This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Microsoft Windows Shell Scripting Programming for the Absolute Beginner
by Jerry Lee Ford, Jr. ISBN:1592000851
Premier Press © 2004

If you are new to programming with Windows Shell Script and are looking for a solid
introduction, this is the book for you. Learn to store and retrieve information in variables,
debug scripts, create conditional logic tests, and more.

@®

Table of Contents

Letter From the Series Editor

Introduction

Chapter 1 - Introducing Windows Shell Scripting
Chapter 2 - Interacting with the Windows Shell

Chapter 3 - Windows Shell Scripting Basics

Chapter 4 - Storing and Retrieving Information in Variables
Chapter 5 - Applying Conditional Logic

Chapter 6 - Creating Loops to Process Collections of Data
Chapter 7 - Creating Procedures and Subroutines
Chapter 8 - Debugging and Error Handling

Appendix A - Windows Shell Scripting Administrative Scripts
Appendix B - What's on the CD-ROM?

Appendix C - What Next?

Glossary

Index

List of Figures

List of Tables

List of Sidebars

 cD Content

st s

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

(Toan L TS e

Back Cover

If you are new to programming with Windows Shell Script and are looking for a solid introduction, this is
the book for you. Developed by computer science instructors, books in the For the Absolute Beginner series
teach the principles of programming through simple game creation. You will acquire the skills that you need
for more practical Shell Script programming applications, and you will learn how these skills can be put to
use in real-world scenarios. Best of all, by the time you finish this book, you will be able to apply the basic
principles you’ve learned to the next programming language you tackle.

With the instructions in this book, you’ll learn to:
= Store and retrieve information in variables
= Apply conditional logic and create conditional logic tests
= Improve script organization with procedures
= Debug your scripts and handle errors
= Create loops to process collections of data
About the Author

Jerry Lee Ford, Jr. is a Microsoft Certified Systems Engineer with over 15 years of experience in information
technology. He holds a master’s degree in Business Administration and has been a part-time IT instructor
for 5 years. Jerry is the author of several books, including Microsoft WSH and VBScript Programming for
the Absolute Beginner.

[1oam Lo TS e

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Microsoft Windows Shell Script Programming for the Absolute

Beginner
JERRY LEE FORD, JR.
ANDY HARRIS, Series Editor

Premier

Press

Copyright © 2004 by Premier Press, a division of Course Technology.

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, recording, or by any information storage or retrieval system without written permission from Premier
Press, except for the inclusion of brief quotations in a review.

The Premier Press logo and related trade dress are trademarks of Premier Press and may not be used without written permission.

Microsoft, Windows, Notepad, and VBScript are either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries.

All other trademarks are the property of their respective owners.

Important: Premier Press cannot provide software support. Please contact the appropriate software manufacturer's
technical support line or Web site for assistance.

Premier Press and the author have attempted throughout this book to distinguish proprietary trademarks from descriptive terms by
following the capitalization style used by the manufacturer.

Information contained in this book has been obtained by Premier Press from sources believed to be reliable. However, because of
the possibility of human or mechanical error by our sources, Premier Press, or others, the Publisher does not guarantee the
accuracy, adequacy, or completeness of any information and is not responsible for any errors or omissions or the results obtained
from use of such information. Readers should be particularly aware of the fact that the Internet is an ever-changing entity. Some
facts may have changed since this book went to press.

ISBN: 1-59200-085-1

Library of Congress Catalog Card Number: 2003094425
Printed in the United States of America
0405060708BH10987654321

Premier Press, a division of Course Technology
25 Thomson Place
Boston, MA 02210

SVP, Retail Strategic Market Group: Andy Shafran
Publisher: Stacy L. Hiquet

Senior Marketing Manager: Sarah O'Donnell
Marketing Manager: Heather Hurley

Manager of Editorial Services: Heather Talbot
Aquisitions Editor: Todd Jensen

Associate Marketing Manager: Kristin Eisenzopf
Project Editor/Copy Editor: Dan Foster, Scribe Tribe
Technical Reviewer: Keith Davenport

Retail Market Coordinator: Sarah Dubois

Interior Layout: Danielle Foster, Scribe Tribe
Cover Designer: Mike Tanamachi

CD-ROM Producer:Keith Davenport

Indexer: Sharon Shock

Proofreader: Kim Benbow

To Alexander, William, Molly, and Mary.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Acknowledgments

Anumber of individuals deserve credit for their work on this book. | especially want to thank Todd Jensen, who served as the
book's acquisitions editor and who has worked with me on numerous other writing projects. | also want to thank the book's project
editor and copy editor, Dan Foster, for his guidance and suggestions. Finally, | want to acknowledge the book's technical editor
and CD-ROM developer, Keith Davenport, as well as everyone else at Premier Press for all their hard work.

About the Author

Jerry Lee Ford, Jr. is an author, educator, and IT professional with over 15 years of experience in information technology,
including roles as an automation analyst, technical manager, technical support analyst, automation engineer, and security analyst.
Jerry is a MCSE and has earned Microsoft's MCP and MCP+ Internet certifications. In addition, he has a master's degree in
Business Administration from Virginia Commonwealth University in Richmond, Virginia.

Jerry is the author of 12 other books, including Learn JavaScript in a Weekend, Learn VBScript in a Weekend, Microsoft Windows
Shell Scripting and WSH Administrator's Guide, VBScript Professional Projects, and Microsoft Windows XP Professional
Administrator's Guide.

He has over 5 years of experience as an adjunct instructor teaching networking courses in Information Technology. Jerry lives in
Richmond, Virginia, with his wife, Mary, and their children, William, Alexander, and Molly.

[Toam Lia | (< raivisus [aer o

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

(Toan L TS e

Back Cover

If you are new to programming with Windows Shell Script and are looking for a solid introduction, this is
the book for you. Developed by computer science instructors, books in the For the Absolute Beginner series
teach the principles of programming through simple game creation. You will acquire the skills that you need
for more practical Shell Script programming applications, and you will learn how these skills can be put to
use in real-world scenarios. Best of all, by the time you finish this book, you will be able to apply the basic
principles you’ve learned to the next programming language you tackle.

With the instructions in this book, you’ll learn to:
= Store and retrieve information in variables
= Apply conditional logic and create conditional logic tests
= Improve script organization with procedures
= Debug your scripts and handle errors
= Create loops to process collections of data
About the Author

Jerry Lee Ford, Jr. is a Microsoft Certified Systems Engineer with over 15 years of experience in information
technology. He holds a master’s degree in Business Administration and has been a part-time IT instructor
for 5 years. Jerry is the author of several books, including Microsoft WSH and VBScript Programming for
the Absolute Beginner.

[1oam Lo TS e

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Microsoft Windows Shell Script Programming for the Absolute

Beginner
JERRY LEE FORD, JR.
ANDY HARRIS, Series Editor

Premier

Press

Copyright © 2004 by Premier Press, a division of Course Technology.

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, recording, or by any information storage or retrieval system without written permission from Premier
Press, except for the inclusion of brief quotations in a review.

The Premier Press logo and related trade dress are trademarks of Premier Press and may not be used without written permission.

Microsoft, Windows, Notepad, and VBScript are either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries.

All other trademarks are the property of their respective owners.

Important: Premier Press cannot provide software support. Please contact the appropriate software manufacturer's
technical support line or Web site for assistance.

Premier Press and the author have attempted throughout this book to distinguish proprietary trademarks from descriptive terms by
following the capitalization style used by the manufacturer.

Information contained in this book has been obtained by Premier Press from sources believed to be reliable. However, because of
the possibility of human or mechanical error by our sources, Premier Press, or others, the Publisher does not guarantee the
accuracy, adequacy, or completeness of any information and is not responsible for any errors or omissions or the results obtained
from use of such information. Readers should be particularly aware of the fact that the Internet is an ever-changing entity. Some
facts may have changed since this book went to press.

ISBN: 1-59200-085-1

Library of Congress Catalog Card Number: 2003094425
Printed in the United States of America
0405060708BH10987654321

Premier Press, a division of Course Technology
25 Thomson Place
Boston, MA 02210

SVP, Retail Strategic Market Group: Andy Shafran
Publisher: Stacy L. Hiquet

Senior Marketing Manager: Sarah O'Donnell
Marketing Manager: Heather Hurley

Manager of Editorial Services: Heather Talbot
Aquisitions Editor: Todd Jensen

Associate Marketing Manager: Kristin Eisenzopf
Project Editor/Copy Editor: Dan Foster, Scribe Tribe
Technical Reviewer: Keith Davenport

Retail Market Coordinator: Sarah Dubois

Interior Layout: Danielle Foster, Scribe Tribe
Cover Designer: Mike Tanamachi

CD-ROM Producer:Keith Davenport

Indexer: Sharon Shock

Proofreader: Kim Benbow

To Alexander, William, Molly, and Mary.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Acknowledgments

Anumber of individuals deserve credit for their work on this book. | especially want to thank Todd Jensen, who served as the
book's acquisitions editor and who has worked with me on numerous other writing projects. | also want to thank the book's project
editor and copy editor, Dan Foster, for his guidance and suggestions. Finally, | want to acknowledge the book's technical editor
and CD-ROM developer, Keith Davenport, as well as everyone else at Premier Press for all their hard work.

About the Author

Jerry Lee Ford, Jr. is an author, educator, and IT professional with over 15 years of experience in information technology,
including roles as an automation analyst, technical manager, technical support analyst, automation engineer, and security analyst.
Jerry is a MCSE and has earned Microsoft's MCP and MCP+ Internet certifications. In addition, he has a master's degree in
Business Administration from Virginia Commonwealth University in Richmond, Virginia.

Jerry is the author of 12 other books, including Learn JavaScript in a Weekend, Learn VBScript in a Weekend, Microsoft Windows
Shell Scripting and WSH Administrator's Guide, VBScript Professional Projects, and Microsoft Windows XP Professional
Administrator's Guide.

He has over 5 years of experience as an adjunct instructor teaching networking courses in Information Technology. Jerry lives in
Richmond, Virginia, with his wife, Mary, and their children, William, Alexander, and Molly.

[Toam Lia | (< raivisus [aer o

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam LB | [« Fravious |
Letter From the Series Editor

At some point, you've probably begun to want more control of your computer. You may want to make programs act a little bit
differently than the default behavior, automate tedious tasks, or perform certain jobs automatically. Ultimately, such tasks come
down to programming. The programming world can be very intimidating, with all the integrated environments, complex languages,
and dizzying variety of resources. Programming looks hard, and, frankly, it looks boring.

In this book, Jerry Lee Ford will show you how to control your computer in amazing ways. You'll learn some relatively easy tricks
that will profoundly improve the way you work with your computer, and you'll learn the basics of the programming art along the
way. Windows shell scripting is not the most complex programming environment, and that's a major part of its charm. This
reasonably clean language is ideal for beginners precisely because it is so focused.

While shell scripting is extremely useful, that doesn't mean learning about it has to be dry and boring. Like all the books in this
series, this book teaches through simple game programming. Nobody's going to use Windows shell scripting to write the next
immersive 3-D action game, but games can be an interesting way to learn about the process of writing more traditional programs.
Don't worry, there will be lots of practical examples as you go through this book.

If you're new to programming, you won't find a better place to start than this book. If you're already an experienced programmer,
you'll be amazed at how you can use the skills in this book to leverage your abilities. Regardless, you'll learn a lot and have a
good time doing it.

I -
A“% Lgtan
Andy Harris

For the Absolute Beginner Series Editor

[1eam L | [+erivious Pt]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam LB | [« Fruvisus [wxr o]
Introduction

Windows shell scripting is a built-in scripting language found on modern Windows operating systems. It provides the ability to
create and run small programs or Windows script files made up of Windows shell script statements and Windows commands.
Windows shell scripts are created as plain text files that are saved with .bat or .cmd file extensions and run from the Windows
command prompt.

Windows shell scripts are often small files that can be created and tested within minutes. In fact, many good Windows shell scripts
are less than 10 or 15 lines long. This makes it a perfect language for quickly automating Windows tasks. This also makes
Windows shell scripting a great first language to learn.

Unlike many modern program languages, Windows shell scripting is not object oriented. In addition, it does not require you to first
learn how to operate a complex development environment. However, Windows shell scripting does have a complete collection of
statements—the elements that make up its programming language. This allows first-time programmers to focus on learning the
basics of program design without being burdened with the added requirements imposed by many other programming languages.

Windows shell scripts also provide a way to automate complex tasks, especially those prone to human error. Once created,
Windows shell scripts can be shared with other people, allowing you to distribute and share your work. Using Windows shell
scripts, you can access and manipulate Windows resources such as the Windows file system and disk and printer resources, and
you can even automate the execution of network tasks. In addition, as this book will demonstrate, you can create Windows shell
scripts that automate and control the execution of all kinds of things. For example, this book will show you how to create Windows
shell scripts that

= Play computer games like Rock, Paper, Scissors and Tic-Tac-Toe.

= Copy and move files and folders.

= Establish connections to network resources such as network disk drives and folders.
= Create text reports and log files.

= Execute Windows utilities such as the Windows Disk Defragmenter.

= Create user accounts and administer group account membership.

= Control third-party applications such as WinZip.

Why Windows Shell Scripting?

Windows shell scripting is a great language for developing small scripts that automate commonly performed tasks. At the same
time, you can use it to create some incredibly complex scripts. However, in most cases you will find that most Windows shell
scripts are not very large. Often Windows shell scripts are only a fraction of the size of programs written in higher-level languages
such as Visual Basic and C++. This reduces complexity and results in shorter development time. It also makes Windows shell
scripting a great tool for rapid development, allowing you to quickly create and test scripts and then move on to other work.

Windows shell scripting makes an excellent first programming language. As far as programming languages go, it is straightforward
and easy to learn. Yet, using Windows shell scripting you can learn even the most complex programming concepts. All that you
need to begin creating Windows shell scripts is a plain text editor such as Windows Notepad.

By learning Windows shell scripting, you will begin to build a foundation for learning other programming languages. Once you
have mastered Windows shell scripting you may wish to tackle other scripting languages such as VBScript or JScript, both of
which can be used to perform advanced shell scripting on Windows computers. You may also want to use Windows shell scripting
as a jumping off point for more advanced object-oriented programming languages like Visual Basic and C++. The bottom line is
that learning how to use Windows shell scripts will give you a foundation that will facilitate learning other programming languages.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Toam LiB [« rxsviour]
Who Should Read This Book?

| have designed this book to teach you how to become a programmer using Windows shell scripting. A previous programming
background is not required. However, you will need a basic understanding of computers in general and a good overall working
knowledge of at least one Microsoft operating system.

So whether you are a first-time programmer looking for a good language to learn as you begin your programming career or you

are looking to quickly learn a second programming language, this book can help you. In addition, | think you will find that this
book's games-based approach will help to keep things fun as you learn.

Toan L2 [+ervvious Lt]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Toam LB [erivisus |
What You Need to Begin

To use this book effectively, you will need a number of things. First, you will need a Windows operating system that supports
Windows shell scripting. These operating systems include

= Windows NT 4.0
= Windows 2000
= Windows XP

= Windows 2003

You will also need an editor that supports the creation of plain text files. As a starter editor, you can begin working with the
Windows Notepad text editor. However, over time you will probably find that Notepad is rather limited, and you will want to use a
more advanced editor that supports features like syntax color-coding and advanced search-and-replace features. To help you out,
| have included two excellent editors on this book's companion CD-ROM. To learn more about these two editors, check out
Appendix B, "What's on the CD-ROM?"

[+ervvious Lt

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LB | [wawvinua i ¥
How This Book Is Organized

| wrote this book based on the assumption that you would read it sequentially, from beginning to end. If this is your first
programming experience or if you feel that you need a programming refresher, | suggest that you read the book in this manner. If
you are a veteran programmer and intend to learn Windows shell scripting as an additional language, you may want to skip
around and read topics that are of the most interest to you.

The first part of this book introduces you to Windows shell scripting. It provides an overview of Windows shell scripting and the
Windows command prompt.

The second part of this book teaches you the basics of Windows shell script development. It covers how to display script output
and how to use comments and variables. It also covers the shell script statements that provide the ability to apply conditional logic
and establish loops.

The third part of this book focuses in on a variety of advanced topics. Here I'll show you how to improve the organization of your
Windows shell scripts using procedures and subroutines. I'll also go over the steps involved in debugging and handling script
errors.

The final part of this book contains the book's appendixes. Here you will find a collection of real-world sample scripts, information
about the materials found on the book's CD-ROM, and information about places where you can go to continue your Windows shell
scripting education.

A detailed breakdown of the information you will find in this book is outlined below.

= Chapter 1—Introducing Windows Shell Scripting. This chapter explains what Windows shell scripting is and why
it is an excellent first programming language to learn. This chapter provides a brief history of Windows shell
scripting as well as a comparison to Microsoft's other scripting technology, the Windows Script Host, and explains
the differences between these two scripting solutions. This chapter closes by teaching you how to write your first
Windows shell script by showing you how to develop your first Windows shell script game, the Knock Knock joke.

= Chapter 2—Interacting with the Windows Shell. This chapter provides you with a review of the Windows shell
and explains how to work with it (e.g., starting a new shell, issuing commands, and closing the shell). The chapter
goes on to discuss how to work with the Windows command prompt and explains basic command syntax. Specific
commands that affect the appearance of the Windows command console are then reviewed. This will lead into a
discussion on command console customization. Finally, the chapter concludes by showing you how to write a script
called the Unpredictable Command Prompt.

= Chapter 3—Windows Shell Scripting Basics. In this chapter, | will provide you with a review of basic Windows
shell scripting techniques, including how to control the display of output and how to format the display using blank
lines. | will discuss the importance of creating a documentation template. This chapter will also show you how to
control shell input and output and how to redirect command output in order to create report and log files. This
chapter will also show you how to create the Fortune Teller game, which answers questions asked of it by the
player.

= Chapter 4—Storing and Retrieving Information in Variables. This chapter shows you how to write scripts that
accept and process argument input at run time. You will also learn how to retrieve information about your computer
from system variables. You will then learn about the rules that apply to the creation of variables. This chapter will
also demonstrate different ways to manipulate the value of numeric variables as well as how to access all or a
portion of text stored in string variables. The chapter will end by teaching you how to create "The Story of Buzz the
Wonder Dog" game, which creates a customized story based on information it collects from the user.

= Chapter 5—Applying Conditional Logic. In this chapter, you will learn how to apply conditional logic in your
scripts. This will enable you to create scripts that can collect and test the value of data and then alter the way the
script executes depending on the value of the data. You will also learn how to develop more complicated logic by
nesting one logical test within another. This chapter concludes by introducing the Guess a Number game, in which
the player is challenged to guess a number between 1 and 32,000 using the fewest possible guesses.

= Chapter 6—Creating Loops to Process Collections of Data. This chapter covers the creation of loops as a
means of processing large amounts of data. It will demonstrate how to use loops to process string contents,
command output, and file and folder contents. This chapter also introduces you to the use of pseudo code as a tool
for establishing a high-level script design. This chapter ends by teaching you how to create the Six-Million-Dollar
Quiz game. In this game, the player is presented with a series of quiz questions that, once answered, are graded
and used to generate a game score card report file.

= Chapter 7—Creating Procedures and Subroutines. This chapter introduces you to the use of flowcharts as a
design tool. It also shows you how to execute one script from within another script. The chapter also covers the use
of procedures and subroutines, which enable you to improve script organization while also reducing complexity.
This chapter concludes by covering the development of the Rock, Paper, Scissors game.

= Chapter 8—Debugging and Error Handling. In this final chapter, I'll introduce you to a number of different topics.
I'll give you tips on how to develop your script in a modular fashion and how to test your scripts one module at a
time. You'll also learn how to test intermediate results during script development and testing. Things constantly
change on a computer system, and as a result your scripts may break or experience problems over time. To deal
with these situations, I'll provide you with some basic debugging techniques and give you advice that will help you to
detect and deal with script errors. This chapter will end by stepping you through the development of one final game
project called Tic-Tac-Toe.

= Appendix A—Windows Shell Scripting Administrative Scripts. This appendix provides you with a collection of
practical examples that demonstrate the use of Windows shell scripting in real-world situations. | included this
appendix to assist you in making a transition from the book's game-based approach to real-world script
development.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

= Appendix B—What's on the CD-ROM? In this appendix, I'll supply you with information about the sample scripts
that you will find on the book's accompanying CD-ROM. I'll also provide you with a freeware copy of the EditPad
Lite text editor and a shareware copy of the EditPad Pro text editor along with a brief overview of what these two
editors can do.

= Appendix C—What Next? In this appendix, | give you advice on how to continue your Windows shell scripting
education. I'll include references to other books that | think you will find useful, and I'll also provide you with
information about a number of Web sites where you'll find more information, including plenty of free sample scripts
that you can download.

= Glossary. This unit provides you with a glossary of the key terms used throughout the book.

This book uses computer game development as a means of teaching you how to program using Windows shell scripting. Each
game you encounter will be a little more complex than the one before it. In the first few chapters, you'll see scripts that will include
elements not yet covered in that point of the book. For these scripts, you'll need to keep reading with the understanding that
everything you see will eventually be explained. Meanwhile, | will provide you with as much information as | can without
overwhelming you in the early stages of the book.

[oam Lo [+ reinsus a1

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

(Toan L TS e

Conventions Used in This Book
To make it easier for you to read and work with, this book uses a number of conventions. These conventions are described below.

HINT As you read along, I'll offer suggestions for different or better ways of doing things that will help make you a better
and more efficient programmer.

TRAP Il also point out places where it's easy to make mistakes, and I'll give you advice for avoiding them.
TRICK Whenever possible, I'll share shortcuts and techniques that will make things easier for you.

DEFINITION To aid your understanding, I'll define key terms along the way. (You can also refer to the glossary in this
book for additional information.)

IN THE REAL WORLD

Throughout the book, I'll stop along the way to point out how the knowledge and techniques you are learning can be applied
to real-world scripting projects.

= [+ervvious Lt]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| Toam LiB [Erarvisis] =T e
EXERCISES

At the end of every chapter, I'll include a collection of small project suggestions that you can do to continue building on the skills
you've learned.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB | [PRwvisuE]
Chapter 1: Introducing Windows Shell Scripting

Overview

Windows shell scripting is one of two scripting solutions provided by Microsoft for developing small programs, or scripts, that
automate a variety of tasks on Windows computers. (The other scripting solution is known as the Microsoft Windows Script Host,
or WSH.) Scripts provide a means of developing small utility programs that automate mundane or complex tasks with a minimal
investment of time and effort.

Windows shell scripting provides a way to perform tasks on Windows computers without requiring you to wade though the array of
windows and dialogs boxes that make up the Windows graphical user interface, or GUI. Scripts help to eliminate typing mistakes
or other errors that often occur when you perform a task manually. Therefore, scripts not only help you work faster but more
accurately as well, especially when you're working on tasks comprised of a large number of steps. In this chapter, I'll introduce you
to Windows shell scripting and provide you with the background information you'll need for the rest of the book. In addition, I'l
show you how to develop your first Windows shell script game.

Specifically, you will learn
= The capabilities of Windows shell scripts
= The history of Windows shell scripting
= The differences between Windows shell scripts and the Windows Script Host

= How to configure the script development and testing environment

[oam L [+ rrinsus [omsi]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team L8 | [« Frrviou]
Project Preview: The Knock Knock Joke

This chapter, like all other chapters in this book, concludes by showing you how to develop a computer game using Windows shell
scripting. The game you will learn to write in this chapter is called the Knock Knock joke. By going through the steps required to
develop this game, you will learn the basic mechanics involved in creating and running Windows shell scripts.

The Knock Knock joke is a simple script as far as game-based Windows shell scripts go. You will run it by opening the Windows
command prompt, typing in the name of the script, and pressing the Enter key. The script will respond by displaying the opening
Knock Knock message, as shown in Figure 1.1. The user must then type "who is there?" (including the opening and closing
quotation marks) and press Enter. The script will respond by displaying the reply of 0range. The user must then type "orange

Who?" as shown in Figure 1.2.

Figure 1.1: The Knock Knock game begins by displaying a Knock Knock message.

Figure 1.2: The game prompts the player to respond to the second part of the joke.

DEFINITION The Windows command prompt appears, by default, in the form of a drive letter followed by a colon, the
backslash character, and then the "greater than" symbol (for example, c: \>). The command prompt
accepts text input that is passed to the operating system for processing.

Finally, the script displays the joke's punch line as shown in Figure 1.3. If the player makes a typo when entering one of the
required responses to the joke, one of the two messages shown in Figure 1.4 and 1.5 will be displayed.

Figure 1.3: The game delivers the joke's punch line.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Figure 1.4: The game notifies the player of any incorrect input.

Figure 1.5: With incorrect player input, the game may prematurely exit and generate an error message.
Don't worry about trying to understand every line of code that you'll type into the script; you'll learn what everything means as you

read through this book. The important thing to learn in this chapter are the steps involved in creating and saving your first script.
By completing this script, you will prepare yourself for the more advanced programming concepts introduced in later chapters.

[1eam L | [+erivious Pt]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Overview of Windows Shell Scripting

In the very early days of Windows operating systems, there was no point-and-click graphical user interface. Everything was done
via the keyboard by typing in commands at the Windows command prompt. This meant that users had to memorize all kinds of
commands in order to use their computers. Worse still, most Windows commands could be entered using a number of variations,
making it virtually impossible to memorize all possible commands. Naturally, this meant that people spent a lot of time looking up
commands. Often users found that they needed to type the same set of commands over and over again. To make this easier and
to eliminate typing errors, users and administrators created batch files. A batch file is a plain-text file made up of the same
Windows commands that you type in at the Windows command prompt. Batch files have a .bat file extension. They are executed
by typing in their name at the command prompt and pressing the Enter key. The operating system then executes each command
in the batch file, one at a time, starting at the beginning of the file.

In the early 1980s, Microsoft introduced its graphical user interface and most users happily left behind all memory of Windows
commands and the command prompt. However, batch files still remained valuable tools for automating the execution of
collections of commands and utilities, and were especially useful to power users and administrators.

Batch files remained limited to sequential Windows command execution. The only alternatives available to batch files were
manually executing commands at the Windows command prompt, purchasing an application written to perform equivalent set
tasks, or writing a custom program using an advanced programming language such as C or C++ to create a new custom
application capable of performing the required tasks.

As I'm sure you must be thinking, none of these three options was very practical. They required either too much money or more
time than users and administrators were willing to spend. Finally, in the early 1990s, Microsoft introduced Windows NT. This
Microsoft operating system featured a built-in scripting language known as Windows shell scripting. Windows shell scripting
differed from old-style batch files in that it featured a complete set of programming statements, thus allowing for the development
of scripts that included support for conditional logic, iterative logic, and the storage and retrieval of data using computer memory.

DEFINITION The term conditional logic refers to a script's ability to examine data and then adjust what it does based
on the results of a conditional analysis.

DEFINITION The term iterative logic refers to a script's ability to repeatedly execute a series of steps over and over
again.

DEFINITION A statement is a line of code. Most statements fit on a single line; however, lengthy statements can be

spread over multiple lines.

Microsoft has since added support for Windows shell scripting to all Windows operating systems that have been built on Windows
NT technology (e.g., Windows 2000, XP, and 2003).

HINT While the collection of programming statements that make up the Windows shell script language has remained
essentially the same over the years, a few of the statements have been modified to extend their functionality.
Rather than attempt to identify and examine differences in Windows shell scripting statements between each of the
different Windows operating systems, this book uses Windows XP as its assumed development platform.

If you plan on writing scripts that will be executed by older Windows operating systems, you should retest the scripts
on each operating system to make sure that they work as you expect them to. In addition, you can check any
Windows command's syntax to see what syntax it supports on a given operating system by accessing the Windows
command prompt and typing the name of the command followed by a space and the word HELP.

Windows shell scripts are saved with a .bat ("batch") or .cmd ("command") file extension. This way, when the operating system is
asked to run them, it will know to execute them using the Windows shell.

DEFINITION The .cmd file extension is another file extension that Windows associates with Windows shell scripts.

What Can Shell Scripts Do?

Windows shell scripts can accomplish any task that can be completed from the Windows command prompt. Despite continual
efforts to improve the Windows graphical user interface and to make things easier for users by providing only a complete point-
and-click experience, Microsoft has continued to update and expand the Windows command line functionality (e.g., each new
Windows operating system adds new commands and refines existing commands).

Microsoft also adds command line access to many of its utility programs, allowing them to be accessed and controlled by scripts.
For example, the Defragmenter utility (which reorganizes files stored on your disk drive for more efficient storage) can be run from
the Windows graphical user interface on Windows XP by selecting start, A1l Programs, Accessories, System Tools, and
then Disk Defragmenter. Alternatively, you can execute this utility program from within a Windows shell script. For example, by
typing defrag C: /£ you can automate the defragmentation of your computer's C drive using this utility.

Windows shell scripts can be used to automate all of the following categories of tasks:

= Complicated tasks. This category of scripted tasks includes any tasks that are highly subject to error when
performed manually, such as the administration of system resources like disk drives and printers.

= Repetitive tasks. These scripted tasks include any tasks that must be performed over and over again, such as the
deletion of certain file types from specific folders on a regular basis.

= Lengthy tasks. These scripted tasks include any tasks that take too long to perform manually, such as the creation
of a few hundred new user accounts.

= Scheduled tasks. These scripted tasks include any tasks that must be run during off hours, at times when users
and administrators are not using their computers (such as the Disk Defragmenter utility).

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

You can develop Windows shell scripts that perform an assortment of different tasks on Windows computers. Once completed,
these scripts will help you work faster and be more productive. For example, using Windows shell scripts, you can

= Collect and display information about your computer
= Manage Windows services

= Manage shared folders and drives

= Automate the creation of new user accounts

= Create output files and reports

= Process data stored in input files

= Create and manage scheduled tasks

= Manage local and network printers

= Set up connections to network folders and drives

= Execute Windows commands or command line utilities
Supported Microsoft Operating Systems

As mentioned previously, Windows shell scripting is supported on Windows NT, 2000, XP, and 2003. However, other Microsoft
operating systems do not support it. These other operating systems include Windows 95, 98, and Me. Of course, you can still use
old-style batch files to automate the execution of small collections of commands on the operating systems, but the ability to add
programmatic logic on the level of Windows shell scripts is still missing. If you need to develop scripts for these operating systems,
you will need to look at other alternative scripting languages, which I'll cover in the following sections.

[Toam Lia | (< raivisus [aer o

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiE | [raivisus]fiie +]
Alternatives to Windows Shell Scripting

While Windows shell scripting may be the easiest scripting language to learn, there are plenty of alternative scripting languages
available from Microsoft and other third-party software developers. Below, | briefly discuss some of these other scripting
languages. However, if you are new to programming, | recommend that you first master Windows shell scripting before you
consider moving on and trying to learn the somewhat more complicated scripting languages.

The Windows Script Host

The Windows Script Host, or WSH, provides Microsoft operating systems with an advanced script execution environment. Using
WSH, you can develop scripts that can execute on any Windows operating systems starting with Windows 95. This means that
unlike Windows shell scripts, which run only on Windows NT, 2000, XP, and 2003, WSH scripts can also run on computers that
use Windows 95, 98, or Me (provided that WSH is installed on these computers). The WSH runs as an addon to the Windows
operating system and can be enabled or disabled. By default, WSH is installed and enabled on Windows 2000, XP, and 2003.

DEFINITION The term execution environment refers to the grouping of resources that scripts require in order to
execute, such as a script interpreter that translates script statements into instructions that the computer
can execute.

WSH Advantages and Disadvantages

When deciding whether it is better to use Windows shell scripting or the WSH to automate a task, there are a number of criteria to
consider. WSH provides a more comprehensive execution environment with direct access to many resources that are not directly
accessible to Windows shell scripts. For example, a WSH script can write messages to Windows event logs or read and write to
the Windows registry. Therefore, if your scripts will need to access these resources, using the WSH may make more sense.
However, a great many tasks never require access to such resources, thus negating these WSH advantages.

DEFINITION The Windows application event log is a log file maintained by the Windows NT, 2000, XP, and 2003
operating systems where application errors and messages are recorded for later audit and review.

DEFINITION The Windows registry is a special built-in database that is a part of all Windows operating systems,
starting with Windows 95, where configuration information is stored regarding system, application,
hardware, and users settings.

To use the WSH you need to know how to write scripts using at least one scripting language, such as VBScript or JScript. You
also have to learn how to work with the WSH execution environment.

Typically, it makes more sense to use the WSH to create scripts when

= You have expertise with another scripting language such as VBScript or JScript and need access to a programming
feature provided by these languages only

= You need to run your scripts on Windows operating systems other than Windows NT, 2000, XP, and 2003

IN THE REAL WORLD
If you have access to the Windows Resource Kit for the operating systems for which you are developing
scripts, you can often use command line utilities provided by the Resource Kit to indirectly access system
resources. For example, using the LOGEVENT command line utility you can write to the Windows application
event log from within a Windows shell script. Similarly, using the REG command line utility, you can access and
change information stored in the Windows registry. To learn more about Windows Resource Kits, visit

www.microsoft.com/windows/reskits/default.asp.

= You cannot find a Windows or Resource Kit command or command line utility that can perform a specific task
= You need to communicate directly with users via graphical pop-up dialogs
= You need to work directly with other applications such as Microsoft Word or Excel
= You need to perform advanced file and folder administration
In contrast, you may want to work with Windows shell scripting when
= You are writing a script that will run on Windows NT, 2000, XP, or 2003
= You know of a command or command line utility that can perform the desired task
= You do not have expertise with a WSH-compatible scripting language
= You want to automate the execution of Windows command or command line utilities

= You want to execute a collection of Windows commands repeatedly

WSH Complexities

In order to write scripts that work with the WSH, you must first learn how to write scripts using a WSH supported scripting
language. By default, the WSH provides support for VBScript and JScript. VBScript is a scripting language that consists of a
subset of the Visual Basic programming language. .JScript is Microsoft's WSH-compatible version of Netscape's JavaScript
scripting language. In addition, you can use third-party WSH-compatible scripting languages that allow the WSH to run scripts
written in the Perl, Python, and REXX scripting languages.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Unlike Windows shell scripts, these other scripting languages involve learning how to use language-specific statements and
commands, many of which are not very Windows like. Therefore it takes longer to master these languages. In addition to learning
how to develop scripts using a different scripting language, you must also learn how to work with the WSH object model in order to
develop WSH scripts. The WSH core object model provides access to Windows resources such as printers, drives, files, and
folders by representing them as objects that scripts can access and manipulate programmatically. The WSH object model is
complex and requires a great deal of time and effort to master. First-time programmers are better off learning how to write
Windows shell scripts. The Windows shell scripting language uses familiar Windows commands and does not require mastery of
an object model, thus allowing first-time programmers to focus on learning core programming concepts and logic without the
requirement of learning advanced concepts. In addition, Windows shell scripting provides an excellent platform for jumping over to
other more advanced scripting and programming languages.

Third-Party Scripting Languages

In addition to Windows shell scripting and the WSH, you can also develop scripts on Windows based computers using any of a
number of third-party scripting languages. One scripting language that you could use is Perl. Perl stands for Practical Extraction
and Reporting Language. Perl started out as a scripting language for the UNIX operating system where it was originally used to
read and extract information from text files and to create new reports.

Compared to Windows shell scripting, Perl is a complicated scripting language to master, especially as a first language. Over the
years, support for Perl has been added to most major operating systems. Perl can be used as a WSH-compatible scripting
language, allowing you to create Perl scripts that leverage the strengths of the WSH.

Another scripting language with a UNIX heritage that has been ported to Windows is Python. Python was named after the
comedic troupe Monty Python. Python enjoys enormous support among Linux users and is generally considered easier to learn
than Perl. A version of Python is available that is compatible with the WSH. However, compared to Windows shell scripting, it is
still a difficult first language to master.

Another scripting language available to Windows users and administrators is REXX. REXX stands for Restructured Extended
Extractor language. REXX was originally developed as a mainframe scripting language. IBM later made it the built-in scripting
language on its OS/2 operating system. Today, there are numerous versions of REXX available for Windows.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam Lib | [ravisus
Understanding the Windows Shell

To become an effective Windows shell script programmer, you must become intimately familiar with the Windows shell. The
Windows shell is a text-based interface to the Windows operating system as opposed to the Windows desktop, which is a GUI-
based interface. Figure 1.6 depicts the Windows shell and its relationship to the operating system and the user.

Figure 1.6: The Windows shell accepts input from the Windows command console and translates it into a format that can be
used by the operating system.

The Windows shell is accessed through the Windows command console. The Windows shell accepts user commands and
translates them into a format that can be processed by the operating system. It then displays any output returned by the operating
system back in the Windows command console.

Users type commands at the Windows command prompt. To communicate with the Windows shell, you must open up a Windows
command console (as shown in Figure 1.7) by clickihngon start, A11 Programs, Accessories, and then Command Prompt.

Figure 1.7: The Windows console provides access to the Windows command prompt.

HINT You can also start up a new Windows command console session by clicking on start, Run, and then typing cMD
and clicking on ox.

By default, the Windows command console is set up to display data that is 80 characters wide and 25 lines tall. However, you can
modify the height and width of the Windows command console to suit your own preferences. At the top of the console, you'll see a
blinking underscore character. This is the command prompt's way of telling you that it is ready to receive input.

HINT [I'll show you how to configure the Windows console in Chapter 2, "Interacting with the Windows Shell." If you can't
wait to see how it's done, then jump ahead to Chapter 2 and read " mizing the Window: mman "

To send a command to the Windows shell for processing, type it in at the command prompt and press the Enter key. For
example, to display the contents of the current working directory, type DIr and press Enter.

The Windows shell then translates the b1r command into a format that the operating system can understand. The operating
system processes the command by putting together a list of the contents of the current working directory, which it then passes
back to the Windows shell. The Windows shell displays the listing in the Windows command console. It then redisplays the
command prompt in order to allow you to type additional command input as demonstrated below.
C:\Documents and Settings\Jerry Ford>dir

Volume in drive C is IBMDOS 6

Volume Serial Number is 2B6A-58F8

Directory of C:\Documents and Settings\Jerry Ford

11/10/2003 01:29 PM <DIR>

11/10/2003 01:29 PM <DIR> ..
11/10/2003 01:38 PM <DIR> My Documents
11/10/2003 01:38 PM <DIR> Favorites
11/10/2003 01:02 PM <DIR> Desktop

11/10/2003 01:02 PM <DIR> Start Menu

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

12/03/2003 11:47 PM <DIR> WINDOWS
0 File(s) 0 bytes
7 Dir (s) 153,255,936 bytes free

C:\Documents and Settings\Jerry Ford> _

DEFINITION The term current working directory refers to the Windows folder that the Windows command console is
currently focused on. By default, Windows XP sets the current working directory to the user's own
Documents and Settings folder.

Toan Lo [+erivious Pt]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiE | [raivisus]fiie +]
Assembling Your First Windows Shell Script

Now let's examine the steps involved in creating, saving, and executing a Windows shell script. The best way to learn how to do
this is by working though an example. The example that I'll show you will only be one line long; however, regardless of the size of
your scripts, the same process is used each time to create, save, and run them.

First, begin by opening your editor. For example, to use Windows Notepad you would click on start, A11 Programs,
Accessories, and then Notepad. Notepad opens and displays an empty file. Type the following line into Notepad (as shown in

Figure 1.8).

Figure 1.8: Using Notepad to create your first Windows shell script.

Echo Hello World!

IN THE REAL WORLD

Unlike many programming languages, Windows shell scripting does not require you to first learn how to use a complicated
GUI-based development environment to write scripts. Instead, you can create Windows shell scripts using any editor that
can save your files as plain text. However, there are advantages to using GUI-based script editors. These advantages
include

= Statement color-coding of Windows shell script keywords to make code more readable
= Line numbering to make locating a specific line easier

= Advanced find and replace capabilities

= Automatic indenting and outdenting of statements to make code more readable

= The ability to manage multiple scripts as a single project

Fortunately, a number of third-party text and script editors include these advanced features. | have provided two excellent
editors on this book's companion CD-ROM. To learn more about them, see Appendix B, "What's on the CD-ROM?"

Next click on File and then save. The save As dialog appears. Type Hello.bat inthe File name field, set the location
where the file is to be saved as ¢ : \ and click save. You should now have a Windows shell script stored on your computer's hard
drive. Now let's run the script and see what happens. First click on start, A11 Programs, Accessories, and then Command
prompt. When the Windows console appears, type cD \ and press the Enter key. This command changes your current working
directory to the same location where you saved the script. Now type the following command and press Enter.

Hello.bat

You should see the following output displayed in the Windows console.

C:\>Echo Hello World!
Hello World!

C:\>

The first line of output shows the Windows shell script statement that is being executed. The second line shows the results of the
statement once it has been executed. Finally, the third line shows the Windows command prompt, indicating that the Windows
shell is ready for your next command.

If you created and ran this script for yourself and it did not run as described above, then you probably made a typo. Reopen your
script file and double-check its contents. Once you have the script running as advertised, you can close the Windows command
console like any other Window by clicking on the x icon in the upper right hand corner of the Window or by clicking on the
command prompt icon displayed in the upper left hand corner and selecting close.

HINT A quick way to close the Windows command prompt is to type Ex1T and press Enter.

By default, Windows shell script automatically displays each statement in the script just before executing it. The effect of this
behavior is that output displayed when the script is run may be intermingled with script statements, resulting in some very
unattractive output. You can view this behavior even when running the oneline script above. Fortunately, you have the ability to
suppress the display of Windows shell script statements when your scripts execute such that only the script's output is displayed.
To accomplish this trick, add the following statement to the beginning of your script on a separate line, and then save and run it
again.

@Echo off

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The next effect of adding the statement as the first line in your Windows shell scripts is a much cleaner output. For example, if you
run the Hello.bat script after making the change, you should see the following output:

C:\>hello
Hello World!

C:\>

TRICK You may have noticed that | ran the hello.bat script by simply typing hello and not hello.bat. This works
because when you type in a file name without specifying its file extension, the Windows shell automatically looks
for an executable file with that same file name and executes the first one that it finds. I'll go over how the Windows
shell knows which files are executable in Chapter 2, "Interacting with the Windows Shell."

As you can see, the script displayed only its output. As your scripts grow in size, you will appreciate the ability to prevent the
display of script statements in this manner.

= [+ervvious Lt]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

(Toan L TS e

Creating a Scripting Environment

In the previous script example, you saved your first Windows shell script in C:\>. As a general rule, you should avoid storing any
files, including scripts, in this location. Instead, | recommend that you create a folder specifically for storing your scripts. For
example, when | was developing the scripts for this book, | wanted to store all my Windows shell scripts in a convenient place for
easy execution. So | created a folder called C:\Scripts and stored all my scripts in it. You should create the same folder on your
computer before you work through the following example.

To further simplify the execution of Windows shell scripts, | added a shortcut to my Windows desktop for the Windows command
prompt. | accomplished this task as follows.

1. Right-click on an open area of the Windows XP desktop and select New followed by shortcut.

2. The Create Shortcut wizard opens. Type cmd.exe inthe Type the location of the item field and click
on Next.

3. Type Command Prompt inthe Type a name for this shortcut field and then click on Finish.

You should now see a shortcut on your desktop called Command Prompt. Double-click on it to open a new Windows console and
access the Windows command prompt. By default, the working directory will be the Windows folder. Type cD and press Enter,
and then type cD scripts to switch over to the C:\Scripts folder. At this point you can execute any script that you save in this
folder by simply typing its name at the command prompt.

You can make things a little easier by configuring your new shortcut to automatically switch to C:\Scripts as it opens a new
Windows console. The following procedure outlines the steps involved in performing this task.

1. Right-click on the new shortcut you just created and select Properties. The cmd.exe Properties dialog
appears.

2. Type c:\scriptsinthe start In field, as shown in Figure 1.9.

Figure 1.9: Configuring the shortcut to make the C—\Scripts folder the default starting
location.

3. Click on oK.

Now when you double-click on the shortcut, the Windows console that opens will automatically set its focus to c: \scripts

(Eigure 1.10).

Figure 1.10: Testing your new command prompt shortcut.

1o L T R

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| Toam LiB | [« Fruvisus [wxr o]
Back to the Knock Knock Joke

Now let's turn our attention back to the chapter's main project, the Knock Knock joke. Through the development of this script, you
will learn how to create a script that interacts with the player by displaying messages, collecting player responses, and displaying
additional information based on the player's responses. This basic interaction forms the basis of all Windows shell scripts games.

Designing the Game

The first step in computer game development is to outline the game's design. The Knock Knock joke game is relatively simple, so
a lot of up-front design is not required. Just like a regular Knock Knock joke, the game will begin by displaying the message knock
Knock! in the Windows console. It will then wait for the player to respond by typing "who is there?" The player must type the
response exactly as shown, including the quotation marks and question mark character. Once the player types the required
response and presses the Enter key, the game will display the message orange! and wait for the player to type "orange

who?" Once the player types in the second response correctly, the game will display its punch line and terminate, redisplaying the
Windows command prompt.

This project will be completed in six steps, as outlined below.

1. Create an initial blank script file and name it ! xnockknock . bat
. Configure the Windows command console's title bar and color scheme

. Format the display with blank lines

2

3

4. Collect player responses

5. Confirm that the player provided valid input
6

. Display the joke's final punch line
Starting the Script Development Process

The first step in creating the Knock Knock game is to create an empty file named i KnockKnock.bat and save it in the
C:\Scripts folder. The following procedure outlines the steps involved in performing this task using the Windows Notepad text
editor.

1. Clickon start,All Programs, Accessories, and then Notepad. The Notepad text editor appears.

2. Click on File and then save. The save as dialog appears. Type “*' KnockKnock .bat into the File name
field and specify c: \scripts as the location where the file should be saved.

3. Click on save.

Configuring the Execution Environment

At this point you should be looking at an empty Notepad file. Type in the following text.
@ECHO off

TITLE "KnockKnock.bat - The KnockKnock joke game!"
COLOR OE

The first statement prevents the display of script statements during execution, making the script's output more presentable. The

second statement uses the Windows Tit1e command to display the text "! KnockKnock.bat - The Knock Knock joke
game ! in the Windows console's title bar when the script is executed. The last statement uses the Windows cor.or command to
display all text in yellow when the script is run. At this point, don't worry about the specifics of any of these commands or their
syntax. I'll go over them in detail in Chapter 2. Just accept my somewhat high-level explanations of how things work and keep
writing the script while focusing on the overall process you are going through.

Formatting the Display

The default behavior of the Windows command console is to display each line of output immediately after the command that
generated it. For example, if you entered two commands, the Windows console would display the first command and then its
output, followed by the second command and its output. This can make for a very cluttered display. To format your script's output
and make it easier to interact with, you can do a couple of things. First, you can use the c1.s command to clear the Windows
command console, thus displaying a blank display. You can then use the EcHo statement to display blank lines to the Windows
command console and control the location where text will be displayed. For example, the following statements clear the Windows
command console and then display 10 blank lines. This way, the next line of text displayed will appear in the middle of the
Windows command console. Note that the period following the EcEO command must be included exactly as shown.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

CLS

ECHO.
ECHO.
ECHO.
ECHO.
ECHO.
ECHO.
ECHO.
ECHO.
ECHO.
ECHO.

Collecting Player Responses

The script now needs to display the knock Knock! message and collect the player's response. This is accomplished by adding
the following line of code to the script:

SET /p reply="Knock Knock! C:>"

This statement uses the Windows seT command to display the knock Knock! message followed by the characters c : >, which
are supposed to simulate the Windows prompt and make the player feel like he is still interacting with the command prompt when
in fact he is communicating with your script. The SET command's /p option tells the command to assign whatever text the user
types to a variable called reply.

DEFINITION A variable is a reference to a location in the computer memory where the script stores a value. Variables
provide scripts with the ability to store and retrieve data that they collect while they execute.

Validating Player Input

Next, add the following statements to the script:
CLS

IF NOT $reply%$ == "Who is there?" (
ECHO "Sorry, but you are not playing the game right!"
GOTO :EOF)

ECHO.
ECHO.
ECHO.
ECHO.
ECHO.
ECHO.
ECHO.
ECHO.
ECHO.
ECHO.

The first statement clears the Windows console. The next three statements check the value assigned to the rep1ly variable to
determine if the player properly typed in "who is there?" If the player provided an incorrect response, the script displays an
error message and terminates the script's execution. However, if the player entered the correct response, the script continues
executing and writes ten blank lines to the Windows console.

Now add the following statements to your script:

SET /p reply="Orange! C:>"

CLS

IF NOT %reply% == "Orange who?" (
ECHO "Sorry, but you are not playing the game right!"
GOTO :EOF)

The first statement displays the message orange ! and waits for the player to type in a response, which again is assigned to a
variable called reply. The second statement clears the Windows command console. If the player fails to enter "orange who?",
the third statement displays an error message and terminates the script's execution. Otherwise, the script keeps going.

Displaying the Punch Line

Finally, add the following statements to the end of your script:

ECHO.
ECHO.
ECHO.
ECHO.
ECHO.
ECHO.
ECHO.
ECHO.
ECHO.
ECHO.

ECHO "Orange you glad you've written your first Windows shell script?"

ECHO.
ECHO.
ECHO.
ECHO.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

ECHO.
ECHO.
ECHO.
ECHO.
ECHO.
ECHO.

The first collection of ECHO statements displays ten blank lines in the Windows command console. Then the game's punch line is
displayed, followed by ten more blank lines. The reason for adding the last ten blank lines was to move the display of the
Windows command prompt to the bottom of the Windows command console, so that when the script ends and the Windows shell
redisplays the command prompt, its reappearance will not interfere with the presentation of the joke's punch line.

The Final Result

Now look at the fully assembled script as shown below.
@ECHO off

TITLE "KnockKnock.bat - The KnockKnock joke game!"
COLOR OE
CLS

ECHO.
ECHO.
ECHO.
ECHO.
ECHO.
ECHO.
ECHO.
ECHO.
ECHO.
ECHO.

SET /p reply="Knock Knock! C:>"
CLs

IF NOT %reply$% == "Who is there?" (
ECHO "Sorry, but you are not playing the game right!"
GOTO :EOF)

ECHO.
ECHO.
ECHO.
ECHO.
ECHO.
ECHO.
ECHO.
ECHO.
ECHO.
ECHO.

SET /p reply="Orange! C:>"
CLs

IF NOT %$reply%$ == "Orange who?" (
ECHO "Sorry, but you are not playing the game right!"
GOTO :EOF)

ECHO.
ECHO.
ECHO.
ECHO.
ECHO.
ECHO.
ECHO.
ECHO.
ECHO.
ECHO.

ECHO "Orange you glad you've written your first Windows shell script?"

ECHO.
ECHO.
ECHO.
ECHO.
ECHO.
ECHO.
ECHO.
ECHO.
ECHO.
ECHO.

As you can see the script is not very complicated, and if you remove the ECHO. statements, you are really only left with a handful
of lines of code. Each time the script writes something to the Windows console, it first executes the c.s command to clear the

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

screen and add focus to the new line of displayed text. Don't worry about the rest of the statements that make up this script; they
will be fully covered in Chapter 2, "Interacting with the Windows Shell."

Once you have typed and saved this script, run it. If it does not work as expected, reopen the script and double-check your typing.

Once you have everything working, move on to the next chapter where you will learn how to configure the Windows command
console.

Toan Lo [+erivious Pt]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Toan Liz [+ erevious Pt v

Summary

You have covered a lot of ground in this chapter. You learned what the Windows shell is and how it provides you with a text-based
interface to the Windows operating system. You also learned about other scripting options available for Windows operating
systems. You created, saved, and ran your first Windows shell script. Finally, you created your first Windows shell script computer
game, the Knock Knock joke.

Toan L3 [+erevious P v

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Toan LD [+ervvious Lt]
EXERCISES

1. As computer games go, the Knock Knock game is very simple. Its main purpose was to introduce you to the
mechanics of script creation and execution. Try enhancing the scripts by adding additional Knock Knock jokes.

2. Experiment with the T1T1L.E statement by changing the message the script displays in the Windows command
console's title bar.

3. Modify the text that is displayed when the player fails to respond correctly to the joke's prompts. Try to make the
message more clear and understandable.

Toam Lio [erivious L]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB | [PRwvisuE]
Chapter 2: Interacting with the Windows Shell

Overview

In this chapter, you will learn how to work with and control the Windows shell environment. In doing so you will also learn how to
configure the appearance and behavior of the Windows command console and the Windows command prompt. You will also
learn about the commands internally defined by the Windows shell. These commands include all of the programming statements
that make up the Windows shell scripting language.

This chapter will also explain how the Windows shell works with external commands and utility programs, including how it locates
and executes these commands and utilities. The chapter will conclude by demonstrating how to develop the Unpredictable
Command Prompt script. This script provides a fun demonstration of how to automate the configuration of the Windows shell
environment.
Specifically, you will learn

= The basics of Windows command syntax

= Different ways of starting Windows command consoles and configuring the Windows shell environment

= The differences between internal Windows shell script commands and external Windows commands and utilities

= How to manually customize the Windows command console from the Windows desktop

[1eam L | [+erivious Pt]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

(Toan L TS e

Project Preview: The Unpredictable Command Prompt

This chapter's main project is called the Unpredictable Command Prompt. It demonstrates how to randomly alter the appearance
of the Windows command console. Among the Windows command console features customized by the script are the foreground
and background colors of the Windows command console, the text displayed in the title bar, the format of the Windows command
prompt, and the message that is initially displayed when the Windows command console first appears.

The Unpredictable Command Prompt script randomly configures one of three different sets of configuration settings each time it is
executed. For example, as Figure 2.1 shows, in one scenario the user may be greeted by name and told to Code well and
Prosper. The text displayed in the Windows command console appears in green on a black background.

Figure 2.1: The Windows command console displays the first of three different greeting messages.
Figure 2.2 shows a second view that the user may see. In this case, the user is greeted by the message, "Hello. It is good

to be working with you today!" In addition, the color of the foreground text is changed to yellow and the Windows
command prompt now displays both the day of the week and the date.

Figure 2.2: The Windows command console's title bar message is also changed.

Figure 2.3 shows the final view the user will see. In this case, the text message, "Boo! Did I scare you?"is displayed and
the text appears as black characters on a yellow background.

Figure 2.3: Foreground and background colors are changed as well.
This script also gives you a sneak peak of several other important Windows shell scripting techniques, which are explored further

later in the book. These techniques include the storage of data in variables, the use of conditional logic to control script execution,
and the ability to perform numeric comparisons.

[1ean L T R

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Command Shell Command Syntax

The Windows shell provides an interface for working with text-based commands and utilities. In addition, you will use it to run your
Windows shell scripts. Integrated into the Windows shell is the Windows shell scripting language. This scripting language includes
a large number of statements.

Each Windows command has its own unique syntax that must be followed strictly for the command to work. However, all Windows
commands follow a common format. Figure 2.4 breaks down this format.

Figure 2.4: Examining the basic format used by all Windows commands.

To execute Windows commands from the Windows command prompt, you type the name of the command followed by one or
more optional arguments that tell the command what you want it to do. Command arguments can consist of several different
elements, including

= Switches. Modify the way in which a command is processed. Switches consist of a forward slash followed by one
or more characters. Each Windows command has its own unique set of switches.

= Modifiers. Change the behavior of a switch. Modifiers consist of a colon followed by one or more characters. Each
Windows command has its own set of modifiers.

= Parameters. Arguments passed to commands for processing.

HINT If you are uncertain of a command's syntax, you can view it from the Windows command console by
typing He 1p followed by the name of the command. For example, if you type HELP DATE and press
Enter, you will see the following:

C:\>HELP DATE
Displays or sets the date.

DATE [/T | date]

Type DATE without parameters to display the current date setting and a prompt
for a new one. Press ENTER to keep the same date.

If Command Extensions are enabled the DATE command supports the /T switch
which tells the command to just output the current date, without prompting
for a new date.

C:\>

A good way to gain an understanding of Windows command syntax is by looking at an example. The following example shows the
command syntax of the cMb command.

cMD [/A | /U] [/Q] [/D] [/E:ON | /E:OFF] [/F:ON | /F:OFF] [/V:ON | /V:0FF]
[[/s] [/C | /K] string]

As you can see, the syntax of the cMb command consists of its name, a collection of switches, some of which have modifiers, and
a string which would consist of any data that you wanted the cub command to process (such as the name of a Windows shell
script).

You must follow a number of formatting rules when working with Windows commands. These rules are outlined below.
= Spaces must be used to separate each component of the command

= Arguments shown inside brackets are optional

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

= Arguments inside brackets that are not shown in italics must be typed exactly as shown

= Arguments in italics represent values that you must supply

= Arguments inside brackets and separated by a | sign are mutually exclusive

= Arguments that contain spaces must be enclosed within a matching pair of double quotes

DEFINITION When referring to Windows commands, the term mutually exclusive means that only one of a collection
of options can be selected. For example, when executing the cubD command you have the option of
specifying the £: /0N or E: /OFF, but you cannot specify both options at the same time.

In this book | have chosen to display Windows commands in upper case. However, Windows commands are not case-sensitive,
which means that you can type them using upper case, lower case, or a combination of upper and lower case and achieve the
same results. For example, as far as the Windows shell is concerned, all of the following commands are equivalent:

= ECHO Greetings
m echo Greetings
= Echo Greetings

= EcHo Greetings

1o L oo o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Toam LiB [« rxvvions fooi o)
Starting Windows Shell Sessions

You can use one of two commands to open Windows shell sessions. These commands are cMD and sTART. When executed from
the Windows Run dialog (click on start, Run, type cMD, and click on 0k), cMD opens a new Windows command console.

However, when executed within an open Windows command console, the cMD command opens a new Windows shell session
within the current console. In contrast, the sTaART command (which works only from within an already open Windows command
console) starts a new Windows shell session by opening a new Windows command console each time.

Working with the CMD Command

Most often, you will use the cMD command to initiate a Windows shell session. The syntax of the cMD command is shown below.
Table 2.1 defines each of its switches. Don't worry if you see some terms mentioned in the table that you have not yet learned.
They will be explained as they are used throughout the rest of the book.

Table 2.1: CMD.EXE COMMAND SWITCHES

| Switch ” Function |
| /C ” Executes the command and closes the Windows shell |
| /K ” Executes the command but does not close the Windows shell |
| /s ” Changes the handling of the string after the /c or /K switch |
| /Q ” Disables echo |
| /D ” Prevents the execution of AutoRun commands specified in the registry |
| /A ” Formats command output in ANSI format |
| /U ” Formats command output in Unicode format |
| /T:FG ” Sets the Windows command console's foreground and background colors |
| /E:ON ” Enables extensions to the Windows shell required by certain commands |
| /E:OFF ” Disables extensions to the Windows shell (required by certain commands) |
| /F:0N ” Enables file and folder name completion |
| /F:0FF ” Disables file and folder name completion |
| /V:ON ” Allows for the delayed expansion of environment variables |
| /V:OFF ” Prevents the delayed expansion of environment variables |

CMD [/A | /U] [/Q] [/D] [/E:ON | /E:OFF] [/F:ON | /F:0FF] [/V:ON | /V:OFF]
[[/s)} [/C | /K] string]

TRAP Command line extensions are improvements made to Windows commands in later versions of Windows operating
systems. By default, command line extensions are enabled. The only reason you might want to disable them is to
allow an old script that uses the old version of a Windows command that does not support the execution of
command line extensions. Many Windows commands support these extensions, including Assoc, CALL, CD,
COLOR, DEL, ENDLOCAL, FOR, FTYPE, GOTO, IF, MD, POPD, PROMPT, PUSHD, SET, SETLOCAL, SHIFT, and START.

Let's look at a few examples of how to work with cmD. First, click on start, Run, and then type cuD and click on Ok to start a new
Windows shell session. This opens a new Windows command console with which you can begin working with the Windows
command prompt.

If you want, you can start a new Windows shell session and pass it a command to execute at the same time by clickingon start,
Run, and then typing cMD followed by a command as shown below.

CMD /K TITLE Welcome

In this example, a new Windows command console will open and display the text message of welcome in its title bar. Sometimes
you may want to simply start a new Windows shell session, pass it a command, have the command execute, and then
automatically close the Windows command console. You can do this as follows.

CMD /C DEL C:\Temp*.txt

The cvMb command's /X and /c switches are examples of mutually exclusive parameters. /K specifies that the Windows
command console should remain open after executing the command whereas /¢ specifies that the Windows command console
should close after the command completes processing.

The next example demonstrates how to use a modifier to control the execution of the cMb command. In this example, the /T
switch, which sets foreground and background colors, is used to invert the Windows color scheme from white on black to black on
white.

CMD /T:FO

In this example, the switch is /T. It has a modifier, which is preceded by the colon character. The first character in the modifier
sets the Windows command console's foreground color (e.g., the color of text) and the second character of the modifier sets the
background color. You can specify a range of different foreground and background colors in the Windows command console, as
shown in Table 2.2.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Table 2.2: COLORS FOR THE WINDOWS COMMAND CONSOLE

| Color ” Value |
| Black ” 0 |
| Blue ” 1 |
| Green ” 2 |
IAqua ” 3 I
Red 4

| Purple ” 5 |
| Greenish Yellow “ 6 |
| Light Gray “ 7 |
| Gray ” 8 |
[Light Blue IE |
| Light Green ” A |
| Light Aqua ” B |
[Light Red lc |
| Light Purple ” D |
[Light Yellow e |
| Bright White ” F |

Working with the START Command

The sTART command provides an alternative way of opening a Windows command console and starting a new Windows shell
session. The sTART command automatically opens a new Windows command console each time it is executed. This provides a
handy way to open and work with multiple Windows command consoles at the same time. The sTART command also provides
more control over new Windows shell sessions. The sTART command's syntax is shown below.
START ["TITLE"] [/Dpath] [/I] [/MIN] [/MAX] [/SEPARATE | /SHARED]

[/LOW | /NORMAL | /HIGH | /REALTIME | /ABOVENORMAL | /BELOWNORMAL]

[/WAIT] [/B] [Program/Command] [Parameters]

As you can see, the sTART command accepts a large number of parameters, which are explained in Table 2.3. Again, don't worry
if you see some terms mentioned in the table that you have not yet learned. They will be explained further as they are used
throughout the rest of the book.

Table 2.3: START COMMAND PARAMETERS

| Parameter ” Description |
|4‘u:ie_ ” Text to be displayed in the Windows command console's title bar |
| /d Path ” Specifies the startup folder |
| B ” Starts a script without opening a new Windows command console |
| I ” Resets the execution environment to the original state of the parent environment |
|MIN ” Opens a new Windows command console in a minimized state |
|MAX ” Opens a new Windows command console in a maximized state |
| SEPARATE ” Starts a 16-bit program in its own memory space |
| SHARED ” Starts a 16-bit program in a shared memory space |
| LOW ” Starts an application using the low priority |
| NORMAL ” Starts an application using the normal priority |
| HIGH “ Starts an application using the high priority |
| REALTIME “ Starts an application using the real-time priority |
|ABOVENORMAL ” Starts an application using the above normal priority |
| BELOWNORMAL ” Starts an application using the below normal priority |
| WAIT ” Starts an application and waits for it to end |
| Program/Command ” An optional program or command to be processed by the Windows shell |
| Parameters ” One or more arguments to be passed to the program or command |

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Now look at an example of the sTART command in action. In this example, the sTArRT command opens a new Windows command
console in a maximized state with above normal priority.

START /MAX /ABOVENORMAL

To test this command, open a Windows command console, type in the command at the command prompt, and press the Enter
key.

Toan LD [+ervvious Lt]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Toan Liz [+ erevious Pt v

Internal vs. External Commands

The Windows shell works with two different types of commands: internal and external. Internal commands are built into the

Windows shell, whereas external commands exist as separate executable files stored on the computer's hard drive. Most

Windows commands are found in \Winnt\System32. Both internal and external commands follow the same basic syntax rules.
able 2.4 provides a listing of the Windows shell's internal commands.

Table 2.4: BUILT-IN WINDOWS SHELL COMMANDS

| Command “ Overview |

|ASSD£ || Displays or modifies file name extension associations |
CALL Calls one script from another without stopping the calling or parent script. Also provides the ability to

switch processing control to labels specified within a script
CD Changes the current directory
(CHDIR)
|CLS “ Clears the Windows command console screen |
|CQLQR “ Sets Windows command console foreground and background colors |
|m21 “ Copies one or more files from one location to another |
|M “ Displays or modifies the system date |
|DEL “ Removes one or more files |
|DLR “ Displays a list of files and folders located in the specified directory |
|E£HQ || Displays text m ges in the Windows command console |

ENDLOCAL Terminates variable localization by restoring variables to their values as they existed before the
preceding SETLOCAL command was executed

|ERASE || Removes one or more files |
|EXL’E || Closes the Windows command console and ends a command shell session |
|F_OR “ Executes a command for each file in a collection of files |
|F_T1EE ” Displays and modifies file types that are associated with file name extensions |
|GQTQ ” Alters processing flow in a script by transferring it to a line containing a specified label |
|LE “ Performs conditional processing and alters the execution flow within the script based on tested results |
MD Creates a new directory or subdirectory
(MKDIR)
|MQ_\LE “ Moves one or more files from one location to another |
|P_AIH “ Configures the search path used by Windows to locate executable files |
|BA1LSE “ Halts script execution until the user presses a key |
P_O£D		Changes the current folder to the folder stored by a corresponding PusaD command
EKQMRI		Changes the display of the Windows command prompt
PllSﬂD		Changes to a specified folder and stores the previous folder for later reference by the porD command.
RD Removes a specified folder		
(RMDIR)		
REM “ Provides the ability to add comments to a script		
REN Renames a file or folder		
(RENAME)		
SEI “ Creates, modifies, and deletes variables		
SETLOCAL Records the current value assigned to environment variables in the Windows shell, allowing them to be
restored later by the ExDLOCAL command

|S_1ﬂﬂ “ Alters the position of script parameters |
|SIARI “ Starts a new Windows shell session and executes specified commands |
|HME “ Displays and modifies the system time |
|MLE || Modifies the text displayed in the Windows command console title bar |
|HP_E || Displays the contents of a text file in the Windows command console |

|

|MER || Displays the Windows version number

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The number of external commands and command line utilities are too numerous and varied to attempt to cover here. You learn
more about them as you work your way through this book. These commands consist of any executable file provided by the
operating system and any applications that you may have installed on your computer.

How Windows Locates Commands

To work efficiently with the Windows shell, it helps to understand how it locates the commands that you want it to execute. The
following series of steps outlines the process that the Windows shell goes through in order to try to execute the commands you
specify.
1. If you supply the command's complete path name, the Windows shell looks in the specified folder and executes
the command. If the command is not found, an error is generated.

2. If you specify a command without its path, the Windows shell first checks to see if the command is one of its
internal commands and executes the command if it is.

3. Next, the Windows shell looks for the command in the current working directory and executes the command if it
is found.

4. If the command is not found at this point, the Windows shell begins looking through each of the folders specified
in the path variable (in the order in which they are listed). If a matching command is found, it is executed and
the search stops. If the command is not found, an error is generated.

Using the PATH Command

Windows stores information about the location of commands in a variable called path. This variable stores a list of folders that
the Windows shell will search when it needs to locate an external Windows command. You can view and modify the contents of
this variable using the pATH command, which has the following syntax.

PATH [[drive:]path[;...]] [%path%]

To view the list of folders stored in the path variable, open the Windows command prompt and type pATH. The output displayed
by the command will resemble the following output.

C:\>path
PATH=C:\WINNT\system32;C:\WINNT;C:\WINNT\system32\WBEM

C:\>

The output displayed in this example shows that the Windows shell will search three folders when looking for a command to
execute. The folders are searched in the order presented, from left to right. Therefore C: \Winnnt\system32 will be searched
first and if the command is not found, c: \winnt will be searched second followed by C:\Winnt\system32\wbem.

If you want, you can add additional folders to the search list stored in the path variable. For example, you might want to add the
folder where you store all your Windows shell scripts to the path variable so that the Windows shell can always find them.

The following example demonstrates how to add a folder named C:\Scripts to the beginning of the list of folders stored in the path
variable.

PATH C:\scripts;%path$%

As you can see, the structure of this command is paT# followed by the name and path of the folder to be added, a semicolon
character, and then %paths.

TRICK Placing a folder at the beginning of the path variable's search list ensures that it will be the first folder checked.
This way, if you give a script a name that happens to match a Windows command, your script will be executed in
place of the Windows command. Remember, the Windows shell stops looking for commands as soon as it finds
the first match.

TRAP | have not yet covered the use of variables in this book, but they are such a fundamental part of scripting that it's
almost impossible to do anything without using them. For now, just note that to reference them from within a script
you must enclose the variable's name inside a pair of percentage characters. Keep reading along and | will explain
how to work with variables in detail in Chapter 4, "Storing and Retrieving Information in Variables."

You can just as easily add a folder to the end of the search list, as shown below.
PATH C:\scripts;%path%

TRAP Don't forget to always add the $path# variable to either the beginning or the end of the paTH command when
modifying the command's search path. Otherwise, the list of folders that made up the original search path will be
deleted and replaced by your new addition, which is not what you'll want to do.

Any changes that you make to the path variable by modifying it from a Windows shell script are just temporary. In other words,
the changes you make are lost when you close the Windows command console and terminate your Windows shell session.

PATHEXT

When you type an external command, you must specify its name. Optionally, you can specify an external command's file
extension. Normally, all that you'll need is the name of the command itself. When you type in a command's name without its file
extension, the Windows shell uses the list of file extensions stored in the pathext variable to search for a matching command.
The pathext variable lists all of the file extensions that Windows associates as being executable files.

When you type a command without its file extension, the Windows shell uses the collection of file extensions stored in pathext
to search for a matching file. It does this by substituting each file extension listed in pathext as the command's file extension
until it finds a match. The first match that is found ends the search. The Windows shell then executes this command.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

By default, the pathext variable lists the following file extensions in the following order.
= .COM
= EXE
= BAT
= CMD

You can display the contents of the pathext variable by typing the following command at the Windows command prompt.
ECHO %pathext$%

The output you get back should look something like this:

C:\>ECHO $%pathext%
.COM; .EXE; .BAT; .CMD

However, you may see additional file extensions listed depending on what software you have installed on your computer. If you
wish, you can add a new file extension to pathext as demonstrated below.

SET pathext=%pathext%;.shl
In this example, the file extension . sHL is added to the end of the pathext variable using the sET command. You'll find yourself

using the sET command a lot when working with variables. | will explain the command in detail in Chapter 4, "Storing and
Retrieving Information in Variables."

Other Useful Windows Commands

In addition to the commands that you have seen in this chapter, there are a number of other commands you can use to configure
a Windows shell session. These commands include

= TITLE
= PROMPT
| B
= CLS

= ECHO

You'll need to know how to work with these commands to complete this chapter's scripting project, so I'll go over them in the
sections that follow.

Using the TITLE Command

The T1TL.E command provides the ability to display a custom text message in the Windows command console's title bar area. The
syntax of the TITL.E command is shown below.

TITLE [string]

To see how the T1TL.E command works, create a new Widows shell script made up of the following statement.
TITLE Greetings!

When you run your script, you'll see the message Greetings! in the title bar area, as shown in Figure 2.5.

Figure 2.5: Posting a message in the Windows command console's title bar.

Working with the PROMPT Command
The prOMPT command is used to modify the display of the Windows command prompt. By default, the Windows command

prompt shows the currently selected disk drive and folder in the form of the drive letter followed by a colon, a backward slash, and
the "greater than" character as shown below.

C:\>
However, using the proMPT command you can display any of the information listed in Table 2.5.

Table 2.5: COMMAND PROMPT ARGUMENTS

|| Argument H Displays ||

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

SA		& Ampersand character	
$B			- Pipe character
$C		(- Left parenthesis character	
$D		The current date	
SE		ANSI escape code 27	
23) - Right parenthesis character	
$G “ > - Greater-than character (greater-than sign)			
$H “ Backspace character			
SL “ < - Less-than character (less-than sign)			
$N “ The current drive name			
$P “ The current drive and path names			
$Q “ = - Equal character (equal sign)			
$S		A blank space	
ST		Current system time	
sV		The Windows version number	
$_		Performs a carriage return and linefeed	
$S		$ - Dollar character (dollar sign)	
S+		A + sign representing the depth of the pushd stack.	

The syntax of the proMPT command is shown below.

PROMPT [text]

The value of text represents a combination of one or more of the arguments listed in Table 2.5. For example, to replace the
current drive letter with the current time you would type the following:

PROMPT $D

When executed, the previous command would modify the command prompt as shown below.
C:\>PROMPT $D

Wed 06/18/2003

If you prefer a shorter, less intrusive command prompt, then try the following command:

PROMPT $G

This command turns the command prompt into the > character. If desired, you can combine multiple arguments when modifying
the command prompt, as demonstrated below.

C:\>PROMPT DG

Wed 06/18/2003>

As you can see, the command prompt now display the date followed by the "greater than" character. You can also insert any free-
form text that you want as the command prompt, as shown below.

C:\>PROMPT Welcome to my PCS$G
Welcome to my PC>

Here | changed the command prompt to display a greeting message followed by the "greater than" character. Finally, if you decide
that you want to restore the command prompt to its default format, just type promMeT and hit the Enter key as shown below.

Welcome to my PC>PROMPT

C:\>

Changing Colors

By using the coL.or command, you can take control of the foreground and background colors displayed in the Windows command
console. The syntax of the coL.or command is outlined below.

COLOR BF

The coL.or command requires two arguments. B represents a numeric value that specifies the background color to be used, and
F represents the foreground color (e.g., the color of displayed text). The coL.orR command supports the same colors as the cMD
command, which were listed earlier in this chapter in Table 2.2.

By default, the Windows command console displays text in white on a black background. Using the coL.OrR command, you can
change these settings as demonstrated below.

COLOR E4

This command modifies the Windows command console so that it displays all text in red on a yellow background. To restore the
Windows command console color settings to their default setting, you can type coLor 0F, or, as a shortcut, just type cor.or and

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

the Windows command console default white-on-black color scheme will be restored.

CLS

The Windows command console automatically scrolls text off of the display as its fills up. However, this can make the console
look cluttered and difficult to read. If you prefer, you can use the c1.s command to clear out all currently displayed text, leaving
only the command prompt visible. The c1.s command's syntax is outlined below.

CLS

As you can see, the cL.s command does not accept any arguments, making it extremely easy to use.

ECHO

The EcHO command gives you the ability to display text messages in the Windows command console. Using the Ecio command
you can create scripts that keep the user informed about their execution status and display their results. The syntax of the EcEO
command is outlined below.

ECHO [ON | OFF] [message]

As you have already seen, the ECHO command's use is very straightforward. For example, create a new Windows shell script
consisting of the following text:

ECHO This is an example of how to use the ECHO command

When executed, the Windows shell displays the following output:
C:\>ECHO This is an example of how to use the ECHO command

This is an example of how to use the ECHO command
C:\>

As you can see, the original Eczo command and its resulting output are both displayed. To clean up the display, it is generally a
good idea to prevent the display of the original command and leave only its output visible. You can accomplish this by adding the
@ character to the beginning of the ECHO command, as demonstrated below.

@ECHO This is an example of how to use the ECHO command

If you make this change to your script and run it again, you'll get the following output.

This is an example of how to use the ECHO command
C:\>

As you can see, this time only the text message is displayed, followed by the Windows command prompt. Using this same
technique, you can suppress the display of any number of zcio commands, as demonstrated below.

@ECHO Once upon a time there was a little boy
Q@ECHO who lived with his mother in a small
@ECHO cabin out in the woods far away from
@ECHO the big city. Once day a wolf came upon
@ECHO their house and

Since displaying output is a very common task in Windows shell scripts, a shortcut has been provided to simplify your scripts. To
use this shortcut, just type the following statement at the beginning of your Windows shell scripts:

@ECHO Off

For example, the following statements demonstrate how to rewrite the previous example using the cECHO Of £ statement.

QECHO Off

ECHO Once upon a time there was a little boy
ECHO who lived with his mother in a small
ECHO cabin out in the woods far away from
ECHO the big city. Once day a wolf came upon
ECHO their house and

[Toam 1o | [revvious e o)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Customizing the Windows Command Console

The Windows command console provides you with a text-based interface to the Windows shell. By default, it displays text in a
Window that is 25 lines long and 80 characters wide. All text is displayed in white and the background color is set to black. Like
most Windows features, the Windows command console can be configured from the Windows desktop in a number of different
ways.

Customization Options

Windows command console customization is performed from the Command Prompt Properties dialog. You can open this dialog
by opening the Windows command console and right-clicking on the Command Prompt icon in the upper-left corner of the console
and selecting Properties. This dialog is organized into four property sheets as listed below.

= Options
= Font

= Layout
= Colors

Each of these property sheets configures a different set of properties for the Windows command console as explained in the
sections that follow.

Configuring Options Settings
The Windows XP Options property sheet, shown in Figure 2.6, provides access to the following configuration settings:
= Cursor Size. Sets either a small, medium, or large cursor size.
= Display Options. Sets the Windows command console to open either in a window or in full screen mode.

= Command History. Sets the number of commands that the Windows command console can recall, the number of
available buffers, and controls whether duplicate commands are discarded.

= Edit Options. Enables or disables the QuickEdit and Insert modes. QuickEdit allows text to be copied and cut from
the Windows command console and pasted, and for text to be pasted to the Windows command prompt. Insert
Mode controls whether text is overwritten or inserted when editing command input.

Figure 2.6: Use the Options property sheet to configure cursor size and command history as well as display and edit
options.

Specifying Font Settings

The Font property sheet, shown in Figure 2.7, provides the ability to configure font size and font type. When you configure font
size, you also affect the size of the Windows command console. Any changes you make to font size are immediately reflected in
the Window Preview section of the property sheet.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Figure 2.7: Configuring font type and size for the Windows command console.

Making changes to font type also has an impact on the size of the Windows command console. Depending on the font type you
select, the Bold fonts option (to the right of the selection list) may become enabled. This option can help to make text easier to
read. You can preview the effects of your font selection in the Selected Font section.

Setting Up the Windows Command Console Layout

The Layout property sheet, shown in Figure 2.8, allows you to configure the Windows command console's initial size and location
on the display where it will open. In addition, you can use it to configure the number of lines that it can display as well as the
number of lines that it can scroll back to display previous text. Specifically, you can configure the following settings:

= Screen Buffer Size. The Width setting controls the number of characters that can be displayed on a single line.
The Height setting determines the number of lines of text the Windows command console will retain in memory (i.e.,
the lines that you can scroll back and view).

= Windows Size. The Width setting specifies initial width of the Windows command console. The Height setting
specifies the Windows command console's initial height. However, you can manually resize the Windows command
console by right-clicking on one of the console's edges and dragging it to a new location. However, you cannot
resize the Windows command console any larger than the height and width setting specified in the Screen Buffer
Size section.

= Windows Position. These settings allow you to specify the location on the display where you'd like the Windows
command console to open. Position is specified in pixels, starting in the upper-left corner.

= Let System Position Window. Selecting this option lets the operating system determine where to open the
Windows command console on the display.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Figure 2.8: Configuring screen size and the Windows position of the Windows command console

DEFINITION The term pixel is short for picture element and represents the smallest area that a computer can display
or print.

TRICK Set the Screen Buffer Size Height setting to three or four times larger than the height of the Window Size setting.
This way you'll be able to scroll back and view previous commands and their output.

Specifying Color Settings

You can modify the Windows command console's foreground and background colors from the Colors property sheet, as shown in
Figure 2.9. The top portion of this property sheet provides you with the following options:

= Screen Text. Select this option and then click on a color from the list of displayed colors to configure the Windows
command console's foreground color (e.g., text color).

= Screen Background. Select this option and then click on a color from the list of displayed colors to configure the
Windows command console's background color.

= Popup Text. Select this option and then click on a color from the list of displayed colors to configure the foreground
color of the Windows command console's command history dialog box.

= Popup Background. Select this option and then click on a color from the list of displayed colors to configure the
background color of the Windows command console's command history dialog box.

= Selected Color Values. If you prefer, you can select one of the four previous options and then set a custom color
for foreground and background colors by specifying various levels of red, green, and blue.

Figure 2.9: Configuring the Windows command console's foreground and background colors.

The bottom portion of the Colors property sheet provides a sneak preview of how any changes that you make will affect the
Windows command console.

IN THE REAL WORLD

Any true Windows power user or system administrator is, by definition, good at working with the Windows shell. Often
working with the Windows shell means typing in the same sets of commands repeatedly. To speed things up and increase
their efficiency, power users and administrators learn all kinds of tricks to help them work faster. One technique that many
people use is to access command history, which provides a list of previously executed commands that you can quickly
access and run again. To access the Windows shell's command history, press the £7 key. Then use the up and down
arrows to select a previously executed command and press the Enter key.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LB | [wawvinua i ¥
Back to the Unpredictable Command Prompt

Now let's turn our attention back to the chapter's main project, the Unpredictable Command Prompt. Through the development of
this script, you will learn how to create a script that interacts with the Windows shell environment and the Windows command
console. You will also get some more exposure to working with variables and using simple conditional logic.

Designing the Game

The Unpredictable Command Prompt is designed to randomly modify the Windows command console environment each time it is
executed. In total, three different scenarios may occur, each of which will modify the Windows title bar, command prompt, and
foreground and background colors. In addition, a different greeting message will be displayed each time. I'll show you how to
complete the Unpredictable Command Prompt script in nine steps, as outlined below.

1. Get a random number

. Clear the Windows command console

. Post a message in the Windows command console's title bar
. Modify foreground and background colors

. Greet the user

. Modify the appearance of the command prompt

. Terminate the script

. Build the second scenario

© 0O N O O A O N

. Build the third scenario

As in the previous chapter, | will use a couple of programming techniques in this script that | have not yet covered in this book.
Specifically, | will use environment variables and the 1 statement to do a little conditional logic. It is hard to write a useful script
without using either of these resources. However, | wanted to provide you with some foundation concepts regarding Windows
shell scripting and the Windows shell before | delve into specific Windows shell scripting. So for now, just follow along with my
high-level explanations of the portions of the script that use these programming techniques as you go through the steps involved
in creating the script.

Selecting a Random Number

The first step in creating the Unpredictable Command Prompt script is to create a new script and add the following statements:
@ECHO off

SET TestVariable=%random$%

The first statement prevents the Windows shell from displaying script statements as it processes them. This will make the script's
output less cluttered and present a cleaner and more polished looking output. The second statement uses the seT command to
assign a random number to a variable called Testvariable. The random variable is generated automatically by the operating
system on Windows 2000, XP, and 2003 computers. Whenever it is referenced, it returns a random number between 1 and
32,767.

The script will reference the random value assigned to this variable to determine which of three possible actions to take.
Specifically, it will take one set of actions if the value assigned to the variable is greater than 22,000. It will take a different set of
actions if the value is greater than 11,000 but less than 22,000. Finally, a third set of actions is taken if the variable's value is less
than 11,000 but greater than zero.

The rest of the script consists of three major sections. The statements that make up each section are very similar, so I'll explain
the statements that comprise the first section in detail and then provide a high-level overview of the remaining sections.

Clearing the Windows Command Console

Now check the value stored in the Testvariable to see if it is greater than 22,000. You can do this by adding the three lines of
code you see below.
IF %$TestVariable% GTR 22000 (
CLS
)

The first line can be translated like this: "If the value assigned to Testvariable is greater than 22,000, then perform the
following action." The action to be performed is enclosed within parentheses (a pair of () characters). Actually, the opening (
character is shown at the end of the first line and the closing) character is on the third line. Nonetheless, the cL.s command is still
considered enclosed within them. This command clears the Windows command console, giving the script a clear screen onto
which to write additional text.

Modifying the Windows Command Console Title Bar

Next, add the statement shown below in bold. This statement uses the T1TL.E command to post a text message in the Windows
command console's title bar. The message consists of two parts. The first part is a text string (e.g., UCP The Unpredictable
Command Prompt =). The second part is a reference to the Testvariable. When referenced in this manner, the randomly
assigned numeric value assigned to the variables is displayed in place of $Testvariable%. | added the display of this numeric

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

value to the end of the title bar message to make it easy for you to see the randomly assigned number. This way you can validate
that your script is executing the right collection of statements each time it runs.
If $TestVariable% GTR 22000 (
Cls
TITLE UCP - The Unpredictable Command Prompt - $TestVariable%
)

Changing Background and Foreground Colors

Now add the statement shown below in bold. This statement uses the coL.or command to change the Windows command
console's foreground color to yellow and its background color to black.
If %$TestVariable% GTR 22000 (
Cls
TITLE UCP - The Unpredictable Command Prompt - $TestVariable$%
COLOR 02
)

Greeting the User

The next step in creating the Unpredictable Command Prompt script is to add the two lines shown below in bold. The first of these
two lines displays a personalized greeting to the user by wrapping the username variable inside a text message displayed using
the EcH0 command. username is an environment variable that Windows creates each time you log on. It stores your username.
The second line uses the cio command to display a blank line. This will make the script's output a little easier to read when the
script ends and redisplays the Windows command prompt.

If %$TestVariable% GTR 22000 (

Cls

TITLE UCP - The Unpredictable Command Prompt - %$TestVariable$%
COLOR 02

Echo Greetings %username%. Code well and Prosper.

Echo.

)

Changing the Command Prompt

Now add to your script the statement shown below in bold. When used without any additional arguments, the proMPT statement
resets the Windows command prompt to its default setting.
If %TestVariable% GTR 22000 (
Cls
TITLE UCP - The Unpredictable Command Prompt - %$TestVariable%
COLOR 02
Echo Greetings %username%. Code well and Prosper.
Echo.
PROMPT
)

Terminating Script Execution

Now add the statement shown in bold below. This statement uses the GoTo command to alter the default order of statement
execution in the script. In this case, it tells the script to go to : EoF, which is a shortcut way of saying jump to the end of the file
(i.e., stop executing). By placing this statement here, you ensure that the script will stop running after executing all of the
statements in this section of the script. This way, if the value assigned to Testvariable was greater than 22,000, the script will
process only the seven lines of code shown below.

If $TestVariable% GTR 22000 (

Cls

TITLE UCP - The Unpredictable Command Prompt - %$TestVariable$%
COLOR 02

Echo Greetings %username$%. Code well and Prosper.

Echo.

PROMPT

GOTO :EOF

)

If you were to forget and leave out the GoTo :EOF statement from this section of the script, then any changes made by this
portion of the script would always be overridden by changes made in the two sections that follow. This will happen because the
script would keep on processing the statements that follow. For example, the third section of this script is set up to process
whenever the value assigned to Testvariable is greater than zero. Therefore, if the value assigned to Testvariable
happens to be 26,000, then any changes made by this first section of the script will be undone later in the script. By adding the
GOTO statement, you prevent this from occurring.

Creating the Second Scenario

OK. The second portion of the script is really just a variation of the first part. | have highlighted the differences between the two
sections below. As you can see, this section is set up to run whenever the value assigned to Testvariable is greater than
11,000. In addition, a different message is displayed in the Windows command console's title bar, and different foreground and
background colors are established. In addition, the greeting message has been changed. Also, the Windows command prompt
was changed to display the system date followed by the "greater than" character.

If %$TestVariable% GTR 11000 (
CLS
TITLE Demo - Manipulating the Windows command console environment - $TestVariable%
COLOR OE

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

ECHO Hello. It good to be working with you today!

ECHO.
PROMPT dg
GOTO :EOF

Setting Up the Third Scenario

The last part of the script defines the third possible execution scenario (i.e., executing only when the value of Testvariable is
greater than zero and less than 11,000). | have again highlighted the differences between this section and the first section.

If %$TestVariable% GTR 0 (

CLS

TITLE Windows Shell Scripting Example. - %TestVariable$%
COLOR EO

ECHO Boo! Did I scare you?

ECHO.

PROMPT $p

GOTO :EOF

The Final Result

Now look at the fully assembled script, as shown below. To run it, open a new Windows command console, type the name of the
script at the command prompt, and press Enter.

@ECHO off
SET TestVariable=%random$%

If %$TestVariable% GTR 22000 (

Cls

TITLE UCP - The Unpredictable Command Prompt - $TestVariable$%
COLOR 02

Echo Greetings %username$%. Code well and Prosper.

Echo.

PROMPT

GOTO :EOF

)

If $TestVariable% GTR 11000 (

CLS

TITLE Demo - Manipulating the Windows command console environment - $TestVariable%
COLOR 0E

ECHO Hello. It good to be working with you today!

ECHO.

PROMPT dg

GOTO :EOF

)

If $TestVariable% GTR 0 (

CLS

TITLE Windows Shell Scripting Example. - %TestVariable%
COLOR EO

ECHO Boo! Did I scare you?

ECHO.

PROMPT $p

GOTO :EOF

[Team L | [+ ervvious [t]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Toam Li3 [« Frrvious [onest o)
Summary

The focus of this chapter was to introduce you to the Windows shell and get you comfortable working with it. This included
showing you how to modify the appearance of the Windows command console. Specifically, you learned how to change the color
scheme, command prompt, and title bar text. In addition, you learned about the differences between internal and external
commands as well as how the Windows shell locates and executes these commands. You then completed the Unpredictable
Command Prompt script, which helped tie together many of the concepts presented in this chapter.

Toan L2 [+erevious Lt

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Toan LD [+ervvious Lt]
EXERCISES

1. Create a new Windows shell initialization script that automatically adds to the path variable the name and path
of the folder where you plan to store your Windows shell scripts.

2. Create a new Command Prompt shortcut and configure it to automatically execute your new Windows shell
initialization script. Hint: Use the /& switch and specify the complete path of the folder where the scripts reside.

Toam Lo [rivioos L]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB | [« FrEvinu]
Chapter 3: Windows Shell Scripting Basics

Overview

In this chapter, I'll explain the importance of adding comments to your Windows shell scripting to make your code self-
documenting. I'll also provide you with a Windows shell script template that you can use as the basis for organizing and
documenting your scripts. You will learn about a programming technique called redirection, and you'll learn how to use it to control
script input and output.

This chapter also shows you how to group commands and make the execution of one command dependent on the outcome of
another command. Finally, you will learn how to create the Fortune Teller game. This game builds on the programming techniques
that have been used in previous games and also demonstrates how to create a script that continues to execute indefinitely by
looping back and re-executing previous statements.

Specifically, you will learn
= How to add comments to your Windows shell scripts
= How to place two or more statements on the same line
= How to set up conditional command execution
= How to make the output of one command the input for another command

= How to create report and log files and append data to existing report and log files

(Toan L TS e

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team L8 | [« errvions)
Project Preview: The Fortune Teller Game

This chapter's main project is called the Fortune Teller game. It demonstrates the application of a number of programming
techniques, including how to collect input from the player, how to evaluate player input, and how to create a script that continues
to run until the player decides to quit the game.

The game begins by presenting the player with a welcome screen that helps to define the premise of the game, as shown in

Figure 3.1: The Fortune Teller game begins by welcoming the player.

The player must press a key for the game to continue, at which point the next screen continues to build upon the game's story

line, as shown in Figure 3.2.

Figure 3.2: The fortune teller enters the room.

Next, the fortune teller invites the player to ask a question and promises to try and provide an answer, as shown in Figure 3.3.

Figure 3.3: She invites the player to ask a question.

The game then describes the process that the fortune teller goes through as she uses her psychic powers to come up with an
answer. As shown in Figure 3.4, the fortune teller is not always able to provide the player with a conclusive Yes or No response.

Figure 3.4: With as much drama as she can create, the fortune teller answers the player's question.

After answering the player's first question, the fortune teller continues to allow additional questions to be asked, as shown in
Figure 3.5. The game continues until the player closes the Windows command console or types the lower case letter e to end, or
exit, the game.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Figure 3.5: Players may continue to ask as many questions as they wish.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

More Scripting Basics

So far, you have learned how to create, save, and run Windows shell scripts. You have learned how to display text output, post
messages in the Windows command console's title bar, and perform other tricks like command prompt modification. Now you
should learn a few script housekeeping matters. Specifically, I'll show you how to add comments to scripts in order to make them
self-documenting. In addition, I'll discuss the importance of using comments to create a Windows shell script documentation
template that you can use to improve the overall organization and manageability of your scripts.

Documenting Your Scripts with Comments

Adding comments to your Windows shell scripts makes them easier for other people to understand. Comments provide you with
the ability to embed documentation with a script so that you can explain how and why you wrote it the way that you did. Adding
comments to scripts is a little bit like adding a trail of bread crumbs. They give you something to follow if you find that you need to
fix or modify a script sometime down the road.

Comments are added to Windows shell scripts using the rREM statement, which has the following syntax:
REM Comment

Comment is a text string representing the documentation that you wish to embed in the script. REM statements have no impact on
the execution of your script. The Windows shell ignores them during script execution. You can use the reM statement in either of
two ways. One way to use the rREM statement is to include it on a line by itself to describe or document the action of one or more
statements that follow, as demonstrated below.

@ECHO off

REM Display the Welcome Screen

ECHO.

ECHO.

ECHO W E L C O ME T O T HE

ECHO.

ECHO F O R T U N E TELULER GAME!
ECHO.

ECHO.

ECHO.

REM Make the player hit a key in order for the game to continue
PAUSE

A second way to use the rREM statement is to place it at the end of another statement, as demonstrated below.
PAUSE REM Make the player hit a key in order for the game to continue

TRAP Always begin with the QECHO off statement as the first script statement. If you forget and leave this statement out
of your script, all your script statements (including your comments) will be displayed as the script executes, thus
defeating much of the benefit for adding comments to your scripts.

Creating a Script Template

Now that you know how to use the rREM statement to add comments to your Windows shell scripts, consider a second application
for this highly useful statement. Instead of using the rEM statement just to document your script's logic, how about using it to
improve your scripts overall organization? Specifically, | am suggesting that you create a Windows shell script template similar to
the one | have created below.

@ECHO off

REM RS RS R RS SR EEE SRS SRR SRR EEEESEEESEEEEEREEEEEEEEEEEEEEEEEEEEEEEE RS EEEEEEEEEE]

REM

REM Script Name: XxxxxXxXxX.bat

REM Author: Xxxx XXxXxX

REM Date: Xxxxx XX, XXXX

REM

REM Description:

REM
REM * X, xhkkhkhkhkhkhkhkh kA hk kA hk Kk kA hkkkhkkkh ok k ok k ok k ok k ok k ok k ok k ok k ok k ko kkkkkkkkxkhkxk*

REM Script Initialization Section
REM Main Processing Section

REM Subroutine and Procedure Section

In this example, the template begins with the cecHo o f £ statement and then uses the rREM statement to format a script header in
which you can document information about the script, including its name, author, creation date, and a description. Three additional
statements have been added to the bottom of the template and can be used to organize your scripts into three major sections. In
the Initialization section, you would add statements that perform functions such as setting foreground and background colors or
posting the name of the script in the Windows command console's title bar.

The Main Processing section is where you would type the core logical portions of your script. Later, in Chapter 7, "Creating
Procedures and Subroutines," I'll go over how to isolate portions of your code into discreet subroutines and procedures, which you
would then locate in the third section of the template.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

By using the template | have provided or by creating one of your own, you lay down a foundation for all future script development
with a consistent organizational structure that will be easy to follow and update. For example, the following script demonstrates
how to use the template in the creation of a new script.

@ECHO off

REM RS RS R SRS EEEEEEEE SRR EEEEEEEESEEESEEEEEREEEEEEEEEEEEEEEEEEE RS SRS EEEEEEEEEEE]

REM

REM Script Name: ScriptInit.bat

REM Author: Jerry Ford

REM Date: June 21, 2003

REM

REM Description: Customize a Windows shell scripting work environment

REM
REM * X,k kkkkkkkkkkhkkkhkkkhk ok ok hk ok ok kk ok ok k ok ok ok k ok ok ok k ok ok ok k ok ok ok kk ok kk ok kkkkkhkkkhkxkkkxk*

REM Script Initialization Section

REM Modify the Windows command console title bar
TITLE = Script Environment Configuration

REM Set background color to white and foreground color to black
COLOR FO

REM Add C:\Scripts to the search path
PATH S$path%;C:\Scripts

REM Modify the command prompt to display the greater than sign
PROMPT $g

REM Main Processing Section

REM Clear the screen
CLS

REM Tell the user that everything it set up
ECHO Script environment initialization complete

REM Subroutine and Procedure Section

As you can see, anyone who views the script can quickly identify the script's purpose and its author. By looking for the three main
script comments, you can also easily locate different sections of the script. By adding additional comments, you can create self-
documenting scripts. Note that while this particular example does not have any subroutines or procedures, you might still want to
include that section comment in the script as a placeholder for possible future development.

(1o L [o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

(Toan L TS e

Mastering Command Redirection

So far, all the examples you've seen in this book have demonstrated that script output is, by default, written to the Windows
command console. In addition, all input has come directly from the computer's keyboard. However, the Windows shell let's you
specify different sources of input, such as

= The keyboard
= Afile
= The output generated by another command
In addition, the Windows shell let's you send output to different destinations, such as
= The Windows command console display
= A file

= A printer
Examining Data Input and Output

The Windows shell can work with three different command sources, as outlined below.

= Standard Input. The location where the Windows shell looks for command input. By default, this is the computer's
keyboard.

= Standard Output. The default location where the Windows shell sends all output. By default, this is the Windows
command console.

= Standard Error. The default location where the Windows shell sends all error messages. By default, this is the
Windows command console.

When you modify the Windows shell's default source for input or output, you perform what is known as redirection. Input and
output redirection is remarkably easy to set up and can be used to perform a number of useful tasks, including

= Automatically supplying commands with input to process
= Report generation
= Error log file creation

To support input and output redirection, the Windows shell uses a number of special characters. These characters and their
function are outlined in Table 3.1.

Table 3.1: REDIRECTION OPERATORS

| Operator ” Example H Description |
>		command > file		Sends all output to a file or device
<		command < file		Retrieves input from a file
>>		command >> file		Appends output to a file
2> ” command 2> file		Sends all error output to a file or device		
2>&1 ” command 2>&1 “ Sends all error output to the same location as all normal output				
	” commandl	command2 “ Uses the output from one command as the input for another command		

TRICK In addition to redirecting output to files, you can also send it to a printer by specifying the appropriate port number,
such as LPT1.

I'll demonstrate how to work with these redirection operators in the sections that follow.
Using One Command's Output as Another Command's Input

The | redirection operator enables you to feed, or pipe, the output of one command to another command as input. The best way |
can explain this is by showing you an example. First, let's say that you created a text file called TestFile. txt, and then added
the following lines to it:

Strawberry
Apple
Grape
Blue Berry
Orange

One way to view the contents of this file from the Windows command console would be with the TvPE command, as
demonstrated below.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

c:\scripts>TYPE TestFile.txt
Strawberry

Apple

Grape

Blue Berry

Orange

DEFINITION The Tyrr command displays the contents of files by sending its output to standard output. By default,
this is the Windows command console.

As you can see, the TvpE command displays the contents of the TestFile. txt file exactly as they are stored. However,
suppose that you wanted to sort the entries in the file before displaying them. One way to accomplish this is to redirect the output
of the TvPE command and use it as input for the SORT command, as demonstrated below.

c:\scripts>TYPE TestFile.txt | SORT
Apple

Blue Berry

Grape

Orange

Strawberry

DEFINITION The sorT command sorts data as input and sends the result to standard output.

Generating Reports

The > redirection operator enables you to send command output to a destination other than standard output. It provides an easy
way to generate report and log files. In addition, the >> operators provide the ability to append data to the end of existing report
and log files. Look at an example of these two redirection operators in action.

@ECHO off

REM R SRS SRS S SRR S SR EEEEE SR SRR EEEEEEEEEEEEEEEEEEESEEEEEEEEEEEE SRS SRS EEEEEEE S ST

REM

REM Script Name: Reporter.bat

REM Author: Jerry Ford

REM Date: June 28, 2003

REM

REM Description: A report generation example

REM

REM * X kkkhkkhhhkhhhkhkhkhkhkhkkhkhkkhkhkkhkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkh &k kkkxk*

REM Script Initialization Section

REM Specify folder where report is to be saved
SET dest=C:\Scripts\LogFiles\Sample.txt

REM Display report data

ECHO Sample Windows shell script report > %dest$
ECHO. >> %dest%

ECHO Date: %date% >> %dest%

ECHO. >> %dest%

ECHO Created by %username% >> %dest%

ECHO. >> %dest%

ECHO. >> %dest%

ECHO Scripts residing in C:\SCRIPTS: >> %dest%
ECHO ——==-———————— - m oo o m e m e m >> %Sdest%
ECHO. >> %dest%

DIR *.bat >> %$dest$%
REM Notify user that the report is now ready
ECHO Sample.txt report has been created in %dest$%
DEFINITION The DIr command provides a list of all files and folders stored in the specified folder or directory.

In this example, a variable called dest is established using the seT command. It is assigned the name and path of a report that
the script will create. The report is actually created when the first EcHo statement is executed and has its output redirected to the
folder specified by the dest variable. Once the file is created, the script continues to write to the file by redirecting the output of
ECHO statements using the >> (append) operator.

TRAP This script will fail unless the complete path to the target folder already exists. Before you run this script, make sure
that you create a subfolder called LogFiles within your C:\Script folder.

TRAP Be sure you remember to switch from the > operator to the >> operator after the first redirection operation in the
script. Otherwise, instead of appending additional data to the end of the report, your script will continue to overwrite
the text stored in the report, leaving only the last line of output in the report.

Figure 3.6 shows an example of the report created by this script.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Figure 3.6: Examining the report created by a Windows shell script using output redirection.
Creating Error Logs

By default, Windows shell scripts send error messages and output to the same location (e.g., the Windows command console).
However, if you wish, you can redirect any errors that occur to someplace else. For example, you might want to send all errors to
a log file that you can monitor over time to see what's going on with your scripts.

For example, let's say that you created an empty file called Errors. 1og, located in C:\Scripts in order to have a centralized place
to record script error messages as you developed and tested them. Once created, you can write error output from any of your
scripts to this file using the 2> redirection operator, as demonstrated below.

TYPE C:\Reports\Report.txt 2> C:\Scripts\Errors.log
In this example, the TYyPE command is used to display the contents of a file called Report . txt located in C:\Reports. If

Report.txt exists, then its contents are displayed. If the Report . txt file does not exist, the following error will occur and be
written to the C: \Scripts\Errors. log file.

The system cannot find the file specified.

In addition, since the error shown above was redirected to the log file, it would not have been displayed in the Windows command
console when the script executed.

[Toam Lo [+ rriisus [oesr]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

(Toan L TS e

Conditional Command Execution

The Windows shell provides the ability to chain together the execution of multiple commands using a technique referred to as
compound commands. Compound commands use a collection of reserved characters, shown in Table 3.2, to set up a relationship
between two or more commands.

Table 3.2: COMPOUND COMMAND OPERATORS

Operator “ Example ” Description

& command & command Runs the first command followed by the second
command

& & command && command Runs the second command if the first command was
successful

I command || command Runs the second command if the first command had
an error

() (command || command) || (command & Defines the order in which commands are to be

command) executed

Chaining Two Commands Together

The most straightforward type of compound command is created using the « operator. Using this operator, you can chain together
the execution of any two commands, as demonstrated below.

MKDIR C:\Scripts\Reports & COPY *.txt C:\Scripts\Reports

This compound command begins by executing the MKDIR command, which creates a new directory or subfolder called Reports in
the C:\Scripts folder. Once this command completes execution, the second command in the compound command executes. In
this example, the cory command copies all files ending with a .txt extension in the current working directory to
C:\Scripts\Reports.

Setting Up Conditional Command Execution

A more advanced compound command is created using the s s operator. This operator executes the second command only if the
first command was successful. Otherwise, the execution of the second command is omitted. For example, the following statement
is set up to display all .log files found in the current working directory and to copy those log files, if any exist, to
C:\Scripts\LogFiles.

DIR *.log && COPY *.Log C:\Scripts\LogFiles

The | | compound command operator is the exact opposite of the & & operator, performing the second command only in the event
that the first command fails. For example, the following compound command begins by displaying all .log files in the current
working directory. If no .log files are found, then the text of the EcHo statement is redirected to C: \Scripts\Debug. log.

DIR *.log || ECHO No .log files were found >> C:\Scripts\Debug.log

The Windows shell allows you to chain together more than two commands at a time if needed. For example, the following
statement chains together three commands:

DIR *.log & COPY *.log C:\Tmp & ECHO .LOG files have been copied.

Grouping Commands

The Windows shell also enables you to explicitly group commands together to dictate the order in which they are executed. This is
accomplished using the () operators. For example, the following statement consists of five different commands:

CD C:\Scripts\Reports && (COPY *.txt A:\ & COPY *.bak A:\) && (DEL *.txt & DEL *.bak)

The first command changes the current working directory to C: \Scripts\Reports. The first s &« operator ensures that the
remaining commands execute only if the first command is successful. The second and third commands have been grouped
together to ensure that they both execute before the last two commands are processed, which execute only if the second and
third commands are both processed successfully. These two commands copy all .txt and all .bak files to the computer's floppy
drive (A:\). Finally, if both of these commands executed successfully, the last two commands execute and delete all .txt and .bak
files found in C:\scripts\Reports.

= [+ervvious Lt

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Back to the Fortune Teller Game

Now let's return to the chapter's main project, the Fortune Teller game. Through the development of this script, you will continue to
expand on your Windows shell scripting skills. Specifically, you will develop a script that begins by introducing the player to a
fictional fortune teller who promises to try to use her psychic powers to answer the player's every question.

The script will answer the player using one of the following three responses:
= No!
= Yes!
= Only time will tell.

The script begins by presenting the player with a series of screens that provide background information for the game, introducing
the fortune teller, and having her prompt the player to ask a question. The script will then generate an answer to the player's
question by displaying one of three randomly selected responses. The script then continues to allow the player to keep asking
questions until the player either closes the Windows command console or types the lower case letter e to end the game.

Designing the Game

The Fortune Teller game will be completed in eight steps, as outlined below
1. Add the script template and establish execution settings

. Display the initial welcome screen

. Introduce the fortune teller

. Collect a question from the player

. Determine if the player wants to exit the game
. Randomly select a response

. Display the fortune teller's answer

0 N o o A~ W DN

. Prompt the player to ask a new question

As you read the rest of this chapter, I'll break down the programming statements that must be created in each of these steps in
detail. By the time you're done, your Fortune Teller game will be ready to begin making predictions, and you'll have something
really neat to share with your friends.

Establishing the Execution Environment

The first step in creating the Fortune Teller game is to create a new Windows shell script called “*' Fortune .bat and type the
following statements into it:

QECHO off

REM khkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkrkhkhkhkrhkhkhkrhkhkhkhkhkhkhkhkhkhkdhhkhkhkhkhhkhkhkhhkhkhkkhkkhkhkhkkkhkhkkhkkkhkhkkhkhkkhkkhkkkkkkkkk
REM

REM Script Name: Fortune.bat

REM Author: Jerry Ford

REM Date: June 22, 2003

REM

REM Description: This Windows shell script game provides random answers to

REM question posed by the player.

REM

REM * X kkkhkhhhkhhhkhkhkhkhkhkkhkhkkhkhkhhkkkhkkkhkkkkhkk ok ok kkkkkkkkkkkkkkkkkkkhkxk*

COLOR 5e
TITLE The Fortune Teller Game

CLS

The first statement presents the display of script statements during execution. The next 10 statements provide a place to
document the script's name, author, and creation date as well as to provide a brief description. The coL.or statement sets the
Windows command console's color scheme to yellow text on a purple background. The T1TLE statement then posts the name of
the game in the Windows command console's title bar. Finally, the cL.s statement clears the display and prepares it for the game's
first screen.

Creating a Welcome Screen

The first screen the player will see is a welcome screen that displays a welcome message and a text-based graphic of a crystal
ball, as shown below.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

ECHO.

ECHO.

ECHO.

ECHO ~

ECHO.

ECHO WELCOME TO \ /
ECHO kK
ECHO THE FORTUNE * *
ECHO * *
ECHO TELLETR'"' SMAGTIZC * *
ECHO * *
ECHO CRYSTAL BALL'! il
ECHO / \
ECHO s
ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO Prepare to be mystified by the great psychic power of the Fortune Teller.
ECHO She knows all, she sees all and she tells all!
ECHO.

ECHO.

Pause

To prevent the above screen from scrolling off of the display as the game executes, thus giving the player a chance to read it, the
pAUSE command has been added.

Building the Story Line

Next, another cLs statement clears the display so that the game's second screen can be displayed. The statements that generate
this screen are shown below.

CLS

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO Quiet! Here she comes.......
ECHO.

ECHO The door opens and a small woman with a cane and a limp slowly
ECHO.

ECHO enters into the room.
ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

PAUSE

As you can see, the pAUSE command is again used to ensure that the player has an opportunity to view the information on this
screen.

Collecting the Player's Question

Once again, the cLs statement is used to clear the screen—this time, to allow the fortune teller to prompt the player to ask a
question. Again, this screen consistsmostly of cHo statements that set up the story line.

CLS

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO "Well, well, well..... "

ECHO.

ECHO "I see that I have a visitor today."

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

ECHO.

ECHO "Come ask me your question."
ECHO.

ECHO "I shall reveal the answer that you so desperately need to know."
ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

:QUESTION

ECHO.

SET /p reply="What is your question? "
SET trigger=%reply:~0,1%

Near the end of this section of code, you see a statement that looks like this:
:QUESTION

This statement represents a label, which is a location in a Windows shell script that can be called upon for execution. Later, you'l
see where | add a coTo statement at the end of the script to create a loop to allow the game to continue to replay over and over
again.

DEFINITION A loop is a collection of statements that are executed repeatedly.

The next statement prompts the player to enter a question for the fortune teller to answer. By placing the : QUESTION label just
before the seT statement, | have provided the ability to loop back to this portion of the script and replay the game starting at the
point where the fortune teller instructs the player to ask a question.

Next, another seT statement is executed. This statement extracts the first character from the text string entered by the player to
see if it is equal to the letter e. If is does equal the letter e, the script assumes that the player is done and wants to end the game.

TRAP Even though | have not yet covered it in this book, | wanted to use the substring operation presented here to
introduce you to a different method of control script termination. Unfortunately, whether it be substring operations,
conditional logic, or loops, for your best learning experience | will only formally introduce and explain a limited
number of programming concepts at a time. My goal in this book is to introduce and explain basic programming
concepts and to continue to build upon them as | go along. However, it's almost impossible to write Windows shell
script games without using some advanced scripting techniques. Without some advanced techniques, the game
projects in the first two-thirds of this book would have remained very simple while | covered all the concepts that
you'll need to write more advanced scripts. But this approach takes away most of the fun and | wanted to present
you with game scripts that become increasingly interesting (and therefore difficult) as the book progresses.
Whenever | need to use a programming technique that | have not yet formally introduced to you, I'll try to provide a
brief explanation of what's going on. I'll then provide a reference to the chapter where the programming technique is
more fully explored, and then I'll keep moving on with the script project.

TRICK | used a substring operation above to provide a quick way for the script to end. When coded in this way, the player
could end the game by typing end, exit, ore.

TRAP Be careful when using a substring operation as shown above because if the player somehow formulates a question
using a word that begins with the letter e, the game would end instead of providing the player with an answer. In a
game like this one, it's a fairly safe bet that most questions will begin with phrases such as "Will I" and "Should I,"
so using the letter e is probably safe enough.

IN THE REAL WORLD

The statement SET trigger=%reply:~0, 1% is an example of a substring operation. A substring is simply a portion of a
string found within another string. Extracting or parsing out substrings is a very common practice in programming. For
example, scripts often have to read and process strings of user input or portions of text files in order to extract specific pieces
of data to work with.

Creating an Exit Process

The next few lines in the script perform a test to determine whether the player wants to end or exit the game. If the letter e was
typed, then the GoTO :EOF statement is executed, terminating the script's execution. Otherwise, the script continues to run.

IF Strigger$==e (
GOTO :EOF
)
Generating Random Answers

The next portion of the script begins by displaying a little more of the story line, as shown below.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

ECHO.

ECHO.

ECHO.

ECHO.

ECHO The old fortune teller closes her eyes and slowly leans her head back.
ECHO.

ECHO She begins to mumble aloud in an ancient dialect sending chills up your back.
ECHO.

ECHO Suddenly she sits upright and stares you in your eyes!

ECHO.

ECHO.

ECHO.

ECHO.

SET z=%random$%

If %z% GTR 22000 (
SET answer=NO!
GOTO :Continue

)

If %z% GTR 11000 (
SET answer=YES!
GOTO :Continue

)

If %z% GTR 0 (
SET answer=uncertain. Only time will tell.
GOTO :Continue
)

After describing the actions of the fortune teller, a SET statement is used to assign a random number to a variable called z . As in
previous script examples, a series of 1r statements are then used to assign a value to a variable called answer based on the
value of the randomly selected variable. Specifically, if the randomly selected variable is greater than 22,000 the answer returned
by the fortune will be NO! and the GoTo statement causes the script to jump down to the label called : control and continue
executing from that point in the script, thus bypassing any remaining validation of the randomly selected value. If the value of the
variable is less than 22,000 and greater than 11,000, the answer returned will be YEs! Otherwise, the answer will be set to
Uncertain. Only time will tell.

Displaying the Fortune Teller's Prediction

The next portion of the script begins with a label called : Continue. This label provides the ability to jump to this location within
the script and continue processing. Next, the screen is formatted using a collection of Ecuo statements, and the answer selected
by the fortune teller is displayed. A paUSE statement then halts the script's execution and gives the player time to read the answer
to his or her question.

:Continue

ECHO The answer which you are searching for is %answer$%
ECHO.
ECHO.
ECHO.
ECHO.
ECHO.
ECHO.
ECHO.
ECHO.
ECHO.

PAUSE
Replaying the Game

Once the player's question has been answered by the fortune teller, the screen is cleared and a coTo statement is used to jump
back in the script to the : QUESTION label, thus allowing the player to ask the fortune teller a new question.

CLS
GOTO :QUESTION

The Final Result

Now look at the fully assembled script, as shown below. To help further document the script, | have added comments throughout
that help to explain the logical processes that are taking place.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Q@ECHO off

REM R R RS R SRS EEEE SRS SRR SRR EESEEESEEEREREEEEEEEEEEEEEEEEEESEEREEEEEEEEEEEEEEEE]
REM

REM Script Name: Fortune.bat

REM Author: Jerry Ford

REM Date: June 22, 2003

REM

REM Description: This Windows shell script game provides random answers to

REM questions posed by the player.

REM

REM % % % % % %k % 5% % k % s % k % % % k % o Kk k & o Kk k& ok ok kK ok ok kK ok ok Xk ok ok Xk ok ok Xk ok ok Xk ok ok Kk ok ok Kk ok kK ok ok k kK ok kK ok ok kK ok

REM Post the name of the game in the Windows command console title bar
TITLE The Fortune Teller Game

REM Clear the display
CLs

REM Set the console colors to yellow text on a purple background
COLOR 5e

REM Display the welcome screen

ECHO.

ECHO.

ECHO.

ECHO ~
ECHO.

ECHO WELCOME TO \ /
ECHO Kok
ECHO THEVFORTUME * *
ECHO * *
ECHO TELLER'S MAGTIZC * *
ECHO * *
ECHO CRYSTAL BALTL! *rx
ECHO / \
ECHO e
ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO Prepare to be mystified by the great psychic power of the Fortune Teller.
ECHO She knows all, she sees all and she tells all!

ECHO.

ECHO.

REM Wait for the player to press a key
Pause

REM Clear the display
CLS

REM Display additional story text
ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO Quiet! Here she comes.......
ECHO.

ECHO The door opens and a small woman with a cane and a limp slowly
ECHO.

ECHO enters into the room.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

REM Wait for the player to press a key

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

PAUSE

REM Clear the display
CLS

REM Display additional story text
ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO "Well, well, well..... "
ECHO.

ECHO "I see that I have a visitor today."
ECHO.

ECHO "Come ask me your question."
ECHO.

ECHO "I shall reveal the answer that you so desperately need to know."
ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

ECHO.

REM This label provides a callable return point in the script
:QUESTION

ECHO.

REM Prompt the player to type their question
SET /p reply="What is your question? "

REM Extract the first character of the player's response
SET trigger=%reply:~0,1%

REM If the player typed the letter "e" then it's time to end the game
IF $trigger$== (

GOTO :EOF
)

REM Clear the display
CLS

REM Display the text that precedes the fortune teller's answer

ECHO.

ECHO.

ECHO.

ECHO.

ECHO The old fortune teller closes her eyes and slowly leans her head back.
ECHO.

ECHO She begins to mumble aloud in an ancient dialect, sending chills up
ECHO.

ECHO your back. Suddenly she sits upright and stares you in your eyes!
ECHO.

ECHO.

ECHO.

ECHO.

REM get a random number
SET z=%random$%

REM If the random number is greater than 22,000 the answer is NO!
If %$z% GTR 22000 (

SET answer=NO!

GOTO :Continue

REM If the random number is greater than 11,000 the answer is YES!
If %$z% GTR 11000 (

SET answer=YES!

GOTO :Continue
)

REM If the random number is greater than zero the answer is uncertain.
If %z% GTR 0 (

SET answer=uncertain. Only time will tell.

GOTO :Continue

REM This label provides a callable return point in the script
:Continue

REM Display the fortune teller's answer
3

TAUN MhA ~Amemras o Al crAns A mAAn~ hdmm Favr tAm LamariAan [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

LUOU L1lIE dlSWSL WILCHL yUu dLle SSdlClillly LUL 15 oallSWeLo
ECHO.
ECHO.
ECHO.
ECHO.
ECHO.
ECHO.
ECHO.
ECHO.
ECHO.

REM Wait for the player to press a key
PAUSE

REM Clear the display
CLs

REM Loop back and let the player ask the fortune teller another question
GOTO :QUESTION

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Toan LD [+ervvious Lt]

Summary

In this chapter, you learned how to add comments to your Windows shell scripts in order to document your scripting logic and to
create a documentation template. You also learned how to take control of input and output. This included setting up the output of
one command to provide another command's input. This also included learning how to create reports and error log files. This
chapter also showed you how to combine more than one command to create a compound command as well as how to make the
execution of one command conditional on the success of another command. Finally, you had some fun by creating the Fortune
Teller game.

Toan LD [+ervvious Lt]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Toan LD [+ervvious Lt]
EXERCISES

1. The Fortune Teller game's story line is very basic. Add additional story text that helps to better describe what is
occurring as the game plays out.

2. The Fortune Teller game currently makes a random selection from one of only three possible answers. Expand
the range of available answers to six and then to nine.

3. Currently, the Fortune Teller game ends when the player types the letter e instead of a question. Add
instructions to the game that explicitly inform the player of this capability. In addition, experiment with other
possible ways to end the game such as requiring that the player enter the word Bye, at which time the Fortune
Teller could invite the player to return again later to ask more questions.

Toam Lo [+ rrinsus [omsi]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB | [wawvinua i ¥
Chapter 4: Storing and Retrieving Information in Variables

Overview

This chapter begins by showing you how to pass data to scripts at execution time and how to write scripts that can accept and
process this data. In addition, you will get a formal education on the use of variables within Windows shell scripts. You will learn
about environment variables that are created and maintained by the operating system as well as how to create and modify your
own script variables.

You will also learn how to replace portions of the contents of string variables and to perform mathematical operations on variables
containing numeric data. The chapter will then conclude by showing you how to build a Mad lib-style story called "Buzz the
Wonder Dog," in which the reader helps to write the story by supplying key story elements collected from questions presented at
the beginning of the script's execution.

Specifically, you will learn
= How to pass data to scripts in the form of arguments
= How to access system information using system environment variables
= How to access user information using user environment variables
= How to create, modify, and delete script variables

= How to limit access to variables within scripts

[1eam L | [+erivious Pt]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team L8 | [« errvions |wai o]
Project Preview: "The Story of Buzz the Wonder Dog"
This chapter's main project is "The Story of Buzz the Wonder Dog." This Mad lib-style story collects input from the reader, stores it

in variables, and then uses variable substitution to tell a story using the reader's input. The story will begin by displaying an initial
welcome screen that introduces the story, as shown in Figure 4.1.

Figure 4.1: The story begins by displaying its title screen.

The reader is then informed that in order for the story to be told, he will need to participate, as shown in Figure 4.2.

Figure 4.2: The reader is informed that his help is needed to write the story.

The reader will be asked a series of five questions, as shown in Figure 4.3. These questions will be asked without providing any
context as to their ultimate use. This will help to ensure that the story is both unpredictable and humorous.

Figure 4.3: The answers collected from five questions are substituted into the story.

Once the reader's input has been collected and assigned to variables within the Windows shell script, the story is told, as shown in
Figure 4.4. As the story unfolds, the input collected from the reader is woven into the story line.

Figure 4.4: The story begins by introducing Buzz the Wonder Dog and his friend.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

After the entire story has been presented, the script will end and the Windows command prompt will be displayed, as shown in

Figure 4.5.

Figure 4.5: The story ends. Buzz saves the day again.

By completing this project, you will reinforce your understanding of how to use variables within Windows shell scripts and lay some
foundation for developing more advanced scripts.

Toan L2 [+ervvious Lt]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

(Toan L TS e

Passing Data to Scripts at Execution Time

Often you can write completely self-contained scripts, meaning that they do not require any additional information in order to
execute and perform a useful function. However, many scripts, especially games, require interaction with the user in order to
execute. Earlier in this book, you have seen several sneak previews of the use of variables as a means of collecting input from the
user. This chapter will explain in detail how to work with and control variables.

But before | go over this material, | want to take a little time to go over another option for passing data to scripts. Using this option,
you pass data or arguments to the script when you run it. Arguments are passed to scripts by typing the name of the script
followed by a space and then one or more arguments, each of which is separated by a space as demonstrated below. The space
serves as a delimiter between each argument passed to the script.

ScriptName argumentl argument2

DEFINITION An argument is a piece of data passed to a command or script when it executes.
DEFINITION A delimiter is a marker that identifies the boundaries of individual pieces of data passed to a script or
command.

TRICK Don't be fooled if you see that someone else has used commas, tabs, equal signs, or semicolons as delimiters
within Windows shell scripts. While most programmers use blank spaces to separate arguments, the Windows
shell will allow any of these characters to serve as delimiters.

IN THE REAL WORLD

As you continue to create Windows shell scripts, you may find that you sometimes need to create more than one script to
tackle certain tasks. In these situations, you'll probably want to start one script and then have it trigger the execution of the
next script. In this scenario, you'll probably need to have the first script pass arguments to the second script in order for the
second script to know what to do.

A Windows shell script processes arguments by assigning them to parameters. The Windows shell allows you to access up to
eleven different script input parameters at a time, as listed in Table 4.1.

Table 4.1: WINDOWS SHELL SCRIPT PARAMETERS

| Parameter ” Description

* ” Lists all the arguments that have been passed to the script

o

” Stores the name of the script

o

” Stores the first argument passed to the script

oe

oo

2 ” Stores the second argument passed to the script

o

” Stores the third argument passed to the script

” Stores the fourth argument passed to the script

o

oe

” Stores the sixth argument passed to the script

o

oe

” Stores the seventh argument passed to the script

0
1
4
7
8

o

” Stores the eighth argument passed to the script

3

5 ” Stores the fifth argument passed to the script
6

9

” Stores the ninth argument passed to the script

oe

Look at an example of how to write a Windows shell script that processes a pair of arguments passed to it at execution time.

Q@ECHO off
ECHO %1
ECHO %2

This script should be easy to understand. It simply displays the arguments that have been passed to it. Go ahead and create and
save this script as Test .bat. Then run it by typing its name followed by two arguments, as demonstrated below.
Test.bat C:\Temp C:\Scripts

Once executed, you should see the following results displayed in the Windows command console:

C:\Temp
C:\Scripts

Handling Large Numbers of Arguments
Using the information just presented, you should be able to create Windows shell scripts that can accept and process up to nine

arguments at execution time. While this will certainly accommodate most situations, at some time you may find a need to create a
script that can accept and process more than nine arguments at run time.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

When you think of script parameters, think of them as being lined up in a row with the first argument passed to the script lined up
on the far left and the last argument passed to the script lined up on the far right. At most, the Windows shell allows you to access
nine parameters at a time, as shown below.

%1 %2 %3 %4 %5 %6 %7 %8 %9

However, the Windows shell allows you to pass as many arguments as you want to your scripts. For example, the following list
defines a collection of 12 arguments that you might want to pass to a script.

argl arg2 arg3 arg4 argb arg6 arg?7 arg8 arg9 arglO argll argl2

The Windows shell