002 00:00:00 01-JAN-2001 00:00:00

Similarly, we can round or truncate a date to a specific month, quarter, week, century, hour, minute, and so
forth by using the appropriate format. Table 6-3 lists the formats (and their meanings) that can be used with
the ROUND and TRUNC functions.

Table 6-3. Date formats for use with ROUND and TRUNC
Rounding

unit Format Remarks

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Century
CC

SCC

TRUNC returns the first date of the century.

If the input date is before the middle of the century (01-JAN-xx51), ROUND returns the
first date of the century; otherwise, ROUND returns the first date of the next century.

Year

SYYYY

YYYY

YEAR

SYEAR

YYY

YY

Y

TRUNC returns the first date of the year.

If the input date is before the middle of the year (01-JUL), ROUND returns the first date
of the year; otherwise, ROUND returns the first date of the next year.

ISO

IYYY

IYY

IY

I

TRUNC returns the first date of the ISO year.

If the input date is before the middle of the ISO year, ROUND returns the first date of the
ISO year; otherwise, ROUND returns the first date of the next ISO year.

Quarter Q

TRUNC returns the first date of the quarter.

If the input date is before the middle of the quarter (the 16th day of the second month of
the quarter), ROUND returns the first date of the year; otherwise, ROUND returns the
first date of the next quarter.

Month

MONTH

MON

MM

RM

TRUNC returns the first date of the month.

If the input date is before the middle of the month (the 16th day of the month), ROUND
returns the first date of the year; otherwise, ROUND returns the first date of the next
month.

Week WW
TRUNC returns the first date of the week.

If the input date is before the middle of the week (based on the first day of the year),
ROUND returns the first date of the week; otherwise, the first date of the next week.

ISO Week IW

TRUNC returns the first date of the ISO week.

If the input date is before the middle of the week (based on the first day of the ISO year),
ROUND returns the first date of the week; otherwise, ROUND returns the first date of
the next week.

Week W

TRUNC returns the first date of the week.

If the input date is before the middle of the week (based on the first day of the month),
ROUND returns the first date of the week; otherwise, ROUND returns the first date of
the next week.

Day

DDD

DD

J

TRUNC returns the beginning of the day.

If the input time is before the middle of the day (12:00 noon), ROUND returns the
beginning of the day, otherwise the beginning of the next day.

Day of the
week

DAY

DY
TRUNC returns the first date of the week.

If the input date is before the middle of the week (based on the first day of the month),
ROUND returns the first date of the week, otherwise the first date of the next week.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

D ROUND returns the first date of the week, otherwise the first date of the next week.

Hour

HH

HH12

HH24

TRUNC returns the beginning of the hour.

If the input time is before the middle of the hour (00:30), ROUND returns the beginning
of the hour; otherwise, ROUND returns the beginning of the next hour.

Minute MI
TRUNC returns the beginning of the minute.

If the input time is before the middle of the minute (00:00:30), ROUND returns the
beginning of the minute; otherwise, ROUND returns the beginning of the next minute.

6.3.6 NEW_TIME

Let's say you work in an office in the New York City and want to schedule a video conference with a customer
in Los Angeles. If you aren't careful about the time difference between the two cities, you might end up
scheduling the meeting at 9:00 A.M. your time. Hopefully, you know that this is not the proper time to call your
customer if you really want to make the deal, because it is too early to expect him to be in the office (9:00
A.M. in New York is 6:00 A.M. in Los Angeles). If you need to deal with time zones in the database,
built-in NEW_TIME function comes to your rescue. It converts a date and time in a given time zone into a
date and time in another time zone. Call NEW_TIME as follows:

NEW_TIME (date, input_time_zone, output_time_zone)

The syntax elements are:

date

Specifies a literal, PL/SQL DATE variable, or a database column of DATE datatype.

input_time_zone

Specifies the name of the input time zone (as a string).

output_time_zone

Specifies the name of the output time zone (as a string).

As an example, to find out the time in Los Angeles when it is 9:00 A.M. at New York, you can use the
following SQL:

ALTER SESSION SET NLS_DATE_FORMAT = 'DD-MON-YY HH:MI:SS AM';

Session altered.

SELECT NEW_TIME('11-NOV-01 09:00:00 AM','EST','PST') FROM DUAL;

NEW_TIME('11-NOV-0109

11-NOV-01 06:00:00 AM

In this example, EST and PST correspond to Eastern Standard Time and Pacific Standard Time, respectively.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.3.7 SELECTing Data Based on Date Ranges

There are times when we need to SELECT data from a table based on a given date range. Let's say
been asked to print all orders placed on a given date, say 22-MAY-01. Probably, your immediate response
would be a query such as the following:

SELECT * FROM CUST_ORDER
WHERE ORDER_DT = '22-MAY-01';

no rows selected

There's no output. Surprised? Although you know there are orders on 22-MAY-01, this query didn't return any
rows. The reason is that ORDER_DT is a DATE column, and contains time as well as date information. On
the other hand, the date literal '22-MAY-01' doesn't contain any time information. When you don't specify the
time portion in a date literal, the time portion is assumed to be beginning of the day, i.e., 12:00:00 A.M. (or
00:00:00 in 24 hour format). In the CUST_ORDER table, the time components in the ORDER_DT column are
other than 12:00:00 A.M. In this case, the correct query to print orders placed on 22-MAY-01 is:

SELECT * FROM CUST_ORDER
WHERE ORDER_DT BETWEEN TO_DATE('22-MAY-01 00:00:00','DD-MON-YY HH24:MI:SS')
AND TO_DATE('22-MAY-01 23:59:59','DD-MON-YY HH24:MI:SS');

 ORDER_NBR CUST SALES_EMP SALE_PRICE ORDER_DT EXPECTED_ CANCELLED SHIP STATUS

---------- ---- --------- ---------- --------- --------- --------- ---- ---------

 1001 1 3 99 22-MAY-01 23-MAY-01 DELIVERED

 1005 8 3 99 22-MAY-01 24-MAY-01 DELIVERED

 1021 8 7 99 22-MAY-01 24-MAY-01 DELIVERED

The query treats the one day as a range: 22-MAY-01 00:00:00 to 22-MAY-01 23:59:59. Thus, the query
returns any order placed at any time during 22-MAY-01.

Another way to solve this problem of needing to ignore the time components in a DATE column would be to
truncate the date, and then compare the truncated result with the input literal:

SELECT * FROM CUST_ORDER
WHERE TRUNC(ORDER_DT) = '22-MAY-01';

 ORDER_NBR CUST SALES_EMP SALE_PRICE ORDER_DT EXPECTED_ CANCELLED SHIP STATUS

---------- ---- --------- ---------- --------- --------- --------- ---- ---------

 1001 1 3 99 22-MAY-01 23-MAY-01 DELIVERED

 1005 8 3 99 22-MAY-01 24-MAY-01 DELIVERED

 1021 8 7 99 22-MAY-01 24-MAY-01 DELIVERED

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 1021 8 7 99 22-MAY-01 24-MAY-01 DELIVERED

The TRUNC function sets the time portion to the beginning of the day. Therefore, the equality comparison
with the date literal '22-MAY-01' returns the expected output. The same result can be achieved by converting
ORDER_DT to a character string in a format matching that of the input data.

SELECT * FROM CUST_ORDER
WHERE TO_CHAR(ORDER_DT,'DD-MON-YY') = '22-MAY-01';
The downside to the approach of using the TRUNC and TO_CHAR functions is that the resulting query
cannot make use of any index that happens to be on the ORDER_DT column. This can have significant
performance implications. On the other hand, the date range solution, while more complex to code, does not
preclude the use of any index on the column in question.

Oracle8i and higher support the use of function-based indexes, which, if created
correctly, allow for the use of indexes even when functions are applied to columns.

You can use the same techniques shown in this section to SELECT data based on any given date range,
even if that range spans more than just one day.

6.3.8 Creating a Date Pivot Table

For certain types of queries, it's helpful to have a table with one row for each date over a period of time. For
example, you might wish to have one row for each date in the current year. You can use the TRUNC function
in conjunction with some PL/SQL code to create such a table:

CREATE TABLE DATES_OF_YEAR (ONE_DAY DATE);

Table created.

DECLARE
 I NUMBER;
 START_DAY DATE := TRUNC(SYSDATE,'YY');
BEGIN
 FOR I IN 0 .. (TRUNC(ADD_MONTHS(SYSDATE,12),'YY') - 1) - (TRUNC(SYSDATE,'YY'))
 LOOP
 INSERT INTO DATES_OF_YEAR VALUES (START_DAY+I);
 END LOOP;
END;
/

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

/

PL/SQL procedure successfully completed.

SELECT COUNT(*) FROM DATES_OF_YEAR;

 COUNT(*)

 365

The DATES_OF_YEAR table is now populated with the 365 days of the year 2001. We can now play with this
table to generate various useful lists of dates.

Let's say there are two paydays where you work—the 15th of each month and the last day of each month.
Use the following query against the DATES_OF_YEAR table to generate a list of all paydays in the year 2001.

SELECT ONE_DAY PAYDAY FROM DATES_OF_YEAR
WHERE TO_CHAR(ONE_DAY,'DD') = '15'
OR ONE_DAY = LAST_DAY(ONE_DAY);

PAYDAY

15-JAN-01

31-JAN-01

15-FEB-01

28-FEB-01

15-MAR-01

31-MAR-01

15-APR-01

30-APR-01

15-MAY-01

31-MAY-01

15-JUN-01

30-JUN-01

15-JUL-01

31-JUL-01

15-AUG-01

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

15-AUG-01

31-AUG-01

15-SEP-01

30-SEP-01

15-OCT-01

31-OCT-01

15-NOV-01

30-NOV-01

15-DEC-01

31-DEC-01

24 rows selected.

Quite often you are told by a government organization that the processing of a document will take "x" number
of days. When they say something like that, they usually mean "x" number of working days. Thus, in order to
calculate the expected completion date, you need to count "x" days from the current date, skipping Saturdays
and Sundays. Obviously, you can't use simple date arithmetic, because simple date subtraction doesn't
exclude weekend days. What you can do is use the DATES_OF_YEAR table. For example:

SELECT COUNT(*) FROM DATES_OF_YEAR
WHERE RTRIM(TO_CHAR(ONE_DAY,'DAY')) NOT IN ('SATURDAY', 'SUNDAY')
AND ONE_DAY BETWEEN '&d1' AND '&d2';

Enter value for d1: 18-FEB-01

Enter value for d2: 15-MAR-01

old 3: AND ONE_DAY BETWEEN '&d1' AND '&d2'

new 3: AND ONE_DAY BETWEEN '18-FEB-01' AND '15-MAR-01'

 COUNT(*)

 19

This query counts the number of days between the two dates you enter, excluding Saturdays and the
Sundays. The TO_CHAR function with the 'DAY' format converts each candidate date (from the
DATES_OF_YEAR table) to a day of the week, and the NOT IN operator excludes the days that are
Saturdays and Sundays. Notice the use of the RTRIM function with TO_CHAR. We used RTRIM because
TO_CHAR produces the DAY as a nine-character string, with blank padded to the right. RTRIM eliminates
those extra spaces.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There could be holidays between two dates, and the queries shown in this section don't deal with that
possibility. To take holidays into account, you need another table (perhaps named HOLIDAYS) that lists all
the holidays in the year. You can then modify the previous query to exclude days listed in the HOLIDAYS
table.

6.3.9 Summarizing by a DATE/Time Element

Let's say you want to print a quarterly summary of all your orders. You want to print the total number of orders
and total sale price for each quarter. The order table is as follows:

SELECT * FROM CUST_ORDER;

 ORDER_NBR CUST SALES PRICE ORDER_DT EXPECTED_ CANCELLED SHIP STATUS

---------- ----- ----------- --------- --------- --------- --- -----------

 1001 1 3 99 22-MAY-01 23-MAY-01 DELIVERED

 1000 1 4 19-JAN-01 24-JAN-01 21-JAN-01 CANCELLED

 1002 5 6 12-JUL-01 25-JUL-01 14-JUL-01 CANCELLED

 1003 4 5 56 16-NOV-01 26-NOV-01 DELIVERED

 1004 4 4 34 18-JAN-01 27-JAN-01 PENDING

 1005 8 3 99 22-MAY-01 24-MAY-01 DELIVERED

 1006 1 8 22-JUL-01 28-JUL-01 24-JUL-01 CANCELLED

 1007 5 1 25 20-NOV-01 22-NOV-01 PENDING

 1008 5 1 25 21-JAN-01 23-JAN-01 PENDING

 1009 1 5 56 18-MAY-01 22-MAY-01 DELIVERED

 1012 1 2 99 22-JAN-01 23-JAN-01 DELIVERED

 1011 1 3 19-NOV-01 24-NOV-01 21-NOV-01 CANCELLED

 1015 5 3 12-NOV-01 25-NOV-01 14-NOV-01 CANCELLED

 1017 4 1 56 16-MAY-01 26-MAY-01 DELIVERED

 1019 4 9 34 18-NOV-01 27-NOV-01 PENDING

 1021 8 7 99 22-MAY-01 24-MAY-01 DELIVERED

 1023 1 1 22-NOV-01 28-NOV-01 24-NOV-01 CANCELLED

 1025 5 3 25 20-MAY-01 22-MAY-01 PENDING

 1027 5 1 25 21-NOV-01 23-NOV-01 PENDING

 1029 1 5 56 18-MAY-01 22-MAY-01 DELIVERED

20 rows selected.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

20 rows selected.

There is no quarter column in the CUST_ORDER table. You have to manipulate the ORDER_DT column to
generate the quarter. The following SQL statement does this using the TO_CHAR function along with a date
format. In addition to being used in the SELECT list, notice that TO_CHAR is used in the GROUP BY clause
to group the results by quarter.

SELECT 'Q'||TO_CHAR(ORDER_DT, 'Q') QUARTER, COUNT(*), SUM(NVL(SALE_PRICE,0))
FROM CUST_ORDER
GROUP BY 'Q'||TO_CHAR(ORDER_DT, 'Q');

QU COUNT(*) SUM(NVL(SALE_PRICE,0))

-- ---------- ----------------------

Q1 4 158

Q2 7 490

Q3 2 0

Q4 7 140

Using this same technique, you can summarize data by week, month, year, hour, minute, or any other
date/time unit that you choose.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.4 Oracle9i New DATETIME Features

With Oracle9i, Oracle introduced features to enhance support for temporal data. These new
features form the basis of Oracle's support for:

Time zones

Date and time data with fractional seconds

Date and time intervals

In this section we discuss these enhancements and their uses.

6.4.1 Time Zones

In the Internet economy, business is carried out across geographical boundaries and time zones.
Oracle facilitates global e-business through its support for time zones. With Oracle9i, a database
and a session can now be associated with time zones. Having database and session time zones
enables users in geographically distant regions to exchange temporal data with the database
without having to bother about the time differences between their location and the server's
location.

6.4.1.1 Database time zone

We can set the time zone of a database when we create the database. After creating the
database, we can change the time zone using the ALTER DATABASE command. Both CREATE
DATABASE and ALTER DATABASE take an optional SET TIME_ZONE clause. Specify a time
zone in one of the two ways:

By specifying a displacement from the Coordinated Universal Time (UTC).

By specifying a time zone region.

The displacement from the UTC is specified in hours and minutes with a + or - sign. Every time
zone region is given a region name. For example, EST is the region name for Eastern Standard
Time. We can also use such a region name to set the time zone of a database.

UTC was formerly known as Greenwich Mean Time (GMT).

The syntax of SET TIME_ZONE clause is:

SET TIME_ZONE = '+ | - HH:MI' | 'time_zone_region'

The following examples use this clause to set the time zone of a database:

CREATE DATABASE ... SET TIME_ZONE = '-05:00';

ALTER DATABASE ... SET TIME_ZONE = 'EST';

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ALTER DATABASE ... SET TIME_ZONE = 'EST';

Both of the previous examples set the time zone to Eastern Standard Time. The first example
uses a displacement (-05:00) from the UTC. The second example uses the region name (EST).

If we do not explicitly set the database time zone, Oracle defaults to the
operating system time zone. If the operating system time zone is not a
valid Oracle time zone, UTC is used as the default time zone.

6.4.1.2 Session time zone

Each session can have a time zone as well. The time zone of a session can be set by using the
ALTER SESSION SET TIME_ZONE clause. The syntax for the SET TIME_ZONE clause in the
ALTER SESSION statement is the same as that in the CREATE DATABASE and ALTER
DATABASE statements.

The following example shows two ways to set the time zone of a session to Pacific Standard
Time:

ALTER SESSION SET TIME_ZONE = '-08:00';

ALTER SESSION SET TIME_ZONE = 'PST';

To set the session time zone to the local operating system time zone (e.g., the time zone of a PC
initiating a remote user session), we can use the LOCAL keyword in the SET TIME_ZONE clause,
as in the following example:

ALTER SESSION SET TIME_ZONE = LOCAL;

To set the session time zone to the database time zone, use the DBTIMEZONE keyword in the
SET TIME_ZONE clause, as in the following example:

ALTER SESSION SET TIME_ZONE = DBTIMEZONE;

We will talk more about the DBTIMEZONE keyword later.

If the session time zone has not been explicitly set, Oracle defaults to the
local operating system time zone. If the operating system time zone is not
a valid Oracle time zone, UTC is used as the default time zone.

6.4.2 Date and Time Data with Fractional Seconds

To provide support for the fractional seconds along with date and time data, Oracle9i introduced
the following new temporal datatypes:

TIMESTAMP

TIMESTAMP WITH TIMEZONE

TIMESTAMP WITH LOCAL TIMEZONE

These datatypes provide ways to handle time values resolved down to the fraction of a second,
and in different time zones. The following sections discuss these datatypes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.4.2.1 TIMESTAMP

The TIMESTAMP datatype extends the DATE type to support more precise time values. A
TIMESTAMP includes all the components of the DATE datatype (century, year, month, day, hour,
minute, second) plus fractional seconds. A TIMESTAMP datatype is specified as:

TIMESTAMP [(precision for fractional seconds)]

The precision for the fractional seconds is specified in the parentheses. We can specify integer
values between 0 and 9 for fractional precision. A precision of 9 means that we can have 9 digits
to the right of the decimal. As you can see from the syntax notation, the precision field is optional.
If we don't specify the precision, it defaults to 6; i.e., TIMESTAMP is the same as TIMESTAMP(6).

The following example creates a table with a TIMESTAMP column:

CREATE TABLE TRANSACTION (
TRANSACTION_ID NUMBER(10),
TRANSACTION_TIMESTAMP TIMESTAMP,
STATUS VARCHAR2(12));

Table created.

DESC TRANSACTION
 Name Null? Type

 --------------------------- -------- ---------------

 TRANSACTION_ID NUMBER(10)

 TRANSACTION_TIMESTAMP TIMESTAMP(6)

 STATUS VARCHAR2(12)

Note that even though we specified just TIMESTAMP as the datatype of the column
TRANSACTION_TIMESTAMP, it appears as TIMESTAMP(6) when we describe the table. To
insert data into this column, we can use a TIMESTAMP literal in the following format:

TIMESTAMP 'YYYY-MM-DD HH:MI:SS.xxxxxxxxx'

A TIMESTAMP literal can have up to 9 digits of fractional seconds. The fractional part is optional,
but the date and time elements are mandatory and must be provided in the specified format.
Here's an example in which data is inserted into a table with a TIMESTAMP column:

INSERT INTO TRANSACTION
VALUES (1001, TIMESTAMP '1998-12-31 08:23:46.368', 'OPEN');

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VALUES (1001, TIMESTAMP '1998-12-31 08:23:46.368', 'OPEN');

1 row created.

SELECT * FROM TRANSACTION;

TRANSACTION_ID TRANSACTION_TIMESTAMP STATUS

-------------- --------------------------------- ---------

 1001 31-DEC-98 08.23.46.368000 AM OPEN

6.4.2.2 TIMESTAMP WITH TIME ZONE

The TIMESTAMP WITH TIME ZONE datatype further extends the TIMESTAMP type to include a
time zone displacement. A TIMESTAMP WITH TIME ZONE datatype is specified as:

TIMESTAMP [(precision for fractional seconds)] WITH TIME ZONE

The precision for fractional seconds is the same as that for the TIMESTAMP datatype. The time
zone displacement is the time difference in hours and minutes, between the local time and GMT
(Greenwich Mean Time, also known as Coordinated Universal Time or UTC). We supply such
displacements when we store values in the column, and the database retains the displacements
so that those values can later be translated into any target time zone desired by the user.

The following example creates a table with a TIMESTAMP column:

CREATE TABLE TRANSACTION_TIME_ZONE (
TRANSACTION_ID NUMBER(10),
TRANSACTION_TIMESTAMP TIMESTAMP(3) WITH TIME ZONE,
STATUS VARCHAR2(12));

Table created.

DESC TRANSACTION_TIME_ZONE
 Name Null? Type

 ------------------------------- -------- ------------------------

 TRANSACTION_ID NUMBER(10)

 TRANSACTION_TIMESTAMP TIMESTAMP(3) WITH TIME ZONE

 STATUS VARCHAR2(12)

To insert data into the TRANSACTION_TIMESTAMP column, we can use a TIMESTAMP literal
with a time zone displacement, which takes the following form:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TIMESTAMP 'YYYY-MM-DD HH:MI:SS.xxxxxxxxx {+|-} HH:MI'

Here is an example showing how to insert data into a table with a TIMESTAMP WITH TIME
ZONE column:

INSERT INTO TRANSACTION_TIME_ZONE
VALUES (1002, TIMESTAMP '1998-12-31 08:23:46.368 -10:30', 'NEW');

1 row created.

SELECT * FROM TRANSACTION_TIME_ZONE;

TRANSACTION_ID TRANSACTION_TIMESTAMP STATUS

-------------- ----------------------------------- -------

 1002 31-DEC-98 08.23.46.368 AM -10:30 NEW

Note that even though the datatype is called TIMESTAMP WITH TIME ZONE, the literal still uses
just the TIMESTAMP keyword. Also note that the literal specifies a date/time displacement using
the {+|-}hour:minute notation.

If we are specifying a time zone displacement with a TIMESTAMP literal, we must specify the sign
of the displacement (i.e., + or -). The range of the hour in a time zone displacement is -12 through
+13, and the range of a minute is 0 through 59. A displacement outside these ranges will
generate an error.

When we don't specify a time zone displacement, the displacement is not assumed to be zero;
instead, the timestamp is assumed to be in the local time zone, and the value of the displacement
defaults to the displacement of the local time zone. In the following example, the input data
doesn't specify any time zone. Therefore, Oracle assumes the timestamp to be in the local time
zone, and stores the local time zone along with the timestamp in the database column.

INSERT INTO TRANSACTION_TIME_ZONE
VALUES (1003, TIMESTAMP '1999-12-31 08:23:46.368', 'NEW');

1 row created.

SELECT * FROM TRANSACTION_TIME_ZONE;

TRANSACTION_ID TRANSACTION_TIMESTAMP STATUS

-------------- ------------------------------------- -------

 1003 31-DEC-99 08.23.46.368 AM -05:00 NEW

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.4.2.3 TIMESTAMP WITH LOCAL TIME ZONE

The TIMESTAMP WITH LOCAL TIME ZONE datatype is a variant of the TIMESTAMP WITH
TIME ZONE datatype. A TIMESTAMP WITH LOCAL TIME ZONE datatype is specified as:

TIMESTAMP [(precision for fractional seconds)] WITH LOCAL TIME ZONE

The precision for the fractional seconds is the same as that in the TIMESTAMP datatype.
TIMESTAMP WITH LOCAL TIME ZONE differs from TIMESTAMP WITH TIME ZONE in the
following ways:

The time zone displacement is not stored as part of the column data.

The data stored in the database is normalized to the time zone of the database. To
normalize an input date to the database time zone, the input time is converted to a time in
the database time zone.

When the data is retrieved, Oracle returns the data in the time zone of the user session.

The following example creates a table with a TIMESTAMP column:

CREATE TABLE TRANSACTION_LOCAL_TIME_ZONE (
TRANSACTION_ID NUMBER(10),
TRANSACTION_TIMESTAMP TIMESTAMP(3) WITH LOCAL TIME ZONE,
STATUS VARCHAR2(12));

Table created.

DESC TRANSACTION_LOCAL_TIME_ZONE
 Name Null? Type

 ------------------------ -------- ------------------------

 TRANSACTION_ID NUMBER(10)

 TRANSACTION_TIMESTAMP TIMESTAMP(3) WITH LOCAL TIME ZONE

 STATUS VARCHAR2(12)

There is no literal for the TIMESTAMP WITH LOCAL TIME ZONE datatype. To insert data into
this column, we use a TIMESTAMP literal. For example:

INSERT INTO TRANSACTION_LOCAL_TIME_ZONE VALUES (
2001, TIMESTAMP '1998-12-31 10:00:00 -3:00', 'NEW');

1 row created.

SELECT * FROM TRANSACTION_LOCAL_TIME_ZONE;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT * FROM TRANSACTION_LOCAL_TIME_ZONE;

TRANSACTION_ID TRANSACTION_TIMESTAMP STATUS

-------------- -------------------------- -------

 2001 31-DEC-98 08.00.00 AM NEW

Note that the time zone displacement is not stored in the database. The data is stored in the
database in the normalized form with respect to the database time zone. What this means is that
the input time is converted into a time in the database time zone before being storing in the
database. The database time zone is -5:00. Therefore, -3:00 is 2 hours ahead of the database
time zone, and 10:00:00 - 3:00 is the same as 08:00:00 - 5:00. Since the time is normalized with
respect to the database time zone, the displacement does not need to be stored in the database.

6.4.3 Date and Time Intervals

Date and time interval data are an integral part of our day-to-day life. Common examples of
interval data are the age of a person, the maturity period of a bond or certificate of deposit, and
the warranty period of your car. Prior to Oracle9i, we all used the NUMBER datatype to represent
such data, and the logic needed to deal with interval data had to be coded at the application level.
Oracle9i provides two new datatypes to handle interval data:

INTERVAL YEAR TO MONTH

INTERVAL DAY TO SECOND

The following sections discuss the use of these datatypes.

6.4.3.1 INTERVAL YEAR TO MONTH

The INTERVAL YEAR TO MONTH type stores a period of time expressed as a number of years
and months. An INTERVAL YEAR TO MONTH datatype is specified as:

INTERVAL YEAR [(precision for year)] TO MONTH

The precision specifies the number of digits in the year field. The precision can range from 0 to 9,
and the default value is 2. The default precision of two allows for a maximum interval of 99 years,
11 months.

The following example creates a table with INTERVAL YEAR TO MONTH datatype:

CREATE TABLE EVENT_HISTORY (
EVENT_ID NUMBER(10),
EVENT_DURATION INTERVAL YEAR TO MONTH);

Table created.

DESC EVENT_HISTORY

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DESC EVENT_HISTORY
 Name Null? Type

 ---------------------------- -------- ------------------------

 EVENT_ID NUMBER(10)

 EVENT_DURATION INTERVAL YEAR(2) TO MONTH

The next example uses the NUMTOYMINTERVAL (NUM-TO-YM-INTERVAL) function to insert
data into a database column of type INTERVAL YEAR TO MONTH. This function converts a
NUMBER value into a value of type INTERVAL YEAR TO MONTH, and is discussed later in this
chapter in Section 6.5.3.

INSERT INTO EVENT_HISTORY VALUES (5001, NUMTOYMINTERVAL(2,'YEAR'));

1 row created.

INSERT INTO EVENT_HISTORY VALUES (5002, NUMTOYMINTERVAL(2.5,'MONTH'));

1 row created.

SELECT * FROM EVENT_HISTORY;

 EVENT_ID EVENT_DURATION

---------- ------------------

 5001 +02-00

 5002 +00-02

The second argument to the NUMTOYMINTERVAL function specifies the unit of the first
argument. Therefore, in the first example, the number 2 is treated as 2 years, and in the second
example, the number 2.5 is treated as 2 months. Note that the fractional part of a month is
ignored. An INTERVAL YEAR TO MONTH value is only in terms of years and months, not
fractional months. Any fractional values of a month are truncated.

6.4.3.2 INTERVAL DAY TO SECOND

The INTERVAL DAY TO SECOND type stores a period of time expressed as a number of days,
hours, minutes, seconds, and fractions of a second. An INTERVAL DAY TO SECOND datatype is
specified as:

INTERVAL DAY [(precision for day)]

TO SECOND [(precision for fractional seconds)]

The precision for day specifies the number of digits in the day field. This precision can range from
0 to 9, and the default value is 2. The precision for fractional seconds is the number of digits in
the fractional part of second. It can range from 0 to 9, and the default value is 6.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following example creates a table with INTERVAL DAY TO SECOND datatype:

CREATE TABLE BATCH_JOB_HISTORY (
JOB_ID NUMBER(6),
JOB_DURATION INTERVAL DAY(3) TO SECOND(6));

Table created.

DESC BATCH_JOB_HISTORY
 Name Null? Type

 ----------------------- -------- -----------------------------

 JOB_ID NUMBER(6)

 JOB_DURATION INTERVAL DAY(3) TO SECOND(6)

Here's how to insert data into a table with an INTERVAL DAY TO SECOND column:

INSERT INTO BATCH_JOB_HISTORY VALUES
(6001, NUMTODSINTERVAL(5369.2589,'SECOND'));

1 row created.

SELECT * FROM BATCH_JOB_HISTORY;

 JOB_ID JOB_DURATION

---------- --

 6001 +00 01:29:29.258900

To insert into a database column of type INTERVAL DAY TO SECOND, we used a function
NUMTODSINTERVAL (NUM-TO-DS-INTERVAL). This function converts a NUMBER value into a
value of type INTERVAL DAY TO SECOND, and is discussed in Section 6.5.3 later in this
chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.5 INTERVAL Literals

Just as Oracle supports DATE and TIMESTAMP literals, it supports INTERVAL literals too. There are two interval
datatypes, and two types of corresponding interval literals: YEAR TO MONTH interval literals and DAY TO
SECOND interval literals.

6.5.1 YEAR TO MONTH Interval Literals

A YEAR TO MONTH interval literal represents a time period in terms of years and months. A YEAR TO MONTH
interval literal takes on the following form:

INTERVAL 'y [- m]' YEAR[(precision_for_year)] [TO MONTH]

The syntax elements are:

y

An integer value specifying the years.

m

An optional integer value specifying the months. You must include the TO MONTH keywords if you specify
a month value.

precision_for_year

Specifies the number of digits to allow for the year. The default is 2. The valid range is from 0 to 9.

The default precision for the year value is 2. If the literal represents a time period greater than 99 years, then we
must specify a high-enough precision for the year. The integer value for the month, as well as the MONTH
keyword, are optional. If you specify a month value, it must be between 0 and 11. You also need to use the TO
MONTH keywords when you specify a month value.

The following example inserts a YEAR TO MONTH interval literal into an INTERVAL YEAR TO MONTH column:

INSERT INTO EVENT_HISTORY
VALUES (6001, INTERVAL '5-2' YEAR TO MONTH);

1 row created.

SELECT * FROM EVENT_HISTORY;

 EVENT_ID EVENT_DURATION

---------- --

 6001 +05-02

The following example uses a YEAR TO MONTH interval literal to specify a time period of exactly four years. Note
that no value for months is included:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT INTERVAL '4' YEAR FROM DUAL;

INTERVAL'4'YEAR

+04-00

A YEAR TO MONTH interval literal can also be used to represent months only.

SELECT INTERVAL '3' MONTH FROM DUAL;

INTERVAL'3'MONTH

+00-03

SELECT INTERVAL '30' MONTH FROM DUAL;

INTERVAL'30'MONTH

+02-06

Notice that when we use a YEAR TO MONTH interval literal to represent only months, we can actually specify a
month value larger than 11. In such a situation, Oracle normalizes the value into an appropriate number of years
and months. This is the only situation where the month can be greater than 11.

6.5.2 DAY TO SECOND Interval Literals

A DAY TO SECOND interval literal represents a time period in terms of days, hours, minutes, and seconds. DAY
TO SECOND interval literals take on the following form:

INTERVAL 'd [h [:m[:s]]]' DAY[(day_prec)] [TO {HOUR | MINUTE | SECOND[(frac_prec)]}]

The syntax elements are:

d

An integer value specifying the days.

h

An optional integer value specifying the hours.

m

An optional integer value specifying the minutes.

s

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An optional number value specifying the seconds and fractional seconds.

day_prec

The number of digits to allow for the days. The default is 2. The valid range is from 0 to 9.

frac_prec

The number of digits to allow for fractional seconds.

By default, two digits are allowed for the number of days. If the literal represents a time period of greater than 99
days, then we must specify a precision high enough to accommodate the number of digits we need. There's no
need to specify the precision for the hour and minute values. The value for the hours can be between 0 and 23,
and the value for the minutes can be between 0 and 59. If you specify fractional seconds, you need to specify a
precision for the fractional seconds as well. The precision for the fractional seconds can be between 1 and 9, and
the seconds value can be between 0 and 59.999999999.

The following example inserts a DAY TO SECOND interval literal into a column of data type INTERVAL DAY TO
SECOND. The time period being represented is 0 days, 3 hours, 16 minutes, 23.45 seconds.

INSERT INTO BATCH_JOB_HISTORY
VALUES (2001, INTERVAL '0 3:16:23.45' DAY TO SECOND);

1 row created.

SELECT * FROM BATCH_JOB_HISTORY;

 JOB_ID JOB_DURATION

---------- --

 2001 +00 03:16:23.450000

The previous example uses all elements of the DAY TO SECOND interval literal. However, you can use fewer
elements if that's all you need. For example, the following examples show several valid permutations:

SELECT INTERVAL '400' DAY(3) FROM DUAL;

INTERVAL'400'DAY(3)

+400 00:00:00

SELECT INTERVAL '11:23' HOUR TO MINUTE FROM DUAL;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT INTERVAL '11:23' HOUR TO MINUTE FROM DUAL;

INTERVAL'11:23'HOURTOMINUTE

+00 11:23:00

SELECT INTERVAL '11:23' MINUTE TO SECOND FROM DUAL;

INTERVAL'11:23'MINUTETOSECOND

+00 00:11:23.000000

SELECT INTERVAL '20' MINUTE FROM DUAL;

INTERVAL'20'MINUTE

+00 00:20:00

The only requirement is that you must use a range of contiguous elements. You cannot, for example, specify an
interval in terms of only hours and seconds, because you can't omit the intervening minutes value. An interval of 4
hours, 36 seconds would need to be expressed as 4 hours, 0 minutes, 36 seconds.

6.5.3 Manipulating Timestamps and Intervals

To manipulate values of the new datetime and interval datatypes discussed in this chapter, Oracle9i
several new built-in SQL functions. Table 6-4 summarizes these functions.

Table 6-4. New DATETIME and INTERVAL functions in Oracle9i
Function Description Return datatype

DBTIMEZONE Returns the database timezone. Character
SESSIONTIMEZONE Returns the session timezone. Character

SYSTIMESTAMP Returns the system date and timestamp in the session
timezone.

TIMESTAMP WITH TIME
ZONE

CURRENT_DATE Returns the current date in the session timezone. DATE

CURRENT_TIMESTAMP Returns the current date and timestamp in the session
timezone.

TIMESTAMP WITH TIME
ZONE

LOCALTIMESTAMP Returns the current date and timestamp in the session
timezone. TIMESTAMP

TO_TIMESTAMP Converts character string into TIMESTAMP. TIMESTAMP

TO_TIMESTAMP_TZ Converts character string into TIMESTAMP WITH TIME
ZONE.

TIMESTAMP WITH TIME
ZONE

FROM_TZ Converts TIMPSTAMP into TIMESTAMP WITH TIME
ZONE.

TIMESTAMP WITH TIME
ZONE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ZONE. ZONE

NUMTOYMINTERVAL Converts number into INTERVAL YEAR TO MONTH. INTERVAL YEAR TO
MONTH

NUMTODSINTERVAL Converts number into INTERVAL DAY TO SECOND. INTERVAL DAY TO
SECOND

TO_YMINTERVAL Converts character string into INTERVAL YEAR TO
MONTH.

TIMESTAMP WITH TIME
ZONE

TO_DSINTERVAL Converts character string into INTERVAL DAY TO
SECOND.

INTERVAL DAY TO
SECOND

TZ_OFFSET Returns the time zone offset with respect to UTC. Character

The time zone is returned as a displacement with respect to UTC, and is displayed with a + or - sign together with
an hours:minutes value. These functions are discussed with examples in the following sections.

6.5.3.1 DBTIMEZONE

The DBTIMEZONE function returns the value of the database time zone. We can use this function as we use
SYSDATE:

SELECT DBTIMEZONE FROM DUAL;

DBTIME

-07:00

6.5.3.2 SESSIONTIMEZONE

The SESSIONTIMEZONE function returns the value of the session time zone. We can use this function as we
use SYSDATE:

SELECT SESSIONTIMEZONE FROM DUAL;

SESSIONTIMEZONE

-06:00

6.5.3.3 SYSTIMESTAMP

The SYSTIMESTAMP function returns the value of the system date and time, including the fractional parts of a
second and the time zone. This is the same as SYSDATE, but with additional information about fractional
seconds and the time zone.

SELECT SYSTIMESTAMP FROM DUAL;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT SYSTIMESTAMP FROM DUAL;

SYSTIMESTAMP

11-NOV-01 01.00.10.040438 AM -05:00

SYSTIMESTAMP returns a value in the TIMESTAMP WITH TIMEZONE datatype, and the precision of fractional
seconds is always 6.

6.5.3.4 CURRENT_DATE

The CURRENT_DATE function returns the current date and time in the session time zone. The difference
between SYSDATE and CURRENT_DATE is that while SYSDATE is based on the DBTIMEZONE,
CURRENT_DATE is based on the SESSIONTIMEZONE.

SELECT SYSDATE, CURRENT_DATE FROM DUAL;

SYSDATE CURRENT_DATE

----------------------- -----------------------

11-NOV-2001 01:15:40 AM 11-NOV-2001 12:15:41 AM

Note that the CURRENT_DATE is behind the SYSDATE by one hour in this example. This is because the session
time zone is one hour behind the database time zone.

6.5.3.5 CURRENT_TIMESTAMP

The CURRENT_TIMESTAMP function returns the current date, the time, the fractional parts of a second, and a
time zone displacement. The value returned will be in the session time zone. Note that the difference between
SYSTIMESTAMP and CURRENT_TIMESTAMP is that while SYSTIMESTAMP is based on the DBTIMEZONE,
CURRENT_TIMESTAMP is based on the SESSIONTIMEZONE.

The function header of CURRENT_TIMESTAMP is:

CURRENT_TIMESTAMP [(precision)]

The precision argument specifies the precision of the fractional seconds, and is optional. The default precision is
6. The return value is of datatype TIMESTAMP WITH TIME ZONE.

SELECT CURRENT_TIMESTAMP FROM DUAL;

CURRENT_TIMESTAMP

11-NOV-01 01.42.40.099518 PM -06:00

6.5.3.6 LOCALTIMESTAMP

The LOCALTIMESTAMP function returns the current date, time, and the fractional parts of a second in the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The LOCALTIMESTAMP function returns the current date, time, and the fractional parts of a second in the
session time zone. The function header of LOCALTIMESTAMP is:

LOCALTIMESTAMP [(precision)]

The precision argument specifies the precision of the fractional seconds, and is optional. The default value is 6.
The return value is of datatype TIMESTAMP.

SELECT LOCALTIMESTAMP FROM DUAL;

LOCALTIMESTAMP

11-NOV-01 01.42.55.852724 PM

Note that the only difference between LOCALTIMESTAMP and CURRENT_TIMESTAMP is the return type.
LOCALTIMESTAMP returns a TIMESTAMP, whereas CURRENT_TIMESTAMP returns a TIMESTAMP WITH
TIME ZONE.

6.5.3.7 TO_TIMESTAMP

The TO_TIMESTAMP function is similar to the TO_DATE function. It converts a character string into a
TIMESTAMP. The input to the TO_TIMESTAMP function can be a literal, a PL/SQL variable, or a database
column of CHAR or VARCHAR2 datatype.

The TIMESTAMP keyword can also be used to generate a TIMESTAMP value, but the
keyword can only be used with a literal value. TO_TIMESTAMP can operate on PL/SQL
variables and database column values.

The function header of TO_TIMESTAMP function is:

TO_TIMESTAMP (string [,format])

The syntax elements are:

string

Specifies a character string or a numeric value that is convertible to a TIMESTAMP. The string or numeric
value can be a literal, a value in a PL/SQL variable, or a value in a database column.

format

Specifies the format of the input string.

The format is optional. When the format is not specified, the input string is assumed to be in the default timestamp
format. The default timestamp format is the default date format plus time in the format HH.MI.SS.xxxxxxxxx,
where xxxxxxxxx represents fractional seconds. The following example converts a string in the default timestamp
format into a timestamp:

SELECT TO_TIMESTAMP('11-NOV-01 10.32.22.765488123') FROM DUAL;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT TO_TIMESTAMP('11-NOV-01 10.32.22.765488123') FROM DUAL;

TO_TIMESTAMP('11-NOV-0110.32.22.765488123')

--

11-NOV-01 10.32.22.765488123 AM

The following example specifies the format as the second input parameter to the TO_TIMESTAMP function:

SELECT TO_TIMESTAMP('12/10/01','MM/DD/YY') FROM DUAL;

TO_TIMESTAMP('12/10/01','MM/DD/YY')

--

10-DEC-01 12.00.00 AM

Notice in this second example that since the time portion wasn't provided in the input string, the time is
to be the beginning of the day, i.e., 12:00:00 A.M.

6.5.3.8 TO_TIMESTAMP_TZ

The TO_TIMESTAMP_TZ function is similar to the TO_TIMESTAMP function. The only difference is the return
datatype. The return type of TO_TIMESTAMP_TZ is TIMESTAMP WITH TIME ZONE. The input to the
TO_TIMESTAMP_TZ function can be a literal, a PL/SQL variable, or a database column of CHAR or
datatype.

The function header of TO_TIMESTAMP_TZ function is:

TO_TIMESTAMP_TZ (string [,format])

The syntax elements are:

string

Specifies a character string or a numeric value that is convertible to a TIMESTAMP WITH TIME ZONE.
The string or numeric value can be a literal, a value in a PL/SQL variable, or a value in a database

format

Specifies the format of the input string.

The format is optional. When the format is not specified, the input string is assumed to be in the default format of
the TIMESTAMP WITH TIME ZONE datatype. The following example converts a string in the default format into a
TIMESTAMP WITH TIME ZONE:

SELECT TO_TIMESTAMP_TZ('11-NOV-01 10.32.22.765488123 AM -06:00') FROM DUAL;

TO_TIMESTAMP_TZ('11-NOV-0110.32.22.765488123')

--

11-NOV-01 10.32.22.765488123 AM -06:00

The following example specifies the format as the second input parameter to the TO_TIMESTAMP_TZ function:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT TO_TIMESTAMP_TZ('12/10/01','MM/DD/YY') FROM DUAL;

TO_TIMESTAMP_TZ('12/10/01','MM/DD/YY')

10-DEC-01 12.00.00.000000000 AM -06:00

Note that since the time portion wasn't provided in the input string, the time is assumed to be the beginning of the
day, i.e., 12:00:00 A.M.

The TO_TIMESTAMP_TZ function doesn't convert the input string into a TIMESTAMP WITH LOCAL TIME ZONE
datatype. Oracle doesn't provide any function for this purpose. To convert a value to TIMESTAMP WITH LOCAL
TIME ZONE, we must use the CAST function, as in the following examples:

SELECT CAST('10-DEC-01' AS TIMESTAMP WITH LOCAL TIME ZONE) FROM DUAL;

CAST('10-DEC-01'ASTIMESTAMPWITHLOCALTIMEZONE)

10-DEC-01 12.00.00 AM

SELECT CAST(TO_TIMESTAMP_TZ('12/10/01','MM/DD/YY')
 AS TIMESTAMP WITH LOCAL TIME ZONE)
FROM DUAL;

CAST(TO_TIMESTAMP_TZ('12/10/01','MM/DD/YY')ASTIMESTAMPWITHLOCALTIMEZONE)

10-DEC-01 12.00.00 AM

In the first example, the input string is in the default date format. Therefore, no date format is required for
conversion. However, in the second example the input string is in a different format than the default; therefore, we
must use a conversion function along with a format to convert the string into a value (e.g., TIMESTAMP WITH
TIME ZONE) that can then be cast to a TIMESTAMP WITH LOCAL TIME ZONE. We can use either TO_DATE,
TO_TIMESTAMP, or TO_TIMESTAMP_TZ, depending upon our input data.

The CAST function used in these examples is not a SQL function in the truest sense.
CAST is actually a SQL expression like DECODE and CASE. The CAST expression
converts a value in one datatype to a value in another datatype. In the first example, the
CAST expression converts a CHAR literal into a value in the TIMESTAMP WITH LOCAL
TIME ZONE datatype. In the second example, the CAST expression converts a value
the TIMESTAMP WITH TIME ZONE datatype into a value in the TIMESTAMP WITH
LOCAL TIME ZONE datatype.

6.5.3.9 FROM_TZ

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The FROM_TZ function takes separate TIMESTAMP and time zone values as input, and converts the inputs into
a TIMESTAMP WITH TIME ZONE. The function header of the FROM_TZ function is:

FROM_TZ (timestamp, time_zone)

The syntax elements are:

timestamp

Specifies a literal string, a PL/SQL variable, or a database column. The input must contain a timestamp
value.

time_zone

Specifies a string containing a time zone in the format [+|-]hh:mi.

The following example illustrates conversion of a timestamp and a time zone into a TIMESTAMP WITH TIME
ZONE value:

SELECT FROM_TZ(TIMESTAMP '2001-12-10 08:30:00', '-5:00') FROM DUAL;

FROM_TZ(TIMESTAMP'2001-12-1008:30:00','-5:00')

10-DEC-01 08.30.00.000000000 AM -05:00

6.5.3.10 NUMTOYMINTERVAL

The NUMTOYMINTERVAL (NUM-TO-YM-INTERVAL) function converts a number input into an INTERVAL YEAR
TO MONTH literal. The function header of NUMTOYMINTERVAL function is:

NUMTOYMINTERVAL (n, unit)

The syntax elements are:

n

Specifies a numeric literal or an expression convertible to a number.

unit

Specifies a character string containing the unit of n, and can be either 'YEAR' or 'MONTH'. This is case-
insensitive.

The following example inserts a row into a table with a column of type INTERVAL YEAR TO MONTH. The
NUMTOYMINTERVAL is used to convert a number into type INTERVAL YEAR TO MONTH.

INSERT INTO EVENT_HISTORY VALUES (5001, NUMTOYMINTERVAL(2,'YEAR'));

6.5.3.11 NUMTODSINTERVAL

The NUMTODSINTERVAL (NUM-TO-DS-INTERVAL) function converts a number input into an INTERVAL DAY
TO SECOND literal. The function header of NUMTODSINTERVAL function is:

NUMTODSINTERVAL (n, unit)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NUMTODSINTERVAL (n, unit)

The syntax elements are:

n

Specifies a numeric literal or an expression convertible to a number.

unit

Specifies a character string containing the unit of n, and can be either 'DAY', 'HOUR', 'MINUTE' or
'SECOND'. This is case-insensitive.

The following example inserts a row into a table with a column of type INTERVAL DAY TO SECOND. The
NUMTODSINTERVAL is used to convert a number into type INTERVAL DAY TO SECOND.

INSERT INTO BATCH_JOB_HISTORY VALUES

(6001, NUMTODSINTERVAL(5369.2589,'SECOND'));

6.5.3.12 TO_YMINTERVAL

The TO_YMINTERVAL function is very similar to the TO_DATE function. It converts a character string into an
INTERVAL YEAR TO MONTH. The input to the TO_YMINTERVAL function can be a literal, a PL/SQL variable, or
a database column of CHAR or VARCHAR2 datatype.

The function header of TO_YMINTERVAL function is:

TO_YMINTERVAL (string)

The syntax element is:

string

Specifies a literal string, a PL/SQL variable, or a database column. The input string must contain character
or numeric data convertible to an INTERVAL YEAR TO MONTH value. The input string must be in Y-M
format, i.e., the year and month values must be separated by a dash (-). All components (year, month and
-) must be present in the string.

The following example inserts a row into a table with a column of type INTERVAL YEAR TO MONTH. The
TO_YMINTERVAL is used to convert a string into a type INTERVAL YEAR TO MONTH value.

INSERT INTO EVENT_HISTORY VALUES (5001, TO_YMINTERVAL('02-04'));

In this example, the string '02-04' represents an interval of 2 years and 4 months.

6.5.3.13 TO_DSINTERVAL

The TO_DSINTERVAL function is similar to the TO_DATE function. It converts a character string into an
INTERVAL DAY TO SECOND. The input to the TO_DSINTERVAL function can be a literal, a PL/SQL variable, or
a database column of CHAR or VARCHAR2 datatype.

The function header of TO_DSINTERVAL function is:

TO_DSINTERVAL (string)

The syntax element is:

string

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Specifies a literal string, a PL/SQL variable, or a database column containing character numeric data
convertible to an INTERVAL DAY TO SECOND value. The input string must be in D HH:MI:SS format. The
day value of the interval is separated by a space from the time value, which is expressed in hours, minutes,
and seconds, and is delimited by ":". All components must be present in the string in order for it to be
converted to an INTERVAL DAY TO SECOND value.

The following example inserts a row into a table with a column of type INTERVAL DAY TO SECOND. The
TO_DSINTERVAL is used to convert a string into type INTERVAL DAY TO SECOND.

INSERT INTO BATCH_JOB_HISTORY VALUES (6001, TO_DSINTERVAL('0 2:30:43'));

In this example, the string '0 2:30:43' represents an interval of 0 days, 2 hours, 30 minutes, and 43 seconds.

6.5.3.14 TZ_OFFSET

The TZ_OFFSET function returns the time zone offset of its input. The function header of TZ_OFFSET function
is:

TZ_OFFSET (time_zone_name | time_zone_offset | DBTIMEZONE | SESSIONTIMEZONE)

The syntax elements are:

time_zone_name

Specifies a string containing a time zone name. A time zone name is given to all the time zones in the
world, and we can query the V$TIMEZONE_NAMES dynamic view for a list of valid time zone names.

time_zone_offset

Specifies a string containing a time zone offset. A time zone offset takes the form of "{+ | -} hh:mi",
hours and minutes preceded by a + or - sign.

DBTIMEZONE

DBTIMEZONE is a build-in function that returns the time zone of the database.

SESSIONTIMEZONE

SESSIONTIMEZONE is a build-in function that returns the time zone of the session.

The following example illustrates the use of the TZ_OFFSET function:

SELECT TZ_OFFSET('US/Pacific'), TZ_OFFSET('EST'), TZ_OFFSET('+6:30') FROM DUAL;

TZ_OFFS TZ_OFFS TZ_OFFS

------- ------- -------

-08:00 -05:00 +06:30

Note that time zone names such as 'US/Eastern' and 'US/Pacific' can be used as well as standard abbreviations
such as 'EST', 'PST', and so on. The following example illustrates the use of DBTIMEZONE and
SESSIONTIMEZONE with the TZ_OFFSET function:

SELECT TZ_OFFSET(DBTIMEZONE), TZ_OFFSET(SESSIONTIMEZONE) FROM DUAL;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT TZ_OFFSET(DBTIMEZONE), TZ_OFFSET(SESSIONTIMEZONE) FROM DUAL;

TZ_OFFS TZ_OFFS

------- -------

-07:00 -06:00

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 7. Set Operations
There are situations when we need to combine the results from two or more SELECT statements.
SQL enables us to handle these requirements by using set operations. The result of each
SELECT statement can be treated as a set, and SQL set operations can be applied on those sets
to arrive at a final result. Oracle SQL supports the following four set operations:

UNION ALL

UNION

MINUS

INTERSECT

SQL statements containing these set operators are referred to as compound queries, and each
SELECT statement in a compound query is referred to as a component query. Two SELECTs can
be combined into a compound query by a set operation only if they satisfy the following two
conditions:

1. The result sets of both the queries must have the same number of columns.

2. The datatype of each column in the second result set must match the datatype of its
corresponding column in the first result set.

The datatypes do not need to be the same if those in the second result
set can be automatically converted by Oracle (using implicit casting) to
types compatible with those in the first result set.

These conditions are also referred to as union compatibility conditions. The term union
compatibility is used even though these conditions apply to other set operations as well. Set
operations are often called vertical joins, because the result combines data from two or more
SELECTS based on columns instead of rows. The generic syntax of a query involving a set
operation is:

<component query>

{UNION | UNION ALL | MINUS | INTERSECT}

<component query>

The keywords UNION, UNION ALL, MINUS, and INTERSECT are set operators. We can have
more than two component queries in a composite query; we will always use one less set operator
than the number of component queries.

The following sections discuss syntax, examples, rules, and restrictions for the four set
operations.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.1 Set Operators

The following list briefly describes the four set operations supported by Oracle SQL:

UNION ALL

Combines the results of two SELECT statements into one result set.

UNION

Combines the results of two SELECT statements into one result set, and then eliminates
any duplicate rows from that result set.

MINUS

Takes the result set of one SELECT statement, and removes those rows that are also
returned by a second SELECT statement.

INTERSECT

Returns only those rows that are returned by each of two SELECT statements.

Before moving on to the details on these set operators, let's look at the following two queries,
which we'll use as component queries in our subsequent examples. The first query retrieves all
the customers in region 5.

SELECT CUST_NBR, NAME
FROM CUSTOMER
WHERE REGION_ID = 5;

 CUST_NBR NAME

---------- ------------------------------

 1 Cooper Industries

 2 Emblazon Corp.

 3 Ditech Corp.

 4 Flowtech Inc.

 5 Gentech Industries

The second query retrieves all the customers with the sales representative is 'MARTIN'.

SELECT C.CUST_NBR, C.NAME
FROM CUSTOMER C
WHERE C.CUST_NBR IN (SELECT O.CUST_NBR
 FROM CUST_ORDER O, EMPLOYEE E
 WHERE O.SALES_EMP_ID = E.EMP_ID

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 WHERE O.SALES_EMP_ID = E.EMP_ID
 AND E.LNAME = 'MARTIN');

 CUST_NBR NAME

---------- ------------------------------

 4 Flowtech Inc.

 8 Zantech Inc.

If we look at the results returned by these two queries, we will notice that there is one common
row (for Flowtech Inc.). The following sections discuss the effects of the various set operations
between these two result sets.

7.1.1 UNION ALL

The UNION ALL operator merges the result sets of two component queries. This operation
returns rows retrieved by either of the component queries. The following example illustrates the
UNION ALL operation:

SELECT CUST_NBR, NAME
FROM CUSTOMER
WHERE REGION_ID = 5
UNION ALL

SELECT C.CUST_NBR, C.NAME
FROM CUSTOMER C
WHERE C.CUST_NBR IN (SELECT O.CUST_NBR
 FROM CUST_ORDER O, EMPLOYEE E
 WHERE O.SALES_EMP_ID = E.EMP_ID
 AND E.LNAME = 'MARTIN');

 CUST_NBR NAME

---------- ------------------------------

 1 Cooper Industries

 2 Emblazon Corp.

 3 Ditech Corp.

 4 Flowtech Inc.

 5 Gentech Industries

 4 Flowtech Inc.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 8 Zantech Inc.

7 rows selected.

As we can see from the result set, there is one customer, which is retrieved by both the
SELECTs, and therefore appears twice in the result set. The UNION ALL operator simply merges
the output of its component queries, without caring about any duplicates in the final result set.

7.1.2 UNION

The UNION operator returns all distinct rows retrieved by two component queries. The UNION
operation eliminates duplicates while merging rows retrieved by either of the component queries.
The following example illustrates the UNION operation:

SELECT CUST_NBR, NAME
FROM CUSTOMER
WHERE REGION_ID = 5
UNION

SELECT C.CUST_NBR, C.NAME
FROM CUSTOMER C
WHERE C.CUST_NBR IN (SELECT O.CUST_NBR
 FROM CUST_ORDER O, EMPLOYEE E
 WHERE O.SALES_EMP_ID = E.EMP_ID
 AND E.LNAME = 'MARTIN');

 CUST_NBR NAME

---------- ------------------------------

 1 Cooper Industries

 2 Emblazon Corp.

 3 Ditech Corp.

 4 Flowtech Inc.

 5 Gentech Industries

 8 Zantech Inc.

6 rows selected.

This query is a modification of the previous query; the keywords UNION ALL have been replaced
with UNION. Notice that the result set contains only distinct rows (no duplicates). To eliminate

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

with UNION. Notice that the result set contains only distinct rows (no duplicates). To eliminate
duplicate rows, a UNION operation needs to do some extra tasks as compared to the UNION ALL
operation. These extra tasks include sorting and filtering the result set. If we observe carefully, we
will notice that the result set of the UNION ALL operation is not sorted, whereas the result set of
the UNION operation is sorted. These extra tasks introduce a performance overhead to the
UNION operation. A query involving UNION will take extra time compared to the same query with
UNION ALL, even if there are no duplicates to remove. Therefore, unless we have a valid need to
retrieve only distinct rows, we should use UNION ALL instead of UNION for better performance.

7.1.3 INTERSECT

INTERSECT returns only the rows retrieved by both component queries. Compare this with
UNION, which returns the rows retrieved by any of the component queries. If UNION acts like
'OR', INTERSECT acts like 'AND'. For example:

SELECT CUST_NBR, NAME
FROM CUSTOMER
WHERE REGION_ID = 5
INTERSECT

SELECT C.CUST_NBR, C.NAME
FROM CUSTOMER C
WHERE C.CUST_NBR IN (SELECT O.CUST_NBR
 FROM CUST_ORDER O, EMPLOYEE E
 WHERE O.SALES_EMP_ID = E.EMP_ID
 AND E.LNAME = 'MARTIN');

 CUST_NBR NAME

---------- ------------------------------

 4 Flowtech Inc.

As we saw earlier, "Flowtech Inc." was the only customer retrieved by both SELECT statements.
Therefore, the INTERSECT operator returns just that one row.

7.1.4 MINUS

MINUS returns all rows from the first SELECT that are not also returned by the second SELECT.
For example:

SELECT CUST_NBR, NAME
FROM CUSTOMER
WHERE REGION_ID = 5
MINUS

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MINUS

SELECT C.CUST_NBR, C.NAME
FROM CUSTOMER C
WHERE C.CUST_NBR IN (SELECT O.CUST_NBR
 FROM CUST_ORDER O, EMPLOYEE E
 WHERE O.SALES_EMP_ID = E.EMP_ID
 AND E.LNAME = 'MARTIN');

 CUST_NBR NAME

---------- ------------------------------

 1 Cooper Industries

 2 Emblazon Corp.

 3 Ditech Corp.

 5 Gentech Industries

You might wonder why we don't see "Zantech Inc." in the output. An important thing to note here
is that the execution order of component queries in a set operation is from top to bottom. The
results of UNION, UNION ALL, and INTERSECT will not change if we alter the ordering of
component queries. However, the result of MINUS will be different if we alter the order of the
component queries. If we rewrite the previous query by switching the positions of the two
SELECTs, we get a completely different result:

SELECT C.CUST_NBR, C.NAME
FROM CUSTOMER C
WHERE C.CUST_NBR IN (SELECT O.CUST_NBR
 FROM CUST_ORDER O, EMPLOYEE E
 WHERE O.SALES_EMP_ID = E.EMP_ID
 AND E.LNAME = 'MARTIN')
MINUS

SELECT CUST_NBR, NAME
FROM CUSTOMER
WHERE REGION_ID = 5;

 CUST_NBR NAME

---------- ------------------------------

 8 Zantech Inc.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 8 Zantech Inc.

The row for "Flowtech Inc." is returned by both queries, so in our first MINUS example the first
component query adds "Flowtech Inc." to the result set while the second component query
removes it. The second example turns the MINUS operation around. The first component query
adds "Flowtech Inc." and "Zantech Inc." to the result set. The second component query specifies
rows to subtract. One of the rows to subtract is "Flowtech Inc.", leaving "Zantech Inc." as the sole
remaining row.

In a MINUS operation, rows may be returned by the second SELECT that
are not also returned by the first. These rows are not included in the
output.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.2 Using Set Operations to Compare Two Tables

Developers, and even DBAs, occasionally need to compare the contents of two tables to
determine whether the tables contain the same data. The need to do this is especially common in
test environments, as developers may want to compare a set of data generated by a program
under test with a set of "known good" data. Comparison of tables is also useful for automated
testing purposes, when we have to compare actual results with a given set of expected results.
SQL's set operations provide an interesting solution to this problem of comparing two tables.

The following query uses both MINUS and UNION ALL to compare two tables for equality. The
query depends on each table having either a primary key or at least one unique index.

(SELECT * FROM CUSTOMER_KNOWN_GOOD

MINUS
SELECT * FROM CUSTOMER_TEST)

UNION ALL
(SELECT * FROM CUSTOMER_TEST

MINUS
SELECT * FROM CUSTOMER_KNOWN_GOOD);

Let's talk a bit about how this query works. We can look at it as the union of two compound
queries. The parentheses ensure that both MINUS operations take place first before the UNION
ALL operation is performed. The result of the first MINUS query will be those rows in
CUSTOMER_KNOWN_GOOD that are not also in CUSTOMER_TEST. The result of the second
MINUS query will be those rows in CUSTOMER_TEST that are not also in
CUSTOMER_KNOWN_GOOD. The UNION ALL operator simply combines these two result sets
for convenience. If no rows are returned by this query, then we know that both tables have
identical rows. Any rows returned by this query represent differences between the
CUSTOMER_TEST and CUSTOMER_KNOWN_GOOD tables.

If the possibility exists for one or both tables to contain duplicate rows, we must use a more
general form of this query in order to test two tables for equality. This more general form uses row
counts to detect duplicates:

(SELECT C1.*,COUNT(*)

 FROM CUSTOMER_KNOWN_GOOD

 GROUP BY C1.CUST_NBR, C1.NAME...

MINUS
 SELECT C2.*, COUNT(*)

 FROM CUSTOMER_TEST C2

 GROUP BY C2.CUST_NBR, C2.NAME...)

UNION ALL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

UNION ALL
(SELECT C3.*,COUNT(*)

 FROM CUSTOMER_TEST C3

 GROUP BY C3.CUST_NBR, C3.NAME...

MINUS
 SELECT C4.*, COUNT(*)

 FROM CUSTOMER_KNOWN_GOOD C4

 GROUP BY C4.CUST_NBR, C4.NAME...)

This query is getting complex! The GROUP BY clause (see Chapter 4) for each SELECT must list
all columns for the table being selected. Any duplicate rows will be grouped together, and the
count will reflect the number of duplicates. If the number of duplicates is the same in both tables,
the MINUS operations will cancel those rows out. If any rows are different, or if any occurrence
counts are different, the resulting rows will be reported by the query.

Let's look at an example to illustrate how this query works. We'll start with the following tables and
data:

DESC CUSTOMER_KNOWN_GOOD
 Name Null? Type

 ---------------------------- -------- ----------------

 CUST_NBR NOT NULL NUMBER(5)

 NAME NOT NULL VARCHAR2(30)

SELECT * FROM CUSTOMER_KNOWN_GOOD;

 CUST_NBR NAME

----------- ------------------------------

 1 Sony

 1 Sony

 2 Samsung

 3 Panasonic

 3 Panasonic

 3 Panasonic

6 rows selected.

DESC CUSTOMER_TEST

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DESC CUSTOMER_TEST
Name Null? Type

 ---------------------------- -------- ----------------

 CUST_NBR NOT NULL NUMBER(5)

 NAME NOT NULL VARCHAR2(30)

SELECT * FROM CUSTOMER_TEST;
 CUST_NBR NAME

----------- ------------------------------

 1 Sony

 1 Sony

 2 Samsung

 2 Samsung

 3 Panasonic

As we can see the CUSTOMER_KNOWN_GOOD and CUSTOMER_TEST tables have the same
structure, but different data. Also notice that none of these tables has a primary or unique key;
there are duplicate records in both. The following SQL will compare these two tables effectively:

(SELECT C1.*, COUNT(*)
FROM CUSTOMER_KNOWN_GOOD C1
GROUP BY C1.CUST_NBR, C1.NAME
MINUS

SELECT C2.*, COUNT(*)
FROM CUSTOMER_TEST C2
GROUP BY C2.CUST_NBR, C2.NAME)
UNION ALL

(SELECT C3.*, COUNT(*)
FROM CUSTOMER_TEST C3
GROUP BY C3.CUST_NBR, C3.NAME
MINUS

SELECT C4.*, COUNT(*)
FROM CUSTOMER_KNOWN_GOOD C4
GROUP BY C4.CUST_NBR, C4.NAME);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GROUP BY C4.CUST_NBR, C4.NAME);

 CUST_NBR NAME COUNT(*)

----------- ------------------------------ ----------

 2 Samsung 1

 3 Panasonic 3

 2 Samsung 2

 3 Panasonic 1

These results indicate that one table (CUSTOMER_KNOWN_GOOD) has one record for
"Samsung", whereas the second table (CUSTOMER_TEST) has two records for the same
customer. Also, one table (CUSTOMER_KNOWN_GOOD) has three records for "Panasonic",
whereas the second table (CUSTOMER_TEST) has one record for the same customer. Both the
tables have the same number of rows (two) for "Sony", and therefore "Sony" doesn't appear in the
output.

Duplicate rows are not possible in tables that have a primary key or at
least one unique index. Use the short form of the table comparison query
for such tables.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.3 Using NULLs in Compound Queries

We discussed union compatibility conditions at the beginning of this chapter. The union compatibility
issue gets interesting when NULLs are involved. As we know, NULL doesn't have a datatype, and
NULL can be used in place of a value of any datatype. If we purposely select NULL as a column
value in a component query, Oracle no longer has two datatypes to compare in order to see whether
the two component queries are compatible. For character columns, this is no problem. For example:

SELECT 1 NUM, 'DEFINITE' STRING FROM DUAL
UNION
SELECT 2 NUM, NULL STRING FROM DUAL;

 NUM STRING

---------- --------

 1 DEFINITE

 2

Notice that Oracle considers the character string 'DEFINITE' from the first component query to be
compatible with the NULL value supplied for the corresponding column in the second component
qery. However, if a NUMBER or a DATE column of a component query is set to NULL, we must
explicitly tell Oracle what "flavor" of NULL to use. Otherwise, we'll encounter errors. For example:

SELECT 1 NUM, 'DEFINITE' STRING FROM DUAL
UNION
SELECT NULL NUM, 'UNKNOWN' STRING FROM DUAL;

SELECT 1 NUM, 'DEFINITE' STRING FROM DUAL

 *

ERROR at line 1:

ORA-01790: expression must have same datatype as corresponding expression

Note that the use of NULL in the second component query causes a datatype mismatch between
the first column of the first component query, and the first column of the second component query.
Using NULL for a DATE column causes the same problem, as in the following example:

SELECT 1 NUM, SYSDATE DATES FROM DUAL
UNION
SELECT 2 NUM, NULL DATES FROM DUAL;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT 2 NUM, NULL DATES FROM DUAL;
SELECT 1 NUM, SYSDATE DATES FROM DUAL

 *

ERROR at line 1:

ORA-01790: expression must have same datatype as corresponding expression

In these cases, we need to cast the NULL to a suitable datatype to fix the problem, as in the
following examples:

SELECT 1 NUM, 'DEFINITE' STRING FROM DUAL
UNION
SELECT TO_NUMBER(NULL) NUM, 'UNKNOWN' STRING FROM DUAL;

 NUM STRING

---------- --------

 1 DEFINITE

 UNKNOWN

SELECT 1 NUM, SYSDATE DATES FROM DUAL
UNION
SELECT 2 NUM, TO_DATE(NULL) DATES FROM DUAL;

 NUM DATES

---------- ---------

 1 06-JAN-02

 2

This problem of union compatibility when using NULLs is encountered in Oracle8i. However, there is
no such problem in Oracle9i, as we can see in the following examples generated from an Oracle9i
database:

SELECT 1 NUM, 'DEFINITE' STRING FROM DUAL
UNION
SELECT NULL NUM, 'UNKNOWN' STRING FROM DUAL;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT NULL NUM, 'UNKNOWN' STRING FROM DUAL;

 NUM STRING

---------- --------

 1 DEFINITE

 UNKNOWN

SELECT 1 NUM, SYSDATE DATES FROM DUAL
UNION
SELECT 2 NUM, NULL DATES FROM DUAL;

 NUM DATES

---------- ---------

 1 06-JAN-02

 2

Oracle9i is smart enough to know which flavor of NULL to use in a compound query.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.4 Rules and Restrictions on Set Operations

Other than the union compatibility conditions discussed at the beginning of the chapter, there are
some other rules and restrictions that apply to the set operations. These rules and restrictions are
as follows:

Column names for the result set are derived from the first SELECT:

SELECT CUST_NBR "Customer ID", NAME "Customer Name"
FROM CUSTOMER
WHERE REGION_ID = 5
UNION
SELECT C.CUST_NBR, C.NAME
FROM CUSTOMER C
WHERE C.CUST_NBR IN (SELECT O.CUST_NBR
 FROM CUST_ORDER O, EMPLOYEE E
 WHERE O.SALES_EMP_ID = E.EMP_ID
 AND E.LNAME = 'MARTIN');
Customer ID Customer Name
----------- ----------------------

 1 Cooper Industries

 2 Emblazon Corp.

 3 Ditech Corp.

 4 Flowtech Inc.

 5 Gentech Industries

 8 Zantech Inc.

6 rows selected.

Although both SELECTs use column aliases, the result set takes the column names from the first
SELECT. The same thing happens when we create a view based on a set operation. The column
names in the view are taken from the first SELECT:

CREATE VIEW V_TEST_CUST AS
SELECT CUST_NBR "Customer ID", NAME "Customer Name"
FROM CUSTOMER
WHERE REGION_ID = 5

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WHERE REGION_ID = 5
UNION
SELECT C.CUST_NBR, C.NAME
FROM CUSTOMER C
WHERE C.CUST_NBR IN (SELECT O.CUST_NBR
 FROM CUST_ORDER O, EMPLOYEE E
 WHERE O.SALES_EMP_ID = E.EMP_ID
 AND E.LNAME = 'MARTIN');

View created.

DESC V_TEST_CUST
 Name Null? Type

 ------------------------------- -------- ----

 Customer_ID NUMBER
 Customer_Name VARCHAR2(45)
If we want to use ORDER BY in a query involving set operations, we must place the ORDER BY
at the end of the entire statement. The ORDER BY clause can appear only once at the end of the
compound query. The component queries can't have individual ORDER BY clauses. For example:

SELECT CUST_NBR, NAME
FROM CUSTOMER
WHERE REGION_ID = 5
UNION
SELECT EMP_ID, LNAME
FROM EMPLOYEE
WHERE LNAME = 'MARTIN'
ORDER BY CUST_NBR;

 CUST_NBR NAME

---------- ---------------------

 1 Cooper Industries

 2 Emblazon Corp.

 3 Ditech Corp.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 4 Flowtech Inc.

 5 Gentech Industries

 7654 MARTIN

6 rows selected.

Note that the column name used in the ORDER BY clause of this query is taken from the first
SELECT. We couldn't order these results by EMP_ID. If we attempt to ORDER BY EMP_ID, we
will get an error, as in the following example:

SELECT CUST_NBR, NAME
FROM CUSTOMER
WHERE REGION_ID = 5
UNION
SELECT EMP_ID, LNAME
FROM EMPLOYEE
WHERE LNAME = 'MARTIN' ORDER BY EMP_ID;
ORDER BY EMP_ID

 *

ERROR at line 8:

ORA-00904: invalid column name

The ORDER BY clause doesn't recognize the column names of the second SELECT. To avoid
confusion over column names, it is a common practice to ORDER BY column positions:

SELECT CUST_NBR, NAME
FROM CUSTOMER
WHERE REGION_ID = 5
UNION
SELECT EMP_ID, LNAME
FROM EMPLOYEE
WHERE LNAME = 'MARTIN'
ORDER BY 1;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ORDER BY 1;

 CUST_NBR NAME

---------- ---------------------

 1 Cooper Industries

 2 Emblazon Corp.

 3 Ditech Corp.

 4 Flowtech Inc.

 5 Gentech Industries

 7654 MARTIN

6 rows selected.

Unlike ORDER BY, we can use GROUP BY and HAVING clauses in
component queries.

Component queries are executed from top to bottom. If we want to alter the sequence of
execution, use parentheses appropriately. For example:

SELECT * FROM SUPPLIER_GOOD
UNION
SELECT * FROM SUPPLIER_TEST
MINUS
SELECT * FROM SUPPLIER;

SUPPLIER_ID NAME

----------- --------------------------

 4 Toshiba

Oracle performs the UNION between SUPPLIER_GOOD and SUPPLIER_TEST first, and then
performs the MINUS between the result of the UNION and the SUPPLIER table. If we want the
MINUS between SUPPLIER_TEST and SUPPLIER to be performed first, and then the UNION
between SUPPLIER_GOOD and the result of MINUS, we must use parentheses to indicate so:

SELECT * FROM SUPPLIER_GOOD
UNION
(SELECT * FROM SUPPLIER_TEST
MINUS

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MINUS
SELECT * FROM SUPPLIER);

SUPPLIER_ID NAME

----------- -------------------------

 1 Sony

 2 Samsung

 3 Panasonic

 4 Toshiba

The parentheses in this query forces the MINUS to be performed before the UNION. Notice the
difference in the result as compared to the previous example.

The following list summarizes some simple rules, restrictions, and notes that don't require
examples:

Set operations are not permitted on columns of type BLOB, CLOB, BFILE, and VARRAY,
nor are set operations permitted on nested table columns.

Since UNION, INTERSECT, and MINUS operators involve sort operations, they are not
allowed on LONG columns. However, UNION ALL is allowed on LONG columns.

Set operations are not allowed on SELECT statements containing TABLE collection
expressions.

SELECT statements involved in set operations can't use the FOR UPDATE clause.

The number and size of columns in the SELECT list of component queries are limited by
the block size of the database. The total bytes of the columns SELECTed can't exceed one
database block.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 8. Hierarchical Queries
A relational database is based upon sets, with each table representing a set. However, there are
some types of information that are not directly amenable to the set data structure. Think, for
example, of an organization chart, a bill of material in a manufacturing and assembly plant, or a
family tree. These types of information are hierarchical in nature, and most conveniently
represented in a tree structure. In this chapter we discuss how we can represent such hierarchical
information in a relational table. We also discuss in detail various SQL constructs that we need to
use to extract hierarchical information from a relational table.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.1 Representing Hierarchical Information

Let's look at an example to understand how we can represent hierarchical information in a
relational database. As a basis for the example, we'll use an organization chart showing how one
employee reports to another within a large organization, as shown in Figure 8-1.

Figure 8-1. An organization chart

Figure 8-1 represents a hierarchy of employees. The information regarding an employee, his
manager, and the reporting relationship need to be represented in one table, EMPLOYEE, as
shown in the Entity Relationship Diagram in Figure 8-2.

Figure 8-2. Entity Relationship Diagram of the EMPLOYEE table

In Figure 8-2, the EMPLOYEE table refers to itself. The column MANAGER_EMP_ID refers to the
EMP_ID column of the same table. To represent hierarchical data, we need to make use of a
relationship such as when one column of a table references another column of the same table.
When such a relationship is implemented using a database constraint, it is known as self-
referential integrity constraint . The corresponding CREATE TABLE statement will look as follows:

CREATE TABLE EMPLOYEE (

EMP_ID NUMBER (4) CONSTRAINT EMP_PK PRIMARY KEY,

FNAME VARCHAR2 (15)NOT NULL,

LNAME VARCHAR2 (15)NOT NULL,

DEPT_ID NUMBER (2)NOT NULL,

MANAGER_EMP_ID NUMBER (4) CONSTRAINT EMP_FK REFERENCES EMPLOYEE(EMP_ID),
SALARY NUMBER (7,2)NOT NULL,

HIRE_DATE DATENOT NULL,

JOB_ID NUMBER (3));

As a basis for the examples in this chapter, we'll use the following sample data:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT EMP_ID, LNAME, DEPT_ID, MANAGER_EMP_ID, SALARY, HIRE_DATE
FROM EMPLOYEE;

 EMP_ID LNAME DEPT_ID MANAGER_EMP_ID SALARY HIRE_DATE

--------- ---------- --------- -------------- --------- ---------

 7369 SMITH 20 7902 800 17-DEC-80

 7499 ALLEN 30 7698 1600 20-FEB-81

 7521 WARD 30 7698 1250 22-FEB-81

 7566 JONES 20 7839 2000 02-APR-81

 7654 MARTIN 30 7698 1250 28-SEP-81

 7698 BLAKE 30 7839 2850 01-MAY-80

 7782 CLARK 10 7839 2450 09-JUN-81

 7788 SCOTT 20 7566 3000 19-APR-87

 7839 KING 10 5000 17-NOV-81

 7844 TURNER 30 7698 1500 08-SEP-81

 7876 ADAMS 20 7788 1100 23-MAY-87

 7900 JAMES 30 7698 950 03-DEC-81

 7902 FORD 20 7566 3000 03-DEC-81

 7934 MILLER 10 7782 1300 23-JAN-82

The EMPLOYEE table has two important aspects to be aware of:

The column MANAGER_EMP_ID

The EMP_FK constraint

The column MANAGER_EMP_ID stores the EMP_ID of the employee's manager. For example,
The MANAGER_EMP_ID for Smith is 7902, which means that Ford is Smith's manager. The
employee King doesn't have a MANAGER_EMP_ID, which indicates that King is the uppermost
employee. To be able to represent the uppermost employee, the MANAGER_EMP_ID column
must be NULLABLE.

There is a foreign key constraint on the MANAGER_EMP_ID column. This enforces the rule that
any value we put in the MANAGER_EMP_ID column must be the EMP_ID of a valid employee.
Such a constraint is not mandatory when representing hierarchical information. However, it is a
good practice to define database constraints to enforce such business rules.

Before moving on to the following sections on manipulating hierarchies, we will introduce some
hierarchy terminology. The following list defines terms that we'll use often when working with
hierarchical data:

Node

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A row in a table that represents a specific entry in a hierarchical tree structure. For example,
in Figure 8-1 each employee is considered to be a node.

Parent

A node that is one level up in a tree. In Figure 8-1, King is the parent of Blake, and Blake is
the parent of Martin. The term parent node is sometimes used in place of just parent.

Child

A node that is one level down in a tree. In Figure 8-1, Blake is a child of King. King, in turn,
has five children: Allen, Ward, Martin, Turner, and James. The term child node is sometimes
used in place of just child.

Root

The uppermost node in a hierarchical structure. The definition of a root is that it has no
parent. In Figure 8-1, King is the root. We can only have one root in any given tree, but it's
worth noting that we can have multiple trees in a hierarchical table. If our employee table
stored information on employees for multiple companies, we would have one root per
company. The term root node is sometimes used in place of root.

Leaf

A node with no children. Leaf nodes (the term leaf node is often used) are the antitheses of
root nodes, and represent the lowest levels of a tree structure. The leaf nodes in Figure 8-1
are Adams, Smith, Allen, Ward, Martin, Turner, James, and Miller. Leaf nodes do not all
need to be at the same level, but they do need to be without children.

Level

A layer of nodes. In Figure 8-1, King constitutes one level. Jones, Blake, and Clark
constitute the next level down, and so forth.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.2 Simple Hierarchy Operations

The processes for extracting some types of information from a table storing hierarchical data are
relatively simple, and can be performed using the techniques that we have discussed so far in this
book. Extracting more complex information requires using some new SQL constructs, which we'll
discuss in the later section titled Section 8.3. In this section, we'll discuss the hierarchy operations
that can be performed using what we've learned so far.

8.2.1 Finding the Root Node

Finding the root of a hierarchy tree is easy; we look for the one node with no parent. In the
EMPLOYEE table we discussed earlier, the value for MANAGER_EMP_ID is NULL for the
uppermost employee, and only for the uppermost employee. The following query searches for
cases where MANAGER_EMP_ID is NULL, thereby returning the root node:

SELECT EMP_ID, LNAME, DEPT_ID, MANAGER_EMP_ID, SALARY, HIRE_DATE
FROM EMPLOYEE
WHERE MANAGER_EMP_ID IS NULL;

 EMP_ID LNAME DEPT_ID MANAGER_EMP_ID SALARY HIRE_DATE

--------- ---------- --------- -------------- --------- ---------

 7839 KING 10 5000 17-NOV-81

Because the MANAGER_EMP_ID column defines the hierarchy, it's important that it always
contain correct data. While populating data in this table, we must make sure to specify a
MANAGER_EMP_ID for every row other than the row for the uppermost employee. The
uppermost employee doesn't report to anyone (doesn't have a manager), and hence
MANAGER_EMP_ID is not applicable for him. If we leave out MANAGER_EMP_ID values for
employees that do have managers, those employees will erroneously show up as root nodes.

8.2.2 Finding a Node's Immediate Parent

We may wish to link nodes to their immediate parents. For example, we might want to print a
report showing each employee's manager. The name of each employee's manager can be
derived by joining the EMPLOYEE table to itself. This type of join is a self join (discussed in
Chapter 3). The following query returns the desired result:

SELECT E.LNAME "Employee", M.LNAME "Manager"
FROM EMPLOYEE E, EMPLOYEE M
WHERE E.MANAGER_EMP_ID = M.EMP_ID;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WHERE E.MANAGER_EMP_ID = M.EMP_ID;

Employee Manager

---------- ----------

SMITH FORD

ALLEN BLAKE

WARD BLAKE

JONES KING

MARTIN BLAKE

BLAKE KING

CLARK KING

SCOTT JONES

TURNER BLAKE

ADAMS SCOTT

JAMES BLAKE

FORD JONES

MILLER CLARK

13 rows selected.

Note this query results in only 13 rows, although the EMPLOYEE table has 14 rows.

SELECT COUNT(*) FROM EMPLOYEE;

 COUNT(*)

 14

The reason that only 13 rows are returned from the self join is simple. This query lists employees
and their managers. But since the uppermost employee KING doesn't have any manager, that
row is not produced in the output. If we want all the employees to be produced in the result, we
need an outer join, as in the following example:

SELECT E.LNAME "Employee", M.LNAME "Manager"
FROM EMPLOYEE E, EMPLOYEE M
WHERE E.MANAGER_EMP_ID = M.EMP_ID (+);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WHERE E.MANAGER_EMP_ID = M.EMP_ID (+);

Employee Manager

-------------------- --------------------

SMITH FORD

ALLEN BLAKE

WARD BLAKE

JONES KING

MARTIN BLAKE

BLAKE KING

CLARK KING

SCOTT JONES

KING
TURNER BLAKE

ADAMS SCOTT

JAMES BLAKE

FORD JONES

MILLER CLARK

14 rows selected.
Outer joins are discussed in detail in Chapter 3.

8.2.3 Finding Leaf Nodes

The opposite problem from finding the root node, which has no parent, is to find leaf nodes, which
have no children. Employees who do not manage anyone are the leaf nodes in the hierarchy tree
shown in Figure 8-1. At first glance, the following query seems like it should list all employees
from the EMPLOYEE table who are not managers of any other employee:

SELECT * FROM EMPLOYEE

WHERE EMP_ID NOT IN (SELECT MANAGER_EMP_ID FROM EMPLOYEE);

However, when we execute this statement, we will see "No rows selected." Why? It is because
the MANAGER_EMP_ID column contains a NULL value in one row (for the uppermost
employee), and NULLs can't be compared to any data value. Therefore, to get the employees
who don't manage anyone, we need to rewrite the query as follows:

SELECT EMP_ID, LNAME, DEPT_ID, MANAGER_EMP_ID, SALARY, HIRE_DATE
FROM EMPLOYEE E

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FROM EMPLOYEE E
WHERE EMP_ID NOT IN
(SELECT MANAGER_EMP_ID FROM EMPLOYEE
WHERE MANAGER_EMP_ID IS NOT NULL);

 EMP_ID LNAME DEPT_ID MANAGER_EMP_ID SALARY HIRE_DATE

--------- ---------- --------- -------------- --------- ---------

 7369 SMITH 20 7902 800 17-DEC-80

 7499 ALLEN 30 7698 1600 20-FEB-81

 7521 WARD 30 7698 1250 22-FEB-81

 7654 MARTIN 30 7698 1250 28-SEP-81

 7844 TURNER 30 7698 1500 08-SEP-81

 7876 ADAMS 20 7788 1100 23-MAY-87

 7900 JAMES 30 7698 950 03-DEC-81

 7934 MILLER 10 7782 1300 23-JAN-82

8 rows selected.

In this example, the subquery returns the EMP_IDs of all the managers. The outer query then
returns all the employees, except the ones returned by the subquery. This query can also be
written as a correlated subquery using EXISTS instead of IN:

SELECT EMP_ID, LNAME, DEPT_ID, MANAGER_EMP_ID, SALARY, HIRE_DATE
FROM EMPLOYEE E
WHERE NOT EXISTS
(SELECT EMP_ID FROM EMPLOYEE E1 WHERE E.EMP_ID = E1.MANAGER_EMP_ID);

 EMP_ID LNAME DEPT_ID MANAGER_EMP_ID SALARY HIRE_DATE

--------- ---------- --------- -------------- --------- ---------

 7369 SMITH 20 7902 800 17-DEC-80

 7499 ALLEN 30 7698 1600 20-FEB-81

 7521 WARD 30 7698 1250 22-FEB-81

 7654 MARTIN 30 7698 1250 28-SEP-81

 7844 TURNER 30 7698 1500 08-SEP-81

 7876 ADAMS 20 7788 1100 23-MAY-87

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 7900 JAMES 30 7698 950 03-DEC-81

 7934 MILLER 10 7782 1300 23-JAN-82

8 rows selected.

In this example, the correlated subquery checks each employee to see whether he is the
manager of any other employee. If NOT, then that particular employee is included in the result
set.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.3 Oracle SQL Extensions

In the last few examples, we saw how we can perform some operations on the hierarchical tree by
using simple SQL techniques. Operations such as traversing a tree, finding levels, etc., require
more complex SQL statements, and also require the use of features designed specifically for
working with hierarchical data. Oracle provides some extensions to ANSI SQL to facilitate these
operations. But before moving to the Oracle SQL extensions, let's look at how we can traverse a
tree using ANSI SQL, and at the problems we'll encounter when doing that.

For example, let's say we want to list each employee with his manager. Using regular Oracle
SQL, we can perform self outer joins on the EMPLOYEE table, as shown here:

SELECT E_TOP.LNAME, E_2.LNAME, E_3.LNAME, E_4.LNAME
FROM EMPLOYEE E_TOP, EMPLOYEE E_2, EMPLOYEE E_3, EMPLOYEE E_4
WHERE E_TOP.MANAGER_EMP_ID IS NULL
AND E_TOP.EMP_ID = E_2.MANAGER_EMP_ID (+)
AND E_2.EMP_ID = E_3.MANAGER_EMP_ID (+)
AND E_3.EMP_ID = E_4.MANAGER_EMP_ID (+);

LNAME LNAME LNAME LNAME

---------- ---------- ---------- ----------

KING BLAKE ALLEN

KING BLAKE WARD

KING BLAKE MARTIN

KING JONES SCOTT ADAMS

KING BLAKE TURNER

KING BLAKE JAMES

KING JONES FORD SMITH

KING CLARK MILLER

8 rows selected.

The query returns eight rows, corresponding to the eight branches of the tree. To get those
results, the query performs a self join on four instances of the EMPLOYEE table. Four
EMPLOYEE table instances are needed in this statement because there are four levels to the
hierarchy. Each level is represented by one copy of the EMPLOYEE table. The outer join is
required because one employee (KING) has a NULL value in the MANAGER_EMP_ID column.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This type query has several drawbacks. First of all, we need to know the number of levels in an
organization chart when we write the query, and it's not realistic to assume that we will know that
information. It's even less realistic to think that the number of levels will remain stable over time.
Moreover, we need to join four instances of the EMPLOYEE table together for a four level
hierarchy. Imagine an organization with 20 levels—we'd need to join 20 tables. This would cause
a huge performance problem.

To circumvent problems such as these, Oracle has provided some extensions to ANSI SQL.
Oracle provides the following three constructs to effectively and efficiently perform hierarchical
queries:

The START WITH...CONNECT BY clause

The PRIOR operator

The LEVEL pseudocolumn

The following sections discuss these three Oracle extensions in detail.

8.3.1 START WITH...CONNECT BY and PRIOR

We can extract information in hierarchical form from a table containing hierarchical data by using
the SELECT statement's START WITH...CONNECT BY clause. The syntax for this clause is:

[[START WITH condition1] CONNECT BY condition2]

The syntax elements are:

START WITH condition1

Specifies the root row(s) of the hierarchy. All rows that satisfy condition1 are considered
root rows. If we don't specify the START WITH clause, all rows are considered root rows,
which is usually not desirable. We can include a subquery in condition1.

CONNECT BY condition2

Specifies the relationship between parent rows and child rows in the hierarchy. The
relationship is expressed as a comparison expression, where columns from the current row
are compared to corresponding parent columns. condition2 must contain the PRIOR
operator, which is used to identify columns from the parent row. condition2 cannot contain
a subquery.

PRIOR is a built-in Oracle SQL operator that is used with hierarchical queries only. In a
hierarchical query, the CONNECT BY clause specifies the relationship between parent and child
rows. When we use the PRIOR operator in an expression in the CONNECT BY condition, the
expression following the PRIOR keyword is evaluated for the parent row of the current row in the
query. In the following example, PRIOR is used to connect each row to its parent by connecting
MANAGER_EMP_ID in the child to EMP_ID in the parent:

SELECT LNAME, EMP_ID, MANAGER_EMP_ID
FROM EMPLOYEE
START WITH MANAGER_EMP_ID IS NULL
CONNECT BY PRIOR EMP_ID = MANAGER_EMP_ID;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CONNECT BY PRIOR EMP_ID = MANAGER_EMP_ID;

LNAME EMP_ID MANAGER_EMP_ID

-------------------- ---------- --------------

KING 7839

JONES 7566 7839

SCOTT 7788 7566

ADAMS 7876 7788

FORD 7902 7566

SMITH 7369 7902

BLAKE 7698 7839

ALLEN 7499 7698

WARD 7521 7698

MARTIN 7654 7698

TURNER 7844 7698

JAMES 7900 7698

CLARK 7782 7839

MILLER 7934 7782

14 rows selected.

The PRIOR column does not need to be listed first. The previous query could be restated as:

SELECT LNAME, EMP_ID, MANAGER_EMP_ID

FROM EMPLOYEE

START WITH MANAGER_EMP_ID IS NULL

CONNECT BY MANAGER_EMP_ID = PRIOR EMP_ID;

Since the CONNECT BY condition specifies the parent-child relationship, it cannot contain a loop.
If a row is both parent (direct ancestor) and child (direct descendent) of another row, then we
have a loop. For example, if the EMPLOYEE table had the following two rows, they would
represent a loop:

EMP_ID LNAME DEPT_ID MANAGER_EMP_ID SALARY HIRE_DATE

------ ---------- --------- -------------- --------- ---------

 9001 SMITH 20 9002 1800 15-NOV-61

 9002 ALLEN 30 9001 11600 16-NOV-61

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 9002 ALLEN 30 9001 11600 16-NOV-61

When a parent-child relationship involves two or more columns, we need to use the PRIOR
operator before each parent column. Let's take as an example an assembly in a manufacturing
plant. An assembly may consist of several subassemblies, and a given subassembly may further
contain one or more subassemblies. All of these are stored in a table, ASSEMBLY:

DESC ASSEMBLY
 Name Null? Type

 -------------------------- -------- --------------

 ASSEMBLY_TYPE NOT NULL VARCHAR2(4)

 ASSEMBLY_ID NOT NULL NUMBER(6)

 DESCRIPTION NOT NULL VARCHAR2(20)

 PARENT_ASSEMBLY_TYPE VARCHAR2(4)

 PARENT_ASSEMBLY_ID NUMBER(6)

ASSEMBLY_TYPE and ASSEMBLY_ID constitute the primary key of this table, and the columns
PARENT_ASSEMBLY_TYPE and PARENT_ASSEMBLY_ID together constitute the self-
referential foreign key. Therefore, if we want to perform a hierarchical query on this table, we need
to include both columns in the START WITH and the CONNECT BY clauses. Also, we need to
use the PRIOR operator before each parent column, as shown in the following example:

SELECT * FROM ASSEMBLY
START WITH PARENT_ASSEMBLY_TYPE IS NULL
AND PARENT_ASSEMBLY_ID IS NULL
CONNECT BY PARENT_ASSEMBLY_TYPE = PRIOR ASSEMBLY_TYPE
AND PARENT_ASSEMBLY_ID = PRIOR ASSEMBLY_ID;

ASSE ASSEMBLY_ID DESCRIPTION PARE PARENT_ASSEMBLY_ID

---- ----------- -------------------- ---- ------------------

A 1234 Assembly A#1234

A 1256 Assembly A#1256 A 1234

B 6543 Part Unit#6543 A 1234

A 1675 Part Unit#1675 B 6543

X 9943 Repair Zone 1

X 5438 Repair Unit #5438 X 9943

X 1675 Readymade Unit #1675 X 5438

7 rows selected.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.3.2 The LEVEL Pseudocolumn

In a hierarchy tree, the term level refers to one layer of nodes. For example, in Figure 8-1, the root
node (consisting of employee KING) is level 1. The next layer (employees JONES, BLAKE,
CLARK) is at level 2, and so forth. Oracle provides a pseudocolumn, LEVEL, to represent these
levels in a hierarchy tree. Whenever we use the START WITH...CONNECT BY clauses in a
hierarchical query, we can use the pseudocolumn LEVEL to return the level number for each row
returned by the query. The following example illustrates the use of the LEVEL pseudocolumn:

SELECT LEVEL, LNAME, EMP_ID, MANAGER_EMP_ID
FROM EMPLOYEE
START WITH MANAGER_EMP_ID IS NULL
CONNECT BY MANAGER_EMP_ID = PRIOR EMP_ID;

 LEVEL LNAME EMP_ID MANAGER_EMP_ID

---------- -------------------- ---------- --------------

 1 KING 7839

 2 JONES 7566 7839

 3 SCOTT 7788 7566

 4 ADAMS 7876 7788

 3 FORD 7902 7566

 4 SMITH 7369 7902

 2 BLAKE 7698 7839

 3 ALLEN 7499 7698

 3 WARD 7521 7698

 3 MARTIN 7654 7698

 3 TURNER 7844 7698

 3 JAMES 7900 7698

 2 CLARK 7782 7839

 3 MILLER 7934 7782

14 rows selected.

Note that each employee is now associated with a number, represented by the pseudocolumn
LEVEL, that corresponds to its level in the organization chart (see Figure 8-1).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.4 Complex Hierarchy Operations

In this section, we discuss how we can use Oracle SQL's hierarchical extensions to perform
complex hierarchical queries.

8.4.1 Finding the Number of Levels

Previously we showed how the LEVEL pseudocolumn generates a level number for each record
when we use the START WITH...CONNECT BY clause. We can use the following query to
determine the number of levels in the hierarchy by counting the number of distinct level numbers
returned by the LEVEL pseudocolumn:

SELECT COUNT(DISTINCT LEVEL)
FROM EMPLOYEE
START WITH MANAGER_EMP_ID IS NULL
CONNECT BY PRIOR EMP_ID = MANAGER_EMP_ID;

COUNT(DISTINCTLEVEL)

 4

To determine the number of employees at each level, group the results by LEVEL and count the
number of employees in each distinct group. For example:

SELECT LEVEL, COUNT(EMP_ID)
FROM EMPLOYEE
START WITH MANAGER_EMP_ID IS NULL
CONNECT BY PRIOR EMP_ID = MANAGER_EMP_ID
GROUP BY LEVEL;

 LEVEL COUNT(EMP_ID)

--------- -------------

 1 1

 2 3

 3 8

 4 2

8.4.2 Listing Records in Hierarchical Order

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

One of the very common programming challenges SQL programmers face is to list records in a
hierarchy in their proper hierarchical order. For example, we might wish to list employees with
their subordinates underneath them, as is in the following query:

SELECT LEVEL, LPAD(' ',2*(LEVEL - 1)) || LNAME "EMPLOYEE",
 EMP_ID, MANAGER_EMP_ID
FROM EMPLOYEE
START WITH MANAGER_EMP_ID IS NULL
CONNECT BY PRIOR EMP_ID = MANAGER_EMP_ID;

 LEVEL Employee EMP_ID MANAGER_EMP_ID

--------- ------------ --------- --------------

 1 KING 7839

 2 JONES 7566 7839

 3 SCOTT 7788 7566

 4 ADAMS 7876 7788

 3 FORD 7902 7566

 4 SMITH 7369 7902

 2 BLAKE 7698 7839

 3 ALLEN 7499 7698

 3 WARD 7521 7698

 3 MARTIN 7654 7698

 3 TURNER 7844 7698

 3 JAMES 7900 7698

 2 CLARK 7782 7839

 3 MILLER 7934 7782

14 rows selected.

Notice that by using the expression LPAD(' ',2*(LEVEL - 1)), we are able to align employee names
in a manner that corresponds to their level. As the level number increases, the number of spaces
returned by the expression increases, and the employee name is further indented.

The previous query lists all the employees in the EMPLOYEE table. If we want to filter out certain
employees based on some condition, then we can use a WHERE clause in our hierarchical query.
Here is an example:

SELECT LEVEL, LPAD(' ',2*(LEVEL - 1)) || LNAME "EMPLOYEE",

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT LEVEL, LPAD(' ',2*(LEVEL - 1)) || LNAME "EMPLOYEE",
 EMP_ID, MANAGER_EMP_ID, SALARY
FROM EMPLOYEE
WHERE SALARY > 2000
START WITH MANAGER_EMP_ID IS NULL
CONNECT BY MANAGER_EMP_ID = PRIOR EMP_ID;

 LEVEL Employee EMP_ID MANAGER_EMP_ID SALARY

--------- ------------ --------- -------------- ---------

 1 KING 7839 5000

 3 SCOTT 7788 7566 3000

 3 FORD 7902 7566 3000

 2 BLAKE 7698 7839 2850

 2 CLARK 7782 7839 2450

This query lists records with salary > 2000. Notice that the WHERE clause restricts the rows
returned by the query without affecting other rows in the hierarchy. In our example, the WHERE
condition filtered JONES out of the result, but the employees below JONES in the hierarchy
(SCOTT and FORD) are not filtered out, and are still indented as they were when JONES was
present. The WHERE clause must come before the START WITH...CONNECT BY clause in a
hierarchical query, otherwise it will result in a syntax error.

Instead of reporting out the whole organization chart, we may want to list only the subtree under a
given employee, JONES for example. To do this, we can modify the START WITH condition so
that it specifies JONES as the root of the query. For example:

SELECT LEVEL, LPAD(' ',2*(LEVEL - 1)) || LNAME "EMPLOYEE",
 EMP_ID, MANAGER_EMP_ID, SALARY
FROM EMPLOYEE
START WITH LNAME = 'JONES'
CONNECT BY MANAGER_EMP_ID = PRIOR EMP_ID;

 LEVEL Employee EMP_ID MANAGER_EMP_ID SALARY

--------- ------------ --------- -------------- ---------

 1 JONES 7566 7839 2000

 2 SCOTT 7788 7566 3000

 3 ADAMS 7876 7788 1100

 2 FORD 7902 7566 3000

 3 SMITH 7369 7902 800

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 3 SMITH 7369 7902 800

Notice that since we asked the query to consider JONES as the root of the hierarchy, it assigned
level 1 to JONES, level 2 to employees directly reporting to him, and so forth. Be careful while
using conditions such as LNAME = 'JONES' in hierarchical queries. In this case, if we have two
JONES in our organization, the result returned by the hierarchy may be wrong. It is better to use
primary or unique key columns, such as EMP_ID, as the condition in such situations.

In this example, we listed the portion of the organization chart headed by a specific employee.
There could be situations when we may need to print the organization chart headed by any
employee that meets a specific condition. For example, we may want to list all employees under
the employee who has been working in the company for the longest time. In this case, the starting
point of the query (the root) is dependent on a condition. Therefore, we have to use a subquery to
generate this information and pass it to the main query, as in the following example:

SELECT LEVEL, LPAD(' ',2*(LEVEL - 1)) || LNAME "EMPLOYEE",
 EMP_ID, MANAGER_EMP_ID, SALARY
FROM EMPLOYEE
START WITH HIRE_DATE = (SELECT MIN(HIRE_DATE) FROM EMPLOYEE)
CONNECT BY MANAGER_EMP_ID = PRIOR EMP_ID;

LEVEL EMPLOYEE EMP_ID MANAGER_EMP_ID SALARY

----- ------------ ---------- -------------- ----------

 1 BLAKE 7698 7839 2850

 2 ALLEN 7499 7698 1600

 2 WARD 7521 7698 1250

 2 MARTIN 7654 7698 1250

 2 TURNER 7844 7698 1500

 2 JAMES 7900 7698 950

6 rows selected.

Note the START WITH clause in this example. The subquery in the START WITH clause returns
the minimum HIRE_DATE in the table, which represents the HIRE_DATE of the oldest employee.
The main query uses this information as the starting point of the hierarchy and lists the
organization structure under this employee.

While using a subquery in the START WITH clause, be aware of how many rows will be returned
by the subquery. If more than one row is returned when we are expecting just one row (indicated
by the = sign), the query will generate an error. We can get around this by replacing = with the IN
operator, but be warned that the hierarchical query may then end up dealing with multiple roots.

8.4.3 Checking for Ascendancy

Another common operation on hierarchical data is to check for ascendancy. In an organization

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Another common operation on hierarchical data is to check for ascendancy. In an organization
chart, we may ask whether one employee has authority over another. For example: "Does JONES
have any authority over BLAKE?" To find out, we need to search for BLAKE in the subtree
headed by JONES. If we find BLAKE in the subtree, then we know that BLAKE either directly or
indirectly reports to JONES. If we don't find BLAKE in the subtree, then we know that JONES
doesn't have any authority over BLAKE. The following query searches for BLAKE in the subtree
headed by JONES:

SELECT *
FROM EMPLOYEE
WHERE LNAME = 'BLAKE'
START WITH LNAME = 'JONES'
CONNECT BY MANAGER_EMP_ID = PRIOR EMP_ID;

no rows selected

The START WITH...CONNECT BY clause in this example generates the subtree headed by
JONES, and the WHERE clause filters this subtree to find BLAKE. As we can see, no rows were
returned. This means that BLAKE was not found in JONES' subtree, so we know that JONES has
no authority over BLAKE. Let's take a look at another example that produces positive results. This
time we'll check to see whether JONES has any authority over SMITH:

SELECT EMP_ID, LNAME, DEPT_ID, MANAGER_EMP_ID, SALARY, HIRE_DATE
FROM EMPLOYEE
WHERE LNAME = 'SMITH'
START WITH LNAME = 'JONES'
CONNECT BY MANAGER_EMP_ID = PRIOR EMP_ID;

 EMP_ID LNAME DEPT_ID MANAGER_EMP_ID SALARY HIRE_DATE

---------- ---------- ---------- -------------- ---------- ---------

 7369 SMITH 20 7902 800 17-DEC-80

This time, SMITH was found in the list of employees in JONES' subtree, so we know that at some
level JONES has management authority over SMITH.

8.4.4 Deleting a Subtree

Let's assume that the organization we are dealing with splits, and JONES and all his subordinates
form a new company. Therefore, we don't need to maintain JONES and his subordinates in our
EMPLOYEE table. Furthermore, we need to delete the entire subtree headed by JONES, as
shown in Figure 8-1, from our table. We can do this by using a subquery as in the following
example:

DELETE FROM EMPLOYEE
WHERE EMP_ID IN

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WHERE EMP_ID IN
(SELECT EMP_ID FROM EMPLOYEE
START WITH LNAME = 'JONES'
CONNECT BY MANAGER_EMP_ID = PRIOR EMP_ID);

5 rows deleted.

In this example, the subquery generates the subtree headed by JONES, and returns the
EMP_IDs of the employees in that subtree, including JONES'. The outer query then deletes the
records with these EMP_ID values from the EMPLOYEE table.

8.4.5 Listing Multiple Root Nodes

An interesting variation on the problem of listing the root node of a hierarchy is to find and list the
root nodes from several hierarchies that are all stored in the same table. For example, we might
consider department manager's to represent root nodes, and we might further wish to list all
department managers found in the EMPLOYEE table.

There are no constraints on the employees belonging to any department. However, we can
assume that if A reports to B and B reports to C, and A and C belong to the same department,
then B also belongs to the same department. If an employee's manager belongs to another
department, then that employee is the uppermost employee, or manager, of his department.

Therefore, to find the uppermost employee in each department, we need to search the tree for
those employees whose managers belong to a different department then their own. We do that
using the following query:

SELECT EMP_ID, LNAME, DEPT_ID, MANAGER_EMP_ID, SALARY, HIRE_DATE
FROM EMPLOYEE
START WITH MANAGER_EMP_ID IS NULL
CONNECT BY MANAGER_EMP_ID = PRIOR EMP_ID
AND DEPT_ID != PRIOR DEPT_ID;

EMP_ID LNAME DEPT_ID MANAGER_EMP_ID SALARY HIRE_DATE

------ -------- -------- -------------- ------ ---------

 7839 KING 10 5000 17-NOV-81

 7566 JONES 20 7839 2975 02-APR-81

 7698 BLAKE 30 7839 2850 01-MAY-81

In this example, the extra condition (DEPT_ID != PRIOR DEPT_ID) added to the CONNECT BY
clause restricts the output to only those employees whose managers belong to a different
department then their own.

8.4.6 Listing the Top Few Levels of a Hierarchy

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Another common task in dealing with hierarchical data is listing the top few levels of a hierarchy
tree. For example, we may want to list top management employees in an organization. Let's
assume that the top two levels in our organization chart constitute top management. We can then
use the LEVEL pseudocolumn to identify those employees, as in the following example:

SELECT EMP_ID, LNAME, DEPT_ID, MANAGER_EMP_ID, SALARY, HIRE_DATE
FROM EMPLOYEE
WHERE LEVEL <= 2
START WITH MANAGER_EMP_ID IS NULL
CONNECT BY MANAGER_EMP_ID = PRIOR EMP_ID;

EMP_ID LNAME DEPT_ID MANAGER_EMP_ID SALARY HIRE_DATE

------ --------- ---------- -------------- ------ ---------

 7839 KING 10 5000 17-NOV-81

 7566 JONES 20 7839 2975 02-APR-81

 7698 BLAKE 30 7839 2850 01-MAY-81

 7782 CLARK 10 7839 2450 09-JUN-81

In this example, the LEVEL <= 2 condition in the WHERE clause restricts the results to only those
employees in the top two levels of the organization chart.

8.4.7 Aggregating a Hierarchy

Another challenging requirement on hierarchical data is to aggregate a hierarchy. For example,
we may want to sum the salaries of all employees reporting to a specific employee. Or, we may
want to consider each employee as a root, and for each employee report out the sum of the
salaries of all subordinate employees.

The first problem is relatively simple. Earlier we described how to select a subtree headed by an
employee. We can easily sum the salaries of all employees in such a subtree. For example:

SELECT SUM(SALARY)
FROM EMPLOYEE
START WITH LNAME = 'JONES'
CONNECT BY MANAGER_EMP_ID = PRIOR EMP_ID;

SUM(SALARY)

 10875

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 10875

The START WITH LNAME = 'JONES' clause generates the subtree headed by JONES, and the
SUM(SALARY) expression sums the salary of employees in this subtree.

The second problem, a seemingly simple extension of the first, is relatively complex. We want to
consider each employee as a root, and for each employee we want to sum the salaries of all
employees in its subtree. In essence, we want to repeat the previous query for each employee in
the table. The following SQL uses an inline view to achieve this:

SELECT LNAME, SALARY,
(SELECT SUM(SALARY) FROM EMPLOYEE T1
START WITH LNAME = T2.LNAME
CONNECT BY MANAGER_EMP_ID = PRIOR EMP_ID) SUM_SALARY
FROM EMPLOYEE T2;

LNAME SALARY SUM_SALARY

-------------------- ---------- ----------

SMITH 800 800

ALLEN 1600 1600

WARD 1250 1250

JONES 2975 10875

MARTIN 1250 1250

BLAKE 2850 9400

CLARK 2450 3750

SCOTT 3000 4100

KING 5000 29025

TURNER 1500 1500

ADAMS 1100 1100

JAMES 950 950

FORD 3000 3800

MILLER 1300 1300

14 rows selected.

In this example, the START WITH...CONNECT BY clause in the inline view generates a subtree
for each employee. The inline view executes once for every row in the outer EMPLOYEE
employee. For each row in the outer EMPLOYEE table, the inline view generates a subtree
headed by this employee, and returns the sum of salaries for all the employees in this subtree to
the main query.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The result set displays two numbers for each employee. The first number, SALARY, is the
employee's own salary. The second number, SUM_SALARY, is the sum of the salaries of all
employees under him (including himself). Often programmers resort to PL/SQL to solve this type
of problem. However, this query, which combines the power of hierarchical queries with that of
inline views, solves this problem in a much more concise and elegant way.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.5 Restrictions on Hierarchical Queries

The following restrictions apply to hierarchical queries that use START WITH...CONNECT BY:

1. A hierarchical query can't use a join.

There are ways to overcome this restriction. Chapter 5 discusses
one such example under Section 8.3.

2. A hierarchical query cannot select data from a view that involves a join.

3. We can use an ORDER BY clause within a hierarchical query; however, the ORDER BY
clause takes precedence over the hierarchical ordering performed by the START
WITH...CONNECT BY clause. Therefore, unless all we care about is the level number, it
doesn't make sense to use ORDER BY in a hierarchical query.

The third issue deserves some additional explanation. Let's look at an example to see what
happens when we use ORDER BY in a hierarchical query:

SELECT LEVEL, LPAD(' ',2*(LEVEL - 1)) || LNAME "EMPLOYEE",
 EMP_ID, MANAGER_EMP_ID, SALARY
FROM EMPLOYEE
START WITH MANAGER_EMP_ID IS NULL
CONNECT BY MANAGER_EMP_ID = PRIOR EMP_ID
ORDER BY SALARY;

 LEVEL Employee EMP_ID MANAGER_EMP_ID SALARY

--------- ------------ --------- -------------- ---------

 4 SMITH 7369 7902 800

 3 JAMES 7900 7698 950

 4 ADAMS 7876 7788 1100

 3 WARD 7521 7698 1250

 3 MARTIN 7654 7698 1250

 3 MILLER 7934 7782 1300

 3 TURNER 7844 7698 1500

 3 ALLEN 7499 7698 1600

 2 JONES 7566 7839 2000

 2 CLARK 7782 7839 2450

 2 BLAKE 7698 7839 2850

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 2 BLAKE 7698 7839 2850

 3 SCOTT 7788 7566 3000

 3 FORD 7902 7566 3000

 1 KING 7839 5000

14 rows selected.

The START WITH...CONNECT BY clause arranges the employees in proper hierarchical order;
however, since we also specified an ORDER BY clause in this example, that ORDER BY clause
takes precedence and arranges the employees in order of salary, thus distorting the hierarchy
representation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 9. DECODE and CASE
Whether it is for user presentation, report formatting, or data feed extraction, data is seldom
presented exactly as it is stored in the database. Instead, data is generally combined, translated,
or formatted in some way. While procedural languages such as PL/SQL and Java provide many
tools for manipulating data, it is often desirable to perform these manipulations as the data is
extracted from the database. Similarly, when updating data, it is far easier to modify the data in
place rather than to extract it, modify it, and apply the modified data back to the database. This
chapter will focus on two powerful features of Oracle SQL that facilitate various data
manipulations: the CASE expression and the DECODE function. Along the way we'll also
demonstrate the use of several other functions (such as NVL and NVL2).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.1 DECODE, NVL, and NVL2

Most of Oracle's built-in functions are designed to solve a specific problem. If you need to find the
last day of the month containing a particular date, for example, the LAST_DAY function is just the
ticket. The DECODE, NVL, and NVL2 functions, however, do not solve a specific problem; rather,
they are best described as inline if-then-else statements. These functions are used to make
decisions based on data values within an SQL statement without resorting to a procedural
language like PL/SQL. Table 9-1 shows the syntax and logic equivalent for each of the three
functions.

Table 9-1. If-then-else function logic
Function syntax Logic equivalent

DECODE(E1, E2, E3, E4) IF E1 = E2 THEN E3 ELSE E4
NVL(E1, E2) IF E1 IS NULL THEN E2 ELSE E1
NVL2(E1, E2, E3) IF E1 IS NULL THEN E3 ELSE E2

The following two sections go into detail about the functions listed in Table 9-1.

9.1.1 DECODE

The DECODE function can be thought of as an inline IF statement. DECODE takes four or more
expressions as arguments. Each expression can be a column, a literal, a function, or even a
subquery. Let's look at a simple example using DECODE:

SELECT lname,
 DECODE(manager_emp_id, NULL, 'MANAGER', 'NON-MANAGER') emp_type
FROM employee;

LNAME EMP_TYPE

-------------------- -----------

Brown MANAGER

Smith MANAGER

Blake MANAGER

Freeman NON-MANAGER

Grossman NON-MANAGER

Thomas NON-MANAGER

Powers NON-MANAGER

Jones NON-MANAGER

Levitz NON-MANAGER

Boorman NON-MANAGER

Fletcher NON-MANAGER

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Fletcher NON-MANAGER

Dunn NON-MANAGER

Evans NON-MANAGER

Walters NON-MANAGER

Young NON-MANAGER

Houseman NON-MANAGER

McGowan NON-MANAGER

Isaacs NON-MANAGER

Jacobs NON-MANAGER

King NON-MANAGER

Fox NON-MANAGER

Anderson NON-MANAGER

Nichols NON-MANAGER

Iverson NON-MANAGER

Peters NON-MANAGER

Russell NON-MANAGER

In this example, the first expression is a column, the second is NULL, and the third and fourth
expressions are character literals. The intent is to determine whether each employee is a
manager by checking whether an employee's manager_emp_id column is NULL. The DECODE
function in this example compares each row's manager_emp_id column (the first expression) to
NULL (the second expression). If the result of the comparison is true, DECODE returns
'MANAGER' (the third expression), otherwise 'NON-MANAGER' (the last expression) is returned.

Since the DECODE function compares two expressions and returns one of two expressions to the
caller, it is important that the expression types are identical or that they can at least be translated
to be the same type. This example works because E1 can be compared to E2, and E3 and E4
have the same type. If this were not the case, Oracle would raise an exception, as illustrated by
the following example:

SELECT lname,
 DECODE(manager_emp_id, SYSDATE, 'MANAGER', 'NON-MANAGER') emp_type
FROM employee;

ERROR at line 1:

ORA-00932: inconsistent datatypes

Since the manager_emp_id column, which is numeric, cannot be converted to a DATE type, the
Oracle server cannot perform the comparison and must throw an exception. The same exception
would be thrown if the two return expressions (E3 and E4) did not have comparable types.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The previous example demonstrates the use of a DECODE function with the minimum number of
parameters (four). The next example demonstrates how additional sets of parameters may be
utilized for more complex logic:

SELECT p.part_nbr part_nbr, p.name part_name, s.name supplier,

 DECODE(p.status, 'INSTOCK', 'In Stock',

 'DISC', 'Discontinued',

 'BACKORD', 'Backordered',

 'ENROUTE', 'Arriving Shortly',

 'UNAVAIL', 'No Shipment Scheduled',

 'Unknown') part_status

FROM part p, supplier s

WHERE p.supplier_id = s.supplier_id;

This example compares the value of a part's status column to each of five values, and, if a match
is found, returns the corresponding string. If a match is not found, then the string 'Unknown' is
returned.

9.1.2 NVL and NVL2

The NVL and NVL2 functions allow you to test an expression to see whether it is NULL. If an
expression is NULL, you can return an alternate, non-NULL value, to use in its place. Since any of
the expressions in a DECODE statement can be NULL, the NVL and NVL2 functions are actually
specialized versions of DECODE. The following example uses NVL2 to produce the same results
as the DECODE example shown in the previous section:

SELECT lname,
 NVL2(manager_emp_id, 'NON-MANAGER', 'MANAGER') emp_type
FROM employee;

LNAME EMP_TYPE

-------------------- -----------

Brown MANAGER

Smith MANAGER

Blake MANAGER

Freeman NON-MANAGER

Grossman NON-MANAGER

Thomas NON-MANAGER

Powers NON-MANAGER

Jones NON-MANAGER

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Jones NON-MANAGER

Levitz NON-MANAGER

Boorman NON-MANAGER

Fletcher NON-MANAGER

Dunn NON-MANAGER

Evans NON-MANAGER

Walters NON-MANAGER

Young NON-MANAGER

Houseman NON-MANAGER

McGowan NON-MANAGER

Isaacs NON-MANAGER

Jacobs NON-MANAGER

King NON-MANAGER

Fox NON-MANAGER

Anderson NON-MANAGER

Nichols NON-MANAGER

Iverson NON-MANAGER

Peters NON-MANAGER

Russell NON-MANAGER

NVL2 looks at the first expression, manager_emp_id in this case. If that expression evaluates to
NULL, NVL2 returns the third expression. If the first expression is not NULL, NVL2 returns the
second expression. Use NVL2 when you wish to specify alternate values to be returned for the
case when an expression is NULL, and also for the case when an expression is not NULL.

The NVL function is most commonly used to substitute a default value when a column is NULL.
Otherwise, the column value itself is returned. The next example shows the ID of each
employee's manager, but substitutes the word 'NONE' when no manager has been assigned (i.e.,
when manager_emp_id is NULL):

SELECT emp.lname employee, NVL(mgr.lname, 'NONE') manager
FROM employee emp, employee mgr
WHERE emp.manager_emp_id = mgr.emp_id (+);

EMPLOYEE MANAG

-------------------- -----

Brown NONE

Smith NONE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Blake NONE

Freeman Blake

Grossman Blake

Thomas Blake

Powers Blake

Jones Blake

Levitz Blake

Boorman Blake

Fletcher Blake

Dunn Blake

Evans Blake

Walters Blake

Young Blake

Houseman Blake

McGowan Blake

Isaacs Blake

Jacobs Blake

King Blake

Fox King

Anderson King

Nichols King

Iverson King

Peters King

Russell King

Even though DECODE may be substituted for any NVL or NVL2 function, most people prefer to
use NVL or NVL2 when checking to see if an expresssion is NULL, presumably because the
intent is clearer. Hopefully, the next section will convince you to use CASE expressions whenever
you are in need of if-then-else functionality. Then you won't need to worry about which built-in
function to use.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.2 The Case for CASE

The CASE expression made its SQL debut in the SQL-92 specification in 1992. Eight years later,
Oracle included the CASE expression in the 8.1.6 release. Like the DECODE function, the CASE
expression enables conditional logic within an SQL statement, which might explain why Oracle
took so much time implementing this particular feature. If you have been using Oracle for a
number of years, you might wonder why you should care about the CASE expression, since
DECODE does the job nicely. Here are several reasons why you should make the switch:

CASE expressions can be used everywhere that DECODE functions are permitted.

CASE expressions are more readable than DECODE expressions.

CASE expressions execute faster than DECODE expressions.[1]

[1] Since CASE is built into Oracle's SQL grammar, there is no need to call a function in order to evaluate the
if-then-else logic. While the difference in execution time is miniscule for a single call, the aggregate time
savings from not calling a function should become noticeable when working with large result sets.

CASE expressions handle complex logic more gracefully than DECODE expressions.

CASE is ANSI-compliant, whereas DECODE is proprietary.

The only downside to using CASE over DECODE is that CASE expressions are not supported in
Oracle8i's PL/SQL language. If you are using Oracle9i, however, any SQL statements executed
from PL/SQL may include CASE expressions.

The SQL-92 specification defines two distinct flavors of the CASE expression: searched and
simple. Searched CASE expressions are the only type supported in the Oracle8i release. If you
are using Oracle9i, you may also use simple CASE expressions.

9.2.1 Searched CASE Expressions

A searched CASE expression evaluates a number of conditions and returns a result determined
by which condition is true. The syntax for the SEARCHED CASE expression is as follows:

CASE

 WHEN C1 THEN R1

 WHEN C2 THEN R2

 ...

 WHEN CN THEN RN

 ELSE RD

END

In the syntax definition, the "C"s represent conditions, and the "R"s represent results. You can
use up to 127 WHEN clauses in each CASE expression, so the logic can be quite robust.
Conditions are evaluated in order. When a condition is found that evaluates to TRUE, the
corresponding result is returned, and execution of the CASE logic ends. Therefore, carefully order
WHEN clauses to ensure that the desired results are achieved. The next example illustrates the
use of the CASE statement by determining the proper string to show on an order status report:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT co.order_nbr, co.cust_nbr,

 CASE WHEN co.expected_ship_dt IS NULL THEN 'NOT YET SCHEDULED'

 WHEN co.expected_ship_dt <= SYSDATE THEN 'SHIPPING DELAYED'

 WHEN co.expected_ship_dt <= SYSDATE + 2 THEN 'SHIPPING SOON'

 ELSE 'BACKORDERED'

 END ship_status

FROM cust_order co

WHERE co.ship_dt IS NULL AND co.cancelled_dt IS NULL;

Similar to DECODE, all results in the CASE expression must have comparable types; otherwise,
ORA-932 will be thrown. Each condition in each WHEN clause is independent of the others,
however, so your conditions can include various data types, as demonstrated in the next
example:

SELECT co.order_nbr, co.cust_nbr,

 CASE

 WHEN co.sale_price > 10000 THEN 'BIG ORDER'

 WHEN co.cust_nbr IN

 (SELECT cust_nbr FROM customer WHERE tot_orders > 100)

 THEN 'ORDER FROM FREQUENT CUSTOMER'

 WHEN co.order_dt < TRUNC(SYSDATE) -- 7 THEN 'OLD ORDER'

 ELSE 'UNINTERESTING ORDER'

 END

FROM cust_order co

WHERE co.ship_dt IS NULL AND co.cancelled_dt IS NULL;

9.2.2 Simple CASE Expressions

Simple CASE expressions are structured differently than searched CASE expressions in that the
WHEN clauses contain expressions instead of conditions, and a single expression to be
compared to the expressions in each WHEN clause is placed in the CASE clause. Here's the
syntax:

CASE E0

 WHEN E1 THEN R1

 WHEN E2 THEN R2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 WHEN E2 THEN R2

 ...

 WHEN EN THEN RN

 ELSE RD

END

Therefore, each of the expressions E1...EN are compared to expression E0. If a match is found,
the corresponding result is returned; otherwise, the default result (RD) is returned. As a result, all
of the expressions must be of the same type, since they all must be compared to E0, making
simple CASE expressions less flexible than searched CASE expressions. The next example
illustrates the use of a simple CASE expression to translate the status code stored in the part
table:

SELECT p.part_nbr part_nbr, p.name part_name, s.name supplier,

 CASE p.status

 WHEN 'INSTOCK' THEN 'In Stock'

 WHEN 'DISC' THEN 'Discontinued'

 WHEN 'BACKORD' THEN 'Backordered'

 WHEN 'ENROUTE' THEN 'Arriving Shortly'

 WHEN 'UNAVAIL' THEN 'No Shipment Scheduled'

 ELSE 'Unknown'

 END part_status

FROM part p, supplier s

WHERE p.supplier_id = s.supplier_id;

A searched CASE can do everything that a simple CASE can do, which is probably the reason
Oracle only implemented searched CASE expressions the first time around. For certain uses,
such as translating values for a column, simple expressions may prove more efficient if the
expression being evaluated is computed via a function call.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.3 DECODE and CASE Examples

The following sections present a variety of examples illustrating the uses of conditional logic in SQL
statements. While we recommend that you use the CASE expression rather than the DECODE function,
where feasible we provide both DECODE and CASE versions of each example to help illustrate the
differences between the two approaches.

9.3.1 Result Set Transformations

You may have run into a situation where you are performing aggregations over a finite set of values,
such as days of the week or months of the year, but you want the result set to contain one row with N
columns rather than N rows with two columns. Consider the following query, which aggregates sales
data for each quarter of 2001:

SELECT TO_CHAR(order_dt, 'Q') sales_quarter,
 SUM(sale_price) tot_sales
FROM cust_order
WHERE order_dt >= TO_DATE('01-JAN-2001','DD-MON-YYYY')
 AND order_dt < TO_DATE('01-JAN-2002','DD-MON-YYYY')
GROUP BY TO_CHAR(order_dt, 'Q')
ORDER BY 1;

S TOT_SALES

- ----------

1 9739328

2 10379833

3 9703114

4 9772633

In order to transform this result set into a single row with four columns, we need to fabricate a column for
each quarter of the year and, within each column, sum only those records whose order date falls in the
desired quarter. We can do that with DECODE:

SELECT
 SUM(DECODE(TO_CHAR(order_dt, 'Q'), '1', sale_price, 0)) Q_1,
 SUM(DECODE(TO_CHAR (order_dt, 'Q'), '2', sale_price, 0)) Q_2,
 SUM(DECODE(TO_CHAR (order_dt, 'Q'), '3', sale_price, 0)) Q_3,
 SUM(DECODE(TO_CHAR (order_dt, 'Q'), '4', sale_price, 0)) Q_4
FROM cust_order

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FROM cust_order
WHERE order_dt >= TO_DATE('01-JAN-2001','DD-MON-YYYY')
 AND order_dt < TO_DATE('01-JAN-2002','DD-MON-YYYY');

 Q_1 Q_2 Q_3 Q_4

---------- ---------- ---------- ----------

 9739328 10379833 9703114 9772633

Each of the four columns in the previous query are identical, except for the quarter being checked by the
DECODE function. For the Q_1 column, for example, a value of 0 is returned unless the order falls in
the first quarter, in which case the sale_price column is returned. When the values from all orders in
2001 are summed, only the first quarter orders are added to the total (for Q_1), which has the effect of
summing all first quarter orders while ignoring orders for quarters 2, 3, and 4. The same logic is used for
Q_2, Q_3, and Q_4 to sum orders for quarters 2, 3, and 4 respectively.

The CASE version of this query is as follows:

SELECT
 SUM(CASE WHEN TO_CHAR(order_dt, 'Q') = '1' THEN sale_price ELSE 0 END) Q_1,
 SUM(CASE WHEN TO_CHAR(order_dt, 'Q') = '2' THEN sale_price ELSE 0 END) Q_2,
 SUM(CASE WHEN TO_CHAR(order_dt, 'Q') = '3' THEN sale_price ELSE 0 END) Q_3,
 SUM(CASE WHEN TO_CHAR(order_dt, 'Q') = '4' THEN sale_price ELSE 0 END) Q_4
FROM cust_order
WHERE order_dt >= TO_DATE('01-JAN-2001','DD-MON-YYYY')
 AND order_dt < TO_DATE('01-JAN-2002','DD-MON-YYYY');

 Q_1 Q_2 Q_3 Q_4

---------- ---------- ---------- ----------

 9739328 10379833 9703114 9772633

Obviously, such transformations are only practical when the number of values is relatively small.
Aggregating sales for each quarter or month works fine, but expanding the query to aggregate sales for
each week, with a column for each week, would quickly become tedious.

9.3.2 Selective Function Execution

Imagine you're generating an inventory report. Most of the information resides in your local database,
but a trip across a gateway to an external, non-Oracle database is required to gather information for
parts supplied by Acme Industries. The round trip from your database through the gateway to the
external server and back takes 1.5 seconds on average. There are 10,000 parts in your database, but
only 100 require information via the gateway. You create a user-defined function called
get_resupply_date to retrieve the resupply date for parts supplied by ACME, and include it in your query:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT s.name supplier_name, p.name part_name, p.part_nbr part_number

 p.inventory_qty in_stock, p.resupply_date resupply_date,

 my_pkg.get_resupply_date(p.part_nbr) acme_resupply_date
FROM part p, supplier s

WHERE p.supplier_id = s.supplier_id;

You then include logic in your reporting tool to use the acme_resupply_date instead of the
resupply_date column if the supplier's name is Acme Industries. You kick off the report, sit back, and
wait for the results. And wait. And wait...

Unfortunately, the server is forced to make 10,000 trips across the gateway when only 100 are required.
In these types of situations, it is far more efficient to call the function only when necessary, instead of
always calling the function and discarding the results when not needed:

SELECT s.name supplier_name, p.name part_name, p.part_nbr part_number,

 p.inventory_qty in_stock,

 DECODE(s.name, 'Acme Industries',

 my_pkg.get_resupply_date(p.part_nbr),

 p.resupply_date) resupply_date

FROM part p, supplier s

WHERE p.supplier_id = s.supplier_id;

The DECODE function checks if the supplier name is 'Acme Industries'. If so, it calls the function to
retrieve the resupply date via the gateway; otherwise, it returns the resupply date from the local part
table. The CASE version of this query is as follows:

SELECT s.name supplier_name, p.name part_name, p.part_nbr part_number,

 p.inventory_qty in_stock,

 CASE WHEN s.name = 'Acme Industries'

 THEN my_pkg.get_resupply_date(p.part_nbr)

 ELSE p.resupply_date

 END resupply_date

FROM part p, supplier s

WHERE p.supplier_id = s.supplier_id;

Now the user-defined function is only executed if the supplier is Acme, reducing the query's execution
time drastically. For more information on calling user-defined functions from SQL, see Chapter 11.

9.3.3 Conditional Update

If your database design includes denormalizations, you may run nightly routines to populate the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If your database design includes denormalizations, you may run nightly routines to populate the
denormalized columns. For example, the part table contains the denormalized column status, the value
for which is derived from the inventory_qty and resupply_date columns. To update the status column,
you could run four separate UPDATE statements each night, one for each of the four possible values for
the status column For example:

UPDATE part SET status = 'INSTOCK'

WHERE inventory_qty > 0;

UPDATE part SET status = 'ENROUTE'

WHERE inventory_qty = 0 AND resupply_date < SYSDATE + 5;

UPDATE part SET status = 'BACKORD'

WHERE inventory_qty = 0 AND resupply_date > SYSDATE + 5;

UPDATE part SET status = 'UNAVAIL'

WHERE inventory_qty = 0 and resupply_date IS NULL;

Given that columns such as inventory_qty and resupply_date are unlikely to be indexed, each of the four
UPDATE statements would require a full table-scan of the part table. By adding conditional expressions
to the statement, however, the four UPDATE statements can be combined, resulting in a single scan of
the part table:

UPDATE part SET status =

 DECODE(inventory_qty, 0,

 DECODE(resupply_date, NULL, 'UNAVAIL',

 DECODE(LEAST(resupply_date, SYSDATE + 5), resupply_date,

 'ENROUTE', 'BACKORD')),

 'INSTOCK');

The CASE version of this UPDATE is as follows:

UPDATE part SET status =

 CASE WHEN inventory_qty > 0 THEN 'INSTOCK'

 WHEN resupply_date IS NULL THEN 'UNAVAIL'

 WHEN resupply_date < SYSDATE + 5 THEN 'ENROUTE'

 WHEN resupply_date > SYSDATE + 5 THEN 'BACKORD'

 ELSE 'UNKNOWN' END;

The readability advantage of the CASE expression is especially apparent here, since the DECODE
version requires three nested levels to implement the same conditional logic handled by a single CASE
expression.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.3.4 Optional Update

In some situations, you may need to modify data only if certain conditions exist. For example, you have
a table that records information such as the total number of orders and the largest order booked during
the current month. Here's the table definition:

describe mtd_orders;

Name Null? Type

--- -------- ------------

TOT_ORDERS NOT NULL NUMBER(7)

TOT_SALE_PRICE NOT NULL NUMBER(11,2)

MAX_SALE_PRICE NOT NULL NUMBER(9,2)

Each night, the table is updated with that day's order information. While most of the columns will be
modified each night, the column for the largest order, which is called max_sale_price, will only change if
one of the day's orders exceeds the current value of the column. The following PL/SQL block shows
how this might be accomplished using a procedural language:

DECLARE

 tot_ord NUMBER;

 tot_price NUMBER;

 max_price NUMBER;

 prev_max_price NUMBER;

BEGIN

 SELECT COUNT(*), SUM(sale_price), MAX(sale_price)

 INTO tot_ord, tot_price, max_price

 FROM cust_order

 WHERE cancelled_dt IS NULL

 AND order_dt >= TRUNC(SYSDATE);

 UPDATE mtd_orders

 SET tot_orders = tot_orders + tot_ord,

 tot_sale_price = tot_sale_price + tot_price

 RETURNING max_sale_price INTO prev_max_price;

 IF max_price > prev_max_price THEN

 UPDATE mtd_orders

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 UPDATE mtd_orders

 SET max_sale_price = max_price;

 END IF;

END;

After calculating the total number of orders, the aggregate order price, and the maximum order price for
the current day, the tot_orders and tot_sale_price columns of the mtd_orders table are modified with
today's sales data. After the update is complete, the maximum sale price is returned from mtd_orders so
that it can be compared with today's maximum sale price. If today's max_sale_price exceeds that stored
in the mtd_orders table, a second UPDATE statement is executed to update the field.

Using DECODE or CASE, however, we can update the tot_orders and tot_sale_price columns and
optionally update the max_sale_price column in the same UPDATE statement. Additionally, since we
now have a single UPDATE statement, we can aggregate the data from the cust_order table within a
subquery and eliminate the need for PL/SQL:

UPDATE mtd_orders mtdo

SET (mtdo.tot_orders, mtdo.tot_sale_price, mtdo.max_sale_price) =

 (SELECT mtdo.tot_orders + day_tot.tot_orders,

 mtdo.tot_sale_price + NVL(day_tot.tot_sale_price, 0),

 DECODE(GREATEST(mtdo.max_sale_price,

 NVL(day_tot.max_sale_price, 0)), mtdo.max_sale_price,

 mtdo.max_sale_price, day_tot.max_sale_price)

 FROM

 (SELECT COUNT(*) tot_orders, SUM(sale_price) tot_sale_price,

 MAX(sale_price) max_sale_price

 FROM cust_order

 WHERE cancelled_dt IS NULL

 AND order_dt >= TRUNC(SYSDATE)) day_tot);

In this statement, the max_sale_price column is set equal to itself unless the value returned from the
subquery is greater than the current column value, in which case the column is set to the value returned
from the subquery. The next statement uses CASE to perform the same optional update:

UPDATE mtd_orders mtdo

SET (mtdo.tot_orders, mtdo.tot_sale_price, mtdo.max_sale_price) =

 (SELECT mtdo.tot_orders + day_tot.tot_orders,

 mtdo.tot_sale_price + day_tot.tot_sale_price,

 CASE WHEN day_tot.max_sale_price > mtdo.max_sale_price

 THEN day_tot.max_sale_price

 ELSE mtdo.max_sale_price END

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ELSE mtdo.max_sale_price END

 FROM

 (SELECT COUNT(*) tot_orders, SUM(sale_price) tot_sale_price,

 MAX(sale_price) max_sale_price

 FROM cust_order

 WHERE cancelled_dt IS NULL

 AND order_dt >= TRUNC(SYSDATE)) day_tot);

One thing to keep in mind when using this approach is that setting a value equal to itself is still seen as
a modification by the database and may trigger an audit record, a new value for the last_modified_date
column, etc.

9.3.5 Selective Aggregation

To expand on the mtd_orders example in the previous section, imagine that you also want to store total
sales for particular regions such as Europe and North America. You could modify the mtd_orders table
to look as follows. Note the addition of three columns for European sales, and three columns for North
American Sales.

Name Null? Type

--- -------- ------------

TOT_ORDERS NOT NULL NUMBER(7)

TOT_SALE_PRICE NOT NULL NUMBER(11,2)

MAX_SALE_PRICE NOT NULL NUMBER(9,2)

EUROPE_TOT_ORDERS NOT NULL NUMBER(7)

EUROPE_TOT_SALE_PRICE NOT NULL NUMBER(11,2)

EUROPE_MAX_SALE_PRICE NOT NULL NUMBER(9,2)

NORTHAMERICA_TOT_ORDERS NOT NULL NUMBER(7)

NORTHAMERICA_TOT_SALE_PRICE NOT NULL NUMBER(11,2)

NORTHAMERICA_MAX_SALE_PRICE NOT NULL NUMBER(9,2)

For the new columns, individual orders will affect one set of columns or the other, but not both. An order
will either be for a European or North American customer, but not for both at the same time. To populate
these new columns, you could generate two more update statements, each targeted to a particular
region, as in:

/* Europe buckets */

UPDATE mtd_orders mtdo

SET (mtdo.europe_tot_orders, mtdo.europe_tot_sale_price,

 mtdo.europe_max_sale_price) =

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 mtdo.europe_max_sale_price) =

 (SELECT mtdo.europe_tot_orders + eur_day_tot.tot_orders,

 mtdo.europe_tot_sale_price + nvl(eur_day_tot.tot_sale_price, 0),

 CASE WHEN eur_day_tot.max_sale_price > mtdo.europe_max_sale_price

 THEN eur_day_tot.max_sale_price

 ELSE mtdo.europe_max_sale_price END

 FROM

 (SELECT COUNT(*) tot_orders, SUM(co.sale_price) tot_sale_price,

 MAX(co.sale_price) max_sale_price

 FROM cust_order co, customer c

 WHERE co.cancelled_dt IS NULL

 AND co.order_dt >= TRUNC(SYSDATE)

 AND co.cust_nbr = c.cust_nbr

 AND c.region_id IN

 (SELECT region_id FROM region

 START WITH name = 'Europe'

 CONNECT BY PRIOR region_id = super_region_id)) eur_day_tot);

/* North America buckets */

UPDATE mtd_orders mtdo

SET (mtdo.northamerica_tot_orders, mtdo. northamerica_tot_sale_price,

 mtdo.northamerica_max_sale_price) =

 (SELECT mtdo.northamerica_tot_orders + na_day_tot.tot_orders,

 mtdo.northamerica_tot_sale_price + nvl(na_day_tot.tot_sale_price, 0),

 CASE WHEN na_day_tot.max_sale_price > mtdo.northamerica_max_sale_price

 THEN na_day_tot.max_sale_price

 ELSE mtdo.northamerica_max_sale_price END

 FROM

 (SELECT COUNT(*) tot_orders, SUM(co.sale_price) tot_sale_price,

 MAX(co.sale_price) max_sale_price

 FROM cust_order co, customer c

 WHERE co.cancelled_dt IS NULL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 WHERE co.cancelled_dt IS NULL

 AND co.order_dt >= TRUNC(SYSDATE) - 60

 AND co.cust_nbr = c.cust_nbr

 AND c.region_id IN

 (SELECT region_id FROM region

 START WITH name = 'North America'

 CONNECT BY PRIOR region_id = super_region_id)) na_day_tot);

However, why not save yourself a trip through the cust_order table and aggregate the North American
and European totals at the same time? The trick here is to put conditional logic within the aggregation
functions so that only the appropriate rows influence each calculation. This approach is similar to
Section 9.3.1 earlier in the chapter, in that it selectively aggregates data based on data stored in the
table:

UPDATE mtd_orders mtdo

SET (mtdo.northamerica_tot_orders, mtdo. northamerica_tot_sale_price,

 mtdo.northamerica_max_sale_price, mtdo.europe_tot_orders,

 mtdo.europe_tot_sale_price, mtdo.europe_max_sale_price) =

 (SELECT mtdo.northamerica_tot_orders + nvl(day_tot.na_tot_orders, 0),

 mtdo.northamerica_tot_sale_price + nvl(day_tot.na_tot_sale_price, 0),

 CASE WHEN day_tot.na_max_sale_price > mtdo.northamerica_max_sale_price

 THEN day_tot.na_max_sale_price

 ELSE mtdo.northamerica_max_sale_price END,

 mtdo.europe_tot_orders + nvl(day_tot.eur_tot_orders, 0),

 mtdo.europe_tot_sale_price + nvl(day_tot.eur_tot_sale_price, 0),

 CASE WHEN day_tot.eur_max_sale_price > mtdo.europe_max_sale_price

 THEN day_tot.eur_max_sale_price

 ELSE mtdo.europe_max_sale_price END

 FROM

 (SELECT SUM(CASE WHEN na_regions.region_id IS NOT NULL THEN 1

 ELSE 0 END) na_tot_orders,

 SUM(CASE WHEN na_regions.region_id IS NOT NULL THEN co.sale_price

 ELSE 0 END) na_tot_sale_price,

 MAX(CASE WHEN na_regions.region_id IS NOT NULL THEN co.sale_price

 ELSE 0 END) na_max_sale_price,

 SUM(CASE WHEN eur_regions.region_id IS NOT NULL THEN 1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 SUM(CASE WHEN eur_regions.region_id IS NOT NULL THEN 1

 ELSE 0 END) eur_tot_orders,

 SUM(CASE WHEN eur_regions.region_id IS NOT NULL THEN co.sale_price

 ELSE 0 END) eur_tot_sale_price,

 MAX(CASE WHEN eur_regions.region_id IS NOT NULL THEN co.sale_price

 ELSE 0 END) eur_max_sale_price

 FROM cust_order co, customer c,

 (SELECT region_id FROM region

 START WITH name = 'North America'

 CONNECT BY PRIOR region_id = super_region_id) na_regions,

 (SELECT region_id FROM region

 START WITH name = 'Europe'

 CONNECT BY PRIOR region_id = super_region_id) eur_regions

 WHERE co.cancelled_dt IS NULL

 AND co.order_dt >= TRUNC(SYSDATE)

 AND co.cust_nbr = c.cust_nbr

 AND c.region_id = na_regions.region_id (+)

 AND c.region_id = eur_regions.region_id (+)) day_tot);

This is a fairly robust statement, so let's break it down. Within the day_tot inline view, you are joining the
cust_order table to the customer table, and then outer-joining from customer.region_id to each of two
inline views (na_regions and eur_regions) that perform hierarchical queries on the region table. Thus,
orders from European customers will have a non-null value for eur_regions.region_id, since the outer
join would find a matching row in the eur_regions inline view. Six aggregations are performed on this
result set; three check for a join against the na_regions inline view (North American orders), and three
check for a join against the eur_regions inline view (European orders). The six aggregations are then
used to modify the six columns in mtd_orders.

This statement could (and should) be combined with the statement from the previous example (which
updated the first three columns) to create an UPDATE statement that touches every column in the
mtd_orders table via one pass through the cust_order table. For data warehouse applications, where
large data sets must be manipulated each night within tight time constraints, such an approach can
often make the difference between success and failure.

9.3.6 Division by Zero Errors

As a general rule, you should write your code so unexpected data values are handled gracefully. One of
the more common arithmetic errors is ORA-01476: divisor is equal to zero. Whether the value is
retrieved from a column, passed in via a bind variable, or returned by a function call, always wrap
divisors with DECODE or CASE, as illustrated by the following example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT p.part_nbr, SYSDATE + (p.inventory_qty /

 DECODE(my_pkg.get_daily_part_usage(p.part_nbr), NULL, 1,

 0, 1, my_pkg.get_daily_part_usage(p.part_nbr))) anticipated_shortage_dt

FROM part p

WHERE p.inventory_qty > 0;

The DECODE function ensures that the divisor is something other than zero. Here is the CASE version
of the statement:

SELECT p.part_nbr, SYSDATE + (p.inventory_qty /

 CASE WHEN my_pkg.get_daily_part_usage(p.part_nbr) > 0

 THEN my_pkg.get_daily_part_usage(p.part_nbr)

 ELSE 1 END) anticipated_shortage_dt

FROM part p

WHERE p.inventory_qty > 0;

Of course, if you are bothered by the fact that the get_daily_part_usage function is called a second time
for each part that yields a positive response, simply wrap the function call in an inline view, as in:

SELECT parts.part_nbr, SYSDATE + (parts.inventory_qty /

 CASE WHEN parts.daily_part_usage > 0

 THEN parts.daily_part_usage

 ELSE 1 END) anticipated_shortage_dt

FROM

 (SELECT p.part_nbr part_nbr, p.inventory_qty inventory_qty,

 my_pkg.get_daily_part_usage(p.part_nbr) daily_part_usage

 FROM part p

 WHERE p.inventory_qty > 0) parts;

9.3.7 State Transitions

In certain cases, the order in which the values may be changed is constrained as well as the allowable
values for a column. Consider the diagram shown in Figure 9-1, which shows the allowable state
transitions for an order.

Figure 9-1. Order processing state transitions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As you can see, an order currently in the Processing state should only be allowed to move to either
Delayed or Filled. Rather than allowing each application to implement logic to change the state of an
order, write a user-defined function that returns the appropriate state depending on the current state of
the order and the transition type. In this example, two transition types are defined: positive (POS) and
negative (NEG). For example, an order in the Delayed state can make a positive transition to
Processing or a negative transition to Cancelled. If an order is in one of the final states (Rejected,
Cancelled, Shipped), the same state is returned. Here is the DECODE version of our PL/SQL function:

FUNCTION get_next_order_state(ord_nbr in NUMBER,

 trans_type in VARCHAR2 DEFAULT 'POS')

RETURN VARCHAR2 is

 next_state VARCHAR2(20) := 'UNKNOWN';

BEGIN

 SELECT DECODE(status,

 'REJECTED', status,

 'CANCELLED', status,

 'SHIPPED', status,

 'NEW', DECODE(trans_type, 'NEG', 'AWAIT_PAYMENT', 'PROCESSING'),

 'AWAIT_PAYMENT', DECODE(trans_type, 'NEG', 'REJECTED', 'PROCESSING'),

 'PROCESSING', DECODE(trans_type, 'NEG', 'DELAYED', 'FILLED'),

 'DELAYED', DECODE(trans_type, 'NEG', 'CANCELLED', 'PROCESSING'),

 'FILLED', DECODE(trans_type, 'POS', 'SHIPPED', 'UNKNOWN'),

 'UNKNOWN')

 INTO next_state

 FROM cust_order

 WHERE order_nbr = ord_nbr;

 RETURN next_state;

EXCEPTION

 WHEN NO_DATA_FOUND THEN

 RETURN next_state;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

END get_next_order_state;

As of Oracle8i Version 8.1.7, the PL/SQL language does not include the CASE expression in its
grammar, so you would need to be running Oracle9i to use the CASE version of the function:

FUNCTION get_next_order_state(ord_nbr in NUMBER,

 trans_type in VARCHAR2 DEFAULT 'POS')

RETURN VARCHAR2 is

 next_state VARCHAR2(20) := 'UNKNOWN';

BEGIN

 SELECT CASE

 WHEN status = 'REJECTED' THEN status

 WHEN status = 'CANCELLED' THEN status

 WHEN status = 'SHIPPED' THEN status

 WHEN status = 'NEW' AND trans_type = 'NEG' THEN 'AWAIT_PAYMENT'

 WHEN status = 'NEW' AND trans_type = 'POS' THEN 'PROCESSING'

 WHEN status = 'AWAIT_PAYMENT' AND trans_type = 'NEG' THEN 'REJECTED'

 WHEN status = 'AWAIT_PAYMENT' AND trans_type = 'POS' THEN 'PROCESSING'

 WHEN status = 'PROCESSING' AND trans_type = 'NEG' THEN 'DELAYED'

 WHEN status = 'PROCESSING' AND trans_type = 'POS' THEN 'FILLED'

 WHEN status = 'DELAYED' AND trans_type = 'NEG' THEN 'CANCELLED'

 WHEN status = 'DELAYED' AND trans_type = 'POS' THEN 'PROCESSING'

 WHEN status = 'FILLED' AND trans_type = 'POS' THEN 'SHIPPED'

 ELSE 'UNKNOWN'

 END

 INTO next_state

 FROM cust_order

 WHERE order_nbr = ord_nbr;

 RETURN next_state;

EXCEPTION

 WHEN NO_DATA_FOUND THEN

 RETURN next_state;

END get_next_order_state;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

END get_next_order_state;

This example only handles the simple case where there are just two paths out of each state, but it does
demonstrate one strategy for managing state transitions in your database. To demonstrate how the
previous function could be used, here is the UPDATE statement used to change the status of an order
once it has made a successful state transition:

UPDATE cust_order

SET status = my_pkg.get_next_order_state(order_nbr, 'POS')

WHERE order_nbr = 1107;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 10. Partitions, Objects, and Collections
Oracle8 introduced a host of new features to support large databases and object-relational
constructs. The Oracle8i and Oracle9i releases further expanded and refined these areas. This
chapter explores partitioning, which addresses the needs of large database implementations, and
objects and collections, which facilitate the storage and propagation of complex datatypes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.1 Table Partitioning

Over the past 15 years, hard disk capacities have evolved from around 10 megabytes to over 100
gigabytes, and capacities are still growing. Disk arrays are fast approaching the 100 terabyte
range. No matter how much storage is available, however, there is always a way to exhaust it. As
databases grow in size, day-to-day operations become more and more challenging. For example,
finding the time and resources to rebuild an index containing 100 million entries can prove quite
demanding. Prior to Oracle8, database administrators would meet this challenge by manually
breaking a large table into several smaller tables. Although the pieces could be hidden behind a
special type of view (called a partition view) during a query, all DML statements had to be
performed against the individual tables, thereby exposing the partitioning scheme to the database
developers and users.

Starting with Version 8.0, Oracle provided a means for breaking a table into multiple pieces while
preserving the look and feel of a single table. Each piece is called a partition, and, although every
partition must share the same columns, constraints, indexes, and triggers, each partition can
have its own unique storage parameters. While administrators generally deal with individual
partitions when allocating storage and performing backups, developers may choose to deal with
either the entire table or with individual partitions.

10.1.1 Partitioning Concepts

Database designers and administrators have been partitioning tables since long before Oracle8
hit the scene. In general, table partitioning within a single database is done to improve
performance and simplify administration tasks, while table partitioning between databases is
meant to facilitate data distribution. For example, sales data might be partitioned by region and
each partition hosted in a database housed at its respective regional sales office. Whereas a
central data warehouse might gather sales data from each office for reporting and decision-
support queries, it might be perfectly reasonable for the operational sales data to be distributed
across multiple sites.

Partitioning by sets of rows such as in the sales data example, in which the value of the sales
office column determines where the data resides, is known as horizontal partitioning. Partitioning
may also be accomplished by splitting up sets of columns, in which case it is called vertical
partitioning . For example, sensitive data such as salary information and social security numbers
may be split off from the employee table into a separate table with restricted access. When
partitioning vertically, primary key columns must be included in the set of columns for every
partition. Therefore, unlike horizontal partitioning, where each partition contains non-overlapping
subsets of data, vertical partitioning mandates that some data be duplicated in each partition.

While both vertical and horizontal partitioning may be accomplished manually within and between
Oracle databases, the Partitioning Option introduced in Oracle8 specifically deals with horizontal
partitioning within a single database.

10.1.2 Partitioning Tables

When partitioning is employed, a table changes from a physical object to a virtual concept. There

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When partitioning is employed, a table changes from a physical object to a virtual concept. There
isn't really a table anymore, just a set of partitions. Since all of the partitions must share the same
attribute and constraint definitions, however, it is possible to deal with the set of partitions as if
they were a single table. The storage parameters, such as extent sizes and tablespace
placement, are the only attributes that may differ among the partitions. This situation can facilitate
some interesting storage scenarios, such as hosting infrequently accessed partitions on a CD
jukebox while the heavily-hit data partitions reside on disk. You can also take advantage of
Oracle's segmented buffer cache to keep the most active partitions in the keep buffer so they are
always in memory, while the rest of the partitions can be targeted for the recycle or default
buffers. Additionally, individual partitions may be taken offline without affecting the availability of
the rest of the partitions, giving administrators a great deal of flexibility.

Depending on the partitioning scheme employed, you must choose one or more columns of a
table to be the partition key . The values of the columns in the partition key determine the partition
that hosts a particular row. Oracle also uses the partition key information in concert with your
WHERE clause to determine which partitions to search during SELECT, UPDATE, and DELETE
operations (see Section 10.1.6 later in the chapter for more information).

10.1.3 Partitioning Indexes

So what, you may wonder, happens to the indexes on partitioned tables? The answer is that you
have to choose whether each index will stay intact (referred to as a global index), or be split into
pieces corresponding to the table partitions (referred to as a local index). Furthermore, with global
indexes, you can choose to partition the index in a different manner than the table was
partitioned. When you throw the fact that you can partition both b-tree and bit-map indexes into
the mix, things can become overwhelming. When you issue a SELECT, UPDATE, or DELETE
statement against a partitioned table, the optimizer can take several routes to locate the target
rows:

1. Use a global index, if one is available and its columns are referenced in the SQL statement,
to find the target rows across one or more partitions.

2. Search a local index on every partition to identify whether any particular partition contains
target rows.

3. Define a subset of the partitions that might contain target rows, and then access local
indexes on those partitions.

While global indexes might seem to be the simplest solution, they can be problematic. Because
global indexes span all of the partitions of a table, they are adversely affected by partition
maintenance operations. For example, if a partition is split into multiple pieces, or if two partitions
are merged into one, all global indexes on the partitioned table are marked as UNUSABLE and
must be rebuilt before they can be used again. This is especially troubling when you consider that
primary key constraints on partitioned tables utilize global indexes by default. Instead of global
indexes, consider using local indexes. You may also want to explore the use of local unique
indexes as the mechanism for maintaining integrity for your partitioned tables.[1]

[1] When creating a primary key constraint, you can name an existing index rather than have Oracle build a new global
index.

10.1.4 Partitioning Methods

In order to horizontally partition a table (or index), you must specify a set of rules so that Oracle
can determine in which partition a given row should reside. The following sections explore the four
types of partitioning available in Oracle9i.

10.1.4.1 Range partitioning

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The first partitioning scheme, introduced in Oracle8 and known as range partitioning, allows a
table to be partitioned over ranges of values for one or more columns of the table. The simplest
and most widely-implemented form of range partitioning is to partition using a single date column.
Consider the following DDL statement:

CREATE TABLE cust_order (

 order_nbr NUMBER(7) NOT NULL,

 cust_nbr NUMBER(5) NOT NULL,

 order_dt DATE NOT NULL,

 sales_emp_id NUMBER(5) NOT NULL,

 sale_price NUMBER(9,2),

 expected_ship_dt DATE,

 cancelled_dt DATE,

 ship_dt DATE,

 status VARCHAR2(20))

)

PARTITION BY RANGE (order_dt)
 (PARTITION orders_1999

 VALUES LESS THAN (TO_DATE('01-JAN-2000','DD-MON-YYYY'))

 TABLESPACE ord1,

 PARTITION orders_2000

 VALUES LESS THAN (TO_DATE('01-JAN-2001','DD-MON-YYYY'))

 TABLESPACE ord2,

 PARTITION orders_2001

 VALUES LESS THAN (TO_DATE('01-JAN-2002','DD-MON-YYYY'))

 TABLESPACE ord3);

Using this partitioning scheme, all orders prior to 2000 will reside in the orders_1999 partition;
orders from 2000 will reside in the orders_2000 partition; and orders for the year 2001 will reside
in the orders_2001 partition.

10.1.4.2 Hash partitioning

In some cases, you may wish to partition a large table, but there are no columns for which range
partitioning is suitable. Available in Oracle8i, hash partitioning allows you to specify the number of
partitions and the partition columns (the partition key), but leaves the allocation of rows to partition
up to Oracle. As rows are inserted into the partitioned table, Oracle attempts to evenly spread the
data across the partitions by applying a hashing function to the data in the partition key; the value

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

data across the partitions by applying a hashing function to the data in the partition key; the value
returned by the hashing function determines the partition that hosts the row. If the partition
columns are included in the WHERE clause of a SELECT, DELETE, or UPDATE statement,
Oracle can apply the hash function to determine which partition to search. The following DDL
statement demonstrates how the part table might be partitioned by hashing the part_nbr column:

CREATE TABLE part (

 part_nbr VARCHAR2(20) NOT NULL,

 name VARCHAR2(50) NOT NULL,

 supplier_id NUMBER(6) NOT NULL,

 inventory_qty NUMBER(6) NOT NULL,

 status VARCHAR2(10) NOT NULL,

 inventory_qty NUMBER(6),

 unit_cost NUMBER(8,2)

 resupply_date DATE)

PARTITION BY HASH (part_nbr)
 (PARTITION part1 TABLESPACE p1,

 PARTITION part2 TABLESPACE p2,

 PARTITION part3 TABLESPACE p3,

 PARTITION part4 TABLESPACE p4);

In order for the data to be evenly distributed across the partitions, it is important to choose
columns with high cardinality as partition keys. A set of columns is said to have high cardinality if
the number of distinct values is large compared to the size of the table.[2] Choosing a high
cardinality column for your partition key ensures an even distribution across your partitions;
otherwise, the partitions can become unbalanced, causing performance to be unpredictable and
making administration more difficult.

[2] A unique key has the highest cardinality, since every row in the table has a distinct value. An example of a low
cardinality column might be the country column in a customer table with millions of entries.

10.1.4.3 Composite partitioning

If you are torn between whether to apply range or hash partitioning to your table, you can do
some of each. Composite partitioning, also unveiled with Oracle8i, allows you to create multiple
range partitions, each of which contains two or more hash subpartitions. Composite partitioning is
often useful when range partitioning is appropriate for the type of data stored in the table, but you
want a finer granularity of partitioning than is practical using range partitioning alone. For
example, it might make sense to partition your order table by year based on the types of queries
against the table. If you want more than one partition per year, however, you could subpartition
each year by hashing the customer number across four buckets. The following example expands
on the range-partitioning example shown earler by generating subpartitions based on a hash of
the customer number:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CREATE TABLE cust_order (

 order_nbr NUMBER(7) NOT NULL,

 cust_nbr NUMBER(5) NOT NULL,

 order_dt DATE NOT NULL,

 sales_emp_id NUMBER(5) NOT NULL,

 sale_price NUMBER(9,2),

 expected_ship_dt DATE,

 cancelled_dt DATE,

 ship_dt DATE,

 status VARCHAR2(20))

PARTITION BY RANGE (order_dt)

SUBPARTITION BY HASH (cust_nbr) SUBPARTITIONS 4

STORE IN (order_sub1, order_sub2, order_sub3, order_sub4)

 (PARTITION orders_1999

 VALUES LESS THAN (TO_DATE('01-JAN-2000','DD-MON-YYYY'))

 (SUBPARTITION orders_1999_s1 TABLESPACE order_sub1,

 SUBPARTITION orders_1999_s2 TABLESPACE order_sub2,

 SUBPARTITION orders_1999_s3 TABLESPACE order_sub3,

 SUBPARTITION orders_1999_s4 TABLESPACE order_sub4),

 PARTITION orders_2000

 VALUES LESS THAN (TO_DATE('01-JAN-2001','DD-MON-YYYY'))

 (SUBPARTITION orders_2000_s1 TABLESPACE order_sub1,

 SUBPARTITION orders_2000_s2 TABLESPACE order_sub2,

 SUBPARTITION orders_2000_s3 TABLESPACE order_sub3,

 SUBPARTITION orders_2000_s4 TABLESPACE order_sub4),

 PARTITION orders_2001

 VALUES LESS THAN (TO_DATE('01-JAN-2002','DD-MON-YYYY'))

 (SUBPARTITION orders_2001_s1 TABLESPACE order_sub1,

 SUBPARTITION orders_2001_s2 TABLESPACE order_sub2,

 SUBPARTITION orders_2001_s3 TABLESPACE order_sub3,

 SUBPARTITION orders_2001_s4 TABLESPACE order_sub4));

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 SUBPARTITION orders_2001_s4 TABLESPACE order_sub4));

Interestingly, when composite partitioning is used, all of the data is physically stored in the
subpartitions, while the partitions, just like the table, become virtual.

10.1.4.4 List partitioning

Introduced in Oracle9i, list partitioning allows a table to be partitioned by one or more distinct
values of a particular column. For example, a warehouse table containing sales summary data by
product, state, and month/year could be partitioned into geographic regions, as in:

CREATE TABLE sales_fact (

 state_cd VARCHAR2(3) NOT NULL,

 month_cd NUMBER(2) NOT NULL,

 year_cd NUMBER(4) NOT NULL,

 product_cd VARCHAR2(10) NOT NULL,

 tot_sales NUMBER(9,2) NOT NULL)

PARTITION BY LIST (state_cd)

 (PARTITION sales_newengland VALUES ('CT','RI','MA','NH','ME','VT')

 TABLESPACE s1,

 PARTITION sales_northwest VALUES ('OR','WA','MT','ID','WY','AK')

 TABLESPACE s2,

 PARTITION sales_southwest VALUES ('NV','UT','AZ','NM','CO','HI')

 TABLESPACE s3,

 PARTITION sales_southeast VALUES ('FL','GA','AL','SC','NC','TN','WV')

 TABLESPACE s4,

 PARTITION sales_east VALUES ('PA','NY','NJ','MD','DE','VA','KY','OH')

 TABLESPACE s5,

 PARTITION sales_california VALUES ('CA')

 TABLESPACE s6,

 PARTITION sales_south VALUES ('TX','OK','LA','AR','MS')

 TABLESPACE s7,

 PARTITION sales_midwest VALUES ('ND','SD','NE','KS','MN','WI','IA',

 'IL','IN','MI','MO')

 TABLESPACE s8);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 TABLESPACE s8);

List partitioning is appropriate for low cardinality data in which the number of distinct values of a
column is small relative to the number of rows. Unlike range and hash partitioning, where the
partition key may contain several columns, list partitioning is limited to a single column. While it
seems reasonable that composite partitioning could employ either range or list partitioning at the
first level, only range/hash composite partitioning has been implemented by Oracle at this time.

10.1.5 Specifying Partitions

When you are writing SQL against partitioned tables, you have the option to treat the partitions as
single, virtual tables, or to specify partition names within your SQL statements. If you write DML
against a virtual table, the Oracle optimizer determines the partition or partitions that need to be
involved. For an INSERT statement, the optimizer uses the values provided for the partition key to
determine where to put each row. For UPDATE, DELETE, and SELECT statements, the optimizer
uses the conditions from the WHERE clause along with information on local and global indexes to
determine the partition or partitions that need to be searched.

If you know that your DML statement will utilize a single partition, and you know the name of the
partition, you can use the PARTITION clause to tell the optimizer which partition to use. For
example, if you want to summarize all orders for the year 2000, and you know that the cust_order
table is range-partitioned by year, you could issue the following query:

SELECT COUNT(*) tot_orders, SUM(sale_price) tot_sales

FROM cust_order PARTITION (orders_2000)
WHERE cancelled_dt IS NULL;

Note that this query's WHERE clause doesn't specify a date range, even though the table
contains data spanning multiple years. Because you specified the orders_2000 partition, you
know that the query will only summarize orders from 2000, so there is no need to check each
order's date.

If your table is composite-partitioned, you can use the SUBPARTITION clause to focus on a
single subpartition of the table. For example, the following statement deletes all rows from the
orders_2000_s1 subpartition of the composite-partitioned version of the cust_order table:

DELETE FROM cust_order SUBPARTITION (orders_2000_s1);

You can also use the PARTITION clause to delete the entire set of subpartitions that fall within a
given partition:

DELETE FROM cust_order PARTITION (orders_2000);

This statement would delete all rows from the orders_2000_s1, orders_2000_s2,
orders_2000_s3, and orders_2000_s4 subpartitions of the cust_order table.

Here are a few additional things to consider when working with partitioned tables:

If the optimizer determines that two or more partitions are needed to satisfy the WHERE
clause of a SELECT, UPDATE, or DELETE statement, the table and/or index partitions
may be scanned in parallel. Therefore, depending on the system resources available to
Oracle, scanning every partition of a partitioned table could be much faster than scanning
an entire unpartitioned table.

Because hash partitioning spreads data randomly across the partitions,[3] it is unclear why

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Because hash partitioning spreads data randomly across the partitions,[3] it is unclear why
you would want to use the PARTITION clause for hash-partitioned tables or the
SUBPARTITON clause for composite-partitioned tables, since you don't know what data
you are working on. The only reasonable scenario that comes to mind might be when you
want to modify every row in the table, but you don't have enough rollback available to
modify every row in a single transaction. In this case, you can perform an UPDATE or
DELETE on each partition or subpartition and issue a COMMIT after each statement
completes.

[3] It isn't actually random, but it will seem that way to you, since you don't have access to the hash function.

Partitions can be merged, split, or dropped at any time by the DBA. Therefore, use caution
when explicitly naming partitions in your DML statements. Otherwise, you may find your
statements failing, or worse, your statements might work on the wrong set of data because
partitions have been merged or split without your knowledge. You may want to check with
your DBA to determine her policy concerning naming partitions in your DML statements.

If you need to access a single partition or subpartition but don't like having partition names
sprinkled throughout your code, consider creating views to hide the partition names, as in the
following:

CREATE VIEW cust_order_2000 AS

SELECT *

FROM cust_order PARTITION (orders_2000);

You can then issue your SQL statements against the view:

SELECT order_nbr, cust_nbr, sale_price, order_dt

FROM cust_order_2000

WHERE quantity > 100;

10.1.6 Partition Pruning

Even when you don't name a specific partition in your SQL statement, the fact that a table is
partitioned might still influence the manner in which you access the table. When an SQL
statement accesses one or more partitioned tables, the Oracle optimizer attempts to use the
information in the WHERE clause to eliminate some of the partitions from consideration during
statement execution. This process, called partition pruning,[4] speeds statement execution by
ignoring any partitions that cannot satisfy the statement's WHERE clause.

[4] Also known as partition elimination.

To do so, the optimizer uses information from the table definition combined with information from
the statement's WHERE clause. For example, given the following table definition:

CREATE TABLE tab1 (

 col1 NUMBER(5) NOT NULL,

 col2 DATE NOT NULL,

 col3 VARCHAR2(10) NOT NULL)

PARTITION BY RANGE (col2)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PARTITION BY RANGE (col2)

 (PARTITION tab1_1998

 VALUES LESS THAN (TO_DATE('01-JAN-1999','DD-MON-YYYY'))

 TABLESPACE t1,

 PARTITION tab1_1999

 VALUES LESS THAN (TO_DATE('01-JAN-2000','DD-MON-YYYY'))

 TABLESPACE t1,

 PARTITION tab1_2000

 VALUES LESS THAN (TO_DATE('01-JAN-2001','DD-MON-YYYY'))

 TABLESPACE t3,

 PARTITION tab1_2001

 VALUES LESS THAN (TO_DATE('01-JAN-2002','DD-MON-YYYY'))

 TABLESPACE t4);

and the following query:

SELECT col1, col2, col3

FROM tab1

WHERE col2 > TO_DATE('01-OCT-2000','DD-MON-YYYY');

the optimizer would eliminate partitions tab1_1998 and tab1_1999 from consideration, since
neither partition could contain rows with a value for col2 greater than October 1, 2000.

In order for the optimizer to make these types of decisions, the WHERE clause must reference at
least one column from the set of columns that comprise the partition key. While this might seem
fairly straightforward, not all queries against a partitioned table naturally include the partition key.
If a unique index exists on the col1 column of the tab1 table from the previous example, for
instance, the following query would generally offer the most efficient access:

SELECT col1, col2, col3

FROM tab1

WHERE col1 = 1578;

If the index on col1 had been defined as a local index, however, Oracle would need to visit each
partition's local index to find the one that holds the value 1578. If you also have information about
the partition key (col2 in this case), you might want to consider including it in the query so that the
optimizer can eliminate partitions, as in the following:

SELECT col1, col2, col3

FROM tab1

WHERE col1 = 1578

 AND col2 > TO_DATE('01-JAN-2001','DD-MON-YYYY');

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 AND col2 > TO_DATE('01-JAN-2001','DD-MON-YYYY');

With the additional condition, the optimizer can now eliminate the tab1_1998, tab1_1999, and
tab1_2000 partitions from consideration. Oracle will now search a single unique index on the
tab1_2001 partition instead of searching a unique index on each of the four table partitions. Of
course, you would need to know that data pertaining to the value 1578 also had a value for col2
greater then January 1, 2001. If you can reliably provide additional information regarding the
partition keys, than you should do so; otherwise, you'll just have to let the optimizer do its best.
Running EXPLAIN PLAN on your DML statements against partitioned tables will allow you to see
which partitions the optimizer decided to utilize.

When checking the results of EXPLAIN PLAN, there are a couple of partition-specific columns
that you should add to your query against plan_table in order to see which partitions are being
considered by the optimizer. To demonstrate, we'll explain the following query against tab1:

EXPLAIN PLAN

SET STATEMENT_ID = 'qry1' FOR

SELECT col1, col2, col3

FROM tab1

WHERE col2 BETWEEN TO_DATE('01-JUL-1999','DD-MON-YYYY')

 AND TO_DATE('01-JUL-2000','DD-MON-YYYY');

When querying the plan_table table, you will include the partition_start and partition_end columns
whenever the operation field starts with 'PARTITION':

SELECT lpad(' ',2 * level) || operation || ' ' ||
 options || ' ' || object_name ||
 DECODE(SUBSTR(operation, 1, 9), 'PARTITION',
 ' FROM ' || partition_start ||
 ' TO ' || partition_stop, ' ') "exec plan"
FROM plan_table
CONNECT BY PRIOR id = parent_id
START WITH id = 0 AND statement_id = 'qry1';

exec plan

--

 SELECT STATEMENT

 PARTITION RANGE ITERATOR FROM 2 TO 3
 TABLE ACCESS FULL TAB1

The value of PARTITION RANGE for the operator column along with the value of ITERATOR for
the options column indicates that more than one partition will be involved in the execution plan.[5]

The values of the partition_start and partition_end columns (2 and 3, respectively) indicate that
the optimizer has decided to prune partitions 1 and 4, which correlate to the tab1_1998 and
tab1_2001 partitions.[6] Given that our WHERE clause specifies a date range of July 1, 1999 to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

tab1_2001 partitions.[6] Given that our WHERE clause specifies a date range of July 1, 1999 to
July 1, 2000, the optimizer has correctly pruned all partitions that cannot contribute to the result
set.

[5] If the optimizer had pruned all but one partition, the options column would contain the value 'SINGLE'. If no
partitions were pruned, the options column would contain the value 'ALL'.

[6] The number shown in the partition_start and partition_end columns correlates to the partition_position column in the
user_tab_partitions table, so you can query this table to identify the names of the partitions that are included in the
execution plan.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.2 Objects and Collections

Beginning with Version 8.0, Oracle added object-oriented features to what was a purely relational
database server. Object types and collections were introduced in Oracle8, and both have been
sufficiently refined in Oracle8i and Oracle9i so that they may now be considered fully-functional.[7]

Oracle now considers its database engine to be object-relational, in that a database may mix
relational constructs such as tables and constraints with object-oriented constructs such as object
types, collections, and references.

[7] In release 8.0, for example, object types didn't support inheritance, and collections could not be nested (i.e., an array
of arrays), resulting in a fairly cool reception to Oracle's early attempts at object-orientation.

10.2.1 Object Types

An object type is a user-defined datatype that combines data and related methods in order to
model complex entities. In this regard, they are similar to class definitions in an object-oriented
language such as C++ or Java. Unlike Java and C++, however, Oracle object types have a built-in
persistence mechanism, since a table can be defined to store an object type in the database.
Thus, Oracle object types can be directly manipulated via SQL.

The best way to define the syntax and features of an object type is with an example. The following
DDL statement creates an object type used to model an equity security such as a common stock:

CREATE TYPE equity AS OBJECT (

 issuer_id NUMBER,

 ticker VARCHAR2(6),

 outstanding_shares NUMBER,

 last_close_price NUMBER(9,2),

MEMBER PROCEDURE

 apply_split(split_ratio in VARCHAR2));

The equity object type has four data members and a single member procedure. The body of the
apply_split procedure is defined within a CREATE TYPE BODY statement. The following example
illustrates how the apply_split member procedure might be defined:

CREATE TYPE BODY equity AS

 MEMBER PROCEDURE apply_split(split_ratio in VARCHAR2) IS

 from_val NUMBER;

 to_val NUMBER;

 BEGIN

 /* parse the split ratio into its components */

 to_val := SUBSTR(split_ratio, 1, INSTR(split_ratio, ':') -- 1);

 from_val := SUBSTR(split_ratio, INSTR(split_ratio, ':') + 1);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 from_val := SUBSTR(split_ratio, INSTR(split_ratio, ':') + 1);

 /* apply the split ratio to the outstanding shares */

 SELF.outstanding_shares :=

 (SELF.outstanding_shares * to_val) / from_val;

 /* apply the split ratio to the last closing price */

 SELF.last_close_price :=

 (SELF.last_close_price * from_val) / to_val;

 END apply_split;

END;

In this example, the SELF keyword is used to identify the current instance of the equity object type.
Although it is not required, we recommend using SELF in your code so that it is clear that you are
referencing or modifying the current instance's data. We will explore how to call member functions
and procedures a bit later in the chapter.

Instances of type equity are created using the default constructor, which has the same name as
the object type and expects one parameter per attribute of the object type. As of Oracle9i, there is
no way to generate your own constructors for your object types. The following PL/SQL block
demonstrates how an instance of the equity object type can be created using the default
constructor:

DECLARE

 eq equity := NULL;

BEGIN

 eq := equity(198, 'ACMW', 1000000, 13.97);
END;

Object type constructors may also be called from within DML statements. The next example
queries the issuer table to find the issuer with the name 'ACME Wholesalers', and then uses the
retrieved issuer_id field to construct an instance of the equity type:

DECLARE

 eq equity := NULL;

BEGIN

 SELECT equity(i.issuer_id, 'ACMW', 1000000, 13.97)
 INTO eq

 FROM issuer i

 WHERE i.name = 'ACME Wholesalers';

END;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

END;

The next three sections briefly describe some of the ways you can incorporate object types into
your database and/or your database logic.

10.2.1.1 Object attributes

An object type may be used along with Oracle's built-in datatypes as an attribute of a table. The
following table definition includes the equity object type as an attribute of the common_stock table:

CREATE TABLE common_stock (

 security_id NUMBER NOT NULL,

 security equity NOT NULL,
 issue_date DATE NOT NULL,

 currency_cd VARCHAR2(5) NOT NULL);

When adding records to the table, you must utilize the object type constructor, as illustrated by the
following INSERT statement:

INSERT INTO common_stock (security_id, security, issue_date, currency_cd)

VALUES (1078, equity(198, 'ACMW', 1000000, 13.97), SYSDATE, 'USD');
In order to see the attributes of the equity object, you must provide an alias for the table and
reference the alias, the name of the attribute containing the object type, and the object type's
attribute. The next query retrieves the security_id, which is an attribute of the common_stock table,
and the ticker, which is an attribute of the equity object within the common_stock table:

SELECT c.security_id security_id,
 c.security.ticker ticker
FROM common_stock c;

SECURITY_ID TICKER

----------- ------

 1078 ACMW

10.2.1.2 Object tables

In addition to embedding object types in tables alongside other attributes, you can also build a
table specifically for holding instances of your object type. Known as an object table, these tables
are created by referencing the object type in the CREATE TABLE statement using the OF
keyword:

CREATE TABLE equities OF equity;
The equities table can be populated using the constructor for the equity object type, or it may be
populated from existing instances of the equity object type. For example, the next statement
populates the equities table using the security column of the common_stock table:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

INSERT INTO equities

SELECT c.security FROM common_stock c;

When querying the equities table, you can reference the object type's attributes directly, just as you
would an ordinary table:

SELECT issuer_id, ticker
FROM equities;

ISSUER_ID TICKER

--------- ------

 198 ACMW

If you want to retrieve the data in the equities table as an instance of an equity object rather than
as a set of attributes, you can use the VALUE function to return an object. The following PL/SQL
block retrieves the object having a ticker equal to 'ACMW' from the equities table:

DECLARE

 eq equity := NULL;

BEGIN

 SELECT VALUE(e)
 INTO eq

 FROM equities e

 WHERE ticker = 'ACMW';

END;

Thus, object tables represent the best of both worlds, in that you can treat them as either a
relational table or as a set of objects.

Note the use of a table alias with the VALUE function. Use of VALUE
requires the use of tables aliases.

Now that you have an object stored in the database, you can explore how to call the apply_split
member procedure defined earlier. Before you call the procedure, you need to find the target
object in the table and then tell the object to run its apply_split procedure. The following PL/SQL
block expands on the previous example, which finds the object in the equities table with a ticker of
'ACMW', by finding an equity object, invoking its apply_split method, and saving it back to the table
again:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DECLARE

 eq equity := NULL;

BEGIN

 SELECT VALUE(e)

 INTO eq

 FROM equities e

 WHERE ticker = 'ACMW';

 /* apply a 2:1 stock split */

 eq.apply_split('2:1');

 /* store modified object */

 UPDATE equities e

 SET e = eq

 WHERE ticker = 'ACMW';

END;

It is important to realize that the apply_split procedure is not operating directly on the data in the
equities table; rather, it is operating on a copy of the object held in memory. After the apply_split
procedure has executed against the copy, the UPDATE statement overwrites the object in the
equities table with the object referenced by the local variable eq, thus saving the modified version
of the object.

10.2.1.3 Object parameters

Regardless of whether you decide to store object types persistently in the database, you can use
them as vehicles for passing data within or between applications. Object types may be used as
input parameters and return types for PL/SQL stored procedures and functions. Additionally,
SELECT statements can instantiate and return object types even if none of the tables in the FROM
clause contain object types. Therefore, object types may be used to graft an object-oriented veneer
on top of a purely relational database design.

To illustrate how this might work, let's build an API for our example database that both accepts and
returns object types in order to find and build customer orders. First, identify the necessary object
types:

CREATE TYPE customer_obj AS OBJECT

 (cust_nbr NUMBER,

 name VARCHAR2(30));

CREATE TYPE employee_obj AS OBJECT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CREATE TYPE employee_obj AS OBJECT

 (emp_id NUMBER,

 name VARCHAR2(50));

CREATE TYPE order_obj AS OBJECT

 (order_nbr NUMBER,

 customer customer_obj,

 salesperson employee_obj,

 order_dt DATE,

 price NUMBER,

 status VARCHAR2(20));

CREATE TYPE line_item_obj AS OBJECT (

 part_nbr VARCHAR2(20),

 quantity NUMBER(8,2));

Using these object definitions, you can now define a PL/SQL package containing procedures and
functions that support the lifecycle of a customer order:

CREATE PACKAGE order_lifecycle AS

 FUNCTION create_order(v_cust_nbr IN NUMBER, v_emp_id IN NUMBER)

 RETURN order_obj;

 PROCEDURE cancel_order(v_order_nbr IN NUMBER);

 FUNCTION get_order(v_order_nbr IN NUMBER) RETURN order_obj;

 PROCEDURE add_line_item(v_order_nbr IN NUMBER,

 v_line_item IN line_item_obj);

END order_lifecycle;

CREATE PACKAGE BODY order_lifecycle AS

 FUNCTION create_order(v_cust_nbr IN NUMBER, v_emp_id IN NUMBER)

 RETURN order_obj IS

 ord_nbr NUMBER;

 BEGIN

 SELECT seq_order_nbr.NEXTVAL INTO ord_nbr FROM DUAL;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 SELECT seq_order_nbr.NEXTVAL INTO ord_nbr FROM DUAL;

 INSERT INTO cust_order (order_nbr, cust_nbr, sales_emp_id,

 order_dt, expected_ship_dt, status)

 SELECT ord_nbr, c.cust_nbr, e.emp_id,

 SYSDATE, SYSDATE + 7, 'NEW'

 FROM customer c, employee e

 WHERE c.cust_nbr = v_cust_nbr

 AND e.emp_id = v_emp_id;

 RETURN order_lifecycle.get_order(ord_nbr);

 END create_order;

 PROCEDURE cancel_order(v_order_nbr IN NUMBER) IS

 BEGIN

 UPDATE cust_order SET cancelled_dt = SYSDATE,

 expected_ship_dt = NULL, status = 'CANCELED'

 WHERE order_nbr = v_order_nbr;

 END cancel_order;

 FUNCTION get_order(v_order_nbr IN NUMBER) RETURN order_obj IS

 ord order_obj := NULL;

 BEGIN

 SELECT order_obj(co.order_nbr,

 customer_obj(c.cust_nbr, c.name),

 employee_obj(e.emp_id, e.fname || ' ' || e.lname),

 co.order_dt, co.sale_price, co.status)

 INTO ord

 FROM cust_order co, customer c, employee e

 WHERE co.order_nbr = v_order_nbr

 AND co.cust_nbr = c.cust_nbr

 AND co.sales_emp_id = e.emp_id;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 AND co.sales_emp_id = e.emp_id;

 RETURN ord;

 EXCEPTION

 WHEN NO_DATA_FOUND THEN

 RETURN ord;

 END get_order;

 PROCEDURE add_line_item(v_order_nbr IN NUMBER,

 V_line_item IN line_item_obj) IS

 BEGIN

 INSERT INTO line_item (order_nbr, part_nbr, qty)

 VALUES (v_order_nbr, v_line_item.part_nbr,

 v_line_item.quantity);

 END add_line_item;

END order_lifecycle;

From the API user's standpoint, objects are being stored and retrieved from the database, even
though the database behind the API is purely relational. If you are squeamish about using object
types in your database schema, this approach can be an attractive alternative to asking your Java
coders to directly manipulate relational data.

10.2.2 Collection Types

During a traditional relational design process, one-to-many relationships, such as a department
having many employees or an order consisting of many line items, are resolved as separate tables
where the child table holds a foreign key to the parent table. In the example schema, each row in
the line_item table knows which order it belongs to via a foreign key, but a row in the cust_order
table does not directly know anything about line items. Beginning with Oracle8, such relationships
can be internalized within the parent table using a collection. The two collection types available in
Oracle8 and above are variable arrays, which are used for ordered, bounded sets of data, and
nested tables, which are used for unordered, unbounded data sets.

10.2.2.1 Variable arrays

Variable arrays, also called varrays, are arrays stored within a table. Elements of a varray must be
of the same datatype, are bounded by a maximum size, and are accessed positionally. Varrays
may contain either a standard Oracle datatype, such as DATE or VARCHAR2, or a user-defined
object type. The following example illustrates the creation of a varray and its use as a column of a
table:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CREATE TYPE resupply_dates AS VARRAY(100) OF DATE;

CREATE TABLE part_c (

 part_nbr VARCHAR2(20) NOT NULL,

 name VARCHAR2(50) NOT NULL,

 supplier_id NUMBER(6),

 unit_cost NUMBER(8,2),

 inventory_qty NUMBER(6),

 restocks resupply_dates);
Along with descriptive information about the part, each row in the part_c table can hold up to 100
dates corresponding to when a shipment was received from the supplier.

10.2.2.2 Nested tables

Like varrays, nested table elements must be of the same datatype. Unlike varrays, however,
nested tables do not have a maximum size and are not accessed positionally. Rows in the nested
table can only have one column, which may be defined as a standard datatype or an object type. If
an object type is used, the effect is the same as if the nested table were allowed to have multiple
columns, since an object type may contain multiple attributes. The following example defines a
nested table type containing an object type:

CREATE TYPE line_item_obj AS OBJECT (

 part_nbr VARCHAR2(20),

 quantity NUMBER(8,2));

CREATE TYPE line_item_tbl AS TABLE OF line_item_obj;

Now that you have created a nested table type for line_item objects, you can choose to embed it
into our cust_order table, as in the following:

CREATE TABLE cust_order_c (

 order_nbr NUMBER(8) NOT NULL,

 cust_nbr NUMBER(6) NOT NULL,

 sales_emp_id NUMBER(6) NOT NULL,

 order_dt DATE NOT NULL,

 sale_price NUMBER(9,2),

 order_items line_item_tbl)
NESTED TABLE order_items STORE AS order_items_table;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NESTED TABLE order_items STORE AS order_items_table;

Using a nested table, you have absorbed an order's line items into the cust_order table, eliminating
the need for the line_item table. Later in the chapter, you'll see Oracle provides a way to detach
the order_items collection when it is advantageous.

10.2.3 Collection Creation

While the table definitions in the previous section look fairly straightforward, it isn't immediately
obvious how you might go about populating the resulting tables. Whenever you want to create an
instance of a collection, you need to use its constructor, which is a system-generated function with
the same name as the collection. The constructor accepts one or more elements; for varrays, the
number of elements cannot exceed the maximum size of the varray. For example, adding a row to
the part_c table, which contains a varray column, can be done as follows:

INSERT INTO part_c (part_nbr, name, supplier_id, unit_cost,

 inventory_qty, restocks)

VALUES ('GX5-2786-A2', 'Spacely Sprocket', 157, 75, 22,

 resupply_dates(TO_DATE('03-SEP-1999','DD-MON-YYYY'),
 TO_DATE('22-APR-2000','DD-MON-YYYY'),

 TO_DATE('21-MAR-2001','DD-MON-YYYY')));

In this example, the resupply_dates constructor is called with three parameters, one for each time
a shipment of parts was received. If you are using a collection-savvy query tool such as Oracle's
SQL*Plus, you can query the collection directly, and the tool will format the results:

SELECT part_nbr, restocks
FROM part_c
WHERE name = 'Spacely Sprocket';

PART_NBR RESTOCKS

--------------- --

GX5-2786-A2 RESUPPLY_DATES('03-SEP-99', '22-APR-00', '21-MAR-01')

You deal with nested tables in a manner similar to varrays. The next example demonstrates how
you would insert a new row into the cust_order_c table, which contains a nested table column:

INSERT INTO cust_order_c (order_nbr, cust_nbr, sales_emp_id,

 order_dt, sale_price, order_items)

VALUES (1000, 9568, 275,

 TO_DATE('21-MAR-2001','DD-MON-YYYY'), 15753,

 line_item_tbl(
 line_item_obj('A675-015', 25),

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 line_item_obj('A675-015', 25),
 line_item_obj('GX5-2786-A2', 1),

 line_item_obj('X378-9JT-2', 3)));

If you look carefully, you will notice that there are actually two different constructors called: one to
create the nested table line_item_tbl, and the other to create each of three instances of the
line_item_obj object type. Remember, the nested table is a table of line_item_obj objects. The end
result is a single row in cust_order_c containing a collection of three line items.

10.2.4 Collection Unnesting

Even if your developer community is comfortable manipulating collections within your database, it
is often unrealistic to expect the various tools and applications accessing your data (data load and
extraction utilities, reporting and ad-hoc query tools, etc.) to correctly handle them. Using a
technique called collection unnesting, you can present the contents of the collection as if it were
rows of an ordinary table. Using the TABLE expression, write a query which unnests the
order_items nested table from the cust_order_c table, as in:

SELECT co.order_nbr, co.cust_nbr, co.order_dt, li.part_nbr, li.quantity

FROM cust_order_c co,

 TABLE(co.order_items) li;

ORDER_NBR CUST_NBR ORDER_DT PART_NBR QUANTITY

---------- ---------- --------- -------------------- ----------

 1000 9568 21-MAR-01 A675-015 25

 1000 9568 21-MAR-01 GX5-2786-A2 1

 1000 9568 21-MAR-01 X378-9JT-2 3

Note that the two data sets do not need to be explicitly joined, since the collection members are
already associated with a row in the cust_order_c table.

In order to make this unnested data set available to your users, you can wrap the previous query in
a view:

CREATE VIEW cust_order_line_items AS

SELECT co.order_nbr, co.cust_nbr, co.order_dt, li.part_nbr, li.quantity

FROM cust_order_c co,

 TABLE(co.order_items) li;

Your users can now interact with the nested table via the view using standard SQL, as in the
following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT *

FROM cust_order_line_items

WHERE part_nbr like 'X%';

ORDER_NBR CUST_NBR ORDER_DT PART_NBR QUANTITY

---------- ---------- --------- -------------------- ----------

 1000 9568 21-MAR-01 X378-9JT-2 3

10.2.5 Querying Collections

Now that you know how to get data into a collection, you need a way to get it out. Oracle provides
a special TABLE expression just for this purpose.[8]

[8] Prior to release 8i, the TABLE expression was called THE. Only the TABLE expression is used here.

The TABLE expression can be used in the FROM, WHERE, and HAVING clauses of a query to
allow a nested table or varray column to be referenced as if it were a separate table. The following
query extracts the resupply dates (from the restocks column) that were added previously to the
part_c table:

SELECT *
FROM TABLE(SELECT restocks
 FROM part_c
 WHERE part_nbr = 'GX5-2786-A2');

COLUMN_VALU

03-SEP-1999

22-APR-2000

21-MAR-2001

To better illustrate the function of the TABLE expression, the next query retrieves the restocks
varray directly from the part_c table:

SELECT restocks
FROM part_c
WHERE part_nbr = 'GX5-2786-A2'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WHERE part_nbr = 'GX5-2786-A2'

RESTOCKS

--

RESUPPLY_DATES('03-SEP-99', '22-APR-00', '21-MAR-01')

As you can see, the result set consists of a single row containing an array of dates, whereas the
previous query unnests the varray so that each element is represented as a row with a single
column.

Since the varray contains a built-in datatype rather than an object type, it is necessary to give it a
name so that it may be explicitly referenced in SQL statements. Oracle assigns the varray's
contents a default alias of 'column_value' for this purpose. The next example makes use of the
column_value alias.

Let's say that you wanted to find all parts resupplied on a particular date. Using the TABLE
expression, you can perform a correlated subquery against the restocks varray to see if the
desired date is found in the set:

SELECT p1.part_nbr, p1.name
FROM part_c p1
WHERE TO_DATE('03-SEP-1999','DD-MON-YYYY') IN
 (SELECT column_value FROM TABLE(SELECT restocks FROM part_c p2
 WHERE p2.part_nbr = p1.part_nbr));

PART_NBR NAME

-------------------- -------------------------------

GX5-2786-A2 Spacely Sprocket

10.2.6 Manipulating Collections

If you want to modify a collection's contents, you have two choices: replace the entire collection, or
modify individual elements of the collection. If the collection is a varray, you will have no choice but
to replace the entire collection. This can be accomplished by retrieving the contents of the varray,
modifying the data, and then updating the table with the new varray. The following statement
changes the restock dates for part number 'GX5-2786-A2'. Note that the varray is entirely
recreated:

UPDATE part_c

SET restocks = resupply_dates(TO_DATE('03-SEP-1999','DD-MON-YYYY'),
 TO_DATE('25-APR-2000','DD-MON-YYYY'),

 TO_DATE('21-MAR-2001','DD-MON-YYYY'))

WHERE part_nbr = 'GX5-2786-A2';

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WHERE part_nbr = 'GX5-2786-A2';

If you are using nested tables, you can perform DML against individual elements of a collection.
For example, the following statement adds an additional line item to your nested cust_order_c
table for order number 1000:

INSERT INTO TABLE(SELECT order_items FROM cust_order_c

 WHERE order_nbr = 1000)

VALUES (line_item_obj('T25-ASM', 1));

To update data in the nested table, use the TABLE expression to create a data set consisting of
part numbers from order number 1000, and then modify the element with a specified part number:

UPDATE TABLE(SELECT order_items FROM cust_order_c

 WHERE order_nbr = 1000) oi

SET oi.quantity = 2

WHERE oi.part_nbr = 'T25-ASM';

Similarly, you can use the same data set to remove elements from the collection:

DELETE FROM TABLE(SELECT order_items FROM cust_order_c

 WHERE order_nbr = 1000) oi

WHERE oi.part_nbr = 'T25-ASM';

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 11. PL/SQL
There are many fine books on the market that cover the PL/SQL language in great detail.[1]

Because this is a book about Oracle SQL, the focus of this chapter is the use of PL/SQL within
SQL statements as well as the use of SQL within PL/SQL programs.

[1] For example, Oracle PL/SQL Programming by Steven Feuerstein (O'Reilly).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.1 What Is PL/SQL?

PL/SQL is a procedural programming language from Oracle Corporation that combines the
following elements:

Logical constructs such as IF-THEN-ELSE and WHILE

SQL DML statements, built-in functions, and operators

Transaction control statements such as COMMIT and ROLLBACK

Cursor control statements

Object and collection manipulation statements

Despite its humble origins as a scripting language in Version 6.0, PL/SQL became an integral part
of the Oracle server with release 7.0, which correlates to release 2.0 of PL/SQL. Because release
7.0 included the ability to compile and store PL/SQL programs within the server, Oracle began
using the language to provide server functionality and to assist in database installation and
configuration. When release 2.1 of PL/SQL was included with the 7.1 release of the server,
Oracle added a new feature of particular use to SQL programmers: the ability to call PL/SQL
stored functions from SQL statements (more on this later).

Along with the array of new features made available with each release of PL/SQL, Oracle began
supplying prefabricated sets of PL/SQL functionality to allow programmers to tackle more
sophisticated programming tasks and to help integrate with various Oracle product offerings.
These collections of stored procedures and functions, known as Oracle Supplied Packages, allow
you to (among other things):

Interface with and administer Oracle's Advanced Queueing option

Schedule database tasks for periodic execution

Manipulate Oracle large objects (LOBs)

Read from and write to external files

Interface with Oracle's Advanced Replication features

Issue dynamic SQL statements

Generate and parse XML files

Issue LDAP commands

The ever-expanding feature set of the PL/SQL language combined with the wide array of supplied
packages has yielded a powerful database programming environment. Whether you are
generating reports, writing data loading scripts, or writing custom applications, there's probably a
place for PL/SQL in your project.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.2 Procedures, Functions, and Packages

Although PL/SQL can still be used to write scripts, also known as anonymous blocks, the focus of
this chapter is PL/SQL routines stored in the Oracle server. PL/SQL routines stored in the
database may be one of two types: stored procedures or stored functions.[2]

[2] Database triggers are another type of stored PL/SQL, but they are outside the scope of this discussion.

Stored functions and procedures are essentially identical except for the following:

Stored functions have a return type, whereas procedures do not.

Because stored functions return a value, they can be used in expressions, whereas
procedures cannot.

Stored functions and procedures may be compiled individually, or they may be grouped together
into packages. Along with being a convenient way to group related functionality together,
packages are important for the following reasons:

Packages are loaded into memory as a whole, increasing the likelihood that a procedure or
function will be resident in memory when called.

Packages can include private elements, allowing logic to be hidden from view.

Placing functions and procedures inside packages eliminates the need to recompile all
functions and procedures that reference a newly-recompiled one.

Function and procedure names may be overloaded within packages, whereas standalone
functions and procedures cannot be overloaded.

Functions and procedures inside packages can be checked for side effects at compile time
rather than at execution time, which improves performance.

If these reasons haven't convinced you to place your stored functions and procedures inside
packages, here's a bit of advice we can give after working with PL/SQL since Version 2.0: you will
never be sorry that you bundled your PL/SQL code into packages, but you will eventually be sorry
if you don't.

Packages consist of two distinct parts: the package specification, which defines the signatures of
the package's public procedures and functions, and the package body, which contains the code
for the public procedures and functions and may also contain code for any private functions and
procedures not included in the package specification. To give you an idea of what a package
looks like, here is a simple example of a package specification:

CREATE OR REPLACE PACKAGE my_pkg AS

 PROCEDURE my_proc(arg1 IN VARCHAR2);

 FUNCTION my_func(arg1 IN NUMBER) RETURN VARCHAR2;

END my_pkg;

and its matching package body:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CREATE OR REPLACE PACKAGE BODY my_pkg AS

 FUNCTION my_private_func(arg1 IN NUMBER) RETURN VARCHAR2 IS

 return_val VARCHAR2(20);

 BEGIN

 SELECT col1 INTO return_val

 FROM tab2

 WHERE col2 = arg1;

 RETURN return_val;

 EXCEPTION

 WHEN NO_DATA_FOUND THEN

 RETURN `NOT FOUND';

 END my_private_func;

 PROCEDURE my_proc(arg1 IN VARCHAR2) IS

 BEGIN

 UPDATE tab1 SET col1 = col1 + 1

 WHERE col2 = arg1;

 END my_proc;

 FUNCTION my_func(arg1 IN NUMBER) RETURN VARCHAR2 IS

 BEGIN

 RETURN my_private_func(arg1);

 END my_func;

END my_pkg;

As you can see, the my_pkg package includes one public procedure and one public function. The
package specification includes the parameter names and types of the procedure and function,
along with the return type of the function, but does not include any implementation code. The
package body includes the implementation logic for the public function and procedure, and it also
includes a private function (my_private_func) that is only accessible from inside the package
body.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.3 Calling Stored Functions from Queries

As mentioned earlier, stored functions may be called from within SQL statements. Since stored
functions can in turn make calls to stored procedures, it can also be said that stored procedures
may be called, albeit indirectly, from within SQL statements. Since stored functions may be used
in expressions, they may be included wherever expressions are allowed in a query, including:

The SELECT clause

The WHERE clause

The GROUP BY and HAVING clauses

The ORDER BY clause

The START WITH clause (for hierarchical queries)

The FROM clause (indirectly by using inline views or TABLE statements)

One of the most common uses of stored functions is to isolate commonly-used functionality in
order to facilitate code reuse and simplify maintenance. For example, imagine that you are
working with a large team to build a custom N-tier application. In order to simplify integration
efforts between the various layers, it has been decided that all dates will be passed back and forth
as the number of milliseconds since January 1, 1970. You could include the conversion logic in all
of your queries, as in:

SELECT co.order_nbr, co.cust_nbr, co.sale_price,

 ROUND((co.order_dt - TO_DATE('01011970','MMDDYYYY')) * 86400 * 1000)
FROM cust_order co

WHERE ship_dt = TRUNC(SYSDATE);

However, this could become somewhat tedious and prove problematic should you wish to modify
your logic in the future. Instead, build a utility package that includes functions for translating
between Oracle's internal date format and the desired format:

CREATE OR REPLACE PACKAGE BODY pkg_util AS

 FUNCTION translate_date(dt IN DATE) RETURN NUMBER IS

 BEGIN

 RETURN ROUND((dt - TO_DATE('01011970','MMDDYYYY')) * 86400 * 1000);

 END translate_date;

 FUNCTION translate_date(dt IN NUMBER) RETURN DATE IS

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 BEGIN

 RETURN TO_DATE('01011970','MMDDYYYY') + (dt / (86400 * 1000));

 END translate_date;

END pkg_util;

Note that the package contains two identically-named functions; one requires a DATE parameter
and returns a NUMBER, while the second requires a NUMBER parameter and returns a DATE.
This strategy, called overloading , is only possible when your functions are contained in a
package.

Your development team can now use these functions whenever they need to convert date
formats, as in:

SELECT co.order_nbr, co.cust_nbr, co.sale_price,

 pkg_util.translate_date(co.order_dt) utc_order_dt
FROM cust_order co

WHERE co.ship_dt = TRUNC(SYSDATE);

Another common use of stored functions is to simplify and hide complex IF-THEN-ELSE logic
from your SQL statements. Suppose you have to generate a report detailing all customer orders
for the past month. You want to sort the orders using the ship_dt column if an order has been
shipped, the expected_ship_dt column if a ship date has been assigned and is not in the past, the
current day if the expected_ship_dt is in the past, or the order_dt column if the order hasn't been
assigned a ship date. You could utilize a CASE statement in the ORDER BY clause:

SELECT co.order_nbr, co.cust_nbr, co.sale_price

FROM cust_order co

WHERE co.order_dt > TRUNC(SYSDATE, 'MONTH')

 AND co.cancelled_dt IS NULL

ORDER BY

 CASE

 WHEN co.ship_dt IS NOT NULL THEN co.ship_dt

 WHEN co.expected_ship_dt IS NOT NULL

 AND co.expected_ship_dt > SYSDATE

 THEN co.expected_ship_dt

 WHEN co.expected_ship_dt IS NOT NULL

 THEN GREATEST(SYSDATE, co.expected_ship_dt)

 ELSE co.order_dt

 END;

However, there are two problems with this approach:

1. The resulting ORDER BY clause is fairly complex.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. You may wish to use this logic elsewhere, and duplicating it will create maintenance
problems.

Instead, let's add a stored function to our pkg_util package that returns the appropriate date for a
given order:

FUNCTION get_best_order_date(ord_dt IN DATE, exp_ship_dt IN DATE,

 ship_dt IN DATE) RETURN DATE IS

BEGIN

 IF ship_dt IS NOT NULL THEN

 RETURN ship_dt;

 ELSIF exp_ship_dt IS NOT NULL AND exp_ship_dt > SYSDATE THEN

 RETURN exp_ship_dt;

 ELSIF exp_ship_dt IS NOT NULL THEN

 RETURN SYSDATE;

 ELSE

 RETURN ord_dt;

 END IF;

END get_best_order_date;

You may then call this function from both the SELECT and ORDER BY clauses:

SELECT co.order_nbr, co.cust_nbr, co.sale_price,

 pkg_util.get_best_order_date(co.order_dt, co.expected_ship_dt,

 co.ship_dt) best_date

FROM cust_order co

WHERE co.order_dt > TRUNC(SYSDATE, 'MONTH')

 AND co.cancelled_dt IS NULL

ORDER BY pkg_util.get_best_order_date(co.order_dt, co.expected_ship_dt,

 co.ship_dt);

If you are bothered by the fact that the stored function is called twice per row with the same
parameters, you can always retrieve the data within an inline view and sort the results afterward,
as in:

SELECT orders.order_nbr, orders.cust_nbr,

 orders.sale_price, orders.best_date

FROM

 (SELECT co.order_nbr order_nbr, co.cust_nbr cust_nbr,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 (SELECT co.order_nbr order_nbr, co.cust_nbr cust_nbr,

 co.sale_price sale_price,

 pkg_util.get_best_order_date(co.order_dt, co.expected_ship_dt,

 co.ship_dt) best_date

 FROM cust_order co

 WHERE co.order_dt > TRUNC(SYSDATE, 'MONTH')

 AND co.cancelled_dt IS NULL) orders

ORDER BY orders.best_date;

11.3.1 Stored Functions and Views

Since a view is nothing more than a stored query and stored functions can be called from the
SELECT clause of a query, columns of a view can map to stored function calls. This is an
excellent way to shield your user community from complexity, and it has another interesting
benefit as well. Consider the following view definition, which includes calls to several different
stored functions:

CREATE OR REPLACE VIEW vw_example

 (col1, col2, col3, col4, col5, col6, col7, col8)

AS SELECT t1.col1,

 t1.col2,

 t2.col3,

 t2.col4,

 pkg_example.func1(t1.col1, t2.col3),

 pkg_example.func2(t1.col2, t2.col4),

 pkg_example.func3(t1.col1, t2.col3),

 pkg_example.func4(t1.col2, t2.col4)

FROM tab1 t1, tab2 t2

WHERE t1.col1 = t2.col3;

While the first four columns of the view map to columns of the tab1 and tab2 tables, values for the
remaining columns are generated by calling various functions in the pkg_example package. If one
of your users executes the following query:

SELECT col2, col4, col7

FROM vw_example

WHERE col1 = 1001;

only one stored function (pkg_example.func3) is actually executed even though the view contains
four columns that map to stored function calls. This is because when a query is executed against
a view, the Oracle server constructs a new query by combining the original query and the view
definition. In this case, the query that is actually executed looks as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT t1.col2,

 t2.col4,

 pkg_example.func3(t1.col1, t2.col3)

FROM tab1 t1, tab2 t2

WHERE t1.col1 = 1001 AND t1.col1 = t2.col3;

Therefore, your view could contain dozens of stored function calls, but only those that are
explicitly referenced by queries will be executed.[3]

[3] This is one reason why you should never use SELECT * when working with a view. Always explicitly name the
columns that you need so that the server doesn't waste time generating data that you never reference.

11.3.2 Avoiding Table Joins

Imagine that you have deployed a set of views for your users to generate reports and ad-hoc
queries against, and one of your users asks that a new column be added to one of the views. The
column is from a table not yet included in the FROM clause, and the column is only needed for a
single report issued once a month. You could add the table to the FROM clause, add the column
to the SELECT clause, and add the join conditions to the WHERE clause. However, every query
issued against the view would include the new table, even though most queries don't reference
the new column.

An alternative strategy is to write a stored function that queries the new table and returns the
desired column. The stored function can then be added to the SELECT clause without the need to
add the new table to the FROM clause. To illustrate, let's expand on the previous simple example.
If the desired column is col6 in the tab3 table, you could add a new function to the pkg_example
package such as:

FUNCTION func5(param1 IN NUMBER) RETURN VARCHAR2 IS

 ret_val VARCHAR2(20);

BEGIN

 SELECT col6 INTO ret_val

 FROM tab3

 WHERE col5 = param1;

 RETURN ret_val;

EXCEPTION

 WHEN NO_DATA_FOUND THEN

 RETURN null;

END func5;

You can now add a column to the view that maps to the new function, as in:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CREATE OR REPLACE VIEW vw_example

 (col1, col2, col3, col4, col5, col6, col7, col8, col9)

AS SELECT t1.col1,

 t1.col2,

 t2.col3,

 t2.col4,

 pkg_example.func1(t1.col1, t2.col3),

 pkg_example.func2(t1.col2, t2.col4),

 pkg_example.func3(t1.col1, t2.col3),

 pkg_example.func4(t1.col2, t2.col4),

 pkg_example.func5(t2.col3)
FROM tab1 t1, tab2 t2

WHERE t1.col1 = t2.col3;

Thus, you have provided your users access to column col6 of the tab3 table without adding the
tab3 table to the view's FROM clause. Users who don't reference the new col9 column of the view
will experience no changes to the performance of their queries against vw_example.

Even though the column was originally targeted for a single report, don't be surprised if other
users decide to include the new column in their queries. As the column utilization increases, it
may be advantageous to abandon the stored function strategy and include the tab3 table in the
FROM clause. Since a view was employed, however, you would be able to make this change
without the need for any of your users to modify their queries.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.4 Restrictions on Calling PL/SQL from SQL

While calling stored functions from SQL is a powerful feature, it is important to understand how
doing so might have unintended consequences. For example, imagine that one of your co-
workers has written a stored function that, given a part number, returns the number of times that
part is included in all open orders. The function is contained in a utilities package such as the
following:

CREATE OR REPLACE PACKAGE pkg_util AS

 FUNCTION get_part_order_qty(pno IN VARCHAR2) RETURN NUMBER;

END pkg_util;

You have been tasked with generating a weekly inventory report, and you would like to make use
of the function in one of your queries, as in:

SELECT p.part_nbr, p.name, s.name, p.inventory_qty,

 pkg_util.get_part_order_qty(p.part_nbr) open_order_qty
FROM part p, supplier s

WHERE p.supplier_id = s.supplier_id

ORDER BY s.name, p.part_nbr;

When you run the query, however, you are surprised to see the following error:

ORA-14551: cannot perform a DML operation inside a query

Upon checking the package body, you find that the get_part_order_qty function, along with
calculating the number of times a part is included in all open orders, generates a request to
restock the part by inserting a record into the part_order table if the calculated value exceeds the
number in inventory. Had Oracle allowed your statement to be executed, your query would have
resulted in changes to the database without your knowledge or consent.

11.4.1 Purity Level

In order to determine whether a stored function might have unintended consequences when
called from an SQL statement, Oracle assigns a purity level to the function that answers the
following four questions:

1. Does the function read from database tables?

2. Does the function reference any global package variables?

3. Does the function write to any database tables?

4. Does the function modify any global package variables?

For each negative response to these questions, a designation is added to the purity level, as
shown in Table 11-1.

Table 11-1. Purity level designations
Question # Designation Description

1 RNDS Reads no database state

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2 RNPS Reads no package state
3 WNDS Writes no database state
4 WNPS Writes no package state

Therefore, a function with a purity level of {WNPS, WNDS} is guaranteed not to write to the
database or modify package variables, but it may reference package variables and/or read from
database tables. In order for a function to be called from an SQL statement, its purity level must
at a minimum include the WNDS designation.

When using packaged functions in Oracle versions prior to release 8.1, it was required that the
purity level be specified prior to calling a function from an SQL statement. This is accomplished by
adding a pragma, or compiler directive, to the package specification. The
RESTRICT_REFERENCES pragma follows the function declaration in the package specification,
as demonstrated here:

CREATE OR REPLACE PACKAGE my_pkg AS

 FUNCTION my_func(arg1 IN NUMBER) RETURN VARCHAR2;

 PRAGMA RESTRICT_REFERENCES(my_func, RNPS, WNPS, WNDS);
END my_pkg;

When the package body is compiled, the code is checked against the designations listed in the
RESTRICT_REFERENCES pragma. If the code does not meet the purity level asserted in the
pragma, compilation fails with the following error:

PLS-00452: Subprogram 'MY_FUNC' violates its associated pragma

Therefore, you tell the compiler what your function will and won't do via the
RESTRICT_REFERENCES pragma, the compiler checks that you are telling it the truth, and you
are then free to call the function in any way supported by the function's purity level without further
intervention from Oracle. If, on the other hand, your function was not included in a package, the
Oracle engine would have no way to check the function's purity level prior to it being called, and
Oracle would be forced to check the function's logic for side effects every time it is called.

The ability to assert a purity level is another reason to use packages for all
your PL/SQL programming needs. Purity levels cannot be asserted for
standalone procedures and functions.

Beginning with Oracle8i, you are no longer required to specify the purity level of functions in the
package specification. If you choose not to, your functions will be checked each time they are
called from SQL statements to ensure that they meet the minimum requirements. Whenever
possible, however, you should include the pragma in your package specification so that the code
can be examined at compile time rather than each time it is executed.

11.4.2 Trust Me...

One of the reasons Oracle has relaxed the requirement that the purity level be asserted at
compile time is that PL/SQL can make calls to functions written in C and Java, which have no
mechanisms similar to PL/SQL's PRAGMA for asserting purity. In order to allow functions written
in different languages to call each other, Oracle introduced the TRUST keyword in Oracle8i.
Adding TRUST to the RESTRICT_REFERENCES pragma for a function causes Oracle to:

1. Treat the function as if it satisfies the pragma without actually checking the code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Treat any functions or procedures called from the function that have the TRUST keyword
as if they satisfy the pragma as well.

Thus, a stored function whose RESTRICT_REFERENCES pragma includes WNDS and TRUST
could make calls to other PL/SQL functions that do not specify RESTRICT_REFERENCES
pragmas and/or external C and Java functions and still be callable from SQL statements. In the
case of external C or Java calls, you will need to include the TRUST designation in your function's
RESTRICT_REFERENCES pragma if you want to call the function from SQL, since the C or Java
source code is not available to the server for inspection.

To use TRUST, simply append it to the end of the purity designation list, as in:

CREATE OR REPLACE PACKAGE my_pkg AS

 FUNCTION my_func(arg1 IN NUMBER) RETURN VARCHAR2;

 PRAGMA RESTRICT_REFERENCES(my_func, RNPS, WNPS, WNDS, TRUST);
END my_pkg;

While you may be tempted to always use TRUST when asserting the purity level of your functions,
this is a feature that should be used sparingly. Once you add the TRUST designation to your
pragma, future changes to your function or any downstream functions that violate WNDS will not
be caught at either compilation or runtime, causing your queries to have unintended
consequences.

11.4.3 Other Restrictions

In addition to the WNDS requirement, Oracle checks that each function invoked from an SQL
statement abides by the following rules:

1. The function can't end the current transaction using COMMIT or ROLLBACK.

2. The function can't alter a transaction by creating savepoints or rolling back to a previously-
defined savepoint.

3. The function can't issue an ALTER SYSTEM or ALTER SESSION statement.

4. All parameter types, including the return type, must be standard SQL types such as
VARCHAR2, NUMBER, and DATE. PL/SQL types such as BOOLEAN and RECORD,
collection types such as VARRAY, and object types are not allowed.

The first three restrictions are designed to protect against changes that could alter the operational
environment of the parent query. The fourth restriction might be relaxed in a future release of the
Oracle server, but it's a bit of a stretch to imagine how calling a function that returns a nested
table of objects would add value to a SELECT statement.[4]

[4] Unless it is wrapped in a TABLE expression in the FROM clause.

11.4.4 Consistency Issues

All of the restrictions detailed earlier must be met in order to call a stored function from a query.
There is one additional topic, however, that is not so much a restriction as a pitfall: queries
executed by stored functions will see the effects of transactions committed since the parent query
began execution, while the parent query will not. Whether this is due to a design flaw is open to
debate. Depending on the database environment and length of your queries, the impact could
range from nonexistent to severe.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For example, if you are running reports at 2 P.M. against a data-mart that is loaded between 2
and 4 A.M., your stored functions will see the same data as the parent query as long as the query
finishes execution before the next data load. On the other hand, a long-running query executed
against an OLTP database during peak activity might yield severe inconsistencies between the
results returned by the parent query and those returned by the stored functions. Therefore, you
should carefully consider your operating environment and the expected query runtimes before
including stored function calls in your SQL statements.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.5 Stored Functions in DML Statements

Stored functions may also be called from INSERT, UPDATE, and DELETE statements. While
most of the restrictions outlined earlier apply equally to stored functions called from DML
statements, there is one major difference: since the parent DML statement is changing the state
of the database, stored functions invoked from DML statements do not need to abide by the
WNDS restriction. However, such stored functions may not read or modify the same table as the
parent DML statement.

Like queries, DML statements may call stored functions where expressions are allowed, including:

The VALUES clause of an INSERT statement.

The SET clause of an UPDATE statement.

The WHERE clause of an INSERT, UPDATE, or DELETE statement.

Any subqueries called from a DML statement may also call stored functions as well under the
same set of restrictions as the parent DML statement.

Often, sets of complimentary stored functions are called from both queries and DML statements.
For example, we saw earlier how the pkg_util.translate_date function could be called from a query
to translate from the Oracle date format stored in the database to the format needed by a Java
client. Similarly, the overloaded pkg_util.translate_date function may be used within an update
statement to perform the reverse translation, as in:

UPDATE cust_order

SET expected_ship_dt = pkg_util.translate_date(:1)

WHERE order_nbr = :2;

where :1 and :2 are placeholders for the UTC timedate and order number passed in by the Java
client.

Stored functions may also be used in the WHERE clause in place of correlated subqueries, both
to simplify the DML statement and to facilitate code reuse. For example, suppose you have been
asked to push the expected ship date by five days for any order containing part number F34-
17802. You could issue an UPDATE statement against the cust_order table using a correlated
subquery, as in:

UPDATE cust_order co

SET co.expected_ship_dt = NVL(co.expected_ship_dt, SYSDATE) + 5

WHERE co.cancelled_dt IS NULL and co.ship_dt IS NULL

 AND EXISTS (SELECT 1 FROM line_item li

 WHERE li.order_nbr = co.order_nbr

 AND li.part_nbr = 'F34-17802');

After having written many subqueries against the line_item table, however, you feel it's time to
write a multipurpose function and add it to the pkg_util package:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FUNCTION get_part_count(ordno IN NUMBER,

 partno IN VARCHAR2 DEFAULT NULL, max_cnt IN NUMBER DEFAULT 9999)

 RETURN NUMBER IS

 tot_cnt NUMBER(5) := 0;

 li_part_nbr VARCHAR2(20);

 CURSOR cur_li(c_ordno IN NUMBER) IS

 SELECT part_nbr

 FROM line_item

 WHERE order_nbr = c_ordno;

BEGIN

 OPEN cur_li(ordno);

 WHILE tot_cnt < max_cnt LOOP

 FETCH cur_li INTO li_part_nbr;

 EXIT WHEN cur_li%NOTFOUND;

 IF partno IS NULL OR

 (partno IS NOT NULL AND partno = li_part_nbr) THEN

 tot_cnt := tot_cnt + 1;

 END IF;

 END LOOP;

 CLOSE cur_li;

 RETURN tot_cnt;

END get_part_count;

The function may be used for multiple purposes, including:

1. To count the number of line items in a given order.

2. To count the number of line items in a given order containing a given part.

3. To determine whether the given order has at least X occurrences of a given part.

The UPDATE statement may now use the function to locate open orders that have at least one
occurrence of part F34-17802:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

UPDATE cust_order co

SET co.expected_ship_dt = NVL(co.expected_ship_dt, SYSDATE) + 5

WHERE co.cancelled_dt IS NULL and co.ship_dt IS NULL

 AND 1 = pkg_util.get_part_count(co.order_nbr, `F34-17802', 1);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.6 The SQL Inside Your PL/SQL

Now that we've explored calling PL/SQL from SQL, let's turn the tables and explore the use of
SQL inside your PL/SQL code. SQL is great at manipulating large sets of data, but there are
situations where you need to work with data at the row level. PL/SQL, with its looping and cursor
control capabilities, allows the flexibility to work at the set level using SQL or at the row level using
cursors. However, many PL/SQL programmers forego the power of SQL and do everything at the
row level, even when it is unnecessary and time-consuming to do so.

As an analogy, imagine that you are working at a warehouse, and a large shipment of parts
arrives on the loading dock. Your job is to separate the shipment by part type and distribute the
pieces to different areas of the warehouse. To make your job easier, the warehouse owner has
procured the best forklift money can buy. There are two possible strategies to employ:

1. Pick up one box at a time, determine the type, and drive it to the appropriate destination.

2. Spend some time analyzing the situation, determine that every box on a pallet is of the
same type, and drive entire pallets to the appropriate destination.

While this analogy might be overly simplistic, it does serve to illustrate the difference between set
operations and row operations. Allowing the Oracle server to manipulate large sets in a single
operation can often yield a performance improvement of several orders of magnitude over
manipulating one row at a time, especially on systems with multiple CPUs.

When a procedural language is used for database access (whether it is PL/SQL, C with OCI calls,
or Java using JDBC), there is a tendency to employ strategy #1. Perhaps programmers are
accustomed to coding at a low level of granularity when using a procedural language and this
spills over into their data access logic. This situation is especially prevalent in systems that need
to process and load large amounts of data from external files, such as data warehouse load
utilities.

Imagine that you are charged with building an infrastructure to accept files from multiple OLTP
systems, perform various data cleaning operations, and aggregate the data into a data
warehouse. Using PL/SQL (or C, Java, C++, Cobol, etc.), you could build functionality that:

1. Opens a given file.

2. Reads a line, verifies/cleans the data, and updates the appropriate row of the appropriate
fact table in the data warehouse.

3. Repeats #2 until the file is exhausted.

4. Closes the file.

While this approach might work for small files, it is not uncommon for large warehouses to receive
feeds containing hundreds of thousands or millions of items. Even if your code is extremely
efficient, processing a million-line file would take several hours.

Here's an alternate strategy that employs the power of the Oracle server to make quick work of
large data feeds:

1. Create a staging table for each unique data feed file format.

2. At the start of the load process, truncate the staging tables.

3. Use SQL*Loader with the direct path option to quickly load the data file into the appropriate
staging table.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4. Update all rows of the staging table to clean, verify, and transform data, marking rows as
invalid if they fail verification. Perform the operation in parallel if possible.

5. Update the appropriate fact table using a subquery against the staging table. Again,
perform in parallel if possible.

In order for this strategy to succeed, you need to have adequate disk space and sufficiently large
rollback and temporary tablespaces. With adequate resources and properly constructed SQL
statements, however, this strategy can yield a 10X improvement over the previous strategy.

So what role should PL/SQL play in such a scenario? In this case, PL/SQL would be an excellent
vehicle for executing steps 4 and 5 of the previous list. Although the stored procedures might
contain only a single update statement, the SQL is likely to be complex and may contain optimizer
hints and other advanced features. Therefore, it would be advisable to isolate the SQL from the
rest of the application so that it may be independently monitored and tuned.

In general, when dealing with complex logic involving large data sets, it is advantageous to think
in terms of data sets rather than programming steps. In other words, ask yourself where your data
is, where it needs to move to, and what needs to happen to it during its journey instead of thinking
in terms of what needs to happen with each piece of data to satisfy the business requirements. If
you follow this strategy, you will find yourself writing substantial, efficient SQL statements that
employ PL/SQL where appropriate, rather than writing complex PL/SQL routines that employ SQL
when needed. In doing so, you will be providing the server with the opportunity to split large
workloads into multiple pieces that run in parallel, which can greatly improve performance.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 12. Advanced Group Operations
Group operations aggregate data over multiple rows. We discussed the GROUP BY clause and
basic group operations in Chapter 4. Decision support systems require more complex group
operations. Data warehousing applications involve aggregation over multiple dimensions of data.
To enable effective decision support, you need to summarize transaction data at various levels.
We discuss advanced group operations used by decision support systems in this chapter.

Oracle8i introduced several handy extensions to SQL's ability to summarize data. These include
the following:

A ROLLUP function to insert totals and subtotals into summarized results.

A CUBE function to generate subtotals for all possible combinations of grouped columns.

A GROUPING function to help correctly interpret results generated using CUBE and
ROLLUP.

In Oracle9i, yet another function was introduced to generate summary information at a specific
level: the GROUPING SETS function.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.1 ROLLUP

In Chapter 4, you saw how the GROUP BY clause, along with the aggregate functions, can be
used to produce summary results. For example, if you want to print the monthly total sales for
each region, you would probably execute the following query:

SELECT R.NAME REGION,
 TO_CHAR(TO_DATE(O.MONTH, 'MM'), 'Month') MONTH, SUM(O.TOT_SALES)
FROM ORDERS O, REGION R
WHERE R.REGION_ID = O.REGION_ID
GROUP BY R.NAME, O.MONTH;

REGION MONTH SUM(O.TOT_SALES)

-------------------- --------- ----------------

Mid-Atlantic January 610697

Mid-Atlantic February 428676

Mid-Atlantic March 637031

Mid-Atlantic April 541146

Mid-Atlantic May 592935

Mid-Atlantic June 501485

Mid-Atlantic July 606914

Mid-Atlantic August 460520

Mid-Atlantic September 392898

Mid-Atlantic October 510117

Mid-Atlantic November 532889

Mid-Atlantic December 492458

New England January 509215

New England February 615746

New England March 566483

New England April 597622

New England May 566285

New England June 503354

New England July 559334

New England August 547656

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

New England August 547656

New England September 575589

New England October 549648

New England November 461395

New England December 533314

SouthEast US January 379021

SouthEast US February 618423

SouthEast US March 655993

SouthEast US April 610017

SouthEast US May 661094

SouthEast US June 568572

SouthEast US July 556992

SouthEast US August 478765

SouthEast US September 635211

SouthEast US October 536841

SouthEast US November 553866

SouthEast US December 613700

36 rows selected.

As expected, this report prints the total sales for each region and month combination. However, in
a more complex application, you may also want to have the subtotal for each region over all
months, along with the total for all regions, or you may want the subtotal for each month over all
regions, along with the total for all months. In short, you may need to generate subtotals and
totals at more than one level.

12.1.1 Using UNION (The Old Way)

In data warehouse applications, you frequently need to generate summary information over
various dimensions, and subtotal and total across those dimensions. Generating and retrieving
this type of summary information is a core goal of almost all data warehouse applications.

By this time, you have realized that a simple GROUP BY query is not sufficient to generate the
subtotals and totals described in this section. In order to illustrate the complexity of the problem,
let's attempt to write a query that would return the following in a single output:

Sales for each month for every region

Subtotals over all months for every region

Total sales for all regions over all months

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

One way to generate multiple levels of summary (the only way prior to Oracle8i) is to write a
UNION query. For example, the following UNION query will give us the desired three levels of
subtotals:

SELECT R.NAME REGION,
 TO_CHAR(TO_DATE(O.MONTH, 'MM'), 'Month') MONTH, SUM(O.TOT_SALES)
FROM ORDERS O, REGION R
WHERE R.REGION_ID = O.REGION_ID
GROUP BY R.NAME, O.MONTH
UNION ALL
SELECT R.NAME REGION, NULL, SUM(O.TOT_SALES)
FROM ORDERS O, REGION R
WHERE R.REGION_ID = O.REGION_ID
GROUP BY R.NAME
UNION ALL
SELECT NULL, NULL, SUM(O.TOT_SALES)
FROM ORDERS O, REGION R
WHERE R.REGION_ID = O.REGION_ID;

REGION MONTH SUM(O.TOT_SALES)

-------------------- --------- ----------------

Mid-Atlantic January 610697

Mid-Atlantic February 428676

Mid-Atlantic March 637031

Mid-Atlantic April 541146

Mid-Atlantic May 592935

Mid-Atlantic June 501485

Mid-Atlantic July 606914

Mid-Atlantic August 460520

Mid-Atlantic September 392898

Mid-Atlantic October 510117

Mid-Atlantic November 532889

Mid-Atlantic December 492458

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

New England January 509215

New England February 615746

New England March 566483

New England April 597622

New England May 566285

New England June 503354

New England July 559334

New England August 547656

New England September 575589

New England October 549648

New England November 461395

New England December 533314

SouthEast US January 379021

SouthEast US February 618423

SouthEast US March 655993

SouthEast US April 610017

SouthEast US May 661094

SouthEast US June 568572

SouthEast US July 556992

SouthEast US August 478765

SouthEast US September 635211

SouthEast US October 536841

SouthEast US November 553866

SouthEast US December 613700

Mid-Atlantic 6307766

New England 6585641

SouthEast US 6868495

 19761902

40 rows selected.

This query produced 40 rows of output, 36 of which are the sales for each month for every region.
The last 4 rows are the subtotals and the total. The three rows with region names and NULL
values for the month are the subtotals for each region over all the months, and the last row with

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

values for the month are the subtotals for each region over all the months, and the last row with
NULL values for both the region and month is the total sales for all the regions over all the
months.

Now that you have the desired result, try to analyze the query a bit. You have a very small orders
table with only 720 rows in this example. You wanted to have summary information over just two
dimensions—region and month. You have 3 regions and 12 months. To get the desired summary
information from this table, you have to write a query consisting of 3 SELECT statements
combined together using UNION ALL. The EXPLAIN PLAN on this query is:

Query Plan

SELECT STATEMENT Cost = 15

 UNION-ALL

 SORT GROUP BY

 HASH JOIN

 TABLE ACCESS FULL REGION

 TABLE ACCESS FULL ORDERS

 SORT GROUP BY

 HASH JOIN

 TABLE ACCESS FULL REGION

 TABLE ACCESS FULL ORDERS

 SORT AGGREGATE

 NESTED LOOPS

 TABLE ACCESS FULL ORDERS

 INDEX UNIQUE SCAN PK7

14 rows selected.

As indicated by the EXPLAIN PLAN output, Oracle needs to perform the following operations to
get the results:

Three FULL TABLE scans on ORDERS

Two FULL TABLE scans on REGION

One INDEX scan on PK7 (Primary key of table REGION)

Two HASH JOINs

One NESTED LOOP JOIN

Two SORT GROUP BY operations

One SORT AGGREGATE operation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

One UNION ALL

In any practical application the orders table will consist of hundreds of thousands of rows, and
performing all these operations would be time-consuming. Even worse, if you have more
dimensions for which to prepare summary information than the two shown in this example, you
have to write an even more complex query. The bottom line is that such a query badly hurts
performance.

12.1.2 Using ROLLUP (The New Way)

Oracle8i introduced several new features for generating multiple levels of summary information
with one query. One such feature is a set of extensions to the GROUP BY clause. In Oracle8i, the
GROUP BY clause comes with two extensions: ROLLUP and CUBE. Oracle9i introduces another
extension: GROUPING SETS. We discuss ROLLUP in this section. CUBE and GROUPING SETS
are discussed later in this chapter.

ROLLUP is an extension to the GROUP BY clause, and therefore can only appear in a query with
a GROUP BY clause. The ROLLUP operation groups the selected rows based on the
expressions in the GROUP BY clause, and prepares a summary row for each group. The syntax
of ROLLUP is:

SELECT ...

FROM ...

GROUP BY ROLLUP (ordered list of grouping columns)

Using ROLLUP, you can generate the summary information discussed at the beginning of this
section in a much easier way than in our UNION ALL query. For example:

SELECT R.NAME REGION,
 TO_CHAR(TO_DATE(O.MONTH, 'MM'), 'Month') MONTH, SUM(O.TOT_SALES)
FROM ORDERS O, REGION R
WHERE R.REGION_ID = O.REGION_ID
GROUP BY ROLLUP (R.NAME, O.MONTH);

REGION MONTH SUM(O.TOT_SALES)

-------------------- --------- ----------------

Mid-Atlantic January 610697

Mid-Atlantic February 428676

Mid-Atlantic March 637031

Mid-Atlantic April 541146

Mid-Atlantic May 592935

Mid-Atlantic June 501485

Mid-Atlantic July 606914

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Mid-Atlantic August 460520

Mid-Atlantic September 392898

Mid-Atlantic October 510117

Mid-Atlantic November 532889

Mid-Atlantic December 492458

Mid-Atlantic 6307766

New England January 509215

New England February 615746

New England March 566483

New England April 597622

New England May 566285

New England June 503354

New England July 559334

New England August 547656

New England September 575589

New England October 549648

New England November 461395

New England December 533314

New England 6585641

SouthEast US January 379021

SouthEast US February 618423

SouthEast US March 655993

SouthEast US April 610017

SouthEast US May 661094

SouthEast US June 568572

SouthEast US July 556992

SouthEast US August 478765

SouthEast US September 635211

SouthEast US October 536841

SouthEast US November 553866

SouthEast US December 613700

SouthEast US 6868495

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 19761902

40 rows selected.

As you can see in this output, the ROLLUP operation produced subtotals across the specified
dimensions and a grand total. The argument to the ROLLUP operation is an ordered list of
grouping columns. Since the ROLLUP operation is used in conjunction with the GROUP BY
clause, it first generates aggregate values based on the GROUP BY operation on the ordered list
of columns. Then it generates higher level subtotals and finally a grand total. ROLLUP not only
simplifies the query, it results in more efficient execution. The explain plan for this ROLLUP query
is as follows:

Query Plan

SELECT STATEMENT Cost = 7

 SORT GROUP BY ROLLUP

 HASH JOIN

 TABLE ACCESS FULL REGION

 TABLE ACCESS FULL ORDERS

Rather than the multiple table scans, joins, and other operations required by the UNION version
of the query, the ROLLUP query needs just one full table scan on REGION, one full table scan on
ORDERS, and one join to generate the required output.

If you want to generate subtotals for each month instead of for each region, all you need to do is
change the order of columns in the ROLLUP operation, as in the following example:

SELECT R.NAME REGION,
TO_CHAR(TO_DATE(O.MONTH, 'MM'), 'Month') MONTH, SUM(O.TOT_SALES)
FROM ORDERS O, REGION R
WHERE R.REGION_ID = O.REGION_ID
GROUP BY ROLLUP (O.MONTH, R.NAME);

REGION MONTH SUM(O.TOT_SALES)

-------------------- --------- ----------------

Mid-Atlantic January 610697

New England January 509215

SouthEast US January 379021

 January 1498933

Mid-Atlantic February 428676

New England February 615746

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

New England February 615746

SouthEast US February 618423

 February 1662845

Mid-Atlantic March 637031

New England March 566483

SouthEast US March 655993

 March 1859507

Mid-Atlantic April 541146

New England April 597622

SouthEast US April 610017

 April 1748785

Mid-Atlantic May 592935

New England May 566285

SouthEast US May 661094

 May 1820314

Mid-Atlantic June 501485

New England June 503354

SouthEast US June 568572

 June 1573411

Mid-Atlantic July 606914

New England July 559334

SouthEast US July 556992

 July 1723240

Mid-Atlantic August 460520

New England August 547656

SouthEast US August 478765

 August 1486941

Mid-Atlantic September 392898

New England September 575589

SouthEast US September 635211

 September 1603698

Mid-Atlantic October 510117

New England October 549648

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

New England October 549648

SouthEast US October 536841

 October 1596606

Mid-Atlantic November 532889

New England November 461395

SouthEast US November 553866

 November 1548150

Mid-Atlantic December 492458

New England December 533314

SouthEast US December 613700

 December 1639472

 19761902

49 rows selected.

Adding dimensions does not result in additional complexity. The following query rolls up subtotals
for the region, the month, and the year for the first quarter:

SELECT O.YEAR, TO_CHAR(TO_DATE(O.MONTH, 'MM'), 'Month') MONTH,
R.NAME REGION, SUM(O.TOT_SALES)
FROM ORDERS O, REGION R
WHERE R.REGION_ID = O.REGION_ID
AND O.MONTH BETWEEN 1 AND 3
GROUP BY ROLLUP (O.YEAR, O.MONTH, R.NAME);

 YEAR MONTH REGION SUM(O.TOT_SALES)

---------- --------- -------------------- ----------------

 2000 January Mid-Atlantic 1221394

 2000 January New England 1018430

 2000 January SouthEast US 758042

 2000 January 2997866

 2000 February Mid-Atlantic 857352

 2000 February New England 1231492

 2000 February SouthEast US 1236846

 2000 February 3325690

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 2000 February 3325690

 2000 March Mid-Atlantic 1274062

 2000 March New England 1132966

 2000 March SouthEast US 1311986

 2000 March 3719014

 2000 10042570

 2001 January Mid-Atlantic 610697

 2001 January New England 509215

 2001 January SouthEast US 379021

 2001 January 1498933

 2001 February Mid-Atlantic 428676

 2001 February New England 615746

 2001 February SouthEast US 618423

 2001 February 1662845

 2001 March Mid-Atlantic 637031

 2001 March New England 566483

 2001 March SouthEast US 655993

 2001 March 1859507

 2001 5021285

 15063855

27 rows selected.

12.1.3 Generating Partial ROLLUPs

In a ROLLUP query with N dimensions, the grand total is considered the top level. The various
subtotal rows of N-1 dimensions constitute the next lower level, the subtotal rows of (N-2)
dimensions constitute yet another level down, and so on. In the most recent example, you have
three dimensions (year, month, and region), and the total row is the top level. The subtotal rows
for the year represent the next lower level, because these rows are subtotals across two
dimensions (month and region). The subtotal rows for the year and month combination are one
level lower, because these rows are subtotals across one dimension (region). The rest of the rows
are the result of the regular GROUP BY operation (without ROLLUP), and form the lowest level.

If you want to exclude some subtotals and totals from the ROLLUP output, you can only move top
to bottom, i.e., exclude the top-level total first, then progressively go down to the next level
subtotals, and so on. To do this, you have to take out one or more columns from the ROLLUP
operation, and put them in the GROUP BY clause. This is called a partial ROLLUP.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As an example of a partial ROLLUP, let's see what happens when you take out the first column,
which is O.YEAR, from the previous ROLLUP operation and move it into the GROUP BY clause.

SELECT O.YEAR, TO_CHAR(TO_DATE(O.MONTH, 'MM'), 'Month') MONTH,
R.NAME REGION, SUM(O.TOT_SALES)
FROM ORDERS O, REGION R
WHERE R.REGION_ID = O.REGION_ID
AND O.MONTH BETWEEN 1 AND 3
GROUP BY O.YEAR ROLLUP (O.MONTH, R.NAME);

 YEAR MONTH REGION SUM(O.TOT_SALES)

---------- --------- -------------------- ----------------

 2000 January Mid-Atlantic 1221394

 2000 January New England 1018430

 2000 January SouthEast US 758042

 2000 January 2997866

 2000 February Mid-Atlantic 857352

 2000 February New England 1231492

 2000 February SouthEast US 1236846

 2000 February 3325690

 2000 March Mid-Atlantic 1274062

 2000 March New England 1132966

 2000 March SouthEast US 1311986

 2000 March 3719014

 2000 10042570

 2001 January Mid-Atlantic 610697

 2001 January New England 509215

 2001 January SouthEast US 379021

 2001 January 1498933

 2001 February Mid-Atlantic 428676

 2001 February New England 615746

 2001 February SouthEast US 618423

 2001 February 1662845

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 2001 March Mid-Atlantic 637031

 2001 March New England 566483

 2001 March SouthEast US 655993

 2001 March 1859507

 2001 5021285

26 rows selected.

The query in this example excludes the grand-total row from the output. By taking out O.YEAR
from the ROLLUP operation, you are asking the database not to roll up summary information over
the years. Therefore, the database rolls up summary information on region and month. When you
proceed to remove O.MONTH from the ROLLUP operation, the query will not generate the roll up
summary for the month dimension, and only the region-level subtotals will be printed in the output.
For example:

SELECT O.YEAR, TO_CHAR(TO_DATE(O.MONTH, 'MM'), 'Month') MONTH,
R.NAME REGION, SUM(O.TOT_SALES)
FROM ORDERS O, REGION R
WHERE R.REGION_ID = O.REGION_ID
AND O.MONTH BETWEEN 1 AND 3
GROUP BY O.YEAR, O.MONTH ROLLUP (R.NAME);

 YEAR MONTH REGION SUM(O.TOT_SALES)

---------- --------- -------------------- ----------------

 2000 January Mid-Atlantic 1221394

 2000 January New England 1018430

 2000 January SouthEast US 758042

 2000 January 2997866

 2000 February Mid-Atlantic 857352

 2000 February New England 1231492

 2000 February SouthEast US 1236846

 2000 February 3325690

 2000 March Mid-Atlantic 1274062

 2000 March New England 1132966

 2000 March SouthEast US 1311986

 2000 March 3719014

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 2000 March 3719014

 2001 January Mid-Atlantic 610697

 2001 January New England 509215

 2001 January SouthEast US 379021

 2001 January 1498933

 2001 February Mid-Atlantic 428676

 2001 February New England 615746

 2001 February SouthEast US 618423

 2001 February 1662845

 2001 March Mid-Atlantic 637031

 2001 March New England 566483

 2001 March SouthEast US 655993

 2001 March 1859507

24 rows selected.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.2 CUBE

The CUBE extension of the GROUP BY clause takes aggregation one step further than ROLLUP. The
CUBE operation generates subtotals for all possible combinations of the grouping columns. Therefore,
output of a CUBE operation will contain all subtotals produced by an equivalent ROLLUP operation and
also some additional subtotals. For example, if you are performing ROLLUP on columns region and
month, you will get subtotals for all months for each region, and a grand total. However, if you perform
the corresponding CUBE, you will get:

The regular rows produced by the GROUP BY clause

Subtotals for all months on each region

A subtotal for all regions on each month

A grand total

Like ROLLUP, CUBE is an extension of the GROUP BY clause, and can appear in a query only along
with a GROUP BY clause. The syntax of CUBE is:

SELECT ...

FROM ...

GROUP BY CUBE (list of grouping columns)

For example, the following query returns subtotals for all combinations of regions and months in the
ORDER table:

SELECT R.NAME REGION, TO_CHAR(TO_DATE(O.MONTH, 'MM'), 'Month') MONTH,
SUM(O.TOT_SALES)
FROM ORDERS O, REGION R
WHERE R.REGION_ID = O.REGION_ID
GROUP BY CUBE(R.NAME, O.MONTH);

REGION MONTH SUM(O.TOT_SALES)

-------------------- --------- ----------------

Mid-Atlantic January 1832091

Mid-Atlantic February 1286028

Mid-Atlantic March 1911093

Mid-Atlantic April 1623438

Mid-Atlantic May 1778805

Mid-Atlantic June 1504455

Mid-Atlantic July 1820742

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Mid-Atlantic August 1381560

Mid-Atlantic September 1178694

Mid-Atlantic October 1530351

Mid-Atlantic November 1598667

Mid-Atlantic December 1477374

Mid-Atlantic 18923298

New England January 1527645

New England February 1847238

New England March 1699449

New England April 1792866

New England May 1698855

New England June 1510062

New England July 1678002

New England August 1642968

New England September 1726767

New England October 1648944

New England November 1384185

New England December 1599942

New England 19756923

SouthEast US January 1137063

SouthEast US February 1855269

SouthEast US March 1967979

SouthEast US April 1830051

SouthEast US May 1983282

SouthEast US June 1705716

SouthEast US July 1670976

SouthEast US August 1436295

SouthEast US September 1905633

SouthEast US October 1610523

SouthEast US November 1661598

SouthEast US December 1841100

SouthEast US 20605485

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 January 4496799

 February 4988535

 March 5578521

 April 5246355

 May 5460942

 June 4720233

 July 5169720

 August 4460823

 September 4811094

 October 4789818

 November 4644450

 December 4918416

 59285706

52 rows selected.

Note that the output contains not only the subtotals for each region, but also the subtotals for each
month. You can get the same result from a query without the CUBE operation. However, that query
would be lengthy and complex and, of course, very inefficient. Such a query would look as follows:

SELECT R.NAME REGION, TO_CHAR(TO_DATE(O.MONTH, 'MM'), 'Month') MONTH,
SUM(O.TOT_SALES)
FROM ORDERS O, REGION R
WHERE R.REGION_ID = O.REGION_ID
GROUP BY R.NAME, O.MONTH
UNION ALL
SELECT R.NAME REGION, NULL, SUM(O.TOT_SALES)
FROM ORDERS O, REGION R
WHERE R.REGION_ID = O.REGION_ID
GROUP BY R.NAME
UNION ALL
SELECT NULL, TO_CHAR(TO_DATE(O.MONTH, 'MM'), 'Month') MONTH, SUM(O.TOT_SALES)
FROM ORDERS O, REGION R
WHERE R.REGION_ID = O.REGION_ID

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WHERE R.REGION_ID = O.REGION_ID
GROUP BY O.MONTH
UNION ALL
SELECT NULL, NULL, SUM(O.TOT_SALES)
FROM ORDERS O, REGION R
WHERE R.REGION_ID = O.REGION_ID;

REGION MONTH SUM(O.TOT_SALES)

-------------------- --------- ----------------

Mid-Atlantic January 1832091

Mid-Atlantic February 1286028

Mid-Atlantic March 1911093

Mid-Atlantic April 1623438

Mid-Atlantic May 1778805

Mid-Atlantic June 1504455

Mid-Atlantic July 1820742

Mid-Atlantic August 1381560

Mid-Atlantic September 1178694

Mid-Atlantic October 1530351

Mid-Atlantic November 1598667

Mid-Atlantic December 1477374

New England January 1527645

New England February 1847238

New England March 1699449

New England April 1792866

New England May 1698855

New England June 1510062

New England July 1678002

New England August 1642968

New England September 1726767

New England October 1648944

New England November 1384185

New England December 1599942

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

New England December 1599942

SouthEast US January 1137063

SouthEast US February 1855269

SouthEast US March 1967979

SouthEast US April 1830051

SouthEast US May 1983282

SouthEast US June 1705716

SouthEast US July 1670976

SouthEast US August 1436295

SouthEast US September 1905633

SouthEast US October 1610523

SouthEast US November 1661598

SouthEast US December 1841100

Mid-Atlantic 18923298

New England 19756923

SouthEast US 20605485

 January 4496799

 February 4988535

 March 5578521

 April 5246355

 May 5460942

 June 4720233

 July 5169720

 August 4460823

 September 4811094

 October 4789818

 November 4644450

 December 4918416

 59285706

52 rows selected.

Since a CUBE produces aggregate results for all possible combinations of the grouping columns, the
output of a query using CUBE is independent of the order of columns in the CUBE operation, if

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

output of a query using CUBE is independent of the order of columns in the CUBE operation, if
everything else remains the same. This is not the case with ROLLUP. If everything else in the query
remains the same, ROLLUP(a,b) will produce a slightly different result set than ROLLUP(b,a). However,
the result set of CUBE(a,b) will be the same as that of CUBE(b,a). The following example illustrates this
by taking the example of the beginning of this section and reversing the order of columns in the CUBE
operation.

SELECT R.NAME REGION, TO_CHAR(TO_DATE(O.MONTH, 'MM'), 'Month') MONTH,
SUM(O.TOT_SALES)
FROM ORDERS O, REGION R
WHERE R.REGION_ID = O.REGION_ID
GROUP BY CUBE(O.MONTH, R.NAME);

REGION MONTH SUM(O.TOT_SALES)

-------------------- --------- ----------------

Mid-Atlantic January 1832091

New England January 1527645

SouthEast US January 1137063

 January 4496799

Mid-Atlantic February 1286028

New England February 1847238

SouthEast US February 1855269

 February 4988535

Mid-Atlantic March 1911093

New England March 1699449

SouthEast US March 1967979

 March 5578521

Mid-Atlantic April 1623438

New England April 1792866

SouthEast US April 1830051

 April 5246355

Mid-Atlantic May 1778805

New England May 1698855

SouthEast US May 1983282

 May 5460942

Mid-Atlantic June 1504455

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Mid-Atlantic June 1504455

New England June 1510062

SouthEast US June 1705716

 June 4720233

Mid-Atlantic July 1820742

New England July 1678002

SouthEast US July 1670976

 July 5169720

Mid-Atlantic August 1381560

New England August 1642968

SouthEast US August 1436295

 August 4460823

Mid-Atlantic September 1178694

New England September 1726767

SouthEast US September 1905633

 September 4811094

Mid-Atlantic October 1530351

New England October 1648944

SouthEast US October 1610523

 October 4789818

Mid-Atlantic November 1598667

New England November 1384185

SouthEast US November 1661598

 November 4644450

Mid-Atlantic December 1477374

New England December 1599942

SouthEast US December 1841100

 December 4918416

Mid-Atlantic 18923298

New England 19756923

SouthEast US 20605485

 59285706

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

52 rows selected.

This query produced the same results as the earlier query; only the order of the rows is different.

To exclude some subtotals from the output, you can do a partial CUBE, (similar to a partial ROLLUP) by
taking out column(s) from the CUBE operation and putting them into the GROUP BY clause. Here's an
example:

SELECT R.NAME REGION, TO_CHAR(TO_DATE(O.MONTH, 'MM'), 'Month') MONTH,
SUM(O.TOT_SALES)
FROM ORDERS O, REGION R
WHERE R.REGION_ID = O.REGION_ID
GROUP BY R.NAME CUBE(O.MONTH);

REGION MONTH SUM(O.TOT_SALES)

-------------------- --------- ----------------

Mid-Atlantic January 1832091

Mid-Atlantic February 1286028

Mid-Atlantic March 1911093

Mid-Atlantic April 1623438

Mid-Atlantic May 1778805

Mid-Atlantic June 1504455

Mid-Atlantic July 1820742

Mid-Atlantic August 1381560

Mid-Atlantic September 1178694

Mid-Atlantic October 1530351

Mid-Atlantic November 1598667

Mid-Atlantic December 1477374

Mid-Atlantic 18923298

New England January 1527645

New England February 1847238

New England March 1699449

New England April 1792866

New England May 1698855

New England June 1510062

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

New England July 1678002

New England August 1642968

New England September 1726767

New England October 1648944

New England November 1384185

New England December 1599942

New England 19756923

SouthEast US January 1137063

SouthEast US February 1855269

SouthEast US March 1967979

SouthEast US April 1830051

SouthEast US May 1983282

SouthEast US June 1705716

SouthEast US July 1670976

SouthEast US August 1436295

SouthEast US September 1905633

SouthEast US October 1610523

SouthEast US November 1661598

SouthEast US December 1841100

SouthEast US 20605485

39 rows selected.

If you compare the results of the partial CUBE operation with that of the full CUBE operation, discussed
at the beginning of this section, you will notice that the partial CUBE has excluded the subtotals for each
month and the grand total from the output. If you want to retain the subtotals for each month, but want to
exclude the subtotals for each region, you can swap the position of R.NAME and O.MONTH in the
GROUP BY...CUBE clause, as shown here:

SELECT R.NAME REGION, TO_CHAR(TO_DATE(O.MONTH, 'MM'), 'Month') MONTH,

SUM(O.TOT_SALES)

FROM ORDERS O, REGION R

WHERE R.REGION_ID = O.REGION_ID

GROUP BY O.MONTH CUBE(R.NAME);
One interesting thing to note is that if you have one column in the CUBE operation, it produces the same
result as the ROLLUP operation. Therefore, the following two queries produce identical results:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT R.NAME REGION, TO_CHAR(TO_DATE(O.MONTH, 'MM'), 'Month') MONTH,

SUM(O.TOT_SALES)

FROM ORDERS O, REGION R

WHERE R.REGION_ID = O.REGION_ID

GROUP BY R.NAME CUBE(O.MONTH);

SELECT R.NAME REGION, TO_CHAR(TO_DATE(O.MONTH, 'MM'), 'Month') MONTH,

SUM(O.TOT_SALES)

FROM ORDERS O, REGION R

WHERE R.REGION_ID = O.REGION_ID

GROUP BY R.NAME ROLLUP(O.MONTH);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.3 The GROUPING Function

ROLLUP and CUBE produce extra rows in the output that contain subtotals and totals. These rows
contain NULL values for one or more columns. An output containing NULLs and indicating subtotals
doesn't make sense to an ordinary person who is unware of the behavior of ROLLUP and CUBE
operations. Does your VP care about whether you used ROLLUP or CUBE or any other operation to
get him the monthly total sales for each region? Obviously, he doesn't. That's exactly why you are
reading this page and not your VP.

If you know your way around the NVL function, you would probably attempt to translate each NULL
value from CUBE and ROLLUP to some descriptive value, as in the following example:

SELECT NVL(TO_CHAR(O.YEAR), 'All Years') YEAR,
NVL(TO_CHAR(TO_DATE(O.MONTH, 'MM'), 'Month'), 'First Quarter') MONTH,
NVL(R.NAME, 'All Regions') REGION, SUM(O.TOT_SALES)
FROM ORDERS O, REGION R
WHERE R.REGION_ID = O.REGION_ID
AND O.MONTH BETWEEN 1 AND 3
GROUP BY ROLLUP (O.YEAR, O.MONTH, R.NAME);

YEAR MONTH REGION SUM(O.TOT_SALES)

---------------- ------------- -------------------- ----------------

2000 January Mid-Atlantic 1221394

2000 January New England 1018430

2000 January SouthEast US 758042

2000 January All Regions 2997866

2000 February Mid-Atlantic 857352

2000 February New England 1231492

2000 February SouthEast US 1236846

2000 February All Regions 3325690

2000 March Mid-Atlantic 1274062

2000 March New England 1132966

2000 March SouthEast US 1311986

2000 March All Regions 3719014

2000 First Quarter All Regions 10042570

2001 January Mid-Atlantic 610697

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2001 January New England 509215

2001 January SouthEast US 379021

2001 January All Regions 1498933

2001 February Mid-Atlantic 428676

2001 February New England 615746

2001 February SouthEast US 618423

2001 February All Regions 1662845

2001 March Mid-Atlantic 637031

2001 March New England 566483

2001 March SouthEast US 655993

2001 March All Regions 1859507

2001 First Quarter All Regions 5021285

All Years First Quarter All Regions 15063855

27 rows selected.

The NVL function works pretty well for this example. However, if the data itself contains some NULL
values, it becomes impossible to distinguish whether a NULL value represents unavailable data or a
subtotal row. The NVL function will cause a problem in such a case. The following data can be used
to illustrate this problem:

SELECT * FROM CUST_ORDER;

 ORDER_NBR CUST_NBR SALES_EMP_ID SALE_PRICE ORDER_DT EXPECTED_ STATUS

---------- -------- ------------ ---------- --------- --------- ----------

 1001 231 7354 99 22-JUL-01 23-JUL-01 DELIVERED

 1000 201 7354 19-JUL-01 24-JUL-01

 1002 255 7368 12-JUL-01 25-JUL-01

 1003 264 7368 56 16-JUL-01 26-JUL-01 DELIVERED

 1004 244 7368 34 18-JUL-01 27-JUL-01 PENDING

 1005 288 7368 99 22-JUL-01 24-JUL-01 DELIVERED

 1006 231 7354 22-JUL-01 28-JUL-01

 1007 255 7368 25 20-JUL-01 22-JUL-01 PENDING

 1008 255 7368 25 21-JUL-01 23-JUL-01 PENDING

 1009 231 7354 56 18-JUL-01 22-JUL-01 DELIVERED

 1012 231 7354 99 22-JUL-01 23-JUL-01 DELIVERED

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 1012 231 7354 99 22-JUL-01 23-JUL-01 DELIVERED

 1011 201 7354 19-JUL-01 24-JUL-01

 1015 255 7368 12-JUL-01 25-JUL-01

 1017 264 7368 56 16-JUL-01 26-JUL-01 DELIVERED

 1019 244 7368 34 18-JUL-01 27-JUL-01 PENDING

 1021 288 7368 99 22-JUL-01 24-JUL-01 DELIVERED

 1023 231 7354 22-JUL-01 28-JUL-01

 1025 255 7368 25 20-JUL-01 22-JUL-01 PENDING

 1027 255 7368 25 21-JUL-01 23-JUL-01 PENDING

 1029 231 7354 56 18-JUL-01 22-JUL-01 DELIVERED

20 rows selected.

Note that the column STATUS contains NULL values. If you want the summary status of orders for
each customer, and you executed the following query (note the application of NVL to the STATUS
column), the output might surprise you.

SELECT NVL(TO_CHAR(CUST_NBR), 'All Customers') CUSTOMER,
NVL(STATUS, 'All Status') STATUS,
COUNT(*) FROM CUST_ORDER
GROUP BY CUBE(CUST_NBR, STATUS);

CUSTOMER STATUS COUNT(*)

------------------- -------------------- ----------

201 All Status 2

201 All Status 2

231 DELIVERED 4

231 All Status 2

231 All Status 6

244 PENDING 2

244 All Status 2

255 PENDING 4

255 All Status 2

255 All Status 6

264 DELIVERED 2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

264 All Status 2

288 DELIVERED 2

288 All Status 2

All Customers DELIVERED 8

All Customers PENDING 6

All Customers All Status 6

All Customers All Status 20

18 rows selected.

This output doesn't make any sense. You stand a good chance of losing your job if you send this
output to your VP. The problem is that any time the STATUS column legitimately contains a NULL
value, the NVL function returns the string "All Status". Obviously, NVL isn't useful in this situation.
However, don't worry—Oracle8i provides a solution to this problem through the GROUPING function.

The GROUPING function is used only in conjunction with either a ROLLUP or a CUBE operation. The
GROUPING function takes a grouping column name as input and returns either 1 or 0. A 1 is
returned if the value is NULL as the result of aggregation (ROLLUP or CUBE); otherwise, 0 is
returned. The general syntax of the GROUPING function is:

SELECT ... [GROUPING(grouping_column_name)] ...

FROM ...

GROUP BY ... {ROLLUP | CUBE} (grouping_column_name)

The following example illustrates the use of GROUPING function in a simple way by returning the
GROUPING function results for the three columns passed to ROLLUP:

SELECT O.YEAR, TO_CHAR(TO_DATE(O.MONTH, 'MM'), 'Month') MONTH,
R.NAME REGION, SUM(O.TOT_SALES),
GROUPING(O.YEAR) Y, GROUPING(O.MONTH) M, GROUPING(R.NAME) R
FROM ORDERS O, REGION R
WHERE R.REGION_ID = O.REGION_ID
AND O.MONTH BETWEEN 1 AND 3
GROUP BY ROLLUP (O.YEAR, O.MONTH, R.NAME);

 YEAR MONTH REGION SUM(O.TOT_SALES) Y M R

---------- --------- -------------------- ---------------- ---- ---- ----

 2000 January Mid-Atlantic 1221394 0 0 0

 2000 January New England 1018430 0 0 0

 2000 January SouthEast US 758042 0 0 0

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 2000 January SouthEast US 758042 0 0 0

 2000 January 2997866 0 0 1

 2000 February Mid-Atlantic 857352 0 0 0

 2000 February New England 1231492 0 0 0

 2000 February SouthEast US 1236846 0 0 0

 2000 February 3325690 0 0 1

 2000 March Mid-Atlantic 1274062 0 0 0

 2000 March New England 1132966 0 0 0

 2000 March SouthEast US 1311986 0 0 0

 2000 March 3719014 0 0 1

 2000 10042570 0 1 1

 2001 January Mid-Atlantic 610697 0 0 0

 2001 January New England 509215 0 0 0

 2001 January SouthEast US 379021 0 0 0

 2001 January 1498933 0 0 1

 2001 February Mid-Atlantic 428676 0 0 0

 2001 February New England 615746 0 0 0

 2001 February SouthEast US 618423 0 0 0

 2001 February 1662845 0 0 1

 2001 March Mid-Atlantic 637031 0 0 0

 2001 March New England 566483 0 0 0

 2001 March SouthEast US 655993 0 0 0

 2001 March 1859507 0 0 1

 2001 5021285 0 1 1

 15063855 1 1 1

27 rows selected.

Look at the Y, M, and R columns in this output. Row 4 is a region-level subtotal for a particular month
and year, and therefore, the GROUPING function results in a value of 1 for the region and a value 0
for the month and year. Row 26 (the second to last) is a subtotal for all regions and months for a
particular year, and therefore, the GROUPING function prints 1 for the month and the region and 0 for
the year. Row 27 (the grand total) contains 1 for all the GROUPING columns.

With a combination of GROUPING and DECODE, you can produce more readable query output
when using CUBE and ROLLUP, as in the following example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT DECODE(GROUPING(O.YEAR), 1, 'All Years', O.YEAR) Year,
DECODE(GROUPING(O.MONTH), 1, 'All Months',
TO_CHAR(TO_DATE(O.MONTH, 'MM'), 'Month')) Month,
DECODE(GROUPING(R.NAME), 1, 'All Regions', R.NAME) Region, SUM(O.TOT_SALES)
FROM ORDERS O, REGION R
WHERE R.REGION_ID = O.REGION_ID
AND O.MONTH BETWEEN 1 AND 3
GROUP BY ROLLUP (O.YEAR, O.MONTH, R.NAME);

YEAR MONTH REGION SUM(O.TOT_SALES)

------------ ---------- -------------------- ----------------

2000 January Mid-Atlantic 1221394

2000 January New England 1018430

2000 January SouthEast US 758042

2000 January All Regions 2997866

2000 February Mid-Atlantic 857352

2000 February New England 1231492

2000 February SouthEast US 1236846

2000 February All Regions 3325690

2000 March Mid-Atlantic 1274062

2000 March New England 1132966

2000 March SouthEast US 1311986

2000 March All Regions 3719014

2000 All Months All Regions 10042570

2001 January Mid-Atlantic 610697

2001 January New England 509215

2001 January SouthEast US 379021

2001 January All Regions 1498933

2001 February Mid-Atlantic 428676

2001 February New England 615746

2001 February SouthEast US 618423

2001 February All Regions 1662845

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2001 February All Regions 1662845

2001 March Mid-Atlantic 637031

2001 March New England 566483

2001 March SouthEast US 655993

2001 March All Regions 1859507

2001 All Months All Regions 5021285

All Years All Months All Regions 15063855

27 rows selected.

By using DECODE with GROUPING, you produced the same result that was produced by using NVL
at the beginning of the section. However, the risk of mistreating a NULL data value as a summary row
is eliminated by using GROUPING and DECODE. You will notice this in the following example, in
which NULL data values in subtotal and total rows are treated differently by the GROUPING function
than the NULL values in the summary rows.

SELECT DECODE(GROUPING(CUST_NBR), 1, 'All Customers', CUST_NBR) CUSTOMER,
DECODE(GROUPING(STATUS), 1, 'All Status', STATUS) STATUS, COUNT(*)
FROM CUST_ORDER
GROUP BY CUBE(CUST_NBR, STATUS);

CUSTOMER STATUS COUNT(*)

-- -------------------- ----------

201 2

201 All Status 2

231 DELIVERED 4

231 2

231 All Status 6

244 PENDING 2

244 All Status 2

255 PENDING 4

255 2

255 All Status 6

264 DELIVERED 2

264 All Status 2

288 DELIVERED 2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

288 All Status 2

All Customers DELIVERED 8

All Customers PENDING 6

All Customers 6

All Customers All Status 20

18 rows selected.

Oracle9i introduced two new functions that are related to GROUPING:
GROUPING_ID and GROUP_ID, discussed later in Section 12.5. They are
worth knowing about if you are using Oracle9i.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.4 GROUPING SETS

Earlier in this chapter, you saw how to generate summary information using ROLLUP and CUBE.
However, the output of ROLLUP and CUBE include the rows produced by the regular GROUP BY
operation along with the summary rows. Oracle9i introduces another extension to the GROUP BY
clause called GROUPING SETS that you can use to generate summary information at the level
you choose without including all the rows produced by the regular GROUP BY operation.

Like ROLLUP and CUBE, GROUPING SETS is also an extension of the GROUP BY clause, and
can appear in a query only along with a GROUP BY clause. The syntax of GROUPING SETS is:

SELECT ...

FROM ...

GROUP BY GROUPING SETS (list of grouping columns)

Let's take an example to understand the GROUPING SETS operation further.

SELECT O.YEAR, TO_CHAR(TO_DATE(O.MONTH, 'MM'), 'Month') MONTH,
R.NAME REGION, SUM(O.TOT_SALES)
FROM ORDERS O, REGION R
WHERE R.REGION_ID = O.REGION_ID
AND O.MONTH BETWEEN 1 AND 3
GROUP BY GROUPING SETS (O.YEAR, O.MONTH, R.NAME);

 YEAR MONTH REGION SUM(O.TOT_SALES)

---------- --------- -------------------- ----------------

 2000 10042570

 2001 5021285

 January 4496799

 February 4988535

 March 5578521

 Mid-Atlantic 5029212

 New England 5074332

 SouthEast US 4960311

8 rows selected.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8 rows selected.

Note that the output contains only the subtotals at the region, month, and year levels, but that
none of the normal, more detailed, GROUP BY data is included. The order of columns in the
GROUPING SETS operation is not critical. The operation produces the same output regardless of
the order of the columns, except that the sequence of the rows in the output will be as per the
sequence of the columns in the GROUPING operation. For example, if you alter the order of the
columns from (O.YEAR, O.MONTH, R.NAME) to (O.MONTH, R.NAME, O.YEAR), the summary
rows for the month will be displayed first, followed by the summary rows for the region, and then
the summary rows for the year. For example:

SELECT O.YEAR, TO_CHAR(TO_DATE(O.MONTH, 'MM'), 'Month') MONTH,
R.NAME REGION, SUM(O.TOT_SALES)
FROM ORDERS O, REGION R
WHERE R.REGION_ID = O.REGION_ID
AND O.MONTH BETWEEN 1 AND 3
GROUP BY GROUPING SETS (O.MONTH, R.NAME, O.YEAR);

 YEAR MONTH REGION SUM(O.TOT_SALES)

---------- --------- -------------------- ----------------

 January 4496799

 February 4988535

 March 5578521

 Mid-Atlantic 5029212

 New England 5074332

 SouthEast US 4960311

 2000 10042570

 2001 5021285

8 rows selected.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.5 Oracle9i Grouping Features

The grouping examples you have seen so far represent simple ways of aggregating data using the
extensions of the GROUP BY clause. Oracle9i provides ways to aggregate data for more complex
requirements. The next sections discuss these features in detail:

Repeating column names in the GROUP BY clause

Grouping on composite columns

Concatenated groupings

The GROUPING_ID and GROUP_ID functions

12.5.1 Repeating Column Names in the GROUP BY Clause

In Oracle8i, repeating column names are not allowed in a GROUP BY clause. If the GROUP BY clause
contains an extension (i.e., ROLLUP or CUBE), you cannot use the same column inside the extension as
well as outside the extension. The following SQL will be invalid in Oracle8i and throw an error:

SELECT O.YEAR, TO_CHAR(TO_DATE(O.MONTH, 'MM'), 'Month') MONTH,
R.NAME REGION, SUM(O.TOT_SALES) Total
FROM ORDERS O, REGION R
WHERE R.REGION_ID = O.REGION_ID
AND O.MONTH BETWEEN 1 AND 3
GROUP BY O.YEAR, ROLLUP (O.YEAR, O.MONTH, R.NAME);
GROUP BY O.YEAR, ROLLUP (O.YEAR, O.MONTH, R.NAME)

 *

ERROR at line 6:

ORA-30490: Ambiguous expression in GROUP BY ROLLUP or CUBE list

However, the same query works in Oracle9i:

SELECT O.YEAR, TO_CHAR(TO_DATE(O.MONTH, 'MM'), 'Month') MONTH,
R.NAME REGION, SUM(O.TOT_SALES) TOTAL
FROM ORDERS O, REGION R
WHERE R.REGION_ID = O.REGION_ID
AND O.MONTH BETWEEN 1 AND 3
GROUP BY O.YEAR, ROLLUP (O.YEAR, O.MONTH, R.NAME);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GROUP BY O.YEAR, ROLLUP (O.YEAR, O.MONTH, R.NAME);

 YEAR MONTH REGION TOTAL

---------- --------- -------------------- ----------

 2000 January Mid-Atlantic 1221394

 2000 January New England 1018430

 2000 January SouthEast US 758042

 2000 January 2997866

 2000 February Mid-Atlantic 857352

 2000 February New England 1231492

 2000 February SouthEast US 1236846

 2000 February 3325690

 2000 March Mid-Atlantic 1274062

 2000 March New England 1132966

 2000 March SouthEast US 1311986

 2000 March 3719014

 2001 January Mid-Atlantic 610697

 2001 January New England 509215

 2001 January SouthEast US 379021

 2001 January 1498933

 2001 February Mid-Atlantic 428676

 2001 February New England 615746

 2001 February SouthEast US 618423

 2001 February 1662845

 2001 March Mid-Atlantic 637031

 2001 March New England 566483

 2001 March SouthEast US 655993

 2001 March 1859507

 2000 10042570

 2001 5021285

 2000 10042570

 2001 5021285

28 rows selected.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

28 rows selected.

Repetition of O.YEAR in the GROUP BY clause as well as in the ROLLUP operation repeats the
summary rows of each year in the output and suppresses the grand total. Repetition of column names in
a GROUP BY clause isn't very useful, but it's worth knowing that such constructs are allowed in Oracle9

12.5.2 Grouping on Composite Columns

Oracle8i supports grouping on individual columns only. Oracle9i extends the grouping operations to
include grouping on composite columns. A composite column is a collection of two or more columns, but
their values are treated as one for the grouping computation. Oracle8i allows group operations of the form
ROLLUP (a,b,c), whereas, Oracle9i allows group operations of the form ROLLUP (a,(b,c)) as well. In this
case, (b,c) is treated as one column for the purpose of the grouping computation. For example:

SELECT O.YEAR, TO_CHAR(TO_DATE(O.MONTH, 'MM'), 'Month') MONTH,
R.NAME REGION, SUM(O.TOT_SALES) Total
FROM ORDERS O, REGION R
WHERE R.REGION_ID = O.REGION_ID
AND O.MONTH BETWEEN 1 AND 3
GROUP BY ROLLUP ((O.YEAR, O.MONTH),R.NAME);

 YEAR MONTH REGION TOTAL

---------- --------- -------------------- ----------

 2000 January Mid-Atlantic 1221394

 2000 January New England 1018430

 2000 January SouthEast US 758042

 2000 January 2997866

 2000 February Mid-Atlantic 857352

 2000 February New England 1231492

 2000 February SouthEast US 1236846

 2000 February 3325690

 2000 March Mid-Atlantic 1274062

 2000 March New England 1132966

 2000 March SouthEast US 1311986

 2000 March 3719014

 2001 January Mid-Atlantic 610697

 2001 January New England 509215

 2001 January SouthEast US 379021

 2001 January 1498933

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 2001 January 1498933

 2001 February Mid-Atlantic 428676

 2001 February New England 615746

 2001 February SouthEast US 618423

 2001 February 1662845

 2001 March Mid-Atlantic 637031

 2001 March New England 566483

 2001 March SouthEast US 655993

 2001 March 1859507

 15063855

25 rows selected.

In this example, two columns (O.YEAR, O.MONTH) are treated as one composite column. This causes
Oracle to treat the combination of year and month as one dimension, and the summary rows are
computed accordingly. Note that while this query is not allowed in Oracle8i, you can fake composite
column groupings in Oracle8i by using the concatenation operator (||) to combine two columns and treat
the result as one composite column. Oracle8i can then produce the same result as the previous query in
Oracle 9i. For example:

SELECT TO_CHAR(O.YEAR)||' '||TO_CHAR(TO_DATE(O.MONTH,'MM'),'Month')
 Year_Month,
 R.NAME REGION, SUM(O.TOT_SALES)
FROM ORDERS O, REGION R
WHERE R.REGION_ID = O.REGION_ID
AND O.MONTH BETWEEN 1 AND 3
GROUP BY
ROLLUP (TO_CHAR(O.YEAR)||' '||TO_CHAR(TO_DATE(O.MONTH,'MM'),'Month'), R.NAME);

YEAR_MONTH REGION SUM(O.TOT_SALES)

-------------------- -------------------- ----------------

2000 February Mid-Atlantic 857352

2000 February New England 1231492

2000 February SouthEast US 1236846

2000 February 3325690

2000 January Mid-Atlantic 1221394

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2000 January New England 1018430

2000 January SouthEast US 758042

2000 January 2997866

2000 March Mid-Atlantic 1274062

2000 March New England 1132966

2000 March SouthEast US 1311986

2000 March 3719014

2001 February Mid-Atlantic 428676

2001 February New England 615746

2001 February SouthEast US 618423

2001 February 1662845

2001 January Mid-Atlantic 610697

2001 January New England 509215

2001 January SouthEast US 379021

2001 January 1498933

2001 March Mid-Atlantic 637031

2001 March New England 566483

2001 March SouthEast US 655993

2001 March 1859507

 15063855

25 rows selected.

This query converts the numeric month into the string expression of the name of the month and
concatenates it with the string representation of the year. The same expression has to be used in the
SELECT list and the ROLLUP clause. The expression TO_CHAR(O.YEAR)||' '||TO_CHAR(TO_DATE(
O.MONTH,'MM'),'Month') is treated as one composite column.

12.5.3 Concatenated Groupings

With Oracle9i, you can have multiple ROLLUP, CUBE, or GROUPING SETS operations, or a
combination of these under the GROUP BY clause in a query. This is not allowed in Oracle8i. You will get
an error message if you attempt the following query in Oracle8i:

SELECT O.YEAR, TO_CHAR(TO_DATE(O.MONTH, 'MM'), 'Month') MONTH,
R.NAME REGION, SUM(O.TOT_SALES) Total
FROM ORDERS O, REGION R

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FROM ORDERS O, REGION R
WHERE R.REGION_ID = O.REGION_ID
AND O.MONTH BETWEEN 1 AND 3
GROUP BY ROLLUP (O.YEAR, O.MONTH), ROLLUP(R.NAME);
GROUP BY ROLLUP (O.YEAR, O.MONTH), ROLLUP(R.NAME)

 *

ERROR at line 6:

ORA-30489: Cannot have more than one rollup/cube expression list

However, the same query works in Oracle9i:

SELECT O.YEAR, TO_CHAR(TO_DATE(O.MONTH, 'MM'), 'Month') MONTH,
R.NAME REGION, SUM(O.TOT_SALES) Total
FROM ORDERS O, REGION R
WHERE R.REGION_ID = O.REGION_ID
AND O.MONTH BETWEEN 1 AND 3
GROUP BY ROLLUP (O.YEAR, O.MONTH), ROLLUP(R.NAME);

 YEAR MONTH REGION TOTAL

---------- --------- -------------------- ----------

 2000 January Mid-Atlantic 1221394

 2000 January New England 1018430

 2000 January SouthEast US 758042

 2000 January 2997866

 2000 February Mid-Atlantic 857352

 2000 February New England 1231492

 2000 February SouthEast US 1236846

 2000 February 3325690

 2000 March Mid-Atlantic 1274062

 2000 March New England 1132966

 2000 March SouthEast US 1311986

 2000 March 3719014

 2000 Mid-Atlantic 3352808

 2000 New England 3382888

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 2000 SouthEast US 3306874

 2000 10042570

 2001 January Mid-Atlantic 610697

 2001 January New England 509215

 2001 January SouthEast US 379021

 2001 January 1498933

 2001 February Mid-Atlantic 428676

 2001 February New England 615746

 2001 February SouthEast US 618423

 2001 February 1662845

 2001 March Mid-Atlantic 637031

 2001 March New England 566483

 2001 March SouthEast US 655993

 2001 March 1859507

 2001 Mid-Atlantic 1676404

 2001 New England 1691444

 2001 SouthEast US 1653437

 2001 5021285

 Mid-Atlantic 5029212

 New England 5074332

 SouthEast US 4960311

 15063855

36 rows selected.

When you have multiple grouping operations (ROLLUP, CUBE, or GROUPING SETS) in a GROUP BY
clause, what you have is called a concatenated grouping. The result of the concatenated grouping is to
produce a cross-product of groupings from each grouping operation. Therefore, the query:

SELECT O.YEAR, TO_CHAR(TO_DATE(O.MONTH, 'MM'), 'Month') MONTH,

R.NAME REGION, SUM(O.TOT_SALES) Total

FROM ORDERS O, REGION R

WHERE R.REGION_ID = O.REGION_ID

AND O.MONTH BETWEEN 1 AND 3

GROUP BY ROLLUP(O.YEAR), ROLLUP (O.MONTH), ROLLUP (R.NAME);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GROUP BY ROLLUP(O.YEAR), ROLLUP (O.MONTH), ROLLUP (R.NAME);

behaves as a CUBE and produces the same result as the query:

SELECT O.YEAR, TO_CHAR(TO_DATE(O.MONTH, 'MM'), 'Month') MONTH,

R.NAME REGION, SUM(O.TOT_SALES) Total

FROM ORDERS O, REGION R

WHERE R.REGION_ID = O.REGION_ID

AND O.MONTH BETWEEN 1 AND 3

GROUP BY CUBE (O.YEAR, O.MONTH, R.NAME);

Since a CUBE contains aggregates for all possible combinations of the grouping columns, the
concatenated grouping of CUBES is no different from a regular CUBE, and all the following queries return
the same result as the query shown previously.

SELECT O.YEAR, TO_CHAR(TO_DATE(O.MONTH, 'MM'), 'Month') MONTH,

R.NAME REGION, SUM(O.TOT_SALES) Total

FROM ORDERS O, REGION R

WHERE R.REGION_ID = O.REGION_ID

AND O.MONTH BETWEEN 1 AND 3

GROUP BY CUBE (O.YEAR, O.MONTH), CUBE (R.NAME);

SELECT O.YEAR, TO_CHAR(TO_DATE(O.MONTH, 'MM'), 'Month') MONTH,

R.NAME REGION, SUM(O.TOT_SALES) Total

FROM ORDERS O, REGION R

WHERE R.REGION_ID = O.REGION_ID

AND O.MONTH BETWEEN 1 AND 3

GROUP BY CUBE (O.YEAR), CUBE (O.MONTH, R.NAME);

SELECT O.YEAR, TO_CHAR(TO_DATE(O.MONTH, 'MM'), 'Month') MONTH,

R.NAME REGION, SUM(O.TOT_SALES) Total

FROM ORDERS O, REGION R

WHERE R.REGION_ID = O.REGION_ID

AND O.MONTH BETWEEN 1 AND 3

GROUP BY CUBE (O.YEAR, O.MONTH), CUBE (O.YEAR, R.NAME);

12.5.3.1 Concatenated groupings with GROUPING SETS

Concatenated groupings come in handy while using GROUPING SETS. Since GROUPING SETS

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Concatenated groupings come in handy while using GROUPING SETS. Since GROUPING SETS
produces only the subtotal rows, you can specify just the aggregation levels you want in your output by
using a concatenated grouping of GROUPING SETS. The concatenated grouping of GROUPING SETS
(a,b) and GROUPING SETS (c,d) will produce aggregate rows for the aggregation levels (a,c), (a,d),
(b,c), and (b,d). The concatenated grouping of GROUPING SETS (a,b) and GROUPING SETS (c) will
produce aggregate rows for the aggregation levels (a,c) and (b,c). For example:

SELECT O.YEAR, TO_CHAR(TO_DATE(O.MONTH, 'MM'), 'Month') MONTH,
R.NAME REGION, SUM(O.TOT_SALES) Total
FROM ORDERS O, REGION R
WHERE R.REGION_ID = O.REGION_ID
AND O.MONTH BETWEEN 1 AND 3
GROUP BY GROUPING SETS (O.YEAR, O.MONTH), GROUPING SETS (R.NAME);

 YEAR MONTH REGION TOTAL

---------- --------- -------------------- ----------

 2000 Mid-Atlantic 3352808

 2000 New England 3382888

 2000 SouthEast US 3306874

 2001 Mid-Atlantic 1676404

 2001 New England 1691444

 2001 SouthEast US 1653437

 January Mid-Atlantic 1832091

 January New England 1527645

 January SouthEast US 1137063

 February Mid-Atlantic 1286028

 February New England 1847238

 February SouthEast US 1855269

 March Mid-Atlantic 1911093

 March New England 1699449

 March SouthEast US 1967979

15 rows selected.

The concatenated grouping GROUP BY GROUPING SETS (O.YEAR, O.MONTH), GROUPING SETS
(R.NAME) in this example produces rows for aggregate levels (O.YEAR, R.NAME) and (O.MONTH,
R.NAME). Therefore, you see aggregate rows for (Year, Region) and (Month, Region) combinations in
the output. The following example extends the previous query:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT O.YEAR, TO_CHAR(TO_DATE(O.MONTH, 'MM'), 'Month') MONTH,
R.NAME REGION, SUM(O.TOT_SALES) Total
FROM ORDERS O, REGION R
WHERE R.REGION_ID = O.REGION_ID
AND O.MONTH BETWEEN 1 AND 3
GROUP BY GROUPING SETS (O.YEAR, O.MONTH), GROUPING SETS (O.YEAR, R.NAME);

 1: YEAR MONTH REGION TOTAL

 2: ---------- --------- -------------------- ----------

 3: 2000 10042570

 4: 2001 5021285

 5: 2000 January 2997866

 6: 2000 February 3325690

 7: 2000 March 3719014

 8: 2001 January 1498933

 9: 2001 February 1662845

10: 2001 March 1859507

11: 2000 Mid-Atlantic 3352808

12: 2000 New England 3382888

13: 2000 SouthEast US 3306874

14: 2001 Mid-Atlantic 1676404

15: 2001 New England 1691444

16: 2001 SouthEast US 1653437

17: January Mid-Atlantic 1832091

18: January New England 1527645

19: January SouthEast US 1137063

20: February Mid-Atlantic 1286028

21: February New England 1847238

22: February SouthEast US 1855269

23: March Mid-Atlantic 1911093

24: March New England 1699449

25: March SouthEast US 1967979

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

25: March SouthEast US 1967979

23 rows selected.

This example produces four grouping combinations. Table 12-1 describes the various grouping
combinations produced by this query and references their corresponding row numbers in the output.

Table 12-1. Grouping combinations
Grouping combination Corresponding rows

(O.YEAR, O.YEAR) 3-4
(O.YEAR, R.NAME) 11-16
(O.MONTH, O.YEAR) 5-10
(O.MONTH, R.NAME) 17-25

The GROUPING SETS operation is independent of the order of columns. Therefore, the following two
queries will produce the same results as shown previously:

SELECT O.YEAR, TO_CHAR(TO_DATE(O.MONTH, 'MM'), 'Month') MONTH,

R.NAME REGION, SUM(O.TOT_SALES) Total

FROM ORDERS O, REGION R

WHERE R.REGION_ID = O.REGION_ID

AND O.MONTH BETWEEN 1 AND 3

GROUP BY GROUPING SETS (O.YEAR, R.NAME), GROUPING SETS (O.YEAR, O.MONTH);

SELECT O.YEAR, TO_CHAR(TO_DATE(O.MONTH, 'MM'), 'Month') MONTH,

R.NAME REGION, SUM(O.TOT_SALES) Total

FROM ORDERS O, REGION R

WHERE R.REGION_ID = O.REGION_ID

AND O.MONTH BETWEEN 1 AND 3

GROUP BY GROUPING SETS (O.MONTH, O.YEAR), GROUPING SETS (R.NAME, O.YEAR);

It is permissible to have a combination of ROLLUP, CUBE, and GROUPING SETS in a single GROUP
BY clause, as in the following example:

SELECT O.YEAR, TO_CHAR(TO_DATE(O.MONTH, 'MM'), 'Month') MONTH,

R.NAME REGION, SUM(O.TOT_SALES) Total

FROM ORDERS O, REGION R

WHERE R.REGION_ID = O.REGION_ID

AND O.MONTH BETWEEN 1 AND 3

GROUP BY GROUPING SETS (O.MONTH, O.YEAR), ROLLUP(R.NAME), CUBE (O.YEAR);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GROUP BY GROUPING SETS (O.MONTH, O.YEAR), ROLLUP(R.NAME), CUBE (O.YEAR);

However, the output from such queries seldom makes any sense. You should carefully evaluate the need
for such queries when you intend to write one.

12.5.3.2 ROLLUP and CUBE as arguments to GROUPING SETS

Unlike the ROLLUP and CUBE operations, the GROUPING SETS operation can take a ROLLUP or a
CUBE as its argument. As you have seen earlier, GROUPING SETS produces only subtotal rows.
However, there are times when you may need to print the grand total along with the subtotals. In such
situations, you can perform the GROUPING SETS operation on ROLLUP operations, as in the following
example.

SELECT O.YEAR, TO_CHAR(TO_DATE(O.MONTH, 'MM'), 'Month') MONTH,
 R.NAME REGION, SUM(O.TOT_SALES) Total
FROM ORDERS O, REGION R
WHERE R.REGION_ID = O.REGION_ID
AND O.MONTH BETWEEN 1 AND 3
GROUP BY GROUPING SETS (ROLLUP (O.YEAR), ROLLUP (O.MONTH), ROLLUP(R.NAME));

 YEAR MONTH REGION TOTAL

---------- --------- -------------------- ----------

 2000 10042570

 2001 5021285

 January 4496799

 February 4988535

 March 5578521

 Mid-Atlantic 5029212

 New England 5074332

 SouthEast US 4960311

 15063855

 15063855

 15063855

11 rows selected.

Notice that this example produces the subtotals for each dimension, as expected from the regular
GROUPING SETS operations. Also, it produces the grand total across all the dimensions. However, you
get three identical grand-total rows. The grand-total rows are repeated because they are produced by
each ROLLUP operation inside the GROUPING SETS. If you insist on only one grand-total row, you may
use the DISTINCT keyword in the SELECT clause:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT DISTINCT O.YEAR, TO_CHAR(TO_DATE(O.MONTH, 'MM'), 'Month') MONTH,
R.NAME REGION, SUM(O.TOT_SALES) Total
FROM ORDERS O, REGION R
WHERE R.REGION_ID = O.REGION_ID
AND O.MONTH BETWEEN 1 AND 3
GROUP BY GROUPING SETS (ROLLUP (O.YEAR), ROLLUP (O.MONTH), ROLLUP(R.NAME));

 YEAR MONTH REGION TOTAL

---------- --------- -------------------- ----------

 2000 10042570

 2001 5021285

 February 4988535

 January 4496799

 March 5578521

 Mid-Atlantic 5029212

 New England 5074332

 SouthEast US 4960311

 15063855

9 rows selected.

Note that the DISTINCT keyword eliminated the duplicate grand-total rows. You can also eliminate
duplicate rows by using the GROUP_ID function, as discussed in later in this chapter.

If you are interested in subtotals and totals on composite dimensions, you can use composite or
concatenated ROLLUP operations within GROUPING SETS, as in the following example:

SELECT O.YEAR, TO_CHAR(TO_DATE(O.MONTH, 'MM'), 'Month') MONTH,
R.NAME REGION, SUM(O.TOT_SALES) Total
FROM ORDERS O, REGION R
WHERE R.REGION_ID = O.REGION_ID
AND O.MONTH BETWEEN 1 AND 3
GROUP BY GROUPING SETS (ROLLUP (O.YEAR, O.MONTH), ROLLUP(R.NAME));

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GROUP BY GROUPING SETS (ROLLUP (O.YEAR, O.MONTH), ROLLUP(R.NAME));

 YEAR MONTH REGION TOTAL

---------- --------- -------------------- ----------

 2000 January 2997866

 2000 February 3325690

 2000 March 3719014

 2000 10042570

 2001 January 1498933

 2001 February 1662845

 2001 March 1859507

 2001 5021285

 Mid-Atlantic 5029212

 New England 5074332

 SouthEast US 4960311

 15063855

 15063855

13 rows selected.

This query generates subtotals for (YEAR, MONTH) combinations, subtotals for the REGION, subtotals
for the YEAR, and the grand total. Note that there are duplicate grand-total rows because of the multiple
ROLLUP operations within the GROUPING SETS operation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.6 The GROUPING_ID and GROUP_ID Functions

Earlier in this chapter, you saw how to use the GROUPING function to distinguish between the
regular GROUP BY rows and the summary rows produced by the GROUP BY extensions.
Oracle9i extends the concept of the GROUPING function and introduces two new functions that
you can use with a GROUP BY clause:

GROUPING_ID

GROUP_ID

These functions can only be used with a GROUP BY clause. However, unlike the GROUPING
function that can only be used with a GROUP BY extension, the GROUPING_ID and GROUP_ID
functions can be used in a query, even without a GROUP BY extension.

Although it is legal to use these two functions without a GROUP BY
extension, using GROUPING_ID and GROUP_ID without ROLLUP,
CUBE, or GROUPING SETS doesn't produce any meaningful output,
because GROUPING_ID and GROUP_ID are 0 for all regular GROUP BY
rows.

The following sections discuss these two functions in detail.

12.6.1 GROUPING_ID

The syntax of the GROUPING_ID function is as follows:

SELECT ... , GROUPING_ID(ordered_list_of_grouping_columns)

FROM ...

GROUP BY ...

The GROUPING_ID function takes an ordered list of grouping columns as input, and computes
the output by working through the following steps:

1. First, it generates the results of the GROUPING function as applied to each of the
individual columns in the list. The result of this step is a set of ones and zeros.

2. It puts these ones and zeros in the same order as the order of the columns in its argument
list to produce a bit vector.

3. Treating this bit vector (a series of ones and zeros) as a binary number, it converts the bit
vector into a decimal (base 10) number.

4. The decimal number computed in Step 3 is returned as the GROUPING_ID function's
output.

The following example illustrates this process and compares the results from GROUPING_ID with
those from GROUPING:

SELECT O.YEAR, TO_CHAR(TO_DATE(O.MONTH, 'MM'), 'Month') MONTH,
R.NAME REGION, SUM(O.TOT_SALES) Total,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

R.NAME REGION, SUM(O.TOT_SALES) Total,
GROUPING(O.YEAR) Y, GROUPING(O.MONTH) M, GROUPING(R.NAME) R,
GROUPING_ID (O.YEAR, O.MONTH, R.NAME) GID
FROM ORDERS O, REGION R
WHERE R.REGION_ID = O.REGION_ID
AND O.MONTH BETWEEN 1 AND 3
GROUP BY CUBE (O.YEAR, O.MONTH, R.NAME);

YEAR MONTH REGION TOTAL Y M R GID

---- --------- -------------- ---------- --- ---- --- ------

2000 January Mid-Atlantic 1221394 0 0 0 0

2000 January New England 1018430 0 0 0 0

2000 January SouthEast US 758042 0 0 0 0

2000 January 2997866 0 0 1 1

2000 February Mid-Atlantic 857352 0 0 0 0

2000 February New England 1231492 0 0 0 0

2000 February SouthEast US 1236846 0 0 0 0

2000 February 3325690 0 0 1 1

2000 March Mid-Atlantic 1274062 0 0 0 0

2000 March New England 1132966 0 0 0 0

2000 March SouthEast US 1311986 0 0 0 0

2000 March 3719014 0 0 1 1

2000 Mid-Atlantic 3352808 0 1 0 2

2000 New England 3382888 0 1 0 2

2000 SouthEast US 3306874 0 1 0 2

2000 10042570 0 1 1 3

2001 January Mid-Atlantic 610697 0 0 0 0

2001 January New England 509215 0 0 0 0

2001 January SouthEast US 379021 0 0 0 0

2001 January 1498933 0 0 1 1

2001 February Mid-Atlantic 428676 0 0 0 0

2001 February New England 615746 0 0 0 0

2001 February SouthEast US 618423 0 0 0 0

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2001 February SouthEast US 618423 0 0 0 0

2001 February 1662845 0 0 1 1

2001 March Mid-Atlantic 637031 0 0 0 0

2001 March New England 566483 0 0 0 0

2001 March SouthEast US 655993 0 0 0 0

2001 March 1859507 0 0 1 1

2001 Mid-Atlantic 1676404 0 1 0 2

2001 New England 1691444 0 1 0 2

2001 SouthEast US 1653437 0 1 0 2

2001 5021285 0 1 1 3

 January Mid-Atlantic 1832091 1 0 0 4

 January New England 1527645 1 0 0 4

 January SouthEast US 1137063 1 0 0 4

 January 4496799 1 0 1 5

 February Mid-Atlantic 1286028 1 0 0 4

 February New England 1847238 1 0 0 4

 February SouthEast US 1855269 1 0 0 4

 February 4988535 1 0 1 5

 March Mid-Atlantic 1911093 1 0 0 4

 March New England 1699449 1 0 0 4

 March SouthEast US 1967979 1 0 0 4

 March 5578521 1 0 1 5

 Mid-Atlantic 5029212 1 1 0 6

 New England 5074332 1 1 0 6

 SouthEast US 4960311 1 1 0 6

 15063855 1 1 1 7

48 rows selected.

Note that the GROUPING_ID is the decimal equivalent of the bit vector generated by the
individual GROUPING functions. In this output, the GROUPING_ID has values 0, 1, 2, 3, 4, 5, 6,
and 7. Table 12-2 describes these aggregation levels.

Table 12-2. Result of GROUPING_ID(O.YEAR, O.MONTH, R.NAME)
Aggregation level Bit vector GROUPING_ID

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Regular GROUP BY rows 0 0 0 0
Subtotal for Year-Month, aggregated at (Region) 0 0 1 1
Subtotal for Year-Region, aggregated at (Month) 0 1 0 2
Subtotal for Year, aggregated at (Month, Region) 0 1 1 3
Subtotal for Month-Region, aggregated at (Year) 1 0 0 4
Subtotal for Month, aggregated at (Year, Region) 1 0 1 5
Subtotal for Region, aggregated at (Year, Month) 1 1 0 6
Grand total for all levels, aggregated at (Year, Month, Region) 1 1 1 7

The GROUPING_ID function can be used effectively in a query to filter rows according to your
requirement. Let's say you want only the summary rows to be displayed in the output, and not the
regular GROUP BY rows. You can use the GROUPING_ID function in the HAVING clause to do
this by restricting output to only those rows that contain totals and subtotals (i.e., for which
GROUPING_ID > 0):

SELECT O.YEAR, TO_CHAR(TO_DATE(O.MONTH, 'MM'), 'Month') MONTH,
R.NAME REGION, SUM(O.TOT_SALES) Total
FROM ORDERS O, REGION R
WHERE R.REGION_ID = O.REGION_ID
AND O.MONTH BETWEEN 1 AND 3
GROUP BY CUBE (O.YEAR, O.MONTH, R.NAME)
HAVING GROUPING_ID (O.YEAR, O.MONTH, R.NAME) > 0;

 YEAR MONTH REGION TOTAL

---------- --------- -------------------- ----------

 2000 January 2997866

 2000 February 3325690

 2000 March 3719014

 2000 Mid-Atlantic 3352808

 2000 New England 3382888

 2000 SouthEast US 3306874

 2000 10042570

 2001 January 1498933

 2001 February 1662845

 2001 March 1859507

 2001 Mid-Atlantic 1676404

 2001 New England 1691444

 2001 SouthEast US 1653437

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 2001 SouthEast US 1653437

 2001 5021285

 January Mid-Atlantic 1832091

 January New England 1527645

 January SouthEast US 1137063

 January 4496799

 February Mid-Atlantic 1286028

 February New England 1847238

 February SouthEast US 1855269

 February 4988535

 March Mid-Atlantic 1911093

 March New England 1699449

 March SouthEast US 1967979

 March 5578521

 Mid-Atlantic 5029212

 New England 5074332

 SouthEast US 4960311

 15063855

30 rows selected.

As you can see, GROUPING_ID makes it easier to filter the output of aggregation operations.
Without the GROUPING_ID function, you have to write a more complex query using the
GROUPING function to achieve the same result. For example, the following query uses
GROUPING rather than GROUPING_ID to display only totals and subtotals. Note the added
complexity in the HAVING clause.

SELECT O.YEAR, TO_CHAR(TO_DATE(O.MONTH, 'MM'), 'Month') MONTH,
R.NAME REGION, SUM(O.TOT_SALES) Total
FROM ORDERS O, REGION R
WHERE R.REGION_ID = O.REGION_ID
AND O.MONTH BETWEEN 1 AND 3
GROUP BY CUBE (O.YEAR, O.MONTH, R.NAME)
HAVING GROUPING(O.YEAR) > 0
OR GROUPING(O.MONTH) > 0
OR GROUPING(R.NAME) > 0;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

OR GROUPING(R.NAME) > 0;

 YEAR MONTH REGION TOTAL

---------- --------- -------------------- ----------

 2000 January 2997866

 2000 February 3325690

 2000 March 3719014

 2000 Mid-Atlantic 3352808

 2000 New England 3382888

 2000 SouthEast US 3306874

 2000 10042570

 2001 January 1498933

 2001 February 1662845

 2001 March 1859507

 2001 Mid-Atlantic 1676404

 2001 New England 1691444

 2001 SouthEast US 1653437

 2001 5021285

 January Mid-Atlantic 1832091

 January New England 1527645

 January SouthEast US 1137063

 January 4496799

 February Mid-Atlantic 1286028

 February New England 1847238

 February SouthEast US 1855269

 February 4988535

 March Mid-Atlantic 1911093

 March New England 1699449

 March SouthEast US 1967979

 March 5578521

 Mid-Atlantic 5029212

 New England 5074332

 SouthEast US 4960311

 15063855

30 rows selected.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

30 rows selected.

12.6.2 GROUP_ID

As you saw in previous sections, Oracle9i allows you to have repeating grouping columns and
multiple grouping operations in a GROUP BY clause. Some combinations could result in duplicate
rows in the output. The GROUP_ID distinguishes between otherwise duplicate result rows.

The syntax of the GROUP_ID function is:

SELECT ... , GROUP_ID()

FROM ...

GROUP BY ...

The GROUP_ID function takes no argument, and returns 0 through n - 1, where n is the
occurrence count for duplicates. The first occurrence of a given row in the output of a query will
have a GROUP_ID of 0, the second occurrence of a given row will have a GROUP_ID of 1, and
so forth. The following example illustrates the use of the GROUP_ID function:

SELECT O.YEAR, TO_CHAR(TO_DATE(O.MONTH, 'MM'), 'Month') MONTH,
R.NAME REGION, SUM(O.TOT_SALES) Total, GROUP_ID()
FROM ORDERS O, REGION R
WHERE R.REGION_ID = O.REGION_ID
AND O.MONTH BETWEEN 1 AND 3
GROUP BY O.YEAR, ROLLUP (O.YEAR, O.MONTH, R.NAME);

 YEAR MONTH REGION TOTAL GROUP_ID()

---------- --------- -------------------- ---------- ----------

 2000 January Mid-Atlantic 1221394 0

 2000 January New England 1018430 0

 2000 January SouthEast US 758042 0

 2000 January 2997866 0

 2000 February Mid-Atlantic 857352 0

 2000 February New England 1231492 0

 2000 February SouthEast US 1236846 0

 2000 February 3325690 0

 2000 March Mid-Atlantic 1274062 0

 2000 March New England 1132966 0

 2000 March SouthEast US 1311986 0

 2000 March 3719014 0

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 2001 January Mid-Atlantic 610697 0

 2001 January New England 509215 0

 2001 January SouthEast US 379021 0

 2001 January 1498933 0

 2001 February Mid-Atlantic 428676 0

 2001 February New England 615746 0

 2001 February SouthEast US 618423 0

 2001 February 1662845 0

 2001 March Mid-Atlantic 637031 0

 2001 March New England 566483 0

 2001 March SouthEast US 655993 0

 2001 March 1859507 0

 2000 10042570 0

 2001 5021285 0

 2000 10042570 1

 2001 5021285 1

28 rows selected.

Note the value 1 returned by the GROUP_ID function for the last two rows. These rows are
indeed duplicates of the previous two rows. If you don't want to see the duplicates in your result
set, restrict your query's results to GROUP_ID 0:

SELECT O.YEAR, TO_CHAR(TO_DATE(O.MONTH, 'MM'), 'Month') MONTH,
R.NAME REGION, SUM(O.TOT_SALES) Total, GROUP_ID()
FROM ORDERS O, REGION R
WHERE R.REGION_ID = O.REGION_ID
AND O.MONTH BETWEEN 1 AND 3
GROUP BY O.YEAR, ROLLUP (O.YEAR, O.MONTH, R.NAME)
HAVING GROUP_ID() = 0;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HAVING GROUP_ID() = 0;

 YEAR MONTH REGION TOTAL GROUP_ID()

---------- --------- -------------------- ---------- ----------

 2000 January Mid-Atlantic 1221394 0

 2000 January New England 1018430 0

 2000 January SouthEast US 758042 0

 2000 January 2997866 0

 2000 February Mid-Atlantic 857352 0

 2000 February New England 1231492 0

 2000 February SouthEast US 1236846 0

 2000 February 3325690 0

 2000 March Mid-Atlantic 1274062 0

 2000 March New England 1132966 0

 2000 March SouthEast US 1311986 0

 2000 March 3719014 0

 2001 January Mid-Atlantic 610697 0

 2001 January New England 509215 0

 2001 January SouthEast US 379021 0

 2001 January 1498933 0

 2001 February Mid-Atlantic 428676 0

 2001 February New England 615746 0

 2001 February SouthEast US 618423 0

 2001 February 1662845 0

 2001 March Mid-Atlantic 637031 0

 2001 March New England 566483 0

 2001 March SouthEast US 655993 0

 2001 March 1859507 0

 2000 10042570 0

 2001 5021285 0

26 rows selected.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26 rows selected.

This version of the query uses HAVING GROUP_ID = 0 to eliminate the two duplicate totals from
the result set. GROUP_ID is only meaningful in the HAVING clause, because it applies to
summarized data. You can't use GROUP_ID in a WHERE clause, and it wouldn't make sense to
try.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 13. Advanced Analytic SQL
For years, SQL has been criticized for its inability to handle routine decision support queries. With
the host of new analytic functions introduced in Oracle8i and Oracle9i, Oracle has taken giant
strides towards eliminating this deficiency. In doing so, Oracle has further blurred the distinction
between its multipurpose relational database server and other, special-purpose data warehouse
and statistical analysis servers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.1 Analytic SQL Overview

The types of queries issued by Decision Support Systems (DSS) differ from those issued against
OLTP systems. Consider the following business queries:

Find the top ten salespeople in each sales district last year.

Find all customers whose total orders last year exceeded 20% of the aggregate sales for
their geographic region.

Identify the region that suffered the worst quarter-to-quarter sales decline last year.

Find the best and worst selling menu items by state for each quarter last year.

Queries such as these are staples of DSS, and are used by managers, analysts, marketing
executives, etc. to spot trends, identify outliers, uncover business opportunities, and predict future
business performance. DSS systems typically sit atop data warehouses, in which large quantities
of scrubbed, aggregated data provide fertile grounds for researching and formulating business
decisions.

While all of the previous queries can be easily expressed in English, they have historically been
difficult to formulate using SQL for the following reasons:

They may require different levels of aggregation of the same data.

They may involve intra-table comparisons (comparing one or more rows in a table with
other rows in the same table).

They may require an extra filtering step after the result set has been sorted (i.e., finding the
top ten and bottom ten salespeople last month).

While it is possible to generate the desired results using such SQL features as self joins, inline
views, and user-defined functions, the resulting queries can be difficult to understand and might
yield unacceptably long execution times. To illustrate the difficulty in formulating such queries, we
will walk through the construction of this query: "Find all customers whose total orders last year
exceeded 20% of the aggregate sales for their geographic region."

For this and other examples in this chapter, we use a simple star schema consisting of a single
fact table (called "orders") containing aggregated sales information across the following
dimensions: region, salesperson, customer, and month. There are two main facets to this query,
each requiring a different level of aggregation of the same data:

1. Sum all sales per region last year.

2. Sum all sales per customer last year.

After these two intermediate result sets have been constructed, we need to compare each
customer's total to the total for their region and see if it exceeds 20%. The final result set will show
the customer names along with their total sales, region name, and the percentage of their region's
sales.

The query to aggregate sales by region looks as follows:

SELECT o.region_id region_id, SUM(o.tot_sales) tot_sales
FROM orders o

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FROM orders o
WHERE o.year = 2001
GROUP BY o.region_id;

REGION_ID TOT_SALES

---------- ----------

 5 6585641

 6 6307766

 7 6868495

 8 6853015

 9 6739374

 10 6238901

The query to aggregate sales by customer would be:

SELECT o.cust_nbr cust_nbr, o.region_id region_id,
 SUM(o.tot_sales) tot_sales
FROM orders o
WHERE o.year = 2001
GROUP BY o.cust_nbr, o.region_id;

 CUST_NBR REGION_ID TOT_SALES

---------- ---------- ----------

 1 5 1151162

 2 5 1224992

 3 5 1161286

 4 5 1878275

 5 5 1169926

 6 6 1788836

 7 6 971585

 8 6 1141638

 9 6 1208959

 10 6 1196748

 11 7 1190421

 12 7 1182275

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 12 7 1182275

 13 7 1310434

 14 7 1929774

 15 7 1255591

 16 8 1068467

 17 8 1944281

 18 8 1253840

 19 8 1174421

 20 8 1412006

 21 9 1020541

 22 9 1036146

 23 9 1224992

 24 9 1224992

 25 9 2232703

 26 10 1808949

 27 10 1322747

 28 10 986964

 29 10 903383

 30 10 1216858

By placing each of the two queries in an inline view and joining them on region_id, we can locate
those customers whose total sales exceeds 20% of their region, as in:

SELECT cust_sales.cust_nbr cust_nbr, cust_sales.region_id region_id,
 cust_sales.tot_sales cust_sales, region_sales.tot_sales region_sales
FROM
 (SELECT o.region_id region_id, SUM(o.tot_sales) tot_sales
 FROM orders o
 WHERE o.year = 2001
 GROUP BY o.region_id) region_sales,
 (SELECT o.cust_nbr cust_nbr, o.region_id region_id,
 SUM(o.tot_sales) tot_sales
 FROM orders o
 WHERE o.year = 2001

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 WHERE o.year = 2001
 GROUP BY o.cust_nbr, o.region_id) cust_sales
WHERE cust_sales.region_id = region_sales.region_id
 AND cust_sales.tot_sales > (region_sales.tot_sales * .2);

 CUST_NBR REGION_ID CUST_SALES REGION_SALES

---------- ---------- ---------- ------------

 4 5 1878275 6585641

 6 6 1788836 6307766

 14 7 1929774 6868495

 17 8 1944281 6853015

 20 8 1412006 6853015

 25 9 2232703 6739374

 26 10 1808949 6238901

 27 10 1322747 6238901

The final step is to join the region and customer dimensions in order to include the customer and
region names in the result set:

SELECT c.name cust_name,
 big_custs.cust_sales cust_sales, r.name region_name,
 100 * ROUND(big_custs.cust_sales /
 big_custs.region_sales, 2) percent_of_region
FROM region r, customer c,
 (SELECT cust_sales.cust_nbr cust_nbr, cust_sales.region_id region_id,
 cust_sales.tot_sales cust_sales,
 region_sales.tot_sales region_sales
 FROM
 (SELECT o.region_id region_id, SUM(o.tot_sales) tot_sales
 FROM orders o
 WHERE o.year = 2001
 GROUP BY o.region_id) region_sales,
 (SELECT o.cust_nbr cust_nbr, o.region_id region_id,
 SUM(o.tot_sales) tot_sales

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 SUM(o.tot_sales) tot_sales
 FROM orders o
 WHERE o.year = 2001
 GROUP BY o.cust_nbr, o.region_id) cust_sales
 WHERE cust_sales.region_id = region_sales.region_id
 AND cust_sales.tot_sales > (region_sales.tot_sales * .2)) big_custs
WHERE big_custs.cust_nbr = c.cust_nbr
 AND big_custs.region_id = r.region_id;

CUST_NAME CUST_SALES REGION_NAME PERCENT_OF_REGION

---------------------- ---------- -------------------- -----------------

Flowtech Inc. 1878275 New England 29

Spartan Industries 1788836 Mid-Atlantic 28

Madden Industries 1929774 SouthEast US 28

Evans Supply Corp. 1944281 SouthWest US 28

Malden Labs 1412006 SouthWest US 21

Worcester Technologies 2232703 NorthWest US 33

Alpha Technologies 1808949 Central US 29

Phillips Labs 1322747 Central US 21

Using nothing more exotic than inline views, we can construct a single query that generates the
desired results. The solution, however, has the following shortcomings:

The query is fairly complex.

Two passes through the same rows of the orders table are required to generate the
different aggregation levels needed by the query.

Let's see how we can both simplify the query and perform the same work in a single pass through
the orders table using one of the new analytic functions. Rather than issuing two separate queries
to aggregate sales per region and per customer, we will create a single query that aggregates
sales over both region and customer. We can then call an analytic function that performs a
second level of aggregation to generate total sales per region:

SELECT o.region_id region_id, o.cust_nbr cust_nbr,
 SUM(o.tot_sales) tot_sales,
 SUM(SUM(o.tot_sales)) OVER (PARTITION BY o.region_id) region_sales
FROM orders o
WHERE o.year = 2001

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WHERE o.year = 2001
GROUP BY o.region_id, o.cust_nbr;
REGION_ID CUST_NBR TOT_SALES REGION_SALES

---------- ---------- ---------- ------------

 5 1 1151162 6584167

 5 2 1223518 6584167

 5 3 1161286 6584167

 5 4 1878275 6584167

 5 5 1169926 6584167

 6 6 1788836 6307766

 6 7 971585 6307766

 6 8 1141638 6307766

 6 9 1208959 6307766

 6 10 1196748 6307766

 7 11 1190421 6868495

 7 12 1182275 6868495

 7 13 1310434 6868495

 7 14 1929774 6868495

 7 15 1255591 6868495

 8 16 1068467 6853015

 8 17 1944281 6853015

 8 18 1253840 6853015

 8 19 1174421 6853015

 8 20 1412006 6853015

 9 21 1020541 6726929

 9 22 1036146 6726929

 9 23 1212547 6726929

 9 24 1224992 6726929

 9 25 2232703 6726929

 10 26 1808949 6238901

 10 27 1322747 6238901

 10 28 986964 6238901

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 10 28 986964 6238901

 10 29 903383 6238901

 10 30 1216858 6238901

The analytic function can be found in line 3 of the previous query and the result has the alias
region_sales. The aggregate function (SUM(o.tot_sales)) in line 2 generates the total sales per
customer and region as directed by the GROUP BY clause, and the analytic function in line 3
aggregates these sums for each region, thereby computing the aggregate sales per region. The
value for the region_sales column is identical for all customers within the same region and is
equal to the sum of all customer sales within that region. We can then wrap the query in an inline
view,[1] filter out those customers with less than 20% of their region's total sales, and join the
region and customer tables to generate the desired result set:

[1] Using an inline view will save us from having to join the region and customer tables to the orders table; otherwise,
we would have to include columns from the region and customer tables in the GROUP BY clause.

SELECT c.name cust_name,
 cust_sales.tot_sales cust_sales, r.name region_name,
 100 * ROUND(cust_sales.tot_sales /
 cust_sales.region_sales, 2) percent_of_region
FROM region r, customer c,
 (SELECT o.region_id region_id, o.cust_nbr cust_nbr,
 SUM(o.tot_sales) tot_sales,
 SUM(SUM(o.tot_sales)) OVER (PARTITION BY o.region_id) region_sales
 FROM orders o
 WHERE o.year = 2001
 GROUP BY o.region_id, o.cust_nbr) cust_sales
WHERE cust_sales.tot_sales > (cust_sales.region_sales * .2)
 AND cust_sales.region_id = r.region_id
 AND cust_sales.cust_nbr = c.cust_nbr;

CUST_NAME CUST_SALES REGION_NAME PERCENT_OF_REGION

---------------------- ---------- -------------------- -----------------

Flowtech Inc. 1878275 New England 29

Spartan Industries 1788836 Mid-Atlantic 28

Madden Industries 1929774 SouthEast US 28

Evans Supply Corp. 1944281 SouthWest US 28

Malden Labs 1412006 SouthWest US 21

Worcester Technologies 2232703 NorthWest US 33

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Alpha Technologies 1808949 Central US 29

Phillips Labs 1322747 Central US 21

Without getting into the details of how the SUM...OVER function works (we will discuss it later in
this chapter under Section 13.4), we can see that Oracle is performing an aggregation of an
aggregation rather than revisiting the detail rows twice. Thus, the query runs faster and should
also prove easier to understand and maintain once the syntax is familiar.

Unlike built-in functions such as DECODE, GREATEST, and SUBSTR, Oracle's suite of analytic
functions can only be used in the SELECT clause of a query. This is because analytic functions
are only executed after the FROM, WHERE, GROUP BY, and HAVING clauses have been
evaluated. After the analytic functions have executed, the query's ORDER BY clause is evaluated
in order to sort the final result set, and the ORDER BY clause is allowed to reference columns in
the SELECT clause generated via analytic functions.

The remainder of the chapter introduces the Oracle8i and Oracle9i analytic functions, grouped by
functionality.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.2 Ranking Functions

Determining the performance of a particular business entity compared to its peers is central to a
wide variety of business decisions. Examples include:

Identifying assets with the highest utilization.

Determining the worst-selling products by region.

Finding the best-performing salespeople.

Prior to the release of Oracle8i, programmers could use the ORDER BY clause to sort a result set
on one or more columns, but any further processing to calculate rankings or percentiles had to be
performed using a procedural language. Beginning with Oracle8i, however, developers can take
advantage of several new functions to either generate rankings for each row in a result set or to
group rows into buckets for percentile calculations.

13.2.1 RANK, DENSE_RANK, and ROW_NUMBER

The RANK, DENSE_RANK, and ROW_NUMBER functions generate an integer value from 1 to N
for each row, where N is less than or equal to the number of rows in the result set. The differences
in the values returned by these functions revolves around how each one handles ties:

ROW_NUMBER returns a unique number for each row starting with 1. For rows that have
duplicate values, numbers are arbitrarily assigned.

DENSE_RANK assigns a unique number for each row starting with 1, except for rows that
have duplicate values, in which case the same ranking is assigned.

RANK assigns a unique number for each row starting with 1, except for rows that have
duplicate values, in which case the same ranking is assigned and a gap appears in the
sequence for each duplicate ranking.

To illustrate the differences, we generate rankings for each customer according to their total yearly
sales. Here is the query to generate the sales data for the year 2001:

SELECT region_id, cust_nbr, SUM(tot_sales) cust_sales
FROM orders
WHERE year = 2001
GROUP BY region_id, cust_nbr
ORDER BY region_id, cust_nbr;

REGION_ID CUST_NBR CUST_SALES

---------- ---------- ----------

 5 1 1151162

 5 2 1224992

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 5 2 1224992
 5 3 1161286

 5 4 1878275

 5 5 1169926

 6 6 1788836

 6 7 971585

 6 8 1141638

 6 9 1208959

 6 10 1196748

 7 11 1190421

 7 12 1182275

 7 13 1310434

 7 14 1929774

 7 15 1255591

 8 16 1068467

 8 17 1944281

 8 18 1253840

 8 19 1174421

 8 20 1412006

 9 21 1020541

 9 22 1036146

 9 23 1224992
 9 24 1224992
 9 25 2232703

 10 26 1808949

 10 27 1322747

 10 28 986964

 10 29 903383

 10 30 1216858

Notice that three of the customers (2, 23, and 24) have the same value for total sales
($1,224,992). In the next query, we will add three function calls to generate rankings for each
customer across all regions, and we will order the result set by the ROW_NUMBER function to
make the difference in rankings easier to observe:

SELECT region_id, cust_nbr,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT region_id, cust_nbr,
 SUM(tot_sales) cust_sales,
 RANK() OVER (ORDER BY SUM(tot_sales) DESC) sales_rank,
 DENSE_RANK() OVER (ORDER BY SUM(tot_sales) DESC) sales_dense_rank,
 ROW_NUMBER() OVER (ORDER BY SUM(tot_sales) DESC) sales_number
FROM orders
WHERE year = 2001
GROUP BY region_id, cust_nbr
ORDER BY 6;

REGION_ID CUST_NBR CUST_SALES SALES_RANK SALES_DENSE_RANK SALES_NUMBER

---------- ---------- ---------- ---------- ---------------- ------------

 9 25 2232703 1 1 1

 8 17 1944281 2 2 2

 7 14 1929774 3 3 3

 5 4 1878275 4 4 4

 10 26 1808949 5 5 5

 6 6 1788836 6 6 6

 8 20 1412006 7 7 7

 10 27 1322747 8 8 8

 7 13 1310434 9 9 9

 7 15 1255591 10 10 10

 8 18 1253840 11 11 11

 5 2 1224992 12 12 12
 9 23 1224992 12 12 13
 9 24 1224992 12 12 14
 10 30 1216858 15 13 15
 6 9 1208959 16 14 16

 6 10 1196748 17 15 17

 7 11 1190421 18 16 18

 7 12 1182275 19 17 19

 8 19 1174421 20 18 20

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 5 5 1169926 21 19 21

 5 3 1161286 22 20 22

 5 1 1151162 23 21 23

 6 8 1141638 24 22 24

 8 16 1068467 25 23 25

 9 22 1036146 26 24 26

 9 21 1020541 27 25 27

 10 28 986964 28 26 28

 6 7 971585 29 27 29

 10 29 903383 30 28 30

Don't be confused by the ORDER BY clause at the end of the query and the ORDER BY clauses
within each function call; the functions use their ORDER BY clause internally to sort the results for
the purpose of applying a ranking. Thus, each of the three functions applies its ranking algorithm to
the sum of each customer's sales in descending order. The final ORDER BY clause specifies the
results of the ROW_NUMBER function as the sort key for the final result set, but we could have
picked any of the six columns as our sort key.

Both the RANK and DENSE_RANK functions assign the rank of 12 to the 3 rows with total sales of
$1,224,992, while the ROW_NUMBER function assigns the ranks 12, 13, and 14 to the same
rows. The difference between the RANK and DENSE_RANK functions manifests itself in the
ranking assigned to the next-lowest sales total; the RANK function leaves a gap in the ranking
sequence and assigns a rank of 15 to customer number 30, while the DENSE_RANK function
continues the sequence with a ranking of 13.

Deciding which of the three functions to use depends on the desired outcome. If we want to
identify the top 13 customers from this result set, we would use:

ROW_NUMBER if we want exactly 13 rows without regard to ties. In this case, one of the
customers who might otherwise be included in the list will be excluded from the final set.

RANK if we want at least 13 rows but don't want to include rows that would have been
excluded had there been no ties. In this case, we would retrieve 14 rows.

DENSE_RANK if we want all customers with a ranking of 13 or less, including all duplicates.
In this case, we would retrieve 15 rows.

While the previous query generates rankings across the entire result set, it is also possible to
generate independent sets of rankings across multiple partitions of the result set. The following
query generates rankings for customer sales within each region rather than across all regions.
Note the addition of the PARTITION BY clause:

SELECT region_id, cust_nbr, SUM(tot_sales) cust_sales,
 RANK() OVER (PARTITION BY region_id
 ORDER BY SUM(tot_sales) DESC) sales_rank,
 DENSE_RANK() OVER (PARTITION BY region_id
 ORDER BY SUM(tot_sales) DESC) sales_dense_rank,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ORDER BY SUM(tot_sales) DESC) sales_dense_rank,
 ROW_NUMBER() OVER (PARTITION BY region_id
 ORDER BY SUM(tot_sales) DESC) sales_number
FROM orders
WHERE year = 2001
GROUP BY region_id, cust_nbr
ORDER BY 1,6;

REGION_ID CUST_NBR CUST_SALES SALES_RANK SALES_DENSE_RANK SALES_NUMBER

---------- ---------- ---------- ---------- ---------------- ------------

 5 4 1878275 1 1 1

 5 2 1224992 2 2 2

 5 5 1169926 3 3 3

 5 3 1161286 4 4 4

 5 1 1151162 5 5 5

 6 6 1788836 1 1 1

 6 9 1208959 2 2 2

 6 10 1196748 3 3 3

 6 8 1141638 4 4 4

 6 7 971585 5 5 5

 7 14 1929774 1 1 1

 7 13 1310434 2 2 2

 7 15 1255591 3 3 3

 7 11 1190421 4 4 4

 7 12 1182275 5 5 5

 8 17 1944281 1 1 1

 8 20 1412006 2 2 2

 8 18 1253840 3 3 3

 8 19 1174421 4 4 4

 8 16 1068467 5 5 5

 9 25 2232703 1 1 1

 9 23 1224992 2 2 2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 9 23 1224992 2 2 2
 9 24 1224992 2 2 3
 9 22 1036146 4 3 4
 9 21 1020541 5 4 5

 10 26 1808949 1 1 1

 10 27 1322747 2 2 2

 10 30 1216858 3 3 3

 10 28 986964 4 4 4

 10 29 903383 5 5 5

Each customer receives a ranking between one and five depending on their relation to other
customers in the same region. Of the three customers with duplicate total sales, two of them are in
region 9; as before, the RANK and DENSE_RANK functions generate identical rankings for both
customers.

The PARTITION BY clause used in ranking functions is used to divide a
result set into pieces so that rankings can be applied within each subset.
This is completely different from the PARTITION BY RANGE/HASH/LIST
clauses introduced in Chapter 10 for breaking a table or index into multiple
pieces.

13.2.1.1 Handling NULLs

All ranking functions allow the caller to specify where in the ranking order NULL values should
appear. This is accomplished by appending either NULLS FIRST or NULLS LAST after the
ORDER BY clause of the function, as in:

SELECT region_id, cust_nbr, SUM(tot_sales) cust_sales,

 RANK() OVER (ORDER BY SUM(tot_sales) DESC NULLS LAST) sales_rank
FROM orders

WHERE year = 2001

GROUP BY region_id, cust_nbr;

If omitted, NULL values will either appear last in ascending rankings or first in descending
rankings.

13.2.1.2 Top/Bottom-N queries

One of the most common uses of a ranked data set is to identify the top-N or bottom-N performers.
Since we can't call analytic functions from the WHERE or HAVING clauses, we are forced to
generate the rankings for all the rows and then use an outer query to filter out the unwanted
rankings. For example, the following query uses an inline view to identify the top-5 salespersons
for 2001:

SELECT s.name, sp.sp_sales total_sales
FROM salesperson s,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FROM salesperson s,
 (SELECT salesperson_id, SUM(tot_sales) sp_sales,
 RANK() OVER (ORDER BY SUM(tot_sales) DESC) sales_rank
 FROM orders
 WHERE year = 2001
 GROUP BY salesperson_id) sp
WHERE sp.sales_rank <= 5
 AND sp.salesperson_id = s.salesperson_id
ORDER BY sp.sales_rank;

NAME TOTAL_SALES

--- -----------

Jeff Blake 1927580

Sam Houseman 1814327

Mark Russell 1784596

John Boorman 1768813

Carl Isaacs 1761814

13.2.1.3 FIRST/LAST

While there is no function for returning only the top or bottom-N from a ranked result set, Oracle
provides functionality for identifying the first (top 1) or last (bottom 1) records in a ranked set. This
is useful for queries such as the following: "Find the regions with the best and worst total sales last
year." Unlike the top-5 salespeople example from the previous section, this query needs an
additional piece of information—the size of the result set—in order to answer the question.

Oracle 9i provides the ability to answer such queries efficiently using functions that rank the result
set based on a specified ordering, identify the row with the top or bottom ranking, and report on
any column available in the result set. These functions are composed of three parts:

1. An ORDER BY clause that specifies how to rank the result set.

2. The keywords FIRST and LAST to specify whether to use the top or bottom-ranked row.

3. An aggregate function (i.e., MIN, MAX, AVG, COUNT) used as a tiebreaker in case more
than one row of the result set tie for the FIRST or LAST spot in the ranking.

The following query uses the MIN aggregate function to find the regions that rank FIRST and LAST
by total sales:

SELECT
 MIN(region_id)
 KEEP (DENSE_RANK FIRST ORDER BY SUM(tot_sales) DESC) best_region,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 KEEP (DENSE_RANK FIRST ORDER BY SUM(tot_sales) DESC) best_region,
 MIN(region_id)
 KEEP (DENSE_RANK LAST ORDER BY SUM(tot_sales) DESC) worst_region
FROM orders
WHERE year = 2001
GROUP BY region_id;

BEST_REGION WORST_REGION

----------- ------------

 7 10

The use of the MIN function in the previous query is a bit confusing: it is only used if more than one
region ties for either first or last place in the ranking. If there were a tie, the row with the minimum
value for region_id would be chosen. To find out if a tie actually exists, we could call each function
twice using MIN for the first and MAX for the second, and see if they return the same results:

SELECT
 MIN(region_id)
 KEEP (DENSE_RANK FIRST ORDER BY SUM(tot_sales) DESC) min_best_region,
 MAX(region_id)
 KEEP (DENSE_RANK FIRST ORDER BY SUM(tot_sales) DESC) max_best_region,
 MIN(region_id)
 KEEP (DENSE_RANK LAST ORDER BY SUM(tot_sales) DESC) min_worst_region,
 MAX(region_id)
 KEEP (DENSE_RANK LAST ORDER BY SUM(tot_sales) DESC) max_worst_region
FROM orders
WHERE year = 2001
GROUP BY region_id;

MIN_BEST_REGION MAX_BEST_REGION MIN_WORST_REGION MAX_WORST_REGION

--------------- --------------- ---------------- ----------------

 7 7 10 10

In this case, there are no ties for either first or last place. Depending on the type of data you are
working with, using an aggregate function as a tiebreaker can be somewhat arbitrary.

13.2.2 NTILE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Another way rankings are commonly used is to generate buckets into which sets of rankings are
grouped. For example, we may want to find those customers whose total sales ranked in the top
25%. The following query uses the NTILE function to group the customers into four buckets (or
quartiles):

SELECT region_id, cust_nbr, SUM(tot_sales) cust_sales,
 NTILE(4) OVER (ORDER BY SUM(tot_sales) DESC) sales_quartile
FROM orders
WHERE year = 2001
GROUP BY region_id, cust_nbr
ORDER BY 4,3 DESC;

REGION_ID CUST_NBR CUST_SALES SALES_QUARTILE

---------- ---------- ---------- --------------

 9 25 2232703 1

 8 17 1944281 1

 7 14 1929774 1

 5 4 1878275 1

 10 26 1808949 1

 6 6 1788836 1

 8 20 1412006 1

 10 27 1322747 1

 7 13 1310434 2

 7 15 1255591 2

 8 18 1253840 2

 5 2 1224992 2

 9 23 1224992 2

 9 24 1224992 2

 10 30 1216858 2

 6 9 1208959 2

 6 10 1196748 3

 7 11 1190421 3

 7 12 1182275 3

 8 19 1174421 3

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 8 19 1174421 3

 5 5 1169926 3

 5 3 1161286 3

 5 1 1151162 3

 6 8 1141638 4

 8 16 1068467 4

 9 22 1036146 4

 9 21 1020541 4

 10 28 986964 4

 6 7 971585 4

 10 29 903383 4

The sales_quartile column in this query specifies NTILE(4) in order to create four buckets. The
NTILE function finds each row's place in the ranking, and then assigns each row to a bucket such
that every bucket contains the same number of rows. If the number of rows is not evenly divisible
by the number of buckets, then the extra rows are distributed so that the number of rows per
bucket differs by one at most. In the previous example, there are four buckets allocated for 30
rows, with buckets one and two containg eight rows each, and buckets three and four containing
seven rows each. This approach is referred to as equiheight buckets because each bucket
contains (optimally) the same number of rows.

Just like in the top-N query discussed earlier, we will need to wrap the query in an inline view if we
want to filter on the NTILE result:

SELECT r.name region, c.name customer, cs.cust_sales
FROM customer c, region r,
 (SELECT region_id, cust_nbr, SUM(tot_sales) cust_sales,
 NTILE(4) OVER (ORDER BY SUM(tot_sales) DESC) sales_quartile
 FROM orders
 WHERE year = 2001
 GROUP BY region_id, cust_nbr) cs
WHERE cs.sales_quartile = 1
 AND cs.cust_nbr = c.cust_nbr
 AND cs.region_id = r.region_id
ORDER BY cs.cust_sales DESC;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ORDER BY cs.cust_sales DESC;

REGION CUSTOMER CUST_SALES

-------------------- ------------------------------ ----------

NorthWest US Worcester Technologies 2232703

SouthWest US Evans Supply Corp. 1944281

SouthEast US Madden Industries 1929774

New England Flowtech Inc. 1878275

Central US Alpha Technologies 1808949

Mid-Atlantic Spartan Industries 1788836

SouthWest US Malden Labs 1412006

Central US Phillips Labs 1322747

The outer query filters on sales_quartile = 1, which removes all rows not in the top 25% of sales,
and then joins the region and customer dimensions to generate the final results.

13.2.3 WIDTH_BUCKET

Similar to the NTILE function, the WIDTH_BUCKET function groups rows of the result set into
buckets. Unlike NTILE, however, the WIDTH_BUCKET function attempts to create equiwidth
buckets, meaning that the range of values is evenly distributed across the buckets. If your data
were distributed across a bell curve, therefore, you could expect the buckets representing the low
and high ranges of the bell curve to contain few records, whereas the buckets representing the
middle ranges would contain many records.

New in Oracle9i, WIDTH_BUCKET can operate on numeric or date types, and takes the following
four parameters:

1. The expression that generates the buckets.

2. The value used as the start of the range for bucket #1.

3. The value used as the end of the range for bucket #N.

4. The number of buckets to create (N).

WIDTH_BUCKET uses the values of the second, third, and fourth parameters to generate N
buckets containing comparable ranges. If the expression yields values that fall outside the range
specified by the second and third parameters, the WIDTH_BUCKET function will generate two
additional buckets, numbered 0 and N+1, into which the outliers are placed. If we want to work with
the entire result set, we need to make sure our values for the second and third parameters
completely enclose the range of values in the result set. However, if we only wish to work with a
subset of the data, we can specify values for the second and third parameters that enclose the
desired range, and any rows falling outside the range will be placeds into buckets 0 and N+1.

To illustrate, we will use the NTILE example from earlier to generate three buckets for the total
sales per customer:

SELECT region_id, cust_nbr,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT region_id, cust_nbr,
 SUM(tot_sales) cust_sales,
 WIDTH_BUCKET(SUM(tot_sales), 1, 3000000, 3) sales_buckets
FROM orders
WHERE year = 2001
GROUP BY region_id, cust_nbr
ORDER BY 3;

REGION_ID CUST_NBR CUST_SALES SALES_BUCKETS

---------- ---------- ---------- -------------

 10 29 903383 1

 6 7 971585 1

 10 28 986964 1

 9 21 1020541 2

 9 22 1036146 2

 8 16 1068467 2

 6 8 1141638 2

 5 1 1151162 2

 5 3 1161286 2

 5 5 1169926 2

 8 19 1174421 2

 7 12 1182275 2

 7 11 1190421 2

 6 10 1196748 2

 6 9 1208959 2

 10 30 1216858 2

 5 2 1224992 2

 9 24 1224992 2

 9 23 1224992 2

 8 18 1253840 2

 7 15 1255591 2

 7 13 1310434 2

 10 27 1322747 2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 10 27 1322747 2

 8 20 1412006 2

 6 6 1788836 2

 10 26 1808949 2

 5 4 1878275 2

 7 14 1929774 2

 8 17 1944281 2

 9 25 2232703 3

Based on these parameters, the WIDTH_BUCKET function generates three buckets; the first
bucket starts at 1, and the third bucket has an upper range of 3,000,000. Since there are three
buckets, the ranges for each bucket will be 1 to 1,000,000, 1,000,0001 to 2,000,000, and
2,000,0001 to 3,000,000. When the rows are placed in the appropriate bucket, we find that three
rows fall into bucket #1, a single row falls in bucket #3, and the remaining 26 rows fall into the
second bucket.

The values 1 and 3,000,000 were chosen to guarantee that all rows in the result set would be
placed into one of the three buckets. If we want to generate buckets only for rows that have
aggregate sales between $1,000,000 and $2,000,000, the WIDTH_BUCKET function will place the
remaining rows in the 0th and 4th buckets:

SELECT region_id, cust_nbr,
 SUM(tot_sales) cust_sales,
 WIDTH_BUCKET(SUM(tot_sales), 1000000, 2000000, 3) sales_buckets
FROM orders
WHERE year = 2001
GROUP BY region_id, cust_nbr
ORDER BY 3;

REGION_ID CUST_NBR CUST_SALES SALES_BUCKETS

---------- ---------- ---------- -------------

 10 29 903383 0

 6 7 971585 0

 10 28 986964 0

 9 21 1020541 1

 9 22 1036146 1

 8 16 1068467 1

 6 8 1141638 1

 5 1 1151162 1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 5 1 1151162 1

 5 3 1161286 1

 5 5 1169926 1

 8 19 1174421 1

 7 12 1182275 1

 7 11 1190421 1

 6 10 1196748 1

 6 9 1208959 1

 10 30 1216858 1

 5 2 1224992 1

 9 24 1224992 1

 9 23 1224992 1

 8 18 1253840 1

 7 15 1255591 1

 7 13 1310434 1

 10 27 1322747 1

 8 20 1412006 2

 6 6 1788836 3

 10 26 1808949 3

 5 4 1878275 3

 7 14 1929774 3

 8 17 1944281 3

 9 25 2232703 4

Keep in mind that the WIDTH_BUCKET function does not remove rows from the result set that do
not lie within the specified range; rather, they are placed into special buckets that your query can
either utilize or ignore as needed.

13.2.4 CUME_DIST and PERCENT_RANK

The final two ranking functions, CUME_DIST and PERCENT_RANK, use the rank of a particular
row to calculate additional information. The CUME_DIST function (short for Cumulative
Distribution) calculates the ratio of the number of rows that have a lesser or equal ranking to the
total number of rows in the partition. The PERCENT_RANK function calculates the ratio of a row's
ranking to the number of rows in the partition using the formula:

(RRP -- 1) / (NRP -- 1)

where:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RRP

Stands for "rank of row in partition."

NRP

Stands for "number of rows in partition."

Both calculations utilize DENSE_RANK for their rankings and can be specified to be in ascending
or descending order. The following query demonstrates the use of these two functions (both
specifying descending order) with our customer yearly sales query:

SELECT region_id, cust_nbr,
 SUM(tot_sales) cust_sales,
 CUME_DIST() OVER (ORDER BY SUM(tot_sales) DESC) sales_cume_dist,
 PERCENT_RANK() OVER (ORDER BY SUM(tot_sales) DESC) sales_percent_rank
FROM orders
WHERE year = 2001
GROUP BY region_id, cust_nbr
ORDER BY 3 DESC;

REGION_ID CUST_NBR CUST_SALES SALES_CUME_DIST SALES_PERCENT_RANK

---------- ---------- ---------- --------------- ------------------

 9 25 2232703 .033333333 0

 8 17 1944281 .066666667 .034482759

 7 14 1929774 .1 .068965517

 5 4 1878275 .133333333 .103448276

 10 26 1808949 .166666667 .137931034

 6 6 1788836 .2 .172413793

 8 20 1412006 .233333333 .206896552

 10 27 1322747 .266666667 .24137931

 7 13 1310434 .3 .275862069

 7 15 1255591 .333333333 .310344828

 8 18 1253840 .366666667 .344827586

 5 2 1224992 .466666667 .379310345
 9 23 1224992 .466666667 .379310345
 9 24 1224992 .466666667 .379310345

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 9 24 1224992 .466666667 .379310345
 10 30 1216858 .5 .482758621

 6 9 1208959 .533333333 .517241379

 6 10 1196748 .566666667 .551724138

 7 11 1190421 .6 .586206897

 7 12 1182275 .633333333 .620689655

 8 19 1174421 .666666667 .655172414

 5 5 1169926 .7 .689655172

 5 3 1161286 .733333333 .724137931

 5 1 1151162 .766666667 .75862069

 6 8 1141638 .8 .793103448

 8 16 1068467 .833333333 .827586207

 9 22 1036146 .866666667 .862068966

 9 21 1020541 .9 .896551724

 10 28 986964 .933333333 .931034483

 6 7 971585 .966666667 .965517241

 10 29 903383 1 1

Let's walk through a couple of calculations for customer number 1 in the previous result set. With
total sales of $1,151,162, customer number 1 ranks 23rd in the set of 30 customers in descending
order of sales. Since there are a total of 30 rows, the CUME_DIST is equal to 23/30, or
.766666667. The PERCENT_RANK function yields (23 - 1) / (30 - 1) = .75862069. It should come
as no surprise that both functions return identical values for the rows that have identical sales
totals, since the calculations are based on rank, which is identical for all three rows.

13.2.5 Hypothetical Functions

For some types of analysis, determining what might have happened is more revealing than
knowing what really happened. With the Oracle9i release, Oracle provides special versions of
RANK, DENSE_RANK, CUME_DIST, and PERCENT_RANK that allow rankings and distributions
to be calculated for hypothetical data, allowing the user to see what would have happened if a
specific value (or set of values) was included in a data set.

In order to illustrate this concept, we will first rank our customers by total sales for 2001, and then
we will see where a hypothetical sales figure would fall in the ranking. Here is the query that
generates the rankings and distributions:

SELECT cust_nbr, SUM(tot_sales) cust_sales,
 RANK() OVER (ORDER BY SUM(tot_sales) DESC) rank,
 DENSE_RANK() OVER (ORDER BY SUM(tot_sales) DESC) dense_rank,
 CUME_DIST() OVER (ORDER BY SUM(tot_sales) DESC) cume_dist,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 CUME_DIST() OVER (ORDER BY SUM(tot_sales) DESC) cume_dist,
 PERCENT_RANK() OVER (ORDER BY SUM(tot_sales) DESC) percent_rank
FROM orders
WHERE year = 2001
GROUP BY cust_nbr
ORDER BY 3;

 CUST_NBR CUST_SALES RANK DENSE_RANK CUME_DIST PERCENT_RANK

---------- ---------- ---------- ---------- ---------- ------------

 25 2232703 1 1 .033333333 0

 17 1944281 2 2 .066666667 .034482759

 14 1929774 3 3 .1 .068965517

 4 1878275 4 4 .133333333 .103448276

 26 1808949 5 5 .166666667 .137931034

 6 1788836 6 6 .2 .172413793

 20 1412006 7 7 .233333333 .206896552

 27 1322747 8 8 .266666667 .24137931

 13 1310434 9 9 .3 .275862069

 15 1255591 10 10 .333333333 .310344828

 18 1253840 11 11 .366666667 .344827586

 2 1224992 12 12 .466666667 .379310345

 23 1224992 12 12 .466666667 .379310345

 24 1224992 12 12 .466666667 .379310345

 30 1216858 15 13 .5 .482758621

 9 1208959 16 14 .533333333 .517241379

 10 1196748 17 15 .566666667 .551724138

 11 1190421 18 16 .6 .586206897

 12 1182275 19 17 .633333333 .620689655

 19 1174421 20 18 .666666667 .655172414

 5 1169926 21 19 .7 .689655172

 3 1161286 22 20 .733333333 .724137931

 1 1151162 23 21 .766666667 .75862069

 8 1141638 24 22 .8 .793103448

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 8 1141638 24 22 .8 .793103448

 16 1068467 25 23 .833333333 .827586207

 22 1036146 26 24 .866666667 .862068966

 21 1020541 27 25 .9 .896551724

 28 986964 28 26 .933333333 .931034483

 7 971585 29 27 .966666667 .965517241

 29 903383 30 28 1 1

Now let's see where a customer with an even million dollars of sales would have ranked:

SELECT
 RANK(1000000) WITHIN GROUP
 (ORDER BY SUM(tot_sales) DESC) hyp_rank,
 DENSE_RANK(1000000) WITHIN GROUP
 (ORDER BY SUM(tot_sales) DESC) hyp_dense_rank,
 CUME_DIST(1000000) WITHIN GROUP
 (ORDER BY SUM(tot_sales) DESC) hyp_cume_dist,
 PERCENT_RANK(1000000) WITHIN GROUP
 (ORDER BY SUM(tot_sales) DESC) hyp_percent_rank
FROM orders
WHERE year = 2001
GROUP BY cust_nbr;

 HYP_RANK HYP_DENSE_RANK HYP_CUME_DIST HYP_PERCENT_RANK

---------- -------------- ------------- ----------------

 28 26 .903225806 .9

The WITHIN GROUP clause has the effect of injecting a fictitious row into the result set before
determining the rankings. One possible use of this functionality would be to see how actual sales
compare to sales targets.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.3 Windowing Functions

The ranking functions described thus far are quite useful when comparing items within a fixed
window of time, such as "last year" or "second quarter." But what if we want to perform
computations using a window that slides as we progress through the data set? Oracle's windowing
functions allow aggregates to be calculated for each row in a result set based on a specified
window. The aggregation window can be defined in one of three ways:

By specifying a set of rows: "From the current row to the end of the partition."

By specifying a time interval: "For the 30 days preceeding the transaction date."

By specifying a range of values: "All rows having a transaction amount within 5% of the
current row's transaction amount."

To get started, we generate a window that fills the entire partition, and then we see how the
window can be detached from one or both ends of the partition so that it floats with the current row.
All of the examples will be based on the following query, which calculates total monthly sales for
the Mid-Atlantic region:

SELECT month, SUM(tot_sales) monthly_sales
FROM orders
WHERE year = 2001
 AND region_id = 6
GROUP BY month
ORDER BY 1month;

 MONTH MONTHLY_SALES

---------- -------------

 1 610697

 2 428676

 3 637031

 4 541146

 5 592935

 6 501485

 7 606914

 8 460520

 9 392898

 10 510117

 11 532889

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 11 532889

 12 492458

First, we will sum the monthly sales for the entire result set by specifying an "unbounded" window.
Note the ROWS BETWEEN clause in the following example:

SELECT month, SUM(tot_sales) monthly_sales,
 SUM(SUM(tot_sales)) OVER (ORDER BY month
 ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) total_sales
FROM orders
WHERE year = 2001
 AND region_id = 6
GROUP BY month
ORDER BY month;

 MONTH MONTHLY_SALES TOTAL_SALES

---------- ------------- -----------

 1 610697 6307766

 2 428676 6307766

 3 637031 6307766

 4 541146 6307766

 5 592935 6307766

 6 501485 6307766

 7 606914 6307766

 8 460520 6307766

 9 392898 6307766

 10 510117 6307766

 11 532889 6307766

 12 492458 6307766

Each time the function executes, it sums the monthly sales from months 1 through 12; thus, the
same calculation is being performed 12 times. This is a rather inefficient way to generate the yearly
sales total (see Section 13.4 later in this chapter for a better method), but it should give you an
idea of the syntax for building an aggregation window. In the next query, we will create a window
that spans from the top of the partition to the current row. The function identifies the month that
has the maximum sales, up to and including the current month:

SELECT month, SUM(tot_sales) monthly_sales,
 MAX(SUM(tot_sales)) OVER (ORDER BY month

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 MAX(SUM(tot_sales)) OVER (ORDER BY month
 ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) max_preceeding
FROM orders
WHERE year = 2001
 AND region_id = 6
GROUP BY month
ORDER BY month;

 MONTH MONTHLY_SALES MAX_PRECEEDING

---------- ------------- --------------

 1 610697 610697

 2 428676 610697

 3 637031 637031

 4 541146 637031

 5 592935 637031

 6 501485 637031

 7 606914 637031

 8 460520 637031

 9 392898 637031

 10 510117 637031

 11 532889 637031

 12 492458 637031

Unlike the first query, which has a window size fixed at 12 rows, this query's aggregation window
grows from a single row for month 1 to 12 rows for month 12. The keywords CURRENT ROW are
used to indicate that the window should end at the current row being inspected by the function. If
we replace MAX in the previous query with SUM, we can calculate a running total:

SELECT month, SUM(tot_sales) monthly_sales,
 SUM(SUM(tot_sales)) OVER (ORDER BY month
 ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) max_preceeding
FROM orders
WHERE year = 2001
 AND region_id = 6
GROUP BY month

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GROUP BY month
ORDER BY month;

 MONTH MONTHLY_SALES MAX_PRECEEDING

---------- ------------- --------------

 1 610697 610697

 2 428676 1039373

 3 637031 1676404

 4 541146 2217550

 5 592935 2810485

 6 501485 3311970

 7 606914 3918884

 8 460520 4379404

 9 392898 4772302

 10 510117 5282419

 11 532889 5815308

 12 492458 6307766

We have now seen examples using windows that are fixed at one or both ends. In the next query,
we will define a window that floats freely with each row:

SELECT month, SUM(tot_sales) monthly_sales,
 AVG(SUM(tot_sales)) OVER (ORDER BY month
 ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) rolling_avg
FROM orders
WHERE year = 2001
 AND region_id = 6
GROUP BY month
ORDER BY month;

 MONTH MONTHLY_SALES ROLLING_AVG

---------- ------------- -----------

 1 610697 519686.5

 2 428676 558801.333

 3 637031 535617.667

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 3 637031 535617.667

 4 541146 590370.667

 5 592935 545188.667

 6 501485 567111.333

 7 606914 522973

 8 460520 486777.333

 9 392898 454511.667

 10 510117 478634.667

 11 532889 511821.333

 12 492458 512673.5

For each of the 12 rows, the function calculates the average sales of the current month, the
previous month, and the following month. The value of the ROLLING_AVG column is therefore the
average sales within a three month floating window centered on the current month.[2]

[2] Months 1 and 12 are calculated using a 2-month window, since there is no previous month for month 1 or following
month for month 12.

13.3.1 FIRST_VALUE and LAST_VALUE

Oracle provides two additional aggregate functions, called FIRST_VALUE and LAST_VALUE, that
can be used with windowing functions to identify the values of the first and last values in the
window. In the case of the 3-month rolling average query shown previously, we could display the
values of all three months along with the average of the three, as in:

SELECT month,
 FIRST_VALUE(SUM(tot_sales)) OVER (ORDER BY month
 ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) prev_month,
 SUM(tot_sales) monthly_sales,
 LAST_VALUE(SUM(tot_sales)) OVER (ORDER BY month
 ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) next_month,
 AVG(SUM(tot_sales)) OVER (ORDER BY month
 ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) rolling_avg
FROM orders
WHERE year = 2001
 AND region_id = 6
GROUP BY month
ORDER BY month;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ORDER BY month;

 MONTH PREV_MONTH MONTHLY_SALES NEXT_MONTH ROLLING_AVG

---------- ---------- ------------- ---------- -----------

 1 610697 610697 428676 519686.5

 2 610697 428676 637031 558801.333

 3 428676 637031 541146 535617.667

 4 637031 541146 592935 590370.667

 5 541146 592935 501485 545188.667

 6 592935 501485 606914 567111.333

 7 501485 606914 460520 522973

 8 606914 460520 392898 486777.333

 9 460520 392898 510117 454511.667

 10 392898 510117 532889 478634.667

 11 510117 532889 492458 511821.333

 12 532889 492458 492458 512673.5

These functions are useful for queries that compare each value to the first or last value in the
period, such as: "How did each month's sales compare to the first month?"

13.3.2 LAG/LEAD Functions

While not technically windowing functions, the LAG and LEAD functions are included here because
they allow rows to be referenced by their position relative to the current row, much like the
PRECEDING and FOLLOWING clauses within windowing functions. LAG and LEAD are useful for
comparing one row of a result set with another row of the same result set. For example, the query
"Compute the total sales per month for the Mid-Atlantic region, including the percent change from
the previous month" requires data from both the current and preceding rows in order to calculate
the answer. This is, in effect, a two row window, but the offset from the current row can be
specified as one or more rows, making LAG and LEAD act like specialized windowing functions
where only the outer edges of the window are utilized.

Here is the SQL that uses the LAG function to generate the data needed to answer the question
posed in the previous paragraph:

SELECT month, SUM(tot_sales) monthly_sales,
 LAG(SUM(tot_sales), 1) OVER (ORDER BY month) prev_month_sales
FROM orders
WHERE year = 2001
 AND region_id = 6
GROUP BY month

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GROUP BY month
ORDER BY month;

 MONTH MONTHLY_SALES PREV_MONTH_SALES

---------- ------------- ----------------

 1 610697

 2 428676 610697

 3 637031 428676

 4 541146 637031

 5 592935 541146

 6 501485 592935

 7 606914 501485

 8 460520 606914

 9 392898 460520

 10 510117 392898

 11 532889 510117

 12 492458 532889

As we might expect, the LAG value for month 1 is NULL, since there is no preceding month. This
would also be the case for the LEAD value for month 12. Take this into account when performing
calculations that utilize the results of the LAG or LEAD functions.

The next query utilizes the output from the previous query to generate the percentage difference
from month to month. Note how the prev_month_sales column is wrapped in the NVL function so
that month 1 won't generate a NULL value for the percentage change:

SELECT months.month month, months.monthly_sales monthly_sales,
 ROUND((months.monthly_sales -- NVL(months.prev_month_sales,
 months.monthly_sales)) /
 NVL(months.prev_month_sales, months.monthly_sales),
 3) * 100 percent_change
FROM
 (SELECT month, SUM(tot_sales) monthly_sales,
 LAG(SUM(tot_sales), 1) OVER (ORDER BY month) prev_month_sales
 FROM orders
 WHERE year = 2001
 AND region_id = 6

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 AND region_id = 6
 GROUP BY month) months
ORDER BY month;

 MONTH MONTHLY_SALES PERCENT_CHANGE

---------- ------------- --------------

 1 610697 0

 2 428676 -29.8

 3 637031 48.6

 4 541146 -15.1

 5 592935 9.6

 6 501485 -15.4

 7 606914 21

 8 460520 -24.1

 9 392898 -14.7

 10 510117 29.8

 11 532889 4.5

 12 492458 -7.6

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.4 Reporting Functions

Similar to the windowing functions described earlier, reporting functions allow the execution of various
aggregate functions (MIN, MAX, SUM, COUNT, AVG, etc.) against a result set. Unlike windowing
functions, however, the reporting functions cannot specify localized windows and thus generate the
same result for the entire partition (or the entire result set, if no partitions are specified). Therefore,
anything that can be accomplished using a reporting function could also be accomplished using a
windowing function with an unbounded window, although it would generally be more efficient to use
the reporting function.

Earlier in the chapter, we used a windowing function with an unbounded reporting window to generate
the total sales for the 12 months of 2001:

SELECT month,
 SUM(tot_sales) monthly_sales,
 SUM(SUM(tot_sales)) OVER (ORDER BY month
 ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) total_sales
FROM orders
WHERE year = 2001
 AND region_id = 6
GROUP BY month
ORDER BY month;

 MONTH MONTHLY_SALES TOTAL_SALES

---------- ------------- -----------

 1 610697 6307766

 2 428676 6307766

 3 637031 6307766

 4 541146 6307766

 5 592935 6307766

 6 501485 6307766

 7 606914 6307766

 8 460520 6307766

 9 392898 6307766

 10 510117 6307766

 11 532889 6307766

 12 492458 6307766

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 12 492458 6307766

The next query adds a reporting function to generate the same results:

SELECT month,
 SUM(tot_sales) monthly_sales,
 SUM(SUM(tot_sales)) OVER (ORDER BY month
 ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) window_sales,
 SUM(SUM(tot_sales)) OVER () reporting_sales
FROM orders
WHERE year = 2001
 AND region_id = 6
GROUP BY month
ORDER BY month;

 MONTH MONTHLY_SALES WINDOW_SALES REPORTING_SALES

---------- ------------- ------------ ---------------

 1 610697 6307766 6307766

 2 428676 6307766 6307766

 3 637031 6307766 6307766

 4 541146 6307766 6307766

 5 592935 6307766 6307766

 6 501485 6307766 6307766

 7 606914 6307766 6307766

 8 460520 6307766 6307766

 9 392898 6307766 6307766

 10 510117 6307766 6307766

 11 532889 6307766 6307766

 12 492458 6307766 6307766

The empty parentheses after the OVER clause in the reporting_sales column indicates that the entire
result set should be included in the sum, which has the same effect as using an unbounded window
function. Hopefully, you will agree that the reporting function is easier to understand than the
unbounded window function.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Reporting functions are useful when we need both detail and aggregate data (or different aggregation
levels) to answer a business query. For example, the query "Show the monthly sales totals for 2001
along with each month's percentage of yearly sales" requires the detail rows to be aggregated first to
the month level, and then to the year level in order to answer the question. Rather than computing
both aggregations from the detail rows, we can use the SUM function with a GROUP BY clause to
aggregate to the month level, and then use a reporting function to aggregate the monthly totals, as in:

SELECT month,
 SUM(tot_sales) monthly_sales,
 SUM(SUM(tot_sales)) OVER () yearly_sales
FROM orders
WHERE year = 2001
GROUP BY month
ORDER BY month;

 MONTH MONTHLY_SALES YEARLY_SALES

---------- ------------- ------------

 1 3028325 39593192

 2 3289336 39593192

 3 3411024 39593192

 4 3436482 39593192

 5 3749264 39593192

 6 3204730 39593192

 7 3233532 39593192

 8 3081290 39593192

 9 3388292 39593192

 10 3279637 39593192

 11 3167858 39593192

 12 3323422 39593192

We would then simply divide MONTHLY_SALES by YEARLY_SALES to compute the requested
percentage (see Section 13.4.2 later in the chapter).

13.4.1 Report Partitions

Like ranking functions, reporting functions can include PARTITION BY clauses to split the result set

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Like ranking functions, reporting functions can include PARTITION BY clauses to split the result set
into multiple pieces, allowing multiple aggregations to be computed across different subsets of the
result set. The following query generates total sales per salesperson per region along with the total
regional sales for comparison:

SELECT region_id, salesperson_id,
 SUM(tot_sales) sp_sales,
 SUM(SUM(tot_sales)) OVER (PARTITION BY region_id) region_sales
FROM orders
WHERE year = 2001
GROUP BY region_id, salesperson_id
ORDER BY region_id, salesperson_id;

REGION_ID SALESPERSON_ID SP_SALES REGION_SALES

---------- -------------- ---------- ------------

 5 1 1927580 6585641

 5 2 1461898 6585641

 5 3 1501039 6585641

 5 4 1695124 6585641

 6 5 1688252 6307766

 6 6 1392648 6307766

 6 7 1458053 6307766

 6 8 1768813 6307766

 7 9 1735575 6868495

 7 10 1723305 6868495

 7 11 1737093 6868495

 7 12 1672522 6868495

 8 13 1516776 6853015

 8 14 1814327 6853015

 8 15 1760098 6853015

 8 16 1761814 6853015

 9 17 1710831 6739374

 9 18 1625456 6739374

 9 19 1645204 6739374

 9 20 1757883 6739374

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 9 20 1757883 6739374

 10 21 1542152 6238901

 10 22 1468316 6238901

 10 23 1443837 6238901

 10 24 1784596 6238901

The value for the REGION_SALES column is the same for all salespeople in the same region. In the
next section, we will see two different approaches for using this information to generate percentage
calculations.

13.4.2 RATIO_TO_REPORT

One of the more common uses of reporting functions is to generate the value of the denominator for
performance calculations. With the query from the previous section, for example, the next logical step
would be to divide each salesperson's total sales (SP_SALES) by the total region sales
(REGION_SALES) to determine what ratio of the total region sales can be attributed to each
salesperson. One option is to use the reporting function as the denominator in the percentage
calculation, as in:

SELECT region_id, salesperson_id,
 SUM(tot_sales) sp_sales,
 ROUND(SUM(tot_sales) /
 SUM(SUM(tot_sales)) OVER (PARTITION BY region_id),
 2) percent_of_region
 FROM orders
 WHERE year = 2001
 GROUP BY region_id, salesperson_id
ORDER BY region_id, salesperson_id1,2;

REGION_ID SALESPERSON_ID SP_SALES PERCENT_OF_REGION

---------- -------------- ---------- -----------------

 5 1 1927580 .29

 5 2 1461898 .22

 5 3 1501039 .23

 5 4 1695124 .26

 6 5 1688252 .27

 6 6 1392648 .22

 6 7 1458053 .23

 6 8 1768813 .28

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 6 8 1768813 .28

 7 9 1735575 .25

 7 10 1723305 .25

 7 11 1737093 .25

 7 12 1672522 .24

 8 13 1516776 .22

 8 14 1814327 .26

 8 15 1760098 .26

 8 16 1761814 .26

 9 17 1710831 .25

 9 18 1625456 .24

 9 19 1645204 .24

 9 20 1757883 .26

 10 21 1542152 .25

 10 22 1468316 .24

 10 23 1443837 .23

 10 24 1784596 .29

Because this is such a common operation, however, Oracle has spared us the trouble by including
the RATIO_TO_REPORT function. The RATIO_TO_REPORT function allows us to calculate each
row's contribution to either the entire result set, or some subset of the result set if the PARTITION BY
clause is included. The next query uses RATIO_TO_REPORT to generate the percentage
contribution of each salesperson to her region's total sales:

SELECT region_id, salesperson_id,
 SUM(tot_sales) sp_sales,
 ROUND(RATIO_TO_REPORT(SUM(tot_sales))
 OVER (PARTITION BY region_id), 2) sp_ratio
FROM orders
WHERE year = 2001
GROUP BY region_id, salesperson_id
ORDER BY 1,2;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ORDER BY 1,2;

REGION_ID SALESPERSON_ID SP_SALES SP_RATIO

---------- -------------- ---------- ----------

 5 1 1927580 .29

 5 2 1461898 .22

 5 3 1501039 .23

 5 4 1695124 .26

 6 5 1688252 .27

 6 6 1392648 .22

 6 7 1458053 .23

 6 8 1768813 .28

 7 9 1735575 .25

 7 10 1723305 .25

 7 11 1737093 .25

 7 12 1672522 .24

 8 13 1516776 .22

 8 14 1814327 .26

 8 15 1760098 .26

 8 16 1761814 .26

 9 17 1710831 .25

 9 18 1625456 .24

 9 19 1645204 .24

 9 20 1757883 .26

 10 21 1542152 .25

 10 22 1468316 .24

 10 23 1443837 .23

 10 24 1784596 .29

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.5 Summary

We have covered a lot of ground in this chapter, so don't feel bad if it takes a couple of passes to
get a feel for all of the different analytic functions and how they can be applied. While there are
many different functions, it is easier to digest if you concentrate on one category at a time
(Ranking, Windowing, Reporting). Those who have worked with Oracle for many years are
probably chomping at the bit to give these functions a try. Along with being compact and efficient,
Oracle's analytic functions keep analytical calculations where they belong—in the database server
—instead of relying on procedural languages or spreadsheet macros to finish the job.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 14. SQL Best Practices
Writing efficient SQL statements requires experience. You can write a SQL query in many
different ways, each giving the same result, but one may be a hundred times slower than another.
In this chapter, we discuss some tips and techniques that will help you write efficient SQL
statements.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

14.1 Know When to Use Specific Constructs

Depending on the circumstances, certain SQL constructs are preferable to others. For example, use of the
EXISTS predicate is often preferable to IN. The same is not true for NOT EXISTS versus NOT IN. The next
sections discuss the usage of such constructs.

14.1.1 EXISTS Is Preferable to DISTINCT

The DISTINCT keyword used in a SELECT clause eliminates duplicate rows in the result set. To eliminate those
duplicates, Oracle performs a sort, and that sort requires time and disk space. Therefore, avoid using DISTINCT
if you can tolerate having duplicate rows returned by a query. If you can't tolerate the duplicate rows, or your
application can't handle them, use EXISTS in place of DISTINCT.

For example, assume you are trying to find the names of customers who have orders. Your query has to be
based on two tables: CUSTOMER and CUST_ORDER. Using DISTINCT, your query would be written as
follows:

SELECT DISTINCT C.CUST_NBR, C.NAME

FROM CUSTOMER C, CUST_ORDER O

WHERE C.CUST_NBR = O.CUST_NBR;

The corresponding execution plan for this query is as follows. Note the SORT operation, which is a result of
DISTINCT being used.

Query Plan

SELECT STATEMENT Cost = 3056

 SORT UNIQUE

 MERGE JOIN

 INDEX FULL SCAN IND_ORD_CUST_NBR

 SORT JOIN

 TABLE ACCESS FULL CUSTOMER

To use EXISTS, the query needs to be rewritten as follows:

SELECT C.CUST_NBR, C.NAME

FROM CUSTOMER C

WHERE EXISTS (SELECT 1 FROM CUST_ORDER O WHERE C.CUST_NBR = O.CUST_NBR);

Here is the execution plan for the EXISTS version of the query. Look at the cost of this query versus the earlier
DISTINCT query, and notice the performance improvement.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Query Plan

SELECT STATEMENT Cost = 320

 FILTER

 TABLE ACCESS FULL CUSTOMER

 INDEX RANGE SCAN IND_ORD_CUST_NBR

The version of the query using EXISTS is less than one-ninth as costly as the version using DISTINCT. This is
because the sort has been avoided.

14.1.2 EXISTS Versus IN

Many SQL books discuss the fact that NOT EXISTS performs better than NOT IN. We have found that with
Oracle8i, the EXPLAIN PLAN generated by NOT EXISTS is exactly the same as that generated by NOT IN, and
the performance for the two predicates is the same.

However, the comparison between EXISTS and IN is a different story. We've found that EXISTS often performs
better than IN. Let's look at an example that demonstrates this. The following query uses IN to delete the orders
for customers in region 5:

DELETE FROM CUST_ORDER

WHERE CUST_NBR IN

(SELECT CUST_NBR FROM CUSTOMER

WHERE REGION_ID = 5);

The execution plan for this query is as follows:

Query Plan

DELETE STATEMENT Cost = 3

 DELETE CUST_ORDER

 HASH JOIN

 TABLE ACCESS FULL CUST_ORDER

 TABLE ACCESS FULL CUSTOMER

Now, let's look at that same query, written using EXISTS:

DELETE FROM CUST_ORDER

WHERE EXISTS

(SELECT CUST_NBR FROM CUSTOMER

WHERE CUST_ORDER.CUST_NBR = CUSTOMER.CUST_NBR

AND REGION_ID = 5);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AND REGION_ID = 5);

The execution plan for the EXISTS version of the query is:

Query Plan

--

DELETE STATEMENT Cost = 1

 DELETE CUST_ORDER

 FILTER

 TABLE ACCESS FULL CUST_ORDER

 TABLE ACCESS BY INDEX ROWID CUSTOMER

 INDEX UNIQUE SCAN CUSTOMER_PK

Notice the cost difference between the two queries. The IN version of the query has a cost of 3, while the
EXISTS version of the query has a cost of only 1. When the EXISTS clause is used, the execution plan
by the outer table, whereas when the IN clause is used, the execution plan is driven by the table in the subquery.
The EXISTS query will almost always be faster than the IN query, except for cases when the table in the
subquery has very few rows as compared to the outer table.

14.1.3 WHERE Versus HAVING

We discussed the GROUP BY and HAVING clauses in Chapter 4. Sometimes, when writing a GROUP BY
query, you have a condition that you can specify in either the WHERE clause or the HAVING clause. In
situations where you have a choice, you'll always get better performance if you specify the condition in the
WHERE clause. The reason is that it's less expensive to eliminate rows before they are summarized than it is to
eliminate results after summarization.

Let's look at an example illustrating the advantage of WHERE over HAVING. Here's a query with the HAVING
clause that reports the number of orders in the year 2000:

SELECT YEAR, COUNT(*)
FROM ORDERS
GROUP BY YEAR
HAVING YEAR = 2000;

 YEAR COUNT(*)

---------- ----------

 2000 720

The execution plan for this query is as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Query Plan

SELECT STATEMENT Cost = 6

 FILTER

 SORT GROUP BY

 INDEX FAST FULL SCAN ORDERS_PK

Now, look at that same query, but with the year restriction in the WHERE clause:

SELECT YEAR, COUNT(*)
FROM ORDERS
WHERE YEAR = 2000
GROUP BY YEAR;

 YEAR COUNT(*)

---------- ----------

 2000 720

The execution plan for this version of the query is:

Query Plan

SELECT STATEMENT Cost = 2

 SORT GROUP BY NOSORT

 INDEX FAST FULL SCAN ORDERS_PK

With the HAVING clause, the query performs the group operation first, and then filters the groups for the
condition specified. The WHERE clause version of the query filters the rows before performing the group
operation. The result of filtering with the WHERE clause is that there are fewer rows to summarize, and
consequently the query performs better.

However, you should note that not all types of filtering can be achieved using the WHERE clause. Sometimes,
you may need to summarize the data first, and then filter the summarized data based upon the summarized
values. In such situations, you have to filter using the HAVING clause, because only the HAVING clause can
"see" summarized values. Moreover, there are situations when you may need to use the WHERE clause and
HAVING clause together in a query to filter the results the way you want. For details, see Chapter 4.

14.1.4 UNION Versus UNION ALL

We discussed UNION and UNION ALL in Chapter 6. UNION ALL combines the results of two SELECT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We discussed UNION and UNION ALL in Chapter 6. UNION ALL combines the results of two SELECT
statements. UNION combines the results of two SELECT statements, and then returns only distinct rows from
the combination; duplicates are eliminated. It is, therefore, obvious that to remove the duplicates, UNION
performs one extra step than UNION ALL. This extra step is a sort, which is costly in terms of performance.
Therefore, whenever your application can handle duplicates or you are certain that no duplicates will result,
consider using UNION ALL instead of UNION.

Let's look an example to understand this issue better. The following query uses UNION to return a list of orders
where the sale price exceeds $50.00 or where the customer is located in region 5:

SELECT ORDER_NBR, CUST_NBR FROM CUST_ORDER WHERE SALE_PRICE > 50
UNION
SELECT ORDER_NBR, CUST_NBR FROM CUST_ORDER
WHERE CUST_NBR IN
(SELECT CUST_NBR FROM CUSTOMER WHERE REGION_ID = 5);

 ORDER_NBR CUST_NBR

---------- ----------

 1000 1

 1001 1

 1002 5

 1003 4

 1004 4

 1005 8

 1006 1

 1007 5

 1008 5

 1009 1

 1011 1

 1012 1

 1015 5

 1017 4

 1019 4

 1021 8

 1023 1

 1025 5

 1027 5

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 1029 1

20 rows selected.

The execution plan for this UNION query is:

Query Plan

SELECT STATEMENT Cost = 8

 SORT UNIQUE

 UNION-ALL

 TABLE ACCESS FULL CUST_ORDER

 HASH JOIN

 TABLE ACCESS FULL CUSTOMER

 TABLE ACCESS FULL CUST_ORDER

The following query uses UNION ALL instead of UNION to get the same information:

SELECT ORDER_NBR, CUST_NBR FROM CUST_ORDER WHERE SALE_PRICE > 50
UNION ALL
SELECT ORDER_NBR, CUST_NBR FROM CUST_ORDER
WHERE CUST_NBR IN
(SELECT CUST_NBR FROM CUSTOMER WHERE REGION_ID = 5);

 ORDER_NBR CUST_NBR

---------- ----------

 1001 1

 1003 4

 1005 8

 1009 1

 1012 1

 1017 4

 1021 8

 1029 1

 1001 1

 1000 1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 1000 1

 1002 5

 1003 4

 1004 4

 1006 1

 1007 5

 1008 5

 1009 1

 1012 1

 1011 1

 1015 5

 1017 4

 1019 4

 1023 1

 1025 5

 1027 5

 1029 1

26 rows selected.

Note the duplicate rows in the output. However, note also that UNION ALL performs better than UNION, as you
can see from the following execution plan:

Query Plan

SELECT STATEMENT Cost = 4

 UNION-ALL

 TABLE ACCESS FULL CUST_ORDER

 HASH JOIN

 TABLE ACCESS FULL CUSTOMER

 TABLE ACCESS FULL CUST_ORDER

Compare this execution plan with its cost of 4 with the previous plan and its cost of 8. You can see that the extra
operation (SORT UNIQUE) in the UNION makes it run slower than UNION ALL.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

14.2 Avoid Unnecessary Parsing

Before your SQL can be executed by Oracle, it needs to be parsed. The importance of parsing
when it comes to tuning SQL lies in the fact that no matter how many times a given SQL
statement is executed, it needs to be parsed only once. During parsing, the following steps are
performed (not necessarily in the sequence shown):

The syntax of the SQL statement is verified.

The data dictionary is searched to verify table and column definitions.

The data dictionary is searched to verify security privileges on relevant objects.

Parse locks are acquired on the relevant objects.

The optimal execution plan is determined.

The statement is loaded into the shared SQL area (also known as the library cache) in the
shared pool of the system global area (SGA). The execution plan and parse information are
saved here in case the same statement is executed once again.

If a SQL statement involves any remote objects (e.g., database links) then these steps are
repeated for the remote objects. As you can see, lots of work is performed during the parsing of a
SQL statement. However, a statement is parsed only if Oracle doesn't find an identical SQL
statement already in the shared SQL area (library cache) of the SGA.

Before parsing a SQL statement, Oracle searches the library cache for an identical SQL
statement. If Oracle finds an exact match, there is no need to parse the statement again.
However, if an identical SQL statement is not found, Oracle goes through all the aforementioned
steps to parse the statement.

The most important keyword in the previous paragraph is "identical." To share the same SQL
area, two statements need to be truly identical. Two statements that look similar, or that return the
same result, need not be identical. To be truly identical, the statements must:

Have the same uppercase and lowercase characters.

Have the same whitespace and newline characters.

Reference the same objects using the same names, which must in turn have the same
owners.

If there is a possibility that your application executes the same (or similar) SQL statements
multiple times, by all means try to avoid unnecessary parsing. This will improve the overall
performance of your applications. The following techniques can help you reduce SQL parsing:

Use bind variables.

Use table aliases.

14.2.1 Using Bind Variables

When multiple users use an application, they actually execute the same set of SQL statements
over and over, but with different data values. For example, one customer service representative
may be executing the following statement:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT * FROM CUSTOMER WHERE CUST_NBR = 121;

while another customer service representative will be executing:

SELECT * FROM CUSTOMER WHERE CUST_NBR = 328;

These two statements are similar, but not "identical"—the customer ID numbers are different,
therefore Oracle has to parse twice.

Because the only difference between these statements is the value used for the customer
number, this application could be rewritten to use bind variables. In that case, the SQL statement
in question could be as follows:

SELECT * FROM CUSTOMER WHERE CUST_NBR = :X;

Oracle needs to parse this statement only once. The actual customer numbers would be supplied
after parsing for each execution of the statement. Multiple, concurrently executing programs could
share the same copy of this SQL statement while at the same time supplying different customer
number values.

In a multi-user application, situations such as the one described here are very common, and
overall performance can be significantly improved by using bind variables, thereby reducing
unnecessary parsing.

14.2.2 Using Table Aliases

The use of table aliases can help to improve the performance of your SQL statements. Before
getting into the performance aspects of table aliases, let's quickly review what table aliases are
and how they are used.

When you select data from two or more tables, you should specify which table each column
belongs to. Otherwise, if the two tables have columns with the same name, you will end up with
an error:

SELECT CUST_NBR, NAME, ORDER_NBR
FROM CUSTOMER, CUST_ORDER;
SELECT CUST_NBR, NAME, ORDER_NBR

 *

ERROR at line 1:

ORA-00918: column ambiguously defined

The error in this case occurs because both the CUSTOMER and CUST_ORDER tables have
columns named CUST_NBR. Oracle can't tell which CUST_NBR column you are referring to. To
fix this problem, you could rewrite this statement as follows:

SELECT CUSTOMER.CUST_NBR, CUSTOMER.NAME, CUST_ORDER.ORDER_NBR
FROM CUSTOMER, CUST_ORDER
WHERE CUSTOMER.CUST_NBR = CUST_ORDER.CUST_NBR;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WHERE CUSTOMER.CUST_NBR = CUST_ORDER.CUST_NBR;

 CUST_NBR NAME ORDER_NBR

---------- ------------------------------ ----------

 1 Cooper Industries 1001

 1 Cooper Industries 1000

 5 Gentech Industries 1002

 4 Flowtech Inc. 1003

 4 Flowtech Inc. 1004

 8 Zantech Inc. 1005

 1 Cooper Industries 1006

 5 Gentech Industries 1007

 5 Gentech Industries 1008

 1 Cooper Industries 1009

 1 Cooper Industries 1012

 1 Cooper Industries 1011

 5 Gentech Industries 1015

 4 Flowtech Inc. 1017

 4 Flowtech Inc. 1019

 8 Zantech Inc. 1021

 1 Cooper Industries 1023

 5 Gentech Industries 1025

 5 Gentech Industries 1027

 1 Cooper Industries 1029

20 rows selected.

Note the use of the table name to qualify each column name. This eliminates any ambiguity as to
which CUST_NBR column the query is referring to.

Instead of qualifying column names with full table names, you can use table aliases, as in the
following example:

SELECT C.CUST_NBR, C.NAME, O.ORDER_NBR
FROM CUSTOMER C, CUST_ORDER O
WHERE C.CUST_NBR = O.CUST_NBR;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WHERE C.CUST_NBR = O.CUST_NBR;

 CUST_NBR NAME ORDER_NBR

---------- ------------------------------ ----------

 1 Cooper Industries 1001

 1 Cooper Industries 1000

 5 Gentech Industries 1002

 4 Flowtech Inc. 1003

 4 Flowtech Inc. 1004

 8 Zantech Inc. 1005

 1 Cooper Industries 1006

 5 Gentech Industries 1007

 5 Gentech Industries 1008

 1 Cooper Industries 1009

 1 Cooper Industries 1012

 1 Cooper Industries 1011

 5 Gentech Industries 1015

 4 Flowtech Inc. 1017

 4 Flowtech Inc. 1019

 8 Zantech Inc. 1021

 1 Cooper Industries 1023

 5 Gentech Industries 1025

 5 Gentech Industries 1027

 1 Cooper Industries 1029

20 rows selected.

The letters "C" and "O" in this example are table aliases. You can specify these aliases following
their respective table names in the FROM clause, and they can be used everywhere else in the
query in place of the table name. Table aliases provide a convenient shorthand notation, allowing
your queries to be more readable and concise.

Table aliases are not limited to one character in length. Table aliases can
be up to 30 characters in length.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An important thing to remember while using table aliases is that if you define aliases in the FROM
clause, you must use only those aliases, and not the actual table names, in the rest of the query.
If you alias a table, and then use the actual table name in a query, you will encounter errors. For
example:

SELECT C.CUST_NBR, C.NAME, O.ORDER_NBR
FROM CUSTOMER C, CUST_ORDER O
WHERE CUSTOMER.CUST_NBR = CUST_ORDER.CUST_NBR;
WHERE CUSTOMER.CUST_NBR = CUST_ORDER.CUST_NBR

 *

ERROR at line 3:

ORA-00904: invalid column name

The column CUST_NBR appears in both the CUSTOMER and CUST_ORDER tables. Without
proper qualification, this column is said to be "ambiguously defined" in the query. Therefore, you
must qualify the CUST_NBR column with a table alias (or a full table name, if your are not using
aliases). However, the other two columns used in the query are not ambiguous. Therefore, the
following statement, which only qualifies the CUST_NBR column, is valid:

SELECT C.CUST_NBR, NAME, ORDER_NBR
FROM CUSTOMER C, CUST_ORDER O
WHERE C.CUST_NBR = O.CUST_NBR;

 CUST_NBR NAME ORDER_NBR

---------- ------------------------------ ----------

 1 Cooper Industries 1001

 1 Cooper Industries 1000

 5 Gentech Industries 1002

 4 Flowtech Inc. 1003

 4 Flowtech Inc. 1004

 8 Zantech Inc. 1005

 1 Cooper Industries 1006

 5 Gentech Industries 1007

 5 Gentech Industries 1008

 1 Cooper Industries 1009

 1 Cooper Industries 1012

 1 Cooper Industries 1011

 5 Gentech Industries 1015

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 5 Gentech Industries 1015

 4 Flowtech Inc. 1017

 4 Flowtech Inc. 1019

 8 Zantech Inc. 1021

 1 Cooper Industries 1023

 5 Gentech Industries 1025

 5 Gentech Industries 1027

 1 Cooper Industries 1029

20 rows selected.

This is where the performance aspect of using table aliases comes into play. Since the query
doesn't qualify the columns NAME and ORDER_NBR, Oracle has to search both the
CUSTOMER and CUST_ORDER tables while parsing this statement to find which table each of
these columns belongs to. The time required for this search may be negligible for one query, but it
does add up if you have a number of such queries to parse. It's good programming practice to
qualify all columns in a query with table aliases, even those that are not ambiguous, so that
Oracle can avoid this extra search when parsing the statement.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

14.3 Consider Literal SQL for Decision Support Systems

We discussed the benefits of using bind variables previously. The use of bind variables is often
beneficial in terms of performance. However, there is a downside to consider. Bind variables hide
actual values from the optimizer. This hiding of actual values can have negative performance
implications, especially in decision support systems. For example, consider the following
statement:

SELECT * FROM CUSTOMER WHERE REGION_ID = :X

The optimizer can parse this statement, but it won't be able to take into account the specific
region being selected. If 90% of your customers were in region 5, then a full table scan would
likely be the most efficient approach when selecting those customers. An index scan would
probably be more efficient when selecting customers in other regions. When you hardcode values
into your SQL statements, the cost-based optimizer (CBO) can look at histograms (a type of
statistic) and generate an execution plan that takes into account the specific values you are
supplying. When you use bind variables, however, the optimizer generates an execution plan
without having a complete picture of the SQL statement. Such an execution plan may or may not
be the most efficient.

In Decision Support Systems (DSS), it is very rare that multiple users use the same query over
and over. More typically, a handful of users execute complex, different queries against a large
database. Since it is very rare that the SQL statements will be repetitive, the parsing time saved
by using bind variables will be negligible. At the same time, since DSS applications run complex
queries against large databases, the time required to fetch the resulting data can be significant.
Therefore, it is important that the optimizer generate the most efficient execution plan for the
query. To help the optimizer generate the best possible plan, provide the optimizer as much
information as you can, including the actual values of the columns or variables. Therefore, in DSS
applications, use literal SQL statements with hardcoded values instead of bind variables.

Our earlier advice about using bind variables in Online Transaction Processing (OLTP)
applications is still valid. In OLTP systems, multiple users all use the same programs, and thus
issue the same queries. The amount of data returned per query is typically small. Thus, parse
time is a more significant performance factor than in DSS systems. When developing OLTP
applications, save parsing time and space in the shared SQL area by using bind variables.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from
distribution channels. Distinctive covers complement our distinctive approach to technical topics,
breathing personality and life into potentially dry subjects.

The insect on the cover of Mastering Oracle SQL is a lantern fly. The lantern fly is mostly tropical,
with a wingspan of up to six inches. The lantern fly's elongated head is an evolutionary adaptation
called automimicry, in which parts of the body are disguised or artifically shifted to other areas to
confuse predators: the lantern fly's head looks like a tail, and its tail looks like a head. On the rear
it has artificial eyes and antennae.

Colleen Gorman was the production editor and copyeditor for Mastering Oracle SQL. Sheryl
Avruch and Ann Schirmer provided quality control. Tom Dinse wrote the index.

Ellie Volckhausen and Emma Colby designed the cover of this book, based on a series design by
Edie Freedman. The cover image is a 19th-century engraving from Johnson's Natural History.
Emma Colby produced the cover layout with QuarkXPress 4.1 using Adobe's ITC Garamond font.

David Futato designed the interior layout. Neil Walls converted the files from Microsoft Word to
FrameMaker 5.5.6 using tools written in Perl by Erik Ray, Jason McIntosh, and Neil Walls, as well
as tools written by Mike Sierra. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont's TheSans Mono Condensed. The illustrations that
appear in the book were produced by Robert Romano and Jessamyn Read using Macromedia
FreeHand 9 and Adobe Photoshop 6. The tip and warning icons were drawn by Christopher Bing.
This colophon was written by Colleen Gorman.

The online edition of this book was created by the Safari production group (John Chodacki, Becki
Maisch, and Madeleine Newell) using a set of Frame-to-XML conversion and cleanup tools written
and maintained by Erik Ray, Benn Salter, John Chodacki, and Jeff Liggett.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [Y]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [Y]

!= (inequality) operator
% pattern-matching character
> (greater than) operator
 self non-equi-joins
>= (greater than or equal to) operator
< (less than) operator
 self non-equi-joins
<= (less than or equal to) operator
() (parentheses)
 condition/operator precedence
 subqueries
(+) outer join operator
(+) outer join operator, self outer joins
- (subtraction) operator
 dates
= (equality) operator
_ (underscore) pattern-matching character

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [Y]

AD indicator (year format)
ADD_MONTHS function
 dates, subtracting
addition, dates
aggregate analytic functions
 FIRST_VALUE
 LAST_VALUE
aggregate functions 2nd [See also group operations]
 ALL keyword
 DISTINCT keyword
 errors
 GROUP BY clause and
 NULLs
aggregate queries, limitations of, overcoming
aggregating hierarchies
aliases
 columns, inline views
 new join syntax and
 table names
 SELECT statements
 self joins
 when to use
ALL keyword
 aggregate functions 2nd
 multiple-row subqueries
ALL_UPDATABLE_COLUMNS data dictionary view
ALTER DATABASE command, time zones
ALTER SESSION command, formatting dates
AM indicator (time format)
American National Standards Institute [See ANSI]
analytic functions
 aggregate
 FIRST_VALUE
 LAST_VALUE
 CUME_DIST
 hypothetical
 LAG 2nd
 LEAD 2nd
 NTILE
 PERCENT_RANK
 ranking
 DENSE_RANK
 overview
 RANK
 ROW_NUMBER
 reporting
 RATIO_TO_REPORT
 report partitions
 WIDTH_BUCKET
 windowing
AND logical operator, WHERE clause
anonymous blocks
ANSI (American National Standards Institute) 2nd
 date literals
 join syntax

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 advantages
 outer joins
 traversing trees
anti-joins
ANY keyword, multiple-row subqueries
apply_split procedure
 object tables
arguments, GROUPING SETS keyword
ascendancy, hierarchical queries
attributes, object types
averages, aggregate functions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [Y]

BC indicator (year format)
BETWEEN operator
blind variables
built-in functions, pattern-matching

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [Y]

calling stored functions
 restrictions
Cartesian products 2nd
 inner joins
CASE expression
 advantages
 divide by zero errors
 if-then-else functionality
 optional updates
 result sets, transforming
 searched
 selective aggregation
 selective function execution
 simple
 state, controlling
 UPDATE statement
case studies, subqueries
CAST function
CHAR datatype, TO_DATE function
characters
 converting to dates
 pattern-matching
child, hierarchical queries
Codd, Dr. E. F.
coding style
collection types
 creating
 relationships
 nested tables
 variable arrays
 unnesting
collection unnesting
collections
 modifying
 querying
columns
 aliases, inline views
 composite, GROUP BY clause
 GROUP BY clause, concatenated groupings
 GROUPING SETS, concatenated groupings
 hiding, WITH CHECK OPTION
 LEVEL pseudocolumn
 modifiable
 names
 set operations
 table aliases and
 range partitions
 repeating names, GROUP BY clause
 updating, errors
comparison operators
 equality (=)
 inequality (!=)
 subqueries
component queries
 order of execution

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

composite partitioning
compound queries
 errors
 NULL values
concatenated groupings
 GROUPING SETS
conditional logic, CASE and DECODE examples
conditions
 CASE expressions
 components of
 equality/inequality
 inner joins
 equi-joins compared to non-equi-joins
 joins, new syntax and
 matching
 membership
 pattern-matching
 precedence
 range
 union compatibility
 WHERE clause
CONNECT BY clause, hierarchical queries
constants, GROUP BY clause
containing statements
Coordinated Universal Time (UTC)
correlated subqueries 2nd
CREATE TABLE statement, object tables
CREATE TYPE BODY statement
CUBE keyword
 group operations
 partial
CUME_DIST analytic function
CURRENT ROW keywords
 windowing functions
CURRENT_DATE function
CURRENT_TIMESTAMP function
customer table, SELECT statement example

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [Y]

Data Definition Language (DDL)
data dictionary, views, USER_UPDATABLE_COLUMNS
Data Manipulation Language [See DML]
data warehouse applications, group operations and
datatypes
 DATE
 converting
 default format
 internal storage format
 NULL values and
 specifying format
 join conditions
 object types
 attributes
 parameters
 tables
DATE datatype
 converting
 errors
 default format
 format, specifying
 internal storage format
 NULL values and
dates
 arithmetic
 addition
 overview
 subtraction
 format codes
 formatting
 case sensitivity
 functions
 interval data
 INTERVAL DAY TO SECOND datatype
 INTERVAL YEAR TO MONTH datatype
 ISO standards
 overview
 weeks
 years
 literals
 pivot tables, creating
 ranges, SELECT statement
 rounding/truncating
 RTRIM function
 summarizing by
 time zones
 database
 overview
 session
 working days, calculating
 years
 AD/BC indicators
 two-digit
DATETIME functions
days (working), calculating

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DBA_UPDATABLE_COLUMNS data dictionary view
DBTIMEZONE function
DBTIMEZONE keyword
DDL (Data Definition Language)
Decision Support Systems (DSS)
DECODE function
 divide by zero errors
 errors
 optional updates
 result sets, transforming
 selective aggregation
 selective function execution
 state, controlling
 syntax 2nd
 UPDATE statement
default date format
DELETE statement
 DML (Data Manipulation Language)
 join views
 multiple-column subqueries
 scalar subqueries
deleting
 subpartitions
 subtrees (hierarchical queries)
DENSE_RANK analytic function
DISTINCT keyword
 aggregate functions 2nd
 compared to EXISTS
 non-equi self joins
divide by zero errors, avoiding
DML (Data Manipulation Language)
 DELETE statement
 INSERT statement
 partitions, specifying
 SELECT statement
 clause references
 DISTINCT keyword
 ORDER BY clause
 WHERE clause
 statements
 inline views
 join views and
 stored functions and
 UPDATE statement
DSS (Decision Support Systems)
 queries compared to SQL
 SQL and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [Y]

entities
entity-relationship models, sample database
equality conditions
equality operator (=)
equi-joins, compared to non-equi-joins
equiheight buckets
equiwidth buckets
errors
 aggregate functions
 compound queries
 DATE datatype conversions
 DECODE function
 divide by zero, avoiding
 GROUP BY clause
 HAVING clause
 inline views 2nd
 join views
 multiple-row subqueries
 outer joins
 updating columns
evaluation, WHERE clause
 conditions
EXISTS operator
 compared to DISTINCT
 compared to IN
 correlated subqueries
EXPLAIN PLAN, group operations
expressions
 aggregate functions
 ALL keyword
 DISTINCT keyword
 NULLs
 CASE
 advantages
 controlling state
 divide by zero errors
 optional updates
 searched
 selective aggregation
 selective function execution
 simple
 transforming result sets
 UPDATE statements
 conditions
 DECODE function
 GROUP BY clause
 NULL values
 testing for
 TABLE, querying collections

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [Y]

filters
 HAVING clause
 hierarchical queries
first/last queries (analytic ranking functions)
foreign keys
 constraints, hierarchical information
 join conditions
 relationships and
formatting
 dates
 case sensitivity
 ISO standard
 rounding and truncating considerations
fractional seconds
 overview
 TIMESTAMP datatype
 TIMESTAMP WITH LOCAL TIME ZONE datatype
 TIMESTAMP WITH TIME ZONE datatype
FROM clause
 inner joins
 Cartesian products
 conditions
 equi-joins compared to non-equi-joins
 joins
 outer joins
 restrictions
 self joins
 non-equi
 outer
FROM_TZ function
FULL keyword, ANSI join syntax
full outer joins
function-based indexes
functions
 ADD_MONTHS
 subtracting dates
 aggregate
 ALL keyword
 DISTINCT keyword
 NULLs
 aggregate analytic
 FIRST_VALUE
 LAST_VALUE
 analytic
 CUME_DIST
 LAG
 LEAD
 NTILE
 PERCENT_RANK
 report partitions
 reporting 2nd
 WIDTH_BUCKET
 built-in, pattern-matching
 CAST
 CURRENT_DATE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 CURRENT_TIMESTAMP
 date math
 DATETIME
 DBTIMEZONE
 DECODE
 controlling state
 divide by zero errors
 optional updates
 selective aggregation
 selective function execution
 syntax 2nd
 transforming result sets
 UPDATE statements
 FROM_TZ
 GROUP_ID
 overview
 GROUPING
 GROUPING_ID
 overview
 hypothetical analytic
 INTERVAL
 LAST_DAY
 LOCALTIMESTAMP
 MAX
 MONTHS_BETWEEN
 NEW_TIME
 NEXT_DAY
 NUMTODSINTERVAL
 NUMTOYMINTERVAL
 NVL
 compared to GROUPING function
 syntax 2nd
 NVL2, syntax 2nd
 overloading
 ranking analytic
 DENSE_RANK
 overview
 RANK
 ROW_NUMBER
 ROUND
 RTRIM, dates
 SESSIONTIMEZONE
 stored
 avoiding table joins
 calling 2nd
 compared to stored procedures
 consistency issues
 DML statements
 purity levels
 rules
 TRUST keyword
 views
 SYSTIMESTAMP
 TO_CHAR
 overview
 TO_DATE 2nd 3rd 4th
 TO_DSINTERVAL
 TO_TIMESTAMP
 TO_TIMESTAMP_TZ

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 TO_YMINTERVAL
 TRUNC
 TZ_OFFSET
 VALUE, returning objects
 windowing analytic

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [Y]

global indexes
GMT (Greenwich Mean Time) [See UTC]
greater than (>) operator
 self non-equi-joins
greater than or equal to (>=) operator
Greenwich Mean Time [See UTC]
GROUP BY clause 2nd 3rd 4th
 composite columns
 concatenated groupings
 CUBE keyword
 errors
 filters and
 GROUPING SETS keyword
 partial CUBE
 partial rollups
 repeating column names
 ROLLUP keyword
 UNION operations
group operations
 aggregate functions
 ALL keyword
 DISTINCT keyword
 NULLs
 EXPLAIN PLANs
 GROUP BY clause 2nd
 composite columns
 concatenated groupings
 CUBE keyword
 NULL values
 partial CUBE
 partial rollups
 repeating column names
 ROLLUP keyword
 WHERE clause
 GROUP_ID function
 GROUPING function
 GROUPING SETS
 concatenated groupings
 ROLLUP and CUBE as arguments
 GROUPING_ID function 2nd
 HAVING clause
 summary information, GROUPING SETS keyword
 UNION queries
GROUP_ID function
 overview
GROUPING function
GROUPING SETS keyword
 concatenated groupings
 ROLLUP and CUBE as arguments
GROUPING_ID function
 overview

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [Y]

hash anti-joins
hash partitions
hash semi-joins
HAVING clause
 compared to WHERE clause
 errors
 scalar subqueries
hierarchical data representations
hierarchical queries 2nd
 aggregating hierarchies
 ascendancy
 filtering
 joins
 leaf nodes, finding
 LEVEL pseudocolumns
 levels
 listing
 number of, finding
 limitations of, overcoming
 PRIOR operator
 records, listing in hierarchical order
 restrictions
 root nodes
 finding
 finding parents
 listing
 START WITH clause
 START WITH...CONNECT BY clause
 subtrees, deleting
 terminology
 views
hierarchical trees, traversing
horizontal partitioning
hypothetical analytic functions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [Y]

if-then-else functionality
implicit type conversions, DATE datatype
IN operator
 compared to EXISTS
 multiple-row subqueries
 outer joins
indexes
 function-based
 partitions
inequality conditions
inequality operator (!=)
inline views
 aggregate queries, overcoming limitations of
 columns, hiding with WITH CHECK OPTION
 creating data sets
 DML statements
 errors 2nd
 execution
 hierarchical queries, overcoming limitations of
 mimicking analytic queries with
 outer joins
 overview
 selective aggregation
inner joins 2nd 3rd
 Cartesian products
 conditions
 equi-joins compared to non-equi-joins
INSERT statement
 DML (Data Manipulation Language)
 join views
 partitions, specifying
 strings, converting to default date format
INTERSECT set operator 2nd
interval data (date and time)
 INTERVAL DAY TO SECOND datatype
 INTERVAL YEAR TO MONTH datatype
INTERVAL DAY TO SECOND datatype
INTERVAL functions
INTERVAL YEAR TO MONTH datatype
ISO standards, dates
 overview
 weeks
 years

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [Y]

JOIN keyword
join views
 DELETE statements
 errors
 INSERT statements
 UPDATE statements
joins 2nd
 ANSI syntax
 advantages
 anti-joins
 conditions
 new syntax and
 WHERE clause 2nd
 hierarchical queries
 inner
 Cartesian products
 conditions
 equi-joins compared to non-equi-joins
 mimicking analytic queries with
 outer
 ANSI syntax
 full
 restrictions
 self
 non-equi
 outer
 semi-joins
 stored functions, avoiding
 subqueries
 USING clause
 vertical
 views
 DML statements and
 key-preserved tables

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [Y]

key-preserved tables, join views
keys
 foreign
 join conditions
 relationships and
 key-preserved tables, join views
 partitions
 primary
 comparing tables
 join conditions
keywords
 ALL
 aggregate functions
 multiple-row subqueries
 ANY, multiple-row subqueries
 CUBE
 group operations
 partial
 CURRENT ROW, windowing functions
 DBTTIMEZONE
 DISTINCT
 aggregate functions
 compared to EXISTS operator
 FULL, ANSI join syntax
 GROUPING SETS
 ROLLUP and CUBE as arguments
 JOIN
 LEFT, ANSI join syntax
 OUTER, ANSI join syntax
 RIGHT, ANSI join syntax
 ROLLUP
 group operations
 partial rollups
 SELF, object types
 set operators
 TRUST, stored functions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [Y]

LAST_DAY function
leaf nodes
 finding
 hierarchical queries
LEFT keyword, ANSI join syntax
less than (<) operator
 self non-equi-joins
less than or equal to operator (<=)
LEVEL pseudocolumn, hierarchical queries
levels
 hierarchical queries
 listing
 number of, finding
LIKE operator
list partitioning
literals, dates
local indexes
LOCALTIMESTAMP function
logical models compared to physical models, entities and
logical operators, WHERE clause

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [Y]

matching conditions
math, dates
 addition
 overview
 subtraction
MAX function
membership conditions
merge anti-joins
merge semi-joins
MINUS set operator 2nd
 comparing tables
minutes
 date math
months
 date math
 first day, returning
 last day, returning
MONTHS_BETWEEN function
multiple-column subqueries
multiple-row subqueries
 errors

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [Y]

nested tables
NEW_TIME function
NEXT_DAY Function
nodes
 hierarchical queries
 leaf, finding
 root
 finding
 finding parents
 listing
non-equi self joins
non-equi-joins compared to equi-joins
noncorrelated subqueries
 multiple-column
 multiple-row
 overview
 scalar
nonprocedural languages
NOT BETWEEN operator
NOT IN operator
 multiple-row subqueries
NOT operator
 pattern-matching and
 WHERE clause
NTILE analytic function
NULL expression
NULL values
 aggregate functions
 analytic ranking functions
 compound queries
 GROUP BY clause
 NVL function compared to GROUPING function
 testing for
numbers, converting to dates 2nd
NUMTODSINTERVAL function
NUMTOYMINTERVAL function
NVL function
 averages
 NULL values, compared to GROUPING function
 syntax 2nd
NVL2 function, syntax 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [Y]

object types
 attributes
 parameters
 tables
operators
 AND
 BETWEEN
 conditions
 equality (=)
 EXISTS
 compared to DISTINCT keyword
 compared to IN operator
 correlated subqueries
 greater than (>)
 self non-equi-joins
 greater than or equal to (>=)
 IN
 multiple-row subqueries
 outer joins
 inequality (!=)
 join conditions
 less than (<)
 self non-equi-joins
 less than or equal to (<=)
 LIKE
 logical, WHERE clause
 multiple-row subqueries
 NOT
 pattern-matching and
 NOT BETWEEN
 NOT IN
 multiple-row subqueries
 OR
 efficiency considerations
 outer joins
 outer join (+)
 self outer joins
 precedence
 PRIOR, hierarchical queries
 scalar subqueries
 set
 INTERSECT 2nd
 MINUS 2nd 3rd
 UNION 2nd
 UNION ALL 2nd 3rd
 subtraction (-), dates
optimizer
 anti-joins
 evaluating conditions
 partition keys and
 partition pruning
 semi-joins
 specifying partitions
OR operator
 efficiency considerations

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 outer joins
 WHERE clause
ORA-00904 error
ORA-00932 error
ORA-01402 error
ORA-01427 error
ORA-01468 error
ORA-01476 error
ORA-01733 error
ORA-01779 error
ORA-01790 error
ORA-01861 error
Oracle Supplied Packages (PL/SQL)
Oracle9i, ANSI join syntax
 advantages
ORDER BY clause 2nd
 analytic ranking functions
 set operations
 stored functions, calling from
outer join operator (+)
 self outer join operator
outer joins 2nd
 ANSI syntax
 errors
 restrictions
 self
OUTER keyword, ANSI join syntax
overloading functions
overview

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [Y]

package body
package specification
packages (stored procedures and functions)
parameters, object types
parentheses ()
 operator/condition precedence
 subqueries
parents
 hierarchical queries
 root nodes, finding
parsing, avoiding unnecessary
PARTITION BY clause, analytic ranking functions
PARTITION clause
partition key
 hash partitioning
 optimizer and
partitions
 composite
 hash
 horizontal
 indexes
 list
 naming considerations
 pruning
 range
 reporting functions
 specifying
 storage considerations
 tables, overview
 vertical
 views
pattern-matching
 built-in functions
 conditions
percent sign (%), pattern-matching character
PERCENT_RANK analytic function
performance
 OR operator, efficiency considerations
 partitioning and
 selective function execution 2nd
pivot tables, dates, creating
PL/SQL
 CASE expressions and
 date pivot tables
 including SQL
 overview
 stored functions compared to stored procedures
 variables, converting to DATE datatype
PM indicator (time format)
precedence, operator/condition
primary keys
 comparing tables
 join conditions
PRIOR operator, hierarchical queries
procedures, stored, compared to stored functions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

programming languages, nonprocedural
programming, style issues
pruning partitions
pseudocolumns, LROWID
purity levels
 stored functions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [Y]

range conditions
range partitions
ranges
 dates, returning
 eliminating gaps
RANK analytic function
RANK function
ranking analytic functions
 DENSE_RANK
 overview
 RANK
 ROW_NUMBER
RATIO_TO_REPORT analytic function
records, listing in hierarchical order
recursive relationships, traversing
relationships
 collection types
 creating
 nested tables
 unnesting
 variable arrays
 correlated subqueries
 hierarchical data representations
 key-preserved tables
 recursive, traversing
 self-referential integrity constraints
reporting analytic functions
 RATIO_TO_REPORT
 report partitions
RESTRICT_REFERENCES pragma
result sets
 Cartesian products 2nd
 finding what data is not in database
 refining, WHERE clause
 set operations, column names
 subqueries
 transforming
 CASE expression
 DECODE function
 WHERE clause, conditions
retrieving data
 customer table
 SELECT statement
RIGHT keyword, ANSI join syntax
ROLLUP keyword
 group operations
 partial rollups
root nodes
 finding
 finding parents
 listing
root, hierarchical queries
ROUND function
rounding, dates
ROW_NUMBER analytic function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ROWID
ROWNUM, GROUP BY clause and
ROWS BETWEEN clause, unbounded windows
RR (year) indicator
RRRR (year) indicator
RTRIM function, dates

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [Y]

sample database, overview
scalar subqueries
scripts, PL/SQL
searched CASE expressions
seconds, fractional
 overview
 TIMESTAMP datatype
 TIMESTAMP WITH LOCAL TIME ZONE datatype
 TIMESTAMP WITH TIME ZONE datatype
SELECT statement
 analytic functions
 clause references
 correlated subqueries
 dates, ranges
 DISTINCT keyword
 DML (Data Manipulation Language)
 inline views
 aggregate queries, overcoming limitations of
 creating data sets
 execution
 hierarchical queries, overcoming limitations of
 overview
 joins, subqueries
 noncorrelated subqueries
 multiple-column
 multiple-row
 overview
 scalar
 object types
 ORDER BY clause
 stored functions, calling from
 subqueries
 UNION queries
 WHERE clause
self joins 2nd
 non-equi
 outer
SELF keyword, object types
self-referential integrity constraints
semi-joins
session time zones
SESSIONTIMEZONE function
SET clause, multiple-column subqueries
set operations
 INTERSECT operator 2nd
 MINUS operator 2nd
 comparing tables
 restrictions
 tables, comparing
 UNION ALL operator 2nd
 comparing tables
 UNION operator 2nd
SET TIME_ZONE clause
simple CASE expressions
sorting, ORDER BY clause

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

specifying format
SQL (Structured Query Language)
 history
 Oracle and ANSI compliance
 overview
 queries compared to DSS queries
standards, ANSI
START WITH clause
 hierarchical queries
START WITH...CONNECT BY clause, hierarchical queries
state, controlling
 CASE expression
 DECODE function
statements
 CREATE TABLE, object tables
 CREATE TYPE BODY
 DELETE
 join views
 multiple-column subqueries
 scalar subqueries
 DML
 join views and
 INSERT
 converting strings to date format
 join views
 specifying partitions
 SELECT
 clause references
 correlated subqueries
 DISTINCT keyword
 inline views 2nd 3rd 4th 5th 6th
 noncorrelated subqueries 2nd 3rd 4th
 object types
 ORDER BY clause
 returning between date ranges
 subqueries
 UNION operations
 WHERE clause
 stored functions and
 UPDATE
 CASE expression
 DECODE function
 inline views
 join views
 multiple-column subqueries
 optional updates
 selective aggregation
storage, partitions and
stored functions
 calling
 restrictions
 consistency issues
 DML statements
 joins, avoiding
 packages
 rules
 TRUST keyword
 views
stored procedures

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 compared to stored functions
 packages
strings
 converting to dates 2nd
 creating from dates
 pattern-matching
Structured Query Language [See SQL]
style, coding
SUBPARTITION clause
subpartitions
 deleting
subqueries 2nd
 case study
 comparison operators and
 correlated
 inline views
 aggregate queries, overcoming limitations of
 creating data sets
 execution
 hierarchical queries, overcoming limitations of
 overview
 joins
 noncorrelated
 multiple-column
 multiple-row
 overview
 scalar
 outer joins
subtotals, generating
subtraction (-) operator, dates
subtraction, dates
subtrees, deleting
summaries [See also group operations]
 date math
 GROUP BY clause
SYSTIMESTAMP function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [Y]

table aliases
 new join syntax and
 SELECT statements
 self joins
 when to use
TABLE expression, querying collections
tables
 ANSI join syntax
 advantages
 outer joins
 comparing, set operations
 customer, SELECT statement example
 entities
 equi-joins compared to non-equi-joins
 inner joins
 joins, subqueries
 key-preserved, join views and
 modifying
 UPDATE statement
 without WHERE clause
 NOT NULL columns, INSERT statement and
 object type
 outer joins 2nd
 full
 restrictions
 partitioning, overview
 self joins
 non-equi
 outer
 self-referential integrity constraints
terminology
 hierarchical queries
text, date formatting, case sensitivity rules
time
 AM/PM indicators
 fractional seconds
 overview
 TIMESTAMP datatype
 TIMESTAMP WITH LOCAL TIME ZONE datatype
 TIMESTAMP WITH TIME ZONE datatype
 functions
 rounding and truncating dates
time zones
 database
 default
 NEW_TIME function
 overview
 session
TIMESTAMP datatype
TIMESTAMP WITH LOCAL TIME ZONE datatype
TIMESTAMP WITH TIME ZONE datatype
TO_CHAR function
 combining with TO_DATE function
 overview
TO_DATE function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 combining with TO_CHAR function
 default date format
 overview
 specifying format
TO_DSINTERVAL function
TO_TIMESTAMP function
TO_TIMESTAMP_TZ function
TO_YMINTERVAL function
top-n/bottom-n queries (analytic ranking functions)
traversing hierarchical trees
TRUNC function
 date pivot tables
 date ranges and
truncating dates
TRUST keyword, stored procedures
two-digit years
TZ_OFFSET function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [Y]

underscore (_), pattern-matching character
UNION ALL set operator 2nd
 comparing tables
UNION clause, data sets, creating custom
union compatibility conditions
UNION operation compared to UNION ALL
UNION queries
 ANSI join syntax and
 full outer joins
UNION set operator 2nd
UPDATE statement
 CASE expression
 collections and
 DECODE function
 DML (Data Manipulation Language)
 inline views
 join views
 multiple-column subqueries
 optional updates
 selective aggregation
 WHERE clause and
USER_UPDATABLE_COLUMNS data dictionary view
USING clause
UTC (Coordinated Universal Time)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [Y]

VALUE function, returning objects
VARCHAR2 datatype, TO_DATE datatype
variable arrays
variables, blind
varrays
vertical joins
vertical partitioning
viewing all in schema
views
 data dictionary, USER_UPDATABLE_COLUMNS
 hierarchical queries
 inline
 aggregate queries, overcoming limitations of
 creating data sets
 DML statements
 execution
 hiding columns with WITH CHECK OPTION
 hierarchical queries, overcoming limitations of
 overview
 selective aggregation
 joins, DML statements and
 outer joins
 partitions
 stored functions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [Y]

weekends, date math and
weeks
 date math
 ISO standard
WHERE clause
 capabilities of
 columns, restricting access
 compared to HAVING clause
 conditions
 components of
 equality/inequality
 matching
 membership
 range
 evaluation
 conditions
 GROUP BY clause
 HAVING clause and
 hierarchical queries, filtering
 join conditions 2nd
 logical operators
 new join syntax and
 noncorrelated subqueries
 NULL expression
 outer join operator (+)
 partition pruning
 subqueries
 tips for using
 UPDATE statement and
 value of
WHERE clause (SELECT statements)
WIDTH_BUCKET analytic function
windowing analytic functions
WITH CHECK OPTION clause
WITH CHECK OPTION, hiding columns
working days, calculating
WW (ISO week) indicator

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [Y]

years
 AD/BC indicators
 finding number between dates
 ISO standard
 two-digit
YY (year) indicator

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [Y]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

