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This book deals with the idea and practice of proof in mathematics. As a college
teacher, I know that this is a difficult concept to grasp, and a major poser for both
teachers and learners. As a Gibilisco reader, I wasn’t expecting anything less
than a complete, entertaining, and go-getting presentation. I have been amply
rewarded in my expectations.

Chapter 1 gets you right in the midst of the symbols that enable you to read
a mathematical argument. You need this, just as a music student needs to know
how to read a score. Chapter 2 deals with more sophisticated logic: how to put
thoughts together coherently (and correctly—your typical mathematician is not
a politician). Chapter 3, now that you have the language, actually builds a math-
ematical universe; in this it is a visionary chapter, yet it feels natural, and it is
beautifully done. In Chapter 4, the fun begins! The mind-bending problems of
fallacies and paradoxes are well illustrated. Chapters 5 and 6 are a bit more
traditional, and provide an excellent selection of basic facts in geometry and
numbers, respectively. Chapter 7 concludes the book with an innovative and
mind-opening overview of some famous proofs. This can be read even “if only”
to learn about, and savor, the development of mathematics in history as an intel-
lectual adventure.

The book can be used for self-training. It assumes nothing, and teaches you
everything you need. How it teaches you is another story. Stan Gibilisco has the
gift and the passion of a coach. He provides the right example and exercise as
soon as you see something new; by going through it with him, and again on your
own in the quiz at the end of each chapter, you make it your own. Gibilisco takes
you there, and is with you each step of the way.

When Stan Gibilisco asked me to write a short foreword for this book, I felt
honored. I knew, in this case, that he wanted to distance himself from the mate-
rial for two reasons. First, he has a personal attachment to proofs. (I’ve seen a
mathematical journal that Stan kept as a college student, where he challenged
himself to create an alternative concept of number and function, to supply some
of the properties that the theorems he was taught did not have. He came close to

xi
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doing something like what Bernhard Riemann did in the nineteenth century when
he created the concept of a Riemann surface.) The second reason why Stan asked
someone else to write about the book is, I think, that he was not complacent. He
had decided to undertake a formidable task: portray the very language of math-
ematics. Stan wanted to provide the basics and a little more, a true exposure to
the curiosity and creativity that has driven people, through the ages, to attempt
to envision all possible worlds. It was to be a friendly book—as are all in the
Demystified series—and also an abstract work that would show you beautiful
examples and help you to soar high towards truth. Its reader-friendliness is of a
sort that Gibilisco’s readers have come to know. Its beauty must reside in 
the mind of the audience. As the Indian mathematician Bhaskara II said in the
12th century, “Behold!” (That was his proof-without-words of the Theorem of
Pythagoras, which is illustrated in Chapter 7 of this book.)

Please enjoy this book and keep it handy! If I see you in my Algebra class, I
will know you from it.

EMMA PREVIATO, Professor of Mathematics
Department of Mathematics and Statistics, Boston University

FOREWORDxii



This book is for people who want to learn how to prove mathematical theorems.
It can serve as a supplemental text in a classroom, tutored, or home-schooling
environment. It should also be useful for people who need to refresh their
knowledge of, or skills at, this daunting aspect of mathematics.

For advancing math students, the introduction to theorem-proving can be a
strange experience. It is more of an art than a science. In many curricula, students
get their first taste of this art in middle school or high school geometry. I suspect
that geometry is favored as the “launching pad” for theorem-proving because this
field lends itself to concrete illustrations, which can help the student see how
proofs progress. This book starts out at a more basic level, dealing with the prin-
ciples of “raw logic” before venturing into any specialized field of mathematics.

This book contains practice quizzes, tests, and exam questions. In format,
they resemble the questions found in standardized tests. There is a short quiz at
the end of each chapter. These quizzes are all “open book.” You may (and
should) refer to the chapter texts when taking them. This book has two multi-
chapter sections or “parts,” each of which concludes with a test. Take each test
when you’re done with all the chapters in the applicable section. There is a
“closed book” exam at the end of this course. It contains questions drawn uni-
formly from all the chapters. Take it when you have finished both sections, both
section tests, and all the quizzes.

In the back of the book, there is an answer key for all the quizzes, both tests,
and the final exam. Each time you’ve finished a quiz, test, or the exam, have a
friend check your paper against the answer key and tell you your score without
letting you know which questions you missed. Keep studying until you can get
at least three-quarters (but hopefully nine-tenths) of the answers right.

As I wrote this work, I tried to strike a balance between the “absolute
rigour” that G. H. Hardy demanded in the early 1900s when corresponding with
Ramanujan, the emerging Indian number theorist, and the informality that tempts
everybody who tries to prove anything. I decided to employ a conversational style
in a field where some purists will say that such language is out of place. It was

xiii
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my desire to bridge what sometimes seemed like an intellectual gulf that couldn’t
be spanned by any author. I hope the result is a course that will, at least, leave
serious students better off after completing it than they were before they started.

Some college and university professors are concerned that American math
students aren’t getting enough training in logic and theorem-proving at the
middle school and high school levels. These skills are essential if one is to
develop anything new in mathematics. Sound reasoning is mandatory if one
hopes to become a good theoretical scientist, experimentalist, or engineer—or
even a good trial lawyer.

I recommend that you complete one chapter every couple of weeks. That will
make the course last approximately one standard semester. Two hours a day
ought to be enough study time. I also recommend you read as many of the
“Suggested Additional References” (listed in the back of this book) as you can.
Dare I insinuate that mathematics can be cool?

Illustrations in this book were generated with CorelDRAW. Some of the clip
art is courtesy of Corel Corporation.

Suggestions for future editions are welcome.

STAN GIBILISCO

PREFACExiv



I extend heartfelt thanks to Emma Previato, Professor of Mathematics at Boston
University, and Bonnie Northey, a math teacher and good friend, who helped me
with the proofreading of the manuscript for this book. I also thank my nephew
Tony Boutelle, a student at Macalester College in St. Paul, for taking the time to
read the manuscript and offer his insight from the point of view of the intended
audience.
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PART ONE

The Rules of 
Reason
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1
CHAPTER

3

The Basics of
Propositional Logic

In order to prove something, we need a formal system of reasoning. It isn’t good
enough to have “a notion” or even “a powerful feeling” that something is true or
false. We aren’t trying to convince a jury that something is true “beyond a rea-
sonable doubt.” In mathematics, we must be prepared to demonstrate the truth
of a claim so there is no doubt whatsoever.

To understand how proofs work, and to learn how to perform them, we must
become familiar with the laws that govern formal reasoning. Propositional logic
is the simplest scheme used for this purpose. It’s the sort of stuff Socrates taught
in ancient Greece. This system of logic is also known as sentential logic, propo-
sitional calculus, or sentential calculus. 

Operations and Symbols
The word calculus in logic doesn’t refer to the math system invented by Newton
and Leibniz that involves rates of change and areas under curves. In logic,

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.



calculus means a formal system of reasoning. The words propositional or sen-
tential refer to the fact that the system works with complete sentences.

LET IT BE SO!
You will often come across statements in math texts, including this book, such
as: “Let X, Y, and Z be logical variables.” This language is customary. You’ll
find it all the time in mathematical literature. When you are told to “let” things
be a certain way, you are being asked to imagine, or suppose, that things are that
way. This sets the scene in your mind for statements or problems to follow.

SENTENCES
Propositional logic does not involve breaking sentences down into their internal
details. We don’t have to worry about how words are interconnected and how
they affect each other within a sentence. Those weird sentence diagrams, which
you may have worked with in your middle-school grammar class, are not a part
of propositional logic. A sentence, also called a proposition, is the smallest pos-
sible entity in propositional logic.

Sentences are represented by uppercase letters of the alphabet. You might say
“It is raining outside,” and represent this by the letter R. Someone else might
add, “It’s cold outside,” and represent this by the letter C. A third person might say,
“The weather forecast calls for snow tomorrow,” and represent this by the letter
S. Still another person might add, “Tomorrow’s forecast calls for sunny weather,”
and represent this by B (for “bright”; we’ve already used S).

NEGATION (NOT)
When we write down a letter to stand for a sentence, we assert that the sentence
is true. So, for example, if John writes down C in the above situation, he means
to say “It is cold outside.” You might disagree if you grew up in Alaska and John
grew up in Hawaii. You might say, “It’s not cold outside.” This can be symbol-
ized as the letter C with a negation symbol in front of it.

There are several ways in which negation, also called NOT, can be symbol-
ized. In propositional logic, a common symbol is a drooping minus sign (¬).
That’s the one we’ll use. Some texts use a tilde (∼) to represent negation. Some
use a minus sign (−). Some put a line over the letter representing the sentence;
still others use an accent symbol. It seems as if there is no shortage of ways to
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express a denial, even in symbolic logic! In our system, the sentence “It’s not
cold outside” can be denoted as ¬C.

Suppose someone comes along and says, “You are correct to say ¬C. In fact,
I’d say it’s hot outside!” Suppose this is symbolized by H. Does H mean the
same thing as ¬C? Not necessarily. You’ve seen days that were neither cold nor
hot. There can be in-between states such as “cool” (K), “mild” (M), and “warm”
(W). But there is no in-between condition when it comes to C and ¬C. In propo-
sitional logic, either it is cold, or else it is not cold. Either it is hot, or else it is
not hot. A proposition is either true, or else it is false (not true).

There are logical systems in which in-between states exist. These go by
names such as fuzzy logic. But a discussion of those types of logic belongs in 
a different book. In all the mathematical proofs we’ll be dealing with, any propo-
sition is either true or false; there is neither a neutral truth state nor any con-
tinuum of truth values. Our job, when it comes to doing math proofs, is to
demonstrate truth or falsity if we can.

CONJUNCTION (AND)
Propositional logic doesn’t get involved with how the phrases inside a sentence
affect each other, but it is very concerned with the ways in which distinct, com-
plete sentences interact in logical discourse. Sentences can be combined to make
bigger ones, called compound sentences. The truth or falsity of a compound sen-
tence depends on the truth or falsity of its components, and on the ways those
components are connected.

Suppose someone says, “It’s cold outside, and it’s raining outside.” Using the
symbols from the previous sections, we can write this as:

C AND R

In logic, we use a symbol in place of the word AND. There are several symbols
in common use, including the ampersand (&), the inverted wedge (∧), the aster-
isk (*), the period (.), the multiplication sign (×), and the raised dot (·). We’ll use
the ampersand because it represents the word AND in everyday language, and is
easiest to remember. Thus, the compound sentence becomes:

C & R

The formal term for the AND operation is logical conjunction. A compound sen-
tence containing one or more conjunctions is true when, but only when, both or
all of its components are true. If any of the components are false, then the whole
compound sentence is false.

CHAPTER 1 The Basics of Propositional Logic 5



DISJUNCTION (OR)
Now imagine that a friend comes along and says, “You are correct in your obser-
vations about the weather. It’s cold and raining; there is no doubt about those
facts. I have been listening to the radio, and I heard the weather forecast for
tomorrow. It’s supposed to be colder tomorrow than it is today. But it’s going to
stay wet. So it might snow tomorrow.”

You say, “It will rain or it will snow tomorrow, depending on the temperature.”
Your friend says, “It might be a mix of rain and snow together, if the temper-

ature is near freezing.”
“So we might get rain, we might get snow, and we might get both,” you say.
“Correct. But the weather experts say we are certain to get precipitation of

some sort,” your friend says. “Water is going to fall from the sky tomorrow—
maybe liquid, maybe solid, and maybe both.”

In this case, suppose we let R represent the sentence “It will rain tomorrow,”
and we let S represent the sentence “It will snow tomorrow.” Then we can say:

S OR R

This is an example of logical disjunction. There are at least two symbols com-
monly used to represent disjunction: the addition symbol (+) and the wedge (∨).
Let’s use the wedge. We can now write:

S ∨ R

A compound sentence in which both, or all, of the components are joined by dis-
junctions is true when, but only when, at least one of the components is true. A
compound sentence made up of disjunctions is false when, but only when, all the
components are false.

Logical disjunction, as we define it here, is the inclusive OR operation. There’s
another logic operation called exclusive OR, in which the compound sentence is
false, not true, if and only if all the components are true. We won’t deal with that
now. The exclusive OR operation, sometimes abbreviated XOR, is important when
logic is applied in engineering, especially in digital electronic circuit design.

IMPLICATION (IF/THEN)
Imagine that the conversation about the weather continues. You and your friend
are trying to figure out if you should get ready for a snowy day tomorrow, or
whether rain and gloom is all you’ll have to contend with.

PART ONE The Rules of Reason6



“Does the weather forecast say anything about snow?” you ask.
“Not exactly,” your friend says. “The radio announcer said, ‘There is going

to be precipitation through tomorrow night, and it’s going to get colder tomor-
row.’ I looked at my car thermometer as she said that, and it said the outdoor
temperature was just a little bit above freezing.”

“If there is precipitation, and if it gets colder, then it will snow,” you say.
“Of course.”
“Unless we get an ice storm.”
“That won’t happen.”
“Okay,” you say. “If there is precipitation tomorrow, and if it is colder tomor-

row than it is today, then it will snow tomorrow.” (This is a weird way to talk,
but we’re learning about logic, not the art of witty conversation.)

Suppose you use P to represent the sentence “There will be precipitation
tomorrow.” In addition, let S represent the sentence “It will snow tomorrow,”
and let C represent the sentence “It will be colder tomorrow.” Then in the pre-
vious conversation, you have made a compound proposition consisting of three
sentences, like this:

IF (P AND C), THEN S

Another way to write this is:

(P AND C) IMPLIES S

In this context, the meaning of the term “implies” is intended in the strongest
possible sense. In logic, if X “implies” Y, it means that X is always accompanied
or followed by Y, not merely that X suggests Y. Symbolically, the above propo-
sition is written this way:

(P & C) ⇒ S

The double-shafted arrow pointing to the right represents logical implication,
also known as the IF/THEN operation. In a logical implication, the “implying”
sentence (to the left of the double-shafted arrow) is called the antecedent. In
the previous example, the antecedent is (P & C). The “implied” sentence (to the
right of the double-shafted arrow) is called the consequent. In this example, the con-
sequent is S.

Some texts make use of other symbols for logical implication, including
the “hook” or “lazy U opening to the left” (⊃), three dots (∴), and a single-
shafted arrow pointing to the right (→). In this book, we’ll stick with the 
double-shafted arrow pointing to the right.
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LOGICAL EQUIVALENCE (IFF)
Suppose your friend changes the subject and says, “If it snows tomorrow, then
there will be precipitation and it will be colder.”

For a moment you hesitate, because this isn’t the way you’d usually think
about this kind of situation. But you have to agree, “That is true. It sounds strange,
but it’s true.” Your friend has just made this implication:

S ⇒ (P & C)

Implication holds in both directions here, but there are plenty of scenarios in
which an implication holds in one direction but not the other.

You and your friend have agreed that both of the following implications 
are valid:

(P & C) ⇒ S
S ⇒ (P & C)

These two implications can be combined into a conjunction, because we are
asserting them both at the same time:

[(P & C) ⇒ S] & [S ⇒ (P & C)]

When an implication is valid in both directions, the situation is defined as a
case of logical equivalence. The above statement can be shortened to:

(P & C) IF AND ONLY IF S

Mathematicians sometimes shorten the phrase “if and only if” to the single word
“iff.” So we can also write:

(P & C) IFF S

The symbol for logical equivalence is a double-shafted, double-headed arrow
(⇔). There are other symbols that can be used. Sometimes you’ll see an equals
sign, a three-barred equals sign (≡), or a single-shafted, double-headed arrow
(↔). We’ll use the double-shafted, double-headed arrow to symbolize logical
equivalence. Symbolically, then:

(P & C) ⇔ S

PROBLEM 1-1
Give an example of a situation in which logical implication holds in
one direction but not in the other.
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SOLUTION 1-1
Consider this statement: “If it is overcast, then there are clouds in the
sky.” This statement is true. Suppose we let O represent “It is overcast” 
and K represent “There are clouds in the sky.” Then we have this, sym-
bolically:

O ⇒ K

If we reverse this, we get a statement that isn’t necessarily true. Consider:

K ⇒ O

This translates to: “If there are clouds in the sky, then it’s overcast.” We
have all seen days or nights in which there were clouds in the sky, but
there were clear spots too, so it was not overcast.

Truth Tables
The outcome, or logic value, of an operation in propositional logic is always
either true or false, as we’ve seen. Truth can be symbolized as T, +, or 1, while
falsity can be abbreviated as F, −, or 0. Let’s use T and F. They are easy to
remember: “T” stands for “true” and “F” stands for “false”! When performing
logic operations, sentences that can attain either T or F logic values (depending
on the circumstances) are called variables.

A truth table is a method of denoting all possible combinations of truth values
for the variables in a proposition. The values for the individual variables, with
all possible permutations, are shown in vertical columns at the left. The truth
values for compound sentences, as they are built up from the single-variable (or
atomic) propositions, are shown in horizontal rows.

TRUTH TABLE FOR NEGATION
The simplest truth table is the one for negation, which operates on a single vari-
able. Table 1-1 shows how this works for a single variable called X.

CHAPTER 1 The Basics of Propositional Logic 9

X ¬¬X

F T

T F

Table 1-1. Truth Table for Negation



TABLE FOR CONJUNCTION
Let X and Y be two logical variables. Conjunction (X & Y) produces results as
shown in Table 1-2. The AND operation has value T when, but only when, both
variables have value T. Otherwise, the operation has value F.

TABLE FOR DISJUNCTION
Logical disjunction for two variables (X ∨ Y) has a truth table that looks like
Table 1-3. The OR operation has value T when either or both of the vari-
ables have value T. If both of the variables have value F, then the operation
has value F.

PART ONE The Rules of Reason10

X Y X & Y

F F F

F T F

T F F

T T T

Table 1-2. Truth Table for Conjunction

X Y X ∨∨ Y

F F F

F T T

T F T

T T T

Table 1-3. Truth Table for Disjunction



TABLE FOR IMPLICATION

A logical implication is valid (that is, it has truth value T) except when the
antecedent has value T and the consequent has value F. Table 1-4 shows the truth
values for logical implication.

PROBLEM 1-2
Give an example of a logical implication that is obviously invalid.

SOLUTION 1-2
Let X represent the sentence, “The wind is blowing.” Let Y represent
the sentence, “A hurricane is coming.” Consider this sentence:

X ⇒ Y

Now imagine that it is a windy day. Therefore, variable X has truth
value T. But suppose you are in North Dakota, where there are never
any hurricanes. Sentence Y has truth value F. Therefore, the statement
“If the wind is blowing, then a hurricane is coming” is false.

TABLE FOR LOGICAL EQUIVALENCE

If X and Y are logical variables, then X IFF Y has truth value T when both vari-
ables have value T, or when both variables have value F. If the truth values of X
and Y are different, then X IFF Y has truth value F. This is broken down fully in
Table 1-5.
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F F T

F T T

T F F

T T T
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THE EQUALS SIGN
In logic, we can use an ordinary equals sign to indicate truth value. Thus if we
want to say that a particular sentence K is true, we can write K = T. If we want to
say that a variable X always has false truth value, we can write X = F. Just be care-
ful about this. Don’t confuse the meaning of the equals sign with the meaning of
the double-shafted, double-headed arrow that stands for logical equivalence!

PROBLEM 1-3
Tables 1-1 through 1-4—the truth tables for negation, conjunction, dis-
junction, and implication—are defined by convention. The truth values 
are based on common sense. Arguably, the same is true for logical
equivalence. It make sense that two logically equivalent statements
ought to have identical truth values, and that if they don’t, they can’t
be logically equivalent. But suppose you want to prove this. You can
derive the truth values for logical equivalence based on the truth tables
for conjunction and implication. Do it, and show the derivation in the
form of a truth table.

SOLUTION 1-3
Remember that X ⇔ Y means the same thing as (X ⇒ Y) & (Y ⇒ X).
You can build up X ⇔ Y in steps, as shown in Table 1-6 as you go from 
left to right. The four possible combinations of truth values for sen-
tences X and Y are shown in the first (left-most) and second columns.
The truth values for X ⇒ Y are shown in the third column, and the
truth values for Y ⇒ X are shown in the fourth column. In order to
get the truth values for the fifth (right-most) column, conjunction is
applied to the truth values in the third and fourth columns. The com-
plex logical operation (also called a compound logical operation
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F F T

F T F

T F F

T T T

Table 1-5. Truth Table for Logical Equivalence



because it’s made up of combinations of the basic ones) in the fifth col-
umn is the same thing as X ⇔ Y.

Q.E.D.
What you have just seen is a mathematical proof of the fact that for any two
logical sentences X and Y, the value of X ⇔ Y is equal to T when X and Y have
the same truth value, and the value of X ⇔ Y is equal to F when X and Y have dif-
ferent truth values. Sometimes, when mathematicians finish proofs, they write
“Q.E.D.” at the end. This is an abbreviation of the Latin phrase Quod erat demon-
stradum. It translates as “Which was to be demonstrated.”

Some Basic Laws
Logic operations obey certain rules, called laws. These laws are somewhat sim-
ilar to the laws that govern the behavior of numbers in arithmetic, or variables
in algebra. Following are some of the most basic laws of propositional logic.

PRECEDENCE
When reading or constructing logical statements, the operations within paren-
theses are always performed first. If there are multilayered combinations of
sentences (called nesting of operations), then you should first use ordinary
parentheses, then square brackets [ ], and then curly brackets {}. Alternatively,
you can use groups of plain parentheses inside each other, but be sure you end
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Table 1-6. Truth Table for Problem 1-3

(X ⇒⇒ Y) & (Y ⇒⇒ X)
which is the same as

X Y X ⇒⇒ Y Y ⇒⇒ X X ⇔⇔ Y

F F T T T

F T T F F

T F F T F

T T T T T



up with the same number of left-hand parentheses and right-hand parentheses in
the complete expression.

If there are no parentheses or brackets in an expression, instances of negation
should be performed first. Then conjunctions should be done, then disjunctions,
then implications, and finally logical equivalences.

As an example of how precedence works, consider the following compound
sentence:

A & ¬B ∨ C ⇒ D

Using parentheses and brackets to clarify this according to the rules of prece-
dence, we can write it like this:

{[A & (¬B)] ∨ C} ⇒ D

Now consider a more complex compound sentence, which is so messy that
we run out of parentheses and brackets if we use the “ordinary/square/curly”
scheme:

A & ¬B ∨ C ⇒ D & E ⇔ F ∨ G

Using plain parentheses only, we can write it this way:

(((A & (¬B)) ∨ C) ⇒ (D & E)) ⇔ (F ∨ G)

When we count up the number of left-hand parentheses and the number of right-
hand parentheses, we see that there are six left-hand ones and six right-hand
ones. (If the number weren’t the same, we’d be in trouble!)

CONTRADICTION
A contradiction always results in a false truth value. This is one of the most
interesting and useful laws in all of mathematics, and has been used to prove
many important facts, as well as to construct satirical sentences. Symbolically,
if X is any logical statement, we can write the rule like this:

(X & ¬X) ⇒ F

LAW OF DOUBLE NEGATION
The negation of a negation is equivalent to the original expression. That is, if X
is any logical variable, then:

¬(¬X) ⇔ X
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COMMUTATIVE LAWS
The conjunction of two variables always has the same value, regardless of the
order in which the variables are expressed. If X and Y are logical variables, then
X & Y is logically equivalent to Y & X:

X & Y ⇔ Y & X

The same property holds for logical disjunction:

X ∨ Y ⇔ Y ∨ X

These are called the commutative law for conjunction and the commutative law
for disjunction, respectively. The variables can be commuted (interchanged in
order) and it doesn’t affect the truth value of the resulting sentence.

ASSOCIATIVE LAWS
When there are three variables combined by two conjunctions, it doesn’t matter
how the variables are grouped. Suppose you have a compound sentence that can
be symbolized as follows:

X & Y & Z

where X, Y, and Z represent the truth values of three constituent sentences. Then
we can consider X & Y as a single variable and combine it with Z, or we can
consider Y & Z as a single variable and combine it with X, and the results are
logically equivalent:

(X & Y) & Z ⇔ X & (Y & Z)

The same law holds for logical disjunction:

(X ∨ Y) ∨ Z ⇔ X ∨ (Y ∨ Z)

These are called the associative law for conjunction and the associative law for
disjunction, respectively. 

We must be careful when applying associative laws. All the operations in the
compound sentence must be the same. If a compound sentence contains a con-
junction and a disjunction, we cannot change the grouping and expect to get the
same truth value in all possible cases. For example, the following two compound
sentences are not, in general, logically equivalent:

(X & Y) ∨ Z
X & (Y ∨ Z)
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LAW OF IMPLICATION REVERSAL

When one sentence implies another, you can’t reverse the sense of the implica-
tion and still expect the result to be valid. It is not always true that if X ⇒ Y, then
Y ⇒ X. It can be true in certain cases, such as when X ⇔ Y. But there are plenty
of cases where it isn’t true.

If you negate both sentences, then reversing the implication can be done,
and the result is always valid. This is called the law of implication reversal. 
It is also known as the law of the contrapositive. Expressed symbolically,
suppose we are given two logical variables X and Y. Then the following
always holds:

(X ⇒ Y) ⇔ (¬Y ⇒ ¬X)

PROBLEM 1-4
Use words to illustrate an example of the previous law in action, in a
way that makes sense.

SOLUTION 1-4
Let V represent the sentence “Jane is a living vertebrate creature.” Let
B represent the sentence “Jane has a brain.” Then V ⇒ B reads, “If Jane
is a living vertebrate creature, then Jane has a brain.” Applying the law
of implication reversal, we can also say with certainty that ¬B ⇒ ¬V.
That translates to: “If Jane does not have a brain, then Jane is not a liv-
ing vertebrate creature.”

DeMORGAN’S LAWS

If the conjunction of two sentences is negated as a whole, the resulting com-
pound sentence can be rewritten as the disjunction of the negations of the origi-
nal two sentences. Expressed symbolically, if X and Y are two logical variables,
then the following holds valid in all cases:

¬(X & Y) ⇔ (¬X ∨ ¬Y)

This is called DeMorgan’s law for conjunction.
A similar rule holds for disjunction. If a disjunction of two sentences is

negated as a whole, the resulting compound sentence can be rewritten as the con-
junction of the negations of the original two sentences. Symbolically:
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¬(X ∨ Y) ⇔ (¬X & ¬Y)

This is called DeMorgan’s law for disjunction.
You might now begin to appreciate the use of symbols to express complex

statements in logic! The rigorous expression of DeMorgan’s laws in verbal form
is quite a mouthful, but it’s easy to write these rules down as symbols.

DISTRIBUTIVE LAW
A specific relationship exists between conjunction and disjunction, known
as the distributive law. It works somewhat like the distributive law that you
learned in arithmetic classes—a certain way that multiplication behaves with
respect to addition. Do you remember it? It states that if a and b are any two
numbers, then

a(b + c) = ab + ac

Now think of logical conjunction as the analog of multiplication, and logical
disjunction as the analog of addition. Then if X, Y, and Z are any three sentences,
the following logical equivalence exists:

X & (Y ∨ Z) ⇔ (X & Y) ∨ (X & Z)

This is called the distributive law of conjunction with respect to disjunction.

Truth Table Proofs
The laws of logic we’ve just stated were not merely dreamed up. They can be
demonstrated to be true in general. Truth tables can be used for this purpose. If
we claim that two compound sentences are logically equivalent, then we can
show that their truth tables produce identical results. Also, if we can show that
two compound sentences have truth tables that produce identical results, then we
can be sure those two sentences are logically equivalent, as long as all possible
combinations of truth values are accounted for.

The next few paragraphs show truth table proofs for the commutative laws,
the associative laws, the law of implication reversal, DeMorgan’s laws, and the
distributive law. Some of these proofs seem trivial in their simplicity. When
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some people see proofs like this, they ask, “Why bother with going through the
motions, when these things are obvious?” The answer is this: In mathematics,
something can appear to be obvious and then turn out to be false! In order to pro-
tect against mistaken conclusions, the pure mathematician adheres to a form of
discipline called rigor. The following proofs are rigorous. They leave no room
for doubt or dispute.

COMMUTATIVE LAW FOR CONJUNCTION

Tables 1-7A and 1-7B show that the following two general sentences are logi-
cally equivalent for any two variables X and Y:

X & Y
Y & X

COMMUTATIVE LAW FOR DISJUNCTION

Tables 1-8A and 1-8B show that the following two general sentences are logi-
cally equivalent for any two variables X and Y:

X ∨ Y
Y ∨ X
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X Y X & Y

F F F

F T F

T F F

T T T

Table 1-7. Truth table proof of the commutative law of conjunc-
tion. At A, statement of truth values for X & Y. At B, statement of
truth values for Y & X. The outcomes are identical, demonstrating
that they are logically equivalent.

A

X Y Y & X

F F F

F T F

T F F

T T T

B



ASSOCIATIVE LAW FOR CONJUNCTION
Tables 1-9A and 1-9B show that the following two general sentences are logi-
cally equivalent for any three variables X, Y, and Z:

(X & Y) & Z
X & (Y & Z)
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X Y X ∨∨ Y

F F F

F T T

T F T

T T T

Table 1-8. Truth table proof of the commutative law of disjunction. At A,
statement of truth values for X ∨ Y. At B, statement of truth values for Y ∨ X.
The outcomes are identical, demonstrating that they are logically equivalent.

A

X Y Y ∨∨ X

F F F

F T T

T F T

T T T

B

X Y Z X & Y Z & (X & Y) (X & Y) & Z

F F F F F F

F F T F F F

F T F F F F

F T T F F F

T F F F F F

T F T F F F

T T F T F F

T T T T T T

Table 1-9A. Derivation of truth values for (X & Y) & Z. Note that the last
two columns of this proof make use of the commutative law for conjunction,
which has already been proven.

A
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X Y Z Y & Z X & (Y & Z)

F F F F F

F F T F F

F T F F F

F T T T F

T F F F F

T F T F F

T T F F F

T T T T T

Table 1-9B. Derivation of truth values for X & (Y & Z).
The far right-hand column of this table has values that are
identical with those in the far right-hand column of Table
1-9A, demonstrating that the far right-hand expressions in
the top rows are logically equivalent.

B

Note that in Table 1-9A, the last two columns make use of the
commutative law for conjunction, which has already been proven.
Once proven, a statement is called a theorem, and it can be used in
future proofs.

ASSOCIATIVE LAW FOR 
DISJUNCTION
Tables 1-10A and 1-10B show that the following two general sen-
tences are logically equivalent for any three variables X, Y, and Z:

(X ∨ Y) ∨ Z
X ∨ (Y ∨ Z)

In Table 1-10A, we take advantage of the commutative law for dis-
junction, which has already been proved, in the last two columns.
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X Y Z X ∨∨ Y Z ∨∨ (X ∨∨ Y) (X ∨∨ Y) ∨∨ Z

F F F F F F

F F T F T T

F T F T T T

F T T T T T

T F F T T T

T F T T T T

T T F T T T

T T T T T T

Table 1-10A. Derivation of truth values for (X ∨ Y) ∨ Z. Note that the last
two columns of this proof make use of the commutative law for disjunction,
which has already been proven.

A

X Y Z Y ∨∨ Z X ∨∨ (Y ∨∨ Z)

F F F F F

F F T T T

F T F T T

F T T T T

T F F F T

T F T T T

T T F T T

T T T T T

Table 1-10B. Derivation of truth values for X ∨ (Y ∨ Z).
The far right-hand column of this table has values that are
identical with those in the far right-hand column of Table
1-10A, demonstrating that the far right-hand expressions
in the top rows are logically equivalent.

B



LAW OF IMPLICATION 
REVERSAL
Tables 1-11A and 1-11B show that the following two general sentences are log-
ically equivalent for any two variables X and Y:

X ⇒ Y
¬Y ⇒ ¬X
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X Y X ⇒⇒Y

F F T

F T T

T F F

T T T

Table 1-11. Truth table proof of the law of impli-
cation reversal. At A, statement of truth values 
for X ⇒ Y. At B, derivation of truth values for 
¬Y ⇒ ¬X. The outcomes are identical, demonstra-
ting that they are logically equivalent.

A

X Y ¬¬Y ¬¬X ¬¬Y ⇒⇒ ¬¬X

F F T T T

F T F T T

T F T F F

T T F F T

B



DeMORGAN’S LAW FOR 
CONJUNCTION
Tables 1-12A and 1-12B show that the following two general sentences are log-
ically equivalent for any two variables X and Y:

¬(X & Y)
¬X ∨ ¬Y
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X Y X & Y ¬¬(X & Y)

F F F T

F T F T

T F F T

T T T F

Table 1-12. Truth table proof of DeMorgan’s
law for conjunction. At A, statement of truth
values for ¬(X & Y). At B, derivation of truth
values for ¬X ∨ ¬Y. The outcomes are identical,
demonstrating that they are logically equivalent.

A

X Y ¬¬X ¬¬Y ¬¬X ∨∨ ¬¬Y

F F T T T

F T T F T

T F F T T

T T F F F

B
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DeMORGAN’S LAW FOR DISJUNCTION
Tables 1-13A and 1-13B show that the following two general sentences are log-
ically equivalent for any two variables X and Y:

¬(X ∨ Y)
¬X & ¬Y

X Y ¬¬X ¬¬Y ¬¬X & ¬¬Y

F F T T T

F T T F F

T F F T F

T T F F F

B

X Y X ∨∨ Y ¬¬(X ∨∨ Y)

F F F T

F T T F

T F T F

T T T F

Table 1-13. Truth table proof of DeMorgan’s 
law for disjunction. At A, statement of truth 
values for ¬ (X ∨ Y). At B, derivation of truth
values for ¬X & ¬Y. The outcomes are identical,
demonstrating that they are logically equivalent.

A

DISTRIBUTIVE LAW
Tables 1-14A and 1-14B show that the following two general sentences are
logically equivalent for any three variables X, Y, and Z:

X & (Y ∨ Z)
(X & Y) ∨ (X & Z)
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X Y Z Y ∨∨ Z X & (Y ∨∨ Z)

F F F F F

F F T T F

F T F T F

F T T T F

T F F F F

T F T T T

T T F T T

T T T T T

Table 1-14A. Derivation of truth values for X & (Y ∨ Z).

A

X Y Z X & Y X & Z (X & Y) ∨∨ (X & Z)

F F F F F F

F F T F F F

F T F F F F

F T T F F F

T F F F F F

T F T F T T

T T F T F T

T T T T T T

Table 1-14B. Derivation of truth values for (X & Y) ∨ (X & Z). The far
right-hand column of this table has values that are identical with those in
the far right-hand column of Table 1-14A, demonstrating that the far right-
hand expressions in the top rows are logically equivalent.

B



PROBLEM 1-5
Using truth tables, prove the following logical proposition:

[(X & Y) ⇒ Z] ⇔ [¬Z ⇒ (¬X ∨ ¬Y)]

SOLUTION 1-5
Tables 1-15A and 1-15B show that the following two general sentences
are logically equivalent for any three variables X, Y, and Z:

(X & Y) ⇒ Z
¬Z ⇒ (¬X ∨ ¬Y)

PROBLEM 1-6
Use rules that we have presented in this chapter, rather than truth-table
comparison, to prove the proposition stated in Problem 1-5.

SOLUTION 1-6
First, consider DeMorgan’s law for conjunction. This states that the
following two sentences are logically equivalent for any X and Y:

¬(X & Y)

¬X ∨ ¬Y
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X Y Z X & Y (X & Y) ⇒⇒ Z

F F F F T

F F T F T

F T F F T

F T T F T

T F F F T

T F T F T

T T F T F

T T T T T

Table 1-15A. Derivation of truth values for (X & Y) ⇒ Z.

A



This means that the two expressions are directly interchangeable. Whenever we
encounter either of these in any logical sentence, we can “pull it out” and “plug
in” the other one. Let’s take advantage of this fact on the right-hand side of the
second expression in Problem 1-5, changing it to the following:

¬Z ⇒ ¬(X & Y)

According to the law of implication reversal, this is logically equivalent to:

¬[¬(X & Y)] ⇒ ¬(¬Z)

Using the law of double negation on both sides of this expression, we see that
this is logically equivalent to:

(X & Y) ⇒ Z

This is precisely the first expression in Problem 1-5. This shows that the first and
second expressions in Problem 1-5 are logically equivalent.
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X Y Z ¬¬X ¬¬Y ¬¬Z ¬¬X ∨∨ ¬¬Y ¬¬Z ⇒⇒ (¬¬X∨∨ ¬¬Y)

F F F T T T T T

F F T T T F T T

F T F T F T T T

F T T T F F T T

T F F F T T T T

T F T F T F T T

T T F F F T F F

T T T F F F F T

Table 1-15B. Derivation of truth values for ¬Z ⇒ (¬X ∨¬Y). The far right-hand
column of this table has values that are identical with those in the far right-hand column
of Table 1-15A, demonstrating that the far right-hand expressions in the top rows are
logically equivalent.

B



Quiz

This is an “open book” quiz. You may refer to the text in this chapter. A good
score is eight correct. Answers are in the back of the book.

1. The conjunction of three sentences is false
(a) if and only if all three sentences are false.
(b) if and only if at least one of the sentences is false.
(c) if and only if at least two of the sentences are false.
(d) under no circumstances, because a conjunction can’t be defined for

more than two sentences.

2. The disjunction of three sentences is false
(a) if and only if all three sentences are false.
(b) if and only if at least one of the sentences is false.
(c) if and only if at least two of the sentences are false.
(d) under no circumstances, because a disjunction can’t be defined for

more than two sentences.

3. In a logical implication, the double-shafted arrow pointing to the right
can be replaced by the word or words
(a) “and.”
(b) “if.”
(c) “if and only if.”
(d) “implies.”

4. How many possible combinations of truth values are there for a set of
three sentences, each of which can attain either the value T or the value F?
(a) 2
(b) 4
(c) 8
(d) 16

5. Suppose you observe, “It is not sunny today, and it’s not warm.” Your
friend says, “The statement that it’s sunny or warm today is false.” These
two sentences are logically equivalent, and this constitutes a verbal
example of
(a) one of DeMorgan’s laws.
(b) the law of double negation.
(c) the commutative law for conjunction.
(d) the law of implication reversal.
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6. Imagine that I claim a certain general statement is a rule of logic. You demon-
strate that my supposed rule has at least one exception. This shows that
(a) it is not a law of logic.
(b) it violates the commutative law.
(c) it violates the law of implication reversal.
(d) it demonstrates that a disjunction implies logical falsity.

7. Look at Table 1-16. What, if anything, is wrong with this truth table?
(a) Not all possible combinations of truth values are shown for X, Y, and Z.
(b) The entries in the far right-hand column are incorrect.
(c) It is impossible to have a logical operation such as (X ∨ Y) & Z.
(d) Nothing is wrong with Table 1-16.

8. What, if anything, can be done to make Table 1-16 show a valid derivation?
(a) Nothing needs to be done. It is correct as it is.
(b) In the top row, far-right column header, change the ampersand (&)

to a double-shafted arrow pointing to the right (⇒).
(c) In the far-left column, change every T to an F, and change every F

to a T.
(d) In the first three columns, change every T to an F, and change every

F to a T.
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X Y Z X ∨∨ Y (X ∨∨ Y) & Z

F F F F T

F F T F T

F T F T F

F T T T T

T F F T F

T F T T T

T T F T F

T T T T T

Table 1-16. Truth table for Quiz Questions 7 and 8.

A



9. A rule or law that has been proven
(a) can’t be used to prove future theorems, because all theorems must be

proven directly from an original set of rules.
(b) can be used to prove future theorems, as long as truth tables are

avoided.
(c) can be used to prove future theorems, but only by means of truth tables.
(d) can be used to prove future theorems.

10. Imagine that someone says to you, “If I am a human and I am not a
human, then the moon is made of Swiss cheese.” (Forget for a moment
that this person has obviously lost contact with the real world.) This is a
verbal illustration of the fact that
(a) implication can’t be reversed.
(b) DeMorgan’s laws don’t always hold true.
(c) conjunction is not commutative.
(d) a contradiction implies logical falsity.
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CHAPTER

31

How Sentences 
Are Put Together

Plenty of things can be proved without dissecting sentences into smaller parts.
But sometimes, it’s necessary to break sentences down. That’s what predicate
logic, also called predicate calculus, is all about. In this chapter, we’ll see how
sentences should (and should not) be constructed.

Sentence Structure
When a sentence (proposition) takes the form of a declaration, that sentence can
be split into a subject and a predicate. The subject is a noun, or “naming word.”
It is the center of attention in the sentence. The predicate gives information about
the subject. This information can be “passive,” such as a description of the sub-
ject’s color or shape, or “active,” such as an expression of what the subject does
or where it goes.
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SUBJECT/VERB (SV)
Consider the following sentences. These are about as basic as sentences get (with
the exception of one-word commands or exclamations):

• Jack walks.
• Jill sneezes.
• The computer works.
• You shop.

Each of these sentences contains a noun (the subject) followed by a verb—an
“action word”—and that is all. The action is not directed at anything in particu-
lar, nor does it happen in any special way. “Jack walks.” Where? To school, in
his home, or through the woods? Does he walk fast or slowly? We don’t know.
“Jill sneezes.” Does she sneeze at you, or at the wall, or into a handkerchief?
Does she sneeze loudly or quietly? No clue. “The computer works.” How well?
How fast? With which programs? We are not told. “You shop.” For what?
Where? For how long? Not specified. The sentences are vague, but they are nev-
ertheless well-formed propositions. They are called subject/verb (SV) sentences.

SUBJECT/VERB/OBJECT (SVO)
Consider the following sentences:

• Jack walks to school.
• Jill kicks the ball.
• I mow the lawn.
• You trim a tree.

Each of these sentences contains a noun (the subject) followed by a verb, 
and then there is another noun that is influenced or acted upon by the subject and
verb. In all four of these sentences, the subjects are people: Jack, Jill, I, and you.
(Subjects don’t have to be people, or even animate things, however.) The objects
in the previous examples are inanimate: school, ball, lawn, and tree. (This, too,
is a coincidence. Objects aren’t always inanimate.) Each sentence also contains
a verb: walk, kick, mow, and trim.

Let S represent a subject, V a verb, and O an object. We can diagram each of
the above sentences as shown in Fig. 2-1. The subject, by means of the verb, per-
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forms some action on the object. This type of statement can be called a sub-
ject/verb/object (SVO) sentence.

SUBJECT/LINKING VERB/COMPLEMENT
Now look at the following sentences:

• Jack is a boy.
• Jill has a cold.
• I was hungry.
• You will get tired.

Each of these sentences contains a noun (the subject) at the beginning. Then
there’s a word at the end that tells us some detail about the subject; it comple-
ments the subject. The subject and the complement are linked by a word in the
middle, which we’ll call a link or linking verb.

If we let S represent a subject, LV a linking verb, and C a complement, then
we can diagram each of the previous sentences as shown in Fig. 2-2. These are
examples of subject/linking verb/complement (SLVC) sentences.
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Fig. 2-1. Examples of subject/verb/object (SVO) sentences.



WHAT’S THE PREDICATE?
In an SVO sentence, the predicate consists of the verb and the object. In an
SLVC sentence, the predicate consists of the linking verb and the complement.

The eight sentences in the previous two sections can be broken into subjects
and predicates, as shown in Table 2-1. The subjects and predicates are assigned
symbols. Predicates are given non-italicized uppercase letters of the alphabet,
and subjects are given italicized lowercase letters. These assignments seem arbi-
trary, but that’s all right as long as we agree on them. (Ideally we’d use the first
letter of each noun, but some of these coincide here, and that could cause con-
fusion among the sentences.)

Using the symbols in the table, we can denote each of the sentences by writ-
ing the symbol for the predicate first, followed by the symbol for the subject.
The first four sentences, which are SVO type, are thus denoted Wa, Ki, Mq, and
Tu. The second four sentences, which have the same subjects but are of the
SLVC form, are denoted Ba, Ci, Hq, and Ru. In all eight of the sentences, the
symbols for the subjects are called logical constants (or simply constants)
because they denote specific, identifiable subjects.
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Fig. 2-2. Examples of subject/linking verb/complement 
(SLVC) sentences.



VARIABLES
Now imagine that, instead of specific nouns as subjects, we use unspecified
ones. You ask, “What is an unspecified noun?” The answer is, “Anything, as
long as we don’t say exactly what.” In predicate logic, a non-specific noun is
called a logical variable (or simply a variable), and is represented by a lower-
case letter in italics, usually from near the end of the alphabet. A favorite is x.
The letters w, y, and z are also popular for symbolizing variables. If necessary,
subscripts can be used if a sentence has a lot of variables: for example, x1, x2, x3,
x4, x5, and so on.

Examine the generalized sentences shown in Table 2-2. The constants a, i, q,
and u have been replaced by the variable x. But the structures of the sentences
in Table 2-2 are identical to their counterparts on corresponding lines of Table 2-1.
There is no need to use different letters for the subjects in Table 2-2, because the
variable is non-specific by nature. There can’t be any confusion among things or
people when we don’t say exactly what or who they are!

When we replace the constants with the variable x, we have eight sentences
that can be denoted as follows: Wx, Kx, Mx, Tx, Bx, Cx, Hx, and Rx. In every
case, the predicate, symbolized by a non-italicized uppercase letter, tells us
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Subject Predicate
Subject Symbol Predicate Symbol

Jack a walks to school W

Jill i kicks the ball K

I q mow the lawn M

You u trim a tree T

Jack a is a boy B

Jill i has a cold C

I q was hungry H

You u will get tired R

Table 2-1. Sentences broken into subjects and predicates, along with
symbols. Symbols are arbitrary to prevent coincidences that
could cause confusion among the sentences.



something about the variable, symbolized by x. The first four predicates are
“doing” expressions, and the second four are “being” expressions. In a general
sense, we can say “x does or goes to such-and-such” for the first four sentences,
and “x has such-and-such a characteristic” for the second four sentences.

PROBLEM 2-1
What types of sentences are the following? Identify their parts.

• The atmosphere has layers.
• The tornado destroyed the barn.
• I bought a computer.
• My computer is defective.

SOLUTION 2-1
The first sentence is of the SLVC type. The subject is “atmosphere,”
the linking verb is “has,” and the complement is “layers.”

The second sentence is SVO. The subject is “tornado,” the verb is
“destroyed,” and the object is “barn.”

The third sentence is SVO. The subject is “I,” the verb is “bought,”
and the object is “computer.”
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Subject Predicate
Subject Symbol Predicate Symbol

Someone x walks to school W

Someone x kicks the ball K

Someone x mows the lawn M

Someone x trims a tree T

Someone x is a boy B

Someone x has a cold C

Someone x was hungry H

Someone x will get tired R

Table 2-2. Sentences broken into subjects and predicates, along with
symbols. The subject in each case is “someone” and is rep-
resented by the variable x.



The fourth sentence is SLVC. The subject is “my computer,” the
linking verb is “is,” and the complement is “defective.”

PROBLEM 2-2
Evaluate the fourth sentence in the previous problem in another way,
and write down a symbolic expression for it.

SOLUTION 2-2
This sentence can be considered the negation of the SLVC sentence
“My computer is perfect.” If we symbolize “my computer” by c and
“perfect” by P, then “My computer is perfect” can be denoted Pc, and
“It is not true that my computer is perfect” can be denoted ¬(Pc).

PROBLEM 2-3
Identify the predicate in each of the sentences stated in Problem 2-1.

SOLUTION 2-3
The predicates are “has layers,” “destroyed the barn,” “bought a com-
puter,” and “is defective,” respectively. If we consider the fourth sen-
tence as the equivalent of “It is not true that my computer is perfect,”
then the predicate of the negated sentence becomes “is perfect.”

Quantifiers
The foregoing sentences are much simpler than most of the things people say.
Let’s go to the next level of complexity.

UNIVERSAL QUANTIFIER
Look at the following sentences. The first two are SVO, and the second two are
SLVC. But all four of these sentences have something in common.

• Every boy walks to school.
• Every football gets kicked.
• All swimmers are hungry.
• All teachers are geniuses.
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The common feature of the above sentences is the fact that they are blanket
statements. They speak about things as being universally true (or false). They
can be reworded like this:

• For any thing, if that thing is a boy, then that thing walks to school.
• For any thing, if that thing is a football, then that thing gets kicked.
• For any thing, if that thing is a swimmer, then that thing is hungry.
• For any thing, if that thing is a teacher, then that thing is a genius.

Each subject has become a variable, represented by the generic word or phrase
“thing” or “that thing.” Let’s replace the word “thing” and the phrase “that
thing” in each of the above statements by the symbol x. Here’s what we get:

• For any x, if x is a boy, then x walks to school.
• For any x, if x is a football, then x gets kicked.
• For any x, if x is a swimmer, then x is hungry.
• For any x, if x is a teacher, then x is a genius.

There is a symbol in predicate logic that stands for the words “for all,” “for
every,” or “for any.” That symbol is ∀. It looks like an upside-down uppercase
letter A, and is called the universal quantifier because it indicates that something
is universally true about a variable. The variable to which the quantifier applies
is written right after the symbol.

Now let’s symbolize the phrases in the above sentences according to Table 
2-3. If we write out the sentences symbolically, using the ⇒ symbol from propo-
sitional logic to indicate implication, we get these:

(∀x) Bx ⇒ Wx
(∀x) Fx ⇒ Kx
(∀x) Sx ⇒ Hx
(∀x) Tx ⇒ Gx

The quantifier is placed in parentheses to separate it from the sentence that fol-
lows. There are other ways a universal quantifier can be set apart from the rest
of the sentence: using a colon after ∀x, using a vertical line after ∀x, and plac-
ing a portion of the sentence after the quantifier in parentheses while not using
parentheses around the quantifier. Therefore, for example, we can write any of
the following to represent the first of the above symbolized sentences:

∀x: Bx ⇒ Wx
∀x | Bx ⇒ Wx
∀x (Bx ⇒ Wx)
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These two notations are commonly used in mathematics papers and texts. The
parentheses are more often used when writing about predicate logic.

EXISTENTIAL QUANTIFIER
Now examine the following sentences. They apply to the same subjects, verbs,
linking verbs, objects, and complements as the sentences in the preceding para-
graphs. But there is an important difference! These sentences are not blanket
statements. In fact, there is a definite suggestion that there are exceptions to
the rules:

• Some boys walk to school.
• Some footballs get kicked.
• Some swimmers are hungry.
• Some teachers are geniuses.

These sentences can be reworded to get the following:
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Predicate
Predicate Symbol

is a boy B

walks to school W

is a football F

gets kicked K

is a swimmer S

is hungry H

is a teacher T

is a genius G

Table 2-3. Predicate symbols used to
denote some sentences contain-
ing quantifiers of a variable.



• There exists a thing, such that if that thing is a boy, then that thing walks
to school.

• There exists a thing, such that if that thing is a football, then that thing gets
kicked.

• There exists a thing, such that if that thing is a swimmer, then that thing is
hungry.

• There exists a thing, such that if that thing is a teacher, then that thing is a
genius.

Again, each subject has become a variable, represented by the generic word
or phrase “thing” or “that thing.” Let’s replace the word “thing” and the phrase
“that thing” in each of the above statements by the symbol x. Here’s what we get:

• There exists an x, such that if x is a boy, then x walks to school.
• There exists an x, such that if x is a football, then x gets kicked.
• There exists an x, such that if x is a swimmer, then x is hungry.
• There exists an x, such that if x is a teacher, then x is a genius.

Logicians use a symbol to stand for the words “there exists,” “there is,” “for
some,” or “for at least one.” That symbol is ∃, a backwards uppercase letter E.
It is called the existential quantifier. It indicates that something can be, or some-
times is, true about a variable. The variable to which the quantifier applies is, as
with the universal quantifier, written right after the symbol.

Refer to Table 2-3 and symbolize the sentence parts. If we write out the fore-
going existential-quantifier sentences symbolically, using the ⇒ symbol from
propositional logic to indicate implication, we get:

(∃x) Bx ⇒ Wx
(∃x) Fx ⇒ Kx
(∃x) Sx ⇒ Hx
(∃x) Tx ⇒ Gx

The quantifier is, again, placed in parentheses to separate it from the sentence
that follows. As with the universal quantifier, we can have these alternative nota-
tions for the first of the above sentences:

∃x: Bx ⇒ Wx
∃x | Bx ⇒ Wx
∃x (Bx ⇒ Wx)
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If there is any doubt about which portion of the sentence after a quantifier is
“covered” by that quantifier, then parentheses or higher-order brackets should be
placed around only that portion of the sentence affected. For example, suppose
you write this:

(∀x) Px & Qx & Rx

This could be confused with either of the following:

(∀x) Px & (Qx & Rx)
(∀x) (Px & Qx & Rx)

If there aren’t any parentheses around an expression following a quantifier, you
should interpret this to mean that the entire expression is to be considered as a
whole. Thus, the second of the above interpretations is the correct one. But
here’s a good rule you can follow when working with logical formulas: “When
in doubt, it’s better to have too many sets of parentheses than not enough.” That
is, it’s better to clarify oneself excessively than insufficiently!

MULTIPLE QUANTIFIERS
It’s possible to have sentences in which there is more than one quantifier, each
one applying to a different variable. For example:

(∀x)(∃y)(∃z) (Px & Qy & Rz)

This is read as follows: “For all x, there exists a y and there exists a z such that
Px and Qy and Rz.”

If all the quantifiers are of the same type (either universal or existential) in a
multiple-quantifier expression, then the quantifier can be listed once, and all the
applicable variables can be listed following it. For example:

(∀x, y, z) (Px & Qy & Rz)

This is read as follows: “For all x, for all y, and for all z, Px and Qy and Rz.”

PROBLEM 2-4
Symbolize the following sentences:

• Caesar is a human being.
• All human beings will die.
• Caesar will die.
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SOLUTION 2-4
Let H represent the predicate “is a human being.” Let D represent the
predicate “will die.” Let c represent the subject “Caesar,” which is a 
constant. Let x represent a logical variable. Then the above sentences
can be symbolized:

Hc
(∀x) Hx ⇒ Dx

Dc

PROBLEM 2-5
Symbolize the following logical argument. “Caesar is a human being.
All human beings will die. Therefore, Caesar will die.”

SOLUTION 2-5
We already have the symbolic representations of the three sentences
contained in the argument. This argument states that if the first two 
sentences are both true, then the last one is true. So we can write the
argument like this:

Hc & [(∀x) Hx ⇒ Dx] ⇒ Dc

Remember the rules for precedence outlined in the last chapter. Tasks
within parentheses or brackets are performed first. Then conjunction is
performed, and then implication. If you want to use extra brackets to
avoid any possibility of confusion, you can write the argument this way:

{Hc & [(∀x) Hx ⇒ Dx]} ⇒ Dc

Well-Formed Formulas
In propositional logic, every sentence is written as a single symbol. Such a sym-
bol can’t be put down with incorrect structure, because it’s a self-contained whole.
But in predicate logic, sentences are broken down into parts. This means they must
have a certain syntax, just as the sentences you utter or write in everyday life
should obey certain rules of grammar (or would, in an English teacher’s paradise).

WHY BOTHER WITH SYNTAX?
In every generation, new grammar rules evolve. Sentences that would have
given a language purist nightmares 50 years ago are commonplace today. A few
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decades in the future, some of the sentences we think are fashionable now will
sound archaic, foreign, or stupid. Nonstandard syntax can “come out goofy.”
That’s not necessarily a major problem in casual speech. But in logic, sloppy
syntax cannot be allowed, because it produces meaningless, ambiguous, or inac-
curate statements.

Problems with syntax have caused serious misunderstandings between peo-
ple in cultures where the sentences are not put together in the same ways.
Problems with syntax can also cause intergenerational conflicts. We don’t want
that sort of thing to happen in logic. We can’t afford to allow any room for con-
fusion when we want to prove something!

WHAT IS A WFF?

A properly constructed sentence in predicate logic, translated into symbols
according to certain rules, is called a well-formed formula. This term is often
abbreviated wff (pronounced “wiff” or “woof”).

Let’s use boldface uppercase letters from the latter part of the alphabet (such
as X) to represent unspecified subject/predicate sentences. There are certain
basic rules for constructing such sentences. Here they are:

• All sentences in propositional logic are wffs.
• If A is a predicate and k is a constant or variable, then Ak is a wff. In other

words, any predicate can be put together with any subject, and the result
is a wff.

• If A is a predicate and k1, k2, k3, . . . , and kn are constants or variables, then
Ak1k2k3. . . kn, representing the conjunction Ak1 & Ak2 & Ak3 &. . .& Akn, is
a wff. In other words, a predicate can apply to more than one subject.

• If A is a predicate, k1, k2, k3, . . . , and kn are constants or variables, and we
are given a wff of the form Ak1k2k3. . . kn, then Ak1, Ak2, Ak3, . . . and Akn are
all wffs. In other words, if a wff contains a predicate and multiple subjects,
then that predicate can be put together with any one of the subjects, and the
result is a wff.

• If X is any wff containing the variables x1, x2, x3, . . . xn that do not have
quantifiers, and if we let a quantifier (either universal or existential) be
represented by the “wild card” symbol #, then (#x1)(#x2)(#x3) . . . (#xn) X
is a wff.

• Sentential negation, conjunction, disjunction, implication, and logical equiv-
alence can all be used with or between predicate wffs, just as they can
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be used with or between simple propositions, and the result is always 
a wff.

• Any formula that does not conform to these rules is not a wff.

Here’s an important thing to remember: A statement does not have to be true
in order to be a wff! Statements whose truth is not known, or that are obviously
false, can nevertheless be perfect wffs.

If the above syntax rules seem complicated, read them through a few times.
All they are meant to do is tell us how to put sentences together so they make
logical (if not always common) sense.

MULTIPLE CONSTANTS
Thus far, we’ve constructed wffs in which there is only one constant or one vari-
able. However, in the above rules, there is mention of multiple constants. In most
such cases, there are two constants: the subject and the object in an SVO sen-
tence. The option of symbolizing sentences with multiple constants lets us
express things in more detail than would be possible if multiple constants were
not allowed.

Consider the following sentences:

• Jill walks to school.
• Bob kicks the football.
• That runner eats pork.
• My teacher understands Einstein.

Let’s symbolize the nouns and verbs as indicated in Table 2-4. We can then
write the sentences like this:

Wjs
Kbf
Erp
Ute

We list the verb first, then the subject, and then the object. The order in which
the constants appear is important.

Suppose we reverse the order of the constants in each of the above sentences?
Then we get the following:

Wsj
Kfb
Epr
Uet
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Assuming we keep the symbol assignments shown in Table 2-4, these symbolic
representations translate this way:

• The school walks to Jill.
• The football kicks Bob.
• Pork eats that runner.
• Einstein understands my teacher.

These are legitimate wffs, even though they come out strange when expanded
into words. Nothing in the syntax rules forbids a wff to be ridiculous when trans-
lated into everyday language. (Imprecision or ambiguity is intolerable, but silli-
ness is all right.)

Multiple variables are allowable, too. If we don’t want to specify the constants
in the preceding four wffs, we might use variables x and y instead, getting these:
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Nouns Symbols

Jill j

Bob b

that runner r

my teacher t

school s

the football f

pork p

Einstein e

Verbs Symbols

walks to W

kicks K

eats E

understands U

Table 2-4. Nouns and verbs used to denote
some sentences containing two constants.



Wxy
Kxy
Exy
Uxy

These wffs translate like this, respectively:

• x walks to y.
• x kicks y.
• x eats y.
• x understands y.

PROBLEM 2-6
Which of the following are wffs? Which are not? Variables are sym-
bolized as x and y. Constants are symbolized as a and b. Predicates are 
symbolized as R and S.

xRab
Sabx
RSa

RxySb
aS

SOLUTION 2-6
Only the second expression, Sabx, conforms to the syntax rules for
predicate wffs. Therefore, it alone is a wff.

PROBLEM 2-7
Write out the second sentence above (a legitimate wff) using the words
indicated in Table 2-5 in place of the predicate, constants, and variable.

SOLUTION 2-7
Here it is! Note that the first symbol in a wff always represents a verb
or predicate, and should be treated as such.

• Adam stands in front of Betsy and a person from France.

PROBLEM 2-8
In order to illustrate, in words, what can happen when predicate for-
mulas do not conform to the rules for wffs, write out the faulty formu-
las from Problem 2-6, using the words indicated in Table 2-5 in place of
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the predicates, constants, and variables. Note that the first symbol in a
wff always represents a verb or predicate, and should be treated as such.

SOLUTION 2-8
The following represent good attempts, at least, to translate the four
faulty wffs shown previously.

• Runs toward a person from France Adam and Betsy.
• Stands in front of runs toward Adam.
• A person from France runs toward a person from England, stands

in front of, and Betsy.
• Stands in front of Adam-ifies.

There are undoubtedly other ways to expand the faulty formulas
(which we might call poorly-formed formulas, or pffs). But from these,
you should get the idea that sentence construction is important. Even
the most fervent rebels against the English language will wrinkle their
noses at mutilated sentences like these for decades to come!

Venn Diagrams
Quantifiers can be applied to sets of subjects or objects, and these relationships
can be illustrated as Venn diagrams. Let’s look at some examples. Imagine two
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Symbol Word of Phrase

R runs towards

S stands in front of

a Adam

b Betsy

x a person from France

y a person from England

Table 2-5. Table for Problems 2-7 and 2-8.



types of things, known as widgets and doodads. Imagine two sets, one consist-
ing of all the widgets in the world, and the other consisting of all the doodads in
the world. Suppose that both sets contain lots of items.

SOME (MAYBE ALL) WIDGETS ARE DOODADS
Let the predicate W represent “is a widget,” and the predicate D represent “is a
doodad.” Consider this sentence:

(∃x) (Wx & Dx)

This translates as, “There exists at least one x, such that x is a widget and x is
a doodad.” It can also be translated as “Some (maybe all) widgets are doodads.”
There are four ways this can occur, as shown in Fig. 2-3. The set of widgets is
represented by the solid rectangle and its interior. The set of doodads is repre-
sented by the dashed rectangle and its interior. Individual widgets and doodads
can be represented by points inside the respective rectangles.
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Doodads

Widgets

A

C

B

D
Fig. 2-3. At A and B, some widgets are doodads (and some aren’t). At C, some

widgets are doodads (in fact, they all are). At D, some widgets are
doodads (in fact, the set of widgets and the set of doodads coincide).



ALL WIDGETS ARE DOODADS
Now suppose that all widgets are doodads. The technical way to state this is,
“For every x, if x is a widget, then x is a doodad.” This is written as follows in
symbolic language:

(∀x) (Wx ⇒ Dx)

This can happen in two different ways, as shown in Fig. 2-4.

SOME (BUT NOT ALL) WIDGETS 
ARE DOODADS
Now let’s go back to the situation shown in Fig. 2-3, but place a constraint on
it. We now say, “There exists at least one x, such that x is a widget and x is a
doodad. But it is not true that for all x, x is a widget and x is a doodad.” More
simply, we would say, “Some (but not all) widgets are doodads.” This can be
symbolized as follows:

[(∃x) (Wx & Dx)] & ¬[(∀x) (Wx & Dx)]

This situation can occur in two different ways, as shown in Fig. 2-5.
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Doodads

Widgets

A B

Fig. 2-4. At A, all widgets are doodads (but some doodads aren’t
widgets). At B, all widgets are doodads (and all doodads
are widgets, too).



NO WIDGETS ARE DOODADS
Suppose we want to illustrate this sentence: “No widgets are doodads.” This can
be more technically translated as, “It is not true that there exists an x such that x
is a widget and x is a doodad.” Symbolically, we write:

¬[(∃x) Wx & Dx]

This situation can also be stated as “There exists no x such that x is a widget and
x is a doodad.” We symbolize this as above, but without the square brackets so
the negation symbol applies directly to the quantifier:

¬(∃x) (Wx & Dx)

This is illustrated by the Venn diagram of Fig. 2-6. The set of widgets and the
set of doodads are disjoint sets. That means they have no elements (x’s, denot-
ing widgets or doodads) in common. Another way of stating this is:

(∀x) ¬(Wx & Dx)

NOT ALL WIDGETS ARE DOODADS
Let’s look at one more example. Suppose we want to illustrate this statement:
“Not all widgets are doodads.” This can be changed to the more rigorous form,
“It is not true that for every x, if x is a widget, then x is a doodad.” Symbolically,
we get the following formula:

¬[(∀x) (Wx ⇒ Dx)]
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Doodads

Widgets

A B
Fig. 2-5. Some (but not all) widgets are doodads. At A, the sets over-

lap but don’t coincide. At B, the set of doodads is contained
within the set of widgets.



We can also say, “Not for every x, is it true that if x is a widget, then x is a doo-
dad.” This is written just the same as above, but without the square brackets. In
this rendition, the negation sign applies directly to the quantifier:

¬(∀x) (Wx ⇒ Dx)

This is illustrated by means of the Venn diagrams in Fig. 2-7. Any imagina-
ble scenario is possible, except those in which the set of widgets is a subset of,
or is exactly the same as, the set of doodads.
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Doodads

Widgets

Fig. 2-6. No widgets are doodads. The sets are disjoint; they have no
elements in common.

Doodads

Widgets

A

C

B

Fig. 2-7. Not all widgets are doodads. At A, the sets overlap but don’t coincide. At B, the
set of doodads is contained within the set of widgets. At C, the sets are disjoint.



PROBLEM 2-9
Examine Fig. 2-8. The set of widgets is shown as a solid rectangle, and
the set of doodads is shown as a dashed rectangle. Four points are 
shown, representing constants a, b, c, and d. Write predicate sentences
(in words) for all four of these constants.

SOLUTION 2-9
Here are the sentences that apply individually to each of the constants,
which we call item a, item b, item c, and item d:

• Item a is not a widget and is not a doodad.
• Item b is a widget but not a doodad.
• Item c is a widget and is also a doodad.
• Item d is not a widget, but it is a doodad.

PROBLEM 2-10
Write the above sentences in symbolic form. Be sure they conform to
the rules for wffs.

SOLUTION 2-10
Some people find it helpful to write word-based sentences in rigor-
ous logical form before attempting to symbolize them. The word 
“but” is logically equivalent to “and.” Here are the sentences in “wff-
ready” form:
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Fig. 2-8. Illustration for Problems 2-9 and 2-10.



• It is not true that item a is a widget, and it is not true that item a
is a doodad.

• It is true that item b is a widget, and it is not true that item b is a
doodad.

• It is true that item c is a widget, and it is true that item c is a
doodad.

• It is not true that item d is a widget, and it is true that item d is a
doodad.

Based on these sentences, translation into wffs is straightforward.
For any non-specified item x, let Wx mean “x is a widget,” and let 
Dx mean “x is a doodad.” The following four wffs are valid, based on
Fig. 2-8:

¬Wa & ¬Da
Wb & ¬Db
Wc & Dc

¬Wd & Dd

Quiz

This is an “open book” quiz. You may refer to the text in this chapter. A good
score is eight correct. Answers are in the back of the book.

1. Suppose we are given a sentence in symbolic form: (∃x) Px. The part of
this sentence after the quantifier
(a) is an SV sentence.
(b) is an SVO sentence.
(c) is an SLVC sentence.
(d) might be an SV, SVO, or SLVC sentence; we don’t know unless we

are told what P stands for.

2. If Q is a sentence in propositional logic, then
(a) Q is a wff.
(b) Q is not a wff.
(c) Q contains an existential quantifier.
(d) Q contains a universal quantifier.
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3. Suppose F, G, and H are complicated sentences, but all three are wffs.
Which of the following is not a wff?
(a) ¬(F & G) ⇒ H
(b) ¬F & ¬G & ¬H
(c) ¬F ¬&G ¬&H
(d) F ∨ G ∨ ¬H

4. Which of the following is an example of an SLVC sentence?
(a) I know.
(b) Jim runs to the Post Office.
(c) We are prisoners.
(d) Jane drives a truck.

5. Which of the following is an example of an SV sentence?
(a) I know.
(b) Jim runs to the Post Office.
(c) We are prisoners.
(d) Jane drives a truck.

6. Let the predicate symbol W stand for “is a widget,” and let the predicate
symbol D stand for “is a doodad.” Imagine that there are lots of widgets
and lots of doodads lying around. Let z be a variable. Suppose we know
the following statement is true:

(∀z) (Wz ⇒ Dz)

Based on this fact, of which of the following statements can we be certain?
(a) (∀z) (Dz ⇒ Wz)
(b) ¬(∀z) (Dz ⇒ Wz)
(c) (∃z) (Wz & Dz)
(d) All of the above

7. Consider the scenario of Question 6. Which of the Venn diagrams in Fig.
2-9 can apply to this situation? 
(a) A
(b) B
(c) C
(d) None of the diagrams (A), (B), or (C) can apply.

8. In an SVO sentence, the subject is always
(a) a noun.
(b) a verb.
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(c) an adjective.
(d) a wff.

9. A wff cannot contain
(a) both negation and disjunction.
(b) both negation and conjunction.
(c) both constants and variables.
(d) a variable all by itself, and nothing else.

10. Consider the statement “I created a TIFF image.” The structure of this
sentence can best be described as
(a) SVO.
(b) SV.
(c) an existential quantifier.
(d) a universal quantifier.
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3
CHAPTER

57

Formalities and
Techniques

In this chapter, we’ll look at the elements that make up a mathematical theory,
also called a mathematical system. Then we’ll examine the most common tech-
niques used to prove propositions in a mathematical theory.

Seeds of a Theory

A mathematical theory is built up from certain initial assumptions, using defini-
tions along with the rules of logic. The rules are used in an attempt to prove (or
disprove) various statements known as propositions, which, once they have been
proved, become theorems. These theorems can be used to prove (or disprove)
other propositions.
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WHAT IS THIS STUFF GOOD FOR?
Students taking a math course often ask the teacher or professor, “What’s this
useful for, anyhow?” This seems to be especially true in classes where the math
is abstract: for example, a course in set theory, a course in number theory, a
course in logic, or a course in how to prove theorems.

There are several ways to answer this question.
The first answer can be called the old-fashioned-country-schoolmaster reac-

tion: “Never mind. Be quiet and study.” That won’t satisfy students today.
The second answer goes like this: “Don’t worry about it. Someday you’ll

need this knowledge to solve a problem you couldn’t solve otherwise. I can’t tell
you today what that problem will be. But you’ll find out eventually, and then you
will thank me.” Maybe.

The third response is a series of counter-questions: “What do you mean by
‘useful’? Making a faster airplane? Devising a better system to forecast the
weather? Finding a cure for cancer? Getting rich? Having intellectual fun? Does
everything have to be ‘useful’? Can’t knowledge and learning exist for their 
own sake?”

Pure mathematicians may have the best response to the question, “What is
math useful for?” I recommend that you read A Mathematician’s Apology by 
G. H. Hardy (Cambridge University Press, Cambridge, England, 1992). If your
local library doesn’t have it, you can get it through an online bookseller, such as
barnesandnoble.com or amazon.com.

For now, let’s not worry about practical matters. Let’s dive into the business
of math proofs, and forget all about the utilitarian world.

MATHEMATICAL RIGOR
In mathematics, the term rigor refers to the fact that a theory is built up method-
ically, based on logic. Nothing, except the few initial assumptions needed to get
it going, is taken on faith. The term rigor in this context means “perfection,
soundness, consistency, and elegance.” A pure mathematician will tell you that
a rigorous mathematical theory is very much alive—not in spite of the rigor, but
because of it.

In a rigorous mathematical theory, every statement must be proved. If a state-
ment is not proved, it cannot be taken as true. If a statement is proved false, then
its negation is true.

A contradiction in a mathematical theory occurs when a statement P is
proved, and the statement ¬P is also proved. When mathematicians develop
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theories, they hope contradictions do not arise. If a contradiction is found, it is
the logical equivalent of what happens to a building when a demolition bomb 
is set off inside. Once a theory has thus been shown to be logically unsound or
logically inconsistent, you can’t trust a single theorem that was derived in it.
Some of the provable theorems are true and others are not, but there is no way
to know which theorems are good and which ones are bad. The logical “naviga-
tion compass” has been lost, and you are adrift in a sea of uncertainty.

DEFINITIONS
In order to know what we’re talking about, we must define the basic terminol-
ogy we intend to use when building a mathematical system. If you think a math-
ematical theory as a building, then definitions are like the stones or blocks of the
foundation. Without a solid foundation, a building cannot be expected to with-
stand the tests to come. Without adequate definitions, a theory will not survive
the scrutiny of thesis examiners, the challenge of applications to the real world,
and all the other assaults it is bound to face.

With sound and sufficient definitions, flawless logic, and some good luck, a
theory will evolve into something interesting and elegant, and might even make
a major contribution to knowledge.

A definition often takes the form of an SLVC sentence. Sometimes it will con-
tain an “if-and-only-if” statement. Here are some examples of rigorous definitions.
Note the formal wording that resembles the language used in legal documents:

• A set is a collection or group of things called elements. A set is denoted by
listing its elements in any order, and enclosing the list in curly brackets.

• The empty set, also called the null set, is the set containing no elements. It
is symbolized {} or ∅. A set is empty if and only if it contains no elements.

• Let Q be a point in a flat, two-dimensional (2D) plane X. Let C be the set
of all points in X that are at a distance r from Q, where r is not equal to 0.
Then C comprises the circle of radius r in X, centered at point Q.

• Let Q be a point in a three-dimensional (3D) space Z. Let S be the set of
all points in Z that are at a distance r from Q, where r is not equal to 0.
Then S comprises the sphere of radius r in Z, centered at point Q.

Drawings can help portray some definitions, but in order to be truly rigorous,
a definition must be precise and unambiguous, even without any illustrations.
Fig. 3-1A shows an example of a circle in a flat plane as defined above. Fig. 3-1B
shows an example of a sphere as defined above.
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A special sort of term, worthy of mention because it is just as important as
standard defined terms, is the so-called undefined term or elementary term. 
Most mathematical theories have some of these. In geometry, the terms “point,”
“line,” and “plane” are often considered elementary. They can be described so
people have a good idea of what is meant by them, but they are difficult to
rigorously define. In set theory, the notion of a “collection” or “group” is not rig-
orously defined. We can use synonyms like “bunch” or “few,” “several” or “a lot,”
but the substitution of words alone does not make a definition.

AXIOMS
Along with definitions, a theory needs certain basic truths or assumptions with
which to get started. We can’t derive any true statements without at least a couple
of things we accept on faith. In a mathematical theory, these assumptions are called
axioms or postulates.
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If definitions can be compared to the stones or blocks in the foundation of
a building, then the axioms, taken all together, are analogous to the whole foun-
dation. They are absolutely true by decree. Their truth holds, no matter what. When
deciding on axioms to get a theory started, it’s important that there be as few of
them as possible, while still allowing for a theory that produces some meaning-
ful results. If there aren’t enough axioms, a substantial theory can’t be built. If
there are too many, the danger is high that a logical contradiction can be derived
from them. Axioms usually (but not always) seem true to reasonable people.

Once we have plenty of defined terms and a few good axioms, logical rules
can be applied, generating a larger group of truths. If the set of axioms is logi-
cally consistent, then a contradiction will never be encountered in the theory.
When we decide on the axioms and write the definitions for a mathematical the-
ory, we do not know for sure that a contradiction will never be found. But we
minimize the risk by keeping the number of axioms to the minimum necessary
so that the theory makes sense and produces enough theorems to be interesting.

Some classical examples of axioms follow. You might recognize these as the
postulates set forth by the famous old-world mathematician, Euclid, when he
developed his theory of geometry. Euclid’s original wording has been changed
slightly, in order to make the passages sound more contemporary. Let’s not get
sidetracked and rigorously define every term used here; you probably have a
good idea already what they mean. (If not, you can consult a formal geometry
textbook or even an online dictionary such as www.dictionary.com.)

• Any two points P and Q can be connected by a straight line segment (Fig.
3-2A).

• Any straight line segment can be extended indefinitely and continuously to
form a straight line (Fig. 3-2B).

• Given any point P, a circle can be defined that has that point as its center
and that has a specific radius r (Fig. 3-2C).

• All right angles are identical (Fig. 3-2D).
• Suppose two lines L and M lie in the same plane and both lines are crossed

by the same straight line N. Suppose the measures of the adjacent interior
angles x and y sum up to less than 180º. Then lines L and M intersect on
the same side of line N as angles x and y are defined (Fig. 3-2E).

These are known as Euclid’s postulates. As with definitions, a good axiom
should not require an illustration to be clear and unambiguous. But there is no
harm in making sketches if you find it helpful in the understanding of a prin-
ciple, especially in geometry.

CHAPTER 3 Formalities and Techniques 61



A DENIAL
The last axiom stated previously is known as Euclid’s Fifth Postulate. It is logi-
cally equivalent to the following statement that has become known as the
Parallel Postulate:

• Let L be a straight line, and let P be some point not on L. Then there exists
one and only one straight line M, in the plane defined by line L and point
P, that passes through point P and that is parallel to line L.

This axiom, and in particular its truth or untruth, has received enormous
attention. If the Parallel Postulate is denied, the resulting system of geometry
still works. It is consistent anyway! Here is its denial:
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• Let L be a straight line, and let P be some point not on L. Then it is not true
that there is one and only one straight line M, in the plane defined by line
L and point P, that passes through point P and that is parallel to line L.

This means that in some “geometries” there is more than one line M, and in
some “geometries” there are none. This is an example of a counter-intuitive
axiom. But think about what happens when you try to draw parallel lines on the
surface of the earth! They will always meet somewhere because the earth’s sur-
face is generally spherical. Lines of longitude are parallel at the equator, but they
meet at the poles.

The people who first denied this postulate did so because they wondered what
sort of mathematical theory would arise, and it is reasonable to suppose that they
were prepared for the possibility that a contradiction would result. But it didn’t,
and the theories of non-Euclidean geometry were born.

PROPOSITIONS
Once a good set of definitions has been written up, and a set of axioms has been
developed, we’re ready to start building a mathematical theory.

Do you want to devise a new type of number system? A new way to think of
geometry? Do you have an idea you’d like to pursue, such as the notion of num-
bers that can have more than one value? The process of theory-building involves
taking the definitions and axioms and putting them together according to the
rules of logic. Statements we intend to prove are called propositions until their
truth has been firmly established.

Theorems
Once a proposition has been proved within the framework of a mathematical
system, that proposition becomes a theorem. There are many well-known theo-
rems in mathematics. If you’ve taken any geometry courses, you have learned a
lot of theorems. If you’re a mathematician, you can never get enough theorems,
as long as no two of them contradict within the framework of a single mathe-
matical system. (However, it is all right if a theorem that is true in one system is
false in a different system.)
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A CLASSICAL THEOREM
Here is an example of a theorem most people have heard or read by the time they
graduate from high school:

• Let A, B, and C be three distinct points on a flat plane X. Consider the tri-
angle formed by these points, symbolized ∆ABC. Suppose that the sides of
∆ABC are all straight, and they all lie in the flat plane determined by points
A, B, and C. Let a, b, and c be the lengths of the sides of ∆ABC opposite
the points A, B, and C, respectively. Let the angle between the sides whose
lengths are a and b, symbolized ∠ACB, be a right angle. Then the lengths
of the sides of this triangle are related to each other according to the fol-
lowing equation:

a
2 + b2 = c2

Fig. 3-3 is a drawing that shows a right triangle with the points and sides
labeled. The theorem has become known as the Theorem of Pythagoras, named
after an old-world mathematician who, according to some stories, first proved it in
the fifth century BC. It’s also called the Pythagorean Theorem. (There is evidence,
however, that the principle was known long before the time of Pythagoras.)

The Pythagorean Theorem is not an axiom. It was derived from the funda-
mental axioms and definitions of plane geometry, using the rules of logic. It is,
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in particular, dependent on the Parallel Postulate. The Pythagorean Theorem
holds true only on flat surfaces. The equation does not work on spheres, such as
the surface of the earth considered on a large scale. Nor does it work on conical
surfaces, funnel-shaped surfaces, or saddle-shaped surfaces, or when any side of
the triangle is not straight.

LEMMAS
Sometimes the proof of a theorem is simple and straightforward. In other cases
the proof is complicated and lengthy. When the proof of a theorem involves
many steps, it can help if we prove some preliminary theorems first, using them
as stepping stones on the way to the final proof of the intended theorem. A minor
theorem of this sort is called a lemma.

A lemma does not have to be of enduring interest, except for the fact that it
plays a role in the construction of a major proof. But technically, a lemma is a
theorem. When a lemma is proved, it can be saved for possible reuse in proving
theorems to come. Once in a while a lemma will turn out, years or decades after
it was first generated, to be more important than anybody thought!

COROLLARIES
Sometimes, when a theorem is proved, a few short steps can produce one or
more other theorems. Such a secondary theorem is called a corollary.

Consider the Pythagorean Theorem equation. It holds true on a flat plane, but
not on a curved surface. We might come up with a corollary to the Pythagorean
Theorem that goes something like this:

• Let A, B, and C be three distinct points on a surface S. Consider the trian-
gle formed by these points, symbolized ∆ABC. Suppose that the sides of
∆ABC all lie entirely on the surface S. Let a, b, and c be the lengths of the
sides of ∆ABC opposite the points A, B, and C, respectively. Let the angle
between the sides whose lengths are a and b, symbolized ∠ACB, be a right
angle. Suppose that the Pythagorean relationship, a2 + b2 = c2, does not
hold true. Then S is not a flat plane.

This can be proved from the Pythagorean Theorem using the law of implica-
tion reversal from propositional logic. In case you don’t remember it, the law of
implication reversal goes like this:
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• Let X and Y be logical variables. Then the following logical statement is
valid:

(X ⇒ Y) ⇔ (¬Y ⇒ ¬X)

If we let X stand for “S is a flat surface” and Y stand for “The Pythagorean
Theorem equation works on that surface,” and if we let all other factors remain
unchanged, the corollary can be proved by a single application of the law of impli-
cation reversal. The statement, “If a surface is flat, then the Pythagorean Theorem
equation works on that surface” is logically equivalent to “If the Pythagorean
Theorem equation doesn’t work on a surface, then that surface isn’t flat.”

Figs. 3-4 and 3-5 show examples of right triangles on surfaces that are not
flat. In Fig. 3-4, the surface is defined as positively curved; it bends in the same
sense no matter what the orientation. In Fig. 3-5, the surface is defined as nega-
tively curved; it bends in one sense for some orientations and in the opposite
sense for other orientations. In neither case does the Pythagorean Theorem equa-
tion, in its traditional form, work for expressing the relationship among the
lengths of the sides.
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PROBLEM 3-1
Define the meaning of the term interior angle, as it pertains to triangles.

SOLUTION 3-1
Let S, T, and U be specific, straight line segments. Suppose that S, T,
and U are joined at their end points P, Q, and R. Consider the three
angles ∠PQR, ∠QRP, and ∠RPQ. These three angles constitute the
three interior angles of the triangle ∆PQR.

PROBLEM 3-2
Define the meaning of the term measure of an angle in degrees. Also
provide symbology.

SOLUTION 3-2
Let S and T be specific, straight line segments. Let the end points of S
be point Q and point R, and let the end points of T be point Q and point
P, so line segments S and T intersect at their common end point Q. The
measure of angle ∠PQR in degrees, symbolized mº∠PQR, is the frac-
tion of a circle that ∠PQR subtends, multiplied by 360.

PROBLEM 3-3
A familiar theorem in geometry states that the interior angles of a tri-
angle always add up to 180º, provided the triangle and its sides are 
entirely contained on a flat surface. Express this theorem formally.
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Don’t mention any drawings in the statement of the theorem. You don’t
have to supply a proof right now. We’ll do that in Chapter 5.

SOLUTION 3-3
Let S, T, and U be distinct, straight line segments, all of which lie on a
common flat plane X. Suppose that S, T, and U are joined at their end 
points P, Q, and R, forming a triangle ∆PQR. Suppose S, T, and U are
named in that order by proceeding counterclockwise around ∆PQR. Let
P be the point opposite side S, Q be the point opposite side T, and R be
the point opposite side U. Consider the three interior angles of this tri-
angle: ∠PQR, ∠QRP, and ∠RPQ. Then the following equation always
holds true:

mº∠PQR + mº∠QRP + mº∠RPQ = 180º

This isn’t quite the way Euclid would have stated it, but it can suffice
for us today.

PROBLEM 3-4
State a corollary to the preceding theorem that can be derived using 
the law of implication reversal. Again, don’t mention any drawings in the 
statement of the corollary. We introduce a new definition here, as follows:

• On a surface X, a geodesic between two distinct points A and B is
the line segment or curve C with end points A and B, such that C
lies entirely on X, and such that C is shorter than any other line
segment or curve on X whose end points are A and B.

SOLUTION 3-4
Let S, T, and U be distinct geodesics, all of which lie on a common sur-
face X. Suppose that S, T, and U are joined at their end points P, Q, and 
R, forming a triangle ∆PQR. Suppose S, T, and U are named in that
order by proceeding counterclockwise around ∆PQR. Let P be the
point opposite side S, Q be the point opposite side T, and R be the point
opposite side U. Consider the three interior angles of this triangle:
∠PQR, ∠QRP, and ∠RPQ. Suppose either of the following is true:

mº∠PQR + mº∠QRP + mº∠RPQ > 180º

or

mº∠PQR + mº∠QRP + mº∠RPQ < 180º

Then the surface X, on which ∆PQR lies, is not flat.
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A Theory Grows
Once a few theorems have been proved, more propositions become tempting.
They seem to suggest themselves, “pleading for proof.” It is up to the mathe-
matician to carry out the logical steps with the rigor and formality necessary to
be sure the proof of a proposition is valid—if a proof can be found.

PROOFS AND TRUTH
Sometimes a proposition seems intuitively true, but a proof cannot be found.
That can mean either of two things. Either the proposition really is not true, no
matter how much it might seem so, or else the proposition is true but a proof is
hard or impossible to find.

A mathematical theory is usually a first-order logical system. There are some
truths in this kind of logical structure that cannot be proved. This strange fact was
itself proved in 1930 by a German mathematician named Kurt Gödel. It practi-
cally caused a revolution in mathematics when it was published.

IT’S ART!
A good mathematical theory grows into a fascinating—one might even say artis-
tic—structure of theorems and corollaries (Fig. 3-6). As long as a contradiction
is not found, the theory may continue to grow for a long time, perhaps indefi-
nitely. As the pure mathematician works on a new theory, he or she might have
an application in mind. But a fascination with the subject, a creative urge, and
pride in one’s work are enough to keep the pure mathematician working.

According to G. H. Hardy, mathematical truths exist independent of human
thought. All the facts are there. They would be there even if human beings ceased
to exist, or even, for that matter, if there had never been any life on earth. It is up
to us, should we be sufficiently curious, creative, and motivated, to seek them out.

THE FIRST GREAT FORMAL THEORY
Thousands of years ago, the Greek mathematician Euclid developed and pub-
lished what some historians consider the first true axiomatic mathematical theory.
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He proved that there exists an infinite number of prime numbers. The prime
numbers are natural numbers (also called counting numbers) greater than 1, and
cleanly divisible only by themselves and 1. But most people remember Euclid
for his contributions to geometry. In particular, he practically invented plane
geometry, which describes the relationships among points, lines, and figures on
flat, two-dimensional surfaces.

Euclid began with several formal definitions and a set of postulates, includ-
ing those stated earlier in this chapter. From these, he built up an elegant and
far-reaching theory that we now know as Euclidean Geometry. A variant of it is
still used today by surveyors and architects, and is still taught in schools all over
the world.

PART ONE The Rules of Reason70

Definition

Definition

Definition

Axiom
(or postulate)

Axiom
(or postulate)

Logical
process

Logical
process

Theorem Theorem

Lemma

Lemma

Logical
process

Corollary And so on!

Fig. 3-6. Evolution of a mathematical system.



For a good presentation of Euclid’s original theory of geometry, you can
get a copy of The Elements (Green Lion Press, Santa Fe, NM, 2002) from an
online bookseller, such as barnesandnoble.com or amazon.com. Look for ISBN
1888009195. You might also find it at your local book shop or at a public or
school library.

Techniques for Proving Things
There are a few powerful tactics that mathematicians use to prove theorems. All
of the processes are based on the rules of logic.

DEDUCTIVE REASONING
Deductive reasoning, also called deduction, is the most straightforward means
of proving theorems. The expression “deduction” should not be confused with
the process of elimination that is sometimes used to argue in favor of something
by discounting all the alternatives. In mathematics, deduction requires the use
of logical rules in discrete steps, such as the law of implication reversal, the law of
double negation, the distributive laws, and DeMorgan’s laws, along with a few
rules for predicate logic.

Consider the following, stated as a proposition:

• Everyone who lives in Wyoming likes beef. Joe lives in Wyoming. There-
fore, Joe likes beef.

We can symbolize this as follows:

{[∀x (Wx ⇒ Bx)] & Wj} ⇒ Bj

In this wff, the predicate W means “lives in Wyoming.” The predicate B means
“likes beef.” The symbol x is a variable (that is, a nonspecific individual) in the
set of human beings. The symbol j is a constant—in this case, a certain person
named Joe. The upside-down A is the universal quantifier, read “For every” or
“For all.”

Here is another popular way to write down this argument in symbolic form,
emphasizing the step-by-step nature of it:
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∀x (Wx ⇒ Bx)
Wj
∴
Bj

In this set of statements, progressive facts are listed one below the other. The
three-dot symbol means “therefore.”

There’s yet another way this formula can be written:

∀x (Wx ⇒ Bx)
Wj
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
Bj

In this layout, the three dots are replaced by a horizontal bar, so the argument
looks a little like a sum in arithmetic.

This is a good example of deductive reasoning. It follows from the fact that
if something is true for a variable in a given set, then it is true for any constant
(that is, any individual) in that set. This fact is a known theorem of predicate
logic, and has been proved within the framework of that discipline.

LEAP BEFORE YOU THINK FURTHER!
Let’s take for granted everything that has ever been proved in propositional and
predicate logic, and consider all these theorems as legitimate tools in our arse-
nal for proving propositions in all other disciplines. That way, we don’t have to
go through the proofs of all the known theorems in all of propositional and pred-
icate logic, a process that would itself require its own book. One of the main rea-
sons logic was developed was to make it possible to prove theorems in other
mathematical fields.

A roster of useful theorems from propositional logic was presented in Chapter
1. Proofs of these theorems are fairly easy because the “brute force” tactic of truth
tables can be used. For predicate logic, the situation becomes more complicated.

WHAT’S THE UNIVERSE?
Before you try to prove propositions and thereby make them into theorems, it’s
a big help if you know what you are trying to prove things about. Are you try-
ing to prove a proposition involving the set of human beings? Are you trying to
prove things about numbers? Planets? Triangles? Spheres? What?
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Sometimes the universal set, also called the universe, is the set of all objects
to which a theorem is intended to apply. This should be evident from context.
For example, consider this statement: “If x is a real number, then x + 1 is also a
real number.” The universe is the set of all real numbers. Or this: “The sum of
the measures of the interior angles of any triangle on a flat surface is 180º.” The
universe is the set of triangles on flat surfaces.

If the universal set is not evident from context, then the universal set should
be plainly stated. For example, we can preface a proposition with a sentence such
as this: “Let x be a real number.” Or this: “Let T be a triangle on a flat surface.”

TO PROVE “THERE EXISTS. . .”
Suppose that you want to prove that a proposition holds true for some, but not
necessarily all, of the objects within a universal set U. Imagine that you are con-
fronted with this proposition:

• Let W be the set of all widgets. Let D be the set of all doodads. Then there
exists some element w in set W, such that w is an element of set D.

In set theory, the phrase “is an element of” is symbolized ∈. This looks a little
like the Greek letter epsilon, or a mutated English uppercase letter E. Given this
symbol, we can write the above theorem as follows, based on the knowledge of
what the letters stand for:

(∃w) [(w ∈ W) & (w ∈ D)]

In order to prove a proposition of this form, we only need to provide one
example for which the statement is true. Once we have shown that this type of
proposition holds true for one object, we have shown that it holds true “for
some” objects. That is, “there exists” an object for which the proposition is true.

Theorems of this sort can be called weak theorems. They don’t always tell us
much. But they can sometimes be significant.

TO PROVE “FOR ALL. . .”
In mathematics, it’s common to come across a proposition that claims a fact for
all objects within a universe U. These propositions, once proved, can be called
strong theorems. We stated a couple of examples a while ago. Here they are
again, written down in more formal style.
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• Let ℜ represent the set of all real numbers. For all x, if x is an element of
ℜ, then (x + 1) is an element of ℜ.

Symbolically:

(∀x) {(x ∈ ℜ) ⇒ [(x + 1) ∈ ℜ]}

• Let T represent the set of all triangles on flat surfaces. Let H represent the
set of all triangles for which the sum of the measures of the interior angles
is 180º. For all y, if y is an element of T, then y is an element of H.

Symbolically:

(∀y) [(y ∈ T) ⇒ (y ∈ H)]

In order to prove a proposition of this form, we have to show that for any
arbitrary (that is, nonspecific) object, the proposition holds true. It is not good
enough to show that the proposition holds true in specific cases, even a large
number of them. We have to find a way to demonstrate that the proposition is a
fact for all of the objects in the universal set, without fail, even if the universal
set has an infinite number of elements.

One of the most amazing things about mathematics is that it’s possible to
prove something for infinitely many things while executing only a finite number
of steps. Sometimes this is easy, and sometimes it is difficult. Sometimes, in-
sight and intuition come into play in ways more often associated with artists
than technicians.

INSTANCES OF “FOR ALL. . .”
Consider the following statement: “All rational numbers are real numbers.”
Suppose we are assured that this statement is true. Now imagine that we are
interested in the properties of the number −577/843. Is this a real number? If we
are able to show that −577/843 is a rational number, then according to the state-
ment given above, we can conclude that it is a real number. (If we are not able
to show that −577/843 is a rational number, it doesn’t prove that −577/843 is not
a real number; it merely tells us nothing important.)

If you have taken any middle-school mathematics courses, you should know
what a rational number is. Here is a formal definition:

• Let x be a number. Then x is a rational number if and only if x can be
expressed in the form a/b, where all of the following are true: (1) a is an
integer, and (2) b is a natural number, and (3) b ≠ 0 (b is not equal to 0).
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In case you’ve forgotten what natural numbers and integers are, here are formal
definitions for them:

• Let b be a number. Then b is a natural number if and only if b is an ele-
ment of the set N = {0, 1, 2, 3, 4, . . .}.

• Let a be a number. Then a is an integer if and only if one of the following
is true: (1) a is a natural number, or (2) −a is a natural number.

Let’s consider number an elementary term for the purposes of this discussion.
The following can serve as an informal definition of a real number:

• Let x be a number. Then x is a real number if and only if one of the fol-
lowing is true: (1) x = 0, or (2) x can be used to express the distance in spe-
cific units between two geometric points, or (3) −x can be used to express
the distance in specific units between two geometric points.

It’s clear that −577/843 is of the form a/b. All we have to do is let a = −577
and b = 843. It happens to be true that the negative of −577 is 577, so a is 
an integer. It also happens to be true that 843 is a natural number, because
843 ∈ {0, 1, 2, 3, 4, . . .}. It is obvious that 843 is not equal to 0. Therefore,
according to the original proposition, −577/843 is a rational number. Because all
rationals are reals, −577/843 is a real number.

Let the predicate Q stand for “is a rational number.” Let the predicate R
stand for “is a real number.” Let x be a logical variable. Let k be the constant
−577/843. Then we can write our single-instance proof like this:

∀(x) Qx ⇒ Rx
Qk
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
Rk

INSTANCES OF “THERE EXISTS. . .”
Consider this statement: “Some natural numbers can be divided by 7, and the
result is another natural number.” Suppose we are interested in the number 765.
This is a natural number. Can it be divided by 7 to get another natural number?
There is only one way to find out: test it and see. A calculator can be used to do
this. Divide 765 by 7, and see what you get! If your calculator agrees with mine,
then you should get:

765/7 = 109.285714285714285714. . .
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That quotient is not a natural number.
Let’s test another number, this time 322. If your calculator agrees with mine,

then you should get:

322/7 = 46

That quotient is a natural number.
When you want to demonstrate that a certain constant satisfies an existential

proposition (that is, one of the form “There exists . . .”), all you have to do is test
it and hope that the test comes out positive. Of course, if the test fails, you have
proved exactly the opposite: that the constant does not satisfy the proposition.
But you have not disproved the entire proposition. In fact, disproving an exis-
tential proposition can be difficult. To do that, you have to prove that the propo-
sition never holds true.

REDUCTIO AD ABSURDUM
One of the most elegant and interesting tactics in the mathematician’s arsenal 
is known as reductio ad absurdum. This is Latin and translates roughly to “to
reduce to absurdity.” In order to use this technique, we start by assuming that
what we want to prove is false! Then from this, we derive a contradiction. That
proves that our assumption is false, so the original proposition must be true.

Some purists argue that reductio ad absurdum should be used only when all
other attempts at proof have failed. But there are situations that seem to cry out
for the use of this technique. In particular, statements of the form “There exist
no. . .” are ideal candidates.

We’ve defined rational numbers, and we have a good idea of what a real
number is. There are real numbers that are not rational numbers. They are de-
fined this way:

• Let x be a number. Then x is an irrational number if and only if both of the
following are true: (1) x is a real number, and (2) x is not a rational number.

Now consider this proposition:

• No irrational number can be expressed as an integer divided by a nonzero
natural number.

In order to prove it, let’s assume its opposite. Call this assumption A. We will try
to derive a contradiction from A. This assumption A, which is the negation of the
original proposition, is:
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• A = There is at least one irrational number that can be expressed as an inte-
ger divided by a nonzero natural number.

Suppose that y is such a number. Then y = a/b, where a is an integer and b is a
nonzero natural number. It follows that y is rational, because it meets the defini-
tion of a rational number. But we just got done specifying that y is irrational! We
have a direct contradiction; we are saying that y is a rational number, and y is not
a rational number. We must conclude that the assumption A is false, and there-
fore that ¬A is true. That proves the following:

• It is not true that there is at least one irrational number that can be ex-
pressed as an integer divided by a nonzero natural number.

This is logically identical to the original proposition, which we can state again
to be sure we’re not getting confused by all the quantifiers and negations:

• No irrational number can be expressed as an integer divided by a nonzero
natural number.

PROBLEM 3-5
Use reductio ad absurdum to show that there exists no largest rational
number.

SOLUTION 3-5
Suppose there is a largest rational number. Call it r. That is our assump-
tion, which we will call A. Let’s prove that A is false.

According to the definition of rational number, r = a/b, where a is
some integer and b is some nonzero natural number. We can be certain
that r > 0, because all the positive rational numbers are larger than any
negative rational number or 0. This means that a is a positive integer, that
is, a > 0. (If a were negative, then r would be negative, and if a were equal
to 0, then r would be equal to 0, and we’ve ruled those possibilities out.)

Now consider a number s such that the following is true:

s = (a + 1)/b

We can be certain that a + 1 is an integer, because 1 plus any integer
always equals another integer. This means that (a + 1) /b is a rational
number, and therefore that s is a rational number. We also know that 
(a + 1) > a. Because a is positive, (a + 1)/b > a /b. That means s > a /b,
and therefore that s > r. Thus s is rational, and s > r. This contradicts
our assumption A, that there is a largest rational number, so A must be
false. That means ¬A is true: There exists no largest rational number.
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MATHEMATICAL INDUCTION
There’s one more technique that we’ll look at here. It is known as mathematical
induction. A less formal term might be proof by mathematical chain reaction.
Using this scheme, it is possible to prove things about all the elements in an infi-
nite set, using only a finite number of steps.

Imagine an infinite set S, consisting of elements called a0, a1, a2, a3, a4, and
so on, like this:

S = {a0, a1, a2, a3, a4, . . .}

Suppose that we want to prove that a proposition P is true about all the elements
of S. We can’t prove P for each element of S one by one, or even for large batches
of elements, because the list goes on forever. But suppose we can prove that P is
true for a0, the first element in S. Also suppose we can prove that if P is true for
some unspecified element an in set S (where n is a natural number), then P is true
for the next element a(n+1) in set S. By doing these two things, we create a “chain
reaction of truths.” We know P is true for the first element, and this proves that
P is true for the second; that in turn proves P for the third; and so it goes on for-
ever, like an infinitely long line of dominoes knocking each other down.

PROBLEM 3-6
Show that for any two distinct rational numbers, there is a third rational
number whose value lies between them. Don’t use reductio ad absur-
dum, and don’t try to use mathematical induction. It is all right, how-
ever, to take all the general rules of arithmetic (sums, products, differ-
ences, and quotients) for granted.

SOLUTION 3-6
Let the two rational numbers in question be called r and s. Suppose that
the following are true:

r = a /b
s = c /d

where a and c are integers, and b and d are nonzero natural numbers.
We know such numbers a, b, c, and d exist, because r and s are both
rational, and the definition of rational number requires that there exist
such numbers a, b, c, and d.

Now consider the mathematical average of the two numbers r and s.
We know this number lies between r and s, because the average (or
arithmetic mean) of any two numbers is always between them (midway
between, in fact!). Call this number x. If we can prove that x is rational,
then we have proved the theorem.
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We know the following about x, from the formula for finding
averages:

x = (r + s) /2

That means that this general equation holds true for x:

x = (a/b + c/d) /2

From arithmetic, remember the general formula for sums of quotients:

a /b + c /d = (ad + bc) /bd

Therefore, we know that the following is true:

(a /b + c /d) / 2 = (ad + bc) /(2bd)

and thus:

x = (ad + bc) / (2bd)

If we can show that the quantity (ad + bc) is an integer and that the
quantity 2bd is a nonzero natural number, then we have shown that x is
rational. The product of any two integers is always an integer; there-
fore ad and bc are integers. The sum of any two integers is always an
integer; therefore the quantity (ad + bc) is an integer. The product of
any two nonzero natural numbers is a nonzero natural number; there-
fore bd is a nonzero natural number. Twice any nonzero natural number
is a nonzero natural number; therefore the quantity 2bd is a nonzero
natural number. All of this demonstrates that x is equal to an integer
divided by a nonzero natural number, and therefore that x is rational.
As previously stated, x is the arithmetic mean of r and s, so x lies
between r and s. Therefore, for any two distinct rational numbers, there
is a third rational number whose value lies between them.

PROBLEM 3-7
Use mathematical induction to show that all natural-number multiples
of 0.1 are rational numbers.

SOLUTION 3-7
Remember that the set N of natural numbers is:

N = {0, 1, 2, 3, 4, . . .}

Therefore, the set M of natural-number multiples of 0.1 is:

M = {(0 × 0.1), (1 × 0.1), (2 × 0.1), (3 × 0.1), (4 × 0.1), . . .}
= {0, 0.1, 0.2, 0.3, 0.4, . . .}
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The first element of this set, 0, is rational, because it can be expressed
in the form a/b, where a is an integer and b is a nonzero natural number.
Simply let a = 0 and b = 1. This is the easy part of the induction proof.

Now for the hard part. Suppose that n × 0.1 (which can also be writ-
ten as 0.1n) is rational for some unspecified natural number n.
Consider the next number in our set M of multiples, (n + 1) × 0.1. This
can be rearranged using the rules of arithmetic:

(n + 1) × 0.1 = (n × 0.1) + (1 × 0.1)
= 0.1n + 0.1

We know that there exists some integer a and some nonzero natural
number b such that 0.1n = a/b, because we are given that 0.1n is
rational. Therefore, we can rewrite the above expression as:

0.1n + 0.1 = a /b + 0.1
= a /b + 1/10

Using the arithmetic rule for the sum of two quotients, we can
rearrange the above as follows:

a /b + 1/10 = (10a + b) /10b

Ten times any integer is another integer; this is a known rule of
arithmetic. Therefore, 10a is an integer. The sum of any integer and a
nonzero natural number is an integer; this is another rule of arithmetic.
Therefore, 10a + b is an integer. Ten times any nonzero natural num-
ber is another nonzero natural number; this is yet another rule of arith-
metic. Therefore, the quantity (10a + b) /10b is equal to an integer
divided by a nonzero natural number. This means, by definition, that
(10a + b) /10b is rational. It also happens to be the same quantity as
a /b + 1/10, which in turn is equal to 0.1n + 0.1, the element immedi-
ately after 0.1n in the set M.

We have just proved that if any unspecified element of M is rational,
then the next element is rational as well. That, in addition to the proof
that the first element in M is rational, is all we need to claim that every
element in the set M is rational, based on the principle of mathematical
induction.

Quiz
This is an “open book” quiz. You may refer to the text in this chapter. A good
score is eight correct. Answers are in the back of the book.
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1. Imagine that you want to create an entirely new mathematical theory. The
number of postulates in your theory

(a) can be unlimited, and the more the better.
(b) should be large enough so that a contradiction will be easy to derive.
(c) should be as small as possible, while still producing a meaningful

theory.
(d) should be zero. You should never assume anything without proof.

2. Consider the following series of statements:

(∀x)(Kx ⇒ Rx)
Kg
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
Rg

This is a generic symbolization of a proof by means of

(a) reductio ad absurdum.
(b) mathematical induction.
(c) elementary terminology.
(d) straightforward logical deduction.

3. Which of the following symbols is used to denote the fact that an object
is an element of a particular set?

(a) ∪
(b) ∩
(c) ∈
(d) ⊄

4. Something that can be described so we have a good idea of what it
means, but that is not rigorously defined, is called

(a) an elementary term.
(b) an axiom.
(c) a postulate.
(d) a lemma.

5. An axiom or postulate is

(a) a fact proved on the basis of other known facts.
(b) something assumed to be true without proof.
(c) a minor theorem that follows easily from the proof of a major theorem.
(d) a major theorem that is used to prove a minor theorem.
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6. Consider the following series of statements:

¬D ⇒ (H & ¬Η)
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
D

This is a generic symbolization of a proof by means of

(a) reductio ad absurdum.
(b) mathematical induction.
(c) elementary terminology.
(d) straightforward logical deduction.

7. A mathematical theory can be rendered completely invalid if it is pos-
sible to prove, based on its axioms and definitions,

(a) an infinite number of propositions.
(b) only propositions containing existential quantifiers.
(c) only propositions containing universal quantifiers.
(d) a proposition and also its negation.

8. The set of all objects to which a theorem is intended to apply is called

(a) the propositional set.
(b) the predicate set.
(c) the empty set.
(d) the universe.

9. Suppose you are told that a certain proposition P holds true for some, but
not all, rational numbers. You want to prove that P is true for 589/777.
The most straightforward, and probably the easiest, way to do this is to
demonstrate that P holds true for

(a) 589/777.
(b) all the positive rational numbers.
(c) all the rational numbers between 0 and 1.
(d) all the real numbers.

10. Fill in the blank in the following sentence to make it true: “If a proposi-
tion P holds true in general for a variable x in a set S, then P is true for
any ________ in the set S.”

(a) constant
(b) axiom
(c) definition
(d) corollary 
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4
CHAPTER

83

Vagaries of Logic

History is replete with good theorems whose original proofs contained errors,
and bad theorems that collapsed when their proofs were shown to be invalid. In
this chapter we’ll examine some classical fallacies, which are violations or mis-
applications of the laws of reason. We’ll also look at a few paradoxes, which are
incredible results that arise from seemingly sound arguments.

Cause, Effect, and Implication
When two things are correlated, it’s tempting to conclude that there is a cause-
and-effect relationship involved. Examples of this sort of flawed thinking abound.
Anyone who listens to the radio, reads newspapers, or watches television can’t
escape them. Sometimes, a dubious cause-effect relationship is not directly
stated, but only implied. “Take this pill and you’ll be happy all the time. Avoid
these foods and you won’t die of a heart attack.”

Imagine what some of the advertisements, and the weird logic they contain,
sound like to people who have grown up in cultures radically different from
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ours! “If you drink this fizzy liquid after eating abominable food, then all of your
abdominal pains will go away.” “If you eat this purple goo, then all the ugly
hairs in your nose will fall out.” The implications vary, but the general nature of
the implications is always the same: “If you do something that causes me to
make money, then you will become happy.” How do we know if there really is
a cause-effect relationship when we see two things happen at the same time, or
one right after the other?

CORRELATION AND CAUSATION
Suppose two phenomena, called X and Y, vary in intensity with time. Fig. 4-1
shows a relative graph of the variations in both phenomena. The phenomena
shown in this graph change in a manner that is positively correlated. When 
X increases, so does Y, in general. When Y decreases, so does X, in general.
(Negative correlation can also exist, where an increase in one factor is attended
by a decrease in the other.) The independent variable is some factor that does not
depend on either X or Y. Time is a common example of an independent variable.
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Fig. 4-1. The two phenomena shown here, X and Y, appear to be
strongly correlated. Does correlation imply causation?



Is causation involved in the situation shown by Fig. 4-1? Maybe! There are
four ways that causation can exist. But maybe there is no cause-and-effect rela-
tionship. If the scenario portrayed by Fig. 4-1 is that sort of case, then it shows
nothing more than a coincidence: the phenomena X and Y closely coincide, but
there is no particular reason why.

If there were 1,000 points on each plot, and they still followed each other the
way they do in Fig. 4-1, there would be a better case for believing that causation
is involved. As it is, there are only 12 points on each plot. Suppose these points
represent a freak scenario? Or, suppose the 12 points in each plot of Fig. 4-1
have been selected by someone with a vested interest in the outcome of the
analysis?

X CAUSES Y
Cause-and-effect relationships can be illustrated using arrows. Fig. 4-2A shows
the situation where changes in phenomenon X directly cause changes in phe-
nomenon Y. You can doubtless think of some scenarios. Here’s a good real-life
example.
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Fig. 4-2. At A, X causes Y. At B, Y causes X.
At C, D causes both X and Y.



Suppose the independent variable, shown on the horizontal axis in Fig. 4-1,
is the time of day between sunrise and sunset. Plot X shows the relative intensity
of sunshine during this time period; plot Y shows the relative temperature over
that same period of time. We can argue that the brilliance of the sunshine causes
the changes in temperature. There is some time lag in the temperature function;
this is to be expected. The hottest part of the day is usually a little later than the
time when the sunshine is most direct.

It’s harder to believe that there’s a cause-and-effect relationship in the other
direction. It is silly to suggest that temperature changes cause differences in the
brilliance of the sunlight reaching the earth’s surface. Right? Well, think some
more! Suppose heating of the atmosphere causes clouds to dissipate, resulting in
more sunlight reaching the surface (Y causes X)? Maybe we’re looking at a sit-
uation where Y causes X.

Y CAUSES X
Imagine that the horizontal axis in Fig. 4-1 represents 12 different groups of peo-
ple in a medical research survey. Each hash mark on the horizontal axis repre-
sents one group. Plot X is a point-to-point graph of the relative number of fatal
strokes in a given year for the people in each of the 12 groups; plot Y is a point-
to-point graph of the relative average blood pressure levels of the people in the
12 groups during the same year. (These are hypothetical graphs, not based on
real historical experiments, but a real-life survey might come up with results
something like this. Medical research has shown a correlation between blood
pressure and the frequency of fatal strokes.)

Is there a cause-effect relationship between the value of X and the value of Y
here? Most doctors would answer with a cautious “Yes.” Variations in Y cause,
or at least contribute to, observed variations in X (Fig. 4-2B). High blood pres-
sure can be a cause of fatal strokes, in the sense that, if all other factors are equal,
a person with high blood pressure is more likely to have a fatal stroke than a per-
son identical in every other respect, but with normal blood pressure.

What about the reverse argument? Can fatal strokes cause high blood pres-
sure (X causes Y)? No. That’s clearly impossible. Once a person has had a fatal
stroke, his or her blood pressure drops fast!

COMPLICATIONS
If you are a weather expert or a doctor and you are reading this, are you getting
a little nervous? The above scenarios are oversimplified. The cause-and-effect
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relationships described here aren’t “pure.” In real life, events rarely occur with
a single clear-cut cause and a single inevitable effect.

The brightness of sunshine is not, all by itself, the only cause of changes in the
temperature during the course of a day. A nearby lake or ocean, the wind direc-
tion and speed, and the passage of a weather front can all have an effect on the
temperature at any given location. We’ve all seen the weather clear and brighten,
along with an abrupt drop in temperature, after a strong cold front passes by. The
sun comes out, and it gets cooler. That defies the notion that bright sun causes
things to heat up, even though the notion, in its “pure” form where all other fac-
tors are equal, is valid. The trouble is that other factors are not always equal!

In regards to the blood-pressure-versus-stroke relationship, there are numer-
ous other factors involved, and scientists aren’t sure they know them all. New
discoveries are constantly being made in this field. Examples of other factors
that are believed to play cause-effect roles in the occurrence of fatal strokes
include nutrition, stress, cholesterol level, body fat index, presence or absence of
diabetes, age, and heredity. A cause-effect relationship (Y causes X) exists
between blood pressure and fatal strokes, but this relationship is not “pure.”

D CAUSES BOTH X AND Y
Suppose that the horizontal axis in Fig. 4-1 represents 12 different groups of
people in another medical research survey. Again, each hash mark on the hori-
zontal axis represents one group. Plot X is a point-to-point graph of the relative
number of heart attacks in a given year for the people in each of the 12 groups;
plot Y is a point-to-point graph of the relative average blood cholesterol levels
of the people in the 12 groups during the same year. As in the stroke scenario,
these are hypothetical graphs. But they’re plausible. Medicine has shown a cor-
relation between blood cholesterol and the frequency of heart attacks.

Before I make enemies in the medical profession or the food industry, let me
say that the purpose of this discussion is not to resolve the cholesterol-versus-
heart-disease issue, but to illustrate complex cause-effect relationships. It’s
easier to understand a discussion about real-life factors than to leave things
entirely generic. I do not have the answer to the cholesterol-versus-heart-disease
riddle. If I did, I’d be writing a different book.

When scientists first began examine the hearts of people who died of heart
attacks in the early and middle 1900s, they found “lumps” called plaques in the
arteries. It was theorized that plaques cause the blood flow to slow down, con-
tributing to clots that eventually cut off the blood to part of the heart, causing tis-
sue death. The plaques were found to contain cholesterol. Evidently, cholesterol
can accumulate inside the arteries. When they saw data showing a correlation
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between blood cholesterol levels and heart attacks, scientists got the idea that if
the level of cholesterol in the blood could be reduced, the likelihood of the per-
son having a heart attack later in life would go down. The theory was that fewer
or smaller plaques would form, reducing the chances that clot formation could
obstruct an artery.

One of the first thing doctors did after the correlation was found was to tell heart
patients to reduce the amount of cholesterol-containing foods in their diet, hoping
that this change in eating behavior would cause blood cholesterol levels to go
down. In many cases, a low-cholesterol diet did bring down blood cholesterol lev-
els. (Later, drugs were developed that had the same effect.) Studies continue along
these lines to this very day, and will continue for years to come. It is becoming
apparent that reducing the amount of cholesterol in the diet, mainly by substitut-
ing fruits, vegetables, and whole grains for cholesterol-rich foods, can reduce the
levels of cholesterol in the blood. This type of dietary improvement can apparently
also reduce the likelihood that a person will have a heart attack later in life. There’s
more than mere correlation going on here. There’s causation, too. But how much
causation is there? Between what variables, and in what directions, does it operate?

Let’s call the amount of dietary cholesterol by the name factor D. According
to current popular medical theory, there is a cause-and-effect relation between
this factor and both X and Y. Some studies have indicated that, all other things
being equal, people who eat lots of cholesterol-rich foods have more heart
attacks than people whose diets are cholesterol-lean. The scenario is shown in
Fig. 4-2C. There is a cause-and-effect relation between factor D (the amount of
cholesterol in the diet) and factor X (the number of heart attacks); there is also a
cause-and-effect relation between factor D and factor Y (the average blood cho-
lesterol level). But most scientists would agree that it’s an oversimplification to
say this represents the whole picture. If you become a strict vegetarian and avoid
cholesterol-containing foods altogether, there is no guarantee that you’ll never
have a heart attack. If you eat steak and eggs every day for breakfast, it doesn’t
mean that you are doomed to have a heart attack. The cause-and-effect relation-
ship exists, but it’s not “pure,” and it’s not absolute.

Note that when there is a cause-and-effect relationship between D and X, and
also between D and Y, there can be a cause-and-effect relationship between X
and Y, but that is not necessarily the case. Consider this example. Imagine X to
represent the sentence “The visibility is poor on the highways.” Let Y represent
the sentence “People are using umbrellas.” Let D represent “It is raining.”
Clearly, D can cause both X and Y. But X does not cause Y. Poor highway visi-
bility does not, in itself, cause people to use umbrellas. (It might be foggy or
snowing, but not raining.) Nor does Y cause X. If you get out your umbrella, it
does not cause the highway visibility to become poor.
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MULTIPLE FACTORS CAUSE BOTH X AND Y
If you watch television shows where the advertising is aimed at middle-aged and
older folks, you’ll hear all about cholesterol and heart disease. You might start
wondering whether you should go to a chemistry lab to get your food. The
cause-and-effect relationship between cholesterol and heart disease is compli-
cated. The more we learn, it appears, the less we know.

Let’s introduce and identify three new variables here: factor S, factor H, and
factor E. Factor S is “Stress” (anxiety and frustration), factor H is “Heredity”
(genetic background), and factor E is “Exercise” (physical activity). Over the
past several decades, cause-and-effect relationships have been suggested
between each of these factors and blood cholesterol levels, and between each 
of these factors and the frequency of heart attacks. Fig. 4-3 illustrates this sort of
cause-and-effect relationship. Proving the validity of each link—for example,
whether or not stress, all by itself, can influence cholesterol in the blood—is a
task for future researchers. But every one of the links shown in the diagram has
been suggested by somebody.

No matter how nearly the gray arrows in Figs. 4-2 and 4-3 represent true
causation in the real world, they never approach the refined status of logical
implication in a mathematical sense. Yet, all too often, that is what some people
would like you to believe.
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THE PLAIN LOGIC
All of the preceding arguments and examples have been over one question that
can be answered simply and finally by means of a truth table. Is the statement 
P & Q logically equivalent to the statement P ⇒ Q? Check it out for yourself.
Compare the truth values for the two statements. The truth values do not match.
The two statements are not logically equivalent.

PROBLEM 4-1
What are some reasonable cause-and-effect relationships that might
exist in Fig. 4-3, other than those shown? Use single-shafted arrows to 
show cause and effect, and use the abbreviations we have used in the
preceding discussion.

SOLUTION 4-1
Consider the following. Think about how you might conduct statistical
experiments to check the validity of these notions, and to determine the 
extent of the correlation.

• H → S (Proposition: Some people are born more stress-prone
than others.)

• H → D (Proposition: People of different genetic backgrounds
have developed cultures in which the diets are different.)

• E → S (Proposition: Exercise can relieve or reduce stress.)
• E → D (Proposition: Extreme physical activity makes people eat

more food, because they need more.)
• D → S (Proposition: Bad nutritional habits can worsen stress. Con-

sider a hard-working person who lives entirely on coffee and potato
chips, versus a hard-working person who follows a healthy diet.)

PROBLEM 4-2
What are some cause-and-effect relationships in the diagram of Fig. 4-3
that are questionable or absurd?

SOLUTION 4-2
Consider the following. Think about how you might conduct statistical
experiments to find out whether or not the first three of these might be 
moved into the preceding category.

• H → E (Question: Do people of certain genetic backgrounds nat-
urally get more physical exercise than people of other genetic
backgrounds?)
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• S → E (Question: Can stress motivate some types of people to
exercise more, yet motivate others to exercise less?)

• S → D (Question: Do certain types of people eat more under
stress, while others eat less?)

• S → H (Obviously absurd. Stress cannot affect a person’s heredity!)
• E → H (Obviously absurd. Exercise cannot affect a person’s

heredity!)
• D → H (Obviously absurd. Dietary habits cannot affect a person’s

heredity!)

The Probability Fallacy
Here is a subtle but devastating fallacy that is so common that I have probably
committed it at least a couple of times in this book already. We say something is
true because we’ve seen or deduced it. If we believe something is true or has
taken place but we aren’t sure, it’s tempting to say it is or was “likely.” It’s wise
to resist this temptation.

BELIEF
When people formulate a theory, they often say that something “probably” hap-
pened in the distant past, or that something “might” exist somewhere, as-yet
undiscovered, at this moment. Have you ever heard that there is a “good chance”
that extraterrestrial life exists? Such a statement is meaningless. Either it exists,
or it does not.

If you say, “I believe the universe began with an explosion,” you are
stating the fact that you believe it, not the fact that it is true or that it is “prob-
ably” true. If you declare, “The universe began with an explosion!” your state-
ment is logically sound, but it is a statement of a theory, not a proven fact. If
you say, “The universe probably started with an explosion,” you are in effect
suggesting that there were multiple pasts and the universe had an explosive
origin in more than half of them. This is an instance of what can be called the
probability fallacy (abbreviated PF), where probability is injected into a dis-
cussion inappropriately.

Whatever is, is. Whatever is not, is not. Whatever was, was. Whatever was
not, was not. Either the universe started with an explosion, or else it did not.
Either there is life on some other world, or else there is not.
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PARALLEL WORLDS, FUZZY WORLDS
If we say that the “probability” of life existing elsewhere in the cosmos is 20%,
we are in effect saying, “Out of n observed universes, where n is some large nat-
ural number, 0.2n universes have been found to have extraterrestrial life.” That
doesn’t mean anything to those of us who have seen only one universe!

A word of defense ought to be inserted here concerning forecasts such as
“The probability of measurable precipitation tomorrow is 20%,” or “The proba-
bility is 50% that John Doe, a cancer patient, will stay alive for more than 12
months.” These are based on past observations of large numbers of similar cases.
A better way of stating the weather situation is “According to historical data,
when weather conditions have been as they are today, measurable precipitation
has occurred the next day in 20% of the cases.” A better way of stating the can-
cer situation is “Of a large number of past cancer cases similar to that of John
Doe, 50% of the patients lived beyond 12 months.” These interpretations are
understood. Therefore, these forecasters aren’t guilty of committing the PF.
Most people would take a dim view of a meteorologist who said, “Either it will
rain tomorrow, or else it will not,” or a doctor who said, “Either your dad will
stay alive for more than 12 months, or else he will not.”

It is worth mentioning that there are theories involving so-called fuzzy truth,
in which some things “sort of happen.” Fuzzy logic involves degrees of truth that
range from completely false, through partially false, neutral, partially true, and
totally true. Instead of only two values such as 0 (for falsity) and 1 (for truth),
values can range along a continuum from 0 to 1. In some cases the continuum
has other limits, such as 0 to 2, or −1 to +1. Entire books have been written about
fuzzy logic, but we won’t be getting into it.

WE MUST OBSERVE
Probability is usually defined according to the results of observations, although
it is sometimes defined on the basis of theory alone. When the notion of proba-
bility is abused, seemingly sound reasoning can be employed to come to absurd
conclusions. This sort of thing is done in industry every day, especially when the
intent is to get you or me to do something that will cause somebody else to
get rich. Keep your “probability fallacy radar” on when navigating through the
real world.

If you come across an instance in which an author says that something “prob-
ably happened,” “is probably true,” “is likely to take place,” or “is not likely to
happen,” think of it as another way of saying that the author believes or suspects
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that something did or didn’t happen, is or isn’t true, or is or is not expected take
place on the basis of experimentation or observation.

Weak and Flawed Reasoning
When a rule of logic is broken in a mathematical system, any derived result in
that system becomes suspect. It’s possible to use flawed logic to come to a valid
conclusion, but a flaw in reasoning often results in a mistaken conclusion. The
trouble is especially great when the inaccurate conclusion has intuitive appeal—
it “seems true”—and the error is not apparent unless or until a counterexample
is found or its original proof is shown to be flawed.

“PROOF” BY EXAMPLE
A common fallacy is the use of specific examples to prove general statements.
Sometimes we can get away with this, and sometimes we cannot. Consider the
following statement:

• Some rational numbers are integers.

Let R represent the predicate “is a rational number,” Z represent the predicate
“is an integer,” and x represent a variable from the set of numbers. Then the
above statement can be symbolized as a wff, like this:

(∃x) Rx & Zx

It’s easy to prove that this is true. It’s necessary only to show that it works for
a single rational number, such as 35/5. That, of course, is equal to 7, and 7 is an
integer. Once we’ve shown that the statement is true in one case, we’ve satisfied the
existential quantifier “For some,” which also means “There exists at least one.”

But suppose instead we are confronted with this proposition:

• All integers are rational numbers.

When put into symbolic form, this proposition becomes a wff that contains a
universal quantifier, like this:

(∀x) Zx ⇒ Rx
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It is not difficult to find examples here. All we need to do is take an integer,
such as 35, and then divide it by 1, getting 35 as the quotient, and then claim that
the original integer is equal to this quotient. That’s trivial:

35 = 35/1

This is a rational number, because it is a quotient in which the numerator is
an integer and the denominator is a nonzero natural number. We can do this
with many integers, always putting 1 in the denominator, generating all sorts 
of examples:

40 = 40/1
−45 = −45/1
260 = 260/1

Confident in our example-showing skills, we can arrange the set Z of all integers
as a list, like this:

Z = {0, 1, −1, 2, −2, 3, −3, . . .}

(Note that the set of integers is an uppercase italic Z, whereas the predicate “is
an integer” is an uppercase non-italic Z. This differentiates between the two, and
that is good, because a set differs from a predicate as much as a bus differs from
the route it travels.) We can rewrite the set listing so every element is a quotient
with 1 in every denominator, and therefore is obviously rational:

Z = {0/1, −1/1, 1/1, 2/1, −2/1, 3/1, −3/1, . . .}

This proves the proposition for as many examples as we have the time and 
inclination to list: a hundred, a thousand, ten thousand, or a million. It strongly
suggests that the proposition holds for all integers. Almost any reasonable per-
son would come to the conclusion, after testing for a few specific integers, that
the proposition is true. But merely “plugging in numbers” here does not prove the
proposition and make it a theorem.

It is dangerous to use examples to prove general propositions that contain
universal quantifiers. That requires more powerful tactics than the citing of exam-
ples. We can force the element in question to be a variable, such as x (and not
a constant, such as 35) and use deductive logic, armed with the laws of arith-
metic. Alternatively, we can apply mathematical induction to the set of integers
after it has been arranged as a list with a defined starting point, as the set Z is
portrayed above.
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BEGGING THE QUESTION
You will sometimes hear or read “proofs” that do nothing more than assume the
truth of the proposition to be proved. If you’ve a lawyer, you will recognize this
fallacy right away when you see it. Have you ever pointed it out to your oppo-
nent in an argument or debate? Have you ever tried to get away with it in your
own arguments? This is called begging the question

When you beg a question, you don’t logically prove anything, whether the
proposition is true or not; you prove only a triviality known as a tautology:

X ⇒ X

Here’s an example of begging the question. Suppose the temperature is 40
degrees below zero Celsius, and the wind is gusting to 100 kilometers per hour
(km/h). You state this fact and then conclude, “It is cold and windy today!”
Here’s another example. Suppose John Doe hit 100 home runs last baseball sea-
son. Your friend tells you this and then says, “John Doe hit a lot of home runs
last year!” Neither of these are arguments. They’re merely examples of the
rephrasing or restatement of obvious truths.

Begging the question is often done in a more subtle manner. “It imperils the
population to have motor vehicles moving at high speeds in residential areas.
Therefore, if we allow people to drive cars and trucks on the streets of our cities
at unlimited speeds, it presents a danger to the community.” This merely says the
same thing twice. It doesn’t prove anything. We might as well say one thing or
the other; it is pointless to say both.

Sometimes, begging the question takes a roundabout form in which there are
several “logical steps,” leading from the premise through a forest of logical
maneuvers, and then back to the original premise. After that exercise, the fallacy-
maker proudly proclaims, “Q.E.D.!”

HASTY GENERALIZATION
In the fallacy of hasty generalization, a certain characteristic is assigned to
something as a whole, based on the examination of the wrong data, incomplete
data, or data that is both wrong and incomplete.

Suppose that every time you ask people for favors when doing your laundry,
they turn you down. What if this occurs a dozen times in a row? Let L represent
the statement, “You are doing your laundry.” Let F represent the statement, “You
ask a person to do you a favor.” Let T represent “The person does you the favor
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you just asked for.” You find that (L & F) is repeatedly followed by ¬T. You use
this experience to “prove” the following:

(L & F) ⇒ ¬T

This is in effect an application of the fallacy of proof by example, applied to the
real world. The fact that something has happened in numerous instances doesn’t
mean it happens in all instances, or even that it will happen in the very next
instance.

CONTEXT
A word can have numerous meanings depending on the context in which it is
used. But in a logical argument, we must not change the intended meaning of a
word in the course of the discussion. This can result in absurd or nonsensical
statements. “A pen that has run out of ink is no good for keeping cattle” is an
example, where “pen” refers to a writing instrument first and an enclosure for
animals second. That is an extreme example of what can happen with improper
use of context.

CIRCUMSTANCE
Arguments are sometimes made in an effort to lead people to believe that a cer-
tain conclusion is reasonable. This is not true logic, because the conclusion is
inferred but not proven. This is known as argument by circumstantial evidence.

Examples of arguments by circumstantial evidence are often heard in criminal tri-
als. A lawyer “sets up” witnesses by asking questions not directly related to the crime.
Imagine that I am accused of a crime. Some witnesses say they saw me in the
vicinity of the place where the crime occurred; some witnesses testify to the effect
that I was not home at the time of the crime; other witnesses express the opin-
ion that I am a no-good, rotten son-of-a-buck. Even a thousand such testimonials
do not rigorously imply that the I committed the crime. Even if my guilt can be
inferred beyond “reasonable” doubt, it is not a mathematical proof of guilt.

SYLLOGISMS
A syllogism is an argument in which a conclusion is drawn based on two prem-
ises. The first premise is often a disjunction or an “if-then” statement. An exam-
ple of a disjunctive syllogism is the following:
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• Jill is in Florida or Jill is in New York. Jill is not in Florida. Therefore, Jill
is in New York.

Let F represent the predicate “is in Florida,” N represent “is in New York,” and
j represent the constant “Jill.” Then this argument can be symbolized like this:

Fj ∨ Nj
¬Fj
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
Nj

Here is an example of a syllogism containing a logical implication:

• Anyone who takes 100 sleeping pills all at once will die. Joe took 100
sleeping pills all at once. Therefore, Joe will die.

Let P represent the predicate “takes 100 sleeping pills all at once.” Let D repre-
sent “will die.” Let x be a logical variable, and let j represent the constant “Joe.”
Then symbolically, the argument looks like this:

(∀x) Px ⇒ Dx
Pj
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
Dj

We can refute (disagree with or disprove) one or the other of the premises in
either of these syllogism examples, but in themselves, the arguments are logi-
cally valid.

A common fallacy in syllogisms is that of denying the antecedent. An exam-
ple is the following argument:

• If you commit a federal offense, you’ll go to prison. You did not commit a
federal offense. Therefore you will not go to prison.

Let F represent the predicate “commit(s) a federal offense.” Let P represent “will
go to prison.” Let y represent the constant “you.” Then the above argument looks
like this in symbolic form:

Fy ⇒ Py
¬Fy
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
¬Py
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This is not a logically valid argument. There are plenty of non-federal crimes
that can land you in prison if you commit them. Some innocent people, who
commit no crimes at all, also end up in prison!

The foregoing fallacy can also occur if the original antecedent is negative:

• If John was not near the grocery store last night, he must have been at
home. John was near the store last night. Therefore, he couldn’t have been
at home.

Let G represent the predicate “was near the grocery store last night.” Let H rep-
resent “was at home.” Let j represent the constant “John.” Then symbolically:

¬Gj ⇒ Hj
Gj
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
¬Hj

This reasoning is not valid! What if John’s home is next to the grocery store?
Then he is near the grocery store even when he is at home. In addition to that
flaw, this argument contains a lack of clarity in the meaning of the word “near.”
Lawyers will recognize this sort of trick!

Another fallacy can occur in disjunctive syllogisms. Consider the following
dilemma and argument:

• Wanda must leave the country or get arrested for a crime of which she has
been accused. Wanda has left the country. Therefore, Wanda will not get
arrested.

Let L represent the predicate “must leave the country.” Let A represent “will 
get arrested for a crime of which she has been accused.” Let w represent the
constant “Wanda.” Then symbolically, our argument looks like this:

Lw ∨ Aw
Lw
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
¬Aw

This argument is fallacious. Wanda might get arrested even if she leaves the
country. This fallacy arises from confusion between the inclusive and exclusive
forms of the operation “or.”
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FUN WITH SILLINESS
It can be fun to use nonsensical subject-predicate combinations to show logical
validity or invalidity. This short-circuits the human tendency to assign notions
about everyday life to logical derivations. Consider this:

• If the moon is made of Swiss cheese, then some ants eat chocolate. The
moon is made of Swiss cheese. Therefore, some ants eat chocolate.

Let S represent the predicate “is made of Swiss cheese.” Let A stand for “is an
ant.” Let C stand for the predicate “eats chocolate.” Let m represent the constant
“the moon,” and let x represent a logical variable. Then the above argument is
symbolized like this:

Sm ⇒ [(∃x) Ax & Cx]
Sm
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
(∃x) Ax & Cx

The argument is logically valid. But suppose we deny the antecedent. Then we
can argue that because the moon is not made of Swiss cheese, no ant will eat
chocolate. That is fallacious. I’ll bet hungry ants would swarm all over a warm
chocolate bar if it were made available to them, regardless of the material com-
position of the moon.

Now scrutinize this:

• Either Mars is inhabited by little green rabbits, or the sky appears blue as
seen from the surface of the earth on a clear day. Mars has no little green
rabbits. Therefore, the sky is blue as seen from the surface of the earth on
a clear day.

Let R represent “is inhabited by little green rabbits.” Let B represent “appears
blue as seen from the surface of the earth on a clear day.” Let m represent the
constant “Mars.” Let s represent the constant “the sky.” Then the above argu-
ment looks like this when symbolized:

Rm ∨ Bs
¬Rm
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
Bs
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This illustrates a situation where the first statement (in this case, a disjunction)
in a syllogism is always true. The logic is valid, but the example proves nothing.
If there were little green rabbits on Mars, the sky would nevertheless be blue as
seen from the surface of the earth on a clear day. By plugging in other predicates
and constants, logic tricksters often convince people that two events are con-
nected, when in fact they are not.

INDUCTIVE REASONING
In inductive reasoning, we attempt to show that something is true most of the
time, or that it is reasonable to expect that it will occur. This is not the same thing
as mathematical induction. Inductive reasoning is often presented as rigorous
deduction, fooling people into thinking that arguments are air-tight when they
are really full of holes. To make things worse, a conclusion is often stated to the
effect that something “is probably true” or “will probably occur” or “probably
took place,” thereby invoking PF in addition to the use of flimsy reasoning mas-
querading as mathematical logic. 

Here is an example of what can happen when inductive reasoning is com-
bined with the PF, generating an absurd conclusion. Suppose the speed limit on
a stretch of highway is 100 kilometers per hour (km/h). An officer who needs to
meet a quota interprets this to mean that you are speeding if you drive at 100
km/h or more (as opposed to more than 100 km/h). Imagine you are cruising
along at 99.6 km/h and the police radar reads the speed digitally to the nearest
kilometer per hour, rounding it off to 100 km/h. The officer sees this and con-
cludes that you are “probably” speeding. His reasoning goes as follows. Given
the radar reading, the probability that you are going 100 km/h or more is exactly
50%, because your exact, true speed must be more than 99.5 km/h but less than
100.5 km/h. If we round off 50%, or 0.5, to the nearest whole digit, then that
digit is by convention equal to 1, or 100%. This means that a probability of 0.5
is equivalent to a probability of 1! So in the officer’s fallacy-tormented mind, a
reading of 100 km/h on radar means you are going 100 km/h or more if you
drive 99.5 km/h or more!

Bring on a good lawyer with a mind for mathematical logic, a few thousand
dollars, a whimsical judge, and an intelligent jury, and I will pay money to watch
the trial of this case!

PROBLEM 4-3
Suppose someone makes the following statement and claims that it is
a mathematical theorem:
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• All rational numbers can be written as terminating decimals, that
is, as decimal numbers where the digits after a certain point are
all zeroes.

You claim that this cannot be a theorem because it is not true. How
many counterexamples must you find in order to show that this theo-
rem is not true?

SOLUTION 4-3
You need to find only one counterexample to show that a claimed the-
orem is not true. In this case, an example is 1⁄3 = 0.333.. . , which is not a 
terminating decimal because the numeral 3 keeps repeating without end.

PROBLEM 4-4
What sort of fallacy is committed in the following argument? Symbolize
it, and then identify the fallacy. Note that a polygon is a geometric fig-
ure that lies entirely in a single plane, and that has three or more
straight sides such that all adjacent pairs of sides intersect at their end
points, and no two sides intersect except at their end points. A triangle
is a polygon with three sides.

• All triangles are polygons. Figure S is not a triangle. Therefore,
figure S is not a polygon.

SOLUTION 4-4
You know, of course, that there are plenty of polygons besides triangles.
Squares are good examples. So are rectangles, trapezoids, pentagons, 
and infinitely many other types of figures. The above argument is obvi-
ously flawed, but how? Let’s symbolize it. Let T represent the predicate
“is a triangle,” let P represent the predicate “is a polygon,” let x repre-
sent a logical variable, and let s represent the constant “figure S.” The
above argument can then be rearranged like this:

• For all x, if x is a triangle, then x is a polygon. It is not true that s
is a triangle. Therefore, it is not true that s is a polygon.

Symbolically:

(∀x) Tx ⇒ Px
¬Ts
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
¬Ps
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This is an example of denying the antecedent. Note that the argument
can be turned around and it becomes sound. Symbolically:

(∀x) Tx ⇒ Px
¬Ps
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
¬Ts

This translates to:

• All triangles are polygons. Figure S is not a polygon. Therefore,
figure S is not a triangle.

Paradoxes and Brain Teasers
Here are some tidbits that seem to defy logic. These sorts of things can be fun
or frustrating, depending on your disposition. In any case, they show what can
happen when attempts are made to apply mathematical rigor to decidedly non-
rigorous realities and ideas.

THE MEANING OF RANDOMNESS
Generating a sequence of random numbers seems like an easy job at first. All we
need to do is rattle off digits from 0 to 9 in any ridiculous sequence we please,
and the result will be a string of “random” numbers—right? Wrong! Any person,
if tested, will show a leaning or preference for certain digits or sequences of dig-
its, such as 5 or 58. People are biased, even when it comes to something as
generic as their taste in numbers! A truly random sequence of numbers will have
no bias whatsoever.

Another characteristic of randomness is unpredictability. There should be
no way of generating the next digit in a sequence of random digits, based on the
previous ones. If there is, the sequence can’t be random, because that next digit
is predetermined. We can get digits for the decimal expansion of the value of the
square root of 2, or any other positive integer, by a using a scheme called extrac-
tion of the square root. If we have the patience, and if we know the first n digits
of the decimal expansion of a square root, we can find, or “predict,” the n + 1st
digit by means of this process. That disproves the notion that the square root of
2, or of any other positive integer, has a decimal expansion with truly random
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digits. There are also processes for finding, or “predicting,” the digits in the dec-
imal expansions of other types of irrational numbers such as pi (π), which is the
ratio of the circumference of any circle or sphere to its diameter.

If no one can chatter off random digits, and if the digits in irrational numbers
never occur in random sequence, where can we find digits that do occur in truly
random fashion? Maybe we can’t!

Suppose it is impossible for any human being or machine to ever find a truly
random sequence of numbers if we require that the digits be unpredictable! This
is a haunting, and quite plausible, idea. If truly random digits are unpredictable,
then they cannot be generated by any definable process, and this includes the
thoughts of the most jumbled-up human brain, or the digital operations of the most
exotically programmed computer. If there is no way to generate a sequence of
truly random digits, then even if such sequences exist, they are beyond our abil-
ity to observe.

Fortunately, in applications that require the use of random digits, so-called
pseudorandom numbers are usually good enough. A good way to get a pseudo-
random sequence of digits is to use an electronic meter to periodically measure
the intensity of radio-frequency noise, such as the “hiss” generated by the move-
ment of electrons among atoms, or the emissions from far-off galaxies in outer
space. A discussion of those processes is beyond the scope of this book!

A WIRE AROUND THE EARTH

We are all familiar with the irrational number π, which is equal to approximately
3.1416, and represents the number of diameters in the circumference of a circle
or sphere. This number has been known for thousands of years to be a constant
that does not depend on the size of the circle or sphere.

An interesting counterintuitive result can be derived from simple applica-
tion of the formula for the circumference of a circle or sphere to its diameter.
The formula is:

c = πd = 2πr

where c is the circumference, d is the diameter, and r is the radius, all in the same
units. Suppose the earth were a smooth, perfectly round sphere, with no hills or
mountains. Imagine a perfectly non-elastic wire around the equator, strung so
that it is snug and does not stretch. If we add 10 meters (10 m) to the length of
this wire, and then prop it up all the way around the planet so that it stands out
equally far everywhere, how far above the surface will it stand? Assume the
circumference of the earth is 40,000,000 meters.
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Most people are inclined to think that the wire will stand out only a tiny dis-
tance from the surface of the earth if 10 meters is added to its length. After all,
that is an increase of only 10 parts in 40,000,000, or 0.000025%. But in fact the
wire will stand out approximately 1.59 meters all the way around the sphere.

PROBLEM 4-5
We don’t have to be content with showing how this works for the earth
only. The assertion can be extended to claim that when 10 meters is added 
to the length of a wire that tightly girdles the circumference of any sphere,
no matter how big or small, the lengthened wire will stand out the same
distance from the surface: approximately 1.59 meters. Prove this!

SOLUTION 4-5
Refer to Fig. 4-4. Suppose the radius of the sphere, expressed in meters,
is equal to r. Suppose the circumference of the sphere, also expressed in 
meters, is equal to c. From the rules of Euclidean spatial geometry, we
know the following:

c = 2πr

Solving the equation for r gives us this:

r = c /(2π)

If we add 10 meters to the length of a wire whose original length is
equal to c (because it girdles the sphere around a circumference), then
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Sphere:
Circumference = c
Radius = r

Wire:
Circumference = c + 10 m
Radius = r + ?
 = s

Fig. 4-4. If the circumference of a wire around a planet is increased
by 10 m, by how much does the radius increase?



the lengthened wire lies in a circle whose radius s, expressed in meters,
can be calculated as follows if we let π = 3.14:

s = (c + 10)/(2π) = c /(2π) + 10/(2π)
= c /(2π) + 1.59

= r + 1.59

This shows that the radius of the circle described by the lengthened
wire is 1.59 meters greater than the radius of the sphere. Therefore, the
lengthened wire can be positioned so that it stands 1.59 meters above
the surface of the sphere, all the way around.

THIS STATEMENT IS FALSE
A common logical paradox is often cited in the self-contradicting assertion “This
statement is false.” If we affirm the statement, then it is true, and this contradicts
its assertion that it is false. If we deny the statement, then we assume it is false,
but it’s not true that it’s false, so therefore it’s true. A statement such as this is
meaningless, because it cannot be true and cannot be false.

Russell’s Paradox is a more sophisticated example. We can state it as follows.
Suppose Hap is a barber in the town of Happyton, and he shaves all the people,
but only the people, in Happyton who don’t shave themselves. Does Hap shave
himself or not?

Assume Hap shaves himself. We’ve just stated that he shaves only those peo-
ple who do not shave themselves! Therefore, Hap does not shave himself. This
means Hap shaves himself and Hap does not shave himself, and that is a contra-
diction. By reductio ad absurdum, Hap does not shave himself. From this, it fol-
lows that Hap shaves himself, because he shaves all the people (including himself)
that do not shave themselves. Again, reductio ad absurdum can be invoked, and
we find that Hap shaves himself. We have set ourselves running in a circle of con-
tradictions, like a dog chasing its own tail when it doesn’t even have a tail!

The only way out of this quagmire is to conclude that there can be no such
person as Hap.

THE FROG AND THE WALL
A familiar problem in mathematics is the adding-up, or summing, of an infinite
sequence in order to get a finite sum. The frog-and-wall paradox (or what at first
seems to be a paradox) shows an example of this.
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Suppose there is a frog at a certain distance from a wall, say, 8 meters.
Imagine that this frog jumps halfway to the wall, so that she is 4 meters away.
Suppose she continues to jump toward the wall, each time getting halfway there.
She will never reach the wall if she jumps in this way, no matter how many times
she jumps, even though she has only 8 meters to travel at the outset. The frog
will die long before she gets to the wall, even though she almost reaches it (Fig.
4-5). No finite number of jumps will allow the frog to reach the wall. That would
take an infinite number of jumps.

This scenario can be based on the following infinite series. (A series is the
sum of the terms in a sequence.) Let’s call it S:

S = 4 + 2 + 1 + 1⁄2 + 1⁄4 + 1⁄8 + . . .

If we keep cutting a number in half, over and over, and add the result, the final
sum of this type of infinite series is twice the original number. That means S = 8.
But how is it possible to add up an infinite number of numbers? In the real
world, of course, it isn’t. We can only approach the actual sum in real life, be-
cause there isn’t enough time (that is, an infinite amount of time) to add up an
infinite number of numbers. But in the mathematical world, certain infinite
series add up to finite numbers. Such a series is said to be convergent.
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Fig. 4-5. A frog jumps towards a wall, getting halfway there each time.



A real-world frog cannot reach the wall by jumping halfway to it, over and
over. But a theoretical one can! There are two ways this can happen. First, in the
mathematical world, there is an infinite amount of time, so an infinite number of
jumps can take place. Another way around the problem is to keep halving the
length of time in between jumps, say from four seconds to two seconds, then to
one second, then to half a second, and so on. This will make it possible for the
frog to hop an infinite number of times in only a finite span of time!

PROBLEM 4-6
The same sort of argument as the one in the frog-and-wall scenario can
be used to “prove” that if you are driving at 80 km/h and trying to pass 
someone ahead of you who is going 50 km/h, you will never catch, let
alone pass, that driver. How is this “proof” done? What’s wrong with it?

SOLUTION 4-6
Fig. 4-6 is a geometric illustration of this situation. The initial state of
affairs is shown at A; you, going 80 km/h, are a certain distance d0
behind the car you are trying to catch, which is going 50 km/h. After a
certain time you have traveled the distance d0, and are in the position
previously occupied by the other car. But that car has moved ahead by
a distance d1, so it is in a new position. The distance d1 is less than the
distance d0. The situation after you have traveled the distance d0 is
shown in Fig. 4-6B.

Once you have traveled the distance d1, the other car has moved
ahead and is in front of you by a distance d2, as shown in Fig. 4-6C.
Figs. 4-6D and E show what happens in the next two time frames, as
you travel distance d2 and then distance d3. At E, the car is ahead of you
by distance d4. This process goes on without end. Therefore, you can
never catch the other car!

In real life, you will catch and pass the slower driver because the
sequence d0, d1, d2, d3, d4, . . . is such that its corresponding series, T, is
convergent:

T = d0 + d1 + d2 + d3 + d4 . . .

The trick here lies in the fact that the sum of the time intervals corre-
sponding to the transitions of the distance intervals is finite, not infi-
nite. You span the distances d0, d1, d2, d3, d4, . . .at an ever-increasing
rate when you race down the highway to pass that slowpoke in front of
you. The rate at which you span the progressively smaller intervals
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“blows up.” You add up an infinite number of numbers, corresponding
to smaller and smaller distance intervals, in a finite length of time. This
is the same sort of thing that happens in the frog-and-the-wall scenario.

A GEOMETRY TRICK
Here is a geometry puzzle that, at first glance, seems to defy the laws of Euclid-
ean geometry. It is an example of the misuse of drawings to help a would-be
deceiver come to an invalid conclusion. Fig. 4-7 illustrates the scheme, and its
resolution, in four stages.

In Fig. 4-7A, a square is divided into 64 square units, 8 on a side, and then
is cut along the indicated lines, making two right triangles, X and Z, measur-
ing 3-by-8 units, and two trapezoids, W and Y, consisting of 3-by-6 rec-
tangles added to 2-by-5 right triangles. These four pieces are rearranged to
create a 13-by-5 rectangle (Fig. 4-7B). The area of the rectangle is 13 × 5, or 65
square units.
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Fig. 4-6. Illustration for Problem 4-6. A fast car comes up behind a slower
car. The distances d0, d1, d2, d3, d4, . . .keep getting smaller.



By merely cutting up and rearranging the square, we’ve created 1 square unit
of area from nothing!

PROBLEM 4-7
Something must be wrong with the rearrangement process shown in
Fig. 4-7. Where does the “phantom area” come from?

SOLUTION 4-7
The trouble is in the center of the rectangle shown in Fig. 4-7B. There
is a rectangle there, as shown in Fig. 4-7C, that measures 1-by-3 units.
This rectangle can be sliced into two l-by-3 right triangles, as shown.
Just to the left and right of this central rectangle, there are two 2-by-5
right triangles. If the long diagonal through the 13-by-5 rectangle were
a straight line, then the ratios 1:3 and 2:5 would be equal. But the ratios
are not equal! The long diagonal cutting the 13-by-5 rectangle in Fig.
4-7C is not a straight line. If it were, we would have the scenario of
Fig. 4-7D, where the long diagonal line ramping down the 13-by-5
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Fig. 4-7A,B. At A, a square is divided into four sections, called W, X, Y, and Z. At B, the
four sections are reassembled into a rectangle with an area that appears to be
1 square unit larger than that of the large square. Illustrations for Problem 4-7.



rectangle would not intersect any of the vertices of any of the small
squares. The visual deception occurs over such an elongated shape that
it is difficult to see in drawings.

A “PROOF” THAT –1 = 1
There are several ways to “prove” that −1 = 1. All such “proofs” involve subtle
reasoning flaws, or the neglect of certain facts of arithmetic. Table 4-1 shows
one method of “proving” that −1 = 1. This table is an example of a state-
ments/reasons (S/R) proof, a popular way to abbreviate demonstrations that pro-
ceed in neat steps. In this “proof,” the square root of a quantity is denoted as the
quantity raised to the 1⁄2 power. That is, the 1⁄2 power means exactly the same thing
as a radical sign for the purposes of this discussion. We start with an obviously
true statement, and from it, apparently using the rules of arithmetic, we derive
something that is obviously false.

PROBLEM 4-8
What is wrong with the “proof” portrayed in Table 4-1?
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Fig. 4-7C,D. At C, illustration showing right triangles “constructed” within the rec-
tangle. At D, an actual straight diagonal of the large rectangle doesn’t inter-
sect any of the vertices of the small squares. Illustrations for Problem 4-7.



SOLUTION 4-8
Perhaps you wonder whether we have any business talking about the
square root of a negative number. That’s not the problem here; the square 
roots of negative numbers are defined. The problem with the “proof”
shown in Table 4-1 lies in the fact that the square root of any quantity can
be positive or negative. We normally think the square root of 1 is equal
to 1. But it can also be equal to −1. If we multiply either 1 or −1 by itself,
we get 1. In a sense, then, the square root of 1 has two different values!
The trick in the “proof” shown in Table 4-1 lies in the exploitation of this
fact. We subtly take advantage of the duality, and conclude by saying that
one part of the “two-valued” square root of 1 is equal to the other part.

Theories have been developed around the notion of multi-valued
numbers. These theories produce a lot of interesting results, and have
applications in physics and engineering. Theories of multi-valued
numbers also get rid of apparent paradoxes and contradictions like the
one here.
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Statements Reasons

(−1)1/2 = (−1)1/2 A quantity is always equal to itself.

[1/ (−1)]1/2 = [(−1) /1]1/2 Both 1/(−1) and (−1) /1 are equal to −1. Either of these
expressions can be substituted for −1 in the previous
equation.

11/2/ (−1)1/2 = (−1)1/2/11/2 The square root of a quotient is equal to the square root
of the numerator divided by the square root of the
denominator.

(11/2)(11/2) = [(−1)1/2][(−1)1/2] Any pair of equal quotients can be cross-multiplied. The
numerator of the one times the denominator of the other
equals the denominator of the one times the numerator
of the other.

(11/2)2 = [(−1)1/2]2 Either side of the previous equation consists of a quantity
multiplied by itself. That is the same thing as the quantity
squared.

1 = −1 When the square root of a number is squared, the result
is the original number. Therefore, all the exponents can
be taken out of the preceding equation.

Table 4-1. A “proof” that −1 = 1. The 1⁄2 power of a quantity denotes the square root of that quan-
tity. Each line in the table proceeds from the previous line, based on the reason given.



THE WHEEL PARADOX
Here’s a famous paradox that concerns a pair of concentric wheels. Both are
rigidly attached to each other so that one rotation of the large wheel is attended
by exactly one rotation of the smaller wheel (Fig. 4-8).

Imagine that this wheel rolls along a double surface, as shown in the diagram,
so that the large wheel makes exactly one rotation along the lower surface. If the
diameter of the larger wheel is d1, then the length of the path along the surface
for one rotation is πd1.

The upper surface is spaced just right with respect to the lower surface, so the
smaller wheel can move along the upper surface while the larger wheel moves
along the lower surface. The smaller wheel has a diameter of d2. The smaller
wheel rotates at the same rate as the larger wheel, because the two are rigidly
attached. When the larger wheel rotates 360°, the smaller wheel does, too. But
the smaller wheel traverses the same distance (πd1) as the larger wheel. This
implies that the two wheels must have the same circumference, even though
their diameters are different.

PROBLEM 4-9
How is the previous paradox resolved? Two wheels with different
diameters cannot have the same circumference, can they?

SOLUTION 4-9
The catch lies in the fact that the smaller wheel slides, or skids, along
the upper surface as the larger wheel rolls along its surface with good 
traction. Nothing in the statement of the problem forbids skidding!
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Fig. 4-8. The wheel paradox. The larger wheel has diameter d1, and the
smaller wheel has diameter d2. Illustration for Problem 4-9.



Quiz
This is an “open book” quiz. You may refer to the text in this chapter. A good
score is 8 correct. Answers are in the back of the book.

1. Suppose you want to prove the proposition (∃x) Px ∨ Qx. Let k be a con-
stant, and an element of the set for which the variable x is defined. In
order to prove the proposition using the constant k, the minimum that we
must do is show the truth of the statement

(a) Pk ∨ Qk.
(b) Pk. 
(c) Qk.
(d) Any of the above

2. Let x be a logical variable. Let A stand for the predicate “is an apple.” Let
P stand for the predicate “is purple.” Suppose you are confronted with the
following proposition:

(∃x) Ax & Px

In order to disprove this proposition, you must prove that

(a) If x is not an apple, then x is probably purple.
(b) If x is not purple, then x is not an apple.
(c) If x is an apple, then x is not purple.
(d) Any of the propositions (a), (b), or (c) above

3. Suppose a strong correlation is found between the wobbulation of widg-
ets and the diddlefaction of doodads in the town of Warpington during
the Year of the Fiddle. This logically and rigorously implies

(a) that the relationship between widget wobbulation and doodad did-
dlefaction in Warpington during the Year of the Fiddle was a coinci-
dence; there was no causation of any sort involved.

(b) that widget wobbulation caused doodads to diddlefact in Warpington
during the Year of the Fiddle.

(c) that doodad diddlefaction caused widgets to wobbulate in Warping-
ton during the Year of the Fiddle. 

(d) None of the above
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4. Suppose you invent a new mathematical operation and call it “retrofac-
tion.” You symbolize it by means of an uppercase Greek letter theta (Θ).
Suppose you discover, using a computer programmed to perform the
operation of retrofaction, that the following holds true for all the positive
integers n and p from 1 up to 1,000,000,000:

(∀n, p) (n Θ p = p Θ n)

What does this prove?

(a) If x and y are real numbers, then:

(∀x, y) (x Θ y = y Θ x)

(b) If x and y are rational numbers, then:

(∀x, y) (x Θ y = y Θ x)

(c) If x and y are positive integers, then:

(∀x, y) (x Θ y = y Θ x)

(d) None of the above

5. If a lawyer demonstrates that a defendant is guilty beyond a reasonable
doubt, that lawyer makes use of

(a) denial of the antecedent.
(b) reductio ad absurdum.
(c) inductive reasoning.
(d) DeMorgan’s laws.

6. Suppose the weather service comes over a radio station with this announce-
ment: “A thunderstorm has just passed over Stonyburg. Several ob-
servers reported seeing baseball-sized hail stones in Stonyburg within
the last hour. Therefore, this is a hail-producing thunderstorm.” This is
an example of

(a) the PF.
(b) begging the question.
(c) the use of a word in improper context.
(d) an attempt to prove a generality by example.

7. According to some portrayals, the Roman emperor Caligula had blond
hair on the day he declared himself to be one of the gods. How likely or
possible is it that this was in fact the case?
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(a) Unlikely
(b) Quite likely
(c) Almost certain
(d) None of the above

8. Suppose that an employee lets a building burn down because of negli-
gence. The owner of the building sues him. The plaintiff’s lawyer argues
that such an employee must be a totally irresponsible sort of person, and
that a responsible person would have been able to prevent the fire or put
it out before it spread. The defense concedes this, especially in light of
the fact that several psychiatrists have testified that the defendant has no
sense of responsibility whatsoever. Then the defense attorney goes on to
say that because of psychological deficiency on the part of the defendant,
the defendant cannot be responsible for anything, even the burning-down
of a building because of his own negligence. This argument is

(a) perfectly sound.
(b) fallacious, because it tries to apply the same meaning to a word in

two different contexts.
(c) fallacious, because it commits the PF, and probability has nothing to

do with this situation.
(d) fallacious, because it attempts to prove a generality by example, and

a generality can never be proved by example.

9. In order to disprove a theorem that says something is true for all elements
of a set S, it is necessary to

(a) find only one element in S for which the theorem does not hold true.
(b) find two or more elements in S for which the theorem does not hold true.
(c) show that the theorem holds true for less than half the elements of S.
(d) prove another theorem that states exactly the opposite for all ele-

ments of S.

10. Suppose you want to prove the proposition (∃y) My & Ny. Let k be a con-
stant, and an element of the set for which the variable y is defined. In
order to prove the proposition, the minimum that we must do is show the
truth of the statement
(a) Mk & Nk.
(b) Mk.
(c) Nk.
(d) Any of the above
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117

Test: Part One

Do not refer to the text when taking this test. You may draw diagrams or use a
calculator if necessary. A good score is at least 30 answers (75% or more) cor-
rect. Answers are in the back of the book. It’s best to have a friend check your
score the first time, so you won’t memorize the answers if you want to take the
test again.

1. The conjunction of seven sentences is true
(a) if and only if all the sentences are true.
(b) if and only if at least one of the sentences is true.
(c) if and only if at least two of the sentences are true.
(d) if and only if all the sentences are false.
(e) under no circumstances, because a conjunction can’t be defined for

more than two sentences.

2. Examine Fig. Test 1-1. This diagram applies to two types of objects,
known as doodads and widgets. Let D symbolize the predicate “is a
doodad,” and let W symbolize the predicate “is a widget.” Let x be a log-
ical variable. Let f, g, and h be constants. Which of the following state-
ments is true?
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(a) (∀x) Dx ⇒ Wx
(b) (∀x) Wx ⇒ Dx
(c) (∀x) ¬Dx ⇔ Wx
(d) (∀x) Dx ⇒ ¬Wx
(e) (∀x) ¬Dx ⇒ Wx

3. Examine Fig. Test 1-1. This diagram applies to two types of objects,
known as doodads and widgets. Let D symbolize the predicate “is a doo-
dad,” and let W symbolize the predicate “is a widget.” Let x be a logical
variable. Let f, g, and h be constants. Which, if any, of the following
statements (a), (b), (c), or (d) is false?
(a) Dh & Wh
(b) Dh ∨ Wh
(c) ¬Df & ¬Wf
(d) Dg ∨ Wg
(e) All of the above statements (a), (b), (c), and (d) are true.

4. A lemma is
(a) a definition used to prove another definition.
(b) a theorem that results from implication reversal.
(c) a corollary to an existing theorem.
(d) a theorem used as a shortcut in the proof of another theorem.
(e) a non-rigorous axiom.

5. In logic, the expression “X implies Y” means that
(a) If X is true, then Y is true.
(b) If X is true, then Y is probably true.
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(c) If X is true, then there is good reason to believe that Y is true.
(d) If X is true, it suggests that Y is true, but there are exceptions.
(e) If X is true, then Y is true; and if Y is true, then X is true.

6. Consider the statement “I am a swimmer.” This sentence contains
(a) a subject, a verb, and an object.
(b) a subject and a verb only.
(c) a subject, a linking verb, and a complement.
(d) a subject and a linking verb only.
(e) a subject, a verb, and a linking verb.

7. If a contradiction is found in a mathematical system, then
(a) all previously proven theorems in the system become false.
(b) you can’t be sure that any theorem in the system is true.
(c) all the axioms become invalid.
(d) all the definitions become meaningless.
(e) nothing is wrong; contradictions are perfectly all right.

8. In the sentence “You run to the library,” the word “library” is
(a) the subject.
(b) the verb.
(c) the complement.
(d) the object.
(e) the predicate.

9. Suppose that you are building up a mathematical theory. You are able to
prove some proposition Q. Later on in the theory, you find that you have
proven ¬Q. What does this indicate?
(a) Everything is all right, and you should create some more axioms.
(b) The theory is too strong, so you should get rid of some definitions to

make it weaker.
(c) Your set of theorems is consistent, and you have made no mistakes

of any kind.
(d) You haven’t proved enough theorems, so you need to prove some more.
(e) You have made a mistake in one of your proofs, or the theory is flawed.

10. Mathematical induction is a technique that makes it possible to
(a) prove a proposition for an infinite number of elements, using a finite

number of steps.
(b) prove a proposition by deriving a contradiction from its negation.
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(c) prove a proposition by implication reversal.
(d) prove a proposition directly from a single axiom.
(e) prove that a proposition is probably true.

11. In propositional logic, the smallest entities dealt with are

(a) verbs.
(b) nouns.
(c) adjectives.
(d) predicates.
(e) sentences.

12. Examine Fig. Test 1-2. This is a diagram showing the evolution of a hypo-
thetical system of mathematics. The ellipses with the question marks
inside represent

(a) applications of the rules of logic.
(b) elementary (undefined) terms.
(c) lemmas.
(d) corollaries.
(e) contradictions.

13. A fallacy is
(a) a minor theorem that arises directly from a major theorem.
(b) a minor theorem that is used to help prove a major theorem.
(c) an axiom disguised as a definition.
(d) a violation or misapplication of the laws of logic.
(e) an example of reductio ad absurdum.

14. The symbol ∃ is used in

(a) sentential logic.
(b) propositional logic.
(c) predicate logic.
(d) subjective logic.
(e) universal logic.

15. Suppose an author is writing a book about the history of a particular
region, and in the course of research, the author finds that as the popula-
tion increased, the number of burglaries per 100,000 people went up in
direct proportion. In fact, the two variables tracked along together with
uncanny exactness. Which of the following represents sound reasoning,
and is therefore a logical conclusion?
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(a) Burglars caused the population of the region to increase.
(b) The population increase caused burglars to move into the region.
(c) Some unknown factor caused the population of the region to increase,

and also caused burglars to move into the region.
(d) The population of the region was correlated with the number of bur-

glaries per 100,000 people.
(e) All of the above

16. Which of the following propositions represents an example of the proba-
bility fallacy?

(a) The home team is likely to win tomorrow.
(b) Either the home team will win tomorrow, or else it will not win.
(c) Snowstorms cause home teams to win.
(d) Home-team victories cause snowstorms.
(e) Home-team victories cause snowstorms, and vice-versa.

Test: Part One 121

Definition

Definition

Axiom (or
postulate)

Axiom (or
postulate)

Theorem
Theorem

Lemma

Corollary Corollary

?

?

?

Fig. Test 1-2. Illustration for Part One Test Question 12.



17. Consider the following argument:

• Bob will play either basketball or hockey during the winter high school
sports season. Bob will not play basketball. Therefore, Bob will play
hockey.

This is an example of
(a) denying the antecedent.
(b) the probability fallacy.
(c) a syllogism.
(d) a corollary.
(e) a conjunctive lemma.

18. Suppose someone claims that the following proposition is a mathematical
theorem:

• All real numbers can be written as fractions, where the numerator is an
integer and the denominator is a nonzero natural number.

You claim that this is not a theorem because it is not true. How many
counterexamples must you find in order to show that this proposition is
not true?

(a) None.
(b) One.
(c) Two.
(d) At least a few dozen.
(e) Infinitely many.

19. In order to prove the falsity of an existential proposition (∃x) Px about a
variable x in a universal set U, it is necessary to prove that

(a) (∀x) Px
(b) (∀x) ¬ Px
(c) Pk, where k is a constant and k ∈ U
(d) ¬ Pk, where k is a constant and k ∈ U
(e) Any of the above

20. Examine Table Test 1-1. Which of the following can be written in the
uppermost column header at the extreme right in place of the question
mark, making the truth table correct?

(a) X & Y & Z
(b) X ∨ (Y & Z)
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(c) X & (Y ∨ Z)
(d) (X ∨ Y) & Z
(e) X ∨ Y ∨ Z

21. Which of the following expressions is not a well-formed formula (wff)?
Variables are symbolized as x and y. Constants are symbolized as a
and b. Predicates are symbolized as R and S.

Rab
Sabx
SaR

Rxyab
Sa

(a) The first expression
(b) The second expression
(c) The third expression
(d) The fourth expression
(e) The fifth expression

22. Which of the following is not true of mathematical definitions?

(a) They can take the form of SLVC sentences.
(b) They can contain logical equivalences.
(c) They must be proven from axioms, lemmas, and corollaries.
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(d) They must be clear and unambiguous.
(e) They are an essential part of any mathematical theory.

23. A truly random sequence of digits must be

(a) unpredictable; that is, there should be no way to figure out the next
digit based on the ones already known.

(b) rational; that is, it must be expressible as the quotient of an integer
and a nonzero natural number.

(c) such that it is impossible to write it out as a terminating decimal.
(d) infinite; that is, it must never end.
(e) All of the above

24. When logic that appears perfectly sound is used to reach an incredible
conclusion, it is called

(a) a paradox.
(b) a contradiction.
(c) a theorem.
(d) inductive reasoning.
(e) mathematical induction.

25. A corollary is

(a) a definition that is provable from a set of axioms.
(b) a definition that contains a contradiction.
(c) a minor theorem intended to help prove something more important.
(d) a theorem that arises as a direct consequence of another theorem.
(e) a subset of the universal set.

26. In the sentence “Jim likes sausage and eggs,” the phrase “likes sausage
and eggs” is

(a) the subject.
(b) the verb.
(c) the linking verb.
(d) the object.
(e) the predicate.

27. Consider the following compound sentence, where X, Y, and Z are vari-
ables representing whole sentences:

X & (Y ∨ Z) ⇔ (X & Y) ∨ (X & Z)
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This is a statement of

(a) the associative law of disjunction with respect to conjunction.
(b) the associative law of conjunction with respect to disjunction.
(c) the distributive law of conjunction with respect to disjunction.
(d) the commutative law of conjunction with respect to disjunction.
(e) the commutative law of disjunction with respect to conjunction.

28. A wff can contain

(a) both conjunction and disjunction.
(b) both negation and conjunction.
(c) both constants and variables.
(d) more than one predicate.
(e) Any of the above

29. If someone comes to a broad-based conclusion based on insufficient in-
formation, that person commits

(a) reductio ad absurdum.
(b) mathematical induction.
(c) a paradox.
(d) implication reversal.
(e) a hasty generalization.

30. Suppose a strange new disease appears. Five doctors all disagree about
its cause. Doctor V says, “I think it is caused by a virus.” Doctor W says,
“No, I have good evidence to suggest that it is caused by bacteria.”
Doctor X says, “Most likely, it is caused by poor nutrition.” Doctor Y
says, “I suspect it is caused by air pollution.” Doctor Z says, “I think you
are all wrong. I have a feeling it is caused by an as-yet unknown agent.”
Which of these doctors commits a logical fallacy in making his or her
statement?

(a) Doctor V
(b) Doctor W
(c) Doctor X
(d) Doctor Y
(e) Doctor Z

31. A form of logic that involves a continuous span of truth values, for exam-
ple a range from 0 (totally false) through 1 (neutral) to 2 (totally true), is
known as
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(a) dichotomous logic.
(b) fuzzy logic.
(c) inductive logic.
(d) numerical logic.
(e) precision logic.

32. In the sentence “I am an amateur radio operator,” the word “am” is

(a) the subject.
(b) the complement.
(c) the linking verb.
(d) the object.
(e) the predicate.

33. In a logical equivalence, the double-shafted, double-headed arrow can be
replaced by the word or words

(a) “and.”
(b) “if.”
(c) “if and only if.”
(d) “implies.”
(e) “or.”

34. The associative law of disjunction is concerned with

(a) the order in which sentences are stated when connected by dis-
junctions.

(b) the way in which sentences are grouped when connected by dis-
junctions.

(c) the negation of a compound sentence containing disjunctions.
(d) the negation of the individual sentences in a compound sentence

containing disjunctions.
(e) All of the above

35. The symbol ∀ can be replaced with the word or phrase

(a) “for none.”
(b) “for one.”
(c) “for some.”
(d) “for every.”
(e) “for infinitely many.”

36. A sentence that is a logical disjunction of two or more component sen-
tences is true
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(a) if and only if none of its components is true.
(b) if and only if at least one of its components is true.
(c) if and only if all of its components are true.
(d) if and only if at least one of its components is false.
(e) no matter what.

37. Which of the following (a), (b), (c), or (d), if any, is never done in the
development a rigorous mathematical theory?
(a) Axioms and definitions are used to prove a lemma.
(b) Axioms and a lemma are used to prove a definition.
(c) Axioms, definitions, and a lemma are used to prove a theorem.
(d) Axioms, definitions, and a theorem are used to prove a corollary.
(e) All of the above (a), (b), (c), and (d) are commonly done in the

development of a rigorous mathematical theory.

38. Once a proposition has been proved in a mathematical system, that
proposition becomes
(a) an axiom.
(b) a definition.
(c) a logical equivalence.
(d) a contradiction.
(e) a theorem.

39. Consider the following compound sentence, where X, Y, and Z are vari-
ables representing whole sentences:

(X & Y) & Z ⇔ X & (Y & Z)

This is a statement of
(a) the associative law of conjunction.
(b) the associative law of disjunction.
(c) the distributive law of conjunction.
(d) the commutative law of disjunction.
(e) the commutative law of conjunction.

40. A sentence of the form “If P, then Q” is false
(a) if and only if P is true and Q is true.
(b) if and only if P is true and Q is false.
(c) if and only if P is false and Q is true.
(d) if and only if P is false and Q is false.
(e) no matter what.
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5
CHAPTER

131

Some Theoretical
Geometry

The material in this chapter involves basic plane geometry, also called Euclid-
ean geometry. We’ll work with points, lines, line segments, rays, angles, and tri-
angles. This is not a geometry course, but it will show you how definitions and
axioms are formulated, and how they can be used to prove theorems.

Don’t hurry through this material. Let it “soak in” slowly. As you go through
this text and measure your progress in hours per page, perhaps you will be
reminded of the martial arts, where you are required go through certain routines
over and over until they become second nature. The proving of mathematical
theorems is like that; it is an art that requires practice and repetition.

Some Definitions
Let’s get started by stating some definitions. We must know what we’re talking
about before we can prove any propositions! Some of these definitions are accom-
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panied by illustrations. In other cases, illustrations are not provided, but you can
draw them if it helps you envision what is meant. Remember that a good defini-
tion should stand on its own, and not rely on any drawings to convey its meaning.

ELEMENTARY TERMS
Three objects in geometry are undefined, or elementary. We can describe them
informally by comparing them with idealized physical objects.

• A point is like a ball with a radius of 0, or a brick that measures 0 units
along each edge. A point has a location or position that can be specified
with absolute precision, but it has no volume or mass. All points are 0-
dimensional (0D).

• A line is like an infinitely fine, infinitely long, perfectly straight wire. It
extends forever in two opposite directions. A line has a position and an ori-
entation that can be specified with absolute precision, but it has no volume
or mass. All lines are 1-dimensional (1D).

• A plane is like an infinitely thin, perfectly flat pane of glass that goes on
forever without any edges. A plane has a position and orientation that can
be specified with absolute precision, but it has no volume or mass. All
planes are 2-dimensional (2D).

A line has no end points. A plane has no edges. These properties, along with
the fact that a point has position but no dimension, make the point, the line, and
the plane strange indeed! You will never whack a point with a golf club, slice a
chunk of cheese with a line, or sail an ice boat across a plane. Points, lines, and
planes are not material things, and yet they are exactly what we think they are!

LINE SEGMENT
Let P and Q be distinct points that lie on a line L. The closed line segment PQ
is the set of all points on L between, and including, points P and Q. This is illus-
trated in Fig. 5-1A. When you hear or read the term line segment, it is meant to
refer to a closed line segment unless otherwise specified.

HALF-OPEN LINE SEGMENT
Let P and Q be distinct points that lie on a line L. The half-open line segment PQ
can be the set of all points on L between P and Q but not including P, or the set
of all points on L between P and Q but not including Q. These are illustrated in
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Figs. 5-1B and 5-1C. The excluded end points are shown as open circles, and the
included end points are shown as solid dots.

OPEN LINE SEGMENT
Let P and Q be distinct points that lie on a line L. The open line segment PQ is
the set of all points on L between, but not including, points P and Q, as shown
in Fig. 5-1D.

LENGTH OF LINE SEGMENT
Let PQ be a closed, half-open, or open line segment defined by distinct end
points P and Q. The length of line segment PQ is the shortest possible distance
between points P and Q. The length of line segment QP is considered equal to
(not the negative of) the length of line segment PQ. That is, it does not matter in
which direction the length of a line segment is expressed.

CLOSED-ENDED RAY
Let P and Q be distinct points that lie on a line L. The closed-ended ray PQ, also
called the closed-ended half-line PQ, consists of the set of all points on L that lie
on the side of point P that contains point Q, including point P itself. This is illus-
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trated in Fig. 5-2A. When you hear or read the term ray, it is meant to refer to a
closed-ended ray unless otherwise specified.

OPEN-ENDED RAY
Let P and Q be distinct points that lie on a line L. The open-ended ray PQ, also
called the open-ended half-line PQ, consists of the set of all points on L that lie
on the side of point P that contains point Q, but not including point P itself. This
is illustrated in Fig. 5-2B.

POINT OF INTERSECTION
Let PQ be a line, line segment, or ray defined by distinct points P and Q. Let RS
be a line, line segment, or ray defined by points R and S, different from points P
and Q. Suppose T is a point that lies on both PQ and RS. Then T is a point of
intersection between PQ and RS. Also, PQ and RS are said to intersect at point T.

COLLINEAR POINTS
Let P1, P2, P3, . . . , Pn be mutually distinct points (that means no two of the points
coincide). Then P1, P2, P3, . . . , Pn are collinear if and only if they all lie on a sin-
gle line.

COPLANAR POINTS
Let P1, P2, P3, . . . ,Pn be mutually distinct points. Then P1, P2, P3, . . . , Pn are copla-
nar if and only if they all lie in a single plane.

PART TWO Proofs in Action134

P Q

P Q

A

B

L

L

Fig. 5-2. At A, the closed-ended ray PQ. At B, the open-ended
ray PQ.



COINCIDENT LINES
Let P, Q, R, and S be distinct points. Line PQ, defined by points P and Q, and
line RS, defined by points R and S, are coincident lines if and only if points P,
Q, R, and S are collinear.

COLLINEAR LINE SEGMENTS AND RAYS
Let P, Q, R, and S be distinct points. Let PQ represent a closed, half-open, or
open line segment or ray defined by points P and Q. Let RS represent a closed,
half-open, or open line segment or ray defined by points R and S. Then PQ and
RS are collinear if and only if points P, Q, R, and S are collinear.

TRANSVERSAL
Let P, Q, R, and S be distinct points. Let PQ be the line defined by points P and
Q. Let RS be the line defined by points R and S. Suppose that line PQ and line
RS lie in the same plane, but are not coincident. Let L be a line that intersects
both line PQ and line RS. Line L is said to be a transversal of lines PQ and RS.

PARALLEL LINES
Let P, Q, R, and S be distinct points. Let PQ be the line defined by points P and
Q. Let RS be the line defined by points R and S. Suppose that lines PQ and RS
lie in the same plane, but are not coincident. Then PQ and RS are parallel lines
if and only if there exists no point T such that T is a point of intersection between
line PQ and line RS.

PARALLEL LINE SEGMENTS
Let P, Q, R, and S be distinct points. Let line PQ be the line defined by points P
and Q. Let line segment PQ be a closed, half-open, or open line segment con-
tained in line PQ, with end points P and Q. Let RS be the line defined by points
R and S. Suppose that lines PQ and RS lie in the same plane, but are not coinci-
dent. Let line segment RS be a closed, half-open, or open line segment contained
in line RS, with end points R and S. Then line segments PQ and RS are parallel
line segments if and only if lines PQ and RS are parallel lines.
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In Fig. 5-3, drawing A shows an example of parallel line segments, one closed
and the other half-open. Drawing B shows an example of two half-open line
segments that are not parallel. Drawing C shows an example of two open line
segments that are not parallel. In the situation of Fig. 5-3A, there exists no point
of intersection T common to both lines. In the situation of Fig. 5-3B, there is a
point T common to both lines, although T does not lie on either line segment. In
the situation of Fig. 5-3C, there exists a point T common to both lines, and T lies
on both line segments.

PARALLEL RAYS
Let P, Q, R, and S be distinct points. Let PQ be the line defined by points P and
Q. Let ray PQ be a closed-ended or open-ended ray contained in line PQ, with
end point P. Let RS be the line defined by points R and S. Suppose that lines PQ
and RS lie in the same plane, but are not coincident. Let ray RS be a closed-ended
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or open-ended ray contained in line RS, with end point R. Then rays PQ and RS
are parallel rays if and only if lines PQ and RS are parallel lines.

In Fig. 5-4, drawing A shows an example of parallel rays, one closed-ended
and the other open-ended. Drawing B shows an example of two rays, one closed-
ended and the other open-ended, that are not parallel. Drawing C shows an
example of two rays, both open-ended, that are not parallel. In the situation of
Fig. 5-4A, there exists no point of intersection T common to both lines. In the
situation of Fig. 5-4B, there is a point T common to both lines, although T does
not lie on either ray. In the situation of Fig. 5-4C, there exists a point T common
to both lines, and T lies on both rays.

ANGLE
Let P, Q, and R be distinct points. Let QP and QR be rays or line segments, both
of which have the same end point, Q. Then the two rays or line segments and
their common end point constitute an angle denoted ∠PQR. Rays or line seg-

Chapter 5 Some Theoretical Geometry 137

P Q

P Q

P Q

A

B

C

R

R

R

S

S

S

T

T

Fig. 5-4. At A, rays PQ and RS are parallel, because lines PQ
and RS lie in the same plane and do not intersect. 
At B and C, rays PQ and RS are not parallel, because
lines PQ and RS intersect at a point T.



ments QP and QR are called the sides of ∠PQR, and point Q is called the ver-
tex of ∠PQR. An example is shown in Fig. 5-5. Unless otherwise specified,
angles are expressed by counterclockwise rotation around the vertex.

PROBLEM 5-1
The preceding definition actually describes two different angles with
the same vertex. What are they?

SOLUTION 5-1
The two rays described, and shown in Fig. 5-5, can define two differ-
ent angles! One of the angles, which is the one you’re most likely to 
imagine when you look at the drawing, goes counterclockwise “the
short way around” from ray QP to ray QR. The other angle, which is
also represented in the definition but which you’re less likely to imag-
ine, goes counterclockwise “the long way around” from ray QR to ray
QP. It can be denoted ∠RQP.

PROBLEM 5-2
What about angles that are defined as going clockwise, rather than
counterclockwise? Are they legitimate angles, too? How can these be 
described in the situation shown in Fig. 5-5?

SOLUTION 5-2
Angles can be expressed as going clockwise instead of counterclock-
wise, but this is the unconventional method of defining angle direction. 
An angle going clockwise can be considered the negative of the angle
having the same sides going counterclockwise. In the scenario of Fig.
5-5 going clockwise, ∠RQP goes the short way around, and ∠PQR
goes the long way around.
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MEASURE OF ANGLE
Let P, Q, and R be distinct points. Let QP and QR be distinct, closed-ended rays
or closed line segments, both of which have the same end point, Q. Then the
measure of ∠PQR, denoted m∠PQR, is an expression of the portion of a com-
plete revolution described by ∠PQR. The measure in degrees of ∠PQR, sym-
bolized mº∠PQR, is the portion of a complete revolution described by ∠PQR,
multiplied by 360. The measure of an angle is often denoted as a variable in low-
ercase English or Greek, such as x, y, θ, or φ.

STRAIGHT ANGLE
Let P, Q, and R be distinct points. Let QP and QR be two rays or line segments,
both of which have the same end point, Q, and which define ∠PQR. Then
∠PQR is a straight angle if and only if points P, Q, and R are collinear and point
Q is between point P and point R. 

STRAIGHT ANGLE (ALTERNATE DEFINITION)
An angle is a straight angle if and only if its measure is 1⁄2 of a complete revolu-
tion.

STRAIGHT ANGLE (SECOND ALTERNATE DEFINITION)
An angle is a straight angle if and only its measure is equal to 180º.

SUPPLEMENTARY ANGLES
Two angles are supplementary angles if and only if the sum of their measures is
equal to the measure of a straight angle.

RIGHT ANGLE
Let P, Q, R, S, and T be distinct points, all of which lie in the same plane, but
not all of which are collinear. Consider ray TP, ray TQ, ray TR, and ray TS.
Suppose the following are true:
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• The rays define ∠PTQ, ∠QTR, ∠RTS, and ∠STP
• All four angles ∠PTQ, ∠QTR, ∠RTS, and ∠STP have equal measure

Then each of the angles ∠PTQ, ∠QTR, ∠RTS, and ∠STP is a right angle.

RIGHT ANGLE (ALTERNATE DEFINITION)
An angle is a right angle if and only if its measure is 1⁄4 of a complete revolution.

RIGHT ANGLE (SECOND ALTERNATE DEFINITION)
An angle is a right angle if and only its measure is equal to 90º.

COMPLEMENTARY ANGLES
Two angles are complementary angles if and only if the sum of their measures
is equal to the measure of a right angle.

PERPENDICULAR LINES, LINE SEGMENTS, AND RAYS
Let P, Q, R, and S be distinct points. A line, line segment, or ray PQ is perpen-
dicular to a line, line segment, or ray RS if and only if both of the following
are true:

• Line, line segment, or ray PQ intersects line, line segment, or ray RS at one
and only one point T

• One of the angles at point T, formed by the intersection of line PQ and line
RS, is a right angle

TRIANGLE
Let P, Q, and R be three distinct points. Consider the closed line segment PQ,
the closed line segment QR, and the closed line segment RP. These three line seg-
ments, along with the points P, Q, and R, constitute a triangle denoted ∆PQR.
Line segment PQ, line segment QR, and line segment RP are called the sides
of ∆PQR. Points P, Q, and R are called the vertices of ∆PQR. The three angles,
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∠RQP, ∠PRQ, and ∠QPR, are called the interior angles of ∆PQR. Fig. 5-6
illustrates an example.

The interior angles of a triangle can be identified by drawing arcs centered on
their vertices and connecting their sides, as shown. Arrows can be used to spec-
ify the rotational sense of the angle. If no arrows are shown, then the rotational
sense should be considered as counterclockwise. If specific vertex points are not
important, triangles can be named with italicized, uppercase letters from the lat-
ter part of the alphabet, such as T, U, and V.

INCLUDED ANGLE
In a triangle, an included angle is the interior angle whose vertex is the point
where two specified sides of a triangle intersect. For example, in Fig. 5-6, ∠QPR
is the included angle between the sides represented by line segments PQ and PR.

INCLUDED SIDE
In a triangle, an included side is a side whose end points constitute the vertices
of two specified angles. For example, in Fig. 5-6, line segment PQ is the included
side between ∠RQP and ∠QPR.
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ISOSCELES TRIANGLE
Imagine a triangle defined by three distinct points P, Q, and R. Let p be the
length of the side opposite point P. Let q be the length of the side opposite point
Q. Let r be the length of the side opposite point r. Suppose any of the following
equations hold:

p = q
q = r
p = r

This kind of triangle is called an isosceles triangle. It has two sides of equal
length.

EQUILATERAL TRIANGLE
Imagine a triangle defined by three distinct points P, Q, and R. Let p be the
length of the side opposite point P. Let q be the length of the side opposite point
Q. Let r be the length of the side opposite point R. Suppose the following equa-
tion holds:

p = q = r

This kind of triangle is called an equilateral triangle. All three sides are of
equal length.

RIGHT TRIANGLE
A triangle is called a right triangle if and only if one of its interior angles is a
right angle.

Similar and Congruent Triangles
Here are some definitions that apply especially to triangles. In our theorem-
proving exercises (we’re getting there!), we will be discussing similarity and con-
gruence, and in particular, a property called direct congruence. There are four
important definitions to consider here. They are a little tricky, so pay attention!
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DIRECT SIMILARITY
Here is a formal definition, which you can visualize by looking at Fig. 5-7A:

• Let P, Q, and R be distinct points. Let ∆PQR be a triangle defined by pro-
ceeding counterclockwise from point P to point Q, from point Q to point
R, and from point R to point P. Let p be the length of the side opposite
point P. Let q be the length of the side opposite point Q. Let r be the length
of the side opposite point R. Let S, T, and U be distinct points. Suppose that
points P, Q, R, S, T, and U are all coplanar. Let ∆STU be a triangle distinct
from ∆PQR, proceeding counterclockwise from point S to point T, from
point T to point U, and from point U to point S. Let s be the length of the
side opposite point S. Let t be the length of the side opposite point T. Let
u be the length of the side opposite point U. Then ∆PQR and ∆STU are
directly similar if and only if the lengths of their corresponding sides, as
we proceed in the same direction around either triangle, are in a constant
ratio; that is, if and only if p/s = q/t = r/u. In addition, ∆PQR and ∆STU are
directly similar if and only if the counterclockwise measures of their
corresponding angles, as we proceed in the same direction around either
triangle, are equal; that is, if and only if m∠QPR = m∠TSU, m∠PRQ =
m∠SUT, and m∠RQP = m∠UTS.
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An alternative, but informal, way to describe direct similarity is to imagine that,
if one triangle is enlarged or reduced by just the right amount and then rotated clock-
wise or counterclockwise to just the right extent (but not flipped over), one tri-
angle can be pasted on top of the other so they coincide.

The direct similarity symbol looks like a wavy minus sign (∼). If distinct triangles
∆PQR and ∆STU are directly similar, we symbolize the fact like this:

∆PQR ∼ ∆STU

INVERSE SIMILARITY
Here is a formal definition, which you can visualize by looking at Fig. 5-7B:

• Let P, Q, and R be distinct points. Let ∆PQR be a triangle defined by pro-
ceeding counterclockwise from point P to point Q, from point Q to point
R, and from point R to point P. Let p be the length of the side opposite
point P. Let q be the length of the side opposite point Q. Let r be the length
of the side opposite point R. Let S, T, and U be distinct points. Suppose that
points P, Q, R, S, T, and U are all coplanar. Let ∆STU be a triangle distinct
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from ∆PQR, proceeding clockwise from point S to point T, from point T to
point U, and from point U to point S. Let s be the length of the side oppo-
site point S. Let t be the length of the side opposite point T. Let u be the
length of the side opposite point U. Then ∆PQR and ∆STU are inversely
similar if and only if the lengths of their corresponding sides, as we pro-
ceed in opposite directions around the triangles, are in a constant ratio; that
is, if and only if p/s = q/t = r/u. In addition, ∆PQR and ∆STU are inversely
similar if and only if the counterclockwise measures of their corresponding
angles, as we proceed in opposite directions around the triangles, are equal;
that is, if and only if m∠QPR = m∠UST, m∠PRQ = m∠TUS, and
m∠RQP = m∠STU.

An alternative, but informal, way to describe inverse similarity is to imagine
that, if one triangle is flipped over, enlarged or reduced by just the right amount,
and finally rotated clockwise or counterclockwise to just the right extent, one tri-
angle can be pasted on top of the other so they coincide.

The inverse similarity symbol is not universally agreed-upon. Let’s use a
wavy minus sign followed by a regular minus sign (∼−). If distinct triangles
∆PQR and ∆STU are inversely similar, then, we can symbolize the fact like this:

∆PQR ∼− ∆STU

When you read or hear that two triangles are similar triangles, it is not nec-
essarily clear what the author means! Sometimes the term similarity is applied
only to direct similarity, but in some texts it can refer to either direct similarity
or inverse similarity. We can avoid that sort of confusion by using the full ter-
minology all the time.

DIRECT CONGRUENCE
Here is a formal definition, which you can visualize by looking at Fig. 5-8A:

• Let P, Q, and R be distinct points. Let ∆PQR be a triangle defined by pro-
ceeding counterclockwise from point P to point Q, from point Q to point
R, and from point R to point P. Let p be the length of the side opposite
point P. Let q be the length of the side opposite point Q. Let r be the length
of the side opposite point R. Let S, T, and U be distinct points. Suppose that
points P, Q, R, S, T, and U are all coplanar. Let ∆STU be a triangle distinct
from ∆PQR, proceeding counterclockwise from point S to point T, from
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point T to point U, and from point U to point S. Let s be the length of the
side opposite point S. Let t be the length of the side opposite point T. Let
u be the length of the side opposite point U. Then ∆PQR and ∆STU are
directly congruent if and only if the lengths of their corresponding sides,
as we proceed in the same direction around either triangle, are equal; that
is, if and only if p = s, q = t, and r = u. In addition, if ∆PQR and ∆STU are
directly congruent, then the counterclockwise measures of their correspon-
ding angles, as we proceed in the same direction around either triangle, are
equal; that is, m∠QPR = m∠TSU, m∠PRQ = m∠SUT, and m∠RQP =
m∠UTS.

An alternative, but informal, way to describe direct congruence is to imagine
that, if one triangle is rotated clockwise or counterclockwise to just the right
extent (but not flipped over), one triangle can be pasted on top of the other, and
they will coincide.

The direct congruence symbol looks like a triple-barred equals sign (≡). If
distinct triangles ∆PQR and ∆STU are directly congruent, we symbolize the fact
like this:

∆PQR ≡ ∆STU
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INVERSE CONGRUENCE
Here is a formal definition, which you can visualize by looking at Fig. 5-8B:

• Let P, Q, and R be distinct points. Let ∆PQR be a triangle defined by pro-
ceeding counterclockwise from point P to point Q, from point Q to point
R, and from point R to point P. Let p be the length of the side opposite
point P. Let q be the length of the side opposite point Q. Let r be the
length of the side opposite point R. Let S, T, and U be distinct points.
Suppose that points P, Q, R, S, T, and U are all coplanar. Let ∆STU be a
triangle distinct from ∆PQR, proceeding clockwise from point S to point
T, from point T to point U, and from point U to point S. Let s be the length
of the side opposite point S. Let t be the length of the side opposite point
T. Let u be the length of the side opposite point U. Then ∆PQR and ∆STU
are inversely congruent if and only if the lengths of their corresponding
sides, as we proceed in opposite directions around the triangles, are equal;
that is, if and only if p = s, q = t, and r = u. In addition, if ∆PQR and ∆STU
are inversely congruent, then the counterclockwise measures of their cor-
responding angles, as we proceed in opposite directions around the trian-
gles, are equal; that is, m∠QPR = m∠UST, m∠PRQ = m∠TUS, and
m∠RQP = m∠STU.
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An alternative, but informal, way to describe inverse congruence is to imag-
ine that, if one triangle is flipped over and then rotated clockwise or counter-
clockwise to just the right extent, one triangle can be pasted on top of the other,
and they will coincide.

The inverse congruence symbol is not universally agreed-upon. Let’s use a
triple-barred equals sign followed by a minus sign (≡−). If distinct triangles ∆PQR
and ∆STU are inversely congruent, then, we can symbolize the fact like this:

∆PQR ≡− ∆STU

When you read or hear that two triangles are congruent triangles, it is not
necessarily clear what the author means! Sometimes the term congruence is
applied only to direct congruence, but in some texts it can refer to either direct
congruence or inverse congruence. As with similarity, let’s use the full termi-
nology all the time!

TWO CRUCIAL FACTS
Here are two important things you should remember about directly congruent
triangles. This will help reinforce, in your mind, the meaning of this term.

• If two triangles are directly congruent, then their corresponding sides have
equal lengths as you proceed around both triangles in the same direction.
The converse of this is also true. If two triangles have corresponding sides
with equal lengths as you proceed around them both in the same direction,
then the two triangles are directly congruent.

• If two triangles are directly congruent, then their corresponding interior
angles (that is, the interior angles opposite the corresponding sides) have
equal measures as you proceed around both triangles in the same direction.
The converse of this is not necessarily true. It is possible for two triangles
to have corresponding interior angles with equal measures when you pro-
ceed around them both in the same direction, and yet the two triangles are
not directly congruent.

TWO MORE CRUCIAL FACTS
Here are two “mirror images” of the facts just stated. They concern triangles that
are inversely congruent. Note the subtle differences in the wording!
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• If two triangles are inversely congruent, then their corresponding sides
have equal lengths as you proceed around the triangles in opposite direc-
tions. The converse of this is also true. If two triangles have corresponding
sides with equal lengths as you proceed around them in opposite direc-
tions, then the two triangles are inversely congruent.

• If two triangles are inversely congruent, then their corresponding interior
angles have equal measures as you proceed around the triangles in oppo-
site directions. The converse of this is not necessarily true. It is possible for
two triangles to have corresponding interior angles with equal measures as
you proceed around them in opposite directions, and yet the two triangles
are not inversely congruent.

PROBLEM 5-3
State a special property of equilateral triangles, and state why it is true.

SOLUTION 5-3
Any two equilateral triangles are directly similar. This is because the
ratio of their corresponding sides, proceeding counterclockwise around
both triangles, is a constant. Suppose ∆PQR is an equilateral triangle
with sides of length m. Suppose ∆STU is an equilateral triangle with
sides of length n. Then the ratio of the lengths of their corresponding
sides, proceeding counterclockwise around ∆PQR from point P and
counterclockwise around ∆STU from point S, is always m/n. The trian-
gles are therefore directly similar by definition.

PROBLEM 5-4
State another special property of equilateral triangles, and state why it
is true.

SOLUTION 5-4
Any two equilateral triangles are inversely similar. This is because the
ratio of their corresponding sides, proceeding counterclockwise around 
one of them and clockwise around the other, is a constant. Suppose
∆PQR is an equilateral triangle with sides of length m. Suppose ∆STU
is an equilateral triangle with sides of length n. Then the ratio of the
lengths of their corresponding sides, proceeding counterclockwise
around ∆PQR from point P and clockwise around ∆STU from point S,
is always m/n. (In fact, the ratio of the length of any side of ∆PQR to
the length of any side of ∆STU is equal to m/n!) The triangles are there-
fore inversely similar by definition.
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Some Axioms
We are now armed with a good supply of definitions. We still need axioms if we
want to prove anything. Here are several. The first four are Euclid’s first, sec-
ond, fourth, and fifth postulates. They were stated and illustrated in Chapter 3,
but they are worth repeating here, with a few changes to make them more rele-
vant to this chapter.

THE TWO-POINT AXIOM
Any two distinct points P and Q can be connected by a straight line segment.

THE EXTENSION AXIOM
Any straight line segment, defined by distinct points P and Q, can be extended
indefinitely and continuously to form a straight line defined by points P and Q.

THE RIGHT ANGLE AXIOM
All right angles have the same measure.

THE PARALLEL AXIOM
Let L be a straight line, and let P be some point not on L. Then there exists one
and only one straight line M that passes through point P, such that line M is par-
allel to line L.

THE SIDE-SIDE-SIDE (SSS) AXIOM
Let T and U be triangles. Suppose T and U have corresponding sides of identi-
cal lengths as your proceed around the triangles in the same direction. Then T
and U are directly congruent. Also, if T and U are directly congruent triangles,
then T and U have corresponding sides of identical lengths as you proceed
around the triangles in the same direction. (Fig. 5-9 can help you visualize this.
In this example, a = d, b = e, and c = f.)
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As an extension of this axiom, suppose T and U have corresponding sides
of identical lengths as you proceed around the triangles in opposite directions.
Then T and U are inversely congruent. Also, if T and U are inversely congruent
triangles, then T and U have corresponding sides of identical lengths as your
proceed around the triangles in opposite directions.

Do you think this axiom replicates the definitions of direct and inverse con-
gruence given above? Well, if so, you are right! We state this axiom here
because, in some texts, the definitions of direct and inverse congruence are less
precise, stating only the general notions about size and shape.

THE SIDE-ANGLE-SIDE (SAS) AXIOM
Let T and U be triangles. Suppose T and U have two pairs of corresponding sides
of equal lengths as you proceed around the triangles in the same direction. Also,
suppose the included angles between those corresponding sides have identical
measures. Then T and U are directly congruent. Also, if T and U are directly con-
gruent triangles, then T and U have two pairs of corresponding sides of equal
lengths as you proceed around the triangles in the same direction, and the
included angles between those corresponding sides have identical measures.
(Fig. 5-10 can help you visualize this. In this example, a = c, b = d, and x = y.)
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As an extension to this axiom, suppose T and U have two pairs of correspon-
ding sides of equal lengths as you proceed around the triangles in opposite direc-
tions. Also, suppose the included angles between those corresponding sides have
identical measures. Then T and U are inversely congruent. Also, if T and U are
inversely congruent triangles, then T and U have two pairs of corresponding sides
of equal lengths as you proceed around the triangles in opposite directions, and
the included angles between those corresponding sides have identical measures. 

THE ANGLE-SIDE-ANGLE (ASA) AXIOM
Let T and U be triangles. Suppose T and U have two pairs of corresponding
angles of equal measures as you proceed around the triangles in the same direc-
tion. Also, suppose the included sides between those corresponding angles have

PART TWO Proofs in Action152

a

b

x

c

d
y

T

U

Fig. 5-10. The side-angle-side (SAS) axiom. Tri-
angles T and U are directly congruent
if and only if a = c, x = y, and b = d.



identical lengths. Then T and U are directly congruent. Also, if T and U are
directly congruent triangles, then T and U have two pairs of corresponding angles
of equal measures as you proceed around the triangles in the same direction, and
the included sides between those corresponding angles have identical lengths.
(Fig. 5-11 can help you visualize this. In this example, a = b, w = y, and x = z.)

As an extension to this axiom, suppose T and U have two pairs of corre-
sponding angles of equal measures as you proceed around the triangles in oppo-
site directions. Also, suppose the included sides between those corresponding
angles have identical lengths. Then T and U are inversely congruent. Also, if T
and U are inversely congruent triangles, then T and U have two pairs of corre-
sponding angles of equal measures as you proceed around the triangles in oppo-
site directions, and the included sides between those corresponding angles have
identical lengths.
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THE SIDE-ANGLE-ANGLE (SAA) AXIOM
Let T and U be triangles. Suppose T and U have two pairs of corresponding
angles of equal measures as you proceed around the triangles in the same direc-
tion. Suppose the corresponding sides, one of whose end points constitutes the
vertex of the first-encountered angle in either triangle, have identical lengths.
Then T and U are directly congruent. Also, if T and U are directly congruent tri-
angles, then T and U have two pairs of corresponding angles of equal measures
as you proceed around the triangles in the same direction, and the corresponding
sides whose end points constitute the vertices of the first-encountered angles
have identical lengths. (Fig. 5-12 can help you visualize this. In this example, 
a = b, w = y, and x = z.)

As an extension to this axiom, suppose T and U have two pairs of correspon-
ding angles of equal measures as you proceed around the triangles in opposite
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directions. Suppose the corresponding sides, one of whose end points constitutes
the vertex of the first-encountered angle in either triangle, have identical lengths.
Then T and U are inversely congruent. Also, if T and U are inversely congruent
triangles, then T and U have two pairs of corresponding angles of equal meas-
ures as you proceed around the triangles in opposite directions, and the corre-
sponding sides whose end points constitute the vertices of the first-encountered
angles have identical lengths.

Some Proofs at Last!
We’re finally ready to prove a few theorems. In every case, the proofs are given
in verbal form, and also as statements/reasons (S/R) tables. The theorems in this
section are stated as “problems,” and the proofs are stated as “solutions.”

PROBLEM 5-5
Let P, Q, R, and S be mutually distinct points, all of which lie in the
same plane. Suppose lines PQ, QR, RS, and SP are all mutually distinct 
(that is, no two of them coincide). Consider line segments PQ, QR, RS,
and SP, each of which lies on the line having the same name. The line
segments form a four-sided figure PQRS, with vertices at points P, Q,
R, and S, in that order proceeding counterclockwise. Suppose the fol-
lowing are true:

• Line segment PQ has the same length as line segment SR
• Line segment SP has the same length as line segment RQ

Consider the line segment SQ, which divides the figure PQRS into two
triangles, ∆SPQ and ∆QRS. Prove that ∆SPQ ≡ ∆QRS.

SOLUTION 5-5
It helps to draw a diagram of this situation. If you wish, you can do this
based on the description of the problem, and get something like Fig. 5-13.

First, let’s decide upon (that is, assign) corresponding sides for the tri-
angles, proceeding counterclockwise around the triangle in either case:

• Line segment SP in ∆SPQ corresponds to line segment QR in ∆QRS
• Line segment PQ in ∆SPQ corresponds to line segment RS in ∆QRS
• Line segment QS in ∆SPQ corresponds to line segment SQ in ∆QRS
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We are told that line segment PQ has the same length as line seg-
ment SR. The length of a line segment does not depend on the direction
in which it is expressed. Therefore, line segment PQ in ∆SPQ has the
same length as line segment RS in ∆QRS. These line segments are cor-
responding sides in the triangles.

We are also told that line segment SP has the same length as line
segment RQ. Therefore, line segment SP in ∆SPQ has the same length
as line segment QR in ∆QRS. These line segments are corresponding
sides in the triangles.

Finally, from the definition of the length of a line segment, we know
that line segment QS in ∆SPQ has the same length as line segment SQ
in ∆QRS. This line segment constitutes corresponding sides (which
also happen to coincide) in the triangles.

We have shown that the corresponding sides of ∆SPQ and ∆QRS
have identical lengths when we proceed around the triangles in the
same direction, counterclockwise in this case. Therefore, according to
the SSS axiom, we can conclude that that ∆SPQ ≡ ∆QRS. Table 5-1 is
an S/R version of this proof.

PROBLEM 5-6
Let P, Q, R, and S be mutually distinct points, all of which lie in the
same plane. Suppose lines PQ, QR, RS, and SP are all mutually dis-
tinct. Consider line segments PQ, QR, RS, and SP, each of which lies
on the line having the same name. This forms a four-sided figure
PQRS, with vertices at points P, Q, R, and S, in that order proceeding
counterclockwise. Suppose the following are true:

• Line segment PQ has the same length as line segment SR
• Line segment SP has the same length as line segment RQ
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Imagine lines PQ and SR, the extensions of line segments PQ and SR,
respectively. Also imagine line SQ, the extension of line segment SQ.
Prove that m∠QSR = m∠SQP.

SOLUTION 5-6
If you wish, you can draw a diagram of this situation based on the pre-
vious problem and on the description of this problem, and get some-
thing like Fig. 5-14.

Problem 5-5, now that it has been solved, is a theorem. In the current
problem, therefore, we know that ∆SPQ ≡ ∆QRS. When two triangles are
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Statements Reasons

Line segment SP in ∆SPQ We assign them that way.
corresponds to line segment QR
in ∆QRS.

Line segment PQ in ∆SPQ We assign them that way.
corresponds to line segment RS
in ∆QRS

Line segment QS in ∆SPQ We assign them that way.
corresponds to line segment SQ
in ∆QRS.

Line segment PQ has the same Given.
length as line segment SR.

Line segment SP has the same Given.
length as line segment RQ.

Line segment QS has the same This comes from the definition
length as line segment SQ. of the length of a line segment:

it is the same in either direction.

Corresponding sides of ∆SPQ and This is based on the above state-
∆QRS have the identical lengths ments, and on the way we have 
expressed counterclockwise. assigned corresponding sides.

∆SPQ ≡ ∆QRS. SSS axiom.

Table 5-1. An S/R version of the proof demonstrated in Solution 5-5 and
Fig. 5-13.



directly congruent, then the counterclockwise measures of their corre-
sponding angles, as we proceed in the same direction around either tri-
angle, are equal. From the description of this situation (and with the help
of the drawing, if you need it), it is evident that ∠QSR and ∠SQP are
corresponding angles, the first angle in ∆QRS, and the second angle in
∆SPQ. The angle measures, as specified in the statement of this problem,
are expressed counterclockwise. Therefore, their measures are equal;
that is, m∠QSR = m∠SQP. Table 5-2 is an S/R version of this proof.
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Statements Reasons

∆SPQ ≡ ∆QRS This is the theorem resulting from 
Solution 5-5.

Counterclockwise measures of This comes from the definition of
corresponding angles in ∆QRS direct congruence.
and ∆SPQ are equal.

∠QSR and ∠SQP are corresponding This is evident from examination 
angles in ∆QRS and ∆SPQ, as we of the problem.
proceed in the same direction
around both triangles.

m∠QSR and m∠SQP are This is evident from the statement
defined counterclockwise. of the problem.

m∠QSR = m∠SQP This comes from information
derived in the preceding steps, 
and from the definition of direct
congruence.

Table 5-2. An S/R version of the proof demonstrated in Solution 5-6 and
Fig. 5-14.



PROBLEM 5-7
In the situation of the previous problem, let T be a point on line PQ
such that point Q is between point P and point T. Let U be a point on 
line SR such that point S is between point U and point R. Suppose that,
in addition to the other conditions in the previous problem, the follow-
ing are true:

• Line segment QT has the same length as line segment US
• Line segment UQ has the same length as line segment ST

Prove that m∠USQ = m∠TQS.

SOLUTION/EXERCISE 5-7
Try this for yourself! Here are some hints:

• Construct triangles ∆UQS and ∆TSQ
• Show that ∆UQS and ∆TSQ are directly congruent
• Use the same approach as in Solution 5-6
• Feel free to use Fig. 5-15 as a visual aid

If you have trouble proving this, accept it on faith for now, and come
back to it tomorrow. We have all had the experience of solving a tough
problem that turned out to be easy after we “slept on it.” This technique
often works well with elusive math proofs.

ALTERNATE INTERIOR ANGLES
Here’s a new term that needs to be defined. Suppose line PQ and line SR are dis-
tinct lines that are both crossed by a transversal line SQ. Let T be a point on line
PQ such that point Q is between point P and point T. Let U be a point on line
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SR such that point S is between point U and point R. Then ∠QSR and ∠SQP are
a pair of alternate interior angles formed by line PQ, line SR, and the transver-
sal line SQ. Also, ∠USQ and ∠TQS are a pair of alternate interior angles formed
by line PQ and line SR, and the transversal line SQ. These pairs of angles are
marked in Figs. 5-14 and 5-15.

PROBLEM 5-8
Prove that when two parallel lines L and M are crossed by a transver-
sal line T, pairs of alternate interior angles always have equal measure. 
Let’s call this the AIA Theorem.

SOLUTION/EXERCISE 5-8
Try this for yourself! Here’s a hint: It follows in a straightforward way
from the “combined forces” of Solution 5-6 and Solution/Exercise 5-7. 
Both of these, having been proven, are theorems that can be used as
lemmas here.

PROBLEM 5-9
Prove that the sum of the measures of the three interior angles of a tri-
angle is always equal to the measure of a straight angle.

SOLUTION 5-9
Consider an arbitrary triangle ∆PQR, with vertices at points P, Q, and
R, expressed counterclockwise in that order. Let x be the measure of 
∠RQP; let y be the measure of ∠PRQ; let z be the measure of ∠QPR.
Fig. 5-16A illustrates an example of such a triangle.

Choose a point S somewhere outside ∆PQR, such that line RS is par-
allel to line PQ. Then choose a point T on line RS, such that point R is
between point T and point S. This gives us a situation in which there
are two parallel lines, crossed by two different transversals. The paral-
lel lines are line PQ and line RS. The transversals are line PR and line
QR, as shown in Fig. 5-16B.

Now consider ∠QRS, and call its measure x*. Also consider ∠TRP,
and call its measure z*. Notice that ∠RQP and ∠QRS, whose measures
are x and x* respectively, are alternate interior angles, defined by the
transversal line QR. Also notice that ∠QPR and ∠TRP, whose meas-
ures are z and z* respectively, are alternate interior angles, defined by
the transversal line PR. According to the AIA Theorem, it follows that
x = x*, and also that z = z*.

It is evident from the geometry of the situation that the sum z* + y
+ x* adds up to an angle whose measure is a straight angle. (This is also
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called a 180º angle, based on the angular degree, symbolized º, which
represents 1/360 of a full circle.) In other words, z* + y + x* = 180º.
The straight angle in this case is ∠TRS, formed by the collinear points
T, R, and S. It follows that that z + y + x = 180º. (You’ll get a chance to
provide the reason in Quiz Question 1.) Notice that x, y, and z are the
measures of the interior angles of ∆PQR. Therefore, the sum of the
measures of the interior angles of ∆PQR is equal to the measure of a
straight angle. Table 5-3 is an S/R version of this proof.

PROBLEM 5-10
Suppose ∆PQR is an isosceles triangle defined by three distinct points P,
Q, and R, expressed counterclockwise in that order. Let p be the length 
of line segment QR. Let q be the length of line segment RP. Let r be the
length of line segment PQ. Suppose q = r. Let S be the point at the cen-
ter of line segment QR, such that line segment QS has the same length as
line segment RS. Line segment PS divides ∆PQR into two triangles,
∆PQS and ∆PSR. Prove that ∆PQS and ∆PSR are inversely congruent.

SOLUTION 5-10
The trick here is to work around the two triangles, ∆PQS and ∆PSR, in
opposite directions. For that reason, let’s rename the second triangle 
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∆PRS. That way, we go counterclockwise around ∆PQS, and clockwise
around ∆PRS.

Let q* be the length of line segment PS. Let p* be the length of line
segment QS. Let p** be the length of line segment RS. If you wish, you
can draw a diagram of this situation. The result should look something
like Fig. 5-17. We are told that q = r. We know that p* = p**. (You’ll
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Statements Reasons

Consider a triangle ∆PQR. We have to start somewhere.

Choose a point S such that We will use this point later.
line RS is parallel to line PQ.

Choose a point T on line RS, We will use this point later.
such that point R is between 
point T and point S.

Line PR and line QR are This is apparent from the definition of a
transversals to the parallel lines transversal line.
PQ and RS.

Consider ∠QRS, and call its We will use these later.
measure x*. Also consider ∠TRP,
and call its measure z*.

Angles ∠RQP and ∠QRS are This is apparent from the definition of
alternate interior angles. alternate interior angles.

Angles ∠QPR and ∠TRP are This is apparent from the definition of
alternate interior angles. alternate interior angles.

x = x* This follows from the AIA Theorem.

z = z* This follows from the AIA Theorem.

z* + y + x* = 180º This is apparent from the geometry of
the situation, and from the definition 
of an angular degree.

z + y + x = 180º You’ll get a chance to fill this in later.

The measures of the interior This is because x, y, and z are the
angles of ∆PQR add up to measures of the interior angles of
measure of a straight angle. ∆PQR.

Table 5-3. An S/R version of the proof demonstrated in Solution 5-9 and Fig. 5-16.



get a chance to provide the reason in Quiz Question 2 at the end of this
chapter.) We also know that q* = q*; this is trivial! Let’s state these
three equations in order:

q = r
p* = p**
q* = q*

If we proceed counterclockwise around ∆PQS, we encounter sides
of lengths r, p*, and q* in that order. If we proceed clockwise around
∆PRS, we encounter sides of lengths q, p**, and q* in that order. In this
second case, we can substitute r for q because q = r, we can substitute
p* for p** because p* = p**, and we know q* = q*. This means that if
we proceed clockwise around ∆PRS, we encounter sides of lengths r,
p*, and q* in that order. These are the same lengths, in the same order,
as the lengths of the sides we encounter when we go counterclockwise
around ∆PQS. Therefore, by definition, the two triangles are inversely
congruent. Table 5-4 is an S/R version of this proof.

PROBLEM 5-11
Imagine a regular hexagon. This is a geometric figure with six vertices,
six straight sides of identical length that connect adjacent pairs of ver-
tices, and six interior angles of identical measure. As we go counter-
clockwise around the hexagon, let’s name the vertices P, Q, R, S, T, and
U in that order. Let m be the length of each side. Let x be the measure
of each interior angle. Prove that ∆PQR ≡ ∆STU.
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SOLUTION 5-11
If you wish, you can draw a diagram. The result should look something
like Fig. 5-18. In ∆PQR, consider line segment PQ and line segment 
QR. Both of these sides have length m because they are sides of the
hexagon, and we are told that all the sides of the hexagon have length
m. Consider the included angle between these two sides. It has meas-
ure x because it is an interior angle of the hexagon, and we are told that
all the interior angles of the hexagon have measure x. Proceeding coun-
terclockwise from point P around ∆PQR, we encounter a side of length
m, then an angle of measure x, and then a side of length m.

In ∆STU, consider line segment ST and line segment TU. Both of
these sides have length m because they are sides of the hexagon, and we
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Statements Reasons

Let q* be the length of line We need to call it something!
segment PS.

Let p* be the length of line We need to call it something!
segment QS.

Let p** be the length of line We need to call it something!
segment RS.

q = r We are told this.

p* = p** You’ll get a chance to fill this in later.

q* = q* This is trivial. Anything is equal to itself.

Counterclockwise around ∆PQS, This is evident from the geometry of the
we encounter sides of lengths situation.
r, p*, and q* in that order.

Clockwise around ∆PRS, This is evident from the geometry of the
we encounter sides of lengths situation.
q, p**, and q* in that order.

Clockwise around ∆PRS, This follows from substituting r for q and
we encounter sides of lengths p* for p** in the preceding statement.
r, p*, and q* in that order.

∆PQS ≡- ∆PSR. This follows from the statements in the first
and third lines above this line, and from the
definition of inverse congruence for triangles.

Table 5-4. An S/R version of the proof demonstrated in Solution 5-10 and Fig. 5-17.



are told that all the sides of the hexagon have length m. Consider the
included angle between these two sides. It has measure x because it is an
interior angle of the hexagon, and we are told that all the interior angles
of the hexagon have measure x. Proceeding counterclockwise from point
S around ∆STU, we encounter a side of length m, then an angle of meas-
ure x, and then a side of length m. These side lengths and included angle
measure are the same, and occur in the same order, as the corresponding
side lengths and included angle measure in ∆PQR. Therefore, it follows
that ∆PQR ≡ ∆STU. (You’ll get a chance to provide the reason in Quiz
Question 3.) Table 5-5 is an S/R version of this proof.

PROBLEM 5-12
Let P, Q, R, and S be mutually distinct points, all of which lie in the
same plane. Suppose lines PQ and RS are parallel. Suppose also that 
line segment PQ has the same length as line segment RS. Imagine two
transversal lines SQ and PR, both of which cross lines PQ and RS, and
which intersect at a point T. Prove that ∆PQT ≡ ∆RST.

SOLUTION 5-12
If you wish, you can draw a diagram. The result should look something
like Fig. 5-19. Transversal line PR crosses both parallel lines PQ and RS. 
There is a pair of alternate interior angles formed by these three lines:
∠SRT and ∠QPT. These two angles have equal measure. (You’ll get a
chance to provide the reason in Quiz Question 6.) Let x be this measure.

Let m be the length of line segments PQ and RS. We can use m for
both, because we are told their lengths are equal.

Transversal line SQ crosses both parallel lines PQ and RS. There is
a pair of alternate interior angles formed by these three lines. These
angles are ∠TQP and ∠TSR. These two angles have equal measure.
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Fig. 5-18. Illustration for Problem 5-11.
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Statements Reasons

In ∆PQR, line segments PQ and QR Line segments PQ and QR are sides of
both have length m. of the hexagon, and we are told that

all sides of the hexagon have length m.

In ∆PQR, the included angle between This included angle is an interior
the adjacent sides of length m has angle of the hexagon, and we are told
measure x. that all interior angles of the hexagon

have measure x.

Counterclockwise from point P around This is evident from the geometry
∆PQR, we encounter a side of length m, of the situation.
then an angle of measure x, and finally 
a side of length m.

In ∆STU, line segments ST and TU Line segments ST and TU are sides
both have length m. of the hexagon, and we are told that

all sides of the hexagon have length m.

In ∆STU, the included angle between This included angle is an interior 
the adjacent sides of length m has angle of the hexagon, and we are told
measure x. that all interior angles of the hexagon

have measure x.

Counterclockwise from point S around This is evident from the geometry
∆STU, we encounter a side of length m, of the situation.
then an angle of measure x, and finally 
a side of length m.

∆PQR and ∆STU have pairs of corres- This is evident from the geometry
ponding sides of identical lengths, with of the situation.
included angles of identical measures.

∆PQR ≡ ∆STU. You’ll get a chance to fill this in later.

Table 5-5. An S/R version of the proof demonstrated in Solution 5-11 and Fig. 5-18.

P Q

RS

T

m

m

x

yx

y

Fig. 5-19. Illustration for Problem 5-12.



(You’ll get a chance to provide the reason in Quiz Question 6.) Let y
be this measure.

Proceeding from point P counterclockwise around ∆PQT, we
encounter first an angle of measure x, then a side of length m, and then
an angle of measure y. Proceeding from point R counterclockwise
around ∆RST, we encounter first an angle of measure x, then a side of
length m, and then an angle of measure y. According to the ASA axiom,
therefore, ∆PQT ≡ ∆RST. Table 5-6 is an S/R version of this proof.

PROBLEM 5-13
Let P, Q, R, and S be mutually distinct points, all of which lie in the
same plane. Suppose lines PQ and RS are parallel. Suppose also that 
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Statements Reasons

Transversal line PR crosses lines PQ and RS. This is evident from the geometry of
of the situation.

The two angles ∠SRT and ∠QPT are This is evident from the geometry of
alternate interior angles within parallel lines. the situation.

∠SRT and ∠QPT have equal measure. You’ll get a chance to fill this in later.

Let x be the measure of ∠SRT and ∠QPT. We have to call it something!

Let m be the length of line segments PQ We’re told that their lengths are equal,
and RS. and we have to call them something!

Transversal line SQ crosses lines PQ This is evident from the geometry of
and RS. the situation. 

The two angles ∠TQP and ∠TSR are This is evident from the geometry of
alternate interior angles within parallel lines. the situation.

∠TQP and ∠TSR have equal measure. You’ll get a chance to fill this in later.

Let y be the measure of ∠TQP and ∠TSR. We have to call it something!

Counterclockwise around ∆PQT or ∆RST, This is evident from the geometry of
we encounter an angle of measure x, a side the situation.
of length m, and an angle of measure y, in 
that order.

∆PQT ≡ ∆RST. This follows from the ASA axiom.

Table 5-6. An S/R version of the proof demonstrated in Solution 5-12 and Fig. 5-19.



∠PSR and ∠RQP are right angles. Imagine a transversal line PR that
crosses lines PQ and RS. Prove that ∆RPQ ≡ ∆PRS.

SOLUTION 5-13
If you wish, you can draw a diagram. The result should look some-
thing like Fig. 5-20. Let m be the length of line segment RP, which is 
the same as line segment PR.

A pair of alternate interior angles is formed by the transversal line
PR, line PQ, and line RS. These angles are ∠SRP and ∠QPR. According
to the AIA Theorem, they have equal measure. Let x be this measure.

We are told that ∠PSR and ∠RQP are right angles. Therefore, they
have equal measure. (You’ll get a chance to provide the reason in Quiz
Question 8.) Let y be this measure.
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Statements Reasons

The length of line segment RP equals the It doesn’t matter which direction we go 
length of line segment PR. when we define the length of a line segment.

Let m be the length of line segments RP We have to call it something!
and PR.

∠SRP and ∠QPR are alternate interior This is apparent from the geometry of the
angles. situation.

m∠SRP = m∠QPR. This follows from the AIA Theorem.

Let x be the measure of ∠SRP and ∠QPR. We have to call it something!

∠PSR and ∠RQP are right angles. We are told this.

m∠PSR = m∠RQP. You’ll get a chance to fill this in later.

Let y be the measure of ∠PSR and ∠RQP. We have to call it something!

Counterclockwise around ∆RPQ or ∆PRS, This is evident from the geometry of the
we encounter a side of length m, an angle situation.
of measure x, and an angle of measure y, 
in that order.

∆RPQ ≡ ∆PRS. This follows from the SAA axiom.

Table 5-7. An S/R version of the proof demonstrated in Solution 5-13 and Fig. 5-20.



Proceeding from point R counterclockwise around ∆RPQ, we
encounter first a side of length m, then an angle of measure x, and then
an angle of measure y. Proceeding from point P counterclockwise
around ∆PRS, we encounter first a side of length m, then an angle 
of measure x, and then an angle of measure y. According to the
SAA axiom, therefore, ∆RPQ ≡ ∆PRS. Table 5-7 is an S/R version of
this proof.

Quiz
This is an “open book” quiz. You may refer to the text in this chapter. A
good score is 8 correct. Answers are in the back of the book.

1. Refer to Solution 5-9 and Table 5-3. At one point in this proof, you are
told that you’ll get a chance to provide a reason for the statement later.
You now have that chance! Which of the following sentences provides
the correct reason?

(a) This follows from the SAA axiom.
(b) We can substitute z for z* and x for x* in the preceding equation,

because z = z* and x = x*.
(c) This follows from the definition of a triangle.
(d) This follows from the parallel axiom.
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2. Refer to Solution 5-10 and Table 5-4. At one point in this proof, you are
told that you’ll get a chance to provide a reason for the statement later.
You now have that chance! Which of the following sentences provides
the correct reason?
(a) These are the lengths of line segments QS and RS, respectively, and

we are told that these line segments have equal lengths.
(b) This follows from the parallel axiom.
(c) This follows from the definition of a perpendicular lines; in this case

they are lines QR and PS.
(d) They have to be equal. If they were not, line PS would not intersect

line QR, but these two lines obviously do intersect.

3. Refer to Solution 5-11 and Table 5-5. At one point in this proof, you are
told that you’ll get a chance to provide a reason for the statement later.
You now have that chance! Which of the following sentences provides
the correct reason?
(a) This follows from the ASA axiom.
(b) This follows from the AAA axiom.
(c) This follows from the SAS axiom.
(d) This follows from the SAA axiom.

4. Unless otherwise specified, an angle is always expressed
(a) clockwise.
(b) counterclockwise.
(c) from left to right.
(d) from right to left.

5. Suppose we are told that lines L, M, and N are mutually distinct. Which,
if any, of the following scenarios (a), (b), or (c) is impossible? 

(a) Line L is perpendicular to line M, and line L is also perpendicular to
line N.

(b) Line M is perpendicular to line L, and line M is also perpendicular to
line N.

(c) Line N is perpendicular to line L, and line N is also perpendicular to
line M.

(d) All three scenarios (a), (b), and (c) are possible.

6. Refer to Solution 5-12 and Table 5-6. At two points in this proof, you
are told that you’ll get a chance to provide a reason for the state-
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ment later. You now have that chance! The same sentence can be
inserted in both places to complete the proof. Which of the following
sentences is it?
(a) This follows from the ASA axiom, and the fact that line PQ is par-

allel to line RS.
(b) This follows from the SAA axiom, and the fact that line PQ is par-

allel to line RS.
(c) This follows from the definition of parallel lines, which tells us that

line PQ is parallel to line RS.
(d) This follows from the AIA Theorem, and the fact that line PQ is par-

allel to line RS.

7. What is the distinction between “direct” and “inverse” as these words
apply to congruent triangles?
(a) When two triangles are directly congruent, is it never necessary to

rotate one of them in order to get it to coincide with the other, but
when two triangles are inversely congruent, it is usually necessary to
rotate one of them in order to get it to coincide with the other.

(b) When two triangles are directly congruent, is it usually necessary to
rotate one of them in order to get it to coincide with the other, but
when two triangles are inversely congruent, it is never necessary to
rotate one of them in order to get it to coincide with the other.

(c) When two triangles are directly congruent, is it never necessary to
flip one of them over in order to get it to coincide with the other, but
when two triangles are inversely congruent, it is usually necessary to
flip one of them over in order to get it to coincide with the other.

(d) When two triangles are directly congruent, is it usually necessary to
flip one of them over in order to get it to coincide with the other, but
when two triangles are inversely congruent, it is never necessary to
flip one of them over in order to get it to coincide with the other.

8. Refer to Solution 5-13 and Table 5-7. At one point in this proof, you are
told that you’ll get a chance to provide a reason for the statement later.
You now have that chance! Which of the following sentences provides
the correct reason?
(a) This follows from the SAA axiom.
(b) This follows from the right angle axiom.
(c) This follows from the two-point axiom.
(d) This follows from the parallel axiom.
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9. In Fig. 5-21, suppose all three lines intersect at a common point T.
Suppose we are told that ∠QTR is a right angle. It follows that line PQ
is perpendicular to line RS from 
(a) the two-point axiom.
(b) the right-angle axiom.
(c) the extension axiom.
(d) the definition of perpendicular lines.

10. In Fig. 5-21, suppose all three lines intersect at a common point T.
Suppose we are told that ∠QTR is a right angle. It follows that ∠QTU
and ∠UTR
(a) have equal measure.
(b) are complementary.
(c) are supplementary.
(d) are alternate interior angles.
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6
CHAPTER

173

Sets and Numbers

This chapter will familiarize you with some of the ways accepted facts can be
logically combined to prove theorems about sets and numbers. Get ready for
another mind drill!

Some Definitions
Again, let’s start with definitions. It’s worth repeating: A good definition must
stand on its own. Drawings can help us visualize or conceptualize definitions,
but they should never be a necessary part of a definition.

SETS AND ELEMENTS
A set is a collection or group of objects called elements or members. Set ele-
ments can be almost anything, such as:

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.
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• Points
• Objects
• People
• Numbers
• Cities
• Planets
• Stars
• Galaxies

If an object a is an element of set A, then this fact is written as:

a ∈ A

If an object b is not an element of set A, then this fact is written as:

b ∉ A

LISTING OF SET ELEMENTS
When the elements of a set can be listed, the elements are written one after
another, separated by commas, and enclosed in curly brackets. An example of a
set with five elements is:

S = {2, 4, 6, 8, 10}

CONSTANT
A constant is a specific element of a set. Constants are often, but not always,
denoted by lowercase, italicized letters from the first part of the alphabet, such
as a, b, and c. 

VARIABLE
A variable can represent any element in a given set. Variables are often, but not
always, denoted by lowercase, italicized letters from the last part of the alpha-
bet, such as x, y, and z.
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SET INTERSECTION
The intersection of two sets A and B, written A ∩ B, is the set of elements that
are in both set A and set B. It is a set C such that for every element x:

x ∈ C ⇔ (x ∈ A) & (x ∈ B)

SET UNION
The union of two sets A and B, written A ∪ B, is the set of elements that are in
set A, set B, or both. It is a set D such that for every element x:

x ∈ D ⇔ (x ∈ A) ∨ (x ∈ B)

COINCIDENT SETS
Two non-empty sets A and B are coincident, written A = B, if and only if they
both contain exactly the same elements. That is, for every element x:

x ∈ A ⇔ x ∈ B

SUBSET
Set A is a subset of set B, written A ⊆ B, if and only if every element x in set A
is also in set B. That is, for every element x:

x ∈ A ⇒ x ∈ B

PROPER SUBSET
Set A is a proper subset of set B, written A ⊂ B, if and only if every element x
in set A is also in set B, but the two sets are not coincident. That is, for every ele-
ment x:

x ∈ A ⇒ x ∈ B
A ≠ B
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EMPTY SET
The empty set, also called the null set, is the set containing no elements. It is
denoted either by the “circle-slash” symbol ∅, or by a pair of curly brackets { }
with a blank space in between.

DISJOINT SETS
Two non-empty sets A and B are disjoint if and only if they have no elements in
common; that is, if and only if their intersection is the null set.

CARDINALITY
The cardinality of a set A is the number of distinct elements a such that a ∈ A.

VENN DIAGRAMS
Union and intersection of sets can be illustrated by Venn diagrams. Fig. 6-1 is a
Venn diagram that shows the intersection of two sets that are non-disjoint (they
overlap) and non-coincident (they are not identical). Set A ∩ B is the cross-
hatched area, common to both sets A and B. Fig. 6-2 shows the union of the same
two sets. Set A ∪ B is the shaded area, representing elements that are in set A or
in set B, or both.

A B

A B

Fig. 6-1. Intersection of non-disjoint, non-coincident sets A and B.
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NUMBER
A number is an abstract, unambiguous expression of a mathematical quantity. 

NATURAL NUMBERS
Natural numbers, also called whole numbers or counting numbers, are built up
from a starting point of 0 or 1, depending on which text you consult. The set of
natural numbers is denoted N. Usually we include 0, obtaining:

N = {0, 1, 2, 3, . . . , n, . . .}

In some texts, 0 is not included, so:

N = {1, 2, 3, 4, . . . ,n, . . .}

INTEGERS
A “mirror-image” of the set of natural numbers is obtained when each element
of N is multiplied by −1:

−N = {0, −1, −2, −3, . . .}

The union of this set with the set of natural numbers (with 0 included) produces
the set of integers, commonly denoted Z:

Z = N ∪ −N
= {. . . ,−3, −2, −1, 0, 1, 2, 3, . . .}

A B

A B

Fig. 6-2. Union of nondisjoint, noncoincident sets A and B.
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The set of natural numbers is a proper subset of the set of integers. Every nat-
ural number is an integer, but there are some integers (−1, −2, −3, and so on) that
are not natural numbers. This fact is written as follows:

N ⊂ Z

RATIONAL NUMBERS
A rational number is a quotient, or ratio, of two integers, where the denomina-
tor is not zero. In this context, the term rational derives from the word ratio. The
standard form for a rational number r is:

r = a/b

where a and b are integers, and b ≠ 0. The set of all possible such quotients
encompasses the entire set of rational numbers, denoted Q. Thus,

Q = {r | r = a/b, a ∈ Z, b ∈ Z, b ≠ 0}

The vertical line in the above expression translates as “such that.” Sometimes a
colon is used instead. In that case we write:

Q = {r : r = a/b, a ∈ Z, b ∈ Z, b ≠ 0}

In some texts (and in Chapter 3 of this book), the value of b is restricted to the
set of positive integers. The definition here is equivalent to the one in Chapter 3.
Would you like to prove it as an exercise?

The set of integers is a proper subset of the set of rational numbers. Every
integer is a rational number, but there are some rational numbers that are not
integers. We write:

Z ⊂ Q

IRRATIONAL NUMBERS
An irrational number is a number that lies between some pair of different inte-
gers, but that cannot be expressed as the ratio of any two integers. This means
that if k is an irrational number, then there exist no two integers a and b such that
k = a/b. Examples of irrational numbers include:

• The length of the diagonal of a square measuring 1 unit on each edge
• The ratio of the circumference to the diameter of a circle in a plane
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The set of irrational numbers can be denoted S. No irrational number is
rational, and no rational number is irrational:

S ∩ Q = ∅

REAL NUMBERS
The set of real numbers, denoted R, is the union of the sets of rational and irra-
tional numbers:

R = Q ∪ S

The real numbers are related to the rational numbers, the integers, and the nat-
ural numbers as follows:

N ⊂ Z ⊂ Q ⊂ R

ELEMENTARY TERMS
Let’s consider the following terms elementary. You should have a good idea of
what they mean and how they behave, having worked with them since you were
in grade school.

• Two constants or variables are equal if and only if they have the same
value. The symbol for equality is a pair of parallel double dashes (=). Two
constants or variables are unequal or not equal if and only if they have dif-
ferent values. The symbol for inequality is an equals sign with a forward
slash through it (≠).

• The operation of addition is applicable to two or more numbers. The argu-
ments are called addends, and the resultant is called the sum. The addition
symbol is a symmetrical, upright cross (+).

• The operation of subtraction is applicable to two numbers. The first argu-
ment is called the minuend, the second argument is called the subtrahend,
and the resultant is called the difference. The subtraction symbol is a long
dash (−).

• The operation of multiplication is applicable to two or more numbers. The
arguments are called factors, and the resultant is called the product. The mul-
tiplication symbol can be a slanted cross (×), an elevated dot (·), or, for con-
stants and variables represented by letters of the alphabet, nothing at all. For
example, xy represents the product of x and y.
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• The operation of division, also called the ratio operation, is applicable to
two numbers. The first argument is called the numerator, the second argu-
ment is called the denominator, and the resultant is called the quotient or
the ratio. The division symbol can be a double dash with two dots (÷), a
forward slash (/), or a colon (:).

Axioms
Let’s accept the following rules of arithmetic without proof. We already have
the rules of logic, and we already have the definitions we need. Here are the
assumptions!

EQUALITY AXIOM
For all real numbers r, s, and t, the following equations hold:

r = r
(r = s) ⇒ (s = r)

[(r = s) & (s = t)] ⇒ (r = t)

The first of these facts is known as the reflexive property. The second statement
is called the symmetric property. The third statement is called the transitive
property. Because equality obeys all three of these rules, equality is said to be
an equivalence relation. 

SUM-OF-INTEGERS AXIOM
For any two integers a and b, the sum a + b is an integer.

PRODUCT-OF-INTEGERS AXIOM
For any two integers a and b, the product ab is an integer. Also, for any two inte-
gers a and b, the following statement holds:

[(a = 0) ∨ (b = 0)] ⇔ (ab = 0)
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ADDITIVE-INVERSE AXIOM
For any real number r, there exists a unique real number −r called the additive
inverse of r, such that both of the following equations hold:

−r = −1 × r
r + (−r) = 0

SUM-OF-FRACTIONS AXIOM
For any four integers a, b, c, and d where b ≠ 0 and d ≠ 0, the following equa-
tion holds:

a/b + c/d = (ad + bc)/bd

DIFFERENCE-BETWEEN-FRACTIONS AXIOM
For any four integers a, b, c, and d where b ≠ 0 and d ≠ 0, the following equa-
tion holds:

a/b − c/d = a/b + (−c/d)

PRODUCT-OF-FRACTIONS AXIOM
For any four integers a, b, c, and d where b ≠ 0 and d ≠ 0, the following equa-
tion holds:

(a/b)(c/d) = (ac)/(bd)

QUOTIENT-OF-FRACTIONS AXIOM
For any four integers a, b, c, and d where b ≠ 0, c ≠ 0, and d ≠ 0, the following
equation holds:

(a/b)/(c/d) = (ad)/(bc)

DIVISION-BY-1 AXIOM
For any real number r, the following equation holds:

r/1 = r
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COMMUTATIVE AXIOM FOR ADDITION
For any two real numbers r and s, the following equation holds:

r + s = s + r

COMMUTATIVE AXIOM FOR MULTIPLICATION
For any two real numbers r and s, the following equation holds:

rs = sr

DISTRIBUTIVE AXIOM
For any three real numbers r, s, and t, the following equation holds:

r (s + t) = rs + rt

Some Proofs at Last!
We are now ready to prove some theorems about sets and numbers. Proofs are
given in verbal form, and also as S/R tables. In some of these proofs, it may
seem as if we’re “going around the world to get uptown.” But remember: When
we want to prove something rigorously, we must be painstaking in the execution.

PROBLEM 6-1
Prove that any element in the intersection of two sets is also in their
union.

SOLUTION 6-1
Let A and B be non-empty sets. Let c be a constant. We must prove that
if c ∈ A ∩ B, then c ∈ A ∪ B. If you wish, you can draw a Venn dia
gram to illustrate this scenario. You should get something that looks
like Fig. 6-3. The cross-hatched region represents A ∩ B, and the
shaded region represents A ∪ B. Note the location of the point repre-
senting c.

We are told that c ∈ A ∩ B, that is, c is an element of the intersec-
tion of sets A and B. From the definition of set intersection, c is an ele-
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ment of set A and is also an element of set B. From the definition of
logical conjunction given in Chapter 1, c ∈ A. From the definition of
logical disjunction given in Chapter 1, c is an element of set A or set B.
From the definition of set union, it follows that c is an element of the
union of sets A and B, that is, c ∈ A ∪ B. Table 6-1 is an S/R version
of this proof.

A B

A B

A B

c

Fig. 6-3. Illustration for Problem 6-1.

Statements Reasons

Let A and B be non-empty sets. We will use these in the proof.

Let c be a constant. We will use this in the proof.

Assume c ∈ A ∩ B. This is our initial assumption.

(c ∈ A) & (c ∈ B). This follows from the definition 
of set intersection.

c ∈ A. This follows from the definition 
of logical conjunction.

(c ∈ A)∨(c ∈ B). This follows from the definition 
of logical disjunction.

c ∈ A ∪ B. This follows from the definition 
of set union.

Table 6-1. An S/R version of the proof demonstrated in Solution 6-1 
and Fig. 6-3.
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PROBLEM 6-2
Prove that if an element is not in the union of two sets, then it is not in
their intersection.

SOLUTION 6-2
Let A and B be non-empty sets. Let c be a constant. We must prove that
if c ∉ A ∪ B, then c ∉ A ∩ B. You can draw a diagram if you wish; an 
example is shown in Fig. 6-4. The cross-hatched region represents A ∩
B, and the shaded region represents A ∪ B. Note the position of the
point representing c.

We are told that c ∉ A ∪ B, that is, c is not an element of the union
of sets A and B. From the definition of set union, it is not true that c is
an element of set A or set B. DeMorgan’s Law for disjunction, which
was stated in Chapter 1, tells us that it is not true that c is an element
of set A, and it is not true that c is an element of set B. That is, c is an
element of neither set A nor set B. Indirectly, from the definition of set
intersection, it follows that c is not an element of A ∩ B. (The defini-
tion tells us that c can be an element of A ∩ B only if c is an element
of both set A and set B, and that is clearly not the case.) Table 6-2 is an
S/R version of this proof.

There’s another way to solve this problem. What do you suppose it
is? If you haven’t guessed already, wait until you get to the quiz at the
end of this chapter. Here are two hints. First, the statement c ∉ A ∪ B
can be rewritten as ¬(c ∈ A ∪ B), and the statement c ∉ A ∩ B can be
rewritten as ¬(c ∈ A ∩ B). Second, treat Solution 6-1 as a theorem, and
apply one of the rules of propositional logic directly to it.

A B

A B

A B

c

Fig. 6-4. Illustration for Problem 6-2.
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PROBLEM 6-3
Prove that if an element is in the union of two infinite sets, then it is
not necessarily in their intersection.

SOLUTION 6-3
The key word in this problem is “necessarily.” There are plenty of sit-
uations in which an element in the union of two infinite sets is also in
their intersection. (Feel free to find some if you want.) But there are
also situations in which an element in the union of two infinite sets is
not in their intersection. Our mission is simply to find one example of
a pair of infinite sets, call them S and T, and an element u such that u
∈ S ∪ T, but u ∉ S ∩ T.

Let S be the set of even positive integers, and let T be the set of odd
positive integers. That is:

S = {2, 4, 6, 8, 10, . . .}
T = {1, 3, 5, 7, 9, . . .}

In this case, the union of S and T is the set of all positive integers:

S ∪ T = {1, 2, 3, 4, 5, . . .}

Statements Reasons

Let A and B be non-empty sets. We will use these in the proof.

Let c be a constant. We will use this in the proof.

Assume c ∉ A ∪ B. This is our initial assumption.

¬[(c ∈ A) ∨ (c ∈ B)]. This follows from the definition of
set union.

¬(c ∈ A) & ¬(c ∈ B). This follows from DeMorgan’s Law 
for disjunction.

(c ∉ A) & (c ∉ B). This is simply another way of stating 
the previous line.

c ∉ A ∩ B. This follows from the definition of
set intersection.

Table 6-2. An S/R version of the proof demonstrated in Solution 6-2 
and Fig. 6-4.
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These two sets are disjoint. Thus, by definition, their intersection is the
null set:

S ∩ T = ∅

A specific example of u can be chosen; any positive integer will do.
Then u ∈ S ∪ T, but u ∉ S ∩ T. But in fact, no matter what u might
happen to be—positive integer, negative integer, rational number, irra-
tional number, or anything else—we can be sure that it is not an ele-
ment of S ∩ T! (You’ll get a chance to provide the reason for this in
Quiz Question 4 at the end of this chapter.) Stated in logical symbols:

(∀u) u ∉ S ∩ T

Having found an element u, a set S, and a set T such that that u ∈ S ∪ T
and u ∉ S ∩ T, we can conclude the full statement that was to be proven:

(∃u)(∃S)(∃T) [(u ∈ S ∪ T) & (u ∉ S ∩ T)]

In this usage, “but” is the logical equivalent of “and.” Table 6-3 is an
S/R version of this proof.

Statements Reasons

Let S = {2, 4, 6, 8, 10, . . .}. This is an example that sets the scene for
the proof.

Let T = {1, 3, 5, 7, 9, . . .}. This is an example that sets the scene for
the proof.

S ∪ T = {1, 2, 3, 4, 5, . . .} This is apparent by examining sets S and
T and denoting their elements in an
increasing sequence.

Sets S and T are disjoint. This follows from the fact that no even
positive integer is odd, and the fact that
no odd positive integer is even.

S ∩ T = ∅. This follows from the definition of 
disjoint sets.

(∀u) u ∉ S ∩ T. You’ll get a chance to fill this in later.

(∃u)(∃S)(∃T ) We just found an example of an element u,
[(u ∈ S ∪ T ) & (u ∉ S ∩ T )]. a set S, and a set T for which u ∈ S ∪ T

and u ∉ S ∩ T.

Table 6-3. An S/R version of the proof demonstrated in Solution 6-3.
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PROBLEM 6-4
Prove that the set of integers is a proper subset of the set of rational
numbers.

SOLUTION 6-4
We must show two things. First, we have to prove that for every p, if p
is an element of the set of integers, then p is an element of the set of 
rational numbers. Second, we must show that there exists some q, such
that q is an element of the set of rational numbers but not an element
of the set of integers. Symbolically, we can write these two proposi-
tions as follows:

∀p [(p ∈ Z) ⇒ (p ∈ Q)]
∃q [(q ∈ Q) & (q ∉ Z)]

where Z is the set of integers and Q is the set of rational numbers.
The first proof is straightforward. Suppose that p is an element of set

Z. Invoking the division-by-1 axiom, we can claim that p/1 = p. By def-
inition, 1 is an element of the set of integers. We know this because 1
is an element of the set {. . . ,−3, −2, −1, 0, 1, 2, 3, . . .}, which is the set
Z of integers. Thus p is equal to the quotient of two integers, because
in the expression p/1, both the numerator and the denominator are inte-
gers. From the definition of rational number, it follows that p is an ele-
ment of Q, the set of rational numbers. Table 6-4A is an S/R version of
this part of the proof.

Statements Reasons

Let p ∈ Z. This is our initial assertion.

p /1 = p. This follows from the division-by-1 axiom.

1 ∈ Z. This follows from the definition of the set
of integers.

p is equal to the quotient In the expression p /1, both the numerator
of two integers with a and denominator are integers, and 1 ≠ 0.
nonzero denominator.

p ∈ Q. This follows from the definition of rational
number.

Table 6-4A. An S/R version of the first part of the proof demonstrated in
Solution 6-4.
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In order to do the second part of the proof, we need to find a rational
number that is not an integer. Suppose q = 1⁄2. By definition, q is a rational
number, because 1⁄2 is equal to the quotient of two integers, namely 1 and
2. But 1⁄2 is not an element of the set Z of integers. Remember:

Z = {. . . ,−3, −2, −1, 0, 1, 2, 3, . . .}

When the elements of Z are listed this way, each element in the list is
smaller than the one that immediately follows it, and there are no inte-
gers in between any two adjacent elements:

. . .< −3 < −2 < −1 < 0 < 1 < 2 < 3. . .

The number q = 1⁄2 is not in this list, because 0 < 1⁄2 < 1. Therefore, it is
not true that q is an element of the set Z. Stated in set symbology, q ∉
Z. Table 6-4B is an S/R version of this part of the proof.

PROBLEM 6-5
Prove that the set of rational numbers is a proper subset of the set of real
numbers.

Statements Reasons

Let q = 1⁄2. This is our initial assertion.

q ∈ Q. We know that q is a rational number
because 1⁄2 is equal to the quotient of two
integers, namely 1 and 2.

1⁄2 ∉ Z. We know this because 0 < 1⁄2 < 1, and there
exist no elements of Z between 0 and 1.

q ∉ Z. This follows from the fact that q = 1⁄2, and
1⁄2 is not an integer.

Table 6-4B. An S/R version of the second part of the proof demonstrated in
Solution 6-4.



Chapter 6 Sets and Numbers 189

SOLUTION 6-5
This proof, like the one in the preceding problem, consists of two parts.
First, we have to prove that for every r, if r is an element of the set of 
rational numbers, then r is an element of the set of real numbers.
Second, we must show that there exists some s, such that s is an element
of the set of real numbers but not an element of the set of rational num-
bers. Symbolically, we can write these two propositions as follows:

∀r [(r ∈ Q) ⇒ (r ∈ R)]
∃s [(s ∈ R) & (s ∉ Q)]

where Q is the set of rational numbers and R is the set of real numbers.
The first part of this proof is straightforward. Let r ∈ Q. From the

definition of logical disjunction, r is an element of set Q or r is an ele-
ment of set X, where X can represent any set whatsoever. It follows that
r is an element of the union of sets Q and X. (You’ll get a chance to
provide the reason for this in Quiz Question 5 at the end of this chap-
ter.) Consider set X to be the set S of irrational numbers. We can do this
because X can be any set we want. Then r is an element of the union
of sets Q and S. According to the definition of the set of real numbers,
the union of sets Q and S is the set R. Therefore, r is an element of set
R. Table 6-5A is an S/R version of this part of the proof.

Statements Reasons

Let r ∈ Q. This is our initial assertion.

(r ∈ Q) ∨ (r ∈ X). This follows from the definition of logical disjunction,
where X can be any set whatsoever.

r ∈ Q ∪ X. You’ll get a chance to supply the reason for this later.

Consider X = S. We can do this because X can be any set we choose.

r ∈ Q ∪ S. This follows from the previous two steps. 

Q ∪ S = R. This follows from the definition of the set of real numbers.

r ∈ R. This follows from the previous two steps.

Table 6-5A. An S/R version of the first part of the proof demonstrated in Solution 6-5.
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In order to do the second part of the proof, we must find a real num-
ber that is not a rational number. Let s be an irrational number; that is,
let s be an element of set S. From the definition of logical disjunction,
s is an element of set S or s is an element of set Y, where Y can repre-
sent any set whatsoever. It follows that s is an element of the union of
sets S and Y. (You’ll get a chance to provide the reason for this in the
chapter-ending quiz.) Consider set Y to be the set Q of rational num-
bers. We can do this because Y can be any set we want. Then s is an
element of the union of sets S and Q. According to the definition of the
set of real numbers, the union of sets S and Q is the set R. Therefore, s
is an element of set R. We know that s is not an element of the set Q of
rational numbers. This follows from the definitions of irrational and
rational numbers; s is not a ratio of two integers, but in order to be in
set Q, it would have to be. Table 6-5B is an S/R version of this part of
the proof.

Statements Reasons

Let s ∈ S. This is our initial assertion.

(s ∈ S) ∨ (s ∈ Y). This follows from the definition of logical disjunction,
where Y can be any set whatsoever.

s ∈ S ∪ Y. You’ll get a chance to supply the reason for this later.

Consider Y = Q. We can do this because Y can be any set we choose.

s ∈ S ∪ Q. This follows from the previous two steps.

S ∪ Q = R. This follows from the definition of the set of real
numbers.

s ∈ R. This follows from the previous two steps.

s ∉ Q. This follows from the definitions of irrational and
rational numbers.

(s ∈ R) & (s ∉ Q). This follows directly from the previous two statements.

Table 6-5B. An S/R version of the second part of the proof demonstrated in
Solution 6-5.
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PROBLEM 6-6
Prove that the sum of two rational numbers is a rational number.

SOLUTION 6-6
Let r be a rational number such that r = a/b, where a and b are integers
and b ≠ 0. Let s be a rational number such that s = c/d, where c and d
are integers and d ≠ 0. From the definition of a rational number, we
know such integers exist for all rational numbers r and s. The sum of r
and s can be written as follows:

r + s = a/b + c/d

From the sum-of-fractions axiom, it follows that:

r + s = (ad + bc)/bd

Let ad = e, let bc = f, and let bd = g, renaming these products for sim-
plicity. From the product-of-integers axiom, we know that e, f, and g
are integers. Substituting in the above equation:

r + s = (e + f )/g

Let e + f = h. (We rename this sum for simplicity.) We know that h is an
integer. (You’ll get a chance to provide the reason for this in Quiz
Question 6 at the end of this chapter.) Substituting in the above equation:

r + s = h/g

where h and g are both integers. By applying DeMorgan’s Law for dis-
junction to the second part of the product-of-integers axiom, we can
conclude that g ≠ 0, because g = bd, b ≠ 0, and d ≠ 0. By definition,
then, h/g is a rational number, because it is the quotient of two integers
with a nonzero denominator. By substitution, r + s is the quotient of
two integers with a nonzero denominator. Therefore, according to the
definition of a rational number, r + s is an element of the set Q of
rational numbers. Table 6-6 is an S/R version of this proof.

PROBLEM 6-7
Prove that the difference between two rational numbers is a rational
number.
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Statements Reasons

Let r ∈ Q and s ∈ Q. We will use these in the proof.

Let a ∈ Z, b ∈ Z, c ∈ Z, We will use these in the proof.
d ∈ Z, b ≠ 0, and d ≠ 0.

Let r = a /b. This is defined because b ≠ 0.

Let s = c /d. This is defined because d ≠ 0.

r + s = a /b + c /d. This is a mere matter of substitution.

r + s = (ab + bc) /bd. This follows from the sum-of-fractions
axiom.

Let ad = e, let bc = f, Rename these products for simplicity.
and let bd = g. 

e ∈ Z, f ∈ Z, and g ∈ Z. This follows from the product-of-integers
axiom.

r + s = (e + f ) /g. This is a mere matter of substitution.

Let e + f = h. Rename this sum for simplicity.

h ∈ Z. You’ll get a chance to fill this in later.

r + s = h /g. This is a mere matter of substitution.

g ≠ 0. This is because g = bd with b ≠ 0 and d ≠
0, so the product-of-integers axiom, with
the help of DeMorgan’s Law for disjunc-
tion, ensures that g ≠ 0.

h /g is the quotient of two We already know that g ∈ Z, h ∈ Z, and
integers with nonzero g ≠ 0.
denominator.

r + s is the quotient of This is a mere matter of substitution.
two integers with 
nonzero denominator.

(r + s) ∈ Q. This follows from the definition of a
rational number.

Table 6-6. An S/R version of the proof demonstrated in Solution 6-6.
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SOLUTION 6-7
Let r be a rational number such that r = a/b, where a and b are integers
and b ≠ 0. Let s be a rational number such that s = c/d, where c and d
are integers and d ≠ 0. From the definition of a rational number, we
know such integers exist for all rational numbers r and s. By substitut-
ing a/b for r, substituting c/d for s, invoking the difference-between-
fractions axiom, and then substituting r in place of a/b, the difference
between r and s can be rewritten as follows:

r − s = a/b − c/d
= a/b + (−c/d)
= r + (−c/d)

We know that −c = −1 × c. (You’ll get a chance to provide the reason in
Quiz Question 7 at the end of this chapter.) Because −1 and c are both
integers, it follows from the product-of-integers axiom that −c is an inte-
ger. Therefore, −c/d is the quotient of two integers with a nonzero
denominator. By definition, −c/d is a rational number. We are given the
fact that r is a rational number. From the result of Solution 6-6, we know
that the sum of two rational numbers is always rational, so r + (−c/d) is
rational. We have already determined that r − s = r + (−c/d). It follows
that r − s is a rational number. Table 6-7 is an S/R version of this proof.

PROBLEM 6-8
Prove that the product of two rational numbers is a rational number.

SOLUTION 6-8
Let r be a rational number such that r = a/b, where a and b are integers
and b ≠ 0. Let s be a rational number such that s = c/d, where c and d are 
integers and d ≠ 0. From the definition of a rational number, we know
such integers exist for all rational numbers r and s. By substituting a/b
for r, substituting c/d for s, and then invoking the product-of-fractions
axiom, the product rs can be rewritten as follows:

rs = (a/b)(c/d)
= (ac)/(bd)

According to the product-of-integers axiom, we know that ac is an
integer, and that bd is an integer. By applying DeMorgan’s Law for dis-
junction to the second part of the product-of-integers axiom, we can
conclude that bd ≠ 0, because b ≠ 0 and d ≠ 0. This means (ac)/(bd) is
the quotient of two integers with a nonzero denominator. It follows
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Statements Reasons

Let r ∈ Q and s ∈ Q. We will use these in the proof.

Let a ∈ Z, b ∈ Z, c ∈ Z, We will use these in the proof.
d ∈ Z, b ≠ 0, and d ≠ 0.

Let r = a /b. This is defined because b ≠ 0.

Let s = c /d. This is defined because d ≠ 0.

r − s = a /b − c /d. This is the result of substituting a /b for r, and
c /d for s.

a /b − c /d = a /b + (−c /d ). This follows from the difference-between-
fractions axiom.

a /b + (−c /d ) = r + (−c /d ). This is the result of substituting r for a /b in
the previous statement.

r − s = r + (−c /d ). This follows from the previous three steps.

−c = −1 × c. You’ll get a chance to fill this in later.

−1 ∈ Z and c ∈ Z. For −1, the fact follows from the definition of
integer. For c, we are told this at the outset.

−c ∈ Z. This follows from the previous two steps and
the product-of-integers axiom. 

−c /d is the quotient of This follows from the previous step and 
two integers, and the the outset, where we are told that d ∈ Z
denominator is nonzero. and also that d ≠ 0.

−c /d ∈ Q. This follows from the definition of a rational
number.

r ∈ Q. We are told this at the outset.

r + (−c /d ) ∈ Q. This follows from the previous two steps and
from Solution 6-6.

r − s = r + (−c /d ). This was previously determined.

r − s ∈ Q. This follows from the previous two steps.

Table 6-7. An S/R version of the proof demonstrated in Solution 6-7.
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that (ac)/(bd) is a rational number. (You’ll get a chance to provide the
reason for this in Quiz Question 8 at the end of this chapter.) We have
already determined that rs = (ac)/(bd). By substitution, it follows that
rs is a rational number. Table 6-8 is an S/R version of this proof.

PROBLEM 6-9
Prove that the quotient of two rational numbers is a rational number, if
the denominator is not equal to 0.

Statements Reasons

Let r ∈ Q and s ∈ Q. We will use these in the proof.

Let a ∈ Z, b ∈ Z, c ∈ Z, We will use these in the proof.
d ∈ Z, b ≠ 0, and d ≠ 0.

Let r = a /b. This is defined because b ≠ 0.

Let s = c /d. This is defined because d ≠ 0.

rs = (a /b)(c /d ). This is the result of substituting a /b for r, and
c /d for s.

(a /b)(c /d ) = (ac)/(bd ). This follows from the product-of-fractions
axiom.

rs = (ac)/(bd ). This follows from the previous two steps.

ac ∈ Q and bd ∈ Q. This follows from the product-of-integers
axiom.

bd ≠ 0. This is because b ≠ 0 and d ≠ 0, so the 
product-of-integers axiom, with the help of
DeMorgan’s Law for disjunction, ensures that
bd ≠ 0.

(ac) /(bd ) is the quotient of This follows directly from the previous step.
two integers with a 
nonzero denominator.

(ac) /(bd ) ∈ Q. You’ll get a chance to fill this in later.

rs ∈ Q. This is the result of substituting rs for the
quantity (ac) /(bd ).

Table 6-8. An S/R version of the proof demonstrated in Solution 6-8.
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SOLUTION 6-9
Let r be a rational number such that r = a/b, where a and b are integers
and b ≠ 0. Let s be a rational number such that s = c/d, where c and d
are integers with c ≠ 0 and d ≠ 0. From the definition of a rational num-
ber, we know such integers a and b exist for all rational numbers r, and
that such integers c and d exist for all nonzero rational numbers s. By
substituting a/b for r, substituting c/d for s, and then invoking the quo-
tient-of-fractions axiom, the quotient r/s can be rewritten as follows:

r/s = (a/b)/(c/d)
= (ad)/(bc)

According to the product-of-integers axiom, we know that ad is an inte-
ger, and also that bc is an integer. By applying DeMorgan’s Law for dis-
junction to the second part of the product-of-integers axiom, we can
conclude that bc ≠ 0, because b ≠ 0 and c ≠ 0. This means (ad)/(bc) is
the quotient of two integers with a nonzero denominator. It follows that
(ad)/(bc) is a rational number. (You’ll get a chance to provide the reason
for this in Quiz Question 8 at the end of this chapter.) We have already
determined that r/s = (ad)/(bc). By substitution, we can conclude that r/s
is a rational number. Table 6-9 is an S/R version of this proof.

PROBLEM 6-10
Prove that for all real numbers r, s, t, and u:

(r + s)(t + u) = rt + ru + st + su

SOLUTION 6-10
The proof of this proposition is really nothing more than an algebraic
derivation in which we must justify each step. In order to get started, 
consider the quantity (r + s) as a single value. Then, according to the
distributive axiom, the above equation can be rewritten as follows:

(r + s)(t + u) = (r + s)t + (r + s)u

We can rearrange it further to get:

(r + s)t + (r + s)u = t(r + s) + u(r + s)

(You’ll get a chance to provide the reason for this in Quiz Question 9.)
Applying the distributive axiom again, we can derive the following:

t(r + s) + u(r + s) = tr + ts + ur + us
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By invoking the commutative axiom for multiplication four times
(once for each addend), the equation can be further modified to obtain:

tr + ts + ur + us = rt + st + ru + su

Finally, according to the commutative axiom for addition, we derive
the desired expression:

rt + st + ru + su = rt + ru + st + su

Statements Reasons

Let r ∈ Q and s ∈ Q. We will use these in the proof.

Let a ∈ Z, b ∈ Z, c ∈ Z, We will use these in the proof.
d ∈ Z, b ≠ 0, c ≠ 0, and
d ≠ 0.

Let r = a /b. This is defined because b ≠ 0.

Let s = c /d. This is defined because d ≠ 0.

r/s = (a /b)/(c /d ). This is the result of substituting a /b for r, and
c /d for s.

(a /b)/(c /d ) = (ad )/(bc). This follows from the quotient-of-fractions
axiom.

r/s = (ad )/(bc). This follows from the previous two steps.

ad ∈ Q and bc ∈ Q. This follows from the product-of-integers
axiom.

bc ≠ 0. This is because b ≠ 0 and c ≠ 0, so the
product-of-integers axiom, with the help of
DeMorgan’s Law for disjunction, ensures that
bc ≠ 0.

(ad )/(bc) is the quotient This follows directly from the previous step.
of two integers with a 
nonzero denominator.

(ad )/(bc) ∈ Q. You’ll get a chance to fill this in later.

r/s ∈ Q. This is the result of substituting r/s for the
quantity (ad )/(bc).

Table 6-9. An S/R version of the proof demonstrated in Solution 6-9.
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All of the previous equations allow us to claim what was to be proved,
on the basis of repeated application of a component (you’ll have a chance
to identify the component in Quiz Question 10) of the equality axiom:

(r + s)(t + u) = rt + ru + st + su

Table 6-10 is an S/R version of this proof.

Quiz
This is an “open book” quiz. You may refer to the text in this chapter. A good
score is 8 correct. Answers are in the back of the book.

1. What is the cardinality of the empty set?
(a) 0
(b) 1
(c) Infinity
(d) It is not defined.

Statements Reasons

Consider the quantity (r + s) We need to do this to get started!
as a single value.

(r + s)(t + u) This follows from the distributive axiom.
= (r + s)t + (r + s)u

(r + s)t + (r + s)u You’ll get a chance to fill this in later.
= t(r + s) + u(r + s)

t(r + s) + u(r + s) This follows from the distributive axiom.
= tr + ts + ur + us

tr + ts + ur + us This follows from the commutative axiom 
= rt + st + ru + su for multiplication.

rt + st + ru + su This follows from the commutative axiom 
= rt + ru + st + su for addition.

(r + s)(t + u) This follows from repeated application of a
= rt + ru + st + su component of the equality axiom. You will

get a chance to identify the component later.

Table 6-10. An S/R version of the proof demonstrated in Solution 6-10.
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2. An equivalence relation is

(a) symmetric.
(b) distributive.
(c) denumerable.
(d) All of the above

3. Look back at Problems 6-1 and 6-2, and their solutions. Which rule of
propositional logic can be applied directly to Solution 6-1 (treating
Solution 6-1 as a theorem), in order to solve Problem 6-2 by the second
method mentioned? Look back at Chapter 1 if you must.

(a) DeMorgan’s law for implication.
(b) The law of implication reversal.
(c) The commutative law for disjunction.
(d) The commutative law for conjunction.

4. At the end of Solution 6-3 and in the next-to-last line of Table 6-3, you
are told that you’ll get a chance to provide the reason for the statement.
Now is the time! What is the reason?

(a) The element u has not been specified, so we cannot say it is in the
intersection of two specific sets.

(b) We are making a generalization about the element u, so we cannot
say anything specific about it.

(c) No matter what u happens to be, it can’t be in a set that has no
elements.

(d) Sets S and T are not the same, so obviously element u cannot be in
both of them.

5. Refer to Solution 6-5 and Tables 6-5A and 6-5B. In the first part of the
proof and in Table 6-5A, one of the steps makes the claim that r ∈ Q ∪ X.
In the second part of the proof and in Table 6-5B, one of the steps says
that s ∈ S ∪ Y. The reason in both cases is the same, but it’s left out, and
you’re told you’ll get a chance to identify it. Your chance has come!
What is the reason for this statement in both parts of the proof?

(a) It follows from the definition of logical disjunction.
(b) It follows from the definition of logical implication.
(c) It follows from the definition of set intersection.
(d) It follows from the definition of set union.

6. Refer to Solution 6-6 and Table 6-6. In this proof, one of the statements
says that h is an integer (that is, h ∈ Z). What allows us to make this claim?



(a) The product-of-integers axiom.
(b) The product-of-fractions axiom.
(c) The sum-of-integers axiom.
(d) The sum-of-fractions axiom.

7. Refer to Solution 6-7 and Table 6-7. One of the statements says that
−c = −1 × c. What allows us to make this claim?

(a) The additive-inverse axiom.
(b) The sum-of-integers axiom.
(c) The product-of-integers axiom.
(d) The definition of a rational number.

8. Refer to Solution 6-8 and Table 6-8. One of the statements says that
(ac)/(bd) ∈ Q. A similar situation occurs in Solution 6-9 and Table 6-9,
where one of the statements says that (ad)/(bc) ∈ Q. What allows us to
make these claims?

(a) The additive-inverse axiom.
(b) The sum-of-integers axiom.
(c) The product-of-integers axiom.
(d) The definition of a rational number.

9. Refer to Solution 6-10 and Table 6-10. One of the statements says the fol-
lowing:

(r + s)t + (r + s)u = t(r + s) + u(r + s)

After this statement, you’re told you’ll get a chance to provide the rea-
son. Your chance has come! What allows us to make this claim?

(a) The commutative axiom for addition, applied twice.
(b) The commutative axiom for multiplication, applied twice.
(c) The equality axiom.
(d) The distributive axiom.

10. Refer again to Solution 6-10 and Table 6-10. In the last step, it says that
a certain component of the equality axiom is used repeatedly to come to
the conclusion shown. You’re told you’ll get a chance to identify that
component. Your chance has come! Which component is it?

(a) The reflexive property.
(b) The symmetric property.
(c) The transitive property.
(d) The equivalence property.
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CHAPTER

201

A Few Historic 
Tidbits

If you’ve carefully followed this book up to now, you should have a good idea of
how pure mathematics “works.” Let’s look at a few ideas and proofs that are sig-
nificant in the history of mathematics. This chapter is only a tiny sampler. Some
great theorems, such as Gödel’s theorems about logical systems, Cantor’s proofs
involving the existence of different magnitudes of infinity, and Fermat’s Last
Theorem are not included because their proofs are beyond the scope of this book.

You “Build” It
In geometry, a construction is a drawing made with simple instruments. Con-
structions make you think about the properties of geometric objects, independent

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.



of numeric lengths and angle measures. Constructions can be great intellectual
games. They can also lead to interesting proofs.

TOOLS AND RULES
The most common type of geometric construction is done with two instruments,
both of which you can purchase at any office supply store. One instrument lets
you draw circles, and the other lets you draw straight line segments. Once you
have these, you can use them only according to certain “rules of the game.”

DRAFTING COMPASS
The drafting compass is an uncalibrated device for drawing circles of various
sizes. It has two straight shafts joined at one end with a hinge. One shaft ends
in a sharp point that does not mark anything, but that can be stuck into a piece
of paper as an anchor. The other shaft has brackets in which a pen or pencil is
mounted. To draw a circle, press the sharp point down on a piece of paper 
(with some cardboard underneath to protect the table or desk top), open the
hinge to get the desired radius, and draw the circle by rotating the whole
assembly at least once around. You can draw arcs by rotating the compass
partway around.

For geometric constructions, the ideal compass does not have an angle 
measurement (“degree”) scale at its hinge. If it has a scale that indicates angle mea-
sures or otherwise quantifies the extent to which it is opened, you must ignore
that scale.

STRAIGHT EDGE
A straight edge is any object that helps you to draw line segments by placing a
pen or pencil against the object and running it alongside. A conventional ruler
will work for this purpose, but is not the best tool to use because it has a cali-
brated scale. A better tool is a strip of wood, cardboard, or metal having a con-
venient length. A drafting triangle can also be used if it is uncalibrated, but you
must ignore the angles at the apexes. Some drafting triangles have two 45º
angles and one 90º angle; others have one 30º angle, one 60º angle, and one 90º
angle. You aren’t allowed to take advantage of these standard angle measures
when performing geometric constructions.
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WHAT’S ALLOWED
With a compass, you can draw circles or arcs having any radius you want. The
center point can be randomly chosen, or you can place the sharp tip of the com-
pass down on a predetermined, existing point and make it the center point of the
circle or arc.

You can set a compass to replicate the distance between any two defined
points, by setting the non-marking tip down on one point and the marking tip
down on the other point, and then holding the compass setting constant.

With the straight edge, you can connect any two specific points with a line seg-
ment. You can extend this line segment beyond the points, denoting the line
passing through those two points. You can also draw a line in any direction,
either “randomly” (by simply setting the straight edge down and passing the pen
or pencil along it), or through a specific point. You can draw a ray through any
two specific points, as long as one of the points is the end point of the ray. You
can draw a ray emanating in any direction from a single point, where that point
constitutes the end point of the ray.

WHAT’S FORBIDDEN
Whatever circle or line segment you draw, you are not allowed to measure the
radius or the length against a calibrated scale. You may not measure angles using
a calibrated device. You may not make reference marks on the compass or the
straight edge. (Marking on a straight edge is “cheating,” even though replicating
the distance between two points with a compass is all right.) You may not extend
an existing line segment using the straight edge, except when you draw a ray or
a line based on the same two points you use to define that line segment.

Here is a subtle but important restriction: You may not make use of the implied
result of an infinite number of repetitions of a single operation or sequence of
operations. For example, you are not allowed to mentally perform a maneuver
over and over ad infinitum to geometrically approach a desired result, and then
claim that result as a valid construction. The entire operation must be completed
in a finite number of steps.

DEFINING POINTS
To define an arbitrary point, all you need to do is draw a little dot on the paper.
Alternatively, you can set the non-marking point of the compass down on the
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paper, in preparation for drawing an arc or circle centered at an arbitrary point.
Points can also be defined where two line segments intersect, where an arc or
circle intersects a line segment, or where an arc or circle intersects another arc
or circle.

DRAWING LINE SEGMENTS
When you want to draw a line segment through two defined points (call them P
and Q), place the tip of the pencil on one of the points and place the straight edge
down against the point of the pencil. Rotate the straight edge until it lines up
with the other point while still firmly resting against the tip of the pencil, and
then run the pencil back and forth along the edge, so the mark connects both
points. Be sure the pencil makes its mark only between the points, and not past
them on either side (Fig. 7-1). Of course, you have to use a straight edge that’s
at least as long as the distance between the two points!

DENOTING RAYS
In order to denote a ray, first determine or choose the end point P of the ray.
Then place the tip of the pencil at the end point, and place the straight edge
against the tip of the pencil. Orient the straight edge so it runs through the other
point Q that defines the ray. Move the tip of the pencil away from the point in
the direction of the ray, as far as you want without running off the end of the
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straight edge (Fig. 7-2A). Finally, draw an arrow at the end of the straight mark
you have made, opposite the starting point (Fig. 7-2B). The arrow indicates that
the ray extends infinitely in that direction.

DENOTING LINES
A line can be drawn at random through no point in particular (as shown at Figs.
7-3A and 7-3B), at random through a single defined point (as shown at C and
D), or specifically through two defined points (as shown at E and F). In order to
draw a line through two points, follow the same procedure as you would to draw
a line segment, but extend the mark past the two points in both directions. Then
place arrows at both ends of the mark.

DRAWING CIRCLES
To draw a circle around a random point, place the non-marking tip of the com-
pass down on the paper, set the compass to the desired radius, and rotate the
instrument through a full circle (Fig. 7-4A). If the center point is predetermined
(marked by a dot), place the non-marking tip down on the dot and rotate the
instrument through a full circle.
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starting at a point P and passing through a point Q
(as shown at A); then put an arrow at the end of the
straight mark opposite the point P (as shown at B).



DRAWING ARCS
To draw an arc centered at a random point, place the non-marking tip of the com-
pass down on the paper, set the compass to the desired radius, and rotate the
instrument through the desired arc. If the center point is predetermined (marked
by a dot), place the non-marking tip down on the dot and rotate the instrument
through the desired arc (Fig. 7-4B).

PROBLEM 7-1
Define a point by drawing a dot. Then, with the compass, draw a small
circle centered on the dot. Now construct a second circle, concentric 
with the first one, but having twice the radius.
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SOLUTION 7-1
Fig. 7-5 illustrates the procedure. In drawing A, the circle is constructed
with the compass, centered at the initial point (called point P). In draw
ing B, a ray L is drawn using the straight edge, with one end at point P
and passing through the circle at a point Q. In drawing C, a circle is con-
structed, centered at point Q and leaving the compass set for the same
radius as it was when the original circle was drawn. This new circle inter-
sects L at point P (the center of the original circle) and also at a new point
R. Next, the non-marking tip of the compass is placed back at point P,
and the compass is opened up so the pencil tip falls exactly on point R.
Finally, as shown in drawing D, a new circle is drawn with its center at
point P, with a radius equal to the length of line segment PR.

PROBLEM 7-2
Draw three points on a piece of paper, placed so they do not all lie
along the same line. Label the points P, Q, and R. Construct ∆PQR
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connecting these three points. Draw a circle whose radius is equal to
the length of side PQ, but that is centered at point R.

SOLUTION 7-2
The process is shown in Fig. 7-6. In drawing A, the three points are put
down and labeled. In drawing B, the points are connected to form 
∆PQR. Drawing C shows how the non-marking tip of the compass is
placed at point Q, and the tip of the pencil is placed on point P. (You
don’t have to draw the arc, but it is included in this illustration for
emphasis.) With the compass thus set so it defines the length of line
segment PQ, the non-marking tip of the compass is placed on point R.
Finally, as shown in drawing D, the circle is constructed.

PROBLEM 7-3
Can the non-marking tip of the compass be placed at point P, and the
pencil tip placed to draw an arc through point Q, in order to define 
the length of line segment PQ in Fig. 7-6?
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SOLUTION 7-3
Yes. This will work just as well.

BISECTION
A line segment is said to be bisected if and only if it is divided by a specific point
into two shorter line segments of equal length. The bisecting point can exist all
by itself, or it can represent the intersection of the original line segment with
another line segment, a ray, or a line. An angle is said to be bisected if and only
if it is divided into two smaller angles of equal measure, by a ray whose end
point coincides with the vertex of the bisected angle.
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BISECTING A LINE SEGMENT
Suppose you have a line segment PQ (Fig. 7-7A) and you want to find the point
at its center, that is, the point that bisects line segment PQ. First, construct an arc
centered at point P. Make the arc roughly half-circular, and set the compass to
span somewhat more than half the length of PQ. Then, without altering the set-
ting of the compass, draw an arc centered at point Q, such that its radius is the
same as that of the first arc you drew (as shown in Fig. 7-7B). Name the points
at which the two arcs intersect R and S. Construct a line passing through both R
and S. Line RS intersects the original line segment PQ at a point T, which bisects
line segment PQ (as shown in Fig. 7-7C).

PROBLEM 7-4
Prove that the above described method of bisecting a line segment is valid
according to the rules of construction and the principles of geometry.
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SOLUTION 7-4
You may wish to expand and add some more detail to Fig. 7-7C,
obtaining a drawing that looks like Fig. 7-8. The proof can be split into
two parts.

First, consider ∆SRP and ∆RSQ. We know that the lengths of the four
line segments RP, PS, SQ, and QR are all equal, because they all repre-
sent the radius of the arcs, both of which were created with the compass
set for the same span. This means that ∆SRP and ∆RSQ are isosceles tri-
angles, and two pairs of corresponding sides have equal lengths. They
also have line segment RS in common, so all three pairs of corresponding
sides, as we proceed in the same direction around either triangle, are equal
in length. Invoking the SSS axiom, we can conclude that ∆SRP is directly
congruent to ∆RSQ. Now we know that the measures of the correspon-
ding pairs of angles, as we proceed around both triangles in the same
direction, are equal. (You’ll get a chance to provide the reason for this in
Quiz Question 1 at the end of this chapter.) This, in addition to the fact
that ∆SRP and ∆RSQ are isosceles triangles, means that the measures of
∠PRT, ∠TSP, ∠QST, and ∠TRQ are all equal. We’re halfway done!

Now, consider ∆TPR and ∆TQR. We have already determined that
the lengths of line segments PR and QR are equal. It is trivial that line
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segment RT has the same length as itself. We have determined that the
measures of ∠PRT and ∠TRQ are equal. Thus, by the SAS axiom,
∆TPR is inversely congruent to ∆TQR. It follows from the definition
of inverse congruence that line segments TP and TQ have the same
length, and therefore, that line RS bisects line segment PQ at point T.
Table 7-1 is an S/R version of this proof.

The above paragraph does not portray the only way to do the second
half of this proof. There is at least one other way. Can you figure it out?
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Statements Reasons

The lengths of line segments They are all radii of arcs generated with
RP, PS, SQ, and QR are equal. the compass set for the same span.

∆SRP and ∆RSQ are isosceles. We can conclude this directly from the
previous statement.

In ∆SRP and ∆RSQ, This follows from what we already know,
corresponding pairs of sides along with the fact that the triangles have 
have equal lengths going in line segment RS in common.
the same direction.

∆SRP ≡ ∆RSQ. This follows from the SSS axiom.

In ∆SRP and ∆RSQ, You’ll get a chance to fill this in later.
corresponding pairs of angles 
have equal measures going in 
the same direction.

m∠PRT = m∠TSP This follows from the above, and the
= m∠QST = m∠TRQ. fact that ∆SRP and ∆RSQ are isosceles.

Line segment RT has the same This is trivial!
length as itself.

∆TPR ≡− ∆TQR. This follows from facts we have already
established, along with the SAS axiom.

Line segments TP and TQ This follows from the definition of
are equally long. inverse congruence.

Line RS bisects line segment This is evident from the geometry of the
PQ at point T. of situation.

Table 7-1. An S/R version of the proof demonstrated in Solution 7-4.



PROBLEM 7-5
Prove that in the line-segment bisection method shown in Figs. 7-7 and
7-8, ∠QTR and ∠RTP are right angles, and that as a result of this fact,
the process depicted in Fig. 7-7 provides a method of constructing a
right angle.

SOLUTION 7-5
Refer again to Fig. 7-8. From Solution 7-4, we know that ∆TPR is
inversely congruent to ∆TQR. According to the definition of inverse
congruence, the corresponding angles ∠QTR and ∠RTP have equal
measure. It is evident from the geometry of the situation that ∠QTR
and ∠RTP are supplementary angles. That means their measures add
up to a straight angle, which by definition has a measure of 180º. It fol-
lows from basic algebra that ∠QTR and ∠RTP both have measures of
90º, and are therefore both right angles. Thus, the process depicted in
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Statements Reasons

∆TPR ≡− ∆TQR. This was determined in Solution 7-4.

m∠QTR = m∠RTP. This follows from the definition of
inverse congruence, and from the fact
that ∠QTR and ∠RTP are correspon-
ding angles.

∠QTR and ∠RTP are This is evident from the geometry of 
supplementary angles. the situation.

m∠QTR + m∠RTP = 180°. This follows from the definition of
supplementary angles.

m∠QTR = 90° and This follows from basic algebra 
m∠RTP = 90°. and the statements in the second and

fourth lines of this table.

∠QTR and ∠RTP are both This follows from the definition of 
right angles. right angle.

The process depicted in Fig. 7-7 This is true because ∠QTR and ∠RTP
provides a way of constructing both arise during the process!
a right angle. 

Table 7-2. An S/R version of the proof demonstrated in Solution 7-5.



Fig. 7-7 provides a way of constructing a right angle. Table 7-2 is an
S/R version of this proof.

BISECTING AN ANGLE
Fig. 7-9 illustrates one method that can be used to bisect an angle, that is, to
divide it in half. First, suppose two rays intersect at a point P, as shown at A. Set
down the non-marking tip of the compass on point P, and construct an arc from
one ray to the other. Call the two points where the arc intersects the rays point R
and point Q (Fig. 7-9B). We can now call the angle in question ∠QPR, where
points R and Q are equidistant from point P.

Now, place the non-marking tip of the compass on point Q, increase its span
somewhat from the setting used to generate arc QR, and construct a new arc.
Next, without changing the span of the compass, set its non-marking tip down on
point R and construct an arc that intersects the arc centered on point Q. (If the arc
centered on point Q isn’t long enough, go back and make it longer. You can make
it a full circle if you want.) Let S be the point at which the two arcs intersect (Fig.
7-9C). Finally, construct ray PS, as shown at D. This ray bisects ∠QPR. This
means that m∠QPS = m∠SPR, and also that m∠QPS + m∠SPR = m∠QPR.
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PROBLEM 7-6
Find another way to bisect an angle.

SOLUTION 7-6
Refer to Fig. 7-10. The process starts in the same way as described
above. Two rays intersect at point P, as shown in drawing A. Set down 
the non-marking tip of the compass on point P, and construct an arc
from one ray to the other to get points R and Q (Fig. 7-10B) defining
∠QPR, where points R and Q are equidistant from point P.

Construct line segment RQ. Then bisect it, according to the proce-
dure for bisecting line segments described earlier in this chapter. Call
the midpoint of the line segment point S, as shown in Fig. 7-10C.
Finally, construct ray PS (Fig. 7-9D). This ray bisects ∠QPR.

PROBLEM 7-7
Prove that the angle bisection method described in Solution 7-6 is valid
according to the rules of construction and the principles of geometry.

SOLUTION 7-7
You may wish to expand and add some more detail to Fig. 7-10D,
obtaining a drawing that looks like Fig. 7-11. Line segment SR has the 
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same length as line segment SQ, because we have bisected line seg-
ment RQ. Line segment RP has the same length as line segment QP,
because we have constructed them both from the same arc centered at
point P. Line segment PS has the same length as line segment PS; this
is trivial. From the geometry of this situation, it is evident that ∆SRP
and ∆SQP have corresponding pairs of sides that are of equal lengths
as you proceed around the triangles in opposite directions. From the
SSS axiom and the definition of inverse congruence, we can conclude
that ∆SRP and ∆SQP are inversely congruent. Therefore, correspon-
ding pairs of angles (angles opposite corresponding sides), as we pro-
ceed around the triangles in opposite directions, have equal measure.
(You’ll get a chance to supply the reason for this in Quiz Question 2.)
This means that the measure of ∠SPR is equal to the measure of
∠QPS, because they constitute a pair of corresponding angles in ∆SRP
and ∆SQP. The sum of the measures of these two angles is equal to the
measure of ∠QPR; this is evident from the geometry of the situation.
Therefore, according to the definition of angle bisection, ray PS bisects
∠QPR. Table 7-3 is an S/R version of this proof.

The Theorem of Pythagoras
One of the most famous mathematical facts ever proved is known as the
Theorem of Pythagoras, also called the Pythagorean Theorem. It has been
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known for thousands of years. Stated in words, it goes like this: “The square of
the length of the longest side (hypotenuse) of a right triangle is equal to the
sum of the squares of the lengths of the two shorter sides, if all the lengths
are expressed in the same units.” There is some debate as to who proved this
theorem first, but many proofs have been done since ancient times. Here is one
example of how this theorem can be proved.
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Statements Reasons

Line segment SR has the same We have bisected line segment RQ,
length as line segment SQ. and the midpoint is S.

Line segment RP has the same We have constructed them both from 
length as line segment QP. from the same arc centered at point P.

Line segment PS has the same This is trivial!
length as itself.

In ∆SRP and ∆SQP, correspond- This is evident from the geometry of 
ing pairs of sides have equal the situation.
lengths as we go around them in
opposite directions.

∆SRP ≡− ∆SQP. This follows from the SSS axiom
and the definition of inverse 
congruence.

In ∆SRP and ∆SQP, correspond- You’ll get a chance to fill this in 
ing pairs of angles have equal later.
measures going in opposite 
directions.

m∠SPR = m∠QPS. These two angles constitute a pair of
corresponding angles in ∆SRP and
∆SQP.

m∠SPR + m∠QPS = m∠QPR. This is evident from the geometry of
the situation.

The ray PS bisects angle ∠QPR. This follows from the definition of
bisection.

Table 7-3. An S/R version of the proof demonstrated in Solution 7-7.



THE PROPOSITION
Suppose we have a right triangle defined by points P, Q, and R whose sides have
lengths s, t, and u respectively. Let u be the length of the hypotenuse (Fig. 7-12).
Then the following equation is always true:

u2 = s2 + t2

THE PROOF
Fig. 7-13 is a visual aid that, while not strictly necessary for the proof, makes
things a lot easier to explain! To begin, imagine four directly congruent right tri-
angles, each of whose sides have lengths of s, t, and u units, with the hypotenuses
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Fig. 7-13. Proof of the Theorem of Pythagoras. Four right trian-
gles, all congruent to one another, are positioned to
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all measuring u units. Suppose they are arranged as shown in Fig. 7-13, so they
form a large square whose sides each have length s + t units. The area of this large
square can be found by squaring the length of the side. (That is a well-known for-
mula from geometry.) If we call the area of the large square AL, then:

AL = (s + t)2

= s2 + 2st + t2

where AL is expressed in square units or units squared.
Look at the unshaded region inside the large square. It, too, is a square, meas-

uring u units on each side. (Do you wonder how we know it is a square? You
should be asking this question right now! You can prove that the unshaded
region is a square by showing that each of its interior angles is a right angle.
Consider this an “extra credit” exercise.) The area of the unshaded square, AU, is
equal u2 square units. That is:

AU = u2

Consider the four right triangles. Each of them has an area, call it AT, that is
equal to half the height times the length of the base. (This is another well-known
formula from geometry.) If we call s the height and t the length of the base for
each right triangle, then:

AT = st /2

There are four of these triangles, and the sum of their areas, call it AS, indicated
by the shaded regions in Fig. 7-13, is equal to:

AS = 4AT

= 4(st /2)
= 2st

It is apparent from the figure that AS + AU = AL. That is, the sum of the shaded
and unshaded regions is equal to the area of the large square. Substituting for
each of these areas, we get the following result:

AS + AU = AL

2st + u2 = s2 + 2st + t2

Subtracting the quantity 2st from each side of the second equation above gives
us the formula for the Pythagorean Theorem:

u2 = s2 + t2
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The Square Root of 2
It is possible to construct a line segment whose length is, in theory, exactly equal
to the positive square root of 2. (There’s also a negative square root of 2 that is
equal to −1 times the positive one, but we’re concerned only with the positive
square root of 2. Let’s call it 21/2, or 2 to the 1⁄2 power, for short.) Despite the fact
that we can “build” it geometrically, the value of 21/2 cannot be represented in
arithmetic as a ratio of integers in lowest terms.

THE FIRST PROPOSITION
Let PQ be a line segment. Let RS be a line that has been constructed according
to the process described earlier and illustrated by Fig. 7-7, so that line RS bisects
line segment PQ. Let T be the point at which line RS intersects line segment PQ.
According to Solution 7-5 derived earlier, ∠QTR is a right angle. Suppose we
extend line segment TQ so it becomes a ray of indefinite length. Consider rays
TR and TQ, as shown in Fig. 7-14A. Set a drafting compass for a span equal to

PART TWO Proofs in Action220

A B

C

QT

R

QT

R

U

QT

U

1 unit

1 unit

1 unit

2 units

Fig. 7-14. Construction of a line segment having a length equal to
the square root of 2 units.



Chapter 7 A Few Historic Tidbits 221

the length of line segment TQ. Let’s define this span as a distance of 1 unit.
Using the compass, construct an arc having a radius equal to this span, centered
at point T, and passing through rays TR and TQ (Fig. 7-14B). Let U be the point
at which the arc intersects ray TR. Construct line segment UQ, as shown in Fig.
7-14C. Then the length of line segment UQ is equal to 21/2 units.

PROOF OF THE FIRST PROPOSITION
Note that ∠QTU is a right angle, because we constructed it that way. Therefore,
by definition, ∆QTU is a right triangle. Let r be the length of line segment QT.
Then r is equal to 1 unit, because we have defined it that way using the com-
pass. Let q be the length of line segment TU. Then q is equal to 1 unit. (You’ll
get a chance to provide a reason for this in Quiz Question 3.) Let t be the length
of line segment UQ. It is evident from the geometry of this situation that line
segment UQ is the hypotenuse of ∆QTU. According to the Pythagorean
Theorem, we have this formula:

t
2 = r

2 + q
2

By substitution and some basic arithmetic and algebra, we obtain this:

t
2 = 12 + 12

t
2 = 1 + 1

t
2 = 2
t = 21/2

Remember that t is defined as the length of line segment UQ. From the above
derivation, it follows that the length of line segment UQ is equal to 21/2 units.
Table 7-4 is an S/R version of this proof.

THREE DEFINITIONS
Before we continue, let’s review three definitions. You will recognize these
from basic arithmetic. Here they are:

• A number n is an even integer if and only if n/2 is an integer.
• A number m is an odd integer if and only if (m + 1)/2 is an integer.
• A quotient of two integers a/b is a ratio of integers in lowest terms if and

only if there does not exist any positive integer c such that a/c and b/c are
both integers.



ODD-TIMES-ODD THEOREM
It will also help us to state a well-known fact from arithmetic. We won’t go
through its proof here, but you can prove it as an exercise if you want! Let’s call
it the odd-times-odd theorem. It states that the product of two odd integers is
always an odd integer.
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Statements Reasons

∠QTU is a right angle. We constructed it that way!

∆QTU is a right triangle. This follows from the definition of
right triangle.

Let r be the length of line We have to call it something!
segment QT.

r = 1. We defined the length of line segment
QT as 1 unit, using the compass.

Let q be the length of line We have to call it something!
segment TU.

q = 1. You’ll get a chance to fill this in later.

Let t be the length of line We have to call it something!
segment UQ.

Line segment UQ is This is evident from the geometry
the hypotenuse of ∆QTU. of the situation.

t2 = r2 + q2. This is true according to the Theorem
of Pythagoras.

t2 = 12 + 12. This is the result of substituting 1 for
the values of r and q.

t = 2.1/2 This is the result of solving the equa-
tion in the previous line for t.

The length of line segment This follows from the fact that we 
UQ is equal to 21/2 units. have defined t as the length of line

segment UQ.

Table 7-4. An S/R version of the proof that the construction shown in Fig.
7-14, and described in the text, yields a line segment with a
length equal to the square root of 2 (or 21/2) units.



THE SECOND PROPOSITION
The value of 21/2 cannot be represented as a ratio of integers in lowest terms.

PROOF OF THE SECOND PROPOSITION
Whenever we are confronted with the task of performing an “impossibility
proof” or a “negativity proof,” the situation suggests that we ought to try reductio
ad absurdum. Let’s use it here.

Suppose that the above proposition is false, and that the number 21/2 can be rep-
resented as the ratio of two integers in lowest terms. Call those integers p and q.
In order for the ratio to be defined, q must not be equal to 0. Here is what we claim:

21/2 = p/q

Squaring both sides, we get:
(21/2)2 = (p/q)2

This can be rewritten, using the rules of basic algebra, to obtain:

2 = p
2/q2

Multiplying each side of the above equation by q2 gives us this:

2q
2 = p

2

Dividing each side by 2, we get this:

q
2 = p

2/2

We stipulated that q is an integer; therefore q2 is an integer. We also stipulated that
p is an integer; therefore p2 is an integer. (You’ll get a chance to provide the rea-
son for these two facts in Quiz Question 4.) The above equation therefore tells
us that p2/2 is an integer. By definition, then, p2, which is equal to p × p, is an
even integer. It follows that p is an even integer; the odd-times-odd theorem
guarantees that if p were odd, then p2, or p × p, would have to be odd. The fact
that p is an even integer means, by definition, that p/2 is an integer. Let’s call
that integer t. Thus:

p/2 = t

Multiplying each side by 2 gives us the following:

p = 2t

Substituting 2t for p in the equation 2q
2 = p

2 from above, we get:

2q2 = (2t)2
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That can be simplified to:
2q

2 = 4t
2

Dividing each side by 4, we obtain:

q
2/2 = t

2

We know that t is an integer, so t2 is an integer. (You’ll get a chance to provide
the reason for this in the chapter-ending quiz.) Thus q2/2 is an integer. By defi-
nition, then, q2 is even. It follows that q is an even integer; the odd-times-odd
theorem guarantees that if q were odd, then q2, or q × q, would have to be odd.
Therefore, by definition, q/2 is an integer.

Have patience! We’re getting there!
All the way back at the beginning of this proof, we claimed that 21/2 is equal

to p/q, where p/q is a ratio of integers in lowest terms. We have shown that p/2
and q/2 are both integers. But then p/q, while a ratio of integers, is not in lowest
terms, because ( p/2)/(q/2) is a ratio of integers equal to p/q! This contradicts our
original assertion. Invoking reductio ad absurdum, we must reject our initial
assumption, proving that the value of 21/2 cannot be represented as a ratio of inte-
gers in lowest terms. Table 7-5 is an S/R version of this proof.
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Statements Reasons

Assume 21/2 can be represen- This is the initial assumption, from which we will derive a 
ted as a ratio of two integers, contradiction and then apply reductio ad absurdum.
p and q, in lowest terms.

21/2 = p/q. This is merely a specification of the claim made above.

(21/2)2 = (p/q).2 Square both sides of the equation in the previous line.

2 = p
2/q.

2 Use basic algebra on the equation in the previous line.

2q
2 = p

2. Multiply each side of the equation in the previous line by q2.

q
2 = p

2/2. Divide each side of the equation in the previous line by 2.

We know q ∈ Z. You’ll get a chance to fill this in later.
Therefore q2 ∈ Z.

We know p ∈ Z. You’ll get a chance to fill this in later.
Therefore p2 ∈ Z.

Table 7-5. An S/R version of the proof that the value of 21/2 cannot be represented as a ratio of
integers in lowest terms.
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Statements Reasons

p
2/2 ∈ Z. We know this because q2 = p

2/2, and q2 ∈ Z.

p
2 is an even integer. This follows from the definition of even integer.

p is an even integer. According to the odd-times-odd theorem, if p were odd,
then p × p would be odd.

p/2 ∈ Z. This follows from the definition of even integer.

Let p/2 = t, where t ∈ Z. This will make things simpler!

p = 2t. Multiply each side of the equation in the previous line by 2.

2q
2 = (2t)2. Substitute 2t for p in the equation 2q

2 = p
2 from above.

2q
2 = 4t

2. Simplify the right-hand side of the equation in the previous
line.

q
2/2 = t

2. Divide each side of the equation in the previous line by 4.

We know t ∈ Z. You’ll get a chance to fill this in later.
Therefore t2 ∈ Z.

q
2/2 ∈ Z. This follows from the previous two lines.

q
2 is an even integer. This follows from the definition of even integer.

q is an even integer. According to the odd-times-odd theorem, if q were odd,
then q × q would be odd.

q/2 ∈ Z. This follows from the definition of even integer.

The quotient p/q is a ratio of This is part of the assertion we made to start this proof.
integers in lowest terms.

p/2 ∈ Z and q/2 ∈ Z. We have proven both of these facts.

(p/2)/(q/2) is a ratio of This follows from the statement immediately above this 
integers. line.

The ratio p/q is not given in This follows from the statement immediately above this 
lowest terms. line, and the fact that (p/2)/(q/2) = p/q.

We have a contradiction! The line immediately above this one is contrary to our
original assertion.

21/2 is not a ratio of integers Invoke reductio ad absurdum.
in lowest terms.

Table 7-5. (continued)



The Greatest Common Divisor
Here is a well-known fact of arithmetic that involves the positive integers. It can
be used to prove a lot of interesting things. Let’s state it and prove it!

THE GCD THEOREM
Let p and q be positive integers. Then there exists a unique largest positive inte-
ger g such that p/g and q/g are both positive integers. The positive integer g is
called the greatest common divisor (GCD) for p and q. Sometimes it is also called
the greatest common factor (GCF) or the highest common factor (HCF). Let’s call
this the GCD theorem. In order to prove it, we’ll need a well-known axiom.

THE TRICHOTOMY AXIOM
For all real numbers p and q, one and only one of three conditions holds: (1) p
is smaller than q, or (2) p is larger than q, or (3) p is equal to q. That is, exactly
one of the following is true:

p < q
p > q
p = q

This is also known as the principle of trichotomy, or simply as the trichotomy.

PROOF OF THE GCD THEOREM
Let’s denote the set of positive integers by the uppercase, bold, italic English let-
ter Z with a plus-sign subscript (Z++). Imagine two positive integers p and q. The
number 1 is a common divisor for all positive integers. It’s possible that 1 is the
only positive integer that divides both p and q without leaving remainders. In
other words, it is possible that there is no positive integer g, other than g = 1, such
that p/g and q/g are both elements of Z+. In that case, 1 is the GCD, and the proof
is over! But it is also possible that 1 is not the only positive integer that divides
both p and q without remainders. (In Quiz Question 5, you will get a chance to
identify a pair of positive integers p and q that have this characteristic.)

Consider three cases according to the trichotomy as the axiom applies to com-
mon divisors. 
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Case 1: Suppose that p is smaller than q. Then no positive integer n larger than
p divides both p and q without remainders, because if such an n did exist, then
p/n would be between 0 and 1, and would not be a positive integer. It follows
that the GCD must exist, and it must be somewhere between 1 and p inclusive;
that is, 1 ≤ g ≤ p. 

Case 2: Suppose that p is larger than q. Then no positive integer n larger than
q divides both p and q without remainders, because if such an n did exist, then q/n
would be between 0 and 1, and would not be a positive integer. It follows that
the GCD must exist, and it must be somewhere between 1 and q inclusive; that is,
1 ≤ g ≤ q. 

Case 3: Suppose p = q. Then both p and q divide each other without remainders.
But no positive integer n larger than p or q can divide either of them without
remainders. If that were the case, then p/n, which is the same as q/n, would have
to be between 0 and 1, and this number would therefore not be a positive inte-
ger. It follows that the GCD must exist, and it must be equal to both p and q; that
is, g = p = q.

We have shown that in all cases of the trichotomy, a GCD exists. It follows
that there is a GCD for any pair of positive integers. Table 7-6 is an S/R version
of this proof.
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Statements Reasons

Let Z+ denote the set of We have to symbolize it somehow!
positive integers.

Suppose that p ∈ Z+ We need two nonspecific positive integers to do the proof.
and q ∈ Z+.

If a GCD exists for p and q, We have to call it something!
let’s call it g.

Suppose 1 is the only positive This is the first of two possibilities
integer that divides p and q Let’s see what it implies.
without remainders.

g = 1, and there is nothing This follows from the definition of GCD.
further to prove.

Table 7-6. An S/R version of the proof of the GCD theorem.
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Statements Reasons

Suppose 1 is not the only This is the second of two possibilities.
positive integer that divides Let’s see what it implies. 
p and q without remainders.

One and only one of the This follows from the trichotomy axiom because p and q,
following is true: p < q, or being positive integers, are real numbers as well.
p > q, or p = q.

Suppose that p < q. This is case 1 of the trichotomy. Let’s see what it implies.

There is no positive integer If such an n exists, then 0 < p/n < 1, and thus p/n ∉ Z+.
n larger than p such that
p/n ∈ Z+ and q/n ∈ Z+.

1 ≤ g ≤ p. We know 1 divides both p and q without remainders, and
that no positive integer larger than p can do so. We are thus
forced to this conclusion.

Suppose that p > q. This is case 2 of the trichotomy. Let’s see what it implies.

There is no natural number If such an n exists, then 0 < q/n < 1, and thus q/n ∉ Z+.
n larger than q such that 
p/n ∈ Z+ and q/n ∈ Z+.

1 ≤ g ≤ q. We know 1 divides both p and q without remainders, and
that no positive integer larger than q can do so. We are thus
forced to this conclusion.

Suppose that p = q. This is case 3 of the trichotomy. Let’s see what it implies.

p/q ∈ Z+ and q/p ∈ Z+. This is trivial because p/q = q/p = 1, and 1 ∈ Z+.

There is no natural number If such an n exists, then 0 < p/n < 1 making p/n ∉ Z+, and 
n larger than p and q such 0 < q/n < 1 making q/n ∉ Z+.
that p/n ∈ Z+ or q/n ∈ Z+.

g = p = q. We know that p and q divide each other without remain-
ders, and that no number larger than them can do so. We
are thus forced to this conclusion.

There exists a GCD for any All the possibilities have been covered!
pair of positive integers.

Table 7-6. (continued)



Prime Numbers
Euclid, known for his work in geometry, also proved important theorems about
numbers. Here are a couple of his theorems that involve so-called prime numbers.
Before we get started with these famous proofs, however, we need a famous
axiom! We should also define what a prime number is, and what we should call
the numbers that are not prime.

THE WELL-ORDERING AXIOM
Every non-empty set of positive integers contains a smallest element.

WHAT IS A PRIME?
Let n be a positive integer larger than 1. The number n is a prime number (also
called a prime) if and only if, when n is divided by a positive integer k, the quo-
tient n/k is an integer only when k = 1 or k = n. Stated another way, a prime num-
ber is a positive integer larger than 1 that is divisible by a positive integer without
a remainder only when the divisor is equal to 1 or the number itself. The set of all
prime numbers is sometimes denoted by the uppercase, bold, italic English letter P.

WHAT IS A COMPOSITE?
The number n is a composite number (also called a composite) if and only if n
is a positive integer, n is not equal to 1, and n is not a prime number. The set of
all composite numbers is sometimes denoted by the uppercase, bold, italic
English letter C.

WHAT ABOUT 1?
The above definitions deal only with positive integers larger than 1. This is a
matter of convention. The positive integer 1 is not considered prime, even
though it is divisible without a remainder only when the divisor is equal to 1 or
itself. But it is not considered composite. Whenever you hear about prime or com-
posite numbers, then, remember that such numbers are always positive integers
larger than or equal to 2.
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THE PRIME-FACTOR THEOREM
Any composite number can be expressed as a product of primes. A good descrip-
tive name for this is the prime-factor theorem. It is also known as the “weak ver-
sion” of the Fundamental Theorem of Arithmetic.

PROOF OF THE PRIME-FACTOR THEOREM
Suppose there are composite numbers that are not products of primes. According
to the well-ordering axiom, there is a smallest such number. Call it x. We know
that x is larger than 1. (You’ll get a chance to provide a reason for this in Quiz
Question 6.) We also know that x is not prime. It follows that there are positive
integers y and z, both larger than 1 and less than x, such that x = yz. (We know
that y and z are both larger than 1 and less than x, because if y or z had to be equal
to either 1 or x, then x would be prime; and if y or z were larger than x, then x/y
or x/z would be between 0 and 1, and would thus not be a positive integer.) We
now have four possible cases:

• Both y and z are prime. It follows that x is a product of primes, because 
x = yz, and y and z are both prime.

• The number y is prime, but z is composite. Because z is smaller than x, and
x is the smallest composite that is not a product of primes, z must be a prod-
uct of primes. Because x = yz and y is prime, it follows that x is a product
of primes.

• The number z is prime, but y is composite. Because y is smaller than x, and
x is the smallest composite that is not a product of primes, y must be a
product of primes. Because x = yz and z is prime, it follows that x is a prod-
uct of primes.

• Both y and z are composite. They are both less than x, and we know that x
is the smallest composite number that is not a product of primes. Therefore,
y and z must both be products of primes. Because x = yz, then, x is also a
product of primes.

All four of these cases contradict the assertion that x is not a product of primes.
That means our original assertion is false. There are no composite numbers that
are not products of primes. This can be more simply stated as the proposition we
intended to prove: Any composite number can be expressed as a product of
primes. Table 7-7 is an S/R version of this proof.
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Statements Reasons

Suppose there exist composite This is the initial assumption from which we will derive a 
numbers that are not products contradiction, thus proving its negation, which is the
of primes. proposition at hand.

There is a smallest composite This follows from the well-ordering axiom.
number x that is not a product
of primes.

x > 1. You’ll get a chance to fill this in later.

x ∉ P. We are told that x is composite, and by definition, this
means x is not prime.

There exist positive integers This follows from the definition of prime number.
y and z, such that x = yz.

1 < y < x. If y had to be equal to either 1 or x, then x would be prime;
and if y were larger than x, then x/y would would be
between 0 and 1, and would not be a positive integer.

1 < z < x. If z had to be equal to either 1 or x, then x would be prime;
and if z were larger than x, then x/z would would be
between 0 and 1, and would not be a positive integer.

Suppose that This is the first of four possible cases.
(y ∈ P) & (z ∈ P).

The number x is a product of This follows from the facts that x = yz, y ∈ P, and z ∈ P.
primes.

Suppose that This is the second of four possible cases.
(y ∈ P) & (z ∈ C).

The number z is a product of This follows from the facts that z < x and x is the smallest 
primes. composite that is not a product of primes.

The number x is a product of This follows from the facts that x = yz and y ∈ P.
primes.

Suppose that This is the third of four possible cases.
(y ∈ C) & (z ∈ P).

The number y is a product of This follows from the facts that y < x and x is the smallest 
primes. composite that is not a product of primes.

Table 7-7. An S/R version of the proof of the prime-factor theorem, also known as the “weak
version” of the Fundamental Theorem of Arithmetic.



THE PRIME-FACTOR COROLLARY
Every composite number can be divided by at least one prime without leaving a
remainder. That is, if n is a composite number, then there exists at least one
prime number p such that n/p is a positive integer.

THE PROOF
Let n be a composite number. Because n is composite, n is expressible as a prod-
uct of primes. Suppose those primes are p1, p2, p3, . . . ,and pm, such that:

n = p1 × p2 × p3 × . . .× pm
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Statements Reasons

The number x is a product of This follows from the facts that x = yz and z ∈ P.
primes.

Suppose that This is the fourth of four possible cases.
(y ∈ C) & (z ∈ C).

(y < x) & (z < x). We determined this earlier.

The number x is the smallest We determined this earlier.
composite that is not a 
product of primes.

The numbers y and z are both This follows from the previous two steps.
products of primes.

The number x is a product of This follows from the previous step and the fact that x = yz.
primes.

All four of the above cases In each case, we determine that x is a product of primes, 
result in contradictions. but we determined earlier that x is not a product of primes. 

There exist no composite We are forced to conclude this because it is the negation of 
numbers that are not products our original assertion.
of primes. 

Any composite number is a This is a simpler way of expressing the previous statement.
product of primes.

Table 7-7. (continued)



where m is a positive integer larger than 1. Now suppose we divide this product
of primes (all of which are integers) by p1. Then we have the following:

n/p1 = (p1 × p2 × p3 × . . .× pm) / p1
= p2 × p3 × . . .× pm

This is a product of primes (all of which are integers). Call this product k. We
know that k is an integer. (You’ll get a chance to supply the reason for this in
Quiz Question 7). That means p1 divides n without a remainder, and therefore,
that n can be divided by at least one prime without a remainder. Table 7-8 is an
S/R version of this proof.
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Statements Reasons

Suppose n ∈ C. This is our starting point.

The number n is expressible This follows from the prime factor theorem.
as a product of primes.

n = p1 × p2 × p3 × . . . × pm, This is a restatement of the fact that n is 
where expressible as a product of primes.
p1, p2, p3, . . . , pm ∈ P,
m ∈ Z+, and m > 1.

n/p1 = p2 × p3 × . . . × pm This is the result of dividing each side of the
preceding equation by the prime p1.

p2 × p3 × . . . × pm is a product We know this because p1, p2, p3, . . . , pm ∈ P.
of primes.

Let p2 × p3 × . . . × pm = k. We simply rename the product.

The number k is an integer. You’ll get a chance to fill this in later.

The prime p1 divides n with This follows by algebra from the preceding 
no remainder. five steps.

The number n can be divided We’ve found a prime that does it, namely, p1.
by at least one prime without
a remainder.

Table 7-8. An S/R version of the proof of the prime-factor corollary.



THE NO-LARGEST-PRIME THEOREM
There exists no largest prime number.

THE PROOF
Suppose there is a largest prime number. Call it p. Let Sp be the set of all primes
less than or equal to p, as follows:

Sp = {2, 3, 5, 7, 11, 13, . . . ,p}

Multiply together all of the elements of Sp, and then add 1. Let the result be
called z. Then:

z = (2 × 3 × 5 × 7 × 11 × 13 × . . . × p) + 1

Clearly, z > p, because z is 1 larger than at least one positive-integer multiple of
p. From the product-of-integers and sum-of-integers axioms, we know that z is
an integer, because z is a product of integers (the elements of Sp) with an integer
added (1). For every prime number k in Sp, the quotient z/k has a remainder of
1. This is true because z/k is equal to a product of primes, plus 1. It follows that
no element of Sp divides z without a remainder. We now have two possible cases:

• The number z is prime. It follows that p is not the largest prime, because 
z > p.

• The number z is composite. It follows that z is divisible without a remain-
der by at least one prime. (You’ll get a chance to provide the reason for this
in Quiz Question 8.) Let q be such a prime. We know that q is not an
element of Sp, because no element of Sp divides z without a remainder.
Therefore q > p, so p is not the largest prime.

Both of these cases contradict the assertion that p is the largest prime. That
means our original assumption, that a largest prime exists, is false. There is no
largest prime number. Table 7-9 is an S/R version of this proof.

PROBLEM 7-8
Prove that there are infinitely many prime numbers.

SOLUTION 7-8
Reductio ad absurdum suggests itself here, yet again. (You’ll get a
chance to provide the reason for this in Quiz Question 9.) To begin, 
assume that the number of primes is finite. Let the set of primes be

PART TWO Proofs in Action234



Chapter 7 A Few Historic Tidbits 235

Statements Reasons

Suppose there is a largest This is our initial assumption, from which we will derive 
prime number. a contradiction.

Let p be the largest prime. We’re simply naming the number.

Let Sp be the set of all primes We’re simply naming the set.
smaller than or equal to p.

Let z be the product of all We’re simply naming the quantity.
the elements of Sp, plus 1.

z > p This follows from the fact that z is 1 larger than at least one
positive-integer multiple of p.

z ∈ Z This follows from the product-of-integers axiom and the
sum-of-integers axiom.

Suppose k ∈ Sp. There exists at least one such; let’s just investigate its
properties.

The quotient z /k always has The quotient z /k is equal to a product of primes, plus 1.
a remainder of 1, no matter 
which k we choose from Sp.

No element of Sp divides z This is a rewording of the previous statement using a 
without a remainder. double negative.

Suppose z ∈ P. This is the first of two possible cases.

The number p is not This follows from the fact that z > p, which we have 
the largest prime. established.

Suppose z ∈ C. This is the second of two possible cases.

The number z is divisible You’ll get a chance to fill this in later.
without a remainder by
at least one prime.

Let q be a prime that divides We’re simply identifying one such, and giving it a name.
z without a remainder.

q ∉ Sp We have established that no element of Sp divides z without
a remainder, but q does.

q > p The prime q can’t be less than or equal to p, because then it
would be an element of Sp!

Table 7-9. An S/R version of the proof of the no-largest-prime theorem.



denoted by P = {p1, p2, p3, . . . , pm}, such that p1 is less than p2, which in
turn is less than p3, and so on up to pm. That means the largest prime is
pm, because it is the last element in a finite, ascending sequence of
numbers. But that is a contradiction. (You’ll get a chance to provide the
reason for this in Quiz Question 10.) Therefore, we must conclude that
it is not true that the number of primes is finite. In other words, there
are infinitely many primes. Table 7-10 is an S/R version of this proof.
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Statements Reasons

The number p is not We just found one bigger, namely, q.
the largest prime.

Both of the above cases result In each case, we determine that p is not the largest prime, 
in contradictions. but we assumed originally that it is.

There is no largest prime. We are forced to conclude this because it is the negation of
our original assertion.

Table 7-9 (continued)

Statements Reasons

Assume that the number We will derive a contradiction from
of primes is finite. this, thereby proving its negation.

Let the set of primes We simply list the primes in ascending 
be denoted by order.
P = {p1, p2, p3, . . . , pm}, 
such that 
p1 < p2 < p3 < . . . < pm.

The largest prime number is pm. It is the last element in a finite, ascend-
ing sequence of numbers.

The preceding statement is You’ll get a chance to fill this in later.
a contradiction.

It is not true that the number This is the negation of our original
of primes is finite. assumption.

There are infinitely many This is a rewording of the previous
prime numbers. statement.

Table 7-10. An S/R version of the proof demonstrated in Solution 7-8.



Quiz
This is an “open book” quiz. You may refer to the text in this chapter. A good
score is 8 correct. Answers are in the back of the book.

1. In Solution 7-4 and Table 7-1, we claim that the measures of the corre-
sponding pairs of angles, as we proceed around ∆SRP and triangle ∆RSQ
in the same direction, are equal. What allows us to be certain of this?

(a) The definition of isosceles triangle.
(b) The SAA axiom.
(c) The AAA axiom.
(d) The definition of direct congruence.

2. In Solution 7-7 and Table 7-3, there is a statement to the effect that in
∆SRP and ∆SQP, corresponding pairs of angles have equal measures
going in opposite directions. What allows us to make this claim? 

(a) The SAS axiom.
(b) The definition of inverse congruence.
(c) Euclid’s original four postulates.
(d) The definition of angle bisection.

3. In the first proof in the section called “The Square Root of 2,” and also
in Table 7-4, a statement is made that q is equal to 1 unit. We can make
this claim because

(a) q is the length of the hypotenuse of the triangle, and we have already
assumed that this distance is equal to 1 unit.

(b) q is equal the distance between points T and R, which was defined
as equal to 1 unit of distance.

(c) q is equal to the length of line segment TU, which was constructed
with the compass set for a span equal to the length of line segment
QT, a distance known to be 1 unit.

(d) q is equal to the length of the arc made by the compass between
points U and Q, centered on point T.

4. Refer back to the proof that 21/2 cannot be expressed as a ratio of integers
in lowest terms (the “proof of the second proposition”) along with Table
7-5. It says the fact that q is an integer implies that q2 is an integer, the
fact that p is an integer implies that p2 is an integer, and the fact that t is
an integer implies that t

2 is an integer. What allows us to make these
claims?
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(a) The product-of-integers axiom from Chapter 6.
(b) The sum-of-integers axiom from Chapter 6.
(c) The definition of rational number from Chapter 6.
(d) The definition of set intersection from Chapter 6.

5. In the proof of the GCD theorem, it says that you’ll get a chance to pro-
vide examples of two positive integers, p and q, such that 1 is not the
only natural number that “goes cleanly into” them both. Which of the fol-
lowing pairs of positive integers meets that description?

(a) p = 7 and q = 21
(b) p = 9 and q = 63
(c) p = 19 and q = 95
(d) All of the above

6. In the proof of the prime-factor theorem, and in its S/R version (Table 
7-7), it is stated that we know x is larger than 1. What allows us to make
this claim?

(a) The fact that x is a prime number, and the fact that all prime num-
bers are larger than 1, together imply that x is larger than 1.

(b) The fact that x is a composite number, and the fact that all compos-
ite numbers are larger than 1, together imply that x is larger than 1.

(c) The well-ordering axiom ensures that x is larger than 1 because it is
the smallest positive integer.

(d) We have assumed that the quotient x/x is equal to x, and 1 is the only
natural number that has this property.

7. In the proof of the prime-factor corollary, and in its S/R version (Table 
7-8), it is stated that we know k is an integer. How do we know this?

(a) It follows from the quotient-of-fractions axiom in Chapter 6.
(b) It follows from the product-of-integers axiom in Chapter 6.
(c) It follows from the definition of integer in Chapter 6.
(d) It follows from the definition of rational number in Chapter 6.

8. In the proof of the no-largest-prime theorem, and in its S/R version
(Table 7-9), it is stated that the number z is divisible without a remainder
by at least one prime. How do we know this?

(a) It follows from the quotient-of-integers axiom.
(b) It follows from the definition of prime number.
(c) It follows from the definition of composite number.
(d) It follows from the prime-factor corollary.
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9. In the opening of Solution 7-8, it is stated that reductio ad absurdum sug-
gests itself. What is the reason for this?

(a) Reductio ad absurdum is the best course of action for any proof
when we are not sure how to approach it; and if ever there was a dif-
ficult-looking problem, this is it!

(b) Reductio ad absurdum suggests itself in “impossibility proofs” or
“negativity proofs,” and Problem 7-8 is a problem of this sort in dis-
guise, because we are told to prove that a certain set is not finite.

(c) Reductio ad absurdum is always the best course of action when we
are confronted with a proof involving a finite set of natural numbers.

(d) Reductio ad absurdum is always the best course of action when we
are confronted with a proof involving the prime numbers.

10. In Solution 7-8, and in its S/R rendition (Table 7-10), it is stated that a
contradiction occurs. What theorem or axiom is contradicted?

(a) The prime-factor theorem.
(b) The prime-factor corollary.
(c) The no-largest-prime theorem.
(d) The well-ordering axiom.
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Test: Part Two

Do not refer to the text when taking this test. You may draw diagrams or use a
calculator if necessary. A good score is at least 23 answers (75 percent or more)
correct. Answers are in the back of the book. It’s best to have a friend check your
score the first time, so you won’t memorize the answers if you want to take the
test again.

1. Suppose you want to prove that a certain number x is a rational number.
You can do this by showing that x

(a) can be expressed as the product of two integers a and b, where b ≠ 0.
(b) can be expressed as the sum of two integers a and b, where b ≠ 0.
(c) can be expressed as the difference between two integers a and b,

where b ≠ 0.
(d) can be expressed in the form ab (a to the bth power), where a and b

are integers and b ≠ 0.
(e) None of the above

2. In Fig. Test 2-1, suppose a = c, b = d, and x = y. These facts make it possi-
ble to prove that the two triangles, formed by the vertex points shown, are
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(a) directly similar.
(b) inversely similar.
(c) directly congruent.
(d) inversely congruent.
(e) None of the above

3. In Fig. Test 2-1, suppose a/c = b/d, and x = y. These facts make it possi-
ble to prove that the two triangles, formed by the vertex points shown, are

(a) directly similar.
(b) inversely similar.
(c) directly congruent.
(d) inversely congruent.
(e) None of the above
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4. In Fig. Test 2-2, suppose the figure PQRS has sides and angles of lengths
and measures as shown. If you want to prove that ∆PQS is directly con-
gruent to ∆RSQ, you

(a) can do it easily using the side-side-side (SSS) axiom.
(b) can do it easily using the side-angle-side (SAS) axiom.
(c) can do it easily using either the SSS axiom or the SAS axiom.
(d) can do it, but not using either the SSS axiom or the SAS axiom.
(e) cannot do it, because it is not in general true.

5. In Fig. Test 2-2, suppose the figure PQRS has sides and angles of lengths
and measures as shown. If you want to prove that ∆PQS is inversely con-
gruent to ∆RSQ, you

(a) can do it easily using the side-side-side (SSS) axiom.
(b) can do it easily using the side-angle-side (SAS) axiom.
(c) can do it easily using either the SSS axiom or the SAS axiom.
(d) can do it, but not using either the SSS axiom or the SAS axiom.
(e) cannot do it, because it is not in general true.

6. In a formal geometric construction using a compass and straight edge,
which of the following actions (a), (b), (c), or (d) is impossible or not
allowed?

(a) Using a compass to draw a circle around a specific point, having an
arbitrary (randomly chosen) radius.

(b) Using a compass to draw a circle around a specific point, having a
radius equal to the length of a specific line segment.

(c) Using a compass to draw a circle around a specific point, having a
radius equal to 5 centimeters.

Test: Part Two 243

P Q

RS

a a

b

b

x
x

Fig. Test 2-2. Illustration for Part Two Test Questions 4 and 5.



(d) Using a compass to draw a circle around an arbitrary (randomly cho-
sen) point, having an arbitrary (randomly chosen) radius.

(e) All of the above actions (a), (b), (c), and (d) are possible, and all are
allowed.

7. In Euclidean geometry, three terms are defined only in an informal way.
These three terms are

(a) point, triangle, and sphere.
(b) triangle, polynomial, and sphere.
(c) line, angle, and circle.
(d) plane, line, and point.
(e) ray, sphere, and cube.

8. Table Test 2-1 is an S/R proof that any element in the intersection of two
sets is also in their union. There are two blanks in the Reasons column.
What words should go in the first blank (the one in the fourth line)?

(a) “the definition of logical disjunction.”
(b) “the definition of set intersection.”
(c) “the definition of set union.”
(d) “the law of implication reversal.”
(e) “DeMorgan’s law for conjunction.”

9. What words should go in the second blank (the one in the sixth line) of
Table Test 2-1?

(a) “the definition of logical disjunction.”
(b) “the definition of set intersection.”
(c) “the definition of set union.”
(d) “the law of implication reversal.”
(e) “DeMorgan’s law for conjunction.”

10. Suppose we are told that there are two sets called G and H, neither one
of them empty, such that G ⊂ H. From this, which of the following state-
ments can be easily proved?

(a) (∀x) (x ∈ G ⇔ x ∈ H)
(b) (∀x) (x ∈ H ⇒ x ∈ G)
(c) (∀x) (x ∉ H ⇒ x ∉ G)
(d) (∃x) (x ∈ G & x ∉ H)
(e) (∀x) (x ∈ G & x ∉ H)
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11. Suppose we have two triangles, and we want to prove that they are
directly congruent. There are several ways we can do this. Which, if any,
of the following approaches (a), (b), (c), or (d) is not sufficient to prove
direct congruence for triangles?

(a) Side-side-side.
(b) Angle-angle-angle.
(c) Side-angle-side.
(d) Angle-side-angle.
(e) Any of the above approaches is sufficient to prove direct congruence

for triangles.

12. Table Test 2-2 is an S/R proof that

(a) some integers are rational numbers.
(b) all integers are rational numbers.
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Statements Reasons

Suppose that X and Y are sets, each We will use these in the proof.
containing at least one element.

Let k be a constant. We will use this in the proof.

Imagine that k is an element of the This is our initial assumption.
set X ∩ Y.

From the above, we know that the This follows from ________.
constant k is an element of set X, and 
also that k is an element of set Y.

The constant k is an element of set X. This follows from the definition of
of logical conjunction; and anyhow,
it’s part of the preceding statement.

From the above, we know that k is This follows from ________.
an element of set X, or k is an 
element of set Y.

The constant k is an element of the This follows from the definition of
set X ∪ Y. set union.

Table Test 2-1. An S/R proof that every element in the intersection of two sets is in
the union of those two sets. This table goes with Part Two Test
Questions 8 and 9.



(c) some rational numbers are integers.
(d) all rational numbers are integers.
(e) the sets of rational numbers and integers have the same cardinality.

13. In Table Test 2-2, there are two blanks in the Reasons column. What
mathematical expression should go in the first blank (the one in the
fourth line)?

(a) k/k
(b) k/0
(c) 1/k
(d) 0/k
(e) None of the above

14. What words should go in the second blank (the one in the fifth line) of
Table Test 2-2?

(a) the quotient-of-integers axiom.
(b) the commutative property for division.
(c) the transitive property.
(d) the definition of rational number.
(e) the definition of integer.
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Statements Reasons

Suppose k is an integer. We make this assumption to begin the
proof.

When k is divided by 1, the This follows from the division-by-1 axiom.
quotient is equal to k.

The number 1 is an integer. This follows from the definition of the set
of integers.

The value of k is equal to the In the expression ________, the numerator 
quotient of two integers, and and denominator are both integers, and 1 is 
the denominator is nonzero. not equal to 0.

The number k is an element This follows from ________.
of the set of rational numbers.

Table Test 2-2. An S/R proof. This table goes with Part Two Test Questions 12, 13,
and 14.



15. Suppose you are reading a theoretical text, and you come across the fol-
lowing principle of arithmetic:

(∀x)(∀y) [(x ∈ Q) & (y ∈ Q)] ⇒ {(xy = 0) ⇔ [(x = 0) ∨ (y = 0)]}

What does this mean in plain English?

(a) For some rational numbers x and for some rational numbers y, the
product xy equals zero if and only if x equals zero or y equals zero,
or both.

(b) For all rational numbers x and for all rational numbers y, if the prod-
uct xy equals zero, then x equals zero or y equals zero, or both.

(c) For all rational numbers x and for all rational numbers y, if x equals
zero or y equals zero, or both, then the product xy equals zero.

(d) For all rational numbers x and for all rational numbers y, the product
xy equals zero if and only if x equals zero or y equals zero, or both.

(e) For some rational numbers x and for some rational numbers y, if the
product xy equals zero, then x equals zero or y equals zero, or both.

16. One of the most famous axioms in geometry states that if you have a line
L and a point P not on line L, then there exists one and only one line M
through point P that is parallel to line L. But some mathematicians inves-
tigated the consequences of denying this axiom. It turns out that the
axiom does not hold true

(a) on flat surfaces.
(b) when all lines are perfectly straight.
(c) on the surface of a sphere.
(d) in Euclidean 3-dimensional space.
(e) in any case; it was a huge mistake to begin with.

17. In Fig. Test 2-3, suppose the arcs (shown as dashed lines) are centered at
points P and Q, and that both arcs have been drawn with a drafting com-
pass set for the same radius. In this case, point T

(a) lies at the center of a square whose vertices are points P, Q, R, and S.
(b) lies on the hypotenuse of a right triangle whose vertices are points R,

T, and Q.
(c) lies at one of the vertices of a right triangle whose other two vertices

are points R and Q.
(d) lies at one of the vertices of an isosceles triangle whose other two

vertices are points S and P.
(e) lies at the center of a circle passing through points P, Q, R, and S.
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18. Imagine that you invent a new mathematical relation among geometrical
objects called “yotto-congruence.” You symbolize this relation by means
of a yen symbol (¥). You are able to prove that for any three geometric
figures Q, R, and S, the following three properties hold true:

Q ¥ Q
(Q ¥ R) ⇒ (R ¥ Q)

[(Q ¥ R) & (R ¥ S)] ⇒ (Q ¥ S)

From this, by definition, yotto-congruence is

(a) a reflexive relation.
(b) a transitive relation.
(c) a commutative relation.
(d) an existential relation.
(e) an equivalence relation.

19. Which of the following statements (a), (b), (c), or (d), if any, is an accu-
rate verbal description of the Pythagorean Theorem?

(a) Given a right triangle, the square of the length of the hypotenuse is
equal to the sum of the squares of the lengths of the other two sides,
if all lengths are expressed in the same units.

(b) Given a right triangle, the length of the hypotenuse is equal to the
sum of the lengths of the other two sides, if all lengths are expressed
in the same units.
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(c) Given a right triangle, the length of the hypotenuse is equal to the
sum of the squares of the lengths of the other two sides, if all lengths
are expressed in the same units.

(d) Given a right triangle, the square of the length of the hypotenuse is
equal to the sum of the lengths of the other two sides, if all lengths
are expressed in the same units.

(e) None of the above statements (a), (b), (c), or (d) is an accurate ver-
bal description of the Pythagorean Theorem.

20. Drawings can be used to help illustrate the meaning of a definition. But
a drawing should never

(a) be published along with a definition.
(b) be made with any tools other than a straight edge and compass.
(c) be a necessary part of a definition.
(d) violate the formal rules of geometric construction.
(e) accompany a proof in set theory or logic.

21. Suppose you are told that if the sum of the digits in an integer n is equal
to 9, then the integer n is divisible by 9 without a remainder. Which, if
any, of the following statements is logically equivalent to this?

(a) If an integer n is divisible by 9 without a remainder, then the sum of
the digits in the integer n is equal to 9.

(b) An integer n is divisible by 9 without a remainder if and only if the
sum of the digits in the integer n is equal to 9.

(c) If an integer n is not divisible by 9 without a remainder, then the sum
of the digits in the integer n is not equal to 9.

(d) An integer n is not divisible by 9 without a remainder if and only if
the sum of the digits in the integer n is not equal to 9.

(e) None of the above

22. Any real number x is equal to itself. This is an example of
(a) the commutative property.
(b) the associative property.
(c) the transitive property.
(d) the symmetric property.
(e) None of the above

23. Suppose you want to prove that a particular positive integer q is com-
posite. Which of the following can you do to accomplish this?
(a) Prove that q/q is a positive integer.
(b) Prove that q/1 is a positive integer.
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(c) Prove that q2 is an odd positive integer.
(d) Prove that 2q is an even positive integer.
(e) None of the above are sufficient to prove that q is composite.

24. Suppose P, Q, and R are the vertices of an equilateral triangle. Then it is
possible to prove that P, Q, and R
(a) coincide.
(b) are collinear.
(c) are mutually equidistant from each other.
(d) do not all lie in the same plane.
(e) define a unique line segment.

25. Suppose you want to prove that a given number x is rational. Which of
the following can you do to accomplish this?
(a) Find two integers a and b such that x = ab, where b ≠ 0.
(b) Find two integers a and b such that x = a + b, where b ≠ 0.
(c) Find two integers a and b such that x = a

b, where b ≠ 0.
(d) Find two integers a and b such that x = a/b, where b ≠ 0.
(e) None of the above are sufficient to prove that x is rational.

26. Suppose you want to prove that the number 640,000,000,000 is a product
of primes. How can you prove this without actually finding the primes?
(a) invoke the GCD (greatest common divisor) theorem.
(b) invoke the “weak version” of the Fundamental Theorem of Arithmetic.
(c) invoke reductio ad absurdum.
(d) invoke DeMorgan’s law for multiplication.
(e) None of the above

27. No rational number is an irrational number, and no irrational number is
a rational number. This is logically equivalent to saying that the sets of
rational and irrational numbers are

(a) disjoint.
(b) empty.
(c) commutative.
(d) equivalent.
(e) reflexive.

28. In a formal geometric construction using a compass and straight edge,
which of the following actions (a), (b), (c), or (d) is impossible or not
allowed?
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(a) Using a straight edge to draw a line segment connecting two specific
points.

(b) Using a straight edge to denote a line through a specific point, but
oriented arbitrarily (at random).

(c) Using a straight edge to denote a ray defined by two specific points,
with the end of the ray at one point, and with the ray passing through
the other point.

(d) Using a straight edge to denote a line defined by two specific points,
such that the line passes through both points.

(e) All of the above actions (a), (b), (c), and (d) are possible, and all are
allowed.

29. Imagine two real numbers, x and y. You aren’t told specifically what they
are, but you are told that it is not true that x is larger than y, and that it is
also not true that x and y are equal. You conclude that x is smaller than y.
You know this because it follows from

(a) the GCD (greatest common divisor) theorem.
(b) the “weak version” of the Fundamental Theorem of Arithmetic.
(c) reductio ad absurdum.
(d) DeMorgan’s law for equality.
(e) None of the above

30. Suppose we want to prove that it is impossible to have a triangle with
straight-line sides, and contained on a flat surface, with interior angles
whose measures add up to 200º. What technique might we consider in
attacking this problem?

(a) Mathematical induction.
(b) Proof by example.
(c) Reductio ad absurdum.
(d) Inductive reasoning.
(e) The probability fallacy.
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Final Exam

Do not refer to the text when taking this test. You may draw diagrams or use a
calculator if necessary. A good score is at least 53 answers (75 percent or more)
correct. Answers are in the back of the book. It’s best to have a friend check your
score the first time, so you won’t memorize the answers if you want to take the
test again.

1. The existential quantifier, symbolized ∃, can be translated into the words

(a) “For all.”
(b) “For every.”
(c) “There exists.”
(d) “There does not exist.”
(e) “For one and only one.”

2. Suppose you are given this axiom and told that it applies to a system of
geometry you will be studying:

• Let L be a straight line, and let P be some point not on L. Then it is
not true that there is one and only one straight line M, in the plane
defined by line L and point P, that passes through point P and that is
parallel to line L.
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From the statement of this axiom, you can be sure that the system of
geometry is

(a) an equivalence relation.
(b) transitive.
(c) non-Euclidean.
(d) a DeMorgan geometry.
(e) non-symmetric.

3. Table Exam-1 is a truth table that denotes two variables (X and Y) along
with several other propositions (P, Q, R, S, and T). What do the truth val-
ues in the column under proposition P represent?

(a) X & Y
(b) X ∨ Y
(c) X ⇒ Y
(d) X ⇔ Y
(e) ¬X

4. In Table Exam-1, what do the truth values in the column under proposi-
tion Q represent?

(a) X & Y
(b) X ∨ Y
(c) X ⇒ Y
(d) X ⇔ Y
(e) ¬X
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T T F T T T T

Table Exam-1. Truth table for Final Exam Questions 3
through 7.



5. In Table Exam-1, what do the truth values in the column under proposi-
tion R represent?

(a) X & Y
(b) X ∨ Y
(c) X ⇒ Y
(d) X ⇔ Y
(e) ¬X

6. In Table Exam-1, what do the truth values in the column under proposi-
tion S represent?

(a) X & Y
(b) X ∨ Y
(c) X ⇒ Y
(d) X ⇔ Y
(e) ¬X

7. In Table Exam-1, what do the truth values in the column under proposi-
tion T represent?

(a) X & Y
(b) X ∨ Y
(c) X ⇒ Y
(d) X ⇔ Y
(e) ¬X

8. Suppose that you want to prove that a certain property holds true for all
the negative integers; that is, for the following set:

Z−− = {−1, −2, −3, −4, −5, . . .}

Which logical technique suggests itself in a case like this?

(a) reductio ad absurdum.
(b) the commutative law for integers.
(c) DeMorgan’s law for integers.
(d) mathematical induction.
(e) the law of implication reversal.

9. Suppose that it is the middle of the winter, and you’re listening to the
weather forecast on the radio. The disc jockey says, “It is probably
snowing in Fairbanks, Alaska right now.” By making this statement, the
disc jockey
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(a) commits DeMorgan’s fallacy.
(b) commits the probability fallacy.
(c) makes an appeal to circumstance.
(d) commits improper use of context.
(e) is being perfectly valid and rigorous.

10. In mathematics, the term rigorous refers to

(a) a logical process in which there exists at least one flaw or fallacy.
(b) an axiom that does not apply to all cases for which it is supposedly

intended, and which is therefore flawed.
(c) a set of axioms and definitions that is inconsistent; that is, it ulti-

mately contains a built-in contradiction.
(d) a process or theory that is carried out or built up based entirely on

valid logic.
(e) inductive reasoning, in which something is shown to be true in most

cases but not necessarily in all cases.

11. Refer to Fig. Exam-1. Suppose you want to prove that if ∆ABC lies
entirely in a flat plane, then the sum of the measures of angles x and y is
equal to 90°. In order to do this proof easily, you would make use of 

(a) the fact that the sum of the measures of the interior angles of a plane
triangle is always equal to 180°.

(b) reductio ad absurdum.
(c) DeMorgan’s theorem for triangles.
(d) the commutative principle for angles.
(e) mathematical induction.
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12. Refer to Fig. Exam-1. Suppose you are given the following facts con-
cerning ∆ABC:

• The length of side a is 15 centimeters (a = 15)
• The length of side b is 20 centimeters (b = 20)
• The length of side c is 23 centimeters (c = 23)

Suppose you are told that the length measurements are exact, according
to instruments designed to measure displacement to a tiny fraction of a
centimeter. From these facts, along with the fact that in Euclidean geo-
metry it is always true that a2 + b

2 = c
2, you can prove that

(a) this scenario is Euclidean.
(b) this scenario is non-Euclidean.
(c) none of the sides of ∆ABC is straight.
(d) ∆ABC lies entirely in a flat plane.
(e) ∆ABC lies entirely on the surface of a sphere.

13. Refer to Fig. Exam-1. Suppose you are given the following facts con-
cerning ∆ABC:

• The measure of angle x is 46° (x = 46°)
• The measure of angle y is 44° (y = 44°)

Suppose you are told that the angle measurements are exact, according to
instruments designed to measure angles to a tiny fraction of a degree.
From these facts, along with the fact that in Euclidean geometry it is
always true that the sum of the measures of the interior angles is equal to
180°, you can prove that

(a) this scenario is non-Euclidean.
(b) at least one of the sides of ∆ABC is not straight.
(c) none of the sides of ∆ABC is straight.
(d) ∆ABC lies entirely on the surface of a sphere.
(e) None of the above

14. Fill in the blank to make the following sentence true and correct: “When
proving a complicated theorem, it can help if we propose and prove one
or more ________ first, using it, or them, to simplify the proof of the
intended theorem.”

(a) definitions
(b) axioms
(c) corollaries
(d) lemmas
(e) implications
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15. Consider two sets of things: the set of plants and the set of trees. You
know that the set of trees is a proper subset of the set of plants. Let P
represent the predicate “is a plant.” Let T represent the predicate “is a
tree.” Let x represent a logical variable. Which of the following state-
ments is true?

(a) (∀x) (Px ⇒ Tx)
(b) (∀x) (Px ⇔ Tx)
(c) (∀x) (Px & Tx)
(d) (∃x) (Px & ¬Tx)
(e) (∃x) (¬Px & Tx)

16. Refer to Table Exam-2. In the symbology of predicate logic, how is the
sentence “Paul is a biology student” written?

(a) Pb
(b) pB
(c) Bp
(d) bP
(e) This sentence cannot be symbolized using the data in the table.

17. Refer to Table Exam-2. In the symbology of predicate logic, how is the
sentence “Carol endorsed three checks” written?

(a) Ce
(b) Ec3
(c) Eccc
(d) c3E
(e) This sentence cannot be symbolized using the data in the table.
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Subject Predicate
Subject Symbol Predicate Symbol

Paul p wrote a check W

Carol c will endorse a check E

Sam s is a biology student B

Molly m was a teacher T

Table Exam-2. Table for Final Exam Questions 16 through 18.



18. Refer to Table Exam-2. In the symbology of predicate logic, how is the
sentence “Molly was a teacher” written?

(a) mT
(b) Tm
(c) T & m
(d) Any of the above
(e) This sentence cannot be symbolized using the data in the table.

19. Refer to Fig. Exam-2. From this graph, it is reasonable to suppose that

(a) the relative frequency, intensity, or amount of phenomenon X is cor-
related (although in a negative way) with the relative frequency,
intensity, or amount of phenomenon Y.

(b) an increase in the relative frequency, intensity, or amount of phe-
nomenon X causes a decrease in the relative frequency, intensity, or
amount of phenomenon Y.

(c) an increase in the relative frequency, intensity, or amount of phe-
nomenon Y causes a decrease in the relative frequency, intensity, or
amount of phenomenon X.

(d) All three of the above (a), (b), and (c)
(e) None of the above (a), (b), or (c)
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20. Refer to Fig. Exam-2. What is meant by the term independent variable
on the horizontal axis of the graph?

(a) It is a factor that causes both phenomena X and Y.
(b) It is a factor that is caused by phenomenon X or phenomenon Y, 

or both.
(c) It is a factor that is caused by both phenomena X and Y.
(d) It is a factor that is not influenced by either phenomenon X or phe-

nomenon Y.
(e) It is a factor that remains constant.

21. A straight line can be considered

(a) zero-dimensional (0D).
(b) one-dimensional (1D).
(c) two-dimensional (2D).
(d) three-dimensional (3D).
(e) to have an undefined number of dimensions.

22. When two triangles have the same shape but are different in size, such that
one can be “pasted down” right over the other if one of them is “magni-
fied” to just the right extent, then the two triangles are

(a) isosceles.
(b) equilateral.
(c) directly similar.
(d) complementary.
(e) None of the above

23. An elementary term is

(a) a term that defies definition, and the meaning of which no one
understands.

(b) a term that is not formally defined, but the meaning of which is
understood.

(c) a term that requires an axiom in order to be defined.
(d) a term that is an element of the set of integers.
(e) a term that is not an element of any set.

24. How can you define the term closed line segment?

(a) Let R and S be distinct points on a straight line X. The closed line
segment RS is the set of all points on X between, but not including,
points R and S. 
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(b) Let R and S be distinct points on a straight line X. The closed line
segment RS is the set of all points on X between points R and S,
including point R but not point S.

(c) Let R and S be distinct points on a straight line X. The closed line
segment RS is the set of all points on X between points R and S,
including point S but not point R.

(d) Let R and S be distinct points on a straight line X. The closed line
segment RS is the set of all points on X between, and including,
points R and S. 

(e) Any of the above

25. Let A and B be two non-empty sets. Let x be a variable. Suppose that the
following sentence is true:

(∀x) (x ∈ B ⇒ x ∈ A)

From this, we can conclude that
(a) sets A and B are disjoint
(b) sets A and B are coincident
(c) sets A and B are non-disjoint and non-coincident
(d) set A is a subset of set B
(e) set B is a subset of set A

26. In propositional logic, the smallest logical element is

(a) a predicate.
(b) an existential quantifier.
(c) a universal quantifier.
(d) a sentence.
(e) an equivalence relation.

27. In a sentence containing a subject, a linking verb, and a subject comple-
ment, the predicate consists of
(a) the linking verb and the subject complement.
(b) the linking verb only.
(c) the subject complement only.
(d) the subject and the linking verb.
(e) the subject and the subject complement.

28. Once a proposition has been proved within the framework of a mathe-
matical system, that proposition becomes
(a) an axiom.
(b) a theorem.
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(c) an equivalence relation.
(d) a contradiction.
(e) an antecedent.

29. A corollary is
(a) a theorem that arises as a secondary result from a significant theorem.
(b) a theorem that is used as part of the proof of a more important theorem.
(c) a theorem that ultimately results in a contradiction.
(d) a theorem proved using reductio ad absurdum.
(e) a theorem proved using mathematical induction.

30. Refer to Fig. Exam-3. Suppose that both of these triangles lie entirely in
a single plane, and you want to prove that the triangles are inversely con-
gruent. You can do this quickly and in a straightforward manner based on
(a) the angle-angle-angle (AAA) axiom.
(b) the angle-side-angle (ASA) axiom.
(c) the side-angle-angle (SAA) axiom.
(d) the side-side-side (SSS) axiom.
(e) None of the above axioms, because these two plane triangles are not

inversely congruent.

31. In a geometric construction, the straight edge should

(a) be as long as possible.
(b) be graduated in units such as centimeters or inches.
(c) not be graduated in units such as centimeters or inches.
(d) be made of clear material to allow optimum visibility.
(e) be one edge of a drafting triangle.
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32. In a geometric construction, which of the following actions is allowed?

(a) Drawing a straight line 10 inches long.
(b) Drawing a circle with a radius of 5 centimeters.
(c) Drawing an arc with a measure of 37°.
(d) Drawing a right angle as part of the process of bisecting a line segment. 
(e) None of the above (a), (b), (c), or (d) are allowed.

33. The universal quantifier, symbolized ∀, can be translated into the words

(a) “For every.”
(b) “There exists.”
(c) “There does not exist.”
(d) “For one and only one.”
(e) Nothing! There is no such thing as a universal quantifier!

34. According to some scientists, the ice ages (in which vast regions of the
earth’s land mass were covered by glaciers) took place because the sun
got dimmer, thereby allowing the whole planet to cool off. What can be
said with rigorous mathematical certainty about this?

(a) It is impossible, because no one with scientific instruments was there.
(b) It is possible, because some people think things happened that way.
(c) It is likely, because a lot of people think things happened that way.
(d) It can be proven by inductive reasoning.
(e) Things either happened that way, or else they did not.

35. Refer to Fig. Exam-4. Suppose that both of these triangles lie entirely in
a single plane, and you want to prove that the triangles are directly sim-
ilar. You can do this quickly and in a straightforward manner based on
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(a) the fact that the sum of the measures of the interior angles of a plane
triangle is equal to 180°, so we can deduce the measures of all three
angles of both triangles; then we can invoke the definition of direct
similarity.

(b) the fact that the sum of the measures of the interior angles of a plane
triangle is equal to 180°, so we can deduce the measures of all three
angles of both triangles; then we can invoke the angle-angle-angle
(AAA) axiom.

(c) the fact that the sum of the measures of the interior angles of a plane
triangle is equal to 180°, so we can deduce the measures of all three
angles of both triangles as well as the length of one of its sides; then
we can invoke the side-angle-angle (SAA) axiom or the angle-side-
angle (ASA) axiom.

(d) the fact that the sum of the measures of the interior angles of a plane
triangle is equal to 180°, so we can deduce the lengths of all three
sides of both triangles; then we can invoke the side-side-side (SSS)
axiom.

(e) None of the above, because there isn’t enough information given in
the figure to prove anything in particular about the two triangles.

36. Suppose there are two phenomena, symbolized F and G. Suppose F and
G are correlated. This means that

(a) F causes G.
(b) If G is true, then F is true.
(c) If F is true, then G is true.
(d) F is logically equivalent to G.
(e) None of the above

37. Refer to Table Exam-3. What does this prove?

(a) An element in the intersection of two sets is not in their union.
(b) An element in the union of two sets is not in their intersection.
(c) An element that is not in the union of two sets is not in their inter-

section.
(d) An element that is in both of two disjoint sets is not in their inter-

section.
(e) An element that is in neither of two disjoint sets is in their intersec-

tion.

38. In Table Exam-3, what is the reason for the statement in line 5?

(a) This follows from the commutative law of disjunction.
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(b) This follows from the associative law of conjunction.
(c) This follows from the distributive law of disjunction.
(d) This follows from the law of implication reversal.
(e) This follows from one of DeMorgan’s principles.

39. According to the well-ordering axiom, every non-empty set of positive
integers contains

(a) a largest element.
(b) an element that is equal to the mathematical average of all the ele-

ments.
(c) a prime number.
(d) a composite number.
(e) a smallest element.

40. Using one of Euclid’s postulates, it is easy to prove that all right angles

(a) are equal in measure.
(b) are equivalent to 1⁄4 revolution.
(c) have measures of 90°.
(d) have the same measure as the angle at which two perpendicular lines

intersect.
(e) have all four of the above properties (a), (b), (c), and (d).
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Statements Reasons

Let A and B be non-empty sets. We will use these in the proof.

Let c be a constant. We will use this in the proof.

Assume c ∉ A ∪ B. This is our initial assumption.

¬[(c ∈ A) ∨ (c ∈ B)]. This follows from the definition
of set union.

¬(c ∈ A) & ¬(c ∈ B). You’ll get a chance to provide
this reason in Exam Question 38.

(c ∉ A) & (c ∉ B). This is simply another way of
stating the previous line.

c ∉ A ∩ B. This follows from the definition
of set intersection.

Table Exam-3. Table for Final Exam Questions 37 and 38.



41. The absurdum quantifier, symbolized ∀, can be translated into the words

(a) “For every.”
(b) “There exists.”
(c) “There does not exist.”
(d) “For one and only one.”
(e) Nothing! There is no such thing as an absurdum quantifier!

42. Refer to Fig. Exam-5. This is an example of

(a) a logic flowchart.
(b) an implication diagram.
(c) a geometric construction of the bisection of an angle.
(d) a Venn diagram.
(e) a DeMorgan diagram.

43. Refer to Fig. Exam-5. The shaded region represents

(a) set A only.
(b) set B only.
(c) the intersection of sets A and B.
(d) the union of sets A and B.
(e) None of the above

44. Refer to Fig. Exam-5. The region that is not shaded represents
(a) set A only.
(b) set B only.
(c) the intersection of sets A and B.
(d) the union of sets A and B.
(e) None of the above
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45. Conjunction is an operation that can best be represented by the word or
phrase
(a) “or.”
(b) “logically implies.”
(c) “and.”
(d) “not.”
(e) “if and only if.”

46. Disjunction is an operation that can best be represented by the word or
phrase
(a) “or.”
(b) “logically implies.”
(c) “and.”
(d) “not.”
(e) “if and only if.”

47. A straight angle is the equivalent of
(a) 1⁄4 revolution.
(b) 1⁄2 revolution.
(c) 3⁄4 revolution.
(d) a complete revolution.
(e) any integral multiple of 1⁄2 revolution.

48. Suppose you want to prove that all of the positive integers have a certain
property. What method suggests itself here?
(a) Mathematical induction.
(b) The law of implication reversal.
(c) DeMorgan’s principle.
(d) Reductio ad absurdum.
(e) Inductive reasoning.

49. Suppose we are able to prove that a particular number t cannot be
expressed as the ratio of any two integers. By proving this, we have
shown that t is

(a) a rational number.
(b) a composite number.
(c) an irrational number.
(d) a prime number.
(e) not defined.
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50. Suppose we show that a number w can be expressed as a ratio of integers
with a nonzero denominator. This proves that w is

(a) a rational number.
(b) a composite number.
(c) an irrational number.
(d) a prime number.
(e) not defined.

51. A mathematical proof that is carried out by demonstrating the truth or
validity of a single example

(a) is never acceptable, because it cannot be rigorous.
(b) can work for some propositions that contain existential quantifiers.
(c) always results in a contradiction.
(d) gives rise to an infinite number of other examples.
(e) can only be done using mathematical induction.

52. How can you define the term coincident lines?

(a) Let A, B, C, and D be distinct points. Line AB, defined by points A
and B, and line CD, defined by points C and D, are coincident lines
if and only if points A, B, C, and D are coplanar.

(b) Let A, B, C, and D be distinct points. Line AB, defined by points A
and B, and line CD, defined by points C and D, are coincident lines
if and only if points A, B, C, and D are coincident.

(c) Let A, B, C, and D be distinct points. Line AB, defined by points A
and B, and line CD, defined by points C and D, are coincident lines
if and only if points A, B, C, and D are perpendicular to each other.

(d) Let A, B, C, and D be distinct points. Line AB, defined by points 
A and B, and line CD, defined by points C and D, are coincident lines
if and only if points A, B, C, and D lie at the vertices of a rectangle.

(e) None of the above

53. Refer to Fig. Exam-6. Note the four shaded triangles. Their sides each
have lengths s, t, and u, with right angles at the vertices connecting adja-
cent sides of lengths s and t. Any two of these four shaded triangles can
be proven directly congruent in a single step using either

(a) the side-side-side (SSS) axiom or the angle-angle-angle (AAA)
axiom.

(b) the side-side-side (SSS) axiom or the side-angle-angle (SAA) axiom.
(c) the side-side-side (SSS) axiom or the angle-side-angle (ASA) axiom.
(d) the side-side-side (SSS) axiom or the side-angle-side (SAS) axiom.

Final Exam268



(e) the side-angle-angle (SAA) axiom or the angle-angle-angle (AAA)
axiom.

54. Suppose we have a huge positive integer. Call it n. We suspect that n is
composite, but we want to prove it. How can we do this?

(a) Use a computer to test every positive integer k such that 1 < k < n,
and see if any of them is equal to exactly n/2. If any of them is, then
n is not composite. If none of them is, then n is composite.

(b) Use a computer to test every positive integer k such that k > n, and
see if any of them is equal to exactly 2n. If any of them is, then n is
composite. If none of them is, then n is not composite.

(c) Use a computer in an attempt to find a set of primes {p1, p2, p3, . . . ,
pk}, where k is some positive integer larger than 1, such that that 
n = p1 × p2 × p3 × . . . × pk. If such a set can be found, then n is com-
posite. If no such set can be found, then n is not composite.

(d) Use a computer in an attempt to find a set of primes {p1, p2, p3, . . . ,
pk}, where k is some positive integer larger than 1, such that that 
n = p1 + p2 + p3 + . . . + pk. If such a set can be found, then n is not
composite. If no such set can be found, then n is composite.

(e) Use a computer in an attempt to prove that no positive integer
smaller than n can be composite, by testing each and every one of
them. If such a proof can be executed, then n is composite.
Otherwise, n is not composite.

55. Suppose you want to prove that there is no such thing as a largest posi-
tive integer that is a product of prime numbers. What method suggests
itself here?
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(a) Mathematical induction.
(b) The law of implication reversal.
(c) DeMorgan’s principle.
(d) Reductio ad absurdum.
(e) No method suggests itself, because the proposition is not true.

56. Let the predicate M represent “is a man.” Let the predicate F represent
“like (or likes) to watch football games.” Let x be a logical variable. How
would you write the sentence “Some men like to watch football games”
in predicate logic symbology?

(a) ∃M & ∃F
(b) ∃M ⇒ F
(c) Mx ⇒ Fx
(d) (∃x) (Mx & Fx)
(e) (∃x) (M ⇒ F)

57. The if/then operation in propositional logic can be represented by the
word or phrase

(a) “or.”
(b) “logically implies.”
(c) “and.”
(d) “not.”
(e) “if and only if.”

58. When two triangles have exactly the same size and shape, so that one can
be “pasted down” on top of the other without flipping either of them over
(although rotation is allowed), the two triangles are

(a) isosceles.
(b) equilateral.
(c) inversely similar.
(d) complementary.
(e) None of the above

59. Let A and B be two non-empty sets. Let x be a variable. Suppose that the
following sentence is true:

(∀x) (x ∈ A ⇒ x ∉ B)

From this, we can conclude that

(a) sets A and B are disjoint
(b) sets A and B are coincident
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(c) sets A and B are non-disjoint and non-coincident
(d) set A is a subset of set B
(e) set B is a subset of set A

60. Suppose you want to prove that if a number is not an integer, then it can-
not be a rational number. What method suggests itself here?

(a) Mathematical induction.
(b) The law of implication reversal.
(c) DeMorgan’s principle.
(d) Reductio ad absurdum.
(e) No method suggests itself, because the proposition is not true.

61. Consider the following statement in propositional logic:

[(X ∨ Y) ∨ Z] ⇔ [X ∨ (Y ∨ Z)]

This is an expression of

(a) the associative law for disjunction.
(b) DeMorgan’s law for conjunction.
(c) the law of implication reversal.
(d) the law of logical equivalence.
(e) reductio ad absurdum.

62. Suppose you want to prove the proposition (∃x) Px & Qx. Let k be a con-
stant, and an element of the set for which the variable x is defined. In
order to prove the proposition using the constant k, the minimum that we
must do is show the truth of the statement

(a) Pk ∨ Qk.
(b) Pk. 
(c) Qk.
(d) At least one of the statements (a), (b), or (c)
(e) Both of the statements (b) and (c)

63. Suppose Jim owns the only dry cleaning company in the town of
Blissville. It is a one-person operation; he is the only employee. Jim, like
every other adult in Blissville, owns a business suit. Jim cleans the busi-
ness suits for all the adults, but only those adults, in Blissville who don’t
clean their own business suits. What can be “proven” about Jim?

(a) If Jim cleans his own business suit, then he does not.
(b) If Jim does not clean his own business suit, then he does.
(c) Jim does not exist.
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(d) This scenario is a paradox.
(e) All of the above

64. Logical equivalence can be represented by the word or phrase

(a) “or.”
(b) “logically implies.”
(c) “and.”
(d) “not.”
(e) “if and only if.”

65. Suppose you are building a mathematical theory, and you come up with
a proof that a certain statement is true. Later, you come up with a proof
that the negation of the same statement is true. Which of the following
cannot possibly be the case?

(a) This always happens sooner or later in the process of mathematical
theory-building, and it’s nothing to worry about.

(b) Your set of axioms is inconsistent.
(c) One or more of the proofs you have done up to this point contains a

flaw.
(d) Your entire theory is flawed because it contains a contradiction.
(e) You should consider eliminating one or more of your axioms, and

starting the theory-building process all over again.

66. Refer to Fig. Exam-7. This shows the construction of a line segment
between two specific points, P and Q. Using the straight edge alone
(which in this case is one edge of a drafting triangle), we can, within the
rules allowed for geometric constructions,
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(a) construct the midpoint of line segment PQ.
(b) extend line segment PQ in both directions to denote line PQ.
(c) construct a ray perpendicular to line segment PQ.
(d) construct a circle with radius equal to the length of line segment PQ.
(e) do none of the above operations (a), (b), (c), or (d).

67. Refer to Fig. Exam-7. This shows the construction of a line segment
between two specific points, P and Q. Using the straight edge alone
(which in this case is one edge of a drafting triangle), we can, within the
rules allowed for geometric constructions,

(a) extend line segment PQ past point P to denote the closed-ended 
ray QP.

(b) construct an angle with a measure equal to the measure of any of the
three angles at the vertices of the drafting triangle. 

(c) construct a line segment having twice the length of line segment PQ.
(d) construct a line segment having any positive integral multiple of the

length of line segment PQ.
(e) do none of the above operations (a), (b), (c), or (d).

68. Suppose we have a huge positive integer. Call it n. We suspect that n is
prime, but we want to prove it. How can we do this?
(a) Use a computer to test every positive integer k such that 1 < k < n,

and see if any of them divides n without a remainder. If any of them
does, then n is not prime. If none of them does, then n is prime.

(b) Use a computer to test every positive integer k such that 1 < k < n,
and see if any of them divides n without a remainder. If any of them
does, then n is prime. If none of them does, then n is not prime.

(c) Use a computer in an attempt to find a set of primes {p1, p2, p3, . . . ,
pk}, where k is some positive integer larger than 1, such that that 
n = p1 × p2 × p3 × . . . × pk. If such a set can be found, then n is prime.
If no such set can be found, then n is not prime.

(d) Use a computer in an attempt to find a set of primes {p1, p2, p3, . . . ,
pk}, where k is some positive integer larger than 1, such that that 
n = p1 + p2 + p3 + . . . + pk. If such a set can be found, then n is prime.
If no such set can be found, then n is not prime.

(e) Use a computer in an attempt to prove that no positive integer larger
than n can be prime, by testing each and every one of them. If such
a proof can be executed, then n is prime. Otherwise, n is not prime.

69. Consider the following series of statements:
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(∀x) (Px ⇒ Qx)

¬Qg

¬Pg

This is a symbolization of a proof by means of

(a) reductio ad absurdum.
(b) mathematical induction.
(c) DeMorgan’s law for implication.
(d) the commutative law for implication.
(e) the law of implication reversal.

70. Which of the following (a), (b), or (c), if any, is an example of a sub-
ject/verb/object (SVO) sentence?

(a) Jim is a brilliant student.
(b) Paula is a soccer player.
(c) Ray was a math major.
(d) All of the above (a), (b), and (c) are SVO sentences.
(e) None of the above (a), (b), or (c) is an SVO sentence.
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16. a 17. c 18. b 19. b 20. a
21. c 22. c 23. a 24. a 25. d
26. e 27. c 28. e 29. e 30. c
31. b 32. c 33. c 34. b 35. d
36. b 37. b 38. e 39. a 40. b

CHAPTER 5
1. b 2. a 3. c 4. b 5. d
6. d 7. c 8. b 9. d 10. b

CHAPTER 6
1. a 2. a 3. b 4. c 5. d
6. c 7. a 8. d 9. b 10. c

CHAPTER 7
1. d 2. b 3. c 4. a 5. d
6. b 7. b 8. d 9. b 10. c
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TEST: PART TWO
1. e 2. c 3. a 4. c 5. e
6. c 7. d 8. b 9. a 10. c
11. b 12. b 13. e 14. d 15. d
16. c 17. c 18. e 19. a 20. c
21. c 22. e 23. e 24. c 25. d
26. b 27. a 28. e 29. e 30. c

FINAL EXAM
1. c 2. c 3. e 4. b 5. d
6. a 7. c 8. d 9. b 10. d
11. a 12. b 13. e 14. d 15. d
16. c 17. e 18. b 19. a 20. d
21. b 22. c 23. b 24. d 25. e
26. d 27. a 28. b 29. a 30. e
31. c 32. d 33. a 34. e 35. a
36. e 37. c 38. e 39. e 40. e
41. e 42. d 43. a 44. e 45. c
46. a 47. b 48. a 49. c 50. a
51. b 52. e 53. d 54. c 55. d
56. d 57. b 58. e 59. a 60. e
61. a 62. e 63. e 64. e 65. a
66. b 67. a 68. a 69. e 70. e
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A Mathematician’s Apology, 58
addend, 179
addition, 179
additive-inverse axiom, 181
AIA Theorem, 160, 162, 168
alternate interior angles, 159–160, 162, 168
AND, 5
angle, 137–140, 214–217
angle-side-angle (ASA) axiom, 152–153
antecedent, 7, 97–98, 101–102
arc, 206–207
arithmetic mean, 78
ASA axiom, 152–153, 167
associative law for conjunction, 15, 19–20
associative law for disjunction, 15, 20–21
atomic proposition, 9
average, 78–79
axiom, 60–62
axioms in arithmetic, 180–182
axioms in geometry, 150–155

begging the question, 95
belief, 91
bisection, 209–217

bisection of angle, 214–217
bisection of line segment, 210–213 
brackets, curly, 13–14
brackets, square, 13–14

calculus, 3–4
Cantor, 201
cardinality, 176
causation, 84–91
cause-and-effect, 83–91
circle, 59, 103–105, 205, 207
circumference, 103–105, 112
circumstance, 96
closed-ended half-line, 133
closed-ended ray, 133–134
closed line segment, 132–133
coincidence, 85
coincident lines, 135
coincident sets, 175
collinear line segments, 135
collinear points, 134
collinear rays, 135
commutative axiom for addition, 182, 

197
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commutative axiom for multiplication, 182, 
197

commutative law for conjunction, 15, 18, 20
commutative law for disjunction, 15,

18–19, 20–21
compass, 202
complement, 33–35
complementary angles, 140
complex logical operation, 12
composite number, 229
compound logical operation, 12
compound sentence, 5
congruent triangles, 142–149
conjunction, 5, 10, 15–20, 43–44
consequent, 7
constant, 34–35, 43–47, 174
construction, 201–216
context, 96
contradiction, 14, 58–59, 61, 69, 76
contrapositive, law of, 16
convergent series, 107
coplanar points, 134
corollary, 65–66, 69
correlation, 84–91
counting number, 70
curly brackets, 13–14

deduction, 71–72
deductive reasoning, 71–72
definition, 59–60
DeMorgan’s law for conjunction, 16, 23, 

26
DeMorgan’s law for disjunction, 16–19, 24,

184–185, 191–192, 194–196
denominator, 180
denying the antecedent, 97–98, 101–102
diameter, 103–105, 12
difference, 179

difference-between-fractions axiom, 181,
191, 193

direct congruence, 145–146, 148
direct similarity, 143–144, 149
disjoint sets, 50–51, 176
disjunction, 6, 10, 15, 16–17, 43–44
disjunctive syllogism, 96–98
distributive axiom, 182, 196–197
distributive law, 17, 24–25
division, 180
division-by-1 axiom, 181, 187
doodad, 48–53, 73
double negation, law of, 14
drafting compass, 202
drafting triangle, 202

element, 59, 173–174
elementary term, 60, 75, 132, 179–180
empty set, 59, 176
equality, 179, 180
equality axiom, 180, 197
equals sign, 12
equilateral triangle, 142
equivalence relation, 180
Euclid, 61–62, 69–71
Euclidean geometry, 70, 108, 131–172
Euclid’s Fifth Postulate, 62
Euclid’s postulates, 61–62
even integer, 221
excluded end point, 133
exclusive OR, 6
existential quantifier, 39–41, 93
existential proposition, 76
extension axiom, 150
extraction of the square root, 102

factor, 179
fallacy, 83
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Fermat’s Last Theorem, 201
first-order logical system, 69
Fundamental Theorem of Arithmetic,

230–231, 233
fuzzy logic, 5, 92

GCD Theorem, 226–228
geodesic, 68
geometric construction, 201–216
Gödel, Kurt, 69, 201
grammar, 42
greatest common divisor (GCD), 226–228
greatest common factor (GCF), 226

half-open line segment, 132–133
Hardy, G. H., 58, 69
hasty generalization, 95–96
highest common factor (HCF), 226
hypotenuse, 217–219

IFF, 8
IF/THEN, 6–7
implication, 6–9, 11, 16, 43–44
implication reversal, law of, 16, 22, 

65–66
included angle, 141
included end point, 133
included side, 141
inclusive OR, 6
independent variable, 84–86
induction, mathematical, 78–80, 94
inductive reasoning, 100
inequality, 179
infinite sequence, 105–108
infinite series, 106
integer, 74, 76–77, 93–94, 177–179,

187–195, 221
interior angle, 67–68, 141

intersection, 175–177, 182–186
inverse congruence, 147–149
inverse similarity, 144–145, 149
irrational number, 76–77, 178–179,

189–190
isosceles triangle, 142, 161–163, 211–212

law of contrapositive, 16
law of double negation, 14
law of implication reversal, 16, 22, 65–66
laws of propositional logic, 13–17
lemma, 65
line, 60, 132, 205–206
line segment, 132–133, 204, 210–213
linking verb, 33–35
logic value, 9
logical conjunction, 5, 10, 43–44
logically consistent axioms, 61
logical disjunction, 6, 10 43–44
logical equivalence, 8–9, 11–13, 43–44, 

90
logical implication, 6–9, 11, 43–44
logical negation, 4–5, 9, 43–44
logical system, first-order, 69

mathematical induction, 78–80, 94
mathematical system, 57
mathematical theory, 57–63, 69–71
measure of angle, 67, 139
member, 173–174
minuend, 179
multi-valued numbers, 111
multiple factors, in causation, 89
multiple constants, 44–47
multiple quantifiers, 41
multiple variables, 45–46
multiplication, 179
mutually distinct points, 134
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natural number, 70, 74–77, 94, 177–179
negation, 4–5, 9, 43–44
negatively curved surface, 66–67
nesting of operations, 13
no-largest-prime theorem, 234–236
non-Euclidean geometry, 63
NOT, 4
noun, 31–32
null set, 59
number, 75, 177
number theory, 58
numerator, 180

object, 32–35
odd integer, 221
odd-times-odd theorem, 222, 225
open-ended half-line, 134
open-ended ray, 134
open line segment, 133
OR, 6

paradox, 83
parallel axiom, 150
parallel lines, 135
parallel line segments, 135–136
parallel rays, 136–137
Parallel Postulate, 62, 65
parentheses, 13–14
perpendicular lines, 140
perpendicular line segments, 140
perpendicular rays, 140
pff, 47
pi, 103–105
plane, 60, 132
plane geometry, 131–172
point, 60, 132, 203–204
point of intersection, 134
polygon, 101–102

poorly-formed formula (pff), 47
positively curved surface, 66
postulate, 60–62
precedence, 13–14, 42
predicate, 31, 34–35, 43
predicate calculus, 31
predicate logic, 31–55, 72
prime-factor corollary, 232–233
prime-factor theorem, 230–231, 233
prime number, 70, 229–236
probability, 91–93
probability fallacy (PF), 91–93, 100
product, 179
product-of-fractions axiom, 181, 

194–195
product-of-integers axiom, 180, 191–196,

234–235
“proof” by example, fallacious, 93–94
proper subset, 175
proposition, 4, 57, 63, 69, 76
propositional calculus, 3
propositional logic, 3–30, 43, 72
pseudorandom numbers, 103
Pythagorean Theorem, 64–66, 216–219,

221

Q.E.D., 13
quantifier, 37–42, 47
Quod erat demonstradum, 13
quotient, 180
quotient-of-fractions axiom, 181, 

194–196

radius, 103–105
random numbers, 102–103
randomness, 102–103
ratio, 180
ratio of integers in lowest terms, 221
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ratio operation, 180
rational number, 74–75, 77–80, 93–94,

178–179, 187–195
ray, 134, 204–205
real number, 74–75, 179, 188–190
reductio ad absurdum, 76–77, 105,

223–225, 234
reflexive property, 180
regular hexagon, 163–165
right angle, 139–140, 213
right angle axiom, 150
right triangle, 142, 217–219
rigor, 18, 58–59
Russell’s Paradox, 105

SAA axiom, 154–155, 168
SAS axiom, 151–152, 212
sentence, 4
sentence structure, 31–37
sentential calculus, 3
sentential logic, 3
sequence, 105–108
series, 106–107
set, 58–60, 173–177
set intersection, 175–177, 182–186
set theory, 58–60
set union, 175–177, 182–186
side-angle-angle (SAA) axiom, 154–155,

168
side-angle-side (SAS) axiom, 151–152
side-side-side (SSS) axiom, 150–151,

156–157
sides of angle, 138
sides of triangle, 140–141
similar triangles, 142–149
SLVC, 33–34, 36, 59
sphere, 59, 103–105
square brackets, 13–14

square root, 102, 111, 220–225
square root of 2, 220–225
square units, 219
SSS axiom, 150–151, 156–157, 211–212,

216–217
statements/reasons (S/R) proof, 110
straight angle, 139, 160–161
straight edge, 202
strong theorem, 73–74
subject, 31
subject/linking verb/complement (SLVC),

33–34
subject/verb (SV), 32
subject/verb/object (SVO), 32–33
subset, 175
subtraction, 179
subtrahend, 179
sum, 179
sum-of-fractions axiom, 181, 190–192
sum-of-integers axiom, 180, 234–235
supplementary angles, 139
SV, 32
SVO, 32–33, 36
syllogism, 96–98
symmetric property, 180
syntax, 42–43

theorem, 20, 57, 63–69, 73–74
Theorem of Pythagoras, 64–66, 216–219,

221
transitive property, 180
transversal, 135
triangle, 101–102, 140–149
trichotomy, 226–228
trichotomy axiom, 226, 228
truth table, 9–13, 17–27, 90
truth-table proofs, 17–27
two-point axiom, 150
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undefined term, 60
union, 175–177, 182–186
units squared, 219
universal quantifier, 37–39, 93–94
universal set, 73–74
universe, 73–74

variable, 9, 35–36, 38, 40, 43, 45–46, 174
variable, independent, 84–86
Venn diagram, 47–53, 176–177, 182–183
verb, 32

vertex of angle, 138
vertices of triangle, 140–141

weak theorem, 73
well-formed formula (wff), 42–47, 52–53
well-ordering axiom, 229, 231
wff, 42–47, 52–53
Wheel Paradox, 112
widget, 48–53, 73

XOR, 6
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