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Preface

This text is intended to serve as an introduction to the geometry of the action
of discrete groups of Mébius transformations. The subject matter has now
been studied with changing points of emphasis for over a hundred years, the
most recent developments being connected with the theory of 3-manifolds:
see, for example, the papers of Poincaré [77] and Thurston [101]. About
1940, the now well-known (but virtually unobtainable) Fenchel-Nielsen
manuscript appeared. Sadly, the manuscript never appeared in print, and this
more modest text attempts to display at least some of the beautiful geo-
metrical ideas to be found in that manuscript, as well as some more recent
material.

The text has been written with the conviction that geometrical explana-
tions are essential for a full understanding of the material and that however
simple a matrix proof might seem, a geometric proof is almost certainly more
profitable. Further, wherever possible, results should be stated in a form that
is invariant under conjugation, thus making the intrinsic nature of the result
more apparent. Despite the fact that the subject matter is concerned with
groups of isometries of hyperbolic geometry, many publications rely on
Euclidean estimates and geometry. However, the recent developments have
again emphasized the need for hyperbolic geometry, and I have included a
comprehensive chapter on analytical (not axiomatic) hyperbolic geometry.
It is hoped that this chapter will serve as a *‘dictionary ” of formulae in plane
hyperbolic geometry and as such will be of interest and use in its own right.
Because of this, the format is different from the other chapters: here, there is
a larger number of shorter sections, each devoted to a particular result or
theme.

The text is intended to be of an introductory nature, and I make no
apologies for giving detailed (and sometimes elementary) proofs. Indeed,
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many genmetric errocs occur in the liserature and (his is perhaps due, 1o
some extent, [0 an omission of the details, [ have kept the prerequisites to a
minimum and, where it seems worthwhile. I bave corsidered the same topic
from different points of view. o part, this is io recognition of the fag: tha)
readers do nar always read the pages sequeniially. The list of referenges is
ned comprehensive and 1 have not always gven the original source of 3
result. I'or eaze of referstice. Theorsms, Definitions, ete, are numberad
collectively in each section (2.4.1, 2.4.2, . )

F owe much to many colleagues and friends witl whont I have discussed
the subject matter over the years, Special mention showld be made, however,
of P. 1. Wicholls and P. Waterman who read an carlicr version of the manu-
script, Professor B W, Gehring who encouraged me te write the ext and
conducted a series of seminars on parts of the maouseript, and the notes
and leclures of L. V. Ablfors, The errors that remain are mine.

Cambridge, 1082 Aran F. BEarDoy
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CHAPTER 1
Preliminary Material

81.1. Notation

We use the following notation. First, £, Q, B and € denote the integers, the
rationals, the real and complex nutnbers respectively: H denetes the el of
quaternions (Section 2.4).

As usual, B" denetes Buclidean n-space, a typical point in this being
X=ix.,.. ., x,) with

Xi= (A )t

Mote that if § = U, then p~'% denotes (he positive square root of v The
standard basis of * is £,,...,¢, where, for example, ¢, ={1.0,..., 0}
Certan subsets of B warrant speciul mention, namely

B" = {xeR": |x| = 1}
H* = Ixel" x> 0,
and
Bl IxeR i =10

Tn the case of C (identificd with B2 we shall use A and A for the unit
disc and unit cirele respeotively.

The notation x ~» x* {for example) denotes the function mapping x Lo x*:
the domain will be clear from the context. Functions (maps or iransforma-
tions) act on the leff: for brevity, the image ¥ (x) is often written as fx (omilting
bruckers) The composition of fumctions is written as fg: this 13 the map
k= {g(x))
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Twno s2is 4 and B meet (or A meels B)if A m B 2 (7. Finally, a property
F(rYholds for almost al! #{or all sufficiently targe n) iF it fails to hold for anly
& finste szt of i,

§1.2, Inequalities

Ali the inequalities that we need are derivable from Jensen's mequality: fora
proof of this, see [0, Chapter 3.

Jensen's Ineymality, Let ;@ be g positive measure ar a sel X with p(X1 =1,
fer 11X — o, ) be p-integrable and fet $: (2 B — & be any convex Junction,
Then

@(ffd;a)g (éf) du. (1.21)
v X X

Jensen's inequality includes Hilder's incquality

Jl;{q ril“ < (’ r-rllr_z dﬂ]llz (szgz dﬂ)_l

-

ax a special case: the discrete form of this is the Caucliy-Schwirys inequality

2w < (3 ey O By

for real u, and &,. The complex case follows from the real case and this can, of
course, be proved by elementary means.

Taking X = {x,,.... x.} and &ix) = «, we ({ind that {1.2.1) wields the
general Arithretic—-Geometric mean ingquahty

R g N 0

where i has mass u, at x; and y, = dif ()

In arder to apply (1.2.1) we need a supply of convex functions: a sufficient
condition for ¢ to be convex is that @'3' = 0 on (g, b). Thus, for exampiz,
the functions cot, tan and cot® are all convex on (0, 7/2). This shows, for
instance, that if &4, ..., &, are all in {0, £/2) then

{122}

cm(ﬂl -I—---+ﬁ',,)ﬁm1£:|] +---+c0tﬁn.
rl

L

As anoiher application, we prove that if x and y are in 0, 7/2) and
x + b= w2 then

tun x tan y < Ian"'(x—?) (1.2.3)



Ly

414, Topnlogs

Writing w = {x + )72, wo have

tan w4 tan A

=1a
[ — tan x tun y uix + 7]

2 tun w
| —tan®w’
Ag tun is conver (1.2.1) vields
tan x = tan y = Z1anw

and the desired ineguality follows immadiately (noling that tan® w < t so
baoth denominators ame pogitive).

§1.3. Algebra

Wi shall assume familiatity with the basic 1d2as concerning groups and {to &
leascr extent) vector spaces, For example, we shal: use elemenlary facts about
the group S, of perimutations of L 2,.. .. #i:in particular, & 15 peperated
by trapspositions, As anclther example, we mention that f 0: G — 4 5 «
homaomorphism of fhe growp G onto the group H, then the Ternel K of 0 (5«
rormal subgroup of O and the guottent group GYK (s lnomorphic to H.

Lot g be an element in the group f. The elements conjugete 1o o are the
elements Agh~' in G (e G) and the conjugacy classes {hgh *:he G}
partition (7. In passing, we mention that the maps x — xgx "t and x — geg ™!
fboth of & onlo itself] play a special role in the later worls, 'The commuiator
of g and his

[, 2] = ghg™ *h7

for our purposes this shauld be viewed as the composition of g and a
comzugale of g ~L

Tct & be a group with scheroups ) {i belonging to some indexing set),
We assuimne that the anion of the 5 generate (5 and that different G, have only
the ifentity in common. Then & s the free product of the G i and ooly if
2ach g in € has a unique expression as g, -« g, Whore ng bwo conseculive g,

beleng to the same ;. Examples of this will ocour later in the text

§1.4. Topelogy

We shall assume a knowledge of topology sufficient, for cxampie, to discuss
Hausdorff spaces, connected spaces, compact spaces, product spaces and
homeomorphismes. 1n particular, if s o 1-1 continuows map of g compact
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space X onto o Hausdorf] space ¥, chen [ 15 o homeamarhism, As special
examples of tapologies we mention the discrete topology (in which every
subset iz open) and the topology derived from a metric p ot a sel X An
isometry [ of one mettic space (X, p) onto anather, say [V, o), sahshes

af {x. fy) = plx, )

and js necessartly a homepmorphism.

Briefly, we discuss the construction of the guotient topology induced by a
given function. Let X be any topological upace, let ¥ be any non-emply set
andletf: X — ¥beany function. A subscl Fof ¥is openifand only il § (1)
is an open subset of X: the class of gpen subsels of ¥ is indeerd a topology
F, on ¥ and is called the guotient topology indueed by fWith this topology,
S 1z automarically continuous. The lollowing two results on the guotiem
topology are useful

Propoaition L.4.1. Let X be o topological spuce and suppose cha! | maps X
oato T, Let 7 be any topology on ¥ ardd let Z; be the quotient wpology on ¥
induced by f.

(L) I X — (¥, F Y is cantfimeous, then & < 5p
(2) If 1o X — (¥, 571 s continuous and open, then & = 3,

Proor. Suppose that /™ ¥ — (¥, F)is continuous. 1F ¥ isin %, then 7 (1)
is in open in X and so V is i & I in addition, f: X — (¥, &) 15 an apen
map then V¥ in 77 implies that f~'(F)is open in X and so /{f " '¥}isin 7
ﬁsfassmcmn&.,f(f“l’j*— P’suf‘gﬁ' O

Proposition 1.4.2. Suppese that { maps X into T where X and ¥ are topological
spaces, Y having the guotient topology Fe. For each map g1 ¥ = Z define
g X = Zhyg, = gf Then g is contimmeous  amd ondy I gy i continuons.

Prcor, As f is continuous, the continuity of g implies that of g,. wow suppose
that g, is continuous. For an open subser ¥V of £ {we assume, of course, that
Z is a topalogical space) we have

(g ) (Vy=F"1g ™V}

and this is open in X. By the definition of the quouent topology, g~ ¥ ¥ is
open in Y a0 g is contimious, O

An alternative appraach ta the guotient topology is by equivalence rela-
tions. I X carries an equivalence relation R with equivalence classes [x],
then X/R (the space of equivalence classes) inherits the quotient topology
induced by the map x+~ [x]. Equally, any surjective function §-X — ¥
induces an equivalence relation R on X by xRy if and only # f{x} = f(¥)
and ¥can be identifisd with X/R. As an example, let & be a group of homeo-
merphisms of « wepological space X onto self and let f map each x in X
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toits G-orbit [x] m X/G. B X /{Fis given the induced quolienl topology, then
X — X/G s continuons, In this case, £is also an open map because of #
15 open in X then so 1

vy - U gl ¥).

qriF

Finally, the reader will benel1 Irom an understanding of covering spaces
and Riemann suefaces althongh most of the material inthis book can be read
independentiy of [hese 1deas. Some of this 15 discussed briclly in Chapter -
for further information, the reader is refemred to {for exampie) [4], [0,
[25], [507, [63] and [1047.

§1.5. Topological Groups

A 1opoloagical greup € % bolh 4 proup and a topological space, the two
structures being related by the reguivement that the maps x—x"! (of G
onto £ and (x, )1~ xp (ol G = & onto G) are conlinuoas: chviously,
& % & is given the product topology, Two topological geoups are isemorphic
when there is 4 bijeclion of one onto the other which is both a group iso-
morphism and a bomeomorphism: this §s the natural destification of
Lopological groups.

For any y in G, the space G = v} has a natural topelogy with open sels
A % [3> where A is open in &. The map x+=(x, ¥) is 2 homeomorphism
of Gonto & x {¥} and the map (x, ¥} xp is a continuous map of & = [}
onto {r. It fellows that x -+ xp 13 a continvous map of & onte itsell with
continuous inverse x+— xi~ ' and s0 we have the following elementary but
useful] result.

Proposition 1.5.1, For each v in G, the map x — xy {5 a howeomarphism of O
onto itaells the same is 1rue gf the map x — yx.

A topological group & is diserete 1l the lopology oo & = the discrete
topologs: thus we have the foliowing Corollary of Proposition 1.5.1.

Corollary 1.5.2, Let 7 be a topelogical group sueh that for some g in O, the
ser It is apen. Then each set §1°) (3 & G0 18 open and 7 is diserete,

Given 4 Lepolopical group G, define the maps

ix) = xax!
and

1

Wx) = xax"ta”! = [x, al,
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where 2 15 some element of G We shall be interested in the terates ¢® and
" of thesa maps and with this in mind, observe that ¢ has a unique fixed
point, natnely . The terates are related by the equation

" xd = Wi,

becuuss (by induction)

[ (el Jal i xde] ™ f
W jaf (]

= |:|';I'R+ 1fx}.:1.

{".::rr -1 (<}

It

n certain cirepmstances, the iterated commutator $"(x) converges ta the
identaly (equivalently, the iterates $%{x} converge to the unique fived point
a ol ¢yand il lhe group 0 guestion is discrete, then we st have @"x) = 4
[or some k. For examples of this, see [106], [117: Lemoma 3.2.2] and Chapter 5
of this Lexl.

Finally, let ¢ be a topolopical group and H a nermal subgroup of G,
Then GAH currize bolh the usual strueturss of a guotient group and the
gquatient 1opology.

Theorem 1.5.3. If H is a norma! sungroup of o tepological group @, then G/
with the usual structures Is a fopological group

For a proof and for lurther information, ses [207], [23], [39], [671, [69]
and [94].

£1.6. Analysis

W assume a basic knowledge of analytic functions between subsets of the

somplea plane and, n particalar, the fact that these Tunctions map open

sets of open scts. As specific cxamples, we mention Mablus transformabions

and hyperbolic functions (both of which form a mwajor theme in this boek).
A moap Firom an open subset of B to B 15 differentiable al x

fr =00+ (= A + 1y = xle(y),

whare A is an 7 = a marrix and where &) — 0 as v — x. We say that a
differentiable {15 conformul al x 1f A 15 a positive scalar multiple p{x) of an
aorthogonal matrix B, More gensrally, f is direcily or indirectly conformal
according as det B is positve or nepative, If 7 is an analytic map betwesn
planz domains, then the Cauchy-Riemann equations show that f is dircctly
coniormal except at those z where f11(z) = {1
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WD asubdomain of " and il iz a density (that 15, a posizive continuous
function) vn B we define

plx. y) = inf | AHeD ey de.

the infimum being over all {smooth) curves ¥ (with derivative 9} joining x
10y in D, It is easy 10 see that g is a metric on D;indzed, ¢ 15 obvipusly sym-
metric, non-negative and satisfies the Triangle fmequality, As plx, x) = 0,
we need only prove that o(x, ) = 0 when x and p arc distinet. Choosing a
suitably simall open bail & with centte x and radius r, we muay assume (by
vonlinulty) that » has a positive lower bound -, on % and that £ N. Thus
s is ul Jeast A; on a section of v of length at least - 50 plx. 3 =1

More generally, ket v = (p.. ..., 7, be any differentiable curve in [ and
suppuost that

glt) = 2. arfet ey {6}

s positive on D (except when § = 00 Then we can define a merric as abave
by integrating [4(z)]*'* and the metric topolagy s the Buclidean topology.

If f 13 a conformal bijection of D onto the domain Iy, then

S0 - 111

|y — x|

litn

yrE

= plx)

and 1), inherits the density o whore
ol fx) = Hx)px)

and hence a metric p,. o fact, £ is then a isometry of (8, p) onto {3, 02,3
If, m addition, I} = £ and

HfE)utx) = M,

then fis am fsometry of {0, oY onto itself: in terms of differentials, this con-
dition can b expressed as

Apyldy| = Ax)|dx|, ¥ = f(x}
Asan example, let D = H? iz} = 1/ Im[£] and

itz + b
er + d

flz) =

where o, b, ¢ and d are real and ad — B¢ = 0. Then f maps H? onlo el
and as

Im[ ] = Tm[z]| f*{2)1,
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we ser that fis an isometry of (H¥, p) onto itself: this is the hypperbolic meric
on HE.
We shallneed the Poisson kernef for the unit disc A and the upper hall-piane
M Forcach z in A znd each { in AA, the Porsson kernel is
1 — | 7|2

Pﬁ':"-'-.-] | __:El

Obviously, P, 18 positive on A and zero on 64 except at the point {, Becausc

LY
Pz 0} = Re[' ha ]

i —z]
we seg immediately that P, iz (for cach {) a harmonie function of 7 with a
pole at I,
The map
- + z
fzr=1

maps & onte {2: 5 > O} and £ to = with

Re[ f(z]] = Palz {)-

It follows immediately that the level curves of Puiz, 23 (for a fixed ) are the
images under f ' of the vertical lines in K* and these are circles in A which
are tangent wy ¢ at ¢

The most general Mobius transformation preserving A is of the form

ag — ¢
cz+a

glz) =

and a comiputation shows that
— iz = 18I0 — |2)?)
As g is 2 Mdbios transformation, we alsoe have
lgz) — (53 = |z — £ g™ )] g™
and so we obtain the relation
Pygz, gllgM )] = Palz, L)
The Poisson kernel for the half-plane 42 js

Piz, ) —{

Y=o,
."|f - i;z 1fE = o,

and the reader i mvited Lo explore its properties.



CHAPTER 2
Matrices

§2.1. Non-singular Matrices

TIFad — be # 0, the 2 = 2 complex matriz

a b
A= 2. 11
( . d) (2.1.1}
induces the Méhius translormation
(5 = ar + b
T

of the extended complex plane onto its2lf. As these transiormations are our
primary concert, it is worthwhile to study theclass of 2 » 2 complex matrices.
Criven A as in (2.1.1) the dererminant det{d} of A4 is given iy

det{ A} = ad — b

and A is ron-singular if and only if detfd) &£ 0. If A is non-singular then the
MYETSe

A"’_—.(Ai. ;‘:ﬁ), i = (ad = bo)
- 4

exists and 12 also non-singulac.



1 T Mulbrizs

For any matrices 4 and B we have

det(AD) = det{A} det{iF) (2.1.2%
= det(B4),

and so

det{BAB 1) = det{ A8~ &)
= det{d). (2.1.3)

The ciass of non-singular 2 = 2 complex matrices t5 a group with reapect
lo the wsual matrix maltiplication: it 5 the General Lirear Group and i3
denotad by GLI2, £} We shall be more concerned with the subgroup
SLIZ, C), the Speei! Livear Group. which consists of those matrices with
det{A) = |, We denote the identity mateix (of any size) by [ although
sometimes, for emphass, we use £ Tor the # x » dentity matrix.

Much of the material i this chapter can be writlen 1n terms of 1 =% »
complex matrices. The dererminant can be defimed (by induction on n) and a
malrix 4 is non-singular with inverse 477 if and only if dettd) # 0. The
identities (2.1, 2 and £2.1.3) remnam valid,

Then = aceal matrix A s orthogone! of and only i

xlh= x|

lor every x i B this is equivalent to the condition 47" = A where A°
denares the transpose of A, Observe that if 4 is orthogonal then, because
det(A) = det{A"), we have det(4d) s 1 or —1. The class of orthogonal 1 =k
matrices is denaved by Ok

Forz,,. ...z in O we write

3 27102
|z = [lzg.7 4 -« = 2P
A complex n o= rmelrix s usitgrp i and only i
2 = |2d|

for cvery z in ©*; this is equivalent to the condition A~ " = 4° where 4 is
obtaincd in the obvious way by taking the complex conjugate of cach clement
al A

From a geometric point of view, the following result 1s of interest.

Sefbergs Lemma. Ler fr he a finitely gererated group of kR x n complex
nralrices. Then G corlains a norel subgrowp of finite index which contains no
non-trivial elenent of frite order.

This result s wsed omly onee jo this text and we omil the proof which can
be lound 1o [%2] and {173, [187]: seealso [16],[27], 1317, [35], [85] and [104]
where it 13 discossed in the comext of discrele proups.
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Expnciske 2.1

1 Show lhal the matrices

o ) b7

are conpzgale i STLL O bol nogi- 5002, B) {the rea’ matrices o 502 Ch

=

chRow that Ar-edetiad s a homomerphism of GLEZ, T amo the multiplicagive
group of non-zere complex ~umbers and jdencify e kernel

3 Tkecentre ol 2 group is the g2t of elemenes thal commeaaty with every elemem af the
grosp. Shw That e centres af GE2, 2y amd 502 0 are

Ho:la &), K= -1
respearively Frove that the groaps
GL1 OrH, L3 LYK
are vomorphic.
& Find tha centres Ff, ard K. of GLI2 B and SLI2 E) respeclively. Ace
GLe2 Eed . BLIZ RYVK.

ispmargai?

§2.2. The Metric Structure

The trace to{ A) of the matrix A in (2.1.1) is defined by
tifd] =0 — 4.
A simple computation shows that

tr{ A B = {4

and we deduce that
tr(BAB ) = (A8 ' B) = Lr{d):
thus tr iy inpariarnt wnder confugation. Other obvious facls are

(A1 = A trfA) lel
and

{rEAY = trid),

where 4" denoies the transposs of A.
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The trace hopetion also acts in an important way on paits of matrices,
Furst, we recall that the class of 2 = 2 matrices s a vector space over the

compler numbers and the Hermitian transpose 4% of 4 is defined by

A*=(,11}==(; 5) (2.2.1)
(Given any malrices
_ e & = £
A_(c ﬂ‘)" H_(? 5)’

we define [A, B] by
[4. B] = 1f4B*)
= a% + Bf + o7 + dd.

This j% 4 sealur produel on the veclor space of all 2 = 2 matrices: explicitly

f1) [4, A] = 0 with equality if and only if 4 = 0;
(i) [Ady = oAy B] = 43[4, B] + 2[4z, BL:

amd

(i} [B. 4] = [4, B].
Any scalar product, say [x, 7], induces a norm [x, x]''? and hence a
mettic [x — ¥, x — 314 In our case the norm || A4 | is given exphivilly by

141 = [4, A7
= (la®+ D7 4 o 4 |l

and for completeness, we shall show that this satisfies the defining propertics

of a norm, namely
{1v) jld | = O with equality ifand only iT4 = O,
() [l =14 Al (4eL)

and
(vi) |4 + B = 4] + | 5.
Of chese, (iv) and (¥) are towial: (v1) will be proved shortly.
We also have the additonal relations

(vii) |deti )| {47 = 4] ;
(wiil} |[4, B][ < 44 . 18|
{ix) 1AB| = [|4] . B
and
(x) 2deti)] = 145
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Of these, (vii) s immediale. To prove (viit) let
C=id — uf
where 7 = [B,A] und p = | 4]% By (iv), |C]% = 0 and this simplifics 1o
give (viil). A
|4+ B 3= A24[4d.B]- [BA] - B~
(vil follows directly from {viii) and (i)

To prove (ix), note thao

then, for example,
lpl* — o 4+ by?
< Cal* 4 6 4 ey
fihe last ine by the Cauchy—-Schwarz ineguality). 4 similar inequality holds

for &, # and » and (ix) follows,
Finally, () holds as

I417 — 2|det: )] 2 wl* + B+ ¢+ dF — 2 ad; + 'be))
={la| - [4])? = { #] - ;e|)?
=0
Mext, the norm || A tnduces a metric |4 — B for
I4—2|=0 Handonlyifd = B:
VB —Al= (134 - Byl =4 - 8|
and
bA ~ Bl = (4 — C)~ {C ~ B!
=[Ad -+ C-H.

il

The metric is given explivitly by
4 — Bl =Tle— -:£|1 e A ‘5'231.'2

i, b,,) . (-:2 b)
- e 4,

n

and we see thal

in this metric if and only if @, =&, b, = b, ¢, — ¢ and d, - d. Note that this
iz a metric on the vectar space of all 2 = 2 matrices,

Qbserve that the noom, the determinant and the race funciien are all
continuous functions. The map A -+ A~ ! {5 also continuans {on GLIZ, C))
andif 4, -+ A and B, — Bthen 4 B, — AB. Thesefacts show that GL{Z, T)is
atopelngical group with respeet to the metric |4 - B .
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Exipiise 2.2
i. Show that il 4 snd B are in 5002, 21 hen

() fele By + 14 "B = (4 ool B
(i) W BAR ~ A} ~ et d) tr{ A8
(led) teiidr — B + AR = t[A) B (A8 « 2 — toAB4d B )
Feplaoe B by A8 o (1) aml henge oblain or( B as g Tunctive ol tegd) ol 8], tif 48
and n.
2. Fizd subprowps &, end 7, o0 GL2, Cland s map f of G, onto G. which is an e
marpiism bl nest a homeaoarphise

3. Ler V he the mecric space af all 2« 2 eompies maccices with meric 4 — # . Prove
that a5 subsets ol 1)

{1) GL[Z, £} is open but nor closed ;

(1) LI 701 i closel bl nol open;
(i) GL{2. K] i& disconnected:
(iv] GLI2, £2) & canrected ;

(el {4 mA) = 1} 35 close] bul neel compact.

[Tn [1v), show that every mactx in GL{Z, O 8 conjugate [0 an upper triangular
toatrix 1 and tha: 1 can be joined to f by a curve T GLZ, 2)]

4 Forans « poomplex matrix A = g,), define
trid}y = ayy + - -+ oda,.
Prave thar
tr(BAR ) = tr(4)

and that e[ A8*) is a matric on the space of al: such marrices.

§2.3. Discrete Groups

In this section we shall confine cur attentien to subgroups of the tepological
group CL{Z, £ We recall that a subgroup G of GL(Z, ) 15 diserete if and
only if the subspacr topalogy on & 15 the discrete topology. It tollows that
il G is diserete and il X, 4. 4,5, . are in Gwith 4, — X thep 4, = X forall
sufficiently large n. It 15 nat poocssary to assumc that X = G hore but anly that
X iz in GL[2, C). Indced, in this casc,

Afd, ) o XXt =1

and so for almost all n, we have A, = A, ., and henee 4, = X,
In arder to prove that & is discrele, it is only necessary to prove that one
point of G is Isoiated : for example, it 1s sufficient to prove that

Al ix —f:XeG, X #1}=0
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so that |1} is open in G {Corollury 1.52% Tn lermy of sequences, (¢ is diversle
Wandonyild, - Tand A, « G impliesthat 4, = [ for almost all s

We shall mainly be converned with SL{2, ©) and in this case an alternalive
formulation of discreteness can be given directly in terms of the norm. The
subgronp G of BL{2, This discrete (f and only if for each positive k. the set

TAe & Al < &t (2.3.1}

b finite. [F this set i3 finite for each k, then G clearly cannct have any limit
points (lhe nore function is continucus) and sa & is discrete. On the otler
hand, if this sct 15 wfimte then there are distingt elements 4, i & with
A =k =12, IFA, has coefficients w,, b,, ¢, and 4, then |a,| = &
and so the sequence «, has 4 convergent subsequence. The same (s true of
the other coefficients and using the familiar “diagonal process™ we see that
there iz a subsequence on which each of the coefficients converge, On this
subsequence, 4, — B say, for some 8 and as det 15 continueus, B e 5142, T
thus 7 18 not discrece.

The criterion (2.3.1) shows that a discreie subgronp G of SLi2, C) is
countatde. In Tact,

E
G=|la,
r—l
where 7, 15 the finite s=t ol A I & with 14| 2 »1, dnp subgroup of o discrete
growp &5 also diserete: this 1s obvious, Finallv, if G iz discrete then so is any
coriugule group BGBT', because X FXB™' is a homeomorphism of
GLiz, Chonto 1tself,

There are other more dalicate consequences of and criteria for discrete-
ness bue these are best considered in conjunction with Mébius transforma-
tions {which we shall consider in later chapters), For a stronger version of
discreteness, see [11]. We end with an important exammple.

Example 2.3.1. The Modviar group is the subgroup of SL{2, B} consisting
of all matrices A with o, b, ¢ and 4 integars. This group is obviously discrets,
More generally, ficurd's growp consisting of all matrices 4 in SLi2, ©) with
a, b, e and f Gauss'an integers (thar is, m — iz whers w and # arc integers) 13
discrste,

Expreise 2.2

1. Show ihat {2°f- ne F} 15 u iserele subprowp of GL2, T and thit in this se,
1d.3.1] i inlinite.

I~

. Find all discrate zuberoups of GLi2, £} which vonlain anfy diagenal matrices,

. Prove that a discrele subygroup of LI 1) 5 codntable.

e

Sappose that a subgraup G of GLI. Y contains 4 diserete subgroup of Anile index.
Shaw tha: ' is also discrete,
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§2.4, Quaternions

A guaterntpnis a 2 % 2 complex matrix of the form

v
d4= —
L —

the sct of guaternions s denoted by 1 (alter Hamilion). The addition and
multiplication of quaternions is as for marrices and the Joilowing Facts ars
easily verified:

-

): (2.4.1)

El

{i) M is ap abelian group with respect to addition;
(i) the non-zero quaternions form a non-abelian group with respect o
miw tipication ;
{iil) M iz a four-dimensional real vector space with basis

{1 O _ (: G)
— 0 1)‘ Tl -
._( 0 1) 0 s)
=l of i of

fnole thar 115 noc the same as 1, likewise 1 #£ ).

As multiplication of matrices is distributive, the multiplication of
quaternions is determined by the products of the four elements 1, 1 pand k.
In fact, these clements generate a multiphicative group ol order & and

P=jP=k=-1
i]:l!’., Jk—i, kl.Tj;
fi=—-k kji=—i k= -]
The qualersions eontain a copy of & for the map
x + ipe—e xl 4 yi

af € inre H clearly preserves both addition and maltiplication, Returning
to (24l we writex + iy = zand u — v == wso that

g o= (21 + vi) + (1] + oK)
= (x1 + ¥} + {ul — wijj. f2.4.2)

o view of 1his, it 15 convenicnt to chunge our aotalion and rewrite (2.4.2)
1 the form

§ =3z + wi,
where such expressions are to be multplied by the rule

{z1 + willizg + wof) = (2127 — wyiy) + (Zywa —~ Wi )
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In particular, f 7 and w are in L, then
=3
and
(z + wDE — wiy = |22 + 1wi
This lust identiey gives the Jorin of Lthe mulliplicative inverse, numely
(2 + 1) 7H = {2 = w2l + D)
whete, of course,

detiz + wi) = 22 + [w]-

Exrncise 2.4

1. Shaw that tre nan-zeto gualspions form s omudiplcative proup with centre
{ri:rreaf and non-zerod.

2. Show that ST, 2 is not compset wlhoreas
fge Hdetg) = I}
is compacs.

A Ler 5 be the e of guaternions of the form & + ¢ whers ! 38 real. Show thut 5 i -
varianc wnder the map g —jgi~". By identifying = -+ & witle {x, », i3 ic B, pive a
peametric deseription af this map,

4 A5 in CQrucition 3, show that the map 9 -+ kgt ™' alse leaves § invarian ard =ive a
geometric desenplivn af this map.

§2.5. Unitary Mairices

The matrix 4 is said to be wmizary if and only if
AAY = [,

where A* is given by (2.2.1), Anv unitary matrix satisfles

1 = det{d) det(4*) = |det{A}*
and we shall focus aur attention on the class 312, T of unitary matrices
with determinant one,
Thearem 2.5.1, Let A be in SL{2. C). The foilowing statements are equivalent
ard characterize efements of SU2, ).

(i3 A is umizaryv;
(i} 40° = 2;
(1il} A iz a qugtermion.
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I particular
BUCE &Y = SLI2, D)~

Paoor. Supposs that

z{=(a b), ad - boo= 1,

[
then
-2 2 =
. f g = | af + bd 554

AA_(EE'J.—EJ [e|F + |di* (23.0)
and

la—dF+ b +clF= AI* -2 (2.5.2)
First, {2.5.1) shows that i 4 ic utitary then 4|7 = 2. Next, if [4]* = 2 we
deduces from (2.5.2) that 2 = fand b = — & s0 A i5 & guaternion. Finally, if
A is a quaternion, then @ = d, b = —¢ and recalling that ad — be = 1. we
find from (2.5.1) that A4 s unitary. _

A simple computation shows that each A in 5U(2, L) preserves the quad-
ratic form |z!% 4+ |w|®: explicitly, if

(2, wid = [z, w
then
212 4w =t
A simular resulr hobds For column veetars and 5o for any matrix X,
[AX, = XAl = X1,
This shows that
[AXA™' ~ AVA™ = JAX - V147 | = |X - ¥
and so we have the following resali.

Theorem 2.5.2. Suppose that A s in SU2, ©). Ther the map X — AxX4™1
t5 an sometry of the space of marrices onto fisalf,

Remark. Theorems 2.5.1 and 2.5.2 wiil appear [ater in a geometric form,

EXERCTSE 2.3

1, Show that SL0(2, 204 compadt and deduce that any dizeeere subgroup of 3102 L)
iz finite.

2, I SIL €} connectad?
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3. The group ol real withogome rmateces 47447 = Frin 81072, Bis denoted by 501723

2.
Show that theee iz a map of SO2) anta the wna ehelz iv the comales plans which i3
hock: an isamoerprism amd & homenmaorpriso.

4, Srok that cvery mairis in SE2, Cyoon be zxpressod o che form

fat! 0 e g —sin oy e i )
|.~U- e"i",] tsin £ 205 .;l':-) |D PR

for some readdl g anl



CHAPTER 3
Mobius Transformations on rR*

§3.1. The Mdbius Group on R”

The sphere S, /) in B is plveil by
Mo, ry=1xelF: x—a| =r

where ¢ £ B° and r 2= (. The refleciion (or iksersion) in S, ¥ is the function
@ delined by

l )-{x — a (311}
— da

4

¢'IIXII=.:1+(

| x
In the special case of S0, 1) { =871, this reduces to
gix) = x/|x|*
and it is convenient to denote this by x — x* where x* = x/ x|%. The general
reflection (3.1.1) may now be rewritten a3
ghx) = o + ri{x — a)t.

The reflection in STa, ) i3 not defined when x = « and this iz overcome by
aeljoining an extra paint to B, We select any point not in 8 (for any #),
label il o7 and form the union

R = F" o iml

Astgix] — 4 oo when x — a il is naturul te define @la} = x: likewise, we
define ¢(30) = a. The reflection & now acts on B and, as is easily verified,
¢*x) = x for all x in B" Clearly & is a 1-1 map of B" onto irsell: alsg,
i{x) = x iFand only if x = S{a, #).
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W shall call a set Flo, £y a plune in R if it is of the form
Platy = ize B (x.a) = ¢} i)

where g &% 2 = U, {x. wh it the usual scalar praduct Z X a;and ¢ is real.
otz thut by delinition, o fes in every plane. The reflection & in Ple, 1 {or,
as we semetimes suy. i (x . @) = t] & defined in Lhz usoal way; that 1s

#lx) = x + ia,

where the real parameler » is chusen so that Y + @dx)yis an Pla, t) This
gives the explicit farmula

plad = x — 2[(x . a) — 1™ £311.2)

when x= 3 and, of course, §{s0i = . Again, ¢ acts on &, ¢2xy = x for
ail xin @ and so @isal : mapaf B" onto itsclf. Also, &(x) = xifand caly if
=& Pia 1.

I is clear that any reflection & (in a sphere or & plane) is continuous in f°
gxcepl af the points o and ¢~ '(s0) where consinuity is not vet defined, We
shall now construct & metric on B and shall show that & is actually con-
tinuous fwilh respect 1o this metric) throughout 5"

We first embed " in B°*! in the natural way by making the points
{x.....x) and (x). ..., x,. Q) corcespond, Specifically, we let x— & be
the map defined by

¥=1(x; .. ..x,0) X =Ky, ... x,)

and, of course, o = 20, Thus x— x5 a 1-1 map of f~ anto the plane
¥, = 0in BT The plane x,,, =0 in B"** can be mapped in a § 1
manner onto the spheare

S = {ye Ry =1

by projecting % towards (or away [rom) ¢ _. until it meets the sphere §°
in the unigue puint m(¥) oiker than e, ,. This map 7 is known as the
sterecgraphic projection of 4" onto 5™,
It is casy to deseribe = analyvtically. Given x in B, then
TE) = % — e, — 3,
where ¢ is chosen so that =(#) = 1 The condition w(#) * = 1 gives rise
to a quadratic cquation in ¢ which has the two solattons ¢ = T and {us
7] = ||
xR — ¢

NEEDS

We conclude that

E.xl zx“ |J¢3—1)
w(%) = Sy ] xR
) Qxﬁ+1 xf - Uit 1

»

and, by definition, n(so) = &,.4.
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As x—= =%} is a 1-1 map of B onto 3" we can lransfer the Buclidean
metric [rom 5 1o a metnc d e 27 This i3 the cherda? mervic # and is defined
om [ by

dix. ) = |=5) — =], xoyeR"
A tedipus (but elementary) computation now viclds an explicit cxpression
for 4, narmely

2w — yl ] 1
Eri _. ixlz}]_;z[.l + |}.53}1-2 Ifx, ¥ ?“'- 0
dlx, 1) — . G13)
(1 — |x'2p= ify = .

A sharter proaf of this will be given in Scetion 3.4,

This formula shows that the metric & restricted to 3" induces the samsa
Lapodogy as does the Buclidean metric; thees a function from a sebset of B
to R is concinnous with respect 1o both ar to neither of these two metrics, 1t
15 now easy to see that each reflection o is a homecrorphism {with respect
to d) of B onto itself. Indesd, as ¢ = &7 ! we need only show thar & is
continuous at each point x i R® and this is known 1o be 3o whenever x is
distinct from so and &= (=¢~ Yoo )). Il ¢ denotes reflectian in 8fa, #) then,
for example,

dld{xh Pla)) = dledx), o)
-
{1 = gt
-
§ x —v & Thus ¢ Is cantinons at x = a: 4 =inilar arpument shows ¢ to be

ontinuows at <z alse, IF ¥ s the reflection in the plane Plo, 2) then {as is
asily seen)

x)[F = x|* 4 Olixl)

as | & — o0 and so |(x)] — ~ o, This shows that ¢ s contintous at o
and ze 1s also o homeomorphism of B anto itself.

Definftion 3.1.1. & Mdbius rransformation acting in [ is a finite composition
of reflections {in spheres or planes),

Clearly, each MObiuy ransiormation s a homeomorphism of & onto
itself. The composition of two Miabius transformations is again a Mdbius
transformation aod so ulse is the inverse of a Mdbius transformation for
if@ =, - @, {wherethe &, are reflectionsy then ¢~ ' = &, -+ &,. Finally,
for ang refieetion @ say, ¢%x) = x and so the identity map is a Miabius
lransiormation,
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1.1, The Miaius CGoocp on &0

Definition 3.1.2. The group of Mébins transformalions ucling in B is
called Lhe Gerera! Mibivs growp and & denoted by GM{[Em

Lzt us now consider examples of Mobius trunsformalions. First, the
tramslation x —x + «, a = BY & a Mabius transformalion for it is the mefee-
tion in (x.q) = O folowed by the reflection in {x.a) = §|a|®. Next, the
magnification x1 =k, & = 0, & also a Mabigs transformulion for it is the
refection in §(0. 1) follewed by the refection in S{0, /&)

If $ and 4% denote reflections  Sa, ¥y and {0, 1) respectively and o
wix) — r¥ + a, than {by computation)

B = ity L 3143

Ax o 15 a babius cransformation, we see thal any two reflections in spherss
are cunjugate in the group GM{ 5.

As furlber examples of MGbus ransformation: we have the entire class
of Buclidean isometries. Mote that each sometey ¢ of B is regardsd as
acling on B with dloa) = @0,

Theorem 3.1.3. Each Euclidean sometry of B v o composition af af most
B 1 1 reffections o plunes. Ta parcienlar gach isopecey is a M abive trangformu-
Lo,

PrROOF. As cach reflection in a plane is ap isometry, it i sufficient to consider
only lhosc izomelries @ which satisfy d(0} = 0. Such isometries preserve
the lenglhs of veclors becauss

laoix)] = @(x) -- 2(0) =[x - O] = [x]
and alse scalar products because

Apxh. (v} = Sx)F — 1§y 7 — [hlx) = diy)f
=[x+ [y - |2 = 5

= Xx. ¥l

This means that the vectors gfe ) ..., ¢z ) are mutually orthogonal and
sn wrc Hnearly independent As there are o of themn, they are a basis of the
vector space B and so for each x in @" there is some ¢ in B with

Rut as the gz ) are mutually arthoeonal,

;o= iy, e,
=[x.&y

= IJ.
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Thus

xJ":.IE":'EJ.}
1

||Ma

and this shows that & 15 a [inear rransformation of R° into wself As any
tsonietry is 1-1, the kernel of ¢ has dimension zero: thus 2" = K"

If A is the mutrix of gr with respect to the basis &), .. ., e, then $x) = xA
and A las rows $le. ) ..., ge ) 'This shows thar the (7 f)th clement of the
matrix 44" is ($le) . d{e;)) and a5 this s (g e;). 018 1P £ = j und is zero
atherwise. We conelude that A s an orthegonal matrix,

We shall now show that ¢ 8 u composilion of 4t most # reflections in
planes, First, put

gy = ¢e) — ey

Ifa, # 0, weletyy, hethe redlection in the plane Pla,. 0y and a direct computa-
tion using (3.1.7) shows that o, maps die,)) to e;. Ifa; = 0 welet . he the
idennity so that in all cases, vy maps gle;] to e, Now put @y = o, ¢ thus
¢hy 15 an [sometry wiich fixes (hand e,.

In general, suppose that ¢ is an isometry which fixes each of 0, &,, . ... &
and let

Gper = Dl y) — &y

Apain, we let v, o be the identity (ifa,, , = 1) or the reflection in Pla, _ .. 0}
fif g, . = O) and exactly as above, i, , oy, fixes 0 and 2, . . [0 addition, il
1= f=Fthen

feia,. )= {E_r" ghyles 1)) — '[fj-et.- 1)
= (d’k('ﬂj}'{pkiek.—1jj -0
= (8- 8¢ 1)
=0
and so by (3.1.70,
Vo qle)} = e

As @y also fincs O, e, ..., g, we deducc that w6y fixcs cach of 0L e,
v+ o1 8452 In conglusion, then, there are maps ¥ {each the identity or a reflec-
tion in a plane} so that the isomeatry gy - @ P fixcs each af O, ey, ..., ¢,. By
our carlier reviatks, sueh a mapis neccssatily a linear transformation and so is
the identity: thus ¢b = i, - - - .. This completes the proof of Theorem 3.1.32

—_—

s any sometry compascd with a suitable refloction i of the form d&. i
There is an alternative lormulation avatlable.

Theorern 3.1.4. A furnction ¢ is a Euclidean isometry if and only if'it is of the
form
Mt = x4 + xg,

where A 7 an orthagonal metric and xg = @,
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Proor. As an orthogoaul matris proserves lengehs, it is clear that any o of
132 grven form s an isometry, Conversely, ifab is un soretey, Then 90x) — $(0}
is an 1amelry which AGxes the arigin and so is grves by an orhogonal matos
{as 11 the prool of Thearem 2.1.31 Tl

MWore detalled information on Euclidesn sometees is avadable: for
exampe, we lave the following result,

Thesrem 1.5, Gisen amy real orfhogona! moerlx A there iy g real orthogonal
et rix ) sacl that

where ¥ 8, 7 dre Hok-Hegaiive iregers ard

(r:us i, —sin HQ')
= .

b eons

Any Eudfidean isomelty which fixes Lhe otigin can therefore be reprosented
{with a suitable choiee of an orthonormal buaais) by such a matrix and this
exphcily displays all possible tyvpes of isomelries,

We now retum to discuss agan the gencral reflection ¢, B oseems clear
thul ¢ s oricntation-roversiog and we shall now prove that this is so.

Theorem 3.1.6. Every reflection fs orientaliion-reversing and confarmal,

Prioor. Let ¢ be tha reflecrion o P, ¢ Then we can see direc:ly from (3.1.2}
that ¢ is differentianle and that @'"x) iz the constant symmetric matriy
(¢h;;) where

. Qe
by = 'fjs‘: - -;_‘-
] lal

iy 15 the Kronecker delta and (s 1 if i = jand is zero otherwise). We prefer
lo wrile this in the {nrm

rri"ll{-\'(]l = -‘r - EQ{:&
where £ has clemenis ﬂ;ﬂ;:"iﬂﬁ. Now J_is symmetric and 02 = £ 30
@) p(x) = (F — 20,° = 1.

This shows Lhat ¢'{x) is an orthogonul matrix and so establishes the con-
formality of .
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Mow et D = det ¢'(x). As @'(x] i5 orthogonal, D = O (in fact. B = = 1]
Moreover, Y is a continuous functien of the vector g in B - [} and so ik a
continuous map of B — {0} into B! — 0}, As B" — 10} is conmeeted fwe
assume that n = 23, 0 5 either positive for all non-rero g or is negative for
&ll non-zero a. fa = 2, then @ beeomes

- P 0 IE T R S ) O

and in thus case, b = — 1. We conclude that lor all non-zero z, D < O and so
every reflection in a plans is orientation reversing.

A similar argument holds for reflections in spheres. First, lew & be the
refleciion in S(0. 1), Then for » & G, the gsneral element of &'fx) 1

d;  2xx;
x i =t
R0

@'lx) = [x]|7HL — 20

This shoas (48 above) that ¢ is conformal al each noo-zero x,
Blowy Jut Dx) be del o(x). As S{efx)) = x, the Chain Bule yields

B(GxD{x) = 1

and w0 exactly as above, 1 is cither positive thropghout BY — 408 or negative
throughout 18" — 0%, Taking x = g,, & simple compotation yviclds fe,) =
— 1 and so D{x) < O for all non-zero x.

The proof for the general reflection is now o simple application of {3.1.4):
the details are omiteed. [

The argument given above shows that the composition of an cven number
ol reflections 15 oreniation-prescrving and that the composition of an pdd
nummber is orentation-reversing,

Befinition 3.1.7. The M shius group MIE") acting in B* is the subgroup of
GM{{i") consisting of all nrientation-prescrying M bins transformations in
GM{R™.

We end this section with a simple but useful formula, [f # is the reflection
int the Fuclidean sphere 5{a, #) then
oy — alx)] = »* {p — a}* — (x — 2%

=,--’-[ 1 Az — ). [y — &) 1 T-‘*

y—a’ [x-alfly—a ix-af

Py~ x|
|x—al ¥~ al
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This shows that

. |edx + Ry - aix) ¥
b lotx £ 8 L =
= .3 Xl

and this measures the local wapnification of rat x.

Exercise 3.4
1. Shovw that Lhe reflecticos in the places .02 = Dand x.6 - O commae if and only

if @ und k are arthogonal.

. Raons that iF g is the reflection n x . = ¢, tken

P2

[d{xild = |57 + &x)
us |xl— +
3Lt if be the reflecliion in S¢g, ¢} Prove analyticelly rhet

(it #x) = xifand anly i x & Sia, »i:
i} @*(x) = x:
i e —a  @diw —a =5

Repees (with a moditied §ii) Ier the celection o P, 1.
4. Prove (aralytically and wsametrivally) that *or all non-zero x and » in B,
Aoy x| =y ]x—*.
5 Blwvw thal if ¢ denotes redaction 1n Sira, ¢ la § then

i) = lim ghx)
1=+ =

denotes refleclion In the plane x. @ = 0.

&. Yorifv the farenula (5.1.3].

- Let = be che stercagraphic projaction of =, , | = 0 onwe 8 Shew thal il y e 3 Then

1
nT = sl e O

BB |

#. Ler b denwrls reflagtiom in $e, -, v.".}]j, Show that ¢ = & oo the plane 2, -, =@
and find @(H=t T

9 Show thut themupz—1 + 210 L 15 4 composition of ~arse (and no fewerd saflac-
ticms (Thusn + | in Theprem 31,5 can be attamsd.)

). Tze Theorem 3.1.5 and Defmition 3,37 1a show that if nis edd sndif d e M('ﬁ'}
has & finite fixed point, then ¢ has an axis (a line of fixed zoinls),
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§3.2. Propertics of Mobius Transformations

We shall show that a Mobeus transformation maps cach sphere and plans
onto same sphere 01 plane and because of this, itis convenient Lo modily our
catlicr terminelogy. Henceforth we shall wse “sphere™ to denote efther a
sphere of the form 5{a, rjor a plane. A sphere 5{a, r) will be called a Fuclidean
sphere or will simply be said 1o be of the form Sz, r).

Theorem 3.2.1. Let ¢ be any Mdabius transformation and T any sphere, Then
#Z) is also a spheve.

Epoor, It is easy o see that $(X) iz a sphere whenever o is 2 Euclidean
isometry: io particular, this holds when ¢ is the reflection in a plane, B iy
equaliy easy to see that (L) is a sphere E'hen DX = de o= 0

Buch sphere I s the set of points x o iE” which satisfy some equation

elxif —Nx.a)+ =0,

where ¢ and ¢ are real. as B and where, by convention. o satisfies this
oquation if und anly if e = {
Ifx £ E. then writing p = x* wc have

g — E{F‘a} + Il_}«‘f': =0

and this is the equation of another sphere I, Thos if ¢* is the map x F- x*
then @¢*Z} = E,. The same argumcni shows that a*EZ )< X and so
gHIl =2

By virtue of {3.1.4) and the above remarks, ¢p(E} is a sphere whenever @ is
the refection in any Euclidean sphere. A= each M&bius transformation is a

—

compesition of refiections the result now follows. _

Any detailed diseussion of the peometry of MObius lrunsformations
depends essentially on Theoremn 321 and the fact that Mibius transforma-
tions are conformal. A useful substitute for conlormality s the elepant
concept of the inversive product (£, B of lwo spheres X and ' This s an
pxplicil red] expression which depends only on E and £ and which 15 in-
variant under ail Mdkius transformations, When E and ¥ jnlersect it s a
funetion of their angle of intersection: when E and E' are digjoine it s a
function of the hyperbolic distanece between them (this will be explained
later). Without doubt, it is the invariance and explicit nature of (£, £t which
makes it a powerful and elegant tool.

The equation defining a sphere X, say S{a, r} or Pa, 1), i3

%] — Xx. )+ @) —r7 =0,
or

—2(x . a) + 2r =1{},
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respeclively, and these can be wrillen in the common form
ap x P — Hx_ay + a,,, =0

where @ = {ay, ..., o) The roefficlenr vector of £, namely fap, ar.. ... a,.
&, - 1) 15 ool unjgquely determined by £ but it s detzrmined to withia a real
non-zere mulliple. Morsover of {u,, .. .. o, - ) 5 any coefficient veclor of E

then {as js easily checked in the two cases)

|£|:|3 = dpeiag g,
Definition 3.2.2. fct ¥ and X' have coeflicient vectors {ag, ..., 4,4 ,) and
(Bg.-. -, 0, prespectively. The meersive provece (E, 2 of £ and 27 [s

'2{:“ .IE"} - [Jn.bn+;__—_aﬂ+1b|:.|
Hla ® = gpdn, ) RBR = byhyy )N

(T.T = (3.2.1)

Boole thal this is uniguely determined by £ ang T the bracketed torms
in the denominalor are positive and we take positive square roats, If we
deline & hilinear form g on B 2 by

Qe ¥y = Wy b e Ko ed — (xlas1 + Xae1ubs
then we can write the inversive product more concisely as
(.E., Er:l = —_, —-.—: e ]
alu’s w2 gle, B
where 2" = (g, 85, .- - . g, 24 ) and similarly for F.

Tt is helpful to obtain explicit sxpressions for (Z. I in the following
threr cascs.

Case LIFE = e, ryand T = (&, 1) then

g _ 1
€ 1) = = —lem o) (3.2.2)
2rt
Carg [ILWE = Mg, #)and ' = Pih, ¢} then
mry= e (3.2.3)
rh|
Cose JIFLITE = Pla, rland ' = Pib, 1) then
) =1 (3.24)
allhb

These formulac arc easily verificd. Mote that in all cases, if £ and ' inrersect
then (I, £} = cos # where & is one of the angles of intersection. In particalar,
(L, £% = Difand poly T and I are orthogoeral. Ohserve alzo that in Casz 11,

(L, 57 = ir,
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where 4 &5 the deslanee of the centre of S{w, r) From the plane M6, 1) thos
(L, I = 0 dand onlv il a e P, )
We shull now egtablish ke invanance of (£, )

Theorem 3.2.3. For any Mobius transformation o ard gny acheres £ and T,
(ol ), Ty = (£, ).

Prone. A Mahius translormalion maps a sphere X to a sphere 7 and so
induces a mup

(ng'ﬂ]q v B I:*rn-|-1:|'|_"' (aEh “Er Tty ﬂl’nﬂ'-"l'::+1}

hetwern the coeflicient vecters (to within a scalar multiple) of E amd X7
tor example, an orthogonal ransformation x — x4 = p ot I {and this
includes all reflections in planes through the orign) satisfes

lx 2 ="g3 (x. 0y =(xd.ad)={v.ad)
and so maps the sphere
apjx? = Ax ey +a,_, =0
to the sphere
ag. ¥F— Ay.ady+ g, =0
The induced map between the cocthicients is thus
dg by, a—ad, By Ty

and it isclear that (3.2.1) is inwariant if both coefficient vectors are subjectad to
this transformation. Wededucethat (£, Zf) iz invarantunderchemap o — x4,

[n a simuilar way, the maps {i) x — kx{k = 0}; (1) x— x*; (i) x — x + &
induce the maps:

I:]} I:“I'.I:l'ai! I an—1::”_'{ﬂﬁl 'i'l';f'rh v kahs'{czunv1};
() I T T T S W { T PO TS P
(L8N (o thig e v gy dye b fidg, o) 4+ dqiig, o0, @y + plipe oy

+ Za-u) + aglu

N is easy to check that (3.2.1) remains invariant under all of thess trans-
formations and, as the corresponding Mé&bjus transformations gencrate the
Mabtus group, the proof = complete. Algebraically. onc is saimply obssrving
that a Mabius trapsformalion indoces 4 linesr translormation with matris
A on the coelficient veulors and thal A leaves the quadraud form ¢ invamant.

O

The proof of the next resull flostrates the nse of the inversive product io
place of conformality.
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Theorem 3.2.4. Let I he any spherg, 0 the reflecrion in B and I the idenrity
wap, ff & is anp Mihiuy trangformation which fixes eack x im I, then eirther
g =Jorp=nm

Praot. Firsl, we consider the case when I it the plane x, = (0 m [ Lel

2= SariwhercgzZandr > 0 Az o = E b fives 2 thus pmaps T loa

Euglidean sphere, say X" = 3(h ) As geX we have (L EZV =10 The

invariance deseribed by Thearern 327 vields (£, ") = 0 und w0 b = E: thus
= b, = 0. Fach point of € ~ £ = fixed by &, thus

{x, - ﬂ]}" + oo Xy b)) = -"zs
if and only of
l:-x'. - hi::lz R {.xn [ I!;'||—1:]..E = -r.z'

We concluds that @ = fand ¢ = r: hence & maps & onlo iwscif,
Next we select any x notin E and ler 1 = ¢ x} Mow sclect any ain T and
lelr = |x — g| 50 xeS3{n. v As ¢ preserves Sa, ), ¥ is oo &(a, #) and =0

x ¥ —Zix. a4 |al=p2 - 2Avou) 4 |al®.

nole that thes holds for all @ in £ Taking a = G we find thar |} = |¢|. Az a
consequence of this we find hal far alla in E,

[ .u) = (¥.q)

and taking u to be el,...,e‘ﬂ L we ﬁnd thul x; =y, f=1..... we- 1,
As x| = |y we now sez thal ¥y, = —x,: lhes gix) [ = 1} i% cither x0T aix},
As o ieaves T invariant, it permutes Lht cormponsnts of [3" — ¥ and 5o

=1 or & =nm

We can newy complele the prool in the general case. Firsl. ziven any
sphore E there exisls 2 Mibios lransformation o which maps  onto the
plunc x, = () we omit the details of this. Now let o be the refleclion in E
and 7 Lhe refleelion in plane x, = . The transformation e~ Axes each
point of the plune x, = 0 and 13 not the identity; thus by the first purt of the
proof, ey ' = k.

If & s now any Mobius transformation which fros cach point of £ then
wbeh - s cither Tor 4z thas i is cither Tor a. il

This proof also shows thal any refleclion & is conjugate lo the Gxed
reflection x. Thus we have obtatned the follewing gencralization of (3.1.4),

Corollasy. dny nwe reffections are confugate i GM{RE™.
There i5 an alteroative formulalion of Theorwem 324 1n lerms of inverse

points, Let o denore reflection i the sphere X3 then x and v are inverse
puiris witk respect to £ 1 and only il y = #(x]) L&nd af course, x = a W},
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Mow let x and p be inverse points with respect fo L. Jet & be any Mabius
transformation and let o, be the reflection in the sphere #(E). According to
Theerem 324, @7 'o g = ¢ ar equivalently, 5,8 = da. This is the sams= as
saying that for all x, o; maps dix} to 62 thus $i0 and @y are inversc
points with respect to g(L). We siate this as a sceond formuterion of Theorsmn
124,

Theorem 3.2.5. Let ¥ and y be biwerse points with respeer fo the sphere ¥ and
tei b be any Méhins transformation. Then ${x) and @() are inverse points
with respect to the sphere $IE)

Theorem 3.2.6. Fhe points x and p ave nverse points with respect io the spheve
L i wnd valy if every sphere through x and v is orthoganal to I,

Precr. This is clearly true when Z i = plane: it ix true in genaral by the
invariance of both mverse points and arthogonality, (|

We end rhis section with u brief discussion of cross-ratios. Given fonr
distinet poinis x, b, ¢ in 47, the cross-rario of these points s

dix, ), )

dfx. ¥y d(ti, v}’ (3.2.3)

(¥ )4 ed=

By virtue of (3.1.2) {the expresston for the chordal distanee ) we alse have

x iy =
| =~ ¥ |w— ¢l

e v 6] = (3.2.6)
with appropriate interpretations {which are completely justified by (3.2.3))
when ane of the variables 35 w0,

Theorem 3.2.7. A map b: B® — B* is o Mabius transformeation if and anly if it
PRESEFDES Crosh-rating.

Proor. As cach MObius map that changes Euclidean distance by a constant
factor Jeaves the cxpression (3.2.6) invariant, it [s enly necessary ko consider
the map x — x*. As (see (3.1.5))

|x* — y*| = |_x— iy

N

CTOS5-FALins are alse invadant uader x — x*. It Follows thar all Mahius maps
PTCACEVE Cross-Tatios,

Suppose now that ¢: & — B preserves cross-taltios. By composing
with a Mahing transformation. we see that it is sufficient to consider only the
case when ${o0) = oo Take four distingt points x, ¥, w, o in 2" ax

(o, yon, 01705, ¥ 2, 0]
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3.3 The Poincasd Exlensicos

is Invariant under ¢, we ohtain

|ola) - olyd, _ @) — oty

x =¥ =l

The restriction that {x, ¥l nde, o] = 2 15 unnecessary (compare cach side
with a similar expression for twa points g and b chosen to be distinat from all
of x, v, o 6) 50 ¢ is a Euclidean similarity and so is a MGbius map. A

Exerose 1.2

. Verily {1.2.35, (323 amd {3.24),

2. versfy e datails in e proet of Thcorsm 3204
4, Let o be the chordal matric iv B Show thuy

e I PR

§3.3. The Poincaré Extension

Poincaré ohserved that each Mébius transformation ¢ acting in [i° has a
natural extension o a Mobius transformation ¢ acting in B" ! und thul in
this way, GM{B"™ may be regarded as a subgroup of GM({ 3" *). This exten-
sion depends on the embedding

I R S 1] X X=X E

ol T inta B~

For cach tetlcction ¢ acting in B, we define a reflection & acting in
firt 1 as llows. 10 ¢ is the reflection in 5(a, r), a & B, then ¢ is the reflection
in S(é, #): if ¢ is the reflection in Pfa, £) then @ s the reflection in P £
Ifx e and v = ¢fx), then froms (3.1.1) and {30,

ey 5 O = (P o, ¥ O) = GOX, {3.3.13

and it s in 1his sense that @ is Tegarded 25 an cxtension of ¢ Altornatively, we
can ideotify B°* ! with B x R! and write (3.3.1) as

_x, 0 = (ge(x), 00,

Mote that ¢ leaves Invariznt the plame x ., = 0{this is &™) and euch of the
half-spaces x,,; > 0 and x,,., = 0 these [acts follow directly from (311
and {3.1.2).

As cach MBhius wansformation o acting in B is a finite composition of
ceflectinns g 0 sa;. o= @y o gy, there s at least one Mdbius transformation
, namely :pi « b, Which extends the action of & to #°~ 1 in the sense of
[3.3.1) and whth PTUSCTVES

HY = [, X g 1) g = O
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In facl, there van be at most one extension for If w, and w, are two such
pxtemsions, then 7 4, fives each point of the plane x, ., = G and preserves
H**! Thus by Thaotem 3.2.4, 4, = yr,.

Definition 3.3.1. The Puincare extedsion of ¢ in GM{ ) i the transforma-
tion @ in GM{R"' ') as delined above.

Ohserve tat if ¢ and W arc in GM{@"] wilh say @ = ¢, @, and
w o= Iy +- - | then the Poincard extension of g is given by

()" ={¢’:""'f"’:n*r"‘:""i":c}u
="£1"'§mg;1"'l';h

= dif,

sothe map & — & is an injective homemerphism of GM{A"yinte GMR" ")
this 18 a trivial but nonetheless important remark.

We shall now focus cor attention on the action of the Pocncaré extension
¢ in #"* L. First, if @ is the reflection in the sphere S(d ¢), @ € B, 1hen by
{3.1.5),

Iyl — dix}! r
|y — x| |x — & |y — &l

For the moment, let [¢i{x}]; denote the jth component of d{x). As
ix} = & + ri{x — d,

we [ind 1hat

F
¥ xr: an
[$hx)lar =D+ {33.2)
and this shawes that
. ;2
y o x :
—m—-—— 333
Fr-1Xp4 { }

iz invariant under .
The reflecrion qﬁ in the nlane P{& 1), a= ®", iz & Evclidean isometry and
TrEover,

[QS[X}J"+1 = En+g-

thus (3.3.3) 1= also invariant under this refection. We conclnde that (3.3.3)
is fhrariant under al] Polneard extensions, [t 15 a direct consequence of this
invariance that the Poineare extension of any ¢ in GM{R"*) is an isomeatry
of the space H™'! endowed with 1he Rigmannian metric p given by

gs = 12X

X

nT |
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This is our Brst mode. of kpperbalic space and o Lhe hueperbaite metrie 10
H" 1, The rich siruclure o the kyperbolic geometzy of (H* L, ¢ is now
available as an imporiunt 0ol for studying any subaroup G of GME™ lor
we can form the Paincard extension of guch ¢ in (7 and thereby study € as a
proup of isomatrizs of H' -

We suall study she peometey of the ayperbolic plang B in great detall in
Chapter 7 and some of the resulis (and proofs] given thete exlond withoul
difficulty wo A"~ -, Cne such resu't s chat if x = 52, und r = re, ., then

plx, 1) = logtsitdi,

cosfl Ha, vl =1 — - -- e (3344

As both sides of (33,43 are invariant under a1l g, we see that this s actually
valid for all x and ¢io H"77,
In particulat, the hypsrbolic sphers

sy plx, =}

with kyvperholic centre {y,, .. .. ...} and hyperbolic radioz r i« precisely the
Luclidean sphere

(x;— w4+ o+ (x, - 100 = (%44 — vy, cosh r)® = {r, .| sioh it
(335

In addition to this, we mention thag giver, twa distinct points of H™ - thers
15 & unigue curve y joining thetn which minmizes the integral

©|idx]

<y Xn+l

such a eurve 18 an ars of a psodesic und the zroduesics ave the Buclideun
gerni-circles orthegonal to B together wilh the vertical Euclidean lines in
H|r+ 1.

ExERCISE 3.3

. Shaw that iFx wndd voarein 37 - thew

]

o v
siph? 4pix, pi = - - - 70 -,
ixh— LF-1
T Show that il xe &' thzn
wosh g, | X e,y 3= R

and inrerpret chis geomel rically.
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3 Eet § be Lhe hyperbolic sphere in B ' with hyperboliz cestre | and hyperbolic
radius ro Eet ¥ denoe the reflection ol yin the plane x, , . = 0 Show char

5= jx: l-J-r - -5' = tauhHr}l.
Lo lx =Tl ol

4. Suppasethat ¢ e GM{E"" ') and that & leaves FM © ! invariant Prove that 4 is the
Poincaré extension of some i in GM( B,

§3.4. Self-mappings of the Unit Ball

We have seen that the elements of GM(E®) act as hyperbolic sometries of
A" ' and we can abviously transform this situation to obtain other models of
hyperbelic space. We shall now map £7°7! onto B! and so obtain another
{isomorphic) copy of GM(RE™ in whick the elements Jeave B**" invariant.
This new model has a greater symmetry and the point oo no langer plays u
special rale,

Let ¢, denote the reflection in S(e, , |, ."_.-"'2] 5oy that

_ 2x — e y)
ol = s

Ifxe B then

E(xls"'!-xnr _1}
KR NPT

2 2x, lx? -1
TR xETTUCL 4 |2 a2

il

ot X)

and this is pracisely the formala for the stereographic projection ©of &7 onto
5" in 7! considered in Section 3.1

This realization of stereographic projection as a refiection leads o an
sasy proof of the formula for (he chordal distance given in (3.1.3). If x e 3"
then

2 — e P =1+ ixl

and this with (3.1.5) yields {a= before)

d{x, ¥) = |m(E) — n(F)]
= lghe(®) — (i),
x -~y

T B
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Tet us now return to the refection o, defined above, fx e &' then

L 4q He, . Tx—w, -
S S UL A SIS ko
N €T|-| o= Py
Ax_,
Sy (34.1)
LT

this shows that ¢, maps the lower half-space x|, = 0inta B" 77,

Mow let ¢ = ¢y or where ¢ is the cefieclion in the plang x.., = 0: this
maps the plane ¢, _, = O oate 5" and "' onto B, Alsa. we find from
13.1.5) Lhat

L G0 = 90

= it A
ror L',- - X -y |_P — x|
= i oo — eolelxh]
¥ alyy = aix)|

_ 2

T otx) = e [

Mow (24,1} with x replaced by s x) gives

L= |gx)? = 1 — “gholeixhy|*

dx, -1

elx) — LS| 2

and so we find that

i 1903 = #6011~ loGH?

per ¥ —x 2x,,

It mow lollows from Section 1.6 that the byperbolic metric pin f** 7 trans-
torms to the metric

2| dn|
d5s = =
1—|x?

in B"'! and that the isomctries o of H**' transform b-;.’ — e T
izomerries of B"' ! with this matric. This shows that GM{F) is comjogatc in
GME 1) to the subgroup of GMIR" " 1) consisting of thosc elements which
leave 8"~ invariant,

We shall now undertake a study of those Mabius transformations which
leave the unit ball invariant. As there i no longer any need o consider
B! we revert ta a consideration of the space 3" thus we shall stady the
elerrents ¢ in CMUR") with H8™) = 8.
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Balore proceeding luriher, we menlion that we can derive a formula for
B analogous to (3.3.4): sec Chapter 7. In fact we only need to know thar if
x & B then

010, ) = log(: + Zx|)

- x|

i’

and we leave the derails of this 2o the reader,

Theorem 3.4.1. Let ¢ be o MEbius tronsformation with ¢ =0 and
GA") = B Then d{x) = xA jor some orthoganal matrix A.

Proor, By Thearsm 3.2.5, o fixes £ and, as in the proofl of Theorem 327,
we 52 that ¢ i a Euclidean similarity, Because o fixes the oripin and leaves
571 invariant, it is actually a Fuclidean isometry. The result now follows

from Theorem 3.1.4. L

Lt 1z easy to see that the refection an the plane Pla, t) leaves B invarianl
ifand only if ¢ = Q. Batter sull, this reflection leaves B invarant if and only
if Pla, £ is orthogonal o 577! and in thes form the stalement 35 teae for all
refllections.

Theorem 3.4.2. Let @ be the reffeciion in 8(a, v} Then the following are equiva-
fent:

(i) 8fa, r) and $*7 ave orrhogenal;
(i) gia*) = O (equivalently, g0 = 2%);
{11} {8 = 5",

PROHOF. As

H]

a - gt
{la'? — ri)a"

i}

we s2¢ that (1) and fiih are squivalent. The assertion that (iii) implies (i1} is
siciply the fact thar & and &* map w inverse points with respect to 8°7°
{Thaorer 3.2.5).

Finaliy, (13 and (1) together with {3.1.5) imply that

[ihix}] = lg{x) — la*)}
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1 =1 242
Lo gepgp = 87 (3.4.2}

lx —a®

and this proves (il O

As another application of (3.4.2) we observe that if ¢ préserves BT then

plxy — o5}’ |x — »f ;
o LR = : : —: ‘3433
A | Te - T o R TR L TS IR
this follows hnmediately from (3.1.5% and {34.2). [n addilion, {3.4.3) halds
wheneeet o 1s the reflection n a plane Pla, §) and hence [or all M8bius o
which preserve B
The invariance expressed by (3.4.2% alse yields

e :@ff‘i - t.'sll'x}' _1- ut:J{xzz‘
p—x ¥ 1~|:~:|

and this confirms once again the invariance of the hyperholic metric in &'
In two dimensicns the complex conjugate ¥ of z is available and in oar

notation this may be written as
= = 1/

The familiar expression |1 - #w| (where z and w are complox numbers)
satisfies

1= Bl = [z] 2* - w|
and this suggests the definiton
e 1] = jul|a* =1 (b s R™)

Observe that

[ t]? = [0 # e - 2w — 1

==+ (Ju® = Diel - 1 (3.4.4)
and this shows that
(4. ] = [o, ul-
The identity {3.4.4) alse shows that if |a| = 1 then

|x —a”| _

iy g = i

if and oaly il jx; = 1. Thus
—aF ¥
bl 1={.~ur.e,!s’.":|}c a l—l}

Lx, a¥] B
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and this is the n~dimensional version of the 2quation

g P

I —w
I — 2w

of the unit circle in the complex piare.
Finally, we observe that (3.4.4) together with the invariance expressed hy
(3.4.3) vields the invariance

[(x), $ly11° _ [x, 13* (3.45)
(1= 1) 3 — [y (1 — x)~ By o

ExERCEE 3.4

1. Show thar for x in 57

o |
ol xy = log| — — —).
IJ - |.x
Dedace that iF x and y aze i B then

sinh® Lofx, 1) = __T_:__J_lz__
(L= 2 TKT = )
[Use (3.4.33.]
2. Lov g and o be ceflections in the spheres S{o, #) and 300, 0 rospecliveiy, Show that
these spheres are orcthoponal if and only if dib) = y{a}.

. Lse Quastions 1 and 3 12 show that if S(a, #) is arthoponal te 30. 1) and if & denoes
reflectiom in S, vk Lhen

[ =¥}

sinth gl @ilp =~ 1ir
end, zar all x,

[#fx] — &, |x — @ = 1/sinh® $prd, @)

£3.5. The General Form of a Mdbius Transformation

We shall establish the lollowing characterization of Mdois translormations.

Theorem 3.5.1. Let b de o Mdbius transformoéion.
{t) If @(B") = B then
Bix) = (ex)4,

where o 18 a reflection it some sphere orthogonal to 8777 and A s on
orthegonal matriz,
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{i1) I edio} = oo rhen
ax] = Al 4 x,,
where v = [ xp 2 R aad A s orthogonal.
i} & @) &£ w0 then
afx) = rrx)d + xy

Jor some rox, . A and same reflection o

Remarn. ol 2 )4 denotes ¢ followed by A: the malrix A appowes on the right
4% W arg Using row vectors,
Preaot. If ¢ preserves B, lat o be the refection in the splheve Sia, #) where
a—= Yxpund g =t + ¥: By Theorem 34.2, 7 (and hencs o) preserves
B". By computation, A0 = &% o

@{r0]) = @la*) = 4,

(hecduse ¢ prescrvcs inverse paints): thus @fmx) = x4, Replacing « by ox,
woe oblain i),
Il ¢ fixes oo then, for a suitable

W —{x — xglir,

Lhe map e lxes = and B and hence also the origin, Xow (i) follows from
Theorem 241, Finally, (i} follows by appdymz (i) 1o der for a suitable
rellection a mapping oo to 6 Yo il

Thie characterizalion in (in) weads to the notion of an isometric sphere.
Suppose that éd ) % o0 80 that
$1x) = Hox)A — xp,
whore 6 3s the reection in some sphere 5o, 1 and (necessarily) e = &~ (=),
By [3.1.5,
) = @l = ol — aty)
2 |x - ¥

lx —a . »— al

and so ¢ acts as a Buclidean sometry on the sphers with equation 'x — |

=t, where#, = r\_.-";. Inclecd,
) — b
tirg |80 — 6t
-y |} - xl

15 preater than, equal 1o or less than one accarding as x is osidc, on or
autside Sla, ¢, ). For this reason, 5a, ¢, ) is called the isometric sphere of ¢
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Note that f @ denotes reflection in the isometric sphere of @ then dr Gxes
o and also sols as 4 Buelidean fsotnatry on the isomelne sphere. [ lollows
that the cxpression in Theorem 3.5 L{it) must take the form
rix) = xA + xq,
50 In general, we see that

d{x) = falx),

where 5 Is the reflection in the isometric sphers and 3 1s a Fuclideat somedre.

{o the special cas: when @ preserves 8", che reflection o in Theorem 3.5. 1)
musl be the reflection in the isometric spliere of ¢ 85 & and A ael as Fuclidean
Bomeitics on this sphere. We deduce that in this case, the lwnmetric sphere is
nrthogrmal tn 5™ 1

Exrpocise 3.5

I. Show That ¥ @ peeserves A7 thoo the Evclidean radios of Lhe isomelriz sphers ol ¢
i 1 sinh 0. 0]

2. Shew thar L 5 the isometric sphere al d, then &(Z) s the sometriz sohore of ™'

§3.6. Distortion Theorams

We prove two sharp distortion theorems for Mobius transformations,

Theorem 3.6.1. Lot o be o Mébing transformation acting in I and lat p be the
Ryperbolic metric in H" 4. Thea

dbx, dphy
,.S:f'rin s EXP L8, 4 (2 9802 )

Remark. This shows that ¢ satisfies a Lipschitz condition on E" with
reéspecl to the chordal mertic 4 and actaally exhibits the best Lipschiz
constant in terms of ¢ acting on the hyperbolic space (H" 77, gl

The second resull shows that if 2 family of MEbius transformations cmits
two values £ and { in 4 domain D, then the family is equicentinnous on
compact subsels of D: Lthis enables one to develop, for example, the theory of
normal fatmlies for GMIRA.

Theorem 3.6.2. Ler D be a subdomain of R* and suppose that & and § are
distirct paines im B If @ in GMIR") does ke assume the oaluer {and 5 in D,
then far aff x gnd pin D,

Bdlx, ¥)
ANE, Odtx, DY 2d(p, 5D)V

iy, iy} <

The constanr 8 19 best possibla.
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Proof OF Truorem 3.6.1. By rellectiag in x,., . = Oand applying stereopraphic
projeclion, ws muy assume that & preserves B - now we need to show that
by ~ cf'}‘;l
sup ————=- = exp g(l, 0.
L.pakn |"‘:

Ry Theorem 3.5.10i) the Euvslidean distortion under ¢ is 1he same as the
distertion under the reflection o in the isemclric sphere 3{a, ©) of ¢, This i3
maximal (as a limiling value) at the point o & clossst to the centre g of
5¢a, ¥). Thus fram {3.1.5),

i) - B

pese X ¥ { a| ~ 1)

Jlai=t
la —1'
breause $a, i is arthagonal to 57 ¢Scotion 3.5 Now
la] = 17 (=odt = 1]~ '{0)]
and s0 the supremom is
ara RECLIER
— cxp g, ). C

ProoFos THREOREM 2 6.2 Suapaose that x and v are distinet points in Dand thar
v and } are distinet points outside of 0. By Theorem 3.2.7, the product

(.o ¥, f). Tx, B 2]

of crosz-ratios is invariant under . Thos
[ﬂ’wx. -‘."u-'_}'r - L dz, £) }T 16 ___1
d{x, ¥] i, i) | | dlx, x)dix, faly, aidly, 5)

4 1[ i ! ] [ 1
didn of)| (A5~ d ) A T e B

64
.f\_:_ —m e = m——
T i, pf)dlx, A0y, £D)
The inequality follows by writing x = ¢~ (& and J§ = $7-{).

To show that the consiant & cannot be improved, consider fiz) = z — 2m
acting on £ with & = € — fao, —m}. Cleaely, ¢ omits the valies <z and
win Dund if x = —Im, we have

pmdlGn gy 8
g A0 dloo, mdx, 2DY
s — o C.
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As an application of Theorem 3632, we mention (hriefly} the concept
of a normal family. A family ¥ of functions from ane metme space {X, o)
Lo another, say to (X, 4 13 equivontiruows on X if and only if [or every
posilive £ there iz a positive & such that for all x and yin X and all fin 3,

& fx, f1) = & whenever d(x, v} = 4

Fach lunction in an equicontineces family 15 vniformly continvous vn X
and the uniformity s with respect to fas well as 1o the pair {(x. v},

Alamily # {1z above) 15 sad to be rormal in X every sequence fy, 15, -
chosen from & has a subsequencs that conver ges unifotmly on each compact
subset of X. There is & general resull fthe Arzela-Ascali Thearem) which
relates the concepls of equicontinuity and nortnal families. In the conlext
in which we arc primarily inerested, it is sufficient to oain the ollowing
special case.

Proposition 3.6.2. 4 famidy & of Mabius transformations of (3, d} sato
itself is normal in o subdormain B of B if it iy equicontibmous on ssery compaet
subset of D,

Priws. We oaly sketch the proofl as the interested reader can find a proof of
the Arrela-Ascoli Theorem elsewhere in the literature Find a sequence
%, %3, .. Which is dense in D, Given a sequenice ¢by, ;. ... In % we can find
{because B* is compact) a subsequence which convergss al x., then a sub-
sequence of this wlich converges at x, and 50 on. By choosing a subsequence
of the ¢, suitably, we can obtain a subsequancs which 1z ulimately & sub-
seaquence of sach of these chosen subsequences: thus we have constructed a
subsequence which converges at each point x ;.

Mow take any coropact subset K of D and consider any positive & We
can cover K by a finite number of open Balls {in the d-metric) of radius &
foorrcspanding to e In the definition of equicontinuity). Select one point
x; in cach; let the selected points be {after relabelling} =y, x;, ..., 2. If
yisin K then d{y, x;) < & for some f and hence

d{@n}lv {Pm_"‘:'} = d{‘;&n_}r‘! ¢nxj} + d':rrnllxj! djmx_ll} + fj[quxj! tlbﬂr}'}
= 28 = ﬂ’(aﬁlnxlr-, o}
For m,m = ny, say, the last term s at most ¢ for all x,,..., x; henee
i)y Pay) < Jeom K. 0
We can now combine Theorem 3.6.2 and Proposition 3.6.3.

Theorem 3.5.4. Let B be a subdamain of A7 and let & be a family r'g;";'l-'fﬁbms
transformations. Suppose that for every ¢ b § there gre two pomts e, fi,
R which are nor taken oS values of & in D and suppose that alsa,

inf diz,, .0 = 0.
W

Then # Lynormal In 0.
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Remark . We can rewrite the inequality in Theorem 364 as

inl [chordal diameter &fli" — D7) = Q.
[

Fzo0r, We sitnply apply Theorem 362 with £ = »,, 0 = §, and we find thar

F 1w equicontinuous {in fact, it satisfies a uniform Lipschitz condition) on
every compact subset of I O

F mally, this leads to the lollowing result.

Theorem 3.6.5. Let by, g, ... be Mdbiws tranyformations and wppase thar
@) — vy Jor theee distinel peints Xy, xp. X and three distinet poings
¥ Fzo ¥a- TRem by, or. . comraing o subseguence whlch conzeeges unifarmly
ok B tq & Mobiuy tranyformation.

PROCF. By the deletion of a finite number of the ¢; (which clearly does not
affect the resull) we may ussume that for each v, [ and J{ # [} wo have
d{'.i:.ﬂxl‘ t#'nxj.] :-i 'ELdlzJ"lh J’;:I = U'

It foblows that the fumily 1o, ¢,....} is oormal in cach of the sets B" —
{x:, 0.} {Theorem 3.6.4) und hence in their unien. namzly [ Thus thete is a
subsequence of the ¢, converging uniformly to some @ in " and by Theorem
3.2.7 {and 1ts proof). @ 13 a Mibius transformation. |

ExXBRCIE 3.6
1. Show that 4 =mily £ of Mibiws transformalivrs s oormal in B iland only 3

WAR B, ey 1T -

e F
wharz ey e =0, .0, 0L 30 ic B 70,
2 Provethat if twe Mibius transfoemarions are equal on an ooer subse: [rod [ then
they ure the same transfernatize on B Deduce that U the Mabics transformslisas

i, eamveree uwilormly o f on some onen suhsel of Y then thay convergs uniformly
to f on &Y

£3.7, The Topological Group Structure

There are scveral ways Lo give {}M{Ii“} the structure of 4 topelogical graup.
The simplest construction 4 to observe that the elements of GM(RE® map
the sompact space B onlo ilself so

(g, ) = supfdldx, §x): x BT,

{where d is the chordal metrc on ﬁ"} ‘s a metric oo GM(R™. Clearly, ¢, — ¢
0 this metric if and only if &, — ¢ wdforinly on B,
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Theorem 3.7.1. GM{B") is « topalagical group with respect to the toplog
mduced by the metrie £

PrOcrk, From Theorem 3.6.1. we sec that for each ¢ in GM{E") there is a
positive constant cfgh) such that for all x and y we have

A, ) < eldhl{x, ).

Clearly, for any ¢, ¢, and o we also have

Dl’.‘f‘l'.l!‘-. ‘i‘z‘m = Ew’n d’z},

500

Digap, ghyuiy) = D, oy + Dk e dby)
= 00, b d+ el MG, ey

This shows that the corposition map (e, ¥ 1— i is continuous at {¢,, ¥, }
Similarly, the map g — " 1 is continuous at ¢ as

Dl Ty DIGT N )
< el D, ). L

For a different construction of the same topolopy we proveed as follows,
The group GM(I™ is conjugate in GM{E"* !} 1o the proup GM(B** ") of
all Mébius transtormations preserving B L. I ¢ in GM{RF®) corresponds
to ¢, in GM{A"" ] then (by definition of the chordal metric)

Dip, i) = sup{ ' gpyx - x| xe 8L

Thus we may consider GM{B" " ') instcad of GM(E" with the metric (which
we continueg to demote by ) of uniform convergence in Euclidean terms an 3
and the conjugation is then at isometry between GM{E"™) and GM{B" ).

For cach non-zero a in B let o, be the teflection in the sphere with
centre a* that is orthogonal to 87 thas o, praseryes B C oand wfa) = (L
Alsa, lel £, denote the reflection in the plane x o = 0. Then, defining T, to
be the composition €,4,, we find that ihe isometry T, of B" ! leaves the
Euclidean diameter through & invariant and F{a} = 0. Wecall anv isometry
T, constructed in this way a pure rranslaion: iFg = 0 we define 1, to be the
identity.

Lemma 3.7.2, (i) The map ¢ — @) of GM{BE"" Y omre B is contirucus
(i) The map ar—+T,is a homemnorphism of B™ ! unto the zet of pure transio-
tions.

Proor. To prove (i) we suppose fvst that Diegs, ., ) < o Each Eaclidcan
diameter L; of B is mapped by ¢, to a circular are ¢ (L) {orthogonal to
57 in B"7" whose end-points are at most a distance & from thoss of L, We
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deduce shat the Fuclidean cylinder O with axis ) and radius of cross-seclion
& eontains ¢0f. } Thus

il
T3
=
F
Fo

@40 -

Ll
T
-

=[x=B"" 0 =l
This shows that if ¢b, — I eniformly on 87, then @ (0 = O in fuer,
| (D0 = P b, | 1O

Suppose now lhal $,— ¢ (as GM{BE" '} and B""! are metric spaces,
it 15 sutigien! to consider sequential ecodwvergencch From Thearem 3.7.1
wio have g~ lq}n — frthus (Trom aboveh lcl.':n{l'_lj — (land henee b (07 — @0
This pravas{i],

Ta prove (i ahserve first that the map T T, ! is continuoug (Theorem
3710 By (i) the composite map

T T Lo T (0),
nareely, T, 4,18 conlinuous.

It remains to prove that ihe map #.— T, X continnous: expiicizly, as
=g Ty = T, umiformly on 5% We have explicit formulas for ¢, and 1,
and the concinuity follows from straightforeard (i tedious) estimates: we
amit the details. Cl

We know from Theorem 3.5.1 thut every element ¢ of GM(B™* ") can be
sxprassed uniquely as
Pix] = (oax]d,

where @ = ¢ 40 and A s an orthogonal matrix {4 acts after a,: it appears
on the right bocause we are wsing row vectors). 1t follows that we can also
write (uniquely)

@) = (Tx3d,,
where 4, {namely, 1, followed by A) is alse an orthogonal matrix and this

deseription establishes 4 natoral Bijretion between GMIB" Yy and Ofn + 1}
w B by the commespondence

{'ﬁ _!'{A-jn ﬂJ, b= 'm'_l{ﬁ.}'

Boow the group Oir ~ 1) of orthogonal matrices is iself a metric space.
First, there is the natoral meteic

1k
{ (b:' |:EI:H - " j| u
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and sccond, there 15 the metric I induced by regarding Qin — 1] as a subsat
of GVI{B" 1) In fact, these metrics yield the same topology because WA =
fa; b B=10h) C=A— Band xis on 3" then

P{A, B —sup ixd — xB*

x[=1

2

=sup p (rop: T -+ Xplng)

g.s;lp ) fz -“'2)(;':5)

lz =1 j=1 \i=l 4

~ |4 — Bf

£ (1)

I=L \i=1

= E ﬂ_:f“ - E,:.Bz
Pl

= al A, BY,

The spaca Ofn + 17 = B*'° now inaerils a nalural product opology und
we huve Lhe [ollowing resuld.

Theorem 3.7.3. The bijection ¢ (A, al iv o homeomorphism of GM{B"" ")
ot Ofn + 1) = BPT L

ProwE. The prool consists of repeated wpplications of Theorem 3.7.1 and
Lemma 372 First, a — T, 14 conlinuous, hence so & the map {4,.4)-+
(A, i Also the map of (4, T} irle their compuosition, namely @, i
continuous 1hus 50 ik the mup {4, ah— &.

Nexl. g af= g ‘iscontinuous, asarethemapsg — Toand T, T, '
thus o T - is conlinuous, We daduce that the composition

o, T = ¢ T, = 4,

is continuous, hence 5o 18 ¢ {4, o). |

Remurk, Theorem 373 simply means that the topology on GMIBE"™ ")
induced by the bijection from Oin + 1) » B! coincides with the topology
induced by the metric £, As GM{F™) has been ‘dentified 1svmerrically with
G M{B"™1), this result provides 8 new constractian for the topoloegy induced
on GM(E" by the metrs D,

Ferour third and final constraction of the 1opology we need anctber model
al byperbolic space.

Deefimition 3.7.4. Let {J be the kvperboluid mode! defined by
Q= {lxg, ... xR yix x) =1, x5 = 0},
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where
afa, ¥y = xp g — (2 — - F x00

Observs that @ is one sheet of 3 hyperboloid of two sheets and that if
xc ) then
xp=1+44xl 4+ x)

so.0n fael, xq 2 1
Maw el = [w,, .- ., ¥.) be any smoath curve om &) Thus for all

ol = P 4 b P+ L
so diffarentiazing,
Peleile) = w000 + - 4 Rl
(mote briefly, g ¥1 = 1 50 gfy, ) = 0) We deduce that

- T e T\ L )
q('}u?}=(-”—--—f—-) — =+

= (3 s v - 0
=~ 47
= [

the summations being over{ = 1, ..., & Ohserve alsc that a strict inoquality
holds unless ¥, = - - = §, = 0in which casc, ¥, = G alio. | allows that we
gan construct a toctric oo 2 o the wsual way by the fine element

dst = dxF 4o e — dxb (3.1
the distance betwesn Lwo points an § being the infimoT of
[Tt 772 0
erver all Cutves oining 1he two polats. The associated melric topology 1s the

Euchidean topology on . We shall now compare ¢ and this metnic with the
twodel 5% and the metric

. 4 o 5 _
A5 = == = = =, 372
VTR 32
Theorem 3,7.5, The map
x X
£ e S
(xp, Hop b (1 + Xp 14 xn)

is am [soemetry of G with the metric (3717 ont B with the merric {3.7.2).
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Py, For brevity, we write

(Fpe ooy ol = ( X Xy ]

- Y] N
|.+.K,:, |—_x,}a

and deaote the vectors by x and yin the obvious way. Az x e ¢ acompulation
yields

X 0= |
¥+ 1

sall £ |vj = 1 and F maps @ inlo B
PRy direct computation we find thut the map

(1.7.3)

[p|* =

kl

F":{}':-...,};JHC+|H2 ¥ ¥,

T N I T

) (3.74)
is indeed the inverse of F and so F is & bijection of G onto 5"

To verily thal F s an isometry, we observe that
dx xj dug

dy = St Xif¥e
L R S

Thus, using this and (3.7.3) we have

14Xc. |:].+x|:|

Hdrl + -+ dyd) . o dy, x; dix, )3
e L | % £ ]
TEE {1+ xp) 2 ( )

-

A

n dxi = 2T, x, dx) dx,
= dxz _+. . .D_ xii — wdadd T Fl 4
.-';1 I § JE: : {1+ xq)
c xg — 1 dxp dix; - 1)
=% gxt (‘.‘P___.} 3 _ Ban B
= e+ s+l 4% l — x5
= Z dx? — dx§ —

It is now clear that the group @) of isometrics of § and the gronp GMA")
of isometrics of B are isomorphic by virlue of the relation

GM(B"} = FIGQIIF ™.
Chir aim how is 1o prove an alternative charactenzation of G{Q) and hence
of GM{E™.

Theorem 3.7.6. The isometries of ) are precizely the (n+ 1) x (n + 1)
matrices which preserue both the quadratic form glx, x) and the halfspace
given by x, = (L
Prooe. Firsl, et 4 be any malriz wilh the prescribed properlies. As x, = 0
1= preserved and as

qlxd, xdA) = glx, x) =1,
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whren x e () we ge2 that A preserves . Maoreover, for any curve 3 on £, let
[ = 4. Then [= +A 50
gl Uh = gt 7

and this simply expresses the facr that + and v have the same length. Thus
each such 4 15 an isometry of O onto itself,

i{ rernaing 1o show that every @ in GME*} iz of the Torm FA3F 77 for
zome such matrix 4 and to do this, we simply compute the action of i 43F !
nn B Suppose then that 4 = jywhere i f= 0, L. L With Lhe obvipus
nolalion, we writsa

(ye e B 1o (Bgn My 1)
A (epe el
Ha R X
Now
(B, S = (Moo, 1,04
i1e]
B; = bl + -+ iy
Using (3.7.4), this vields
(o iy Py = 0+ [y Phag; + e ag; + 0+ o)
Thus
L=
ﬂj |. e L:.:.
1 =¥ *fr;
(L — el -+ (1= i,
B {1+ |y Fag; + 2yqa.;: + -+ Fpety )

T Mags — 13— 2yiagg T+ yubiag) + etge — L)

and 1his 13 the explicil cxpression for e map F{AM L
LI A, s an crthogonal & » ke matrix {viewed as an isometry of BY), then

0 . o
'J:' )

proserves g and thc condition x, = O Jo this case, {3.7.5) yiclds w = vd,
and s every isomeley of B® which fizes the arigin docs arkse o the form
FlAWF~ L
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It is only necessury o show now thal the refiection in the sphere S2#)
orthoponal to 5" 1is of the lorm FA}F " - Because orthogonal transformg-
tions are of this form, we need only consider the case when & is of the [oom
(5, 0.....0 M 1y actually more eonvenient to introduce another positive
parametsr t with

: - SO5h
GO R N AT T
and

r= l/inh ¢,

so the orthogonalily requirement £|* = 1 < #* is satisfied,
Consider now the matrix

cash 2r sinh2ze 0 - b
—sinh2r -—-poshZ O -0 0
P = 0 ]
: : L
[} 0
obscrve that det{ P} = —1 und that P preserves both the quadrate form

gfx, x) and the hall-space x; = (. The cffsct p—w of F(AW ' on A" s
given by (3.7.5) and the denominator of 1this exprossion can be simpiified
as follows:

|plHagg — 1)+ 2ppayp — - + Feeg) + {@gp + 1}
= 2|p? <dnh® 1 — 2y, sinh{(2¢) + 2 cosh t
=2y = {|*sinh* ¢
= Z[p— {252

Mowforj=2,..., rthe formala {3.7.5) vields
f'!_}-'_l-
W= ——,
Loy =P
Al=n,
(1 + ¥ sinhi2} — 2y, cosh(2t}
e 2y — L|* sinh® ¢

Cstnh{2[ly — {8+ 1 — |§F + 20y 8] — 29, [2eosh? £ ~ 1]
- 2|y ~ £ sinh® ¢

2

—r{:}+ I"’{h i 13
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This proves that FIPIF ! s

p ity -
that iz, the reflection in ${I, £ 7

lo view of Theoram 376, we examine briefly the group O{1. ) of matrices
which preserve the quadratic form glx, xb If A € O(L, n), then

g{x, x) = glxd. xA4),

50
AF4" =1, (3.7.8)
whate
1.0 - o
L
0

We deduce that det{4F = 1! the subgeoup of Of1, n} with determinant 1 is
SO0, ny

wexl, wr show that the set of matrices A 111 C{1, ny with ay, = Oisalsea
subgroup. We denote this subgroop by OF(1, 1) with

SO, R =801, )~ O (1 R

Suppose that the maitices A, Band € satlsfv ag, = O by = Dand O = 48:
then

Cop = dgoPog + - = duabag
= dggtug — ldo P — 0+ gl
2 173,32 34102
2 daaPao — Lag, + - F a3 iy o )

Becavse of (3.7.0), we have

{dapy ~Gnra--or ~Aped - (Boas G102 dond = 1
50
Qg = afy — - afj,: + L
Taking the transposs of both sides of (3.7.6) after ceplacing A4 with B yizlds
fo =0+ -+ b+ L,
B0 [y 2 O
Finally, the inverse of A {=[u;;)} 15 (fAS) because
AlFANY = AJAYS
=.J2
=1
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Thus 4+ 47 preserves the condition 4. > 0 and w0 Q" (1, n} is ingeed
a groop. Observe that an slement 4 of OC), v} [gaves the hyperbolaid of tw o
shects {x; g{x, x} = 1} inmvarniant: the compenent § is 4-invariant if ang only
fag, =0

We have proved that the isometrics of @ are precisely rhe elemeanty of
G (). k) and that in the fsomorphist 4 — F{AF 77 of Q¢ RY onloy
OMUBY) the subgroup 3O 7* (1, #) carrespends exactly 1o the directly coni-
lorma] elements of GM(B") (in the proof of Theorem 3.7.6, cach reflecijon
corresponds ta & mateiy of determinant - 1. We ¢an now induce a opology
on {eMIR") by fransferring he narural topalegy from O7(1, g} to GM[B™)
and it 3 not hard 1o see that convergence ef matrices in €3 (1, ») cortespand s
caactiy o uniform convergence on §°° ' thus this topology agrees with
those previously constructed, Roverting back to GM['.:'!“L we have prowved
the [ollowing result,

Theorem 3.7.7. UM{R") with the topology of uniiorm CORTETHERce I rier
chardal metric i5 lsomorphic as o tepelogical groug t0 the group O (1w + 1 ]
of matrices.

[n particular, if we identify B* with the cxtended complex plane, then
M{R%) is {as we shall ses) the class of complex Mébins transformations

gz + b

r: s ad — b £ 0,

and this is isomorphic to the Lorentz group of matrices preserving both the
quadratic form x + x2 + x3 — % and the Ineguality 1 = 0.

ExercisE 3.7

I Show that if tae MEbius transformations ¢, preserve 85 1and 7 ¢ — | vhifermly
om some relatively open sebset af §° then &, — ¢ umiforely on 8" ° und on S
{Identily §* with &° and smsidar convergetlos on BT i, ]

2. Suppass that = = 2 50 thut © in Deficition 274 liss in %% Show that the geadesics
in B2 thraugh the otigin correspond wia F and £7° to the intersectiogs af 2 wilhr
certaln planes thromgh the origin in B

33.8. Noies

For reeent treatments of Mébius transformations in B2, see [5], [101] and
[110]: for shorter works se= ffor exarmple) [3], [33] and [108]. A more
algebraic treatment based on quadratic forms is given in [19]. Theorem
3.1.5 is well documented: see, for instance, {36], p. 133
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The inversive product {Section 3.2) s discussed w [77, [217, [22], [110]:
il can be derived from the metrical theory of the hyperboloid model [see
[L10]

It is known that the only (smooth) conformul maps o B {or in past
of 3 are the Mabius transfarmations: this is due originally te Liouville
(1350) 2nd has been considerably vxtended since then (by diminishing the
degree of smoothbess required). For furtber information see [105], pp. 13
and 42 and the referecces piven there; also, see [B8).



CHAPTER 4
Complex Mébius Transformations

§4.1. Representation by Qualernious

In this chapter we shall cxamine the action of Mohios transformations in
(3% and their cxtensions to B2 We identify B? with the comples planc  and
the algebraic stracture of C then allows us 1o expross -he action of Mobius
transformations algebraically, We shall also identify {x, p, £) in i1 with the
quatcTnion

LA TR 41 (d4.1.1}
(Section 2.4): this enables us to express the Poincaré extensien of 2 M3bius

translormalion in lerms of the algchra of quaternions. The exicnded complex
plane £ is © o {oc} and this is identificd with B2, Tn terms of qualernions,

Hi=lzttzel =0}

and the boundary of H in 23 is L.
Mébing trapsformations are uspally encountered first as mappings of

the form

_ x4+ b

ez d

giz) {4.1.2)
where o b o and d are given complex pumbers with ad — be = 0. This
latter condition ensutes thatl g [s act constant: il also ensures that « and o
are not both zero and the alpebra of T then guarantess that » is defined on
CHe=00oron € — {—dict if e # & Mow define glon) = & if ¢ = and

gl—dicy= =,  glw)=ai

if ¢ # 0. With these definitions, g s @ 1-1 map of & ome itself, In addition,
g~ ! is of the same form.
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Any finile composttion g, -- - ¢, of these maps can be computed alge-
braweally and the resclting map, spy g is azain of che sams form. Note,
howewver, that the algebra 15 coly valid on the complement of some fnile
stt Eang =g g, 00 L ~ £ Fach map of tha form (4.1.2) when extended
s zhove, 15 a contiuwens map of © onto itself (here, continuity is with respect
lo the chardal metric) and 30 by continnity, g = g - - g, on L. These lacts
(which are left for the reader to check) show that the class # of maps of
lthe form {4.1.2) is a group under the usoal composition of lunclions. We
must now show that .4 = MfE?), the class of ortertation preserving Mibius
transformations of & onto itself,

In the case of dimension twe. the relecnons {318 and {3.1.2) are balk
of the form

az — h
v ad — e #
ez + o -
The composition of two such maps ix‘in A [again, we use algebra wiest and
then appezl to continuity) and so MR < &
Mow suppose Lhat ¢ i3 in & and iz given by (B2 e =0 then g is
gither a translation {if # = Jj or a rolution and expansion, numely,

gz) = & + (@d)z - #),

about some x In both cases, ¢ 15 @ composition of an zven number of
reflections and 52 s in M3,
Now ussume that ¢ ¢ . The isometric cirele (5 of g Is (see Section 3.5)

@, =1zl co+d| = 0d ~ b
the significance of this lies in the fact that if 2 and w are on (3, then

gz - g = E TR T
iglz) -~ glwil = Gz D T | = Wl

This property iz also sharad by the reflection & in {, and so akso by ¢ where

& = ge.
BMow
(=) = ~d ad - be| (z + dfich
T T TR izt dic !
and so
gz} = gloiz)}
_ acl(z) + b
sl - 4
- diealz) + d] — {ad - o)
- tleaiz) +

Ik

(afc) — {ufc)u|Nez — d), {(4.1.3)
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wherz & = ad — be. Aty map
z—tIE-f-'B_. 'E{|=1,

is a composition of an odd number of reflections so again, g & M(1}. This
shows that .4 = Wl

We shall use the notatinn . in preference ta M(%?) for the remainder
of the tex1, Also, there are many arguments which, strictly speaking, depend
on s alpebraic camputation followsd by an appeal L continuity: we shall
not mention this again, The next resuft is well known.

Fheorem 4.1.1. Let =), 2, 7, be  triple of distint poings in & and let wy.w,.
wy e angther such triple. Then there s a wnigue Mihius transformeation
WHICH MaEs 24, 5o, 22 Lok wep, wig, Wy respactively,

We come now Lo the representation of g in (4.1.2) in terms of quaternions,
The guaterpion §4.1.1) 15 z + ¢f where z = x + (¥ and the Poincaré extension
af g is givey by
L far +B¥ez = d) + aftt + ad — be ¢
4l + 4y = =T T -

2+ dF 4 |eeF
Obsarve that this agrees with (4123 il 0 = 0. We shall verifv {4.1.4} when
£ # 0: the case ¢ — 0 ix casict and the proof s omitted.

The Poincaré cxtension of & 15 the reficetion in the sphere in &Y with
the samc centre and radius as €0 thus the action of ¢ in 27 is given by

o =d lad - be| {24 () + 1
e R

(4.1.4)

e b
=" 4 kil fez + d = ctf),
i cn

where
= ad — he, v=|ez + d|F L ]t
Il s converient mo write
olz + i =z + 1 /.
Si

r
ez, L d = ?(cz + ), t, = % (4.1.5%
The Poincaré extension of ¢ is found by compaosing the extensions of ¢
and a. The cxtension of & s given above and the extensicen of ¢ (and of any
Euclidean isometry of C) is given by

Pw + 5] = P{w) + 5.
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Thus
e+ = alelz — 1
=iz 0l
=z )T oS
and using (4.1.3) and (4.1.3) this simplities to give {d.F.4),
T ad — B = 0 we can describe the action of g in B theeugh the algedra
of gunarernions, Indeed,

lele — o)+ 0] Jelz 200+ 607 = [uz ~ B+ agf]. [les + a) — egf177
_ [far ~ )~ alfez — o — 1ef]
h CUE "J.'E:z-'i'iﬂli-“ N
_fazr + Blez + d) + air® + {od — B

lez 4 %« et

and this is gz — ¢) precisely when ad -- be > 0, )
It is possible 10 write each transformation in GM(B*) in terms of
quatermnions. For exampie, the function
Siwl=fw —plw + 70 we=z+1 (4.1.6)
is the relievlion in x, = 0 followed by reflection in 3{83,\{;2.} (note that
¢3 = J). In fact, fmaps 17 ante 52 and the restriction of f'to C is sienply the
stetesgraphic projection discussed in Sectwon 3.1 1o general,
flecify =g+ L= M=+ 7 = 1107 Y

_ G [r - 1000 — [t - 17
|z + (¢t + 1)

H

which simplifics to
2z (2P 407~

41.7
[z 4+ {t + 1)* (%13

e+ =

For = 0 this gives the formula for stereographec projection on C: it also
shows that F{fy = {.

Exercise 4.1
i. Lel g be given by (4.1.2) witk ¢ = 0. PProve

(B} a ez, are) -+ Dasa. [z, 220 =10
(i} ddgs. ti—=0ssddz. — e =0

whete d; is the chorlal metne on G

2. Tetgbegven by {4120 and (4.0.4) wilh gof — e = 1. Show Lhat af 1] = F i apd only #

v b iy
C: ,)esua a).
-]
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3. Show that the Paineare extension ol any Euclidesn isomelry ¢ & given Ly
e~ = gln) + ok

Dr=scribe the action oo &7 of a Enclidean isoaneiry g of O which fres [ in B
4 Show that in terms of quaternions, the reflecticn in $a, o) 2= B s piven by
el + BYe® + 4y
For s suitablc a, &, ¢ and  whare « = 2 — @i whenw = = + .

. Ler 5 be piven by (4.1} with ¢ 7 [ Show that Jor quatzroions wand o' of the Torm
¥ —Iy+ i

L

atwd — gln's = fad — bedlwe = )7 T — wien” — 41 1

Dedure that if gd — be = 1. ihee g acts as @ Euclideen isometry on the sphore
S —dwe, e i BY

84.2. Representation by Matrices

Any 2 % 2matrx A in GL{Z L) induees 4 mapping ¢ in . by the formula
A — g, whera
i b) az + b
A= (c &'}f falz) = ez d

We denote the map A — g, by © and this maps GL(Z. O} otto .#: we shall
szy that A projecis 1o OT represents g,
An elementary compatation shows that

0o = ganlz),  zell

where 48 is the matrix prodact and o @ js a homomorphism. The kernei
K of @ is easily found for A e K if and only il

forall:mC.Ifd sk wetakez = 0, =0 and 1 and find that

‘a0 ,
A-(ﬂ ﬂ), Y

Clearly any matrix of this form 15 in K and so

(fe ©
K=Ker¢==¢l(p a).a#ﬂ}.

In particalar, .# 15 [sornorphic to GL{2, ©/A - i less formal langnage, o ,
delérmines the matria A to within & non-zero muloiple.
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In peneral, we shall be more conceroed with the restriction of dieo SLez, O,
The kernel of this restriction s

Ke= Ko SLZ 0= i, 1

and each g in 4 iz therefore the projection of exactly two matrices, say A
amed — A in SL{2, ©). We deduce that .4 is soreerphis to 812, 04T, -7
The two [unctions

134} 4 2

——, -~ —-— AeGL(2 )

det{A) |det{A} (2.,
are nvariant under the tranaformation A — A4, A 7 0, and 5o they induce
vorresponding functions on . namely

] r'{Ad)
= = o . m= 4..?.-.-
trace’(g) deridy (4.2.1]
and
, 144
|r:-lI | = |Iﬂ.EL|:A:I|1'I3’

where 4 15 any matrix whick projects 10 g We often abbroviate trave®(g) to
t3ig); also, we use Lrace(y) [or the positive sguare root of [tréz)!. These
fenctions are of greal geomesric significance - woe shall consider |0 now and
discuss tr8(g) in Section 4.3, Observe, however, thut trace’g) is invariant
wader uny conjugation g hgh

Thearen: 4.2.1. For cuch g in &, we e
igh’ = 2 vosh p{f, gf).

Proor. Wrie
T A
gz =T g _pes,
g + o
then by (4.1.4} {with z = (tand r = 1),
o (hd + ar:} ..,_i-
HU} - -L'-lz '_'_ dl'.! -

Avcording to (3340, =2, +tjand I; = =
|z2p — 231 +{r1—r2}_
Pr

The result nosw follows by substitubing 2y = 0,2, = 1 (s {, = ) {; = {0
and vsing the idendity
|hd + 8> + 1 = |bd + ad|* + |ad — bc?
= {alt + B el + |d]2) O

+ iz f than

+ 1 = cosh g{i;, {50
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We have ulready seen from (4.1.7) thut

Fiw) = {w o~ filw — f) Y w4 (4.22]

is the reflection in C fulowed by the reflection n &), \,-"'j_} ane rhat this
transforms the hyperboiic metric in H? 1o the mettic
elx|

de = -—
1~ |s]F

in B*. As another illustration of the use of quaternions lel us consider an
alternative proof of Theorern 4.2.1, this time the computations heing carried
aut in B,

SEooND PROOF. Let w = g{i) and = fi{w)so J e 5% Now for any quarter-
oions x and f,

= e|lfl dx = e
and 5o

1 D ) Tl

[(af + bYej + o)™ T4
_laf + by —jigf + D] ef + rl’}"l
Taj + B~ e + d) |(ef = d) -
_ b+ &~ da - il
[{F — &3+ {a — 4},

Thus
b+ fﬂ-l-_rj +(a— dia — )

th— &)EF — &) + (a0 + J]{a +4)
_ lgt® + (be — ad) + (Be — ad}

|;=-|3|

gl¥ + (ad — be) + (ad — bey
g2 — 7
s
Using p for both the roetric in 7 and the metrie in B2, we bave
ol gy = e G flalin
= p{t), &)
L+ 1<l
)
Writing p for p( . 9(f)) and using {4.2.3), this gives
JZeroshp=e+¢7*
_ A+ L
IR
= [lg. *. -
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Woecan now review Theorems 251 and 232 in the light of the geomeatric
acticn of Mabjus transformations, Suppose that

. (a b ie) = az + b
- \C ' el = rz 4+ d
where 4 1510 5L{2, £) and suppose also that fis given by (4.2.2)

Theorem 4.2.2. The foflewing statements are equitadent.

1) 4= 85U T

(L} géi) = -
(i) 1gl® = 2
{iv} faf 7" Is a linear orthogonal trangformation

(v} g fs et isometey of the chordal merric space {12, d).
ProoF. The equivalence of (it and {17} 15 & dircct corollary of Theorem 4.2.1.
As 4 =8L{2 T we have ||4]|* = g|* and the equivalence of (i} and {iii)
15 a direct consequencs of Theorem 2.5.1,

Mext, {ii} is equivalent to

Sa im0y =10

and by Thearem 3.4.1, this is equivalent to {iv),
Finally, the equivalence of (i) and {v) 15 established by ohserving that g
15 an momedry iFand only i€ for all g,

gzl

1= g " 1+ ]z
Thus {v) holds if and only if for all =,
- zF=iaz — b2 + oz + d%,
or, equivalently,
w27 = (lal® + e 3z 5 + ()0 + |di® = 2 Refab « cd)z,
This is cquivaient to

lai® + i = b+ |4 =1
and

ab < cd =0,

wlicly, in Lurn, is cquivalent to 474 = [ and this is (i), ]

Of course, Theorem 422 shows that the classical symmciry groups of
the regular solids {ambedded in B%) correspond to the Gnite subgroups of
512, T): indeed, each rotation of 57 is represcnted by a MBbing g derived
from a matrix in SU(2, ©) and the symmetry proups can be realized as Anite
M dbias groups.
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Exsres: 4.2
1. Skow that ifgljl = w + sfiber

gl1F = {w]* & 55 — Iy

14

. Ler a subgroup [Uof SL(2, 1) project to s subgroup 7 of L#. Show chut T T 6 Giserete
then for any compact suzsct & of % gty e K [or only a linile gumer of g in 7,

L)

Shovar thar s mains 4 an SL[L S s al order twa then £ = ) or — 1. Deduse 1het
il B isa rarres s SLE2, £ representing a MAbins rransformetion of erder tea. 1920
s of order four,

4 Shovw Lhul gz — — 7 i noL the projechiacn ol ary iy o 512 By Yerdy 1hut the
prodection of SL{2, B} consistz of those Mahws iransformalions which craserve the
gxteadod road axis and ehe upper Failf plane in C.

Show bt the irapsurmations

[

-~ iz -1
2.1 Thr-— - L)
:—32 To—3
- -1 z 1z -1
L - -l PR - Dhetm eme—
-2 2 —1 gx - 3

forin a proup. Show that thers s 4 uaicue poinln + ¢ in B Gxed by every glzment
of thiz eromp and describe the cotresponding group of sotations in B

§4.3. Fixed Points and Conjugacy Classes

We begin with a brief discossion of the relationship between certain alge-
braie coneepts and some geametric ideas concerning bxed poimts. Intbally,
the discussion will be quile general and there i no advantage to be gained
by restricling ouraelves to Mébius translormations {indeed, such a restriction
may even deflect the reader from the central ideas}.

Let X be any non-empty sel. A permutation of X 15 a 1-1 mapping of X
onto itself: for example, 2 reflection in a sphere 1% 4 permuetation of 2", The
Jixed points of & permutation g are those x n E which sausfy glx] = x: if
this 15 50 we say that g fixes x.

If & 1= any group of permutanons of X then the siabilizer G, (in G of x
1z the subgroup af G defined by

G, = {g=Gig{x) = x|,
Finally, the arbit {or G-arbit) &lx) of x is the subsct of X defined by
Gix} = fpix}e X g e Gh

Observe that there i5 @ hature! ole-to-oNe correspandence Detween the set
G/G, of casets ard the arbit ({x). If g and & are i (G, then i{x) = g{x} if and
only if A7, = g5, andl this shows that the oap AG — A{x) is both properly
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defined and one-to-one. It clearly mups GG, onto Gix) and this is the
required correspondence. The same facts show that the coset kG, is the
complete set of g m O which map x to &lx).

Twio subgroups Gp and G, of & are comjugare If for zamz A n G
o = kG h L As g Bxes x if and only if Agh™ " Hxes Aix). we see that

Gh:_-,-] = hGIh_ L .

thus i x and y are in the same orbit ther G, and G, are confugate.
Conjugate subgroups are, of course, isomorphis; however, they are alsa

the same from a psometrc point of vicw. This is nat nocessarily trug of

isemarphic subgroups, for cxumple, the groups gencrated by z— 2 + 1 and

g+ 3z arc somorphic but have quite different geometric actions, We arc

primarely interested in the geomctric action of subgroups of . and we shall,

in general, stare ouwr reswlrs in aform which remains invariant wader conjugation.
Mow let F, e the set of fixed points of g. If gh = kg then

glfyy = F,. KF)=F, (4.3.1)
This is clear for if x = ¥, then
Al )y = w(hix)) = glx)

and s gix) e £ thas, g(F,) = F,. Replacing ¢ by ¢ 7 1 we obluin g{Fb = 7,
and (sumlarly) h{f,) = F,. We shall see later (Theorem 43.8) that the
cowterse Is glag Drive when O v g group of Mabius trunsformodions.

We return now to study the transformations in .. In its action on £,
a Mabius transformation g has exactty one fixed point, exactly two tiaed
Peints or & the identity. This provides a rather primitive classlﬁcatiﬂn ared
we can oblain u finer classification based on the fixed points in 27, This new
classification 15 invarianl under canjugation and so there s a will finer
classitication, namsly the classification inlo comjugacy classes. One of aur
main results is that the functien 1t* defined by (42,13 actually parametrizes
the conjugacy classes.

[t is converuent 1o introduce cerluin normaized Mabios ransformations,
For each non-zere & in € we define m, by

mz) = kz (il k # 13

1

and
mlay=zc+ 1

we call these the stardgrd forms, For foture use, note that for all & (including
k= 1)
, 1
i) = k- 42 (4,32
If g(#1) is any Mabius transformation then either g ]‘.an exactly two
fired points @ and fin C org has a unique fixed point e in € {in this case,
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we chooge § to be some point other than =) Wow let i be any Mdbius trans-
formalion with
Mxy=cc.  Rif)=0. Aglfi)=1 ifg(l 4
and observe thal
e - 0 i) = £,
hgh™ {0} = oc,  hgh”'{0) = { :
4 |1 gt = §.

If g fixes = aned B, then hgh ™ ! fixes O and 0 and so for some & [k &£ 1), we
havehgh™ ! = m,. I[g fixcs & only then hgh ™! fixes oo onlyand hgh ™ 10y = 1:
thus hgh™! = my. This shows that any M&bius transformation g (1) is
comfugate to gne of the standurd forms my, and this leads to a simple proof of
of the next resnlt.

Theorem &4.3.F. Ler f amnd g be Mibius rangformations, neither the identity,
Ther f and g ave conjugare if and only if tr50F) = (g

For hrevity, we wse ~ to denote conjrgacy io ..

Fzoaf. We have already noted (following (42,13 that if f ~ g then
' f) = uifg).
Mow assume that trf f3 = tri{g). We know that f and g are each con-
jugate to some standard form, say f ~ m, and g ~ m,. Thus
tritm,) = trif) = tri(g) = te'(m,)
and wsing (4.3.2), this shows that p=g or p=1/5. MNow nole that
my -~ ity thisis rivial if p = 1 while if p # [, we have
bt =my,, Rz = -
We now have f ~wm,. g ~m, and (as p= g or p = Ljg) my, ~ ;. AR
corjugacy is an equivalence relation, this shows that  ~ 5 and the proof
i5 complete. ]

‘f.-’e snall now classify Mabius transformations in terms of fized points
in H* and it is nataral to begin by studving the fxed points of the standard
[orme. The action of m, in B as given by {4.1.4) is

miz + 5= kz + | k|t (k2 1);
milz+ =2+ 1+,
angd this cnables one to find the fined points of each m, . Claarly:
(i) wmy Fixes o0 hut po other point in &?;

fii) if *k; # 1. theo sy, fixes O and 20 but no other points in 2ER
(iify if 'k} = 1. & = I, then the st of fixed points afmy, 15

ffire®} i)
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Drefinition 4.3.2. Let y (1) be any Mobius transformation. We sav

(1) g is parabolic if and on’ if g has a unigue fixed point in T {equivalently,
g~
liiy g i& loxedromic i and only if ¢ has exacly wo Gxed points in @7
{equivalently, g - my for some £ zalisiving |k = 1),
tild g s efdipric if and only il ¢ has infnoicly meny Bred poinls in @2
{cquiveicntly, g ~ my, for some k& satislving | = 1, & # 1)

It is convgnicot to subdivide the loxodromic class by relerenee 1o in-
variant discs rather than jnvariant (Iwed) points. Note, however, that the
folinwing usags is not universa: some avthors ase “loxodromic”™ for our
“strictiy lexadromic™ and have no name for our loxodromic lransformations.

Drfinition 4.3.3. Let g be g lozodromic transformation. We say that g &=
fsperbeldic T gl = 0 for some open dise (o7 half-piang) B in 17 othorwise
g 18 said o be sirfeddy Tosodromic.

The classification described n these definitions is invarignt wnder com-
qugaticn and by virtue of Theorem 451, we must be ahle to clasaify g
according to the value of tr?(g). This is our next resull.

Theorem 4.3.4. Let g (213 be anv Mobins tranifermuation. Then

(i1 g t5 parahalic if and only #10ilg) = 4
(i) g ix elliptic #F and only if 103g) € [0, 4}
(i) g fs Avperbalic if and only i trie) € (4, + o0);
§¥) ar I strfede lexedramic i and only e’ () # [0, + 500,

Proew, We shall verify (1, (i) and (i) then {v will automatically be satis-
fed. Threughout the proaf, we suppose that g is conjugate te the standard
form m, so by (432

1
tr¥g) = p + . + 2 (3.3

Recall that 4 is conjugare 10 m, and (o, but 1o no other m,.

It g 15 parabalic, tren g is conjugate to m, only:so p = 1 and tri{g) = 4
Conversely, iftr?ig) = 4, then p = 1 and g is parabolic, This proves {13,

If g is =lliptic, then p = &' say, with 9 real and cos ¥ 2 1. Then

trifg) = 2 + 2cos i (4.3.4)

and s0 1r¥y) & [0, 4). Conversely, suppose that tr¥g) € [0, 4). Then we may
write tréy) in the form (4.3.4F with cos § # 1 and then {4.3.3) has solutions
p=e® e ® Thus u|=1.p £ 1 and we deduce that g is ciliptic This
proves (ji),
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Finaily, we prove (iii). Suppose first that tr®(g) & {4, + o} Then (4.3.3)
has solutions p = k. 1% say, whers k = 0. As both solulions are posilive,
m, tecessarily preserves Lhe upper hall-plane and so is hyperbolic. This
means that g is hyperbolie. Now suppose that g, and henee it hyperbodic
and let I be a disc which is invariant under g, For any z in D, the image:
of z under the itcrates of m are in I and so

In*z:nefl = B

Because |p| # 1, this shows that 0 #nd 36 are 1o the closere of £, The same
argument, but with ¢ chosen in the exledor of B, lcads Lo the conclusion
that ¢ and oo lie on the boupdary of D. Thus D is a hali-plane and in order
to preserve D, it is necessary that m, leaves invanant each of the bali-lines
from © to oo on the boundary of D, Thos p > 0 and so tri{y) = 4. O

Wr now prove thres useful results concerning fixed points. Recall that
in any proup the commutator of g and h is

[g.h] = ghg™th™! = glhg =11

If 4 und B are matrices in SL{2, T} representing Mabius transformations
g and h then they are determined to wirhin a factor of —1 and so

trg. k] = tr{AB4" 1B )

iz upiquely determined, independently of the choice of A and B.

Theorem 4.3.5. (i) Twa Mibius ransformations g and k have a common fixed
perint i i and only i tr[g, h] = 2. N
{ii) [f g and W {neither the identity) hote a common fixed point i T then either:

{a) [ak] =Tl(sogh=hgdand F, = F, . o7
{b) [g. k] is prrabolic (ard gh = hgyand F, #& F,.

Proor. The assertions in {1) remain invariant under conjugation so we may
assume that i terms of mateices in SL{2, T},

a b z B
y_(ﬂ dJ’ hs(}' {5)'
A computation shows that

tr{g, i) =2 + Bt = Bla — d)le — &) ~ (o ~ &

If g and f have a common fixed point, we may assume thatitis o sey =10
and tr fg, k] = 2.
Now wuppose that wfg, h] = 2. If g Is parabolic we can take g = 4 = |
and b # 0:then y = Oso both g and k fix o¢. If g is not parabolic we can take
=0soad=1and o #£d: then +F = & s0 h Axes anc of D and oo, This

proves (1)
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To prove (1) we may wssume Lhut g and b are ag above with ¢ = & Then
[g. f] = ! iland cnly if
e —d) = Bz — 4,

and this s eyuivalent to 2, = £ (consider the cases o = d a # d).

For an allernulive approdch to {5 supposc thal the common Gxed point
ig o0 and o gand also kis of the form 2 — az + h. The map g — a iz 4 homo-
marphism of ¢g, 3 to the group 0~ (1 ug this zroup is abelivn. cvery
commuealor is in the kernel of the homomorpltism and s0 i5 & trunslation

-

for 1) _

A Buclidsan shmilasity is a map x — reflx) + x, where ¢ is a Euclidcan
mometry and the above proof Is concerned with such similarities. In {ael,
Theprem 4.3.3 is a theorem on Euclidean similarities but stated in # form
Lhut 15 invariant under canjugation,

Theavem 4.3.6. Let g wed b be Mobiw ronsformations eiher than I The
fatlowing statemenls are eguivalent;

(i) hg = gh;
(i) AF,) = F,.q(Fy) = F
(iil) either &, = F, or g arnd h kute o common fixed poing in ' wirh g =
B = (gh)* = Fand F,n Fy = (1.

Procw. First, (4.3.13 shows that (1) imples (il

The proof that (iii) implies (0 35 easy. If F, = Fy then g and & have a
vommon fized point and so by Theorem 4.3.5, [g. 4] = f: thus in this case,
gh = hy. The other alternative oifered by (0i) ulso leads 1o gh = hy a3

g = halghgh) = gk
and so (0E)} implies (i)

It remains to prove that (i) implies (i), We assume that (i) holds and
also that £ # F), (glse (ili) certainly holds). This means that there is some
w it exactly me of the sets F, F, and we may assume that we F, — F,:
thus glw) = w and A{w) ¢ w. By (ii), F, conlaing the p-::nints__ w, kv, B (v
and as these cannat be distinet fese g = ) we must have A*(w) = w. This
shows that F_ has exactly 1wo points and that these are interchanged by h.
It also shows that Fym £y = 2,

By canjugation, we may assume that £, = {8, =¢}: thus for some a and .

glz) = a2, Mz = bis

[ is now clear that b* = (gh)® = 1. Moreover, as g(F,) = F,, we must have
g(.\fﬁj = -,/fsaa=~]and g° = £ Finally g and 4 hawc a comman
fixed point, namely [h.Y4, in B this follows directly from (4. 1.4). O
‘Theorem 433 is concerned with two transforinalions with a common
fixed point in C: the next msuit eoncerns a cornmon fixed point in M2,
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Theorem 4.3.7. A subgroup G of & ooalng only elliptic elemenrs (and 1) IF
and enle if the elemants of G h2ve o eowmmon fixed point in A

It {ollows from Definition 4.3.2 that if g{# 1) 3 of finite order then g is
necessarily elliptic, As every clement in 4 finile group has finite order we
have the following carcllary.

Corvllary. The elements Tn o finite subgroup of W& have a commien xed poie
in H*,

To understand the geometnc nature of the proal it 1s convenient to
introduce the notion af the exis of an elliptic element g. 1t the [ixed points
of ginl are xand B, then (hy wnaldermga conjugation Lz onc of the standard
forma), the fxed points of g in %7 are precisely the poinls on the cirele I
which is ertbogonal 1o € and which passes through & und 3. The axis 4,
uf g 15 the Luchdean semi-circle I~ A {in Tact, Lhis is a geodesic in the
hyperholic geometry of 1 The condition that lwo clipte clements g and
k have a common fred point in M7 i3 <mply that the Lwo axes A, and A4,
ure concurrent in M7, Note that & necessery and sufficienr condition for this
15 that the fixed powts of ¢ and b 1o € lie on a crcle @ and separate each
other oo .

Parts of the proof of Theorem 4.3.7 are algebraic (the geomelry s oo pli-
cated} but evan g0, we shall srress the geometric interprelulion. Ficst, we
prove a preliminary resolt.

Lemma 4.3.8. Suppose that ¢, b and gh are ellipeic. Then the fixed points of
g and e O ore conovelie, 1 in addition, [g,h] i elliptie or £, then the wxes
Ay and A, ore coneurrent in H.

Puacr. If g and & have a common fixed point in 2, then F, o F, hasat most
threc points and o Les in some ciecle I in addition, [p, A] s elliptic or T,
then from Theorem 4335, F, = F, and 30 4, = A, thus g and # have
infinitely muny common fixed points in A%

We may now assume that g and & have no common fixed points in €.
By conpugation we may assume that

ez + b
cz 4 d'

glzd = x%z, hiz) =

where a® & {, ‘x| = ] and al — e = 1. Now
tri(h} = (g 4 ¥, gkt = (2o — 2d)?
and 30 by Theoram 4.3.4, the numbers

A=ua+ 4 o= za — o
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are in the imterval (2, 2), Solving for g and 4 in terms of 2, 4 and o, we
obuin

g=d =+ iy
sav.
The fxed points of # are (using ad -- b = 1)
a—d+id - (a+dF]
2r

and these are the points
£¢ = o £ (1 — 7],
Asa +d = 2, we nd tha' v? < 1 and so £ und { lie om 2 straipht line L
through the origin: thus the (xed points of ¢ and k are conevilic.
A computation (aller writing o = & and using ad — he = 1) gives
trf[g, ]} = 41 + (1e)? — 1)sin? 0]?
and zo the additienal hypothesis that [g, k] 5 elliptic or I implies that
[2] = 1 because we must have
0 < tr3{[g, K]) < 4.

Now g = 1implies that «® + »® = 1 and 50 ooe of the poiats &  is zaro.
This is excluded as ¢ and ¥ are assumed w0 have no common fxed points:
thus 'a| < 1 and so (taking the positive root)

il — w®)lT = 5
This means that
£ = isje, L= itfe,
where 5 and ! are real with or <2 0. Thus the origin (fixed by g} lies beiween
Zand { and so A, and A, are concurtent in M. C

We now use Lemma 43.3 to obtain isformation aboul subgroups of &
of the form {g, 1} which contain only efliptic elements and [. Firs:, by
Lemma 4.3.5. g and A have a commeon fixed point {, say. in 7 and, of course,
every clement of g, 0 fxes O By consideniag a conjugate group, s may
assume that g und k preserve B and that { = 0.

Lemma 4.3.9. Let g and b be Mibius rranstormations {# 1) which preserve
B and fix the vrigin. Then
{i} the elements of {g. k> have the same axis and same fTxen painis or

(ii) there iz some fin g, by suchthat the three axes A, Ay, A, are net coplanar,

Assuming the validity of Lemmu 4.3.9 {or the momen?, we complate the
proof of Theorem 4.3.7,
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PeooF oF Tueorew 4.2.7. The conclusion is obviously ree o all alliplic
2lements of & have the same axis so wemay assmme that & contams elements
g and A with distinct axes. By Leamma 432 g and & have 4 common fixed
point in A7 and by considering a conjugate group we may assume that G
acts on B* and that Lemma 4.3.9 is applicable. By assumption, (i) fails so
{u) of Lemma 4.3.9 holds,

Every clement of g, by fixss the origin so the axes A4, A,. A, ars
Euchdean diameters of BY; moreover, by (1t), they ure not copianar. Now
take any g m G, g # L We shall show that (0 = { und thiz will complete
the proof. By Lemma 4.8, the fixed pomnts of g and g lie on some circle
on &4 and 50 ulso fie on a Eucledean plans 10 . As 11, contains the end-poincs
of the diameter A, we see thal Y [1,: alsa A, = O A similar definition
and argument holds for [T, and 11, : so

Bell, m 115
and
Ay e T, I I, (4.3.5)

The pianes TT,, 11, T, cannot be the same plane {else 4,. 4,. 4, would be
coplanar) thus the intersection

M, IT, A IO,

15 either {0} or is a diameter D of 3% Because Lhis interssclion ¢ontains the
fixed points of 4 on 6B% it is a diameter D a.nd we concliade from (4.3.3) that
Ag = 0. In particular, 3 £ A, and s0 4{0] = .l

Prooe or Losesa 4,38, Every element of g, k% fixes the origin and 50 s
eliiptic ar . For each such elliptic §, lat A, denote the axis {of fixed points)
of fin B, Mote that by assumption, A and A, are Euclidean diameters of B
We shail assome that (i} [ails so 4, and A4, are distinct diameters and
hence determine a Euclidean plane IL let the normal to TF through the
crigin be the diameter 2 of B I A4 Jdoes not lie in I, then take f = kgh™*
and this satisfies {n) as then 4, = AlA) A similar construction of 13 possible
if g( A;) does not lie in T1. These attempts to constroct fcan only fail if g and
& preserve [ in which case, they are both rotations of arder two, Then bath
g und k interchiange the cnd-points of I and so (i) is sutislied with | = gh
C

We ecnd 1his seotion with a discussion of the iterates of a Mdbins

transformation.
Il ¢ 1 pavafalic, then for some A we have

hgh"‘{zj =zt {t #= Oh
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Thas
A bz = - 4 it
ancd

gz} =h" ‘Az + e

Observe that for each z in £ kg™ (=3 = = us |n, -+ 2 thus in genaral,
iF g is parabaolie then

giz) -,

whete 2 i3 the fixed point of g.
If ¢ Iz hot purabaolic, then g has two Geed points. say ¢ and J1 and for some
howe bave

hgh~iml =tz G #01)
und herce

hgti iz = 2

These Facts show that i g is lnxedramis (equivalently, [¢) £ thand Uz is net
o ot f, then the images g"z) are distinet and acennmbate at g und # only.
IF5%z) =z, say, asn— +x, them 2 is called the artrartive fixed poine of
¢ while § s called the repulsive fred peint. Then lorall zather than f, g™[z] — o
N R N o

II g is elliptic (cquivalently, if| = L, Lhen ¢ has invanant eirces: Indeed
each cirele for whick = and § are thverse points is a g-invariant circle and 50
each orhit under iterates of y 15 constramed o he on such a circle. We oollest
these reselts together {or future reference.

Theorem 4.3.10. (i) Let g be parabolic with fixed paint = Then for all z in T,
gzl = a v n — + o7, the convergence being unfform or compect subsets
af 0~ Izl

() Ler g be laxcdromic. Then the fixed points 2 and fi of g can be laballed so
tat gz} = wavn = o (2 f) the convergence betng uniiorm on
compact jubsers of & ~ 1ji

(i) Let ge be ellipric with fived poivre o gnd B Then g leaves invarionr each
gircie for which o and i gre faverse pmnis.

Tf 2 Mibiuz o s of finile order & (30 g*, But no smaller power, is [) then ¢
Is necessarily clliptic. Tn this caze we have
hab~ Yz} = &%z,
SAY, anek go
g = Zam/K,
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where & and m are coprime, We dedace {hat
tri{g) = 4 cos¥ (¥
= 2[1 + cos(2am/k)].

i

Mote thal this can rake different values depending on the prime factors of k.
Ty is elliptic of order two, then & = 2 and necessarily, &r2(g) = 0 the con-
verse is aiso Lrioe. Observe that among all » of arder k, the largest value of
ic¥gh oceurs whenm = Lotk — 1

gl = 4 cos®{mik)

and 8 = + 25k Apain we record this for [utlure reference.

Theorem 4.3,11. Ler g be an elliptic reangformation of order & Then
Iréfg) < 4 cos*(mik),

wirh equaliry if and only if g is o roration of angle + 2nik

EXERCISE 4.3

1. Finel Mibias frunsiormations g aod & suen that

i) g Al = —3:and

7Y g and & have po commen fixed paint in 2

2 Lel g be any Wdbing lransformalion which oes noe fis oo, Show that g = 4. §243,
where g and g, are parabolic elements fixing < and where ¢, is of order two.

3, An wth roon of & Mibies i nslormation g 15 any Mabius transiormation k selisfying

1% = g. Prove

1] if g == f then g has infinicely many ath coots;,

{1i) il g is paraboelic then g has a upigue ALth roce;

(i) imall ather cases, g has exactly » eth roots.
4. Show that i A and B arc in SL{2, C) then

detfd ~ I}= 2 — 1 4)
and
det{ 4K ~ BA) =2 — 11| 4, B]

{[A. B} t5 the commuetator of A and 8), Deduce that if 4 and £ viowed as Mbius
trumiloomations da not have a common fixed point in O, then A8 — B4 s a oon-
singular matrix which represants a Makws transformation or ceder two.

5. Letgle) = zcz + 1) Yerily (1) by induction and {11} by considering & suitabls igk !
that

RUETES

wr 4 1

F:nd ° where ff2) = G2z + 3] and check vour resukt by induction,
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$4.4. Cross Ratics

Given four disimet points 2., 75, 5,020 of C we define the prass-ratio of
these poines as

cartpare this with {3.2.5) where division is nat permizted. The definttion iz
extended by continyity to include the case when one of the z; is = so. for
examplc,

[z 2508y 0] = = : :J
Mots that i particular,
[ ),z o) =z (44.1]
if
nz +~ fr

Il = ad — e 00,
o) =" Mt = £ 0)

then
Az — wiad — b}

A} - giw) = EE:FJ{EW =

and it 5 imumediate that the crosv-ratio @5 inporiant under Mibius rane-
Sarmarions: that is,
lolz.). g0z;), alzah glzad] = [z, 55, 23, 2] (4.4.2}
This g a uselul property which oftan leads to a considerakble simplificarion.
Muorecver, the converss is also true: i
[I"IE:-'"'IE"WS-I“:L] = i—.zfsziszﬂsfd-] (4'4'3:]
holds then there is a Mobius transformation g with giz 3 = w,. To se2 this,
let f und & be MEbins rransfotmations which map z,, 77,7, to 0,1, 7 and
W, W, ey to 0,1, co raspectively: these exist by Theorem 4.1.1. Then by
{#.4.1], (447} and (44.3),
Flea) = [0,1, flzy) ]
= L2k flaah fizsd Mz
=[2y, 22,23, 2]
= [Wy. g, Walwa]
= [Alw ). Alw,), Alw ), hiw,]]
= [0, L, hiwad o0]
= Bl ).

It s now clear that g{z,) = w;where g = &~ "= f. Ol
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We are now aolng o study how the cross ratio
= [21-_ T1,23, 34] (444’

varies as we permute the =;. With this in mind we lec §, denote the permu-

tation group of 11,. .., &} and remark that (as with all functions) we regard

permutations as acting an the [t for example, {123 (13} maps 3 to 2.
Eachrin 3, induces a change in the value of the cross ratic by the formula

'j‘ = [21, 23,73- 24] —* [2511 Fazr¥osa E:'r:i-J

and it is essential to realize that the resulting value depends on o and A
ot o the individual walues z,. This is so because if

(£, 23,23, 24] = [wy g, wa, wyl.

then there is sume g with g(z;) = w, and so

[;a]! Za’zrzdﬁ--‘zn"-‘r] = [Q{z-:r'..}r g{zuzjrg[303]= g{zd‘k}]
= [Wah Waz: Y3 II""I‘:r"-]‘

Becanse of this fact, wa can introduce funciinns £, {r € 5.1 oy the formula

.-ra'{‘:[} = quia faz:fada 35\4_]'-'
where » is piven by (4.4.4). Because

.-fr(fu'{"l}:l = [zmh zf:u'2:- zﬂ;:l:l 511'-94]
= frolA)

we have the importlant relation

Jrotfo = fra (44.5)
Now suppose that ¢ s the transposition (1, 2) and lct ¢ be the Mébius
transformation which maps z,_ 75, 2, 1o 0, T, oo respectively. Then
A=[z1.2;, 25, 24]
= [0 1 glza), %]
= glz3)
and a0

f(AY = (23,21, 23, 24]
= [1,0, 4 =]
=] s
A sitnilar argument holds for all six transpositions in £, and we find
(e ={L2Yar 3, N then f(l)=1- 1,

(i} e = (L, or{2 4 then f {1 = 24+ — 1)
(i) e = (L4 or (2, 3) then (1) = 1/
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This informution leads to s delermination of all . As 5, is penerared by
traaspositions, (i (i) and (i} together with (4.4.5) suffice to give ail f,.
MNote that for each cransposition ¢ the fuaction f, is actually a Mabius
transfurmation which maps {0, 1. =1 onto itself. Thus if we dencte by 47,
the subgroup of Mabius transformattons which map {0, 1, <} onto itself
we find from (4.4,5) that the map

B = f
15 actuadly a homomoerphism of 5, into 4, (which Is somorphic o 550 In
addition o thes, it 15 clear feot (1), (W) and (O and (4€4.5] that toe subgroup
K= 3501203, 40 (1, 324061, 402, 21

abf &, is contained witbin the keenel of 4. We can now describe the siiuation
completely.

Theorem4.4.1. The map 8. 5, — 4 Is o hamoemorghism of 8, orro W with
fernel K.

FProce, Theorene 4.1.1. amplies that 4, has exactly six elements: those urc
the: functions

iy L — A Afa — U 1A, 100 — 20, {0 — Lk
of 2, There are 31 parmutations o in 8, with #(4) — 4 and a straightfunsard
computation shows that the correspending [ are precisely the six clements

of .. This shaws that ¢ maps 5, onte ,#’n and a5 this implies thut the
keroel of & has exactly four elements, the keronel must be K, L

Four distinet poilts z-, 2, 23, 24 10 Lo are concyelic i and only if they liz
on some circle. Let g he the MMobius transformation which maps 7,25, 24
to 0,1, e respectively. Then the z; are concyelic if and only if (he g(z;} are
and this is so i and anly 1 g{z-) 1 real. However,

g{:l} = [[}1 1: g[33}= :C]
= [z 72,22, 7]
thus 7,25, 29, 2, are congyelic if and anly if 2, 25, 24, 24] & real

Iz, 25,25, 2, lie oo a cirele ¢ and are arranged in this order aroung 3,

then glz,) > 1 and an

A=[z25.09.54] = L.

Exer¢1sE 4.4

1. Eheww that rhe unigqus MEtivs transformusion whish meps 7, 7 5. w0 001, >
respectively s g whers
glzh = T2y, 23,5, 2,

A Verify that {00y = 20i — Vwhen o = (2, 41
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3 Lel 2y, 55 7. 2, be distinet pednes io S Slow that the circle thregeh o, 7. 8 08
orthogonal to the circlz through 2, 25, 24 T and oely of

RBe[z). 27, 23.2.] = .

Generafize this to the case whese the cicsles meel gt sn angic  énote thart the g ars
concychic if and only I & - .

4. %ot g be any Musiug ransformarion. Shue that if g does nat fis = then [z, g2, gzz, |
is Independent of z and evaluate this in terms of tr2{g).

§4.5, The Topology on &

As deseribed in Section 4.2, there is & homomorphism
g SL{Z. Ty — 4,

which associates Lo each ¢ in .# exactiy two matrices 4 and - 4 n SL{2, ().
The group SL{Z, <) is a topolagical geoup with respact to the matric |14 — B
and the map ¢ induces the quotient topelezy F on &, namely Lhe largest
topelogy on .4 with respect to which, @ is continuous, In addition, & hus
a topology 7%, namely the topolepy of uniform convergence wilh tespret
to the chordal metric on & (see Section 3.7) and it is essential to know that
these topologies are the sume. One method is to compare the action of
SL{2, C) through the action of .4 on H* {and then B*} to the matrix group
({1, 3). However, & more dircet approach is not without intersst,

Theorem 4.5.1, The topalogy F induced on A& by @ coircides with the
topology F* of uriform conoergence on L,

Paooe. It is sufficient to show that the map
P SL2, T — [, F7) (4.5.1)

15 open and continuous: see Proposition 1.4.1.

Assuming that this bas been cstablished, observe that if & is o SL{2, )
then

X — (=200 = 247
= 2./2,
{see (¥} of Section 2.2). This yiclds the next resuil,

Carollary 4.5.2. The restriction aof O 10 cry open ball of radius V"E imSL(2, T)
is & homeamorphism: thus SLI2, T0) s o pwo-sheered cozering space of 4.
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It remains to prove tha! the map (4.5.1) is open and contmuous. Deling

al {0 = supal fz,02),

IE

where of 15 the chorda. metric: thus 7% s the metric lopology mduced by
Lke metric g We shall derive *he continmty of & from Lhe next resulc.

Proposition .53, I/ A in SEAZ, ) represents g, then
slg. [ = B A - T

Explicitly, if B represents [, then

afg, [} = algi 1)
% 6 4B~ 1]
< .6 14 - Bl .|BI

and so @ is continuous at the peneral elament B of SL2, T

Froor OF PROPOSITION €3 3. There 1s & unitary matrix B cepresenting a
habius map h sach that Agh ™! Axes oo (h corresponds 1o 4 ratation of the
gphere moving a selected fived pownt of ¢ to oo). By Thearems 2.3.2 apd
4.2.2 we have

|4 -l = BAB™' - [
and

alhgh L1 =afgh™ L, h7 1)

= oig, f.

These ramarks show thar we may assume, without loss of gocnerality, that
g faes co, Inaddition, if ¢ 15 loxedromic we may assume that the repu'sive
fixed point of g is oo (we simply choosz k appropriatsly).

Aszsume than that

o 4

the condizien on the fized point of ¢ in the loxodromic case means that 1o
all £asas,

A=('I 'Ej. af = 1

oL lals,

azy ez az+ §
.'.',]'[:Z, gz:l = d(Zg?) - f,lr[-é: e -'-:-ﬁ——

2z|. &~ (@B N
(1 + |20 — Tazfd il + 2 fifd]
2z]. ® - 5]

T B[22 |V 2]

MNoaw

+ 218
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thz fasl ling being an application of the Arithmetic-Gegmetric Mean
inequality. This upper bound simplifies to a valve independent of 2 and
nang #d = 1, we have
Tlg fy =ty — 8+ 2 H
=a—1,+'1 =48+ 2|8
Zlla— 17+ [T =8 + | BPYHL + 1 — a4
~ald = 1.

o

Finafly, we must show that the map (4.5.13 is an open map and this wilt
be derived from the next resull,

Proposition 4.5.4. Let gy, 9., ... e Mabius trarsformutions and suppose thar
) = w for w = [ 1, oL, Then:

(1) reere exist matrices A representing g, whlch converge to I and
(i) g, — ¢ wniformiv on T

Proow, Choose malrices

in 5L{2, ) represcoting g, where g, is 1 or —1 and is 1o be chosen later.
In the following argument, trivia] modifications are required if g (o) = 2!
wi ignore these cases.

As

- I R S
gl — g0y g — g
— 1,

e can select &, so that & d, — 1. Mext,

fad Xind) = a.d,
R S
gl 2} — (0]
— 1,
8o e, -+ [ also. As
o = dpfgdon) by = dpg D),

we seg that ¢, and b, tend to zero-ihes A, — I This proves i} Observe that
fii) follows from (i) and Proposition 4.5.3, il

Finz]lv, we can complets the proof of Theorerm 4.5.1. Lat # be an open
subsct of S1L{2, T} and soppose that O{#) is not an open subsct of & fwith
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respect fo the metric topelogy 7 *). Then there is some ¢ it &4} and soune
g1 &z, et in @3 with

Fidy, 4] = 0
Ay
(G, g3 = alg.g™ %, I

wi see from Proposition 4.5.4 thar there are mateices 4, representing a,g '
with 4, —= I I B {in &) rcpresents g, then A B — B so A, B isin & {or all
large n. It follows that g = {4, 8} is in ${5#) for these n and this 1s a

—

cOTETA o, i

A subgrovp € of & is discrate if and only if the lopology deseribed by
Theorem 4.5.1 induces the discrete topology 01 6. ILis clear from Corollary
4.52 that if & s diserete, then & WG Iy a discrete subgroup of SL(2, C).
Conversely, if T is a discrete subgroup of SE(2, ), then ©(T) s a discrete
subgronp of 4.

Of course. if G is a discrete subgroup of &, then G is countable {sop
Section 2.3), 8ay G = ig,.42,.. .}, and

gn| =~
as it — o0, In view of this. the next resule i of inleocst,
Theorem 4.5.5. Suppose that K is ¢ compact subset of @ domain D in T awd

hal g omits the palues 0 and oo n [ Then for some positive m depending only
or O cind K, we hane

mdiz, w)

|

digz. ow) =

Jor ofl 2 and w in &,

FroOF, Define . by

2my = infidiz, w)ize K, we 0%
and supposc that

ar 4k
g{2j=cz+d" ad — be = 1.

As g™ Yool d P we sec that for 2z in K,

EJ‘T’E] = d{:. !?_ lm}]
p ez + d|
THL R =
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A wimilar mequality holds for g~ 0 so
{14 2% gifimy)® < laz - B — ez +d 7
As

gz, gw) ( 1= z)? i 1-'2(-__ __1+|-‘v|z_
iz w) laz + B1* + ¢z + d|2] aw — b+ ow 4 df?

.

¢

1%

o

the result follows, -

The implication of this is that if & is discrete, then under the assurmptions
in Theoren: 4.5.3; the chordal diameters of the scts g (K tend to rero.

Exercise 4.5
L. Prove that e — = | then for all =
Clal? =z 0 |az = AP ¢ ez« €3 =
with equaliy if and only iF 2 = —(@h + &dki|a® + [c]*) Show thal if g(=) =
{ab + Blrz ~ a1 1 then torall -
i |az +~ bj? = jer + a1F
s N
[a L= z|

< lgll®

2. Let & e a proup of Mibius transformations presaeviog HE. Show that cach g in O
can be written unigusly in the femm ¢ = & where f{g) = az — b (a = O, b R} and
hii) = i Deduce that (7 s homeomotphic ta B = 5L

3. Show thar a sequence g, of loxodromic vansfonnstions ean converee to an 2llipnic
ehkment but if this 15 5o, then g, is sirictiy loxodromic Jor almost all i Show that a
sequence of @liptic elernents cannot converge o a |ox odomic element.

§84.6. Notes

For & discussion of quatermions and Mobivs translormations see [1F [3]
and [26]. The ptoblem of obtaining & subgroup of SL{2, ] iscmorphic to
a given subgroup of & has besn considered in [2] and [74]. For general
information on Mobius transformations see [30] (especally for isemetric
cirgles), [51] and [52]. See [53] for Theorems 4.2.2 and 4.3.7,



CHAPTER 5
DPiscontinuous Groups

93.1. The Elementary Groups

In Lhis seelion we shall define and deseribe a elass of subgtoups of & which
husve a particularly sunple stouctuee. This elass contams al' finite subproups
of .4, all abelian subgroups of .4 and the stabil'ze: of each pointin B

Definition 5.1.1. A subgroup & of 4 is sald ‘o be elameniary il und only if
there exists a finite Gr-orbit in [

Of course, the emphissis bere s on he word feite. Alwo, ooe thal this
defirition makes no reference to discreteness. The group 8 acls as the
proup of directly conformal isemetries of H* and & is elemencary il there
is a finjte Gr-orbat in the closuors of heperbolic space,

Obviously, if a single poiat is G-invariand then & s clementary, If & 13
abelian, then sither & contains only elliptic elements anc J or & contains
some paracelic or loxodromic element o In the first case (whether & s
wbeliun o7 not), & is elementary by virte of Theorem 4.3.7: I the second
case, &y elementury By Thearem 4.3.4000010). Thus evary abelian subgronp
ol & 1 elementary.

Remari. Elamentary groups are sometimes defined by the condition tha:
for cvery ¢ and b in & which are of mfinite crder, we have trace[g, h] = 2
cyuivelently, g and # have a common fised point it © (Theorem £3.3).
However, with Lhis defimisiar, the srabilizer of a point in A7 is not necassarily
elemnentasy.
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Let us now assutne Lhal & is an -:]ern&ntury gruup ard exumibe the
puab]bil ties. ‘:upposenat the fnite orbit 5 ik, L x.b- g isia & then the
points g™ hm =0 1L 2 ..., cannot all be distinet so there 15 an insger
mi, with Lhe propery that g™ ﬁ!:&S . I0eas o the product of the s, then
g™ fimes cuch x. With this available we cun now classily the :ILlnu:nt_t*]f
groups mtd !J".J'éf: tvpes.

Type 1: suppose that 1 = 3ar that {x,,. .., %, 5 wor in ©,

If the points x| are not in . *hen each g in & has some powsr ¢ n:ung
x;and 30 ¢", and hence g itsell. is ellipie (or ) Ifn = 3 and the x;aren C,
thiers g™ has at lzast three Hxed points and 5o s Lhe Wentity: thus again, sach
nopn-tivial element of 2 s elliptic. This shows that o ¢ s of Tvpe 1. then G
corlams only elliptic elements and I By Theorem 4.3.7, there & some x o
H?* which is fised by everv element of & and by mapping H? oato B und x
to [ we see that & is conjugare in GM{3*%) ta a subgroup of the Special
Orthogonal group 03] (see Theorem 3.4.10.

Type 2: swppose chat # = | and x| 15 ik (.

Ir: 1his cage, & (s conjugate to A suberoup of ., cvery clement of which
fixcs o and so s of the [orm 7 — a2z + b Thus & is conjugate 1o a groop of
Euclidean simnilarities of {2

Type 3: suppose that n = 2 and that x,, x, are in G,
Lzt this case, & is conjugale to a subgroup of & cvery clement of which
leaves {0, 2ob qovariant and is Lherefore of the lorm

g, az s =

Mote that & s theo conjugats to a group of lsomatries of the space © — 10}
with the meteic derived from |4z1/| 2],

Wa shall now describe all discrere elementary growps, If & s f discrete
elementary group of Type | we may asswumne that every clernent of 0 Axes
*he point j in H*. Thus by Theorem 421, ||g]* = 2 for every g in G and
{as {7 is discrare) & 75 necessarily finite. Thus & is canjugate 1o 4 finite sub-
group of SCN3) and hence to one of the svmmetry groups of the regular
solids,

We can usz the fac: that & is finile to obtain the possible structures of &
without roference to the regular solids. We say that ¢ in £ isaverrex if vis
fixed by some g (#1) in & and we denote the sct of wortices by V. Naw
consider the number | £| of elentents of ‘he finite sel

E={lg.vhgeig=fve ¥, glv) = v}
As each g it & (g = £ 15 ellipue it Gxes exactly two verticss and we have

|E] =2(ir — 1)
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The seabilizer of a vertex ¢ is &, 20 we also have

L =% (G| - 1),

I

The set I is parctitioned by & inte disjeint orbits F,..., ¥, and as the
stabilizers of each ¢ in F. have the same number, say ), of elrments we have

E =% Y6, -1

Finaily, cach orhit G(¢) is in 1-1 correspondence with the class of cosets
0jG, safor pin ¥, we have V; = ((z) und

Lhminating | ¥ we obeain
’ 1 : 1
o1 - ] - (1 - —}. (S.1.1}
A [ L = Y M,

We shall 2xclude the trivial group, s G| = 2 and

1
1= 2(1 - I-(t?_i-) = 2,

By definilion. n, = 2 sa

These inequaiities together with (5.1 13 show that » = 2 ors = 3,

Case 115 = 2,
In this case, (3.1.[) becomes

and henge {as |n;| < &),
Gl =ny =y, |V, = [Pyt

In this case there are only two vertices and aach is fixed by cvery element
of 7. By conjugation, we may take the vertices to be § and oo and G is then
4 finite, cyclic group of totations of
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Cuse 25 = 3
Ity this case, (5.1.1) becomes
| 1 1 2
A T | Gl

and we may assume Lhal vy = n; = n;. Clearly n, = 3 leads to 4 contra-
diction: thus n, = 2 and

- =4

[ 1 1 2
T T

—_

fa; zwm =4 we again obtain a contradiction, so »; = 2 ac 3. The case
ny = 2iezdsto

{lg-!'”:h”:snﬂ:ﬁﬁ.l 2,”} {HEE}

ana this is samarphic to the group of orientation preserving symmetries
of 2 regular plans n-gon (tha dibedral group 2.3
The remaining cases are those withs = 3, . = 2,0, = 3 and

3

— f .
|E.‘| 3 i

T —

and the {integer) solulions of this are

':I} ”GL Flya Mz, n.]..:l = '“21 2: 3: TI':
[”‘) {|G|=~ ni:- ?‘12, ”3.} = [2'1' 2:- 3: 4}-
(i) (iG], ny ., 05) = (B 2, 3, 5

Thess groups are isomorphic 10 A,, 5. and A, respectively and they corre-
spontd to the symmetry groups of the 1erraiedron, the octahedron and the
icosahedron respectively, For more details, ses the refarences in Section 5.5,

We continue with our discussion of discrete, elementary groups, The
next resuit essentially dist:nguishes between groups of Types 2 and 3,

Theorem 5.1.2. Let g Be losodromic and suppose that {ond g haoe exactly
ome fixed point in common, Then € [, g @5 not divcrere.,

ProOr. As discreteness is preserved under conjugalion we may assums that
the corimmon fixed paint Is oo and, say,
gzl === (|x|=>1). fizg}=az+h

{if necossary, we may replace g by ¢ 'L
Then
g fgtiz) = az + a™"b
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As fand g have ooly one common lied poinl, we see that b # 0 4s lg| = 1,
we find thal the sequenee

g "I'g" . n—=1,2, ...

is a convirgenl sequence ol distiocl Lecms: thus <, g5 3 nol discrete. Far
4 much more illuminating proof, the reader need ooly draw a dingram and
lvcale (for large ) the points 2, g%z, fgfz and g "¢z Cl

Suppaose aow that & is elementary, discrece but not of Tepe 1. Then &
st sontain parabolic or loxedromic clements, 16 G contains a parabolic
glement g, fixing 0 sav, then everv element of O fixes o (bacanse all oiber
orbers are iafinue) and by Theorem 5,12, & bas 1o loxcdromic elaments.
Such a group is of Typa 2 IF G contains a loxodromic element o, fixing 0 and
s say, then every element of & must leave the set {0, =} invardans, This
imupless that & cannol conain parabolic elements and such a group is of
Type 2 05 3,

Let us now examine the structurs of a discrete group of Type 2 wilh
parabolic elements, Thus & contains anly I, parabolic elemenis and possibly
some ellip:ic elements,

By conjugation, we may assume taat every element of & fixes oo and so
iz of the form 2+ xz — . As this is either elliptic or parabolic, we see that
a| = L:thus (ris conjugate to a group of Euclidzan isomerrizs of T

We call o the mudtiplier of the map 2 — 2z — § and wy general. we denote
1ag multiplier of g by 2. Note that 2, = 140 and enly if g iz paraboilc ar f.
[tiza trivial matter to check that the set § of multipliers of g i & 15 a {mnle-
plicarive) subgroup of {|z. = 1} and that the map #: ¢ - § defined by
g} = = is a homemerphizm of G inte 5. The statement that «, = 1 ifand
only if g is parabolic or §is precisely the staternent thut the keenell T, of
& is the subgroup of rranslations in & As G777 is iscomorphic to § [ =6F)),
we can describe & by geving explicit descriptions of 3 and - this effectively
separates the parabolc and ellipric slements.

First, we zhow thao & is a fnire oyelic group. Now O containg 2 trans-
latiom, say fizy == = 4+ dand if giz) = az + f 310 (, then sa s

glg Y=z + i

We deduce that G contzins = 2 + &l for cvery rin 5 and as @ is discrete,
S cannot accumutace in £ Thus 3 is o finite subgroup of {2, = L; and (as
15 casily scen) it @5 noccasarily oychic

We can obtain even more inlormation abour 5 With fand g as above,

S afem e =2+ (2 — 14
and so if lee — L) = L, then thers i 4 translation z— 2 + 4, in & with

11, = (&~ 1341 < 4.
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The anme argument yvielcs rranslations 2 — z + A, in 7 wicl
|| =12 — IPjAl =0

as 1 — + - and this vialates the discrcteness of G. Tt follows that foc svary
i 5 %~ 1] = 1. A5 ¥ is a cyclic group, say,

S=flenw’, o, ef
wilere
o = Expfiniiygh,
we see that ¢ = 6. In fact, g = 5. [ndeed

fafg M=z (2= LU

und for exactly the same reasou as above, we must have [z + 17 2= 1. This
implies thal ¢ = 5 for il ¢ = 35, taen |w® — 1] < L. The remaining possi-
bilities, namsly ¢ = 1, 2, 3, 4 and 6 can all occur,

We must now describe T, Let A be the sel of A, for which 2=z + 4,
is in 5 and let AY = A — 0% As G is discrete, A cannot accumulate in L
and so A* contains an element A of smallest (positive) modulus, If
A={riine 2}, then

T={r—z4+niinef. (5.1.2)

If this is not so, there is an element u of smallest {positive) modulus in
AT - {na re F):note that i 4] = || The translalons

Tz 4+ md + mu; pome F, {5.1.3)
are in G and we shall show {hal T consists preciscly of these translations
Il 25 clear that pis not & real muluple of A (else we write g = {k + 4)7 where
keZ, 0 <8 < 1, and consider 83). Thus 2 and p span the vector space O
(over B and iz 2z + 3 18 in & we may writs

¥ ={Hy + XA+ () + Bk,
whereny, pys Eand x, yel—4 3] Nows —nd —mypisin Aand
[ sl = | = x4 g |,
a ziriel incquality holding because 4 and p are linearly independent. We
deduce that
v —mh — mus {naine £}

and 50 1'1s precisely che set of translations (5.1.3).

W can naw deseribe (3. We scleet gin & with multiplier o which generates
5. Then g, g2, ..., g% ! have mulliplicrs e, w?, ..., 6?1 (w? =1, g < &)
and &0 G has the cosel decomposition

GC=TuwuTguw Ty L
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Tais shows that overy element of & is of the form
a L 1 .
= I — a4 AT

whera b, myonoare integers, 0 £ & = gand g = &,9 = 5.

M, we suppose hatl O iz discrete, elementary wilh laxodromic slemeants,
First we suppuse thal every elemen: of F fixes both B and - and so s of e
form

g7 = %z, a = 0

Tie map 8 G —{xef'ix =0 defiued by dig) = |=,i is 4 homo-
morphism of O w10 the multiplicat:ve group ol positdve numbers and this
tme the kernel £ of 0 consists of T and all elliplic elements of & Bacsuse
G oand heoee £ 08 discrete we see thul £ s finite eyelic group generated by,
say, 2 — wr where o = |,

The image PG) s the set §|e, |y = G} and his set cannol accumolale
at 1 else there are distinet elements g, o & with

) . 1 .
e = = l2l® = 2 el = yz)
and this violuzes discretensss. IU is now very easy 0 see that the muft-
plicative groap @007} s af the form

G = [Fwe £
Far sore positive . We may assume that giz) = 77 where |2 = d;then ©
has the cosct decormposition

G= ) Eg

A=z
anc each element of & 15 of the fornn
P e (3.1.4)

where e £ ke & and O & = g If |a| = 1, then &G is the wivial group
and & s a Anite cyelic group of Tyvpe | Oiberwise, & s inhnite and comains
loxodromic elements but in any eeent, & has oo parabolic elements.

Finally, we vousder the general discrete, clementary group of Uns 1wps.
We may assume 1hat {0, 20} is the G-nvariant and we denote by &, the
elements in O which fix both 0 and =« so &, is of the foem given by (3.1.4),
If &5, iz a proper subgroup of &, then & necessarily contains some element
fwith

R = oo, A=e]) =1,
By g further conugation (Jeaving O and oo fixed) we mey assume that
A1) = 1:thus hiz) = /2. If fip G interchanges 0 and oo, then fhe G and
g0 0y 15 of index two in G this showsy that all zlements of & arz of the iorm
(3,14} ar of the form

2 e
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This compleies our discossion of all elementary discrere groups. ln
peneral, we shall be morz interesied in the sos-elementoary subgroups of
#. We end w'th two results which give necessary conditions for & group
to be nob-elamentary: these results make no relerences 1o disereteness, The
{irat of these resules gives some insight into the complexily of such groups.

Theovem 5.1.3, Every nom-elementary sufigranp G of A contoins mfiniely
ity laxodromic elements, no two of which have a common fixed poim.

Proor. We begin by showing that & has some loxodeomic elemnents, Suppose,
then. that & has no loxedramite elements. Il G contains only I and elipric
elements then & iz clementary. It follows thal & cootaineg u parabelic
elernent which we may take to he

flzy=z—1
Farany g tn G, say
azf — b
=22 e he
g(z) YT ad ~ he = |
we find that
- _ = nd + (b <+ rd)
Sglzy = i d
and

(gl = (2 + d - ne)?
As M is not loxodromic, we sce that lor all integers i,
bt{a+d+n)? =4

and so ¢ = (. This implies that every element in & fxes oo and so G is
elamentary, a contradiction. Thus cvery non-clementary group contains
lexodromis elements.

Mow consider any notn-elementary group G and let ¢ be a losodromic
elemznt of & fixing, say, « and §. As & s non-elementary, there is some fia
& which dogs not leave {a, B} Invariant and wo cuses arise:

i} i B {f= f A} are disjoint;
(1) 4z BY, [ =, £} have exactly one element in common,

[nocusc {1k gund 4, = fgf ! arc loxodramic with no commen fized
pomta [ is now casy to sce that the clements g%, 7" (n s £) contain the
desired loxodromic elements bocause 1he fixed points of g%, g ™™ are g" =,
g" [ B and these are distinet from but converge towards x ot £ {see Theorem
43,160,

In case (it} ¢ and g, have exactly ong conimaon fixed point, say o, so by
Theorem £3.5, p = [g, g¢] s purabolic and also fixes o Az {2} cannot be
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f-ieuriarl, there 15 sovpe & in (7 nor Sxi0E 2 50 0 = Apk ! s parabolic and
does £ot liv = Thus g and @ {o7 o and g7 have to comman fixed poins.
Then [or suitably lurge », the elemumts g and gy " ure loxodromic with
o commoen fixed points and case (1315 applicabls. C

Thearem S04, Leae 0 be a Mébius ransformation aot of order two arnd
define the map 904 — & by Mgy = g9~ . If for seme n, we fave '{gh = f.
Sen (o ia elementary and 0%y = 1

Prooe, Define g, = g and u, = 0giso for m = 1),

gm—] - gm.}r{gm}_ ;'

Suppose first that #is pareselic; then withouot lass of generalicy, (=] =
:+ L Asy,.. .., drc conjugale to [ shey ure each pardtolic and so have
a umque fixed point. Now far » = 0. g,., fxes g,0sc). Thus if 7 _. fixes =,
ther so does g, As g (= f) Bxes o, we deduse that each g, (including gq)
fimes 25 This shows ‘ha! {f, g5 s clementary as hath elements fix 2. Also,
i, 1s parabalic and Rxes oo and so commutss with (2 thus g, = £

Suppose now Lthal " has exactly two Rxed points: then we may assume
that f{z} = ka. Clea-ly g,,. .., g, zach have cxactiy lwo fixed points. Now
suppose that g, Bxes Qund 20 {as does g,): then

0,2} = g0k gi=0dt

Now g, cannat interchange 0 and = (r = 1) else (g, ) fixes 0, 2o and other
poitts too and so g, and hence {{which 13 conjugate 1o g.), 15 of arder Lwo.
We deduce that it ¢, fixes bath poines 0 and o=, then sodoes g, for r 2 1,
It follows that g,, ... g, each fix 0 and cc. This shows that fand g leave the
sat {01 o} invariant and so Cf, o5 s elementary. Again, g, and comimute
sog; = . -

The reader may wish to relate this resul to the discussion in Section 1.5,

ExERCISE 5.1

1. Let £ be an elementary proup canlaining 2 parabalic eloimean which fizes w2, Show
that if the group of all such parabolic elements i= ovelic chen any clbptcclementic &
i al ordear twa,

2 Show thal 4 group 705 slemeniary B and caly i for all fand g in G, OF @3
.8 clementary,

3. Show thacif ¢ and b are of arder two, then g, o™ is alemariary. 1s Og kY noocsaacily
discree’t
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4, Show that the ma)

r—irfc . log 2 )

iz anisommctry of © — {0 with the metric |42,/ = onto the cwinder '« & with the
EBuchdean metrie. Deduce that an eledemtary stoup lewving (0, o) imvariant is
womarphic e a moup of seaetes of the cylinder. Food Lhe Duclidean isomelry

enrresponding to the group clament 2+ — az* where po== F o - 1.

5. Les
L+t =0l =¥
Nzl = -z giz] = - i -
(1 =r =141 -1]
where | = 1.-'\.-"":'1. Show that g s parabalic with Tzed soine w, sy, whers w # 10,

Deduce -hat faf ~ Lig paranalie wil ftxed pral — = w)sn O 0% s non-clementary
Shonw however thet v the ootation of Thecrem 514, Y = § (The assaaption
that f iz pot of onler twa in Fheorero 3.1.4 15 regessary. b

§5.2. Groups with an Invariant Disc

Later. we shall be interested in those subgroups of & which have an o=
variant disc: here, we characterize such groups.

Theorem 5.2.1. Leié & be a non-elermtentary subgroup of & Them there exoo
a G-invariart dise if and only if G has ro stricdy loxodromic elements. [f D15
& G-invariant apen disc, then L and its exterior are the only G-invariand discs,

Mote that we do not require & to be discrete. The restriction to noa-
elementary groups Is necessary: for example, if

pel=z + 1, gizh =z + |,

then ¢p, ¢ has no loxodromic clements and no invariant disc and <o’ bas
izfinitely many invariant discs.

Proar, Directly from Definition 4.3.3, if & G-invariant dse exisis chen ¢ has
no stactly loxodromic elements.

To prove the converse, suppose thal & is non-elementary and bus no
strictly loxodromic chements. By Theorern 5.1.3, we cun find loxodromic,
and therefore hypecholic, elements ¢ and b in & with no commaon fixed
points. By conjugation, we may assume that g fixes 9 and .

Mow select any Fin ., In terms of marrices we can write

N W
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where gach matrix is in SLE2 20 As g is hyperbolic, we lind (hat w s real.
Mexk, write

Ho=trecelfy=a — &
and
.= tracefg /) = we + Ai.

Because fand g fare not strictly loxodramue, 1) and 2, are real. Solving for
xand &, we find that ¢ and & are real. This shows that ssery element of € has
real diagonal elements.

Mow let

a kb
F = . i - ==
? (C a’) ad - be == ],

s ¢ and d are real. Also fu + 4F = 4 boeausce b is hyperbolie, The fixed
poanes of b oare the points
_la—dhx fta < af — 431

W, Wy T =
2c

and as ¢ = 0, the ratia w S, is real. This implies that the fived points of g
and h oare calimear. In an invacian focmulation, the abssnce of strictly
loxodromic elements implies that the fised poiats of every pawr g and & of
byperbalic elements are concyelic One can proceed by peamerey bur the
algzbraic proot seems mmplar.

We may assume that the fixed paiats of g and & lie on the real axis. Ther
g and k leave H® jnvariant and all enzries of b are real. Now

_ fua - jic £
m={" -fe.+au)

b

and these diaponal slements wre real. As @ b, cod, x and 4 are real and
Boe 2 0, we {ind 1hat § and ¢ are real so [ is in SLO2, 2. This shows that
every element of & pressrves H2

Finaily, let £ be an lovaciant dise. For any hyperbolic & in &, the poiots
Ry accurmulace at the fixed points of & (Theorem 4.3.300. By aking 2 in
Y and then o the exteriar of 1 we see rhat all hyperbolic fixed points muost
lie in the boundary of D: thas rhere are precisely two G-invariant Jiscs, the
common boundary containiog all byperbolic fixed points (see Theorem

5.1.3). C

The argument given in the last purt of this proof shows Lbal if g fs para-
Bolic ar hyperbolic with an invariart dise D, rhen the fixed points of g lie on
g0, g is eliiptic with an invariant dise D, then ihe fixed points of g cannot
lic an 30 (consider g{zt = ¢z} 1w is a fixed point of g, then so is the inverse
point of w with respect 1o &0 because inverse points and & are preserved
by g Thus [f g is elliptic with feorior! disc D then the fixed points of g are
interse bolnls with respect o 00 ard are not an 80,
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EYERCISE 5.2

L Werity the statemends reganding the location of the fxeed point of o with iovari
dise £ by laking 3 10 be 9% and regerding of 4e 4 matrix e 5102 1

§5.3. Discontinucus Groaps

We begin with @ general definition.

Definition £.3.1. Let X be any topological speee und G a group of bomeo-
morphizms of X onie isoll We say that G aces diseontiruoustc on X I ard
only I lor every compact subset K of X

glK}~ K = 2,

cxoepl for a finiie number of g in G

In our applications, X will alwavs be a subset of B with Llhe usual
Lopoiogy, There are. bowever, soveral useful resufts which, even nthe
general sitaation, foliow easily from this definition. Supposc now that G
acts disconunuously on X then the following stulements are true,

Enery subgroup of G acty discontinueisiy on X. £5.3.1)

If & is a homeomarnkiom of X oute Y, then G !
acts disronsinecusiy on Y. (5.32)

If Y is a G-invarignr sufsee gf X, then G acrs

diveemtimuonsty on ¥. (5.3.3)
If xeX and i 9., g5, ... are distinel elements
of (5, ther rthe sequence g,(x), gi(x) . .. canrol con-
verge o any v in X (334}
Ifxe X, then the stabidizer G, is finite. (3.3.3}
I for example) X < &°, then G v cowntabic. {5.3.0)

Proors. Clearly (5.3.1} and {5.3.2) are true. If ¥ = X, ther any compact
subset of ¥ is wilso a compae! subsel al X and {(5.3.3) fullows, Ta prave
(5.3.4), observe thal il the given sequenee converges 1 1, then

= ‘:.}! A, dy [I_}, Qz{x}, .- }

Is a corapact st As g (K K 2 @in = 1, 2,...)and as the g, are distinct,
{7 cannat act discontinuously on X thus (5.34) follows. For cach x in X,
Ix] is compact; thus (5.3.5) 1 a dircet consequence of Delinition 5.3.1
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Finally, wg have seen (in Section 4.3) chat thers is & 1-1 comespondence
besween GG, and the orhis Gix) and sa by (5.3.5), & is countable ifand only
if (%) i countable. Now any uncauntabls set in B* contains 4 finil point
of itseif and se by (5.3.4) &(x) must be countable, Thiz proves (536).

Our aim 5 o study the relationship between discretencss and discon-
tinwity as applisd to subgroups of L&, First, we consider the action of G in H?,

Theorem 3.3.2. 4 subgrawe G of L& i discrere I and onfy § It aves diseoe-
timicrisly in H2.

Prour. Suppose (iral that G is discrels. As G s 1he homemarphic imags of
a dizcrerne {and therelore countabie) subgroup of 8502, T, we see that o is
counlable, suy

G=ig, s

As (F s diserele, g, — +9 and 50 using Theorem 4.2.1, we see that us
H— + 0, 50

alis gl = + o, (537

1 s elear from (3.3.5% Lhal a compuet subset & of B liss in some
hyperbolic bull

B=ixs H:pix =kl
o{Klrm K # (2 then g(B)1 m B # 47 and 5o

i gl = 2k

By {5.2.7) Lthis cun only happen [or 4 Anite number of ¢ io 3 and a0 © acts
discomtibwously in £17.

Mow suppose that O acts discontinucusly in H (or io any sabdomain
of £, If 7 13 ot discrets, we can find distinct matrices 4;, 45, ... 0 5002, 1)
projacung to ¢, gy, ... 0 O owith A, = I as 0 — oo Using (4.1.8), we sce
that g {xi — x as n — 2 for every o o B2 Clearly this viclates (5.2.4) and
so we deduce that & s necessarily diserere. Ll

We now turn our atiention o the extended complex plane and we segk
tor understand the relationship between discrareness and discontipuity in
open subscls of & QF course. the proot of Theorain 5.3.2 shows that ¥ (;
acts discontinuonsly In some non-empty oven subset of £ ther 3 is discrete,
The vonverse is fulss: it is possible fer G to be discrete yot not ack discan-
tinuously in uny open sulset of . In order to give a simple cxampie of this,
we establish a crilerion which cxcludes the possibility of a discontnuous
action.
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Powma 535 Ler & e any sebgeoup af F g ler I be an openr suhses oj'lf:
wihich cobtaing @ fixed maint roof some paraholle ar logedromic elemenr g of
G Fhen o aoes nor aet discontiobgislye e AL

Proor, This is frivial as the stabilizer G, contains the disunet derates of g

I g 15 parzhbolic or loxadramie, then &, is infinite and 1this violates {5.3.2).
-

Example 5.3.4. Let & bz Picard's group. namely the group of translormations
of Lhe form

o+ B
ez d

glz) = (538}
whers @ b ¢ and d arc {Faussian integers (of the form wm — iw whore e
ne flandad — be = L. Qbviously & is disgrete.

By Lemma I.3.3 it is sufficient to show that the parabolic fixed points of
Garzdense in L. Let w = (p - Ig)i7 where p, g and r are integers: obwiously,
the set af such w is dense in O Wow simply observe that

i1~ weliz + ria’
—riz + {1 + wr)

iz =
15 4 paraboliz eiement of & that fixes w. [-

Cur aim new s to undersiund the sitgation in which o discrete group
does acr discontinuously on some open subset of ©. The exposition will be
clearer il we resteict owr errention (o the nor-elementary growps: the case of
the elemeniary groups is ralther casy and are lodt to the readar. Note, how-
ever, thet ohce again we do nol begin with the assumption of disgroicness,

The discussion will be baged on the fxed points of loxodromic clements
of & and we begin with a preliminary resull which coables vs Lo locale 1hese
fixed points.

Lemma 5.3.5. Lot X be an open disc and suppose that g = .# and glE) = £
Fher g s loxedrormic and hus o fixed paine in g(T)

Proor We may assume that g{oc) = ». With Lhis assumplion, 5E Is a
Euclidean circle {and not a straight line) as clearly, no fixed point of g is
on he boundary of X. I g is elliptic or parabolic then (as ¢ fixes =l g is a
Euclidean isometry and this is not compatible with g(€) = Z. Thus g is
wxodromic. For any w not fized by g, the images g'iwhn=1,2,.

acenmulate at a point ¢ fixed by g If w 5 Z, these images are in Q{Ej am:l 50
e f.rl,‘l} _

We naw begin our study of discontinuity in subscts of £

Detimition 5.3.6. Lot (& be o non-elementary subgroup of .4 (0 nead not be
diserete) and ot A, denole the sel of points bxed by some loxodromic
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clement in € The i s ALG) of & i3 the closure ol Ay ‘o Sothe prdinar

aet DG of 5 is the complement of & in £

In general, we shall writs A und 0 withoul explicit mention af & Motz
that il & = €} then

MG« MG, TG = Q)
We shall study A first and then (0

Theorem 5.3.7. For any aor-elementar 1 group (7, the Uit set A {3 the smallest
aGr-empl L G-tnnarigrt closed imhvet of 1. In addinon. A s a perfect sed ard if
therefore uncouwlable,

PRODE. &35 A, 15 C-invariant, 30 15 A, By definition, A s closed aad by
Thearem 5.1.3, A & ¢F. Now let E be any ron-empty, closed G-invarian!
subser of C. As G is non-elementary, overy arbit is nfdnice. thus £ s infinite,
INow take any powt ¢ fived by a loxodromic glemen: g in & Thers 15 some
win £ not fixed by g and the set {g"w: e £ acoumulates ac o fand at the
ather fixsd point of 7). As £ is closed. v = E. This shows that A, = £ heoce
A= E

This argument also shows thar A, has no solated points (we simply
chioose win A, bt aot fixed by gk hance A has no isclated poiots, A set is
perfect I it 15 closed and without iselated points and as is wel known any
Aan-empty perfect setis uncountable. As A is perfzct, the proofis complste,

Theorem 53,7 shows that the countable kel A, isdense in the uncoantable
sct A but we can say even more than this

Theorem 5.3.8. Ler & be w nor-elememiary subgronp of & and et Q) and Oy
be disfoing oper sels botk meeting &, Ther there 5 ¢ loxodromic g 0 with
o fixed paird in O and @ Sxed poind in 04,

Prooe, Recall that if fis loxodromic with ap attractive fixed poinz z and a
repulsive fixed point B then asn — — o2, ™ = ¢ uniformly on each compact
subser of & — {8} and / 7" — £ uniformly on eac compact subset of © —
ja} (Theorem 4.3.10). The repulsive fixed pomt of fis the atiraciive fixed
poianr of F71

Now consider &, &) and ¢, a5 in the thzorem. It follows (Definitian
5363 that there js a loxodromic p with atteactive fixed point in Oy and &
loxodronvic g with actractive fixed point in O, By Thearem 51.3, thers is
4 loxodramic [ with atceactive fiked point & and repulsive fixed point g,
neither fued by po Wow chaose fang then fixd some sufficiently large valuc
of m 30 that

pg=pfpT
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Figure 231
flas irs atractive fixcd poinl 3, (= pMe) and repulsive fixed point &) { = ™)
in €., Then choeose (and fix) some sufficiently {urge value of r so chat
k=g

maps x, inte O put =y = &%, ). See Figure 5.3.1
MNext, construct opett dises £ and K with the propetties

feEcEc0,,
w.elk cK <0,
As B, # K we 3ee thet g" — % urifomly on K asn — + . As A7 {K)
is un open neighbourhood of ¢, we see tha for all sufficicotly lurge n,
g{K) = h™ 1K)
end so

hg'(K) = K. (5.3.9)

Ash{z V¢ Esox, ssnutin h " Y{EYand so 97" — 8, unifermly on &~ ~(E)
as 12 — + oo, Thus for all sufficiently large x,

g "hHE) = E {5.3.10)

Choose a valug of # for which (5.3.9) and (5.3.10) hold. By Lemma 5.3.5,
hy® is loxodromic with a fixed point in K elso, g %0 L whick is (hp™) ™5,
has a fixed point in £, hence so doss hg"

Theoroms 537 and 5.3.8 do not require & Lo be discrete, If we add the
extra condilion thal & 15 discrele, we van describe A dn terms of any ons orhbir,
For any z in £, let Afz) be the set of w with the property that thece are
distinct g, in & with g,(z) — w {the points g,42) nesd nat be distinet},

Theorem 53.9. Ler & be @ non-elemenrary discrete subgroup of #. Then
Jor alf z in G, we have A = Alz).
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Remariz. The groop generatad oy 2— 27 shows that the conclosion may
fail if G is only discrete, The aroup of Mibius transformations preseeving
chi unit dis¢ shows 1hat tae corclusion may fal If & is only oon-clementary.

Proor oF THEOREM 5.3.9. Eachi Alz) 15 closed, non-emply and G-invariznt
su b Theorem 53,7, we nave

= Afz)

If - A, tien Gz} — A und so
Ajz) = G5 o A

i this vase, Lther we have A = Alz)

Mow suppose that = is in 02 and szlecl any win A{Z): we must show taat
we A Suppuse nof, then w2 02 und there is a dise ) with ceatre w whose
closure O lies 1n £k We may suppose that b and 2 are in A z0 taking
K = @ . {2} we deduce [rom Theorem 4.2.6 1hal for all g in & aad all 2
i 2,

digz, gz = milgh
Acw e Alzy chers are distinet g, with 05 = weas '3 % = + 20, we deduce
1hat g, — w uniformly an Q. This implies Lhat Jor large

Unf&} = Q;

henge Tor Lemima 3.3.5 we have 0 —~ A # {7 and Lhis contadics ) = 0 [
We now lurn our attenticn ro the opcn set (.

Theorem 5310, Suppose hai G is @ dizcrete non-elementary mhgrowp of
A Then 1 is 1he maxima! domain of disconiinuitg in 2 of G precizeiy,

(i) 0 gets discodtinuansly in §0: and
{i1y of G acts disceniimuonsly in an open subsel D of G then 1 < B

Remark, Traditionally, ¢ diserete group & wus called Kleinian it 2 &2
More tecently, Klefnion 15 used svnoncmosly with discrere.

Froar oF THEOREM 5300 IF & does not uct discontinuously i £, then
-here ‘s o compact subsst K oof £ and distinet g), g, .. 0 & such that
a Ky K s @, Thus there are pomnls 2y, 14, in K with g4z, K. By
taking a subssquence, we may assume Lhal gz, — w M K and so we L
However, exactly as in the aroof of Theorem 5.3.9, we now s thut g, —
uniformly pn K and so w e A, 4 contradiction. This proves (1.

T s easy to prove (i), By Lemma 333, Do Ay = . As D s open. this
implies that DA = @ so o 2 J
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Theorem 53,10 has an interesting corcliary.

Corellary. Ler & be discrete and non-elerientary. Then £2 = 75 i and ondy if
Jow some 2, Gz) Iy noc dense in C,

ProoF. By Theorern 53.%, 0 & & il and only f Az} =A) 15 not £ and this
is the asseriion in the corellary., .

Lemma 5.3.3 shows that the fixcd puints of parabolic and lexodromic
clements of & i in A ard hence not in & [t 15 not hard to see that there
car be ixed points of elliptic elements of & bath in A and in {3 Howesver,
il an cliptic fixed point lies i {1, the mahilizer of that point must be cyclic.

TFheorem 5.3.1 1. Suppose that & s non-clementary and thar 82 & @1 If z 22
then the stabilizer O, ix eyclic und finite,

ProoE. By virtue of Lemma 53,3, 1z = 0 then every elemsnt of the stabilizer
(7, i3 either elliptic or £, Thus by Thearem 4.3.7. thare is some ¢ in H* which
is fixed by every g in G,. Now let 4 be the unique semi-circle in H* wlhich
has cod-point =z, which passes through © and wihuch 15 orthogonal o L
Every glliptic clemen: of &, fxes = und & and so has the axis 4. This meaos
that every clement of &, fixes borh end-poinis of 4 and an examanation of
the discrete clementary grouns listed in Section 5.1 shows thal G is neces-
sarily a finite ¢velic group.

For an alternalive proof, suppose that g and £ fix z in £ As both g and A
arc clliptic Lhey each have another fxed poinr IF these other fiied poins
arc distinct, then by Theorem 4.3.5, [, k] is parabelic and also fixes = and
this vielates Lemma 33,3, [J

We can use Theorem 5.3.11 1o obtain a resull concermng the local be-
haviour of a discrete group & near a point in Qor A2

Theorem 5.3.12. Lot G be a discrete non-elemeniary subgronp of & Then
feonsidering only g in &)

(i) each x in H? s the centre of ar open hyperbolic ball N such tha: g(N) = ¥
ifglxl = x and i)~ N = & otherwise;

1) If Q= @, ecach x in £ has an open neighbourkood N in D such that
i) =N ifglx) = z and p{NY N = & atherwise

Prowe, First, (i 1z a direct consequence of the fact that & is a group of
isometries acting discontinuausly in H

To prove (i), we may assume lbal = — 0 and that every g in G, also
fixes o0 (use Theorem 5.3.1 1 Now selzact a disc

No= {2z = #)

whose closure i contuined in [ As & acts disconiinuously in L3,
gl N % 2 for only a Boite set of g in G, By cootinuity, for a sutbeiently
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soall ¢ (depending in this fimie set) g{N)m N = & unless gidd = G in
which case. g[v) = M. r

II'G s adiserere group, then & = g, ga... .} say, und
I L PR I

Wz now show this convergenee cennol be too show,

Thearem 5.3.13. Lot & be g diserete subgroup of &, Then:

(Y the nurcher it} of elements g in G with g1 = 1 s O,
[y for any 5 = 4, the series ¥ g% conrerges;
(i) iF0 = & then the ser:'esLE lg]l == comverges.

Prour. The stabilizer G, of j in 7 is finite with. say, k elements. L2t & be u
hyperbelic ball in B with centre j and radivs r, say, such that g(N) ~ N = &
when g e & — { . Let FIR} be the hyperbelic volums of a hyperbolic ball
of radins K.

Now gl = ¢ iseguivalant to

2 cosh 4, git < 1%,
iThearem 4.2.1) and 50 if - g| = &, then
@INY o ix e HY:pix, Y = ¢ + eosh ™ 4L

By uddinz lhe volumes of the disjoinl images g(&) of N with |g =t and
by Laking into avcount the order of the stabilizer of § we obiain

nithk = Fir + cosh ™ U350, (3311
Now {xec [5], pal)
V(R = n[sinh(ZRY — 2R]

= metfil

and

cosh ™!yl = logly + [v* — 119

=< lag(2y)

Thus

alth = (krf2V0D esxp[2r + 2 logi?)]

= (heme® 207 1,
To prove (i) simply obserye that s{l] = 980
Y ogglme |
56, 1igll =1 i

(5.3.012)

Rl7) " nix} dx
=+ & -
X

=1
t Jpox
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and 30 (i) implies 1) Mols thul (o penerdl, this yizlds

¥ oogl = Ong )

| J.d'\: !
and indeed, an estimatz of the partial sums (3,3,12) for any positive 5.

o prove (il) we can use a sinvitar argument but in £ and with the chordal
metrie. We can find an open cisz & in Qanch thatforallgm &, g = [ we
have g}~ & = % Then the sum of the areas of the g N} measured in
the chardal metric converges to at tost 40t {the chordal urea of ff] arad 1L %
anly necessary to estimate this area of g{ V). Let

dz

—h
az) = — ad - b=t

cx + 4
Then the chiordal urca of ging is

R I R P I P TR
FTed o

T ddv dy FegtticE) ) da dy
| i iR Ty

T ddx dy
B J-J (luz + B[* + |cz + & )?
.
= |g| " * (chordul area of &)
Lbe fast linc being an application of the Cauchy-Schwarz inequality, namely

az + b1 4 ez +dlF < (Ja® + BPHE+ 27 — (e A4 50+ =2,
i

We end with two resule which imply that 12 2 &7

Theorem 53.14. Let 7 be g discrete rnon-clementary subgroup of #.

{iy ff B iy o non-empty open (e-inpariant ser which is ror ©, ther G acts
discontirmiously in D

(i) o5 iy o ron-empey open set such that gl . D = & for all g in G except
[, then G wots discontimeonsly in ), c (D).

Proge. The set E = © — £ s noan-empty, clesed and Geinvariant and so by
Theorerm 33,7, 4 = E. Thus & acts disconliveocsly in I { Theorem 53§ (0.

By definition, ©_fg(D} is disconnected and so is net T2 now apply (i} to
| lg(m.

Referring o (iih in the previous theorem, we sav thar 4 subdomain D of
£ is u Gepacking if g{D) n D = (7 whenever ge & and g = I This terminol-
ogy enables us 1o state our next result easity,
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Theorem 3.3.15. Ler &, Go. . .. B subgroups of & whose yrion generates
the group G Let D) be o Grpucking wnd suppose thar Do D) = T wher
i} Suppose aliv that D¥(= [V D)) is nukemtpty. Then G i rhe free producr
af the G, D% is o Gopaciing and 6 wots dizcontinuinudy or a0

ProoF. Congider any clemenl g g, ol & where gee G, g0 = [ and
iy # i forany k. Firsy, 2ecause B ds o 0 -proking, we have

g (0% g thy) = & - o,
In racs, it follevaes, (hy induetion] et

P IRRRY- N R R

for if this i5 sn, then

Gl g ND* 2 g (6 = D)
LS P 1_[[];_"_[:!
Lyt j:_,. _ .Dr_+1r

We deduce that
R NP RS R PR PR Vi
50 D* 5s & Gupucking, Because D® # 2 we mest have g, -y # fao G s

the free product of the G,. The last assertion follows from Theorem
5.3.14{it}. O

Ag an upplicution of Theorem 5313, consider G = g and G, = {h)
wheare

zy=z+8  hiz)=z{z+ L)

Figure 5.3.2
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Let
Ho=Ix+4+ x| =3
and
De=z|z+ =1 oz = 1] = 1}:

see Fipure 5,32

Cleacly, [}, t5 & G-pucking: ag & maps the domain |z — 1, = 1 onte the disc
[z —1] = lﬁw:: see that D, i a Gp-packing Obvigusly ,D*:;é & and
0w Bg = C:thus Theorem 3313 is applicable.

Extreise 503
1. ¥erily the details o the Remark foliowing Thearem 525,

2 Letgard ¥ be as in Lemina 535 Show ehat for some w,
123
) =
i1 gy = {w}
=
and taal wis lhe wmgue ixed point of gin X

1 Supposs that 7 is discrete 2nd non-clementary, Show that {2is the largest domeain in
£ in which G is & normal oy,

4. Suppose that & B not-elemenary and contains parabolic elements. Show tiat A i
aan tre cosurs of the set of parabaolic fxed points of ¢

5 Lot 5. 00, and D% be sy in the appligation of Thagrem 53015 and 122 7 = g, b
Provee that A o= B o f50 7 s0 O 2ois discorctinuousls in the upper and lower hali-
planes. Deduce that [ s connected.

Lzl O he the s oblained by remaving the origin from the elesare of 07 Prose
that & < Y and deduce that
| fipy =10
Seci

6 Let @ .0, 0., 25 befour muinally exierior cireles in C. Forj = 1, 2, let g, map
U exlerion of @ _, onde the Intecion of @, Dedoes that & = o, g, » acts discontion-
ously on

|| a(B)
Ao )
where £} 35 the domsin iying cxtenor Lo all four ctreles, This s called o Schotikp group
oft T generylars,

§5.4. Jorgensen’s Inequality

We end owr general discussion of discreteness and discontinuwity with an
account of Jergensen’s ineguality, Later, we shall sxamine the geometric
interpretation w1 greater detail in the special case of sometries of the
hyperbalic plane.
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Let 4 aod £ be matnices in SLe2, ) representing the Mihus trans-
farrmavons §oand g orespeclively. As A wod B are determined by Jand g 1o
wilbin a factor of —1, we see that the commutator ABA7 "B is rgielv
delermined by fasd g Thus we may {unambizuously) write

i fgf g 1= uo{dB471877),
Theorem S5, (Jdrgensen's fnequaliiv), Suapose that the Mokins trans-
formatiors fand g generate @ discrete ron-efementorr growp, Then
) -4~ iy g -2 = L (5413
The lower hourd is hesr possihle.
The inegueliey (341 ean ne ‘nterpreiad in terms of the metric on L4200
forif €10 5 s non-elementury gnd discrete, then
[f13(A) - 4] + [IfABA B .2 =] {54.2)

and s 4 and B cannat both be close to £ Thos {5410 ropresents o quanti-
tuHwe stalement about the isoluted nuture of £ witlun a discrzie group.
Tl is casy Lo obtgin a0 caplicit numerical hound by writing

4=7=0X, I R .
angd noing that
|X| = X, X+ X*4+ X%¥*-=1(:

similar capressions bold ler I = [ + ¥, say. The Cauchy-Schwarz inequality
yields

(X)) < 21X

and a computation shaws that [4, 87 — { reduces 10 2 sum of six terms,
cach being a product of at leas: two of the matricss X, X%, Vand Y5 If
NEN = gand ¥ | = & then 15.4.2) vields

15 /2004 4 2 + 6,26
=42+ 2+ 6N

s0 £ 04 Thus we huve the following (presumably) erude bur explicit
astimate.
Corollary. {f A and B generate @ non-clesentary diserele group then

max{ 4 — I, |8 - [} = 014,

To show that the lowsr bound in {5.4.1) 15 best possible, consider the

group generated by

flai=z4+1  plz)= -l
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In this case, (7 is the Modular group arising from SL{2, £ 1t 15 obvicusly
nen-slemeantary and equalily holds m (3.4 1)

Proor oF THEoREM 5.4.1. The idea of the proof is contairned in Secrion 1.3
and Theotem 5.1.4. We know thut { f g5 is disgratz and non-clementary.
MNow (54.1) holds i § is of order two (hecause then, t07(f) — O} 50 we
may assune that fis not of erder two, Selert matnices 4 and B representing
fand g respectively in Si.{2 ) and dcfine

B,=8, B, =BAR. (3.4.3)

It fellows that B, represcnts ¢, ws defined in the proof of Theorem 5.1.4,
hence (hy that Thearem) B, ¢ 4 for any «. {¢ remaing only to show that if
{3.4.2) fails, then for seemc &1 we have

B, =4 {5.4.4]
and we consider U&0 casCs.

Come 1: Fis paradolic-
Ashe rrace is invariant under conjugation we may assns that

11 a b
A=(.'3' 1)‘ Bz(c ff)'

where ¢ 2 B iclse <A, B is clementary). We arc assuming that (5.4.7) fails
and Lhis 1s the assumplion that

[e] = 1.
The r2lation (5.4.3) yiclds

(a,ﬁ L h,,ﬂ) 3 (1 — e @ )
Carp desrt L —€2 1+ ae,)
From this we doduee {by induction) that
e, = —{—ep"
{which is - ¢¥ except when n = (hand as j¢| < [ we see that
i
As e, | < 1, we have (by indaction)
i | =t el
s0 a@,c, — and

g

ey = L

This proves that
H"_ 1 -t A‘

which, by discretencss, vields (5.4.4] for all large k.
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Cuse 2 fis loxadromic ar ellipie.
Without loss of generality,
w 07
a={" O}
(L] i,

where Bis asin Case ] and be # O {zlse {4, 8% is elementary) The assurmp
tigh that (542} lails i3

o= oA — 4|+ {ARATIETY — 2
=1 + |be]¥u — L/ul®
= |.

The telation {5.4.3) viclds

L] h"'" jx’ -_ dy dwu - b.T{'IH-'I.u ar:hnl:]--'lu - u} \)
[ . pedfw — 1w d e — bo)
50

hooyener = —boofl + boe Hu — 1wyt

We now abrain (by induction)

Boe,l £ Mbe = Lbel
g0
By, =0
and
I . Y

Also, we obrain

eyt Wy {1."1 [ !.";u'
bow
Uy, il = |aflsie — u}
— |l — )
PYTLI
50
Baoyt 14270
e (|
urt- 2 1)

[or all sufficiently large . Thus
Bl - 1
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and similarly. c u" — 0. It foliows that

TR d;

<A

- I|l In
A—wﬁzwﬂm - ( im bzu.“ )

— A,
Az £A, Bbis discrete, we muss have
{4_”32"91" - 4

for all sufficiently large r sa for these v, B, = 4 which is {3.4.4), C
We end thzs chapter with several applicat:ons of Jérgensen's inequality,

Thegrem 5.4.2. A ron-elementary group 0 of Mobius transformalions I
discrete il und only if for each Fand g in 3, the group £ f, g7 is discrere.

Proor. B (7 15 discrere, then s is every subgroup of & Mow sappose that
cvery subgroup < f, g% is discrere: we suppose that & is not discrete and
our aim is 10 reach a comtradiction.

Ac G s not discrete we can find distingt 5, fy, ... (# 7)in & representsd
by matrices A,, 45,... in SL{2, T) which converge 10 [, By considering
Lraces, we may assure that no f, is of order bao.

For any gy in & with matrix B, say. we haye

(A — 4b 4+ w4, B] — =0

and so by Thearem 341, for 1 = nfg) say, the group ¢ f,, g¥ 15 slementary.
Mow {7 containas two loxodromic elements g and b with oo cemmon
fixed potnts (Theorem 5.1.3). For ngreater 1han afg) and a{h), both groups

g S A

are elemantary and discrete and, according to the discussion of such groups
in Section 3.0, we deduce that f, must feave the fixed poine pair of g and of k
invariant, As £, is not elliptic of order two, it cannot interchangs a pair of
points 5o f, must fix each individual fixed point of g and of A We deducc
that ¢ and j have a common fixed point and this is the reguirad
contradiction. C

Mexl, we give alternative formalations of {5410 in the particular case
when {15 parabolic {p 15 the hyperbelic metrie in H¥.

Theorem 5.4.3. Let f be porabolie and suppase thar {f, g» v diserete and
Hom-elemendar y. Then

1} =1l g =4 =1
and this [s beut possible,
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(i} i g is aiso parabolie, ifen for all x in H? we hace
sinh pfx, fxjsinh dofx gx) = |
ahd this is besr possible.

Lemark. In (1), ' f - [| 15 10 he interprezed as |4 -- || for either choice
of the marris A representing fand similarly for g.

Prexar. There is 3 MEbins & correspoading to 2 unitary matrix 17 guch that
hfh™!fises -, IF A corresponds to f) then

AL = = j4 =1
and sirulacky Tor g Lhus we may assums tha: [ fixes .. Then

g A fa B
A=({J P] B‘=Lf d] fad — be = 1,

i

2 = 1 and where B represents g Jprecnsen’s inequality {5.4.2) yiclds

led] = 1

whers

amd (13 follows as
4 —Tf= 4, B -] =]
To prove (ii). szlect matrives A und B for fand g respeciively with
fr{A) = tri @) = 2.
Then using Thearem 4,2.1. we have

A—TII* = |47 + 2 — 2 Re[te{43]
= Ayt =2

= 4 sinh? 3004, ),

where j = {0, 0, 13in H3. This verifics ([iY when x = j.

The general case of (i) fodlows casily. T x & H?, choose o Mobius A
mapping ¥ ro j. Now apply (i) with £, g and x replaced by kb7 hgh ™1
and . The meps f:2r—2 + 3, g{z): 2+ 24z — 1) show thal both bounds
ars brst possible. O

Theorem 5.4.3 has sn inleresling geometric intaspretation. A korohail T
in H?is an open Euclidean bail in H? which is cangent to C. IF the point of
tangency is w, we 3ay that £ is based at w: the boundary X ol £ {in B*) s
a harovphere, A horoball based ar oo is a set of the {orm

lx . xa. %0 HY: %y = KL

where k = (. Thus in lhis case, und kenoe 1o peneral, a hotosphess is a
surface in H? which is orthogonal to all hyperbolic planes containing the
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point w an thz sphere a0 =, namely ©. This characterizes horobalis and
haraspheres in terms of Lhe geometry of 117 alane.
If g is a parabalic element of & fxing w, then for all positie &,

I, k] = f{x & HY:sinh §p{x, gx) < &}
is a horoball based at ==, Indeed. i g{z) = = + 1, then using {3.3.4) we obtam
sink 4pix, gxi = 172x,
and hence
Elg k] = (el x, = 1280
the gencral cuse follows because for all Mabius b,
hE[g, &) = I[hgh "t k]
Mow defing, far each parabolic g, the horaball
T, = lxe H:isinh gpix, gx) < §) {5.4.5}
Obvicusly, Tor any Mabios b we have
M) = Eyg- {3.4.8)

It is clear from Theorer 5.4.3(i1) that if Z_ meets X, then {g, k) cantot be
both discrere and non-slementary. Tn particular, if g and b arc known to be
i a discoete group, then g and B must have a common fixed peant, This
proves the naxt resolt,

Theorem S4.4. Let G be a discrete nor-elementury subgroup of & with
parabolic elements. For eack parabalic g in G, let I, be the horoball defined
by (5.4.5), Then the family

{Z, g parabolic in ¢}
is permuted By O according to {3.4.8) and L, 0 I, = 7 unlgss g and k hawe 4
common fxed point,

Qur last application of Jergensens inequality rclates Theorera 5.4,.3(71)
ta aon-parabolic elzments; for comploteness, we include this in the state-
tnent of the next resul.

Theorem 5.4.5. Supprse thar g, Y is discrete emd nom-elemeniary.
(i) if g is parabolic, then for ail x m HY,
sinh 4o(x, gx) sinh 3aix, hgh ™12} = 3
{ii} if"g is hyperbolic, then for atl x in /2,
sinh dplx, gxYsinh dp(x, hgh ™ 'x) = &
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{iity g is ellipric or steleely loxadromic and i |0¥y) — 3] < § (whick defires
an spen nelghhourkond of 1) then for ail x in H?
max|sinh go(%, gx), sinh Lolx. Agk™ xi} = £
Tf
Mx gxy <6 plx hx) <y
then

plx, hgh " 'x) = plh” Tk gh T X

< p(h™ 1) — pl gx) — plax. gh” Tx)
< 3k

thus we ubtun the fallowing corallary of Thecram 545
Carollary 5.4.8, Let N he the open neighbourfood of T in & dafined oy

ey — 4 < L3 I gisin Nand I g, b 15 discrete and non-elemenrary,
then far all xin HE.

max[plx, guy px, hx)y = 038

The proof af 'L heorem 3.4.5 requices details of the geometry of the action
af laxedromic and ellipric elements, Sappose first thet

fu O . _

g = (“ - ) o o= |ale®, (5.4.7)
G

13 loxodromic (this includes hyperbolic) ar ellipric. Observe that

o~ )t = (e~ i - 1)
=[] ~ 17u|)F + dsin? b (5.4.%)

Mext, for afl x and vin B3, (3.24) velds

— H 2
4 sink? tolx, v) = u
X, Ta

The transformation g acts on B (viewed as £ x R') by the lormula
gzt — (u’z, |u|3.l}
and s with x = {z. 1) we hove

iz = wiz]? = — w2t

.- |,,,: 'Z'rl

I

1712

N

4 s5inh® 3pix. gx)
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The axis 4 of 7 is, by defimuon. (ke geodesic joining the fixed poios of g.
In the particular case (£.4.7), the axis is given by 7 = (0 and ot is clear from
(3.4.9) that the displacement

T, = pix. gx)
is independart of x on 42 we call T, Lhe rransiaifon length of g The idenoity
(5.4.9) shows thul
dainh* 3T = (|a — 17w ¥ (34000
i particular, T, = 0 if g is elliptic. Note that the (wo terms involving & ‘n
(54.8) are invurianl under conjugation {they cun be expressed in rerms of
trace(y) und T,). hence so is sin® §_ In particular, sin 0 = 41l g s hyperholic.

The nest task is to express =)/t geametrically. The reader js referred
forward to Szction 7.5 where il 15 shown that

[z1/1 = sinh plx, A x =1z 1.
With this wvuilable, (5.4.59) (5.4.8) and {3.4.10) yield
sinh? Yix, gx) = sinh(3T) cosh® plx. 4) ~ sinh® plx, Apsin® & (5.4.11)

Thus the displacernert by g arises out of a contribution correspending to
the shift 7, wlong the axiz and a contribution arising out of Lthe rolalional
effeet of 6 and each coptribarian is adjusted according 1o the distance o x
from the axis.

Proor oF THEOREM 5.4.5, Weneed anly prove (i) and (i} znd by considering
ronjugate elements wa may suppose that g is giver by (3.4.7). As Jargensen's
mequality is applicable, we write

‘n b
h= ) ad — e = |,
[kc ar
and 5o
(L= [he|)ie — tulf= 1 19.4.12)
set the proof of Theorem 3.4.0, Case 2.
In order (o imwerpret the lerm i be|, we seek o Mobios transformation §

taking 0. ., Al b 1o 1, — 1, w, —w respectively. Such a transformation
exjsts if and only if we have equatity of cross-ratios, namely

[1. =1, w, —w] = [, &z, B4, aic].
ar, cquivalertly,

be = (1 ~ w)'dw. {3413}
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Figure £4.1

Maw A s the geodesic with end-paicts (¢ and oo: kd s the gendesic with
ehd-poines kU and b As g k) i2 oon-clementary, the geodesies 4 and
A4 cannot huve a comnon end-point: thus be = 0.1t follows that there ars
twe solutions in w of (5.4.13), cach soluticon boing the reciprocal of the
other. [zt w be such a soluien and we may suppose that "w| = L the
location of {{.A) and f{hA)is illustrated in Fipure 54.1.

It 13 an easy deduerion from (3.3.4) that

old, hd) = p(fA, fhA)
imf{plx, yi-xe fd, y= fhd;

ey, wleg)
= log 'w,

1

mecause {x 1w Oe {4 and (& 5, 512 fR{4) then

-+ —wF+ =P 1+ Wl = 2t )

s 15

and the Cauchv—Schwarz insquality is applicable.
We now writs

w o= exp e ~ i)

plA kA = 2
Al
b = sinh®(a + i),
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hence
4 be|* = reosh Nz + i85 — 1°
= (cosh 2z cos 28 — 132 + (sinh 2x sin 20)%
= {cosh Zx — cos 2§02
= (1 + cosh 24)°
= (2 cosh® 2%
Thus for all x in H?,
cosh* «
cosh? $pr A, kd)
= cosh*4[pfd, x) + pix, AAY]

Noaw (by clementary means or because log cosh is a coovex funclion) we
have

e |

i

CDS]’IE(E-_-:--E'-E} < cosh peosh g, (5, ¢ el
A i

thus
lbe| < cosh pix, A7) cash pix, hA), (5414

Iinally, abserve thar the conjegate elements g and kgh ™! have the same
trace? rne same reanslation length and hence the same value of sin® &
Witk this th mind. we combing (5412, (34.14), {(5.4.3), ¢5.4.10) and (3.4.11]
to abtain

fainb® Lolx, gx) + sin® (sinh?® Iplx, hgh ™ 5) — sin® &)

= [cosh pix, A)cosh plx, hA) | — L 2ra)2
Broeduse of {5.4,12) and (5.4, 14} we hawve

2 cosh pfx, A) cosh pix, kAdee — 107 = 1
50 in all cuses

fsinh? $o(x, gx) + sin® Oisinh? $p(x, koh™ 1x) — sin? 7) = &
If 3 15 hyperbolic. then sin & = 0 and we obtain {ii). ln all other cases

wrire

m = max{sinh 1p{x, gz} sinh La0x. kgt~ 1x))
Then

me + sin’ U = &
The hyporheses of {1y topether with (3.4.8) yields
sin® # = 7
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§3.5. Notes

For a discussion of the clementary growsps given in Section 51, see, for
exampre, (300 [517 and “107]. Discrete Evclidean groups in 8" are J55-
cussed :n [S17and [111].

For a sclection of papers concerned with the geemetric action of diseon-
tinuouws groups acling in plane domains or i &7, see [R] [9], [13]. [14].
[137, [65]. TI08] and [109]. Thecrem 5305 and exlensions of iL can b
lond iz |30, 151 ], [54]. [&0] and [&]]. As morc comprchensive accounts,
we cite |5 T3], (500, [35). [0 (511 [52), 057 and | L14].

Jereensen’s inequality (Theorcm 5417 appears in [31]: for related
material, see [147, [40], [44], [45] and [87].



CHAFTER. 6
Riemann Surfaces

§6.1. Riemann Surfaces

Briefty, a Riemann surface is a topological space which, when viewed [ocally,
is essentiafly the same as the complex plane. The formal definjtion is con-
structed 5o that the concept of an analviic funection and complex analyric
function theory extend without difficulty 1o a Riemann surface. The function
theory will not concern us here and we shall confine our discussion to the
relationship between Ricmann surfaces and the quoticnt by a disconlinuous
group action. We shalt develop these ideas only as far as is necessary to
interpret results on discontinuouws groups in terms of Riemann surfaces.

A Hauvsdorff connected topologicat space X is a Ricmann surface if there
exists a family

{[fi’_r. Uj}:f eJfh,
called an atlas (each {d,, ;) 15 called a chart) such that
(i) {I7;:jeJ}is an open cover of X';

(i} cach ¢;is & homeomorphism of U, onto an open subset of the complex

plane ; and
) if L = U;n U # & then

tﬁ'ifqb_l'}- 1: ‘;I_I{U} — {i:l[:["r}
is an analvtic map between the plane sets £ L") and and ¢{L/),
Clearly, {1} is saying that X is covered by a collection of “distimguished ™

open sets, each of which (by (i1} [s homeomorphic to an open subset of .

Two distinguished scts may overlap bat then by (iii), the corrosponding
hemenmorphisms are related by an analytic homeomaorphism,
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it i mow poasible to define analylic luncticns belween Ricmann surfaoe
X und ¥ are Rizmann sucfaces with atlases {{g, Db je Jb and {{y, Fob:
ke K} respeelively, then a conlinuoas map - X — ¥ is analvtic il sach map

da fld) ¢ fbim TR =T (6.1.1}

1s analytic, The domain of this map 1s w subset of L and the ussumed contineity
of I quarantees that this st is open. O course by {iii), it is only necessary to
check that the maps (6.1, 1) are analvtie for subatlases which still provide an
open cover of X and ¥ rospectively,

We can alzo talk of the angle hetween (smontn) curves v and s en X which
cross at some point & If x e U}, wo can measure the angle & hotween the
curves ¢ 47, & () which cross at ¢ {x} in the complex plans, If x & I, alsa,
then ¢yt and ol will cross at the same angle § becavss, being an analytic
hommeomorphism, the map @dd) ™" is conformal. It follows thar 8 is defined
indspendently of the choice of | and this is then taken to be the anele betwezn
yand 7 at %,

The sirnplest non-planar example of a Riemann sudface is X = Sw {xt
with the atlas givan by J == {1 2% and

S =7 U=
Pzt = g, .= {om}wzeliz & 0}
obviously, .00, 17 1s analylic on ¢ (L7 &~ 5
Weosay that bave Riemannsurfaces R, and R are conlormally equivalent if
theee is an analvtic bijection fal B, onto . (then #71is also analylic). This
i3 an cquivalenee relation on the clas: of all Riemann sudaces and 11 general,
wo do not distinguish betwoen confurmally equivalent surfaces.

il

ExezcreE 4.1

1. Provethal a Riemaan surface is arowiss conneonad,

2. Show that if K iz a Riemann surface containing points wo, then B — Dwo. oo, wpl s
alzo 8 Riemann sutlace,

3. Let{: B — & bea non-vonstan analynic rap 2em2en the Riemann surfzces B and £
Prove thal foeaps open subsets of R oo oper subsets of 5. Dedeca that TR s com-
paci, than ) is surjective and 50 3 15 compact,

§6.2. Quotient Spaces

One method of constructing Riemann surfaces 1s by foriming the quotient
space with Tespect to a disconlinuous group acton. Lo fact, it s known that
every Biemann surfuce arises in thes way,



11n b Biemant Seoluces

Theorem 6.2.1. Let D be a subdomain of © and ler G be o group of Mshius
praxsioramutions which leaves I imcariond and whech acts discom sy in 1,
Ther D:G Is a Riemann surface.

Prove. We knew that ING 15 a topelogical space with the quatient topalogy
and that the quotient map r: I = DyG s continuons, As D sconnected and

s continueus, it follows that IVG s connected (in fact. arcwise connected).
1L 1& also clear thae = is a0 open map for if 4 <= D, then

a~lmdy = | gt4):

gei

thus if A {and therefore g[A)) s open, then s0 is =4}
We now show thal DG is Hawsdordl, First, choose dispnet 2, and 7,30 D
and choose a positive r so that the discs

K o=iziz-glgrn Ky — 2|1 — z:] £r
lisim D, For e = 1, define
={z|z — z,| =< rinl,

A,
B,

]

fz1]z — z70 == rinh.
[ lor every m
AN oonlB) # 2
then there issome w, in A, and some g, in G with g {w.) e B,. This implics that
gl F) K2

where K = K« K, (which is compact) and it follows {from disconunuiny)
that the set fgy,. ¢4, .} 15 finite. On a suitable subsequence, g, = ¢, say, and

Q{E [.} |.'i.]".'1 gn{wn.}

= 7.

To provs that £/0 15 Havsdort], consider two distinet points, say gz,  and
niza) i DG, Thus 2, and z, are in D but not equivalent under &

It follaws that for some », the disjoint sets w(d,} and =(B ) separate x(z,)
and ={z,) and these sets are apen as 715 40 open map.

O last task is to construct an atlas for DYG. Foereach zin D, we select an
open dise &, {whosc closure lies in ') with the propertics

BN ~ N, ifglz)—z;
PNGg N, =@ gzl sz

seg Theorems 5.3.11 and 3.3.12,
Ohservethat &, — =i contans no Ixed points of G Indeed, ifh (s ) fixes
a point in &', then (because of the definition of ¥ 1k lixes 7. The inverse point
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of z with respect o N, is also lized by f o there are no fixed points of & in
N, — {zi Recal thar if k fixes z, then & s cllipte.

Foreach win D, lel g be a MEhius transormation which maps « to 2ate
and & to the unit dise A, The stabilizer of win G (s of order », say, and is
penerated by some elliplic g where

aga Yzl = z expl2niin), ZEA
Mow let g(z) = 2"; this maps & onto itself and has the property that {or all k

and for all 7 in W, we have

gy (z) = [ey*o ™ Hoz)]"
— [o{e) exp{2mik n)]"
= ez, fe.2.1)

Obscrve that this is independent of Lhe integer &,
W shull take as charts [or D0 the pairs
{go(m,) "m0,

where = is the restriction of = o N, 2 see Figure 6.2.1.

Fach point in = (W} is mapped by (2,)7 " into a4 points g% -) say, where
k=01 .. .,n=1mnN, According to (6.2.1}, thess map under go to the
same point in &, thus

t, = golm,}

is a bijection of m, 4N ] onte A As the maps g, o and =, are both open and
continuous, we see that each &, 15 3 homeomarpliism,

i \ ]
: ¢’w = W{KH}_I' h /

Fgurs 62
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In arder o check chat the transition maps are analvtic we must frst study
the tmaps

(w7 m,, U= E (625
Suppose that L, e N,. L. N, and
M) =ml) =4
say: then for some g in £F, we have

G = glc,)

Suppiose now that £, and henes £ are not elliptic fxed points. Then w, i
1-1in some ncighbourhood of £, and therefore thers is a bocal inverss (=) ¢
mapmng { to .. The two maps

T8 A

aerec wilh «w, and hence with cach other, on somc neighbourhood of £, and
take valucs in =N ). Applying () ! we scc that

g=(r) ',

near (. We deduce that the maps (6.2 2y are analytic near points which are nol
elliptic fixed points of £,
We now show Lhat the transiion mups

doitr )t (n#E 0)
ars analytic (where defined): wriling

Py = guoim) ]

and similarly for v, the situatior: is ustrated in Figure 6.2.2. At points
corresponding to the non-fixed points of G, we can compuate @49, 1 by
choosing a single valued hranch of (g7 " and the map ¢{d,)” " is 2 com-
positicn of anabylic maps. At poinls corresponding to elliptic fixed points the
hamermorphism ¢ (¢, )" ! is analytic in a deleted neighbourhood of the
point in question by the provivus remark) and hence has a removable
singularity at this point O

Thrre is a converse 1o Theorem 6.2.1 {which we shall not prove herel,
Criven any Ricmann surface R one cain construct a simply connected Riemann
surface £ and a mapping 7: R ~ R with t2e properties

{i) each 2 in & has a neighborhood & such hal 7 restrcted w & is
homeomerphism vnto an open subser of B

(i} Given any curvey: [0, 17— R and any # on & with m{$) = #0), then there
is a anique curve 51 [0, 1] = B such that w3 = 3 and (0} = % (we SA¥
that § projects to p or that « Lifis o  from 2}
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Cigore 5.2.3

These propertics are expressed by saving that (R, ©) s a smooth unlimited
covering surface of 8. By the Ricmann Mapping Theorem (for Biemann
surfaces) R is conformally cquivalent 1o one of the standard Riemann sucfaces

A=z 1} O, Cuwixi,
{with the trivial atlases) so without loss of generality, we may assume Lhat B
15 ane of these,

It can now be shown that there is a group & of Mébius tracsformalions
presarving £ such that the given surface R is conformally equivalent 1o R/G.
Writing the quotient map as =, this means that 5y = = forall g in & Further,
one can show that & acts disconfinuously in B and has no elliptic elemsnts.

IR = € {w), these restrictions imply that G = {} {the rivial group)
soessentially, £ = € oo [T R = ©, the only possibililies for & aze: (i) the
trivigl group; {1i) & evelic group gencrated by some z— 2 + 43 (1) a group
generaled by bwo franslations z—z — A z— 7 — g where 4, p ars linearly
independent over the real numbers. These casas show that R is either &
C* = {z={"z ## 0} or a torus. In all other cases, B 15 of the form 4/ where
G acts discontinuously in & and has no elliptic elemends, If R s compuet, say
with genus g, then & = Cwheng =0, = Cwheng = 1 and R = Awhen
g2

In visw of these remarks, we can sce the importance of proups acting
discontinuausly in A {or in some conformal image of A)

Definiinn 6.2.2. A group & of Mabios transformations is a Fuchsfar grown
if and only if thers is some F-invanant disc in which G acts disconlinuapsly.
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A Riemanon surface R is said 1o be of hyperbolic type if it is of the form A
where {7 acts in AL T this case, we can view the diferzntial

asacting on R and cach curve on K can be parutioned inte small seaments and
the length of these segments then computed (in &0 mvariant manoer) m A In
this way we ¢un talk of the hyperbolie metric on R and so compate lengths
and areas an K.

If we join zio gfzyin A (ge ) and project this Lo R (= A/G) we oblaina
cloged curve on B for mgiz) = m{z) Conversely, il we select a elosed curve
[0, 1] = H and 2 0 & with m(zh — W0k lhen there s a unigue cutve
P: [0, 1] = Awith 1% = y and (0] — z. Note Lthal

mH1) = A1) = (0} = n{2),

go for somme Brin G H1) = Rz} thus §i% u cerve [Tom £ w0 kg, [f+is homotopic
to the point z on R then, by the Monodromy Theorem, # s a closed curw on
Aand k = I (hecause A is not clliptic).

More generally, one can consider r-dimensional manifolds: in the delini-
tion of 4 Ricmann surface, we replacs © in (i) by B" and we dclere (i) (o
replace “analytic™ by some other smoecthness condition). TF € i any discrete
Mabins groap. then F aets disconlinoousky in H? and nne can study 11976
this topic bag allracied much allention o receni ycars,

EXERCISE (.2
1. Let &5 be penorsted by gt 2o — 1. Prove that B0 i3 {conformatly cquivaleat o
Af == < iz| = L [onwider the map v — oxypldai-]
Show how to prerect the metric |4z Im| =] from HE 10 a merric piwl o in 4%,
Find uang shirw thzlin this metric, the sres of {220 < 27 < 1) s finite.

$6.3. Stable Sets

Suppose that a domain D (& subset of ©) i G-invariant and chat G acts
discontinuounsly it D. We need to consider the following type of invarance.

Definitlon 6,3.1. A subset D, of D is said to be stable {or precisaly invariant)
with respeet to G if and only if for all g in G either

PDg) =Dy or gb,)n 0, = &

The set of y with g(Dg) = Dy is the siahifizer of ;.
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Far examplas of stable sets, see Thearem 23,12,

Let iy, be stable wick stabilizer Gyt it 1s natural to foom the quolienl space
DGy and o general (Tor example, if G, is ovelic} this is easier (o discuss than
the projection k{0, }of Op inte D76, Unfortunately. the lwo spaces

Do iCGe . wlDyg)
need not be homesomor phic as the next exarmple shows,

Example 6.3.2. Take D = 7, let & be generaled by pizh =7 + 1 and Jet
Do=1x+ 00 = = 1} Clearly DG, (=D, = simply connecled
whereas m{D,) (= m() = {217 & it is mor.

There are important cases when O 5G, and 2, are homeomorphic und
we noed explicil conditions which guaranice thal this is so.

Theorem 6.3.3. Supposg that G acts duseoertineously e D and thar Dy, 5 srable
with srabilizer Go. If either

(1) Dy s operin Do

(L] DG, is compaer;

then D /G, (with the quorieni topolsy v and o0, (with the subspace topology
Srom DYGY are homeomarphic.

Proor . Both quotient maps3
oD = DG, gz B — Doitiy

are continuous and open as the respective groups ave groups of homeco-
torphisoes of the corresponding spaces. The restrietion =, of & ta Dp 38
cottinuons so the natural bijection

B =g 2/ Gp -~ wiF2y)
given by
Gu(x] — Gix),

{whers, for example, Gix) is the G-orhil of x) iz continuous: see Figare 6.3.1,

Py
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If {i) holds, then =, is an open map (becauss 7 i3 an open mapyand 074
cotinuous. IT {ii} holds, then # is a contmuous bijection from a cormpact
space toa Hansdorfl space and so is & homeomeorphistn (see Section 1.4y [

Remark. IT D is a subdomain of £, then ¢ and = arc anaiytic and Lot and
al &y b are then conformally equivalent.

We cnd this chapter with somc examples illustrating 1he hypotheses (i)
and ¢{ii) in Theoprom 6.3.2,

Example 6.3.4. Suppose that & preserves and acts discontinuausty in the
upper balf-plane #° of € and let g be a hyperbolic element of &, We ray
assume that g fixes Dand o so the posirive imaginary axis, say L, 1s invariaat
under .

Suppose now that for all & in &, either ALYy = L or A(L) ~ L = ¢ and
suppose aise that & has no elliptic elements of arder two (which mnight leave L
invariant and interchange the end-points of £). This siluation will be dis-
cussed in detail later in the book. Then k(L) = L only if & lies in a cyclic
subgroup of G cenerated by a hyvperbolic element (which we may assume is 4)
fomgOand = . Nowglzh = tzuee, wherel = 1and Ligh is compact and, in
fact, is a simple closed curve, According to Thearem 6.3.3, the projection of L
inte Hi6 15 also 8 simple closed curve,

Example 6.3.3. Suppose that a group & acts discontinuousiy in & subdomain
Dol # and that there is an open disc @ which is stable with stabilizer <o
wherc g isparabalic, As O is open, Theorem £.3.3 implics that the projection of
£ in D/G is conformally equivalent o §:5¢gs.

By ronjugation, we may assume that gfz) = z + 1 5o that for some v,

P ={x+ vy =¥l

Ir is ¢leur that the quotient space 0/¢g% is conformally eguivalent to the
imagz of ¢ under the map = expd 2ziz): thus the projection af § in D7 is
confermally equivalent to a punctured disc and henee to

fzeT:Q < (7] =« 1%

Wow adjoin = (the fixed point of g3 and all of {ts G-images 1o P to form
the larger space D* W generate a topology on B* from the o pen subsets of
£ together with sets of the form {25} W {x + iy: p = £ and their G-images
and the quolient space D*/( i= also a Ricmann sudace: the adjoining of « to
L corresponds to the addition of the origin to the ponctured dise. Note,
however, that the sequence » + § w1 = 1, does not converge in the topology
of I* 50 = does not have a compact naighbourhood in D*. Of course, we
may adjoin different orbils of parabolic fixed points o D provided that in

ach case, a corresponding dise (0 exists. For more details and a converse
resuit, see [507, Chapter 2,
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ExFRIISE 6.3
1 Let Ghepersrated by g zeaz o Vuped iz — oz o dand la
D=fg+dp sy L

Show that U s stable under <% Lo o be the natursl projecton of © anta S,
Show thet w0 is compazt whereds 2001 13 Tot oompHot,



CHAPTER 7
Hyperbolic Geometry

§7.1. The Hyperbolic Plane

Fram the outsel we have assumed both an acceptance and understanding
ol Euclidean geometry: we have ot entered inte a discussion of the axiom-
ati foundations of Lhe geometry and we shall not do so. The question now
arises 4s 10 how we should ireat bvperbolic geometry. We must not assums
that the reader is as familiar with this as with Fuclidean geometry vet il is
necessary (o have avatlable some of the more hasic and elementary results in
hvperbolic geometry for we shall be wsing this (rather than Fuclidean
geometry) for the remainder of the text. Indeed, we have already seen the
importanc: of hyperbolic geometry in the earlier chapters.

We shall describe hyperbolic geometry in Lerms of Buclidean geommetry,
thus it can be thought of here as heing subordinaie to Euclidean geornetrs,
The potnts, lines and other configurations will be delined as subsets of the
Euciidean plane and in this way wa avoid the need to discuss the azioms for
hyperbolic geometry. O course. appropriate sets of axioms da exist and
onee we have verified 1hat these axioms hald in our mode] we are 2ntitled
to uie those theorems which are derivabie from these axioms: we shall not,
however, follow this path. Within the limitations of Euclidean geomelry we
shall he as rigorous and complete as possible.

We have seen in Scotion 3.3 that we may use the upper half-plone

HY = dx L ipry > O
5 a madel for the hyperbolic plane and that Lthis supporty s metric p derived
from the differeniial
_ [dz=]

Erll_‘i = Erz:l.

(1.1}
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We Jiwve ulzo seen that reflections in circles ol the form |- — = | = #(x, Teal,

r 2= 01 and refeciions (i "wvertical” lines of the form x = <. (x, real) are

isometries of (A2 p). We shall relumn 1o these facls in the next few sectiors.
There s & paralie] developmant in terms of the wair dise

A= jzell |z < 1L

The tesulls in Section 3.4 are applicable and the metric o in B transfers o
a metric in A which is derived from the difterential

dy = ot (7.1.2)

Theoughou! the remainder of the bogk we shall e p for both the metric in
H* gnd the metme in Az 1o confusion should arise, indeed che reader must
become adept a1 frequently changing tom one medel to the ather as each
hus its own particular advantage.

{ne of the pringipal benelits of discussing hyperbolic peometry in
Euclid=an terms is that we can caxily introdace she corcle of poirns af Infinity:
by this we mean 3" ias} for H? und {720z = 1} for A These are nat
pointz in the hyperhalic planc, nevertheless they play & vital parl in any
discussion of hyperbolic geometry und Fuchsian groups. The union af the
hyperbolic plane and the circle at inficity is called the closed hpperiolic
plite.

W shall rafer to the two models of hyperboliv gromelry deseribed above
&g the Poincard models, There are olber models wvailable (see Section 1.7)
and we shall dizcuss (briefly} onc alternative, namely the Klein model. The
reader should oote, hawever, thut aparl ffom one tesull (o Secton 7.3}
und occesional remarks and exercises, we shall not use 15e Elem model

We have scen in Section 34 that the redection in the piane x, = 0 followed
by sterengraphic projection maps M isometrically onlo 8°, the metrics haing
those analogous to (P11 and (7.1.2). Let this composie map be denoted by
3. Tt follaws that the upper hemisphere

O =, xa. k) 23 + 22 + 23 =5 x> 0

{which is 2 model of the hyperhalic planz embedded in hyperbolic space H™)
is mapped by s isometrically onto A (=B embedded in B Observe that
as # i% vonformal, ares of circles in @ orthogonal to AH? map 1o arcs of
eircles in A orthogonal 1o 587

W cun ulso mup @ onta A by vertical projaction, numely

DX Ka, X=X, 4 [Xa.

Thus under the map ¥ (=& 1) of A onlo A, ures of circles ih & arthoponal
e dAthe prodesics in A) map to Buclidean segments with the same cnd-points
on dA. The significance of this i3 that # is a homeomorphism of the closed
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Figure T1.1

unit disc & onte tsclf which maps each geodesic L in the Poincaré model
onto the Euclidean straizht ling segment L* af A with the same end-poinis
as L sce Figure 7,11

The effect of F can easily be verified analyticatly and the preceding discus-
sion 15 equally valid in n dimeasions. Ifx e B, then

Fix) = wvs™ x),
v (x)

G X1,

]

I+

where © iz sterepgraphic projection {or, meore properly, reflecction in the
sphere Sl{enﬂ,ﬂ}j_ The formula for = given in Section 3.1 now yields the
exphicit formula for F, namely

2x
Flay= - S

(Given that the spherc ${a, r) is orthogenal to 4B° the orthogonality implies
that |a2 = 1 + »? and s0 5 has equation

xF -1 = Xx.a)
Thus F maps $a, r}onta the Euclidean hyperplane
St=lv yoa=1},

which mects 87 at the same set of points as docs 8{a, ri.
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5.2, The Hyperhalic Metoe ]

The Klein model of hyperbolic geomsiry {thar is the model A with
geodesics reprasented by the Fuclidean szgments £%) is a useful model for
estahlishing propertics of imcidence and convexity inthas it transfers problems
in hyperhaic geometry to coteespanding prablems in Buclidean peometry.

§7.2. The Hyperbolic Metric

Cur st task is lo give a carelol description of the consiruelion of tha
metric @ from the differential (7.1.1). To cach plecewise conlinuously dil-
ferentiable curve in H2, say v @ b] -+ H®, we assipn a “length™ |y by the
formulae

b -1
[y
I = | et
T ].II.'J.[‘I:I'}}
The function p is now delined by
plz, wh = mlly {z. we 1%,

where the infmum is taken over all ¢ which join z to win 42, [t s clear that g
15 non-negative, symmelric and satisfes the Trangle Inequality

My, 220 & P2y, 7o) 4 o2 .

imdeed, o s a metric on H? (see Seclion 1.6).
Moy let

ez + kb

2= . (721
rZ + d’

.2
where g, A, cand & are teal und ad — be = 00 thas g maps H? oot itself. An
elementury compuiation yislds

3" el 1

Imgiz)]  Imlz]

and so
lys! = J~a_g-:1|l,".f{:}j|‘ Eanl
T e ImlpGAn)]

Because of this invariance we immediately obtain the Invarianes of p,
numezly

dr = 3]

plgz, gw) = p{z, ) {71.22)

and this proves that each such g is an isomstry of (F*, p3. This will now be
used to obtain an explicit expression for pz, w)h
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Theorem 7.2.1. With p as abore, and with z, w in H.

fr— w4 |z - W]

a AlE, w) = iz~ Wz ]
. -l
[11] cosh gz, w) =1+ W;
) 1 iz — W
o bl G ) = ST Il
(iv} coshEdo(z, w)] = ﬁm—gfj—}ﬁ“EL,]:,-. A
(v tanhiipiz, wi] = - :I

Prooe nf THEOREM 7.2.1. It is easy to see that the five equations are equivalent
o each other: we shall preve that (i1} holds.

By (7.2.2). the lefr-hand side of (ii) is invariant under g. A straightiorwand
computation shows that

lg(z) ~ gl * |z - W[
[mg(z)] Im[g{w)] ~ Tm[z3 Im[w]’
Lhus Lhe rightl-hand side ol f1) i also invariant ender g Lo Jact, this is bo more
Lhan the invariance of (3.2.3) cslablished in Section 3.3,

Mow select distinet £ and win B2 and let L be the unique Fuclidean circle
or line which containg = and w and which s orthogonal 1o the real axis, Now
L meets (he real axis a1 some finite point z and by laking g{z) = —{z — &)~
L f{for asuitable §) we mayv assume that g in {7.2 1) maps L onto the imagin-
ary axis. It iz only necessary, therelore, to verily (i) when 7 and w lie on the
Imaginary axis.

We now assume that =z = ip, w = ig and also (as both sides of (i1} are
syrunetic o 2 and w) that 0 < p < ¢ If

W)= ey i, U=i=,
18 A% CUTVE JOINInE 2 Lo w, then
J. [24e) + 1)
S
b oA
40 -J"':::}j &
= log(gip)

¥ = dt

[

as W1 = ¢, 0} = p. As equality holds when. for example,
1) = ilp + tig — p,
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wez and that
plip. i) = loglgiph {0 < p = g).
and W is easy wo see that (u) holds when =z = (pand w = i il
Remark. We have praved a litt.e more than s stated in Theorem 721,
Firal, we have oblained
[ol = w{ip. ig),

(that is. [|v] is minimal} if and ondy if xfi} = 0 and %1y = 0 for all ¢ in
[, 1], We shull return 1o this (0 the next section. Mext, for future reference
we record the formula

plip, i) = loglpig) (7.2.3)

in this form we do not need to assame that p < .

We now consider the model 4, The map

flzi =

r-:lt-u
.NIH

isa1-1 map of H® onto A, thus p* given by
GHoowh = s Yz f T ) (2, we A,
Is 2 metri¢ on A. However, ay

2.7 1 :

T T e R
we cun Ao dentily p* with the metric denieed {rom the differential (7.1.2}%
As we buve alresdy remarcked, we prefer 1o use p for * and wich this con-
vention, { s 2a tometry aof (H2, ) ore (A, g

We can derive formulae for the model A4 by simply rewriting Theorem

721 be means of 7. It is more instrucive, thouph, to work directly with A:
for example, corresponding o {7.2.3) we find thatif 0 < r < 1 then

frod 1+7

2 1-2 agf-nr

Al ry =

(the rexder should verify this).
Giiven distinct points £ and w there s an dsometry g of A onto itsell stk
gz = 0 und g{w) = v, # = & The invarjunce described by {3.4.3} yielids

|z — wf? ri
o - ) T T
sinh*[a(h #1]
sinh?[+g(z, wil. {7.24)

]
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The identity (3.4.4) becames
[1 —2w]® =]z —w? + (1 — |z *{] — "w{7)
and chis logelher with (7.2.4) yelds
=P
{1 — 2221 = [w|®)

this iz actually (3 4.5). Finally, we obtam

cosh*[3n(z, w)] =

tanh[$piz, wl] = ‘lz -

angd

11 — 2% 4+ |z — w

plz, wh = log (7.2.5)

[1 = 2@ = |z — w!

Az simple and useful examples of there ideas, we compute the length of 2
circle and the area of a dise (soe (3.3.5)). Of course, length and area here are
with respect to the byperbolie metric and hoth remain invariant ueder
1spmetries.

IT £ [z contained in A, then the hyperbolic area of E is

- 2
h-area{f) = J [- [1_—21:5'2] i dw:

if E is contained in &7, the integrund is replaced by 1;¢*. For any curve € in
A, the hyperbelic Iength of C s

N
length(C) = | ]‘EL'IZ
R

if € tsin H?, the inlegrand is replaced by 17y,
Theorem 7.2.2. (i) The wrea of a hyperbolic dise of radéus r is 47 sinh ().
(i) The lengek of a hyperbolic circle of radiues v is 2m sinh e

Proxor, We ase the model A and Tet © and D be the circle and disc with centre
{1 and (hyparbelicd radius v From (7.2.4) we see that

C=lzi|z] =R} D={z:|2! 5 R},
whete

: R
sinh(zr) = s7——pis

or, eguivalently,
tanh(ir) = R.

The stated resuits now fodlow by direct inlegration.

[l
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aw) = o 4
plwl =[5 4
1
L
olzh = iy » s
i
, e B
| I b
¢ ".,
i 1
_L 1
[ » JEEE— .
glztl=1a Fad w
Figorz T72.1

Tf we are prepared to use potnts on the circle at infintty we can afso express
Az, wlin termas of a cross-ratio. We recall from Section 4.4 that the crozs-ratio
is defined by

(21 - ZaMzs - za)
[£y ~ =30{z; — 24}-

lzh iz, 24) =

Let = and w be distinet points in §2 and let g and . be as in the proof of
Theorern 721, Further, let [, meet the teal axis al 2% and w*, these bemg
labelled o that z*, 2z, w, w* oveur 1o this order along L {see Figure 7.2.1)
Wow as g(L) iz the imaginacy axis, (== 0 or g(z*) = oo I giz*) = o
we can apply the map 7 — — 17z thus we may assume ¢ to be chosen so that

glz*y = 0, glz} = Iy, glw) = in, glw) = o,

where v = v As the cross-ratio s invariant under Mébius transformations
we ablain feom (7.2.30,

Azl = plgz, gw)
= log(w/y)
= log[d, iy, v, =o]
= log[z*, =z, w, 2¥). {T1.2.6)

Of course, thrs is equaily valid 1n A for we can simply map B2 isometrically
oote A without changing the value of the tross-ratio.

We end this section witl) a few boef rernarks about the metric wopology
of the hyperbolic plane. First, the Fuclidean and hyperbolic metrics on H*
fand A} induce the same topologies. In particudar, the clesed byperbolic
plane is eompact in the Euclidean topalogy and the subspace topology is the
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hyperbolic wpabogy, 1t 12 convenient to introduce notation for the clasare
reliative 10 the hyperbolic plane as well as the closed hyperbolic plane.

Definition T.2.3. Lot E be a subset of the byperbolic plane. Then

(i} £ denotes the closure of E selative ta the & pperbolic plure;
{iiy £ denotes the closure of £ relative to the closed hvperbalic plane.

Of coursz, £ is also the closure of Ein &

Exgrerse 7.2

L. Let L be tha sot of points » + irin B2 where x = ) Find where

mffg= whcel. hes HE
i5 artained and doscribe this point in geemetic tonms,

. Sappose that x, -5 x. = xa T xg. Lat tha seend-cirele in FIE with deaenster Tx . 5y
mect the ling x = x5 arn the point 25, Siolarly. wt - be the incerscotion of 1his Tine
und the semi-eirele witk diwreeter [, %], Priovve that

plra. 24) = ¥ loging, x3. x5, 2.

3. Show that of @ 35 4 metric on i st X rthen tanhw o2 ase 4 motde on Y
Mecdnes Lhu

. =

a2, W= |- —

|: —

i 8 merric on &7, Show thar
S, ) = ol WY+ pdi el
Fand only Fw = wor v =g,

4, Shewws that (712, ol s complete bt 3o compact,

87.3. The Geodesics

We begin by defiring a hyperbolic Ime or, more briefly, an k-itre to be the
imterseetion of the hyprerbolic plane with a Euclidzan circle or straight live
which is orthogonal o the dicle at infinity, With this definition, the following
[acts are easily established.

{1y There is a unigue f-jing through gry pwe distinet poines af the kyperbalic
plane.

(2) Two distirct h-lines trtersect in ar most one point in the hyperbolic plane,

{31 The reflection Inan k-line i5 o« p-izomeiry {see Sectiomn 3.3),

(4} Given any two h-lines L, and L., there Is a p-isometry g such that g(L )
= [, [sec the proof of Theorem T.2.1).
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Given any w in H2, it is clear Lhat
2. i
{ze H ] = |}

is the unique h-line which consains w and whicli is erthogonal -o the pasitive
imaginary axis (an h-ling). As Jhe lsometry in (4} can bstaken to be a Mdoius
eransformalion we obtam:

(3} given any h-line and aay point w, there is @ taigue h-ling throwah w and
vrthogonal o L.

Without poing into the detauls, the reader should be aware that an essaniial
feature of axiormatic geometry s the notion of "between™ on a line, In our
case, this noeon can be described in tzrms of the metric.

{iiven two distinct points z and w on an h-line L, theset L — <z, w} has
three somponents exactly one of which has a compact closure (relative to the
hyperbelic plane). This component i the open segment (z, wland £ s berween
s and w if and omiy £ iz, wh The closed segment [z, w and segments
[z, w), [z w] are defined 1o the obyioas way.

The discussion preceding (7.2.3) chows that a carve » joining ip 1o i3
sabisfies

Il = plip. i}
ifand oniy if y is a paramerrization of {ip, ig] 45 a simple curve. Clearly, this
can be phrased in an invarlant form as follows.

Theorem 7.3.3. Ler r and w be eny poings in the Rvperholic plane, 4 curve §
Joining r to w saiisfies
l2F = plz, w)
if end emtly if p (2 a parametrization of [z, w] o3 a sieple curie.
1t is for this reason that we refer to h-lines as geadesics (thar is, curves of
shortest length),

Now consider any three paints =, wand . 1t 15 ¢lear from the specia case
(2.5 that if s between z and w, then

plzowy = ple, L) — als, wh

Equaliv cleariy, if { is not betweaen = and w then the curve y comprising of the
segments [z, {] and [, ] satisbes (by Theorem 7.3.1)

[l = plz,w)h
Thus we obtain Lhe next resull.
Thevrem 7.3.2, Lat 2 and w be disttnct points in the hyperbalic piane. Then
Pz wy = plz, &) + pll, wh
if ad only i e[z w].
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Farallel Dizioint Interseciing

Figare 7.2.1

We end this section with more terminolopy. First, the paimts 7y, 75, ...
arc ceffinear if they lie on a single geodesic. Fach geodesic has two end-points,
cach on the ciccle at infinicy. It is natveral to extend the notation for a segment
s0 as to include geadesics: thus (., ) denctes the geodesic segment with
cnd-paints ¥ and # even if these are on the circle at infinity. A ray from z iz a
segmant |z, ) where 2 lies on the circle at infinity: each geodesic (x, 2
through = determines exactly twa ravs from z, namely [, =) and [z, f)

Definition 7.3.3. Ler L, and L, be distinct geodesics. We say that L, and
L are paratleld if and only if they have exactly one end-point in corunon. IF
L, und L have no end-points in commaon, then they arc farersecting when
Lim L, # 2 and disisiet when Ly mn Ly = 35,

Warning. This termimelogy is not standard and Lhe terms are illusirated in
the model & in Figare T.3.1 Much of the geomesry is based on a discussion
af these three mutually exclusive possibilitiss (parallef, mlersceling amd
disjoint} and for this reason we prefer a particularty descriptive lerminology.,

Exeréise 7.3
1. Let w = w + iz, w' = jwam® z = i be polnts tn H% Prove that
o, =} = plw 2)
with equakity if and only il w = w° Dedoce Thecrern 732,

§7.4. The [sometries

The objeclve here (o dentify all lsometries of the hvperbolic plane. Let
=z, w and £ be distinet points in A? with £ between £ and w. It s an immediate
consequence of Theorem 7.3.2 that for any lsometry ¢, the point () is
between (2] and ¢(w} Thus ¢ maps the segment [z, w] onte the segment
[@(z), ¢{wil: becanse of this, ¢ maps h-lines to h-lines,
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Cirven any isomeatry g, there is an smnetry
ur — b
48

glz) = (ad - he = 00,
such that ggr leaves the positive imaginary axis L invariant (simply chaose g
tomap gL} to L). By upplving the isometries - — bz (& = Ojand 3 -+ — 1,z
A5 NECESSAry, wr may assume that gd fxes ¢ and leaves invariani the ravs
(i, ool (00 0 is now an immediate consequenae of (72.3) that g fives
gack point of L.

Now seleet any = in H? and write

z =Xy gadiz) = + i
For all posizive ¢,

plgdlzd, gepliz))
= polw + i, it]

Frig-A1 ]

and so, by Theorem 7.2.1{315),
[ + G 17T = [~ (2 - 67Dy
At thic holds tor all positive £ we have vy = cand 2 = w®: thas
gz} =z ar —L

A straightforward continuity arpument (isome‘rics gre nocessarly condnu-
uus) shows that one of these equations holds for all 7 in H2: for example, the
setof 7 in the open first quadrant with gé(z) = = is hoth opet and closed in
thal guadrant. This proves the next resull,

Thevrem 7.4,1. The group of isomelrlos af (HE, p) is precisely the group of
maps qf the form

ar + b -2+ b
B e
£z +d’ &)+ d

Z—F

where a, b, ¢ and d are real and ad — be = 0. Further, the group of isometles
ts penerated by reflections in h-lines.

A similar development holds for the madel A: here, the isemetries arc

o+ dz + &
T — T —— —
ez —d ¢E +3a
where aif — [¢* =1
Mot that if
f + ¢
gla) = la® —|ef* =1,
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theo from (7.2.4) we oblain the useful expressions
€, = siab o, 00, f7.4.1)
la, = cosh 3 (0, g (74.9)
and =0 (see Section 4.2} we find again thal
lgil? = 2 cosh o0, g0
Of course, if £ is an isometry of (M2, o) then
JRlZ = 2 cosh pfi, ki)

the proof is by an elementary compuration using Theorem 7.2.100) (or by
Theorem 4.2.1).

Extrose 7.4
1 Letc.w, (i =125 be pointsind 1 Shaw thal Lhere is s spmelTy g withglz) — n
loor eqch § i and enly i Tor ui § and j,

ez 2,0 = piwy, W,

§7.5. Convex Seis

A subsct E of the hyperboiic plane is szid to be cowvex il and onlv if Tor each
zand win E, we have [z, »] = E The lollowing facts regarding canyexity arc
easiy verified,

{1} [F E is comvex, then 30 1s g(E) for every isnmetry g.

() If E is convex, then so wre E° (the irterior of £) and E.

(3} IfE Bz arecomvexand . = E; = .., then | | E, i3 convex.
(%) [f each E, is convex, thenso is (1, E,.

By definition, a geodesic is convex. The mapping iy — Jog § i 2 homco-
maorphism of the hyperbele geodesic iy 1 = 0} onto the Fuchdean peodesic
fx 4+ ivop =0 which preserves (he relatton “belween™ We deduce that
the segments are the only contex subsets of a hyperbolic geodesic,

An open hal~plure 15 a component of the complement of & geodesic
and any open half-plane is convex. As an illustration of the use of the Klain
model, Iet F: A -+ A be the map described in Saction 7.1, This maps the
peoadesios of the Poingare model (A, p) onto Fuclidean segments in A and so
a subsel E of Als convex m Lhe Poincard maodel i and only o FIE) is convex
in the Fuclidean sense, In parlcular, & half-plane in the Poincard modsl maps
onothe ntersection ol Awitha Euclidean half-plane and Lhisis indeed convex
in the Euclidean sense. In this way, the Klein model enables os to refer
hyperbolic canvexity to the more familiar context of Euclidean convexity.
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Fiaore 751

By {2), a closed half-plane is convex, If E, (x< 4) is now any family of
Lalf-planes (open or closed), then the camplement of | | E, is the intersection
of half-planes and 50 i convex. For example, 2 Apperbolic dise I is convex
for it is the complement of 4 union of {shaded) hall-plancs as in Figure 751,

There are two other examples of 4 similar nature which we shall use later.
A horveyelic region is Lhe interios of a Buclidean circle which is tangent ta the
circle at infinity. By taking the madel H? and oo as the point of tangency,
we may assime thae the horoeyelic region i {x + fp: v = t}. This region s
convex for it 1 complement of the union of ail hall-planes of the form
ize H*: |z — x| = ¢} as x, varies over the real line. For future reference, a
horocpele 15 the boundary of a hotocyelic region.

A Bvpercyelic reglor 15 any region which 13 isomeirically congruent to a
regiom af the form

ire HY argls) — a2 < 00

for some 8 i (0, =2} The significance of this will appear later, bhowever such
a region [n gonvex Tor it s the complement of the union of balf-planes of the
lorm

{re B* |z — xp = ixp| cos B} (xp TCal].

‘The boundary of a hypercvelic region 1s called a hypereycle.

We cnd wath a charactenization of closed conves sets. A set £ is locally
contex 1] and only if each 7 1n £ has an open neighbourhood W such that
E rm Nis convex, 'The notions of convexity and local convexity are meaningful
in both Euclideap and hyperbolic spaces and they extend in the abyions way
to the closed hyperbolic plane,
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Theorem 1.5.1. Let P be the Euclidean piane or the closed b veerbolic plane, A
clused subset E of P is convex if and only if it is commected and focally eontex.

Provz. If the reselt is true when P is the Euclidean plane, the relationship
berween the Poincaré and Klein models shows thut the result is also true
when F s the closed hyperbolic plare. Thus it is only NECEssATY to show that
if £ Is & efosed, connected, locally convex subset of R then £ is convex (the
reverse implication is trivialy.

We say two points in E are palygonally connected il they can be joined
by a polygenal arc Iylng in E. This is an equivalence relation and the Iocal
convexity of E implies that the equivalence classes are relatively open in £
As £ s connceted, there is only one equivalence class 5o any two poiots ol £
can be jeined by a polvgonal curve in £. Because of this it iz sufficient to
prove that if the Fuclidean segments [, v], {p, w] lie in E then so does the
segrent [, w]. IF w0, w are collinear then this is trivial: thus we assume that
these points are not collinear,

For each o b, ¢ let Tia, b ¢) denote the closed triangle with vertices
a, b, ¢ (by this, we tcan the convex hull of the polnts a, b, e} Mow let K be
the set of x in fv, «] with the property that for some v in (3, W) we have
T, x, p) < E As Eis locally cotvex at v, £ containg some interval of DoaLtive
length. Clearly, K is an interval of the form [t, xgl or [1, x,] where x; # ¢
and we shall now show that K = [x, uj.

Choose a neighbourhood & of x, such that E~ & is convex and then
choose x; i {b, x) » N and x; in [x,, 6] ™ N see Figure 7.3.2.

As xy & R, there is some y, in (g, w) with

T, x;, v, ) = E

Choose zin N n (x,, y,): as £ & is convex we have

iz, xy, x:) = E.

/

Figure 7.5.1
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With w; as in Figure 7.5.7 we also have

Pe g, vp) = Tl g, 1) o Thag, 3, 2)
= f,

52 5. € K. This shews that 2 X and x; = v so K = [, v]. Kote that as
we K, there issome ¥ in (v, w)with Tl w, ) <= E.

Now consider the set K, of p in {2, w] such that T{o w, ph = E Exactly
as belore, K| is some segment [, y,) or [0, ] As E is closed, we see Lhat
K| = [v. ¥o). The arpument in the preceding paragraph (with w, o, v replaced
by u, Jg. w)shows that ¥, = wsowe K, and

Ti{e u w) = E O

Exmeetse 7.5
L Ler = 2, w, v be points in 175 Brove that itw e[ -, 2'] Lhen
M, = pan{ple, 2 glw', o)
Deduce Janalyticallyd thel o hyperboliv disc is convex.

2. Constrmzt & subsce & of 52 wheeh 5 setnected and lozally convex b aon convex
[aec Theorem 7310

1. Show that exactly ore of the sets

e o r byl
s s oS b )

i COnvER,

§7.6. Angles

Our attitude 1o angles in the hyperboiic plane i3 constslent with the policy
outlined in Section 7.1, namely we describe thoangles of byperbolic geometry
interms of Buclidean grometry. In hyperbolic geometry, an angle ar a point z
15 an unoedersd pair of rays {L, L7} from = Let (L, L) be an angle at = and
suppese for the moment that L and L' are oot on the same geodesic, The ray
. deterrnines a poodesic, sav L*, and L' — {z} does not meet L*, It follows
that L' — {z} lies in one of the open half-planes say ', complementary to
L* Similarly, L — [z} lies in one of the half-planes, zay &, complerocntary
te L. W now define the interior of the angle (L, L to bt Z n Z. Ttis casr to
sge that the interior of (L. L7 is cne component of the complement of
Lo I’ the other component is ¢alled the exrerior of (£, L'

if £ and L' lic on the samc geodesic then cither Lo L' is a peodesic (and
there is no canonical choice of inlerior or exterior) or L = L' in which case
we define the iolerior (o be empty und the extarion to be (the complement of L.
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Guiven an anple (L, L at z with L and L' defining different geodesics, the
intevior of (L, L) Is eomvex as a0 s the intersection of half-planes. To comple-
ment 1his, the exterior canpet be coavex for otherwise a sepment jolning points
on f. — {z} and L' — 4z} would liz in both Lhe interior and the earerior of
{L, L% Of course, we cen measure the intenor and eaterior anpgles at = In
the wsual way and the messurements liein [0, &) and (. 2x], respectively.

&7.7. Triangles

Let z), z; and z, be three non-collinear points in the hyperbolic planc and
let L, and L, be the ravs from z, through 7, and =z, respectively. Then
(L1, Ls) s an angle at 2, we denate its interior by A.. In a similar way, 4;
and 4, are the interiors of angles at 2; and z,. Thiz notation will readily be
absorbed by a glance at Figure 7.7.1. Noe that by convendty, (2;, £:) = 4,
(see Section 7.6,

Definttion 7.7.1. The wrigngle Tz, 25, 23 8 4, oAy — A,

The z; are the verzices, the [z;, 2;] are the sides and the A: arc the angles
of T{zy, 72, 27). Each angle of T{z,, 2,, 7;), being an interior angle, is less
than . For brevity, we write T for Ti{z,, 25, #2} Obscrve that as each 4,
iz convex, sg is T. Moreaver, the A; are also the angles of T in the sense that
for any suffcicntly smull open dise D with centre, say, z,, we have

DT =0mA

T see this, let H; be the hell-plane containing z; and having the other two 2
on its boundury, Then (iIF 2 = H,)
DA =Dl (Hym Hy)
I.DI'_'I[HJ_-'_'I H;}ﬁ{H;ﬂHijﬁ{HlﬁHQJ
=DnrnT

Figure 7.7.1
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Mext, define 24T by

oT = [z 5] w2z 23] w [23.5):

this may e parametrized as a Jordan curve with interior, say Ty, As
é1'c H, 80 T, = &, The same argument holds for H; and H, 5o

e rnHymH;=T

As Tis comnected (in fact, convex) and does not meet @7, 1t lies inside or
gutside of 81" However, T mests 7,90 T < T, and henee 7' = f;,.

In an axiomatic treatment, it is sometimes necessary to take as an axom
the fact that a rav £ from z, through a point w in ¥{zy. 7o, £5) necessarly
maers the side (25, 251 In our case, we ohserve that the (connected) segment
L= 1z, meets the wnterior of 2T (at v and canrnos meet the sides [z, 54
or [zq. 23] As L — $&,} 15 unbounded, its closure meets the circle at infinity
and so must mest J7.

The next resulr j5 used frequently in deriving trigonametric formelae (and
so st be proved (ndependently of thesz formulae).

Theorem 7.7.2. Lot £ be the peodesie cortaining fhe longese side, sy (22, 2,].
of T. Then the geodesic L, through o ond orthogonal e £omeetz L oat o point
wik[z;, 2]

PrROOU. We may assume that L is the positive imtaginary axis sow = i|g4!:
see Figure 7.7.2.
Il 15 2asy Lo see that
Pz, 23] = plw, ;)
and similarly

Plzi. 23] = oplw, 73,

Figurz 1.7.2
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f3e2 Section 7.20 which does not use rigonometty). As [2,, #,]is the longest
gide we deduce that
max{plza, wl, olzy, wil < piza. 23]

The points £y, z5. w arc collincar and one must lie between the other teo.
o ang of them). 0

Most of the materizl in this section extends without difficully to the cuse
whan some (ot ali] of the vertices lie on the crrcle at infinily. The notable
exception to this is Thearem 7.7.2 {consider z; bul not =5 on the circle at
infinidy).

Exproese 7.7

1. Bhow rhur in hypecholic peemetry, the vertices of 4 doangle may, B nesd nol, lie
¢HL & Circle.

2. Prove that the diieeter of o ¢nwngle 1. nainely
supidz, vl s we T

ig the [engih of the longes, side (see Exeroise 7518

§7.8. Notaticn

In the next six sections we shall be concerned with hyperbolic triangles and
il is convenient 1o adopt a standard notation which allows us Lo express
trigenomelric relations easily. A {dangle T wiil have vertices laballed o, ©,
and .- the wides opposile these vertices will have lengths o,k and © respeo-
tvely und the Interior angles at the vertioss will be 2« f and 3. This notation
will readily be absorbed by 2 glance at Figure 7.8.1. As isomelrics preserve
length and angles, trigonometric formulye remeain mvariant under isometries.

Fignre 751
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We zhall allow some o all of the verticoes of a triangle to be on the cirgle
ar infiruty. 1, for example, #, is at indoity, then

g o= 0, F=v= 4.

H wo vertices are on the circle at infinity, then all three sides have infinite
lengrh.

Exrzcise TH

1. Lev T, und T be two triangles, sach witk: all sides of mbnnc iongek. Show that thece
i8 an woTnstry mapang 7 onto 1.

§7.9. The Angle of Parallelism

The Angle of Parallelism is the classical term for the irigonometric relation
which holds for a triangle with angles e, 0, w72 in this casa, there are only two
parameiers, pamely x and b,

Theorem TM.1. Lot T be a trigngle with angles 2, 0, 703 (o 2 00 Thewn

{i)] smhbhtan z = |
{ii1 cosh b sin 2
{11 lanh bosee o —

E

ProGE, We work in H? and we may assurne rhat
o=, by = O, T, = X + ir,

where x° ~ v° — 1:sce Figure 7.9.1. As ¥ = sin &, Theoretn 7.2.101) yields
(1), The remaining formulas are equivalent to {13). |

T

Figure 781
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§7.10. Triangles with a Vertex at Infimty

Consider a triangle with ungles x, §, 0 where @ and § arc non-zero; then
a=h=+w D=¢<t+w

and we shalt determine the relationship between z, f and r.

Theorem 7.101. Far anp triargle with angles o, ff, O we Rate

1+ coswoos 7
sin % sin M

] vosh £ =

. h cos o + cos ff
(i A= anasn g

Proar, We work io B2 with o, = =c. We may assume that v, and &, lie on the
circle iz; = 1, say with

. = explitt), = expliph

where D < 8 < ¢ = w. Thusx = f § = » — ¢ and {i) follows from Theorem
721 a8

cosh ¢ = cosh e, 1,0

The verification of (i) is left to the reader. ]

§7.11. Right-angled Triangles

We now consider a driangie with angles =, £, a7l By applying a suitable
isomelry we may assurme that

£,

2 |, W, = ki, b, = § + it
where & > | and s and ¢ are positive with 5* 4 #* = 1: see Figure 7111
Wa begin with the relationship berween the three sides: this is the hvper-
belic form of Prihagoras” Thearem,
Theorem T.11.1. For any teiangle with angles =, 8, /2 we Ague
cosh ¢ = cosh g cosh b (r11.1)
Proww. Using Theorem 7.2.1{H) we bave
cosh ¢ = (1 + k2%t
cosh b = 11;

cosh a = (1 4 k*)/2k C T
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L, = K
J £
2 o
K
A TRPEN
AT | b
£ I
s —_ I =1
& Ig__-"ﬂf |
e e - e
oy 0
Figuoe 7111
Mote that we also obtain
tanh & — & {(111.3)

Mext, we seek refations betweer two sides and one angle,

Theorem 7.11.2, For any trangle with angles 2, B, #2 we hare

(1} tanh & = sinh « tan S
iz} sinh b = sinh ¢ s B,
(i) tanh a — tanh ¢ cos B,

Proor. Ler the geodesic through v, and ¢, have Buclidean centre x . Then by
efuating the distances from @, and vy, to 5, We see that

B2 =1 — 2x,%
This shows that a, = 0. The Eudlidean triangle with vertices x-, 0 and &
has angle fat x,. Thus
tan ff = ki x|

= Tk — 1)

and this gives (1) because of (7412 and (7.11.3)
Plitnination of o from {1 and (7.3 1.1) yields {u): climination of b from (1)
and (i) yields (1l _

We end with the relations betwesn one side and two angles.

Theorem 7L, For any crinngle with angles &, §, w722
{1 cosh @ 510 § = cos o

[1i} cosh ¢ = cat o cot §.
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Proof. Theorem 7110 pives

sinh ztan f = tanh b,
ginh & tan ¥ = taoh a
and elimination of & gives {i).
To prove (i), simply climinate ¢osh ¢ and cesh & from (7.11.1), Thearem

T01.300) and the corresponding identity with a and o interchanged with &
and 7. il

§7.12. The Sine and Cosine Rules

We now consider the general hyperbolic triangle with sides o b and & and
opposite angles «, § and . We assume thar %, § and » are positive {so a, b
and ¢ are finite) and we prove the following results,

The Sine Rule:

sitha sinhé sinhe
sin sin ff siny

The Cosine Rule I:
esh ¢ = cosh & cosh b — sinh o smh & cos 4.

The Cosine Rule I1:

cos e cos I + cos;
oosh o= - --ﬂ-. i
sn e s f

Mote the existence of the second Cosine Rule This has no analogue in
Fuchdean geometry: in hyperbolic geometry ol imphes that if rae triangles
Reve the saume angles, then there is an isamelry mapping one friangle onte the
other,

FROOF OF THE CosTNE RULE 1. We shall use the model A and we may assume
that w. = Dand #, = 0: See Figure 7121
Mote that

t, = tanh =000, v}
= tanhizh) (71213
and simtlarly,
ty = ¢ tank{1a). (1120
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e
i
|llll-"
I I'
'| |
I'.II. ,I'II
.I‘.. J{‘I
n\ //
\.H ;f’_ﬁ,
Figure 7.12.1
From {7.Z.4} we have
cash ¢ = 2 sinh®[$plr,, t)] + 1
21, — 1t
...... =+ 1,
TS A0 =T

The Buclidean Cosing Rule gives |0, — 1|2 in lerms of 'ry, |z, aod cosp
and weing (712 1y and (7.12.2), the required result {ollows by stru:phtforward
simplilication. O

Proor ofF TRE S1~E Rury, Using the Cosioe Rule [ we obtain

(sinh 4:-)1 ginh? ¢

B i ‘cosh o cosh b — cosh c)i'
( sinh a smh b

sin v

The Sine Rule will be valid provided that this is symmetric in o, b and ¢ and
this will be so if

(sinh & sinh b)* — (cosh & cosh B — cosh o)’
18 symmetric, After wriling sinh? in terms of cosh?, we find thar this is so.

O

Proar oF THE Cosive ReLe 1T, For breviry, we shall write 4 for cosh 2 and
similarly for 8 and C. The Cosine Ruole  yields

o5 v — (AR — C} _
¥= { l':ll ]{Bl ‘} 1,32
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and so

1 &
St = e e
N 'E R ) (T Y
where
D=1—24BC — (4> + B + 1)
is symmetric in A, B and C. The expression for sin® 3 shows that I = (.
Now chserve that of we muitiply both nuemerater and denominatar of

pos o eos § 4+ cos v
" dnwsinf
by the positive value of
[AE _ l]l.‘?[:E! _ 1:}1,-2{'(:2 _ 1}.

we obtain

coseecos f + cosy  [(BC ~ ANCA - B) — (48 — CHCT — 133

sin ¥ ain f¥ B i
-

1

Exrrcase 7,12

1. Fora geasral ianple, prove that a = & = cif and only if ¢ = < 5 " Use the Ssm
Rulz and the Corallary of Theorem ¥.13.1.]

2. Show that & triangle is #n eguilatera? trizngle i and only if £ = i = 7 and Lhat &
this ease,

7 r;t'.-ih{%a_:l Hinf}aj = 1.

. Show that for a peresal triangle. the angle biscctor a1 &, onlains the mid-point of
[t ] if ard anly il b = ¢ (Frosveles trianyl=s).

[FF)

4. Priswe that thers exists ar isocery mapaing a triangle 13 onte 4 triangle T; (Fand
only if ¥, and f; have {be same wngles (or sides of the sarme langthe )

§7.13. The Area of a Triangle

Theorem 7.13.1. For ary triangle T with ongles o, fi and 7,
hearea( Ty =n — (2 + f + 7).

Cerollary. The angle sunt of & Ryperbalic iriangle is less than o
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g

‘N

Figyre 7.13.]

PrOOF. Assume first that v = 0. We may assume that o, = o0 and that v,
and ¢, lieon ‘7 = 1, Referring to Figure 7.13.1 we find that

h-area{ T} ra;ﬂ [[-m ﬂj| dx

dipegyz ¥°

I

+ sasdw - 2|

=x— {4+ §),

which is the desired result wheny = 0. In general, anv triangle is the diflerence
of two such triangles {continne the ray from 2, through v, to w on the circle
at infinity and considar T{y,, v, w)) and the general case follows easily. [0

§7.14. The Inscnibed Circle

This is the last section on hyperbalic trigonometrty and we leave the reader
to provide most of the derails,

Theotem 7.14.1. The three angle hisectors of a trigngle Tmeet at epoint Ein T,

ProokF, Wo may assutne that pisthe smallest angle so p = =/2 Now construct
angle bisectors at ¢, and i, : these must meet at a poind £ in 7T (see Secuen 7.7
Mext, dedne ¢, and y; as in Figare 704010 As o2, B2y, and v, are each less
than /2, we can construct points w,, wy, and w, as in Figure 7.14.1 (and these
points must lic on the open sides of T,

The 8ine Rule apphed o the twe triangles with side [, o] gives

AL W) = (i, wal

The samse result holds with wy, instead of w, 5o the poinis w,, w, and w_ he
on a circle with centre £ Moreover, elementary trigonometry now shows that
P = Y- o
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Flgure 7.:4.5

The circle centre { passing through w,, w, and w,_ is called the inscribed
circle ol T,

Theorem 7.04.2. The recdines R of the Inscrihed cirele of T is given by

cos?z +oms? f - cos® v + 2 oos xcos feasr — |

t R = _— — . -
anh” R 2{1 + cos 2}l + cos A1 + cos )

ProvE Let x = plo,, w) and y = p{w., v,). Then

CO% 2 cos i 4 cos ) . .
- --]B~— Y - cosh x cosh ¥ + sinh x ainh ¥

sin « sin 8
50
[{cos 2 cos B + cosy} — (sin z sink x}{sin § sinh y)]°
= [{1 — cos? 2} + sin? ¢ sinh® x][{1 — cos® #) + sin* Fsioh? y].
The identity

sin f = {1 + cos &) tan{d/2}
together with the relation

tarth R = sinh x tan{=/2)
yields
sin @ 4inh x = {] + cos ) tanh R,

A similar expression holds for 8, v and K and substitution yields (after some
simplification) the desired resylt O

The next example is of nterest,
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Exampte 7.14.3. For each = in (0, 7} we can construct & triangle T with
angles 2, 0, (1 Then

4 tanh® R = {1 — cos u}
= cosi{x2)
= sin®*[th-area(T7].

In Fuclidean geometry, a triangle may have a large afea but a small
mscnbed oirele. The next result shows that the situation in hyperbolic
Eeometry 1s goile different ; for a proof of this, see [10].

Theorem 7.14.4. The radive R of the inscribed cirele of T' satishes
tanh R = i sinfzh-area(T)]
ond thiy lower bound is best possible for each value of h-area(T).

Example 7.14.3 shows that this lower bound is best possible.

§7.15. The Area of a Polygon

A polygon Pis the interior of & closed Jordan curve
Lznzadulza, 2l v v zem g an] o (24, 20 ]

The interier angle 8. of the polygon ul z; 1s the angle determined by B~ #
for all sufficiently small dises I centered al 7, Wote Lhat this is nol neces-
sarily the interior of Lhe angle delermined by the two sides of P leaving =,
it is this interior angle if and oaly if 0 < &, < = We allow the vertices to lie
on the circle at infinity:if =; is such an infinite vertex, then 8, = O,

Theorem TA5.1. [ P is any polpgor with interior ongles 8, ..., &,, ther
h-arealPy={n — 2m — (6, + -+ + 8.

Proor, This has been proved for the case n = 3 (Section 7.13) and from this
it fallows for convex polvgons by subdivision of P inte n — 2 rlangles (the
details are omitted). It Is worth noting explicitly that Thoorem 131 applics
to all polygons whether convex or not.

The proof for non-conves polygons is also by subdivision into triangles:
the subdivision is less tractable but we cun compensale [or this by using
Buler's formula. We bepin by extending each side of P Lo a complste geodesic,
Thiz provides a subdivision of the entire hyperbolic plane mio a fiote
number of non-overlapping convex polyeons (convex as each is the inter-
section of hall-planes},
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We now consider only these polygons P, of the subdivision wich lie m
thevriginal polygen P. By convexity, sach P can besubdivided into inangles.
We have now subdivid=d P iato aon-overlapping triangles 7, such that each
verien of P is a vertex of some T, and each side of a T;is cither a side of some
other T, or ia part of a side of P (and ool of any other T)).

Let this triangulation of F have N triangles, E edges, ¥ vertices and et
there be £, edpes which lie in the sides of P. Fuler’s lormula for the saphere
vields

N+ —E+ V=2
As cach of the & t0angles has three sides we count sides m dillerent wags
and obiain
IN =E; + 2E - Ep}

Elimination of E now gives
N =-2V+E, = =2 (7151

We can now compuie areas. O the I vertices in the subdivision, » ocour
ws vertices of P E, — » occur at points Jying interiorteasideof Pand ¥ — £,
ocour inside P. Thus

w
areaf P = arca{ T;)
=1

I
= NI -- (Ej oo :"H"} —(Eﬁ—n}n—{V—En}Zﬂ
— = 2r— By 4+ )

By virtoe of (1.15.1). 1
Remark. For a2 Euclidean polvgon, of course, we have

fn—2wm=6+---+8,.

§7.16, Convex Polygons

We cslablish bwo results concerning convex polyoons. The first is a necessary
and sufficient condition for = palygon to be convex: the second establishes
the existence of convex polygons with preseribed angles.

Theorem ¥.16.1. Ler P be o polpgon with interior angles 8,,.. . 8,. Then P
is convex if and only if each 8, satisfies 0 = 4, < 0.
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Thus is at immediale consequence of Theorern 7.5.1. Observe thal Theorem
T151 shows that a neeessary condition for the exslence of & polypon with
interior angles ..., 8, 18

44 8, =0 — 2

[n fuct, lo1 conver polygons (und possibly o all polygons) this is also
sufficient.

Theorem 7.16.2, Let ¢,,..., 1, be any ordered rtuple with 058, < r,
=1, o0n Then there exlstz o polpgon Powirh inrerior grgles 84, F,
gocurring in s order woved 2P, i and orly If

4+ -+ £, < [k — 2im (716l

lo fact, we shall construcl & polygon £ with these angles and with an
inseribed dise wouching all sides of P,

Proor. Given 2, .. ., f satishying (716, 1} and each Iying in [0, b, construct
quadrilaterals . ..., &, each with one vertex at the origin m 4 as in
Figore 7.16.1. The length & cantake any positive valus and is to bedetermined
later . novte Lhat @; i determined (1o within a rotation abour the origind by o
and ;. [tis clear that we can construer the desired polveon P as the union of
not-overlapping G, provided that

Y= {1163

Fipurz 7.16.1
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Mow {Thearern 7.11.3)

cos(d ;2]
= . T.06.3
A cosh 4 ( )

and so it is appropriate to cxamine the [angtian

" fcos(.0 )
()= sin™H T
at) = l cosh ¢ )
where t = 0and where sin™ ! takes values in [0, 772].
Clearty, 7 is continuous end decreasing and gi{f) — 0as ¢ — + = Also,

. Lo — 8,
g[ﬂj ._J'gj ( _i__-)
= ifam — (@ + -+ = 6,)]
=R

beeausc of {7.16.1). The [ntermediate Valoe Theorem gearaniees the existcoee
of a positive d with g{d) = mand with o, defined by (7.16.3), we see that (7.16.2)
holds. O

As an application of Theorem 7162, ohserve that there exins ¢ pelygon
with n sidey ard all fnterior angles equal o xf2 i and orly e = 5,

§7.17. Quadrilaterals

It is a direct consequence of Theorem 7.16.2 that there exist quadritaterals
with angles #/2, =2, n/2, ¢ if and only iF0 = & =< xf2: such a quadrilateral
is illestrated in Figure 7.17.1. This quadrilzteral is kpown ax a Luwber
quadrilateral (after J. H. Lambert, 1728 -1777). If we reflect across one side
we obtain a quadrilateral with angles ©/2, =2, ¢, ¢; this guadrilateral
fillustrated in Figure 7.17.2) was used by G. Saccheri {1667-1733) in his
study of the paralle] postelate and is known as the Saccheri guadrilateral,
The next theorem refers te Figare 7170

Figars 7.17.1
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Figure 7172

Theorem 7.17.1. (i) sinh a, sinh a, = cas ¢
(i) cosh a, = cosh by sin B

The proof depends on two nseful preliminary resulis.

Lemma 1.17.2. Let L be a hvperbolic geodesic in A with Euclidean centre ¢
and rudive r and let w be the point on L which is nearest to the origin, Then

sinh g0, w) = 157,  cosh p(0,w) = ||/

Paoor, Cleatly, £] = |w - rand orthogonality gives [£1° = & + r2 Using
(7.2.4) we obtain sinh 4p(0, w) and hence
2w |

ginli p{Q, w) = l—mlﬁ --

The value for cosh Eollows immediatedy. ]

Lemma 7.17.0. Let L and L' be geodesics in the hyperbelic plare. Then the
inersive product (L, L7 is

cosh p{L. L"), ., cos a

according as L and L' are disfoin, parallel or intersecting at wn cngle § where
0= g w2,

Proor. Ttis not difficult to see that disjoiny geodesics have a commeon orthoe-
onal gendesic (see Section 7.22h and {for the moment) oL, L) is defined 1o
he the fenpth of this arthegonal segment between L and L', By the usual
invariance arguments we need anly consider the cases

(i [, L arcin H? and ate given by |z| =1, |z| = R;
{ily I, L arein H2andarcgiven by x = O x = x,;
(i} L. L' are Fuclidean diameters of A



5k T Myperaale Geamgny

In all these cases, the farmula ler (L, L) given in Seetion 3.2 vields the
desired resull. 1

Procr oF TiEares 7.17.1, We may suppose thut 1he gquadrilaterzi in Figues
7.17.1 has the sides 2, and =, lving on the positive real and imaginary a3es,
Suppose that the sides labeiled &, and b; lie on the circles

r -] =R, |z —w =r
respectively, where . ¢, » and R are pasitrve. Then by Lemma 7.17.2,
stnh a, sinh a; = LirR,
Lemma 7.17.3 implies that
(L L) =cos ¢

and from Section 3.2 we have

= l/rR

hecause, for example, w? = 1 + ¢,

To prove (i) we relocate the polygon so that the vertex with angls ¢
i5 at tho origin and the sids labelled b, is on the positive real axis: see Figure
T3

Mow reflect the quadrilateral in che real axis: let L he the geodesic eon-
laining Lbe side labelled «, and let L' be its rofcction in the real axis. By
Lemma 7173 we have

(F, L) = cosh{2a,). f7.17.43

Figure 7.37.3
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v

If L {viewed) as a Fuclidean gircle] has centre Je and radios r, then L
hus centre ge ¥ and radius » and clearly,
|de'® — Je™'™ = 2r,
Thus
Hdet — da™ 12 — 27

22

(L. L7

2d

- Zoosh® b sin?g— 1

A

It

by virlue of Lemma 7172 This with [T.17.1) yislds {iih

Exercise 7.17

I Derive Lemma 7172 diectly from Theorem 790 (Lemma 7072 05 simply o 7e-
statemant of e Anple of Pacallzlsn formula).

87.18. Pentapons

We shall examine the metric relationships which cxist [or the pénlagon
illustrated in Figure 7.18.1 where 0 < ¢ <

Theerem 7.1%.1. {i) cosh ¢ cosh ¢ + cos ¢ = sinh @ cosh bsinh o
(1) If & = =2 then
tanh g cosh Blanh ¢ = 1, FLIR D
sinh g sinh b = vosh d. (7180

Proow, [1 13 easy Lo see that there 1s a geodesic through the vertex with angle
 which mezts and is crthogonal 1o the side of length b Lat by and b, he the

Fligure 7.18.]
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lengths as illustrated and let ;. ¢, be the subdivision of ¢; &, being on the
sama side of this peodesic as the side of length &, By Theorem 7.17.1, we have

cosh a = cosh A sine |,
cosh ¢ = cosh hsin @
sinh e snh b, = cos fy
sinh e sinh by = cos ;.
It follows that
(cosh & cosh ¢ — sin ¢, sin ¢y)*
= {cosh g cosh ¢ — sin @, =in 4, — fcash g 510 b - cosh rsin ¢ B
= {vosh? a — sin® ¢, ¥cosh? ¢ — sin? )
= (sinh® @ + cos® i, )sinh® ¢ + cas? ¢)
= {sinh* @ cosh® b M(sinh? ¢ cosh® &)
and =0, taking positive square roots,
cosll @ cosh ¢ — sin dy sin ¢ = sinh @ sinh ¢ cosh by cosh By
This leads directly to (i) as
cosh ¢ cosh ¢ 4 cos ¢ — cosh acosh ¢ — sin ¢, SN @; + cos ) cos ¢
= ainh g sinh ¢ {eosh &, cosh B; + sinh A, sinh &;)
= ginh g sinh ¢ cosh b
Purting ¢ = w72 in {1}, we oblam (7.18.1} To prove (71821, wr apply

(7181310 the triple b, ¢, 4 and eliminate ¢ from the resuiting expression and
{7.LE.1D _

&7.19, Hexagons

We shall only consider the right-angled hexagon lilustrated in Figere 7101
If we join the end-points of the sides labelled «, and b, to form a quadrilateral
O, we find thar each interior angle of Q is less than #/2 This implies that the
sides labeiled @, and b, have a common orthogonal of length. say & as
tllustrated

Theorem 7.19.1.
sinh e, sinha,  sinha,

sinh b, siohb, sk by’

ProorF. From Theorem 7181 we obtain

sinh &5 sinh sy = cosh ¢ = sinh ¢; sinh by

£l

and the result follows by symumetry considerations.
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ay

5
Figure 7.09.1

Theorem T.14%.2,
cosh b, sinh &, sioh a, = cosh g, + cosh g, cosh g
Proor. From Theorem 7.18.1 we abtain the identitics
sinh x sinh a; = cosh u;

cosh oo,

sinh ¥ sinh a,
sinh « sinh ¢ = cosh a;;
sinh 1 sinh ¢ = cosh a4,
Mext, we obtain the identity
{cesh? @, + sinh® w}{cosh® w; + sinh® o)
= {cosh a, cosh a, + sinh « sinh n)*
by cxpressing both sides as functions of o, ¢ and . Thus
cosh b sinh a2, sinh #4
= [cosh x cosh p + sinh x sinh yleinh a; sinh ay
= cosh x cosh v sinh g, sinh 4, ~ cosh u cosh v
= {cosh x sinh o,){cosh ysinh a;) 4+ cosh wcash o
= {sinh? g, + cosh? u}3sinh® 4, + cosh? o)1 + cosh u