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Basic Differentiation Rules

Basic Integration Formulas
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dx
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TRIGONOMETRY

Definition of the Six Trigonometric Functions
Right triangle definitions, where 0 2.

Circular function definitions, where is any angle.
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Reciprocal Identities

Tangent and Cotangent Identities

Pythagorean Identities

Cofunction Identities

Reduction Formulas

Sum and Difference Formulas

Double-Angle Formulas

Power-Reducing Formulas

Sum-to-Product Formulas

Product-to-Sum Formulas
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Throughout the years, our objective has always been to write in a precise,
readable manner with the fundamental concepts and rules of calculus clearly defined
and demonstrated. When writing for students, we strive to offer features and 
materials that enable mastery by all types of learners. For the instructors, we aim to
provide a comprehensive teaching instrument that employs proven pedagogical 
techniques, freeing instructors to make the most efficient use of classroom time. 

This revision brings us to a new level of change and improvement. For the past
several years, we’ve maintained an independent website—CalcChat.com— that 
provides free solutions to all odd-numbered exercises in the text. Thousands of 
students using our textbooks have visited the site for practice and help with their
homework. With the Ninth Edition, we were able to use information from
CalcChat.com, including which solutions students accessed most often, to help guide
the revision of the exercises. This edition of Calculus will be the first calculus textbook
to use actual data from students.

We have also added a new feature called Capstone exercises to this edition. These
conceptual problems synthesize key topics and provide students with a better 
understanding of each section’s concepts. Capstone exercises are excellent for 
classroom discussion or test prep, and instructors may find value in integrating these
problems into their review of the section. These and other new features join our 
time-tested pedagogy, with the goal of enabling students and instructors to make the
best use of this text.

We hope you will enjoy the Ninth Edition of Multivariable Calculus. As always,
we welcome comments and suggestions for continued improvements.

Welcome to the Ninth Edition of Multivariable Calculus! We are proud to offer
you a new and revised version of our textbook. Much has changed since we wrote the
first edition over 35 years ago. With each edition we have listened to
you, our users, and have incorporated many of your suggestions 
for improvement.
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Calculus Textbook Options

Y our Course. Your Way.

The Ninth Edition of Calculus is available in a variety of textbook
configurations to address the different ways instructors
teach—and students take—their classes.

It is available in a comprehensive three-semester version
or as single-variable and multivariable versions. The book can
also be customized to meet your individual needs and is 
available through iChapters —www.ichapters.com.

TOPICS
COVERED

APPROACH

Late Transcendental
Functions

Early Transcendental
Functions

Accelerated 
coverage Late Trigonometry

3-semester
Calculus 9e

Calculus: Early
Transcendental Functions 4e Essential Calculus

Calculus with Late
Trigonometry

Single
Variable Only Calculus 9e

Single Variable

Calculus: Early
Transcendental Functions 4e

Single Variable

Multivariable Calculus 9e
Multivariable

Calculus 9e
Multivariable

Custom

All of these
textbook 
choices can 
be customized 
to fit the 
individual
needs of your
course.

Calculus 9e
Calculus: Early

Transcendental Functions 4e Essential Calculus
Calculus with Late

Trigonometry
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T extbook Features

Tools to Build Mastery

NEW! Capstone exercises now appear in every
section. These exercises synthesize the main
concepts of each section and show students how the
topics relate. They are often multipart problems that
contain conceptual and noncomputational parts, and
can be used for classroom discussion or test prep. 

CAPSTONES

These writing exercises are questions designed to test
students’ understanding of basic concepts in each
section. The exercises encourage students to verbalize
and write answers, promoting technical communication
skills that will be invaluable in their future careers.

WRITING ABOUT CONCEPTS

The devil is in the details. Study Tips help point out some of the troublesome
common mistakes, indicate special cases that can cause confusion, or
expand on important concepts. These tips provide students with valuable
information, similar to what an instructor might comment on in class. 

STUDY TIPS

Throughout the text, examples are worked out
step-by-step. These worked examples
demonstrate the procedures and techniques for
solving problems, and give students an increased
understanding of the concepts of calculus.

EXAMPLES

70. Use the graph of shown in the figure to answer the
following, given that 

(a) Approximate the slope of at Explain.

(b) Is it possible that Explain.

(c) Is Explain.

(d) Approximate the value of where is maximum.
Explain.

(e) Approximate any intervals in which the graph of is
concave upward and any intervals in which it is concave
downward. Approximate the -coordinates of any
points of inflection.

(f) Approximate the -coordinate of the minimum of 

(g) Sketch an approximate graph of To print an enlarged
copy of the graph, go to the website
www.mathgraphs.com.

f.

f � �x�.x

x

f

fx

f �5� � f �4� > 0?

f �2� � �1?

x � 4.f

x

2
3

3 5 721

4
5

8−2

f ′

y

f �0� � �4.
f�

CAPSTONE

p

59. The graph of is shown in the figure.

(a) Evaluate 

(b) Determine the average value of on the interval 

(c) Determine the answers to parts (a) and (b) if the graph
is translated two units upward.

60. If represents the rate of growth of a dog in pounds 
per year, what does represent? What does 
represent about the dog?

	6
2  r��t� dtr�t�

r��t�

�1, 7�.f

	7
1  f �x� dx.

x
1 2 3 4 5 6 7

1

2

3

4

y

f

f

WRITING ABOUT CONCEPTS

Because integration is 
usually more difficult than differentiation,
you should always check your answer to
an integration problem by differentiating.
For instance, in Example 4 you should
differentiate to verify
that you obtain the original integrand.

1
3�2x � 1�3
2 � C 

STUDY TIP

Later in this chapter,
you will learn convenient methods for
calculating for continuous 
functions. For now, you must use the
limit definition.

	b
a  f �x� dx

STUDY TIP

Remember that you can
check your answer by differentiating.

STUDY TIP

EXAMPLE 6 Evaluation of a Definite Integral

Evaluate using each of the following values.

Solution

■ �
4
3

 � ��26
3 � � 4�4� � 3�2�

 � ��3

1
 x2 dx � 4�3

1
 x dx � 3�3

1
 dx

�3

1
 ��x2 � 4x � 3� dx � �3

1
 ��x2� dx � �3

1
 4x dx � �3

1
 ��3� dx

�3

1
 dx � 2�3

1
 x dx � 4,�3

1
 x2 dx �

26
3

,

�3

1
 ��x2 � 4x � 3� dx
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Practice makes perfect. Exercises are often the
first place students turn to in a textbook. The
authors have spent a great deal of time analyzing
and revising the exercises, and the result is a
comprehensive and robust set of exercises at the
end of every section. A variety of exercise types
and levels of difficulty are included to
accommodate students with all learning styles. 

In addition to the exercises in the book, 3,000
algorithmic exercises appear in the WebAssign®

course that accompanies Calculus.

EXERCISES

“When will I use this?” The authors attempt to answer this question
for students with carefully chosen applied exercises and examples.
Applications are pulled from diverse sources, such as current events,
world data, industry trends, and more, and relate to a wide range of
interests. Understanding where calculus is (or can be) used promotes
fuller understanding of the material.

APPLICATIONS

Review Exercises at the end of each chapter provide more
practice for students. These exercise sets provide a
comprehensive review of the chapter’s concepts and are 
an excellent way for students to prepare for an exam.

REVIEW EXERCISES

These sets of exercises at the end of each chapter test students’ abilities
with challenging, thought-provoking questions.

P.S. PROBLEM SOLVING

In Exercises 1 and 2, use Example 1 as a model to evaluate the
limit

over the region bounded by the graphs of the equations.

1.

(Hint: Let )

2.

(Hint: Let )

In Exercises 3– 8, evaluate the definite integral by the limit
definition.

3. 4.

5. 6.

7. 8.

In Exercises 13–22, set up a definite integral that yields the area
of the region. (Do not evaluate the integral.)

13. 14.

15. 16.

x

4

3

2

1

y

x

8

6

4

2

y

f �x� � x2f �x� � 4 � 
x


1 2 3 4 5−1−2

1

2

3

4

5

6

x

y

x
1 2 3 4 5

5

4

3

2

1

y

f �x� � 6 � 3xf �x� � 5

�1

�2
 �2x2 � 3� dx�2

1
 �x2 � 1� dx

�4

1
 4x2 dx�1

�1
 x3 dx

�3

�2
 x dx�6

2
 8 dx

ci � i 3
n3.

x � 1x � 0,y � 0,f �x� � 3�x,

ci � 3i 2
n2.

x � 3x � 0,y � 0,f �x� � �x,

lim
n→� �

n

i�1
f �ci� 	xi

4.3 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

f
e

a
h

63. Respiratory Cycle The volume in liters, of air in the lungs
during a five-second respiratory cycle is approximated by the
model where is the time
in seconds. Approximate the average volume of air in the lungs
during one cycle.

64. Average Sales A company fits a model to the monthly sales
data for a seasonal product. The model is

where is sales (in thousands) and is time in months.

(a) Use a graphing utility to graph for
Use the graph to explain why the average

value of is 0 over the interval.

(b) Use a graphing utility to graph and the line
in the same viewing window. Use the

graph and the result of part (a) to explain why is called
the trend line.

65. Modeling Data An experimental vehicle is tested on a
straight track. It starts from rest, and its velocity (in meters per
second) is recorded every 10 seconds for 1 minute (see table).

(a) Use a graphing utility to find a model of the form
for the data.

(b) Use a graphing utility to plot the data and graph the model.

(c) Use the Fundamental Theorem of Calculus to approximate
the distance traveled by the vehicle during the test.

v � at3 � bt2 � ct � d

v

g
g�t� � t
4 � 1.8

S�t�
f �t�

0 � t � 24.
f �t� � 0.5 sin��t
6�

tS

0 � t � 24S�t� �
t
4

� 1.8 � 0.5 sin�� t
6 �,

tV � 0.1729t � 0.1522t2 � 0.0374t3,

V,

t 0 10 20 30 40 50 60

v 0 5 21 40 62 78 83

In Exercises 1 and 2, use the graph of to sketch a graph of 
To print an enlarged copy of the graph, go to the website
www.mathgraphs.com.

1. 2.

In Exercises 3– 8, find the indefinite integral.

3. 4.

5. 6.

7. 8.

9. Find the particular solution of the differential equation
whose graph passes through the point 

10. Find the particular solution of the differential equation
whose graph passes through the point 

and is tangent to the line at that point.

Slope Fields In Exercises 11 and 12, a differential equation, a
point, and a slope field are given. (a) Sketch two approximate
solutions of the differential equation on the slope field, one of
which passes through the given point. (To print an enlarged copy
of the graph, go to the website www.mathgraphs.com.) (b) Use
integration to find the particular solution of the differential
equation and use a graphing utility to graph the solution.

11. 12.

13. Velocity and Acceleration An airplane taking off from a
runway travels 3600 feet before lifting off. The airplane starts
from rest, moves with constant acceleration, and makes the run
in 30 seconds. With what speed does it lift off?

14. Velocity and Acceleration The speed of a car traveling in a
straight line is reduced from 45 to 30 miles per hour in a
distance of 264 feet. Find the distance in which the car can be
brought to rest from 30 miles per hour, assuming the same
constant deceleration.

15. Velocity and Acceleration A ball is thrown vertically upward
from ground level with an initial velocity of 96 feet per second.

(a) How long will it take the ball to rise to its maximum height?
What is the maximum height?

(b) After how many seconds is the velocity of the ball one-half
the initial velocity?

(c) What is the height of the ball when its velocity is one-half
the initial velocity?

16. Modeling Data The table shows the velocities (in miles per
hour) of two cars on an entrance ramp to an interstate highway.
The time is in seconds.

(a) Rewrite the velocities in feet per second.

(b) Use the regression capabilities of a graphing utility to find
quadratic models for the data in part (a).

(c) Approximate the distance traveled by each car during the
30 seconds. Explain the difference in the distances.

In Exercises 17 and 18, use sigma notation to write the sum.

17.

18.

In Exercises 19–22, use the properties of summation and
Theorem 4.2 to evaluate the sum.

19. 20.

21. 22.

23. Write in sigma notation (a) the sum of the first ten positive odd
integers, (b) the sum of the cubes of the first positive integers,
and (c) 

24. Evaluate each sum for and

(a) (b)

(c) (d) �
5

i�2
�xi � xi�1��

5

i�1
�2xi � x 2

i �

�
5

i�1
 
1
xi

1
5�

5

i�1
xi

x5 � 7.
x4 � 3,x3 � 5,x1 � 2, x2 � �1,

6 � 10 � 14 � 18 � .  .  . � 42.
n

�
12

i�1
 i�i 2 � 1��

20

i�1
 �i � 1�2

�
20

i�1
 �4i � 1��

20

i�1
 2i

�3
n��

1 � 1
n �

2

� �3
n��

2 � 1
n �

2

� .  .  . � �3
n��

n � 1
n �

2

1
3�1� �

1
3�2� �

1
3�3� � .  .  . �

1
3�10�

t

y

x
7−1

6

−2

x

y

−6

−1 5

�6, 2�dy
dx

�
1
2

x2 � 2x,�4, �2�dy
dx

� 2x � 4,

3x � y � 5 � 0
�2, 1�f � �x� � 6�x � 1�

�1, �2�.f��x� � �6x

� �5 cos x � 2 sec2 x� dx� �2x � 9 sin x� dx

� 
x4 � 4x2 � 1

x2  dx� 
x4 � 8

x3  dx

� 
2

3�3x
 dx� �4x2 � x � 3� dx

x

f ′

y

x

f ′

y

f.f�

318 Chapter 4 Integration

4 REVIEW EXERCISES See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

t 0 5 10 15 20 25 30

v1 0 2.5 7 16 29 45 65

v2 0 21 38 51 60 64 65

1. Let 

(a) Find 

(b) Find and 

(c) Use a graphing utility to approximate the value of (to three
decimal places) for which 

(d) Prove that for all positive values of
and 

2. Let 

(a) Use a graphing utility to complete the table.

(b) Let Use a graphing

utility to complete the table and estimate 

(c) Use the definition of the derivative to find the exact value of
the limit 

In Exercises 3 and 4, (a) write the area under the graph of the
given function defined on the given interval as a limit. Then (b)
evaluate the sum in part (a), and (c) evaluate the limit using the
result of part (b).

3.

Hint:

(d) Locate all points of inflection of on the interval 

6. The Two-Point Gaussian Quadrature Approximation for is

(a) Use this formula to approximate Find the error
of the approximation.

(b) Use this formula to approximate 

(c) Prove that the Two-Point Gaussian Quadrature Approxi-
mation is exact for all polynomials of degree 3 or less.

7. Archimedes showed that the area of a parabolic arch is equal to 
the product of the base and the height (see figure).

(a) Graph the parabolic arch bounded by and the
Use an appropriate integral to find the area 

(b) Find the base and height of the arch and verify Archimedes’
formula.

(c) Prove Archimedes’ formula for a general parabola.

8. Galileo Galilei (1564–1642) stated the following proposition
concerning falling objects:

The time in which any space is traversed by a uniformly
accelerating body is equal to the time in which that same
space would be traversed by the same body moving at a
uniform speed whose value is the mean of the highest
speed of the accelerating body and the speed just before
acceleration began. 

Use the techniques of this chapter to verify this proposition.

9. The graph of the function consists of the three line segments
joining the points , and The function�8, 3�.�6, 2�,�2, �2��0, 0�,

f 

A.x-axis.
y � 9 � x2

b

h

2
3

�1

�1
 

1
1 � x2 dx.

�1

�1
 cos x dx.

�1

�1
f �x� dx � f ��

1
�3� � f � 1

�3�.

f

�0, 3�.S

�
n

i�1
 i4 �

n�n � 1��2n � 1��3n2 � 3n � 1�
30 ��

�0, 2�y � x4 � 4x3 � 4x2,

lim
x→2

 G�x�.

lim
x→2

  G�x�.

F�x� �
1

x � 2
 �x

2
 sin t2 dt.G�x� �

1
x � 2

F�x� � �x

2
 sin t2 dt.

x2.x1

L�x1x2� � L�x1� � L�x2�
L�x� � 1.

x

L��1�.L��x�
L�1�.

x > 0.L�x� � �x

1
 
1
t
 dt,

P.S. PROBLEM SOLVING

x 0 1.0 1.5 1.9 2.0

F�x�

x 2.1 2.5 3.0 4.0 5.0

F�x�

x 1.9 1.95 1.99 2.01 2.1

G�x�
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Notes provide additional details about theorems,
definitions, and examples. They offer additional insight,
or important generalizations that students might not
immediately see. Like the
study tips, notes can be
invaluable to students.

NOTES

Theorems provide the
conceptual framework for
calculus. Theorems are
clearly stated and separated
from the rest of the text 
by boxes for quick visual
reference. Key proofs often
follow the theorem, and
other proofs are provided in
an in-text appendix.

THEOREMS

As with the theorems,
definitions are clearly
stated using precise,
formal wording and are
separated from the text
by boxes for quick
visual reference. 

DEFINITIONS

Formal procedures are set apart from
the text for easy reference. The
procedures provide students with step-
by-step instructions that will help them
solve problems quickly and efficiently.

PROCEDURESPROCEDURES

Classic Calculus with Contemporary Relevance

THEOREM 4.9 THE FUNDAMENTAL THEOREM OF CALCULUS

If a function is continuous on the closed interval and is an antideriv-
ative of on the interval then

�b

a

 f �x� dx � F�b� � F�a�.

�a, b�,f
F�a, b�f

DEFINITION OF DEFINITE INTEGRAL

If is defined on the closed interval and the limit of Riemann sums over
partitions 

exists (as described above), then is said to be integrable on and the
limit is denoted by

The limit is called the definite integral of from to The number is the
lower limit of integration, and the number is the upper limit of integration.b

ab.af

lim
�	�→0

 �
n

i�1
 f �ci� 	xi � �b

a

 f �x� dx.

�a, b�f

lim
�	�→0 �

n

i�1
 f �ci� 	xi

	
�a, b�f

To complete the change of variables in Example 5, you solved for in terms of
Sometimes this is very difficult. Fortunately it is not always necessary, as shown in

the next example.

EXAMPLE 6 Change of Variables

Find 

Solution Because you can let Then

Now, because is part of the original integral, you can write

Substituting and in the original integral yields

You can check this by differentiating.

Because differentiation produces the original integrand, you know that you have
obtained the correct antiderivative. ■

 � sin2 3x cos 3x

 
d
dx

 �1
9

 sin3 3x� � �1
9��3��sin 3x�2�cos 3x��3�

 �
1
9

 sin3 3x � C.

 �
1
3 �

u3

3 � � C

 �
1
3�u2 du

 �sin2 3x cos 3x dx � �u2 
du
3

du
3u

du
3

� cos 3x dx.

cos 3x dx

du � �cos 3x��3� dx.

u � sin 3x.sin2 3x � �sin 3x�2,

�sin2 3x cos 3x dx.

u.
x

NOTE There are two important points that should be made concerning the Trapezoidal Rule
(or the Midpoint Rule). First, the approximation tends to become more accurate as increases.
For instance, in Example 1, if the Trapezoidal Rule yields an approximation of 1.994.
Second, although you could have used the Fundamental Theorem to evaluate the integral in
Example 1, this theorem cannot be used to evaluate an integral as simple as because

has no elementary antiderivative. Yet, the Trapezoidal Rule can be applied easily to 
estimate this integral. ■

sin x2
	�

0 sin x2 dx

n � 16,
n
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Chapter Openers provide initial motivation for the upcoming
chapter material. Along with a map of the chapter objectives,
an important concept in the chapter is related to an application
of the topic in the real world. Students are encouraged to see 
the real-life relevance of calculus.

CHAPTER OPENERS

Explorations provide students with
unique challenges to study concepts
that have not yet been formally
covered. They allow students to learn
by discovery and introduce topics
related to ones they are presently studying. 
By exploring topics in this way, students are
encouraged to think outside the box.

EXPLORATIONS

Historical Notes provide students with
background information on the foundations of

calculus, and Biographies
help humanize calculus 
and teach students about 
the people who contributed
to its formal creation. 

PROCEDURESHISTORICAL NOTES AND BIOGRAPHIES

Putnam Exam questions
appear in selected sections
and are drawn from actual
Putnam Exams. These
exercises will push the limits
of students’ understanding
of calculus and provide extra
challenges for motivated
students. 

PUTNAM EXAM CHALLENGES

Projects appear in selected sections and more deeply
explore applications related to the topics being studied.
They provide an interesting and engaging way for students
to work and investigate ideas collaboratively.

SECTION PROJECTS

Expanding the Experience of Calculus

THE SUM OF THE FIRST 100 INTEGERS

A teacher of Carl Friedrich Gauss (1777–1855)
asked him to add all the integers from 1 to
100. When Gauss returned with the correct
answer after only a few moments, the teacher
could only look at him in astounded silence.
This is what Gauss did:

This is generalized by Theorem 4.2, where

�
100

t�1
i �

100�101�
2

� 5050.

100 
 101
2

� 5050

1
100
101

�

�

�

2
99

101

�

�

�

3
98

101

�

�

�

. .   .

.  .  .

.  .  .

�

�

�

100
1

101

139. If .  .  ., are real numbers satisfying

show that the equation

has at least one real zero.

140. Find all the continuous positive functions for
such that

where is a real number.

These problems were composed by the Committee on the Putnam Prize
Competition. © The Mathematical Association of America. All rights reserved.

�

�1

0
 f �x�x2 dx � �2

�1

0
 f �x�x dx � �

�1

0
 f �x� dx � 1

0 � x � 1,
f �x�,

a0 � a1x � a2x2 � .  .  . � anxn � 0

a0

1
�

a1

2
� .  .  . �

an

n � 1
� 0

ana1,a0,

PUTNAM EXAM CHALLENGE

GEORG FRIEDRICH BERNHARD RIEMANN
(1826–1866)

German mathematician Riemann did his most
famous work in the areas of non-Euclidean
geometry, differential equations, and number
theory. It was Riemann’s results in physics
and mathematics that formed the structure
on which Einstein’s General Theory of Relativity
is based.

T
he

 G
ra

ng
er

 C
ol

le
ct

io
n

Use a graphing utility to graph the function on the
interval Let be the following function of 

(a) Complete the table. Explain why the values of are increasing.

(b) Use the integration capabilities of a graphing utility to 
graph 

(c) Use the differentiation capabilities of a graphing utility to graph
How is this graph related to the graph in part (b)?

(d) Verify that the derivative of is 
Graph and write a short paragraph about how this graph is
related to those in parts (b) and (c).

y
sin2 t.y � �1
2�t � �sin 2t�
4

F��x�.

F.

F

F�x� � � x

0
sin2 t dt

x.F�x�0 � t � �.
y1 � sin2 t

Demonstrating the Fundamental Theorem

S E C T I O N  P R O J E C T

x 0 �
6 �
3 �
2 2�
3 5�
6 �

F�x�

405

6 Differential Equations

A function is a solution of a differential equation if the equation is satisfied when and its derivatives are
replaced by and its derivatives. One way to solve a differential equation is to use slope fields, which show the general
shape of all solutions of a differential equation. (See Section 6.1.)

f �x�
yy � f �x�

Dr. Dennis Kunkel/Getty Images

In this chapter, you will study one of the
most important applications of calculus—
differential equations. You will learn 
several methods for solving different 
types of differential equations, such 
as homogeneous, first-order linear, and
Bernoulli. Then you will apply these 
methods to solve differential equations 
in applied problems.

In this chapter, you should learn the 
following.

■ How to sketch a slope field of a 
differential equation, and find a 
particular solution. (6.1)

■ How to use an exponential function 
to model growth and decay. (6.2)

■ How to use separation of variables 
to solve a differential equation. (6.3)

■ How to solve a first-order linear 
differential equation and a Bernoulli 
differential equation. (6.4)

Depending on the type of bacteria, the time it takes for a culture’s weight to double
can vary greatly from several minutes to several days. How could you use a 
differential equation to model the growth rate of a bacteria culture’s weight? (See
Section 6.3, Exercise 84.)

■

■

E X P L O R A T I O N

The Converse of Theorem 4.4 Is the converse of Theorem 4.4 true? That is,
if a function is integrable, does it have to be continuous? Explain your reasoning
and give examples.

Describe the relationships among continuity, differentiability, and
integrability. Which is the strongest condition? Which is the weakest? Which
conditions imply other conditions?

E X P L O R A T I O N

Finding Antiderivatives For
each derivative, describe the 
original function 

a. b.

c. d.

e. f.

What strategy did you use to find
F?

F��x� � cos xF��x� �
1
x3

F��x� �
1
x2F��x� � x2

F��x� � xF��x� � 2x

F.
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Examples throughout the book are
accompanied by CAS Investigations.
These investigations are linked
explorations that use a computer
algebra system (e.g., Maple®) to
further explore a related example 
in the book. They allow students to
explore calculus by manipulating
functions, graphs, etc. and observing
the results. (Formerly called Open
Explorations)

CAS INVESTIGATIONS

Understanding is often enhanced by using a
graph or visualization. Graphing Tech Exercises
are exercises that ask students to make use of a
graphing utility to help find a solution. These 
exercises are marked with a special icon.

GRAPHING TECH EXERCISES

NEW! Like the Graphing Tech Exercises, some
exercises may best be solved using a computer
algebra system. These CAS Exercises are new to
this edition and are denoted by a special icon. 

PROCEDURES

Throughout the book,
technology boxes give students
a glimpse of how technology
may be used to help solve
problems and explore the
concepts of calculus. They
provide discussions of not only
where technology succeeds, but
also where it may fail. 

TECHNOLOGY

Integrated Technology for Today’s World

EXAMPLE 5 Change of Variables

Find 

Solution As in the previous example, let and obtain 
Because the integrand contains a factor of you must also solve for in terms of 
as shown.

Solve for in terms of 

Now, using substitution, you obtain

■ �
1
10

 �2x � 1�5
2 �
1
6

 �2x � 1�3
2 � C.

 �
1
4 �

u5
2

5
2
�

u3
2

3
2� � C

 �
1
4��u3
2 � u1
2� du

 �x�2x � 1 dx � ��u � 1
2 � u1
2 �du

2 �

u.xx � �u � 1�
2u � 2x � 1

u,xx,
dx � du
2.u � 2x � 1

�x�2x � 1 dx.

Slope Fields In Exercises 55 and 56, (a) use a graphing utility
to graph a slope field for the differential equation, (b) use 
integration and the given point to find the particular solution of
the differential equation, and (c) graph the solution and the
slope field in the same viewing window.

55. 56.
dy
dx

� 2�x, �4, 12�dy
dx

� 2x, ��2, �2�

Most graphing utilities and computer algebra systems have built-in
programs that can be used to approximate the value of a definite integral. Try using
such a program to approximate the integral in Example 1. How close is your
approximation?

When you use such a program, you need to be aware of its limitations. Often,
you are given no indication of the degree of accuracy of the approximation. Other
times, you may be given an approximation that is completely wrong. For instance,
try using a built-in numerical integration program to evaluate

Your calculator should give an error message. Does yours?

�2

�1
 
1
x
 dx.

TECHNOLOGY

parallel to

with

In Exercises 79–82, use a computer algebra system to graph the
plane.

79. 80.

81. 82.

In Exercises 83–86, determine if any of the planes are parallel
or identical.

2.1x � 4.7y � z � �3�5x � 4y � 6z � �8

x � 3z � 32x � y � z � 6

2
.

�
6

CAS

49. Investigation Consider the function

at the point 

(a) Use a computer algebra system to graph the surface
represented by the function.

(b) Determine the directional derivative as a
function of where Use a computer
algebra system to graph the function on the interval 

(c) Approximate the zeros of the function in part (b) and
interpret each in the context of the problem.

(d) Approximate the critical numbers of the function in part (b)
and interpret each in the context of the problem.

(e) Find and explain its relationship to your
answers in part (d).

(f ) Use a computer algebra system to graph the level curve
of the function at the level On this curve, graph
the vector in the direction of and state its
relationship to the level curve.

�f �4, �3�,
c � 7.f

��f �4, �3��

�0, 2��.
u � cos � i � sin � j.�,

Du f �4, �3�

�4, �3, 7�.

f �x, y� � x2 � y 2

CAS

In Exercises 21–24, use a computer algebra system to find 
and a unit vector orthogonal to and 

21. 22.

23. 24.

v � 1.5i � 6.2kv � 0.4i � 0.8j � 0.2k

u � 0.7ku � �3i � 2j � 5k

v � �10, �12, �2�v � �2.5, 9, 3�
u � ��8, �6, 4�u � �4, �3.5, 7�

v.u
u � vCAS

CAS EXERCISES

xiv Textbook Features
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Student Solutions Manual—Need a leg up on your homework or help to 
prepare for an exam? The Student Solutions Manual contains worked-out 
solutions for all odd-numbered exercises in the text. It is a great resource to
help you understand how to solve those tough problems.

Notetaking Guide—This notebook organizer is designed to help you organize
your notes, and provides section-by-section summaries of key topics and other
helpful study tools. The Notetaking Guide is available for download on the
book’s website.

WebAssign®—The most widely used homework system in higher education,
WebAssign offers instant feedback and repeatable problems, everything you
could ask for in an online homework system. WebAssign’s homework system
lets you practice and submit homework via the web. It is easy to use and loaded
with extra resources. With this edition of Larson’s Calculus, there are over 
3,000 algorithmic homework exercises to use for practice and review.

DVD Lecture Series—Comprehensive, instructional lecture presentations
serve a number of uses. They are great if you need to catch up after missing 
a class, need to supplement online or hybrid instruction, or need material for 
self-study or review.

CalcLabs with Maple® and Mathematica®— Working with Maple or
Mathematica in class? Be sure to pick up one of these comprehensive manuals
that will help you use each program efficiently.

Student Resources

A dditional Resources

xv
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xvi Additional Resources

WebAssign®—Instant feedback, grading precision, and ease of use are just
three reasons why WebAssign is the most widely used homework system in
higher education. WebAssign’s homework delivery system lets instructors 
deliver, collect, grade, and record assignments via the web. With this edition 
of Larson’s Calculus, there are over 3,000 algorithmic homework exercises to
choose from. These algorithmic exercises are based on the section exercises
from the textbook to ensure alignment with course goals.

Instructor’s Complete Solutions Manual—This manual contains worked-out
solutions for all exercises in the text. It also contains solutions for the special
features in the text such as Explorations, Section Projects, etc. It is available 
on the Instructor’s Resource Center at the book’s website.

Instructor’s Resource Manual—This robust manual contains an abundance 
of resources keyed to the textbook by chapter and section, including chapter
summaries and teaching strategies. New to this edition’s manual are the 
authors’ findings from CalcChat.com (see A Word from the Authors). They
offer suggestions for exercises to cover in class, identify tricky exercises 
with tips on how best to use them, and explain what changes were made in 
the exercise set based on the research.

Power Lecture—This comprehensive CD-ROM includes the Instructor’s
Complete Solutions Manual, PowerPoint® slides, and the computerized test 
bank featuring algorithmically created questions that can be used to create,
deliver, and customize tests.

Computerized Test Bank—Create, deliver, and customize tests and study
guides in minutes with this easy to use assessment software on CD. The 
thousands of algorithmic questions in the test bank are derived from the 
textbook exercises, ensuring consistency between exams and the book.

JoinIn on TurningPoint—Enhance your students’ interactions with you,
your lectures, and each other. Cengage Learning is now pleased to offer you 
book-specific content for Response Systems tailored to Larson’s Calculus,
allowing you to transform your classroom and assess your students’ progress
with instant in-class quizzes and polls. 

Instructor Resources
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763

11 Vectors and the
Geometry of Space

Vectors indicate quantities that involve both magnitude and direction. In Chapter 11, you will study operations of vectors
in the plane and in space. You will also learn how to represent vector operations geometrically. For example, the graphs
shown above represent vector addition in the plane.

u

v

u

v

u

v

u + v

Mark Hunt/Hunt Stock

This chapter introduces vectors and the
three-dimensional coordinate system.
Vectors are used to represent lines and
planes, and are also used to represent 
quantities such as force and velocity. The
three-dimensional coordinate system is used
to represent surfaces such as ellipsoids and
elliptical cones. Much of the material 
in the remaining chapters relies on an
understanding of this system.

In this chapter, you should learn the 
following.

■ How to write vectors, perform basic
vector operations, and represent 
vectors graphically. (11.1)

■ How to plot points in a three-dimensional
coordinate system and analyze vectors
in space. (11.2)

■ How to find the dot product of two 
vectors (in the plane or in space). (11.3)

■ How to find the cross product of two
vectors (in space). (11.4)

■ How to find equations of lines and planes
in space, and how to sketch their graphs.
(11.5)

■ How to recognize and write equations 
of cylindrical and quadric surfaces and 
of surfaces of revolution. (11.6)

■ How to use cylindrical and spherical 
coordinates to represent surfaces in
space. (11.7)

Two tugboats are pushing an ocean liner, as shown above. Each boat is exerting 
a force of 400 pounds. What is the resultant force on the ocean liner? (See 
Section 11.1, Example 7.)

■

■
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■ Write the component form of a vector.
■ Perform vector operations and interpret the results geometrically.
■ Write a vector as a linear combination of standard unit vectors.
■ Use vectors to solve problems involving force or velocity.

Component Form of a Vector
Many quantities in geometry and physics, such as area, volume, temperature, mass,
and time, can be characterized by a single real number scaled to appropriate units of
measure. These are called scalar quantities, and the real number associated with each
is called a scalar.

Other quantities, such as force, velocity, and acceleration, involve both magnitude
and direction and cannot be characterized completely by a single real number. A
directed line segment is used to represent such a quantity, as shown in Figure 11.1.
The directed line segment has initial point and terminal point and its length
(or magnitude) is denoted by Directed line segments that have the same length
and direction are equivalent, as shown in Figure 11.2. The set of all directed line
segments that are equivalent to a given directed line segment is a vector in the
plane and is denoted by In typeset material, vectors are usually denoted by
lowercase, boldface letters such as and When written by hand, however,
vectors are often denoted by letters with arrows above them, such as , , and .

Be sure you understand that a vector represents a set of directed line segments
(each having the same length and direction). In practice, however, it is common not to
distinguish between a vector and one of its representatives.

EXAMPLE 1 Vector Representation by Directed Line Segments

Let be represented by the directed line segment from to and let be
represented by the directed line segment from to Show that and are
equivalent.

Solution Let and be the initial and terminal points of and let
and be the initial and terminal points of as shown in Figure 11.3. You

can use the Distance Formula to show that and have the same length.

Length of 

Length of 

Both line segments have the same direction, because they both are directed toward the
upper right on lines having the same slope.

Slope of 

and

Slope of 

Because and have the same length and direction, you can conclude that the two
vectors are equivalent. That is, and are equivalent. ■uv

RS
\

PQ
\

RS
\

�
4 � 2
4 � 1

�
2
3

PQ
\

�
2 � 0
3 � 0

�
2
3

RS
\

 � RS
\

 � � ��4 � 1�2 � �4 � 2�2 � �13

PQ
\

 � PQ
\

 � � ��3 � 0�2 � �2 � 0�2 � �13

RS
\

PQ
\

u,S�4, 4�R�1, 2�
v,Q�3, 2�P�0, 0�

uv�4, 4�.�1, 2�
u�3, 2�,�0, 0�v

→w→v→u
w.v,u,

v � PQ
\

.
PQ

\

� PQ
\

 �.
Q,PPQ

\

764 Chapter 11 Vectors and the Geometry of Space

11.1 Vectors in the Plane

1

1

2

2

3

3

4

4
x

(4, 4)

(1, 2) (3, 2)

(0, 0)P

R
Q

S

u

v

y

The vectors and are equivalent.
Figure 11.3

vu

QP

Terminal
point

P

Initial
point

Q

A directed line segment
Figure 11.1

Equivalent directed line segments
Figure 11.2
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The directed line segment whose initial point is the origin is often the most
convenient representative of a set of equivalent directed line segments such as those
shown in Figure 11.3. This representation of is said to be in standard position. A
directed line segment whose initial point is the origin can be uniquely represented by
the coordinates of its terminal point as shown in Figure 11.4.

This definition implies that two vectors and are equal if and
only if and 

The following procedures can be used to convert directed line segments to
component form or vice versa.

1. If and are the initial and terminal points of a directed line
segment, the component form of the vector represented by is 

Moreover, from the Distance Formula you can see that the
length (or magnitude) of is

2. If can be represented by the directed line segment, in standard
position, from to 

The length of is also called the norm of If is a unit vector.
Moreover, if and only if is the zero vector 

EXAMPLE 2 Finding the Component Form and Length of a Vector

Find the component form and length of the vector that has initial point and
terminal point 

Solution Let and Then the components
of are

So, as shown in Figure 11.5, and the length of is

■ � 13.

 � �169

 � v � � ���5�2 � 122

vv � ��5, 12�,

v2 � q2 � p2 � 5 � ��7� � 12.

v1 � q1 � p1 � �2 � 3 � �5

v � �v1, v2�
Q��2, 5� � �q1, q2 �.P�3, �7� � � p1, p2 �

��2, 5�.
�3, �7�v

0.v� v � � 0
v� v � � 1,v.v

Q�v1, v2 �.P�0, 0�
vv � �v1, v2�,

v
�q1 � p1, q2 � p2�.

�v1, v2� �PQ
\

v
Q�q1, q2 �P�p1, p2�

u2 � v2.u1 � v1

v � �v1, v2�u � �u1, u2�

Q�v1, v2�,

v

11.1 Vectors in the Plane 765

DEFINITION OF COMPONENT FORM OF A VECTOR IN THE PLANE

If is a vector in the plane whose initial point is the origin and whose terminal
point is then the component form of is given by

The coordinates and are called the components of If both the initial
point and the terminal point lie at the origin, then is called the zero vector
and is denoted by 0 � �0, 0�.

v
v.v2v1

v � �v1, v2�.

v�v1, v2�,
v

Length of a vector

 � �v1
2 � v2

2 .

 � v � � ��q1 � p1�2 � �q2 � p2�2

x
1 2 3 4

4

3

2

1

(v1, v2)

(0, 0)

Q

P

v

v = 〈v1, v2〉

y

A vector in standard position
Figure 11.4

x
−6 −4 −2 2 4 6

6

4

−2

−4

−6

−8

Q (−2, 5)

P (3, −7)

v

y

Component form of
Figure 11.5

v: v � ��5, 12�
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Vector Operations

Geometrically, the scalar multiple of a vector and a scalar is the vector that is
times as long as as shown in Figure 11.6. If is positive, has the same

direction as If is negative, has the opposite direction.
The sum of two vectors can be represented geometrically by positioning the

vectors (without changing their magnitudes or directions) so that the initial point of
one coincides with the terminal point of the other, as shown in Figure 11.7. The 
vector called the resultant vector, is the diagonal of a parallelogram having 
and as its adjacent sides.

Figure 11.8 shows the equivalence of the geometric and algebraic definitions of
vector addition and scalar multiplication, and presents (at far right) a geometric
interpretation of u � v.

v
uu � v,

cvcv.
cvcv,�c�

cv

766 Chapter 11 Vectors and the Geometry of Space

DEFINITIONS OF VECTOR ADDITION AND SCALAR MULTIPLICATION

Let and be vectors and let be a scalar.

1. The vector sum of and is the vector 

2. The scalar multiple of and is the vector 

3. The negative of is the vector 

4. The difference of and is 

u � v � u � ��v� � �u1 � v1, u2 � v2�.

vu

�v � ��1�v � ��v1, �v2�.

v

cu � �cu1, cu2�.uc

u � v � �u1 � v1, u2 � v2�.vu

cv � �v1, v2�u � �u1, u2�

u

v

u

v

u + v
u

v

u + v

u

v

u + v

(u1 + v1, u2 + v2)

(v1, v2)

(u1, u2)

u1

u2

v1

v2

u

ku

(ku1, ku2)

(u1, u2)

u1

ku1

u2

ku2

u u − v

v

−v

u + (−v)

To find 

Figure 11.7

u � v, (1) move the initial point of v
to the terminal point of u, or

(2) move the initial point of u
to the terminal point of v.

Vector addition
Figure 11.8

Scalar multiplication Vector subtraction

vvv 2v −v −1
2

3
2

The scalar multiplication of v
Figure 11.6

WILLIAM ROWAN HAMILTON
(1805–1865)

Some of the earliest work with vectors was
done by the Irish mathematician William
Rowan Hamilton. Hamilton spent many
years developing a system of vector-like
quantities called quaternions. Although
Hamilton was convinced of the benefits of
quaternions, the operations he defined did not
produce good models for physical phenomena.
It wasn’t until the latter half of the nineteenth
century that the Scottish physicist James
Maxwell (1831–1879) restructured Hamilton’s
quaternions in a form useful for representing
physical quantities such as force, velocity,
and acceleration.
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EXAMPLE 3 Vector Operations

Given and find each of the vectors.

a. b. c.

Solution

a.

b.

c. Using you have

■

Vector addition and scalar multiplication share many properties of ordinary
arithmetic, as shown in the following theorem.

 � �4, 13�.
 � ��2 � 6, 5 � 8�

v � 2w � ��2, 5� � �6, 8�

2w � �6, 8�,
w � v � �w1 � v1, w2 � v2� � �3 � ��2�, 4 � 5� � �5, �1�

1
2v � �1

2��2�, 12�5�� � ��1, 52�

v � 2ww � v1
2v

w � �3, 4�,v � ��2, 5�

11.1 Vectors in the Plane 767

THEOREM 11.1 PROPERTIES OF VECTOR OPERATIONS

Let and be vectors in the plane, and let and be scalars.

1. Commutative Property

2. Associative Property

3. Additive Identity Property

4. Additive Inverse Property

5.

6. Distributive Property

7. Distributive Property

8. 1�u� � u, 0�u� � 0

c�u � v� � cu � cv

�c � d �u � cu � du

c�du� � �cd �u
u � ��u� � 0

u � 0 � u

�u � v� � w � u � �v � w�
u � v � v � u

dcwv,u,

PROOF The proof of the Associative Property of vector addition uses the Associative
Property of addition of real numbers.

Similarly, the proof of the Distributive Property of vectors depends on the Distributive
Property of real numbers.

The other properties can be proved in a similar manner. ■

 � �cu1, cu2� � �du1, du2� � cu � du

 � �cu1 � du1, cu2 � du2�
 � ��c � d�u1, �c � d�u2�

 �c � d�u � �c � d��u1, u2�

 � �u1, u2� � �v1 � w1, v2 � w2� � u � �v � w�
 � �u1 � �v1 � w1�, u2 � �v2 � w2 ��
 � ��u1 � v1� � w1, �u2 � v2 � � w2�
 � �u1 � v1, u2 � v2� � �w1, w2�

 �u � v� � w � 	�u1, u2� � �v1, v2�
 � �w1, w2�
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Any set of vectors (with an accompanying set of scalars) that satisfies the eight
properties given in Theorem 11.1 is a vector space.* The eight properties are the 
vector space axioms. So, this theorem states that the set of vectors in the plane (with
the set of real numbers) forms a vector space.

In many applications of vectors, it is useful to find a unit vector that has the same
direction as a given vector. The following theorem gives a procedure for doing this.

In Theorem 11.3, is called a unit vector in the direction of The process of
multiplying by to get a unit vector is called normalization of v.1�� v �v

v.u

768 Chapter 11 Vectors and the Geometry of Space

PROOF Because it follows that

■ � �c� � v � .

 � �c��v1
2 � v2

2

 � �c2�v1
2 � v2

2�
 � �c2v1

2 � c2v2
2

� cv � � ��cv1, cv2�� � ��cv1�2 � �cv2 �2

cv � �cv1, cv2�,

PROOF Because is positive and you can conclude that has
the same direction as To see that note that

So, has length 1 and the same direction as ■v.u

 � 1.

 �
1

� v �
 � v �

 � � 1
� v �� � v �

 � u � � � � 1
� v � 
v �

� u � � 1,v.
uu � �1�� v ��v,1�� v �

THEOREM 11.2 LENGTH OF A SCALAR MULTIPLE

Let be a vector and let be a scalar. Then

is the absolute value of c.�c�� c v � � �c� � v �.

cv

THEOREM 11.3 UNIT VECTOR IN THE DIRECTION OF v

If is a nonzero vector in the plane, then the vector

has length 1 and the same direction as v.

u �
v

� v �
�

1
� v �

v

v

* For more information about vector spaces, see Elementary Linear Algebra, Sixth Edition, by
Larson and Falvo (Boston: Houghton Mifflin Harcourt Publishing Company, 2009).

EMMY NOETHER (1882–1935)

One person who contributed to our knowledge
of axiomatic systems was the German 
mathematician Emmy Noether. Noether is
generally recognized as the leading woman
mathematician in recent history.
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■ FOR FURTHER INFORMATION For
more information on Emmy Noether,
see the article “Emmy Noether, Greatest
Woman Mathematician” by Clark
Kimberling in The Mathematics Teacher.
To view this article, go to the website
www.matharticles.com.
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EXAMPLE 4 Finding a Unit Vector

Find a unit vector in the direction of and verify that it has length 1.

Solution From Theorem 11.3, the unit vector in the direction of is

This vector has length 1, because

■

Generally, the length of the sum of two vectors is not equal to the sum of 
their lengths. To see this, consider the vectors and as shown in Figure 11.9. By
considering and as two sides of a triangle, you can see that the length of the third
side is and you have

Equality occurs only if the vectors and have the same direction. This result is
called the triangle inequality for vectors. (You are asked to prove this in Exercise 91,
Section 11.3.)

Standard Unit Vectors
The unit vectors and are called the standard unit vectors in the plane
and are denoted by

as shown in Figure 11.10. These vectors can be used to represent any vector uniquely,
as follows.

The vector is called a linear combination of and The scalars 
and are called the horizontal and vertical components of 

EXAMPLE 5 Writing a Linear Combination of Unit Vectors

Let be the vector with initial point and terminal point and let
Write each vector as a linear combination of and 

a. b.

Solution

a.

b.

■ � �12i � 19j

 � �6i � 16j � 6i � 3j

 w � 2u � 3v � 2��3i � 8j� � 3�2i � j�
 � ��3, 8� � �3i � 8j

 � ��1 � 2, 3 � ��5��
 u � �q1 � p1, q2 � p2�

w � 2u � 3vu

j.iv � 2i � j.
��1, 3�,�2, �5�u

v.v2

v1j.iv � v1 i � v2 j

v � �v1, v2� � �v1, 0� � �0, v2� � v1�1, 0� � v2�0, 1� � v1 i � v2 j

�0, 1��1, 0�

vu

� u � v � � � u � � � v �.

�u � v �,
vu

vu

�� �2
�29


2

� � 5
�29


2

�� 4
29

�
25
29

��29
29

� 1.

v
� v �

�
��2, 5�

���2�2 � �5�2
�

1
�29

 ��2, 5� � � �2
�29

, 
5

�29�.

v

v � ��2, 5�
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and Standard unit vectorsj � �0, 1�i � �1, 0�

x

u

v

u + v

y

Triangle inequality
Figure 11.9

x
1

1

2

2

j = 〈0, 1〉

i = 〈1, 0〉

y

Standard unit vectors i and j
Figure 11.10
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If is a unit vector and is the angle (measured counterclockwise) from the
positive axis to then the terminal point of lies on the unit circle, and you have

Unit vector

as shown in Figure 11.11. Moreover, it follows that any other nonzero vector making
an angle with the positive axis has the same direction as and you can write

EXAMPLE 6 Writing a Vector of Given Magnitude and Direction

The vector has a magnitude of 3 and makes an angle of with the positive
axis. Write as a linear combination of the unit vectors and 

Solution Because the angle between and the positive axis is you can
write the following.

■

Applications of Vectors
Vectors have many applications in physics and engineering. One example is force. A
vector can be used to represent force, because force has both magnitude and direction.
If two or more forces are acting on an object, then the resultant force on the object is
the vector sum of the vector forces.

EXAMPLE 7 Finding the Resultant Force

Two tugboats are pushing an ocean liner, as shown in Figure 11.12. Each boat is
exerting a force of 400 pounds. What is the resultant force on the ocean liner?

Solution Using Figure 11.12, you can represent the forces exerted by the first and
second tugboats as

The resultant force on the ocean liner is

So, the resultant force on the ocean liner is approximately 752 pounds in the direction
of the positive axis. ■

In surveying and navigation, a bearing is a direction that measures the acute
angle that a path or line of sight makes with a fixed north-south line. In air navigation,
bearings are measured in degrees clockwise from north.

x-

� 752i. � 800 cos�20��i

 � 	400 cos�20��i � 400 sin�20��j
 � 	400 cos�20��i � 400 sin�20��j

 F � F1 � F2

 � 400 cos�20��i � 400 sin�20��j.

 F2 � 400�cos��20��, sin��20���
 � 400 cos�20��i � 400 sin�20��j

 F1 � 400�cos 20�, sin 20��

 �
3�3

2
 i �

3
2

 j

 � 3 cos 
�

6
 i � 3 sin 

�

6
 j

 v � � v � cos � i � � v � sin � j

� � ��6,x-v

j.ivx-
30� � ��6v

v � � v ��cos �, sin �� � � v � cos � i � � v � sin � j.

u,x-�
v

u � �cos �, sin �� � cos �i � sin �j

uu,x-
�u
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(cos   , sin   )

x

u

θ

θ θ

θ

θ

sin

cos−1 1

−1

1

y

The angle from the positive -axis to the
vector u
Figure 11.11

x�

x

400 cos(−20°)

400 cos(20°)

−20°

20°

400

400

F2

F1

400 sin(−20°)

400 sin(20°)

y

The resultant force on the ocean liner that is
exerted by the two tugboats
Figure 11.12
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EXAMPLE 8 Finding a Velocity

An airplane is traveling at a fixed altitude with a negligible wind factor. The airplane
is traveling at a speed of 500 miles per hour with a bearing of as shown in Figure
11.13(a). As the airplane reaches a certain point, it encounters wind with a velocity of
70 miles per hour in the direction N E ( east of north), as shown in Figure
11.13(b). What are the resultant speed and direction of the airplane?

Solution Using Figure 11.13(a), represent the velocity of the airplane (alone) as

The velocity of the wind is represented by the vector

The resultant velocity of the airplane (in the wind) is

To find the resultant speed and direction, write Because
you can write

The new speed of the airplane, as altered by the wind, is approximately 522.5 miles per
hour in a path that makes an angle of with the positive axis. ■x-112.6�

v � 522.5��200.5
522.5

 i �
482.5
522.5

 j
 � 522.5 	cos�112.6��i � sin�112.6��j
.

� v � � ���200.5�2 � �482.5�2 � 522.5,
v � � v ��cos � i � sin � j�.

 � �200.5 i � 482.5 j.

 � 500 cos�120��i � 500 sin�120��j � 70 cos�45��i � 70 sin�45��j v � v1 � v2

v2 � 70 cos�45��i � 70 sin�45��j.

v1 � 500 cos�120��i � 500 sin�120��j.

45�45�

330�,
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In Exercises 1–4, (a) find the component form of the vector 
and (b) sketch the vector with its initial point at the origin.

1. 2.

3. 4.

In Exercises 5– 8, find the vectors and whose initial and
terminal points are given. Show that and are equivalent.

5. 6.

7. 8.

In Exercises 9–16, the initial and terminal points of a vector 
are given. (a) Sketch the given directed line segment, (b) write
the vector in component form, (c) write the vector as the linear
combination of the standard unit vectors and and (d) sketch
the vector with its initial point at the origin.

9. 10.

11. 12. ��5, �1��0, �4��6, �1��8, 3�
�3, 6��4, �6��5, 5��2, 0�

Terminal
   Point   Initial PointTerminal

   Point   Initial Point

j,i

v

�10, 13�, �25, 10�v:�3, 10�, �9, 5�v:

��4, �1�, �11, �4�u:�0, 3�, �6, �2�u:

�2, �1�, �7, 7�v:�1, 4�, �3, 8�v:

��4, 0�, �1, 8�u:�3, 2�, �5, 6�u:

vu
vu

x
−1−2 2

2

4

1

1

(−1, 3)

(2, 1)

y

v
x

−6

−4 −2 2

2

4

(2, −3)(−4, −3)

y

v

x
1

1

−2
−1 2

2
3

4

4

5 6

(3, 4)

(3, −2)

y

v

x
1

1

−1 2

2

3

3

4

4

5

(1, 2)

(5, 4)
y

v

v

11.1 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

x

120°

v1

y

S

EW

N

(a) Direction without wind

S

EW

N

x

v1

v

v2

Wind

y

θ

(b) Direction with wind
Figure 11.13

The icon indicates that you will find a CAS Investigation on the book’s website. The CAS
Investigation is a collaborative exploration of this example using the computer algebra systems
Maple and Mathematica.
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13. 14.

15. 16.

In Exercises 17 and 18, sketch each scalar multiple of 

17.

(a) (b) (c) (d)

18.

(a) (b) (c) (d)

In Exercises 19–22, use the figure to sketch a graph of the 
vector. To print an enlarged copy of the graph, go to the website
www.mathgraphs.com.

19. 20.

21. 22.

In Exercises 23 and 24, find (a) (b) and (c) 

23. 24.

In Exercises 25–28, find the vector where and
Illustrate the vector operations geometrically.

25. 26.

27. 28.

In Exercises 29 and 30, the vector and its initial point are
given. Find the terminal point.

29. Initial point:

30. Initial point:

In Exercises 31–36, find the magnitude of 

31. 32.

33. 34.

35. 36.

In Exercises 37–40, find the unit vector in the direction of and
verify that it has length 1.

37. 38.

39. 40.

In Exercises 41– 44, find the following.

(a) (b) (c)

(d) (e) (f)

41. 42.

43. 44.

In Exercises 45 and 46, sketch a graph of and Then
demonstrate the triangle inequality using the vectors and 

45. 46.

In Exercises 47–50, find the vector with the given magnitude
and the same direction as 

47.

48.

49.

50.

In Exercises 51–54, find the component form of given its
magnitude and the angle it makes with the positive -axis.

51. 52.

53. 54.

In Exercises 55–58, find the component form of given the
lengths of and and the angles that and make with the
positive -axis.

55. 56.

57. 58.

� v � � 5,  �v � 0.5� v � � 1,  �v � 2

� u � � 5,  �u � �0.5� u � � 2,  �u � 4

� v � � 2,  �v � 60�� v � � 3,  �v � 45�

� u � � 4,  �u � 0�� u � � 1,  �u � 0�

x
vuvu

u � v

� � 3.5�� v � � 4,� � 150�� v � � 2,

� � 120�� v � � 5,� � 0�� v � � 3,

x
v

u � ��3, 3�� v � � 2

u � ��1, 2�� v � � 5

u � �1, 1�� v � � 4

u � �0, 3�� v � � 6

Direction     Magnitude

u.
v

v � �1, �2�u � ��3, 2�,v � �5, 4�u � �2, 1�,

v.u
u 1 v.v,u,

v � �5, 5�v � �2, 3�
u � �2, �4�u � �1, 12�
v � �3, �3�v � ��1, 2�
u � �0, 1�u � �1, �1�

� u � v
� u � v � ��  

v
� v �

 ��  
u

� u �
 �

� u � v �� v �� u �

v � ��6.2, 3.4�v � �3
2, 52�

v � ��5, 15�v � �3, 12�

v

v � �10i � 3jv � 6i � 5j

v � �12, �5�v � �4, 3�
v � �3iv � 7i

v.

�5, 3�v � �4, �9�;
�4, 2�v � ��1, 3�;

v

v � 5u � 3wv � u � 2w

v � u � wv �
3
2u

w � �1, 2�.
u � �2, �1�v

v � �8, 25�v � �2, �5�
u � ��3, �8�u � �4, 9�

2u 1 5v.v � u,2
3 u,

u � 2vu � v

2u�u

x

u v

y

�6v0v�
1
2v4v

v � ��2, 3�

2
3v7

2v�3v2v

v � �3, 5�

v.

�0.84, 1.25��0.12, 0.60��1
2, 3��3

2, 43�
��3, �1��7, �1��6, 6��6, 2�

Terminal
    Point     Initial PointTerminal

   Point   Initial Point
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59. In your own words, state the difference between a scalar
and a vector. Give examples of each.

60. Give geometric descriptions of the operations of addition of
vectors and multiplication of a vector by a scalar.

61. Identify the quantity as a scalar or as a vector. Explain your
reasoning.

(a) The muzzle velocity of a gun

(b) The price of a company’s stock

62. Identify the quantity as a scalar or as a vector. Explain your
reasoning.

(a) The air temperature in a room

(b) The weight of a car

WRITING ABOUT CONCEPTS
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In Exercises 63–68, find and such that where
and 

63. 64.

65. 66.

67. 68.

In Exercises 69–74, find a unit vector (a) parallel to and 
(b) perpendicular to the graph of at the given point. Then
sketch the graph of and sketch the vectors at the given point.

69.

70.

71.

72.

73.

74.

In Exercises 75 and 76, find the component form of v given the
magnitudes of and and the angles that and 
make with the positive -axis.

75. 76.

77. Programming You are given the magnitudes of and and
the angles that and make with the positive axis. Write a pro-
gram for a graphing utility in which the output is the following.

(a) (b)

(c) The angle that makes with the positive axis

(d) Use the program to find the magnitude and direction of the
resultant of the vectors shown.

In Exercises 79 and 80, use a graphing utility to find the 
magnitude and direction of the resultant of the vectors.

79. 80.

81. Resultant Force Forces with magnitudes of 500 pounds and
200 pounds act on a machine part at angles of and 
respectively, with the -axis (see figure). Find the direction and
magnitude of the resultant force.

Figure for 81 Figure for 82

82. Numerical and Graphical Analysis Forces with magnitudes
of 180 newtons and 275 newtons act on a hook (see figure). The
angle between the two forces is degrees.

(a) If find the direction and magnitude of the resultant
force.

(b) Write the magnitude and direction of the resultant
force as functions of where 

(c) Use a graphing utility to complete the table.

(d) Use a graphing utility to graph the two functions and 

(e) Explain why one of the functions decreases for increasing
values of whereas the other does not.

83. Resultant Force Three forces with magnitudes of 75 pounds,
100 pounds, and 125 pounds act on an object at angles of 

and respectively, with the positive axis. Find the
direction and magnitude of the resultant force.

84. Resultant Force Three forces with magnitudes of 400
newtons, 280 newtons, and 350 newtons act on an object at
angles of and respectively, with the positive

axis. Find the direction and magnitude of the resultant force.

85. Think About It Consider two forces of equal magnitude
acting on a point.

(a) If the magnitude of the resultant is the sum of the magni-
tudes of the two forces, make a conjecture about the angle
between the forces.

x-
135�,45�,�30�,

x-120�,45�,
30�,

�

	.M

0� � � � 180�.�,
	M

� � 30�,

�

x
275 N

180 N

θ

y

30°

−45°

500 lb

200 lb

x

x
�45�,30�

x

F1

F2

F3

2

4

3

200°
140°

−10°

y

x

F1

F2

F3

22.5

3

33°

110°

−125°

y

x

u

v32

45

20°

−50°

y

x-u � v

� u � v �u � v

x-vu
vu

� u � v � � 6, � � 120�� u � v � � �2, � � 90�

� u � � 4, � � 30�� u � � 1, � � 45�

x
u 1 vuu 1 vu

��

4
, 1
f �x� � tan x

�3, 4�f �x� � �25 � x2

��2, �8�f �x� � x3

�1, 1�f �x� � x3

�1, 4�f �x� � �x2 � 5

�3, 9�f �x� � x2

Point       Function               

f
f

v � ��1, 7�v � �1, 1�
v � �3, 3�v � �3, 0�
v � �0, 3�v � �2, 1�

w � �1, �1�.u � �1, 2�
v � au 1 bw,ba
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78. The initial and terminal points of vector are and
respectively.

(a) Write in component form.

(b) Write as the linear combination of the standard unit
vectors and 

(c) Sketch with its initial point at the origin.

(d) Find the magnitude of v.

v

j.i
v

v

�9, 1�,
�3, �4�v

CAPSTONE

� 0� 30� 60� 90� 120� 150� 180�

M

�
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(b) If the resultant of the forces is make a conjecture about
the angle between the forces.

(c) Can the magnitude of the resultant be greater than the sum
of the magnitudes of the two forces? Explain.

86. Graphical Reasoning Consider two forces and

(a) Find 

(b) Determine the magnitude of the resultant as a function of 
Use a graphing utility to graph the function for

(c) Use the graph in part (b) to determine the range of the
function. What is its maximum and for what value of does
it occur? What is its minimum and for what value of does
it occur?

(d) Explain why the magnitude of the resultant is never 0.

87. Three vertices of a parallelogram are 
Find the three possible fourth vertices (see figure).

88. Use vectors to find the points of trisection of the line segment
with endpoints and 

Cable Tension In Exercises 89 and 90, use the figure to
determine the tension in each cable supporting the given load.

89. 90.

91. Projectile Motion A gun with a muzzle velocity of 1200 feet
per second is fired at an angle of above the horizontal. Find
the vertical and horizontal components of the velocity.

92. Shared Load To carry a 100-pound cylindrical weight, two
workers lift on the ends of short ropes tied to an eyelet on the
top center of the cylinder. One rope makes a angle away
from the vertical and the other makes a angle (see figure).

(a) Find each rope’s tension if the resultant force is vertical.

(b) Find the vertical component of each worker’s force.

Figure for 92 Figure for 93

93. Navigation A plane is flying with a bearing of Its
speed with respect to the air is 900 kilometers per hour. The
wind at the plane’s altitude is from the southwest at 100
kilometers per hour (see figure). What is the true direction of
the plane, and what is its speed with respect to the ground?

94. Navigation A plane flies at a constant groundspeed of 400
miles per hour due east and encounters a 50-mile-per-hour
wind from the northwest. Find the airspeed and compass
direction that will allow the plane to maintain its groundspeed
and eastward direction.

True or False? In Exercises 95–100, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

95. If and have the same magnitude and direction, then and
are equivalent.

96. If is a unit vector in the direction of then 

97. If is a unit vector, then 

98. If then 

99. If then 

100. If and have the same magnitude but opposite directions,
then 

101. Prove that and 
are unit vectors for any angle 

102. Geometry Using vectors, prove that the line segment joining
the midpoints of two sides of a triangle is parallel to, and one-
half the length of, the third side.

103. Geometry Using vectors, prove that the diagonals of a
parallelogram bisect each other.

104. Prove that the vector bisects the angle
between and 

105. Consider the vector Describe the set of all points
such that �u � � 5.�x, y�

u � �x, y�.
v.u

w � � u �v � � v �u

�.
v � �sin ��i � �cos ��ju � �cos ��i � �sin ��j

u � v � 0.
vu

� a i � bj � � �2a.a � b,

a � �b.v � ai � bj � 0,

a2 � b2 � 1.u � ai � bj

v � � v � u.v,u

v
uvu

302�.

45°32°
900 km/hr

100 km/hr

S

EW

N

100 lb

20° 30°

30�
20�

6�

A B

C

5000 lb

24 in.

10 in. 20 in.
50° 30°A B

C

3000 lb

�7, 5�.�1, 2�

x
1

1

2

2

3

3

4

4

5

5

6

6

7 8 9 10−4 −3−2−1

(1, 2)
(3, 1)

(8, 4)

y

�1, 2�, �3, 1�, and �8, 4�.

�
�

0 � � < 2�.

�.

� F1 � F2 �.
F2 � 10�cos �, sin ��.

F1 � �20, 0�

0,
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106. A coast artillery gun can fire at any angle of elevation
between and in a fixed vertical plane. If air resistance
is neglected and the muzzle velocity is constant 
determine the set of points in the plane and above the
horizontal which can be hit.

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.

H
�� v0�,

90�0�

PUTNAM EXAM CHALLENGE
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11.2 Space Coordinates and Vectors in Space 775

11.2 Space Coordinates and Vectors in Space
■ Understand the three-dimensional rectangular coordinate system.
■ Analyze vectors in space.
■ Use three-dimensional vectors to solve real-life problems.

Coordinates in Space
Up to this point in the text, you have been primarily concerned with the 
two-dimensional coordinate system. Much of the remaining part of your study of
calculus will involve the three-dimensional coordinate system.

Before extending the concept of a vector to three dimensions, you must be able
to identify points in the three-dimensional coordinate system. You can construct
this system by passing a axis perpendicular to both the and axes at the origin.
Figure 11.14 shows the positive portion of each coordinate axis. Taken as pairs,
the axes determine three coordinate planes: the -plane, the -plane, and the

-plane. These three coordinate planes separate three-space into eight octants.
The first octant is the one for which all three coordinates are positive. In this three-
dimensional system, a point in space is determined by an ordered triple 
where and are as follows.

directed distance from plane to 

directed distance from plane to 

directed distance from plane to 

Several points are shown in Figure 11.15.

Points in the three-dimensional coordinate system are 
represented by ordered triples.
Figure 11.15

A three-dimensional coordinate system can have either a left-handed or a right-
handed orientation. To determine the orientation of a system, imagine that you are
standing at the origin, with your arms pointing in the direction of the positive and

axes, and with the axis pointing up, as shown in Figure 11.16. The system is
right-handed or left-handed depending on which hand points along the axis. In this
text, you will work exclusively with the right-handed system.

x-
z-y-

x-

x

y
8

−2−4
−8

4
3

5
6

−3
−4

−5
−6

1

6

5

4

3

2

(2, −5, 3)

(−2, 5, 4)

(3, 3, −2)

(1, 6, 0)

z

Pxy-z �

Pxz-y �

Pyz-x �

zy,x,
�x, y, z�P

yz
xzxy

y-x-z-

NOTE The three-dimensional rotatable graphs that are available in the premium eBook for
this text will help you visualize points or objects in a three-dimensional coordinate system. ■

y

x

z

Right-handed 
system
Figure 11.16

x

y

z

Left-handed 
system

y

yz-planexz-plane

xy-planex

z

The three-dimensional coordinate system
Figure 11.14
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Many of the formulas established for the two-dimensional coordinate system can
be extended to three dimensions. For example, to find the distance between two points
in space, you can use the Pythagorean Theorem twice, as shown in Figure 11.17. By
doing this, you will obtain the formula for the distance between the points 
and 

EXAMPLE 1 Finding the Distance Between Two Points in Space

The distance between the points and is

Distance Formula

■

A sphere with center at and radius is defined to be the set of all points
such that the distance between and is You can use the

Distance Formula to find the standard equation of a sphere of radius centered at
If is an arbitrary point on the sphere, the equation of the sphere is

as shown in Figure 11.18. Moreover, the midpoint of the line segment joining the
points and has coordinates

EXAMPLE 2 Finding the Equation of a Sphere

Find the standard equation of the sphere that has the points and 
as endpoints of a diameter.

Solution Using the Midpoint Formula, the center of the sphere is

Midpoint Formula

By the Distance Formula, the radius is

Therefore, the standard equation of the sphere is

Equation of sphere

■

�x �
5
2�

2

� � y � 1�2 � z2 �
97
4

.

r ���0 �
5
2�

2

� �4 � 1�2 � ��3 � 0�2 ��97
4

�
�97

2
.

�5 � 0
2

, 
�2 � 4

2
, 

3 � 3
2 � � �5

2
, 1, 0�.

�0, 4, �3��5, �2, 3�

�x2, y2, z2��x1, y1, z1�

�x, y, z��x0, y0, z0�.
r,

r.�x0, y0, z0��x, y, z��x, y, z�
r�x0, y0, z0�

 � 3�3.

 � �27

 � �1 � 1 � 25

 d � ��1 � 2�2 � �0 � 1�2 � ��2 � 3�2

�1, 0, �2��2, �1, 3�

�x2, y2, z2�.
�x1, y1, z1�
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Distance Formulad � ��x2 � x1�2 � � y2 � y1�2 � �z2 � z1�2

Equation of sphere�x � x0�2 � �y � y0�2 � �z � z0 �2 � r2

Midpoint Formula�x1 � x2

2
, 

y1 � y2

2
, 

z1 � z2

2 �.

y
x

Q

P

d

(x1, y1, z1) (x2, y2, z1)

(x2, y2, z2)

⏐z2 − z1⏐

(x2 − x1)2 + (y2 − y1)2

z

The distance between two points in space
Figure 11.17

(x0, y0, z0)

x

y

(x, y, z)
r

z

Figure 11.18

1053714_1102.qxp  10/27/08  10:38 AM  Page 776



Vectors in Space
In space, vectors are denoted by ordered triples The zero vector is
denoted by Using the unit vectors 
and in the direction of the positive axis, the standard unit vector
notation for is

as shown in Figure 11.19. If is represented by the directed line segment from
to as shown in Figure 11.20, the component form of is

given by subtracting the coordinates of the initial point from the coordinates of the
terminal point, as follows.

EXAMPLE 3 Finding the Component Form of a Vector in Space

Find the component form and magnitude of the vector having initial point 
and terminal point Then find a unit vector in the direction of 

Solution The component form of is

which implies that its magnitude is

The unit vector in the direction of is

■u �
v

�v �
�

1

�62
�2, �7, 3	 � 
 2

�62
, 

�7
�62

, 
3

�62�.

v

�v � � �22 � ��7�2 � 32 � �62.

 � �2, �7, 3	
 v � �q1 � p1, q2 � p2, q3 � p3	 � �0 � ��2�, �4 � 3, 4 � 1	

v

v.�0, �4, 4�.
��2, 3, 1�v

v � �v1, v2, v3	 � �q1 � p1, q2 � p2, q3 � p3	

vQ�q1, q2, q3�,P� p1, p2, p3�
v

v � v1i � v2 j � v3k

v
z-k � �0, 0, 1	

j � �0, 1, 0	,i � �1, 0, 0	,0 � �0, 0, 0	.
v � �v1, v2, v3	.
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x

y

〈0, 1, 0〉

〈1, 0, 0〉

〈0, 0, 1〉

〈v1, v2, v3〉

i
j

k

v

z

The standard unit vectors in space
Figure 11.19

x

y

Q(q1, q2, q3)

P(p1, p2, p3) v

v = 〈q1 − p1, q2 − p2, q3 − p3〉

z

Figure 11.20

VECTORS IN SPACE

Let and be vectors in space and let be a
scalar.

1. Equality of Vectors: if and only if and 

2. Component Form: If is represented by the directed line segment from
to then

3. Length:

4. Unit Vector in the Direction of :

5. Vector Addition:

6. Scalar Multiplication: cv � �cv1, cv2, cv3	
v � u � �v1 � u1, v2 � u2, v3 � u3	

v � 0
v

�v �
� � 1

�v �� �v1, v2, v3	,v

�v � � �v1
2 � v2

2 � v3
2

v � �v1, v2, v3	 � �q1 � p1, q2 � p2, q3 � p3	.

Q�q1, q2, q3�,P� p1, p2, p3�
v

u3 � v3.u1 � v1, u2 � v2,u � v

cv � �v1, v2, v3	u � �u1, u2, u3	

NOTE The properties of vector addition and scalar multiplication given in Theorem 11.1 are
also valid for vectors in space. ■
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Recall from the definition of scalar multiplication that positive scalar multiples of
a nonzero vector have the same direction as whereas negative multiples have the
direction opposite of In general, two nonzero vectors and are parallel if there
is some scalar such that 

For example, in Figure 11.21, the vectors and are parallel because and

EXAMPLE 4 Parallel Vectors

Vector has initial point and terminal point Which of the
following vectors is parallel to 

a.

b.

Solution Begin by writing in component form.

a. Because you can conclude that is
parallel to 

b. In this case, you want to find a scalar such that

Because there is no for which the equation has a solution, the vectors are not
parallel.

EXAMPLE 5 Using Vectors to Determine Collinear Points

Determine whether the points and are collinear.

Solution The component forms of and are

and

These two vectors have a common initial point. So, and lie on the same line
if and only if and are parallel—which they are because as shown
in Figure 11.22. ■

PR
\

� 3 PQ
\

,PR
\

PQ
\

RQ,P,

PR
\

� �4 � 1, 7 � ��2�, �6 � 3	 � �3, 9, �9	.

PQ
\

� �2 � 1, 1 � ��2�, 0 � 3	 � �1, 3, �3	

PR
\

PQ
\

R�4, 7, �6�P�1, �2, 3�, Q�2, 1, 0�,

c

 4 �  2c  →  c �  2

�16 �  8c  →  c � �2

 12 � �6c  →  c � �2

�12, �16, 4	 � c��6, 8, 2	.

c

w.
uu � �3, �4, �1	 � �

1
2��6, 8, 2	 � �

1
2 w,

w � ��4 � 2, 7 � ��1�, 5 � 3	 � ��6, 8, 2	

w

v � �12, �16, 4	

u � �3, �4, �1	

w?
��4, 7, 5�.�2, �1, 3�w

w � �v.
u � 2vwv,u,

u � cv.c
vuv.

v,v
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DEFINITION OF PARALLEL VECTORS

Two nonzero vectors and are parallel if there is some scalar such that
u � cv.

cvu

x

u = 2v
w = −v

w

u

v

y

Parallel vectors
Figure 11.21

x y

2
4

6
8

6
8

4

2

(1, −2, 3)

(2, 1, 0)

(4, 7, −6)

P

Q

R

z

The points and lie on the same line.
Figure 11.22

RQ,P,
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EXAMPLE 6 Standard Unit Vector Notation

a. Write the vector in component form.

b. Find the terminal point of the vector given that the initial point
is 

Solution

a. Because is missing, its component is 0 and

b. You need to find such that This implies that
and The solution of these three

equations is and Therefore, ■

Application

EXAMPLE 7 Measuring Force

A television camera weighing 120 pounds is supported by a tripod, as shown in Figure
11.23. Represent the force exerted on each leg of the tripod as a vector. 

Solution Let the vectors and represent the forces exerted on the three legs.
From Figure 11.23, you can determine the directions of and to be as
follows.

Because each leg has the same length, and the total force is distributed equally among
the three legs, you know that So, there exists a constant such
that

and

Let the total force exerted by the object be given by Then, using
the fact that 

you can conclude that and all have a vertical component of This
implies that and Therefore, the forces exerted on the legs can
be represented by

■F3 � ��5�3, 5, �40	.

F2 � �5�3, 5, �40	
F1 � �0, �10, �40	

c � 10.c��4� � �40
�40.F3F1, F2,

F � F1 � F2 � F3

F � �0, 0, �120	.

F3 � c
�
�3
2

, 
1
2

, �4�.F2 � c
�3
2

, 
1
2

, �4�,F1 � c�0, �1, �4	,

c�F1 � � �F2 � � �F3 �.

PQ
\

3 � 
�
�3
2

� 0, 
1
2

� 0, 0 � 4� � 
�
�3
2

, 
1
2

, �4�
PQ

\

2 � 
�3
2

� 0, 
1
2

� 0, 0 � 4� � 
�3
2

, 
1
2

, �4�
PQ

\

1 � �0 � 0, �1 � 0, 0 � 4	 � �0, �1, �4	

F3F1, F2,
F3F1, F2,

Q is �5, 2, 8�.q3 � 8.q2 � 2,q1 � 5,
q3 � 5 � 3.q2 � 3 � �1,q1 � ��2� � 7,
v � PQ

\

� 7i � j � 3k.Q�q1, q2, q3�

v � 4i � 5k � �4, 0, �5	.

j

P��2, 3, 5�.
v � 7i � j � 3k,

v � 4i � 5k
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x

y

P (0, 0, 4)

Q1 (0, −1, 0)

Q2
3

2
1
2

, )) , 0

z

Q3
3

2
1
2

, )) , 0−

Figure 11.23
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In Exercises 1 and 2, approximate the coordinates of the points.

1. 2.

In Exercises 3–6, plot the points on the same three-dimensional
coordinate system.

3. (a) (b)

4. (a) (b)

5. (a) (b)

6. (a) (b)

In Exercises 7–10, find the coordinates of the point.

7. The point is located three units behind the plane, four units
to the right of the plane, and five units above the plane.

8. The point is located seven units in front of the plane, two
units to the left of the plane, and one unit below the plane.

9. The point is located on the axis, 12 units in front of the 
plane.

10. The point is located in the plane, three units to the right of
the plane, and two units above the plane.

11. Think About It What is the coordinate of any point in the
plane?

12. Think About It What is the coordinate of any point in the
plane?

In Exercises 13–24, determine the location of a point 
that satisfies the condition(s).

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

In Exercises 25–28, find the distance between the points.

25.

26.

27.

28.

In Exercises 29–32, find the lengths of the sides of the triangle
with the indicated vertices, and determine whether the triangle
is a right triangle, an isosceles triangle, or neither.

29.

30.

31.

32.

33. Think About It The triangle in Exercise 29 is translated 
five units upward along the axis. Determine the coordinates of
the translated triangle.

34. Think About It The triangle in Exercise 30 is translated 
three units to the right along the axis. Determine the coordi-
nates of the translated triangle.

In Exercises 35 and 36, find the coordinates of the midpoint of
the line segment joining the points.

35. 36.

In Exercises 37– 40, find the standard equation of the sphere.

37. Center: 38. Center:

Radius: 2 Radius: 5

39. Endpoints of a diameter:

40. Center: tangent to the plane

In Exercises 41– 44, complete the square to write the equation of
the sphere in standard form. Find the center and radius.

41.

42.

43.

44.

In Exercises 45–48, describe the solid satisfying the condition.

45. 46.

47.

48.

In Exercises 49–52, (a) find the component form of the vector v,
(b) write the vector using standard unit vector notation, and (c)
sketch the vector with its initial point at the origin.

49. 50.

x

y

(0, 5, 1)(4, 0, 3)

6
4 642

6

4

2

z

v

x

y

(2, 4, 3)

(4, 2, 1)

6

6

6

4

2

z

v

x2 � y2 � z2 > �4x � 6y � 8z � 13

x2 � y2 � z2 < 4x � 6y � 8z � 13

x2 � y2 � z2 > 4x2 � y2 � z2 � 36

4x2 � 4y 2 � 4z2 � 24x � 4y � 8z � 23 � 0

9x2 � 9y 2 � 9z2 � 6x � 18y � 1 � 0

x2 � y2 � z2 � 9x � 2y � 10z � 19 � 0

x2 � y 2 � z2 � 2x � 6y � 8z � 1 � 0

yz-��3, 2, 4�,
�2, 0, 0�, �0, 6, 0�

�4, �1, 1��0, 2, 5�

�4, 0, �6�, �8, 8, 20��5, �9, 7�, ��2, 3, 3�

y-

z-

�4, �1, �1�, �2, 0, �4�, �3, 5, �1�
��1, 0, �2�, ��1, 5, 2�, ��3, �1, 1�
�3, 4, 1�, �0, 6, 2�, �3, 5, 6�
�0, 0, 4�, �2, 6, 7�, �6, 4, �8�

�4, �5, 6��2, 2, 3�,
�6, �2, �2��1, �2, 4�,
�2, �5, �2���2, 3, 2�,

��4, 2, 7��0, 0, 0�,

xyz > 0xyz < 0

z � 4xy < 0,z � �3xy > 0,
�x� > 4�y� � 3

x > 0y < 0

z � �
5
2x � �3

y � 2z � 6


x, y, z�

yz-
x-

xy-
z-

xy-xz-
yz-

yz-
x-

xy-xz-
yz-

xy-xz-
yz-

�4, 0, 5��0, 4, �5�
�5, �2, �2��5, �2, 2�
�3

2, 4, �2��3, �2, 5�
��1, 2, 1��2, 1, 3�

x

y

B

A 21

−2

−2
−3

−4

5

4

3

2

z

x

y4

−2

4
3

2

5

3
B

A

z
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11.2 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.
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51. 52.

In Exercises 53–56, find the component form and magnitude of
the vector with the given initial and terminal points. Then find
a unit vector in the direction of 

53.

54.

55.

56.

In Exercises 57 and 58, the initial and terminal points of a
vector v are given. (a) Sketch the directed line segment, (b) find
the component form of the vector, (c) write the vector using
standard unit vector notation, and (d) sketch the vector with its
initial point at the origin.

57. Initial point: 58. Initial point:

Terminal point: Terminal point:

In Exercises 59 and 60, the vector and its initial point are
given. Find the terminal point.

59. 60.

Initial point: Initial point:

In Exercises 61 and 62, find each scalar multiple of and sketch
its graph.

61. 62.

(a) (b) (a) (b)

(c) (d) (c) (d)

In Exercises 63– 68, find the vector given that 
and 

63. 64.

65. 66.

67. 68.

In Exercises 69–72, determine which of the vectors is (are)
parallel to Use a graphing utility to confirm your results.

69. 70.

(a) (a)

(b) (b)

(c) (c)

(d) (d)

71. has initial point and terminal point 

(a) (b)

72. has initial point and terminal point 

(a) (b)

In Exercises 73–76, use vectors to determine whether the points
are collinear.

73.

74.

75.

76.

In Exercises 77 and 78, use vectors to show that the points form
the vertices of a parallelogram.

77.

78.

In Exercises 79–84, find the magnitude of 

79. 80.

81. 82.

83. 84.

In Exercises 85– 88, find a unit vector (a) in the direction of v
and (b) in the direction opposite of v.

85. 86.

87. 88.

89. Programming You are given the component forms of the
vectors and Write a program for a graphing utility in which
the output is (a) the component form of (b) 
(c) and (d) (e) Run the program for the vectors

and 

In Exercises 91 and 92, determine the values of that satisfy the
equation. Let and 

91. 92.

In Exercises 93–96, find the vector with the given magnitude
and direction 

93. 10

94. 3

95.

96. 7 u � ��4, 6, 2	
u � �2, �2, 1	3

2

u � �1, 1, 1	
u � �0, 3, 3	
Direction         Magnitude

u.
v

�cu � � 4�cv � � 7

v � 2i 1 2j � k.u � �i 1 2j 1 3k
c

v � �5, 4.5, �6	.u � ��1, 3, 4	
�v �.�u �,

�u � v �,u � v,
v.u

v � �8, 0, 0	v � �3, 2, �5	
v � �6, 0, 8	v � �2, �1, 2	

v � �4i � 3j � 7kv � i � 2j � 3k

v � 2i � 5j � kv � 3j � 5k

v � �1, 0, 3	v � �0, 0, 0	

v.

�1, 1, 3�, �9, �1, �2�, �11, 2, �9�, �3, 4, �4�
�2, 9, 1�, �3, 11, 4�, �0, 10, 2�, �1, 12, 5�

�0, 0, 0�, �1, 3, �2�, �2, �6, 4�
�1, 2, 4�, �2, 5, 0�, �0, 1, 5�
�4, �2, 7�, ��2, 0, 3�, �7, �3, 9�
�0, �2, �5�, �3, 4, 4�, �2, 2, 1�

�14, 16, �6	�7, 6, 2	
��2, �4, 4�.�5, 4, 1�z

4j � 2k�6i � 8j � 4k

��2, 3, 5�.�1, �1, 3�z

3
4i � j �

9
8k�1, �4, 2	

12i � 9k�6, 4, 10	
�i �

4
3j �

3
2k�2, 43, �10

3 	
6i � 4j � 9k��6, �4, 10	

z �
1
2i �

2
3j �

3
4kz � �3, 2, �5	

z.

2u � v � w � 3z � 02z � 3u � w

z � 5u � 3v �
1
2wz � 2u � 4v � w

z � u � v � 2wz � u � v

w � �4, 0, �4	.v � �2, 2, �1	,
u � �1, 2, 3	,z,

5
2v1

2v0v3
2v

2v�v�v2v

v � �2, �2, 1	v � �1, 2, 2	

v

�0, 2, 52��0, 6, 2�
v � �1, �2

3, 12	v � �3, �5, 6	

v

��4, 3, 7��3, 3, 4�
�2, �1, �2���1, 2, 3�

�2, 4, �2��1, �2, 4�
��5, 3, 0���4, 3, 1�
��1, 7, �3��4, �5, 2�
�4, 1, 6��3, 2, 0�
Terminal PointInitial Point

v.
v

x

y

(2, 3, 0)

(2, 3, 4)

6
4

2
64

6

4

2

z

v

x

y

(0, 3, 3)

(3, 3, 0)6
4

2
64

6

4

2

z

v
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90. Consider the two nonzero vectors and and let and be
real numbers. Describe the geometric figure generated by
the terminal points of the three vectors and
su � tv.

u � tv,tv,

tsv,u

CAPSTONE
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In Exercises 97 and 98, sketch the vector and write its compo-
nent form.

97. lies in the plane, has magnitude 2, and makes an angle of
with the positive axis.

98. lies in the plane, has magnitude 5, and makes an angle of
with the positive axis.

In Exercises 99 and 100, use vectors to find the point that lies
two-thirds of the way from to 

99. 100.

101. Let and 

(a) Sketch and 

(b) If show that and must both be zero.

(c) Find and such that 

(d) Show that no choice of and yields 

102. Writing The initial and terminal points of the vector are
and Describe the set of all points 

such that 

107. Let and be vertices of a triangle. Find 

108. Let and Describe the set of all
points such that 

109. Numerical, Graphical, and Analytic Analysis The lights in
an auditorium are 24-pound discs of radius 18 inches. Each
disc is supported by three equally spaced cables that are 
inches long (see figure).

(a) Write the tension in each cable as a function of 
Determine the domain of the function.

(b) Use a graphing utility and the function in part (a) to
complete the table.

(c) Use a graphing utility to graph the function in part (a).
Determine the asymptotes of the graph.

(d) Confirm the asymptotes of the graph in part (c) analytically.

(e) Determine the minimum length of each cable if a cable is
designed to carry a maximum load of 10 pounds.

110. Think About It Suppose the length of each cable in Exercise
109 has a fixed length and the radius of each disc is 
inches. Make a conjecture about the limit and give a
reason for your answer.

111. Diagonal of a Cube Find the component form of the unit
vector in the direction of the diagonal of the cube shown in
the figure.

Figure for 111 Figure for 112

112. Tower Guy Wire The guy wire supporting a 100-foot tower
has a tension of 550 pounds. Using the distances shown in the
figure, write the component form of the vector representing
the tension in the wire.

113. Load Supports Find the tension in each of the supporting
cables in the figure if the weight of the crate is 500 newtons.

Figure for 113 Figure for 114

114. Construction A precast concrete wall is temporarily kept in
its vertical position by ropes (see figure). Find the total force
exerted on the pin at position The tensions in and 
are 420 pounds and 650 pounds.

115. Write an equation whose graph consists of the set of points
that are twice as far from as from

B�1, 2, 0�.
A�0, �1, 1�P�x, y, z�

ACABA.

6 ft

A

C

D

10 ft

B

18 ft

8 ft

x
y

z

A

B

C

D

60 cm

70 cm45 cm

65 cm

115 cm

F

100

z

−50

75
x

yy

x

v

⏐⏐ v⏐⏐ = 1

z

v

lim
r0→a� T

r0L � a,

L.
T

18 in.

L

L

�r � r0� � 2.�x, y, z�
r0 � �1, 1, 1	.r � �x, y, z	

AB
\

� BC
\

� CA
\

.CB,A,

�v� � 4.
�x, y, z��x, y, z�.�x1, y1, z1�

v

w � i � 2j � 3k.ba

w � i � 2j � k.ba

baw � 0,

v.u

w � au � bv.u � i � j, v � j � k,

Q�6, 8, 2�P�1, 2, 5�,Q�1, �3, 3�P�4, 3, 0�,

Q.P

z-45�
xz-v

y-30�
yz-v

v
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103. A point in the three-dimensional coordinate system has
coordinates Describe what each coordinate
measures.

104. Give the formula for the distance between the points
and 

105. Give the standard equation of a sphere of radius 
centered at 

106. State the definition of parallel vectors.

�x0, y0, z0�.
r,

�x2, y2, z2�.�x1, y1, z1�

�x0, y0, z0�.

WRITING ABOUT CONCEPTS

L 20 25 30 35 40 45 50

T
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11.3 The Dot Product of Two Vectors 783

11.3 The Dot Product of Two Vectors
■ Use properties of the dot product of two vectors.
■ Find the angle between two vectors using the dot product.
■ Find the direction cosines of a vector in space.
■ Find the projection of a vector onto another vector.
■ Use vectors to find the work done by a constant force.

The Dot Product
So far you have studied two operations with vectors—vector addition and multiplication
by a scalar—each of which yields another vector. In this section you will study a third
vector operation, called the dot product. This product yields a scalar, rather than a
vector.

DEFINITION OF DOT PRODUCT

The dot product of and is

The dot product of and is

u � v � u1v1 � u2v2 � u3v3.

v � �v1, v2, v3�u � �u1, u2, u3�

u � v � u1v1 � u2v2.

v � �v1, v2�u � �u1, u2�

NOTE Because the dot product of two vectors yields a scalar, it is also called the scalar
product (or inner product) of the two vectors. ■

PROOF To prove the first property, let and Then

For the fifth property, let Then

Proofs of the other properties are left to you. ■

 � �v �2.

 � ��v1
2 � v2

2 � v3
2 �2

 v � v � v1
2 � v2

2 � v3
2

v � �v1, v2, v3�.

 � v � u.

 � v1u1 � v2u2 � v3u3

 u � v � u1v1 � u2v2 � u3v3

v � �v1, v2, v3�.u � �u1, u2, u3�

THEOREM 11.4 PROPERTIES OF THE DOT PRODUCT

Let and be vectors in the plane or in space and let be a scalar.

1. Commutative Property

2. Distributive Property

3.

4.

5. v � v � �v �2

0 � v � 0

c�u � v� � cu � v � u � cv

u � �v � w� � u � v � u � w

u � v � v � u

cwv,u,

E X P L O R A T I O N

Interpreting a Dot Product
Several vectors are shown below
on the unit circle. Find the dot
products of several pairs of 
vectors. Then find the angle
between each pair that you used.
Make a conjecture about the 
relationship between the dot 
product of two vectors and the
angle between the vectors.

0°

30°

60°120°

150°

180°

210°

240°
270°

300°

330°

90°
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EXAMPLE 1 Finding Dot Products

Given and find each of the following.

a. b.

c. d.

Solution

a.

b.

c. Theorem 11.4

d. Theorem 11.4

Substitute for 

Definition of dot product

Simplify.

Notice that the result of part (b) is a vector quantity, whereas the results of the other
three parts are scalar quantities. ■

Angle Between Two Vectors
The angle between two nonzero vectors is the angle between their
respective standard position vectors, as shown in Figure 11.24. The next theorem
shows how to find this angle using the dot product. (Note that the angle between the
zero vector and another vector is not defined here.)

0 � � � �,�,

 � 25

 � ��4���4� � �3��3�
w.��4, 3� � ��4, 3� � ��4, 3�

�w�2 � w � w

u � �2v� � 2�u � v� � 2��6� � �12

�u � v�w � �6��4, 3� � �24, �18�
u � v � �2, �2� � �5, 8� � 2�5� � ��2��8� � �6

�w�2u � �2v�

�u � v�wu � v

w � ��4, 3�,v � �5, 8�,u � �2, �2�,

784 Chapter 11 Vectors and the Geometry of Space

Origin

u
v

θ

v − u

The angle between two vectors
Figure 11.24

THEOREM 11.5 ANGLE BETWEEN TWO VECTORS

If is the angle between two nonzero vectors and then

cos � �
u � v

�u� �v �
.

v,u�

PROOF Consider the triangle determined by vectors and as shown in
Figure 11.24. By the Law of Cosines, you can write

Using the properties of the dot product, the left side can be rewritten as

and substitution back into the Law of Cosines yields

■ cos � �
u � v

�u � �v �
.

 �2u � v � �2�u� �v � cos �

 �v �2 � 2u � v � �u�2 � �u�2 � �v �2 � 2 �u� �v � cos �

 � �v �2 � 2u � v � �u�2

 � v � v � u � v � v � u � u � u

 � �v � u� � v � �v � u� � u

 �v � u�2 � �v � u� � �v � u�

�v � u�2 � �u�2 � �v �2 � 2�u� �v � cos �.

v � u,v,u,
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If the angle between two vectors is known, rewriting Theorem 11.5 in the form

produces an alternative way to calculate the dot product. From this form, you can see
that because and are always positive, and will always have the
same sign. Figure 11.25 shows the possible orientations of two vectors.

Figure 11.25

From Theorem 11.5, you can see that two nonzero vectors meet at a right angle
if and only if their dot product is zero. Two such vectors are said to be orthogonal.

From this definition, it follows that the zero vector is orthogonal to every vector
because Moreover, for you know that if and only

if So, you can use Theorem 11.5 to conclude that two nonzero vectors are
orthogonal if and only if the angle between them is 

EXAMPLE 2 Finding the Angle Between Two Vectors

For and find the
angle between each pair of vectors.

a. and b. and c. and 

Solution

a.

Because radians.

b.

Because and are orthogonal. So,

c.

Consequently, Note that and are parallel, with ■v � �2z.zv� � �.

cos � �
v � z

�v � �z�
�

�8 � 0 � 2
�20�5

�
�10
�100

� �1

� � ��2.wuu � w � 0,

cos � �
u � w

�u� �w �
�

3 � 1 � 4
�14�6

�
0

�84
� 0

� � arccos 
�4
�70

	 2.069u � v < 0,

cos � �
u � v

�u� �v �
�

�12 � 0 � 4
�14�20

�
�8

2�14�5
�

�4
�70

zvwuvu

z � �2, 0, �1�,w � �1, �1, �2�,v � ��4, 0, 2�,u � �3, �1, 2�,

��2.
� � ��2.

cos � � 00 � � � �,0 � u � 0.u,

cos � � 10 < cos � < 1cos � � 0�1 < cos � < 0cos � � �1
� � 00 < � < ��2� � ��2��2 < � < �� � �

u
v

Same
direction

θ
u

v

u   v > 0

θ
u

v

u   v = 0

θu

v

u   v < 0

θ

u v

Opposite
direction

cos �u � v�v ��u �

11.3 The Dot Product of Two Vectors 785

Alternative form of dot productu � v � �u� �v � cos �

DEFINITION OF ORTHOGONAL VECTORS

The vectors and are orthogonal if u � v � 0.vu

NOTE The terms “perpendicular,” “orthogonal,” and “normal” all mean essentially the same
thing—meeting at right angles. However, it is common to say that two vectors are orthogonal,
two lines or planes are perpendicular, and a vector is normal to a given line or plane. ■
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Direction Cosines
For a vector in the plane, you have seen that it is convenient to measure direction in
terms of the angle, measured counterclockwise, the positive axis the vector.
In space it is more convenient to measure direction in terms of the angles the
nonzero vector and the three unit vectors and as shown in Figure 11.26. The
angles and are the direction angles of and and are the
direction cosines of Because

and

it follows that By similar reasoning with the unit vectors and you
have

is the angle between and 

is the angle between and 

is the angle between and 

Consequently, any nonzero vector in space has the normalized form

and because is a unit vector, it follows that

EXAMPLE 3 Finding Direction Angles

Find the direction cosines and angles for the vector and show that

Solution Because you can write the following.

Angle between and 

Angle between and 

Angle between and 

Furthermore, the sum of the squares of the direction cosines is

See Figure 11.27. ■

 � 1.

 �
29
29

 cos2 	 � cos2 
 � cos2 � �
4
29

�
9
29

�
16
29

kv� 	 42.0�cos � �
v3

�v �
�

4
�29

jv
 	 56.1�cos 
 �
v2

�v �
�

3
�29

iv	 	 68.2�cos 	 �
v1

�v �
�

2
�29

�v � � �22 � 32 � 42 � �29,

cos2 	 � cos2 
 � cos2 � � 1.
v � 2i � 3j � 4k,

cos2 	 � cos2 
 � cos2 � � 1.

v��v �

v
�v�

�
v1

�v �
i �

v2

�v �
j �

v3

�v �
k � cos 	 i � cos 
 j � cos � k

v

k.v�cos � �
v3

�v �
.

j.v
cos 
 �
v2

�v �

i.v	cos 	 �
v1

�v �

k,jcos 	 � v1��v �.

v � i � �v1, v2, v3� � �1, 0, 0� � v1

v � i � �v � � i � cos 	 � �v � cos 	

v.
cos �cos 
,cos 	 ,v,�	, 
,

k,j,i,v
between

tox-from

786 Chapter 11 Vectors and the Geometry of Space

x

y

v

j

k

i

γ

β
α

z

Direction angles
Figure 11.26

z

x y

4
3

2
1

4
3

1
2

4

3

2

1

γ

βα

γ
β = angle between v and j

= angle between v and k

v = 2i + 3j + 4k

α = angle between v and i

The direction angles of v
Figure 11.27
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Projections and Vector Components
You have already seen applications in which two vectors are added to produce a
resultant vector. Many applications in physics and engineering pose the reverse
problem—decomposing a given vector into the sum of two vector components. The
following physical example enables you to see the usefulness of this procedure.

Consider a boat on an inclined ramp, as shown in Figure 11.28. The force due
to gravity pulls the boat the ramp and the ramp. These two forces,
and are orthogonal—they are called the vector components of 

Vector components of 

The forces and help you analyze the effect of gravity on the boat. For example,
indicates the force necessary to keep the boat from rolling down the ramp, whereas
indicates the force that the tires must withstand.

projection of u onto v vector component of u along v
vector component of u orthogonal to v

Figure 11.29

EXAMPLE 4 Finding a Vector Component of u Orthogonal to v

Find the vector component of that is orthogonal to given that
and

Solution Because where is parallel to it follows that is the
vector component of orthogonal to So, you have

Check to see that is orthogonal to as shown in Figure 11.30. ■v,w2

 � ��3, 4�.
 � �5, 10� � �8, 6�

w2 � u � w1

v.u
w2v,w1u � w1 � w2,

u � �5, 10� � w1 � w2.

w1 � projvu � �8, 6�
v � �4, 3�,u � �5, 10�

w2 �
�w1 � projvu �

θ

w1

w2
u

v

is obtuse.θ

θ

w1

w2
u

v

is acute.θ

w2

w1

w2w1

FF � w1 � w2

F.w2,
w1againstdown

F

11.3 The Dot Product of Two Vectors 787

DEFINITIONS OF PROJECTION AND VECTOR COMPONENTS

Let and be nonzero vectors. Moreover, let where is
parallel to , and is orthogonal to as shown in Figure 11.29.

1. is called the projection of onto or the vector component of along
and is denoted by 

2. is called the vector component of orthogonal to v.uw2 � u � w1

w1 � projvu.v,
uvuw1

v,w2v
w1u � w1 � w2,vu

F
w2

w1

The force due to gravity pulls the boat
against the ramp and down the ramp.
Figure 11.28

x

w1w2

u

v

(−3, 4)

(8, 6)

(4, 3)

(5, 10)

−2−4 2 4 6 8

−2

2

4

8

10

y

Figure 11.30
u � w1 � w2
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From Example 4, you can see that it is easy to find the vector component once
you have found the projection, of onto To find this projection, use the dot
product given in the theorem below, which you will prove in Exercise 92.

The projection of onto can be written as a scalar multiple of a unit vector in
the direction of That is,

The scalar is called the component of in the direction of 

EXAMPLE 5 Decomposing a Vector into Vector Components

Find the projection of onto and the vector component of orthogonal to for the
vectors and shown in Figure 11.31.

Solution The projection of onto is

The vector component of orthogonal to is the vector

EXAMPLE 6 Finding a Force

A 600-pound boat sits on a ramp inclined at as shown in Figure 11.32. What force
is required to keep the boat from rolling down the ramp?

Solution Because the force due to gravity is vertical and downward, you can
represent the gravitational force by the vector To find the force required
to keep the boat from rolling down the ramp, project onto a unit vector in the
direction of the ramp, as follows.

Unit vector along ramp

Therefore, the projection of onto is given by

The magnitude of this force is 300, and therefore a force of 300 pounds is required to
keep the boat from rolling down the ramp. ■

w1 � projvF � 
F � v
�v �2 �v � �F � v�v � ��600�
1

2�v � �300
�3
2

i �
1
2

j�.

vF

v � cos 30� i � sin 30�j �
�3
2

i �
1
2

j

vF
F � �600j.

30�,

w2 � u � w1 � �3i � 5j � 2k� � 
14
9

i �
2
9

j �
4
9

k� �
13
9

i �
47
9

j �
22
9

k.

vu

w1 � 
u � v
�v �2 �v � 
12

54��7i � j � 2k� �
14
9

i �
2
9

j �
4
9

k.

vu

v � 7i � j � 2ku � 3i � 5j � 2k
vuvu

v.uk

k �
u � v
�v �

� �u � cos �.
u � v
�v �2 �v � 
u � v

�v � � 
v

�v �
� �k� v

�v �

v.
vu

v.uw1,
w2

788 Chapter 11 Vectors and the Geometry of Space

THEOREM 11.6 PROJECTION USING THE DOT PRODUCT

If and are nonzero vectors, then the projection of onto is given by

projvu � 
u � v
�v �2 �v.

vuvu

8

6

2

4

2

−2

−4

y

x

w1

w2

u

v

u = 3i − 5j + 2k
v = 7i + j − 2k

z

Figure 11.31
u � w1 � w2

F

w1 = projv(F)

v

30°

w1

Figure 11.32

NOTE Note the distinction between
the terms “component” and “vector com-
ponent.” For example, using the standard
unit vectors with is
the component of in the direction of 
and is the vector component in the
direction of i.

u1i
iu

u1u � u1i � u2 j,
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Work
The work W done by the constant force acting along the line of motion of an object
is given by

as shown in Figure 11.33(a). If the constant force is not directed along the line of
motion, you can see from Figure 11.33(b) that the work W done by the force is

This notion of work is summarized in the following definition.

EXAMPLE 7 Finding Work

To close a sliding door, a person pulls on a rope with a constant force of 50 pounds at
a constant angle of as shown in Figure 11.34. Find the work done in moving the
door 12 feet to its closed position.

Solution Using a projection, you can calculate the work as follows.

Projection form for work

■ � 300 foot-pounds

 �
1
2

�50��12�

 � cos�60�� �F � � PQ
\

�
 W � �projPQ

\ F � �PQ
\

�

60�,

W � �projPQ
\F � � PQ

\

� � �cos ���F� � PQ
\

� � F � PQ
\

.

F

W � �magnitude of force��distance� � �F � � PQ
\

�

F
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In Exercises 1–8, find (a) (b) (c) (d) 
and (e) 

1. 2.

3. 4.

5. 6.

7. 8.

In Exercises 9 and 10, find 

9. and the angle between and is 

10. and the angle between and is 

In Exercises 11–18, find the angle between the vectors.

11. 12.

13.

14.

15. 16.

17. 18.

In Exercises 19–26, determine whether and are orthogonal,
parallel, or neither.

19.

20. v � � 3
2, �1

6�u � �2, 18�,
v � �1, 1�u � �4, 0�,

vu

v � i � 2j � kv � �2j � 3k

u � 2i � 3j � ku � 3i � 4j

v � 2i � 3jv � �2, 1, �1�
u � 3i � 2j � ku � �1, 1, 1�

v � cos
3�

4 � i � sin
3�

4 � j

u � cos
�

6� i � sin
�

6� j

v � �2i � 4ju � 3i � j,

v � �2, �1�u � �3, 1�,v � �2, �2�u � �1, 1�,

�

5��6.vu�v � � 25,�u � � 40,

��3.vu�v � � 5,�u � � 8,

u � v.

v � i � 3j � 2kv � i � k

u � 2i � j � 2ku � 2i � j � k

v � iu � i,v � �0, 6, 5�u � �2, �3, 4�,
v � �7, 5�u � ��4, 8�,v � ��3, 2�u � �6, �4�,

v � ��2, 3�u � �4, 10�,v � ��1, 5�u � �3, 4�,

u � �2v
.
�u � v
v,�u �2,u � u,u � v,

11.3 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

DEFINITION OF WORK

The work done by a constant force as its point of application moves
along the vector is given by either of the following.

1. Projection form

2. Dot product formW � F � PQ
\

 W � �projPQ
\ F � �PQ

\

�

PQ
\

FW

P Q

12 ft

12 ft

F

60°

projPQF

Figure 11.34

Work = ⎜⎜F⎜⎜⎜⎜PQ⎜⎜

F

P Q

(a) Force acts along the line of motion.

projPQ F

F

P Q

θ

Work = ⎜⎜projPQ F⎜⎜⎜⎜PQ⎜⎜

(b) Force acts at angle with the line of motion.
Figure 11.33

�
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21. 22.

23. 24.

25. 26.

In Exercises 27–30, the vertices of a triangle are given.
Determine whether the triangle is an acute triangle, an obtuse
triangle, or a right triangle. Explain your reasoning.

27.

28.

29.

30.

In Exercises 31–34, find the direction cosines of and demon-
strate that the sum of the squares of the direction cosines is 1.

31.

32.

33.

34.

In Exercises 35–38, find the direction angles of the vector.

35. 36.

37. 38.

In Exercises 39 and 40, use a graphing utility to find the
magnitude and direction angles of the resultant of forces and

with initial points at the origin. The magnitude and terminal
point of each vector are given.

39. 50 lb

80 lb

40. 300 N

100 N

41. Load-Supporting Cables A load is supported by three cables,
as shown in the figure. Find the direction angles of the load-
supporting cable 

42. Load-Supporting Cables The tension in the cable in
Exercise 41 is 200 newtons. Determine the weight of the load. 

In Exercises 43–50, (a) find the projection of onto and (b)
find the vector component of orthogonal to 

43.

44.

45.

46.

47.

48.

49.

50.

59. Revenue The vector gives the
numbers of hamburgers, chicken sandwiches, and cheeseburgers,
respectively, sold at a fast-food restaurant in one week. The
vector gives the prices (in dollars) per unit
for the three food items. Find the dot product and explain
what information it gives.

60. Revenue Repeat Exercise 59 after increasing prices by 4%.
Identify the vector operation used to increase prices by 4%.

61. Programming Given vectors and in component form,
write a program for a graphing utility in which the output is 
(a) (b) and (c) the angle between and 

62. Programming Use the program you wrote in Exercise 61 to
find the angle between the vectors and
v � �2, 5, 2�.

u � �8, �4, 2�

v.u�v �,�u �,

vu

u � v,
�1.35, 2.65, 1.85�v �

u � �3240, 1450, 2235�

v � 3i � 2ku � i � 4k,

v � 3j � 4ku � 2i � j � 2k,

v � �2, 1, �1�u � �8, 2, 0�,
v � ��1, 1, 1�u � �0, 3, 3�,
v � 3i � 2ju � 2i � 3j,

v � 5i � ju � 2i � 3j,

v � �1, 3�u � �9, 7�,
v � �1, 4�u � �6, 7�,

v.u
v,u

OA

x

y

C

O

B

A
(0, 10, 10)

(−4, −6, 10)

(4, −6, 10)

300 lb

z

OA.

�5, 15, 0�F2

��20, �10, 5�F1

�12, 7, �5�F2

�10, 5, 3�F1

Terminal PointMagnitudeVector

F2

F1

u � ��2, 6, 1�u � ��1, 5, 2�
u � �4i � 3j � 5ku � 3i � 2j � 2k

u � �a, b, c�
u � �0, 6, �4�
u � 5i � 3j � k

u � i � 2j � 2k

u

�2, �7, 3�, ��1, 5, 8�, �4, 6, �1�
�2, 0, 1�, �0, 1, 2), ��0.5, 1.5, 0�
��3, 0, 0�, �0, 0, 0�, �1, 2, 3�
�1, 2, 0�, �0, 0, 0�, ��2, 1, 0�

v � �sin �, �cos �, 0�v � ��1, �1, �1�
u � �cos �, sin �, �1�u � �2, �3, 1�
v � 2i � j � kv � i � 2j � k

u � �2i � 3j � ku � j � 6k

v � 2i � 4jv � � 1
2, �2

3�
u � �

1
3�i � 2j�u � �4, 3�
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51. Define the dot product of vectors and 

52. State the definition of orthogonal vectors. If vectors are
neither parallel nor orthogonal, how do you find the angle
between them? Explain.

53. Determine which of the following are defined for nonzero
vectors and Explain your reasoning.

(a) (b)

(c) (d)

54. Describe direction cosines and direction angles of a vector 

55. Give a geometric description of the projection of onto 

56. What can be said about the vectors and if (a) the
projection of onto equals and (b) the projection of 
onto equals 

57. If the projection of onto has the same magnitude as the
projection of onto can you conclude that 
Explain.

�u� � �v �?u,v
vu

0?v
uuvu

vu

v.u

v.

�u� � �v � w�u � v � w

�u � v�wu � �v � w�
w.v,u,

v.u

WRITING ABOUT CONCEPTS

58. What is known about the angle between two nonzero
vectors and if

(a) (b) (c) u � v < 0?u � v > 0?u � v � 0?

v,u
�,

CAPSTONE
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63. Programming Given vectors and in component form,
write a program for a graphing utility in which the output is the
component form of the projection of onto 

64. Programming Use the program you wrote in Exercise 63 to
find the projection of onto for and

Think About It In Exercises 65 and 66, use the figure to
determine mentally the projection of onto (The coordinates
of the terminal points of the vectors in standard position are
given.) Verify your results analytically.

65. 66.

In Exercises 67–70, find two vectors in opposite directions that
are orthogonal to the vector (The answers are not unique.)

67. 68.

69. 70.

71. Braking Load A 48,000-pound truck is parked on a slope
(see figure). Assume the only force to overcome is that due to
gravity. Find (a) the force required to keep the truck from
rolling down the hill and (b) the force perpendicular to the hill.

Figure for 71 Figure for 72

72. Load-Supporting Cables Find the magnitude of the projection
of the load-supporting cable onto the positive axis as
shown in the figure.

73. Work An object is pulled 10 feet across a floor, using a force
of 85 pounds. The direction of the force is above the
horizontal (see figure). Find the work done.

Figure for 73 Figure for 74

74. Work A toy wagon is pulled by exerting a force of 25 pounds
on a handle that makes a angle with the horizontal (see 
figure in left column). Find the work done in pulling the wagon
50 feet.

75. Work A car is towed using a force of 1600 newtons. The
chain used to pull the car makes a angle with the horizontal.
Find the work done in towing the car 2 kilometers.

76. Work A sled is pulled by exerting a force of 100 newtons on
a rope that makes a angle with the horizontal. Find the work
done in pulling the sled 40 meters.

True or False? In Exercises 77 and 78, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

77. If and then 

78. If and are orthogonal to then is orthogonal to 

79. Find the angle between a cube’s diagonal and one of its edges.

80. Find the angle between the diagonal of a cube and the diagonal
of one of its sides.

In Exercises 81–84, (a) find all points of intersection of the
graphs of the two equations, (b) find the unit tangent vectors to
each curve at their points of intersection, and (c) find the angles

between the curves at their points of intersection.

81.

82.

83.

84.

85. Use vectors to prove that the diagonals of a rhombus are
perpendicular.

86. Use vectors to prove that a parallelogram is a rectangle if and
only if its diagonals are equal in length.

87. Bond Angle Consider a regular tetrahedron with vertices
and where is a positive

real number.

(a) Sketch the graph of the tetrahedron.

(b) Find the length of each edge.

(c) Find the angle between any two edges.

(d) Find the angle between the line segments from the centroid
to two vertices. This is the bond angle for a

molecule such as or where the structure of the
molecule is a tetrahedron.

88. Consider the vectors and
where Find the dot product of the

vectors and use the result to prove the identity

89. Prove that 

90. Prove the Cauchy-Schwarz Inequality

91. Prove the triangle inequality 

92. Prove Theorem 11.6.

�u � v � � �u � � �v �.
�u � v� � �u � �v �.

�u � v�2 � �u� 2 � �v �2 � 2u � v.

cos�	 � 
� � cos 	 cos 
 � sin 	 sin 
.

	 > 
.v � �cos 
, sin 
, 0�,
u � �cos 	, sin 	, 0�

PbCl4,CH 4

�k�2, k�2, k�2�

k�0, k, k�,�k, 0, k�,�k, k, 0�,�0, 0, 0�,

y � x3 � 1� y � 1�2 � x,

y � x2 � 1y � 1 � x2,

y � x1�3y � x3,

y � x1�3y � x2,

�0� � � � 90�


w.u � vw,vu

v � w.u 
 0,u � v � u � w

25�

25�

20�

20°
60°

10 ft

85 lb

Not drawn to scale

60�

z-OA

(−5, −5, 20)

(10, 5, 20)

y

x

z

1000 kg

A

B
C

O

(5, −5, 20)

Weight = 48,000 lb

10°

10�

u � �4, �3, 6�u � �3, 1, �2�
u � 9i � 4ju � �

1
4 i �

3
2 j

u.

(4, 6)

(3, −2)u

v

x

y

−2 4 6
−2

2

4

6

−4 2 4 6

2

4

6

(−2, −3)

(4, 6)

u

v

x

y

v.u

v � ��1, 3, 4�.
u � �5, 6, 2�vu

v.u

vu
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■ Find the cross product of two vectors in space.
■ Use the triple scalar product of three vectors in space.

The Cross Product
Many applications in physics, engineering, and geometry involve finding a vector in
space that is orthogonal to two given vectors. In this section you will study a product
that will yield such a vector. It is called the cross product, and it is most conveniently
defined and calculated using the standard unit vector form. Because the cross product
yields a vector, it is also called the vector product.

A convenient way to calculate is to use the following determinant form with
cofactor expansion. (This determinant form is used simply to help remember the
formula for the cross product—it is technically not a determinant because the entries
of the corresponding matrix are not all real numbers.)

Note the minus sign in front of the component. Each of the three determinants
can be evaluated by using the following diagonal pattern.

Here are a couple of examples.

� 4
�6

0
3� � �4��3� � �0���6� � 12

�23 4
�1� � �2���1� � �4��3� � �2 � 12 � �14

�ac b
d � � ad � bc

2 � 2j-

 � �u2v3 � u3v2� i � �u1v3 � u3v1� j � �u1v2 � u2v1�k

 � � u2

v2

u3

v3 � i � � u1

v1

u3

v3 �  j � � u1

v1

u2

v2 �  k

 � � i
u1
v

1

j
u2

v2

k
u3

v3 �  i � � i
u1
v

1

j
u2

v2

k
u3

v3 �   j � � i
u1
v

1

j
u2

v2

k
u3

v3 �   k
 u � v � � i  

u1

v1

j
u2

v2

 k
u3

v3 �
3 � 3

u � v
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11.4 The Cross Product of Two Vectors in Space

DEFINITION OF CROSS PRODUCT OF TWO VECTORS IN SPACE

Let 

and

be vectors in space. The cross product of and is the vector

u � v � �u2v3 � u3v2�i � �u1v3 � u3v1�j � �u1v2 � u2v1�k.

vu

v � v1i � v2 j � v3ku � u1i � u2 j � u3k

NOTE Be sure you see that this definition applies only to three-dimensional vectors. The
cross product is not defined for two-dimensional vectors. ■

E X P L O R A T I O N

Geometric Property of the Cross
Product Three pairs of vectors
are shown below. Use the defini-
tion to find the cross product of
each pair. Sketch all three vectors
in a three-dimensional system.
Describe any relationships among
the three vectors. Use your
description to write a conjecture
about and 

a.

b.

c.

x

y
1 2 3

2

−2
−3

3

2

1

−3

−3 −2

u

v

z

u � �3, 3, 0�, v � �3, �3, 0�

x

y
1 2 33

2
1

−2
−3

3

2

−3

−2

−3 −2

v

u

z

u � �0, 3, 3�, v � �0, �3, 3�

x

y
1 2 33

1

−2
−3

3

2

1

−3

−3
u

v

z

u � �3, 0, 3�, v � �3, 0, �3�

u � v.v,u,

Put “ ” in Row 2.u

Put “ ” in Row 3.v
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EXAMPLE 1 Finding the Cross Product

Given and find each of the following.

a. b. c.

Solution

a.

b.

Note that this result is the negative of that in part (a).

c. ■

The results obtained in Example 1 suggest some interesting properties
of the cross product. For instance, and These
properties, and several others, are summarized in the following theorem.

v � v � 0.u � v � ��v � u�,
algebraic

v � v � � i
3
3

j
1
1

k
�2
�2� � 0

 � �3i � 5 j � 7k

 � �1 � 4�i � �3 � 2�j � ��6 � 1�k

 v � u � � i
3
1

j
1

�2

k
�2

1� � � 1
�2

�2
1� i � �31 �2

1�j � �31 1
�2�k

 � 3i � 5 j � 7k

 � �4 � 1� i � ��2 � 3�j � �1 � 6�k

 u � v � � i
1
3

j
�2

1

k
1

�2� � ��2
1

1
�2� i � �13 1

�2�j � �13 �2
1�k

v � vv � uu � v

v � 3i � j � 2k,u � i � 2 j � k
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THEOREM 11.7 ALGEBRAIC PROPERTIES OF THE CROSS PRODUCT

Let and be vectors in space, and let be a scalar.

1.

2.

3.

4.

5.

6. u � �v � w� � �u � v� � w

u � u � 0

u � 0 � 0 � u � 0

c�u � v� � �cu� � v � u � �cv�
u � �v � w� � �u � v� � �u � w�
u � v � ��v � u�

cwv,u,

PROOF To prove Property 1, let and 
Then,

and

which implies that Proofs of Properties 2, 3, 5, and 6 are left as
exercises (see Exercises 59–62). ■

u � v � ��v � u�.

v � u � �v2u3 � v3u2�i � �v1u 3 � v3u1�j � �v1u2 � v2u1�k

u � v � �u2v3 � u3v2�i � �u1v3 � u3v1�j � �u1v2 � u2v1�k

v � v1i � v2 j � v3k.u � u1i � u2 j � u3k

NOTATION FOR DOT AND CROSS
PRODUCTS

The notation for the dot product and cross
product of vectors was first introduced by 
the American physicist Josiah Willard Gibbs
(1839–1903). In the early 1880s, Gibbs built
a system to represent physical quantities
called “vector analysis.”  The system was a
departure from Hamilton’s theory of quaternions.
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Note that Property 1 of Theorem 11.7 indicates that the cross product is not
commutative. In particular, this property indicates that the vectors and 
have equal lengths but opposite directions. The following theorem lists some other
geometric properties of the cross product of two vectors.

Both and are perpendicular to the plane determined by and One
way to remember the orientations of the vectors and is to compare them
with the unit vectors and as shown in Figure 11.36. The three vectors

and form a right-handed system, whereas the three vectors and 
form a left-handed system.

Right-handed systems
Figure 11.36

u × v

v

u
Plane determined
by u and v

j

i

k = i × j

xy-plane

v � uv,u,u � vv,u,
k � i � j,j,i,

u � vv,u,
v.uv � uu � v

v � uu � v
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THEOREM 11.8 GEOMETRIC PROPERTIES OF THE CROSS PRODUCT

Let and be nonzero vectors in space, and let be the angle between and 

1. is orthogonal to both and 

2.

3. if and only if and are scalar multiples of each other.

4. area of parallelogram having and as adjacent sides.vu�u � v � �

vuu � v � 0

�u � v � � �u� �v � sin �

v.uu � v

v.u�vu

PROOF To prove Property 2, note because it follows that

To prove Property 4, refer to Figure 11.35, which is a parallelogram having and 
as adjacent sides. Because the height of the parallelogram is the area is

Proofs of Properties 1 and 3 are left as exercises (see Exercises 63 and 64). ■

 � �u � v�.
 � �u� �v� sin�

 Area � �base��height�

�v� sin �,
uv

 � �u � v �.

 � ��u2v3 � u3v2)
2 � �u1v3 � u3v1�2 � �u1v2 � u2v1�2

 � ��u1
2 � u2

2 � u3
2��v1

2 � v2
2 � v3

2� � �u1v1 � u2v2 � u3v3�2

 � � �u�2 �v�2 � �u � v�2

 � �u� �v��1 �
�u � v�2

�u�2 �v�2

 �u� �v� sin� � �u� �v��1 � cos2 �

cos � � �u � v�	��u� �v��,

NOTE It follows from Properties 1
and 2 in Theorem 11.8 that if is a unit
vector orthogonal to both and then

u � v � ±� �u� �v � sin� �n.

v,u
n

u

v

θ

  ⎜⎜v⎜⎜ θsin

The vectors u and v form adjacent sides of a
parallelogram.
Figure 11.35
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EXAMPLE 2 Using the Cross Product

Find a unit vector that is orthogonal to both

and

Solution The cross product as shown in Figure 11.37, is orthogonal to both 
and 

Cross product

Because 

a unit vector orthogonal to both and is

■

EXAMPLE 3 Geometric Application of the Cross Product

Show that the quadrilateral with vertices at the following points is a parallelogram,
and find its area.

Solution From Figure 11.38 you can see that the sides of the quadrilateral corre-
spond to the following four vectors.

So, is parallel to and is parallel to , and you can conclude that the
quadrilateral is a parallelogram with and as adjacent sides. Moreover, because

Cross product

the area of the parallelogram is

Is the parallelogram a rectangle? You can determine whether it is by finding the angle
between the vectors and ■AD

\

.AB
\

� AB
\

� AD
\

� � �1036 
 32.19.

 � 26i � 18j � 6k

AB
\

� AD
\

� � i
�3

0

j
4

�2

k
1
6�

AD
\

AB
\

CB
\

AD
\

CD
\

AB
\

CB
\

� 0i � 2j � 6k � �AD
\

AD
\

� 0i � 2j � 6k

CD
\

� 3i � 4j � k � �AB
\

AB
\

� �3i � 4j � k

 D � �5, 0, 6� C � �2, 4, 7�
 B � �2, 6, 1� A � �5, 2, 0�

u � v
�u � v�

� �
3

�134
i �

2
�134

j �
11

�134
k.

vu

�u � v� � ���3�2 � 22 � 112 � �134

 � �3i � 2j � 11k

u � v � � i
1
2

j
�4

3

k
1
0�

v.
uu � v,

v � 2i � 3j.u � i � 4j � k
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x

y

2

4

6

8

10

12

2
4

4

2

−4

(−3, 2, 11)

(2, 3, 0)

(1, −4, 1)
u

v

z

u × v

The vector is orthogonal to both 
and 
Figure 11.37

v.
uu � v

y

x

6

2 4 6

8

6

2

C = (2, 4, 7)

D = (5, 0, 6)

B = (2, 6, 1)

A = (5, 2, 0)

z

The area of the parallelogram is approximately
32.19.
Figure 11.38

NOTE In Example 2, note that you could have used the cross product to form a unit
vector that is orthogonal to both and With that choice, you would have obtained the
negative of the unit vector found in the example. ■

v.u
v � u
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In physics, the cross product can be used to measure torque—the moment of
a force about a point P, as shown in Figure 11.39. If the point of application of the
force is the moment of about is given by

Moment of about 

The magnitude of the moment measures the tendency of the vector to rotate
counterclockwise (using the right-hand rule) about an axis directed along the vector 

EXAMPLE 4 An Application of the Cross Product

A vertical force of 50 pounds is applied to the end of a one-foot lever that is attached
to an axle at point as shown in Figure 11.40. Find the moment of this force about
the point when 

Solution If you represent the 50-pound force as and the lever as

the moment of about is given by

Moment of about 

The magnitude of this moment is 25 foot-pounds. ■

The Triple Scalar Product
For vectors and in space, the dot product of and 

is called the triple scalar product, as defined in Theorem 11.9. The proof of this
theorem is left as an exercise (see Exercise 67).

u � �v � w�

v � wuwv,u,

PFM � PQ
\

� F � � i

0

0

     

j

1
2
0

     

k

�3
  2  
�50� � �25i.

PF

PQ
\

� cos�60��j � sin�60��k �
1
2

j �
�3
2

k

F � �50k

� � 60�.P
P,

M.
PQ

\

M

PFM � PQ
\

� F.

PFQ,
F

M
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NOTE In Example 4, note that the moment (the tendency of the lever to rotate about its axle)
is dependent on the angle When the moment is 0. The moment is greatest when

■� � 0.
� � 		2,�.

NOTE The value of a determinant is multiplied by if two rows are interchanged. After
two such interchanges, the value of the determinant will be unchanged. So, the following triple
scalar products are equivalent.

■w � �u � v�v � �w � u� �u � �v � w� �

�1

THEOREM 11.9 THE TRIPLE SCALAR PRODUCT

For and 
the triple scalar product is given by

u � �v � w� � �u1

v1

w1

u2

v2

w2

u3

w3

v3 �.
w � w1i � w2j � w3k,u � u1i � u2 j � u3k, v � v1i � v2 j � v3k,

■ FOR FURTHER INFORMATION To
see how the cross product is used to
model the torque of the robot arm of a
space shuttle, see the article “The Long
Arm of Calculus” by Ethan Berkove 
and Rich Marchand in The College
Mathematics Journal. To view this 
article, go to the website 
www.matharticles.com.

F

M

PQ

Q

P

The moment of F about 
Figure 11.39

P

x

y

F

Q

P
60°

z

A vertical force of 50 pounds is applied at
point 
Figure 11.40

Q.
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If the vectors and do not lie in the same plane, the triple scalar product
can be used to determine the volume of the parallelepiped (a polyhedron,

all of whose faces are parallelograms) with and as adjacent edges, as shown in
Figure 11.41. This is established in the following theorem.

EXAMPLE 5 Volume by the Triple Scalar Product

Find the volume of the parallelepiped shown in Figure 11.42 having
and as adjacent edges.

Solution By Theorem 11.10, you have

Triple scalar product

■

A natural consequence of Theorem 11.10 is that the volume of the parallelepiped
is 0 if and only if the three vectors are coplanar. That is, if the vectors 

and have the same initial point, they lie in the same
plane if and only if

u � �v � w� � � u1

v1

w1

u2

v2

w2

u3

v3

w3� � 0.

w � �w1, w2, w3�v � �v1, v2, v3�,
u � �u1, u2, u3�,

 � 36.

 � 3�4� � 5�6� � 1��6�

 � 3�21 �2
1� � ��5��03 �2

1� � �1��03 2
1�

 � �303 �5
2
1

1
�2

1�
 V � �u � �v � w��

w � 3i � j � ku � 3i � 5j � k, v � 2j � 2k,

wv,u,
u � �v � w)

wv,u,
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THEOREM 11.10 GEOMETRIC PROPERTY OF THE TRIPLE SCALAR PRODUCT

The volume of a parallelepiped with vectors and as adjacent edges
is given by

V � �u � �v � w��.

wv,u,V

PROOF In Figure 11.41, note that

area of base

and

height of parallelepiped.

Therefore, the volume is

■ � �u � �v � w��.
 � �u � �v � w�

�v � w� ��v � w�

V � �height��area of base� � �projv�wu� �v � w�

�projv�wu� �

�v � w� �

u

w
v

⎜⎜projv × wu⎜⎜

v × w

Area of base
Volume of parallelepiped
Figure 11.41

� �u � �v � w��
� �v � w �

y

6

3

2

1
u

w
v

(0, 2, −2)

(3, −5, 1) (3, 1, 1)

x

z

The parallelepiped has a volume of 36.
Figure 11.42
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In Exercises 1–6, find the cross product of the unit vectors and
sketch your result.

1. 2.

3. 4.

5. 6.

In Exercises 7–10, find (a) (b) and (c) 

7. 8.

9. 10.

In Exercises 11–16, find and show that it is orthogonal to
both and 

11. 12.

13. 14.

15. 16.

Think About It In Exercises 17–20, use the vectors and 
shown in the figure to sketch a vector in the direction of the
indicated cross product in a right-handed system.

17. 18.

19. 20.

In Exercises 21–24, use a computer algebra system to find 
and a unit vector orthogonal to and 

21. 22.

23. 24.

25. Programming Given the vectors and in component form,
write a program for a graphing utility in which the output is

and 

26. Programming Use the program you wrote in Exercise 25 to
find and for and 

Area In Exercises 27–30, find the area of the parallelogram
that has the given vectors as adjacent sides. Use a computer
algebra system or a graphing utility to verify your result.

27. 28.

29. 30.

Area In Exercises 31 and 32, verify that the points are the
vertices of a parallelogram, and find its area.

31.

32.

Area In Exercises 33–36, find the area of the triangle with the
given vertices. Hint: is the area of the triangle having

and as adjacent sides.
33.

34.

35.

36.

37. Torque A child applies the brakes on a bicycle by applying a
downward force of 20 pounds on the pedal when the crank
makes a angle with the horizontal (see figure). The crank is
6 inches in length. Find the torque at 

Figure for 37 Figure for 38

38. Torque Both the magnitude and the direction of the force on
a crankshaft change as the crankshaft rotates. Find the torque
on the crankshaft using the position and data shown in the figure.

39. Optimization A force of 56 pounds acts on the pipe wrench
shown in the figure on the next page.

(a) Find the magnitude of the moment about by evaluating
Use a graphing utility to graph the resulting

function of 

(b) Use the result of part (a) to determine the magnitude of the
moment when 

(c) Use the result of part (a) to determine the angle when the
magnitude of the moment is maximum. Is the answer what
you expected? Why or why not?

�

� � 45�.

�.
�OA

\

� F �.
O

0.1
6 f

t

2000 lb60°40°
P

6 in.
F = 20 lb

P.
40�

A�1, 2, 0�, B��2, 1, 0�, C�0, 0, 0�
A�2, �7, 3�, B��1, 5, 8�, C�4, 6, �1�
A�2, �3, 4�, B�0, 1, 2�, C��1, 2, 0�
A�0, 0, 0�, B�1, 0, 3�, C��3, 2, 0�

�vu

1
2��u� v���

A�2, �3, 1�, B�6, 5, �1�, C�7, 2, 2�, D�3, �6, 4�
A�0, 3, 2�, B�1, 5, 5�, C�6, 9, 5�, D�5, 7, 2�

v � ��1, 2, 0�v � �1, 2, 3�
u � �2, �1, 0�u � �3, 2, �1�
v � j � kv � j � k

u � i � j � ku � j

v � �3, 8, 5�.u � ��2, 6, 10��u � v�u � v

�u � v�.u � v

vu

v � 1.5i � 6.2kv � 0.4i � 0.8j � 0.2k

u � 0.7ku � �3i � 2j � 5k

v � �10, �12, �2�v � �2.5, 9, 3�
u � ��8, �6, 4�u � �4, �3.5, 7�

v.u
u � v

u � �u � v���v� � u

v � uu � v

x

y

v

u 6
4

3
2

1

6

4
5

2
3

1

z

vu

v � �2i � j � kv � 2i � j � k

u � i � 6ju � i � j � k

v � �5, �3, 0�v � �1, �2, 1�
u � ��10, 0, 6�u � �2, �3, 1�
v � �0, 1, 0�v � ��2, 5, 0�
u � ��1, 1, 2�u � �12, �3, 0�

v.u
u � v

v � �1, 5, 1�v � �1, �1, 5�
u � �3, �2, �2�u � �7, 3, 2�
v � 2i � 3j � 2kv � 3i � 2j � 5k

u � 3i � 5ku � �2i � 4j

v � v.v � u,u � v,

k � ii � k

k � jj � k

i � jj � i
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Figure for 39 Figure for 40

40. Optimization A force of 180 pounds acts on the bracket
shown in the figure.

(a) Determine the vector and the vector representing the
force. ( will be in terms of .)

(b) Find the magnitude of the moment about by evaluating

(c) Use the result of part (b) to determine the magnitude of the
moment when 

(d) Use the result of part (b) to determine the angle when the
magnitude of the moment is maximum. At that angle, what
is the relationship between the vectors and Is it what
you expected? Why or why not?

(e) Use a graphing utility to graph the function for the
magnitude of the moment about for Find
the zero of the function in the given domain. Interpret the
meaning of the zero in the context of the problem.

In Exercises 41–44, find 

41. 42.

43. 44.

Volume In Exercises 45 and 46, use the triple scalar product to
find the volume of the parallelepiped having adjacent edges 

and 

45. 46.

Volume In Exercises 47 and 48, find the volume of the
parallelepiped with the given vertices.

47.

48.

49. If and what can you conclude about 
and 

50. Identify the dot products that are equal. Explain your reasoning.
(Assume and are nonzero vectors.)

(a) (b)

(c) (d)

(e) (f)

(g) (h)

True or False? In Exercises 55–58, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

55. It is possible to find the cross product of two vectors in a 
two-dimensional coordinate system.

56. If and are vectors in space that are nonzero and nonparallel,
then 

57. If and then 

58. If and then 

In Exercises 59–66, prove the property of the cross product.

59.

60.

61.

62.

63. is orthogonal to both and 

64. if and only if and are scalar multiples of each
other.

65. Prove that if and are orthogonal.

66. Prove that 

67. Prove Theorem 11.9.

u � �v � w� � �u � w�v � �u � v�w.

vu�u � v� � �u� �v�

vuu � v � 0

v.uu � v

u � �v � w� � �u � v� � w

u � u � 0

c�u � v� � �cu� � v � u � �cv�
u � �v � w� � �u � v� � �u � w�

v � w.u � v � u � w,u � v � u � w,u 
 0,

v � w.u � v � u � w,u 
 0

u � v � v � u.
vu

�w � u� � v��u � v� � w

w � �v � u�u � �w � v�
�u � �w� � v�u � v� � w

�v � w� � uu � �v � w�
wv,u,

v?
uu � v � 0,u � v � 0

��3, 4, 0�, ��1, 5, 5�, ��4, 1, 5�, ��4, 5, 5�
�0, 0, 0�, �0, 4, 0�, ��3, 0, 0�, ��1, 1, 5�
�3, 5, 1�, �5, 0, 5�, �2, 5, 6�, �5, 5, 6�
�0, 0, 0�, �3, 0, 0�, �0, 5, 1�, �2, 0, 5�

y

x

v

u

w
4 6 8

6

4

2

z

y

x

2
2

2

1

v
w

u

z

w � ��4, 0, �4�w � i � k

v � �0, 6, 6�v � j � k

u � �1, 3, 1�u � i � j

w.v,
u,

w � �0, 2, 2�w � �0, 0, 1�
v � �1, 1, 1�v � �0, 3, 0�
u � �2, 0, 0�u � �2, 0, 1�
w � �0, 0, 1�w � k

v � �2, 1, 0�v � j

u � �1, 1, 1�u � i

u � �v � w�.

0� � � � 180�.A

AB
\

?F

�

� � 30�.

� AB
\

� F �.
A

�F
FAB

\

180 lb

θ

A15 in.

12 in.

B

F

18 in.

30°

θ F

O

A
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51. Define the cross product of vectors and 

52. State the geometric properties of the cross product.

53. If the magnitudes of two vectors are doubled, how will the
magnitude of the cross product of the vectors change? Explain.

v.u

WRITING ABOUT CONCEPTS

54. The vertices of a triangle in space are 
and Explain how to find a vector perpendicular
to the triangle.

�x3, y3, z3�.
�x2, y2, z2�,�x1, y1, z1�,

CAPSTONE
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■ Write a set of parametric equations for a line in space.
■ Write a linear equation to represent a plane in space.
■ Sketch the plane given by a linear equation.
■ Find the distances between points, planes, and lines in space.

Lines in Space
In the plane, is used to determine an equation of a line. In space, it is more
convenient to use to determine the equation of a line.

In Figure 11.43, consider the line through the point and parallel to
the vector The vector is a direction vector for the line and and

are direction numbers. One way of describing the line is to say that it consists of
all points for which the vector is parallel to This means that is
a scalar multiple of and you can write where is a scalar (a real 
number).

By equating corresponding components, you can obtain parametric equations of a
line in space.

If the direction numbers and are all nonzero, you can eliminate the
parameter to obtain symmetric equations of the line.

EXAMPLE 1 Finding Parametric and Symmetric Equations

Find parametric and symmetric equations of the line that passes through the point
and is parallel to 

Solution To find a set of parametric equations of the line, use the coordinates
and and direction numbers and (see

Figure 11.44).

Parametric equations

Because and are all nonzero, a set of symmetric equations is

Symmetric equations ■
x � 1

2
�

y � 2
4

�
z � 4
�4

.

cb,a,

z � 4 � 4ty � �2 � 4t,x � 1 � 2t,

c � �4b � 4,a � 2,z1 � 4y1 � �2,x1 � 1,

v � �2, 4, �4�.�1, �2, 4�
L

t
cb,a,

PQ
\

� �x � x1, y � y1, z � z1� � �at, bt, ct� � t v

tPQ
\

� t v,v,
PQ

\

v.PQ
\

Q�x, y, z�
Lc

b,a,L,vv � �a, b, c�.
P�x1, y1, z1�L

vectors
slope
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11.5 Lines and Planes in Space

THEOREM 11.11 PARAMETRIC EQUATIONS OF A LINE IN SPACE

A line parallel to the vector and passing through the point
is represented by the parametric equations

and z � z1 � ct.y � y1 � bt,x � x1 � at,

P�x1, y1, z1�
v � �a, b, c�L

Symmetric equations
x � x1

a
�

y � y1

b
�

z � z1

c

x

y

P(x1, y1, z1)

Q(x, y, z)

PQ = tv

L

v = 〈a, b, c〉

z

Line and its direction vector v
Figure 11.43

L

x y
L

v = 〈2, 4, −4〉

(1, −2, 4)

4

2

−2

−4

2

4

−4

4

2

z

The vector v is parallel to the line 
Figure 11.44

L.

1053714_1105.qxp  10/27/08  10:39 AM  Page 800



Neither parametric equations nor symmetric equations of a given line are unique.
For instance, in Example 1, by letting in the parametric equations you would
obtain the point Using this point with the direction numbers 
and would produce a different set of parametric equations

and

EXAMPLE 2 Parametric Equations of a Line Through Two Points

Find a set of parametric equations of the line that passes through the points 
and 

Solution Begin by using the points and to find a direction 
vector for the line passing through and given by

Using the direction numbers and with the point you
can obtain the parametric equations

and ■

Planes in Space
You have seen how an equation of a line in space can be obtained from a point on the
line and a vector to it. You will now see that an equation of a plane in space
can be obtained from a point in the plane and a vector (perpendicular) to the
plane.

Consider the plane containing the point having a nonzero normal
vector as shown in Figure 11.45. This plane consists of all points

for which vector is orthogonal to Using the dot product, you can write
the following.

The third equation of the plane is said to be in standard form.

By regrouping terms, you obtain the general form of the equation of a plane in space.

a�x � x1� � b�y � y1� � c�z � z1� � 0

 �a, b, c� � �x � x1, y � y1, z � z1� � 0

 n � PQ
\

� 0

n.PQ
\

Q�x, y, z�
n � �a, b, c�,

P�x1, y1, z1�

normal
parallel

z � 5t.y � 1 � 2t,x � �2 � 3t,

P��2, 1, 0�,c � 5a � 3, b � 2,

v � PQ
\

� �1 � ��2�, 3 � 1, 5 � 0� � �3, 2, 5� � �a, b, c�.

Q,P
Q�1, 3, 5�P��2, 1, 0�

�1, 3, 5�.
��2, 1, 0�

z � �4t.y � 2 � 4t,x � 3 � 2t,

c � �4
b � 4,a � 2,�3, 2, 0�.

t � 1
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NOTE As varies over all real numbers, the parametric equations in Example 2 determine the
points on the line. In particular, note that and give the original points

and ■�1, 3, 5�.��2, 1, 0�
t � 1t � 0�x, y, z�

t

THEOREM 11.12 STANDARD EQUATION OF A PLANE IN SPACE

The plane containing the point and having normal vector 
can be represented by the standard form of the equation of a plane

a�x � x1� � b� y � y1� � c�z � z1� � 0.

�a, b, c�n ��x1, y1, z1�

General form of equation of planeax � by � cz � d � 0

z

x

y

n

P

Q

n · PQ = 0

The normal vector n is orthogonal to each
vector in the plane.
Figure 11.45

PQ
\
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Given the general form of the equation of a plane, it is easy to find a normal
vector to the plane. Simply use the coefficients of and and write 

EXAMPLE 3 Finding an Equation of a Plane in Three-Space

Find the general equation of the plane containing the points and

Solution To apply Theorem 11.12 you need a point in the plane and a vector that is
normal to the plane. There are three choices for the point, but no normal vector is
given. To obtain a normal vector, use the cross product of vectors and extending
from the point to the points and as shown in Figure 11.46.
The component forms of and are

and it follows that

is normal to the given plane. Using the direction numbers for and the point
you can determine an equation of the plane to be

Standard form

General form

Simplified general form ■

Two distinct planes in three-space either are parallel or intersect in a line. If they
intersect, you can determine the angle between them from the angle
between their normal vectors, as shown in Figure 11.47. Specifically, if vectors and

are normal to two intersecting planes, the angle between the normal vectors is
equal to the angle between the two planes and is given by

Consequently, two planes with normal vectors and are

1. perpendicular if 

2. parallel if is a scalar multiple of n2.n1

n1 � n2 � 0.

n2n1

�n2

n1

�0 � � � ��2�

 3x � 2y � 4z � 12 � 0.

 9x � 6y � 12z � 36 � 0

 9�x � 2� � 6� y � 1� � 12�z � 1� � 0

 a�x � x1� � b� y � y1� � c�z � z1� � 0

�x1, y1, z1� � �2, 1, 1�,
n

 � �a, b, c�
 � 9i � 6j � 12k

 � � i
�2
�4

j
3
0

k
0
3�

 n � u 	 v

v � ��2 � 2, 1 � 1, 4 � 1� � ��4, 0, 3�
u � �0 � 2, 4 � 1, 1 � 1� � ��2, 3, 0�

vu
��2, 1, 4�,�0, 4, 1��2, 1, 1�

vu

��2, 1, 4�.
�0, 4, 1�,�2, 1, 1�,

n � �a, b, c�.zy,x,
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(−2, 1, 4)

(0, 4, 1)(2, 1, 1)

2
3

4
5

5

4

3

2

1

2

−2

−3

x y

u

v

z

A plane determined by u and v
Figure 11.46

n2

n1
θ

θ

The angle between two planes
Figure 11.47

�

NOTE In Example 3, check to see that each of the three original points satisfies the equation
■3x � 2y � 4z � 12 � 0.

Angle between two planescos � � �n1 � n2�
�n1 � �n2 �

.
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EXAMPLE 4 Finding the Line of Intersection of Two Planes

Find the angle between the two planes given by

Equation of plane 1

Equation of plane 2

and find parametric equations of their line of intersection (see Figure 11.48).

Solution Normal vectors for the planes are and 
Consequently, the angle between the two planes is determined as follows.

Cosine of angle between and 

This implies that the angle between the two planes is You can find the line
of intersection of the two planes by simultaneously solving the two linear equations
representing the planes. One way to do this is to multiply the first equation by and
add the result to the second equation.

Substituting back into one of the original equations, you can determine that
Finally, by letting you obtain the parametric equations

and Line of intersection

which indicate that 1, 4, and 7 are direction numbers for the line of intersection.
■

Note that the direction numbers in Example 4 can be obtained from the cross
product of the two normal vectors as follows.

This means that the line of intersection of the two planes is parallel to the cross
product of their normal vectors.

 � i � 4j � 7k

 � ��2
3

1
�2�i � �12 1

�2�j � �12 �2
3�k

 n1 	 n2 � � i
1
2

j
�2

3

k
1

�2�

z � 7ty � 4t,x � t,

t � z�7,x � z�7.
y � 4z�7

y �
4z
7

     7y �  4z � 0

 2x �  3y �  2z � 02x � 3y � 2z � 0

�2x �  4y �  2z � 0 x � 2y �  z � 0

�2

� 	 53.55
.

 	 0.59409

 �
6


102

 � ��6�

6 
17

n2n1 cos � � �n1 � n2�
�n1 � �n2 �

n2 � �2, 3, �2�.n1 � �1, �2, 1�

 2x � 3y � 2z � 0

 x � 2y � z � 0
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x

y

z

θ

Line of
intersection

Plane 2

Plane 1

Figure 11.48

NOTE The three-dimensional rotatable graphs that are available in the premium eBook for
this text can help you visualize surfaces such as those shown in Figure 11.48. If you have access
to these graphs, you should use them to help your spatial intuition when studying this section
and other sections in the text that deal with vectors, curves, or surfaces in space. ■
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Sketching Planes in Space
If a plane in space intersects one of the coordinate planes, the line of intersection is
called the trace of the given plane in the coordinate plane. To sketch a plane in space,
it is helpful to find its points of intersection with the coordinate axes and its traces in
the coordinate planes. For example, consider the plane given by

Equation of plane

You can find the trace by letting and sketching the line

trace

in the plane. This line intersects the -axis at and the axis at In
Figure 11.49, this process is continued by finding the trace and the trace, and
then shading the triangular region lying in the first octant.

-trace -trace -trace 

Traces of the plane 
Figure 11.49

If an equation of a plane has a missing variable, such as the plane
must be parallel to the axis represented by the missing variable, as shown in Figure
11.50. If two variables are missing from an equation of a plane, it is parallel to the
coordinate plane represented by the missing variables, as shown in Figure 11.51.

Plane is parallel Plane is parallel Plane is parallel
to the -plane to the -plane to the -plane
Figure 11.51

xyxzyz
cz � d � 0by � d � 0ax � d � 0

x

y

z

d
c

 0, 0, − ))

x

y

z

d
b

0, −    , 0))
d
a

, 0, 0))x

y

−

z

2x � z � 1,

3x � 2y � 4z � 12
3x � 4z � 122y � 4z � 123x � 2y � 12

�y � 0�:xz�x � 0�:yz�z � 0�:xy

y

x

(0, 0, 3)

(4, 0, 0)

(0, 6, 0)

z

y

x

(0, 0, 3)

(4, 0, 0)

(0, 6, 0)

z

y

x

(4, 0, 0)

(0, 6, 0)

z

xz-yz-
�0, 6, 0�.y-�4, 0, 0�xxy-

xy-3x � 2y � 12

z � 0xy-

3x � 2y � 4z � 12.
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y

x

z

1
2
, 0, 0( )

(0, 0, 1)

Plane: 2x + z = 1

Plane is parallel to the -axis.
Figure 11.50

y2x � z � 1
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Distances Between Points, Planes, and Lines
This section is concluded with the following discussion of two basic types of
problems involving distance in space.

1. Finding the distance between a point and a plane

2. Finding the distance between a point and a line

The solutions of these problems illustrate the versatility and usefulness of vectors in
coordinate geometry: the first problem uses the dot product of two vectors, and the
second problem uses the cross product.

The distance between a point and a plane is the length of the shortest line
segment connecting to the plane, as shown in Figure 11.52. If is point in the
plane, you can find this distance by projecting the vector onto the normal vector

The length of this projection is the desired distance.

To find a point in the plane given by let 
and Then, from the equation you can conclude that the point

lies in the plane.

EXAMPLE 5 Finding the Distance Between a Point and a Plane

Find the distance between the point and the plane given by

Solution You know that is normal to the given plane. To find a point
in the plane, let and and obtain the point The vector from 
to is given by

Using the Distance Formula given in Theorem 11.13 produces

Distance between a point and a plane

■ �
16

14

.

 � ��3 � 5 � 8�

14

 D � �PQ
\

� n�
�n�

� ���1, 5, �4� � �3, �1, 2��

9 � 1 � 4

 � ��1, 5, �4�.
 PQ

\

� �1 � 2, 5 � 0, �4 � 0�

Q
PP�2, 0, 0�.z � 0,y � 0

n � �3, �1, 2�

3x � y � 2z � 6.

Q�1, 5, �4�

��d�a, 0, 0�
ax � d � 0,z � 0.

y � 0ax � by � cz � d � 0 �a � 0�,

n.
PQ

\

anyPQ
QD
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THEOREM 11.13 DISTANCE BETWEEN A POINT AND A PLANE

The distance between a plane and a point (not in the plane) is

where is a point in the plane and is normal to the plane.nP

D � �projnPQ
\

� � �PQ
\

� n�
�n�

Q

NOTE The choice of the point in Example 5 is arbitrary. Try choosing a different point in
the plane to verify that you obtain the same distance. ■

P

D = ⎜⎜projn PQ⎜⎜

projn PQ
P

Q

D

n

The distance between a point and a plane
Figure 11.52
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From Theorem 11.13, you can determine that the distance between the point
and the plane given by is

or

where is a point in the plane and 

EXAMPLE 6 Finding the Distance Between Two Parallel Planes

Find the distance between the two parallel planes given by

and

Solution The two planes are shown in Figure 11.53. To find the distance between the
planes, choose a point in the first plane, say Then, from the
second plane, you can determine that and and conclude
that the distance is

Distance between a point and a plane

■

The formula for the distance between a point and a line in space resembles that
for the distance between a point and a plane—except that you replace the dot product
with the length of the cross product and the normal vector with a direction vector
for the line.

n

 �
16

56

�
8


14
	 2.14.

 � �6�2� � ��2��0� � �4��0� � 4�

62 � ��2�2 � 42

 D � �ax0 � by0 � cz0 � d�

a2 � b2 � c2

d � 4,c � 4,b � �2,a � 6,
�x0, y0, z0� � �2, 0, 0�.

6x � 2y � 4z � 4 � 0.3x � y � 2z � 6 � 0

d � ��ax1 � by1 � cz1�.P�x1, y1, z1�

D � �a�x0 � x1� � b�y0 � y1� � c�z0 � z1��

a2 � b2 � c2

ax � by � cz � d � 0Q�x0, y0, z0�

806 Chapter 11 Vectors and the Geometry of Space

Distance between a point and a planeD � �ax0 � by0 � cz0 � d�

a2 � b2 � c2

6x − 2y + 4z + 4 = 0

3x − y + 2z − 6 = 0

D

(2, 0, 0)
2

3

−6

yx

z

The distance between the parallel planes is
approximately 2.14.
Figure 11.53

θ

D = ⎜⎜PQ⎜⎜ sin θ

Point

LineP
u

Q

The distance between a point and a line
Figure 11.54

THEOREM 11.14 DISTANCE BETWEEN A POINT AND A LINE IN SPACE

The distance between a point and a line in space is given by

where is a direction vector for the line and is a point on the line.Pu

D �
�PQ

\

	 u�
�u�

Q

PROOF In Figure 11.54, let be the distance between the point and the given
line. Then where is the angle between and By Property 2 of
Theorem 11.8, you have

Consequently,

■D � �PQ
\

� sin � �
�PQ

\

	 u�
�u�

 .

�u� �PQ
\

� sin � � �u 	 PQ
\

� � �PQ
\

	 u�.

PQ
\

.u�D � �PQ
\

� sin �,
QD
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EXAMPLE 7 Finding the Distance Between a Point and a Line

Find the distance between the point and the line given by

and

Solution Using the direction numbers 3, and 4, you know that a direction 
vector for the line is

Direction vector for line

To find a point on the line, let and obtain

Point on the line

So,

and you can form the cross product

Finally, using Theorem 11.14, you can find the distance to be

See Figure 11.55. ■ � 
6 	 2.45.

 �

174

29

 D �
� PQ

\

	 u�
�u �

PQ
\

	 u � � i
5
3

j
�1
�2

k
3
4� � 2i � 11j � 7k � �2, �11, �7�.

PQ
\

� �3 � ��2�, �1 � 0, 4 � 1� � �5, �1, 3�

P � ��2, 0, 1�.

t � 0

u � �3, �2, 4�.

�2,

z � 1 � 4t.y � �2t,x � �2 � 3t,

Q�3, �1, 4�

11.5 Lines and Planes in Space 807

In Exercises 1 and 2, the figure shows the graph of a line given
by the parametric equations. (a) Draw an arrow on the line to
indicate its orientation. To print an enlarged copy of the graph,
go to the website www.mathgraphs.com. (b) Find the coordinates
of two points, and on the line. Determine the vector 
What is the relationship between the components of the vector
and the coefficients of in the parametric equations? Why is this
true? (c) Determine the coordinates of any points of intersection
with the coordinate planes. If the line does not intersect a 
coordinate plane, explain why.

1. 2.

In Exercises 3 and 4, determine whether each point lies on the
line.

3.

(a) (b)

4.

(a) (b)

In Exercises 5–10, find sets of (a) parametric equations and 
(b) symmetric equations of the line through the point parallel to
the given vector or line (if possible). (For each line, write the
direction numbers as integers.)

5.

6.

7.

8.

9.

10.
x � 1

3
�

y � 1
�2

� z � 3��3, 5, 4�

x � 3 � 3t, y � 5 � 2t, z � �7 � t�1, 0, 1�
v � 6j � 3k��3, 0, 2�
v � 2i � 4j � 2k��2, 0, 3�
v � ��2, 52, 1��0, 0, 0�
v � �3, 1, 5��0, 0, 0�
Parallel to                                           Point        

�1, �1, �3)�7, 23, 0�

x � 3
2

�
y � 7

8
� z � 2

�2, 3, 5��0, 6, 6�
x � �2 � t, y � 3t, z � 4 � t

z

x yyx

z

z � 1 � tz � 2 � 5t

y � 2y � 2 � t

x � 2 � 3tx � 1 � 3t

t

PQ
\

.Q,P

11.5 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

x

y

D

4
3

2
1

−2

5
4

3
2

1

−2

6

5

3

2

−1

Q = (3, −1, 4)

z

The distance between the point and the
line is 
Figure 11.55


6 	 2.45.
Q
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In Exercises 11–14, find sets of (a) parametric equations and (b)
symmetric equations of the line through the two points (if pos-
sible). (For each line, write the direction numbers as integers.)

11. 12.

13. 14.

In Exercises 15–22, find a set of parametric equations of the
line.

15. The line passes through the point and is parallel to the 
-plane and the -plane.

16. The line passes through the point and is parallel to
the -plane and the -plane.

17. The line passes through the point and is perpendicular
to the plane given by 

18. The line passes through the point and is perpendicular
to the plane given by 

19. The line passes through the point and is parallel to

20. The line passes through the point and is parallel to

21. The line passes through the point and is parallel to the
line 

22. The line passes through the point and is parallel to
the line 

In Exercises 23–26, find the coordinates of a point on the line
and a vector parallel to the line.

23.

24.

25. 26.

In Exercises 27–30, determine if any of the lines are parallel or
identical.

27.

28.

29.

30.

In Exercises 31–34, determine whether the lines intersect, and if
so, find the point of intersection and the cosine of the angle of
intersection.

31.

32.

33.

34.

In Exercises 35 and 36, use a computer algebra system to graph
the pair of intersecting lines and find the point of intersection.

35.

36.

Cross Product In Exercises 37 and 38, (a) find the coordinates
of three points and in the plane, and determine the
vectors and (b) Find What is the relation-
ship between the components of the cross product and the 
coefficients of the equation of the plane? Why is this true?

37. 38.

In Exercises 39 and 40, determine whether the plane passes
through each point.

39.

(a) (b)

40.

(a) (b) ��1, 5, �1��3, 6, �2�
2x � y � 3z � 6 � 0

�5, 2, 2���7, 2, �1)

x � 2y � 4z � 1 � 0

y

x

z

x
y

z

2x � 3y � 4z � 44x � 3y � 6z � 6

PQ
\

 	  PR
\

.PR
\

.PQ
\

RQ,P,

x � �5s � 12, y � 3s � 11, z � �2s � 4

x � 2t � 1, y � �4t � 10, z � t

x � �2s � 7, y � s � 8, z � 2s � 1

x � 2t � 3, y � 5t � 2, z � �t � 1

x � 3
2

� y � 5 �
z � 2

4
x � 2
�3

�
y � 2

6
� z � 3,

x � 1
4

� y � 2 �
z � 3
�3

x
3

�
y � 2
�1

� z � 1,

x � 3s � 1, y � 2s � 4, z � �s � 1

x � �3t � 1, y � 4t � 1, z � 2t � 4

z � s � 1y � 2s � 3,x � 2s � 2,

z � �t � 1y � 3,x � 4t � 2,

x � 3
2

�
y � 1

4
�

z � 2
�1

L4:

x � 2
1

�
y � 1

0.5
�

z � 3
1

L3:

x � 1
4

�
y � 1

2
�

z � 3
4

L2:

x � 3
2

�
y � 2

1
�

z � 2
2

L1:

x � 2
�2

�
y � 3

1
�

z � 4
1.5

L4:

x � 4
�8

�
y � 1

4
�

z � 18
�6

L3:

x � 7
2

�
y � 4

1
�

z � 6
5

L2:

x � 8
4

�
y � 5
�2

�
z � 9

3
L1:

z � 8 � 3ty � 1 � t,x � 5 � 2t,L4:

z � 1 � 4ty � 3 � 10t,x � �1 � 2t,L3:

z � 3ty � �1 � t,x � 1 � 2t,L2:

z � 1 � 2ty � �6t,x � 3 � 2t,L1:

z � 5 � 6ty � 3 � 4t,x � �4 � 6t,L4:

z � 7 � 8ty � 3 � 4t,x � 10 � 6t,L3:

z � 13 � 8ty � 2 � 4t,x � 6t,L2:

z � 5 � 4ty � �2 � 2t,x � 6 � 3t,L1:

x � 3
5

�
y
8

�
z � 3

6
x � 7

4
�

y � 6
2

� z � 2

z � 4 � 3ty � 5 � t,x � 4t,

z � �2y � �1 � 2t,x � 3 � t,

v
P

z � 0.y � �4 � 2t,x � 5 � 2t,
��6, 0, 8�

z � �2 � t.y � 1 � t,x � �t,
�2, 1, 2�

v � 5i � j.
��1, 4, �3�

v � �2, �1, 3�.
�5, �3, �4�

�x � 2y � z � 5.
��4, 5, 2�

3x � 2y � z � 6.
�2, 3, 4�

yzxy
��4, 5, 2�

yzxz
�2, 3, 4�

�0, 0, 25�, �10, 10, 0��7, �2, 6�, ��3, 0, 6�
�0, 4, 3�, ��1, 2, 5��5, �3, �2�, ��2

3, 23, 1�
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In Exercises 41–46, find an equation of the plane passing
through the point perpendicular to the given vector or line.

41.

42.

43.

44.

45.

46.

In Exercises 47–58, find an equation of the plane.

47. The plane passes through and 

48. The plane passes through and 

49. The plane passes through and 

50. The plane passes through the point and is parallel to
the plane.

51. The plane passes through the point and is parallel to
the plane.

52. The plane contains the axis and makes an angle of with
the positive axis.

53. The plane contains the lines given by

and

54. The plane passes through the point and contains the
line given by

55. The plane passes through the points and 
and is perpendicular to the plane 

56. The plane passes through the points and 
and is perpendicular to the plane 

57. The plane passes through the points and 
and is parallel to the axis.

58. The plane passes through the points and 
and is parallel to the axis.

In Exercises 59 and 60, sketch a graph of the line and find the
points (if any) where the line intersects the -, -, and -planes.

59.

60.

In Exercises 61– 64, find an equation of the plane that 
contains all the points that are equidistant from the given points.

61. 62.

63. 64.

In Exercises 65–70, determine whether the planes are parallel,
orthogonal, or neither. If they are neither parallel nor
orthogonal, find the angle of intersection.

65. 66.

67. 68.

69. 70.

In Exercises 71–78, sketch a graph of the plane and label any
intercepts.

71 72.

73. 74.

75. 76.

77. 78.

In Exercises 79–82, use a computer algebra system to graph the
plane.

79. 80.

81. 82.

In Exercises 83–86, determine if any of the planes are parallel
or identical.

83. 84.

85.

86.

In Exercises 87– 90, describe the family of planes represented by
the equation, where is any real number.

87. 88.

89. 90.

In Exercises 91 and 92, (a) find the angle between the two
planes, and (b) find a set of parametric equations for the line of
intersection of the planes.

91. 92.

�x � y � 5z � 5x � 4y � 2z � 0

6x � 3y � z � 53x � 2y � z � 7

x � cz � 0cy � z � 0

x � y � cx � y � z � c

c

12x � 18y � 6z � 5P4:

�20x � 30y � 10z � 9P3:

6x � 9y � 3z � 2P2:

�60x � 90y � 30z � 27P1:

75x � 50y � 125z � 250P4:

�3x � 2y � 5z � 8P3:

�6x � 4y � 10z � 5P2:

3x � 2y � 5z � 10P1:

�4x � 2y � 6z � 11P4:3x � 2y � 2z � 4P4:

8x � 4y � 12z � 5P3:6x � 4y � 4z � 9P3:

3x � 5y � 2z � 6P2:�5x � 2y � 8z � 6P2:

2x � y � 3z � 8P1:15x � 6y � 24z � 17P1:

2.1x � 4.7y � z � �3�5x � 4y � 6z � �8

x � 3z � 32x � y � z � 6

z � 8x � 5

2x � y � 8x � z � 6

2x � y � z � 42x � y � 3z � 4

3x � 6y � 2z � 64x � 2y � 6z � 12

4x � y � 8z � 105x � 25y � 5z � �3

2x � z � 1x � 5y � z � 1

x � 4y � 2z � 05x � y � z � 4

3x � 2y � z � 7x � 3y � 6z � 4

�9x � 3y � 12z � 4x � 4y � 7z � 1

3x � y � 4z � 35x � 3y � z � 4

�2, �1, 6���5, 1, �3�,�6, �2, 4���3, 1, 2�,
�2, 0, 1)�1, 0, 2�,�0, 2, 2��2, 2, 0�,

x � 2
3

� y � 1 �
z � 3

2

z � �4 � ty � �2 � 3t,x � 1 � 2t,

yzxzxy

z-
��3, 5, 7��4, 2, 1�

x-
�2, 5, 6��1, �2, �1�

6x � 7y � 2z � 10.
�3, 1, �5��3, 2, 1�

2x � 3y � z � 3.
��1, 1, �1��2, 2, 1�

x
2

�
y � 4
�1

� z.

�2, 2, 1�

x � 2
�3

�
y � 1

4
�

z � 2
�1

.
x � 1
�2

� y � 4 � z

x-
��6y-

xy-
�1, 2, 3�

yz-
�1, 2, 3�

��1, �2, 2�.�3, 2, 1�,�1, 2, 3�,
�1, �2, �2�.�2, 1, 5�,�3, �1, 2�,

��3, �1, 5�.�2, 0, 3�,�0, 0, 0�,

x � 1
4

� y � 2 �
z � 3
�3

�3, 2, 2�

x � �1 � 2t, y � 5 � t, z � 3 � 2t��1, 4, 0�
n � �3i � 2k�0, 0, 0�
n � 2i � 3j � k�3, 2, 2�
n � k�0, �1, 4�
n � j�1, 3, �7�
Perpendicular to                             Point      

11.5 Lines and Planes in Space 809
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810 Chapter 11 Vectors and the Geometry of Space

111. Give the parametric equations and the symmetric equations
of a line in space. Describe what is required to find these
equations.

112. Give the standard equation of a plane in space. Describe
what is required to find this equation.

113. Describe a method of finding the line of intersection of
two planes.

114. Describe each surface given by the equations 
and z � c.y � b,

x � a,

WRITING ABOUT CONCEPTS

115. Describe a method for determining when two planes

and

are (a) parallel and (b) perpendicular. Explain your
reasoning.

116. Let and be nonparallel lines that do not intersect. Is
it possible to find a nonzero vector such that is 
perpendicular to both and Explain your reasoning.

117. Find an equation of the plane with -intercept 
-intercept and -intercept (Assume 

and are nonzero.)cb,
a,�0, 0, c�.z�0, b, 0�,y

�a, 0, 0�,x

L2?L1

vv
L2L1

a2x � b2y � c2z � d2 � 0

a1x � b1y � c1z � d1 � 0

WRITING ABOUT CONCEPTS (cont inued)

Year 1999 2000 2001 2002 2003 2004 2005

x 1.4 1.4 1.4 1.6 1.6 1.7 1.7

y 7.3 7.1 7.0 7.0 6.9 6.9 6.9

z 6.2 6.1 5.9 5.8 5.6 5.5 5.6

In Exercises 93–96, find the point(s) of intersection (if any) of
the plane and the line. Also determine whether the line lies in
the plane.

93.

94.

95.

96.

In Exercises 97–100, find the distance between the point and the
plane.

97. 98.

99. 100.

In Exercises 101–104, verify that the two planes are parallel,
and find the distance between the planes.

101. 102.

103. 104.

In Exercises 105–108, find the distance between the point and
the line given by the set of parametric equations.

105.

106.

107.

108.

In Exercises 109 and 110, verify that the lines are parallel, and
find the distance between them.

109.

110.

119. Describe and find an equation for the surface generated by all
points that are four units from the point 

120. Describe and find an equation for the surface generated by 
all points that are four units from the plane

121. Modeling Data Per capita consumptions (in gallons) of
different types of milk in the United States from 1999 through
2005 are shown in the table. Consumptions of flavored milk,
plain reduced-fat milk, and plain light and skim milks are repre-
sented by the variables and respectively. (Source:
U.S. Department of Agriculture)

A model for the data is given by 

(a) Complete a fourth row in the table using the model to
approximate for the given values of and Compare the
approximations with the actual values of 

(b) According to this model, any increases in consumption of
two types of milk will have what effect on the consumption
of the third type?

z.
y.xz

0.92x � 1.03y � z � 0.02.

z,y,x,

4x � 3y � z � 10.
�x, y, z�

�3, �2, 5�.�x, y, z�

z � �8ty � 3 � 6t,x � �1 � 4t,L2:

z � 1 � 12ty � �2 � 9t,x � 3 � 6t,L1:

z � 4 � 3ty � 1 � 6t,x � 3t,L2:

z � 4 � ty � 3 � 2t,x � 2 � t,L1:

z � 1 � ty � 1 � 3t,x � 3,�4, �1, 5�;
z � �2ty � 2 � t,x � 1 � t,��2, 1, 3�;

x � 2t,  y � t � 3,  z � 2t � 2�1, �2, 4�;
x � 4t � 2,  y � 3,  z � �t � 1�1, 5, �2�;

2x � 4z � 106x � 12y � 14z � 25

2x � 4z � 4�3x � 6y � 7z � 1

4x � 4y � 9z � 18x � 3y � 4z � 6

4x � 4y � 9z � 7x � 3y � 4z � 10

3x � 4y � 5z � 62x � y � z � 5

�1, 3, �1��2, 8, 4�
5x � y � z � 92x � 3y � z � 12

�0, 0, 0��0, 0, 0�

x � 4
2

�
y � 1
�3

�
z � 2

5
5x � 3y � 17,

x � 1
3

�
y � 1
�2

� z � 32x � 3y � 10,

x � 1
4

�
y
2

�
z � 3

6
2x � 3y � �5,

x �
1
2

�
y � �3�2�

�1
�

z � 1
2

2x � 2y � z � 12,

118. Match the equation or set of equations with the description
it represents.

(a) Set of parametric equations of a line

(b) Set of symmetric equations of a line

(c) Standard equation of a plane in space

(d) General form of an equation of a plane in space

(i)

(ii)

(iii)

(iv) 2(x � 1) � (y � 3) � 4(z � 5) � 0

x � 4 � 7t, y � 3 � t, z � 3 � 3t

2x � 7y � 5z � 10 � 0

�x � 6��2 � �y � 1���3 � z�1

CAPSTONE
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122. Mechanical Design The figure shows a chute at the top of a
grain elevator of a combine that funnels the grain into a bin.
Find the angle between two adjacent sides.

123. Distance Two insects are crawling along different lines in
three-space. At time (in minutes), the first insect is at the
point on the line 
Also, at time the second insect is at the point on the
line 

Assume that distances are given in inches.

(a) Find the distance between the two insects at time 

(b) Use a graphing utility to graph the distance between the
insects from to 

(c) Using the graph from part (b), what can you conclude
about the distance between the insects?

(d) How close to each other do the insects get?

124. Find the standard equation of the sphere with center 
that is tangent to the plane given by 

125. Find the point of intersection of the plane 
and the line through that is perpendicular to this
plane.

126. Show that the plane is parallel to the line
and find the distance

between them.

127. Find the point of intersection of the line through 
and and the plane given by 

128. Find a set of parametric equations for the line passing through
the point that is parallel to the plane given by

and perpendicular to the line 

True or False? In Exercises 129–134, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

129. If is any vector in the plane given by
then 

130. Every two lines in space are either intersecting or parallel.

131. Two planes in space are either intersecting or parallel.
132. If two lines and are parallel to a plane then and 

are parallel.

133. Two planes perpendicular to a third plane in space are parallel.

134. A plane and a line in space are either intersecting or parallel.

L2L1P,L2L1

a1a2 � b1b2 � c1c2 � 0.a2x � b2y � c2z � d2 � 0,
v � a1i � b1j � c1k

z � 1 � t.y � 1 � t,
x � t,x � y � z � 5,

�1, 0, 2�

x � y � z � 2.�3, �4, 2�,
�1, �3, 1�

z � 4,y � �1 � 4t,x � �2 � 2t,
2x � y � 3z � 4

�5, 4, �3�
3x � y � 4z � 7

2x � 4y � 3z � 8.
��3, 2, 4�

t � 10.t � 0

t � 0.

z � 2t.y � 2 � t,x � 1 � t,
�x, y, z�t,

z � 3 � t.y � 8 � t,x � 6 � t,�x, y, z�
t

6 in.
6 in.

8 in.

8 in.

8 in.
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You have learned two distance formulas in this section—the
distance between a point and a plane, and the distance between a
point and a line. In this project you will study a third distance
problem—the distance between two skew lines. Two lines in space
are skew if they are neither parallel nor intersecting (see figure).

(a) Consider the following two lines in space.

(i) Show that these lines are not parallel.

(ii) Show that these lines do not intersect, and therefore are
skew lines.

(iii) Show that the two lines lie in parallel planes.

(iv) Find the distance between the parallel planes from part
(iii). This is the distance between the original skew
lines.

(b) Use the procedure in part (a) to find the distance between
the lines.

(c) Use the procedure in part (a) to find the distance between
the lines.

(d) Develop a formula for finding the distance between the
skew lines.

L1

L2

L2: x � x2 � a2s,  y � y2 � b2s,  z � z2 � c2s

L1: x � x1 � a1t,  y � y1 � b1t,  z � z1 � c1t

L2: x � 1 � 4s,  y � �2 � s,  z � �3 � 3s

L1: x � 3t,  y � 2 � t,  z � �1 � t

L2: x � 1 � s,  y � 4 � s,  z � �1 � s

L1: x � 2t,  y � 4t,  z � 6t

L2: x � 4 � s,  y � �6 � 8s,  z � 7 � 3s

L1: x � 4 � 5t,  y � 5 � 5t,  z � 1 � 4t

Distances in Space

S E C T I O N  P R O J E C T
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■ Recognize and write equations of cylindrical surfaces.
■ Recognize and write equations of quadric surfaces.
■ Recognize and write equations of surfaces of revolution.

Cylindrical Surfaces
The first five sections of this chapter contained the vector portion of the preliminary
work necessary to study vector calculus and the calculus of space. In this and the next
section, you will study surfaces in space and alternative coordinate systems for space.
You have already studied two special types of surfaces.

1. Spheres: Section 11.2

2. Planes: Section 11.5

A third type of surface in space is called a cylindrical surface, or simply a
cylinder. To define a cylinder, consider the familiar right circular cylinder shown in
Figure 11.56. You can imagine that this cylinder is generated by a vertical line moving
around the circle in the plane. This circle is called a generating
curve for the cylinder, as indicated in the following definition.

For the right circular cylinder shown in Figure 11.56, the equation of the
generating curve is 

Equation of generating curve in plane

To find an equation of the cylinder, note that you can generate any one of the rulings
by fixing the values of and and then allowing to take on all real values. In this
sense, the value of is arbitrary and is, therefore, not included in the equation. In other
words, the equation of this cylinder is simply the equation of its generating curve.

Equation of cylinder in spacex2 � y2 � a2

z
zyx

xy-x2 � y2 � a2.

xy-x2 � y2 � a2

ax � by � cz � d � 0

�x � x0�2 � �y � y0�2 � �z � z0�2 � r2

812 Chapter 11 Vectors and the Geometry of Space

11.6 Surfaces in Space

DEFINITION OF A CYLINDER

Let be a curve in a plane and let be a line not in a parallel plane. The set
of all lines parallel to and intersecting is called a cylinder. is called the
generating curve (or directrix) of the cylinder, and the parallel lines are
called rulings.

CCL
LC

EQUATIONS OF CYLINDERS

The equation of a cylinder whose rulings are parallel to one of the coordinate
axes contains only the variables corresponding to the other two axes.

NOTE Without loss of generality, you can assume that lies in one of the three coordinate
planes. Moreover, this text restricts the discussion to right cylinders—cylinders whose rulings
are perpendicular to the coordinate plane containing as shown in Figure 11.57. ■C,

C

y

x

Right circular cylinder:
x2 + y2 =  a2

z

Rulings are parallel to -axis.
Figure 11.56

z

x

z
Generating
curve C

Ruling 
intersecting C

y

Cylinder: Rulings intersect and are parallel
to the given line.
Figure 11.57

C
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EXAMPLE 1 Sketching a Cylinder

Sketch the surface represented by each equation.

a. b.

Solution

a. The graph is a cylinder whose generating curve, is a parabola in the 
plane. The rulings of the cylinder are parallel to the axis, as shown in Figure

11.58(a).

b. The graph is a cylinder generated by the sine curve in the plane. The rulings are
parallel to the axis, as shown in Figure 11.58(b).

(a) Rulings are parallel to -axis. (b) Rulings are parallel to -axis.
Figure 11.58 ■

Quadric Surfaces
The fourth basic type of surface in space is a quadric surface. Quadric surfaces are
the three-dimensional analogs of conic sections.

The intersection of a surface with a plane is called the trace of the surface in the
plane. To visualize a surface in space, it is helpful to determine its traces in some well-
chosen planes. The traces of quadric surfaces are conics. These traces, together with
the standard form of the equation of each quadric surface, are shown in the table on
pages 814 and 815.

yx

z

y

π

1

x

Cylinder: z = sin x

Generating curve C
lies in xz-plane

z

x

y

Cylinder: z = y2

Generating curve C
lies in yz-plane

y-
xz-

x-yz-
z � y2,

0 � x � 2�z � sin x,z � y2

11.6 Surfaces in Space 813

QUADRIC SURFACE

The equation of a quadric surface in space is a second-degree equation in
three variables. The general form of the equation is

There are six basic types of quadric surfaces: ellipsoid, hyperboloid of one
sheet, hyperboloid of two sheets, elliptic cone, elliptic paraboloid, and
hyperbolic paraboloid.

Ax2 � By2 � Cz2 � Dxy � Exz � Fyz � Gx � Hy � Iz � J � 0.

Study Tip In the table on pages 814
and 815, only one of several orientations
of each quadric surface is shown. If the
surface is oriented along a different 
axis, its standard equation will change
accordingly, as illustrated in Examples 2
and 3. The fact that the two types of
paraboloids have one variable raised
to the first power can be helpful in
classifying quadric surfaces. The other
four types of basic quadric surfaces have
equations that are of second degree in all
three variables.

STUDY TIP

1053714_1106.qxp  10/27/08  10:40 AM  Page 813
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Hyperboloid of Two Sheets

Ellipse Parallel to plane
Hyperbola Parallel to plane
Hyperbola Parallel to plane

The axis of the hyperboloid
corresponds to the variable whose
coefficient is positive. There is 
no trace in the coordinate plane
perpendicular to this axis.

yz-
xz-
xy-

Plane                          Trace         

z2

c2 �
x2

a2 �
y2

b2 � 1
z

x y

yz-trace

parallel to
xy-plane

xz-trace

no -tracexy

y

x

xy-trace

xz-trace
yz-trace

z

y

xz-trace

xy-trace

yz-trace

x

z

x y

z

y

x

z

y
x

z
Ellipsoid

Ellipse Parallel to plane
Ellipse Parallel to plane
Ellipse Parallel to plane

The surface is a sphere if
a � b � c � 0.

yz-
xz-
xy-

Plane                          Trace   

x2

a2 �
y2

b2 �
z2

c2 � 1

Hyperboloid of One Sheet

Ellipse Parallel to plane
Hyperbola Parallel to plane
Hyperbola Parallel to plane

The axis of the hyperboloid
corresponds to the variable whose
coefficient is negative.

yz-
xz-
xy-

Plane                         Trace         

x2

a2 �
y2

b2 �
z2

c2 � 1

1053714_1106.qxp  10/27/08  10:40 AM  Page 814
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Hyperbolic Paraboloid

Hyperbola Parallel to xy-plane
Parabola Parallel to xz-plane
Parabola Parallel to yz-plane

The axis of the paraboloid corre-
sponds to the variable raised to the
first power.

Plane                        Trace         

z �
y2

b2 �
x2

a2

x

y

xz-trace

yz-trace

parallel to
xy-plane

z

x
y

xz-trace

parallel to 
xy-plane

yz-trace
z

xy-trace
(one point)

x

y

yz-trace

xz-trace
z

xy-trace
(one point)

parallel to
xy-plane

x

y

z

x
y

z

x

y

z Elliptic Cone

Ellipse Parallel to xy-plane
Hyperbola Parallel to xz-plane
Hyperbola Parallel to yz-plane

The axis of the cone corresponds 
to the variable whose coefficient is
negative. The traces in the coordi-
nate planes parallel to this axis are
intersecting lines.

Plane                         Trace         

x2

a2 �
y2

b2 �
z2

c2 � 0

Elliptic Paraboloid

Ellipse Parallel to xy-plane
Parabola Parallel to xz-plane
Parabola Parallel to yz-plane

The axis of the paraboloid corre-
sponds to the variable raised to the
first power.

Plane                         Trace      

z �
x2

a2 �
y2

b2
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To classify a quadric surface, begin by writing the surface in standard form. Then,
determine several traces taken in the coordinate planes taken in planes that are
parallel to the coordinate planes.

EXAMPLE 2 Sketching a Quadric Surface

Classify and sketch the surface given by 

Solution Begin by writing the equation in standard form.

Write original equation.

Divide by 

Standard form

From the table on pages 814 and 815, you can conclude that the surface is a hyper-
boloid of two sheets with the axis as its axis. To sketch the graph of this surface, it
helps to find the traces in the coordinate planes.

trace Hyperbola

trace No trace

trace Hyperbola

The graph is shown in Figure 11.59.

EXAMPLE 3 Sketching a Quadric Surface

Classify and sketch the surface given by 

Solution Because is raised only to the first power, the surface is a paraboloid. The
axis of the paraboloid is the axis. In the standard form, the equation is

Standard form

Some convenient traces are as follows.

trace Parabola

trace Parabola

parallel to plane Ellipse

The surface is an paraboloid, as shown in Figure 11.60. ■

Some second-degree equations in and do not represent any of the basic
types of quadric surfaces. Here are two examples.

Single point

Right circular cylinder x2 � y2 � 1

 x2 � y2 � z2 � 0

zy,x,

elliptic

y2

4
�

z2

1
� 1�x � 4�:yz-

x � 4z2�y � 0�:xz-

x � y2�z � 0�:xy-

x � y2 � 4z2.

x-
x

x � y2 � 4z2 � 0.

 
y2

4
�

z2

1
� 1�x � 0�:yz-

 
x2

3
�

z2

1
� �1�y � 0�:xz-

 
y2

4
�

x2

3
� 1�z � 0�:xy-

y-

 
y2

4
�

x2

3
�

z2

1
� 1

�12. 
x2

�3
�

y2

4
� z2 � 1 � 0

 4x2 � 3y2 � 12z2 � 12 � 0

4x2 � 3y2 � 12z2 � 12 � 0.

or

816 Chapter 11 Vectors and the Geometry of Space

y

z

Hyperboloid of two sheets:

y2 x2

4 3
−       − z2 = 1

y2 z2

4 1
−       = 1

y2 x2

4 3
−       = 1

4
3

2 1 2

1

2

3

x

Figure 11.59

y

z

x = y2

x = 4z2

Elliptic paraboloid:
x = y2 + 4z2

x

10

4
2

2
−4

y2 z2

4 1
+       = 1

Figure 11.60
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For a quadric surface not centered at the origin, you can form the standard
equation by completing the square, as demonstrated in Example 4.

EXAMPLE 4 A Quadric Surface Not Centered at the Origin

Classify and sketch the surface given by 

Solution Completing the square for each variable produces the following.

From this equation, you can see that the quadric surface is an ellipsoid that is centered
at Its graph is shown in Figure 11.61. ■�2, �1, 1�.

 
�x � 2�2

4
�

�y � 1�2

2
�

�z � 1�2

4
� 1

 �x � 2�2 � 2�y � 1�2 � �z � 1�2 � 4

 �x2 � 4x � 4� � 2� y2 � 2y � 1� � �z2 � 2z � 1� � �3 � 4 � 2 � 1

 �x2 � 4x �  � � 2� y2 � 2y �  � � �z2 � 2z �  � � �3

x2 � 2y2 � z2 � 4x � 4y � 2z � 3 � 0.

11.6 Surfaces in Space 817

y

x

z

1

5

3

−1

(2, −1, 1)

(x − 2)2 (y + 1)2 (z − 1)2

4 2 4
+ + = 1

An ellipsoid centered at 
Figure 11.61

�2, �1, 1�

A computer algebra system can help you visualize a surface in
space.* Most of these computer algebra systems create three-dimensional illusions
by sketching several traces of the surface and then applying a “hidden-line” routine
that blocks out portions of the surface that lie behind other portions of the surface.
Two examples of figures that were generated by Mathematica are shown below.

Elliptic paraboloid Hyperbolic paraboloid

Using a graphing utility to graph a surface in space requires practice. For one
thing, you must know enough about the surface to be able to specify a viewing
window that gives a representative view of the surface. Also, you can often improve
the view of a surface by rotating the axes. For instance, note that the elliptic
paraboloid in the figure is seen from a line of sight that is “higher” than the line of
sight used to view the hyperbolic paraboloid.

z �
y 2

16
�

x2

16
x �

y2

2
�

z2

2

y

x

Generated by Mathematica

z

x

y

Generated by Mathematica

z

TECHNOLOGY

*Some 3-D graphing utilities require surfaces to be entered with parametric equations. For
a discussion of this technique, see Section 15.5.
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Surfaces of Revolution
The fifth special type of surface you will study is called a surface of revolution. In
Section 7.4, you studied a method for finding the of such a surface. You will now
look at a procedure for finding its Consider the graph of the radius function

Generating curve

in the plane. If this graph is revolved about the axis, it forms a surface of revolu-
tion, as shown in Figure 11.62. The trace of the surface in the plane is a circle
whose radius is and whose equation is 

Circular trace in plane:

Replacing with produces an equation that is valid for all values of In a similar
manner, you can obtain equations for surfaces of revolution for the other two axes, and
the results are summarized as follows.

EXAMPLE 5 Finding an Equation for a Surface of Revolution

a. An equation for the surface of revolution formed by revolving the graph of

Radius function

about the axis is

Revolved about the axis

Substitute for 

b. To find an equation for the surface formed by revolving the graph of 
about the axis, solve for in terms of to obtain

Radius function

So, the equation for this surface is

Revolved about the axis

Substitute for 

Equation of surface

The graph is shown in Figure 11.63. ■

x2 � z2 �
1
9y3.

r �y�.1
3 y3�2x2 � z2 � �1

3y3�2�2
y-x2 � z2 � �r�y��2

x �
1
3 y3�2 � r� y�.

yxy-
9x2 � y3

r �z�.1�zx2 � y2 � �1
z�

2

.

z-x2 � y2 � �r�z��2

z-

y �
1
z

z.zz0

z � z0x2 � y2 � �r�z0��2.

r�z0�
z � z0

z-yz-

y � r�z�

equation.
area
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y

x

(x, y, z)
r z( )

(0, 0, z)

(0, r (z), z)

Circular
cross section

Generating curve
y = r (z)

z

Figure 11.62

x
y

Generating curve
9x2 = y3

x2 + z2 = y31
9

Surface:
z

Figure 11.63

SURFACE OF REVOLUTION

If the graph of a radius function is revolved about one of the coordinate
axes, the equation of the resulting surface of revolution has one of the following
forms.

1. Revolved about the axis:

2. Revolved about the axis:

3. Revolved about the axis: x2 � y2 � �r�z��2z-

x2 � z2 � �r�y��2y-

y2 � z2 � �r�x��2x-

r
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The generating curve for a surface of revolution is not unique. For instance, the
surface

can be formed by revolving either the graph of about the axis or the graph
of about the axis, as shown in Figure 11.64.

Figure 11.64

EXAMPLE 6 Finding a Generating Curve for a Surface of Revolution

Find a generating curve and the axis of revolution for the surface given by

Solution You now know that the equation has one of the following forms.

Revolved about axis

Revolved about axis

Revolved about axis

Because the coefficients of and are equal, you should choose the third form and
write

The axis is the axis of revolution. You can choose a generating curve from either of
the following traces.

Trace in plane

Trace in plane

For example, using the first trace, the generating curve is the semiellipse given by 

Generating curve

The graph of this surface is shown in Figure 11.65. ■

x � 	9 � 3y2.

yz-z2 � 9 � 3y2

xy-x2 � 9 � 3y2

y-

x2 � z2 � 9 � 3y2.

z2x2

y-x2 � z2 � �r�y��2

x-y2 � z2 � �r�x��2

z-x2 � y2 � �r�z��2

x2 � 3y2 � z2 � 9.

x

y

z Generating curve
in yz-plane
z = e−y

x

y

Generating curve
in xy-plane
x = e−y

Surface:
x2 + z2 = e−2y

z

y-z � e�y
y-x � e�y

x2 � z2 � e�2y
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Generating curve
in xy-plane

Surface:
x2 + 3y2 + z2 = 9

y

x

z
x =     9 − 3y2

Generating curve
in yz-plane
z =     9 − 3y2

Figure 11.65
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In Exercises 1–6, match the equation with its graph. [The
graphs are labeled (a), (b), (c), (d), (e), and (f).]

(a) (b)

(c) (d)

(e) (f )

1. 2.

3. 4.

5. 6.

In Exercises 7–16, describe and sketch the surface.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. Think About It The four figures are graphs of the quadric
surface Match each of the four graphs with the
point in space from which the paraboloid is viewed. The four
points are and 

(a) (b)

(c) (d)

Figures for 17

18. Use a computer algebra system to graph a view of the cylinder
from each point.

(a)

(b)

(c)

In Exercises 19–32, identify and sketch the quadric surface. Use
a computer algebra system to confirm your sketch.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31.

32.

In Exercises 33–42, use a computer algebra system to graph the
surface. (Hint: It may be necessary to solve for and acquire
two equations to graph the surface.)

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

In Exercises 43–46, sketch the region bounded by the graphs of
the equations.

43.

44.

45.

46. z � 0y � 2z,z � 	4 � x2 � y2,

z � 0x � z � 2,x2 � y2 � 1,

z � 0y � 0,x � 0,y � 	4 � x2,z � 	4 � x2,

z � 2z � 2	x2 � y2,

9x2 � 4y2 � 8z2 � 726x2 � 4y2 � 6z2 � �36

z �
�x

8 � x2 � y2z � 10 � 	
xy


x2 � y2 � e�zx2 � y2 � �2
z�

2

3.25y � x2 � z2z2 � x2 � 7.5y2

z � x2 � 0.5y2z � 2 cos x

z

9x2 � y2 � 9z2 � 54x � 4y � 54z � 4 � 0

16x2 � 9y2 � 16z2 � 32x � 36y � 36 � 0

x2 � 2y2 � 2z2z2 � x2 �
y2

9

3z � �y2 � x2x2 � y2 � z � 0

z � x2 � 4y2x2 � y � z2 � 0

z2 � x2 �
y2

4
� 14x2 � y2 � z2 � 1

�8x2 � 18y2 � 18z2 � 216x2 � y2 � 16z2 � 4

x2

16
�

y2

25
�

z2

25
� 1x2 �

y2

4
� z2 � 1

�10, 10, 10�
�0, 10, 0�
�10, 0, 0�

y2 � z2 � 4

x

z

y

x

yx

z

y

z

�10, 10, 20�.�20, 0, 0�,�0, 20, 0�,�0, 0, 20�,

z � x2 � y2.

z � ey � 0z � sin y � 0

y2 � z2 � 164x2 � y2 � 4

y2 � z � 6x2 � y � 0

x2 � z2 � 25y2 � z2 � 9

z � 2y � 5

4x2 � y2 � 4z � 04x2 � 4y � z2 � 0

y2 � 4x2 � 9z24x2 � y2 � 4z2 � 4

15x2 � 4y2 � 15z2 � �4
x2

9
�

y2

16
�

z2

9
� 1

y
4

5
4

2
3

x

z

y
2

2
1

3

−3

3
4 4

x

z

6

4

2

2
y

x

z

x
y5

−5

4

4

z

y

x

2
4

2

3

4
−3

z

x
y5 6

4

6

3

z
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11.6 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.
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In Exercises 47–52, find an equation for the surface of
revolution generated by revolving the curve in the indicated
coordinate plane about the given axis.

47. plane axis

48. plane axis

49. plane axis

50. plane axis

51. plane axis

52. plane axis

In Exercises 53 and 54, find an equation of a generating curve
given the equation of its surface of revolution.

53. 54.

In Exercises 59 and 60, use the shell method to find the volume
of the solid below the surface of revolution and above the

-plane.

59. The curve in the plane is revolved about the 
axis.

60. The curve in the plane is revolved
about the axis.

In Exercises 61 and 62, analyze the trace when the surface 

is intersected by the indicated planes.

61. Find the lengths of the major and minor axes and the coordinates
of the foci of the ellipse generated when the surface is
intersected by the planes given by

(a) and (b)

62. Find the coordinates of the focus of the parabola formed when
the surface is intersected by the planes given by

(a) and (b)

In Exercises 63 and 64, find an equation of the surface satisfying
the conditions, and identify the surface.

63. The set of all points equidistant from the point and the
plane 

64. The set of all points equidistant from the point and the
plane

65. Geography Because of the forces caused by its rotation,
Earth is an oblate ellipsoid rather than a sphere. The equatorial
radius is 3963 miles and the polar radius is 3950 miles. Find an
equation of the ellipsoid. (Assume that the center of Earth is
at the origin and that the trace formed by the plane 
corresponds to the equator.)

66. Machine Design The top of a rubber bushing designed to
absorb vibrations in an automobile is the surface of revolution
generated by revolving the curve in
the -plane about the -axis.

(a) Find an equation for the surface of revolution.

(b) All measurements are in centimeters and the bushing is set
on the -plane. Use the shell method to find its volume.

(c) The bushing has a hole of diameter 1 centimeter through its
center and parallel to the axis of revolution. Find the
volume of the rubber bushing.

67. Determine the intersection of the hyperbolic paraboloid
with the plane Assume

68. Explain why the curve of intersection of the surfaces
and 

lies in a plane.

True or False? In Exercises 69–72, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

69. A sphere is an ellipsoid.

70. The generating curve for a surface of revolution is unique.

71. All traces of an ellipsoid are ellipses.

72. All traces of a hyperboloid of one sheet are hyperboloids.

73. Think About It Three types of classic “topological” surfaces
are shown below. The sphere and torus have both an “inside”
and an “outside.” Does the Klein bottle have both an inside and
an outside? Explain.

Sphere Torus

Klein bottle Klein bottle

2x2 � 6y2 � 4z2 � 3x � 2x2 � 3y2 � 2z2 � 2y � 4

b > 0.�a,
(bx � ay � z � 0.z � y2�b2 � x2�a2

xy

zyz
�0 � y � 2�z �

1
2 y2 � 1

z � 0

xy-
�0, 0, 4�

y � �2
�0, 2, 0�

x � 2.y � 4

z � 8.z � 2

z � 1
2 x2 1 1

4 y2

z-
yz-z � sin y �0 � y � ��

z-
xz-z � 4x � x2

xy

x2 � z2 � cos2 yx2 � y2 � 2z � 0

z-yz-z � ln y

x-xy-xy � 2

x-xz-2z � 	4 � x2

z-yz-z � 2y

y-yz-z � 3y

y-yz-z2 � 4y

Axis of RevolutionCoordinate PlaneEquation of Curve
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55. State the definition of a cylinder.

56. What is meant by the trace of a surface? How do you find a
trace?

57. Identify the six quadric surfaces and give the standard form
of each.

WRITING ABOUT CONCEPTS

58. What does the equation represent in the -plane?
What does it represent in three-space?

xzz � x2

CAPSTONE
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■ Use cylindrical coordinates to represent surfaces in space.
■ Use spherical coordinates to represent surfaces in space.

Cylindrical Coordinates
You have already seen that some two-dimensional graphs are easier to represent in
polar coordinates than in rectangular coordinates. A similar situation exists for
surfaces in space. In this section, you will study two alternative space-coordinate
systems. The first, the cylindrical coordinate system, is an extension of polar
coordinates in the plane to three-dimensional space.

To convert from rectangular to cylindrical coordinates (or vice versa), use the
following conversion guidelines for polar coordinates, as illustrated in Figure 11.66.

Cylindrical to rectangular:

Rectangular to cylindrical:

The point is called the pole. Moreover, because the representation of a point
in the polar coordinate system is not unique, it follows that the representation in the
cylindrical coordinate system is also not unique.

EXAMPLE 1 Converting from Cylindrical to Rectangular Coordinates

Convert the point to rectangular coordinates.

Solution Using the cylindrical-to-rectangular conversion equations produces

So, in rectangular coordinates, the point is as shown in
Figure 11.67. ■

�x, y, z� � ��2�3, 2, 3�,
z � 3.

y � 4 sin 
5�

6
� 4 �1

2� � 2

x � 4 cos 
5�

6
� 4 ���3

2 � � �2�3

�r, �, z� � �4, 
5�

6
, 3�

�0, 0, 0�
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11.7 Cylindrical and Spherical Coordinates

THE CYLINDRICAL COORDINATE SYSTEM

In a cylindrical coordinate system, a point in space is represented by an
ordered triple 

1. is a polar representation of the projection of in the plane.

2. is the directed distance from to P.�r, ��z

xy-P�r, ��

�r, �, z�.
P

z � zy � r sin �,x � r cos �,

z � ztan � �
y
x

,r2 � x2 � y2,

x

y

z

(x, y, z)
(r,   , z)θ

θ
θ

θ

θ

P

x

y

Rectangular
coordinates:
x = r cos
y = r sin
z = z

tan    =

r2 = x2 + y2

z = z

y
x

r

Cylindrical coordinates:

Figure 11.66

z

y

x

θ

θ

π
(r,   , z) =   4,      , 3

5
6( (

r

z

P

1

−2

−3

−4

−1
1 2 3 4−1

1

2

3

4

(x, y, z) = (−2    3, 2, 3)

Figure 11.67
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EXAMPLE 2 Converting from Rectangular to Cylindrical Coordinates

Convert the point to cylindrical coordinates.
Solution Use the rectangular-to-cylindrical conversion equations.

You have two choices for and infinitely many choices for As shown in Figure
11.68, two convenient representations of the point are

and in Quadrant I

and in Quadrant III ■

Cylindrical coordinates are especially convenient for representing cylindrical
surfaces and surfaces of revolution with the axis as the axis of symmetry, as shown
in Figure 11.69.

Cylinder Paraboloid Cone Hyperboloid
Figure 11.69

Vertical planes containing the axis and horizontal planes also have simple cylindrical
coordinate equations, as shown in Figure 11.70.

Figure 11.70

y

x

z Horizontal
plane:
z = c

y

x

Vertical
plane:

= cθ

θ = c

z

z-

r2 = z2 + 1

z

y
x

x2 + y2 − z2 = 1
r = z

z

y

x

x2 + y2 = z2

r = 2    z

y
x

z

x2 + y2 = 4z

y

x

z

r = 3
x2 + y2 = 9

z-

�r < 0��2, 
4�

3
, 2�.

�r > 0�2, 
�

3
, 2�

�.r

z � 2

� � arctan ��3 � � n� �
�

3
� n�tan � � �3

r � ±�1 � 3 � ±2

�x, y, z� � �1, �3, 2�
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( , , ) = (1, 3, 2)x  y  z

θ
y

x

=

3

2

1 2 3

3

2

1

r = 2

z = 2

z

θ π
(r,   , z) =   2,    , 2   or   −2,      , 2

3

π
3

π4
3( (( (

Figure 11.68
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EXAMPLE 3 Rectangular-to-Cylindrical Conversion

Find an equation in cylindrical coordinates for the surface represented by each
rectangular equation.

a.

b.

Solution

a. From the preceding section, you know that the graph is an elliptic
cone with its axis along the axis, as shown in Figure 11.71. If you replace

with the equation in cylindrical coordinates is

Rectangular equation

Cylindrical equation

b. The graph of the surface is a parabolic cylinder with rulings parallel to the
axis, as shown in Figure 11.72. By replacing with and with 

you obtain the following equation in cylindrical coordinates.

Rectangular equation

Substitute for and for 

Collect terms and factor.

Divide each side by 

Solve for 

Cylindrical equation

Note that this equation includes a point for which so nothing was lost by
dividing each side by the factor ■

Converting from cylindrical coordinates to rectangular coordinates is less
straightforward than converting from rectangular coordinates to cylindrical coordi-
nates, as demonstrated in Example 4.

EXAMPLE 4 Cylindrical-to-Rectangular Conversion

Find an equation in rectangular coordinates for the surface represented by the
cylindrical equation

Solution

Cylindrical equation

Trigonometric identity

Replace with and with 

Rectangular equation

This is a hyperboloid of two sheets whose axis lies along the axis, as shown in
Figure 11.73. ■

y-

 y2 � x2 � z2 � 1

y.r sin �xr cos � x2 � y2 � z2 � �1

 r2 cos2 � � r2 sin2 � � z2 � �1

 r2�cos2 � � sin2 �� � z2 � 1 � 0

 r2 cos 2� � z2 � 1 � 0

r2 cos 2� � z2 � 1 � 0.

r.
r � 0,

 r � csc � cot �

r. r �
cos �
sin2 �

r. r sin2 � � cos � � 0

 r�r sin2 � � cos �� � 0

x.r cos �yr sin � r2 sin2 � � r cos �

 y2 � x

r cos �,xr2 sin2 �y2z-
y2 � x

 r2 � 4z2.

 x2 � y2 � 4z2

r2,x2 � y2
z-

x2 � y2 � 4z2

y2 � x

x2 � y2 � 4z2
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y

z

4 6

3

4
6

x2 + y2 = 4z2

Rectangular:

r2 = 4z2

Cylindrical:

x

Figure 11.71

Cylindrical:
r = csc    cotθ θ

Rectangular:
y2 = x

y

x

z

2

2

4

1

Figure 11.72

z

2
3

2
3

3

−3

−2

−1

Rectangular:
y2 − x2 − z2 = 1

Cylindrical:
r2 cos 2   + z2 + 1 = 0θ

yx

Figure 11.73
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Spherical Coordinates
In the spherical coordinate system, each point is represented by an ordered triple: the
first coordinate is a distance, and the second and third coordinates are angles. This
system is similar to the latitude-longitude system used to identify points on the 
surface of Earth. For example, the point on the surface of Earth whose latitude is 
North (of the equator) and whose longitude is West (of the prime meridian) is
shown in Figure 11.74. Assuming that the Earth is spherical and has a radius of 4000
miles, you would label this point as

Radius clockwise from down from

prime meridian North Pole

The relationship between rectangular and spherical coordinates is illustrated in
Figure 11.75. To convert from one system to the other, use the following.

Spherical to rectangular:

Rectangular to spherical:

To change coordinates between the cylindrical and spherical systems, use the
following.

Spherical to cylindrical :

Cylindrical to spherical :�r � 0�

�r � 0�

50�80�

�4000, �80�, 50��.

80�
40�
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x

y

80° W
40° N

Equator

Prime
meridian

z

Figure 11.74

x

y

(  ,   ,   )
(x, y, z)

θ φρ

θ

φ

ρ

P

x

y

r

O

φρr x2 + y2=    sin    =

z

z

Spherical coordinates
Figure 11.75

THE SPHERICAL COORDINATE SYSTEM

In a spherical coordinate system, a point in space is represented by an
ordered triple 

1. is the distance between and the origin,

2. is the same angle used in cylindrical coordinates for 

3. is the angle between the positive axis and the line segment 

Note that the first and third coordinates, and are nonnegative. is the
lowercase Greek letter and is the lowercase Greek letter phi.	rho,


	,


0 � 	 � �.
OP

\

,z-	

r � 0.�


 � 0.P


�
, �, 	�.
P

z � 
 cos 	y � 
 sin 	 sin �,x � 
 sin 	 cos �,

z � 
 cos 	� � �,r2 � 
2 sin2 	,

	 � arccos� z
�x2 � y2 � z2�tan � �

y
x

,
2 � x2 � y2 � z2,

	 � arccos� z
�r2 � z2�� � �,
 � �r2 � z2,
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The spherical coordinate system is useful primarily for surfaces in space that have
a point or center of symmetry. For example, Figure 11.76 shows three surfaces with
simple spherical equations.

Figure 11.76

EXAMPLE 5 Rectangular-to-Spherical Conversion

Find an equation in spherical coordinates for the surface represented by each
rectangular equation.

a. Cone:

b. Sphere:

Solution

a. Making the appropriate replacements for and in the given equation yields the
following.

The equation represents the half-cone, and the equation 
represents the half-cone.

b. Because and the given equation has the following
spherical form.

Temporarily discarding the possibility that you have the spherical equation

or

Note that the solution set for this equation includes a point for which so
nothing is lost by discarding the factor The sphere represented by the equation

is shown in Figure 11.77. ■
 � 4 cos 	

.


 � 0,


 � 4 cos 	.
 � 4 cos 	 � 0


 � 0,


�
 � 4 cos 	� � 0
2 � 4
 cos 	 � 0

z � 
 cos 	,
2 � x2 � y2 � z2

lower
	 � 3�	4upper	 � �	4

	 � �	4 or 	 � 3�	4 tan2 	 � 1


 � 0 
sin2 	
cos2 	

� 1

 
2 sin2 	 � 
2 cos2 	

 
2 sin2 	 �cos2 � � sin2 �� � 
2 cos2 	

 
2 sin2 	 cos2 � � 
2 sin2 	 sin2 � � 
2 cos2 	

 x2 � y2 � z2

zy,x,

x2 � y2 � z2 � 4z � 0

x2 � y2 � z2

y

x

Half-cone:
= cφ 0 < c < π

2 ))

φ = c

z

y
x θ = c

Vertical half-plane:
= cθ

z

Sphere:
= cρ

y

x

c

z
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Rectangular:
x2 + y2 + z2 − 4z = 0 ρ φ

Spherical:
= 4 cos

y

x

z

−2

2

4

11

2

Figure 11.77
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11.7 Cylindrical and Spherical Coordinates 827

11.7 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

CAS

In Exercises 1–6, convert the point from cylindrical coordinates
to rectangular coordinates.

1. 2.

3. 4.

5. 6.

In Exercises 7–12, convert the point from rectangular coordinates
to cylindrical coordinates.

7. 8.

9. 10.

11. 12.

In Exercises 13–20, find an equation in cylindrical coordinates
for the equation given in rectangular coordinates.

13. 14.

15. 16.

17. 18.

19. 20.

In Exercises 21–28, find an equation in rectangular coordinates
for the equation given in cylindrical coordinates, and sketch its
graph.

21. 22.

23. 24.

25. 26.

27. 28.

In Exercises 29–34, convert the point from rectangular coordinates
to spherical coordinates.

29. 30.

31. 32.

33. 34.

In Exercises 35– 40, convert the point from spherical coordinates
to rectangular coordinates.

35. 36.

37. 38.

39. 40.

In Exercises 41–48, find an equation in spherical coordinates
for the equation given in rectangular coordinates.

41. 42.

43. 44.

45. 46.

47. 48.

In Exercises 49–56, find an equation in rectangular coordinates
for the equation given in spherical coordinates, and sketch its
graph.

49. 50.

51. 52.

53. 54.

55. 56.

In Exercises 57–64, convert the point from cylindrical coordinates
to spherical coordinates.

57. 58.

59. 60.

61. 62.

63. 64.

In Exercises 65–72, convert the point from spherical coordinates
to cylindrical coordinates.

65. 66.

67. 68.

69. 70.

71. 72.

In Exercises 73–88, use a computer algebra system or graphing
utility to convert the point from one system to another among
the rectangular, cylindrical, and spherical coordinate systems.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88. �8, ��	6, ����
�3, 3�	4, �	3���
��8.25, 1.3, �4��
���3.5, 2.5, 6��
���2, 11�	6, 3��
��5, 3�	4, �5��
���0, �5, 4�
���5	2, 4	3, �3	2�
���3�2, 3�2, �3�
���3, �2, 2�

�7.5, 0.25, 1���
�20, 2�	3, �	4���
��10, �0.75, 6��
��5, �	9, 8��
���6, �2, �3�
���4, 6, 3�

Spherical           Cylindrical      Rectangular        

�7, �	4, 3�	4��8, 7�	6, �	6�
�5, �5�	6, ���6, ��	6, �	3�
�18, �	3, �	3��36, �, �	2�
�4, �	18, �	2��10, �	6, �	2�

�4, �	2, 3��12, �, 5�
��4, �	3, 4��4, ��	6, 6�
�2, 2�	3, �2��4, �	2, 4�
�3, ��	4, 0��4, �	4, 0�


 � 4 csc 	 sec �
 � csc 	


 � 2 sec 	
 � 4 cos 	

	 �
�

2
	 �

�

6

� �
3�

4

 � 5

x2 � y2 � z2 � 9z � 0x2 � y2 � 2z2

x � 13x2 � y2 � 16

x2 � y2 � 3z2 � 0x2 � y2 � z2 � 49

z � 6y � 2

�6, �, �	2��5, �	4, 3�	4�
�9, �	4, ���12, ��	4, 0�
�12, 3�	4, �	9��4, �	6, �	4�

��1, 2, 1���3, 1, 2�3 �
�2, 2, 4�2 ���2, 2�3, 4�
��4, 0, 0��4, 0, 0�

r � 2 cos �r � 2 sin �

z � r2 cos2 �r2 � z2 � 5

r �
1
2z� � �	6

z � 2r � 3

x2 � y2 � z2 � 3z � 0y2 � 10 � z2

x2 � y2 � 8xy � x2

z � x2 � y2 � 11x2 � y2 � z2 � 17

x � 9z � 4

�2�3, �2, 6��1, �3, 4�
�3, �3, 7��2, �2, �4�
�2�2, �2�2, 4��0, 5, 1�

��0.5, 4�	3, 8��4, 7�	6, 3�
�6, ��	4, 2��3, �	4, 1�
�2, ��, �4���7, 0, 5�
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In Exercises 89–94, match the equation (written in terms of
cylindrical or spherical coordinates) with its graph. [The graphs
are labeled (a), (b), (c), (d), (e), and (f).]

(a) (b)

(c) (d)

(e) (f)

89. 90.

91. 92.

93. 94.

In Exercises 99–106, convert the rectangular equation to an
equation in (a) cylindrical coordinates and (b) spherical 
coordinates.

99. 100.

101. 102.

103. 104.

105. 106.

In Exercises 107–110, sketch the solid that has the given
description in cylindrical coordinates.

107.

108.

109.

110.

In Exercises 111–114, sketch the solid that has the given
description in spherical coordinates.

111.

112.

113.

114.

Think About It In Exercises 115–120, find inequalities that
describe the solid, and state the coordinate system used.
Position the solid on the coordinate system such that the
inequalities are as simple as possible.

115. A cube with each edge 10 centimeters long

116. A cylindrical shell 8 meters long with an inside diameter of
0.75 meter and an outside diameter of 1.25 meters

117. A spherical shell with inside and outside radii of 4 inches and
6 inches, respectively

118. The solid that remains after a hole 1 inch in diameter is drilled
through the center of a sphere 6 inches in diameter

119. The solid inside both and

120. The solid between the spheres and
and inside the cone 

True or False? In Exercises 121–124, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

121. In cylindrical coordinates, the equation is a cylinder.

122. The equations and represent the
same surface.

123. The cylindrical coordinates of a point are unique.

124. The spherical coordinates of a point are unique.

125. Identify the curve of intersection of the surfaces (in cylindrical
coordinates) and 

126. Identify the curve of intersection of the surfaces (in spherical
coordinates) and 
 � 4.
 � 2 sec 	

r � 1.z � sin �

�x, y, z�
�x, y, z�

x2 � y2 � z2 � 4
 � 2

r � z

z2 � x2 � y2x2 � y2 � z2 � 9,
x2 � y2 � z2 � 4

�x �
3
2�2

� y2 �
9
4

x2 � y2 � z2 � 9

1 � 
 � 30 � 	 � �	2,0 � � � �,

0 � 
 � 20 � 	 � �	2,0 � � � �	2,

0 � � � 2�, �	4 � 	 � �	2, 0 � 
 � 1

0 � � � 2�, 0 � 	 � �	6, 0 � 
 � a sec 	

0 � � � 2�, 2 � r � 4, z2 � �r2 � 6r � 8

0 � � � 2�, 0 � r � a, r � z � a

��	2 � � � �	2, 0 � r � 3, 0 � z � r cos �

0 � � � �	2, 0 � r � 2, 0 � z � 4

y � 4x2 � y2 � 9

x2 � y2 � 36x2 � y2 � 4y

x2 � y2 � zx2 � y2 � z2 � 2z � 0

4�x2 � y2� � z2x2 � y2 � z2 � 25


 � 4 sec 	r2 � z

	 �
�

4

 � 5

� �
�

4
r � 5

y
x

3

2

−2
12

z

y

x

2

1

2
−2

2

z

π
4

y
x

55

5

z

y

x
55

5

z

y

x

4

−4

4

2

z

y

x

π
4

1 2 3

3

−3 −2

3 2

z
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95. Give the equations for the coordinate conversion from
rectangular to cylindrical coordinates and vice versa.

96. Explain why in spherical coordinates the graph of is
a half-plane and not an entire plane.

97. Give the equations for the coordinate conversion from
rectangular to spherical coordinates and vice versa.

� � c

WRITING ABOUT CONCEPTS

98. (a) For constants and describe the graphs of the
equations and in cylindrical 
coordinates.

(b) For constants and describe the graphs of the
equations and in spherical 
coordinates.

	 � c� � b,
 � a,
c,b,a,

z � c� � b,r � a,
c,b,a,

CAPSTONE
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In Exercises 1 and 2, let and and (a) write 
and in component form, (b) write as the linear combination
of the standard unit vectors and (c) find the magnitude of 
and (d) find 

1.

2.

In Exercises 3 and 4, find the component form of given its 
magnitude and the angle it makes with the positive -axis.

3. 4.

5. Find the coordinates of the point in the plane four units to
the right of the plane and five units behind the plane.

6. Find the coordinates of the point located on the axis and
seven units to the left of the plane.

In Exercises 7 and 8, determine the location of a point 
that satisfies the condition.

7. 8.

In Exercises 9 and 10, find the standard equation of the sphere.

9. Center: Diameter: 15

10. Endpoints of a diameter:

In Exercises 11 and 12, complete the square to write the equation
of the sphere in standard form. Find the center and radius.

11.

12.

In Exercises 13 and 14, the initial and terminal points of a 
vector are given. (a) Sketch the directed line segment, (b) find
the component form of the vector, (c) write the vector using
standard unit vector notation, and (d) sketch the vector with its
initial point at the origin.

13. Initial point: 14. Initial point:

Terminal point: Terminal point:

In Exercises 15 and 16, use vectors to determine whether the
points are collinear.

15.

16.

17. Find a unit vector in the direction of 

18. Find the vector of magnitude 8 in the direction 

In Exercises 19 and 20, let and and find (a) the
component forms of and (b) and (c) 

19.

20.

In Exercises 21 and 22, determine whether and are 
orthogonal, parallel, or neither.

21. 22.

In Exercises 23–26, find the angle between the vectors.

23.

24.

25.

26.

27. Find two vectors in opposite directions that are orthogonal to
the vector 

28. Work An object is pulled 8 feet across a floor using a force of
75 pounds. The direction of the force is above the horizontal.
Find the work done.

In Exercises 29–38, let and

29. Show that 

30. Find the angle between and 

31. Determine the projection of onto 

32. Find the work done in moving an object along the vector if
the applied force is 

33. Determine a unit vector perpendicular to the plane containing 
and 

34. Show that 

35. Find the volume of the solid whose edges are and 

36. Show that 

37. Find the area of the parallelogram with adjacent sides and 

38. Find the area of the triangle with adjacent sides and 

39. Torque The specifications for a tractor state that the torque on
a bolt with head size inch cannot exceed 200 foot-pounds.
Determine the maximum force that can be applied to the
wrench in the figure.

70°

50°

F

7
8

in.

2 ft

� F �

7
8

w.v

v.u

u � �v � w� � �u � v� � �u � w�.
w.v,u,

u � v � ��v � u�.
w.v

w.
u

u.w

v.u

u � u � �u �2.

w � ��1, 2, 2�.
v � �2, �4, �3�,u � �3, �2, 1�,

30�

u � �5, 6, �3�.

v � �2, �2, 1�u � �1, 0, �3�,
v � ��2, 1, �3�u � �10, �5, 15�,
v � �i � 5ju � 6i � 2j � 3k,

v � 2�cos�2��3�i � sin�2��3�j	
u � 5�cos�3��4�i � sin�3��4�j	

�

v � �16, �12, 24�v � ��1, 4, 5�
u � ��4, 3, �6�u � �7, �2, 3�

vu

P � �2, �1, 3�, Q � �0, 5, 1�, R � �5, 5, 0�
P � �5, 0, 0�, Q � �4, 4, 0�, R � �2, 0, 6�

v � v.u � v,v,u
v � PR

\

,u � PQ
\

�6, �3, 2�.v

u � �2, 3, 5�.

�5, �4, 7�, �8, �5, 5�, �11, 6, 3�
�3, 4, �1�, ��1, 6, 9�, �5, 3, �6�

�3, �3, 8��4, 4, �7�
�6, 2, 0��2, �1, 3�

x2 � y2 � z2 � 10x � 6y � 4z � 34 � 0

x2 � y2 � z2 � 4x � 6y � 4 � 0

�0, 0, 4�, �4, 6, 0�
�3, �2, 6�;

xy < 0yz > 0


x, y, z�

xz-
y-

yz-xz-
xy-

�v� �
1
2, 	 � 225��v� � 8, 	 � 60�

x
v

P � ��2, �1�, Q � �5, �1�, R � �2, 4�
P � �1, 2�, Q � �4, 1�, R � �5, 4�

2u 1 v.
v,j,i

uv
uv � PR

\

,u � PQ
\
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40. Volume Use the triple scalar product to find the volume of the
parallelepiped having adjacent edges 
and 

In Exercises 41 and 42, find sets of (a) parametric equations
and (b) symmetric equations of the line through the two points.
(For each line, write the direction numbers as integers.)

41. 42.

In Exercises 43–46, (a) find a set of parametric equations for the
line, (b) find a set of symmetric equations for the line, and (c)
sketch a graph of the line.

43. The line passes through the point and is perpendicular
to the plane.

44. The line passes through the point and is parallel to the
line given by 

45. The intersection of the planes and

46. The line passes through the point and is perpendicular
to and 

In Exercises 47–50, find an equation of the plane and sketch its
graph.

47. The plane passes through

and 

48. The plane passes through the point and is perpendi-
cular to 

49. The plane contains the lines given by

and

50. The plane passes through the points and and
is perpendicular to the plane 

51. Find the distance between the point and the plane

52. Find the distance between the point and the plane

53. Find the distance between the planes and

54. Find the distance between the point and the line
given by and 

In Exercises 55–64, describe and sketch the surface.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65. Find an equation of a generating curve of the surface of 
revolution 

66. Find an equation of a generating curve of the surface of 
revolution 

67. Find an equation for the surface of revolution generated by
revolving the curve in the -plane about the -axis.

68. Find an equation for the surface of revolution generated by
revolving the curve in the -plane about the 
-axis.

In Exercises 69 and 70, convert the point from rectangular
coordinates to (a) cylindrical coordinates and (b) spherical
coordinates.

69. 70.

In Exercises 71 and 72, convert the point from cylindrical
coordinates to spherical coordinates.

71. 72.

In Exercises 73 and 74, convert the point from spherical
coordinates to cylindrical coordinates.

73.

74.

In Exercises 75 and 76, convert the rectangular equation to
an equation in (a) cylindrical coordinates and (b) spherical
coordinates.

75. 76.

In Exercises 77 and 78, find an equation in rectangular
coordinates for the equation given in cylindrical coordinates,
and sketch its graph.

77. 78.

In Exercises 79 and 80, find an equation in rectangular
coordinates for the equation given in spherical coordinates, and
sketch its graph.

79. 80. 
 � 3 cos �	 �
�

4

z � 4r � 5 cos 	

x2 � y2 � z2 � 16x2 � y2 � 2z

�12, �
�

2
, 

2�

3 

�25, �

�

4
, 

3�

4 


�81, �
5�

6
, 27�3
�100, �

�

6
, 50


��3
4

, 
3
4

, 
3�3

2 
��2�2, 2�2, 2�

x
xz2x � 3z � 1

yyzz2 � 2y

x2 � 2y2 � z2 � 3y.

y2 � z2 � 4x � 0.

y2 � z2 � 16

x2 � z2 � 4

x2

25
�

y2

4
�

z2

100
� 1

x2

16
�

y2

9
� z2 � �1

16x2 � 16y2 � 9z2 � 0

x2

16
�

y2

9
� z2 � 1

y � cos z

y �
1
2z

y � z2

x � 2y � 3z � 6

z � 5 � t.y � 3 � 2t,x � 1 � t,
��5, 1, 3�

z � �3.5x � 3y �
5x � 3y � z � 2

2x � 5y � z � 10.
�3, �2, 4�

6z � 6.2x � 3y �
�1, 0, 2�

2x � y � z � 4.
�2, �2, 1��5, 1, 3�

x � 1
�2

� y � 1 � z � 2.

x � 1
�2

� y � z � 1

n � 3i � j � k.
��2, 3, 1�

�1, 1, �2�.��3, 4, 1�,��3, �4, 2�,

v � ��3, 1, 4�.u � �2, �5, 1�
�0, 1, 4�

x � y � 2z � 3.
3x � 3y � 7z � �4

x � y � z.
�1, 2, 3�

xz-
�1, 2, 3�

�8, 10, 5���1, 4, 3�,�3, 0, 2�,  �9, 11, 6�

w � �j � 2k.
v � 2j � k,u � 2i � j,
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1. Using vectors, prove the Law of Sines: If and are the three
sides of the triangle shown in the figure, then

2. Consider the function 

(a) Use a graphing utility to graph the function on the interval

(b) Find a unit vector parallel to the graph of at the point 

(c) Find a unit vector perpendicular to the graph of at the point

(d) Find the parametric equations of the tangent line to the
graph of at the point 

3. Using vectors, prove that the line segments joining the midpoints
of the sides of a parallelogram form a parallelogram (see figure).

4. Using vectors, prove that the diagonals of a rhombus are
perpendicular (see figure).

5. (a) Find the shortest distance between the point and
the line determined by the points and 

(b) Find the shortest distance between the point and
the line segment joining the points and

6. Let be a point in the plane with normal vector Describe the
set of points in the plane for which is orthogonal to

7. (a) Find the volume of the solid bounded below by the parab-
oloid and above by the plane 

(b) Find the volume of the solid bounded below by the elliptic 

paraboloid and above by the plane 

where 

(c) Show that the volume of the solid in part (b) is equal to 
one-half the product of the area of the base times the
altitude, as shown in the figure.

8. (a) Use the disk method to find the volume of the sphere

(b) Find the volume of the ellipsoid 

9. Sketch the graph of each equation given in spherical coordi-
nates.

(a)

(b)

10. Sketch the graph of each equation given in cylindrical coordi-
nates.

(a)

(b)

11. Prove the following property of the cross product.

12. Consider the line given by the parametric equations

and the point for any real number 

(a) Write the distance between the point and the line as a
function of 

(b) Use a graphing utility to graph the function in part (a). Use
the graph to find the value of such that the distance
between the point and the line is minimum.

(c) Use the feature of a graphing utility to zoom out 
several times on the graph in part (b). Does it appear that
the graph has slant asymptotes? Explain. If it appears to
have slant asymptotes, find them.

zoom

s

s.

s.�4, 3, s�

z � 2t � 1y �
1
2t � 1,x � �t � 3,

�u � v� � �w � z� � �u � v � z�w � �u � v � w�z

z � r2 cos 2	

r � 2 cos 	


 � 2 cos �


 � 2 sin �

x2

a2 �
y2

b2 �
z2

c2 � 1.

x2 � y2 � z2 � r 2.

x

y

Base

Altitude

z

k > 0.

z � k,z �
x2

a2 �
y2

b2

z � 1.z � x2 � y2

�n � PP
\

0�.
�n � PP

\

0�P
n.P0

P2�0, 1, 2�.
P1�0, 0, 1�

Q�2, 0, 0�
P2�0, 1, 2�.P1�0, 0, 1�

Q�2, 0, 0�

�0, 0�.f

�0, 0�.
f

�0, 0�.f

�2 � x � 2.

f �x� � �x

0

�t4 � 1 dt.

a

A

B

C
b

c

sin A
�a�

�
sin B
�b�

�
sin C
�c�

.

cb,a,
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13. A tetherball weighing 1 pound is pulled outward from the pole
by a horizontal force until the rope makes an angle of 
degrees with the pole (see figure).

(a) Determine the resulting tension in the rope and the magni-
tude of when 

(b) Write the tension in the rope and the magnitude of as
functions of Determine the domains of the functions.

(c) Use a graphing utility to complete the table.

(d) Use a graphing utility to graph the two functions for

(e) Compare and as increases.

(f) Find (if possible) and Are the 

results what you expected? Explain.

Figure for 13 Figure for 14

14. A loaded barge is being towed by two tugboats, and the magni-
tude of the resultant is 6000 pounds directed along the axis of
the barge (see figure). Each towline makes an angle of 
degrees with the axis of the barge.

(a) Find the tension in the towlines if 

(b) Write the tension of each line as a function of Deter-
mine the domain of the function.

(c) Use a graphing utility to complete the table.

(d) Use a graphing utility to graph the tension function.

(e) Explain why the tension increases as increases.

15. Consider the vectors and 
where Find the cross product of the

vectors and use the result to prove the identity

16. Los Angeles is located at North latitude and 
West longitude, and Rio de Janeiro, Brazil is located at 
South latitude and West longitude (see figure). Assume
that Earth is spherical and has a radius of 4000 miles.

(a) Find the spherical coordinates for the location of each city.

(b) Find the rectangular coordinates for the location of each
city.

(c) Find the angle (in radians) between the vectors from the
center of Earth to the two cities.

(d) Find the great-circle distance between the cities. 
Hint:

(e) Repeat parts (a)–(d) for the cities of Boston, located at
North latitude and West longitude, and

Honolulu, located at North latitude and 
West longitude.

17. Consider the plane that passes through the points and 
Show that the distance from a point to this plane is

where and 

18. Show that the distance between the parallel planes
and is

19. Show that the curve of intersection of the plane and the
cylinder is an ellipse.

20. Read the article “Tooth Tables: Solution of a Dental Problem 
by Vector Algebra” by Gary Hosler Meisters in Mathematics
Magazine. (To view this article, go to the website 
www.matharticles.com.) Then write a paragraph explaining
how vectors and vector algebra can be used in the construction
of dental inlays.

x2 � y2 � 1
z � 2y

Distance � �d1 � d2�
�a2 � b2 � c2

 .

ax � by � cz � d2 � 0ax � by � cz � d1 � 0

w � PQ
\

.u � PR
\

, v � PS
\

,

Distance � �u � �v � w��
�u � v �

Q
S.R,P,

157.86�21.31�
71.06�42.36�

s � r	��
s
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x

y

z

Equator

meridian

Rio de Janeiro

Prime

43.23�
22.90�

118.24�34.05�

sin�
 � �� � sin 
 cos � � cos 
 sin �.


 > �.�cos �, sin �, 0�,
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	.T
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θ

θ
u
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θ
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	→��2�
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0� � 	 � 60�.

	.
uT
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833

12 Vector-Valued Functions

A vector-valued function maps real numbers to vectors. You can use a vector-valued function to represent the motion
of a particle along a curve. In Section 12.3, you will use the first and second derivatives of a position vector to
find a particle’s velocity and acceleration.

a(0)

v(0)

a(1)

v(1)

a(0)

v(0)

a(0)

v(0)

a(1)

v(1)

a(2)

v(2)

a(0)

v(0)

a(1)

v(1)

a(2)

v(2)

a(3)

v(3)

Jerry Driendl/Getty Images

This chapter introduces the concept of 
vector-valued functions. Vector-valued
functions can be used to study curves in
the plane and in space. These functions
can also be used to study the motion of 
an object along a curve.

In this chapter, you should learn the 
following.

■ How to analyze and sketch a space
curve represented by a vector-valued
function. How to apply the concepts of
limits and continuity to vector-valued
functions. (12.1)

■ How to differentiate and integrate 
vector-valued functions. (12.2)

■ How to describe the velocity and 
acceleration associated with a vector-
valued function and how to use a 
vector-valued function to analyze 
projectile motion. (12.3)

■ How to find tangent vectors and normal
vectors. (12.4)

■ How to find the arc length and curvature
of a curve. (12.5)

A Ferris wheel is constructed using the basic principles of a bicycle wheel. You can
use a vector-valued function to analyze the motion of a Ferris wheel, including its
position and velocity. (See P.S. Problem Solving, Exercise 14.)

■

■
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■ Analyze and sketch a space curve given by a vector-valued function.
■ Extend the concepts of limits and continuity to vector-valued functions.

Space Curves and Vector-Valued Functions
In Section 10.2, a plane curve was defined as the set of ordered pairs 
together with their defining parametric equations

and

where and are continuous functions of on an interval This definition can be
extended naturally to three-dimensional space as follows. A space curve is the set
of all ordered triples together with their defining parametric equations

and

where and are continuous functions of on an interval 
Before looking at examples of space curves, a new type of function, called a

vector-valued function, is introduced. This type of function maps real numbers to
vectors.

Technically, a curve in the plane or in space consists of a collection of points and
the defining parametric equations. Two different curves can have the same graph. For
instance, each of the curves given by 

and

has the unit circle as its graph, but these equations do not represent the same curve—
because the circle is traced out in different ways on the graphs.

Be sure you see the distinction between the vector-valued function and the 
real-valued functions and All are functions of the real variable but is a
vector, whereas and are real numbers for each specific value of .

Vector-valued functions serve dual roles in the representation of curves. By
letting the parameter represent time, you can use a vector-valued function to 
represent motion along a curve. Or, in the more general case, you can use a vector-
valued function to trace the graph of a curve. In either case, the terminal point of the
position vector coincides with the point or on the curve given by the
parametric equations, as shown in Figure 12.1. The arrowhead on the curve indicates
the curve’s orientation by pointing in the direction of increasing values of t.

�x, y, z��x, y�r�t�

t

t��h�t�g�t�,f �t�,
r�t�t,h.g,f,

r

r�t� � sin t2 i � cos t2 jr�t� � sin t i � cos t j

I.thg,f,

z � h�t�y � g�t�,x � f �t�,

� f �t�, g�t�, h�t��
C

I.tgf

y � g�t�x � f �t�

� f�t�, g�t��

834 Chapter 12 Vector-Valued Functions

12.1 Vector-Valued Functions

DEFINITION OF VECTOR-VALUED FUNCTION

A function of the form

Plane

or

Space

is a vector-valued function, where the component functions and are 
real-valued functions of the parameter Vector-valued functions are sometimes
denoted as or r�t� � � f �t�, g�t�, h�t��.r�t� � � f �t�, g�t��

t.
hg,f,

r�t� � f �t�i � g�t�j � h�t�k

r�t� � f �t�i � g�t�j

x

r(t0)

r(t1)

r(t2)

Curve in a plane

C

y

Curve in space

C

x

y

r(t0)

r(t1)

r(t2)

z

Curve is traced out by the terminal point
of position vector 
Figure 12.1

r�t�.
C
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Unless stated otherwise, the domain of a vector-valued function is considered
to be the intersection of the domains of the component functions and For
instance, the domain of is the interval 

EXAMPLE 1 Sketching a Plane Curve

Sketch the plane curve represented by the vector-valued function

Vector-valued function

Solution From the position vector you can write the parametric equations
and Solving for and and using the identity

produces the rectangular equation

Rectangular equation

The graph of this rectangular equation is the ellipse shown in Figure 12.2. The curve
has a clockwise orientation. That is, as increases from 0 to the position vector

moves clockwise, and its terminal point traces the ellipse.

EXAMPLE 2 Sketching a Space Curve

Sketch the space curve represented by the vector-valued function

Vector-valued function

Solution From the first two parametric equations and you
can obtain

Rectangular equation

This means that the curve lies on a right circular cylinder of radius 4, centered about
the axis. To locate the curve on this cylinder, you can use the third parametric equa-
tion In Figure 12.3, note that as increases from 0 to the point 
spirals up the cylinder to produce a helix. A real-life example of a helix is shown in
the drawing at the lower left. ■

In Examples 1 and 2, you were given a vector-valued function and were asked
to sketch the corresponding curve. The next two examples address the reverse
problem—finding a vector-valued function to represent a given graph. Of course, if
the graph is described parametrically, representation by a vector-valued function is
straightforward. For instance, to represent the line in space given by

and

you can simply use the vector-valued function given by

If a set of parametric equations for the graph is not given, the problem of representing
the graph by a vector-valued function boils down to finding a set of parametric
equations.

r�t� � �2 � t�i � 3tj � �4 � t�k.

z � 4 � ty � 3t,x � 2 � t,

�x, y, z�4�,tz � t.
z-

x2 � y2 � 16.

y � 4 sin t,x � 4 cos t

0 � t � 4�.r�t� � 4 cos t i � 4 sin tj � tk,

r�t�
2�,t

x2

22 �
y2

32 � 1.

cos2 t � sin2 t � 1
sin tcos ty � �3 sin t.x � 2 cos t

r�t�,

0 � t � 2�.r�t� � 2 cos t i � 3 sin tj,

�0, 1�.r�t� � ln t i � �1 � t j � tk
h.g,f,

r
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x

r(t) = 2 cos ti − 3 sin tj

−3 −1 1 3

2

1

y

The ellipse is traced clockwise as increases
from 0 to 
Figure 12.2

2�.
t

x2 + y2 = 16
Cylinder:(4, 0, 4  )

(4, 0, 0)

4
π

π

x

y4

r(t) = 4 cos ti + 4 sin tj + tk

z

As increases from 0 to two spirals on
the helix are traced out.
Figure 12.3

4�,t

In 1953 Francis Crick and James D. Watson
discovered the double helix structure of
DNA.

The icon indicates that you will find a CAS Investigation on the book’s website. The CAS
Investigation is a collaborative exploration of this example using the computer algebra systems
Maple and Mathematica.
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EXAMPLE 3 Representing a Graph by a Vector-Valued Function

Represent the parabola given by by a vector-valued function.

Solution Although there are many ways to choose the parameter a natural choice
is to let Then and you have

Vector-valued function

Note in Figure 12.4 the orientation produced by this particular choice of parameter.
Had you chosen as the parameter, the curve would have been oriented in the
opposite direction.

EXAMPLE 4 Representing a Graph by a Vector-Valued Function

Sketch the space curve represented by the intersection of the semiellipsoid

and the parabolic cylinder Then, find a vector-valued function to represent the
graph.

Solution The intersection of the two surfaces is shown in Figure 12.5. As in
Example 3, a natural choice of parameter is For this choice, you can use the
given equation to obtain Then, it follows that

Because the curve lies above the plane, you should choose the positive square root
for and obtain the following parametric equations.

and

The resulting vector-valued function is

Vector-valued function

Note that the -component of implies From the points 
and shown in Figure 12.5, you can see that the curve is traced as increases
from to 2.

The curve is the intersection of the semiellipsoid and the parabolic cylinder.
Figure 12.5 ■

C

y
x

4

2

5

C: x = t
y = t2

(6 + t2)(4 − t2)
6

z =

Curve in
space

Parabolic cylinder

Ellipsoid

(2, 4, 0)

(−2, 4, 0)

(0, 0, 2)

z

�2
t�2, 4, 0�
��2, 4, 0��2 � t � 2.�r�t�k�

�2 � t � 2.r�t� � t i � t2j ���6 � t2��4 � t2�
6

 k,

z ���6 � t2��4 � t2�
6

y � t2,x � t,

z
xy-

z2

4
� 1 �

x2

12
�

y2

24
� 1 �

t2

12
�

t4

24
�

24 � 2t2 � t4

24
�

�6 � t2��4 � t2�
24

.

y � t2.y � x2
x � t.

y � x2.

z � 0
x2

12
�

y2

24
�

z2

4
� 1,

C

x � �t

r�t� � t i � �t2 � 1�j.

y � t2 � 1x � t.
t,

y � x2 � 1
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5

4

3

2

2−1−2 1
x

t = 2

t = 1t = −1

y = x2 + 1t = 0

t = −2

y

There are many ways to parametrize this
graph. One way is to let 
Figure 12.4

x � t.

NOTE Curves in space can be specified
in various ways. For instance, the curve
in Example 4 is described as the 
intersection of two surfaces in space.
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Limits and Continuity
Many techniques and definitions used in the calculus of real-valued functions can be
applied to vector-valued functions. For instance, you can add and subtract vector-
valued functions, multiply a vector-valued function by a scalar, take the limit of a
vector-valued function, differentiate a vector-valued function, and so on. The basic
approach is to capitalize on the linearity of vector operations by extending the
definitions on a component-by-component basis. For example, to add or subtract two
vector-valued functions (in the plane), you can write

Sum

Difference

Similarly, to multiply and divide a vector-valued function by a scalar, you can write

Scalar multiplication

Scalar division

This component-by-component extension of operations with real-valued functions to
vector-valued functions is further illustrated in the following definition of the limit of
a vector-valued function.

If approaches the vector as the length of the vector 
approaches 0. That is,

as

This is illustrated graphically in Figure 12.6. With this definition of the limit of a
vector-valued function, you can develop vector versions of most of the limit theorems
given in Chapter 1. For example, the limit of the sum of two vector-valued functions
is the sum of their individual limits. Also, you can use the orientation of the curve 
to define one-sided limits of vector-valued functions. The next definition extends the
notion of continuity to vector-valued functions.

r�t�

t →  a.� r�t� � L � →  0

r�t� � Lt →  a,Lr�t�

 �
f1�t�
c

 i �
g1�t�

c
 j.

c � 0 
r�t�
c

�
	 f1�t�i � g1�t�j�

c
,

 � cf1�t�i � cg1�t�j

 cr�t� � c	 f1�t�i � g1�t�j�

 � 	 f1�t� � f2�t�� i � 	g1�t� � g2�t��j.

 r1�t� � r2�t� � 	 f1�t�i � g1�t�j� � 	 f2�t�i � g2�t�j�
 � 	 f1�t� � f2�t�� i � 	g1�t� � g2�t��j

 r1�t� � r2�t� � 	 f1�t�i � g1�t�j� � 	 f2�t�i � g2�t�j�
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DEFINITION OF THE LIMIT OF A VECTOR-VALUED FUNCTION

1. If is a vector-valued function such that then

Plane

provided and have limits as 

2. If is a vector-valued function such that then

Space

provided and have limits as t →  a.hg,f,

lim
t→a

 r�t� � 
lim
t→a

  f �t��i � 
lim
t→a

 g�t��j � 
lim
t→a

 h�t��k

r�t� � f �t�i � g�t�j � h�t�k,r

t →  a.gf

lim
t→a

 r�t� � 
 lim
t→a

  f �t��i � 
lim
t→a

 g�t��j

r�t� � f �t�i � g�t�j,r

O

L

r(t)

r(
t) 

− 
L

O

L

r(t)

As approaches approaches the limit L.
For the limit L to exist, it is not necessary that

be defined or that be equal to L.
Figure 12.6

r�a�r�a�

r�t�a,t
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From this definition, it follows that a vector-valued function is continuous at
if and only if each of its component functions is continuous at 

EXAMPLE 5 Continuity of Vector-Valued Functions

Discuss the continuity of the vector-valued function given by

is a constant.

at 

Solution As approaches 0, the limit is

Because

you can conclude that is continuous at By similar reasoning, you can 
conclude that the vector-valued function is continuous at all real-number values 
of ■

For each value of the curve represented by the vector-valued function in
Example 5,

is a constant.

is a parabola. You can think of each parabola as the intersection of the vertical plane
and the hyperbolic paraboloid

as shown in Figure 12.7.

y2 � x2 � z

y � a

ar�t� � t i � a j � �a2 � t2�k

a,

t.
r

t � 0.r

 � a j � a2 k

r�0� � �0�i � �a�j � �a2�k

 � a j � a2 k.

 � 0 i � a j � a2 k

 lim
t→0

 r�t� � 
lim
t→0

 t�i � 
lim
t→0

 a�j � 
lim
t→0

 �a2 � t2��k

t

t � 0.

ar�t� � t i � a j � �a2 � t2�k

t � a.t � a
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y

x

2

4

4
−4

2

4

6

8

10

12

14

16

a = −4

a = −2

a = 4

a = 2
a = 0

z

For each value of the curve represented 
by the vector-valued function

is a parabola.
Figure 12.7
r�t) � ti � aj � �a2 � t 2�k

a,

DEFINITION OF CONTINUITY OF A VECTOR-VALUED FUNCTION

A vector-valued function is continuous at the point given by if the
limit of exists as and

A vector-valued function is continuous on an interval if it is continuous
at every point in the interval.

Ir

lim
t→a

 r�t� � r�a�.

t →  ar�t�
t � ar

Almost any type of three-dimensional sketch is difficult to do by
hand, but sketching curves in space is especially difficult. The problem is in trying
to create the illusion of three dimensions. Graphing utilities use a variety of 
techniques to add “three-dimensionality” to graphs of space curves: one way is to
show the curve on a surface, as in Figure 12.7.

TECHNOLOGY
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In Exercises 1–8, find the domain of the vector-valued function.

1.

2.

3.

4.

5.

6.

7.

8.

In Exercises 9–12, evaluate (if possible) the vector-valued
function at each given value of 

9.

(a) (b) (c)

(d)

10.

(a) (b) (c)

(d)

11.

(a) (b) (c)

(d)

12.

(a) (b) (c)

(d)

In Exercises 13 and 14, find 

13.

14.

In Exercises 15–18, represent the line segment from to by a
vector-valued function and by a set of parametric equations.

15. 16.

17.

18.

Think About It In Exercises 19 and 20, find Is the
result a vector-valued function? Explain.

19.

20.

In Exercises 21–24, match the equation with its graph. [The
graphs are labeled (a), (b), (c), and (d).]

(a) (b)

(c) (d)

21.

22.

23.

24.

25. Think About It The four figures below are graphs of the
vector-valued function 
Match each of the four graphs with the point in space from
which the helix is viewed. The four points are 

and 

(a) (b)

(c) (d)

26. Sketch the three graphs of the vector-valued function
as viewed from each point.

(a) (b) (c) �5, 5, 5��10, 0, 0��0, 0, 20�
r�t� � t i � t j � 2k

y

Generated by Mathematica

z

y

x
Generated by Mathematica

Generated by Mathematica
y

x

z

y

Generated by Mathematica

z

�10, 20, 10�.��20, 0, 0�,�20, 0, 0�,
�0, 0, 20�,

r�t� � 4 cos t i � 4 sin t j � �t�4�k.

0.1 � t � 5r�t� � t i � ln t j �
2t
3

 k,

�2 � t � 2r�t� � t i � t 2 j � e0.75t k,

�1 � t � 1r�t� � cos�� t�i � sin�� t�j � t 2 k,

�2 � t � 2r�t� � t i � 2t j � t 2 k,

yx

z

4
2

2

4

x y

z

1

1

1

y
x

z

2−2
2

2

4

y

x

z

4
−2 2

4

2

u�t� � �4 sin t, �6 cos t, t 2�r�t� � �3 cos t, 2 sin t, t � 2�,
u�t� � t 2 i � 8j � t 3 kr�t� � �3t � 1�i �

1
4t 3 j � 4k,

r
t� 	 u
t�.

P�1, �6, 8), Q��3, �2, 5�
P��2, 5, �3�, Q(�1, 4, 9�

P�0, 2, �1�, Q�4, 7, 2�P�0, 0, 0�, Q�3, 1, 2�

QP

r�t� � sin 3t i � cos 3t j � tk

r�t� � �t i � 3t j � 4tk

�r
t��.

r�9 � 
t� � r�9�
r�c � 2�r�4�r�0�

r�t� � �t i � t 3�2 j � e�t�4 k

r�1 � 
t� � r�1�
r�t � 4�r��3�r�2�

r�t� � ln t i �
1
t
 j � 3tk

r���6 � 
t� � r���6�
r�� � ��r���4�r�0�

r�t� � cos t i � 2 sin t j

r�2 � 
t� � r�2�
r�s � 1�r�0�r�1�

r�t� �
1
2t 2 i � �t � 1�j

t.

G�t� � 3�t i �
1

t � 1
 j � �t � 2�kF�t� � t 3 i � t j � tk,

r�t� � F�t� � G�t� where

G�t� � sin t j � cos tkF�t� � sin t i � cos t j,

r�t� � F�t� � G�t� where

G�t� � i � 4t j � 3t2 kF�t� � ln t i � 5t j � 3t 2 k,

r�t� � F�t� � G�t� where

G�t� � cos t i � sin t jF�t� � cos t i � sin t j � �t k,

r�t� � F�t� � G�t� where

r�t� � sin t i � 4 cos t j � tk

r�t� � ln t i � et j � tk

r�t� � �4 � t 2 i � t 2j � 6tk

r�t� �
1

t � 1
i �

t
2

j � 3tk
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12.1 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.
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In Exercises 27–42, sketch the curve represented by the vector-
valued function and give the orientation of the curve.

27. 28.

29. 30.

31. 32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

In Exercises 43–46, use a computer algebra system to graph the
vector-valued function and identify the common curve.

43.

44.

45.

46.

Think About It In Exercises 47 and 48, use a computer algebra
system to graph the vector-valued function For each 
make a conjecture about the transformation (if any) of the
graph of Use a computer algebra system to verify your
conjecture.

47.

(a)

(b)

(c)

(d)

(e)

48.

(a)

(b)

(c)

(d)

(e)

In Exercises 49–56, represent the plane curve by a vector-
valued function. (There are many correct answers.)

49. 50.

51. 52.

53. 54.

55. 56.

In Exercises 57 and 58, find vector-valued functions forming the
boundaries of the region in the figure. State the interval for the
parameter of each function.

57. 58.

In Exercises 59–66, sketch the space curve represented by the
intersection of the surfaces. Then represent the curve by a 
vector-valued function using the given parameter.

59.

60.

61.

62.

63.

64.

65.

66.

67. Show that the vector-valued function

lies on the cone Sketch the curve.

68. Show that the vector-valued function

lies on the cone Sketch the curve.

In Exercises 69–74, find the limit (if it exists).

69.

70.

71.

72.

73.

74. lim
t→


 �e�t i �
1
t
 j �

t
t 2 � 1

 k�

lim
t→0

 �et i �
sin t

t
 j � e�t k�

lim
t→1

 ��t i �
ln t

t 2 � 1
 j �

1
t � 1

 k�

lim
t→0

 �t 2 i � 3t j �
1 � cos t

t
 k�

lim
t→2

 �3ti �
2

t2 � 1
 j �

1
t
 k�

lim
t→�

 �ti � cos tj � sin tk�

z2 � x2 � y2.

r�t� � e�t cos t i � e�t sin tj � e�t k

4x2 � y2 � z2.

r�t� � t i � 2t cos tj � 2t sin tk

x � t �first octant�x 2 � y 2 � z 2 � 16,  xy � 4

x � t �first octant�x 2 � z 2 � 4,  y 2 � z 2 � 4

x � 2 � sin tx2 � y 2 � z 2 � 10,  x � y � 4

x � 1 � sin tx2 � y 2 � z 2 � 4,  x � z � 2

z � t4x2 � 4y 2 � z 2 � 16,  x � z2

x � 2 sin tx2 � y 2 � 4,  z � x2

x � 2 cos tz � x2 � y 2,  z � 4

x � tz � x2 � y 2,  x � y � 0

Parameter            Surfaces                                        

x2 + y2 = 100

x
2

2

6

6

4

4

12

12

10

10

8

8

45°

y

x

1

1 2

3

3

2

4

5

5

4

y

y = x2

x2

9
�

y 2

16
� 1

x2

16
�

y2

4
� 1

�x � 2�2 � y2 � 4x2 � y 2 � 25

y � 4 � x2y � �x � 2�2

2x � 3y � 5 � 0y � x � 5

u�t� � ��t�i � ��t�2j �
1
2��t�3k

u�t� � t i � t2j �
1
8t3k

u�t� � t i � t2j � �1
2t 3 � 4�k

u�t� � t2i � t j �
1
2t3k

u�t� � t i � �t 2 � 2� j �
1
2t 3k

r�t� � t i � t2j �
1
2t3k

u�t� � 6 cos t i � 6 sin t j �
1
2tk

u�t� �
1
2t i � 2 sin t j � 2 cos tk

u�t� � 2 cos��t�i � 2 sin��t�j �
1
2��t�k

u�t� � 2 cos t i � 2 sin t j � 2tk

u�t� � 2�cos t � 1�i � 2 sin t j �
1
2tk

r�t� � 2 cos t i � 2 sin tj �
1
2tk

r
t�.

u
t�,r
t�.

r�t� � ��2 sin t i � 2 cos t j � �2 sin tk

r�t� � sin t i � ��3
2

 cos t �
1
2

 t�j � �1
2

 cos t �
�3
2 �k

r�t� � t i �
�3
2

 t 2 j �
1
2

 t 2 k

r�t� � �
1
2

 t 2 i � t j �
�3
2

 t 2 k

r�t� � �cos t � t sin t, sin t � t cos t, t�
r�t� � � t, t 2, 23 t 3�
r�t� � t 2i � 2tj �

3
2tk

r�t� � 2 sin t i � 2 cos t j � e�t k

r�t� � ti � 3 cos tj � 3 sin tk

r�t� � 2 cos t i � 2 sin t j � tk

r�t� � t i � �2t � 5�j � 3tk

r�t� � ��t � 1�i � �4t � 2�j � �2t � 3�k

r�t� � 2 cos3 t i � 2 sin3 tj

r��� � 3 sec �i � 2 tan �j

r�t� � 2 cos t i � 2 sin t jr��� � cos �i � 3 sin �j

r�t� � �t2 � t�i � �t2 � t�jr�t� � t3i � t2j

r�t� � �5 � t�i � �t jr�t� �
t
4

i � �t � 1�j
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In Exercises 75–80, determine the interval(s) on which the 
vector-valued function is continuous.

75. 76.

77.

78.

79. 80.

83. The outer edge of a playground slide is in the shape of a helix of
radius 1.5 meters. The slide has a height of 2 meters and makes
one complete revolution from top to bottom. Find a vector-
valued function for the helix. Use a computer algebra system to
graph your function. (There are many correct answers.)

85. Let and be vector-valued functions whose limits exist
as Prove that

86. Let and be vector-valued functions whose limits exist
as Prove that

87. Prove that if is a vector-valued function that is continuous at
then is continuous at 

88. Verify that the converse of Exercise 87 is not true by finding a
vector-valued function such that is continuous at but 
is not continuous at 

In Exercises 89 and 90, two particles travel along the space
curves and A collision will occur at the point of 
intersection if both particles are at at the same time. Do the
particles collide? Do their paths intersect?

89.

90.

Think About It In Exercises 91 and 92, two particles travel
along the space curves and 

91. If and intersect, will the particles collide?

92. If the particles collide, do their paths and intersect?

True or False? In Exercises 93–96, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

93. If and are first-degree polynomial functions, then the
curve given by and is a line.

94. If the curve given by and is a line,
then and are first-degree polynomial functions of 

95. Two particles travel along the space curves and The
intersection of their paths depends only on the curves traced out
by and while collision depends on the parameterizations.

96. The vector-valued function 
lies on the paraboloid x � y2 � z2.

r�t� � t2 i � t sin t j � t cos t k

u�t),r�t�

u�t).r�t)
t.hf, g,

z � h�t�y � g�t�,x � f �t�,
z � h�t�y � g�t�,x � f �t�,

hf, g,

u�t�r�t)
u�t�r�t)

u
t�.r
t�

u�t) � ��2t � 3�i � 8tj � �12t � 2�k
r(t� � ti � t2j � t3k

u�t) � �3t � 4�i � t2j � �5t � 4�k
r�t) � t2i � �9t � 20)j � t2k

PP
u
t�.r
t�

c.
rc� r �r

c.� r �c,
r

lim
t→c

 	r�t� 	 u�t�� �  lim
t→c

 r�t� 	 lim
t→c

 u�t�.

t →  c.
u�t�r�t�

lim
t→c

 	r�t� � u�t�� �  lim
t→c

 r�t� � lim
t→c

 u�t�.

t →  c.
u�t�r�t�

r�t� � �8, �t, 3�t �r�t� � �e�t, t 2, tan t�
r�t� � 2e�t i � e�t j � ln�t � 1�k

r�t� � t i � arcsin t j � �t � 1�k

r�t� � �t i � �t � 1 jr�t� � t i �
1
t
 j
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81. Consider the vector-valued function

Write a vector-valued function that is the specified
transformation of 

(a) A vertical translation three units upward

(b) A horizontal translation two units in the direction of the
negative axis

(c) A horizontal translation five units in the direction of the
positive axis

82. State the definition of continuity of a vector-valued
function. Give an example of a vector-valued function that
is defined but not continuous at t � 2.

y-

x-

r.
s�t�

r�t� � t2i � �t � 3�j � tk.

WRITING ABOUT CONCEPTS

84. Which of the following vector-valued functions represent
the same graph?

(a)

(b)

(c)

(d) r�t� � ��3 cos 2t � 1�i � �5 sin 2t � 2�j � 4k

r�t� � �3 cos t � 1�i � ��5 sin t � 2�j � 4k

r�t� � 4i � ��3 cos t � 1)j � �5 sin t � 2)k

r�t� � ��3 cos t � 1)i � �5 sin t � 2�j � 4k

CAPSTONE

In Section 3.5, you studied a famous curve called the Witch of
Agnesi. In this project you will take a closer look at this function.

Consider a circle of radius centered on the axis at Let
be a point on the horizontal line let be the origin, and

let be the point where the segment intersects the circle. A
point is on the Witch of Agnesi if lies on the horizontal line
through and on the vertical line through .

(a) Show that the point is traced out by the vector-valued function

where is the angle that makes with the positive axis.

(b) Show that the point is traced out by the vector-valued function

(c) Combine the results of parts (a) and (b) to find the vector-
valued function for the Witch of Agnesi. Use a graphing
utility to graph this curve for 

(d) Describe the limits and 

(e) Eliminate the parameter and determine the rectangular
equation of the Witch of Agnesi. Use a graphing utility to graph
this function for and compare your graph with that
obtained in part (c).

a � 1

�

lim
�→��

 r���.lim
�→0�

 r���
a � 1.

r���

0  <  �  <  �.rB��� � a sin 2� i � a�1 � cos 2��j,

B

x-OA�

0 < � < �rA��� � 2a cot �i � 2aj,

A

AB
PP

OAB
Oy � 2a,A

�0, a�.y-a

Witch of Agnesi

S E C T I O N  P R O J E C T
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842 Chapter 12 Vector-Valued Functions

12.2 Differentiation and Integration of Vector-Valued Functions
■ Differentiate a vector-valued function.
■ Integrate a vector-valued function.

Differentiation of Vector-Valued Functions
In Sections 12.3–12.5, you will study several important applications involving the
calculus of vector-valued functions. In preparation for that study, this section is
devoted to the mechanics of differentiation and integration of vector-valued functions.

The definition of the derivative of a vector-valued function parallels the definition
given for real-valued functions.

Differentiation of vector-valued functions can be done on a component-by-
component basis. To see why this is true, consider the function given by 

Applying the definition of the derivative produces the following.

This important result is listed in the theorem on the next page. Note that the derivative
of the vector-valued function is itself a vector-valued function. You can see from
Figure 12.8 that is a vector tangent to the curve given by and pointing in the
direction of increasing values.t-

r�t�r� �t�
r

 � f��t�i � g��t� j

 � � lim
�t→0�

f �t � �t� � f �t�
�t ��i � � lim

�t→0�
g�t � �t� � g�t�

�t �� j

 � lim
�t→0

 �� f �t � �t� � f �t�
�t �i � �g�t � �t� � g�t�

�t � j�
 � lim

�t→0
 
f �t � �t�i � g�t � �t� j � f �t�i � g�t� j

�t

 r��t� � lim
�t→0

 
r�t � �t� � r�t�

�t

r�t� � f �t�i � g�t� j.

DEFINITION OF THE DERIVATIVE OF A VECTOR-VALUED FUNCTION

The derivative of a vector-valued function is defined by

for all for which the limit exists. If exists, then is differentiable at t.
If exists for all in an open interval then is differentiable on the
interval I. Differentiability of vector-valued functions can be extended to closed
intervals by considering one-sided limits.

rI,tr� �t�
rr� �t�t

r� �t� � lim 
�t→0

r�t � �t� � r�t�
�t

r

NOTE In addition to other notations for the derivative of a vector-valued function are

and ■
dr
dt

.Dt �r�t�	,  d
dt

�r�t�	,

r� �t�,

x

y

r(t)
r(t + Δt)

r(t + Δt) − r(t)

r ′(t)

z

Figure 12.8
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EXAMPLE 1 Differentiation of Vector-Valued Functions

For the vector-valued function given by find Then sketch
the plane curve represented by and the graphs of and 

Solution Differentiate on a component-by-component basis to obtain

Derivative

From the position vector you can write the parametric equations and
The corresponding rectangular equation is When 

and In Figure 12.9, is drawn starting at the origin,
and is drawn starting at the terminal point of ■

Higher-order derivatives of vector-valued functions are obtained by successive
differentiation of each component function.

EXAMPLE 2 Higher-Order Differentiation

For the vector-valued function given by find each of the
following.

a. b.

c. d.

Solution

a. First derivative

b.

Second derivative

c. Dot product

d. Cross product

Note that the dot product in part (c) is a function, not a vector-valued
function. ■

real-valued

 � 2 sin t i � 2 cos tj � k

 � 
 cos t
�sin t

2
0 
 i � 
 �sin t

�cos t
2
0 
 j � 
 �sin t

�cos t
cos t

�sin t 
k
 r� �t� � r��t� � 
 i

�sin t
�cos t

j
cos t

�sin t

k
2
0


r��t� 	 r��t� � sin t cos t � sin t cos t � 0

 � �cos ti � sin tj

r��t� � �cos ti � sin tj � 0k

r��t� � �sin ti � cos tj � 2k

r� �t� � r� �t�r� �t� 	 r� �t�
r� �t�r� �t�

r�t� � cos t i � sin tj � 2 tk,

r�1).r��1�
r�1�r��1� � i � 2j.r�1� � i � 3j

t � 1,y � x2 � 2.y � t2 � 2.
x � tr�t�,

r��t� � i � 2tj.

r��1�.r�1�r�t�,
r��t�.r�t� � ti � �t2 � 2�j,

12.2 Differentiation and Integration of Vector-Valued Functions 843

THEOREM 12.1 DIFFERENTIATION OF VECTOR-VALUED FUNCTIONS

1. If where and are differentiable functions of then

Plane

2. If where and are differentiable functions
of then

Spacer��t� � f��t�i � g��t�j � h��t�k.

t,
hg,f,r�t� � f �t�i � g�t�j � h�t�k,

r��t� � f��t�i � g��t�j.

t,gfr�t� � f �t�i � g�t�j,

r(1)

r ′(1)

r(t) = ti + (t2 + 2)j

−1−2−3 1 2 3
x

1

3

4

5

6

y

(1, 3)

Figure 12.9
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The parametrization of the curve represented by the vector-valued function

is smooth on an open interval if and are continuous on and for
any value of in the interval 

EXAMPLE 3 Finding Intervals on Which a Curve Is Smooth

Find the intervals on which the epicycloid given by

is smooth.

Solution The derivative of is

In the interval the only values of for which 

are and Therefore, you can conclude that is smooth in the
intervals

and

as shown in Figure 12.10. ■

Most of the differentiation rules in Chapter 2 have counterparts for vector-valued
functions, and several are listed in the following theorem. Note that the theorem
contains three versions of “product rules.” Property 3 gives the derivative of the
product of a real-valued function and a vector-valued function Property 4 gives
the derivative of the dot product of two vector-valued functions, and Property 5 gives
the derivative of the cross product of two vector-valued functions (in space). Note that
Property 5 applies only to three-dimensional vector-valued functions, because the
cross product is not defined for two-dimensional vectors.

r,w

�3


2
, 2
��
, 3


2 �,�


2
, 
�,�0, 


2�,

C2
.3

2,
,

2,t � 0,

r� �t� � 0i � 0 j

t�0, 2
	,

r� �t� � ��5 sin t � 5 sin 5t�i � �5 cos t � 5 cos 5t�j.

r

0 � t � 2
r�t� � �5 cos t � cos 5t�i � �5 sin t � sin 5t�j,

C

I.t
r� �t� � 0Ih�g� ,f�,I

r�t� � f �t�i � g�t�j � h�t�k

844 Chapter 12 Vector-Valued Functions

r(t) = (5 cos t − cos 5t)i + (5 sin t − sin 5t)j

x
2

2

4

4

6

6

−2

−2

−4

−4

−6

−6

t = 0t = π

t = 2π

t =

y

π3
2

t = π
2

The epicycloid is not smooth at the points
where it intersects the axes.
Figure 12.10

NOTE In Figure 12.10, note that the curve is not smooth at points at which the curve makes
abrupt changes in direction. Such points are called cusps or nodes. ■

THEOREM 12.2 PROPERTIES OF THE DERIVATIVE

Let and be differentiable vector-valued functions of let be a differentiable
real-valued function of and let be a scalar.

1.

2.

3.

4.

5.

6.

7. If then r�t� 	 r� �t� � 0.r�t� 	 r�t� � c,

Dt�r�w �t��	 � r� �w �t��w��t�
Dt�r�t� � u�t�	 � r�t) � u� �t� � r� �t� � u�t�
Dt�r�t� 	 u�t�	 � r�t� 	 u� �t� � r� �t� 	 u�t�
Dt�w�t�r�t�	 � w�t�r� �t� � w� �t�r�t�
Dt�r�t� ± u�t�	 � r� �t� ± u� �t�
Dt�cr�t�	 � cr� �t�

ct,
wt,ur
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EXAMPLE 4 Using Properties of the Derivative

For the vector-valued functions given by

and

find

a. and b.

Solution

a. Because and you have

b. Because and you have

■ � 2j � 4 tk.

 � 0i � ��2�j � 4 tk

 � 
�2t
0

1
0
i � 
 t2

2
1
0
j � 
 t2

2
�2t

0
k
 � 
 i

t2

2

j
�2t

0

k
1
0
 � 0

 Dt�u�t� � u� �t�	 � �u�t� � u� �t�	 � �u� �t� � u� �t�	

u� �t� � 2 i,u��t� � 2ti � 2 j

 � 3 �
1
t
.

 � 2 � 2 � ��1� �
1
t

   � ��
1
t2 i �

1
t
 k� 	 �t2 i � 2 t j � k�

 � �1
t
 i � j � ln tk� 	 �2 ti � 2j�

Dt�r�t� 	 u�t�	 � r�t� 	 u��t� � r��t� 	 u�t�

u� �t� � 2ti � 2j,r� �t� � �
1
t2 i �

1
t
 k

Dt�u�t� � u��t�	.Dt�r�t� 	 u�t�	

u�t� � t2 i � 2 tj � kr�t� �
1
t
 i � j � ln tk

12.2 Differentiation and Integration of Vector-Valued Functions 845

PROOF To prove Property 4, let

and

where and are differentiable functions of Then,

and it follows that

Proofs of the other properties are left as exercises (see Exercises 77–81 and
Exercise 84). ■

 � r�t� 	 u� �t� � r� �t� 	 u�t�.
 � � f1�t) f2� �t� � g1�t�g2� �t�	 � � f1� �t� f2�t� � g1� �t�g2�t�	

 Dt�r�t� 	 u�t�	 � f1�t� f2� �t� � f1� �t� f2�t� � g1�t�g2� �t� � g1� �t�g2�t�

r�t� 	 u�t� � f1�t� f2�t� � g1�t�g2�t�

t.g2g1,f2,f1,

u�t� � f2�t�i � g2�t�jr�t� � f1�t�i � g1�t�j

NOTE Try reworking parts (a) and (b) in Example 4 by first forming the dot and cross
products and then differentiating to see that you obtain the same results. ■

E X P L O R A T I O N

Let Sketch
the graph of Explain why 
the graph is a circle of radius 1
centered at the origin. Calculate

and Position the
vector so that its initial
point is at the terminal point of

What do you observe?
Show that is constant
and that for all 
How does this example relate to
Property 7 of Theorem 12.2?

t.r�t� 	 r��t� � 0
r�t� 	 r�t�

r�

4�.

r��

4�
r��

4�.r�

4�

r�t�.
r�t� � cos ti � sin tj.
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Integration of Vector-Valued Functions
The following definition is a rational consequence of the definition of the derivative
of a vector-valued function.

The antiderivative of a vector-valued function is a family of vector-valued func-
tions all differing by a constant vector For instance, if is a three-dimensional
vector-valued function, then for the indefinite integral you obtain three 
constants of integration

where and These three constants
produce one constant of integration,

where 

EXAMPLE 5 Integrating a Vector-Valued Function

Find the indefinite integral

Solution Integrating on a component-by-component basis produces

■� �t i � 3j� dt �
t2

2
 i � 3tj � C.

� �t i � 3j� dt.

R� �t� � r�t�.

 � R�t� � C

 � �F�t�i � G�t�j � H�t�k	 � �C1i � C2 j � C3k	

 � r�t� dt � �F�t� � C1	i � �G�t� � C2	j � �H�t� � C3	k

vector
scalarH��t� � h �t�.G��t� � g�t�,F��t� � f �t�,

� h �t� dt � H�t� � C3� g�t� dt � G�t� � C2,� f �t� dt � F�t� � C1,

�r�t� dt,
r�t�C.

846 Chapter 12 Vector-Valued Functions

DEFINITION OF INTEGRATION OF VECTOR-VALUED FUNCTIONS

1. If where and are continuous on then the
indefinite integral (antiderivative) of is

Plane

and its definite integral over the interval is

2. If where and are continuous on 
then the indefinite integral (antiderivative) of is

Space

and its definite integral over the interval is

�b

a

r�t� dt � ��b

a

f �t� dt� i � ��b

a

g�t� dt� j � ��b

a

h �t� dt�k.

a � t � b

�r�t� dt � ��f �t� dt�i � ��g�t� dt�j � ��h �t� dt�k

r
�a, b	,hg,f,r�t� � f �t�i � g�t�j � h�t�k,

�b

a

r�t� dt � ��b

a

f �t� dt�i � ��b

a

g�t� dt�j.

a � t � b

�r�t� dt � ��f �t� dt�i � ��g�t� dt�j

r
�a, b	,gfr�t� � f �t�i � g�t�j,
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Example 6 shows how to evaluate the definite integral of a vector-valued
function.

EXAMPLE 6 Definite Integral of a Vector-Valued Function

Evaluate the integral

Solution

■

As with real-valued functions, you can narrow the family of antiderivatives of a
vector-valued function down to a single antiderivative by imposing an initial
condition on the vector-valued function This is demonstrated in the next example.

EXAMPLE 7 The Antiderivative of a Vector-Valued Function

Find the antiderivative of

that satisfies the initial condition 

Solution

Letting and using the fact that you have

Equating corresponding components produces

and

So, the antiderivative that satisfies the given initial condition is

■r�t� � �1
2

 sin 2t � 3�i � �2 cos t � 4�j � �arctan t � 1�k.

C3 � 1.C1 � 3,    2 � C2 � �2,

 � 3i � ��2�j � k.

 r�0� � �0 � C1�i � �2 � C2�j � �0 � C3�k

r�0� � 3i � 2j � k,t � 0

 � �1
2

 sin 2t � C1�i � �2 cos t � C2�j � �arctan t � C3�k

 � �� cos 2t dt�i � �� �2 sin t dt� j � �� 
1

1 � t2 dt�k

 r�t� � � r��t� dt

r�0� � 3 i � 2j � k.

r� �t� � cos 2ti � 2 sin tj �
1

1 � t2 k

r.
r�

 �
3
4

i � �ln 2� j � �1 �
1
e�k

 � ��3
4�t 4
3�

1

0
i � �ln
t � 1
�

1

0
j � ��e�t�

1

0
k

 �1

0
 r�t� dt � ��1

0
 t1
3 dt�i � ��1

0
 

1
t � 1

 dt� j � ��1

0
 e�t dt�k

�1

0
 r�t� dt � �1

0
 � 3�t i �

1
t � 1

 j � e�t k� dt.

12.2 Differentiation and Integration of Vector-Valued Functions 847
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In Exercises 1–8, sketch the plane curve represented by the 
vector-valued function, and sketch the vectors and for
the given value of Position the vectors such that the initial
point of is at the origin and the initial point of is at the
terminal point of What is the relationship between 
and the curve?

1.

2.

3.

4.

5.

6.

7.

8.

In Exercises 9 and 10, (a) sketch the space curve represented by
the vector-valued function, and (b) sketch the vectors and

for the given value of 

9.

10.

In Exercises 11–22, find 

11. 12.

13. 14.

15.

16.

17.

18.

19.

20.

21.

22.

In Exercises 23–30, find (a) (b) and (c) 

23.

24.

25.

26.

27.

28.

29.

30.

In Exercises 31 and 32, a vector-valued function and its graph
are given. The graph also shows the unit vectors 
and Find these two unit vectors and identify them
on the graph.

31.

32.

Figure for 31 Figure for 32

In Exercises 33–42, find the open interval(s) on which the curve
given by the vector-valued function is smooth.

33. 34.

35.

36.

37.

38. 39.

40. 41.

42.

In Exercises 43 and 44, use the properties of the derivative to
find the following.

(a) (b) (c)

(d) (e) (f)

43.

44.

In Exercises 45 and 46, find (a) and
(b) in two different ways.

(i) Find the product first, then differentiate.

(ii) Apply the properties of Theorem 12.2.

45.

46.

In Exercises 47 and 48, find the angle between and as
a function of Use a graphing utility to graph Use the
graph to find any extrema of the function. Find any values of 
at which the vectors are orthogonal.

47. 48. r�t� � t2i � tjr�t� � 3 sin ti � 4 cos tj

t
� �t�.t.

r��t�r�t��

u�t� � j � tkr�t� � cos t i � sin t j � tk,

u�t� � t4kr�t� � ti � 2t2j � t3k,

Dt [r�t� � u�t�]
Dt [r�t� 	 u�t�]

u�t� �
1
t
 i � 2 sin tj � 2 cos tk

r�t� � ti � 2 sin tj � 2 cos tk,

r�t� � ti � 3tj � t2k,  u�t� � 4ti � t2j � t3k

t > 0Dt [�r�t��],Dt [r�t� � u�t�]Dt [3r�t� � u�t�]
Dt [r�t� 	 u�t�]r��t�r��t�

r�t� � �t i � �t2 � 1� j �
1
4tk

r�t� � ti � 3tj � tan tkr�t� � eti � e�t j � 3tk

r�t� � �t � 1�i �
1
t
 j � t2kr�t� �

2t
8 � t3 i �

2t2

8 � t3 j

r�
� � �
 � 2 sin 
�i � �1 � 2 cos 
�j
r�
� � �
 � sin 
�i � �1 � cos 
�j
r�
� � 2 cos3 
 i � 3 sin3 
j

r�t� �
1

t � 1
 i � 3tjr�t� � t2 i � t3j

y

x 

z 

22
1

1

2

x y

z 

1 

1

1 

t0 �
1
4r�t� �

3
2 ti � t2j � e�t k ,

t0 � �
1
4r�t� � cos�
 t�i � sin�
 t�j � t 2k,

r� �t0�/�r� �t0��.
r��t0�/�r��t0��

r�t� � �e�t, t2, tan t�
r�t� � �cos t � t sin t, sin t � t cos t, t�
r�t� � ti � �2t � 3�j � �3t � 5�k
r�t� �

1
2 t2i � tj �

1
6t3k

r�t� � 8 cos t i � 3 sin tj

r�t� � 4 cos ti � 4 sin tj

r�t� � �t2 � t�i � �t2 � t�j

r�t� � t 3i �
1
2t2j

r� �t� 	 r� �t�.r� �t�,r� �t�,

r�t� � �arcsin t, arccos t, 0�
r�t� � �t sin t, t cos t, t�
r�t� � �t3, cos 3t, sin 3t�
r�t� � e�t i � 4j � 5tet k

r�t� � 4�t i � t2�t j � ln t2k

r�t� � a cos3 t i � a sin3 tj � k

r�t� �
1
t
 i � 16tj �

t2

2
 k

r�t� � 6ti � 7t2j � t3k

r�t� � � t cos t, �2 sin t�r�t� � �2 cos t, 5 sin t�
r�t� � �t i � �1 � t3�jr�t� � t3i � 3tj

r��t�.

t0 � 2r�t� � ti � t2j �
3
2k,

t0 �
3


2
r�t� � 2 cos ti � 2 sin tj � tk,

t0.r��t0�
r�t0�

t0 � 0r�t� � �e�t, et�,
t0 � 0r�t� � �et, e2t�,

t0 �



2
r�t) � 3 sin ti � 4 cos tj,

t0 �



2
r�t� � cos ti � sin tj,

t0 � 1r�t� � �1 � t�i � t3j,

t0 � 2r�t� � t2 i �
1
t
 j,

t0 � 1r�t� � ti � �t2 � 1�j,

t0 � 2r�t� � t2 i � tj,

r��t0�r�t0�.
r��t0�r�t0�

t0.
r��t0�r�t0�
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12.2 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.
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In Exercises 49–52, use the definition of the derivative to find

49.

50.

51. 52.

In Exercises 53–60, find the indefinite integral.

53. 54.

55. 56.

57.

58.

59. 60.

In Exercises 61– 66, evaluate the definite integral.

61. 62.

63.

64.

65. 66.

In Exercises 67–72, find for the given conditions.

67.

68.

69.

70.

71.

72.

In Exercises 77–84, prove the property. In each case, assume
and are differentiable vector-valued functions of in space,

is a differentiable real-valued function of and is a scalar.

77.

78.

79.

80.

81.

82.

83.

84. If is a constant, then 

85. Particle Motion A particle moves in the -plane along the
curve represented by the vector-valued function

(a) Use a graphing utility to graph Describe the curve.

(b) Find the minimum and maximum values of and 

86. Particle Motion A particle moves in the -plane along the
curve represented by the vector-valued function

(a) Describe the curve.

(b) Find the minimum and maximum values of and 

87. Consider the vector-valued function

Show that and are always perpendicular to each other.

True or False? In Exercises 89–92, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

89. If a particle moves along a sphere centered at the origin, then
its derivative vector is always tangent to the sphere.

90. The definite integral of a vector-valued function is a real number.

91.

92. If r and u are differentiable vector-valued functions of t, then
Dt �r�t� 	 u�t�	 � r��t� 	 u��t�.

d
dt

��r�t��	 � �r��t��

r��t�r�t�

r�t� � �et sin t�i � �et cos t�j.

�r� �.�r��

r�t� � �2 cos t�j � �3 sin t�k.

yz

�r� �.�r� �
r.

r�t� � �t � sin t�i � �1 � cos t�j.

xy

r�t� 	 r��t� � 0.r�t� 	 r�t�
r�t� 	 �u� �t� � v�t�	 � r�t� 	 �u�t� � v��t�	
Dt�r�t� 	 �u�t� � v�t�	� � r� �t� 	 �u�t� � v�t�	 �

Dt�r�t� � r� �t�	 � r�t� � r� �t�
Dt�r�w�t��	 � r��w�t��w��t�
Dt�r�t� � u�t�	 � r�t� � u� �t� � r� �t� � u�t�
Dt�w�t�r�t�	 � w�t�r� �t� � w��t�r�t�
Dt�r�t� ± u�t�	 � r� �t� ± u� �t�
Dt�cr�t�	 � cr��t�

ct,w
tvu,r,

r�1� � 2ir��t� �
1

1 � t2 i �
1
t2 j �

1
t
 k,

r�0� �
1
2i � j � kr��t� � te�t2i � e�t j � k,

r�0� � 4 jr��0� � 3k,r� �t� � �4 cos tj � 3 sin tk,

r�0� � 0r��0� � 600�3i � 600j,r��t� � �32j,

 r�0� � i � 2jr��t� � 3t2j � 6�t k,

r�0� � 2ir��t� � 4e2ti � 3etj,

r�t�

�3

0
 �t i � t2 j� dt�2

0
 �ti � et  j � tetk� dt

�

4

0
 ��sec t tan t�i � �tan t�j � �2 sin t cos t�k	 dt

�

2

0
 ��a cos t�i � �a sin t� j � k	 dt

�1

�1
 �ti � t3j � 3�t k� dt�1

0
 �8ti � tj � k� dt

� �e�t sin ti � e�t cos tj� dt� �sec2 ti �
1

1 � t2 j� dt

� �et i � sin tj � cos tk� dt

� ��2t � 1�i � 4t3j � 3�t k� dt

� �ln ti �
1
t
 j � k� dt� �1

t
 i � j � t 3
2 k� dt

� �4t3 i � 6tj � 4�t k� dt� �2ti � j � k� dt

r�t� � �0, sin t, 4t�r�t� � �t2, 0, 2t�

r�t� � �t i �
3
t
 j � 2tk

r�t� � �3t � 2�i � �1 � t2�j

r��t�.
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73. State the definition of the derivative of a vector-valued
function. Describe how to find the derivative of a vector-
valued function and give its geometric interpretation.

74. How do you find the integral of a vector-valued function?

75. The three components of the derivative of the vector-valued
function are positive at Describe the behavior of 
at 

76. The component of the derivative of the vector-valued
function is 0 for in the domain of the function. What
does this information imply about the graph of u?

tu
z-

t � t0.
ut � t0.u

WRITING ABOUT CONCEPTS

88. Investigation Consider the vector-valued function

(a) Sketch the graph of Use a graphing utility to verify
your graph.

(b) Sketch the vectors and on
the graph in part (a).

(c) Compare the vector with the vector

r�1.25� � r�1�
1.25 � 1

.

r� (1�

r�1.25� � r�1�r�1�, r�1.25�,

r�t�.
r�t� � ti � �4 � t2�j.

CAPSTONE
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■ Describe the velocity and acceleration associated with a vector-valued function.
■ Use a vector-valued function to analyze projectile motion.

Velocity and Acceleration
You are now ready to combine your study of parametric equations, curves, vectors,
and vector-valued functions to form a model for motion along a curve. You will begin
by looking at the motion of an object in the plane. (The motion of an object in space
can be developed similarly.)

As an object moves along a curve in the plane, the coordinates and of its 
center of mass are each functions of time Rather than using the letters and to 
represent these two functions, it is convenient to write and So, the
position vector takes the form

Position vector

The beauty of this vector model for representing motion is that you can use the first
and second derivatives of the vector-valued function to find the object’s velocity and
acceleration. (Recall from the preceding chapter that velocity and acceleration are
both vector quantities having magnitude and direction.) To find the velocity and 
acceleration vectors at a given time consider a point that is
approaching the point along the curve given by as
shown in Figure 12.11. As the direction of the vector (denoted by )
approaches the direction of motion at time 

If this limit exists, it is defined as the velocity vector or tangent vector to the curve
at point Note that this is the same limit used to define So, the direction of 
gives the direction of motion at time Moreover, the magnitude of the vector 

gives the speed of the object at time Similarly, you can use to find acceleration,
as indicated in the definitions at the top of the next page.

As approaches the velocity vector.

Figure 12.11

�t → 0, 
�r
�t

x

y

Velocity vector
at time t

Δ
t →

 0

x

Velocity vector
at time t

P

C Q

r(t)
r(t + Δt)

Δr

y

r� �t�t.

�r� �t�� � �x��t�i � y��t�j� � ��x��t��2 � � y��t��2

r� �t�t.
r� �t�r� �t�.P.

 lim
�t→0

 
�r
�t

� lim
�t→0

 
r�t � �t� � r�t�

�t

 
�r
�t

�
r�t � �t� � r�t�

�t

 �r � r�t � �t� � r�t�

t.
�rPQ

\

�t →  0,
r�t� � x�t�i � y�t�j,CP�x�t�, y�t��

y�t � �t��Q�x�t � �t�,t,

r

r�t� � x�t�i � y�t�j.

r�t�
y � y�t�.x � x�t�

gft.
yx
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12.3 Velocity and Acceleration

E X P L O R A T I O N

Exploring Velocity Consider the
circle given by

Use a graphing utility in parametric
mode to graph this circle for 
several values of How does 
affect the velocity of the terminal
point as it traces out the curve?
For a given value of does the
speed appear constant? Does the
acceleration appear constant?
Explain your reasoning.

−3 3

−2

2

�,

��.

r�t� � �cos �t�i � �sin �t�j.
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For motion along a space curve, the definitions are similar. That is, if
you have

EXAMPLE 1 Finding Velocity and Acceleration Along a Plane Curve

Find the velocity vector, speed, and acceleration vector of a particle that moves along
the plane curve described by

Position vector

Solution

The velocity vector is

Velocity vector

The speed (at any time) is

Speed

The acceleration vector is

Acceleration vector ■

The parametric equations for the curve in Example 1 are 

and

By eliminating the parameter you obtain the rectangular equation

Rectangular equation

So, the curve is a circle of radius 2 centered at the origin, as shown in Figure 12.12.
Because the velocity vector 

has a constant magnitude but a changing direction as increases, the particle moves
around the circle at a constant speed.

t

v�t� � cos 
t
2

i � sin 
t
2

j

x2 � y2 � 4.

t,

y � 2 cos 
t
2

.x � 2 sin 
t
2

a�t� � r� �t� � �
1
2

 sin 
t
2

 i �
1
2

 cos 
t
2

 j.

�r��t�� ��cos2 
t
2

� sin2 
t
2

� 1.

v�t� � r��t� � cos 
t
2

 i � sin 
t
2

 j.

r�t� � 2 sin 
t
2

 i � 2 cos 
t
2

 j.

C

 Speed � �v�t�� � �r� �t�� � ��x��t��2 � � y��t��2 � �z��t��2.

 Acceleration � a�t�  � r� �t�  � x� �t�i � y� �t�j � z��t�k
 Velocity � v�t�  � r� �t�  � x��t�i � y��t�j � z��t�k

r�t� � x�t�i � y�t�j � z�t�k,
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DEFINITIONS OF VELOCITY AND ACCELERATION

If and are twice-differentiable functions of and is a vector-valued function
given by then the velocity vector, acceleration vector, and
speed at time are as follows.

 Speed � �v�t�� � �r��t�� � ��x��t��2 � � y��t��2

 Acceleration � a�t�  � r� �t�  � x� �t�i � y� �t�j
 Velocity � v�t�  � r��t�  � x��t�i � y��t�j

t
r�t� � x�t�i � y�t�j,

rt,yx

NOTE In Example 1, note that the
velocity and acceleration vectors are
orthogonal at any point in time. This 
is characteristic of motion at a constant
speed. (See Exercise 57.)

21

2

−1

−2

−1

−2

1

x

y

v(t)

Circle: x2 + y2 = 4

a(t)

t
2

t
2

r(t) = 2 sin    i + 2 cos    j

The particle moves around the circle at a
constant speed.
Figure 12.12
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EXAMPLE 2 Sketching Velocity and Acceleration Vectors in the Plane

Sketch the path of an object moving along the plane curve given by

Position vector

and find the velocity and acceleration vectors when and 

Solution Using the parametric equations and you can determine
that the curve is a parabola given by as shown in Figure 12.13. The
velocity vector (at any time) is

Velocity vector

and the acceleration vector (at any time) is

Acceleration vector

When the velocity and acceleration vectors are given by

and

When the velocity and acceleration vectors are given by

and ■

For the object moving along the path shown in Figure 12.13, note that the
acceleration vector is constant (it has a magnitude of 2 and points to the right). This
implies that the speed of the object is decreasing as the object moves toward the vertex
of the parabola, and the speed is increasing as the object moves away from the 
vertex of the parabola.

This type of motion is characteristic of comets that travel on parabolic 
paths through our solar system. For such comets, the acceleration vector always
points to the origin (the sun), which implies that the comet’s speed increases as it
approaches the vertex of the path and decreases as it moves away from the vertex.
(See Figure 12.14.)

EXAMPLE 3 Sketching Velocity and Acceleration Vectors in Space

Sketch the path of an object moving along the space curve given by

Position vector

and find the velocity and acceleration vectors when 

Solution Using the parametric equations and you can determine that
the path of the object lies on the cubic cylinder given by Moreover, because

the object starts at and moves upward as increases, as shown in
Figure 12.15. Because you have

Velocity vector

and

Acceleration vector

When the velocity and acceleration vectors are given by

and ■a�1� � r� �1� � 6j.v�1� � r��1� � i � 3j � 3k

t � 1,

a�t� � r� �t� � 6tj.

v�t� � r��t� � i � 3t2j � 3k

r�t� � t i � t3j � 3tk,
t�0, 0, 0�z � 3t,

y � x3.
y � t3,x � t

t � 1.

t 	 0r�t� � t i � t3j � 3tk,

C

not

a�2� � 2i.v�2� � 2�2�i � j � 4i � j

t � 2,

a�0� � 2i.v�0� � 2�0�i � j � j

t � 0,

a�t� � r� �t� � 2i.

v�t� � r��t� � 2t i � j

x � y2 � 4,
y � t,x � t2 � 4

t � 2.t � 0

r�t� � �t2 � 4�i � t j
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4

4

3

2

1

−1
−1 1−3 −2

−3

−4

3

y

x

v(2)

a(2)
v(0)

a(0)

x = y2 − 4

r(t) = (t2 − 4)i + tj

At each point on the curve, the acceleration
vector points to the right.
Figure 12.13

xSun

a

y

At each point in the comet’s orbit, the 
acceleration vector points toward the sun.
Figure 12.14

y

x
4

2

4

6

2
10

z

(1, 1, 3)

v(1)

a(1)

C

Curve:
r(t) = ti + t3j + 3tk, t ≥ 0

Figure 12.15
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So far in this section, you have concentrated on finding the velocity and acceler-
ation by differentiating the position function. Many practical applications involve the
reverse problem—finding the position function for a given velocity or acceleration.
This is demonstrated in the next example.

EXAMPLE 4 Finding a Position Function by Integration

An object starts from rest at the point and moves with an acceleration of 

Acceleration vector

where is measured in feet per second per second. Find the location of the object
after seconds.

Solution From the description of the object’s motion, you can deduce the following
initial conditions. Because the object starts from rest, you have

Moreover, because the object starts at the point you have

To find the position function, you should integrate twice, each time using one of the
initial conditions to solve for the constant of integration. The velocity vector is

where Letting and applying the initial condition
you obtain

So, the at any time is

Velocity vector

Integrating once more produces

where Letting and applying the initial condition
you have

So, the vector is

Position vector

The location of the object after seconds is given by as
shown in Figure 12.16. ■

r�2� � i � 4 j � 4k,t � 2

r�t� � i � �t2

2
� 2	 j � t2k .

position

C4 � 1, C5 � 2, C6 � 0.r�0� � C4i � C5 j � C6k � i � 2j

r�0� � i � 2j,
t � 0C � C4i � C5 j � C6k.

 �
t2

2
 j � t2k � C

r�t� � 
 v�t� dt � 
 �tj � 2tk� dt

v�t� � tj � 2tk.

tvelocity

C1 � C2 � C3 � 0.v�0� � C1i � C2 j � C3k � 0

v�0� � 0,
t � 0C � C1i � C2 j � C3k.

 � tj � 2tk � C

v�t� � 
a�t� dt � 
� j � 2k� dt

 � i � 2j.

 � 1i � 2j � 0k

 r�0� � x�0�i � y�0�j � z�0�k

�x, y, z� � �1, 2, 0�,

v�0� � 0.

t � 2
�a�t��

a�t� � j � 2k

P�1, 2, 0�

12.3 Velocity and Acceleration 853

y
6

6

4

2

6

4

2

r(t) = i + + 2  j + t2kt2

2( (
Curve:

z

x

(1, 4, 4)

(1, 2, 0)

t = 2

t = 0

r(2)

C

The object takes 2 seconds to move from
point to point along 
Figure 12.16

C.�1, 4, 4��1, 2, 0�
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Projectile Motion
You now have the machinery to derive the parametric equations for the path of a
projectile. Assume that gravity is the only force acting on the projectile after it is
launched. So, the motion occurs in a vertical plane, which can be represented by the 

coordinate system with the origin as a point on Earth’s surface, as shown in Figure
12.17. For a projectile of mass the force due to gravity is

Force due to gravity

where the acceleration due to gravity is feet per second per second, or 
9.81 meters per second per second. By Newton’s Second Law of Motion, this same
force produces an acceleration and satisfies the equation 
Consequently, the acceleration of the projectile is given by which
implies that

Acceleration of projectile

EXAMPLE 5 Derivation of the Position Function for a Projectile

A projectile of mass is launched from an initial position with an initial velocity
Find its position vector as a function of time.

Solution Begin with the acceleration and integrate twice.

You can use the facts that and to solve for the constant vectors 
and Doing this produces and Therefore, the position vector is 

Position vector ■

In many projectile problems, the constant vectors and are not given
explicitly. Often you are given the initial height the initial speed and the angle 
at which the projectile is launched, as shown in Figure 12.18. From the given height,
you can deduce that Because the speed gives the magnitude of the initial
velocity, it follows that and you can write

So, the position vector can be written in the form

� �v0 cos 
�t i � �h � �v0 sin 
�t �
1
2

 gt2�j.

� �
1
2

 gt2j � tv0 cos 
 i � tv0 sin 
 j � hj

 � v0 cos 
 i � v0 sin 
j.

 � ��v0� cos 
�i � ��v0� sin 
�j
 v0 � x i � y j

v0 � �v0�
r0 � h j.


v0,h,
v0r0

r�t� � �
1
2

 gt2j � t v0 � r0.

C2 � r0.C1 � v0C2.
C1r�0� � r0v�0� � v0

r�t� � 
 v�t� dt � 
��gtj � C1� dt � �
1
2

 gt2j � C1t � C2

v�t� � 
 a�t� dt � 
 �g j dt � �gt j � C1

a�t� � �g j

v0.
r0m

a � �g j.

ma � �mg j,
F � ma.a � a�t�,

g � 32

F � �mgj

m,
xy-
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x

v(t2)a

v(t1)

v0 = Initial velocity

v0 = v(0)
a

Initial height
a

y

Figure 12.17

y

x

h

θ

yj

xi
r0

v0

⎜⎜r0 ⎜⎜= h = initial height

x = ⎜⎜v0 ⎜⎜ θcos

y = ⎜⎜v0 ⎜⎜ θsin

⎜⎜v0 ⎜⎜= v0 = initial speed

Figure 12.18

Position vectorr�t� � �
1
2

 gt2j � t v0 � r0
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EXAMPLE 6 Describing the Path of a Baseball

A baseball is hit 3 feet above ground level at 100 feet per second and at an angle of
with respect to the ground, as shown in Figure 12.19. Find the maximum height

reached by the baseball. Will it clear a 10-foot-high fence located 300 feet from home
plate?

Solution You are given and So, using feet per 
second per second produces

The maximum height occurs when

which implies that

seconds.

So, the maximum height reached by the ball is

Maximum height when seconds

The ball is 300 feet from where it was hit when

Solving this equation for produces seconds. At this time, the height
of the ball is

Height when seconds

Therefore, the ball clears the 10-foot fence for a home run. ■

t 
 4.24 � 15 feet.

 � 303 � 288

 y � 3 � 50�2 �3�2 � � 16�3�2 �2

t � 3�2 
 4.24t

300 � x�t� � 50�2 t.

t 
 2.21 
 81 feet.

 �
649
8

 y � 3 � 50�2�25�2
16 	 � 16�25�2

16 	
2

 
 2.21

 t �
25�2

16

y��t� � 50�2 � 32 t � 0

 v�t� � r��t� � 50�2 i � �50�2 � 32t�j.
 � �50�2 t�i � �3 � 50�2 t � 16t2�j

 r�t� � �100 cos 
�

4	t i � �3 � �100 sin 
�

4	t � 16t2�j

g � 32
 � 45�.v0 � 100,h � 3,

45�
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300 ft

45°

3 ft

10 ft

Figure 12.19

THEOREM 12.3 POSITION FUNCTION FOR A PROJECTILE

Neglecting air resistance, the path of a projectile launched from an initial height 
with initial speed and angle of elevation is described by the vector function

where is the acceleration due to gravity.g

r�t� � �v0 cos 
�t i � �h � �v0 sin 
�t �
1
2

 gt2�j


v0

h
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In Exercises 1–10, the position vector describes the path of an
object moving in the -plane. Sketch a graph of the path and
sketch the velocity and acceleration vectors at the given point.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

In Exercises 11–20, the position vector r describes the path of an
object moving in space. Find the velocity, speed, and acceleration
of the object.

11. 12.

13. 14.

15.

16.

17.

18.

19.

20.

Linear Approximation In Exercises 21 and 22, the graph of the
vector-valued function and a tangent vector to the graph at

are given.

(a) Find a set of parametric equations for the tangent line to the
graph at 

(b) Use the equations for the line to approximate 

21.

22.

Figure for 21 Figure for 22

In Exercises 23–28, use the given acceleration function to find
the velocity and position vectors. Then find the position at time

23.

24.

25.

26.

27.

28.

Projectile Motion In Exercises 29–44, use the model for 
projectile motion, assuming there is no air resistance.

29. Find the vector-valued function for the path of a projectile
launched at a height of 10 feet above the ground with an initial
velocity of 88 feet per second and at an angle of above the
horizontal. Use a graphing utility to graph the path of the 
projectile.

30. Determine the maximum height and range of a projectile fired
at a height of 3 feet above the ground with an initial velocity of
900 feet per second and at an angle of above the horizontal.

31. A baseball, hit 3 feet above the ground, leaves the bat at an
angle of and is caught by an outfielder 3 feet above the
ground and 300 feet from home plate. What is the initial speed
of the ball, and how high does it rise?

32. A baseball player at second base throws a ball 90 feet to the
player at first base. The ball is released at a point 5 feet above
the ground with an initial velocity of 50 miles per hour and at
an angle of above the horizontal. At what height does the
player at first base catch the ball?

33. Eliminate the parameter from the position function for the
motion of a projectile to show that the rectangular equation is

34. The path of a ball is given by the rectangular equation

Use the result of Exercise 33 to find the position function. Then
find the speed and direction of the ball at the point at which it
has traveled 60 feet horizontally.

y � x � 0.005x2.

y � �
16 sec2 


v0
2  x2 � �tan 
�x � h.

t

15�

45�

45�

30�

r�0� � 0v�0� � 2i � 3j � k,

a(t) � et i � 8k

r�0� � iv�0� � j � k,

a�t� � �cos t i � sin t j

r�0� � 5j � 2kv�0� � 3i � 2j � k,

a�t� � �32k

r�1� � 0v�1� � 5j,

a�t� � t j � tk

r�0� � 0v�0� � 4j,

a�t� � 2i � 3k

r�0� � 0v�0� � 0,

a�t� � i � j � k

t � 2.

y

x

z

2
2

6

5

4
6

(3, 4, 4)

1, −1, y
x

1
4))

2

2

−2

1

z

t0 � 3r�t� � � t, �25 � t 2, �25 � t 2 �,

t0 � 1r�t� � � t, �t 2, 14 t3�,

r�t0 1 0.1�.

t � t0.

t � t0

r�t�

r�t� � �ln t, 
1
t
, t4�

r�t� � �et cos t, et sin t, et �
r(t� � �2 cos t, 2 sin t, t2�
r�t� � �4t, 3 cos t, 3 sin t�
r�t� � t 2 i � t j � 2t 3�2 k

r�t� � t i � t j � �9 � t 2 k

r�t� � 3t i � t j �
1
4

t 2 kr�t� � t i � t 2j �
t 2

2
 k

r�t� � 4t i � 4t j � 2tkr�t� � t i � 5tj � 3tk

�1, 1�r�t� � �e�t, et �
��, 2�r�t� � �t � sin t, 1 � cos t�
�3, 0�r�t� � 3 cos t i � 2 sin t j

��2, �2 �r�t� � 2 cos t i � 2 sin t j

�3, 2�r�t� � �1
4 t3 � 1�i � tj

�1, 1�r�t� � t2 i � t3 j

�1, 3�r�t� � t i � ��t2 � 4� j

�4, 2�r�t� � t 2 i � t j

�3, 3�r�t� � �6 � t�i � t j

�3, 0�r�t� � 3t i � �t � 1�j
Point        Position Function               

xy
r
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35. Modeling Data After the path of a ball thrown by a baseball
player is videotaped, it is analyzed on a television set with a
grid covering the screen. The tape is paused three times and the
positions of the ball are measured. The coordinates are approx-
imately and (The coordinate
measures the horizontal distance from the player in feet and the

coordinate measures the height in feet.)

(a) Use a graphing utility to find a quadratic model for the data.

(b) Use a graphing utility to plot the data and graph the model.

(c) Determine the maximum height of the ball.

(d) Find the initial velocity of the ball and the angle at which it
was thrown.

36. A baseball is hit from a height of 2.5 feet above the ground with
an initial velocity of 140 feet per second and at an angle of 
above the horizontal. Use a graphing utility to graph the path of
the ball and determine whether it will clear a 10-foot-high fence
located 375 feet from home plate.

37. The Rogers Centre in Toronto, Ontario has a center field fence
that is 10 feet high and 400 feet from home plate. A ball is hit
3 feet above the ground and leaves the bat at a speed of 100
miles per hour.

(a) The ball leaves the bat at an angle of with the
horizontal. Write the vector-valued function for the path of
the ball.

(b) Use a graphing utility to graph the vector-valued function
for and Use the
graphs to approximate the minimum angle required for the
hit to be a home run.

(c) Determine analytically the minimum angle required for the
hit to be a home run.

38. The quarterback of a football team releases a pass at a height of
7 feet above the playing field, and the football is caught by a
receiver 30 yards directly downfield at a height of 4 feet. The
pass is released at an angle of with the horizontal.

(a) Find the speed of the football when it is released.

(b) Find the maximum height of the football.

(c) Find the time the receiver has to reach the proper position
after the quarterback releases the football.

39. A bale ejector consists of two variable-speed belts at the end of
a baler. Its purpose is to toss bales into a trailing wagon.
In loading the back of a wagon, a bale must be thrown to a
position 8 feet above and 16 feet behind the ejector. 

(a) Find the minimum initial speed of the bale and the corre-
sponding angle at which it must be ejected from the baler.

(b) The ejector has a fixed angle of Find the initial speed
required.

40. A bomber is flying at an altitude of 30,000 feet at a speed of
540 miles per hour (see figure). When should the bomb be
released for it to hit the target? (Give your answer in terms of
the angle of depression from the plane to the target.) What is the
speed of the bomb at the time of impact?

Figure for 40

41. A shot fired from a gun with a muzzle velocity of 1200 feet per
second is to hit a target 3000 feet away. Determine the
minimum angle of elevation of the gun.

42. A projectile is fired from ground level at an angle of with
the horizontal. The projectile is to have a range of 200 feet.
Find the minimum initial velocity necessary. 

43. Use a graphing utility to graph the paths of a projectile for the
given values of and For each case, use the graph to approx-
imate the maximum height and range of the projectile. (Assume
that the projectile is launched from ground level.)

(a) (b)

(c) (d)

(e) (f)

44. Find the angles at which an object must be thrown to obtain (a)
the maximum range and (b) the maximum height.

Projectile Motion In Exercises 45 and 46, use the model for
projectile motion, assuming there is no air resistance.

meters per second per second

45. Determine the maximum height and range of a projectile fired
at a height of 1.5 meters above the ground with an initial 
velocity of 100 meters per second and at an angle of above
the horizontal.

46. A projectile is fired from ground level at an angle of with
the horizontal.  The projectile is to have a range of 50 meters.
Find the minimum initial velocity necessary.

Cycloidal Motion In Exercises 47 and 48, consider the motion
of a point (or particle) on the circumference of a rolling 
circle. As the circle rolls, it generates the cycloid

where is the con-
stant angular velocity of the circle and is the radius of the circle.

47. Find the velocity and acceleration vectors of the particle. Use
the results to determine the times at which the speed of the 
particle will be (a) zero and (b) maximized.

48. Find the maximum speed of a point on the circumference of an
automobile tire of radius 1 foot when the automobile is
traveling at 60 miles per hour. Compare this speed with the
speed of the automobile.

Circular Motion In Exercises 49–52, consider a particle
moving on a circular path of radius described by

where is the constant
angular velocity.

49. Find the velocity vector and show that it is orthogonal to r�t�.

� � du/dtr�t� � b cos � t i 1 b sin � t j,
b

b
�r�t� � b�� t � sin � t�i 1 b�1 � cos � t�j,

8�

30�

][a�t� � �9.8

v0 � 146 ft�sec
 � 60�,v0 � 66 ft�sec
 � 60�,

v0 � 146 ft�sec
 � 45�,v0 � 66 ft�sec
 � 45�,

v0 � 146 ft�sec
 � 10�,v0 � 66 ft�sec
 � 10�,

v0.


12�

30,000 ft

540 mph

45�.

35�


0 � 25�.
0 � 20�,
0 � 15�,
0 � 10�,


 � 
0

22�

y-

x-�30, 13.4�.�15, 10.6�,�0, 6.0�,
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50. (a) Show that the speed of the particle is 

(b) Use a graphing utility in parametric mode to graph the 
circle for Try different values of Does the graphing
utility draw the circle faster for greater values of 

51. Find the acceleration vector and show that its direction is
always toward the center of the circle.

52. Show that the magnitude of the acceleration vector is 

Circular Motion In Exercises 53 and 54, use the results of
Exercises 49–52.

53. A stone weighing 1 pound is attached to a two-foot string and
is whirled horizontally (see figure). The string will break under
a force of 10 pounds. Find the maximum speed the stone can
attain without breaking the string. Use where

Figure for 53 Figure for 54

54. A 3400-pound automobile is negotiating a circular interchange
of radius 300 feet at 30 miles per hour (see figure). Assuming
the roadway is level, find the force between the tires and the
road such that the car stays on the circular path and does not
skid. (Use where ) Find the angle at
which the roadway should be banked so that no lateral
frictional force is exerted on the tires of the automobile.

55. Shot-Put Throw The path of a shot thrown at an angle is

where is the initial speed, is the initial height, is the time
in seconds, and is the acceleration due to gravity. Verify that
the shot will remain in the air for a total of

and will travel a horizontal distance of

feet.

56. Shot-Put Throw A shot is thrown from a height of feet
with an initial speed of feet per second and at an angle
of with the horizontal. Find the total time of travel
and the total horizontal distance traveled.

57. Prove that if an object is traveling at a constant speed, its
velocity and acceleration vectors are orthogonal.

58. Prove that an object moving in a straight line at a constant
speed has an acceleration of 0.

59. Investigation A particle moves on an elliptical path given by
the vector-valued function 

(a) Find and 

(b) Use a graphing utility to complete the table.

(c) Graph the elliptical path and the velocity and acceleration
vectors at the values of given in the table in part (b).

(d) Use the results of parts (b) and (c) to describe the geometric
relationship between the velocity and acceleration vectors
when the speed of the particle is increasing, and when it is
decreasing.

64. When an object is at the point and has a velocity
vector It moves with an acceleration of

Show that the path of the object is a circle.

True or False? In Exercises 65–68, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

65. The acceleration of an object is the derivative of the speed.

66. The velocity of an object is the derivative of the position.

67. The velocity vector points in the direction of motion.

68. If a particle moves along a straight line, then the velocity and
acceleration vectors are orthogonal.

a�t� � sin t i � cos t j.
v�0� � �i.

�0, 1�t � 0,

t

a�t�.�v�t��,v�t�,
r�t� � 6 cos t i � 3 sin t j.


 � 42.5�
v0 � 45

h � 6

v0
2 cos 


g
 �sin 
 ��sin2 
 �

2gh
v0

2 	

t �
v0 sin 
 � �v0

2 sin2 
 � 2gh
g

 seconds

g
thv0

r�t� � �v0 cos 
�t i � �h � �v0 sin 
�t �
1
2

 gt2� j




m � 3400�32.F � ma,

300 ft

30 mph
2 ft

1 lb

m �
1
32.�

F � ma,�

b�2.

�?
�.b � 6.

b�.
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61. In your own words, explain the difference between the
velocity of an object and its speed.

62. What is known about the speed of an object if the angle
between the velocity and acceleration vectors is (a) acute
and (b) obtuse?

63. Consider a particle that is moving on the path

(a) Discuss any changes in the position, velocity, or acceler-
ation of the particle if its position is given by the vector-
valued function  

(b) Generalize the results for the position function
r3�t� � r1��t�.

r2�t� � r1�2t�.

r1�t� � x�t� i � y�t� j � z�t�k.

WRITING ABOUT CONCEPTS

t 0
�

4
�

2
2�

3
�

Speed

60. Consider a particle moving on an elliptical path described
by where is the
constant angular velocity.

(a) Find the velocity vector. What is the speed of the particle?

(b) Find the acceleration vector and show that its direction
is always toward the center of the ellipse.

� � d
�dtr�t� � a cos �t i � b sin �t j,

CAPSTONE
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12.4 Tangent Vectors and Normal Vectors 859

12.4 Tangent Vectors and Normal Vectors
■ Find a unit tangent vector at a point on a space curve.
■ Find the tangential and normal components of acceleration.

Tangent Vectors and Normal Vectors
In the preceding section, you learned that the velocity vector points in the direction of
motion. This observation leads to the following definition, which applies to any
smooth curve—not just to those for which the parameter represents time.

Recall that a curve is smooth on an interval if is continuous and nonzero on the
interval. So, “smoothness” is sufficient to guarantee that a curve has a unit tangent
vector.

EXAMPLE 1 Finding the Unit Tangent Vector

Find the unit tangent vector to the curve given by

when 

Solution The derivative of is

Derivative of 

So, the unit tangent vector is 

Definition of 

Substitute for 

When the unit tangent vector is

as shown in Figure 12.20. ■

T�1� �
1
�5

�i � 2j�

t � 1,

r��t�. �
1

�1 � 4t2
�i � 2tj�.

T�t� T�t� �
r��t�

�r��t��

r�t�r��t� � i � 2tj.

r�t�

t � 1.

r�t� � ti � t2j

r�

DEFINITION OF UNIT TANGENT VECTOR

Let be a smooth curve represented by on an open interval The unit
tangent vector at is defined as

r��t� � 0.T�t� �
r��t�

�r��t��
,

tT�t�
I.rC

NOTE In Example 1, note that the direction of the unit tangent vector depends on the
orientation of the curve. For instance, if the parabola in Figure 12.20 were given by

would still represent the unit tangent vector at the point but it would point in the
opposite direction. Try verifying this. ■

�1, 1�,T�1�

r�t� � ��t � 2�i � �t � 2�2j

4

21

3

2

1

−1−2
x

T(1)

y

r(t) = ti + t2j

The direction of the unit tangent vector
depends on the orientation of the curve.
Figure 12.20
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The tangent line to a curve at a point is the line that passes through the point and
is parallel to the unit tangent vector. In Example 2, the unit tangent vector is used to
find the tangent line at a point on a helix. 

EXAMPLE 2 Finding the Tangent Line at a Point on a Curve

Find and then find a set of parametric equations for the tangent line to the helix
given by

at the point 

Solution The derivative of is which implies
that Therefore, the unit tangent vector is

Unit tangent vector

At the point and the unit tangent vector is

Using the direction numbers and and the point
you can obtain the following parametric equations

(given with parameter ).

This tangent line is shown in Figure 12.21. ■

In Example 2, there are infinitely many vectors that are orthogonal to the tangent
vector One of these is the vector This follows from Property 7 of Theorem
12.2. That is,

By normalizing the vector you obtain a special vector called the principal unit
normal vector, as indicated in the following definition.

T��t�, 

T�t� � T��t� � 0.T�t� � T�t� � �T�t��2 � 1

T��t�.T�t�.

z � z1 � cs �
�

4
� s

y � y1 � bs � �2 � �2s

x � x1 � as � �2 � �2s

s
�x1, y1, z1� � ��2, �2, ��4�,

c � 1,b � �2,a � ��2,

 �
1
�5

���2 i � �2 j � k�.

 T��

4� �
1
�5 ��2

�2
2

 i � 2
�2
2

 j � k�
t � ��4��2,�2, ��4�,

 �
1
�5

��2 sin t i � 2 cos tj � k�.

 T�t� �
r��t�

�r��t��

�r��t�� � �4 sin2 t � 4 cos2 t � 1 � �5.
r��t� � �2 sin t i � 2 cos tj � k,r�t�

��2, �2, 
�

4�.

r�t� � 2 cos t i � 2 sin tj � tk

T�t�
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y

x

z

3 3

−3

5

6

2,    2,
π
4))

Tangent
line

C

Curve:
r(t) = 2 cos ti + 2 sin tj + tk

The tangent line to a curve at a point is
determined by the unit tangent vector at 
the point.
Figure 12.21

DEFINITION OF PRINCIPAL UNIT NORMAL VECTOR

Let be a smooth curve represented by on an open interval If 
then the principal unit normal vector at is defined as

N�t� �
T��t�

�T��t��
.

t
T��t� � 0,I.rC
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EXAMPLE 3 Finding the Principal Unit Normal Vector

Find and for the curve represented by

Solution By differentiating, you obtain

and

which implies that the unit tangent vector is

Unit tangent vector

Using Theorem 12.2, differentiate with respect to to obtain

Therefore, the principal unit normal vector is

Principal unit normal vector

When the principal unit normal vector is

as shown in Figure 12.22. ■

The principal unit normal vector can be difficult to evaluate algebraically. For plane
curves, you can simplify the algebra by finding

Unit tangent vector

and observing that must be either

or

Because it follows that both and are unit normal
vectors. The unit normal vector is the one that points toward the concave
side of the curve, as shown in Figure 12.22 (see Exercise 94). This also holds for
curves in space. That is, for an object moving along a curve in space, the vector 
points in the direction the object is moving, whereas the vector is orthogonal 
to and points in the direction in which the object is turning, as shown in 
Figure 12.23.

T�t�
N�t�

T�t�C

Nprincipal
N2�t�N1�t��	x�t�
2 � 	y�t�
2 � 1,

N�t�

T�t� � x�t�i � y�t�j

N�1� �
1
5

��4i � 3j�

t � 1,

 �
1

�9 � 16t2
��4t i � 3j�.

 N�t� �
T��t�

�T��t��

 �T��t�� � 12� 9 � 16t2

�9 � 16t2�3 �
12

9 � 16t2.

 �
12

�9 � 16t2�3�2��4t i � 3j�

 T��t� �
1

�9 � 16t2
�4j� �

16t
�9 � 16t2�3�2 �3i � 4tj�

tT�t�

 �
1

�9 � 16t2
�3i � 4tj�.

 T�t� �
r��t�

�r��t��

�r��t�� � �9 � 16t2r��t� � 3i � 4tj

r�t� � 3t i � 2t2 j.

N�1�N�t�
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N1�t� � y�t�i � x�t�j N2�t� � �y�t�i � x�t�j.

3

1

2

321

y

x

C
r(t) = 3ti + 2t2j
Curve:

(3i + 4j)1
5

1
5

T(1) =

(−4i + 3j)N(1) =

The principal unit normal vector points
toward the concave side of the curve.
Figure 12.22

y
x

T N

C

z

At any point on a curve, a unit normal vector
is orthogonal to the unit tangent vector. The
principal unit normal vector points in the
direction in which the curve is turning.
Figure 12.23
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EXAMPLE 4 Finding the Principal Unit Normal Vector

Find the principal unit normal vector for the helix given by

Solution From Example 2, you know that the unit tangent vector is

Unit tangent vector

So, is given by

Because it follows that the principal unit normal vector is

Principal unit normal vector

Note that this vector is horizontal and points toward the axis, as shown in Figure
12.24. ■

Tangential and Normal Components of Acceleration
Let’s return to the problem of describing the motion of an object along a curve. In
the preceding section, you saw that for an object traveling at a constant speed, the
velocity and acceleration vectors are perpendicular. This seems reasonable, because
the speed would not be constant if any acceleration were acting in the direction of
motion. You can verify this observation by noting that

if is a constant. (See Property 7 of Theorem 12.2.)
However, for an object traveling at a variable speed, the velocity and acceleration

vectors are not necessarily perpendicular. For instance, you saw that the acceleration
vector for a projectile always points down, regardless of the direction of motion.

In general, part of the acceleration (the tangential component) acts in the line of
motion, and part (the normal component) acts perpendicular to the line of motion. In
order to determine these two components, you can use the unit vectors and 
which serve in much the same way as do and in representing vectors in the plane.
The following theorem states that the acceleration vector lies in the plane determined
by and N�t�.T�t�

ji
N�t�,T�t�

�r��t��

r	 �t� � r��t� � 0

z-

 � �cos t i � sin tj.

 �
1
2

��2 cos t i � 2 sin tj�

 N�t� �
T��t�

�T��t��

�T��t�� � 2��5,

T��t� �
1
�5

��2 cos t i � 2 sin tj�.

T��t�

T�t� �
1
�5

��2 sin t i � 2 cos tj � k�.

r�t� � 2 cos t i � 2 sin tj � tk.
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THEOREM 12.4 ACCELERATION VECTOR

If is the position vector for a smooth curve and exists, then the
acceleration vector lies in the plane determined by and N�t�.T�t�a�t�

N�t�Cr�t�

x y

z

1

2

−2

−1

2

1

−1

−2

π

π

π

π

2

2

2

3

Helix:
r(t) = 2 cos ti + 2 sin tj + tk

is horizontal and points toward the 
-axis.

Figure 12.24
z
N�t�
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The coefficients of and in the proof of Theorem 12.4 are called the
tangential and normal components of acceleration and are denoted by

and So, you can write

The following theorem gives some convenient formulas for and aT.aN

aN � �v � �T� �.aT � Dt	�v�


NT

12.4 Tangent Vectors and Normal Vectors 863

PROOF To simplify the notation, write for for and so on. Because
it follows that

By differentiating, you obtain

Product Rule

Because is written as a linear combination of and it follows that lies in the
plane determined by and ■N.T

aN,Ta

N � T���T� � � Dt	�v �
T � �v � �T� � N.

 � Dt	�v �
T � �v �T���T� �
�T� ��

 a � v� � Dt	�v�
T � �v �T�

v � �v �T.

T � r���r� � � v��v �,
T��t�,T�T�t�,T

a�t� � aTT�t� � aNN�t�.

THEOREM 12.5 TANGENTIAL AND NORMAL COMPONENTS 
OF ACCELERATION

If is the position vector for a smooth curve [for which exists], then
the tangential and normal components of acceleration are as follows.

Note that The normal component of acceleration is also called the
centripetal component of acceleration.

aN 
 0.

aN � �v � �T� � � a � N �
�v � a�

�v �
� ��a �2 � aT

2

aT � Dt	�v �
 � a � T �
v � a
�v �

N�t�Cr�t�

PROOF Note that lies in the plane of and So, you can use Figure 12.25 to
conclude that, for any time the components of the projection of the acceleration
vector onto and onto are given by and respectively.
Moreover, because and you have

In Exercises 96 and 97, you are asked to prove the other parts of the theorem. ■

 �
v � a
�v �

.

 �
v

�v � � a

 � T � a

aT � a � T

T � v��v �,a � v�
aN � a � N,aT � a � TNT

t,
N.Ta

NOTE The formulas from Theorem 12.5, together with several other formulas from this
chapter, are summarized on page 877. ■

a • T < 0

a • T > 0

a • N

N

N

T

T
a

a

a • N

The tangential and normal components of
acceleration are obtained by projecting 
onto and 
Figure 12.25

N.T
a
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x

y

aN = b

b

z

The normal component of acceleration is
equal to the radius of the cylinder around
which the helix is spiraling.
Figure 12.26

EXAMPLE 5 Tangential and Normal Components of Acceleration

Find the tangential and normal components of acceleration for the position vector
given by 

Solution Begin by finding the velocity, speed, and acceleration.

By Theorem 12.5, the tangential component of acceleration is

Tangential component of acceleration

and because

the normal component of acceleration is

Normal component of acceleration

■

EXAMPLE 6 Finding and for a Circular Helix

Find the tangential and normal components of acceleration for the helix given by

Solution

By Theorem 12.5, the tangential component of acceleration is

Moreover, because you can use the alternative
formula for the normal component of acceleration to obtain

Note that the normal component of acceleration is equal to the magnitude of the
acceleration. In other words, because the speed is constant, the acceleration is
perpendicular to the velocity. See Figure 12.26. ■

Normal component
of accelerationaN � ��a�2 � aT

2 � �b2 � 02 � b.

�a� � �b2 cos2 t � b2 sin2 t � b,

Tangential component
of accelerationaT �

v � a
�v �

�
b2 sin t cos t � b2 sin t cos t � 0

�b2 � c2
� 0.

 a�t� � r	 �t� � �b cos t i � b sin tj

 �v�t�� � �b2 sin2 t � b2 cos2 t � c2 � �b2 � c2

 v�t� � r��t� � �b sin t i � b cos tj � ck

b > 0.r�t� � b cos t i � b sin tj � ctk,

aNaTT

aN �
�v � a �

�v �
�

�4 � 36
�10 � 4t2

�
2�10

�10 � 4t2
.

v � a � � i
3
0

j
�1

0

k
2t
2� � �2i � 6j

aT �
v � a
�v �

�
4t

�10 � 4t2

 a�t� � r	 �t� � 2k

 �v�t�� � �9 � 1 � 4t2 � �10 � 4t2

 v�t� � r��t� � 3i � j � 2tk

r�t� � 3t i � tj � t2k.

NOTE In Example 5, you could have used the alternative formula for as follows.

■aN � ��a �2 � aT
2 ���2�2 �

16t2

10 � 4t2 �
2�10

�10 � 4t2

aN
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EXAMPLE 7 Projectile Motion

The position vector for the projectile shown in Figure 12.27 is given by

Position vector

Find the tangential components of acceleration when 1, and 

Solution

Velocity vector

Speed

Acceleration vector

The tangential component of acceleration is

At the specified times, you have

You can see from Figure 12.27 that, at the maximum height, when the
tangential component is 0. This is reasonable because the direction of motion is
horizontal at the point and the tangential component of the acceleration is equal to the
horizontal component of the acceleration. ■

t � 25�2�16,

 aT�25�2
16 � �

�32�50�2 � 50�2 �
50�2

� 0.

 aT�1� �
�32�50�2 � 32�

2�502 � 16�50��2 � 162
� �15.4

 aT�0� �
�32�50�2 �

100
� �16�2 � �22.6

Tangential component
of accelerationaT�t� �

v�t� � a�t�
�v�t��

�
�32�50�2 � 32t�

2�502 � 16�50��2 t � 162t2
.

 a�t� � �32j

 �v�t�� � 2�502 � 16�50��2 t � 162t2

 v�t� � 50�2 i � �50�2 � 32t�j

25�2�16.t � 0,

r�t� � �50�2 t�i � �50�2 t � 16t2�j.

12.4 Tangent Vectors and Normal Vectors 865

In Exercises 1–4, sketch the unit tangent and normal vectors at
the given points. To print an enlarged copy of the graph, go to
the website www.mathgraphs.com.

1. 2.

3. 4.

In Exercises 5–10, find the unit tangent vector to the curve at
the specified value of the parameter.

5. 6.

7.

8.

9. 10.

In Exercises 11–16, find the unit tangent vector and find a
set of parametric equations for the line tangent to the space
curve at point 

11.

12.

13.

14.

15.

16. P�1, �3, 1�r�t� � 
2 sin t, 2 cos t, 4 sin2 t�,
P��2, �2, 4�r�t� � 
2 cos t, 2 sin t, 4�,

P�1, 1, �3 �r�t� � 
 t, t, �4 � t2 �,

P�3, 0, 0�r�t� � 3 cos t i � 3 sin tj � tk,

P�1, 1, 43�r�t� � t2 i � t j �
4
3k,

P�0, 0, 0�r�t� � t i � t 2j � tk,

P.

T�t�

t � 0r�t� � et cos ti � etj,t � er�t� � 3t i � ln t j,

r�t� � 6 cos ti � 2 sin tj,  t �
�

3

r�t� � 4 cos ti � 4 sin tj,  t �
�

4

r�t� � t3i � 2t2j,  t � 1r�t� � t2i � 2tj,  t � 1

x

yy

x

y

xx

y

12.4 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

100

150100 125

50

25

5025 75

75

x

y

r(t) = (50    2t)i + (50    2t − 16t2)j

25    2
16

t = 
t = 1

t = 0

The path of a projectile
Figure 12.27
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In Exercises 17 and 18, use a computer algebra system to graph
the space curve. Then find and find a set of parametric
equations for the line tangent to the space curve at point 
Graph the tangent line.

17.

18.

Linear Approximation In Exercises 19 and 20, find a set of
parametric equations for the tangent line to the graph at 
and use the equations for the line to approximate 

19.

20.

In Exercises 21 and 22, verify that the space curves intersect at
the given values of the parameters. Find the angle between the
tangent vectors to the curves at the point of intersection.

21.

22.

In Exercises 23–30, find the principal unit normal vector to the
curve at the specified value of the parameter.

23.

24.

25.

26.

27.

28.

29.

30.

In Exercises 31–34, find and (if it exists) for
an object moving along the path given by the vector-valued
function Use the results to determine the form of the path.
Is the speed of the object constant or changing?

31. 32.

33. 34.

In Exercises 35– 44, find and at the given time
for the plane curve 

35. 36.

37.

38.

39.

40.

41.

42.

43.

44.

Circular Motion In Exercises 45–48, consider an object
moving according to the position function

45. Find and 

46. Determine the directions of and relative to the position
function 

47. Determine the speed of the object at any time and explain its
value relative to the value of 

48. If the angular velocity is halved, by what factor is 
changed?

In Exercises 49–54, sketch the graph of the plane curve given
by the vector-valued function, and, at the point on the curve
determined by sketch the vectors and Note that 
points toward the concave side of the curve.

49.

50.

51.

52.

53.

54.

In Exercises 55– 62, find and at the given time
for the space curve Hint: Find and Solve

for in the equation 

55.

56.

57.

58.

59.

60.

61.

62. t � 0r�t) � et i � 2tj � e�t k

t � 0r�t� � et sin t i � et cos t j � et k

t � 2r�t) � �2t � 1�i � t2j � 4tk

t � 1r�t� � t i � t 2j �
t2

2
 k

t � �1r�t) � 3ti � tj � t2k

t �
�

3
r�t) � cos ti � sin tj � 2tk

t � 2r�t� � 4t i � 4t j � 2tk

t � 1r�t� � t i � 2t j � 3tk

Time Function                                       

a�t� � aTT 1 aNN.]N
aN.aT,T�t�,a�t�,[r�t�.t

aNaT,N�t�,T�t�,

t0 � �r�t� � 3 cos t i � 2 sin t j

t0 �
�

4
r�t� � 2 cos t i � 2 sin tj

t0 � 2r�t) � �2t � 1)i � t2j

t0 �
1
4

r(t) � 4ti � 4t2j

t0 � 1r�t� � t3i � tj

t0 � 2r�t� � t i �
1
t
 j

Time Function                          

NN.Tr�t0�,

aN�

aT.
t

r.
NT

aN.aT,N�t�,T�t�,

r�t� � a cos �t i 1 a sin �t j.

t � t0r�t� � 
�t � sin �t, 1 � cos �t�,
t � t0r�t� � 
cos �t � �t sin �t, sin �t � �t cos �t�,

t � 0r�t� � a cos �t i � b sin �t j,

t �
�

2
r�t� � et cos t i � et sin t j,

t � 0r�t� � et i � e�t j � tk,

t � 0r�t� � et i � e�2t j,

t � 0r�t� � �t3 � 4t�i � �t2 � 1�j,
t � 1r�t� � �t � t3�i � 2t2j,

t � 1r�t� � t2 i � 2t j,t � 1r�t� � t i �
1
t
 j,

r�t�.t
aNaT,N�t�,T�t�,

r�t� � t2j � kr�t� � 4t2 i

r�t� � 4t i � 2t jr�t� � 4t i

r�t�.

N�t�T�t�,a�t�,v�t�,

r�t� � cos 3t i � 2 sin 3t j � k,  t � �

r�t� � 6 cos t i � 6 sin tj � k,  t �
3�

4

t � 0r�t� � �2t i � et j � e�t k,

t � 1r�t� � t i � t2j � ln tk,

t �
�

6
r�t� � � cos t i � � sin tj,

t � 2r�t� � ln t i � �t � 1� j,

r�t� � ti �
6
t

j,  t � 3

r�t� � ti �
1
2t2j,  t � 2

s � 01
2 sin s cos s �

1
2s�,

u�s� � 
�
1
2 sin2 s � sin s, 1 �

1
2 sin2 s � sin s, 

t � 0r�t� � 
t, cos t, sin t�,
s � 8u�s� � 
1

4s, 2s,  3�s �,

t � 4r�t� � 
 t � 2, t2, 12t�,

t0 � 0r�t� � 
e�t, 2 cos t, 2 sin t�,
t0 � 1r�t� � 
 t, ln t, �t �,

r�t0 1 0.1�.
t � t0

P�0, 4, ��4�r�t� � 3 cos t i � 4 sin t j �
1
2 tk,

P�3, 9, 18�r�t� � 
t, t2, 2t3�3�,

P.
T�t�
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12.4 Tangent Vectors and Normal Vectors 867

CAS

67. Define the unit tangent vector, the principal unit normal
vector, and the tangential and normal components of
acceleration.

68. How is the unit tangent vector related to the orientation of
a curve? Explain.

69. (a) Describe the motion of a particle if the normal component
of acceleration is 0.

(b) Describe the motion of a particle if the tangential 
component of acceleration is 0.

WRITING ABOUT CONCEPTS

In Exercises 63–66, use a computer algebra system to graph the
space curve. Then find and at the given time 
Sketch and on the space curve.

63.

64.

65.

66.

71. Cycloidal Motion The figure shows the path of a particle
modeled by the vector-valued function

The figure also shows the vectors and at
the indicated values of 

(a) Find and at and 

(b) Determine whether the speed of the particle is increasing or
decreasing at each of the indicated values of Give reasons
for your answers.

72. Motion Along an Involute of a Circle The figure shows 
a particle moving along a path modeled by

The figure
also shows the vectors and for and 

(a) Find and at and 

(b) Determine whether the speed of the particle is increasing or
decreasing at each of the indicated values of Give reasons
for your answers.

In Exercises 73–78, find the vectors T and N, and the unit 
binormal vector for the vector-valued function 
at the given value of 

73. 74.

Figure for 73 Figure for 74

75.

76.

77.

78.

79. Projectile Motion Find the tangential and normal compo-
nents of acceleration for a projectile fired at an angle with the
horizontal at an initial speed of What are the components
when the projectile is at its maximum height?

80. Projectile Motion Use your results from Exercise 79 to find
the tangential and normal components of acceleration for a
projectile fired at an angle of with the horizontal at an
initial speed of 150 feet per second. What are the components
when the projectile is at its maximum height?

45


v0.
�

t0 �
�

4
r�t� � 3 cos 2t i � 3 sin 2t j � tk,

t0 �
�

3
r�t� � 4 sin t i � 4 cos t j � 2tk,

t0 � 0r�t� � 2et i � et cos t j � et sin tk,

t0 �
�

4
r�t� � i � sin t j � cos tk,

x

y21

1

2

z

x
y33

3

−1

4

z

t0 � 1t0 �
�

2

r�t� � t i � t 2 j �
t3

3
 kr�t� � 2 cos t i � 2 sin t j �

t
2

 k

t.
r�t�B � T � N,

t.

t � 2.t � 1aNaT

x

t = 1

t = 2

y

t � 2.t � 1a�t�v�t�
r�t� � 
cos �t � �t sin �t, sin �t � � t cos �t�.

t.

t �
3
2.t � 1,t �

1
2,aNaT

x

t = 1t =

t =

1
2

3
2

y

t.
a�t���a�t��v�t���v�t��

r�t� � 
� t � sin � t, 1 � cos � t�.

t � 1r�t� � t2i � j � 2tk

t � 2r�t� � t i � 3t 2 j �
t2

2
 k

t � �r�t� � �2 � cos t�i � �1 � sin t�j �
t
3

 k

t �
�

2
r�t� � 4t i � 3 cos t j � 3 sin tk

Time    Function                                                   

N�t�T�t�
t.aNaT,N�t�,T�t�,

70. An object moves along the path given by

Find and (if it exists). What is the form
of the path? Is the speed of the object constant or changing?

N�t�T�t�,a�t�,v�t�,

r�t� � 3ti � 4tj.

CAPSTONE
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81. Projectile Motion A projectile is launched with an initial
velocity of 120 feet per second at a height of 5 feet and at an
angle of 30 with the horizontal.

(a) Determine the vector-valued function for the path of the
projectile.

(b) Use a graphing utility to graph the path and approximate
the maximum height and range of the projectile.

(c) Find and 

(d) Use a graphing utility to complete the table.

(e) Use a graphing utility to graph the scalar functions and
How is the speed of the projectile changing when 

and have opposite signs?

82. Projectile Motion A projectile is launched with an initial
velocity of 220 feet per second at a height of 4 feet and at an
angle of 45 with the horizontal.

(a) Determine the vector-valued function for the path of the
projectile.

(b) Use a graphing utility to graph the path and approximate
the maximum height and range of the projectile.

(c) Find and 

(d) Use a graphing utility to complete the table.

83. Air Traffic Control Because of a storm, ground controllers
instruct the pilot of a plane flying at an altitude of 4 miles to
make a 90 turn and climb to an altitude of 4.2 miles. The
model for the path of the plane during this maneuver is

where is the time in hours and is the distance in miles.

(a) Determine the speed of the plane.

(b) Use a computer algebra system to calculate and 
Why is one of these equal to 0?

84. Projectile Motion A plane flying at an altitude of 36,000 feet
at a speed of 600 miles per hour releases a bomb. Find the
tangential and normal components of acceleration acting on the
bomb.

85. Centripetal Acceleration An object is spinning at a constant
speed on the end of a string, according to the position function
given in Exercises 45–48.

(a) If the angular velocity is doubled, how is the centripetal
component of acceleration changed?

(b) If the angular velocity is unchanged but the length of the
string is halved, how is the centripetal component of accel-
eration changed?

86. Centripetal Force An object of mass moves at a constant
speed in a circular path of radius The force required to
produce the centripetal component of acceleration is called the

and is given by Newton’s Law of
Universal Gravitation is given by where is the
distance between the centers of the two bodies of masses and

and is a gravitational constant. Use this law to show that
the speed required for circular motion is 

Orbital Speed In Exercises 87–90, use the result of Exercise 86
to find the speed necessary for the given circular orbit around
Earth. Let cubic miles per second per second,
and assume the radius of Earth is 4000 miles.

87. The orbit of a space shuttle 115 miles above the surface of Earth

88. The orbit of a space shuttle 245 miles above the surface of Earth

89. The orbit of a heat capacity mapping satellite 385 miles above
the surface of Earth

90. The orbit of a communications satellite miles above the surface
of Earth that is in geosynchronous orbit [The satellite completes
one orbit per sidereal day (approximately 23 hours, 56 minutes),
and therefore appears to remain stationary above a point on Earth.]

True or False? In Exercises 91 and 92, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

91. If a car’s speedometer is constant, then the car cannot be
accelerating.

92. If for a moving object, then the object is moving in a
straight line.

93. A particle moves along a path modeled by
where is a positive constant.

(a) Show that the path of the particle is a hyperbola.

(b) Show that 

94. Prove that the principal unit normal vector N points toward the
concave side of a plane curve.

95. Prove that the vector is 0 for an object moving in a straight
line.

96. Prove that 

97. Prove that aN � ��a�2 � aT
2.

aN �
�v � a�

�v�
.

T��t�

a�t� � b2 r�t�.

br�t� � cosh�bt�i � sinh�bt�j,

aN � 0

r

GM � 9.56 � 104

v � �GM�r.
Gm,

M
dF � GMm�d 2,

F � mv2�r.forcecentripetal

r.v
m

�

aN.aT

rt

0 � t �
1

20r�t� � 
10 cos 10� t, 10 sin 10�t, 4 � 4t�,




a�t�.�v�t��,v�t�,




aN

aTaN.
aT

a�t�.�v�t��,v�t�,
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Speed

t 0.5 1.0 1.5 2.0 2.5 3.0

Speed

CAS

98. A particle of unit mass moves on a straight line under the
action of a force which is a function of the velocity of
the particle, but the form of this function is not known. A
motion is observed, and the distance covered in time 
is found to be connected with by the formula

where and have numerical 
values determined by observation of the motion. Find the
function for the range of covered by the experiment.

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America.

vf �v�

cb,a,x � at � bt2 � ct3,
t

tx

vf �v�

PUTNAM EXAM CHALLENGE
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12.5 Arc Length and Curvature 869

12.5 Arc Length and Curvature
■ Find the arc length of a space curve.
■ Use the arc length parameter to describe a plane curve or space curve.
■ Find the curvature of a curve at a point on the curve.
■ Use a vector-valued function to find frictional force.

Arc Length
In Section 10.3, you saw that the arc length of a smooth curve given by the
parametric equations and is

In vector form, where is given by you can rewrite this equation
for arc length as

The formula for the arc length of a plane curve has a natural extension to a smooth
curve in as stated in the following theorem.

EXAMPLE 1 Finding the Arc Length of a Curve in Space

Find the arc length of the curve given by

from to as shown in Figure 12.28.

Solution Using and you obtain 
and So, the arc length from to is given by

Formula for arc length

Integration tables (Appendix B), Formula 26

■ � 4.816. � 2�13 �
3
2

 ln�4 � �13 � � 1 �
3
2

 ln 3

 � �t � 2
2

 ��t � 2�2 � 3 �
3
2

 ln��t � 2� � ��t � 2�2 � 3��
2

0

 � 	2

0
 ��t � 2�2 � 3 dt

 � 	2

0
 �1 � 4 t � t2 dt

 s � 	2

0
 �
x��t��2 � 
 y��t��2 � 
z��t��2 dt

t � 2t � 0z��t� � t.y��t� � 2t1�2,
x��t� � 1,z�t� �

1
2 t2,y�t� �

4
3 t3�2,x�t� � t,

t � 2,t � 0

r�t� � t i �
4
3

 t3�2 j �
1
2

 t2k

space,

s � 	b

a

 
r��t�
 dt.

r�t� � x�t�i � y�t�j,C

s � 	b

a

 �
x��t��2 � 
 y��t��2 dt.

a � t � b,y � y�t�,x � x�t�
Cplane

THEOREM 12.6 ARC LENGTH OF A SPACE CURVE

If is a smooth curve given by on an interval
then the arc length of on the interval is

s � 	b

a

 �
x��t��2 � 
 y��t��2 � 
z��t��2 dt � 	b

a

 
r��t�
 dt.

C
a, b�,
r�t� � x�t�i � y�t�j � z�t�k,C

yx

z

3
4

1

1

−1

2

2

t = 2
t = 0 C

r(t) = ti +   t3/2j +   t2k4
3

1
2

As increases from 0 to 2, the vector 
traces out a curve.
Figure 12.28

r�t�t

E X P L O R A T I O N

Arc Length Formula The 
formula for the arc length of a
space curve is given in terms of
the parametric equations used to
represent the curve. Does this
mean that the arc length of the
curve depends on the parameter
being used? Would you want this
to be true? Explain your reasoning.

Here is a different parametric
representation of the curve in
Example 1.

Find the arc length from to
and compare the result

with that found in Example 1.
t � �2

t � 0

r�t� � t 2 i �
4
3

 t3 j �
1
2

 t4 k
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EXAMPLE 2 Finding the Arc Length of a Helix

Find the length of one turn of the helix given by

as shown in Figure 12.29.

Solution Begin by finding the derivative. 

Derivative

Now, using the formula for arc length, you can find the length of one turn of the helix
by integrating from 0 to 

Formula for arc length

So, the length is units. ■

Arc Length Parameter
You have seen that curves can be represented by vector-valued functions in different
ways, depending on the choice of parameter. For along a curve, the convenient
parameter is time However, for studying the geometric properties of a curve, the
convenient parameter is often arc length 

Using the definition of the arc length function and the Second Fundamental
Theorem of Calculus, you can conclude that

In differential form, you can write

ds � 
r��t�
 dt.

s.
t.

motion

2�

� 2� � t�2�

0

 � 	2�

0
 dt

 � 	2�

0
 �b2�sin2 t � cos2 t� � �1 � b2� dt

 s � 	2�

0
 
r��t�
 dt

2�
r��t�


r��t� � �b sin ti � b cos tj � �1 � b2k

r�t� � b cos ti � b sin tj � �1 � b2 tk

870 Chapter 12 Vector-Valued Functions

DEFINITION OF ARC LENGTH FUNCTION

Let be a smooth curve given by defined on the closed interval 
For the arc length function is given by

The arc length is called the arc length parameter. (See Figure 12.30.)s

s�t� � 	t

a

 
r��u�
 du � 	t

a

 �
x��u��2 � 
 y��u��2 � 
z��u��2 du.

a � t � b,

a, b�.r�t�C

NOTE The arc length function is nonnegative. It measures the distance along from the
initial point to the point ■�x�t�, y�t�, z�t��.�x�a�, y�a�, z�a��

Cs

Derivative of arc length function
ds
dt

� 
r��t�
.

x

y

z

C

t = a

t = b

t

s(t) =        [x ′(u)]2 + [y ′(u)]2 + [z ′(u)]2 du∫
t

a

Figure 12.30

Curve:
r(t) = b cos ti + b sin tj +    1 − b2 tk

t = 2

t = 0

π

C

x

y

z

b b

One turn of a helix
Figure 12.29
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EXAMPLE 3 Finding the Arc Length Function for a Line

Find the arc length function for the line segment given by

and write as a function of the parameter (See Figure 12.31.)

Solution Because and

you have

Using (or ), you can rewrite using the arc length parameter as follows.

■

One of the advantages of writing a vector-valued function in terms of the arc
length parameter is that For instance, in Example 3, you have

So, for a smooth curve represented by where is the arc length parameter, the
arc length between and is

Furthermore, if is parameter such that then must be the arc length
parameter. These results are summarized in the following theorem, which is stated
without proof.

t
r��t�
 � 1,anyt

 � length of interval.

 � b � a

 � 	b

a

 ds

 Length of arc � 	b

a

 
r��s�
 ds

ba
sr(s�,C


r��s�
 ����
3
5�

2

� �4
5�

2

� 1.


r��s�
 � 1.

0 � s � 5r�s� � �3 �
3
5s�i �

4
5s j,

rt � s�5s � 5t

 � 5t.

 � 	t

0
 5 du

 s�t� � 	t

0
 
r��u�
 du


r��t�
 � ���3�2 � 42 � 5

r��t� � �3i � 4j

s.r

0 � t � 1r�t� � �3 � 3t�i � 4 t j,

s�t�
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THEOREM 12.7 ARC LENGTH PARAMETER

If is a smooth curve given by

or

where is the arc length parameter, then

Moreover, if is parameter for the vector-valued function such that
then must be the arc length parameter.t
r��t�
 � 1,

ranyt


r��s�
 � 1.

s

r�s� � x�s�i � y�s�j � z�s�kr�s� � x�s�i � y�s�j

C

3

2

1

321

4

y

x

0 ≤ t ≤ 1
r(t) = (3 − 3t)i + 4tj

The line segment from to can 
be parametrized using the arc length 
parameter 
Figure 12.31

s.

�0, 4)�3, 0�
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Curvature
An important use of the arc length parameter is to find curvature—the measure of
how sharply a curve bends. For instance, in Figure 12.32 the curve bends more sharply
at than at and you can say that the curvature is greater at than at You can
calculate curvature by calculating the magnitude of the rate of change of the unit
tangent vector with respect to the arc length as shown in Figure 12.33.

A circle has the same curvature at any point. Moreover, the curvature and the
radius of the circle are inversely related. That is, a circle with a large radius has a small
curvature, and a circle with a small radius has a large curvature. This inverse relation-
ship is made explicit in the following example.

EXAMPLE 4 Finding the Curvature of a Circle

Show that the curvature of a circle of radius is 

Solution Without loss of generality you can consider the circle to be centered at the
origin. Let be any point on the circle and let be the length of the arc from 
to as shown in Figure 12.34. By letting be the central angle of the circle, you
can represent the circle by

is the parameter.

Using the formula for the length of a circular arc you can rewrite in terms
of the arc length parameter as follows.

Arc length is the parameter.

So, and it follows that which implies that the

unit tangent vector is

and the curvature is given by

at every point on the circle. ■

K � 
T��s�
 � 
 �
1
r
 cos 

s
r
 i �

1
r
 sin 

s
r
 j 
 �

1
r

T�s� �
r��s�


r��s�

� �sin 

s
r
 i � cos 

s
r
 j


r��s�
 � 1,r��s� � �sin 
s
r
 i � cos 

s
r
 j,

sr�s� � r cos 
s
r
 i � r sin 

s
r
 j

r���s � r�,

�r��� � r cos � i � r sin � j.

��x, y�,
�r, 0�s�x, y�

K � 1�r.r

s,T

Q.PQ,P
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NOTE Because a straight line doesn’t curve, you would expect its curvature to be 0. Try
checking this by finding the curvature of the line given by

■r�s� � �3 �
3
5

 s�i �
4
5

 sj.

DEFINITION OF CURVATURE

Let be a smooth curve (in the plane in space) given by where is
the arc length parameter. The curvature at is given by

K � 
 d T
ds 
 � 
T��s�
.

sK
sr�s�,orC

x

P

Q
C

y

Curvature at is greater than at 
Figure 12.32

Q.P

x

P

Q
C

T1

T2 T3

y

The magnitude of the rate of change of
with respect to the arc length is the curvature
of a curve.
Figure 12.33

T

x

1
r

T

(x, y)

K =

(r, 0)

s
θ

r

y

The curvature of a circle is constant.
Figure 12.34
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In Example 4, the curvature was found by applying the definition directly. This
requires that the curve be written in terms of the arc length parameter The following
theorem gives two other formulas for finding the curvature of a curve written in terms
of an arbitrary parameter The proof of this theorem is left as an exercise [see
Exercise 100, parts (a) and (b)].

Because the first formula implies that curvature is the ratio of the
rate of change in the tangent vector to the rate of change in arc length. To see that
this is reasonable, let be a “small number.” Then,

In other words, for a given the greater the length of the more the curve bends
at as shown in Figure 12.35.

EXAMPLE 5 Finding the Curvature of a Space Curve

Find the curvature of the curve given by 

Solution It is not apparent whether this parameter represents arc length, so you
should use the formula 

Length of 

Length of 

Therefore,

Curvature

■

K �

T��t�


r��t�


�
2

�t2 � 2�2.

T��t� �
2

t2 � 2

 �
2�t2 � 2�
�t2 � 2�2

 
T��t�
 �
�16t2 � 16 � 16t2 � 4t4 � 16t2

�t2 � 2�2

 �
�4t i � �4 � 2t2�j � 4tk

�t2 � 2�2

 T��t� �
�t2 � 2��2j � 2tk� � �2t��2i � 2t j � t2k�

�t2 � 2�2

 T�t� �
r��t�


r��t�

�

2i � 2t j � t2k
t2 � 2

r��t� 
r��t�
 � �4 � 4t2 � t4 � t2 � 2

 r��t� � 2i � 2t j � t2k

K � 
T��t�
�
r��t�
.

r�t� � 2t i � t2j �
1
3 t3k.

t,
	T,	s,

T��t�
ds�dt

�

T�t � 	t� � T�t���	t

s�t � 	t� � s�t���	t

�
T�t � 	t� � T�t�
s�t � 	t� � s�t� �

	T
	s

.

	 t
T


r��t�
 � ds�dt,

t.

s.
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THEOREM 12.8 FORMULAS FOR CURVATURE

If is a smooth curve given by then the curvature of at is given by

K �

T��t�


r��t�


�

r��t� 
 r� �t�



r��t�
3 .

tCKr�t�,C

T(t)

T(t)

T(t + Δt)

C

Δs

ΔT

T(t)

ΔT
T(t + Δt)

C

Δs

T(t)

Figure 12.35
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The following theorem presents a formula for calculating the curvature of a plane
curve given by 

Let be a curve with curvature at point The circle passing through point 
with radius is called the circle of curvature if the circle lies on the concave
side of the curve and shares a common tangent line with the curve at point The
radius is called the radius of curvature at and the center of the circle is called the
center of curvature.

The circle of curvature gives you a nice way to estimate graphically the curvature
at a point on a curve. Using a compass, you can sketch a circle that lies against

the concave side of the curve at point as shown in Figure 12.36. If the 
circle has a radius of you can estimate the curvature to be 

EXAMPLE 6 Finding Curvature in Rectangular Coordinates

Find the curvature of the parabola given by at Sketch the circle of
curvature at 

Solution The curvature at is as follows.

Because the curvature at is it follows that the radius of the circle of curva-
ture at that point is 2. So, the center of curvature is as shown in Figure 12.37.
[In the figure, note that the curve has the greatest curvature at Try showing that the
curvature at is ] ■1�25�2 � 0.177.Q�4, 0�

P.
�2, �1�,

1
2,P�2, 1�

K �
1
2

K � �y� �

1 � � y� �2�3�2

y� � �
1
2

y� � �
1
2

y� � 0y� � 1 �
x
2

x � 2

�2, 1�.
x � 2.y � x �

1
4x2

K � 1�r.r,
P,

PK

P,
P.

r � 1�K
PP.KC

y � f�x�.
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x

r = radius of
     curvature

K = 1
r

Center of
curvature

r

P

C

y

The circle of curvature
Figure 12.36

x

−4

−3

−2

−1

1

−1 1 2 3

P(2, 1)

Q(4, 0)

(2, −1)

1
4

y = x − x2

r =      = 21
K

y

The circle of curvature
Figure 12.37

THEOREM 12.9 CURVATURE IN RECTANGULAR COORDINATES

If is the graph of a twice-differentiable function given by then the
curvature at the point is given by

K � �y� �

1 � � y��2�3�2.

�x, y�K
y � f�x�,C

PROOF By representing the curve by (where is the 
parameter), you obtain 

and Because it follows that the curvature is

■ � �y� �

1 � � y��2�3�2.

 � � f � �x��
�1 � 
 f��x��2�3�2

K �

r��x� 
 r� �x�



r��x�
3

r��x� 
 r� �x� � f � �x�k,r� �x� � f � �x�j.


r��x�
 � �1 � 
 f��x��2

r��x� � i � f��x�j,
xr�x� � xi � f�x�j � 0kC
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Arc length and curvature are closely related to the tangential and normal components
of acceleration. The tangential component of acceleration is the rate of change of the
speed, which in turn is the rate of change of the arc length. This component is 
negative as a moving object slows down and positive as it speeds up—regardless of
whether the object is turning or traveling in a straight line. So, the tangential 
component is solely a function of the arc length and is independent of the curvature.

On the other hand, the normal component of acceleration is a function of both
speed and curvature. This component measures the acceleration acting perpendicular
to the direction of motion. To see why the normal component is affected by both speed
and curvature, imagine that you are driving a car around a turn, as shown in Figure
12.38. If your speed is high and the turn is sharp, you feel yourself thrown against the
car door. By lowering your speed taking a more gentle turn, you are able to lessen
this sideways thrust.

The next theorem explicitly states the relationships among speed, curvature, and
the components of acceleration.

EXAMPLE 7 Tangential and Normal Components of Acceleration

Find and for the curve given by 

Solution From Example 5, you know that

and

Therefore,

Tangential component

and

Normal component ■aN � K�ds
dt�

2

�
2

�t2 � 2�2 �t2 � 2�2 � 2.

aT �
d2s
dt2 � 2t

K �
2

�t2 � 2�2
.ds

dt
� 
r��t�
 � t2 � 2

r�t� � 2t i � t2j �
1
3 t3k.

aNaT

or
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PROOF For the position vector you have

■ �
d2s
dt2 T � K�ds

dt�
2

N.

 �
d2s
dt2 T �

ds
dt

 �
v
K�N

 � Dt

v
�T � 
v
 
T� 
N
 a�t� � aTT � aNN

r�t�,

THEOREM 12.10 ACCELERATION, SPEED, AND CURVATURE

If is the position vector for a smooth curve then the acceleration vector
is given by

where is the curvature of and is the speed.ds�dtCK

a�t� �
d2s
dt2 T � K�ds

dt�
2

 N

C,r�t�NOTE Note that Theorem 12.10 gives
additional formulas for and aN.aT

The amount of thrust felt by passengers in a
car that is turning depends on two things—
the speed of the car and the sharpness of
the turn.
Figure 12.38
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Application
There are many applications in physics and engineering dynamics that involve
the relationships among speed, arc length, curvature, and acceleration. One such
application concerns frictional force.

A moving object with mass is in contact with a stationary object. The total
force required to produce an acceleration along a given path is

The portion of this total force that is supplied by the stationary object is called the
force of friction. For example, if a car moving with constant speed is rounding a turn,
the roadway exerts a frictional force that keeps the car from sliding off the road. If the
car is not sliding, the frictional force is perpendicular to the direction of motion and
has magnitude equal to the normal component of acceleration, as shown in Figure
12.39. The potential frictional force of a road around a turn can be increased by
banking the roadway.

The force of friction is perpendicular to the direction of motion.
Figure 12.39

EXAMPLE 8 Frictional Force

A 360-kilogram go-cart is driven at a speed of 60 kilometers per hour around a
circular racetrack of radius 12 meters, as shown in Figure 12.40. To keep the cart from
skidding off course, what frictional force must the track surface exert on the tires?

Solution The frictional force must equal the mass times the normal component of
acceleration. For this circular path, you know that the curvature is

Curvature of circular racetrack

Therefore, the frictional force is

■ � 8333 �kg��m��sec2.

 � �360 kg�� 1
12 m��60,000 m

3600 sec �
2

 maN � mK�ds
dt�

2

K �
1

12
.

Force of
friction

 � maTT � maNN.

 F � ma � m�d2s
dt2�T � mK�ds

dt�
2

N

a
m
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12 m

60 km/h

Figure 12.40
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12.5 Arc Length and Curvature 877

In Exercises 1–6, sketch the plane curve and find its length over
the given interval.

1. 2.

3. 4.

5.

6.

7. Projectile Motion A baseball is hit 3 feet above the ground at
100 feet per second and at an angle of with respect to the
ground.

(a) Find the vector-valued function for the path of the baseball.

(b) Find the maximum height.

(c) Find the range.

(d) Find the arc length of the trajectory.

8. Projectile Motion An object is launched from ground level.
Determine the angle of the launch to obtain (a) the maximum
height, (b) the maximum range, and (c) the maximum length of
the trajectory. For part (c), let feet per second.

In Exercises 9–14, sketch the space curve and find its length
over the given interval.

9.

10.

11.

12.

13.

14. �0, 
�

2�r�t� � �cos t � t sin t, sin t � t cos t, t 2�


0, 2��r�t� � a cos t i � a sin t j � bt k


0, ��r�t� � �2 sin t, 5t, 2 cos t�

�0, 
3�

2 �r�t� � �4t, �cos t, sin t�


0, 2�r�t� � i � t2j � t3k


0, 1�r�t� � �t i � 4t j � 3t k

IntervalFunction                                                   

v0 � 96

45�


0, 2��r�t� � a cos t i � a sin t j,


0, 2��r�t� � a cos3 t i � a sin3 t j,


0, 6�r�t� � �t � 1�i � t2 j,
0, 1�r�t� � t3 i � t2j,


0, 4�r�t� � t i � t 2j,
0, 3�r�t� � 3ti � tj,

12.5 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

SUMMARY OF VELOCITY, ACCELERATION, AND CURVATURE

Let be a curve (in the plane or in space) given by the position function

Curve in the plane

Curve in space

Velocity vector

Speed

Acceleration vector

and

given by 

given by 

is arc length parameter.

is general parameter.

Cross product formulas apply only to curves in space.

K �
a�t� 
 N�t�


v�t�
2

tK �

T��t�


r��t�


�

r��t� 
 r� �t�



r��t�
3

sK � 
T��s�
 � 
r��s�


x � x�t�, y � y�t�CK � �x�y� � y�x� �

�x� �2 � � y� �2�3�2

y � f �x�CK � �y� �

1 � � y� �2�3�2

aN � a 
 N �

v 
 a



v

� �
a
2 � aT

2 � K�ds
dt�

2

aT � a 
 T �
v 
 a

v


�
d2s
dt2

N�t� �
T��t�


T��t�

T�t� �

r��t�

r��t�


a�t� � r� �t� � aTT�t� � aNN�t�


v�t�
 �
ds
dt

� 
r��t�


v�t� � r��t�

r�t� � x�t�i � y�t�j � z�t�k.

r�t� � x�t�i � y�t�j

C

Velocity vector, speed, and
acceleration vector:

Unit tangent vector and principal
unit normal vector:

Components of acceleration:

Formulas for curvature in the
plane:

Formulas for curvature in the
plane or in space:
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In Exercises 15 and 16, use the integration capabilities of a
graphing utility to approximate the length of the space curve
over the given interval.

15.

16.

17. Investigation Consider the graph of the vector-valued
function on the interval 

(a) Approximate the length of the curve by finding the length
of the line segment connecting its endpoints.

(b) Approximate the length of the curve by summing the
lengths of the line segments connecting the terminal points
of the vectors and 

(c) Describe how you could obtain a more accurate approxima-
tion by continuing the processes in parts (a) and (b).

(d) Use the integration capabilities of a graphing utility to
approximate the length of the curve. Compare this result
with the answers in parts (a) and (b).

18. Investigation Repeat Exercise 17 for the vector-valued
function 

19. Investigation Consider the helix represented by the vector-
valued function 

(a) Write the length of the arc on the helix as a function of 
by evaluating the integral

(b) Solve for in the relationship derived in part (a), and 
substitute the result into the original set of parametric
equations. This yields a parametrization of the curve in
terms of the arc length parameter 

(c) Find the coordinates of the point on the helix for arc lengths
and 

(d) Verify that 

20. Investigation Repeat Exercise 19 for the curve represented by
the vector-valued function

In Exercises 21–24, find the curvature of the curve, where s is
the arc length parameter.

21.

22.

23. Helix in Exercise 19:

24. Curve in Exercise 20:

In Exercises 25–30, find the curvature of the plane curve at
the given value of the parameter.

25.

26.

27.

28.

29.

30.

In Exercises 31–40, find the curvature of the curve.

31.

32.

33.

34.

35.

36.

37. 38.

39.

40.

In Exercises 41– 44, find the curvature of the curve at the
point 

41.

42.

43.

44.

In Exercises 45–54, find the curvature and radius of curvature
of the plane curve at the given value of 

45. 46.

47. 48.

49. 50.

51. 52.

53. 54.

Writing In Exercises 55 and 56, two circles of curvature to the
graph of the function are given. (a) Find the equation of the
smaller circle, and (b) write a short paragraph explaining why
the circles have different radii.

55. 56.

x
2

4

4

6

6 8

−4

−6

(3, 3)

(0, 0)

y

x

2

3
4

−2

−3

π

))π
3

3− , −

) )π
2

, 1

2

y

f �x� � 4x2��x2 � 3�f �x� � sin x

n � 2x � 1,y � xn,x � 2y � x3,

x � 0y �
3
4 �16 � x2,x � 0y � �a2 � x2,

x � 0y � e3x,x � 2�y � cos 2x,

x � 1y � 2x �
4
x
,x � �1y � 2x2 � 3,

x � ay � mx � b,x � ay � 3x � 2,

x.

P�1, 0, 1�r�t� � et cos ti � et sin tj � et k,

P�2, 4, 2�r�t� � ti � t2j �
t3

4
 k,

P�1, 0�r�t� � et i � 4tj,

P��3, 2�r�t� � 3ti � 2t2j,

P.
K

r�t� � e2t i � e2t cos t j � e2t sin tk

r�t� � 4t i � 3 cos t j � 3 sin t k

r�t� � 2t2 i � tj �
1
2

t2kr�t� � t i � t 2 j �
t2

2
 k

r�t� � �cos �t � �t sin �t, sin �t � �t cos �t�
r�t� � �a��t � sin �t�, a�1 � cos �t��
r�t� � a cos � t i � b sin � t j

r�t� � a cos � t i � a sin � t j

r�t� � 2 cos � t i � sin � t j

r�t� � 4 cos 2� t i � 4 sin 2� t j

K

t �
�

3
r�t� � �5 cos t, 4 sin t�,

t �
�

2
r�t� � �t, sin t�,

t � 2r�t� � t i �
1
9

 t3 j,

t � 1r�t� � t i �
1
t
 j,

t � 2r�t� � t2i � j,

t � 1r�t� � 4t i � 2t j,

K

3
2 t2�4�cos t � t sin t�,r�t� � �4�sin t � t cos t�,

r�t� � �2 cos t, 2 sin t, t�
r�s� � �3 � s�i � j

r�s� � �1 �
�2
2

 s�i � �1 �
�2
2

 s�j

K

r�t� � �4�sin t � t cos t�, 4�cos t � t sin t�, 32 t2�.


r��s�
 � 1.

s � 4.s � �5

s.

t

s � 	t

0
 �
x��u��2 � 
 y��u��2 � 
z��u��2 du.

ts

r�t� � �2 cos t, 2 sin t, t�.

r�t� � 6 cos�� t�4�i � 2 sin�� t�4�j � tk.

r�2�.r�1.5�,r�1�,r�0.5�,r�0�,


0, 2�.r�t� � t i � �4 � t 2�j � t3 k

0 � t � 2r�t� � sin � t i � cos � t j � t 3 k

1 � t � 3r�t� � t 2 i � t j � ln tk

Interval     Function                                      
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In Exercises 57–60, use a graphing utility to graph the function.
In the same viewing window, graph the circle of curvature to the
graph at the given value of 

57. 58.

59. 60.

Evolute An evolute is the curve formed by the set of centers of
curvature of a curve. In Exercises 61 and 62, a curve and its
evolute are given. Use a compass to sketch the circles of curvature
with centers at points and To print an enlarged copy of the
graph, go to the website www.mathgraphs.com.

61. Cycloid:

Evolute:

62. Ellipse:

Evolute:

In Exercises 63–70, (a) find the point on the curve at which the
curvature is a maximum and (b) find the limit of as 

63. 64.

65. 66.

67. 68.

69. 70.

In Exercises 71–74, find all points on the graph of the function
such that the curvature is zero.

71. 72.

73. 74.

79. Show that the curvature is greatest at the endpoints of the major
axis, and is least at the endpoints of the minor axis, for the
ellipse given by 

80. Investigation Find all and such that the two curves given
by

and

intersect at only one point and have a common tangent line and
equal curvature at that point. Sketch a graph for each set of 
values of and 

81. Investigation Consider the function 

(a) Use a computer algebra system to find the curvature of
the curve as a function of 

(b) Use the result of part (a) to find the circles of curvature to
the graph of when and Use a computer 
algebra system to graph the function and the two circles of
curvature.

(c) Graph the function and compare it with the graph of
For example, do the extrema of and occur at the

same critical numbers? Explain your reasoning.

82. Investigation The surface of a goblet is formed by revolving
the graph of the function

about the axis. The measurements are given in centimeters.

(a) Use a computer algebra system to graph the surface.

(b) Find the volume of the goblet.

(c) Find the curvature of the generating curve as a function
of Use a graphing utility to graph 

(d) If a spherical object is dropped into the goblet, is it possible
for it to touch the bottom? Explain.

83. A sphere of radius 4 is dropped into the paraboloid given by

(a) How close will the sphere come to the vertex of the 
paraboloid?

(b) What is the radius of the largest sphere that will touch the
vertex?

z � x2 � y2.

K.x.
K

y-

0 � x � 5y �
1
4 x8�5,

Kff �x�.
K�x�

x � 1.x � 0f

x.
K

f �x� � x 4 � x2.

b.a

y2 �
x

x � 2
y1 � ax�b � x�

ba

x2 � 4y 2 � 4.

y � sin xy � cos x

y � �x � 1�3 � 3y � 1 � x3

y � cosh xy � sinh x

y � exy � ln x

y �
1
x

y � x 2�3

y � x3y � �x � 1�2 � 3

x →�.KK

y �
5
2 sin3 t

x �
5
3 cos3 t

y � 2 sin t

x
ππ

π

π−

− A

B

yx � 3 cos t

y � cos t � 1

x � sin t � t

y � 1 � cos t

x
π

π

π

−
A

B

yx � t � sin t

B.A

x � 1y �
1
3 x3,x � 0y � ex,

x � 1y � ln x,x � 1y � x �
1
x
,

x.

12.5 Arc Length and Curvature 879

75. (a) Give the formula for the arc length of a smooth curve in
space.

(b) Give the formulas for curvature in the plane and in
space.

76. Describe the graph of a vector-valued function for which
the curvature is 0 for all values of in its domain.t

WRITING ABOUT CONCEPTS

78. A particle moves along the plane curve described by

(a) Find the length of on the interval 

(b) Find the curvature of the plane curve at 
and 

(c) Describe the curvature of as changes from to
t � 2.

t � 0tC

t � 2.
t � 1,t � 0,K

0 � t � 2.C

r�t) � ti � t2j.
C

CAPSTONE

77. Given a twice-differentiable function , determine its
curvature at a relative extremum. Can the curvature ever be
greater than it is at a relative extremum? Why or why not?

y � f �x�
WRITING ABOUT CONCEPTS (cont inued)

CAS
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84. Speed The smaller the curvature of a bend in a road, the faster
a car can travel. Assume that the maximum speed around a turn
is inversely proportional to the square root of the curvature.
A car moving on the path ( and are measured in

miles) can safely go 30 miles per hour at How fast can it
go at 

85. Let be a curve given by Let be the curvature
at the point and let

Show that the coordinates of the center of curvature at 
are 

86. Use the result of Exercise 85 to find the center of curvature for
the curve at the given point.

(a) (b) (c)

87. A curve is given by the polar equation Show that
the curvature at the point is

Hint: Represent the curve by 

88. Use the result of Exercise 87 to find the curvature of each polar
curve.

(a) (b) (c) (d)

89. Given the polar curve find the curvature and
determine the limit of as (a) and (b) 

90. Show that the formula for the curvature of a polar curve
given in Exercise 87 reduces to for the

curvature at the pole.

In Exercises 91 and 92, use the result of Exercise 90 to find the
curvature of the rose curve at the pole.

91. 92.

93. For a smooth curve given by the parametric equations 
and prove that the curvature is given by

94. Use the result of Exercise 93 to find the curvature of the
curve represented by the parametric equations and

Use a graphing utility to graph and determine any
horizontal asymptotes. Interpret the asymptotes in the context
of the problem.

95. Use the result of Exercise 93 to find the curvature of the
cycloid represented by the parametric equations

and

What are the minimum and maximum values of 

96. Use Theorem 12.10 to find and for each curve given by
the vector-valued function.

(a) (b)

97. Frictional Force A 5500-pound vehicle is driven at a speed
of 30 miles per hour on a circular interchange of radius 
100 feet. To keep the vehicle from skidding off course, what
frictional force must the road surface exert on the tires?

98. Frictional Force A 6400-pound vehicle is driven at a speed
of 35 miles per hour on a circular interchange of radius 
250 feet. To keep the vehicle from skidding off course, what
frictional force must the road surface exert on the tires?

99. Verify that the curvature at any point on the graph of
is 

100. Use the definition of curvature in space,
to verify each formula.

(a)

(b)

(c)

True or False? In Exercises 101–104, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

101. The arc length of a space curve depends on the parametrization.

102. The curvature of a circle is the same as its radius.

103. The curvature of a line is 0.

104. The normal component of acceleration is a function of both
speed and curvature.

Kepler’s Laws In Exercises 105–112, you are asked to verify
Kepler’s Laws of Planetary Motion. For these exercises, assume
that each planet moves in an orbit given by the vector-valued
function Let let represent the universal gravita-
tional constant, let represent the mass of the sun, and let 
represent the mass of the planet.

105. Prove that 

106. Using Newton’s Second Law of Motion, and
Newton’s Second Law of Gravitation,
show that and are parallel, and that is a
constant vector. So, moves in a fixed plane, orthogonal to 

107. Prove that 

108. Show that is a constant vector.

109. Prove Kepler’s First Law: Each planet moves in an elliptical
orbit with the sun as a focus.

110. Assume that the elliptical orbit is in the
plane, with along the axis. Prove that 

111. Prove Kepler’s Second Law: Each ray from the sun to a planet
sweeps out equal areas of the ellipse in equal times.

112. Prove Kepler’s Third Law: The square of the period of a 
planet’s orbit is proportional to the cube of the mean distance
between the planet and the sun.
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2
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1
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.
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In Exercises 1–4, (a) find the domain of and (b) determine the
values (if any) of for which the function is continuous.

1. 2.

3. 4.

In Exercises 5 and 6, evaluate (if possible) the vector-valued
function at each given value of 

5.

(a) (b) (c) (d)

6.

(a) (b) (c) (d)

In Exercises 7 and 8, sketch the plane curve represented by the
vector-valued function and give the orientation of the curve.

7. 8.

In Exercises 9–14, use a computer algebra system to graph the
space curve represented by the vector-valued function.

9. 10.

11. 12.

13. 14.

In Exercises 15 and 16, find vector-valued functions forming the
boundaries of the region in the figure.

15. 16.

17. A particle moves on a straight-line path that passes through the
points and Find a vector-valued
function for the path. (There are many correct answers.)

18. The outer edge of a spiral staircase is in the shape of a helix of
radius 2 meters. The staircase has a height of 2 meters and is
three-fourths of one complete revolution from bottom to top.
Find a vector-valued function for the helix. (There are many
correct answers.)

In Exercises 19 and 20, sketch the space curve represented by
the intersection of the surfaces. Use the parameter to find
a vector-valued function for the space curve.

19.

20.

In Exercises 21 and 22, evaluate the limit.

21. 22.

In Exercises 23 and 24, find the following.

(a) (b) (c)

(d) (e) (f)

23.

24.

25. Writing The and components of the derivative of the
vector-valued function are positive at and the 

component is negative. Describe the behavior of at 

26. Writing The component of the derivative of the vector-
valued function is 0 for in the domain of the function. What
does this information imply about the graph of 

In Exercises 27–30, find the indefinite integral.

27. 28.

29.

30.

In Exercises 31–34, evaluate the definite integral.

31. 32.

33. 34.

In Exercises 35 and 36, find for the given conditions.

35.

36.

In Exercises 37– 40, the position vector describes the path 
of an object moving in space. Find the velocity, speed, and 
acceleration of the object.

37. 38.

39. 40.

Linear Approximation In Exercises 41 and 42, find a set of
parametric equations for the tangent line to the graph of the
vector-valued function at Use the equations for the line to
approximate 

41.

42. t0 � 0r�t� � 3 cosh t i � sinh t j � 2t k,

t0 � 4r�t� � ln�t � 3�i � t 2 j �
1
2t k,

r�t0 1 0.1�.
t � t0.

r�t� � �t, �tan t, et �r�t� � �cos3 t, sin3 t, 3t�
r�t� � �t i � 5tj � 2t2kr�t� � 4ti � t3j � tk

r

r�0� � 3kr��t� � sec t i � tan t j � t 2 k,

r�0� � i � 3j � 5kr��t� � 2t i � et j � e�t k,

r�t�

	1

�1
�t3i � arcsin tj � t2k� dt	2

0
�et
2 i � 3t2j � k� dt

	1

0
 ��t j � t sin tk� dt	2

�2
 �3t i � 2t 2 j � t 3 k� dt

	 �t j � t 2 k� � �i � t j � t k� dt

	 �cos t i � sin t j � t k� dt

	 �ln t i � t ln t j � k� dt	 �cos t i � t cos t j� dt

u?
tu

x-
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1
t
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Projectile Motion In Exercises 43– 46, use the model for
projectile motion, assuming there is no air resistance.

feet per second per second or meters
per second per second.

43. A projectile is fired from ground level with an initial velocity of
84 feet per second at an angle of with the horizontal. Find
the range of the projectile.

44. The center of a truck bed is 6 feet below and 4 feet horizontally
from the end of a horizontal conveyor that is discharging 
gravel (see figure). Determine the speed at which the
conveyor belt should be moving so that the gravel falls onto the
center of the truck bed.

45. A projectile is fired from ground level at an angle of with
the horizontal. The projectile has a range of 95 meters. Find the
minimum initial velocity.

46. Use a graphing utility to graph the paths of a projectile 
for meters per second, and (a) 
(b) and (c) Use the graphs to approximate
the maximum height and range of the projectile for each case.

In Exercises 47–54, find the velocity, speed, and acceleration at
time Then find and at time 

47. 48.

49. 50.

51.

52.

53.

54.

In Exercises 55 and 56, find a set of parametric equations for
the line tangent to the space curve at the given value of the
parameter.

55.

56.

57. Satellite Orbit Find the speed necessary for a satellite to
maintain a circular orbit 550 miles above the surface of Earth.

58. Centripetal Force An automobile in a circular traffic
exchange is traveling at twice the posted speed. By what factor
is the centripetal force increased over that which would occur
at the posted speed?

In Exercises 59–62, sketch the plane curve and find its length
over the given interval.

59.

60.

61.

62.

In Exercises 63–66, sketch the space curve and find its length
over the given interval.

63.

64.

65.

66.

In Exercises 67–70, find the curvature of the curve.

67. 68.

69.

70.

In Exercises 71 and 72, find the curvature of the curve at
point 

71.

72.

In Exercises 73–76, find the curvature and radius of curvature
of the plane curve at the given value of 

73. 74.

75. 76.

77. Writing A civil engineer designs a highway as shown in the
figure. is an arc of the circle. and are straight lines
tangent to the circular arc. Criticize the design.

Figure for 77 Figure for 78

78. A line segment extends horizontally to the left from the point
and another line segment extends horizontally to the

right from the point as shown in the figure. Find a curve
of the form

that connects the points and so that the slope
and curvature of the curve are zero at the endpoints.

�1, 1���1, �1�
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1. The cornu spiral is given by

and

The spiral shown in the figure was plotted over the interval

(a) Find the arc length of this curve from to 

(b) Find the curvature of the graph when 

(c) The cornu spiral was discovered by James Bernoulli. He
found that the spiral has an amazing relationship between
curvature and arc length. What is this relationship?

2. Let be the tangent line at the point to the graph of the
curve as shown in the figure. Show
that the radius of curvature at is three times the distance from
the origin to the tangent line 

3. A bomber is flying horizontally at an altitude of 3200 feet with
a velocity of 400 feet per second when it releases a bomb. A
projectile is launched 5 seconds later from a cannon at a site 
facing the bomber and 5000 feet from the point that was directly
beneath the bomber when the bomb was released, as shown in
the figure. The projectile is to intercept the bomb at an altitude
of 1600 feet. Determine the required initial speed and angle of
inclination of the projectile. (Ignore air resistance.)

4. Repeat Exercise 3 for the case in which the bomber is facing
away from the launch site, as shown in the figure.

5. Consider one arch of the cycloid

as shown in the figure. Let be the arc length from the
highest point on the arch to the point and let

be the radius of curvature at the point 

Show that and are related by the equation 
(This equation is called a natural equation for the curve.)

6. Consider the cardioid as shown in
the figure. Let be the arc length from the point on the 

cardioid to the point and let be the radius of

curvature at the point Show that and are related by
the equation (This equation is called a natural
equation for the curve.)

7. If is a nonzero differentiable function of prove that 

d
dt
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t,r�t�

π
2

0
(2,   )π

(r,   )θ

1

s2 � 9
2 � 16.

s�r, ��.


��� �
1
K

�r, ��,

�2, 	�s���
0 � � � 2	,r � 1 � cos �,

x
π π2

(x(  ), y(  ))θ θ

y

s2 � 
2 � 16.
s

�x���, y����.
��� �
1
K

�x���, y����,
s���

0 � � � 2	r��� � �� � sin ��i � �1 � cos ��j,

x
5000

4000

1600

3200

θ
Cannon

Projectile

Bomb

y

x
5000

4000

1600

3200

θ

Cannon

Projectile

Bomb

y

x

−a

a

−a a

P(x, y)

T

y

T.
P

a > 0,x2
3 � y2
3 � a2
3,
P�x, y�T

t � a.

t � a.t � 0

Generated by Mathematica

�	 � t � 	.

y�t� � 	t

0
 sin�	u2

2 
 du.x�t� � 	t

0
 cos�	u2

2 
 du

P.S. Problem Solving 883

P.S. PROBLEM SOLVING

1053714_120R.qxp  10/27/08  11:51 AM  Page 883



8. A communications satellite moves in a circular orbit around
Earth at a distance of 42,000 kilometers from the center of
Earth. The angular velocity 

radian per hour 

is constant.

(a) Use polar coordinates to show that the acceleration vector
is given by 

where is the unit vector in the radial
direction and 

(b) Find the radial and angular components of acceleration for
the satellite.

In Exercises 9–11, use the binormal vector defined by the
equation 

9. Find the unit tangent, unit normal, and binormal vectors for the 

helix at Sketch the

helix together with these three mutually orthogonal unit
vectors.

10. Find the unit tangent, unit normal, and binormal vectors for the

curve at Sketch the curve

together with these three mutually orthogonal unit vectors.

11. (a) Prove that there exists a scalar called the torsion, such
that

(b) Prove that 

(The three equations 
and are called the Frenet-Serret formulas.)

12. A highway has an exit ramp that begins at the origin of a
coordinate system and follows the curve to the point

(see figure). Then it follows a circular path whose
curvature is that given by the curve at What is the radius
of the circular arc? Explain why the curve and the circular arc
should have the same curvature at 

13. Consider the vector-valued function 

(a) Use a graphing utility to graph the function.

(b) Find the length of the arc in part (a).

(c) Find the curvature as a function of Find the curvatures
for -values of 0, 1, and 2.

(d) Use a graphing utility to graph the function 

(e) Find (if possible) 

(f ) Using the result of part (e), make a conjecture about the
graph of as 

14. You want to toss an object to a friend who is riding a Ferris
wheel (see figure). The following parametric equations give the
path of the friend and the path of the object Distance
is measured in meters and time is measured in seconds.

(a) Locate your friend’s position on the Ferris wheel at time

(b) Determine the number of revolutions per minute of the
Ferris wheel.

(c) What are the speed and angle of inclination (in degrees) at
which the object is thrown at time 

(d) Use a graphing utility to graph the vector-valued functions
using a value of that allows your friend to be within reach
of the object. (Do this by trial and error.) Explain the
significance of 

(e) Find the approximate time your friend should be able to
catch the object. Approximate the speeds of your friend and
the object at that time.

t0.

t0

t � t0?

t � 0.

 �1 � 11.47�t � t0� � 4.9�t � t0�2� j

 r2�t� � �22 � 8.03�t � t0�� i �

r1�t� � 15�sin 
	 t
10
 i � �16 � 15 cos 

	 t
10
 j

r2�t�.r1�t�

t →�.r

lim
t→�

 K.

K.

t
t.K

0 � t � 2.
�t cos 	 t, t sin 	 t�,r�t� �

x
2

2

4

4

6

(4, 1)

y =     x5/21
32

Circular
arc

y

�4, 1�.

�4, 1�.
�4, 1�

y �
1
32 x5
2

dB
ds � ��N
dN
ds � �K T � �B,dT
ds � K N,

dN
ds

� �K T � �B.

dB
ds � ��N.
�,

t �
	

4
.r�t� � cos ti � sin tj � k

t �
	

2
.r�t� � 4 cos ti � 4 sin tj � 3tk

B � T � N.

u� � �sin � i � cos �j.
ur � cos �i � sin �j

a �
d2r
dt2 � �d2r

dt2 � r�d�

dt 

2

�ur � �r
d2�

dt2 � 2
dr
dt

 
d�

dt�u�

d�

dt
� � �

	

12
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885885

13 Functions of Several
Variables

Many real-life quantities are functions of two or more variables. In Section 13.1, you will learn how to graph a function
of two variables, like the one shown above. The first three graphs show cut-away views of the surface at various
traces. Another way to visualize this surface is to project the traces onto the xy-plane, as shown in the fourth graph.

x

y

z

x

y

z

x

y

z

x

y

NOAA

In this chapter, you will study functions of
more than one independent variable. Many
of the concepts presented are extensions of
familiar ideas from earlier chapters.

In this chapter, you should learn the 
following.

■ How to sketch a graph, level curves,
and level surfaces. (13.1)

■ How to find a limit and determine 
continuity. (13.2)

■ How to find and use a partial derivative.
(13.3)

■ How to find and use a total differential
and determine differentiability. (13.4)

■ How to use the Chain Rules and find a
partial derivative implicitly. (13.5)

■ How to find and use a directional 
derivative and a gradient. (13.6)

■ How to find an equation of a tangent
plane and an equation of a normal line 
to a surface, and how to find the angle 
of inclination of a plane. (13.7)

■ How to find absolute and relative 
extrema. (13.8)

■ How to solve an optimization problem,
including constrained optimization using 
a Lagrange multiplier, and how to use the
method of least squares. (13.9, 13.10)

Meteorologists use maps that show curves of equal atmospheric pressure, called
isobars, to predict weather patterns. How can you use pressure gradients to 
determine the area of the country that has the greatest wind speed? (See Section
13.6, Exercise 68.)

■

■
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■ Understand the notation for a function of several variables.
■ Sketch the graph of a function of two variables.
■ Sketch level curves for a function of two variables.
■ Sketch level surfaces for a function of three variables.
■ Use computer graphics to graph a function of two variables.

Functions of Several Variables
So far in this text, you have dealt only with functions of a single (independent) 
variable. Many familiar quantities, however, are functions of two or more variables. For
instance, the work done by a force and the volume of a right circular cylinder

are both functions of two variables. The volume of a rectangular solid
is a function of three variables. The notation for a function of two or more

variables is similar to that for a function of a single variable. Here are two examples.

Function of two variables

2 variables

and

Function of three variables

3 variables

For the function given by and are called the independent
variables and is called the dependent variable.

Similar definitions can be given for functions of three, four, or variables, where
the domains consist of ordered triples quadruples and

tuples In all cases, the range is a set of real numbers. In this
chapter, you will study only functions of two or three variables.

As with functions of one variable, the most common way to describe a function
of several variables is with an equation, and unless otherwise restricted, you can
assume that the domain is the set of all points for which the equation is defined.
For instance, the domain of the function given by

is assumed to be the entire -plane. Similarly, the domain of

is the set of all points in the plane for which This consists of all points
in the first and third quadrants.

xy > 0.�x, y�

f �x, y� � ln xy

xy

f �x, y� � x2 � y2

�x1, x2, .  .  . , xn�.n-
�x1, x2, x3, x4�,�x1, x2, x3�,
n

z
yxz � f �x, y�,

w � f �x, y, z� � x � 2y � 3z

z � f �x, y� � x2 � xy

�V � lwh�
�V � � r2h�

�W � FD�
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13.1 Introduction to Functions of Several Variables

E X P L O R A T I O N

Comparing Dimensions
Without using a graphing utility,
describe the graph of each function
of two variables.

a.

b.

c.

d.

e. z � �1 � x2 � y2

z � �x2 � y2

z � x2 � y

z � x � y

z � x2 � y2

MARY FAIRFAX SOMERVILLE (1780–1872)

Somerville was interested in the problem of
creating geometric models for functions of
several variables. Her most well-known book,
The Mechanics of the Heavens, was published
in 1831.

A
rc

hi
ve

 P
ho

to
s

DEFINITION OF A FUNCTION OF TWO VARIABLES

Let be a set of ordered pairs of real numbers. If to each ordered pair 
in there corresponds a unique real number then is called a function
of x and y. The set is the domain of and the corresponding set of values
for is the range of f.f �x, y�

f,D
ff �x, y�,D

�x, y�D
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EXAMPLE 1 Domains of Functions of Several Variables

Find the domain of each function.

a. b.

Solution

a. The function is defined for all points such that and

So, the domain is the set of all points lying on or outside the circle 
except those points on the axis, as shown in Figure 13.1.

b. The function is defined for all points such that

Consequently, the domain is the set of all points lying inside a sphere of
radius 3 that is centered at the origin. ■

Functions of several variables can be combined in the same ways as functions of
single variables. For instance, you can form the sum, difference, product, and quotient
of two functions of two variables as follows.

You cannot form the composite of two functions of several variables. However, if is
a function of several variables and is a function of a single variable, you can form
the composite function as follows.

The domain of this composite function consists of all in the domain of such
that is in the domain of For example, the function given by

can be viewed as the composite of the function of two variables given by 
and the function of a single variable given by The domain

of this function is the set of all points lying on or inside the ellipse given by

A function that can be written as a sum of functions of the form (where 
is a real number and and are nonnegative integers) is called a polynomial
function of two variables. For instance, the functions given by

and

are polynomial functions of two variables. A rational function is the quotient of two
polynomial functions. Similar terminology is used for functions of more than two
variables.

g�x, y� � 3xy2 � x � 2f �x, y� � x2 � y2 � 2xy � x � 2

nm
ccxmyn

4x2 � y2 � 16.

g�u� � �u.16 � 4x2 � y2
h �x, y� �

f �x, y� � �16 � 4x2 � y2

g.h �x, y�
h�x, y�

�g � h��x, y�
g

h

�x, y, z�

x2 � y2 � z2 < 9.

�x, y, z�g

y-
x2 � y2 � 9,

x2 � y2 � 9.

x � 0�x, y�f

g�x, y, z� �
x

�9 � x2 � y2 � z2f �x, y� �
�x2 � y2 � 9

x
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y

x2 + y2 − 9
x

f(x, y) =

Domain of

x
1

1

2

2

4

4

−1
−1

−2

−2

−4

−4

Figure 13.1

Composition�g � h��x, y� � g�h�x, y��

Sum or difference

Product

Quotient 
f
g

�x, y� �
f �x, y�
g�x, y�,  g�x, y� � 0

 � f g� �x, y� � f �x, y�g�x, y�
 � f ± g��x, y� � f �x, y� ± g�x, y�
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The Graph of a Function of Two Variables
As with functions of a single variable, you can learn a lot about the behavior of a
function of two variables by sketching its graph. The graph of a function of two 
variables is the set of all points for which and is in the
domain of This graph can be interpreted geometrically as a surface in space, as
discussed in Sections 11.5 and 11.6. In Figure 13.2, note that the graph of 
is a surface whose projection onto the plane is the domain of To each point

in there corresponds a point on the surface, and, conversely, to each
point on the surface there corresponds a point in 

EXAMPLE 2 Describing the Graph of a Function of Two Variables

What is the range of Describe the graph of 

Solution The domain implied by the equation of is the set of all points 
such that So, is the set of all points lying on or inside the
ellipse given by

Ellipse in the plane

The range of is all values such that or

Range of 

A point is on the graph of if and only if

From Section 11.6, you know that the graph of is the upper half of an ellipsoid, as
shown in Figure 13.3. ■

To sketch a surface in space by hand, it helps to use traces in planes parallel to
the coordinate planes, as shown in Figure 13.3. For example, to find the trace of the
surface in the plane substitute in the equation and
obtain

So, the trace is an ellipse centered at the point with major and minor axes of
lengths and 

Traces are also used with most three-dimensional graphing utilities. For instance,
Figure 13.4 shows a computer-generated version of the surface given in Example 2.
For this graph, the computer took 25 traces parallel to the plane and 12 traces in
vertical planes.

If you have access to a three-dimensional graphing utility, use it to graph several
surfaces.

xy-

2�3.4�3
�0, 0, 2�

x2

3
�

y2

12
� 1.2 � �16 � 4x2 � y2

z � �16 � 4x2 � y2z � 2z � 2,

f

 
x2

4
�

y2

16
�

z2

16
� 1,    0 	 z 	 4.

 4x2 � y2 � z2 � 16

 z2 � 16 � 4x2 � y2

 z � �16 � 4x2 � y2

f�x, y, z�

f0 	 z 	 4.

0 	 z 	 �16z � f �x, y�f

xy-
x2

4
�

y2

16
� 1.

D16 � 4x2 � y2 � 0.
�x, y�fD

f.f �x, y� � �16 � 4x2 � y2?

D.�x, y��x, y, z�
�x, y, z�D�x, y�

f.D,xy-
z � f �x, y�

f.
�x, y�z � f �x, y��x, y, z�

f
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z

y

x
Domain: D

f(x, y)

(x, y)

(x, y, z)

Surface: z = f(x, y)

Figure 13.2

y

z Trace in
plane z = 2

Domain

Range

3

4

4

x

Surface:  z =     16 − 4x2 − y2

The graph of
is the upper half of an ellipsoid.
Figure 13.3

f �x, y� � �16 � 4x2 � y2

z

yx

z =     16 − 4x2 − y2

Figure 13.4
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Level Curves
A second way to visualize a function of two variables is to use a scalar field in which
the scalar is assigned to the point A scalar field can be characterized
by level curves (or contour lines) along which the value of is constant. For
instance, the weather map in Figure 13.5 shows level curves of equal pressure called
isobars. In weather maps for which the level curves represent points of equal
temperature, the level curves are called isotherms, as shown in Figure 13.6. Another
common use of level curves is in representing electric potential fields. In this type of
map, the level curves are called equipotential lines.

Level curves show the lines of equal pressure Level curves show the lines of equal
(isobars) measured in millibars. temperature (isotherms) measured in 

degrees Fahrenheit.
Figure 13.5 Figure 13.6

Contour maps are commonly used to show regions on Earth’s surface, with the
level curves representing the height above sea level. This type of map is called a
topographic map. For example, the mountain shown in Figure 13.7 is represented by
the topographic map in Figure 13.8.

A contour map depicts the variation of with respect to and by the spacing
between level curves. Much space between level curves indicates that is changing
slowly, whereas little space indicates a rapid change in Furthermore, to produce a
good three-dimensional illusion in a contour map, it is important to choose values
that are evenly spaced.

Figure 13.8
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EXAMPLE 3 Sketching a Contour Map

The hemisphere given by is shown in Figure 13.9. Sketch a
contour map of this surface using level curves corresponding to 

Solution For each value of the equation given by is a circle (or point)
in the plane. For example, when the level curve is

Circle of radius 8

which is a circle of radius 8. Figure 13.10 shows the nine level curves for the
hemisphere.

Hemisphere Contour map
Figure 13.9 Figure 13.10

EXAMPLE 4 Sketching a Contour Map

The hyperbolic paraboloid given by

is shown in Figure 13.11. Sketch a contour map of this surface.

Solution For each value of let and sketch the resulting level curve in
the plane. For this function, each of the level curves is a hyperbola whose
asymptotes are the lines If the transverse axis is horizontal. For
instance, the level curve for is given by

Hyperbola with horizontal transverse axis

If the transverse axis is vertical. For instance, the level curve for is given
by

Hyperbola with vertical transverse axis

If the level curve is the degenerate conic representing the intersecting
asymptotes, as shown in Figure 13.12. ■

c � 0,

y2

22 �
x2

22 � 1.

c � 4c > 0,

x2

22 �
y2

22 � 1.

c � �4
c < 0,y � ±x.

�c � 0�xy-
f �x, y� � cc,

z � y2 � x2

x
4

4

8

8

−4

−4

−8

−8

y
c1 = 0
c2 = 1
c3 = 2
c4 = 3 c8 = 7

c7 = 6
c6 = 5
c5 = 4

c9 = 8

y

z

f (x, y) = 64 − x2 − y2

Surface:

x

8

8

8

x2 � y2 � 64

c1 � 0,xy-
f �x, y� � cc,

c � 0, 1, 2, . . . , 8.
f �x, y� � �64 � x2 � y2
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x
y

Surface:
z = y2 − x2

4 4

10

12

8

6

4

2

z

Hyperbolic paraboloid
Figure 13.11

4

4

−4

−4

x

c = −2
c = −4

c = −8
c = −10

c = −6

c = −12

c = 12
c = 2 y

c = 0

Hyperbolic level curves (at increments of 2)
Figure 13.12

The icon indicates that you will find a CAS Investigation on the book’s website. The CAS
Investigation is a collaborative exploration of this example using the computer algebra systems
Maple and Mathematica.
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One example of a function of two variables used in economics is the Cobb-
Douglas production function. This function is used as a model to represent the
numbers of units produced by varying amounts of labor and capital. If measures the
units of labor and measures the units of capital, the number of units produced is
given by

where and are constants with 

EXAMPLE 5 The Cobb-Douglas Production Function

A toy manufacturer estimates a production function to be where
is the number of units of labor and is the number of units of capital. Compare the

production level when and with the production level when
and 

Solution When and the production level is

When and the production level is

The level curves of are shown in Figure 13.13. Note that by doubling both
and you double the production level (see Exercise 79). ■

Level Surfaces
The concept of a level curve can be extended by one dimension to define a level
surface. If is a function of three variables and is a constant, the graph of the
equation is a level surface of the function as shown in Figure 13.14.

With computers, engineers and scientists have developed other ways to view
functions of three variables. For instance, Figure 13.15 shows a computer simulation
that uses color to represent the temperature distribution of fluid inside a pipe fitting.

f,f �x, y, z� � c
cf

y,x
z � f �x, y�

f �2000, 1000� � 100�20000.6��10000.4� � 151,572.

y � 1000,x � 2000

f �1000, 500� � 100�10000.6��5000.4� � 75,786.

y � 500,x � 1000

y � 1000.x � 2000
y � 500x � 1000

yx
f �x, y� � 100x0.6y0.4,

0 < a < 1.aC

f �x, y� � Cxa y1�a

y
x
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One-way coupling of ANSYS CFX™ and ANSYS Mechanical™
for thermal stress analysis
Figure 13.15
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Level curves (at increments of 10,000)
Figure 13.13

y

z
f (x, y, z) = c2

f (x, y, z) = c1

x

f (x, y, z) = c3

Level surfaces of f
Figure 13.14
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EXAMPLE 6 Level Surfaces

Describe the level surfaces of the function

Solution Each level surface has an equation of the form

Equation of level surface

So, the level surfaces are ellipsoids (whose cross sections parallel to the 
plane are circles). As increases, the radii of the circular cross sections increase

according to the square root of For example, the level surfaces corresponding to the
values and are as follows.

Level surface for (single point)

Level surface for (ellipsoid)

Level surface for (ellipsoid)

These level surfaces are shown in Figure 13.16. ■

Computer Graphics
The problem of sketching the graph of a surface in space can be simplified by using a
computer. Although there are several types of three-dimensional graphing utilities,
most use some form of trace analysis to give the illusion of three dimensions. To use
such a graphing utility, you usually need to enter the equation of the surface, the
region in the plane over which the surface is to be plotted, and the number of traces
to be taken. For instance, to graph the surface given by

you might choose the following bounds for and 

Bounds for 

Bounds for 

Bounds for 

Figure 13.17 shows a computer-generated graph of this surface using 26 traces taken
parallel to the plane. To heighten the three-dimensional effect, the program uses a
“hidden line” routine. That is, it begins by plotting the traces in the foreground (those
corresponding to the largest values), and then, as each new trace is plotted, the
program determines whether all or only part of the next trace should be shown.

The graphs on page 893 show a variety of surfaces that were plotted by computer.
If you have access to a computer drawing program, use it to reproduce these surfaces.
Remember also that the three-dimensional graphics in this text can be viewed and
rotated. These rotatable graphs are available in the premium eBook for this text.

x-

yz-

z 0 	 z 	 3

y �3 	 y 	 3

x �3 	 x 	 3

z.x, y,

f �x, y� � �x2 � y2�e1�x2�y2

xy-

c � 16 
x2

4
�

y2

16
�

z2

16
� 1

c � 4 
x2

1
�

y2

4
�

z2

4
� 1

c � 0 4x2 � y2 � z2 � 0

c � 16c � 4,c � 0,
c.

cyz-

4x2 � y2 � z2 � c.

f �x, y, z� � 4x2 � y2 � z2.
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x y

z

f (x, y) = (x2 + y2)e1 − x2 − y2

Figure 13.17

y

c = 16

c = 0

c = 4

x

z

4x2 + y2 + z2 = c
Level surfaces:

Figure 13.16

NOTE If the function in Example 6 represented the temperature at the point the level
surfaces shown in Figure 13.16 would be called isothermal surfaces. ■

�x, y, z�,
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x
y

z

z
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y

f (x, y) = sin x sin y

y

x

z

x

y

z

x y

f (x, y) = −
x2 + y2

1

z

                 

x y

f (x, y) =
⎪1 − x2 − y2⎪

1 − x2 − y2

z

Three different views of the graph of f�x, y� � �2 � y2 � x2�e1�x2��y2�4�

Traces and level curves of the graph of f�x, y� �
�4x

x2 � y 2 � 1

x y
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x y

z
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y

Single traces Double traces Level curves
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In Exercises 1 and 2, use the graph to determine whether is a
function of and Explain.

1.

2.

In Exercises 3–6, determine whether is a function of and 

3. 4.

5. 6.

In Exercises 7–18, find and simplify the function values.

7.

(a) (b) (c)

(d) (e) (f)

8.

(a) (b) (c)

(d) (e) (f)

9.

(a) (b) (c)

(d) (e) (f)

10.

(a) (b) (c)

(d) (e) (f)

11.

(a) (b) (c) (d)

12.

(a) (b)

(c) (d)

13.

(a) (b) (c) (d)

14.

(a) (b) (c) (d)

15.

(a) (b) (c) (d)

16.

(a) (b) (c) (d)

17. 18.

(a) (a)

(b) (b)

In Exercises 19–30, describe the domain and range of the
function.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. Think About It The graphs labeled (a), (b), (c), and (d) are
graphs of the function Match
the four graphs with the points in space from which the surface
is viewed. The four points are 

and 

(a) (b)

(c) (d)

�20, 0, 0�.�20, 20, 0�,
��15, 10, 20�,�20, 15, 25�,

f �x, y� � �4x��x2 � y2 � 1�.

f �x, y� � ln�xy � 6�f �x, y� � ln�4 � x � y�
f �x, y� � arcsin�y�x�f �x, y� � arccos�x � y�
f �x, y� � �4 � x2 � 4y2f �x, y� � �4 � x2 � y2

z �
xy

x � y
z �

x � y
xy

g�x, y� �
y
�x

g�x, y� � x�y

f �x, y� � exyf �x, y� � x2 � y2

f �x, y � 
y� � f �x, y�

y

f �x, y � 
y� � f �x, y�

y

f �x � 
x, y� � f �x, y�

x

f �x � 
x, y� � f �x, y�

x

f �x, y� � 3x2 � 2yf �x, y� � 2x � y2

�1
2, 7��2, 5��6, 3��4, 1�

g�x, y� � �y

x

  
1
t
 dt

�3
2, 0��4, 32��4, 1��4, 0�

g�x, y� � �y

x

�2t � 3� dt

�6, 4��4, 8��5, 2��3, 10�
V�r, h� � � r2h

�4, ��2���3, ��3��3, 1��2, ��4�
f �x, y� � x sin y

�10, �4, �3��4, 6, 2�
�6, 8, �3��0, 5, 4�

f �x, y, z� � �x � y � z

�5, 4, �6���2, 3, 4��1, 0, 1��2, 3, 9�

h�x, y, z� �
xy
z

�2, 5��e, e�2��1, 1�
�0, e��0, �1��1, 0�

g�x, y� � ln�x � y�
�t, t��x, 2��5, y�
�2, �1��3, 2��5, 0�

f �x, y� � xey

�t, 1��x, 0��1, y�
�2, 3��0, 1��0, 0�

f �x, y� � 4 � x2 � 4y2

�5, t��x, 2��5, y�
�30, 5���1, 4��3, 2�

 f �x, y� � xy

z � x ln y � 8yz � 0
x2

4
�

y2

9
� z2 � 1

xz2 � 2xy � y2 � 4x2z � 3y2 � xy � 10

y.xz

x

5

5

3

y

z

y

x

4
4

3

2

z

y.x
z
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32. Think About It Use the function given in Exercise 31.

(a) Find the domain and range of the function.

(b) Identify the points in the plane at which the function
value is 0.

(c) Does the surface pass through all the octants of the rectan-
gular coordinate system? Give reasons for your answer.

In Exercises 33– 40, sketch the surface given by the function.

33. 34.

35. 36.

37. 38.

39.

40.

In Exercises 41–44, use a computer algebra system to graph the
function.

41. 42.

43. 44.

In Exercises 45–48, match the graph of the surface with one of
the contour maps. [The contour maps are labeled (a), (b), (c),
and (d).]

(a) (b)

(c) (d)

45. 46.

47. 48.

In Exercises 49–56, describe the level curves of the function.
Sketch the level curves for the given -values.

49.

50.

51.

52.

53.

54.

55.

56.

In Exercises 57–60, use a graphing utility to graph six level
curves of the function.

57. 58.

59. 60. h�x, y� � 3 sin��x� � �y��g�x, y� �
8

1 � x2 � y2

f �x, y� � �xy�f �x, y� � x2 � y2 � 2

c � 0, ±1
2, ±1, ±3

2, ±2f �x, y� � ln�x � y�,
c � ±1

2, ±1, ±3
2, ±2f �x, y� � x��x2 � y2�,

c � 2, 3, 4, 12, 13, 14f �x, y� � exy�2,

c � ±1, ±2, .  .  . , ±6f �x, y� � xy,

c � 0, 1, 2, 3f �x, y� � �9 � x2 � y2,

c � 0, 1, 2, 3, 4z � x2 � 4y2,

c � 0, 2, 4, 6, 8, 10z � 6 � 2x � 3y,

c � �1, 0, 2, 4z � x � y,

c

y

x

−6

4

10

z

4
65

45
3 2

5

−2
x

y

z

f �x, y� � cos 	x2 � 2y2

4 
f �x, y� � ln�y � x2�

y

x

3

6

4
4

z

y

x

3
3

3

z

f �x, y� � e1�x2�y2f �x, y� � e1�x2�y2

x

y

x

y

x

y

x

y

f �x, y� � x sin yf �x, y� � x2e��xy�2�

z �
1

12�144 � 16x2 � 9y2z � y2 � x2 � 1

f �x, y� � �xy,
0,

x � 0, y � 0
x < 0 or y < 0

f �x, y� � e�x

z �
1
2�x2 � y2z � �x2 � y2

g�x, y� �
1
2 yf �x, y� � y2

f �x, y� � 6 � 2x � 3yf �x, y� � 4

xy-
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61. What is a graph of a function of two variables? How is it
interpreted geometrically? Describe level curves.

62. All of the level curves of the surface given by 
are concentric circles. Does this imply that the graph of is
a hemisphere? Illustrate your answer with an example.

63. Construct a function whose level curves are lines passing
through the origin.

f
z � f �x, y�

WRITING ABOUT CONCEPTS

64. Consider the function for and 

(a) Sketch the graph of the surface given by 

(b) Make a conjecture about the relationship between the
graphs of and Explain your 
reasoning.

(c) Make a conjecture about the relationship between the
graphs of and Explain your 
reasoning.

(d) Make a conjecture about the relationship between 
the graphs of and Explain your 
reasoning.

(e) On the surface in part (a), sketch the graph of
z � f �x, x�.

g�x, y� �
1
2 f �x, y�.f

g�x, y� � �f �x, y�.f

g�x, y� � f �x, y� � 3.f

f.

y � 0.x � 0f �x, y� � xy,

CAPSTONE
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Writing In Exercises 65 and 66, use the graphs of the level
curves ( -values evenly spaced) of the function to write a
description of a possible graph of Is the graph of unique?
Explain.

65. 66.

67. Investment In 2009, an investment of $1000 was made in a
bond earning 6% compounded annually. Assume that the buyer
pays tax at rate and the annual rate of inflation is In the year
2019, the value of the investment in constant 2009 dollars is

Use this function of two variables to complete the table.

68. Investment A principal of $5000 is deposited in a savings
account that earns interest at a rate of (written as a decimal),
compounded continuously. The amount after years is

Use this function of two variables to 
complete the table.

In Exercises 69–74, sketch the graph of the level surface
at the given value of 

69.

70.

71.

72.

73.

74.

75. Forestry The Doyle Log Rule is one of several methods used
to determine the lumber yield of a log (in board-feet) in terms
of its diameter (in inches) and its length (in feet). The
number of board-feet is

(a) Find the number of board-feet of lumber in a log 22 inches
in diameter and 12 feet in length.

(b) Find 

76. Queuing Model The average length of time that a customer
waits in line for service is

where is the average arrival rate, written as the number of
customers per unit of time, and is the average service rate,
written in the same units. Evaluate each of the following.

(a) (b) (c) (d)

77. Temperature Distribution The temperature (in degrees
Celsius) at any point in a circular steel plate of radius 
10 meters is where and are
measured in meters. Sketch some of the isothermal curves.

78. Electric Potential The electric potential at any point is

Sketch the equipotential curves for and 

79. Cobb-Douglas Production Function Use the Cobb-Douglas
production function (see Example 5) to show that if the number
of units of labor and the number of units of capital are doubled,
the production level is also doubled.

80. Cobb-Douglas Production Function Show that the Cobb-
Douglas production function can be rewritten as

81. Construction Cost A rectangular box with an open top has a
length of feet, a width of feet, and a height of feet. It costs
$1.20 per square foot to build the base and $0.75 per square
foot to build the sides. Write the cost of constructing the box
as a function of and 

82. Volume A propane tank is constructed by welding 
hemispheres to the ends of a right circular cylinder. Write the
volume of the tank as a function of and where is
the radius of the cylinder and hemispheres, and is the length
of the cylinder.

83. Ideal Gas Law According to the Ideal Gas Law,
where is pressure, is volume, is temperature (in Kelvins),
and is a constant of proportionality. A tank contains 2000
cubic inches of nitrogen at a pressure of 26 pounds per square
inch and a temperature of 300 K.

(a) Determine 

(b) Write as a function of and and describe the level
curves.

TVP

k.

k
TVP

PV � kT,

l
rl,rV

z.y,x,
C

zyx

ln 
z
y

� ln C � a ln 
x
y
.

z � Cxay1�a

V �
1
4.V �

1
3,V �

1
2,

V�x, y� �
5

�25 � x2 � y2
.

�x, y�V

yxT � 600 � 0.75x2 � 0.75y2,
�x, y�

T

W�5, 2�W�12, 7�W�15, 13�W�15, 9�

x
y

W�x, y� �
1

x � y
,  x > y

N�30, 12�.

N�d, L� � 	d � 4
4 


2
 L.

Ld

c � 0f �x, y, z� � sin x � z,

c � 0f �x, y, z� � 4x2 � 4y2 � z2,

c � 1f �x, y, z� � x2 �
1
4y2 � z,

c � 9f �x, y, z� � x2 � y2 � z2,

c � 4f �x, y, z� � 4x � y � 2z,

c � 1f �x, y, z� � x � y � z,

c.f �x, y, z
 � c

A�r, t� � 5000ert.
tA�r, t�

r

V�I, R� � 1000�1 � 0.06�1 � R�
1 � I �

10

.

V
I.R

x

y

x

y

ff.
fc
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Inflation Rate

Tax Rate 0 0.03 0.05

0

0.28

0.35

Number of Years

Rate 5 10 15 20

0.02

0.03

0.04

0.05
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84. Modeling Data The table shows the net sales (in billions of
dollars), the total assets (in billions of dollars), and the
shareholder’s equity (in billions of dollars) for Wal-Mart for
the years 2002 through 2007. (Source: 2007 Annual Report
for Wal-Mart)

A model for these data is

(a) Use a graphing utility and the model to approximate for
the given values of and 

(b) Which of the two variables in this model has the greater
influence on shareholder’s equity?

(c) Simplify the expression for and interpret its
meaning in the context of the problem.

85. Meteorology Meteorologists measure the atmospheric
pressure in millibars. From these observations they create
weather maps on which the curves of equal atmospheric
pressure (isobars) are drawn (see figure). On the map, the closer
the isobars the higher the wind speed. Match points and 
with (a) highest pressure, (b) lowest pressure, and (c) highest
wind velocity.

Figure for 85 Figure for 86

86. Acid Rain The acidity of rainwater is measured in units
called pH. A pH of 7 is neutral, smaller values are increasingly
acidic, and larger values are increasingly alkaline. The map
shows curves of equal pH and gives evidence that downwind of
heavily industrialized areas the acidity has been increasing.
Using the level curves on the map, determine the direction of
the prevailing winds in the northeastern United States.

87. Atmosphere The contour map shown in the figure was 
computer generated using data collected by satellite instrumen-
tation. Color is used to show the “ozone hole” in Earth’s 
atmosphere. The purple and blue areas represent the lowest 
levels of ozone and the green areas represent the highest levels.
(Source: National Aeronautics and Space Administration)

Figure for 87

(a) Do the level curves correspond to equally spaced ozone 
levels? Explain.

(b) Describe how to obtain a more detailed contour map.

88. Geology The contour map in the figure represents color-
coded seismic amplitudes of a fault horizon and a projected
contour map, which is used in earthquake studies. (Source:
Adapted from Shipman/Wilson/Todd, An Introduction to
Physical Science, Tenth Edition)

(a) Discuss the use of color to represent the level curves.

(b) Do the level curves correspond to equally spaced amplitudes?
Explain.

True or False? In Exercises 89–92, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

89. If then and 

90. If is a function, then 

91. A vertical line can intersect the graph of at most
once.

92. Two different level curves of the graph of can 
intersect.

z � f �x, y�

z � f �x, y�
f �ax, ay� � a2f �x, y�.f

y0 � y1.x0 � x1f �x0, y0� � f �x1, y1�,

4.2
2

4.30
4.40

4.52

4.70

4.
705.
00 4.52

5.60

4.2
2

4.30
4.40

4.52

4.70

4.
705.
00 4.52

5.60

1024
1024

1024
1028

1012
1016

1020
1024

1032

1028
1032

1036

1036

1024
1028

1012
1016

1020
1024

1032

1028
1032

1036

1036

B

AC

CB,A,

f �x,  95�

y.x
z

z � f �x, y� � 0.026x � 0.316y � 5.04.

z
y

x
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Year 2002 2003 2004 2005 2006 2007

x 201.2 226.5 252.8 281.5 208.9 345.0

y 79.3 90.2 102.5 117.1 135.6 151.2

z 35.2 39.5 43.6 49.4 53.2 61.6
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■ Understand the definition of a neighborhood in the plane.
■ Understand and use the definition of the limit of a function of two variables.
■ Extend the concept of continuity to a function of two variables.
■ Extend the concept of continuity to a function of three variables.

Neighborhoods in the Plane 
In this section, you will study limits and continuity involving functions of two or three
variables. The section begins with functions of two variables. At the end of the 
section, the concepts are extended to functions of three variables.

We begin our discussion of the limit of a function of two variables by defining a
two-dimensional analog to an interval on the real number line. Using the formula for
the distance between two points and in the plane, you can define the 
-neighborhood about to be the disk centered at with radius 

as shown in Figure 13.18. When this formula contains the less than inequality sign,
the disk is called open, and when it contains the less than or equal to inequality 
sign, the disk is called closed. This corresponds to the use of and to define open
and closed intervals.

An open disk The boundary and interior points of a region R
Figure 13.18 Figure 13.19

A point in a plane region is an interior point of if there exists a 
-neighborhood about that lies entirely in as shown in Figure 13.19. If every

point in is an interior point, then is an open region. A point is a boundary
point of if every open disk centered at contains points inside and points
outside By definition, a region must contain its interior points, but it need not
contain its boundary points. If a region contains all its boundary points, the region is
closed. A region that contains some but not all of its boundary points is neither open
nor closed.

R.
R�x0, y0�R

�x0, y0�RR
R,�x0, y0��

RR�x0, y0�

x

Boundary
point

Interior
point

R

Boundary of R

y

x

(x0, y0)

δ

y

�<�,

<,

� > 0�x0, y0��x0, y0��
�x0, y0��x, y�
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13.2 Limits and Continuity

Open disk��x, y�: ��x � x0�2 � � y � y0�2 < ��

■ FOR FURTHER INFORMATION For more information on Sonya Kovalevsky, see the
article “S. Kovalevsky: A Mathematical Lesson” by Karen D. Rappaport in The American
Mathematical Monthly. To view this article, go to the website www.matharticles.com. ■

SONYA KOVALEVSKY (1850–1891)

Much of the terminology used to define limits
and continuity of a function of two or three
variables was introduced by the German
mathematician Karl Weierstrass
(1815–1897). Weierstrass’s rigorous approach
to limits and other topics in calculus gained
him the reputation as the “father of modern
analysis.” Weierstrass was a gifted teacher.
One of his best-known students was the
Russian mathematician Sonya Kovalevsky,
who applied many of Weierstrass’s techniques
to problems in mathematical physics and
became one of the first women to gain
acceptance as a research mathematician.
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1053714_1302.qxp  10/27/08  12:06 PM  Page 898

www.matharticles.com


Limit of a Function of Two Variables

The definition of the limit of a function of two variables is similar to the defini-
tion of the limit of a function of a single variable, yet there is a critical difference. To
determine whether a function of a single variable has a limit, you need only test the
approach from two directions—from the right and from the left. If the function
approaches the same limit from the right and from the left, you can conclude that the
limit exists. However, for a function of two variables, the statement

means that the point is allowed to approach from any direction. If the
value of

is not the same for all possible approaches, or paths, to the limit does not exist.

EXAMPLE 1 Verifying a Limit by the Definition

Show that 

Solution Let and You need to show that for each there
exists a -neighborhood about such that 

whenever lies in the neighborhood. You can first observe that from

it follows that

So, you can choose and the limit is verified. ■� � �,

 < �.

 � ��x � a�2 � �y � b�2

 � ��x � a�2

� f�x, y� � a� � �x � a�

0 < ��x � a�2 � �y � b�2 < �

�x, y� � �a, b�
� f�x, y� � L� � �x � a� < �

�a, b��
� > 0,L � a.f�x, y� � x

lim
�x, y�→�a, b�

 x � a.

�x0, y0�,

lim
�x, y�→�x0, y0�

 f�x, y�

�x0, y0��x, y�

�x, y� →  �x0, y0�

13.2 Limits and Continuity 899

DEFINITION OF THE LIMIT OF A FUNCTION OF TWO VARIABLES

Let be a function of two variables defined, except possibly at on an
open disk centered at and let be a real number. Then

if for each there corresponds a such that

whenever 0 < ��x � x0�2 � �y � y0�2 < �.� f�x, y� � L� < �

� > 0� > 0

lim
�x, y�→�x0, y0�

  f�x, y� � L

L�x0, y0�,
�x0, y0�,f

NOTE Graphically, this definition of a limit implies that for any point in the
disk of radius the value lies between and as shown in Figure 13.20. ■L � �,L � �f �x, y��,

�x, y� � �x0, y0�

x (x1, y1) (x0, y0)

y

L + ε

L − ε

L

z

Disk of radius δ

For any in the disk of radius the
value lies between and 
Figure 13.20

L � �.L � �f �x, y�
�,�x, y�
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Limits of functions of several variables have the same properties regarding sums,
differences, products, and quotients as do limits of functions of single variables. (See
Theorem 1.2 in Section 1.3.) Some of these properties are used in the next example.

EXAMPLE 2 Verifying a Limit

Evaluate 

Solution By using the properties of limits of products and sums, you obtain

and 

Because the limit of a quotient is equal to the quotient of the limits (and the denomi-
nator is not 0), you have

EXAMPLE 3 Verifying a Limit

Evaluate 

Solution In this case, the limits of the numerator and of the denominator are both 0,
and so you cannot determine the existence (or nonexistence) of a limit by taking the
limits of the numerator and denominator separately and then dividing. However, from
the graph of in Figure 13.21, it seems reasonable that the limit might be 0. So, you
can try applying the definition to First, note that

and

Then, in a -neighborhood about you have and it follows
that, for 

So, you can choose and conclude that 

■lim
�x, y�→�0, 0�

 
5x2y

x2 � y2 � 0.

� � ��5

 < 5�.

 � 5�x2 � y2

 � 5�y�
 � 5�y�	 x2

x2 � y2

 � f�x, y� � 0� � � 5x2y

x2 � y2�
�x, y� � �0, 0�,

0 < �x2 � y2 < �,�0, 0�,�

x2

x2 � y2 � 1.�y� � �x2 � y2

L � 0.
f

lim
�x, y�→�0, 0�

 
5x2y

x2 � y2.

 � 2.

 lim
�x, y�→�1, 2�

 
5x2y

x2 � y2 �
10
5

 � 5.

lim
�x, y�→�1, 2�

 �x2 � y2� � �12 � 22�

 � 10

lim
�x, y�→�1, 2�

 5x2y � 5�12��2�

lim
�x, y�→�1, 2�

 
5x2y

x2 � y2.
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Surface:

f (x, y) =
x2 + y2

5x2y

y32
4 5

−5 −4

7

6

5

x
5

z

Figure 13.21
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For some functions, it is easy to recognize that a limit does not exist. For instance,
it is clear that the limit

does not exist because the values of increase without bound as approaches
along path (see Figure 13.22).

For other functions, it is not so easy to recognize that a limit does not exist. For
instance, the next example describes a limit that does not exist because the function
approaches different values along different paths.

EXAMPLE 4 A Limit That Does Not Exist

Show that the following limit does not exist.

Solution The domain of the function given by

consists of all points in the plane except for the point To show that the limit
as approaches does not exist, consider approaching along two
different “paths,” as shown in Figure 13.23. Along the axis, every point is of the
form and the limit along this approach is 

Limit along axis

However, if approaches along the line you obtain

Limit along line 

This means that in any open disk centered at there are points at which 
takes on the value 1, and other points at which takes on the value 0. For instance,

at the points and and at the
points and So, does not have a limit as

does not exist.

Figure 13.23 ■

lim
�x, y�→�0, 0�

 	x2 � y 2

x2 � y 2

2

3

2

3

Along y = x:  (x, x) → (0, 0)
Limit is 0.

y
x

Along x-axis:  (x, 0) → (0, 0)
Limit is 1.

z

�x, y� →  �0, 0�.
f�0.001, 0.001�.�0.01, 0.01�,�0.1, 0.1�,�1, 1�,

f�x, y� � 0�0.001, 0�,�0.01, 0�,�0.1, 0�,�1, 0�,f�x, y� � 1
f

f�x, y��0, 0�,

y � x� 0.lim
�x, x�→�0, 0�

 	x2 � x2

x2 � x2

2

� lim
�x, x�→�0, 0�	

0
2x2


2

 

y � x,�0, 0��x, y�

x-� 1.lim
�x, 0�→�0, 0�

 	x2 � 02

x2 � 02

2

� lim
�x, 0�→�0, 0�

12

�x, 0�,
x-

�0, 0��0, 0��x, y�
�0, 0�.xy-

f�x, y� � 	x2 � y2

x2 � y2

2

lim
�x, y�→�0, 0�

 	x2 � y2

x2 � y2

2

any�0, 0�
�x, y�f�x, y�

lim
�x, y�→�0, 0�

 
1

x2 � y2

13.2 Limits and Continuity 901

y

x

3
3

4

z

does not exist.

Figure 13.22

lim
�x, y�→�0, 0�

 
1

x2 � y 2

NOTE In Example 4, you could
conclude that the limit does not exist
because you found two approaches that
produced different limits. If two
approaches had produced the same limit,
you still could not have concluded that
the limit exists. To form such a conclu-
sion, you must show that the limit is the
same along possible approaches.all
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Continuity of a Function of Two Variables
Notice in Example 2 that the limit of as can
be evaluated by direct substitution. That is, the limit is In such cases the
function is said to be continuous at the point 

In Example 3, it was shown that the function

is not continuous at However, because the limit at this point exists, you can
remove the discontinuity by defining at as being equal to its limit there. Such
a discontinuity is called removable. In Example 4, the function

was also shown not to be continuous at but this discontinuity is nonremovable.

Theorem 13.1 establishes the continuity of polynomial and rational functions at
every point in their domains. Furthermore, the continuity of other types of functions
can be extended naturally from one to two variables. For instance, the functions whose
graphs are shown in Figures 13.24 and 13.25 are continuous at every point in the plane.

�0, 0�,

f�x, y� � 	x2 � y2

x2 � y2

2

�0, 0�f
�0, 0�.

f�x, y� �
5x2y

x2 � y2

�1, 2�.f
f �1, 2� � 2.

�x, y� →  �1, 2�f�x, y� � 5x2y��x2 � y2�

902 Chapter 13 Functions of Several Variables

DEFINITION OF CONTINUITY OF A FUNCTION OF TWO VARIABLES

A function of two variables is continuous at a point in an open
region if is equal to the limit of as approaches 
That is,

The function is continuous in the open region if it is continuous at every
point in R.

Rf

lim
�x, y�→�x0, y0�

 f�x, y� � f�x0, y0�.

�x0, y0�.�x, y�f�x, y�f�x0, y0�R
�x0, y0�f

THEOREM 13.1 CONTINUOUS FUNCTIONS OF TWO VARIABLES

If is a real number and and are continuous at then the following
functions are continuous at 

1. Scalar multiple: 3. Product:

2. Sum and difference: 4. Quotient: if g�x0, y0� � 0f�g,f ± g

fgkf

�x0, y0�.
�x0, y0�,gfk

Surface:  f (x, y) =   sin(x2 + y2)1
2

x y

z

The function is continuous at every point in the plane.
Figure 13.24

f

y2

2

2
x

z

f (x, y) = cos(y2)e−     x2 + y2
Surface:

The function is continuous at every point in the plane.
Figure 13.25

f

NOTE This definition of continuity can
be extended to boundary points of the
open region by considering a special
type of limit in which is allowed to
approach along paths lying in the
region This notion is similar to that of
one-sided limits, as discussed in Chapter 1.

R.
�x0, y0�

�x, y�
R
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The next theorem states conditions under which a composite function is
continuous.

EXAMPLE 5 Testing for Continuity

Discuss the continuity of each function.

a. b.

Solution

a. Because a rational function is continuous at every point in its domain, you can
conclude that is continuous at each point in the plane except at as shown
in Figure 13.26.

b. The function given by is continuous except at the points at
which the denominator is 0, So, you can conclude that the function is
continuous at all points except those lying on the parabola Inside this
parabola, you have and the surface represented by the function lies above
the plane, as shown in Figure 13.27. Outside the parabola, and the
surface lies below the plane.

The function f is not continuous at The function g is not continuous on the 
parabola 

Figure 13.26 Figure 13.27 ■

y � x2.
�0, 0�.

g(x, y) =
y − x2

y = x2

2

y

x

5

5

4

4

3

2

z

x
y

f (x, y) =
x2 + y2

x − 2y

4
3

5

z

xy-
y < x2,xy-

y > x2,
y � x2.

y � x2 � 0.
g�x, y� � 2��y � x2�

�0, 0�,xy-f

g�x, y� �
2

y � x2f�x, y� �
x � 2y
x2 � y2

13.2 Limits and Continuity 903

THEOREM 13.2 CONTINUITY OF A COMPOSITE FUNCTION

If is continuous at and is continuous at then the composite
function given by is continuous at That is,

lim
�x, y�→�x0, y0�

 g�h�x, y�� � g�h�x0, y0��.

�x0, y0�.�g 	 h��x, y� � g�h�x, y��
h�x0, y0�,g�x0, y0�h

NOTE Note in Theorem 13.2 that is a function of two variables and is a function of one
variable. ■

gh

E X P L O R A T I O N

Hold a spoon a foot or so from
your eyes. Look at your image in
the spoon. It should be upside
down. Now, move the spoon closer
and closer to one eye. At some
point, your image will be right
side up. Could it be that your
image is being continuously
deformed? Talk about this question
and the general meaning of 
continuity with other members of
your class. (This exploration was
suggested by Irvin Roy Hentzel,
Iowa State University.)
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Continuity of a Function of Three Variables
The preceding definitions of limits and continuity can be extended to functions of
three variables by considering points within the open sphere

The radius of this sphere is and the sphere is centered at as shown in
Figure 13.28. A point in a region in space is an interior point of if there
exists a -sphere about that lies entirely in If every point in is an
interior point, then is called open.

EXAMPLE 6 Testing Continuity of a Function of Three Variables

The function 

is continuous at each point in space except at the points on the paraboloid given by
■z � x2 � y2.

f�x, y, z� �
1

x2 � y2 � z

R
RR.�x0, y0, z0��

RR�x0, y0, z0�
�x0, y0, z0�,�,

�x, y, z�

904 Chapter 13 Functions of Several Variables

In Exercises 1–4, use the definition of the limit of a function of
two variables to verify the limit.

1. 2.

3. 4.

In Exercises 5–8, find the indicated limit by using the limits

and

5.

6.

7.

8.

In Exercises 9–22, find the limit and discuss the continuity of
the function.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22. lim
�x, y, z�→��2, 1, 0�

 xeyzlim
�x, y, z�→�1, 3, 4�

 �x � y � z

lim
�x, y�→�0, 1�

 
arccos �x�y�

1 � xy
lim

�x, y�→�0, 1�
 
arcsin xy
1 � xy

lim
�x, y�→�2
, 4�

 sin 
x
y

lim
�x, y�→�
�4, 2�

 y cos xy

lim
�x, y�→�1, 1�

 
x

�x � y
lim

�x, y�→�1, 1�
 

xy
x2 � y2

lim
�x, y�→��1, 2�

 
x � y
x � y

lim
�x, y�→�0, 2�

 
x
y

lim
�x, y�→�2, 4�

 
x � y
x2 � 1

lim
�x, y�→�1, 2�

 exy

lim
�x, y�→�0, 0�

 �x � 4y � 1�lim
�x, y�→�2,

 
1�

 �2x2 � y�

lim
�x, y�→�a, b�

 
 f �x, y� � g�x, y�
f �x, y� �

lim
�x, y�→�a, b�

 � f �x, y�g�x, y��

lim
�x, y�→�a, b�

 
5 f �x, y�
g�x, y� �

lim
�x, y�→�a, b�

 � f �x, y� � g�x, y��

lim
�x, y�→�a, b�

 g�x, y� � 3.lim
�x, y�→�a, b�

 f �x, y� � 4

lim
�x, y�→�a,

 
b�

 y � blim
�x, y�→�1, �3�

 y � �3

lim
�x, y�→�4, �1�

 x � 4lim
�x, y�→�1, 0�  

x � 1

13.2 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

Open sphere�x � x0�2 � �y � y0�2 � �z � z0�2  <  �2.

DEFINITION OF CONTINUITY OF A FUNCTION OF THREE VARIABLES

A function of three variables is continuous at a point in an open
region if is defined and is equal to the limit of as

approaches That is,

The function is continuous in the open region if it is continuous at every
point in R.

Rf

lim
�x, y, z�→�x0, y0, z0�

 f �x, y, z� � f�x0, y0, z0�.

�x0, y0, z0�.�x, y, z�
f�x, y, z�f�x0, y0, z0�R

�x0, y0, z0�f

x
y

(x0, y0, z0)

z

δ

Open sphere in space
Figure 13.28
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In Exercises 23–36, find the limit (if it exists). If the limit does
not exist, explain why.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35.

36.

In Exercises 37 and 38, discuss the continuity of the function
and evaluate the limit of (if it exists) as 

37.

38.

In Exercises 39–42, use a graphing utility to make a table showing
the values of at the given points for each path. Use the
result to make a conjecture about the limit of as

Determine whether the limit exists analytically
and discuss the continuity of the function.

39.

Path:

Points:

Path:

Points:

40.

Path:

Points:

Path:

Points:

41.

Path:

Points:

Path:

Points:

��0.000001, 0.001�
��0.0001, 0.01�,

��0.01, 0.1�,��0.25, 0.5�,
��1, 1�,

x � �y2

�0.000001, 0.001�
�0.0001, 0.01�,

�0.01, 0.1�,�0.25, 0.5�,
�1, 1�,

x � y2

y

x

4

2

3

zf �x, y� � �
xy2

x2 � y4

�0.001, 0.001��0.01, 0.01�,
�0.1, 0.1�,�0.5, 0.5�,

�1, 1�,
y � x

�0.001, 0��0.01, 0�,
�0.1, 0�,�0.5, 0�,

�1, 0�,
y � 0

y
3

4

3

2

x 3

zf �x, y� �
y

x2 � y2

�0.001, 0.001��0.01, 0.01�,
�0.1, 0.1�,�0.5, 0.5�,

�1, 1�,
y � x

�0.001, 0��0.01, 0�,
�0.1, 0�,�0.5, 0�,

�1, 0�,
y � 0

2

2

2

y

x

zf �x, y� �
xy

x2 � y2

�x, y� →  �0, 0�.
f �x, y�

f �x, y�

f �x, y� � 1 �
cos�x2 � y2�

x2 � y2

x

1 2 3
3

7

y

zf �x, y� � exy

�x, y� →  �0, 0�.f �x, y�

lim
�x, y, z�→�0, 0, 0�

 
xy � yz2 � xz2

x2 � y2 � z2

lim
�x, y, z�→�0, 0, 0�

 
xy � yz � xz
x2 � y2 � z2

lim
�x, y�→�0, 0�

 ln�x2 � y2�lim
�x, y�→�0, 0�

 
x2

�x2 � 1�� y2 � 1�

lim
�x, y�→�0, 0�

 
x

x2 � y2lim
�x, y�→�0, 0�

 
x � y
x2 � y

lim
�x, y�→�2, 1�

 
x � y � 1
�x � y � 1

lim
�x, y�→�0, 0�

 
x � y

�x � �y

lim
�x, y�→�0, 0�

 
x4 � 4y4

x2 � 2y2lim
�x, y�→�2, 2�

 
x2 � y2

x � y

lim
�x, y�→�0, 0�

 
1

x2y2lim
�x, y�→�0, 0�

 
1

x � y

lim
�x, y�→�1, �1�

 
x2y

1 � xy2lim
�x, y�→�1, 1�

 
xy � 1
1 � xy

13.2 Limits and Continuity 905

y43
54

5
x

1

2

z
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42.

Path:

Points:

Path:

Points:

In Exercises 43– 46, discuss the continuity of the functions and
Explain any differences.

43.

44.

45.

46.

In Exercises 47–52, use a computer algebra system to graph the
function and find (if it exists).

47. 48.

49. 50.

51.

52.

In Exercises 53–58, use polar coordinates to find the limit. 
Hint: Let and and note that 

implies 

53. 54.

55. 56.

57. 58.

In Exercises 59– 62, use polar coordinates and L’Hôpital’s Rule
to find the limit.

59. 60.

61.

62.

In Exercises 63– 68, discuss the continuity of the function.

63. 64.

65. 66.

67.

68.

In Exercises 69–72, discuss the continuity of the composite 
function 

69.

70.

71. 72.

In Exercises 73–78, find each limit.

(a)

(b)

73. 74.

75. 76.

77. 78. f �x, y� � �y �y � 1�f �x, y� � 3x � xy � 2y

f �x, y� �
1

x � y
f �x, y� �

x
y

f �x, y� � x2 � y2f �x, y� � x2 � 4y

lim
�y→0  

f �x, y 1 �y� � f �x, y�
�y

lim
�x→0

  
f �x 1 �x, y� � f �x, y�

�x

g�x, y� � x2 � y2g�x, y� � 2x � 3y

f �t� �
1

1 � t
f �t� �

1
t

g�x, y� � x2 � y2 

f �t� �
1
t

g�x, y� � 2x � 3y

f �t� � t2

f 	 g.

f �x, y� � �
sin�x2 � y2�

x2 � y2 ,  x2 � y2

1,  x2 � y2

f �x, y� � �
sin xy

xy
,  xy � 0

1,  xy � 0

f �x, y, z� � xy sin zf �x, y, z� �
sin z

ex � ey

f �x, y, z� �
z

x2 � y2 � 4
f �x, y, z� �

1
�x2 � y2 � z2

lim
�x, y�→�0, 0�

 �x2 � y2�ln�x2 � y2�

lim
�x, y�→�0, 0�

 
1 � cos�x2 � y2�

x2 � y2

lim
�x, y�→�0, 0�

 
sin�x2 � y2�

x2 � y2lim
�x, y�→�0, 0�

 
sin�x2 � y2

�x2 � y2

lim
�x, y�→�0, 0�

 sin�x2 � y2lim
�x, y�→�0, 0�

 cos�x2 � y2�

lim
�x, y�→�0, 0�

 
x2 � y2

�x2 � y2
lim

�x, y�→�0, 0�
 

x2y2

x2 � y2

lim
�x, y�→�0, 0�

 
x3 � y3

x2 � y2lim
�x, y�→�0, 0�

 
xy2

x2 � y2

r → 0.]
�x, y�→ �0, 0�y � r sin �,x � r cos �[

f �x, y� �
6xy

x2 � y2 � 1

f �x, y� �
5xy

x2 � 2y2

f �x, y� �
x2 � y2

x2y
f �x, y� �

x2y
x4 � 2y2

f �x, y� � sin 
1
x

� cos 
1
x

f �x, y� � sin x � sin y

lim
�x, y�→�0, 0�

 f �x, y�

g�x, y� � �x2 � 2xy2 � y2
,

      x2 � y2

1,

    

�x, y� � �0, 0�

�x, y� � �0, 0�

f �x, y� � �x2 � 2xy2 � y2
,

      x2 � y2

0,

    �x, y� � �0, 0�

�x, y� � �0, 0�

g�x, y� � �  4x2y2

x2 � y2
,

2, 
      

�x, y� � �0, 0�

�x, y� � �0, 0�

f �x, y� � � 4x2y2

x2 � y2
,

0, 
      

�x, y� � �0, 0�

�x, y� � �0, 0�

g�x, y� � �
4x4 � y4

2x2 � y2
,

0, 

      
�x, y� � �0, 0�

�x, y� � �0, 0�

f �x, y� � �4x4 � y4

2x2 � y2
,

�1, 
      

�x, y� � �0, 0�

�x, y� � �0, 0�

g�x, y� � �
x4 � y4

x2 � y2
,

1, 
      

�x, y� � �0, 0�

�x, y� � �0, 0�

f �x, y� � �
x4 � y4

x2 � y2
,

0, 
      

�x, y� � �0, 0�

�x, y� � �0, 0�

g.
f

�0.0001, 0.0001�
�0.001, 0.001�,

�0.01, 0.01�,�0.25, 0.25�,
�1, 1�,

y � x

�0.000001, 0�
�0.001, 0�,

�0.01, 0�,�0.25, 0�,
�1, 0�,

y � 0

y

x

−3

−4

4

−2−3

32

zf �x, y� �
2x � y2

2x2 � y

906 Chapter 13 Functions of Several Variables
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True or False? In Exercises 79–82, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

79. If then 

80. If then 

81. If is continuous for all nonzero and and then

82. If and are continuous functions of and and 
then is continuous.

83. Consider (see figure).

(a) Determine (if possible) the limit along any line of the form

(b) Determine (if possible) the limit along the parabola 

(c) Does the limit exist? Explain.

84. Consider (see figure).

(a) Determine (if possible) the limit along any line of the form

(b) Determine (if possible) the limit along the parabola 

(c) Does the limit exist? Explain.

In Exercises 85 and 86, use spherical coordinates to find the
limit. [Hint: Let and

and note that implies ]

85.

86.

87. Find the following limit.

88. For the function

define such that is continuous at the origin.

89. Prove that

where approaches and approaches as

90. Prove that if is continuous and there exists a 
-neighborhood about such that for every

point in the neighborhood. �x, y�
f �x, y� < 0�a, b��

f �a, b� < 0,f

�x, y� →  �a, b�.
L2g�x, y�L1f �x, y�

lim
�x, y�→�a, b�

 � f �x, y� � g�x, y�� � L1 � L2

ff �0, 0�

f �x, y� � xy	x2 � y2

x2 � y2


lim
�x, y�→�0, 1�

 tan�1
 x2 � 1
x2 � �y � 1�2�

lim
�x, y, z�→�0, 0, 0�

 tan�1
 1
x2 � y2 � z2�

lim
�x, y, z�→�0, 0, 0�

 
xyz

x2 � y2 � z2

� → 01.�x, y, z� → �0, 0, 0�z � � cos �,
y � � sin � sin �,x � � sin � cos �,

y � x2.

y � ax.

x

y

1

1

−1

−1

z

lim
�x, y�→�0, 0�

 
x2y

x4 � y2

y � x2.

y � ax.

x

z

y2020

20

lim
�x, y�→�0, 0�

 
x2 � y2

xy

fg�x� � h�y�,
f �x, y� �y,xhg

lim
�x, y�→�0, 0�

 f �x, y� � 0.
f �0, 0� � 0,y,xf

lim
�x, y�→�0, 0�

 f �x, y� � 0.lim
�x, y�→�0, 0�

 f �0, y� � 0,

lim
x→0

 f �x, 0� � 0.lim
�x, y�→�0, 0�

 f �x, y� � 0,

13.2 Limits and Continuity 907

91. Define the limit of a function of two variables. Describe a
method for showing that

does not exist.

92. State the definition of continuity of a function of two 
variables.

93. Determine whether each of the following statements is true
or false. Explain your reasoning.

(a) If then 

(b) If then 

(c) If then

(d) If then for any real number 

lim
�x, y�→�0, 0�

 f �kx, y� � 0.

k,lim
�x, y�→�0, 0�

 f �x, y� � 0,

lim
�x, y�→�2, 3�

 f �x, y� � 4.

lim
x→2

 f �x, 3� � lim
y→3

 f �2, y� � 4,

lim
�x, y�→�2, 3�

 f �x, y� � 4.lim
x→2

 f �x, 3� � 4,

lim
x→2

 f �x, 3� � 4.lim
�x, y�→�2, 3�

 f �x, y� � 4,

lim
�x, y�→�x0,

 
y0�

 f �x, y�

WRITING ABOUT CONCEPTS

94. (a) If can you conclude anything about
Give reasons for your answer.

(b) If can you conclude anything 

about Give reasons for your answer.f �2, 3�?

lim
�x, y�→�2, 3�

 f �x, y� � 4,

lim
�x, y�→�2, 3�

 f �x, y�?
f �2, 3� � 4,

CAPSTONE
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■ Find and use partial derivatives of a function of two variables.
■ Find and use partial derivatives of a function of three or more variables.
■ Find higher-order partial derivatives of a function of two or three variables.

Partial Derivatives of a Function of Two Variables
In applications of functions of several variables, the question often arises, “How will
the value of a function be affected by a change in one of its independent variables?”
You can answer this by considering the independent variables one at a time. For
example, to determine the effect of a catalyst in an experiment, a chemist could
conduct the experiment several times using varying amounts of the catalyst, while
keeping constant other variables such as temperature and pressure. You can use a
similar procedure to determine the rate of change of a function with respect to one
of its several independent variables. This process is called partial differentiation, and
the result is referred to as the partial derivative of with respect to the chosen
independent variable.

This definition indicates that if then to find you consider constant
and differentiate with respect to Similarly, to find you consider constant and
differentiate with respect to 

EXAMPLE 1 Finding Partial Derivatives

Find the partial derivatives and for the function

Solution Considering to be constant and differentiating with respect to produces

Write original function.

Partial derivative with respect to 

Considering to be constant and differentiating with respect to produces

Write original function.

Partial derivative with respect to 

■

yfy�x, y� � �2x2y � 2x3.

f �x, y� � 3x � x2y2 � 2x3y

yx

xfx�x, y� � 3 � 2xy2 � 6x2y.

f �x, y� � 3x � x2y2 � 2x3y

xy

f�x, y� � 3x � x2y2 � 2x3y.

fyfx

y.
xfy,x.

yfxz � f�x, y�,

f

f
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JEAN LE ROND D’ALEMBERT (1717–1783)

The introduction of partial derivatives followed
Newton’s and Leibniz’s work in calculus by
several years. Between 1730 and 1760,
Leonhard Euler and Jean Le Rond d’Alembert
separately published several papers on
dynamics, in which they established much of
the theory of partial derivatives. These papers
used functions of two or more variables to
study problems involving equilibrium, fluid
motion, and vibrating strings.
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DEFINITION OF PARTIAL DERIVATIVES OF A FUNCTION OF TWO VARIABLES

If then the first partial derivatives of with respect to and are
the functions and defined by

provided the limits exist.

fy�x, y� � lim
�y→0

 
f�x, y � �y� � f�x, y�

�y

fx�x, y� � lim
�x→0

 
f�x � �x, y� � f�x, y�

�x

fyfx

yxfz � f�x, y�,
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EXAMPLE 2 Finding and Evaluating Partial Derivatives

For find and and evaluate each at the point 

Solution Because

Partial derivative with respect to 

the partial derivative of with respect to at is

Because

Partial derivative with respect to 

the partial derivative of with respect to at is

■

The partial derivatives of a function of two variables, have a useful
geometric interpretation. If then represents the curve formed by
intersecting the surface with the plane as shown in Figure 13.29.
Therefore,

represents the slope of this curve at the point Note that both the curve
and the tangent line lie in the plane Similarly,

represents the slope of the curve given by the intersection of and the plane
at as shown in Figure 13.30.

Informally, the values of and at the point denote the slopes
of the surface in the - and -directions, respectively.yx

�x0, y0, z0��f��y�f��x
�x0, y0, f�x0, y0��,x � x0

z � f�x, y�

fy�x0, y0� � lim
�y→0

 
f�x0, y0 � �y� � f�x0, y0�

�y

y � y0.
�x0, y0, f�x0, y0��.

fx�x0, y0� � lim
�x→0

 
f�x0 � �x, y0� � f�x0, y0�

�x

y � y0,z � f�x, y�
z � f�x, y0�y � y0,

z � f�x, y�,

 � 2.

 fy�1, ln 2� � eln 2

�1, ln 2�yf

y � x3ex2y

 fy�x, y� � xex2y�x2�

 � 4 ln 2 � 2.

 fx�1, ln 2� � eln 2�2 ln 2� � eln 2

�1, ln 2�xf

xfx�x, y� � xex2y�2xy� � ex2y

�1, ln 2�.fy,fxf�x, y� � xex2y,

13.3 Partial Derivatives 909

NOTATION FOR FIRST PARTIAL DERIVATIVES

For the partial derivatives and are denoted by

and

The first partials evaluated at the point are denoted by

and
�z
�y��a, b�

� fy�a, b�.�z
�x��a, b�

� fx�a, b�

�a, b�

�

�y
 f �x, y� � fy�x, y� � zy �

�z
�y

.

�

�x
 f �x, y� � fx�x, y� � zx �

�z
�x

fyfxz � f�x, y�,

x

Plane: y = y0

y

(x0, y0, z0)
z

slope in direction

Figure 13.29

x-
�f
�x

�

x y

Plane: x = x0

z
(x0, y0, z0)

slope in direction

Figure 13.30

y-
�f
�y

�
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EXAMPLE 3 Finding the Slopes of a Surface in the x- and y-Directions

Find the slopes in the -direction and in the direction of the surface given by

at the point 

Solution The partial derivatives of with respect to and are

and Partial derivatives

So, in the direction, the slope is

Figure 13.31(a)

and in the direction, the slope is

Figure 13.31(b)

(a) (b)
Figure 13.31

EXAMPLE 4 Finding the Slopes of a Surface in the x- and y-Directions

Find the slopes of the surface given by

at the point in the direction and in the direction.

Solution The partial derivatives of with respect to and are

and Partial derivatives

So, at the point the slopes in the and directions are

and

as shown in Figure 13.32. ■

fy�1, 2� � �2�2 � 2� � 0fx�1, 2� � �2�1 � 1� � 0

y-x-�1, 2, 1�,

fy�x, y� � �2� y � 2�.fx�x, y� � �2�x � 1�

yxf

y-x-�1, 2, 1�

f�x, y� � 1 � �x � 1�2 � � y � 2�2

x

y2
3

4

z

fy , 1   = −21
2(

, 1, 21
2( (

(
Slope in y-direction:

f (x, y) = −      − y2 + 

Surface:
x2

2 8
25

fx , 1   = −1
2

1
2(

, 1, 21
2( (

(
Slope in x-direction:

y2
3

4

x

z

fy�1
2

, 1� � �2.

y-

fx�1
2

, 1� � �
1
2

x-

fy�x, y� � �2y.fx�x, y� � �x

yxf

� 1
2, 1, 2�.

f�x, y� � �
x2

2
� y2 �

25
8

y-x

910 Chapter 13 Functions of Several Variables

f (x, y) = 1 − (x − 1)2 − (y − 2)2

Surface:

y
x

z

4
3

2
1

1

fx(x, y)

fy(x, y)

(1, 2, 1)

Figure 13.32
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No matter how many variables are involved, partial derivatives can be interpreted
as rates of change.

EXAMPLE 5 Using Partial Derivatives to Find Rates of Change

The area of a parallelogram with adjacent sides and and included angle is given
by as shown in Figure 13.33.

a. Find the rate of change of with respect to for and 

b. Find the rate of change of with respect to for and 

Solution

a. To find the rate of change of the area with respect to hold and constant and
differentiate with respect to to obtain

Find partial with respect to 

Substitute for and 

b. To find the rate of change of the area with respect to hold and constant and
differentiate with respect to to obtain

Find partial with respect to 

Substitute for and ■

Partial Derivatives of a Function of Three or More
Variables
The concept of a partial derivative can be extended naturally to functions of three or
more variables. For instance, if there are three partial derivatives,
each of which is formed by holding two of the variables constant. That is, to define
the partial derivative of with respect to consider and to be constant and
differentiate with respect to A similar process is used to find the derivatives of 
with respect to and with respect to 

In general, if there are partial derivatives denoted by

To find the partial derivative with respect to one of the variables, hold the other
variables constant and differentiate with respect to the given variable.

k � 1, 2, .  .  . , n.
�w
�xk

� fxk
�x1, x2, .  .  . , xn�,

nw � f�x1, x2, .  .  . , xn�,

�w
�z

� fz�x, y, z� � lim
�z→0

 
f�x, y, z � �z� � f�x, y, z�

�z

�w
�y

� fy�x, y, z� � lim
�y→0

 
f�x, y � �y, z� � f�x, y, z�

�y

�w
�x

� fx�x, y, z� � lim
�x→0

 
f�x � �x, y, z� � f�x, y, z�

�x
 

z.y
wx.

zyx,w

w � f�x, y, z�,

�.a, b,
�A
��

� 200 cos 
�

6
� 100�3.

�.
�A
��

� ab cos �

�
ba�,

�.b
�A
�a

� 20 sin 
�

6
� 10.

a.
�A
�a

� b sin �

a
�ba,

� �
�

6
.b � 20,a � 10,�A

� �
�

6
.b � 20,a � 10,aA

A � ab sin �,
�ba

13.3 Partial Derivatives 911

a sina

b

θ

θA = ab sin θ

The area of the parallelogram is 
Figure 13.33

ab sin �.
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EXAMPLE 6 Finding Partial Derivatives

a. To find the partial derivative of with respect to 
consider and to be constant and obtain

b. To find the partial derivative of with respect to 
consider and to be constant. Then, using the Product Rule, you obtain

c. To find the partial derivative of with respect to 
consider and to be constant and obtain

■

Higher-Order Partial Derivatives
As is true for ordinary derivatives, it is possible to take second, third, and higher-order
partial derivatives of a function of several variables, provided such derivatives exist.
Higher-order derivatives are denoted by the order in which the differentiation occurs.
For instance, the function has the following second partial derivatives.

1. Differentiate twice with respect to 

2. Differentiate twice with respect to 

3. Differentiate first with respect to and then with respect to 

4. Differentiate first with respect to and then with respect to 

The third and fourth cases are called mixed partial derivatives.

x:y

y:x

y:

x:

z � f�x, y�

�

�w	x � y � z
w 
 � �

x � y � z
w2 .

zy,x,
w,f�x, y, z, w� � �x � y � z��w

 � 2z cos�xy2 � 2z� � sin�xy2 � 2z�.
 � �z��cos�xy2 � 2z���2� � sin�xy2 � 2z�

 
�

�z
�z sin�xy2 � 2z�� � �z� �

�z
�sin�xy2 � 2z�� � sin�xy2 � 2z� �

�z
�z�

yx
z,f�x, y, z� � z sin�xy2 � 2z�

�

�z
�xy � yz2 � xz� � 2yz � x.

yx
z,f �x, y, z� � xy � yz2 � xz

912 Chapter 13 Functions of Several Variables

�

�x �
�f
�x � �

�2f
�x2 � fxx.

�

�y �
�f
�y � �

�2f
�y2 � fyy.

�

�y �
�f
�x � �

�2f
�y�x

� fxy.

�

�x �
�f
�y � �

�2f
�x�y

� fyx.

NOTE Note that the two types of
notation for mixed partials have different
conventions for indicating the order of
differentiation.

Right-to-left order

Left-to-right order

You can remember the order by
observing that in both notations you
differentiate first with respect to the
variable “nearest” f.

 � fx�y � fxy

 
�

�y �
�f
�x � �

�2f
�y�x
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EXAMPLE 7 Finding Second Partial Derivatives

Find the second partial derivatives of and determine the
value of 

Solution Begin by finding the first partial derivatives with respect to and 

and

Then, differentiate each of these with respect to and 

and

and

At the value of is ■

Theorem 13.3 also applies to a function of three or more variables so long as all
second partial derivatives are continuous. For example, if and all the
second partial derivatives are continuous in an open region then at each point in 
the order of differentiation in the mixed second partial derivatives is irrelevant. If the
third partial derivatives of are also continuous, the order of differentiation of the
mixed third partial derivatives is irrelevant.

EXAMPLE 8 Finding Higher-Order Partial Derivatives

Show that and for the function given by

Solution

First partials:

Second partials (note that the first two are equal):

Third partials (note that all three are equal):

■fzzx�x, y, z� � �
1
z2fzxz�x, y, z� � �

1
z2,fxzz�x, y, z� � �

1
z2,

fzz�x, y, z� � �
x
z2fzx�x, y, z� �

1
z
,fxz�x, y, z� �

1
z
,

fz�x, y, z� �
x
z

fx�x, y, z� � yex � ln z,

f�x, y, z� � yex � x ln z.

fxzz � fzxz � fzzxfxz � fzx

f

RR,
w � f�x, y, z�

f

fxy��1, 2� � 12 � 40 � �28.fxy��1, 2�,

fyx�x, y� � 6y � 20xyfxy�x, y� � 6y � 20xy

fyy�x, y� � 6x � 10x2fxx�x, y� � 10y2

y.x

fy�x, y� � 6xy � 2 � 10x2yfx�x, y� � 3y2 � 10xy2

y.x

fxy��1, 2�.
f�x, y� � 3xy2 � 2y � 5x2y2,

13.3 Partial Derivatives 913

NOTE Notice in Example 7 that the two mixed partials are equal. Sufficient conditions for
this occurrence are given in Theorem 13.3. ■

THEOREM 13.3 EQUALITY OF MIXED PARTIAL DERIVATIVES

If is a function of and such that and are continuous on an open disk
then, for every in 

fxy�x, y� � fyx�x, y�.

R,�x, y�R,
fyxfxyyxf
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Think About It In Exercises 1–4, use the graph of the surface
to determine the sign of the indicated partial derivative.

1. 2.

3. 4.

In Exercises 5– 8, explain whether or not the Quotient Rule
should be used to find the partial derivative. Do not differentiate.

5. 6.

7. 8.

In Exercises 9–40, find both first partial derivatives.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39.

40.

In Exercises 41–44, use the limit definition of partial derivatives
to find and 

41. 42.

43. 44.

In Exercises 45–52, evaluate and at the given point.

45.

46.

47.

48.

49.

50.

51.

52.

In Exercises 53 and 54, find the slopes of the surface in the 
- and -directions at the given point.

53. 54.

In Exercises 55–58, use a computer algebra system to graph the
curve formed by the intersection of the surface and the plane.
Find the slope of the curve at the given point.

55.

56.

57.

58. �1, 3, 0�x � 1z � 9x2 � y 2

�1, 3, 0�y � 3z � 9x2 � y 2

�2, 1, 8�y � 1z � x2 � 4y 2

�2, 3, 6�x � 2z � �49 � x2 � y 2

Point    PlaneSurface                      

y
x 3 3

7

6

4

3

5

2

z

y
x

2

4

2

z

��2, 1, 3��1, 1, 2�
h�x, y� � x2 � y 2g�x, y� � 4 � x2 � y 2

yx

�1, 1�f �x, y� �
2xy

�4x2 � 5y 2
,

�2, �2�f �x, y� �
xy

x � y
,

�1, 1�f �x, y� � arccos xy,

�2, �2�f �x, y� � arctan 
y
x
,

f �x, y� � sin xy,  �2, 
�

4�

f �x, y� � cos�2x � y�,  ��

4
, 

�

3�
f �x, y� � e�x cos y,  �0, 0�
f �x, y� � ey sin x,  ��, 0�

fyfx

f �x, y� �
1

x � y
f �x, y� � �x � y

f �x, y� � x2 � 2xy � y 2f �x, y� � 3x � 2y

fy
x, y�.fx
x, y�

f �x, y� � �y

x

 �2t � 1� dt � �x

y

 �2t � 1� dt

f �x, y� � �y

x

 �t 2 � 1� dt

z � cosh xy2z � sinh�2x � 3y�
z � cos�x2 � y 2�z � ey sin xy

z � sin 5x cos 5yz � tan�2x � y�
z � sin�x � 2y�z � cos xy

f �x, y� � �2x � y3f �x, y� � �x2 � y 2

g�x, y� � ln �x2 � y 2h�x, y� � e��x2�y2�

z �
xy

x2 � y 2z �
x2

2y
�

3y 2

x

z � ln 
x � y
x � y

z � ln�x2 � y2�

z � ln�xyz � ln 
x
y

z � yey�xz � x2e2y

z � ex�yz � exy

z � y3 � 2xy2 � 1z � x2 � 4xy � 3y 2

z � 2y2�xz � x�y

f �x, y� � 4x3y�2f �x, y� � x2y3

f �x, y� � x2 � 2y 2 � 4f �x, y� � 2x � 5y � 3

�

�y�
xy

x2 � 1�
�

�x�
xy

x2 � 1�

�

�x�
x � y
x2 � 1�

�

�y�
x � y
x2 � 1�

fx��1, �1�fy�4, 1�
fy��1, �2�fx�4, 1�

y

x

5

5

2

−5

z
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13.3 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.
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In Exercises 59–64, find the first partial derivatives with respect
to and 

59.

60.

61. 62.

63.

64.

In Exercises 65–70, evaluate and at the given point.

65.

66.

67.

68.

69.

70.

In Exercises 71–80, find the four second partial derivatives.
Observe that the second mixed partials are equal.

71. 72.

73. 74.

75. 76.

77. 78.

79. 80.

In Exercises 81–88, for find all values of and such
that and simultaneously.

81.

82.

83.

84.

85.

86.

87.

88.

In Exercises 89–92, use a computer algebra system to find the
first and second partial derivatives of the function. Determine
whether there exist values of and such that and

simultaneously.

89. 90.

91. 92.

In Exercises 93–96, show that the mixed partial derivatives 
and are equal.

93.

94.

95.

96.

Laplace’s Equation In Exercises 97–100, show that the function
satisfies Laplace’s equation 

97. 98.

99. 100.

Wave Equation In Exercises 101–104, show that the function
satisfies the wave equation 

101. 102.

103. 104.

Heat Equation In Exercises 105 and 106, show that the function
satisfies the heat equation 

105. 106.

In Exercises 107 and 108, determine whether or not there exists
a function with the given partial derivatives. Explain
your reasoning. If such a function exists, give an example.

107.

108.

In Exercises 109 and 110, find the first partial derivative with
respect to 

109.

110. f �x, y, z� � x�sinh 
y
z�� y2�2�y�1 �z

f �x, y, z� � �tan y2z�ez2�y�2�z

x.

fy�x, y� � x � 4yfx�x, y� � 2x � y,

fy�x, y� � 2 sin�3x � 2y�fx�x, y� � �3 sin�3x � 2y�,

f 
x, y�

z � e�t sin 
x
c

z � e�t cos 
x
c

�z/�t � c2
�2z/�x2�.

z � sin 	ct sin 	xz � ln�x � ct�
z � cos�4x � 4ct�z � sin�x � ct�

�2z/�t 2 � c2
�2z/�x2�.

z � arctan 
y
x

z � ex sin y

z �
1
2�ey � e�y�sin xz � 5xy

�2z/�x2 1 �2z/�y2 � 0.

f �x, y, z� �
2z

x � y

f �x, y, z� � e�x sin yz

f �x, y, z� � x2 � 3xy � 4yz � z3

f �x, y, z� � xyz

fyyxfyxy,
fxyy,

f �x, y� �
xy

x � y
f �x, y� � ln 

x
x2 � y2

f �x, y� � �25 � x2 � y 2f �x, y� � x sec y

fy
x, y� � 0
fx
x, y� � 0yx

f �x, y� � ln�x2 � y 2 � 1�
f �x, y� � ex2�xy�y2

f �x, y� � 3x3 � 12xy � y3

f �x, y� �
1
x

�
1
y

� xy

f �x, y� � x2 � xy � y2

f �x, y� � x2 � 4xy � y 2 � 4x � 16y � 3

f �x, y� � x2 � xy � y2 � 5x � y

f �x, y� � x2 � xy � y2 � 2x � 2y

fy
x, y� � 0fx
x, y� � 0
yxf 
x, y�,

z � arctan 
y
x

z � cos xy

z � 2xey � 3ye�xz � ex tan y

z � ln�x � y�z � �x2 � y 2

z � x4 � 3x2y 2 � y4z � x2 � 2xy � 3y 2

z � x2 � 3y2z � 3xy2

�1, �2, 1�f �x, y, z� � �3x2 � y2 � 2z2,

�0, 
�

2
, �4�f �x, y, z� � z sin�x � y�,

�3, 1, �1�f �x, y, z� �
xy

x � y � z
,

f �x, y, z� �
x
yz

,  �1, �1, �1�

��2, 1, 2�f �x, y, z� � x2y3 � 2xyz � 3yz,

f �x, y, z� � x3yz2,  �1, 1, 1�

fzfy,fx,

G�x, y, z� �
1

�1 � x2 � y 2 � z 2

F�x, y, z� � ln�x2 � y 2 � z 2

w �
7xz

x � y
w � �x2 � y 2 � z2

f �x, y, z� � 3x2y � 5xyz � 10yz 2

H�x, y, z� � sin�x � 2y � 3z�

z.y,x,
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111. Let be a function of two variables and Describe the
procedure for finding the first partial derivatives.

112. Sketch a surface representing a function of two variables
and Use the sketch to give geometric interpretations of

and 

113. Sketch the graph of a function whose derivative
is always negative and whose derivative is always

positive.

114. Sketch the graph of a function whose deriva-
tives and are always positive.

115. If is a function of and such that and are
continuous, what is the relationship between the mixed
partial derivatives? Explain.

fyxfxyyxf

fyfx

z � f �x, y�

fyfx

z � f �x, y�
�f��y.�f��x

y.x
f

y.xf

WRITING ABOUT CONCEPTS
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916 Chapter 13 Functions of Several Variables

117. Marginal Revenue A pharmaceutical corporation has two
plants that produce the same over-the-counter medicine. If 
and are the numbers of units produced at plant 1 and plant 2,
respectively, then the total revenue for the product is given by

When 
and find (a) the marginal revenue for plant 1,
and (b) the marginal revenue for plant 2,

118. Marginal Costs A company manufactures two types of
wood-burning stoves: a freestanding model and a fireplace-
insert model. The cost function for producing freestanding
and fireplace-insert stoves is

(a) Find the marginal costs and when 
and 

(b) When additional production is required, which model of
stove results in the cost increasing at a higher rate? How
can this be determined from the cost model?

119. Psychology Early in the twentieth century, an intelligence test
called the Stanford-Binet Test (more commonly known as the IQ
test) was developed. In this test, an individual’s mental age is
divided by the individual’s chronological age and the quotient
is multiplied by 100. The result is the individual’s 

Find the partial derivatives of with respect to and with
respect to Evaluate the partial derivatives at the point

and interpret the result. (Source: Adapted from
Bernstein/Clark-Stewart/Roy/Wickens, Psychology, Fourth
Edition)

120. Marginal Productivity Consider the Cobb-Douglas produc-
tion function When and

find (a) the marginal productivity of labor,
and (b) the marginal productivity of capital,

121. Think About It Let be the number of applicants to a
university, the charge for food and housing at the university,
and the tuition. is a function of and such that

and What information is gained by
noticing that both partials are negative?

122. Investment The value of an investment of $1000 earning 6%
compounded annually is

where is the annual rate of inflation and is the tax rate for
the person making the investment. Calculate 
and Determine whether the tax rate or the rate
of inflation is the greater “negative” factor in the growth of the
investment.

123. Temperature Distribution The temperature at any point
in a steel plate is where 

and are measured in meters. At the point find the rates
of change of the temperature with respect to the distances
moved along the plate in the directions of the and axes.

124. Apparent Temperature A measure of how hot weather feels
to an average person is the Apparent Temperature Index. A
model for this index is

where is the apparent temperature in degrees Celsius, is the
air temperature, and is the relative humidity in decimal
form. (Source: The UMAP Journal)

(a) Find and when and 

(b) Which has a greater effect on air temperature or
humidity? Explain.

125. Ideal Gas Law The Ideal Gas Law states that 
where is pressure, is volume, is the number of moles of
gas, is a fixed constant (the gas constant), and is absolute
temperature. Show that

126. Marginal Utility The utility function is a
measure of the utility (or satisfaction) derived by a person
from the consumption of two products and Suppose the
utility function is 

(a) Determine the marginal utility of product 

(b) Determine the marginal utility of product 

(c) When and should a person consume one
more unit of product or one more unit of product 
Explain your reasoning.

(d) Use a computer algebra system to graph the function.
Interpret the marginal utilities of products and 
graphically.

127. Modeling Data Per capita consumptions (in gallons) of
different types of milk in the United States from 1999 through
2005 are shown in the table. Consumption of flavored milk,
plain reduced-fat milk, and plain light and skim milks are 
represented by the variables and respectively.
(Source: U.S. Department of Agriculture)

A model for the data is given by 

(a) Find and 

(b) Interpret the partial derivatives in the context of the problem.

�z
�y

.
�z
�x

z � �0.92x � 1.03y � 0.02.

z,y,x,

yx

y?x
y � 3,x � 2

y.

x.

U � �5x2 � xy � 3y 2.
y.x

U � f �x, y�

�T
�P

 
�P
�V

 
�V
�T

� �1.

TR
nVP

PV � nRT,

A,

h � 0.80.t � 30
�A��h�A��t

h
tA

A � 0.885t � 22.4h � 1.20th � 0.544

y-x-

�2, 3�,y
xT � 500 � 0.6x2 � 1.5y2,�x, y�

VR�0.03, 0.28�.
VI�0.03, 0.28�

RI

V�I, R� � 1000	1 � 0.06�1 � R�
1 � I 


10

�N��t < 0.�N��p < 0
tpNt

p
N

�f��y.
�f��x,y � 500,

x � 1000f �x, y� � 200x0.7y0.3.

�12, 10�
C.

MIQ

IQ�M, C� �
M
C

� 100

IQ.
C

M

y � 20.
x � 80�C��y���C��x

C � 32�xy � 175x � 205y � 1050.

y
x

�R��x2.
�R��x1,x2 � 12,
x1 � 4R � 200x1 � 200x2 � 4x1

2 � 8x1x2 � 4x2
2.

x2

x1

116. Find the four second partial derivatives of the function
given by Show that the second
mixed partial derivatives and are equal.fyxfxy

f �x, y� � sin�x � 2y�.

CAPSTONE

Year 1999 2000 2001 2002 2003 2004 2005

x 1.4 1.4 1.4 1.6 1.6 1.7 1.7

y 7.3 7.1 7.0 7.0 6.9 6.9 6.9

z 6.2 6.1 5.9 5.8 5.6 5.5 5.6

CAS
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128. Modeling Data The table shows the public medical 
expenditures (in billions of dollars) for worker’s compensation

public assistance and Medicare from 2000 through 2005.
(Source: Centers for Medicare and Medicaid Services)

A model for the data is given by

(a) Find and 

(b) Determine the concavity of traces parallel to the plane.
Interpret the result in the context of the problem.

(c) Determine the concavity of traces parallel to the plane.
Interpret the result in the context of the problem.

True or False? In Exercises 129–132, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

129. If and then 

130. If then 

131. If then 

132. If a cylindrical surface has rulings parallel to the 
axis, then 

133. Consider the function defined by

(a) Find and for 

(b) Use the definition of partial derivatives to find and

Hint:

(c) Use the definition of partial derivatives to find and

(d) Using Theorem 13.3 and the result of part (c), what can be
said about or 

134. Let Find and 

135. Consider the function 

(a) Find and 

(b) Determine the points (if any) at which or 
fails to exist.

136. Consider the function Show that

fx�x, y� � � 4x
3�x2 � y2�1�3,

0,

�x, y� � �0, 0�

�x, y� � �0, 0�
.

f �x, y� � �x2 � y2�2�3.

fy�x, y�fx�x, y�
fy�0, 0�.fx�0, 0�

f �x, y� � �x3 � y3�1�3.

fy�x, y�.fx�x, y�f �x, y� � �y

x

�1 � t3 dt.

fyx?fxy

fyx�0, 0�.
fxy�0, 0�

fx�0, 0� � lim
�x→0

 
f ��x, 0� � f �0, 0�

�x
.
	

fy�0, 0�.
fx�0, 0�

�x, y� � �0, 0�.fy�x, y�fx�x, y�

f �x, y� � �xy�x2 � y2� ,
   x2 � y2

0,
     

�x, y� � �0, 0�

�x, y� � �0, 0�
.

�z��y � 0.y-
z � f �x, y�

�2z
�y�x

� �xy � 1�e xy.z � exy,

��z��x� � ��z��y� � f
�x�g�y� � f �x�g
�y�.z � f �x�g�y�,
z � c�x � y�.�z��x � �z��y,z � f �x, y�

yz-

xz-

�2z
�y2.

�2z
�x2

z � �1.2225x2 � 0.0096y2 � 71.381x � 4.121y � 354.65.

zy,x,

Year 2000 2001 2002 2003 2004 2005

x 24.9 28.1 30.1 31.4 32.1 33.5

y 207.5 233.2 258.4 281.9 303.2 324.9

z 224.3 247.7 265.7 283.5 312.8 342.0

■ FOR FURTHER INFORMATION For more information about this
problem, see the article “A Classroom Note on a Naturally Occurring
Piecewise Defined Function” by Don Cohen in Mathematics and
Computer Education.

Read the article “Moiré Fringes and the Conic Sections” by Mike
Cullen in The College Mathematics Journal. The article describes
how two families of level curves given by

and

can form Moiré patterns. After reading the article, write a paper
explaining how the expression

is related to the Moiré patterns formed by intersecting the two
families of level curves. Use one of the following patterns as an
example in your paper.

�f
�x

�
�g
�x

�
�f
�y

�
�g
�y

g�x, y� � bf�x, y� � a

Moiré Fringes

S E C T I O N  P R O J E C T

M
ik

e 
C

ul
le

n
M

ik
e 

C
ul

le
n
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■ Understand the concepts of increments and differentials.
■ Extend the concept of differentiability to a function of two variables.
■ Use a differential as an approximation.

Increments and Differentials
In this section, the concepts of increments and differentials are generalized to
functions of two or more variables. Recall from Section 3.9 that for the 
differential of was defined as

Similar terminology is used for a function of two variables, That is,
and are the increments of x and y, and the increment of z is given by

This definition can be extended to a function of three or more variables. For
instance, if then and the
total differential of is

EXAMPLE 1 Finding the Total Differential

Find the total differential for each function.

a. b.

Solution

a. The total differential for is

Total differential 

b. The total differential for is

Total differential 

■ � 2x dx � 2y dy � 2z dz.

dw dw �
�w
�x

 dx �
�w
�y

 dy �
�w
�z

 dz

w � x2 � y2 � z2dw

 � �2 sin y � 6xy2� dx � �2x cos y � 6x2y� dy.

dz dz �
�z
�x

 dx �
�z
�y

 dy

z � 2x sin y � 3x2y2dz

w � x2 � y2 � z2z � 2x sin y � 3x2y2

dw �
�w
�x

 dx �
�w
�y

 dy �
�w
�z

 dz �
�w
�u

 du.

w
du � �u,dz � �z,dy � �y,dx � �x,w � f �x, y, z, u�,

�y
�xz � f �x, y�.

dy � f��x� dx.

y
y � f �x�,

918 Chapter 13 Functions of Several Variables

13.4 Differentials

Increment of z�z � f �x � �x, y � �y� � f �x, y�.

DEFINITION OF TOTAL DIFFERENTIAL

If and and are increments of and then the differentials
of the independent variables and are

and

and the total differential of the dependent variable is

dz �
�z
�x

 dx �
�z
�y

 dy � fx�x, y� dx � fy�x, y� dy.

z

dy � �ydx � �x

yx
y,x�y�xz � f �x, y�
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Differentiability
In Section 3.9, you learned that for a differentiable function given by you
can use the differential as an approximation for small to the value

When a similar approximation is possible for a function of
two variables, the function is said to be differentiable. This is stated explicitly in the
following definition.

EXAMPLE 2 Showing That a Function Is Differentiable

Show that the function given by 

is differentiable at every point in the plane.

Solution Letting the increment of at an arbitrary point in the 
plane is

Increment of 

where and Because and as it
follows that is differentiable at every point in the plane. The graph of is shown in
Figure 13.34. ■

Be sure you see that the term “differentiable” is used differently for functions of
two variables than for functions of one variable. A function of one variable is 
differentiable at a point if its derivative exists at the point. However, for a function of
two variables, the existence of the partial derivatives and does not guarantee that
the function is differentiable (see Example 5). The following theorem gives a sufficient
condition for differentiability of a function of two variables. A proof of Theorem 13.4
is given in Appendix A.

fyfx

ff
��x, �y� → �0, 0�,�2 → 0�1 → 0�2 � 0.�1 � �x

 � fx�x, y� �x � fy�x, y� �y � �1�x � �2�y

 � 2x��x� � 3��y� � �x��x� � 0��y�
 � 2x�x � �x2 � 3�y

 � �x2 � 2x�x � �x2� � 3�y � �y� � �x2 � 3y�
z �z � f �x � �x, y � �y� � f �x, y�

�x, y�zz � f �x, y�,

f �x, y� � x2 � 3y

�y � f �x � �x� � f �x�.
��x�dy � f��x� dx
y � f �x�,

13.4 Differentials 919

DEFINITION OF DIFFERENTIABILITY

A function given by is differentiable at if can be
written in the form

where both and as The function is differentiable
in a region R if it is differentiable at each point in R.

f��x, �y� → �0, 0�.�2 → 0�1

�z � fx�x0, y0� �x � fy�x0, y0� �y � �1�x � �2�y

�z�x0, y0�z � f �x, y�f

THEOREM 13.4 SUFFICIENT CONDITION FOR DIFFERENTIABILITY

If is a function of and where and are continuous in an open region
then is differentiable on R.fR,

fyfxy,xf

y

x
4

−4

4

1

z

Figure 13.34
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Approximation by Differentials
Theorem 13.4 tells you that you can choose close enough to 
to make and insignificant. In other words, for small and you can
use the approximation

This approximation is illustrated graphically in Figure 13.35. Recall that the partial
derivatives and can be interpreted as the slopes of the surface in the 

and directions. This means that

represents the change in height of a plane that is tangent to the surface at the point
Because a plane in space is represented by a linear equation in the

variables and the approximation of by is called a linear approximation.
You will learn more about this geometric interpretation in Section 13.7.

EXAMPLE 3 Using a Differential as an Approximation

Use the differential to approximate the change in as 
moves from the point to the point Compare this approximation
with the exact change in 

Solution Letting and produces
and So, the change in can be approximated by

When and you have

In Figure 13.36, you can see that the exact change corresponds to the difference in the
heights of two points on the surface of a hemisphere. This difference is given by

■

A function of three variables is called differentiable at 
provided that

can be written in the form

where and as With this definition of differen-
tiability, Theorem 13.4 has the following extension for functions of three variables: If

is a function of and where and are continuous in an open region 
then is differentiable on 

In Section 3.9, you used differentials to approximate the propagated error 
introduced by an error in measurement. This application of differentials is further
illustrated in Example 4.

R.f
R,fzfy ,fx ,f,z,y,x,f

��x, �y, �z� → �0, 0, 0�.�3 → 0�2,�1,

�w � fx�x � fy�y � fz�z � �1�x � �2�y � �3�z

�w � f �x � �x, y � �y, z � �z� � f �x, y, z�

�x, y, z�w � f �x, y, z�

� 0.0137. � �4 � �1.01�2 � �0.97�2 � �4 � 12 � 12

�z � f �1.01, 0.97� � f �1, 1�

� 0.0141.� �2 �0.01��
0.02
�2

�z � �
1
�2

 �0.01� �
1
�2

 ��0.03�

y � 1,x � 1

�
�x

�4 � x2 � y2
 �x �

�y
�4 � x2 � y2

 �y.�
�z
�x

 dx �
�z
�y

 dy �z � dz

zdy � �y � �0.03.dx � �x � 0.01
�x � �x, y � �y� � �1.01, 0.97��x, y� � �1, 1�

z.
�1.01, 0.97�.�1, 1�

�x, y�z � �4 � x2 � y2dz

dz�zz,y,x,
�x, y, f �x, y��.

dz �
�z
�x

 �x �
�z
�y

 �y

y-x-
�z��y�z��x

�z � dz.

�y,�x�2�y�1�x
�x, y��x � �x, y � �y�
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y
x

Δz2

Δz1
Δz

(x, y) (x + Δx, y + Δy)(x + Δx, y)

dz
y
z Δy

x
z Δx

z

∂

∂
∂

∂

The exact change in is This change can
be approximated by the differential 
Figure 13.35

dz.
�z.z

x

y

z

(1, 1)
(1.01, 0.97)

22

2

z =     4 − x2 − y2

f (x, y)f (x + Δx, y + Δy)

As moves from to the point
the value of changes

by about 0.0137.
Figure 13.36

f �x, y��1.01, 0.97�,
�1, 1��x, y�
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EXAMPLE 4 Error Analysis

The possible error involved in measuring each dimension of a rectangular box is 
millimeter. The dimensions of the box are centimeters, centimeters,
and centimeters, as shown in Figure 13.37. Use to estimate the propagated
error and the relative error in the calculated volume of the box.

Solution The volume of the box is given by and so

Using 0.1 millimeter centimeter, you have and the
propagated error is approximately

cubic centimeters.

Because the measured volume is

cubic centimeters,

the relative error, is approximately

■

As is true for a function of a single variable, if a function in two or more variables
is differentiable at a point, it is also continuous there.

�V
V

�
dV
V

�
20.5

15,000
� 0.14%.

�V�V,

V � �50��20��15� � 15,000

 � 2050�±0.01� � ±20.5

 � 300�±0.01� � 750�±0.01� � 1000�±0.01�
 dV � �20��15��±0.01� � �50��15��±0.01� � �50��20��±0.01�

dx � dy � dz � ±0.01,� 0.01

 � yz dx � xz dy � xy dz.

 dV �
�V
�x

 dx �
�V
�y

 dy �
�V
�z

 dz

V � xyz,

dVz � 15
y � 20x � 50

±0.1
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x

y

50

20

20

x = 50

z = 15

y = 20

z

Volume
Figure 13.37

� xyz

THEOREM 13.5 DIFFERENTIABILITY IMPLIES CONTINUITY

If a function of and is differentiable at then it is continuous at
�x0, y0�.

�x0, y0�,yx

PROOF Let be differentiable at where Then

where both and as However, by definition, you know that
is given by

Letting and produces

Taking the limit as you have

which means that is continuous at ■�x0, y0�.f

lim
�x, y�→�x0, y0�

 f �x, y� � f �x0, y0�

�x, y� → �x0, y0�,

 � � fx�x0, y0� � �1��x � x0� � � fy�x0, y0� � �2��y � y0�.
 f �x, y� � f �x0, y0� � � fx�x0, y0� � �1� �x � � fy�x0, y0� � �2� �y

y � y0 � �yx � x0 � �x

�z � f �x0 � �x, y0 � �y� � f �x0, y0�.

�z
��x, �y� → �0, 0�.�2 → 0�1

�z � � fx�x0, y0� � �1� �x � � fy�x0, y0� � �2� �y

z � f �x, y�.�x0, y0�,f
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Remember that the existence of and is not sufficient to guarantee differentia-
bility, as illustrated in the next example.

EXAMPLE 5 A Function That Is Not Differentiable

Show that and both exist, but that is not differentiable at where
is defined as

Solution You can show that is not differentiable at by showing that it is not
continuous at this point. To see that is not continuous at look at the values of

along two different approaches to as shown in Figure 13.38. Along the
line the limit is

whereas along you have

So, the limit of as does not exist, and you can conclude that is
not continuous at Therefore, by Theorem 13.5, you know that is not
differentiable at On the other hand, by the definition of the partial derivatives 
and you have

and

So, the partial derivatives at exist.

Figure 13.38 ■

f (x, y) =

−3xy

x2 + y2
,  (x, y) ≠ (0, 0)

(x, y) = (0, 0)0,

Along the line y = x,
f(x, y) approaches −3/2.

y

z

(0, 0, 0)

x

Along the line y = −x,
f(x, y) approaches 3/2.

�0, 0�

fy�0, 0� � lim
�y→0

 
f �0, �y� � f �0, 0�

�y
� lim

�y→0
 
0 � 0

�y
� 0.

fx�0, 0� � lim
�x→0

 
f ��x, 0� � f �0, 0�

�x
� lim

�x→0
 
0 � 0

�x
� 0 

fy,
fx�0, 0�.

f�0, 0�.
f�x, y� →  �0, 0�f �x, y�

lim
�x, �x�→�0, 0�

 f �x, y� � lim
�x, �x�→�0, 0�

 
3x2

2x2 �
3
2

.

y � �x

lim
�x, x�→�0, 0�

 f �x, y� � lim
�x, x�→�0, 0�

 
�3x2

2x2 � �
3
2

y � x,
�0, 0�,f �x, y�

�0, 0�,f
�0, 0�f

f �x, y� � 	 �3xy
x2 � y2,    if �x, y� 	 �0, 0�

0,               if �x, y� � �0, 0�
.

f
�0, 0�ffy�0, 0�fx�0, 0�

fyfx
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Use a graphing 
utility to graph the function given in
Example 5. For instance, the graph
shown below was generated by
Mathematica.

y

x

Generated by Mathematica

z

TECHNOLOGY
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In Exercises 1–10, find the total differential.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

In Exercises 11–16, (a) evaluate and and
calculate and (b) use the total differential to approximate

11. 12.

13. 14.

15. 16.

In Exercises 17–20, find and use the total differential
to approximate the quantity.

17.

18.

19.

20.

25. Area The area of the shaded rectangle in the figure is 
The possible errors in the length and height are and 
respectively. Find and identify the regions in the figure
whose areas are given by the terms of What region
represents the difference between and 

Figure for 25 Figure for 26

26. Volume The volume of the red right circular cylinder in the
figure is The possible errors in the radius and 
the height are and respectively. Find and identify the
solids in the figure whose volumes are given by the terms of 
What solid represents the difference between and 

27. Numerical Analysis A right circular cone of height 
and radius is constructed, and in the process errors 
and are made in the radius and height, respectively.
Complete the table to show the relationship between and 
for the indicated errors.

28. Numerical Analysis The height and radius of a right circular
cone are measured as meters and meters. In the
process of measuring, errors and are made. is the lateral
surface area of the cone. Complete the table above to show 
the relationship between and for the indicated errors.

29. Modeling Data Per capita consumptions (in gallons) of
different types of plain milk in the United States from 1999
through 2005 are shown in the table. Consumption of flavored
milk, plain reduced-fat milk, and plain light and skim milks are
represented by the variables and respectively. (Source:
U.S. Department of Agriculture)

A model for the data is given by 

(a) Find the total differential of the model.

(b) A dairy industry forecast for a future year is that per capita
consumption of flavored milk will be gallons and
that per capita consumption of plain reduced-fat milk will 
be gallons. Use to estimate the maximum 
possible propagated error and relative error in the prediction
for the consumption of plain light and skim milks.

30. Rectangular to Polar Coordinates A rectangular coordinate
system is placed over a map, and the coordinates of a point of
interest are There is a possible error of 0.05 in each
coordinate. Approximate the maximum possible error in
measuring the polar coordinates of the point.

�7.2, 2.5�.

dz7.5 ± 0.25

1.9 ± 0.25

z � �0.92x � 1.03y � 0.02.

z,y,x,

dS�S

S�h�r
r � 6h � 16

dV�V
�h

�rr � 4
h � 8

dV?�V
dV.

dV�h,�r
V � 
r 2h.

Δr

Δh
Δh

h

l Δl

dA?�A
dA.

dA
�h,�l

A � lh.

sin��1.05�2 � �0.95�2� � sin�12 � 12�

1 � �3.05�2

�5.95�2 �
1 � 32

62

��5.05�2 � �3.1�2 � �52 � 32

�2.01�2�9.02� � 22 � 9

z � f 
x, y�

f �x, y� � x cos yf �x, y� � yex

f �x, y� �
y
x

f �x, y� � 16 � x2 � y2

f �x, y� � x2 � y2f �x, y� � 2x � 3y

�z.
dz�z,

f 
2.1, 1.05�f 
2, 1�

w � x2yz2 � sin yzw � 2z3y sin x

w � ey cos x � z2z � ex sin y

z �
1
2�ex2�y2

� e�x2�y2�z � x cos y � y cos x

w �
x � y
z � 3y

z �
�1

x2 � y2

z �
x2

y
z � 2x2y3
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13.4 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

21. Define the total differential of a function of two variables.

22. Describe the change in accuracy of as an approximation
of as and increase.

23. What is meant by a linear approximation of at
the point 

24. When using differentials, what is meant by the terms
propagated error and relative error?

P�x0, y0�?
z � f �x, y�

�y�x�z
dz

WRITING ABOUT CONCEPTS

Year 1999 2000 2001 2002 2003 2004 2005

x 1.4 1.4 1.4 1.6 1.6 1.7 1.7

y 7.3 7.1 7.0 7.0 6.9 6.9 6.9

z 6.2 6.1 5.9 5.8 5.6 5.5 5.6

�r �h

dV
or
dS

or
�S

�V
or

�S � dS

�V � dV

0.1 0.1

0.1 �0.1

0.001 0.002

�0.0001 0.0002
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31. Volume The radius and height of a right circular cylinder
are measured with possible errors of 4% and 2%, respectively.
Approximate the maximum possible percent error in measuring
the volume.

32. Area A triangle is measured and two adjacent sides are found
to be 3 inches and 4 inches long, with an included angle of 
The possible errors in measurement are inch for the sides and
0.02 radian for the angle. Approximate the maximum possible
error in the computation of the area.

33. Wind Chill The formula for wind chill (in degrees
Fahrenheit) is given by

where is the wind speed in miles per hour and is the
temperature in degrees Fahrenheit. The wind speed is 
miles per hour and the temperature is Use to
estimate the maximum possible propagated error and relative
error in calculating the wind chill. (Source: National
Oceanic and Atmospheric Administration)

34. Acceleration The centripetal acceleration of a particle
moving in a circle is where is the velocity and is
the radius of the circle. Approximate the maximum percent
error in measuring the acceleration due to errors of 3% in and
2% in 

35. Volume A trough is 16 feet long (see figure). Its cross sections
are isosceles triangles with each of the two equal sides measuring
18 inches. The angle between the two equal sides is 

(a) Write the volume of the trough as a function of 
and determine the value of such that the volume is a 
maximum.

(b) The maximum error in the linear measurements is one-half
inch and the maximum error in the angle measure is 
Approximate the change in the maximum volume.

Figure for 35 Figure for 36

36. Sports A baseball player in center field is playing approxi-
mately 330 feet from a television camera that is behind home
plate. A batter hits a fly ball that goes to the wall 420 feet from
the camera (see figure).

(a) The camera turns to follow the play. Approximate the
number of feet that the center fielder has to run to make the
catch.

(b) The position of the center fielder could be in error by as
much as 6 feet and the maximum error in measuring the
rotation of the camera is Approximate the maximum
possible error in the result of part (a).

37. Power Electrical power is given by where is
voltage and is resistance. Approximate the maximum percent
error in calculating power if 120 volts is applied to a 2000-ohm
resistor and the possible percent errors in measuring and 
are 3% and 4%, respectively.

38. Resistance The total resistance of two resistors connected
in parallel is given by

Approximate the change in as is increased from 10 ohms
to 10.5 ohms and is decreased from 15 ohms to 13 ohms.

39. Inductance The inductance (in microhenrys) of a straight
nonmagnetic wire in free space is

where is the length of the wire in millimeters and is the
radius of a circular cross section. Approximate when

millimeters and millimeters.

40. Pendulum The period of a pendulum of length is
where is the acceleration due to gravity. A

pendulum is moved from the Canal Zone, where feet
per second per second, to Greenland, where feet per
second per second. Because of the change in temperature, the
length of the pendulum changes from 2.5 feet to 2.48 feet.
Approximate the change in the period of the pendulum.

In Exercises 41–44, show that the function is differentiable 
by finding values of and as designated in the definition 
of differentiability, and verify that both and as

41. 42.

43. 44.

In Exercises 45 and 46, use the function to show that and
both exist, but that is not differentiable at 

45.

46.

47. Show that if is differentiable at then 
is differentiable at Use this result to prove that

is not differentiable at �0, 0�.f �x, y� � �x2 � y2
x � x0.

f �x, y0��x0, y0�,f �x, y�

f �x, y� � �   5x2y
x3 � y3

,

0,
    

�x, y� � �0, 0�

�x, y� � �0, 0�

f �x, y� � �   3x2y
x4 � y2

,

0,
    

�x, y� � �0, 0�

�x, y� � �0, 0�

�0, 0�.ffy�0, 0�
fx�0, 0�

f �x, y� � 5x � 10y � y3f �x, y� � x2y

f �x, y� � x2 � y2f �x, y� � x2 � 2x � y

��x, �y� → �0, 0�.
�2 → 0�1

�2�1

g � 32.23
g � 32.09

gT � 2��L�g ,
LT

h � 100 ± 1
100r � 2 ± 1

16

L
rh

L � 0.00021	ln 
2h
r

� 0.75


L

R2

R1R

1
R

�
1
R1

�
1

R2
.

R

RE

R
EP � E2�R,P

1�.

9�

330 ft

420 ft

9°

18 in.

16 ft

θ
18 in.

Not drawn to scale

2�.

	
	

	.

r.
v

rva � v2�r,

dC8� ± 1�.
23 ± 3

Tv

C � 35.74 � 0.6215T � 35.75v0.16 � 0.4275Tv0.16

C

1
16

��4.

hr
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48. Consider the function 

(a) Evaluate and 

(b) Use the results of part (a) to calculate 

(c) Use the total differential to approximate 
Compare your result with that of part (b).

�z.dz

�z.

f �3.05, 1.1�.f �3, 1�
f �x, y� � �x2 � y2.

CAPSTONE
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13.5 Chain Rules for Functions of Several Variables 925

13.5 Chain Rules for Functions of Several Variables
■ Use the Chain Rules for functions of several variables.
■ Find partial derivatives implicitly.

Chain Rules for Functions of Several Variables
Your work with differentials in the preceding section provides the basis for the
extension of the Chain Rule to functions of two variables. There are two cases—the
first case involves as a function of and where and are functions of a single
independent variable as shown in Theorem 13.6. (A proof of this theorem is given
in Appendix A.)

EXAMPLE 1 Using the Chain Rule with One Independent Variable

Let where and Find when 

Solution By the Chain Rule for one independent variable, you have

When it follows that

■

The Chain Rules presented in this section provide alternative techniques for
solving many problems in single-variable calculus. For instance, in Example 1, you
could have used single-variable techniques to find by first writing as a
function of 

and then differentiating as usual.

dw
dt

� 2et sin t cos t � et sin2 t � 2e2t

 � et sin2 t � e2t

 � �sin t�2�et� � �et�2

 w � x2y � y2

t,
wdw�dt

dw
dt

� �2.

t � 0,

 � 2et sin t cos t � et sin2 t � 2e2t.

 � 2�sin t��et��cos t� � �sin2 t � 2et�et

 � 2xy�cos t� � �x2 � 2y�et

 
dw
dt

�
�w
�x

 
dx
dt

�
�w
�y

 
dy
dt

t � 0.dw�dty � et.x � sin tw � x2y � y2,

t,
yxy,xw

THEOREM 13.6 CHAIN RULE: ONE INDEPENDENT VARIABLE

Let where is a differentiable function of and If and
where and are differentiable functions of then is a differen-

tiable function of and

See Figure 13.39.
dw
dt

�
�w
�x

 
dx
dt

�
�w
�y

 
dy
dt

.

t,
wt,hgy � h�t�,

x � g�t�y.xfw � f �x, y�,

w

x y

t t

dx
dt

w
y

dy
dt

∂
∂

w
x

∂
∂

Chain Rule: one independent variable is a
function of and which are each functions
of This diagram represents the derivative
of with respect to 
Figure 13.39

t.w
t.

y,x
w
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The Chain Rule in Theorem 13.6 can be extended to any number of variables. For
example, if each is a differentiable function of a single variable then for

you have

EXAMPLE 2 An Application of a Chain Rule to Related Rates

Two objects are traveling in elliptical paths given by the following parametric equations.

and First object

and Second object

At what rate is the distance between the two objects changing when 

Solution From Figure 13.40, you can see that the distance between the two objects
is given by

and that when you have and

When the partial derivatives of are as follows.

When the derivatives of and are

So, using the appropriate Chain Rule, you know that the distance is changing at a
rate of

■ �
22
5

.

 � ��
4
5��0� � ��

3
5���2� � �4

5��4� � �3
5��0�

ds
dt

�
�s
�x1

 
dx1

dt
�

�s
�y1

 
dy1

dt
�

�s
�x2

 
dx2

dt
�

�s
�y2

 
dy2

dt

dx2

dt
� 4 cos 2t � 4    dy2

dt
� �6 sin 2t � 0.

dx1

dt
� �4 sin t � 0    dy1

dt
� 2 cos t � �2

y2x2,y1,x1,t � �,

�s
�y2

�
�y2 � y1�

��x2 � x1�2 � �y2 � y1�2
�

1
5

�3 � 0� �
3
5

�s
�x2

�
�x2 � x1�

��x2 � x1�2 � �y2 � y1�2
�

1
5

�0 � 4� �
4
5

�s
�y1

�
��y2 � y1�

��x2 � x1�2 � �y2 � y1�2
� �

1
5

�3 � 0� � �
3
5

�s
�x1

�
��x2 � x1�

��x2 � x1�2 � �y2 � y1�2
� �

1
5

�0 � 4� � �
4
5

st � �,

s � ��0 � 4�2 � �3 � 0�2 � 5.

y2 � 3,x2 � 0,y1 � 0,x1 � �4,t � �,

s � ��x2 � x1�2 � �y2 � y1�2

s

t � �?

y2 � 3 cos 2tx2 � 2 sin 2t

y1 � 2 sin tx1 � 4 cos t

dw
dt

�
�w
�x1

 
dx1

dt
�

�w
�x2

 
dx2

dt
� .  .  . �

�w
�xn

 
dxn

dt
.

w � f �x1, x2, .  .  . , xn�

t,xi
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x

2

4

4

−2

−2

−4

−4

s

t =
3

y

π

x

2

4

4

−2

−2

−4

−4

s

y

t =
2
π

x

4

4

−2

−4

−4

s

t = π

y

Paths of two objects traveling in elliptical
orbits
Figure 13.40

1053714_1305.qxp  10/27/08  12:07 PM  Page 926



In Example 2, note that is the function of four intermediate variables,
and each of which is a function of a single variable Another type of composite
function is one in which the intermediate variables are themselves functions of more
than one variable. For instance, if where and it 
follows that is a function of and and you can consider the partial derivatives of

with respect to and One way to find these partial derivatives is to write as a
function of and explicitly by substituting the equations and 
into the equation Then you can find the partial derivatives in the usual
way, as demonstrated in the next example.

EXAMPLE 3 Finding Partial Derivatives by Substitution

Find and for where and 

Solution Begin by substituting and into the equation 
to obtain

Then, to find hold constant and differentiate with respect to 

Similarly, to find , hold constant and differentiate with respect to to obtain

■

Theorem 13.7 gives an alternative method for finding the partial derivatives in
Example 3, without explicitly writing as a function of and t.sw

 �
2st2 � 2s3

t2 .

 � 2��s3 � st2

t2 �

�w
�t

� 2��
s3

t2 � s�
ts�w��t

 �
6s2 � 2t2

t

�w
�s

� 2�3s2

t
� t�

s.t�w��s,

� 2�s3

t
� st�.� 2�s2 � t2��s

t� w � 2xy

w � 2xyy � s�tx � s2 � t2

y � s�t.x � s2 � t2w � 2xy,�w��t�w��s

w � f �x, y�.
y � h�s, t�x � g�s, t�ts

wt.sw
t,sw

y � h�s, t�,x � g�s, t�w � f �x, y�,

t.y2,
x2,y1,x1,s
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THEOREM 13.7 CHAIN RULE: TWO INDEPENDENT VARIABLES

Let where is a differentiable function of and If and
such that the first partials and all exist,

then and exist and are given by

and
�w
�t

�
�w
�x

 
�x
�t

�
�w
�y

 
�y
�t

.
�w
�s

�
�w
�x

 
�x
�s

�
�w
�y

 
�y
�s

�w��t�w��s
�y��t�x��s, �x��t, �y��s,y � h�s, t�
x � g�s, t�y.xfw � f �x, y�,

PROOF To obtain hold constant and apply Theorem 13.6 to obtain the
desired result. Similarly, for hold constant and apply Theorem 13.6. ■s�w��t,

t�w��s,

NOTE The Chain Rule in Theorem 13.7 is shown schematically in Figure 13.41. ■

y

w

x

stst

∂ w
∂ x

y

∂

∂
s∂

y∂
t∂

x∂
s∂

x∂
t∂

w
∂ y

Chain Rule: two independent variables
Figure 13.41
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EXAMPLE 4 The Chain Rule with Two Independent Variables

Use the Chain Rule to find and for

where and 

Solution Note that these same partials were found in Example 3. This time, using
Theorem 13.7, you can hold constant and differentiate with respect to to obtain

Substitute for and for 

Similarly, holding constant gives

Substitute for and for 

■

The Chain Rule in Theorem 13.7 can also be extended to any number of variables.
For example, if is a differentiable function of the variables where
each is a differentiable function of the variables then for

you obtain the following.

�w
�tm

�
�w
�x1

 
�x1

�tm
�

�w
�x2

 
�x2

�tm
� .  .  . �

�w
�xn

 
�xn

�tm

 �

�w
�t2

�
�w
�x1

 
�x1

�t2
�

�w
�x2

 
�x2

�t2
� .  .  . �

�w
�xn

 
�xn

�t2
 

�w
�t1

�
�w
�x1

 
�x1

�t1
�

�w
�x2

 
�x2

�t1
� .  .  . �

�w
�xn

 
�xn

�t1

w � f �x1, x2, .  .  . , xn�

t1, t2, .  .  . , tm,mxi

x1, x2, .  .  . , xn,nw

 �
2st2 � 2s3

t2
.

 �
4st2 � 2s3 � 2st2

t2

 � 4s �
2s3 � 2st2

t2

x.s2 � t2y�s�t� � 2�s
t��2t� � 2�s2 � t2���s

t2 �
 � 2y�2t� � 2x��s

t2 �

�w
�t

�
�w
�x

 
�x
�t

�
�w
�y

 
�y
�t

s

 �
6s2 � 2t2

t
.

 �
4s2

t
�

2s2 � 2t2

t

x.s2 � t2y�s�t� � 2�s
t��2s� � 2�s2 � t2��1

t �
 � 2y�2s� � 2x�1

t �
 
�w
�s

�
�w
�x

 
�x
�s

�
�w
�y

 
�y
�s

st

y � s�t.x � s2 � t2

w � 2xy

�w��t�w��s
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EXAMPLE 5 The Chain Rule for a Function of Three Variables

Find and when and for the function given by

where and 

Solution By extending the result of Theorem 13.7, you have

When and you have and So,
Furthermore,

and for and it follows that

■

Implicit Partial Differentiation
This section concludes with an application of the Chain Rule to determine the
derivative of a function defined implicitly. Suppose that and are related by the
equation where it is assumed that is a differentiable function of

To find you could use the techniques discussed in Section 2.5. However, you
will see that the Chain Rule provides a convenient alternative. If you consider the
function given by

you can apply Theorem 13.6 to obtain

Because for all in the domain of you know that and
you have

Now, if you can use the fact that to conclude that

A similar procedure can be used to find the partial derivatives of functions of several
variables that are defined implicitly.

dy
dx

� �
Fx�x, y�
Fy�x, y�

.

dx�dx � 1Fy�x, y� � 0,

Fx�x, y� dx
dx

� Fy�x, y� dy
dx

� 0.

dw�dx � 0f,xw � F�x, y� � 0

dw
dx

� Fx �x, y� dx
dx

� Fy�x, y� dy
dx

.

w � F�x, y� � F�x, f �x��

dy�dx,x.
y � f �x�F�x, y� � 0,

yx

 � 2 � 2�.

 
�w
�t

� �0 � 2���0� � �1 � 2���1� � �0 � 1��1�

t � 2�,s � 1

 � �y � z���s sin t� � �x � z��s cos t� � �y � x��1�

 
�w
�t

�
�w
�x

 
�x
�t

�
�w
�y

 
�y
�t

�
�w
�z

 
�z
�t

�w��s � �0 � 2���1� � �1 � 2���0� � 2�.
z � 2�.y � 0,x � 1,t � 2�,s � 1

 � �y � z��cos t� � �x � z��sin t�.
 � �y � z��cos t� � �x � z��sin t� � �y � x��0�

 
�w
�s

�
�w
�x

 
�x
�s

�
�w
�y

 
�y
�s

�
�w
�z

 
�z
�s

z � t.y � s sin t,x � s cos t,

w � xy � yz � xz

t � 2�s � 1�w��t�w��s
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This theorem can be extended to differentiable functions defined implicitly with
any number of variables.

EXAMPLE 6 Finding a Derivative Implicitly

Find given 

Solution Begin by defining a function as

Then, using Theorem 13.8, you have

and

and it follows that

■

EXAMPLE 7 Finding Partial Derivatives Implicitly

Find and given 

Solution To apply Theorem 13.8, let

Then

and you obtain

■
�z
�y

� �
Fy�x, y, z�
Fz �x, y, z� �

2x2y � 3z
3x2 � 6z2 � 3y

.

�z
�x

� �
Fx�x, y, z�
Fz�x, y, z� �

2xy2 � 6xz
3x2 � 6z2 � 3y

Fz�x, y, z� � 3x2 � 6z2 � 3y

Fy�x, y, z� � �2x2y � 3z

Fx�x, y, z� � 6xz � 2xy2

F�x, y, z� � 3x2z � x2y2 � 2z3 � 3yz � 5.

3x2z � x2y2 � 2z3 � 3yz � 5 � 0.�z��y,�z��x

dy
dx

� �
Fx�x, y�
Fy�x, y� �

���2x�
3y2 � 2y � 5

�
2x

3y2 � 2y � 5
.

Fy�x, y� � 3y2 � 2y � 5Fx�x, y� � �2x

F�x, y� � y3 � y2 � 5y � x2 � 4.

F

y3 � y2 � 5y � x2 � 4 � 0.dy�dx,

930 Chapter 13 Functions of Several Variables

THEOREM 13.8 CHAIN RULE: IMPLICIT DIFFERENTIATION

If the equation defines implicitly as a differentiable function of
then

If the equation defines implicitly as a differentiable function
of and then

and Fz�x, y, z� � 0.
�z
�y

� �
Fy�x, y, z�
Fz �x, y, z�,

�z
�x

� �
Fx�x, y, z�
Fz �x, y, z�

y,x
zF�x, y, z� � 0

Fy�x, y� � 0.
dy
dx

� �
Fx�x, y�
Fy �x, y�,

x,
yF�x, y� � 0

NOTE Compare the solution of Example 6 with the solution of Example 2 in Section 2.5.
■
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In Exercises 1–4, find using the appropriate Chain Rule.

1. 2.

3. 4.

In Exercises 5–10, find (a) by using the appropriate 
Chain Rule and (b) by converting to a function of before
differentiating.

5.

6.

7.

8.

9.

10.

Projectile Motion In Exercises 11 and 12, the parametric
equations for the paths of two projectiles are given. At what rate
is the distance between the two objects changing at the given
value of 

11. First object

Second object

12. First object

Second object

In Exercises 13 and 14, find using the appropriate
Chain Rule. Evaluate at the given value of 

13.

14.

In Exercises 15–18, find and using the appropriate
Chain Rule, and evaluate each partial derivative at the given
values of and 

15.

16.

17.

18.

In Exercises 19–22, find and (a) by using the
appropriate Chain Rule and (b) by converting to a function of

and before differentiating.

19.

20.

21.

22.

In Exercises 23–26, find and by using the appro-
priate Chain Rule.

23.

24.

25.

26.

In Exercises 27–30, differentiate implicitly to find 

27.

28.

29.

30.

In Exercises 31–38, differentiate implicitly to find the first
partial derivatives of 

31. 32.

33. 34.

35. 36.

37. 38.

In Exercises 39– 42, differentiate implicitly to find the first
partial derivatives of 

39.

40.

41.

42.

Homogeneous Functions A function is homogeneous of
degree if In Exercises 43– 46, (a) show that
the function is homogeneous and determine and (b) show
that 

43. 44.

45. 46. f �x, y� �
x2

�x2 � y2
f �x, y� � ex�y

f �x, y� � x3 � 3xy2 � y3f �x, y� �
xy

�x2 � y2

xfx�x, y	 1 yfy�x, y	 � nf �x, y	.
n,

f �tx, ty	 � t nf �x, y	.n
f

w � �x � y � �y � z � 0

cos xy � sin yz � wz � 20

x2 � y2 � z2 � 5yw � 10w2 � 2

xy � yz � wz � wx � 5

w.

x ln y � y2z � z2 � 8ex z � xy � 0

z � ex sin�y � z�tan�x � y� � tan�y � z� � 1

x � sin�y � z� � 0x2 � 2yz � z2 � 1

xz � yz � xy � 0x2 � y2 � z2 � 1

z.

x
x2 � y2 � y2 � 6

ln�x2 � y2 � x � y � 4

sec xy � tan xy � 5 � 0

x2 � xy � y2 � x � y � 0

dy/dx.

w � x cos yz,  x � s2,  y � t2,  z � s � 2t

w � zexy,  x � s � t,  y � s � t,  z � st

w � x2 � y2 � z2,  x � t sin s,  y � t cos s,  z � st2
w � xyz,  x � s � t,  y � s � t,  z � st2

�w/�t�w/�s

w � �25 � 5x2 � 5y2,  x � r cos �,  y � r sin �

w � arctan 
y
x
,  x � r cos �,  y � r sin �

w � x2 � 2xy � y2,  x � r � �,  y � r � �

w �
yz
x

,  x � �2,  y � r � �,  z � r � �

�r
w

�w/���w/�r

x � s cos t,  y � s sin t

s � 3,  t �
�

4
w � x2 � y2

x � s � t,  y � s � t

s � 0,  t �
�

2
w � sin�2x � 3y�
x � es,  y � et

s � �1,  t � 2w � y3 � 3x2y

x � s � t,  y � s � t

s � 1,  t � 0w � x2 � y2

Point                  Function                        

t.s

�w/�t�w/�s

w �
x2

y
,  x � t2,  y � t � 1,  t � 1

w � ln�x � y�,  x � et,  y � e�t,  t � 0

t.d 2w/dt 2

d 2w/dt 2

t � 1

x2 � 48�3 t, y2 � 48t � 16t2

x1 � 48�2 t, y1 � 48�2 t � 16t2

t � ��2

x2 � 7 cos t, y2 � 4 sin t

x1 � 10 cos 2t, y1 � 6 sin 2t

t?

w � xy2 � x2z � yz2,  x � t2,  y � 2t,  z � 2

w � xy � xz � yz,  x � t � 1,  y � t2 � 1,  z � t

w � xy cos z,  x � t,  y � t2,  z � arccos t

w � x2 � y2 � z2,  x � cos t,  y � sin t,  z � et

w � cos�x � y�,  x � t2,  y � 1

w � xy,  x � et,  y � e�2t

tw
dw/dt

x � cos t,  y � sin tx � et,  y � � � t

w � ln 
y
x

w � x sin y

x � cos t,  y � etx � 2t,  y � 3t

w � �x2 � y2w � x2 � y2

dw/dt

13.5 Chain Rules for Functions of Several Variables 931

13.5 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.
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47. Let and where and are
differentiable. Use the appropriate Chain Rule to find 
when given the following table of values.

48. Let and where and 
are differentiable. Use the appropriate Chain Rule to find

and given the following table of values.

53. Volume and Surface Area The radius of a right circular
cylinder is increasing at a rate of 6 inches per minute, and the
height is decreasing at a rate of 4 inches per minute. What are
the rates of change of the volume and surface area when the
radius is 12 inches and the height is 36 inches?

54. Volume and Surface Area Repeat Exercise 53 for a right
circular cone.

55. Ideal Gas Law The Ideal Gas Law is where is
a constant, is a constant mass, and and are functions of
time. Find the rate at which the temperature changes
with respect to time.

56. Area Let be the angle between equal sides of an isosceles
triangle and let be the length of these sides. is increasing at

meter per hour and is increasing at radian per hour.
Find the rate of increase of the area when and 

57. Moment of Inertia An annular cylinder has an inside radius
of and an outside radius of (see figure). Its moment
of inertia is where is the mass. The two
radii are increasing at a rate of 2 centimeters per second. Find
the rate at which is changing at the instant the radii are 
6 centimeters and 8 centimeters. (Assume mass is a constant.)

Figure for 57 Figure for 58

58. Volume and Surface Area The two radii of the frustum of a
right circular cone are increasing at a rate of 4 centimeters per
minute, and the height is increasing at a rate of 12 centimeters
per minute (see figure). Find the rates at which the volume and
surface area are changing when the two radii are 15 centimeters
and 25 centimeters, and the height is 10 centimeters.

59. Show that for 
and 

60. Demonstrate the result of Exercise 59 for 

61. Consider the function where and
Verify each of the following.

(a)

(b)

62. Demonstrate the result of Exercise 61(b) for 

63. Cauchy-Riemann Equations Given the functions and
verify that the Cauchy-Riemann differential equations

and

can be written in polar coordinate form as

and

64. Demonstrate the result of Exercise 63 for the functions

and

65. Show that if is homogeneous of degree then

[Hint: Let Find and then let
]t � 1.

g	�t�g�t� � f �tx, ty� � tn f �x, y�.

x fx�x, y� � yfy�x, y� � nf �x, y�.

n,f �x,y�

v � arctan 
y
x
.u � ln�x2 � y2

�v
�r

� �
1
r
 
�u
��

.
�u
�r

�
1
r
 
�v
��

�u
�y

� �
�v
�x

�u
�x

�
�v
�y

v�x, y�,
u�x, y�

w � arctan�y�x�.

��w
�x �

2

� ��w
�y �

2

� ��w
�r �

2

� � 1
r2���w

���
2

�w
�y

�
�w
�r

 sin � �
�w
��

 
cos �

r

�w
�x

�
�w
�r

 cos � �
�w
��

 
sin �

r

y � r sin �.
x � r cos �w � f �x, y�,

sin�y � x�.w � �x � y�

y � v � u.x � u � v,
w � f �x, y�,��w��u� � ��w��v� � 0

R

h

r
r1

r2

I

mI �
1
2m�r 2

1 � r2
2 �,

r2r1

� � ��4.x � 6
��90�1

2

xx
�

dT�dt,
Vpm

RpV � mRT,

wt�1, 2�ws�1, 2�

hf, g,y � h�s, t�,w � f �x, y�, x � g�s, t�,

t � 2
dw�dt
hf, g,y � h�t�,w � f �x, y�, x � g�t�,

932 Chapter 13 Functions of Several Variables

g�2	 h�2	 g	�2	 h	�2	 fx�4, 3	 fy�4, 3	

4 3 �1 6 �5 7

g�1, 2	 h�1, 2	 gs�1, 2	 hs�1, 2	

4 3 �3 5

gt�1, 2	 ht�1, 2	 fx�4, 3	 fy�4, 3	

�2 8 �5 7

52. Consider the function where 
and 

(a) Use the appropriate Chain Rule to find 

(b) Write as a function of and then find Explain
why this result is the same as that of part (a).

df�dt.tf

df�dt.

z � e�t.y � 2t,
x � t 2,f �x, y, z� � xyz,

CAPSTONE

49. Let be a function in which and are functions
of a single variable Give the Chain Rule for finding 

50. Let be a function in which and are functions
of two variables and Give the Chain Rule for finding

and 

51. If give the rule for finding implicitly. If
give the rule for finding and 

implicitly.
�z��y�z��xf �x, y, z� � 0,

dy�dxf �x, y� � 0,

�w��t.�w��s
t.s

yxw � f �x, y�
dw�dt.t.

yxw � f �x, y�
WRITING ABOUT CONCEPTS
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13.6 Directional Derivatives and Gradients 933

13.6 Directional Derivatives and Gradients
■ Find and use directional derivatives of a function of two variables.
■ Find the gradient of a function of two variables.
■ Use the gradient of a function of two variables in applications.
■ Find directional derivatives and gradients of functions of three variables.

Directional Derivative
You are standing on the hillside pictured in Figure 13.42 and want to determine the
hill’s incline toward the axis. If the hill were represented by you would
already know how to determine the slopes in two different directions—
the slope in the direction would be given by the partial derivative and
the slope in the direction would be given by the partial derivative In this
section, you will see that these two partial derivatives can be used to find the slope in
any direction.

To determine the slope at a point on a surface, you will define a new type of
derivative called a directional derivative. Begin by letting be a surface
and be a point in the domain of as shown in Figure 13.43. The “direction”
of the directional derivative is given by a unit vector

where is the angle the vector makes with the positive axis. To find the desired
slope, reduce the problem to two dimensions by intersecting the surface with a 
vertical plane passing through the point and parallel to as shown in Figure 13.44.
This vertical plane intersects the surface to form a curve The slope of the surface
at in the direction of is defined as the slope of the curve at that
point.

Informally, you can write the slope of the curve as a limit that looks much like
those used in single-variable calculus. The vertical plane used to form intersects the

plane in a line represented by the parametric equations

and

so that for any value of the point lies on the line For each of the points 
and there is a corresponding point on the surface.

Point above 

Point above 

Moreover, because the distance between and is

you can write the slope of the secant line through and as 

Finally, by letting approach 0, you arrive at the following definition.t

f�x, y� � f�x0, y0�
t

�
f �x0 � t cos �, y0 � t sin �� � f �x0, y0�

t
.

�x, y, f�x, y���x0, y0, f�x0, y0��

 � �t�
��x � x0�2 � � y � y0�2 � ��t cos ��2 � �t sin ��2

QP

Q�x, y, f�x, y��
P�x0, y0, f �x0, y0��

Q,
PL.Q�x, y�t,

y � y0 � t sin �

x � x0 � t cos �

L,xy-
C

C

Cu�x0, y0, f �x0, y0��
C.

u,P

x-�

u � cos � i � sin � j

f,P�x0, y0�
z � f�x, y�

fx�x, y�.x-
fy�x, y�,y-

z � f �x, y�,z-

y

x Surface:
z = f (x, y)

z

Figure 13.42

x

P

L

θ y
u

z = f (x, y)

z

Figure 13.43

y

x

t

P Q

Curve: C
(x0, y0, f (x0, y0))

(x, y, f (x, y))

z Surface:
z = f (x, y)

Figure 13.44
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Calculating directional derivatives by this definition is similar to finding the
derivative of a function of one variable by the limit process (given in Section 2.1). A
simpler “working” formula for finding directional derivatives involves the partial
derivatives and 

There are infinitely many directional derivatives of a surface at a given point—
one for each direction specified by as shown in Figure 13.45. Two of these are the
partial derivatives and 

1. Direction of positive axis 

2. Direction of positive axis 

Dj f�x, y� � fx�x, y� cos 
�

2
� fy�x, y� sin 

�

2
� fy�x, y�

�� � ��2�: u � cos 
�

2
 i � sin 

�

2
 j � jy-

Di f�x, y� � fx�x, y� cos 0 � fy�x, y� sin 0 � fx�x, y�

�� � 0�: u � cos 0 i � sin 0 j � ix-

fy.fx

u,

fy.fx

934 Chapter 13 Functions of Several Variables

DEFINITION OF DIRECTIONAL DERIVATIVE

Let be a function of two variables and and let be a
unit vector. Then the directional derivative of f in the direction of u, denoted
by is

provided this limit exists.

Du f�x, y� � lim
t→0  

f�x � t cos �, y � t sin �� � f�x, y�
t

Du f,

u � cos � i � sin �jyxf

THEOREM 13.9 DIRECTIONAL DERIVATIVE

If is a differentiable function of and then the directional derivative of in
the direction of the unit vector is

Du f�x, y� � fx�x, y� cos � � fy�x, y� sin �.

u � cos � i � sin � j
fy,xf

PROOF For a fixed point let and let Then,
let Because is differentiable, you can apply the Chain Rule given in
Theorem 13.6 to obtain

If then and so

By the definition of it is also true that

Consequently, ■Du f�x0, y0� � fx�x0, y0� cos � � fy�x0, y0� sin �.

 � lim
t→0

  
f �x0 � t cos �, y0 � t sin �� � f�x0, y0�

t
.

g��0� � lim
t→0

 
g�t� � g�0�

t

g��t�,

g��0� � fx�x0, y0� cos � � fy�x0, y0� sin �.

y � y0,x � x0t � 0,

g��t� � fx�x, y�x��t� � fy�x, y�y��t� � fx�x, y� cos � � fy�x, y� sin �.

fg�t� � f�x, y�.
y � y0 � t sin �.x � x0 � t cos ��x0, y0�,

y

x
(x, y)

The vector u

z

Surface:
z = f (x, y)

Figure 13.45
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EXAMPLE 1 Finding a Directional Derivative

Find the directional derivative of

Surface

at in the direction of

Direction

Solution Because and are continuous, is differentiable, and you can apply
Theorem 13.9.

Evaluating at and produces

See Figure 13.46. ■

You have been specifying direction by a unit vector If the direction is given by
a vector whose length is not 1, you must normalize the vector before applying the
formula in Theorem 13.9.

EXAMPLE 2 Finding a Directional Derivative

Find the directional derivative of

Surface

at in the direction of

Direction

Solution Because and are continuous, is differentiable, and you can apply
Theorem 13.9. Begin by finding a unit vector in the direction of 

Using this unit vector, you have

See Figure 13.47. ■ �
8
5

.

 � �0��3
5� � ��2���

4
5�

 Du f�1, 
�

2� � �2 sin ���3
5� � �2 cos ����

4
5�

 Du f �x, y� � �2x sin 2y��cos �� � �2x2 cos 2y��sin ��

u �
v

	v 	
�

3
5

i �
4
5

j � cos � i � sin � j

v.
ffyfx

v � 3i � 4j.

�1, ��2�

f�x, y� � x2 sin 2y

u.

 
 �1.866.

 � �1 �
�3
2

 Du f�1, 2� � ��2��1
2� � ��1���3

2 �
y � 2� � ��3, x � 1,

 � ��2x� cos � � ��
y
2� sin �

 Du f�x, y� � fx�x, y� cos � � fy�x, y� sin �

ffyfx

u � �cos 
�

3�i � �sin 
�

3�j.

�1, 2�

f�x, y� � 4 � x2 �
1
4y2

13.6 Directional Derivatives and Gradients 935

Surface:

f (x, y) = 4 − x2 −    y21
4

y

z

(1, 2)

5

4

3 ux

3
π

Figure 13.46

Surface:
f (x, y) = x2 sin 2y

y
x

/2π
πu

1, ( (

z

25

−25

20

15

10

5

3

2
π

Figure 13.47

NOTE Note in Figure 13.46 that you can interpret the directional derivative as giving the
slope of the surface at the point in the direction of the unit vector ■u.�1, 2, 2�
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The Gradient of a Function of Two Variables
The gradient of a function of two variables is a vector-valued function of two
variables. This function has many important uses, some of which are described later
in this section.

EXAMPLE 3 Finding the Gradient of a Function

Find the gradient of at the point 

Solution Using 

and

you have

At the point the gradient is

■

Because the gradient of is a vector, you can write the directional derivative of 
in the direction of as

In other words, the directional derivative is the dot product of the gradient and the
direction vector. This useful result is summarized in the following theorem.

Du f�x, y� � � fx�x, y�i � fy�x, y�j� � �cos � i � sin � j�.

u
ff

 � 6i � 4j.

 	f�1, 2� � �2
1

� 22�i � �ln 1 � 2�1��2�� j

�1, 2�,

	f�x, y� � �y
x

� y2�i � �ln x � 2xy�j.

fy�x, y� � ln x � 2xyfx�x, y� �
y
x

� y2

�1, 2�.f�x, y� � y ln x � xy2

936 Chapter 13 Functions of Several Variables

DEFINITION OF GRADIENT OF A FUNCTION OF TWO VARIABLES

Let be a function of and such that and exist. Then the
gradient of f, denoted by is the vector

is read as “del .” Another notation for the gradient is grad In
Figure 13.48, note that for each the gradient is a vector in the
plane (not a vector in space).

	f�x, y��x, y�,
f�x, y�.f	f

	f�x, y� � fx�x, y�i � fy�x, y�j.

	f�x, y�,
fyfxyxz � f(x, y�

NOTE No value is assigned to the symbol by itself. It is an operator in the same sense that
is an operator. When operates on it produces the vector ■	f �x, y�.f �x, y�,	d�dx

	

THEOREM 13.10 ALTERNATIVE FORM OF THE DIRECTIONAL DERIVATIVE

If is a differentiable function of and then the directional derivative of in
the direction of the unit vector is

Du f�x, y� � 	f(x, y� � u.

u
fy,xf

y

x

(x, y, f(x, y))

(x, y)∇f (x, y)

z

The gradient of is a vector in the -plane.
Figure 13.48

xyf
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y

x

z

P

Q
2

3

2

1

1

Surface:

f (x, y) = 3x2 − 2y2

Figure 13.49

THEOREM 13.11 PROPERTIES OF THE GRADIENT

Let be differentiable at the point 

1. If then for all 

2. The direction of maximum increase of is given by The maximum
value of is 

3. The direction of minimum increase of is given by The minimum
value of is �		f�x, y�	.Du f �x, y�

�	f �x, y�.f

		f �x, y�	.Du f�x, y�
	f�x, y�.f

u.Du f �x, y� � 0	f �x, y� � 0,

�x, y�.f

NOTE Part 2 of Theorem 13.11 says
that at the point increases most
rapidly in the direction of the gradient,
	f �x, y�.

f�x, y�,

EXAMPLE 4 Using to Find a Directional Derivative

Find the directional derivative of

at in the direction from to 

Solution Because the partials of are continuous, is differentiable and you can
apply Theorem 13.10. A vector in the specified direction is

and a unit vector in this direction is

Unit vector in direction of 

Because the gradient at is 

Gradient at 

Consequently, at the directional derivative is

Directional derivative at 

See Figure 13.49. ■

Applications of the Gradient
You have already seen that there are many directional derivatives at the point on
a surface. In many applications, you may want to know in which direction to move so
that increases most rapidly. This direction is called the direction of steepest
ascent, and it is given by the gradient, as stated in the following theorem.

f�x, y�

�x, y�

��3
4, 0� � �

27
10

.

 � ��
9
2

i � 0j� � �3
5

i �
4
5

j�
 Du f ��

3
4

, 0� � 	f ��
3
4

, 0� � u

��3
4, 0�

��3
4, 0�	f ��

3
4

, 0� � �
9
2

 i � 0j.

��3
4, 0�	f �x, y� � fx�x, y�i � fy�x, y�j � 6xi � 4yj,

PQ
\

u �
v

	v	
�

3
5

 i �
4
5

 j.

 �
3
4

 i � j

 PQ
\

� v � �0 �
3
4�i � �1 � 0�j

ff

Q�0, 1�.P��3
4, 0���3

4, 0�
f�x, y� � 3x2 � 2y2

	f
x, y�
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y

x

Maximum
increase

(x, y, f (x, y))

(x, y)

∇f (x, y)

z

The gradient of is a vector in the -plane
that points in the direction of maximum
increase on the surface given by 
Figure 13.50

z � f �x, y�.

xyf

3−3

−5

y

x

T(x, y) = 20 − 4x2 − y2

(2, −3)

Level curves:

5

The direction of most rapid increase in tem-
perature at is given by 
Figure 13.51

�16i � 6j.�2, �3�

If then for any direction (any ), you have

If then let be the angle between and a unit vector Using the
dot product, you can apply Theorem 11.5 to conclude that

and it follows that the maximum value of will occur when So,
and the maximum value of the directional derivative occurs when has the

same direction as Moreover, this largest value of is precisely

Similarly, the minimum value of can be obtained by letting so that
points in the direction opposite that of as shown in Figure 13.50.

■

To visualize one of the properties of the gradient, imagine a skier coming down a
mountainside. If denotes the altitude of the skier, then indicates the
compass direction the skier should take to ski the path of steepest descent. (Remember
that the gradient indicates direction in the plane and does not itself point up or
down the mountainside.)

As another illustration of the gradient, consider the temperature at any
point on a flat metal plate. In this case, gives the direction of greatest
temperature increase at the point as illustrated in the next example.

EXAMPLE 5 Finding the Direction of Maximum Increase

The temperature in degrees Celsius on the surface of a metal plate is

where and are measured in centimeters. In what direction from does the
temperature increase most rapidly? What is this rate of increase?

Solution The gradient is

It follows that the direction of maximum increase is given by

as shown in Figure 13.51, and the rate of increase is

■ 
 17.09
 per centimeter.

 � �292

 		T�2, �3�	 � �256 � 36

	T�2, �3� � �16i � 6j

 � �8x i � 2y j.

 	T�x, y� � Tx�x, y�i � Ty�x, y�j

�2, �3�yx

T�x, y� � 20 � 4x2 � y2

�x, y�,
	T�x, y��x, y�

T�x, y�

xy-

�	f�x, y�f�x, y�

	f�x, y�,u
� � �Du f�x, y�

		f�x, y�	 cos � � 		f�x, y�	.

Du f�x, y�	f�x, y�.
u� � 0,

cos � � 1.Du f�x, y�

 � 		f�x, y�	 cos �

 � 		f�x, y�	 	u	 cos �

 Du f�x, y� � 	f�x, y� � u

u.	f�x, y��	f�x, y� � 0,

 � 0.

 � �0i � 0j� � �cos �i � sin �j�
Du f�x, y� � 	f�x, y� � u

u	f�x, y� � 0,PROOF
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The solution presented in Example 5 can be misleading. Although the gradient
points in the direction of maximum temperature increase, it does not necessarily point
toward the hottest spot on the plate. In other words, the gradient provides a local
solution to finding an increase relative to the temperature at the point Once
you leave that position, the direction of maximum increase may change.

EXAMPLE 6 Finding the Path of a Heat-Seeking Particle

A heat-seeking particle is located at the point on a metal plate whose temper-
ature at is

Find the path of the particle as it continuously moves in the direction of maximum
temperature increase.

Solution Let the path be represented by the position function

A tangent vector at each point is given by

Because the particle seeks maximum temperature increase, the directions of and
are the same at each point on the path. So,

and

where depends on By solving each equation for and equating the results, you
obtain

The solution of this differential equation is Because the particle starts at the
point you can determine that So, the path of the heat-seeking
particle is

The path is shown in Figure 13.52. ■

In Figure 13.52, the path of the particle (determined by the gradient at each point)
appears to be orthogonal to each of the level curves. This becomes clear when you
consider that the temperature is constant along a given level curve. So, at any
point on the curve, the rate of change of in the direction of a unit tangent 
vector is 0, and you can write

is a unit tangent vector.

Because the dot product of and is 0, you can conclude that they must be
orthogonal. This result is stated in the following theorem.

u	f �x, y�

u	f�x, y� � u � DuT�x, y� � 0.

u
T�x, y�

T�x, y�

x �
2
81

 y4.

C � 2�81.�2, �3�,
x � Cy4.

dx
�8x

�
dy

�2y
.

dt�kt.k

�2y � k 
dy
dt

�8x � k 
dx
dt

	T�x, y� � �8xi � 2yj
r��t�

r��t� �
dx
dt

i �
dy
dt

j.

�x�t�, y�t��

r�t� � x�t�i � y�t�j.

T�x, y� � 20 � 4x2 � y2.

�x, y�
�2, �3�

�2, �3�.
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−3 3

−5

5

x

y

(2, −3)

T(x, y) = 20 − 4x2 − y2
Level curves:

Path followed by a heat-seeking particle
Figure 13.52
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EXAMPLE 7 Finding a Normal Vector to a Level Curve

Sketch the level curve corresponding to for the function given by

and find a normal vector at several points on the curve.

Solution The level curve for is given by

as shown in Figure 13.53(a). Because the gradient vector of at is

you can use Theorem 13.12 to conclude that is normal to the level curve at
the point Some gradient vectors are

These are shown in Figure 13.53(b).

(a) The surface is given by (b) The level curve is given by 
Figure 13.53 ■

f �x, y� � 0.f �x, y� � y � sin x.

x

1

2

3

−2

−3

y − sin x = 0

πππ−
2

Gradient is
normal to the
level curve.

y

y

x

z

π
π

−4

−4

4

4

−

	f��

2
, 1� � j.

	f��

3
, 
�3
2 � � �

1
2

i � j

	f�0, 0� � �i � j

	f��
�

3
, �

�3
2 � � �

1
2

i � j

	f ��
�

2
, �1� � j

	f ��
2�

3
, �

�3
2 � �

1
2

i � j

	f���, 0� � i � j

�x, y�.
	f�x, y�

 � �cos xi � j

 	f�x, y� � fx�x, y�i � fy�x, y�j

�x, y�f

y � sin x

0 � y � sin x

c � 0

f�x, y� � y � sin x

c � 0

940 Chapter 13 Functions of Several Variables

THEOREM 13.12 GRADIENT IS NORMAL TO LEVEL CURVES

If is differentiable at and then is normal to
the level curve through �x0, y0�.

	f�x0, y0�	f�x0, y0� � 0,�x0, y0�f
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Functions of Three Variables
The definitions of the directional derivative and the gradient can be extended naturally
to functions of three or more variables. As often happens, some of the geometric
interpretation is lost in the generalization from functions of two variables to those of
three variables. For example, you cannot interpret the directional derivative of a
function of three variables to represent slope.

The definitions and properties of the directional derivative and the gradient of a
function of three variables are given in the following summary.

EXAMPLE 8 Finding the Gradient for a Function of Three Variables

Find for the function given by

and find the direction of maximum increase of at the point 

Solution The gradient vector is given by

So, it follows that the direction of maximum increase at is

See Figure 13.54. ■	f�2, �1, 1� � 4 i � 2 j � 4 k.

�2, �1, 1�

 � 2x i � 2y j � 4k.

 	f�x, y, z� � fx�x, y, z�i � fy�x, y, z�j � fz�x, y, z�k

�2, �1, 1�.f

f�x, y, z� � x2 � y2 � 4z

	f �x, y, z�

13.6 Directional Derivatives and Gradients 941

NOTE You can generalize Theorem 13.12 to functions of three variables. Under suitable
hypotheses,

is normal to the level surface through ■�x0, y0, z0�.

	f �x0, y0, z0�

DIRECTIONAL DERIVATIVE AND GRADIENT FOR THREE VARIABLES

Let be a function of and with continuous first partial derivatives. The
directional derivative of f in the direction of a unit vector 
is given by

The gradient of f is defined as

Properties of the gradient are as follows.

1.

2. If then for all 

3. The direction of maximum increase of is given by The maximum
value of is

Maximum value of 

4. The direction of minimum increase of is given by The mini-
mum value of is

Minimum value of Du f �x, y, z��		f�x, y, z�	.

Du f�x, y, z�
�	f�x, y, z�.f

Du f �x, y, z�		f�x, y, z�	.

Du f�x, y, z�
	f�x, y, z�.f

u.Du f�x, y, z� � 0	f�x, y, z� � 0,

Du f�x, y, z� � 	f�x, y, z� � u

	f�x, y, z� � fx�x, y, z�i � fy�x, y, z�j � fz�x, y, z�k.

Du f�x, y, z� � afx�x, y, z� � bfy�x, y, z� � cfz�x, y, z�.

u � ai � bj � ck
z,y,x,f

y

x

∇f (2, −1, 1) = 4i − 2j − 4k

(2, −1, 1)

z

2 4 6 

−2

2

2 

4

6

8

−6

−4

−4

Level surface and gradient vector at
for 

Figure 13.54
f �x, y, z� � x2 � y2 � 4z�2, �1, 1�
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In Exercises 1–12, find the directional derivative of the function
at in the direction of v.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

In Exercises 13–16, find the directional derivative of the
function in the direction of the unit vector 

13.

14.

15.

16.

In Exercises 17–20, find the directional derivative of the
function at in the direction of 

17.

18.

19.

20.

In Exercises 21–26, find the gradient of the function at the given
point.

21.

22.

23.

24.

25.

26.

In Exercises 27–30, use the gradient to find the directional
derivative of the function at in the direction of 

27.

28.

29.

30.

In Exercises 31–40, find the gradient of the function and the
maximum value of the directional derivative at the given point.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

In Exercises 41– 46, consider the function 

41. Sketch the graph of in the first octant and plot the point
on the surface.

42. Find where using each given
value of 

(a) (b)

(c) (d)

43. Find where using each given vector 

(a)

(b)

(c) is the vector from to 

(d) is the vector from to 

44. Find 

45. Find the maximum value of the directional derivative at 

46. Find a unit vector orthogonal to and calculate
Discuss the geometric meaning of the result.Du f �3, 2�.

	f �3, 2�u

�3, 2�.
	f �x, y�.

�4, 5�.�3, 2�v

��2, 6�.�1, 2�v

v � �3i � 4j

v � i � j

v.u �
v

	 v 	
,Du f �3, 2�,

� � �
�

6
� �

4�

3

� �
2�

3
� �

�

4

�.
u � cos � i � sin� j,Du f �3, 2�,

�3, 2, 1�
f

f 
x, y� � 3 �
x
3

�
y
2

.

�2, 0, �4�f �x, y, z� � xeyz

�2, 1, 1�w � xy 2z2

�0, 0, 0�w �
1

�1 � x2 � y 2 � z2

�1, 4, 2�f �x, y, z� � �x2 � y 2 � z2

�1, 2�g�x, y� � ln 3�x2 � y 2

�0, 5�g�x, y� � ye�x

�0, 
�

3�h�x, y� � y cos�x � y�

�2, 
�

4�h�x, y� � x tan y

�0, 1�f �x, y� �
x � y
y � 1

�1, 0�f �x, y� � x2 � 2xy

Point        Function                              

P��, 0�, Q��

2
, ��f �x, y� � sin 2x cos y,

P�0, 0�, Q�2, 1�f �x, y� � ey sin x,

P��1, 4�, Q�3, 6�f �x, y� � 3x2 � y2 � 4,

P�1, 2�, Q�2, 3�g�x, y� � x2 � y2 � 1,

Q.P

�4, 3, �1�w � x tan�y � z�,
�1, 1, �2�w � 3x2 � 5y2 � 2z2,

�3, �4�z � cos�x2 � y2�,
�2, 3�z � ln�x2 � y�,
�2, 0�g�x, y� � 2xey�x,

�2, 1�f �x, y� � 3x � 5y2 � 1,

P�1, 0, 0�, Q�4, 3, 1�h�x, y, z� � ln�x � y � z�,
P�2, 4, 0�, Q�0, 0, 0�g�x, y, z� � xyez,

P�0, ��, Q��

2
, 0�f �x, y� � cos�x � y�,

P�1, 1�, Q�4, 5�f �x, y� � x2 � 3y 2,

Q.P

� �
2�

3
g�x, y� � xey ,

� �
�

3
f �x, y� � sin�2x � y�,

� � �
�

6
f �x, y� �

y
x � y

,

� �
�

4
f �x, y� � x2 � y 2,

u � cos � i 1 sin � j.

P�4, 1, 1�, v � �1, 2, �1�h�x, y, z� � x arctan yz,

P�2, 1, 1�, v � �2, 1, 2�h(x, y, z� � xyz,

P�1, 2, �1�, v � 2i � j � kf �x, y, z� � xy � yz � xz,

P�1, 1, 1�, v �
�3
3

� i � j � k�f �x, y, z� � x2 � y 2 � z2,

P�0, 0�, v � i � jh�x, y� � e��x2�y2�,

P�3, 4�, v � 3i � 4jg�x, y� � �x2 � y2,

P�1, 0�, v � jg�x, y� � arccos xy,

P�1, 
�

2�, v � �ih�x, y� � ex sin y,

P�1, 1�, v � �jf �x, y� �
x
y
 ,

P�0, �2�, v �
1
2�i � �3 j�f �x, y� � xy,

P�4, 3�, v �
�2
2

 �i � j�f �x, y� � x3 � y3,

P�1, 2�, v �
3
5

i �
4
5

jf �x, y� � 3x � 4xy � 9y,

P
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13.6 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.
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Investigation In Exercises 47 and 48, (a) use the graph to
estimate the components of the vector in the direction of the
maximum rate of increase in the function at the given point. (b)
Find the gradient at the point and compare it with your
estimate in part (a). (c) In what direction would the function be
decreasing at the greatest rate? Explain.

47. 48.

49. Investigation Consider the function

at the point 

(a) Use a computer algebra system to graph the surface
represented by the function.

(b) Determine the directional derivative as a
function of where Use a computer
algebra system to graph the function on the interval 

(c) Approximate the zeros of the function in part (b) and
interpret each in the context of the problem.

(d) Approximate the critical numbers of the function in part (b)
and interpret each in the context of the problem.

(e) Find and explain its relationship to your
answers in part (d).

(f ) Use a computer algebra system to graph the level curve
of the function at the level On this curve, graph
the vector in the direction of and state its
relationship to the level curve.

50. Investigation Consider the function

(a) Analytically verify that the level curve of at the level
is a circle. 

(b) At the point on the level curve for which 
sketch the vector showing the direction of the greatest rate
of increase of the function. (To print an enlarged copy of
the graph, go to the website www.mathgraphs.com.)

(c) At the point on the level curve, sketch a vector
such that the directional derivative is 0.

(d) Use a computer algebra system to graph the surface to
verify your answers in parts (a)–(c).

In Exercises 51–54, find a normal vector to the level curve
at 

51. 52.

53. 54.

In Exercises 55–58, (a) find the gradient of the function at 
(b) find a unit normal vector to the level curve at 
(c) find the tangent line to the level curve at 
and (d) sketch the level curve, the unit normal vector, and the
tangent line in the plane.

55. 56.

57. 58.

65. Temperature Distribution The temperature at the point 
on a metal plate is

Find the direction of greatest increase in heat from the point
�3, 4�.

T �
x

x2 � y 2.

�x, y�

c � 40, P�2, �1�c � 1, P�1, 1�
f �x, y� � 9x2 � 4y2f �x, y� � 3x2 � 2y2

c � 3, P�4, �1�c � 6, P�2, 10�
f �x, y� � x � y2f �x, y� � 4x2 � y

xy-

P,f 
x, y� � c
P,f 
x, y� � c
P,

P�1, 1�c �
1
2,P��1, 3�c � �3,

f �x, y� �
x

x2 � y 2f �x, y� � xy

P�3, 4�c � 25,P�0, 0�c � 6,

f �x, y� � x2 � y 2f �x, y� � 6 � 2x � 3y

P.f 
x, y� � c

��3, 2�

c � 2,��3, 2�
c � 2

f �x, y�

f �x, y� �
8y

1 � x2 � y 2.

	f �4, �3�,
c � 7.f

		f �4, �3�	

�0, 2��.
u � cos � i � sin � j.�,

Du f �4, �3�

�4, �3, 7�.

f �x, y� � x2 � y 2

3

3

x

y

1

1

2

2

Generated by Maple

z

1

3
3

x

y

Generated by Maple

z

�1, 2��1, 2�
f �x, y� �

1
2y�x,f �x, y� �

1
10�x2 � 3xy � y 2�,
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59. Define the derivative of the function in the
direction 

60. Write a paragraph describing the directional derivative 
of the function in the direction when
(a) and (b) 

61. Define the gradient of a function of two variables. State the
properties of the gradient.

62. Sketch the graph of a surface and select a point on the 
surface. Sketch a vector in the plane giving the direction
of steepest ascent on the surface at 

63. Describe the relationship of the gradient to the level curves
of a surface given by z � f �x, y�.

P.
xy-

P

� � 90
.� � 0

u � cos �i � sin �jf

u � cos � i � sin �j.
z � f �x, y�

WRITING ABOUT CONCEPTS

64. Consider the function 

(a) Sketch the graph of in the first octant and plot the
point on the surface.

(b) Find where for

(c) Repeat part (b) for 

(d) Find and 

(e) Find a unit vector orthogonal to and calculate
Discuss the geometric meaning of the result.Du f �1, 2�.

	f �1, 2�u

		f �1, 2�	.	f �1, 2�
� � ��3.

� � ���4.
u � cos � i � sin � j,Du f �1, 2�,

�1, 2, 4�
f

f �x, y� � 9 � x2 � y 2.

CAPSTONE

CAS

CAS
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66. Topography The surface of a mountain is modeled by the
equation A mountain
climber is at the point In what direction
should the climber move in order to ascend at the greatest rate?

67. Topography The figure shows a topographic map carried by
a group of hikers. Sketch the paths of steepest descent if
the hikers start at point and if they start at point (To
print an enlarged copy of the graph, go to the website
www.mathgraphs.com.)

68. Meteorology Meteorologists measure the atmospheric
pressure in units called millibars. From these observations they
create weather maps on which the curves of equal atmospheric
pressure (isobars) are drawn (see figure). These are level curves
to the function yielding the pressure at any point. Sketch
the gradients to the isobars at the points and Although
the magnitudes of the gradients are unknown, their lengths
relative to each other can be estimated. At which of the three
points is the wind speed greatest if the speed increases as the
pressure gradient increases? (To print an enlarged copy of the
graph, go to the website www.mathgraphs.com.)

Heat-Seeking Path In Exercises 69 and 70, find the path of a
heat-seeking particle placed at point on a metal plate with a
temperature field 

69.

70.

71. Temperature The temperature at the point on a metal
plate is modeled by 

(a) Use a computer algebra system to graph the temperature
distribution function.

(b) Find the directions of no change in heat on the plate from
the point 

(c) Find the direction of greatest increase in heat from the point

72. Investigation A team of oceanographers is mapping the
ocean floor to assist in the recovery of a sunken ship. Using
sonar, they develop the model

where is the depth in meters, and and are the distances in
kilometers.

(a) Use a computer algebra system to graph the surface.

(b) Because the graph in part (a) is showing depth, it is not a
map of the ocean floor. How could the model be changed
so that the graph of the ocean floor could be obtained?

(c) What is the depth of the ship if it is located at the
coordinates and 

(d) Determine the steepness of the ocean floor in the positive
direction from the position of the ship.

(e) Determine the steepness of the ocean floor in the positive 
direction from the position of the ship.

(f) Determine the direction of the greatest rate of change of
depth from the position of the ship.

True or False? In Exercises 73–76, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

73. If then for any unit
vector 

74. If then 

75. If exists, then 

76. If for any unit vector then 

77. Find a function such that 

78. Consider the function

and the unit vector 

Does the directional derivative of at in the direction of
exist? If were defined as 2 instead of 0, would the

directional derivative exist?

79. Consider the function 

(a) Show that is continuous at the origin.

(b) Show that and exist at the origin, but that the directional
derivatives at the origin in all other directions do not exist.

(c) Use a computer algebra system to graph near the origin to
verify your answers in parts (a) and (b). Explain.

f

fyfx

f

f �x, y� � 3�xy.

f �0, 0�u
P�0, 0�f

u �
1
�2

�i � j�.

f �x, y� � �   4xy
x2 � y2

,

0,
     

�x, y� � �0, 0�

�x, y� � �0, 0�

	f � e x cos y i � e x sin y j � z k.f

c � 0.u,Du f �x0, y0� � c

Du f �x, y� � �D�u f �x, y�.Du f �x, y�
�1 
 Du f �x, y� 
 1.f �x, y� � x � y,

u.
Du f �0, 0� � 0f �x, y� � �1 � x2 � y 2,

y-

x-

y � 0.5?x � 1

yxD

0 
 x 
 2, 0 
 y 
 2D � 250 � 30x2 � 50 sin 
�y
2

,

�3, 5�.

�3, 5�.

x � 0, y � 0.T�x, y� � 400e��x2�y��2,
�x, y�

P�4, 3�T�x, y� � 100 � x2 � 2y 2

P�10, 10�T�x, y� � 400 � 2x2 � y 2

Point      Temperature Field             

T 
x, y�.
P

AA

BB

CC

C.B,A,
P�x, y�

1800

1800

A

B
1994

1671

B.A

�500, 300, 4390�.
h�x, y� � 5000 � 0.001x2 � 0.004y 2.
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13.7 Tangent Planes and Normal Lines 945

13.7 Tangent Planes and Normal Lines
■ Find equations of tangent planes and normal lines to surfaces.
■ Find the angle of inclination of a plane in space.
■ Compare the gradients and 

Tangent Plane and Normal Line to a Surface
So far you have represented surfaces in space primarily by equations of the form

Equation of a surface 

In the development to follow, however, it is convenient to use the more general 
representation For a surface given by you can convert to
the general form by defining as

Because you can consider to be the level surface of given by

Alternative equation of surface 

EXAMPLE 1 Writing an Equation of a Surface

For the function given by 

describe the level surface given by 

Solution The level surface given by can be written as

which is a sphere of radius 2 whose center is at the origin. ■

You have seen many examples of the usefulness of normal lines in applications
involving curves. Normal lines are equally important in analyzing surfaces and solids.
For example, consider the collision of two billiard balls. When a stationary ball is
struck at a point on its surface, it moves along the line of impact determined by 
and the center of the ball. The impact can occur in two ways. If the cue ball is 
moving along the line of impact, it stops dead and imparts all of its momentum to the
stationary ball, as shown in Figure 13.55. If the cue ball is not moving along the line
of impact, it is deflected to one side or the other and retains part of its momentum.
That part of the momentum that is transferred to the stationary ball occurs along the
line of impact, regardless of the direction of the cue ball, as shown in Figure 13.56.
This line of impact is called the normal line to the surface of the ball at the point 

Figure 13.55 Figure 13.56

Line of
impact

Line of
impact

Line of
impact

P.

PP

x2 � y2 � z2 � 4

F�x, y, z� � 0

F�x, y, z� � 0.

F�x, y, z� � x2 � y2 � z2 � 4

SF�x, y, z� � 0.

FSf �x, y� � z � 0,

F�x, y, z� � f �x, y� � z.

F
z � f �x, y�,SF�x, y, z� � 0.

Sz � f �x, y�.

�F �x, y, z�.�f �x, y�

E X P L O R A T I O N

Billiard Balls and Normal Lines
In each of the three figures below,
the cue ball is about to strike a
stationary ball at point Explain
how you can use the normal line
to the stationary ball at point to
describe the resulting motion of
each of the two balls. Assuming
that each cue ball has the same
speed, which stationary ball will
acquire the greatest speed? Which
will acquire the least? Explain
your reasoning.

Normal line
to stationary
ball at point P

Stationary
ball

Moving
cue ball

P

Normal line
to stationary
ball at point P

Stationary
ball

Moving
cue ballP

Normal line
to stationary
ball at point P

Stationary
ball

Moving
cue ball

P

P

P.
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In the process of finding a normal line to a surface, you are also able to solve the
problem of finding a tangent plane to the surface. Let be a surface given by 

and let be a point on Let be a curve on through that is defined by
the vector-valued function 

Then, for all 

If is differentiable and and all exist, it follows from the Chain Rule
that

At the equivalent vector form is

Gradient Tangent 
vector

This result means that the gradient at is orthogonal to the tangent vector of every
curve on through So, all tangent lines on lie in a plane that is normal to

and contains as shown in Figure 13.57.

To find an equation for the tangent plane to at let be an
arbitrary point in the tangent plane. Then the vector

lies in the tangent plane. Because is normal to the tangent plane at
it must be orthogonal to every vector in the tangent plane, and you have

which leads to the following theorem.�F�x0, y0, z0� � v � 0,
�x0, y0, z0�,

�F�x0, y0, z0�

v � �x � x0�i � �y � y0�j � �z � z0�k

�x, y, z��x0, y0, z0�,S

P,�F�x0, y0, z0�
SP.S

P

0 � �F�x0, y0, z0� � r� �t0�.

�x0, y0, z0�,

 � Fx�x, y, z�x��t� � Fy�x, y, z�y��t� � Fz�x, y, z�z��t�.
0 � F��t�

z��t�y��t�,x��t�,F

F�x�t�, y�t�, z�t�� � 0.

t,

r�t� � x�t�i � y �t�j � z�t�k.

PSCS.P�x0, y0, z0�

F�x, y, z� � 0

S

946 Chapter 13 Functions of Several Variables

F

Surface S:
F(x, y, z) = 0

P (x0, y0, z0)

Tangent plane to surface at 
Figure 13.57

PS

DEFINITIONS OF TANGENT PLANE AND NORMAL LINE

Let be differentiable at the point on the surface given by
such that 

1. The plane through that is normal to is called the tangent
plane to at 

2. The line through having the direction of is called the normal
line to at P.S

�F�x0, y0, z0�P

P.S
�F�x0, y0, z0�P

�F�x0, y0, z0� � 0.F�x, y, z� � 0
SP�x0, y0, z0�F

NOTE In the remainder of this section, assume to be nonzero unless stated
otherwise. ■

�F�x0, y0, z0�

THEOREM 13.13 EQUATION OF TANGENT PLANE

If is differentiable at then an equation of the tangent plane to the
surface given by at is

Fx�x0, y0, z0��x � x0� � Fy�x0, y0, z0��y � y0� � Fz�x0, y0, z0��z � z0) � 0.

�x0, y0, z0�F�x, y, z� � 0
�x0, y0, z0�,F
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EXAMPLE 2 Finding an Equation of a Tangent Plane

Find an equation of the tangent plane to the hyperboloid given by

at the point 

Solution Begin by writing the equation of the surface as

Then, considering

you have

At the point the partial derivatives are

So, an equation of the tangent plane at is

Figure 13.58 shows a portion of the hyperboloid and tangent plane. ■

To find the equation of the tangent plane at a point on a surface given by
you can define the function by

Then is given by the level surface and by Theorem 13.13 an equation
of the tangent plane to at the point is�x0, y0, z0�S

F�x, y, z� � 0,S

F�x, y, z� � f �x, y� � z.

Fz � f �x, y�,

 x � y � 2z � 6 � 0.

 �4x � 4y � 8z � 24 � 0

 �4x � 4 � 4y � 4 � 8z � 32 � 0

 �4�x � 1� � 4�y � 1� � 8�z � 4� � 0

�1, �1, 4�

Fx�1, �1, 4� � �4,    Fy�1, �1, 4� � 4,  and  Fz�1, �1, 4� � 8.

�1, �1, 4�

Fx�x, y, z� � �4x,    Fy�x, y, z� � �4y,  and  Fz�x, y, z� � 2z.

F�x, y, z� � z2 � 2x2 � 2y2 � 12

z2 � 2x2 � 2y2 � 12 � 0.

�1, �1, 4�.

z2 � 2x2 � 2y2 � 12

13.7 Tangent Planes and Normal Lines 947

Some three-dimensional graphing utilities are capable of graphing
tangent planes to surfaces. Two examples are shown below.

TECHNOLOGY

y

x

Generated by Mathematica

z

Sphere: x2 � y 2 � z2 � 1
x Generated by Mathematica

y

z

Paraboloid: z � 2 � x2 � y 2

fx�x0, y0��x � x0� � fy�x0, y0��y � y0� � �z � z0� � 0.

x

y

z

3

3

6

5

F(1, −1, 4)

Surface:
z2 − 2x2 − 2y2 − 12 = 0

Tangent plane to surface
Figure 13.58
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EXAMPLE 3 Finding an Equation of the Tangent Plane

Find the equation of the tangent plane to the paraboloid

at the point 

Solution From you obtain

and

So, an equation of the tangent plane at is

This tangent plane is shown in Figure 13.59. ■

The gradient provides a convenient way to find equations of normal
lines, as shown in Example 4.

EXAMPLE 4 Finding an Equation of a Normal Line to a Surface

Find a set of symmetric equations for the normal line to the surface given by 
at the point 

Solution Begin by letting

Then, the gradient is given by

and at the point you have

The normal line at has direction numbers 6, and and the corre-
sponding set of symmetric equations is

See Figure 13.60. ■

x � 2
6

�
y � 2
�6

�
z � 3
�4

.

�4,�6,�2, �2, �3�

 � 6i � 6j � 4k.

 �F�2, �2, �3� � ��2���3�i � �2�(�3�j � �2���2�k

�2, �2, �3�

 � yz i � xz j � xyk

 �F�x, y, z� � Fx�x, y, z�i � Fy�x, y, z�j � Fz�x, y, z�k

F�x, y, z� � xyz � 12.

�2, �2, �3�.
xyz � 12

�F�x, y, z�

 �
1
5

x �
4
5

y � z �
3
2

� 0.

 �
1
5

�x � 1� �
4
5

�y � 1� � �z �
1
2� � 0

 fx�1, 1��x � 1� � fy�1, 1��y � 1� � �z �
1
2� � 0

�1, 1, 12�

fy�1, 1� � �
4
5

.fy�x, y� � �
4y
5

fx�1, 1� � �
1
5

fx�x, y� � �
x
5

z � f �x, y� � 1 �
1
10�x2 � 4y2�,

�1, 1, 12�.

z � 1 �
1
10

 �x2 � 4y2�
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z

Surface:

1
2

z = 1 − (x2 + 4y2)1
10

y

x

1, 1, 

2

2

3

−3

6

−6

5

))

Figure 13.59

y

x

z

2

2

4

4

−6

−4

−2

−2

−4

∇F(2, −2, −3)

Surface:  xyz = 12

Figure 13.60
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Knowing that the gradient is normal to the surface given by
allows you to solve a variety of problems dealing with surfaces and

curves in space.

EXAMPLE 5 Finding the Equation of a Tangent Line to a Curve

Describe the tangent line to the curve of intersection of the surfaces

Ellipsoid

Paraboloid

at the point (0, 1, 3), as shown in Figure 13.61.

Solution Begin by finding the gradients to both surfaces at the point (0, 1, 3).

The cross product of these two gradients is a vector that is tangent to both surfaces at
the point 

So, the tangent line to the curve of intersection of the two surfaces at the point 
is a line that is parallel to the axis and passes through the point ■

The Angle of Inclination of a Plane
Another use of the gradient is to determine the angle of inclination of the
tangent plane to a surface. The angle of inclination of a plane is defined as the angle

between the given plane and the plane, as shown in Figure 13.62.
(The angle of inclination of a horizontal plane is defined as zero.) Because the vector

is normal to the plane, you can use the formula for the cosine of the angle
between two planes (given in Section 11.5) to conclude that the angle of inclination
of a plane with normal vector is given by

The angle of inclination
Figure 13.62

y

x
θ

θ

z

n k

n

xy-k

xy-	 �0 
 	 
 ��2�

�F�x, y, z�

�0, 1, 3�.x-
�0, 1, 3�

�F�0, 1, 3� � �G�0, 1, 3� � 	 i
0
0

j
4
2

k
12
1	 � �20i

�0, 1, 3�.

 �G�0, 1, 3� � 2j � k �F�0, 1, 3� � 4j � 12k

 �G�x, y, z� � 2xi � 2yj � k �F�x, y, z� � 2xi � 4yj � 4zk

 G�x, y, z� � x2 � y2 � z � 4 F�x, y, z� � x2 � 2y2 � 2z2 � 20

Paraboloid                                       Ellipsoid                                                  

 x2 � y2 � z � 4

 x2 � 2y2 � 2z2 � 20

F�x, y, z� � 0
�F�x, y, z�
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Angle of inclination of a planecos 	 �
	n � k	

n
 
k


�
	n � k	


n

.

x
y

z

4 5
32

4

5

(0, 1, 3)

Ellipsoid: x2 + 2y2 + 2z2 = 20

Paraboloid: x2 + y2 + z = 4

Tangent line

Figure 13.61

1053714_1307.qxp  10/27/08  12:09 PM  Page 949



EXAMPLE 6 Finding the Angle of Inclination of a Tangent Plane

Find the angle of inclination of the tangent plane to the ellipsoid given by

at the point 

Solution If you let

the gradient of at the point is given by

Because is normal to the tangent plane and is normal to the plane, it
follows that the angle of inclination of the tangent plane is given by

which implies that 

as shown in Figure 13.63. ■

A Comparison of the Gradients and 
This section concludes with a comparison of the gradients and 
In the preceding section, you saw that the gradient of a function of two variables is
normal to the level curves of Specifically, Theorem 13.12 states that if is
differentiable at and then is normal to the level curve
through Having developed normal lines to surfaces, you can now extend this
result to a function of three variables. The proof of Theorem 13.14 is left as an
exercise (see Exercise 78).

When working with the gradients and be sure you remember
that is a vector in the plane and is a vector in space.�F�x, y, z�xy-�f �x, y�

�F�x, y, z�,�f �x, y�

�x0, y0�.
�f �x0, y0��f �x0, y0� � 0,�x0, y0�

ff.
f

�F�x, y, z�.�f �x, y�

�F �x, y, z��f �x, y�

Alternative formula for angle of
inclination (See Exercise 77.)

cos 	 �
1

�� fx�x0, y0�
2 � � fy�x0, y0�
2 � 1
.

	 � arccos�2
3

� 35.3
,

cos 	 �
	�F�2, 2, 1� � k	


�F�2, 2, 1�
 �
2�3

��1�3�2 � �1�3�2 � �2�3�2
��2

3

xy-k�F�2, 2, 1�

�F�2, 2, 1� �
1
3

i �
1
3

j �
2
3

k.

�F�x, y, z� �
x
6

i �
y
6

j �
2z
3

k

�2, 2, 1�F

F�x, y, z� �
x2

12
�

y2

12
�

z2

3
� 1

�2, 2, 1�.

x2

12
�

y2

12
�

z2

3
� 1
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+       +       = 1

y

x

θ
∇F(2, 2, 1)k

6
6

3

Ellipsoid:

x2 y2 z2

12 12 3

z

Figure 13.63

NOTE A special case of the procedure shown in Example 6 is worth noting. The angle of
inclination of the tangent plane to the surface at is given by

■

�x0, y0, z0�z � f �x, y�	

THEOREM 13.14 GRADIENT IS NORMAL TO LEVEL SURFACES

If is differentiable at and then is
normal to the level surface through �x0, y0, z0�.

�F�x0, y0, z0��F�x0, y0, z0� � 0,�x0, y0, z0�F
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In Exercises 1–4, describe the level surface 

1.

2.

3.

4.

In Exercises 5–16, find a unit normal vector to the surface 
at the given point. [Hint: Normalize the gradient vector

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

In Exercises 17–30, find an equation of the tangent plane to the
surface at the given point.

17. 18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

In Exercises 31– 40, find an equation of the tangent plane and
find symmetric equations of the normal line to the surface at the
given point.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

In Exercises 41– 46, (a) find symmetric equations of the tangent
line to the curve of intersection of the surfaces at the given
point, and (b) find the cosine of the angle between the gradient
vectors at this point. State whether or not the surfaces are
orthogonal at the point of intersection.

41.

42.

43.

44.

45.

46.

In Exercises 47–50, find the angle of inclination of the tangent
plane to the surface at the given point.

47.

48.

49.

50. �2, 1, 3�x2 � y2 � 5,

�1, 2, 3�x2 � y2 � z � 0,

�2, 2, 2�2xy � z3 � 0,

�2, 2, 5�3x2 � 2y2 � z � 15,

�

�1, 2, 5�z � x2 � y2,  x � y � 6z � 33,

�3, 1, 2�x2 � y2 � z2 � 14,  x � y � z � 0,

�3, 4, 5�z � �x2 � y2,  5x � 2y � 3z � 22,

�3, 3, 4�x2 � z2 � 25,  y2 � z2 � 25,

�2, �1, 5�z � x2 � y2,  z � 4 � y,

�1, 1, 1�x2 � y2 � 2,  z � x,

�e, 2, 1�y ln xz2 � 2,

�1, 1, 
�

4�z � arctan 
y
x
,

�0, 2, 2�z � ye2xy,

�1, 2, 5�xyz � 10,

��2, �3, 6�xy � z � 0,

�3, 2, 5�z � x2 � y2,

�2, 2, 8�z � 16 � x2 � y2,

�1, 2, 4�x2 � y2 � z � 9,

�1, 2, 2�x2 � y2 � z2 � 9,

�3, 3, 3�x � y � z � 9,

�4, 4, 2�x � y�2z � 3�,
�1, �3, 2�xy2 � 3x � z2 � 8,

�1, 3, �2�x2 � 2z2 � y2,

�2, �2, 4�x2 � 4y2 � z2 � 36,

�5, 
�

4
, 
�2
2 �h�x, y� � cos y,

�3, 4, ln 5�h�x, y� � ln �x2 � y2,

�0, 
�

2
, 2�z � ex�sin y � 1�,

�3, �1, 1�z � 2 �
2
3x � y,

�1, 2, 1�f �x, y� � x2 � 2xy � y2,

�1, �1, 2�g�x, y� � x2 � y2,

�1, 0, 0�g�x, y� � arctan 
y
x
,

�3, 4, 5�z � �x2 � y2,

x

y

(1, 2, 2)
2

4

6

6
4

2

6

8

10

z

x y

(2, 1, 8)

z

2

2

4

6

10

2

�1, 2, 2��2, 1, 8�

f �x, y� �
y
x

z � x2 � y2 � 3

��

3
, 

�

6
, �

3
2�sin�x � y� � z � 2

�6, 
�

6
, 7�z � x sin y � 4

�2, 2, 3�zex 2�y 2
� 3 � 0

�1, 4, 3�ln� x
y � z� � 0

��1, 1, �1�x2y3 � y2z � 2xz3 � 4

�2, �1, 2�x2 � 3y � z3 � 9

�1, 2, 16�x2y4 � z � 0

�2, �1, 8�z � x3

�3, 4, 5�z � �x2 � y2

�1, 1, 2�x2 � y2 � z2 � 6

�2, 0, 2�x � y � z � 4

�0, 0, 0�3x � 4y � 12z � 0

Point          Surface                    

�F�x, y, z�.]

F�x, y, z� � 16x2 � 9y2 � 36z

F�x, y, z� � 4x2 � 9y2 � 4z2

F�x, y, z� � x2 � y2 � z2 � 25

F�x, y, z� � 3x � 5y � 3z � 15

F�x, y, z� � 0.
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13.7 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.
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In Exercises 51–56, find the point(s) on the surface at which the
tangent plane is horizontal. 

51.

52.

53.

54.

55.

56.

In Exercises 57 and 58, show that the surfaces are tangent to
each other at the given point by showing that the surfaces have
the same tangent plane at this point.

57.

58.

In Exercises 59 and 60, (a) show that the surfaces intersect at
the given point, and (b) show that the surfaces have perpendicular
tangent planes at this point.

59.

60.

61. Find a point on the ellipsoid where the 
tangent plane is perpendicular to the line with parametric 
equations

and 

62. Find a point on the hyperboloid where the
tangent plane is parallel to the plane 

67. Investigation Consider the function

on the intervals and 

(a) Find a set of parametric equations of the normal line and an
equation of the tangent plane to the surface at the point

(b) Repeat part (a) for the point 

(c) Use a computer algebra system to graph the surface, the nor-
mal lines, and the tangent planes found in parts (a) and (b).

68. Investigation Consider the function

on the intervals and 

(a) Find a set of parametric equations of the normal line and an
equation of the tangent plane to the surface at the point

(b) Repeat part (a) for the point 

(c) Use a computer algebra system to graph the surface, the nor-
mal lines, and the tangent planes found in parts (a) and (b).

69. Consider the functions

and

(a) Find a set of parametric equations of the tangent line to the
curve of intersection of the surfaces at the point ,
and find the angle between the gradient vectors.

(b) Use a computer algebra system to graph the surfaces.
Graph the tangent line found in part (a).

70. Consider the functions

and

(a) Use a computer algebra system to graph the first-octant
portion of the surfaces represented by and 

(b) Find one first-octant point on the curve of intersection and
show that the surfaces are orthogonal at this point.

(c) These surfaces are orthogonal along the curve of intersection.
Does part (b) prove this fact? Explain.

In Exercises 71 and 72, show that the tangent plane to the
quadric surface at the point can be written in the
given form.

71. Ellipsoid:

Plane:
x0x
a2 �

y0y
b2 �

z0z
c2 � 1

x2

a2 �
y2

b2 �
z2

c2 � 1

�x0, y0, z0�

g.f

g�x, y� �
�2
2
�1 � 3x2 � y2 � 6x � 4y.

f �x, y� � �16 � x2 � y2 � 2x � 4y

�1, 2, 4�

g�x, y� � 2x � y.f �x, y� � 6 � x2 � y2�4

��
2
3

, 
3�

2
, 

3
2�.

�2, 
�

2
, 

1
2�.

0 
 y 
 2�.�3 
 x 
 3

f �x, y� �
sin y

x

��1, 2, �4
5�.

�1, 1, 1�.

0 
 y 
 3.�2 
 x 
 2

f �x, y� �
4xy

�x2 � 1��y2 � 1�

x � 4y � z � 0.
x2 � 4y2 � z2 � 1

z � 3 � 2t.x � 2 � 4t, y � 1 � 8t,

x2 � 4y2 � z2 � 9

4x2 � y2 � 16z2 � 24,  �1, �2, 1�
x2 � y2 � z2 � 2x � 4y � 4z � 12 � 0,

z � 2xy2, 8x2 � 5y2 � 8z � �13,  �1, 1, 2�

�2, 3, �3�
x2 � y2 � 2z � 7,x2 � y2 � z2 � 8x � 12y � 4z � 42 � 0,

��1, 1, 0�
x2 � y2 � z2 � 6x � 10y � 14 � 0,x2 � 2y2 � 3z2 � 3,

z � xy �
1
x

�
1
y

z � 5xy

z � 4x2 � 4xy � 2y2 � 8x � 5y � 4

z � x2 � xy � y2 � 2x � 2y

z � 3x2 � 2y2 � 3x � 4y � 5

z � 3 � x2 � y2 � 6y
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63. Give the standard form of the equation of the tangent plane
to a surface given by at 

64. For some surfaces, the normal lines at any point pass
through the same geometric object. What is the common
geometric object for a sphere? What is the common
geometric object for a right circular cylinder? Explain.

65. Discuss the relationship between the tangent plane to a
surface and approximation by differentials.

�x0, y0, z0�.F�x, y, z� � 0

WRITING ABOUT CONCEPTS

66. Consider the elliptic cone given by 

(a) Find an equation of the tangent plane at the point

(b) Find symmetric equations of the normal line at the
point �5, 13, �12�.

�5, 13, �12�.

x2 � y2 � z2 � 0.

CAPSTONE

CAS

CAS

CAS

CAS
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72. Hyperboloid:

Plane:

73. Show that any tangent plane to the cone

passes through the origin.

74. Let be a differentiable function and consider the surface
Show that the tangent plane at any point

on the surface passes through the origin.

75. Approximation Consider the following approximations for a
function centered at 

[Note that the linear approximation is the tangent plane to the
surface at 

(a) Find the linear approximation of centered
at (0, 0).

(b) Find the quadratic approximation of 
centered at (0, 0).

(c) If in the quadratic approximation, you obtain the
second-degree Taylor polynomial for what function?
Answer the same question for 

(d) Complete the table.

(e) Use a computer algebra system to graph the surfaces
and 

76. Approximation Repeat Exercise 75 for the function

77. Prove that the angle of inclination of the tangent plane to the
surface at the point is given by

78. Prove Theorem 13.14.

cos 	 �
1

�[ fx�x0, y0�]2 � [ fy�x0, y0�]2 � 1
.

�x0, y0, z0�z � f �x, y�
	

f �x, y� � cos�x � y�.

z � P2�x, y�.z � P1�x, y�,z � f �x, y�,

y � 0.

x � 0

f �x, y� � e�x�y�

f �x, y� � e�x�y�

�0, 0, f �0, 0��.]

1
2 fxx�0, 0�x2 � fxy�0, 0�xy �

1
2 fyy�0, 0�y2

 P2�x, y� � f �0, 0� � fx�0, 0�x � fy�0, 0�y �

Quadratic approximation:                                       

P1�x, y� � f �0, 0� � fx�0, 0�x � fy�0, 0�y

Linear approximation:                              

�0, 0�.f �x, y�

P�x0, y0, z0�
z � xf �y�x�.

f

z2 � a2x2 � b2y2

x0x
a2 �

y0y
b2 �

z0z
c2 � 1

x2

a2 �
y2

b2 �
z2

c2 � 1
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x y f �x, y� P1�x, y� P2�x, y�

0 0

0 0.1

0.2 0.1

0.2 0.5

1 0.5

CAS

The diversity of wildflowers in a meadow can be measured by
counting the numbers of daisies, buttercups, shooting stars, and so
on. If there are types of wildflowers, each with a proportion of
the total population, it follows that The
measure of diversity of the population is defined as

In this definition, it is understood that when 
The tables show proportions of wildflowers in a meadow in May,
June, August, and September.

(a) Determine the wildflower diversity for each month. How would
you interpret September’s diversity? Which month had the
greatest diversity?

(b) If the meadow contains 10 types of wildflowers in roughly
equal proportions, is the diversity of the population greater than
or less than the diversity of a similar distribution of 4 types of
flowers? What type of distribution (of 10 types of wildflowers)
would produce maximum diversity?

(c) Let represent the maximum diversity of types of
wildflowers. Does approach a limit as n →  �?Hn

nHn

September

August

June

May

pi � 0.pi   log2 pi � 0

H � � �
n

i�1
pi log2 pi.

p1 � p2 � .  .  . � pn � 1.
pin

Wildflowers

S E C T I O N  P R O J E C T

Flower type 1 2 3 4

Proportion 5
16

5
16

5
16

1
16

Flower type 1 2 3 4

Proportion 1
4

1
4

1
4

1
4

Flower type 1 2 3 4

Proportion 1
4

0 1
4

1
2

Flower type 1 2 3 4

Proportion 0 0 0 1

■ FOR FURTHER INFORMATION Biologists use the concept 
of diversity to measure the proportions of different types of
organisms within an environment. For more information on this
technique, see the article “Information Theory and Biological
Diversity” by Steven Kolmes and Kevin Mitchell in the UMAP
Modules.
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■ Find absolute and relative extrema of a function of two variables.
■ Use the Second Partials Test to find relative extrema of a function of two variables.

Absolute Extrema and Relative Extrema
In Chapter 3, you studied techniques for finding the extreme values of a function of a
single variable. In this section, you will extend these techniques to functions of two
variables. For example, in Theorem 13.15 below, the Extreme Value Theorem for a
function of a single variable is extended to a function of two variables.

Consider the continuous function of two variables, defined on a closed bounded
region The values and such that

and are in 

for all in are called the minimum and maximum of in the region as shown
in Figure 13.64. Recall from Section 13.2 that a region in the plane is closed if it
contains all of its boundary points. The Extreme Value Theorem deals with a region
in the plane that is both closed and bounded. A region in the plane is called bounded
if it is a subregion of a closed disk in the plane.

A minimum is also called an absolute minimum and a maximum is also called
an absolute maximum. As in single-variable calculus, there is a distinction made
between absolute extrema and relative extrema.

To say that has a relative maximum at means that the point is
at least as high as all nearby points on the graph of Similarly, has a
relative minimum at if is at least as low as all nearby points on the
graph. (See Figure 13.65.)

�x0, y0, z0��x0, y0�
fz � f �x, y�.

�x0, y0, z0��x0, y0�f

R,fR�x, y�

R.�c, d ��a, b�f �a, b� � f �x, y) � f �c, d�

f �c, d�f (a, b�R.
f
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13.8 Extrema of Functions of Two Variables

THEOREM 13.15 EXTREME VALUE THEOREM

Let be a continuous function of two variables and defined on a closed
bounded region in the plane.

1. There is at least one point in at which takes on a minimum value.

2. There is at least one point in at which takes on a maximum value.fR

fR

xy-R
yxf

DEFINITION OF RELATIVE EXTREMA

Let be a function defined on a region containing 

1. The function has a relative minimum at if

for all in an open disk containing 

2. The function has a relative maximum at if

for all in an open disk containing �x0, y0�.�x, y�

f �x, y� � f �x0, y0�

�x0, y0�f

�x0, y0�.�x, y�

f �x, y� � f �x0, y0�

�x0, y0�f

�x0, y0�.Rf

x y

z

Surface:
z = f(x, y)

Maximum
Minimum

Closed bounded
region R

contains point(s) at which is a
minimum and point(s) at which is a
maximum.
Figure 13.64

f�x, y�
f�x, y�R

y

x

5

5

z

Relative extrema
Figure 13.65
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To locate relative extrema of you can investigate the points at which the
gradient of is or the points at which one of the partial derivatives does not exist.
Such points are called critical points of 

Recall from Theorem 13.11 that if is differentiable and

then every directional derivative at must be 0. This implies that the function
has a horizontal tangent plane at the point as shown in Figure 13.66. It appears
that such a point is a likely location of a relative extremum. This is confirmed by
Theorem 13.16.

Relative maximum Relative minimum
Figure 13.66

z

y

x

Surface:
z = f (x, y)

(x0, y0, z0)

(x0, y0)

(x0, y0, z0)

(x0, y0)

y

x

z Surface:
z = f (x, y)

�x0, y0�,
�x0, y0�

 � 0i � 0j

 �f �x0, y0� � fx(x0, y0�i � fy�x0, y0�j

f

f.
0f

f,

13.8 Extrema of Functions of Two Variables 955

DEFINITION OF CRITICAL POINT

Let be defined on an open region containing The point is a
critical point of if one of the following is true.

1. and 

2. or does not exist.fy�x0, y0�fx�x0, y0�
fy�x0, y0� � 0fx�x0, y0� � 0

f
�x0, y0��x0, y0�.Rf

THEOREM 13.16 RELATIVE EXTREMA OCCUR ONLY AT CRITICAL POINTS

If has a relative extremum at on an open region then is a
critical point of f.

�x0, y0�R,�x0, y0�f

E X P L O R A T I O N

Use a graphing utility to graph

using the bounds and
This view makes it appear as

though the surface has an absolute minimum.
But does it?

�3 � z � 3.
0 � y � 3,0 � x � 3,

z � x3 � 3xy � y3

y

x
3

−3

3

3

z

KARL WEIERSTRASS (1815–1897)

Although the Extreme Value Theorem had
been used by earlier mathematicians, the first
to provide a rigorous proof was the German
mathematician Karl Weierstrass. Weierstrass
also provided rigorous justifications for many
other mathematical results already in 
common use. We are indebted to him for
much of the logical foundation on which 
modern calculus is built.

T
he

 G
ra

ng
er

 C
ol

le
ct

io
n
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EXAMPLE 1 Finding a Relative Extremum

Determine the relative extrema of

Solution Begin by finding the critical points of Because

Partial with respect to 

and

Partial with respect to 

are defined for all and the only critical points are those for which both first partial
derivatives are 0. To locate these points, set and equal to 0, and solve
the equations

and

to obtain the critical point By completing the square, you can conclude that
for all 

So, a relative minimum of occurs at The value of the relative minimum
is as shown in Figure 13.67. ■

Example 1 shows a relative minimum occurring at one type of critical point—the
type for which both and are 0. The next example concerns a relative
maximum that occurs at the other type of critical point—the type for which either

or does not exist.

EXAMPLE 2 Finding a Relative Extremum

Determine the relative extrema of 

Solution Because

Partial with respect to 

and

Partial with respect to 

it follows that both partial derivatives exist for all points in the plane except for
Moreover, because the partial derivatives cannot both be 0 unless both and 

are 0, you can conclude that (0, 0) is the only critical point. In Figure 13.68, note that
is 1. For all other it is clear that

So, has a relative maximum at ■�0, 0�.f

f �x, y� � 1 � �x2 � y2�1�3 < 1.

�x, y�f �0, 0�

yx�0, 0�.
xy-

yfy�x, y� � �
2y

3�x2 � y2�2�3

xfx�x, y� � �
2x

3�x2 � y2�2�3

f �x, y� � 1 � �x2 � y2�1�3.

fy�x, y�fx�x, y�

fy�x, y�fx�x, y�

f ��2, 3� � 3,
��2, 3�.f

f �x, y� � 2�x � 2�2 � � y � 3�2 � 3 > 3.

�x, y� � ��2, 3�
��2, 3�.

2y � 6 � 04x � 8 � 0

fy�x, y�fx�x, y�
y,x

yfy�x, y� � 2y � 6

xfx�x, y� � 4x � 8

f.

f �x, y� � 2x2 � y2 � 8x � 6y � 20.

956 Chapter 13 Functions of Several Variables

NOTE In Example 2, for every point on the axis other than However,
because is nonzero, these are not critical points. Remember that of the partials must
not exist or must be 0 in order to yield a critical point. ■both

onefy�x, y�
�0, 0�.y-fx�x, y� � 0

x
y

z

−2
−3

−4

21
3 4 5

1

2

3

4

5

6

(−2, 3, 3)

Surface:
f(x, y) = 2x2 + y2 + 8x − 6y + 20

The function has a relative
minimum at 
Figure 13.67

��2, 3�.
z � f�x, y�

Surface:
f(x, y) = 1 − (x2 + y2)1/3

y

x

z

44
3

2

1

(0, 0, 1)

and are undefined at 
Figure 13.68

�0, 0�.fy�x, y�fx�x, y�
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The Second Partials Test
Theorem 13.16 tells you that to find relative extrema you need only examine values
of at critical points. However, as is true for a function of one variable, the
critical points of a function of two variables do not always yield relative maxima or
minima. Some critical points yield saddle points, which are neither relative maxima
nor relative minima.

As an example of a critical point that does not yield a relative extremum, consider
the surface given by

Hyperbolic paraboloid

as shown in Figure 13.69. At the point both partial derivatives are 0. The
function does not, however, have a relative extremum at this point because in any
open disk centered at the function takes on both negative values (along the

axis) and positive values (along the axis). So, the point is a saddle point
of the surface. (The term “saddle point” comes from the fact that surfaces such as the
one shown in Figure 13.69 resemble saddles.)

For the functions in Examples 1 and 2, it was relatively easy to determine the
relative extrema, because each function was either given, or able to be written, in
completed square form. For more complicated functions, algebraic arguments are less
convenient and it is better to rely on the analytic means presented in the following
Second Partials Test. This is the two-variable counterpart of the Second Derivative
Test for functions of one variable. The proof of this theorem is best left to a course in
advanced calculus.

A convenient device for remembering the formula for in the Second Partials Test is
given by the determinant

where by Theorem 13.3.fxy�a, b� � fyx�a, b�

d � � fxx�a, b�
fyx�a, b�

fxy�a, b�
fyy�a, b��

2 	 2
d

�0, 0, 0�y-x-
�0, 0�

f
�0, 0�,

f �x, y� � y2 � x2

f �x, y�

13.8 Extrema of Functions of Two Variables 957

y

x

z f (x, y) = y2 − x2

Saddle point at 

Figure 13.69

fx�0, 0� � fy�0, 0� � 0
�0, 0, 0�:

THEOREM 13.17 SECOND PARTIALS TEST

Let have continuous second partial derivatives on an open region containing
a point for which

and

To test for relative extrema of consider the quantity

1. If and then has a relative minimum at 

2. If and then has a relative maximum at 

3. If then is a saddle point.

4. The test is inconclusive if d � 0.

�a, b, f �a, b��d < 0,

�a, b�.ffxx�a, b� < 0,d > 0

�a, b�.ffxx�a, b� > 0,d > 0

d � fxx�a, b� fyy�a, b� � � fxy�a, b��2.

f,

fy�a, b� � 0.fx�a, b� � 0

�a, b�
f

NOTE If then and must have the same sign. This means that

can be replaced by in the first two parts of the test. ■fyy�a, b�fxx
�a, b�

fyy �a, b�fxx
�a, b�d > 0,
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EXAMPLE 3 Using the Second Partials Test

Find the relative extrema of 

Solution Begin by finding the critical points of Because

and

exist for all and the only critical points are those for which both first partial
derivatives are 0. To locate these points, set and equal to 0 to obtain

and From the second equation you know that 
and, by substitution into the first equation, you obtain two solutions: and

Because

and

it follows that, for the critical point 

and, by the Second Partials Test, you can conclude that is a saddle point of 
Furthermore, for the critical point 

and because you can conclude that has a relative maximum at

as shown in Figure 13.70. ■

The Second Partials Test can fail to find relative extrema in two ways. If either of
the first partial derivatives does not exist, you cannot use the test. Also, if

the test fails. In such cases, you can try a sketch or some other approach, as demon-
strated in the next example.

EXAMPLE 4 Failure of the Second Partials Test

Find the relative extrema of 

Solution Because and you know that both partial
derivatives are 0 if or That is, every point along the or axis is a
critical point. Moreover, because

and

you know that if either or then

So, the Second Partials Test fails. However, because for every point along
the or axis and for all other points, you can conclude that each
of these critical points yields an absolute minimum, as shown in Figure 13.71.

■

f�x, y� � x2y2 > 0y-x-
f �x, y� � 0

 � 4x2y2 � 16x2y2 � �12x2y2 � 0.

 d � fxx�x, y�fyy�x, y� � � fxy�x, y��2

y � 0,x � 0

fxy�x, y� � 4xyfyy�x, y� � 2x2,fxx�x, y� � 2y2,

y-x-y � 0.x � 0
fy�x, y� � 2x2y,fx�x, y� � 2xy2

f �x, y� � x2y2.

d � fxx�a, b� fyy�a, b� � � fxy�a, b��2
� 0

�4
3, 43�,

ffxx�4
3, 43� � �8 < 0

 > 0

 � 16

 � �8��4� � 16

 d � fxx�4
3, 43� fyy�4

3, 43� � � fxy�4
3, 43��2

�4
3, 43�,

f.�0, 0, 1�

d � fxx�0, 0� fyy�0, 0� � � fxy�0, 0��2 � 0 � 16 < 0

�0, 0�,

fxy�x, y� � 4fyy�x, y� � �4,fxx�x, y� � �6x,

y � x �
4
3.

y � x � 0
x � y,4x � 4y � 0.�3x2 � 4y � 0

fy�x, y�fx�x, y�
y,x

fy�x, y� � 4x � 4yfx�x, y� � �3x2 � 4y

f.

f �x, y� � �x3 � 4xy � 2y2 � 1.
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y

x

4
3

4
3

, ( (

23

4

3

4

5

6

7

8

9

Saddle point
(0, 0, 1)Relative

maximum

f(x, y) = −x3 + 4xy − 2y2 + 1

z

Figure 13.70

x

y

z

2
2

1

f(x, y) = x2y2

If y = 0,
then f (x, y) = 0.

If x = 0,
then f (x, y) = 0.

Figure 13.71
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Absolute extrema of a function can occur in two ways. First, some relative
extrema also happen to be absolute extrema. For instance, in Example 1, is
an absolute minimum of the function. (On the other hand, the relative maximum found
in Example 3 is not an absolute maximum of the function.) Second, absolute extrema
can occur at a boundary point of the domain. This is illustrated in Example 5.

EXAMPLE 5 Finding Absolute Extrema

Find the absolute extrema of the function

on the closed region given by and 

Solution From the partial derivatives

and

you can see that each point lying on the hyperbola given by is a critical
point. These points each yield the value

which you know is the absolute maximum, as shown in Figure 13.72. The only other
critical point of lying in the given region is It yields an absolute minimum of
0, because

implies that

To locate other absolute extrema, you should consider the four boundaries of the
region formed by taking traces with the vertical planes and

In doing this, you will find that at all points on the axis, at all
points on the axis, and at the point Each of these points yields an absolute
minimum for the surface, as shown in Figure 13.72. ■

The concepts of relative extrema and critical points can be extended to functions
of three or more variables. If all first partial derivatives of

exist, it can be shown that a relative maximum or minimum can occur at
only if every first partial derivative is 0 at that point. This means

that the critical points are obtained by solving the following system of equations.

The extension of Theorem 13.17 to three or more variables is also possible, although
you will not consider such an extension in this text.

 fxn
�x1, x2, x3, .  .  . , xn� � 0

 �
 fx2

�x1, x2, x3, .  .  . , xn� � 0

 fx1
�x1, x2, x3, .  .  . , xn� � 0

�x1, x2, x3, .  .  . , xn�

w � f �x1, x2, x3, .  .  . , xn�

�
, 1�.y-
x-sin xy � 0y � 1.

y � 0,x � 
,x � 0,

0 � sin xy � 1.

0 � xy � 


�0, 0�.f

f �x, y� � sin 



2
� 1

xy � 
�2

fy�x, y� � x cos xyfx�x, y� � y cos xy

0 � y � 1.0 � x � 


f �x, y� � sin xy

f ��2, 3�
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y

x

1

1

3

Absolute
minima

Absolute
minima

Absolute
maxima

(  , 1)π

πxy =
2

Surface:
f(x, y) = sin xy

Domain:
0 ≤ x ≤
0 ≤ y ≤ 1

π

z

Figure 13.72
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In Exercises 1–6, identify any extrema of the function by recog-
nizing its given form or its form after completing the square.
Verify your results by using the partial derivatives to locate any
critical points and test for relative extrema. 

1.

2.

3.

4.

5.

6.

In Exercises 7–16, examine the function for relative extrema.

7.

8.

9.

10.

11.

12.

13.

14.

15. 16.

In Exercises 17–20, use a computer algebra system to graph the
surface and locate any relative extrema and saddle points.

17.

18.

19.

20.

In Exercises 21–28, examine the function for relative extrema
and saddle points.

21.

22.

23.

24.

25.

26.

27.

28.

In Exercises 29 and 30, examine the function for extrema
without using the derivative tests, and use a computer algebra
system to graph the surface. (Hint: By observation, determine
if it is possible for to be negative. When is equal to 0?)

29. 30.

Think About It In Exercises 31–34, determine whether there is
a relative maximum, a relative minimum, a saddle point, or
insufficient information to determine the nature of the function

at the critical point 

31.

32.

33.

34. fxx�x0, y0� � 25,  fyy�x0, y0� � 8,  fxy�x0, y0� � 10

fxx�x0, y0� � �9,  fyy�x0, y0� � 6,  fxy�x0, y0� � 10

fxx �x0, y0� � �3,  fyy�x0, y0� � �8,  fxy�x0, y0� � 2

fxx�x0, y0� � 9,  fyy�x0, y0� � 4,  fxy�x0, y0� � 6

�x0 , y0	.f �x, y	

z �
�x2 � y2�2

x2 � y2z �
�x � y�4

x2 � y2

zz

y

x

4

4

2

z

z � 
1
2

� x2 � y2�e1�x2�y2

y

x

3

8

4

2

6

6 π

z
z � e�x sin y

y

x

2

−2

3

z

f �x, y� � 2xy �
1
2�x4 � y4� � 1

y

x 

3
3 

4 

z 

f �x, y� � x2 � xy � y2 � 3x � y

h�x, y� � x2 � 3xy � y2

g�x, y� � xy

g�x, y� � x2 � y2 � x � y

h�x, y� � 80x � 80y � x2 � y2

z � exy

z � �x2 � 4y2�e1�x2�y2

f �x, y� � y3 � 3yx2 � 3y2 � 3x2 � 1

z �
�4x

x2 � y2 � 1

f �x, y� � �x � y� � 2g�x, y� � 4 � �x� � �y�
h�x, y� � �x2 � y2�1�3 � 2

f �x, y� � �x2 � y2

z � �5x2 � 4xy � y2 � 16x � 10

z � x2 � xy �
1
2 y2 � 2x � y

f �x, y� � 2x2 � 2xy � y2 � 2x � 3

f �x, y� � �x2 � 5y2 � 10x � 10y � 28

f �x, y� � �3x2 � 2y2 � 3x � 4y � 5

f �x, y� � 3x2 � 2y2 � 6x � 4y � 16

f �x, y� � �x2 � y2 � 10x � 12y � 64

f �x, y� � x2 � y2 � 2x � 6y � 6

f �x, y� � �25 � �x � 2�2 � y2

f �x, y� � �x2 � y2 � 1

g�x, y� � 5 � �x � 3�2 � �y � 2�2

g�x, y� � �x � 1)2 � �y � 3�2
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13.8 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.
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35. A function has continuous second partial derivatives on an
open region containing the critical point The function
has a minimum at and for the Second Partials Test.
Determine the interval for if and

36. A function has continuous second partial derivatives on an
open region containing the critical point If and

have opposite signs, what is implied? Explain.

In Exercises 37– 42, (a) find the critical points, (b) test for 
relative extrema, (c) list the critical points for which the Second
Partials Test fails, and (d) use a computer algebra system to
graph the function, labeling any extrema and saddle points.

37.

38.

39.

40.

41. 42.

In Exercises 43 and 44, find the critical points of the function
and, from the form of the function, determine whether a relative
maximum or a relative minimum occurs at each point.

43.

44.

In Exercises 45–54, find the absolute extrema of the function
over the region (In each case, contains the boundaries.) Use
a computer algebra system to confirm your results.

45.

46.

47.

The triangular region in the plane with vertices 
and 

48.

The triangular region in the plane with vertices 
and 

49.

The region in the plane bounded by the graphs of 
and 

50.

The region in the plane bounded by the graphs of 
and 

51.

52.

53.

54.

True or False? In Exercises 61–64, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

61. If has a relative maximum at then 

62. If then has a relative maximum at

63. Between any two relative minima of there must be at least one
relative maximum of 

64. If is continuous for all and and has two relative minima,
then must have at least one relative maximum.f

yxf

f.
f,

�x0, y0, z0�.
ffx�x0, y0� � fy�x0, y0� � 0,

fy�x0, y0� � 0.
fx�x0, y0� ��x0, y0, z0�,f

R � 
�x, y� : x � 0, y � 0, x2 � y2 � 1�

f �x, y� �
4xy

�x2 � 1��y2 � 1�

R � 
�x, y� : 0 � x � 1, 0 � y � 1�

f �x, y� �
4xy

�x2 � 1)�y2 � 1�

f �x, y� � x2 � 2xy � y2,  R � 
�x, y� : x2 � y2 � 8�
f �x, y� � x2 � 2xy � y2,  R � 
�x, y� : �x� � 2, �y� � 1�

y � 1
y � x2xy-R:

f �x, y� � 2x � 2xy � y2

y � 4
y � x2xy-R:

f �x, y� � 3x2 � 2y2 � 4y

�1, 2��0, 1�,
�2, 0�,xy-R:

f �x, y� � �2x � y�2

�1, 2��0, 1�,
�2, 0�,xy-R:

f �x, y� � 12 � 3x � 2y

f �x, y� � x2 � xy,  R � 
�x, y� : �x� � 2, �y� � 1�
R � 
�x, y� : 1 � x � 4, 0 � y � 2�
f �x, y� � x2 � 4xy � 5

RR.

f �x, y, z� � 9 � �x�y � 1��z � 2��2

f �x, y, z� � x2 � �y � 3�2 � �z � 1�2

f �x, y� � �x2 � y2�2�3f �x, y� � x2�3 � y2�3

f �x, y� � ��x � 1�2 � �y � 2�2

f �x, y� � �x � 1�2�y � 4�2

f �x, y� � x3 � y3 � 6x2 � 9y2 � 12x � 27y � 19

f �x, y� � x3 � y3

fyy�a, b�
fxx�a, b��a, b�.

f

fyy�3, 7� � 8.
fxx�3, 7� � 2fxy�3, 7�

d > 0�3, 7�,
�3, 7�.

f
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55. The figure shows the level curves for an unknown function
What, if any, information can be given about at the

point Explain your reasoning.

Figure for 55 Figure for 56

56. The figure shows the level curves for an unknown function
What, if any, information can be given about at the

points and Explain your reasoning.

In Exercises 57–59, sketch the graph of an arbitrary
function satisfying the given conditions. State whether the
function has any extrema or saddle points. (There are many
correct answers.)

57. and for all 

58. All of the first and second partial derivatives of are 0.

59.

and for all �x, y�.fxy�x, y� � 0fyy�x, y� < 0,fxx�x, y� > 0,

fx�x, y��<  0,

>  0,

x < 0

x > 0
,    fy�x, y��>  0,

<  0,

y < 0

y > 0

fy�0, 0� � 0fx�0, 0� � 0,

f

�x, y�.fy�x, y� < 0fx�x, y�  >  0

f

D?C,B,A,
ff �x, y�.

x
A

B
C

D

y

x

A

y

A?
ff �x, y�.

WRITING ABOUT CONCEPTS

CAS

60. Consider the functions

and 

(a) Show that both functions have a critical point at 

(b) Explain how and behave differently at this critical
point.

gf

�0, 0�.
g�x, y� � x2 � y2.f �x, y� � x2 � y2

CAPSTONE
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■ Solve optimization problems involving functions of several variables.
■ Use the method of least squares.

Applied Optimization Problems
In this section, you will survey a few of the many applications of extrema of functions
of two (or more) variables.

EXAMPLE 1 Finding Maximum Volume

A rectangular box is resting on the plane with one vertex at the origin. The opposite
vertex lies in the plane

as shown in Figure 13.73. Find the maximum volume of such a box.

Solution Let and represent the length, width, and height of the box. Because
one vertex of the box lies in the plane you know that

and you can write the volume of the box as a function of
two variables.

By setting the first partial derivatives equal to 0

you obtain the critical points and At the volume is 0, so that point

does not yield a maximum volume. At the point you can apply the Second
Partials Test.

Because

and

you can conclude from the Second Partials Test that the maximum volume is

cubic units.

Note that the volume is 0 at the boundary points of the triangular domain of V.
■

 � 64
9

 V�4
3, 2� �

1
3�24�4

3��2� � 6�4
3�2�2� � 4�4

3��22��

Vxx�4
3, 2� � �8 < 0

Vxx�4
3, 2�Vyy�4

3, 2� � �Vxy�4
3, 2��2

� ��8���32
9 � � ��8

3�2
�

64
3 > 0

Vxy�x, y� �
1
3

�24 � 12x � 8y�

Vyy�x, y� �
�8x

3

Vxx�x, y� � �4y

�4
3, 2�,

�0, 0��4
3, 2�.�0, 0�

Vy�x, y� �
1
3

�24x � 6x2 � 8xy� �
x
3

�24 � 6x � 8y� � 0

Vx�x, y� �
1
3

�24y � 12xy � 4y2� �
y
3

�24 � 12x � 4y� � 0

 � 1
3�24xy � 6x2y � 4xy2�

 V�x, y� � �x��y��1
3�24 � 6x � 4y��

xyzz �
1
3�24 � 6x � 4y�,

6x � 4y � 3z � 24,
zy,x,

6x � 4y � 3z � 24

xy-

962 Chapter 13 Functions of Several Variables

13.9 Applications of Extrema of Functions of Two Variables

y

x (4, 0, 0)
(0, 6, 0)

(0, 0, 8) Plane:
6x + 4y + 3z = 24

z

Figure 13.73

NOTE In many applied problems, the
domain of the function to be optimized
is a closed bounded region. To find
minimum or maximum points, you must
not only test critical points, but also
consider the values of the function at
points on the boundary.
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Applications of extrema in economics and business often involve more than one
independent variable. For instance, a company may produce several models of one
type of product. The price per unit and profit per unit are usually different for each
model. Moreover, the demand for each model is often a function of the prices of the
other models (as well as its own price). The next example illustrates an application
involving two products.

EXAMPLE 2 Finding the Maximum Profit

An electronics manufacturer determines that the profit (in dollars) obtained by
producing and selling units of a DVD player and units of a DVD recorder is
approximated by the model

Find the production level that produces a maximum profit. What is the maximum
profit?

Solution The partial derivatives of the profit function are

and

By setting these partial derivatives equal to 0, you obtain the following system of
equations.

After simplifying, this system of linear equations can be written as

.

Solving this system produces and The second partial derivatives
of are

Because and 

you can conclude that the production level of units and units
yields a maximum profit. The maximum profit is

■ � $18,000.

       �0.001��20002 � 2000�4000� � 40002�� � 10,000

P�2000, 4000� � 8�2000� � 10�4000� �

y � 4000x � 2000

 ��0.002�2 � ��0.001�2 > 0

 Pxx�2000, 4000�Pyy�2000, 4000� � �Pxy�2000, 4000��2 �

Pxx < 0

Pxy�2000, 4000� � �0.001.

Pyy�2000, 4000� � �0.002

Pxx�2000, 4000� � �0.002

P
y � 4000.x � 2000

 x �  2y �  10,000

 2x �  y �   8000

 10 � �0.001��x � 2y� � 0

 8 � �0.001��2x � y� � 0

Py�x, y� � 10 � �0.001��x � 2y�.Px�x, y� � 8 � �0.001��2x � y�

P�x, y� � 8x � 10y � �0.001��x2 � xy � y2� � 10,000.

yx
P
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NOTE In Example 2, it was assumed that the manufacturing plant is able to produce the
required number of units to yield a maximum profit. In actual practice, the production would
be bounded by physical constraints. You will study such constrained optimization problems in
the next section. ■

■ FOR FURTHER INFORMATION
For more information on the use of 
mathematics in economics, see the
article “Mathematical Methods of
Economics” by Joel Franklin in The
American Mathematical Monthly. 
To view this article, go to the website
www.matharticles.com.
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The Method of Least Squares
Many of the examples in this text have involved mathematical models. For instance,
Example 2 involves a quadratic model for profit. There are several ways to develop
such models; one is called the method of least squares.

In constructing a model to represent a particular phenomenon, the goals are
simplicity and accuracy. Of course, these goals often conflict. For instance, a simple
linear model for the points in Figure 13.74 is

However, Figure 13.75 shows that by choosing the slightly more complicated
quadratic model*

you can achieve greater accuracy.

Figure 13.74 Figure 13.75

As a measure of how well the model fits the collection of points

you can add the squares of the differences between the actual values and the values
given by the model to obtain the sum of the squared errors

Graphically, can be interpreted as the sum of the squares of the vertical distances
between the graph of and the given points in the plane, as shown in Figure 13.76.
If the model is perfect, then However, when perfection is not feasible, you can
settle for a model that minimizes For instance, the sum of the squared errors for
the linear model in Figure 13.74 is Statisticians call the linear model that
minimizes the least squares regression line. The proof that this line actually
minimizes involves the minimizing of a function of two variables.

* A method for finding the least squares quadratic model for a collection of data is described
in Exercise 37.

S
S

S � 17.
S.

S � 0.
f

S

y-

��x1, y1�, �x2, y2�, �x3, y3�, .  .  . , �xn, yn��

y � f�x�

5

105

10

15

y

x

(11, 17)

(9, 12)

(7, 6)

(5, 2)(2, 1)

y = 0.1996x2 − 0.7281x + 1.3749

5

105

10

15

y

x

y = 1.8566x − 5.0246

(11, 17)

(9, 12)

(7, 6)

(5, 2)(2, 1)

y � 0.1996x2 � 0.7281x � 1.3749

y � 1.8566x � 5.0246.
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x

(x3, y3)

(x2, y2)

(x1, y1)

d1

d2

d3

y = f(x)

y

Sum of the squared errors:

Figure 13.76
S � d1

2 � d2
2 � d3

2

Sum of the squared errorsS � 	
n

i�1
 � f�xi� � yi�2.
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If the values are symmetrically spaced about the axis, then and the
formulas for and simplify to

and

This simplification is often possible with a translation of the values. For instance, if
the values in a data collection consist of the years 2005, 2006, 2007, 2008, and 2009,
you could let 2007 be represented by 0.

x-
x-

b �
1
n

 	
n

i�1
 yi.

a �
	
n

i�1
 xiyi

	
n

i�1
 xi

2

ba
	 xi � 0y-x-
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THEOREM 13.18 LEAST SQUARES REGRESSION LINE

The least squares regression line for is given
by where

and b �
1
n
	

n

i�1
 yi � a	

n

i�1
 xi�.a �

n	
n

i�1
 xiyi � 	

n

i�1
 xi	

n

i�1
 yi

n	
n

i�1
 xi

2 � 
	
n

i�1
 xi�

2

f�x� � ax � b,
��x1, y1�, �x2, y2�, .  .  . , �xn, yn��

PROOF Let represent the sum of the squared errors for the model
and the given set of points. That is,

where the points represent constants. Because is a function of and you
can use the methods discussed in the preceding section to find the minimum value of

Specifically, the first partial derivatives of are

By setting these two partial derivatives equal to 0, you obtain the values of and 
that are listed in the theorem. It is left to you to apply the Second Partials Test (see
Exercise 47) to verify that these values of and yield a minimum. ■ba

ba

 � 2a	
n

i�1
 xi � 2nb � 2	

n

i�1
yi.

 Sb�a, b� � 	
n

i�1
 2�axi � b � yi�

 � 2a	
n

i�1
 xi

2 � 2b	
n

i�1
 xi � 2	

n

i�1
 xiyi

 Sa�a, b� � 	
n

i�1
 2xi�axi � b � yi�

SS.

b,aS�xi, yi�

 � 	
n

i�1
 �axi � b � yi�2

 S�a, b� � 	
n

i�1
 � f�xi� � yi�2

f�x� � ax � b
S�a, b�

ADRIEN-MARIE LEGENDRE (1752–1833)

The method of least squares was introduced
by the French mathematician Adrien-Marie
Legendre. Legendre is best known for his work
in geometry. In fact, his text Elements of
Geometry was so popular in the United States
that it continued to be used for 33 editions,
spanning a period of more than 100 years.

T
he

 G
ra

ng
er

 C
ol

le
ct

io
n
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EXAMPLE 3 Finding the Least Squares Regression Line

Find the least squares regression line for the points and 

Solution The table shows the calculations involved in finding the least squares
regression line using 

Applying Theorem 13.18 produces

and

The least squares regression line is as shown in Figure 13.77.
■

f �x� �
8
13x �

47
26,

b �
1
n 
	

n

i�1
 yi � a	

n

i�1
 xi� �

1
4�6 �

8
13

��2�
 �
47
26

.

a �

n	
n

i�1
 xiyi � 	

n

i�1
 xi 	

n

i�1
 yi

n	
n

i�1
 xi

2 � 
	
n

i�1
 xi�

2 �
4�5� � ��2��6�
4�14� � ��2�2 �

8
13

n � 4.

�2, 3�.��3, 0�, ��1, 1�, �0, 2�,
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In Exercises 1 and 2, find the minimum distance from the point
to the plane (Hint: To simplify the computations,
minimize the square of the distance.)

1. 2.

In Exercises 3 and 4, find the minimum distance from the point
to the surface (Hint: In Exercise 4, use the
root feature of a graphing utility.)

3.

4.

In Exercises 5–8, find three positive integers and that
satisfy the given conditions.

5. The product is 27 and the sum is a minimum.

6. The sum is 32 and is a maximum.

7. The sum is 30 and the sum of the squares is a minimum.

8. The product is 1 and the sum of the squares is a minimum.

9. Cost A home improvement contractor is painting the walls
and ceiling of a rectangular room. The volume of the room is
668.25 cubic feet. The cost of wall paint is $0.06 per square
foot and the cost of ceiling paint is $0.11 per square foot. Find
the room dimensions that result in a minimum cost for the
paint. What is the minimum cost for the paint?

10. Maximum Volume The material for constructing the base
of an open box costs 1.5 times as much per unit area as the
material for constructing the sides. For a fixed amount of
money find the dimensions of the box of largest volume that
can be made.

11. Maximum Volume The volume of an ellipsoid

is For a fixed sum show that the ellipsoid
of maximum volume is a sphere.

a � b � c,4�abc�3.

x2

a2 �
y 2

b2 �
z2

c2 � 1

C,

P � xy2z

zy,x,

�0, 0, 2�
��2, �2, 0�

z � �1 � 2x � 2y.

�1, 2, 3��0, 0, 0�

x � y 1 z � 3.

13.9 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

Many calculators
have “built-in” least squares regression
programs. If your calculator has such a
program, use it to duplicate the results
of Example 3.

TECHNOLOGY

3

1

2

21−1−2−3
x

(0, 2)

(2, 3)

x + 8
13

f(x) = 47
26

(−1, 1)(−3, 0)

y

Least squares regression line
Figure 13.77

x y xy x2

�3 0 0 9

�1 1 �1 1

0 2 0 0

2 3 6 4

	
n

i�1
 xi � �2 	

n

i�1
 yi � 6 	

n

i�1
 xiyi � 5 	

n

i�1
 xi

2 � 14
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12. Maximum Volume Show that the rectangular box of maxi-
mum volume inscribed in a sphere of radius is a cube.

13. Volume and Surface Area Show that a rectangular box of
given volume and minimum surface area is a cube.

14. Area A trough with trapezoidal cross sections is formed by
turning up the edges of a 30-inch-wide sheet of aluminum (see
figure). Find the cross section of maximum area.

15. Maximum Revenue A company manufactures two types of
sneakers, running shoes and basketball shoes. The total revenue
from units of running shoes and units of basketball shoes
is where and

are in thousands of units. Find and so as to maximize
the revenue. 

16. Maximum Profit A corporation manufactures candles at two
locations. The cost of producing units at location 1 is

and the cost of producing units at location 2 is

The candles sell for $15 per unit. Find the quantity that should
be produced at each location to maximize the profit

17. Hardy-Weinberg Law Common blood types are determined
genetically by three alleles A, B, and O. (An allele is any of a
group of possible mutational forms of a gene.) A person whose
blood type is AA, BB, or OO is homozygous. A person whose
blood type is AB, AO, or BO is heterozygous. The Hardy-
Weinberg Law states that the proportion of heterozygous
individuals in any given population is

where represents the percent of allele A in the population,
represents the percent of allele B in the population, and 
represents the percent of allele O in the population. Use the fact
that to show that the maximum proportion of
heterozygous individuals in any population is 

18. Shannon Diversity Index One way to measure species diver-
sity is to use the Shannon diversity index If a habitat consists
of three species, A, B, and C, its Shannon diversity index is

where is the percent of species A in the habitat, is the 
percent of species B in the habitat, and is the percent of
species C in the habitat.

(a) Use the fact that to show that the maximum
value of occurs when 

(b) Use the results of part (a) to show that the maximum value
of in this habitat is 

19. Minimum Cost A water line is to be built from point to
point and must pass through regions where construction costs
differ (see figure). The cost per kilometer in dollars is from

to from to and from to Find and such
that the total cost will be minimized.

20. Distance A company has retail outlets located at the points
and (see figure). Management plans to

build a distribution center located such that the sum of the
distances from the center to the outlets is minimum. From the
symmetry of the problem it is clear that the distribution center
will be located on the axis, and therefore is a function of the
single variable Using techniques presented in Chapter 3, find
the required value of 

Figure for 20 Figure for 21

21. Investigation The retail outlets described in Exercise 20 are
located at and (see figure). The location
of the distribution center is and therefore the sum of the
distances is a function of and 

(a) Write the expression giving the sum of the distances Use
a computer algebra system to graph Does the surface
have a minimum?

(b) Use a computer algebra system to obtain and Observe
that solving the system and is very difficult.
So, approximate the location of the distribution center.

(c) An initial estimate of the critical point is 
Calculate with components and

What direction is given by the vector 

(d) The second estimate of the critical point is

If these coordinates are substituted into then 
becomes a function of the single variable Find the value
of that minimizes Use this value of to estimate 

(e) Complete two more iterations of the process in part (d) to
obtain For this location of the distribution center,
what is the sum of the distances to the retail outlets?

(f) Explain why was used to approximate the
minimum value of In what types of problems would you
use �S�x, y�?

S.
��S�x, y�

�x4, y4�.

�x2, y2�.tS.t
t.

SS�x, y�,

�x2, y2� � �x1 � Sx�x1, y1�t, y1 � Sy�x1, y1�t�.

��S�1, 1�?�Sy�1, 1�.
�Sx�1, 1���S�1, 1�

�x1, y1� � �1, 1�.

Sy � 0Sx � 0
Sy.Sx

S.
S.

y.xS
�x, y�,
��2, 2��4, 2�,�0, 0�,

x
2 4

4

−2

−2

(−2, 2) (4, 2)

(0, 0)

(x, y)
d2 d1

d3

y

x
−3

−2

−2

3

2

21

(2, 2)(−2, 2)

(0, y)d1

d2

d3

(0, 0)

y

y.
y.

Sy-

S

��2, 2��2, 2�,�0, 0�,

1 km

P

Q

R

S

x

y

10 km

2 km

C
yxS.RkR,Q2kQ,P

3k
S

P

ln 3.H

x � y � z �
1
3.H

x � y � z � 1

z
yx

H � �x ln x � y ln y � z ln z

H.

2
3.

p � q � r � 1

r
qp

P� p, q, r� � 2pq � 2pr � 2qr

P

P � 15�x1 � x2� � C1 � C2.

C2 � 0.05x2
2 � 4x2 � 275.

x2

C1 � 0.02x1
2 � 4x1 � 500

x1

x2x1x2

x1R � �5x1
2 � 8x2

2 � 2x1x2 � 42x1 � 102x2,
x2x1

30 − 2x

x x

θθ

r
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22. Investigation Repeat Exercise 21 for retail outlets located at
the points and 

In Exercises 25–28, (a) find the least squares regression line and
(b) calculate the sum of the squared errors. Use the regression
capabilities of a graphing utility to verify your results.

25. 26.

27. 28.

In Exercises 29–32, find the least squares regression line for the
points. Use the regression capabilities of a graphing utility to
verify your results. Use the graphing utility to plot the points
and graph the regression line.

29.

30.

31.

32.

33. Modeling Data The ages (in years) and systolic blood
pressures of seven men are shown in the table.

(a) Use the regression capabilities of a graphing utility to find
the least squares regression line for the data.

(b) Use a graphing utility to plot the data and graph the model.

(c) Use the model to approximate the change in systolic blood
pressure for each one-year increase in age.

34. Modeling Data A store manager wants to know the demand
for an energy bar as a function of price The daily sales for

three different prices of the energy bar are shown in the table.

(a) Use the regression capabilities of a graphing utility to find
the least squares regression line for the data.

(b) Use the model to estimate the demand when the price is
$1.59.

35. Modeling Data An agronomist used four test plots to
determine the relationship between the wheat yield (in
bushels per acre) and the amount of fertilizer (in hundreds of
pounds per acre). The results are shown in the table.

Use the regression capabilities of a graphing utility to find the
least squares regression line for the data, and estimate the yield
for a fertilizer application of 160 pounds per acre.

36. Modeling Data The table shows the percents and numbers
(in millions) of women in the work force for selected years.

(Source: U.S. Bureau of Labor Statistics)

(a) Use the regression capabilities of a graphing utility to find
the least squares regression line for the data.

(b) According to this model, approximately how many women
enter the labor force for each one-point increase in the
percent of women in the labor force?

37. Find a system of equations whose solution yields the coeffi-
cients and for the least squares regression quadratic

for the points 
by minimizing the sum

S�a, b, c� � 	
n

i�1
 �yi � axi

2 � bxi � c�2.

�x1, y1�, �x2, y2�, .  .  . , �xn, yn�y � ax2 � bx � c
cb,a,

y
x

x
y

x.y

y
x

�6, 4�, �1, 2�, �3, 3�, �8, 6�, �11, 8�, �13, 8�
�0, 6�, �4, 3�, �5, 0�, �8, �4�, �10, �5�
�1, 0�, �3, 3�, �5, 6�
�0, 0�, �1, 1�, �3, 4�, �4, 2�, �5, 5�

x

1

1

2

2 5 643

(3, 1) (4, 1)

(4, 2)

(5, 2)

(6, 2)

(2, 0)

(3, 0)(1, 0)

y

x

1

1

2

2

3

4

43

(1, 3)

(1, 1)

(0, 4)

(2, 0)

y

x

1

1

2

2

3

4

3

−2

−1−2−3

(1, 1)
(3, 2)

(−1, 1)
(−3, 0)

y

x

1

1

2

2

3

−1
−1−2

(0, 1)

(2, 3)

(−2, 0)

y

S,

�12, 2�.�1, 6�,��4, 0�,
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23. In your own words, state the problem-solving strategy for
applied minimum and maximum problems.

24. In your own words, describe the method of least squares for
finding mathematical models.

WRITING ABOUT CONCEPTS

Age, x 16 25 39 45 49 64 70

Systolic
Blood
Pressure, y

109 122 150 165 159 183 199

Price, x $1.29 $1.49 $1.69

Demand, y 450 375 330

Fertilizer, x 1.0 1.5 2.0 2.5

Yield, y 32 41 48 53

Year 1970 1975 1980 1985

Percent, x 43.3 46.3 51.5 54.5

Number, y 31.5 37.5 45.5 51.1

Year 1990 1995 2000 2005

Percent, x 57.5 58.9 59.9 59.3

Number, y 56.8 60.9 66.3 69.3

38. The sum of the length and the girth (perimeter of a cross
section) of a package carried by a delivery service cannot
exceed 108 inches. Find the dimensions of the rectangular
package of largest volume that may be sent.

CAPSTONE
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In Exercises 39–42, use the result of Exercise 37 to find the least
squares regression quadratic for the given points. Use the
regression capabilities of a graphing utility to confirm your
results. Use the graphing utility to plot the points and graph the
least squares regression quadratic.

39.

40.

41. 42.

43. Modeling Data After a new turbocharger for an automobile
engine was developed, the following experimental data were
obtained for speed in miles per hour at two-second time
intervals 

(a) Find a least squares regression quadratic for the data. Use a
graphing utility to confirm your results.

(b) Use a graphing utility to plot the points and graph the model.

44. Modeling Data The table shows the world populations (in
billions) for five different years. Let represent the year
1998. (Source: U.S. Census Bureau, International Data Base) 

(a) Use the regression capabilities of a graphing utility to find
the least squares regression line for the data.

(b) Use the regression capabilities of a graphing utility to find
the least squares regression quadratic for the data.

(c) Use a graphing utility to plot the data and graph the models.

(d) Use both models to forecast the world population for the
year 2014. How do the two models differ as you extrapo-
late into the future?

45. Modeling Data A meteorologist measures the atmospheric
pressure (in kilograms per square meter) at altitude (in
kilometers). The data are shown below.

(a) Use the regression capabilities of a graphing utility to find
a least squares regression line for the points 

(b) The result in part (a) is an equation of the form 
Write this logarithmic form in exponential form.

(c) Use a graphing utility to plot the original data and graph the
exponential model in part (b).

(d) If your graphing utility can fit logarithmic models to data,
use it to verify the result in part (b).

46. Modeling Data The endpoints of the interval over which
distinct vision is possible are called the near point and far point
of the eye. With increasing age, these points normally change.
The table shows the approximate near points (in inches) for
various ages (in years). (Source: Ophthalmology &
Physiological Optics)

(a) Find a rational model for the data by taking the reciprocals
of the near points to generate the points Use the
regression capabilities of a graphing utility to find a least
squares regression line for the revised data. The resulting
line has the form Solve for 

(b) Use a graphing utility to plot the data and graph the model.

(c) Do you think the model can be used to predict the near
point for a person who is 70 years old? Explain.

47. Use the Second Partials Test to verify that the formulas for 
and given in Theorem 13.18 yield a minimum.

Hint: Use the fact that n	
n

i�1
 xi

2 � 
	
n

i�1
 xi�

2

.
�
b

a

y.1�y � ax � b.

�x, 1�y�.

x
y

ah � b.
ln P �

�h, ln P�.

hP

x � 8
y

x.
y

�0, 10�, �1, 9�, �2, 6�, �3, 0��0, 0�, �2, 2�, �3, 6�, �4, 12�
��4, 5�, ��2, 6�, �2, 6�, �4, 2�
��2, 0�, ��1, 0�, �0, 1�, �1, 2�, �2, 5�
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An oil company wishes to construct a pipeline from its offshore
facility to its refinery The offshore facility is 2 miles from
shore, and the refinery is 1 mile inland. Furthermore, and are 
5 miles apart, as shown in the figure.

The cost of building the pipeline is $3 million per mile in the
water and $4 million per mile on land. So, the cost of the pipeline
depends on the location of point where it meets the shore. What
would be the most economical route of the pipeline?

Imagine that you are to write a report to the oil company about
this problem. Let be the distance shown in the figure. Determine
the cost of building the pipeline from to and the cost from to

Analyze some sample pipeline routes and their corresponding
costs. For instance, what is the cost of the most direct route? Then
use calculus to determine the route of the pipeline that minimizes
the cost. Explain all steps of your development and include any
relevant graphs.

B.
PP,A

x

P,

1 mi

5 mi

P

A

B

x

2 mi

BA
B.A

Building a Pipeline

S E C T I O N  P R O J E C T

Time, x 0 2 4 6 8 10

Speed, y 0 15 30 50 65 70

Altitude, h 0 5 10 15 20

Pressure, P 10,332 5583 2376 1240 517

Age, x 16 32 44 50 60

Near Point, y 3.0 4.7 9.8 19.7 39.4
Year, x 1998 2000 2002 2004 2006

Population, y 5.9 6.1 6.2 6.4 6.5
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■ Understand the Method of Lagrange Multipliers.
■ Use Lagrange multipliers to solve constrained optimization problems.
■ Use the Method of Lagrange Multipliers with two constraints.

Lagrange Multipliers
Many optimization problems have restrictions, or constraints, on the values that can
be used to produce the optimal solution. Such constraints tend to complicate
optimization problems because the optimal solution can occur at a boundary point of
the domain. In this section, you will study an ingenious technique for solving such
problems. It is called the Method of Lagrange Multipliers.

To see how this technique works, suppose you want to find the rectangle of
maximum area that can be inscribed in the ellipse given by

Let be the vertex of the rectangle in the first quadrant, as shown in Figure 13.78.
Because the rectangle has sides of lengths and its area is given by

Objective function

You want to find and such that is a maximum. Your choice of is
restricted to first-quadrant points that lie on the ellipse

Constraint

Now, consider the constraint equation to be a fixed level curve of

The level curves of represent a family of hyperbolas In this 
family, the level curves that meet the given constraint correspond to the hyperbolas
that intersect the ellipse. Moreover, to maximize you want to find the 
hyperbola that just barely satisfies the constraint. The level curve that does this is the
one that is tangent to the ellipse, as shown in Figure 13.79.

Objective function: Constraint: 

Figure 13.78 Figure 13.79

g�x, y� �
x2

32 �
y2

42 � 1f �x, y� � 4xy

x

y

2

2 4 5 6

5

1

1

3

−2

−2
−1

−1

−3

Level curves of f:
4xy = k

k = 24
k = 40
k = 56
k = 72

Ellipse:
x2 y2

= 1
32 42

+

x

y

2

2 4

1

1

3

−2

−2−4
−1

−1

−3

(x, y)

f �x, y�,

f �x, y� � 4xy � k.f

g�x, y� �
x2

32 �
y2

42.

x2

32 �
y2

42 � 1.

�x, y�f �x, y�yx

f �x, y� � 4xy.

2y,2x
�x, y�

x2

32 �
y2

42 � 1.

970 Chapter 13 Functions of Several Variables

13.10 Lagrange Multipliers

JOSEPH-LOUIS LAGRANGE (1736–1813)

The Method of Lagrange Multipliers is named
after the French mathematician Joseph-Louis
Lagrange. Lagrange first introduced the
method in his famous paper on mechanics,
written when he was just 19 years old.
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To find the appropriate hyperbola, use the fact that two curves are tangent at a point
if and only if their gradient vectors are parallel. This means that must be a
scalar multiple of at the point of tangency. In the context of constrained opti-
mization problems, this scalar is denoted by (the lowercase Greek letter lambda).

The scalar is called a Lagrange multiplier. Theorem 13.19 gives the necessary
conditions for the existence of such multipliers.

The Method of Lagrange Multipliers uses Theorem 13.19 to find the extreme
values of a function subject to a constraint.f

�

�f �x, y� � ��g�x, y�

�
�g�x, y�

�f �x, y�

13.10 Lagrange Multipliers 971

THEOREM 13.19 LAGRANGE’S THEOREM

Let and have continuous first partial derivatives such that has an
extremum at a point on the smooth constraint curve If

then there is a real number such that

�f �x0, y0� � ��g�x0, y0�.

��g�x0, y0� � 0,
g�x, y� � c.�x0, y0�
fgf

PROOF To begin, represent the smooth curve given by by the vector-
valued function

where and are continuous on an open interval Define the function as
Then, because is an extreme value of you know that

is an extreme value of This implies that and, by the Chain Rule,

So, is orthogonal to Moreover, by Theorem 13.12, is also
orthogonal to Consequently, the gradients and are parallel,
and there must exist a scalar such that

■�f �x0, y0� � ��g�x0, y0�.

�
�g�x0, y0��f �x0, y0�r��t0�.

�g�x0, y0�r��t0�.�f �x0, y0�

h��t0� � fx�x0, y0�x��t0� � fy�x0, y0�y��t0� � �f �x0, y0� � r��t0� � 0.

h��t0� � 0,h.

h�t0� � f �x�t0�, y�t0�� � f �x0, y0�

f,f �x0, y0�h�t� � f �x�t�, y�t��.
hI.y�x�

r��t� � 0r�t� � x�t�i � y�t�j,

g�x, y� � c

METHOD OF LAGRANGE MULTIPLIERS

Let and satisfy the hypothesis of Lagrange’s Theorem, and let have a
minimum or maximum subject to the constraint To find the
minimum or maximum of use the following steps.

1. Simultaneously solve the equations and by
solving the following system of equations.

2. Evaluate at each solution point obtained in the first step. The largest value
yields the maximum of subject to the constraint and the
smallest value yields the minimum of subject to the constraint g�x, y� � c.f

g�x, y� � c,f
f

 g�x, y� � c

 fy�x, y� � �gy�x, y�
 fx�x, y� � �gx�x, y�

g�x, y� � c�f �x, y� � ��g�x, y�

f,
g�x, y� � c.

fgf

NOTE Lagrange’s Theorem can be
shown to be true for functions of three
variables, using a similar argument with
level surfaces and Theorem 13.14.

NOTE As you will see in Examples 
1 and 2, the Method of Lagrange
Multipliers requires solving systems of
nonlinear equations. This often can require
some tricky algebraic manipulation.
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Constrained Optimization Problems
In the problem at the beginning of this section, you wanted to maximize the area of
a rectangle that is inscribed in an ellipse. Example 1 shows how to use Lagrange
multipliers to solve this problem.

EXAMPLE 1 Using a Lagrange Multiplier with One Constraint

Find the maximum value of where and subject to the
constraint 

Solution To begin, let

By equating and you can
obtain the following system of equations.

Constraint

From the first equation, you obtain and substitution into the second
equation produces

Substituting this value for into the third equation produces

So, Because it is required that choose the positive value and find
that

So, the maximum value of is

■

Note that writing the constraint as

or

does not affect the solution—the constant is eliminated when you form �g.

g�x, y� �
x2

32 �
y2

42 	 1 � 0g�x, y� �
x2

32 �
y2

42 � 1

f � 3
�2

, 2�2� � 4xy � 4 � 3
�2��2�2 � � 24.

f

x �
3
�2

.

�
9
2

 �
9
16

 �8�

x2 �
9
16

 y2

y > 0,y � ±2�2.

y2 � 8.
1
9 �

9
16

 y2� �
1
16

 y2 � 1

x2

x2 �
9
16

 y2.4x �
1
8�

18y
x �y

� � 18y�x,

 
x2

32 �
y2

42 � 1

fy�x, y� � �gy�x, y� 4x �
1
8

�y

fx�x, y� � �gx�x, y� 4y �
2
9

�x

��g�x, y� � �2�x�9� i � ��y�8�j,�f �x, y� � 4yi � 4xj

g�x, y� �
x2

32 �
y2

42 � 1.

�x2�32� � �y2�42� � 1.
y > 0,x > 0f �x, y� � 4xy
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NOTE Example 1 can also be solved
using the techniques you learned in
Chapter 3. To see how, try to find the
maximum value of given that

To begin, solve the second equation for 
to obtain

Then substitute into the first equation to
obtain

Finally, use the techniques of Chapter 3
to maximize A.

A � 4x �4
3�9 	 x2 �.

y �
4
3�9 	 x2.

y

x2

32 �
y2

42 � 1.

A � 4xy
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EXAMPLE 2 A Business Application

The Cobb-Douglas production function (see Example 5, Section 13.1) for a software
manufacturer is given by

Objective function

where represents the units of labor (at $150 per unit) and represents the units of
capital (at $250 per unit). The total cost of labor and capital is limited to $50,000. Find
the maximum production level for this manufacturer.

Solution From the given function, you have

The limit on the cost of labor and capital produces the constraint

Constraint

So, This gives rise to the following system of equations.

Constraint

By solving for in the first equation

and substituting into the second equation, you obtain

Multiply by 

So, By substituting into the third equation, you have

So, the maximum production level is

■

Economists call the Lagrange multiplier obtained in a production function the
marginal productivity of money. For instance, in Example 2 the marginal
productivity of money at and is

which means that for each additional dollar spent on production, an additional 0.334
unit of the product can be produced.

� �
x	1�4y1�4

2
�

�250�	1�4�50�1�4

2
� 0.334

y � 50x � 250

 � 16,719 product units.

 f �250, 50� � 100�250�3�4�50�1�4

 x � 250 units of labor.

 y � 50 units of capital

 1000y � 50,000

 150�5y� � 250y � 50,000

x � 5y.

x1�4y3�4. 25x � 125y.

25x3�4y	3�4 � 250�x	1�4y1�4

2 �

� �
75x	1�4y1�4

150
�

x	1�4y1�4

2

�

 150x � 250y � 50,000

fy�x, y� � �gy�x, y� 25x3�4y	3�4 � 250�

fx�x, y� � �gx�x, y� 75x	1�4 y1�4 � 150�

��g�x, y� � 150� i � 250� j.

g�x, y� � 150x � 250y � 50,000.

�f �x, y� � 75x	1�4y1�4 i � 25x3�4y	3�4 j.

yx

f �x, y� � 100x3�4y1�4
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■ FOR FURTHER INFORMATION
For more information on the use of
Lagrange multipliers in economics,
see the article “Lagrange Multiplier
Problems in Economics” by John V.
Baxley and John C. Moorhouse in The
American Mathematical Monthly. To
view this article, go to the website 
www.matharticles.com.
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EXAMPLE 3 Lagrange Multipliers and Three Variables

Find the minimum value of

Objective function

subject to the constraint 

Solution Let Then, because

and

you obtain the following system of equations.

Constraint

The solution of this system is and So, the optimum value of
is

From the original function and constraint, it is clear that has no maximum.
So, the optimum value of determined above is a minimum. ■

A graphical interpretation of constrained optimization problems in two variables
was given at the beginning of this section. In three variables, the interpretation is
similar, except that level surfaces are used instead of level curves. For instance, in
Example 3, the level surfaces of are ellipsoids centered at the origin, and the 
constraint 

is a plane. The minimum value of is represented by the ellipsoid that is tangent to the
constraint plane, as shown in Figure 13.80.

EXAMPLE 4 Optimization Inside a Region

Find the extreme values of

Objective function

subject to the constraint 

Solution To solve this problem, you can break the constraint into two cases.

a. For points on the circle you can use Lagrange multipliers to find
that the maximum value of is 24—this value occurs at and at

In a similar way, you can determine that the minimum value of 
is approximately 6.675—this value occurs at 

b. For points inside the circle, you can use the techniques discussed in Section 13.8
to conclude that the function has a relative minimum of 2 at the point 

By combining these two results, you can conclude that has a maximum of 24 at
and a minimum of 2 at as shown in Figure 13.81. ■�1, 0�,�	1, ±3�

f

�1, 0�.

��10, 0�.
f �x, y��	1, 	3�.

�	1, 3�f �x, y�
x2 � y2 � 10,

x2 � y2 
 10.

f �x, y� � x2 � 2y2 	 2x � 3

f

2x 	 3y 	 4z � 49

f

f
f �x, y, z�

 � 147.

 f �3, 	9, 	4� � 2�3�2 � �	9�2 � 3�	4�2

f
z � 	4.y � 	9,x � 3,

 2x 	 3y 	 4z � 49

fz�x, y, z� � �gz�x, y, z� 6z � 	4�

fy�x, y, z� � �gy�x, y, z� 2y � 	3�

fx�x, y, z� � �gx�x, y, z� 4x � 2�

��g�x, y, z� � 2� i 	 3� j 	 4�k�f �x, y, z� � 4xi � 2yj � 6zk

g�x, y, z� � 2x 	 3y 	 4z � 49.

2x 	 3y 	 4z � 49.

f �x, y, z� � 2x2 � y2 � 3z2
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x24

16

−16

8

Point of tangency
(3, −9, −4)

Ellipsoid:
2x2 + y2 + 3z2 = 147

Plane:
2x − 3y − 4z = 49

Figure 13.80
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The Method of Lagrange Multipliers with Two Constraints
For optimization problems involving two constraint functions and you can
introduce a second Lagrange multiplier, (the lowercase Greek letter mu), and then
solve the equation

where the gradient vectors are not parallel, as illustrated in Example 5.

EXAMPLE 5 Optimization with Two Constraints

Let represent the temperature at each point on the
sphere Find the extreme temperatures on the curve formed by the
intersection of the plane and the sphere.

Solution The two constraints are

and

Using

and

you can write the following system of equations.

Constraint 1

Constraint 2

By subtracting the second equation from the first, you can obtain the following
system.

From the first equation, you can conclude that or If you can show
that the critical points are and Try doing this—it takes a little
work. If then and you can show that the critical points occur when

and Finally, to find the optimal solutions,
compare the temperatures at the four critical points.

So, is the minimum temperature and is the maximum temperature on
the curve. ■

T �
91
3T � 25

 T�3 � 2�3
3

, 
3 � 2�3

3
, 

3 	 4�3
3 � �

91
3

� 30.33

 T�3 	 2�3
3

, 
3 	 2�3

3
, 

3 � 4�3
3 � �

91
3

� 30.33

 T �3, 	1, 1� � T �	1, 3, 1� � 25

z � �3 � 4�3 ��3.x � y � �3 ± 2�3 ��3
x � y� � 0,�

��	1, 3, 1�.�3, 	1, 1�
� � 0,x � y.� � 0

 x � y � z � 3

 x2 � y2 � z2 � 11

 2z�1 	 �� 	 � � 0

 ��x 	 y� � 0

 x � y � z � 3

 x2 � y2 � z2 � 11

Tz�x, y, z� � �gz�x, y, z� � �hz�x, y, z� 2z � 2�z � �

Ty�x, y, z� � �gy�x, y, z� � �hy�x, y, z� 2 � 2�y � �

Tx�x, y, z� � �gx�x, y, z� � �hx�x, y, z� 2 � 2�x � �

��h�x, y, z� � � i � � j � �k

 ��g�x, y, z� � 2�x i � 2�y j � 2�z k

 �T �x, y, z� � 2i � 2j � 2zk

h�x, y, z� � x � y � z � 3.g�x, y, z� � x2 � y2 � z2 � 11

x � y � z � 3
x2 � y2 � z2 � 11.

T�x, y, z� � 20 � 2x � 2y � z2

�f � ��g � ��h

�
h,g

13.10 Lagrange Multipliers 975

The systems of equations
that arise when the Method of Lagrange
Multipliers is used are not, in general,
linear systems, and finding the solutions
often requires ingenuity.

STUDY TIP
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13.10 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

31. Explain what is meant by constrained optimization
problems.

32. Explain the Method of Lagrange Multipliers for solving
constrained optimization problems.

WRITING ABOUT CONCEPTS

In Exercises 1– 4, identify the constraint and level curves of the
objective function shown in the figure. Use the figure to approx-
imate the indicated extrema, assuming that and are positive.
Use Lagrange multipliers to verify your result.

1. Maximize 2. Maximize 

Constraint: Constraint:

3. Minimize 4. Minimize 

Constraint: Constraint:

In Exercises 5–10, use Lagrange multipliers to find the 
indicated extrema, assuming that and are positive.

5. Minimize 

Constraint:

6. Maximize 

Constraint:

7. Maximize 

Constraint:

8. Minimize 

Constraint:

9. Maximize 

Constraint:

10. Minimize 

Constraint:

In Exercises 11–14, use Lagrange multipliers to find the
indicated extrema, assuming that and are positive.

11. Minimize 

Constraint:

12. Maximize 

Constraint:

13. Minimize 

Constraint:

14. Minimize 

Constraint:

In Exercises 15 and 16, use Lagrange multipliers to find any
extrema of the function subject to the constraint 

15.

16.

In Exercises 17 and 18, use Lagrange multipliers to find the
indicated extrema of subject to two constraints. In each case,
assume that and are nonnegative.

17. Maximize 

Constraints:

18. Minimize 

Constraints:

In Exercises 19–28, use Lagrange multipliers to find the mini-
mum distance from the curve or surface to the indicated point.
[Hints: In Exercise 19, minimize subject to the
constraint In Exercise 25, use the root feature of a
graphing utility.]

19. Line:

20. Line:

21. Line:

22. Line:

23. Parabola:

24. Parabola:

25. Parabola:

26. Circle:

27. Plane:

28. Cone:

In Exercises 29 and 30, find the highest point on the curve of
intersection of the surfaces.

29. Cone: Plane:

30. Sphere: Plane: 2x � y 	 z � 2x2 � y2 � z2 � 36,

x � 2z � 4x2 � y2 	 z2 � 0,

�4, 0, 0�z � �x2 � y2

�2, 1, 1�x � y � z � 1

Point    Surface                        

�0, 10��x 	 4�2 � y2 � 4

�1
2, 1�y � x2 � 1

�	3, 0�y � x2

�0, 3�y � x2

�1, 0�x � 4y � 3

�0, 2�x 	 y � 4

�0, 0�2x � 3y � 	1

�0, 0�x � y � 1

Point   Curve                                 

x 1 y � 1.
f 	x, y
 � x2 1 y2

x � y � 12x � 2z � 6,

f �x, y, z� � x2 � y2 � z2

x 	 y � z � 0x � y � z � 32,

f �x, y, z� � xyz

zy,x,
f

f �x, y� � e	xy�4

f �x, y� � x2 � 3xy � y2

x2 1 y2 
 1.

x � y � 10

f �x, y� � x2 	 10x � y 2 	 14y � 28

x � y � z � 1

f �x, y, z� � x2 � y2 � z2

x � y � z 	 3 � 0

f �x, y, z� � xyz

x � y � z 	 9 � 0

f �x, y, z� � x2 � y2 � z2

zy,x,

2x � 4y 	 15 � 0

f �x, y� � �x2 � y2

x � y 	 2 � 0

f �x, y� � �6 	 x2 	 y2

x2y � 6

f �x, y� � 3x � y � 10

2x � y � 100

f �x, y� � 2x � 2xy � y

2y 	 x2 � 0

f �x, y� � x2 	 y2

x � 2y 	 5 � 0

f �x, y� � x2 � y2

yx

x

2

2−2

−2

c = 1
c = 1

2

y

x

4

4

c = 2
c = 4
c = 6
c = 8

−4

−4

y

2x � 4y � 5x � y 	 4 � 0

z � x2 � y2z � x2 � y2

x

2

2

4

4

6

6

c = 2
c = 4

c = 6

y

2

2

4

4

6

6

8

8

10

10

12

12

x

c = 30
c = 40

c = 50

y

2x � y � 4x � y � 10

z � xyz � xy

yx
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In Exercises 33–42, use Lagrange multipliers to solve the indi-
cated exercise in Section 13.9.

33. Exercise 1 34. Exercise 2

35. Exercise 5 36. Exercise 6

37. Exercise 9 38. Exercise 10

39. Exercise 11 40. Exercise 12

41. Exercise 17 42. Exercise 18

43. Maximum Volume Use Lagrange multipliers to find the
dimensions of a rectangular box of maximum volume that can
be inscribed (with edges parallel to the coordinate axes) in the
ellipsoid 

45. Minimum Cost A cargo container (in the shape of a rectangular
solid) must have a volume of 480 cubic feet. The bottom will
cost $5 per square foot to construct and the sides and the top
will cost $3 per square foot to construct. Use Lagrange
multipliers to find the dimensions of the container of this size
that has minimum cost.

46. Geometric and Arithmetic Means

(a) Use Lagrange multipliers to prove that the product of three
positive numbers and whose sum has the constant
value is a maximum when the three numbers are equal.
Use this result to prove that 

(b) Generalize the result of part (a) to prove that the product
is a maximum when 

and all Then prove that

This shows that the geometric mean is never greater than
the arithmetic mean.

47. Minimum Surface Area Use Lagrange multipliers to find the
dimensions of a right circular cylinder with volume cubic
units and minimum surface area.

48. Temperature Distribution Let 
represent the temperature at each point on the sphere

Find the maximum temperature on the
curve formed by the intersection of the sphere and the plane

49. Refraction of Light When light waves traveling in a
transparent medium strike the surface of a second transparent
medium, they tend to “bend” in order to follow the path of
minimum time. This tendency is called refraction and is
described by Snell’s Law of Refraction,

where and are the magnitudes of the angles shown in the
figure, and and are the velocities of light in the two media.
Use Lagrange multipliers to derive this law using 

Figure for 49 Figure for 50

50. Area and Perimeter A semicircle is on top of a rectangle (see
figure). If the area is fixed and the perimeter is a minimum, or
if the perimeter is fixed and the area is a maximum, use
Lagrange multipliers to verify that the length of the rectangle is
twice its height.

Production Level In Exercises 51 and 52, find the maximum
production level if the total cost of labor (at $72 per unit) and
capital (at $60 per unit) is limited to $250,000, where is the
number of units of labor and is the number of units of capital.

51. 52.

Cost In Exercises 53 and 54, find the minimum cost of
producing 50,000 units of a product, where is the number
of units of labor (at $72 per unit) and is the number of units of
capital (at $60 per unit).

53. 54.

55. Investigation Consider the objective function 
subject to the constraint that , and are

the angles of a triangle.

(a) Use Lagrange multipliers to maximize 

(b) Use the constraint to reduce the function to a function of
two independent variables. Use a computer algebra system
to graph the surface represented by Identify the
maximum values on the graph.

g.

g

g.


�,�cos � cos � cos 

g��, �, 
� �

P�x, y� � 100x0.6y0.4P�x, y� � 100x0.25y0.75

y
x

P�x, y� � 100x0.4y0.6P�x, y� � 100x0.25y0.75

y
x

P

l

h

a

x

d1

y
1θ

2θ
Q

d2

Medium 1

Medium 2

P

x � y � a.
v2v1

�2�1

sin �1

v1
�

sin �2

v2

x 	 z � 0.

x2 � y2 � z2 � 50.

T �x, y, z� � 100 � x2 � y2

V0

n�x1 x2 x3 .  .  . xn 

x1 � x2 � x3 � .  .  . � xn

n
.

xi � 0..  .  . � xn, �
n

i�1
xi � S,

x1 � x2 � x3 �x1 x2 x3 .  .  . xn

3�xyz 
 �x � y � z��3.
S,

z,y,x,

�x2�a2� � �y2�b2� � �z2�c2� � 1.
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44. The sum of the length and the girth (perimeter of a cross
section) of a package carried by a delivery service cannot
exceed 108 inches.

(a) Determine whether Lagrange multipliers can be used to
find the dimensions of the rectangular package of
largest volume that may be sent. Explain your reasoning.

(b) If Lagrange multipliers can be used, find the dimen-
sions. Compare your answer with that obtained in
Exercise 38, Section 13.9.

CAPSTONE

CAS

56. A can buoy is to be made of three pieces, namely, a cylinder
and two equal cones, the altitude of each cone being equal
to the altitude of the cylinder. For a given area of 
surface, what shape will have the greatest volume?

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.

PUTNAM EXAM CHALLENGE
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In Exercises 1 and 2, sketch the graph of the level surface
at the given value of 

1.

2.

3. Conjecture Consider the function 

(a) Sketch the graph of the surface given by 

(b) Make a conjecture about the relationship between the
graphs of and Explain your 
reasoning.

(c) Make a conjecture about the relationship between the
graphs of and Explain your 
reasoning.

(d) On the surface in part (a), sketch the graphs of 
and 

4. Conjecture Consider the function

(a) Sketch the graph of the surface given by 

(b) Make a conjecture about the relationship between the
graphs of and Explain your 
reasoning.

(c) Make a conjecture about the relationship between the
graphs of and Explain your 
reasoning.

(d) On the surface in part (a), sketch the graphs of 
and 

In Exercises 5–8, use a computer algebra system to graph
several level curves of the function.

5. 6.

7. 8.

In Exercises 9 and 10, use a computer algebra system to graph
the function.

9. 10.

In Exercises 11–14, find the limit and discuss the continuity of
the function (if it exists).

11. 12.

13. 14.

In Exercises 15–24, find all first partial derivatives.

15. 16.

17. 18.

19. 20.

21.

22.

23. 24.

25. Think About It Sketch a graph of a function 
whose derivative is always negative and whose derivative is
always negative.

26. Find the slopes of the surface in the and 
directions at the point .

In Exercises 27–30, find all second partial derivatives and 
verify that the second mixed partials are equal.

27. 28.

29. 30.

Laplace’s Equation In Exercises 31–34, show that the function
satisfies Laplace’s equation

31. 32.

33. 34.

In Exercises 35 and 36, find the total differential.

35. 36.

37. Error Analysis The legs of a right triangle are measured to be
5 centimeters and 12 centimeters, with a possible error of 

centimeter. Approximate the maximum possible error in 
computing the length of the hypotenuse. Approximate the 
maximum percent error.

38. Error Analysis To determine the height of a tower, the angle
of elevation to the top of the tower is measured from a point 100
feet foot from the base. The angle is measured at with
a possible error of Assuming that the ground is 
horizontal, approximate the maximum error in determining the
height of the tower.

39. Volume A right circular cone is measured, and the radius and
height are found to be 2 inches and 5 inches, respectively. The
possible error in measurement is inch. Approximate the 
maximum possible error in the computation of the volume.

40. Lateral Surface Area Approximate the error in the computa-
tion of the lateral surface area of the cone in Exercise 39. The
lateral surface area is given by A � �r�r2 � h2.�

�

1
8

1�.
33�,±  12

1
2

z �
xy

�x2 � y2
z � x sin xy

z � ey sin xz �
y

x2 � y2

z � x3 � 3xy2z � x2 � y2

�2z
�x2 1

�2z
�y2 � 0.

g�x, y� � cos�x � 2y�h�x, y� � x sin y � y cos x

h�x, y� �
x

x � y
f �x, y� � 3x2 � xy � 2y3

�2, 0, 0�y-
x-z � x2 ln� y � 1�

fyfx

z � f �x, y�

u�x, t� � c sin�akx� cos ktu�x, t� � ce�n2t sin nx

f �x, y, z� �
1

�1 � x2 � y2 � z2

f �x, y, z� � z arctan 
y
x

w � �x2 � y2 � z2g�x, y� �
xy

x2 � y2

z � ln�x2 � y2 � 1�z � e�y � e�x

f �x, y� �
xy

x � y
f �x, y� � ex cos y

lim
�x, y�→�0, 0�

 
x2y

x 4 � y2lim
�x, y�→�0, 0�

 
y � xe�y2

1 � x2

lim
�x, y�→�1, 1�

 
xy

x2 � y2lim
�x, y�→�1, 1�

 
xy

x2 � y2

g�x, y� � �y�1��x�f �x, y� � e��x2�y2�

f �x, y� �
x

x � y
f �x, y� � x2 � y2

f �x, y� � ln xyf �x, y� � ex2�y2

z � f �x, 0�. 
z � f �0, y�

g�x, y� � 4 � f �x, y�.f

g�x, y� � f �x � 2, y�.f

f.

f �x, y� � �1 � x2 � y2.

z � f �x, 1�.
z � f �1, y�

g�x, y� � f �x, y � 2�.f

g�x, y� � f �x, y� � 2.f

f.

f �x, y� � x2 � y2.

c � 0f �x, y, z� � 4x2 � y2 � 4z2,

c � 2f �x, y, z� � x2 � y � z2,

c.f �x, y, z� � c
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In Exercises 41– 44, find the indicated derivatives (a) using
the appropriate Chain Rule and (b) using substitution before
differentiating.

41.

42.

43.

44.

In Exercises 45 and 46, differentiate implicitly to find the first
partial derivatives of 

45. 46.

In Exercises 47–50, find the directional derivative of the function
at in the direction of v.

47.

48.

49.

50.

In Exercises 51–54, find the gradient of the function and the
maximum value of the directional derivative at the given point.

51. 52.

53. 54.

In Exercises 55 and 56, (a) find the gradient of the function at 
(b) find a unit normal vector to the level curve at 
(c) find the tangent line to the level curve at and
(d) sketch the level curve, the unit normal vector, and the 
tangent line in the plane.

55. 56.

In Exercises 57–60, find an equation of the tangent plane and
parametric equations of the normal line to the surface at the
given point.

57.

58.

59.

60.

In Exercises 61 and 62, find symmetric equations of the tangent
line to the curve of intersection of the surfaces at the given
point.

61.

62.

63. Find the angle of inclination of the tangent plane to the
surface at the point 

64. Approximation Consider the following approximations for a
function centered at 

[Note that the linear approximation is the tangent plane to the
surface at 

(a) Find the linear approximation of 
centered at 

(b) Find the quadratic approximation of 
centered at 

(c) If in the quadratic approximation, you obtain the
second-degree Taylor polynomial for what function?

(d) Complete the table.

(e) Use a computer algebra system to graph the surfaces
and How does the

accuracy of the approximations change as the distance from
increases?

In Exercises 65–68, examine the function for relative extrema
and saddle points. Use a computer algebra system to graph the
function and confirm your results.

65.

66.

67.

68.

 �0.05y3 � 20.6y � 125�
z � 50�x � y� � �0.1x3 � 20x � 150� �

f �x, y� � xy �
1
x

�
1
y

f �x, y� � x2 � 3xy � y2 � 5x

f �x, y� � 2x2 � 6xy � 9y2 � 8x � 14

�0, 0�

z � P2�x, y�.z � P1�x, y�,z � f �x, y�,

y � 0

�0, 0�.
f �x, y� � cos x � sin y

�0, 0�.
f �x, y� � cos x � sin y

�0, 0, f �0, 0��.�

 12 fxx�0, 0�x2 � fxy�0, 0�xy �
1
2 fyy�0, 0�y2

P2�x, y� � f �0, 0� � fx�0, 0�x � fy�0, 0�y �

Quadratic approximation:                                         

P1�x, y� � f �0, 0� � fx�0, 0�x � fy�0, 0�y
Linear approximation:                              

�0, 0�.f �x, y�

�2, 1, 3�.x2 � y2 � z2 � 14
�

�2, 1, 3�z � x2 � y2,   z � 3

�2, 2, 5�z � 9 � y2,   y � x

Point    Surfaces                    

�1, 2, 2�z � �9 � x2 � y 2

�2, �3, 4�z � �9 � 4x � 6y � x2 � y2

�2, 3, 4�f �x, y� � �25 � y 2

�2, 1, 4�f �x, y� � x2y

Point       Surface                                      

c � 3, P	�

2
, 1
c � 65, P�3, 2�

f �x, y� � 4y sin x � yf �x, y� � 9x2 � 4y2

xy-

P,f �x, y� � c
P,f �x, y� � c
P,

z �
x2

x � y
,   �2, 1�z �

y
x2 � y2 ,   �1, 1�

z � e�x cos y,   	0, 
�

4
z � x2y,   �2, 1�

v � i � j � k�1, 0, 1�,w � 5x2 � 2xy � 3y2z,

v � 2i � j � 2k�1, 2, 2�,w � y2 � xz,

v � 2i � j�1, 4�,f �x, y� �
1
4 y2 � x2,

v � 3i � 4j��5, 5�,f �x, y� � x2y,

P

xz2 � y sin z � 0x2 � xy � y2 � yz � z2 � 0

z.

z � ty � r sin t,x � r cos t,

�u
�r

, 
�u
�t

u � x2 � y2 � z2,

z � 2r � ty � rt,x � 2r � t,

�w
�r

, �w
�t

w �
xy
z

,

y � sin tx � cos t,

du
dt

u � y2 � x,

y � 4 � tx � 2t,

dw
dt

w � ln�x2 � y�,

Review Exercises 979

x y f �x, y� P1�x, y� P2�x, y�

0 0

0 0.1

0.2 0.1

0.5 0.3

1 0.5
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Writing In Exercises 69 and 70, write a short paragraph about
the surface whose level curves ( -values evenly spaced) are
shown. Comment on possible extrema, saddle points, the magni-
tude of the gradient, etc.

69. 70.

71. Maximum Profit A corporation manufactures digital
cameras at two locations. The cost functions for producing 
units at location 1 and units at location 2 are

and the total revenue function is

Find the production levels at the two locations that will 
maximize the profit 

72. Minimum Cost A manufacturer has an order for 1000 units of
wooden benches that can be produced at two locations. Let 
and be the numbers of units produced at the two locations.
The cost function is

Find the number that should be produced at each location to
meet the order and minimize cost.

73. Production Level The production function for a candy 
manufacturer is

where is the number of units of labor and is the number of
units of capital. Assume that the total amount available for
labor and capital is $2000, and that units of labor and capital
cost $20 and $4, respectively. Find the maximum production
level for this manufacturer.

74. Find the minimum distance from the point to the
surface 

75. Modeling Data The table shows the drag force in kilograms
for a motor vehicle at indicated speeds in kilometers per hour.

(a) Use the regression capabilities of a graphing utility to find
the least squares regression quadratic for the data.

(b) Use the model to estimate the total drag when the vehicle is
moving at 80 kilometers per hour.

76. Modeling Data The data in the table show the yield (in
milligrams) of a chemical reaction after minutes.

(a) Use the regression capabilities of a graphing utility to find
the least squares regression line for the data. Then use the
graphing utility to plot the data and graph the model.

(b) Use a graphing utility to plot the points Do these
points appear to follow a linear pattern more closely than
the plot of the given data in part (a)?

(c) Use the regression capabilities of a graphing utility to find
the least squares regression line for the points and
obtain the logarithmic model 

(d) Use a graphing utility to plot the data and graph the linear
and logarithmic models. Which is a better model? Explain.

In Exercises 77 and 78, use Lagrange multipliers to locate and
classify any extrema of the function.

77.

Constraint:

78.

Constraint:

79. Minimum Cost A water line is to be built from point to
point and must pass through regions where construction costs
differ (see figure). The cost per kilometer in dollars is from

to , from to and from to For simplicity, let
Use Lagrange multipliers to find and such that the

total cost will be minimized.

80. Investigation Consider the objective function 
subject to the constraint Assume

that and are positive.

(a) Use a computer algebra system to graph the constraint. For
and use the computer algebra system to graph

the level curves of the objective function. By trial and error,
find the level curve that appears to be tangent to the ellipse.
Use the result to approximate the maximum of subject to
the constraint.

(b) Repeat part (a) for and b � 9.a � 4

f

b � 3,a � 4

yx
x2�64 � y2�36 � 1.ax � by

f �x, y� �

1 km

P

Q

R S
x y z

10 km

2 km

C
zy,x,k � 1.

S.RkR,Q2kQP
3k

S
P

x � 2y � 2

z � x2y

x � y � z � 1

w � xy � yz � xz

y � a � b ln t.
�ln t, y�

�ln t, y�.

t
y

x
y

z � x2 � y2.
�2, 2, 0�

yx

f �x, y� � 4x � xy � 2y

C � 0.25x1
2 � 10x1 � 0.15x2

2 � 12x2.

x2

x1

P�x1, x2� � R � C1 � C2.

R � �225 � 0.4�x1 � x2���x1 � x2�.

C2 � 0.03x2
2 � 15x2 � 6100

C1 � 0.05x1
2 � 15x1 � 5400

x2

x1

x

y

x

y

c
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Speed, x 25 50 75 100 125

Drag, y 24 34 50 71 98

Minutes, t 1 2 3 4

Yield, y 1.2 7.1 9.9 13.1

Minutes, t 5 6 7 8

Yield, y 15.5 16.0 17.9 18.0
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1. Heron’s Formula states that the area of a triangle with sides of
lengths and is given by

where as shown in the figure.

(a) Use Heron’s Formula to find the area of the triangle with
vertices and 

(b) Show that among all triangles having a fixed perimeter, the
triangle with the largest area is an equilateral triangle.

(c) Show that among all triangles having a fixed area, the
triangle with the smallest perimeter is an equilateral triangle.

2. An industrial container is in the shape of a cylinder with
hemispherical ends, as shown in the figure. The container must
hold 1000 liters of fluid. Determine the radius and length that
minimize the amount of material used in the construction of the
tank.

3. Let be a point in the first octant on the surface

(a) Find the equation of the tangent plane to the surface at the
point 

(b) Show that the volume of the tetrahedron formed by the three
coordinate planes and the tangent plane is constant,
independent of the point of tangency (see figure).

4. Use a graphing utility to graph the functions 
and in the same viewing window.

(a) Show that 

and 

(b) Find the point on the graph of that is farthest from the
graph of 

5. (a) Let and Graph 
various level curves of and the constraint in the plane.
Use the graph to determine the maximum value of subject
to the constraint Then verify your answer using
Lagrange multipliers.

(b) Let and Find the
maximum and minimum values of subject to the 
constraint Does the method of Lagrange Multipliers
work in this case? Explain.

6. A heated storage room has the shape of a rectangular box and
has a volume of 1000 cubic feet, as shown in the figure.
Because warm air rises, the heat loss per unit of area through
the ceiling is five times as great as the heat loss through the
floor. The heat loss through the four walls is three times as great
as the heat loss through the floor. Determine the room 
dimensions that will minimize heat loss and therefore minimize
heating costs.

7. Repeat Exercise 6 assuming that the heat loss through the walls
and ceiling remain the same, but the floor is insulated so that
there is no heat loss through the floor.

8. Consider a circular plate of radius 1 given by as
shown in the figure. The temperature at any point on the
plate is 

(a) Sketch the isotherm To print an enlarged
copy of the graph, go to the website www.mathgraphs.com.

(b) Find the hottest and coldest points on the plate.

9. Consider the Cobb-Douglas production function 

(a) Show that satisfies the equation 

(b) Show that .

10. Rewrite Laplace’s equation in cylindrical

coordinates.

�2u
�x2 �

�2u
�y2 �

�2u
�z2 � 0

f �tx, ty� � t f �x, y�

x 
�f
�x

� y 
�f
�y

� f.f

0 < a < 1.f �x, y� � Cxay1�a,

T�x, y� � 10.

x
1−1

−1

1
x2 + y2 ≤ 1

y

T�x, y� � 2x2 � y2 � y � 10.
P�x, y�

x2 � y2 	 1,

z

x
y

V = xyz = 1000

g � 0.
f

g�x, y� � x2 � y2 � 0.f �x, y� � x � y

g � 4.
f

xy-gf
g�x, y� � x2 � y2 � 4.f �x, y� � x � y

g.
f

lim
x→�


 � f �x� � g�x�� � 0.lim
x→


 � f �x� � g�x�� � 0

g�x� � x
f �x� � 3�x3 � 1

y

x

3

3

3

z

P

P.

xyz � 1.
P�x0, y0, z0�

h

r

hr

�6, 0�.�3, 4�,�0, 0�,

a b

c

s �
a � b � c

2
,

A � �s�s � a��s � b��s � c�

cb,a,
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11. A projectile is launched at an angle of with the horizontal
and with an initial velocity of 64 feet per second. A television
camera is located in the plane of the path of the projectile 
50 feet behind the launch site (see figure).

(a) Find parametric equations for the path of the projectile in
terms of the parameter representing time.

(b) Write the angle that the camera makes with the horizon-
tal in terms of and and in terms of 

(c) Use the results of part (b) to find 

(d) Use a graphing utility to graph in terms of Is the graph
symmetric to the axis of the parabolic arch of the 
projectile? At what time is the rate of change of greatest?

(e) At what time is the angle maximum? Does this occur
when the projectile is at its greatest height?

12. Consider the distance between the launch site and the 
projectile in Exercise 11.

(a) Write the distance in terms of and and in terms of the
parameter 

(b) Use the results of part (a) to find the rate of change of 

(c) Find the rate of change of the distance when 

(d) When is the rate of change of minimum during the flight
of the projectile? Does this occur at the time when the
projectile reaches its maximum height?

13. Consider the function

(a) Use a computer algebra system to graph the function for
and and identify any extrema or saddle

points.

(b) Use a computer algebra system to graph the function for
and and identify any extrema or saddle

points.

(c) Generalize the results in parts (a) and (b) for the function 

14. Prove that if is a differentiable function such that 

then the tangent plane at is horizontal.

15. The figure shows a rectangle that is approximately 
centimeters long and centimeter high.

(a) Draw a rectangular strip along the rectangular region
showing a small increase in length.

(b) Draw a rectangular strip along the rectangular region
showing a small increase in height.

(c) Use the results in parts (a) and (b) to identify the measure-
ment that has more effect on the area of the rectangle.

(d) Verify your answer in part (c) analytically by comparing
the value of when and when 

16. Consider converting a point in polar
coordinates to rectangular coordinates 

(a) Use a geometric argument to determine whether the
accuracy in is more dependent on the accuracy in or on
the accuracy in Explain. Verify your answer analytically.

(b) Use a geometric argument to determine whether the 
accuracy in is more dependent on the accuracy in or on
the accuracy in Explain. Verify your answer analytically.

17. Let be a differentiable function of one variable. Show that all
tangent planes to the surface intersect in a
common point.

18. Consider the ellipse

that encloses the circle Find values of and 
that minimize the area of the ellipse.

19. Show that

is a solution to the one-dimensional wave equation

20. Show that

is a solution to the one-dimensional wave equation

(This equation describes the small transverse vibration of an
elastic string such as those on certain musical instruments.)

�2u
�t2 � c2 

�2u
�x2.

u�x, t� �
1
2

� f �x � ct� � f �x � ct��

�2u
�t2 �

�2u
�x2.

u�x, t� �
1
2

�sin�x � t� � sin�x � t��

bax2 � y2 � 2x.

x2

a2 �
y2

b2 � 1

z � y f �x�y�
f

�.
ry

�.
rx

�x, y�.
��18 ± 0.05��5 ± 0.05,

dh � 0.01.dl � 0.01dA

A

h = 1 cm

l = 6 cm

h � 1
l � 6

�x0, y0�

�f �x0, y0� � 0

f

f.

� � 2,
 � �1

� � 2,
 � 1

f �x, y� � �
x2 � �y2�e��x2�y2�,  0 < �
� < �.

d

t � 2.

d.

t.
yxd

d







t.


d
�dt.

t.yx



t

(−50, 0) 45°

(x, y)

α

y

x

45�
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983983

14 Multiple Integration

You can approximate the volume of a solid region by finding the sum of the volumes of representative rectangular
prisms. As you increase the number of rectangular prisms, the approximation tends to become more and more 
accurate. In Chapter 14, you will learn how to use multiple integrals to find the volume of a solid region.

Langley Photography/Getty Images

This chapter introduces the concepts of
double integrals over regions in the plane
and triple integrals over regions in space.

In this chapter, you should learn the 
following.

■ How to evaluate an iterated integral 
and find the area of a plane region.
(14.1)

■ How to use a double integral to find the
volume of a solid region. (14.2)

■ How to write and evaluate double 
integrals in polar coordinates. (14.3)

■ How to find the mass of a planar lamina,
the center of mass of a planar lamina,
and moments of inertia using double
integrals. (14.4)

■ How to use a double integral to find the
area of a surface. (14.5)

■ How to use a triple integral to find the 
volume, center of mass, and moments of
inertia of a solid region. (14.6)

■ How to write and evaluate triple integrals
in cylindrical and spherical coordinates.
(14.7)

■ How to use a Jacobian to change variables
in a double integral. (14.8) The center of pressure on a sail is that point at which the total aerodynamic force

may be assumed to act. Letting the sail be represented by a plane region, how can
you use double integrals to find the center of pressure on a sail? (See Section
14.4, Section Project.)

■

■
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■ Evaluate an iterated integral.
■ Use an iterated integral to find the area of a plane region.

Iterated Integrals
In Chapter 13, you saw that it is meaningful to differentiate functions of several
variables with respect to one variable while holding the other variables constant. You
can integrate functions of several variables by a similar procedure. For example, if
you are given the partial derivative

then, by considering constant, you can integrate with respect to to obtain

Integrate with respect to 

Hold constant.

Factor out constant 

Antiderivative of is 

is a function of 

The “constant” of integration, is a function of In other words, by integrating
with respect to , you are able to recover only partially. The total recovery of a
function of and from its partial derivatives is a topic you will study in Chapter 15.
For now, we are more concerned with extending definite integrals to functions of
several variables. For instance, by considering constant, you can apply the
Fundamental Theorem of Calculus to evaluate

is the variable Replace by The result is
of integration the limits of a function
and is fixed. integration. of 

Similarly, you can integrate with respect to by holding fixed. Both procedures are
summarized as follows.

Note that the variable of integration cannot appear in either limit of integration. For
instance, it makes no sense to write 

�x

0
 y dx.

xy

y.y

xx

�2y

1
 2xy dx � x2y�

2y

1
� �2y�2y � �1�2y � 4y3 � y.

y

yx
f�x, y�x

y.C�y�,

y.C�y� � x2y � C�y�.
x2.2x � y�x2� � C�y�

y. � y� 2x dx

y � � 2xy dx

x. f�x, y� � � fx�x, y� dx

xy

fx�x, y� � 2xy
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14.1 Iterated Integrals and Area in the Plane

With respect to x� f�h2�y�, y� � f�h1�y�, y��h2� y�

h1� y�
 fx�x, y� dx � f �x, y��

h2� y�

h1� y�

With respect to y� f�x, g2�x�� � f �x, g1�x���g
2
�x�

g1�x�
 fy�x, y� dy � f�x, y��

g
2
�x�

g1�x�

NOTE In Chapters 14 and 15, you will
study several applications of integration
involving functions of several variables.
Chapter 14 is much like Chapter 7 in
that it surveys the use of integration to
find plane areas, volumes, surface areas,
moments, and centers of mass.
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EXAMPLE 1 Integrating with Respect to y

Evaluate 

Solution Considering to be constant and integrating with respect to produces

Integrate with respect to 

■

Notice in Example 1 that the integral defines a function of and can itself be
integrated, as shown in the next example.

EXAMPLE 2 The Integral of an Integral

Evaluate 

Solution Using the result of Example 1, you have

Integrate with respect to 

■

The integral in Example 2 is an iterated integral. The brackets used in Example
2 are normally not written. Instead, iterated integrals are usually written simply as

and

The inside limits of integration can be variable with respect to the outer variable of
integration. However, the outside limits of integration must be constant with respect
to both variables of integration. After performing the inside integration, you obtain a
“standard” definite integral, and the second integration produces a real number. The
limits of integration for an iterated integral identify two sets of boundary intervals for
the variables. For instance, in Example 2, the outside limits indicate that lies in the
interval and the inside limits indicate that lies in the interval 
Together, these two intervals determine the region of integration R of the iterated
integral, as shown in Figure 14.1.

Because an iterated integral is just a special type of definite integral—one in
which the integrand is also an integral—you can use the properties of definite integrals
to evaluate iterated integrals.

1 � y � x.y1 � x � 2
x

�d

c
�h

2
�y�

h1�y�
 f�x, y� dx dy.�b

a
�g

2
�x�

g1(x�
 f�x, y� dy dx

 � 3.

 � 2 � ��1�

x. � �x3 � x2 � x�
2

1

 �2

1
 ��x

1
�2x2y�2 � 2y� dy� dx � �2

1
 �3x2 � 2x � 1� dx

�2

1
 ��x

1
�2x2y�2 � 2y� dy� dx.

x

 � 3x2 � 2x � 1.

 � ��2x2

x
� x2� � ��2x2

1
� 1�

y. �x

1
 �2x2y�2 � 2y� dy � ��2x2

y
� y2�

x

1

yx

�x

1
 �2x2y�2 � 2y� dy.
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1 2

1

2

x

y y = x

R: 1 ≤ x ≤ 2
1 ≤ y ≤ x

The region of integration for

Figure 14.1

�2

1
�x

1
f 	x, y
 dy dx
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Area of a Plane Region
In the remainder of this section, you will take a new look at an old problem—that of
finding the area of a plane region. Consider the plane region bounded by 
and as shown in Figure 14.2. The area of is given by the definite
integral

Area of 

Using the Fundamental Theorem of Calculus, you can rewrite the integrand
as a definite integral. Specifically, if you consider to be fixed and let

vary from to you can write

Combining these two integrals, you can write the area of the region as an iterated
integral

Area of 

Placing a representative rectangle in the region helps determine both the order and
the limits of integration. A vertical rectangle implies the order with the inside
limits corresponding to the upper and lower bounds of the rectangle, as shown in
Figure 14.2. This type of region is called vertically simple, because the outside 
limits of integration represent the vertical lines and 

Similarly, a horizontal rectangle implies the order with the inside limits
determined by the left and right bounds of the rectangle, as shown in Figure 14.3. This
type of region is called horizontally simple, because the outside limits represent the
horizontal lines and The iterated integrals used for these two types of
simple regions are summarized as follows.

y � d.y � c

dx dy,
x � b.x � a

dy dx,
R

 � �b

a

 �g2�x� � g1�x�� dx.

R �b

a
�g

2
�x�

g1�x�
 dy dx � �b

a

 y�
g2�x�

g1�x�
 dx

R

�g
2
�x�

g1�x�
 dy � y�

g2�x�

g1�x�
� g2�x� � g1�x�.

g2�x�,g1�x�y
xg2�x� � g1�x�

R�b

a

 �g2�x� � g1�x�� dx.

Rg1�x� � y � g2�x�,
a � x � bR
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y

x

g2

g1

g1(x) ≤ y ≤ g2(x)
a ≤ x ≤ b and

R

b

dxdy

Δx
a

g
2
(x)b

a g
1
(x)

Area = 

Region is bounded by

Vertically simple region
Figure 14.2

y

x

Δy

R

d

dydx

h2

h
2
(y)

h
1
(y)c

d

h1

Area = 

c

h1(y) ≤ x ≤ h2(y)

Region is bounded by
c ≤ y ≤ d and

Horizontally simple region
Figure 14.3

AREA OF A REGION IN THE PLANE

1. If is defined by and where and are
continuous on then the area of is given by

Figure 14.2 (vertically simple)

2. If is defined by and where and are
continuous on then the area of is given by

Figure 14.3 (horizontally simple)A � �d

c
�h

2
�y�

h1�y�
 dx dy.

R�c, d�,
h2h1h1�y� � x � h2�y�,c � y � dR

A � �b

a
�g

2
�x�

g1�x�
 dy dx.

R�a, b�,
g2g1g1�x� � y � g2�x�,a � x � bR

NOTE Be sure you see that the orders of integration of these two integrals are different—the
order corresponds to a vertically simple region, and the order corresponds to a
horizontally simple region. ■

dx dydy dx
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If all four limits of integration happen to be constants, the region of integration is
rectangular, as shown in Example 3.

EXAMPLE 3 The Area of a Rectangular Region

Use an iterated integral to represent the area of the rectangle shown in Figure 14.4.

Solution The region shown in Figure 14.4 is both vertically simple and horizontally
simple, so you can use either order of integration. By choosing the order you
obtain the following.

Integrate with respect to 

Integrate with respect to 

Notice that this answer is consistent with what you know from geometry.

EXAMPLE 4 Finding Area by an Iterated Integral

Use an iterated integral to find the area of the region bounded by the graphs of

Sine curve forms upper boundary.

Cosine curve forms lower boundary.

between and 

Solution Because and are given as functions of a vertical representative
rectangle is convenient, and you can choose as the order of integration, as shown
in Figure 14.5. The outside limits of integration are Moreover,
because the rectangle is bounded above by and below by 
you have

Integrate with respect to 

Integrate with respect to 

■ � 2
2.

x. � ��cos x � sin x�
5��4

��4

 � �5��4

��4
 �sin x � cos x� dx

y. � �5��4

��4
 y�

sin x

cos
 
x

  dx

 Area of R � �5��4

��4
�sin x

cos x
 dy dx

g�x� � cos x,f�x� � sin x
��4  ≤  x  ≤  5��4.

dy dx
x,gf

x � 5��4.x � ��4

 g�x� � cos x

 f�x� � sin x

 � �d � c��b � a�

x. � ��d � c�x�
b

a

 � �b

a

 �d � c� dx

y. �b

a
�d

c

 dy dx � �b

a

 y�
d

c

  dx

dy dx,
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NOTE The region of integration of an iterated integral need not have any straight lines as
boundaries. For instance, the region of integration shown in Figure 14.5 is vertically simple
even though it has no vertical lines as left and right boundaries. The quality that makes the
region vertically simple is that it is bounded above and below by the graphs of functions of 

■

x.

Area =
sin x

cos x
dy dx

5π /4

π /4

x

y

−1

π3
2

π
4

y = sin x

y = cos x

Δx

π
4

π
4

5≤ x ≤R:

cos x ≤ y ≤ sin x

π π
2

Figure 14.5

x

d
Rectangular region

b

b − a

c

a

Rd − c

y

Figure 14.4
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One order of integration will often produce a simpler integration problem than the
other order. For instance, try reworking Example 4 with the order —you may be
surprised to see that the task is formidable. However, if you succeed, you will see that
the answer is the same. In other words, the order of integration affects the ease of
integration, but not the value of the integral.

EXAMPLE 5 Comparing Different Orders of Integration

Sketch the region whose area is represented by the integral

Then find another iterated integral using the order to represent the same area and
show that both integrals yield the same value.

Solution From the given limits of integration, you know that

Inner limits of integration

which means that the region is bounded on the left by the parabola and on
the right by the line Furthermore, because

Outer limits of integration

you know that is bounded below by the axis, as shown in Figure 14.6(a). The value
of this integral is

Integrate with respect to 

Integrate with respect to 

To change the order of integration to place a vertical rectangle in the region, as
shown in Figure 14.6(b). From this you can see that the constant bounds 
serve as the outer limits of integration. By solving for in the equation you
can conclude that the inner bounds are So, the area of the region can
also be represented by

By evaluating this integral, you can see that it has the same value as the original
integral.

Integrate with respect to 

Integrate with respect to ■x.�
16
3

 �
2
3

 x3�2�
4

0

 � �4
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x dx

y. �4

0
�
x

0
 dy dx � �4

0
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0
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�4

0
�
x

0
 dy dx.
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x � y2,y
0 � x � 4
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3

. � �4y �
y3

3 �
2
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 � �2

0
 �4 � y2� dy

x. �2

0
�4

y2

 dx dy � �2

0
 x�

4

y2

 dy

x-R

0 � y � 2

x � 4.
x � y2R

y2 � x � 4

dy dx
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0
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y2

 dx dy.
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The icon indicates that you will find a CAS Investigation on the book’s website. The CAS
Investigation is a collaborative exploration of this example using the computer algebra systems
Maple and Mathematica.

y2 ≤ x ≤ 4

Area =
4

y2
dydx

2

0

x

Δy

0 ≤ y ≤ 2R:

1

1

−1

2

2

3

3

4

x = y2 (4, 2)

y

(a)

Area =
x
dy dx

4

0 0

x
Δx

0 ≤ x ≤ 4R:

1

1

−1

2

2

3

3

4

(4, 2)y =    x

0 ≤ y ≤    x

y

(b)
Figure 14.6
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Sometimes it is not possible to calculate the area of a region with a single iterated
integral. In these cases you can divide the region into subregions such that the area of
each subregion can be calculated by an iterated integral. The total area is then the sum
of the iterated integrals.

EXAMPLE 6 An Area Represented by Two Iterated Integrals

Find the area of the region that lies below the parabola

Parabola forms upper boundary.

above the axis, and above the line

Line and axis form lower boundary.

Solution Begin by dividing into the two subregions and shown in Figure 14.7.

Figure 14.7

In both regions, it is convenient to use vertical rectangles, and you have

The area of the region is square units. Try checking this using the procedure for
finding the area between two curves, as presented in Section 7.1. ■

At this point you may be wondering why you would need iterated integrals. After
all, you already know how to use conventional integration to find the area of a region
in the plane. (For instance, compare the solution of Example 4 in this section with that
given in Example 3 in Section 7.1.) The need for iterated integrals will become clear
in the next section. In this section, primary attention is given to procedures for finding
the limits of integration of the region of an iterated integral, and the following 
exercise set is designed to develop skill in this important procedure.

15�2

 � �14 �
8
3

� 12 �
7
2

�
1
3

� 6� � �32 �
64
3

� 8 �
8
3� �

15
2

.

 � �7x2

2
�

x3

3
� 6x�

2

1
� �2x2 �

x3

3 �
4

2

 � �2

1
 �4x � x2 � 3x � 6� dx � �4

2
 �4x � x2� dx

 Area � �2

1
�4x�x2

�3x�6
 dy dx � �4

2
�4x�x2

0
 dy dx

x
1

1

2

2

3

4

4

(1, 3)

Δx

R1

R2

y = −3x + 6

y = 4x − x2

Δx

Area =
4x − x2

dy dx
2

1 −3x + 6
+

4x − x2

dy dx
4

2 0

y

R2R1R

x-y � �3x � 6.

x-

y � 4x � x2

R
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NOTE In Examples 3 to 6, be sure you
see the benefit of sketching the region of
integration. You should develop the habit
of making sketches to help you determine
the limits of integration for all iterated
integrals in this chapter.

Some computer
software can perform symbolic 
integration for integrals such as those
in Example 6. If you have access to
such software, use it to evaluate the
integrals in the exercises and examples
given in this section.
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In Exercises 1–10, evaluate the integral.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

In Exercises 11–30, evaluate the iterated integral.

11. 12.

13. 14.

15. 16.

17.

18.

19. 20.

21.

22.

23. 24.

25. 26.

27. 28.

29.

30.

In Exercises 31–34, evaluate the improper iterated integral.

31. 32.

33. 34.

In Exercises 35–38, use an iterated integral to find the area of
the region.

35. 36.

37. 38.

In Exercises 39– 46, use an iterated integral to find the area of
the region bounded by the graphs of the equations.

39.

40.

41.

42.

43.

44.

45.

46.

In Exercises 47– 54, sketch the region of integration and
switch the order of integration.

47. 48.

49. 50.

51. 52.

53. 54.

In Exercises 55–64, sketch the region whose area is given by
the iterated integral. Then switch the order of integration and
show that both orders yield the same area.

55. 56.

57. 58. �2
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 �
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 dy dx�1
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 dx dy
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 dx dy�1

0
�2

0
 dy dx
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0
 f �x, y� dy dx�1
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 f �x, y� dy dx
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 �e�x

0
 f �x, y� dy dx�10

1
�ln y

0
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0
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 �
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�4

0
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0
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59.

60.

61. 62.

63. 64.

65. Think About It Give a geometric argument for the equality.
Verify the equality analytically.

In Exercises 67–72, sketch the region of integration. Then 
evaluate the iterated integral. (Note that it is necessary to switch
the order of integration.)

67. 68.

69. 70.

71. 72.

In Exercises 73–76, use a computer algebra system to evaluate
the iterated integral.

73.

74.

75.

76.

In Exercises 77 and 78, (a) sketch the region of integration,
(b) switch the order of integration, and (c) use a computer
algebra system to show that both orders yield the same value.

77.

78.

In Exercises 79–82, use a computer algebra system to approxi-
mate the iterated integral.

79.

80.

81.

82.

True or False? In Exercises 87 and 88, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

87.

88. �1

0
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0
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66. Think About It Complete the iterated integrals so that
each one represents the area of the region (see figure).
Then show that both integrals yield the same area.

(a) (b)

x

(4, 2)
y =     x

y = x
2

y

1 2 3 4

1

2

R

Area � ��dy dxArea � ��dx dy

R

CAPSTONE

CAS

CAS

CAS

83. Explain what is meant by an iterated integral. How is it
evaluated?

84. Describe regions that are vertically simple and regions that
are horizontally simple.

85. Give a geometric description of the region of integration if
the inside and outside limits of integration are constants.

86. Explain why it is sometimes an advantage to change the
order of integration.

WRITING ABOUT CONCEPTS
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■ Use a double integral to represent the volume of a solid region.
■ Use properties of double integrals.
■ Evaluate a double integral as an iterated integral.
■ Find the average value of a function over a region.

Double Integrals and Volume of a Solid Region
You already know that a definite integral over an interval uses a limit process to assign
measures to quantities such as area, volume, arc length, and mass. In this section, you
will use a similar process to define the double integral of a function of two variables
over a region in the plane.

Consider a continuous function such that for all in a region 
in the plane. The goal is to find the volume of the solid region lying between the
surface given by

Surface lying above the plane

and the plane, as shown in Figure 14.8. You can begin by superimposing a rectan-
gular grid over the region, as shown in Figure 14.9. The rectangles lying entirely
within form an inner partition whose norm is defined as the length of the
longest diagonal of the rectangles. Next, choose a point in each rectangle and
form the rectangular prism whose height is as shown in Figure 14.10.
Because the area of the rectangle is 

Area of rectangle

it follows that the volume of the prism is

Volume of prism

and you can approximate the volume of the solid region by the Riemann sum of the
volumes of all prisms,

Riemann sum

as shown in Figure 14.11. This approximation can be improved by tightening the mesh
of the grid to form smaller and smaller rectangles, as shown in Example 1.

�
n

i�1
f �xi, yi� �Ai

n

ithf �xi, yi� �Ai

ith

ith�Ai

ith
f �xi, yi�,

�xi, yi�n
����,R

xy-

xy-z � f �x, y�

xy-
R�x, y�f �x, y� � 0f
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Rx

y

Surface:
z = f (x, y)

z

(xi, yi)

The rectangles lying within form an inner
partition of
Figure 14.9

R.
R

x

y

z

f (xi, yi)

Rectangular prism whose base has an area of
and whose height is 

Figure 14.10
f �xi, yi��Ai

x

y

z

Volume approximated by rectangular
prisms
Figure 14.11

x

y

Surface:
z = f (x, y)

R

z

Figure 14.8
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EXAMPLE 1 Approximating the Volume of a Solid

Approximate the volume of the solid lying between the paraboloid

and the square region given by Use a partition made up of
squares whose sides have a length of 

Solution Begin by forming the specified partition of For this partition, it is
convenient to choose the centers of the subregions as the points at which to evaluate

Because the area of each square is you can approximate the volume by the
sum

This approximation is shown graphically in Figure 14.12. The exact volume of the
solid is (see Example 2). You can obtain a better approximation by using a finer
partition. For example, with a partition of squares with sides of length the approx-
imation is 0.668. ■

In Example 1, note that by using finer partitions, you obtain better approxima-
tions of the volume. This observation suggests that you could obtain the exact volume
by taking a limit. That is,

Volume

The precise meaning of this limit is that the limit is equal to if for every there
exists a such that

for all partitions of the plane region (that satisfy ) and for all possible
choices of and in the region.

Using the limit of a Riemann sum to define volume is a special case of using the
limit to define a double integral. The general case, however, does not require that the
function be positive or continuous.

ithyixi

��� < �R�

�L � �
n

i�1
f �xi, yi� �Ai� < �

� > 0
� > 0L

� lim
���→0

 �
n

i�1
 f �xi, yi� �Ai .

1
10,

2
3

 � 0.672.

�
16

i�1
f �xi yi� �Ai � �

16

i�1
�1 �

1
2

x 2
i �

1
2

y 2
i 	� 1

16	

�Ai �
1
16,

�7
8, 18�      �7

8, 38�      �7
8, 58�      �7

8, 78�
�5

8, 18�      �5
8, 38�      �5

8, 58�      �5
8, 78�

�3
8, 18�      �3

8, 38�      �3
8, 58�      �3

8, 78�
�1

8, 18�      �1
8, 38�      �1

8, 58�      �1
8, 78�

f �x, y�.

R.

1
4.

0 ≤ y ≤ 1.0 ≤ x ≤ 1,R

f �x, y� � 1 �
1
2

x2 �
1
2

y2
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x

y

Surface:

f (x, y) = 1 −    x2 −    y21
2

1
2

1

1

1

z

Figure 14.12

x

y

z

Figure 14.13

Some three-dimensional graphing utilities are capable of graphing
figures such as that shown in Figure 14.12. For instance, the graph shown in Figure
14.13 was drawn with a computer program. In this graph, note that each of the 
rectangular prisms lies within the solid region.

TECHNOLOGY
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Sufficient conditions for the double integral of on the region to exist are that
can be written as a union of a finite number of nonoverlapping subregions (see

Figure 14.14) that are vertically or horizontally simple and that is continuous on the
region 

A double integral can be used to find the volume of a solid region that lies
between the plane and the surface given by 

Properties of Double Integrals
Double integrals share many properties of single integrals.

z � f �x, y�.xy-

R.
f

R
Rf
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DEFINITION OF DOUBLE INTEGRAL

If is defined on a closed, bounded region in the plane, then the double
integral of over is given by

provided the limit exists. If the limit exists, then is integrable over R.f



R

 f �x, y� d A � lim

���→0 �
n

i�1
f �xi, yi� �Ai

Rf
xy-Rf

VOLUME OF A SOLID REGION

If is integrable over a plane region and for all in then
the volume of the solid region that lies above and below the graph of is
defined as

V � 

R

 f �x, y� dA.

fR
R,�x, y�f �x, y� � 0Rf

NOTE Having defined a double integral, you will see that a definite integral is occasionally
referred to as a single integral. ■

THEOREM 14.1 PROPERTIES OF DOUBLE INTEGRALS

Let and be continuous over a closed, bounded plane region and let be
a constant.

1.

2.

3. if 

4. if 

5. where is the union

of two nonoverlapping subregions and R2.R1

R

R

 f �x, y� dA � 


R1


 f �x, y� dA � 

R2


 f �x, y� dA,

f �x, y� � g�x, y�

R

 f �x, y� dA � 


R

g�x, y� dA,

f �x, y� � 0

R

 f �x, y� dA � 0,



R

� f �x, y� ± g�x, y�� dA � 


R

 f �x, y� d A ± 


R

g�x, y� dA



R

 cf �x, y� dA � c


R

 f �x, y� dA

cR,gf

x

R2R1

R = R1 ∪ R2

y

Two regions are nonoverlapping if their
intersection is a set that has an area of 0. In
this figure, the area of the line segment that
is common to and is 0.
Figure 14.14

R2R1

E X P L O R A T I O N

The entries in the table represent
the depths (in 10-yard units) of
earth at the centers of the squares
in the figure below.

Approximate the number of cubic
yards of earth in the first octant. 
(This exploration was submitted
by Robert Vojack, Ridgewood
High School, Ridgewood, NJ.)

x

y

z

40

30

20

1 2 3

1 10 9 7

2 7 7 4

3 5 5 4

4 4 5 3

x
y
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Evaluation of Double Integrals
Normally, the first step in evaluating a double integral is to rewrite it as an iterated
integral. To show how this is done, a geometric model of a double integral is used as
the volume of a solid.

Consider the solid region bounded by the plane and
the three coordinate planes, as shown in Figure 14.15. Each vertical cross section
taken parallel to the plane is a triangular region whose base has a length of

and whose height is This implies that for a fixed value of
the area of the triangular cross section is

By the formula for the volume of a solid with known cross sections (Section 7.2), the
volume of the solid is

This procedure works no matter how is obtained. In particular, you can find 
by integration, as shown in Figure 14.16. That is, you consider to be constant, and
integrate from 0 to to obtain

Combining these results, you have the iterated integral

To understand this procedure better, it helps to imagine the integration as two sweep-
ing motions. For the inner integration, a vertical line sweeps out the area of a cross
section. For the outer integration, the triangular cross section sweeps out the volume,
as shown in Figure 14.17.

Volume � 

R

f �x, y� dA � 
2

0

�2�x�
2

0
 �2 � x � 2y� dy dx.

 �
�2 � x�2

4
.

 � ��2 � x�y � y2�
�2�x�
2

0

 A�x� � 
�2�x�
2

0
 �2 � x � 2y� dy

�2 � x�
2z � 2 � x � 2y
x

A�x�A�x�

 � �
�2 � x�3

12 �
2

0
�

2
3

.

 � 
2

0
 
�2 � x�2

4
 dx

Volume � 
b

a

 A�x� dx

A�x� �
1
2

�base��height� �
1
2�

2 � x
2 	�2 � x� �

�2 � x�2

4
.

x,
z � 2 � x.y � �2 � x�
2

yz-

z � f �x, y� � 2 � x � 2y
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x
y

z

x
y

z

x
y

z

x
y

z

Integrate with respect to y to obtain the area of the cross section.
Figure 14.17

Integrate with respect to x to obtain the volume of the solid.

x y22
1

(0, 0, 2)

(2, 0, 0)
(0, 1, 0)

Base: y =

Triangular
cross section

Height:
z = 2 − x

2 − x
2

Plane:
z = 2 − x − 2y

2

1

z

2

z = 2 − x − 2y

y = 2 − x
y = 0

Volume:

Figure 14.15


2

0
 A�x� dx

Triangular cross section
Figure 14.16
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The following theorem was proved by the Italian mathematician Guido Fubini
(1879–1943). The theorem states that if is a vertically or horizontally simple region
and is continuous on the double integral of on is equal to an iterated integral.

EXAMPLE 2 Evaluating a Double Integral as an Iterated Integral

Evaluate

where is the region given by 

Solution Because the region is a square, it is both vertically and horizontally
simple, and you can use either order of integration. Choose by placing a 
vertical representative rectangle in the region, as shown in Figure 14.18. This 
produces the following.

■

The double integral evaluated in Example 2 represents the volume of the solid
region approximated in Example 1. Note that the approximation obtained in Example
1 is quite good even though you used a partition consisting of only
16 squares. The error resulted because the centers of the square subregions were
used as the points in the approximation. This is comparable to the Midpoint Rule
approximation of a single integral.

�0.672 vs. 23�,
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 � �5
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 �1 �
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x

R: 0 ≤ x ≤ 1
0 ≤ y ≤ 1

1

1

f (x, y) dA = f (x, y) dy dx
1 1

0 0R

Δx

y

The volume of the solid region is 
Figure 14.18

2
3.

THEOREM 14.2 FUBINI’S THEOREM

Let be continuous on a plane region 

1. If is defined by and where and are
continuous on then

2. If is defined by and where and are
continuous on then



R

f �x, y� dA � 
d

c

h2�y�

h1�y�
 f �x, y� dx dy.

�c, d�,
h2h1h1�y� 	 x 	 h2�y�,c 	 y 	 dR



R

f �x, y� dA � 
b

a

g

2
�x�

g
1
�x�

 f �x, y� dy dx.

�a, b�,
g2g1g1�x� 	 y 	 g2�x�,a 	 x 	 bR

R.f
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The difficulty of evaluating a single integral usually depends on the
function and not on the interval This is a major difference between single and
double integrals. In the next example, you will integrate a function similar to the one 
in Examples 1 and 2. Notice that a change in the region produces a much more
difficult integration problem.

EXAMPLE 3 Finding Volume by a Double Integral

Find the volume of the solid region bounded by the paraboloid and
the plane.

Solution By letting , you can see that the base of the region in the plane
is the ellipse as shown in Figure 14.19(a). This plane region is both
vertically and horizontally simple, so the order is appropriate.

Variable bounds for y:

Constant bounds for x:

The volume is given by

See Figure 14.19(b).

Wallis’s Formula

(a) (b)
Figure 14.19

x

y

1

1

2

−2

−1

−1

Δx

(4 − x2 − 2y2)dy dx
2

−2 − (4 − x2)/2

(4 − x2)/2

Volume:

Base: −2 ≤ x ≤ 2
− (4 − x2)/2 ≤ y ≤ (4 − x2)/2

x

y

z Surface:
f (x, y) = 4 − x2 − 2y2

3
2

4

 � 4�2
.

 �
128

3�2 �
3


16	
 �

64

3�2
�2�


2

0
 cos4 � d�

x � 2 sin � �
4

3�2
 


2

�

2
 16 cos4 � d�

 �
4

3�2
 
2

�2
 �4 � x2�3
2 dx

 � 
2

�2
��4 � x2�y �

2y3

3 �
��4�x2�
2

���4�x2�
2
 dx

 V � 
2

�2

��4�x2�
2

���4�x2�
2
 �4 � x2 � 2y2� dy dx

�2 	 x 	 2

���4 � x2�
2

	 y 	 ��4 � x2�
2

dy dx
x2 � 2y2 � 4,

xy-z � 0

xy-
z � 4 � x2 � 2y2

R

�a, b�.f,
�b

a  f �x� dx
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E X P L O R A T I O N

Volume of a Paraboloid Sector
The solid in Example 3 has an
elliptical (not a circular) base.
Consider the region bounded by
the circular paraboloid

and the plane. How many
ways of finding the volume of
this solid do you now know? For
instance, you could use the disk
method to find the volume as a
solid of revolution. Does each
method involve integration?

y

x

a

z

a

a2

−a

xy-

z � a2 � x2 � y2,  a > 0

NOTE In Example 3, note the usefulness
of Wallis’s Formula to evaluate

You may want to review
this formula in Section 8.3.
�

2

0  cosn � d�.
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In Examples 2 and 3, the problems could be solved with either order of integra-
tion because the regions were both vertically and horizontally simple. Moreover, had
you used the order you would have obtained integrals of comparable difficulty.
There are, however, some occasions in which one order of integration is much more
convenient than the other. Example 4 shows such a case.

EXAMPLE 4 Comparing Different Orders of Integration

Find the volume of the solid region bounded by the surface

Surface

and the planes and as shown in Figure 14.20.

Solution The base of in the plane is bounded by the lines and
The two possible orders of integration are shown in Figure 14.21.

Figure 14.21

By setting up the corresponding iterated integrals, you can see that the order 
requires the antiderivative which is not an elementary function. On the other
hand, the order produces the integral

■ � 0.316.

 �
e � 1

2e

 � �
1
2 �

1
e

� 1	
 � �

1
2

e�x2�
1

0

 � 
1

0
 xe�x2

 dx

 
1

0

x

0
 e�x2

 dy dx � 
1

0
 e�x2

y�
x

0
dx

dy dx
�e�x2 dx,

dx dy

x

0 ≤ y ≤ 1
y ≤ x ≤ 1

1

1

e−x2
dydx

1 1

y0

R:

(1, 1)

(1, 0)

Δy

y

x

0 ≤ x ≤ 1
0 ≤ y ≤ x

1

1

e−x2
dy dx

1 x

0 0

R:

Δx

(1, 1)

(1, 0)

y

y � x.
x � 1,y � 0,xy-R

x � 1,y � x, y � 0,z � 0,

f �x, y� � e�x2

R

dx dy,
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NOTE Try using a symbolic integration utility to evaluate the integral in Example 4. ■

y = 0
1

1
1

y
x

Surface:
f (x, y) = e−x2

z

z = 0

y = xx = 1

Base is bounded by and

Figure 14.20
x � 1.

y � x,y � 0,
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EXAMPLE 5 Volume of a Region Bounded by Two Surfaces

Find the volume of the solid region bounded above by the paraboloid
and below by the plane as shown in Figure 14.22.

Solution Equating values, you can determine that the intersection of the two
surfaces occurs on the right circular cylinder given by

Because the volume of is the difference between the volume under the paraboloid
and the volume under the plane, you have

Wallis’s Formula

■

Average Value of a Function
Recall from Section 4.4 that for a function in one variable, the average value of on

is

Given a function in two variables, you can find the average value of over the region
as shown in the following definition.R

ff

1
b � a


b

a

f�x� dx.

�a, b�
ff

 �



32
.

 � �1
6	�

3


16	

 �
1
6




2

0
 cos4 d�

2y � 1 � sin � �
1
6




2

�

2
 
cos4 �

2
 d�

 � �4
3	�

1
8	


1

0
 �1 � �2y � 1�2�3
2 dy

 �
4
3


1

0
 �y � y2�3
2 dy

 � 
1

0
��y � y2�x �

x3

3 �
�y�y2

��y�y2

 

 dy

 � 
1

0

�y�y2

��y�y2

 �y � y2 � x2� dx dy

Volume � 
1

0

�y�y2

��y�y2
 �1 � x2 � y2� dx dy � 
1

0

�y�y2

��y�y2
 �1 � y� dx dy

R

x2 � y � y2.1 � y � 1 � x2 � y2

z-

z � 1 � y,z � 1 � x2 � y2
R

14.2 Double Integrals and Volume 999

DEFINITION OF THE AVERAGE VALUE OF A FUNCTION OVER A REGION

If is integrable over the plane region then the average value of over is

where is the area of R.A

1
A
R


f�x, y� dA

RfR,f

x

y

z

1 1

1

Paraboloid:
z = 1 − x2 − y2

Plane:
z = 1 − y

R:

− ≤ x ≤y − y2 y − y2

0 ≤ y ≤ 1

x
1
2

1
2

1
2

−

y

Figure 14.22
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EXAMPLE 6 Finding the Average Value of a Function

Find the average value of over the region where is a rectangle with
vertices and 

Solution The area of the rectangular region is (see Figure 14.23). The
average value is given by

■ �
3
2

.

 � � 3
16	�8�

 �
3
16�

1
2

x2�
4

0

 � � 1
12	�

9
4	


4

0
x dx

 �
1
12


4

0

1
4

xy2�
3

0
 dx

 
1
A
R


f �x, y� dA �
1
12


4

0

3

0

1
2

xy dy dx

A � 12R

�0, 3�.�0, 0�, �4, 0�, �4, 3�,
RR,f �x, y� �

1
2 xy
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1

1

2 

3 

4

2

3

4

5

6

y

x

f (x, y) =   xy 

(4, 3)
(4, 0) 

(0, 3) 

R 

z 

1 
2 

(0, 0)
1

Figure 14.23

Approximation In Exercises 1– 4, approximate the integral
by dividing the rectangle with vertices 

and into eight equal squares and finding the

sum where is the center of the th square.

Evaluate the iterated integral and compare it with the approxi-
mation.

1. 2.

3. 4.

5. Approximation The table shows values of a function over a
square region Divide the region into 16 equal squares and
select to be the point in the square closest to the 
origin. Compare this approximation with that obtained by using
the point in the square farthest from the origin.

6. Approximation The figure shows the level curves for a func-
tion over a square region Approximate the integral using
four squares, selecting the midpoint of each square as 

In Exercises 7–12, sketch the region and evaluate the iterated
integral 

7. 8.

9.

10.

11.

12. 
1

0

0

y�1
 ex�y dx dy � 
1

0

1�y

0
 ex�y dx dy


a

�a

�a2�x2

��a2�x2

 �x � y� dy dx


4

0

�y

1
2 y

 x2y2 dx dy


6

0

3

y
2
 �x � y� dx dy





0



2

0
 sin2 x cos2 y dy dx
2

0

1

0
 �1 � 2x � 2y� dy dx

�R� f �x, y� dA.
R

x

2

1

21

y

2
4

6
8

10


2

0

2

0
f �x, y� dy dx

�xi, yi �.
R.f

�4
0  �4

0  f �x, y� dy dx

ith

ith�xi, yi�
R.

f


4

0

2

0
 

1
�x � 1��y � 1� dy dx
4

0

2

0
 �x2 � y2� dy dx

1
2


4

0

2

0
 x2y dy dx
4

0

2

0
 �x � y� dy dx

i�xi, yi��
8

i�1
 f �xi, yi� �Ai

�0, 2��4, 2�,�4, 0�,
�0, 0�,R�R� f �x, y� dA

14.2 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

0 1 2 3 4

0 32 31 28 23 16

1 31 30 27 22 15

2 28 27 24 19 12

3 23 22 19 14 7

4 16 15 12 7 0

x
y
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In Exercises 13–20, set up integrals for both orders of integration,
and use the more convenient order to evaluate the integral over
the region 

13.

rectangle with vertices 

14.

rectangle with vertices 

15.

trapezoid bounded by 

16.

triangle bounded by 

17.

region bounded by 

18.

region bounded by 

19.

sector of a circle in the first quadrant bounded by

20.

semicircle bounded by 

In Exercises 21–30, use a double integral to find the volume of
the indicated solid.

21. 22.

23. 24.

25. 26.

27. 28.

29. Improper integral 30. Improper integral

In Exercises 31 and 32, use a computer algebra system to find
the volume of the solid.

31. 32.

In Exercises 33–40, set up and evaluate a double integral to find
the volume of the solid bounded by the graphs of the equations.

33. first octant

34.

35.

36. x2 � y2 � z2 � r2

z � 0, z � x2, x � 0, x � 2, y � 0, y � 4

y � 0, z � 0, y � x, z � x, x � 0, x � 5

z � xy, z � 0, y � x, x � 1,

y

x 1

1

1

x2 + z2 = 1

x = 1
y = x

z

z =     8 − x2 − y2

y

x

4 

3 
3 

z 

y

0 ≤ x < ∞
0 ≤ y < ∞

z e− (x + y)/2=

2 2

1

x

z

y

z

0 ≤ x < ∞
0 ≤ y < ∞

z = 1
(x + 1)2(y + 1)2

2
2

1

x

z = 4 − y2

y

x

4

3

2

1

22
1

y = x y = 2

z

z = 1 − xy

y

x

1

11
y = x y = 1

z

y

x

2

2
2

x + y + z = 2

z

z
2x + 3y + 4z = 12

y

x

3

4

6

z = 4

y

x

4

22

x = 2

y = x

z

z = 4 − x − y

y

x

4

3

2

1

22
1

y = 2y = x

z

0 ≤ x ≤ 4
0 ≤ y ≤ 2

z = 6 − 2y

y

x

6

2
4

z

y

x

3

1

4

2 2

1

0 ≤ x ≤ 4
0 ≤ y ≤ 2

z =
y
2

z

y � �4 � x2, y � 0R:



R

�x2 � y2� dA

y � �25 � x2, 3x � 4y � 0, y � 0
R:



R

x dA

y � 0, y � �x, x � 4R:



R

 y

1 � x2 dA

y � 4 � x2, y � 4 � xR:



R

�2y dA

x � 0y � 4 � x, y � 0,R:



R

xey dA

y � x, y � 2x, x � 1, x � 2R:



R

 y

x2 � y2 dA

��
, 

2��
, 

2�,�
, 0�,��
, 0�,R:



R

sin x sin y dA

�0, 0�, �0, 5�, �3, 5�, �3, 0�R:



R

xy dA

R.
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37. first octant

38. first octant

39. first octant

40.

In Exercises 41–46, set up a double integral to find the volume
of the solid region bounded by the graphs of the equations. Do
not evaluate the integral.

41. 42.

43.

44.

45.

46.

In Exercises 47–50, use a computer algebra system to find the
volume of the solid bounded by the graphs of the equations.

47.

48. first octant

49.

50.

51. If is a continuous function such that over a
region of area 1, prove that 

52. Find the volume of the solid in the first octant bounded by the
coordinate planes and the plane 
where and 

In Exercises 53–58, sketch the region of integration. Then 
evaluate the iterated integral, switching the order of integration
if necessary.

53. 54.

55. 56.

57.

58.

Average Value In Exercises 59– 64, find the average value of
over the region 

59.

rectangle with vertices 

60.

rectangle with vertices 

61.

square with vertices 

62.

triangle with vertices 

63.

triangle with vertices 

64.

rectangle with vertices 

65. Average Production The Cobb-Douglas production function
for an automobile manufacturer is where

is the number of units of labor and is the number of units of
capital. Estimate the average production level if the number of
units of labor varies between 200 and 250 and the number of
units of capital varies between 300 and 325.

66. Average Temperature The temperature in degrees Celsius on
the surface of a metal plate is where

and are measured in centimeters. Estimate the average 
temperature if varies between 0 and 2 centimeters and varies
between 0 and 4 centimeters.

yx
yx

T�x, y� � 20 � 4x2 � y2,

y
x

yx
f �x, y� � 100x0.6y0.4,

�0, 0�, �
, 0�, �
, 
�, �0, 
�R:

f �x, y� � sin�x � y�
�0, 0�, �0, 1�, �1, 1�R:

f �x, y� � ex�y

�0, 0�, �1, 0�, �1, 1�R:

f �x, y� �
1

x � y

�0, 0�, �2, 0�, �2, 2�, �0, 2�R:

f �x, y� � x2 � y2

�0, 0�, �5, 0�, �5, 3�, �0, 3�R:

f �x, y� � 2xy

�0, 0�, �4, 0�, �4, 2�, �0, 2�R:

f �x, y� � x

R.f �x, y�


2

0

2

�1
2�x2 
�y cos y dy dx


1

0

arccos y

0
 sin x�1 � sin2 x dx dy


3

0

1

y
3
 

1
1 � x 4 dx dy
2

�2

�4�x2

��4�x2
 �4 � y2 dy dx


ln 10

0

10

ex
 

1
ln y

 dy dx
1

0

1
2

y
2
 e�x2

 dx dy

c > 0.b > 0,a > 0,
�x
a� � �y
b� � �z
c� � 1,

0 	 �R� f �x, y� dA 	 1.R
0 	 f �x, y� 	 1f

z � ln�1 � x � y�, z � 0, y � 0, x � 0, x � 4 � �y

z �
2

1 � x2 � y2, z � 0, y � 0, x � 0, y � �0.5x � 1

x2 � 9 � y, z2 � 9 � y,

z � 9 � x2 � y2, z � 0

z � x2 � y2, z � 18 � x2 � y2

z � x2 � 2y2, z � 4y

z � sin2 x, z � 0, 0 	 x 	 
, 0 	 y 	 5

z � x2 � y2, x2 � y2 � 4, z � 0

z = 2x 

yx

4

2

−2 −2

12 1 

z z = x2 + y2

z = 4 − x2 − y2

z = 4 − 2x

y 

x 

4 

2 2 

z 

z �
1

1 � y2, x � 0, x � 2, y � 0

z � x � y, x2 � y2 � 4,

y � 4 � x2, z � 4 � x2,

x2 � z2 � 1, y2 � z2 � 1, 
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67. State the definition of a double integral. If the integrand is
a nonnegative function over the region of integration, give
the geometric interpretation of a double integral.

68. Let be a region in the plane whose area is If
for every point in what is the value of

Explain.

69. Let represent a county in the northern part of the United
States, and let represent the total annual snowfall at
the point in Interpret each of the following.

(a) (b)

70. Identify the expression that is invalid. Explain your 
reasoning.

(a) (b)

(c) (d)

71. Let the plane region be a unit circle and let the maximum
value of on be 6. Is the greatest possible value of

equal to 6? Why or why not? If not, what
is the greatest possible value?
�R� f �x, y� dy dx

Rf
R


2

0

x

0
f �x, y� dy dx
2

0

3

x

f �x, y� dy dx


2

0

y

0
f �x, y� dy dx
2

0

3

0
f �x, y� dy dx



R

f �x, y� dA



R

dA



R

f �x, y� dA

R.�x, y�
f �x, y�

R

�R� f �x, y� dA?
R,�x, y�f �x, y� � k

B.xy-R

WRITING ABOUT CONCEPTS
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Probability A joint density function of the continuous random
variables and is a function satisfying the following
properties.

(a) for all (b)

(c)

In Exercises 73–76, show that the function is a joint density
function and find the required probability.

73.

74.

75.

76.

77. Approximation The base of a pile of sand at a cement plant is
rectangular with approximate dimensions of 20 meters by
30 meters. If the base is placed on the plane with one vertex
at the origin, the coordinates on the surface of the pile are

and
Approximate the volume of sand in the pile.

78. Programming Consider a continuous function over
the rectangular region with vertices and

where and Partition the intervals and
into and subintervals, so that the subintervals in a

given direction are of equal length. Write a program for a
graphing utility to compute the sum

where is the center of a representative rectangle in 

Approximation In Exercises 79–82, (a) use a computer algebra
system to approximate the iterated integral, and (b) use the
program in Exercise 78 to approximate the iterated integral for
the given values of and 

79. 80.

81. 82.

Approximation In Exercises 83 and 84, determine which value
best approximates the volume of the solid between the -plane
and the function over the region. (Make your selection on the
basis of a sketch of the solid and not by performing any
calculations.)

83.

square with vertices 

(a) (b) 600 (c) 50 (d) 125 (e) 1000

84.

circle bounded by 

(a) 50 (b) 500 (c) (d) 5 (e) 5000

True or False? In Exercises 85 and 86, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

85. The volume of the sphere is given by the
integral

86. If for all in and both and are
continuous over then 

87. Let Find the average value of on the interval

88. Find Hint: Evaluate 

89. Determine the region in the -plane that maximizes the
value of 

90. Determine the region in the -plane that minimizes the
value of 

91. Find (Hint: Convert the integral
to a double integral.)

92. Use a geometric argument to show that


3

0

�9�y2

0
 �9 � x2 � y2 dx dy �

9


2
.

�2
0  �arctan�
x� � arctan x� dx.

�R� �x2 � y2 � 4� dA.
xyR

�R� �9 � x2 � y2� dA.
xyR


2

1
 e

�xy dy.	�
�

0
 
e�x � e�2x

x
 dx.

�0, 1�.
ff �x� � �x

1 et2
 dt.

�R� f �x, y� dA 	 �R� g�x, y� dA.R,
gfR,�x, y� f �x, y� 	 g�x, y�

V � 8
1

0

1

0
 �1 � x2 � y2 dx dy.

x2 � y2 � z2 � 1

�500

x2 � y2 � 9R:

f �x, y� � �x2 � y2

�200

�0, 0�, �4, 0�, �4, 4�, �0, 4�R:

f �x, y� � 4x

xy

m � 6, n � 4m � 4, n � 8


4

1

2

1
 �x3 � y3 dx dy
6

4

2

0
 y cos �x dx dy

m � 10, n � 20m � 4, n � 8


2

0

4

0
 20e�x3
8dy dx
1

0

2

0
 sin �x � y dy dx

n.m

R.�xi, yj�

�
n

i�1
�
m

j�1
f �xi, yj� �Ai � 
b

a

d

c

 f �x, y� dA

nm�c, d�
�a, b�c < d.a < b�b, d�,

�a, d�,�b, c�,�a, c�,R
f �x, y�

�25, 15, 3�.
�15, 15, 7�,�5, 15, 2�,�25, 5, 4�,�15, 5, 6�,�5, 5, 3�,

xy-

P�0 	 x 	 1, x 	 y 	 1�

f �x, y� � �e�x�y,

0,
    

x � 0, y � 0

elsewhere

P�0 	 x 	 1, 4 	 y 	 6�

f �x, y� � �
1
27�9 � x � y�,
0,

0 	 x 	 3, 3 	 y 	 6

elsewhere

P�0 	 x 	 1, 1 	 y 	 2�

f �x, y� � �
1
4 xy,

0,

0 	 x 	 2, 0 	 y 	 2

elsewhere

P�0 	 x 	 2, 1 	 y 	 2�

f �x, y� � �
1
10,

0,

0 	 x 	 5, 0 	 y 	 2

elsewhere

P [�x, y� � R] � 

R

 f �x, y� dA


�

��

�

��

 f �x, y� dA � 1�x, y�f �x, y� ~ 0

f �x, y�yx
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72. The following iterated integrals represent the solution to the
same problem. Which iterated integral is easier to evaluate?
Explain your reasoning.


4

0

2

x
2
sin y2 dy dx � 
2

0

2y

0
sin y2 dx dy

CAPSTONE

CAS

93. Evaluate where and are 

positive.

94. Show that if there does not exist a real-valued func-
tion such that for all in the closed interval 

These problems were composed by the Committee on the Putnam Prize
Competition. © The Mathematical Association of America. All rights reserved.

u�x� � 1 � 
�1
x  u� y�u� y � x� dy.

0 	 x 	 1,xu

 > 1

2

ba�a
0  �b

0  emax�b2x2, a2 y2� dy dx,

PUTNAM EXAM CHALLENGE
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■ Write and evaluate double integrals in polar coordinates.

Double Integrals in Polar Coordinates
Some double integrals are much easier to evaluate in polar form than in rectangular
form. This is especially true for regions such as circles, cardioids, and rose curves, and
for integrands that involve 

In Section 10.4, you learned that the polar coordinates of a point are related
to the rectangular coordinates of the point as follows.

and

and

EXAMPLE 1 Using Polar Coordinates to Describe a Region

Use polar coordinates to describe each region shown in Figure 14.24.

(a) (b)
Figure 14.24

Solution

a. The region is a quarter circle of radius 2. It can be described in polar coordinates
as

b. The region consists of all points between concentric circles of radii 1 and 3. It
can be described in polar coordinates as

■

The regions in Example 1 are special cases of polar sectors

as shown in Figure 14.25.

0 � � � 2��.R � ��r, ��: 1 � r � 3,

R

0 � � � ��2�.R � ��r, ��: 0 � r � 2,

R

2

4

x
2 4−2

−2

−4

−4

y

x

1

2

1 2

y

tan � �
y
x

r2 � x2 � y2

y � r sin �x � r cos �

�x, y�
�r, ��

x2 � y2.

1004 Chapter 14 Multiple Integration

14.3 Change of Variables: Polar Coordinates

Polar sector�1 � � � �2�R � ��r, ��: r1 � r � r2,

0

θ1

θ2

θΔ

Δr

r1

r2

(ri,   i)θ

R

π
2

Polar sector
Figure 14.25
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To define a double integral of a continuous function in polar
coordinates, consider a region bounded by the graphs of and 
and the lines and Instead of partitioning into small rectangles, use a
partition of small polar sectors. On superimpose a polar grid made of rays and
circular arcs, as shown in Figure 14.26. The polar sectors lying entirely within 
form an inner polar partition whose norm is the length of the longest
diagonal of the polar sectors.

Consider a specific polar sector as shown in Figure 14.27. It can be shown (see
Exercise 75) that the area of is

Area of 

where and This implies that the volume of the solid of
height above is approximately

and you have

The sum on the right can be interpreted as a Riemann sum for The
region corresponds to a horizontally simple region in the -plane, as shown in
Figure 14.28. The polar sectors correspond to rectangles and the area of 
is So, the right-hand side of the equation corresponds to the double integral

From this, you can apply Theorem 14.2 to write

This suggests the following theorem, the proof of which is discussed in Section 14.8.

The polar sector is the set of all points Horizontally simple region 
such that and Figure 14.28
Figure 14.27

�1 � � � �2.r1 � r � r2

S�r, ��Ri

r

α

β

Si

θ(ri,   i)

θ
r = g1(  )θ r = g2(  )θ

Ri

r1

r2

θ

2

(ri,   i)

0

θ

1θ

π
2

 � ��

�
�g

2
���

g1���
 f�r cos �, r sin ��r dr d�.

 �
R
� f�x, y� dA � �

S
� f�r cos �, r sin ��r dA

�
S
� f�r cos �, r sin ��r dA.

	ri 	�i.
Si	AiSi,Ri

r�SR
f�r cos �, r sin ��r.

�
R
� f�x, y� dA � 	

n

i�1
 f�ri cos �i, ri sin �i�ri 	ri 	�i.

f�ri cos �i, ri sin �i�ri 	ri 	�i

Rif�ri cos �i, ri sin �i�
	�i � �2 
 �1.	ri � r2 
 r1

R i	Ai � ri 	ri 	�i

Ri

Ri,
n


	 
	,
RRi

R,
R� � �.� � �

r � g2���r � g1���R
z � f�x, y�
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θΔ

Δri

g2

g1

(ri,   i)θ

i

Ri

α
β

0

π
2

Polar grid superimposed over region 
Figure 14.26

R

1053714_1403.qxp  10/27/08  1:31 PM  Page 1005



The region is restricted to two basic types, -simple regions and -simple
regions, as shown in Figure 14.29.

-Simple region -Simple region
Figure 14.29

EXAMPLE 2 Evaluating a Double Polar Integral

Let be the annular region lying between the two circles and
Evaluate the integral 

Solution The polar boundaries are and as shown in
Figure 14.30. Furthermore, and So, you have

■ � 6�.

 � �3� �  
3 sin 2�

2



5�5 
 1
3

 cos �
�
2�

0

 � �2�

0
 �3 � 3 cos 2� �

5�5 
 1
3

 sin �
 d�

 � �2�

0
 �6 cos2 � �

5�5 
 1
3

 sin �
 d�

 � �2�

0
 �r4

4
 cos2 � �

r3

3
 sin �
�

�5

1
d�

 � �2�

0
��5

1
 �r3 cos2 � � r2 sin �� dr d�

 �
R
� �x2 � y� dA � �2�

0
��5

1
 �r2 cos2 � � r sin ��r dr d�

y � r sin �.x2 � �r cos ��2
0 � � � 2�,1 � r � �5

�R� �x2
� y� dA.x2 � y2 � 5.

x2 � y2 � 1R

�r

r = r1

h1

r = r2

h2

Δr

Fixed bounds for r:
r1 ≤ r ≤ r2

0 ≤ h1(r) ≤    ≤ h2(r)θ
Variable bounds for    :θ

0

π
2

g1

g2

Δθ

θ =

αθ =

β

Variable bounds for r:
0 ≤ g1(  ) ≤ r ≤ g2(  )θ θ

α β≤    ≤θ
Fixed bounds for   :θ

0

π
2

�rR

1006 Chapter 14 Multiple Integration

2 3

R

R: 1 ≤ r ≤    5
0 ≤    ≤ 2π

0

θ

π
2

-Simple region
Figure 14.30
r

THEOREM 14.3 CHANGE OF VARIABLES TO POLAR FORM

Let be a plane region consisting of all points 
satisfying the conditions where

If and are continuous on and is continuous
on then

�
R
� f�x, y� dA � ��

�
�g

2
���

g
1
���

 f�r cos �, r sin ��r dr d�.

R,
f��, ��g2g10 � �� 
 �� � 2�.

� � � � �,0 � g1��� � r � g2���,
�x, y� � �r cos �, r sin ��R

NOTE If is nonnegative on then the integral in Theorem 14.3 can be interpreted
as the volume of the solid region between the graph of and the region When using the
integral in Theorem 14.3, be certain not to omit the extra factor of in the integrand. ■r

R.f
R,z � f �x, y�

E X P L O R A T I O N

Volume of a Paraboloid Sector
In the Exploration feature on page
997, you were asked to summarize
the different ways you know of
finding the volume of the solid
bounded by the paraboloid

and the plane. You now know
another way. Use it to find the
volume of the solid.

xy-

a > 0z � a2 
 x2 
 y 2,
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In Example 2, be sure to notice the extra factor of in the integrand. This comes
from the formula for the area of a polar sector. In differential notation, you can write

which indicates that the area of a polar sector increases as you move away from the
origin.

EXAMPLE 3 Change of Variables to Polar Coordinates

Use polar coordinates to find the volume of the solid region bounded above by the
hemisphere

Hemisphere forms upper surface.

and below by the circular region given by

Circular region forms lower surface.

as shown in Figure 14.31.

Solution In Figure 14.31, you can see that has the bounds

and that In polar coordinates, the bounds are

and

with height Consequently, the volume is
given by

■

Just as with rectangular coordinates, the double integral

can be used to find the area of a region in the plane.

�
R
� dA

� 46.979. �
16�

3
�8 
 3�3 �

 � 

8
3

�3�3 
 8���
2�

0

 � 

1
3

 �2�

0
 �24�3 
 64� d�

 � 

1
3

 �2�

0
 �16 
 r2�3�2�

2

0

 d�

 V � �
R
� f �x, y� dA � �2�

0
�2

0
 �16 
 r2 r dr d�

Vz � �16 
 x2 
 y2 � �16 
 r2.

0 � � � 2�0 � r � 2

0 � z � �16 
 x2 
 y2.


2 � y � 2
�4 
 y2 � x � �4 
 y2,

R

x2 � y2 � 4

R

z � �16 
 x2 
 y2

dA � r dr d�

r
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y

x

z

R: x2 + y2 ≤ 4

Surface: 16 − x2 − y2z =

4

4

4

Figure 14.31

Any computer algebra system that can handle double integrals in 
rectangular coordinates can also handle double integrals in polar coordinates. The 
reason this is true is that once you have formed the iterated integral, its value is not
changed by using different variables. In other words, if you use a computer algebra
system to evaluate

you should obtain the same value as that obtained in Example 3.

�2�

0
�2

0
 �16 
 x2 x dx dy

TECHNOLOGY

NOTE To see the benefit of polar
coordinates in Example 3, you should try
to evaluate the corresponding rectangular
iterated integral

�2


2
��4
y2


�4
y2

 �16 
 x2 
 y 2 dx dy.
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EXAMPLE 4 Finding Areas of Polar Regions

Use a double integral to find the area enclosed by the graph of 

Solution Let be one petal of the curve shown in Figure 14.32. This region is 
simple, and the boundaries are as follows.

Fixed bounds on 

Variable bounds on 

So, the area of one petal is

So, the total area is ■

As illustrated in Example 4, the area of a region in the plane can be represented by

If you obtain

which agrees with Theorem 10.13.
So far in this section, all of the examples of iterated integrals in polar form have

been of the form

in which the order of integration is with respect to first. Sometimes you can obtain
a simpler integration problem by switching the order of integration, as illustrated in
the next example.

EXAMPLE 5 Changing the Order of Integration

Find the area of the region bounded above by the spiral and below by the
polar axis, between and 

Solution The region is shown in Figure 14.33. The polar boundaries for the region are

and

So, the area of the region can be evaluated as follows.

■�
�

3
�

�r
3 �

2

1
� �2

1
 
�

3
 dr� �2

1
 r��

���3r�

0
dr A � �2

1
����3r�

0
 r d� dr

0 � � �
�

3r
.1 � r � 2

r � 2.r � 1
r � ���3��

r

��

�
�g

2
���

g1���
 f�r cos �, r sin ��r dr d�

� ��

�

 
1
2

 �g2����2 d�� ��

�

 
r2

2
 �

g
2
���

0
d� A � ��

�
�g

2
���

0
 r dr d�

g1��� � 0,

A � ��

�
�g

2
���

g1���
 r dr d�.

A � 9��4.

 �
9
4

 ���6


��6
 �1 � cos 6�� d� �

9
4�� �

1
6

 sin 6��
��6


��6
�

3�

4
.

 �
9
2

 ���6


��6
 cos2 3� d�

 � ���6


��6
 
r2

2
 �

3 cos 3�

0

 d�

 
1
3

 A � �
R
� dA � ���6


��6
�3 cos 3�

0
 r dr d�

r 0 � r � 3 cos 3�

� 

�

6
� � �

�

6

r-
R

r � 3 cos 3�.
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0
3

R:

0 ≤ r ≤ 3 cos 3

≤    ≤θ

θ

θr = 3 cos 3

=θ

6
−

π
2 π

6
π

6
π

= −θ
6
π

Figure 14.32

0
21

R:

1 ≤ r ≤ 2

0 ≤    ≤θ

θ
π
3

r =

=θ

π
2

6
π

=θ
3
π

3r
π

-Simple region
Figure 14.33
�
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In Exercises 1–4, the region for the integral 
is shown. State whether you would use rectangular or polar
coordinates to evaluate the integral.

1. 2.

3. 4.

In Exercises 5–8, use polar coordinates to describe the region
shown.

5. 6.

7. 8.

In Exercises 9–16, evaluate the double integral 
and sketch the region 

9. 10.

11. 12.

13. 14.

15. 16.

In Exercises 17–26, evaluate the iterated integral by converting
to polar coordinates.

17. 18.

19. 20.

21. 22.

23. 24.

25.

26.

In Exercises 27 and 28, combine the sum of the two iterated
integrals into a single iterated integral by converting to polar
coordinates. Evaluate the resulting iterated integral.

27.

28.

In Exercises 29–32, use polar coordinates to set up and evaluate
the double integral 

29.

30.

31.

32.

Volume In Exercises 33–38, use a double integral in polar
coordinates to find the volume of the solid bounded by the
graphs of the equations.

33.

34.

35.

36.

37. Inside the hemisphere and inside the
cylinder 

38. Inside the hemisphere and outside the
cylinder x2 � y 2 � 1

z � �16 
 x2 
 y 2

x2 � y 2 
 4x � 0
z � �16 
 x2 
 y 2

z � ln�x2 � y 2�, z � 0, x2 � y 2 � 1, x2 � y 2 � 4

z � �x2 � y 2, z � 0, x2 � y 2 � 25

z � x2 � y 2 � 3, z � 0, x2 � y 2 � 1

z � xy, x2 � y 2 � 1, first octant

R: x2 � y 2 � 9, x � 0, y � 0f �x, y� � 9 
 x 2 
 y 2,

R: x2 � y 2 � 1, x2 � y 2 � 4, 0 � y � xf �x, y� � arctan 
y
x
,

R: x2 � y2 � 25, x � 0f �x, y� � e
�x2�y2��2,

R: x2 � y 2 � 4, x � 0, y � 0f �x, y� � x � y,

�R� f �x, y� dA.

�5�2�2

0
�x

0
 xy dy dx � �5

5�2�2
 ��25
x2

0
 xy dy dx

�2

0
�x

0
 �x2 � y 2 dy dx � �2�2

2
��8
x2

0

 �x2 � y 2 dy dx

�2

0
��4
x2

0
sin�x2 � y2 dy dx

�1


1
 ��1
x2

0
cos�x2 � y2� dy dx

�4

0
��4y
y2

0
 x2 dx dy�2

0
��2x
x2

0
 xy dy dx

�2

0
��8
y2

y

 �x2 � y2 dx dy�3

0
��9
x2

0
 �x2 � y 2�3�2 dy dx

�1

0
��x
x2


�x
x2
�x2 � y2� dy dx�2


2
 ��4
x2

0
�x2 � y2� dy dx

�a

0
��a2
x2

0
 x dy dx�a

0
��a2
y2

0
 y dx dy

���2

0
�1
cos

 
�

0
 �sin ��r dr d����2

0
�1�sin �

0
 �r dr d�

���2

0
�3

0
 re
r2

 dr d����2

0
�3

2
 �9 
 r2 r dr d�

���4

0
�4

0
 r2 sin � cos � dr d��2�

0
�6

0
 3r2 sin � dr d�

��

0
�sin �

0
r 2 dr d���

0
�cos �

0
r dr d�

R.
�R� f �r, �� dA,

x
−2−4

−4

2

4

4

y

x

−2

−4

2

4

4

y

x

−2

−2−4

2

6

2 4

y

x

−4

−4−8

4

12

4 8

y

x
1

1

−1

2

3

2 3 4

R

y

x
−4

−4

2

4

2 4

R

y

x

−2

−2−6

−4

2

4

2

R

y

x
1

1

2

3

4

2 3 4

R

y

�R� f �x, y� dAR
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39. Volume Find such that the volume inside the hemisphere
and outside the cylinder is

one-half the volume of the hemisphere.

40. Volume Use a double integral in polar coordinates to find the
volume of a sphere of radius 

41. Volume Determine the diameter of a hole that is drilled
vertically through the center of the solid bounded by the graphs
of the equations and 
if one-tenth of the volume of the solid is removed.

42. Machine Design The surfaces of a double-lobed cam are
modeled by the inequalities and

where all measurements are in inches.

(a) Use a computer algebra system to graph the cam.

(b) Use a computer algebra system to approximate the perimeter
of the polar curve

This is the distance a roller must travel as it runs against the
cam through one revolution of the cam.

(c) Use a computer algebra system to find the volume of steel
in the cam.

Area In Exercises 43–48, use a double integral to find the area
of the shaded region.

43. 44.

45. 46.

47. 48.

Area In Exercises 49–54, sketch a graph of the region bounded
by the graphs of the equations. Then use a double integral to
find the area of the region.

49. Inside the circle and outside the circle 

50. Inside the cardioid and outside the circle 

51. Inside the circle and outside the cardioid

52. Inside the cardioid and outside the circle

53. Inside the rose curve and outside the circle 

54. Inside the circle and outside the cardioid
r � 2 
 2 cos �

r � 2

r � 2r � 4 sin 3�

r � 3 cos �
r � 1 � cos �

r � 1 �  cos �
r � 3 cos �

r � 1r � 2 � 2 cos �

r � 1r � 2 cos �

0
3

r = 3 cos 2θ
π
2

0
1 2

r = 2 sin 3θ

π
2

0
2 43

r = 2 + sin θ

π
2

0
1

r = 1 + cos θ
π
2

0

r = 4

1 3

r = 2
π
2

0
1 2 3 4 75

r = 6 cos θ

π
2

r �
1
2�1 � cos2 ��.


9
4�x2 � y 2 � 9� � z �

9
4�x2 � y 2 � 9�

1
4 � r �

1
2�1 � cos2 ��

x2 � y 2 � 16z � 25e
�x2�y 2��4,  z � 0,

a.

x2 � y 2 � a2z � �16 
 x2 
 y 2
a
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55. Describe the partition of the region of integration in the
plane when polar coordinates are used to evaluate a 

double integral.

56. Explain how to change from rectangular coordinates to
polar coordinates in a double integral.

57. In your own words, describe simple regions and simple
regions.

58. Each figure shows a region of integration for the double 
integral For each region, state whether
horizontal representative elements, vertical representative
elements, or polar sectors would yield the easiest method for
obtaining the limits of integration. Explain your reasoning.

(a) (b) (c)

59. Let be the region bounded by the circle 

(a) Set up the integral 

(b) Convert the integral in part (a) to polar coordinates.

(c) Which integral would you choose to evaluate? Why?

�
R
� f �x, y� dA.

x2 � y2 � 9.R

x

R

y

x

R

y

x

R

y

�R� f �x, y� dA.

�-r-

xy-
R

WRITING ABOUT CONCEPTS

60. Think About It Without performing any calculations,
identify the double integral that represents the integral of

over a circle of radius 4. Explain your 
reasoning.

(a) (b)

(c) (d) �2�

0
�4


4
r3 dr d��2�

0
�4

0
r3 dr d�

�4

0
�2�

0
r3 dr d��2�

0
�4

0
r2 dr d�

f �x� � x2 � y2

CAPSTONE
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61. Think About It Consider the program you wrote to approxi-
mate double integrals in rectangular coordinates in Exercise 78,
in Section 14.2. If the program is used to approximate the 
double integral

in polar coordinates, how will you modify when it is entered
into the program? Because the limits of integration are
constants, describe the plane region of integration.

62. Approximation Horizontal cross sections of a piece of ice
that broke from a glacier are in the shape of a quarter of a 
circle with a radius of approximately 50 feet. The base is divided
into 20 subregions, as shown in the figure. At the center of each
subregion, the height of the ice is measured, yielding the
following points in cylindrical coordinates.

(a) Approximate the volume of the solid.

(b) Ice weighs approximately 57 pounds per cubic foot.
Approximate the weight of the solid.

(c) There are 7.48 gallons of water per cubic foot. Approximate
the number of gallons of water in the solid.

Approximation In Exercises 63 and 64, use a computer algebra
system to approximate the iterated integral.

63.

64.

Approximation In Exercises 65 and 66, determine which value
best approximates the volume of the solid between the -plane
and the function over the region. (Make your selection on the
basis of a sketch of the solid and by performing any
calculations.)

65.

(a) 100 (b) 200 (c) 300 (d) (e) 800

66.

(a) 25 (b) 8 (c) 100 (d) 50 (e)

True or False? In Exercises 67 and 68, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

67. If then for all in 

68. If is a constant function and the area of the region is
twice that of the region then 

69. Probability The value of the integral is

required in the development of the normal probability density
function.

(a) Use polar coordinates to evaluate the improper integral.

(b) Use the result of part (a) to determine 

70. Use the result of Exercise 69 and a change of variables to
evaluate each integral. No integration is required.

(a) (b)

71. Population The population density of a city is approximated
by the model where

and are measured in miles. Integrate the density function
over the indicated circular region to approximate the population
of the city.

72. Probability Find such that the function

is a probability density function.

73. Think About It Consider the region bounded by the graphs of
and and the double integral

Determine the limits of integration if the region is
divided into (a) horizontal representative elements, (b) vertical
representative elements, and (c) polar sectors.

74. Repeat Exercise 73 for a region bounded by the graph of the
equation 

75. Show that the area of the polar sector (see figure) is
where is the average radius of 

θΔ

Δr

r1
r2

R

R.r � �r1 � r2��2A � r	r	�,
RA

�x 
 2�2 � y 2 � 4.
R

R�R� f dA.
y � �3xy � x,y � 4,y � 2,

f �x, y� � �ke
�x2�y2�,
0,

     x � 0, y � 0
     elsewhere

k

yx
x2 � y 2  ≤  49,f �x, y� � 4000e
0.01�x2�y2�,

��


�
 e
4x 2 dx��


�
 e
x 2 dx

I.

 � ��


�
��


�
 e
�x2�y2��2 dA

 I 2 � ���


�
 e
x2�2 dx
���


�
 e
y2�2 dy


I � ��


�
 e
x2�2 dx

2 �R� f �r, �� dA � �S� f �r, �� dA.R,
Sf �r, ��

R.�r, ��f �r, �� > 0�R� f �r, �� dA > 0,


30

f �x, y� � xy � 2; R: quarter circle: x2 � y2 � 9, x ≥ 0, y ≥ 0


200

f �x, y� � 15 
 2y; R: semicircle: x2 � y 2 � 16, y ≥ 0

not

xy

���4

0
�4

0
 5re�r� dr d�

���2

��4
�5

0
 r�1 � r 3 sin �� dr d�
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■ Find the mass of a planar lamina using a double integral.
■ Find the center of mass of a planar lamina using double integrals.
■ Find moments of inertia using double integrals.

Mass
Section 7.6 discussed several applications of integration involving a lamina of
constant density For example, if the lamina corresponding to the region as shown
in Figure 14.34, has a constant density then the mass of the lamina is given by

Constant density

If not otherwise stated, a lamina is assumed to have a constant density. In this section,
however, you will extend the definition of the term lamina to include thin plates of
variable density. Double integrals can be used to find the mass of a lamina of variable
density, where the density at is given by the density function 

EXAMPLE 1 Finding the Mass of a Planar Lamina

Find the mass of the triangular lamina with vertices and given that
the density at is 

Solution As shown in Figure 14.35, region has the boundaries and
Therefore, the mass of the lamina is

■ � 10.

 �
10
9 � y3

 3 �
3

0

 �
10
9 �

3

0
 y2 dy

 � �3

0
 �x2 � xy�

2y�3

0
dy

 m � �
R
��2x � y� dA � �3

0
�2y�3

0
 �2x � y� dx dy

�or x � 2y�3�.y � 3x�2
y � 3,x � 0,R

��x, y� � 2x � y.�x, y�
�2, 3�,�0, 3�,�0, 0�,

�.�x, y�

Mass � �A � ��
R
�dA � �

R
�� dA.

�,
R,�.
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14.4 Center of Mass and Moments of Inertia

DEFINITION OF MASS OF A PLANAR LAMINA OF VARIABLE DENSITY

If is a continuous density function on the lamina corresponding to a plane
region then the mass of the lamina is given by

Variable densitym � �
R
���x, y� dA.

mR,
�

NOTE Density is normally expressed as mass per unit volume. For a planar lamina, however,
density is mass per unit surface area. ■

NOTE In Figure 14.35, note that the planar lamina is shaded so that the darkest shading
corresponds to the densest part. ■

x
x = a x = b

g1

g2

R

y

Lamina of constant density 
Figure 14.34

�

x

1

1

2

2

3

3

(0, 3)

(0, 0)

(2, 3)

x = 2
3

y

y = 3

R

y

Lamina of variable density 
Figure 14.35

��x, y� � 2x � y
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EXAMPLE 2 Finding Mass by Polar Coordinates

Find the mass of the lamina corresponding to the first-quadrant portion of the circle

where the density at the point is proportional to the distance between the point
and the origin, as shown in Figure 14.36.

Solution At any point the density of the lamina is

Because and the mass is given by

To simplify the integration, you can convert to polar coordinates, using the bounds
and So, the mass is

■ �
4�k

3
.

 �
8k
3 ���

��2

0

 �
8k
3 ���2

0
 d�

 � ���2

0
 
kr3

3 �
2

0
d�

 � ���2

0
�2

0
 kr2 dr d�

 m � �
R
�k�x2 � y2 dA � ���2

0
�2

0
 k�r2 r dr d�

0 � r � 2.0 � � � ��2

 � �2

0
��4�x2

0  
k�x2 � y2 dy dx.

 m � �
R
�k�x2 � y2 dA

0 � y � �4 � x2,0 � x � 2

 � k�x2 � y2.

 ��x, y� � k��x � 0�2 � �y � 0�2

�x, y�,

�x, y�

x2 � y2 � 4
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x

1

1

2

2

(x, y)

x2 + y2 = 4

R

y

Density at 
Figure 14.36

��x, y� � k�x2 � y2�x, y�:

On many occasions, this text has mentioned the benefits of 
computer programs that perform symbolic integration. Even if you use such a
program regularly, you should remember that its greatest benefit comes only in the
hands of a knowledgeable user. For instance, notice how much simpler the integral
in Example 2 becomes when it is converted to polar form.

If you have access to software that performs symbolic integration, use it to evaluate
both integrals. Some software programs cannot handle the first integral, but any
program that can handle double integrals can evaluate the second integral.

���2

0
�2

0
 kr2 dr d��2

0
��4�x2

0
 k�x2 � y2 dy dx

Polar Form            Rectangular Form                     

TECHNOLOGY
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Moments and Center of Mass
For a lamina of variable density, moments of mass are defined in a manner similar to
that used for the uniform density case. For a partition of a lamina corresponding 
to a plane region consider the rectangle of one area as shown in 
Figure 14.37. Assume that the mass of is concentrated at one of its interior points

The moment of mass of with respect to the axis can be approximated by

Similarly, the moment of mass with respect to the axis can be approximated by

By forming the Riemann sum of all such products and taking the limits as the norm
of approaches 0, you obtain the following definitions of moments of mass with
respect to the and axes.

For some planar laminas with a constant density you can determine the center
of mass (or one of its coordinates) using symmetry rather than using integration.
For instance, consider the laminas of constant density shown in Figure 14.38. Using
symmetry, you can see that for the first lamina and for the second lamina.

Lamina of constant density that is Lamina of constant density that is
symmetric with respect to the -axis symmetric with respect to the -axis
Figure 14.38

yx

R: 1 − y2 1 − y2− ≤ x ≤
0 ≤ y ≤ 1

x

y

z

1 1

1

−1

−1

−1
x

y

z

1 1

1

−1

−1

−1

R: 0 ≤ x ≤ 1
−    1 − x2 ≤ y ≤ 1 − x2

x � 0y � 0

�,

y-x-
	

�Mass��xi� 	 
��xi, yi� 	Ai��xi�.

y-

�Mass��yi� 	 
��xi, yi� 	Ai��yi�.

x-Ri�xi, yi�.
Ri

	Ai,RiithR,
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MOMENTS AND CENTER OF MASS OF A VARIABLE DENSITY PLANAR LAMINA

Let be a continuous density function on the planar lamina The moments
of mass with respect to the and axes are

and

If is the mass of the lamina, then the center of mass is

If represents a simple plane region rather than a lamina, the point is
called the centroid of the region.

�x, y�R

�x, y� � �My

m
, 

Mx

m 
.

m

My � �
R
�x�(x, y� dA.Mx � �

R
�y��x, y� dA

y-x-
R.�

x

Ri

xi

yi

(xi, yi)

y

Figure 14.37
My � �mass��xi�
Mx � �mass�� yi�
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EXAMPLE 3 Finding the Center of Mass

Find the center of mass of the lamina corresponding to the parabolic region

Parabolic region

where the density at the point is proportional to the distance between and
the axis, as shown in Figure 14.39.

Solution Because the lamina is symmetric with respect to the axis and

the center of mass lies on the axis. So, To find first find the mass of the
lamina.

Next, find the moment about the axis.

So,

and the center of mass is ■

Although you can think of the moments and as measuring the tendency to
rotate about the or axis, the calculation of moments is usually an intermediate step
toward a more tangible goal. The use of the moments and is typical—to find
the center of mass. Determination of the center of mass is useful in a variety of 
applications that allow you to treat a lamina as if its mass were concentrated at just
one point. Intuitively, you can think of the center of mass as the balancing point of the
lamina. For instance, the lamina in Example 3 should balance on the point of a pencil
placed at as shown in Figure 14.40.�0, 16

7 �,

MyMx

y-x-
MyMx

�0, 16
7 �.

y �
Mx

m
�

4096k�105
256k�15

�
16
7

  �
4096k
105

  �
k
3�64x � 16x3 �

12x5

5
�

x7

7 �
2

�2

  �
k
3�

2

�2
 �64 � 48x2 � 12x4 � x6� dx

 Mx � �2

�2
�4�x2

0
 �y��ky� dy dx �

k
3�

2

�2
 y3�

4�x2

0
dx

x-

  �
256k
15

  � k�32 �
64
3

�
32
5 


  �
k
2�16x �

8x3

3
�

x5

5 �
2

�2

  �
k
2�

2

�2
 �16 � 8x2 � x4� dx

 Mass � �2

�2
�4�x2

0
 ky dy dx �

k
2�

2

�2
 y2�

4�x2

0
dx

y,x � 0.y-

��x, y� � ky

y-

x-
�x, y��x, y�

0 � y � 4 � x2
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x

y

1 2−2 −1

3

2

1

y = 4 − x2

(x, y)

Variable density:
(x, y) = kyρ

Parabolic region of variable density
Figure 14.39

x

z

y

Center of mass:

0, 16
7 ))

2

1
4

−2

R: −2 ≤ x ≤ 2
0 ≤ y ≤ 4 − x2

Variable
density:

(x, y) = kyρ

Figure 14.40
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Moments of Inertia
The moments of and used in determining the center of mass of a lamina are
sometimes called the first moments about the and axes. In each case, the moment
is the product of a mass times a distance.

Distance Mass Distance Mass
to -axis to -axis

You will now look at another type of moment—the second moment, or the moment
of inertia of a lamina about a line. In the same way that mass is a measure of the
tendency of matter to resist a change in straight-line motion, the moment of inertia
about a line is a measure of the tendency of matter to resist a change in rotational
motion. For example, if a particle of mass is a distance from a fixed line, its
moment of inertia about the line is defined as

As with moments of mass, you can generalize this concept to obtain the moments of
inertia about the and axes of a lamina of variable density. These second moments
are denoted by and and in each case the moment is the product of a mass times
the square of a distance.

Square of distance Mass Square of distance Mass
to -axis to -axis

The sum of the moments and is called the polar moment of inertia and is
denoted by 

EXAMPLE 4 Finding the Moment of Inertia

Find the moment of inertia about the axis of the lamina in Example 3.

Solution From the definition of moment of inertia, you have

■ �
32,768k

315
.

 �
k
4�256x �

256x3

3
�

96x5

5
�

16x7

7
�

x9

9 �
2

�2

 �
k
4�

2

�2
 �256 � 256x2 � 96x4 � 16x6 � x8� dx

 �
k
4�

2

�2
 y4�

4�x2

0
dx

 Ix � �2

�2
�4�x2

0
 y2�ky� dy dx

x-

I0.
IyIx

yx

Iy � �
R
��x2���x, y� dAIx � �

R
��y2���x, y� dA

Iy,Ix

y-x-

I � md2 � �mass��distance�2.

dm

yx

My � �
R
��x���x, y� dAMx � �

R
��y���x, y� dA

y-x-
MyMx
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NOTE For a lamina in the plane,
represents the moment of inertia of the
lamina about the axis. The term “polar
moment of inertia” stems from the fact
that the square of the polar distance is
used in the calculation.

 � �
R
�r2��x, y� dA

 I0 � �
R
��x2 � y2���x, y� dA

r

z-

I0xy-
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The moment of inertia of a revolving lamina can be used to measure its kinetic
energy. For example, suppose a planar lamina is revolving about a line with an
angular speed of radians per second, as shown in Figure 14.41. The kinetic energy

of the revolving lamina is

Kinetic energy for rotational motion

On the other hand, the kinetic energy of a mass moving in a straight line at a
velocity is

Kinetic energy for linear motion

So, the kinetic energy of a mass moving in a straight line is proportional to its mass,
but the kinetic energy of a mass revolving about an axis is proportional to its moment
of inertia.

The radius of gyration of a revolving mass with moment of inertia is
defined as

Radius of gyration

If the entire mass were located at a distance from its axis of revolution, it would have
the same moment of inertia and, consequently, the same kinetic energy. For instance,
the radius of gyration of the lamina in Example 4 about the axis is given by

EXAMPLE 5 Finding the Radius of Gyration

Find the radius of gyration about the axis for the lamina corresponding to the region
where the density at is given by 

Solution The region is shown in Figure 14.42. By integrating over the
region you can determine that the mass of the region is The moment of inertia
about the axis is

So, the radius of gyration about the axis is

■ � ��2 � 6 	 1.967.

 ���3 � 6�

�

 x ��Iy

m

y-

 � �3 � 6�.

 � ��3x2 � 6��sin x� � �x3 � 6x��cos x��
�

0

 � ��

0
 x3 sin x dx

 � ��

0
 x3y�

sin x

0
dx

 Iy � ��

0
�sin x

0
 x3 dy dx

y-
�.R,

��x, y� � xR

��x, y� � x.�x, y�0 � x � �,R: 0 � y � sin x,
y-

y ��Ix

m
��32,768k�315

256k�15
��128

21
	 2.469.
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r

r �� I
m

.

Imr

E �
1
2

 mv2.
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mE
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2

 I
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Planar lamina revolving at radians per
second
Figure 14.41
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density: R: 0 ≤ x ≤
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(x, y) = xρ
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Figure 14.42
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In Exercises 1– 4, find the mass of the lamina described by the
inequalities, given that its density is (Hint: Some
of the integrals are simpler in polar coordinates.)

1.

2.

3.

4.

In Exercises 5– 8, find the mass and center of mass of the lamina
for each density.

5. square with vertices 

(a) (b) (c)

6. rectangle with vertices 

(a) (b)

7. triangle with vertices 

(a) (b) (c)

8. triangle with vertices 

(a) (b)

9. Translations in the Plane Translate the lamina in Exercise 5
to the right five units and determine the resulting center of mass.

10. Conjecture Use the result of Exercise 9 to make a conjecture
about the change in the center of mass when a lamina of
constant density is translated units horizontally or units
vertically. Is the conjecture true if the density is not constant?
Explain.

In Exercises 11–22, find the mass and center of mass of the
lamina bounded by the graphs of the equations for the given
density or densities. (Hint: Some of the integrals are simpler in
polar coordinates.)

11.

12.

13.

14.

15.

(a) (b)

16.

(a) (b)

17.

18.

19.

20.

21.

22.

In Exercises 23 –26, use a computer algebra system to find the
mass and center of mass of the lamina bounded by the graphs
of the equations for the given density.

23.

24.

25.

26.

In Exercises 27–32, verify the given moment(s) of inertia and
find and Assume that each lamina has a density of 
gram per square centimeter. (These regions are common shapes
used in engineering.)

27. Rectangle 28. Right triangle

29. Circle 30. Semicircle

31. Quarter circle 32. Ellipse

In Exercises 33 – 40, find and for the lamina
bounded by the graphs of the equations. Use a computer
algebra system to evaluate the double integrals.

33.

34.

35.

36.

37.

38.

39. 40. y � x3, y � 4x, � � k�y�y � x2, y2 � x, � � kx

y � x2, y2 � x, � � x2 � y2

y � �x, y � 0, x � 4, � � kxy

y � x, y � x2, � � kxy

y � 4 � x2, y � 0, x > 0, � � kx

y � �a2 � x2, y � 0, � � ky

y � 0, y � b, x � 0, x � a, � � ky

yIx, Iy, I0, x,

x

I0 =
1
4

π ab(a2 + b2)

a
b

y

xa

y

I0 = 1
8

π a4

xa

y

I0 = 1
4

π a4

x

I0 = 1
2

π a4

a

y

x

Ix = bh31
12

1
12

Iy = b3h

h

b

y

x

Ix = bh3

Iy = b3h1
3

1
3

h

b

y

� � 1y.x

r � 1 � cos �, � � k

r � 2 cos 3�, ���6 � � � ��6, � � k

y � ln x, y � 0,  x � 1, x � e, � � k�x

y � e�x, y � 0, x � 0, x � 2, � � kxy

x2 � y2 � a2, 0 � x, 0 � y, � � k�x2 � y2�
y � �a2 � x2, 0 � y � x, � � k

y � cos 
�x
L

, y � 0, x � 0, x �
L
2

, � � ky

y � sin 
�x
L

, y � 0, x � 0,  x � L, � � k

x � 9 � y2, x � 0, � � kx

y � 4 � x2, y � 0, � � ky

� � ky2� � ky

y � e�x, y � 0, x � 0, x � 1

� � ky� � k

y � ex, y � 0, x � 0, x � 1

y �
1

1 � x2, y � 0, x � �1, x � 1, � � k

y � 4�x, y � 0, x � 1, x � 4, � � kx2

y � x2, y � 0, x � 2, � � kxy

y � �x, y � 0, x � 1, � � ky

dc

� � kxy� � k

�0, 0�, �a�2, a�, �a, 0�R:

� � kx� � ky� � k

�0, 0�, �0, a�, �a, a�R:

� � k�x2 � y2�� � kxy

�0, 0�, �a, 0�, �0, b�, �a, b�R:

� � kx� � ky� � k

�0, 0�, �a, 0�, �0, a�, �a, a�R:

x � 0, 3 � y � 3 � �9 � x2

0 � x � 1, 0 � y � �1 � x2

0 � x � 3, 0 � y � 9 � x2

0 � x � 2, 0 � y � 2

��x, y� � xy.
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14.4 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.
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In Exercises 41– 46, set up the double integral required to find
the moment of inertia about the given line, of the lamina
bounded by the graphs of the equations. Use a computer algebra
system to evaluate the double integral.

41.

42.

43.

44.

45.

46.

Hydraulics In Exercises 51–54, determine the location of the
horizontal axis at which a vertical gate in a dam is to be
hinged so that there is no moment causing rotation under the
indicated loading (see figure). The model for is

where is the -coordinate of the centroid of the gate, is the
moment of inertia of the gate about the line is the depth
of the centroid below the surface, and is the area of the gate.

51. 52.

53. 54.

55. Prove the following Theorem of Pappus: Let be a region in a
plane and let be a line in the same plane such that does not
intersect the interior of If is the distance between the
centroid of and the line, then the volume of the solid of
revolution formed by revolving about the line is given by

where is the area of R.AV � 2� rA,
R

VR
rR.

LL
R

x

y = L

a

d

y

x

y = Lb

y

x

y = L

b

a

d

y

x

y = L

b

y

x

h

y L=

y = y

ya = y −
Iy

hA

y

A
hy � y,

Iyyy

ya � y �
I y

hA

ya

ya

y � 4 � x2, y � 0, � � k, line: y � 2

y � �a2 � x2, y � 0,  x � 0, � � k�a � y�, line: y � a

y � �a2 � x2, y � 0, � � ky, line:  y � a

y � �x, y � 0, x � 4, � � kx, line: x � 6

y � 0, y � 2, x � 0, x � 4, � � k, line: x � 6

x2 � y2 � b2, � � k, line: x � a �a > b�

I,

14.4 Center of Mass and Moments of Inertia 1019

CAS

47. Give the formulas for finding the moments and center of
mass of a variable density planar lamina.

48. Give the formulas for finding the moments of inertia about
the and axes for a variable density planar lamina.

49. In your own words, describe what the radius of gyration
measures.

y-x-

WRITING ABOUT CONCEPTS

50. The center of mass of the lamina of constant density shown
in the figure is Make a conjecture about how the 
center of mass changes for each given nonconstant
density Explain. (Make your conjecture 
performing any calculations.)

(a) (b)

(c) (d) ��x, y� � k�4 � x��4 � y���x, y� � kxy

��x, y� � k�2 � x���x, y� � ky

x

1

1

2

2

3

3

4

4

8
5( (2,

y

without��x, y�.
�x, y�
�2, 85�.

CAPSTONE

The center of pressure on a sail is that point at which the
total aerodynamic force may be assumed to act. If the sail is
represented by a plane region the center of pressure is

and

Consider a triangular sail with vertices at and 
Verify the value of each integral.

(a) (b) (c)

Calculate the coordinates of the center of pressure. Sketch a
graph of the sail and indicate the location of the center of pressure.

�xp, yp�

�
R
� y

2 dA �
155

6�
R
� xy dA �

35
6�

R
� y dA � 10

�0, 5�.�0, 0�, �2, 1�,

yp �
�R� y2 dA
�R� y dA

.xp �
�R� xy dA
�R�y dA

R,

�xp, yp�

Center of Pressure on a Sail

S E C T I O N  P R O J E C T
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■ Use a double integral to find the area of a surface.

Surface Area
At this point you know a great deal about the solid region lying between a surface and
a closed and bounded region in the plane, as shown in Figure 14.43. For example,
you know how to find the extrema of on (Section 13.8), the area of the base of
the solid (Section 14.1), the volume of the solid (Section 14.2), and the centroid of the
base (Section 14.4).

In this section, you will learn how to find the upper surface area of the solid.
Later, you will learn how to find the centroid of the solid (Section 14.6) and the lateral
surface area (Section 15.2).

To begin, consider a surface given by

Surface defined over a region 

defined over a region Assume that is closed and bounded and that has continuous
first partial derivatives. To find the surface area, construct an inner partition of 
consisting of rectangles, where the area of the rectangle is as
shown in Figure 14.44. In each let be the point that is closest to the origin.
At the point on the surface construct a tangent plane 
The area of the portion of the tangent plane that lies directly above is approximately
equal to the area of the surface lying directly above That is, So, the
surface area of is given by

To find the area of the parallelogram note that its sides are given by the vectors

and

From Theorem 11.8, the area of is given by where

So, the area of is and

This suggests the following definition of surface area.

 � �
n

i�1

�1 � � fx�xi, yi��2 � � fy�xi, yi��2 �Ai.

 Surface area of S � �
n

i�1
 �Si

	u � v 	 � �� fx�xi, yi��2 � � fy�xi, yi��2 � 1 �Ai,�Ti

 � ��fx�xi, yi�i � fy�xi, yi�j � k� �Ai.

 � �fx�xi, yi� �xi�yi i � fy�xi, yi� �xi�yij � �xi�yik

 u � v � 
 i
�xi

0

j
0

�yi

k
fx�xi, yi� �xi

fy�xi, yi� �yi 

	u � v 	,�Ti

v � �yij � fy�xi, yi� �yik.

u � �xi i � fx�xi, yi� �xik

�Ti,

�
n

i�1
 �Si � �

n

i�1
 �Ti.

S
�Ti � �Si.Ri.
Ri

Ti.S,�xi, yi, zi� � �xi, yi, f�xi, yi��
�xi, yi�Ri

�Ai � �xi �yi,Riithn
R

fRR.

Rz � f�x, y�

S

R

RRf
xy-R

1020 Chapter 14 Multiple Integration

14.5 Surface Area

x

y

Surface:
z = f(x, y)

Region R in xy-plane

z

Figure 14.43

x

y

zSurface:
z = f (x, y)

ΔAi

ΔTi

R

ΔSi ≈ ΔTi

Figure 14.44
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As an aid to remembering the double integral for surface area, it is helpful to note
its similarity to the integral for arc length.

Length on x-axis:

Arc length in xy-plane:

Area in xy-plane:

Surface area in space:

Like integrals for arc length, integrals for surface area are often very difficult to
evaluate. However, one type that is easily evaluated is demonstrated in the next
example.

EXAMPLE 1 The Surface Area of a Plane Region

Find the surface area of the portion of the plane 

that lies above the circle in the first quadrant, as shown in Figure 14.45.

Solution Because and the surface area is given by

Formula for surface area

Substitute.

Note that the last integral is simply times the area of the region is a quarter
circle of radius 1, with an area of or So, the area of is

■ �
�3 �

4
.

 � �3��

4�
 S � �3 �area of R�

S�
4.1
4� �12�

RR.�3

 � �3 �
R
� dA.

 � �
R
� �3 dA

 � �
R
��1 � ��1�2 � ��1�2 dA

 S � �
R
� �1 � � fx�x, y��2 � � fy�x, y��2 dA

fy�x, y� � �1,fx�x, y� � �1

x2 � y2 � 1

z � 2 � x � y

�
R
� dS � �

R
� �1 � � fx�x, y��2 � � fy�x, y��2 dA

�
R
� dA

�b

a

 ds � �b

a

 �1 � � f	�x��2 dx

�b

a

 dx

14.5 Surface Area 1021

x

y2 2

2

R: x2 + y2 ≤ 1

Plane:
z = 2 − x − y

z

Figure 14.45

DEFINITION OF SURFACE AREA

If and its first partial derivatives are continuous on the closed region in the
plane, then the area of the surface S given by over is defined as

 � �
R
� �1 � � fx�x, y��2 � � fy�x, y��2 dA.

 Surface area � �
R
� dS

Rz � f�x, y�xy-
Rf
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EXAMPLE 2 Finding Surface Area

Find the area of the portion of the surface

that lies above the triangular region with vertices and as
shown in Figure 14.46(a).

Solution Because and you have

In Figure 14.46(b), you can see that the bounds for are and 
So, the integral becomes

EXAMPLE 3 Change of Variables to Polar Coordinates

Find the surface area of the paraboloid that lies above the unit circle,
as shown in Figure 14.47.

Solution Because and you have

You can convert to polar coordinates by letting and Then,
because the region is bounded by and you have

■ � 5.33.

 �
� �5�5 � 1�

6

 �
5�5 � 1

12
 
�

2�

0

 � �2�

0
 
5�5 � 1

12
 d


 � �2�

0
 

1
12

 �1 � 4r2�3
2�
1

0
d


 S � �2�

0
�1

0
 �1 � 4r2 r dr d


0 � 
 � 2�,0 � r � 1R
y � r sin 
.x � r cos 


S � �
R
� �1 � � fx�x, y��2 � � fy�x, y��2 dA � �

R
� �1 � 4x2 � 4y2 dA.

fy�x, y� � 2y,fx�x, y� � 2x

z � 1 � x2 � y2

 � �6 � ln�2 � �6 � � �6 � ln �2 �
1
3

 �2 � 1.618.

 � �x�2 � 4x2 � ln�2x � �2 � 4x2 � �
�2 � 4x2�3
2

6 �
1

0

 � �1

0
 �2�2 � 4x2 � 2x�2 � 4x2 � dx

 � �1

0
 ��1 � x��2 � 4x2 � �x � 1��2 � 4x2� dx

 � �1

0
y�2 � 4x2 �

1�x

x�1
dx

 S � �1

0
�1�x

x�1
 �2 � 4x2 dy dx

x � 1 � y � 1 � x.
0 � x � 1R

S � �
R
� �1 � � fx�x, y��2 � � fy�x, y��2 dA � �

R
� �1 � 4x2 � 1 dA.

fy�x, y� � 1,fx�x, y� � �2x

�0, 1, 0�,�0, �1, 0�,�1, 0, 0�,

f�x, y� � 1 � x2 � y

1022 Chapter 14 Multiple Integration

y

x

z

R: x2 + y2 ≤ 1

R

1 1

2

Paraboloid:
z = 1 + x2 + y2

Figure 14.47

x

y1 1

1

−1

2

Surface:
f(x, y) = 1 − x2 + y

(0, 1, 2)

z

(a)

x

−1

1

1 2

y = 1 − x

y = x − 1

x − 1 ≤ y ≤ 1 − x

y

R: 0 ≤ x ≤ 1

(b)
Figure 14.46

Integration tables (Appendix B),
Formula 26 and Power Rule
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EXAMPLE 4 Finding Surface Area

Find the surface area of the portion of the hemisphere

Hemisphere

that lies above the region bounded by the circle as shown in Figure
14.48.

Solution The first partial derivatives of are

and

and, from the formula for surface area, you have

So, the surface area is

You can convert to polar coordinates by letting and Then,
because the region is bounded by and you obtain

■

The procedure used in Example 4 can be extended to find the surface area of a
sphere by using the region bounded by the circle where 
as shown in Figure 14.49. The surface area of the portion of the hemisphere

lying above the circular region can be shown to be

By taking the limit as approaches 5 and doubling the result, you obtain a total area
of (The surface area of a sphere of radius is )S � 4�r2.r100�.

a

 � 10� �5 � �25 � a2 �.

 � �2�

0
�a

0
 

5
�25 � r2

 r dr d


 S � �
R
� 

5
�25 � x2 � y2

 dA

�25 � x2 � y2f�x, y� �

0 < a < 5,x2 � y2 � a2,R

 � 10�.

 � 5�2�

0
 d


 � 5�2�

0
 ��25 � r2�

3

0
d


 S � �2�

0
�3

0
 

5
�25 � r2

 r dr d


0 � 
 � 2�,0 � r � 3R
y � r sin 
.x � r cos 


S � �
R
� 

5
�25 � x2 � y2

 dA.

 �
5

�25 � x2 � y2
 dA.

 ��1 � � �x
�25 � x2 � y2�

2

� � �y
�25 � x2 � y2�

2

 dA

 dS � �1 � � fx�x, y�� 2 � � fy�x, y��2 dA

fy�x, y� �
�y

�25 � x2 � y2
fx�x, y� �

�x
�25 � x2 � y2

f

x2 � y2 � 9,R

f�x, y� � �25 � x2 � y2

S

14.5 Surface Area 1023

x

y

z

−2

−4
−6

−4

1

1

2 2

2

3

3

4 4

4

5

5

6
R: x2 + y2 ≤ 9

f(x, y) =     25 − x2 − y2

Hemisphere:

Figure 14.48

x

y

z

5

5

5

R: x2 + y2 ≤ a2

aa

f(x, y) =     25 − x2 − y2

Hemisphere:

Figure 14.49
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You can use Simpson’s Rule or the Trapezoidal Rule to approximate the value
of a double integral, provided you can get through the first integration. This is
demonstrated in the next example.

EXAMPLE 5 Approximating Surface Area by Simpson’s Rule

Find the area of the surface of the paraboloid

Paraboloid

that lies above the square region bounded by and as
shown in Figure 14.50.

Solution Using the partial derivatives

and

you have a surface area of

In polar coordinates, the line is given by or and you can
determine from Figure 14.51 that one-fourth of the region is bounded by

and

Letting and produces

Finally, using Simpson’s Rule with you can approximate this single integral
to be

■ � 7.450.

 S �
1
3�

�
4

��
4
 ��1 � 4 sec2 
�3
2 � 1� d


n � 10,

 �
1
12�

�
4

��
4
 ��1 � 4 sec2 
�3
2 � 1� d
.

 � ��
4

��
4
 

1
12

�1 � 4r2�3
2�
sec 


0
d


 � ��
4

��
4
�sec 


0
 �1 � 4r2 r dr d


 
1
4

 S �
1
4

 �
R
� �1 � 4x2 � 4y2 dA

y � r sin 
x � r cos 


�
�

4
� 
 �

�

4
.0 � r � sec 


R
r � sec 
,r cos 
 � 1x � 1

 � �
R
� �1 � 4x2 � 4y2 dA.

 � �
R
� �1 � ��2x�2 � ��2y�2 dA

 S � �
R
� �1 � � fx�x, y��2 � � fy�x, y��2 dA

fy�x, y� � �2yfx�x, y� � �2x

�1 � y � 1,�1 � x � 1

f�x, y� � 2 � x2 � y2

1024 Chapter 14 Multiple Integration

y

x

z

R: −1 ≤ x ≤ 1
    −1 ≤ y ≤ 1

2
1

2

Paraboloid:
f (x, y) = 2 − x2 − y2

Figure 14.50

x
1

r = sec θ

4
= 

−1

−1

y

πθ

4
= − πθ

1

One-fourth of the region is bounded by

and 

Figure 14.51

�
�

4
� 
 �

�

4
.0 � r � sec 


R

Most computer programs that are capable of performing symbolic
integration for multiple integrals are also capable of performing numerical approx-
imation techniques. If you have access to such software, use it to approximate the
value of the integral in Example 5.

TECHNOLOGY
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In Exercises 1–14, find the area of the surface given by
over the region (Hint: Some of the integrals are

simpler in polar coordinates.)

1.

2.

3. 4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

In Exercises 15–18, find the area of the surface.

15. The portion of the plane in the first octant

16. The portion of the paraboloid in the first octant

17. The portion of the sphere inside the
cylinder 

18. The portion of the cone inside the cylinder

In Exercises 19–24, write a double integral that represents the
surface area of over the region Use a computer
algebra system to evaluate the double integral.

19.

20.

21. 22.

23.

24.

Approximation In Exercises 25 and 26, determine which value
best approximates the surface area of over the region

(Make your selection on the basis of a sketch of the surface
and not by performing any calculations.)

25.

(a) 16 (b) 200 (c) (d) 72 (e) 36

26.

(a) (b) 150 (c) (d) 55 (e) 500

In Exercises 27 and 28, use a computer algebra system to
approximate the double integral that gives the surface area of the
graph of over the region 

27. 28.

In Exercises 29–34, set up a double integral that gives the area
of the surface on the graph of over the region 

29.

30.

31. 32.

33.

34.

R � ��x, y�: 0 � x � 4, 0 � y � x�
f �x, y� � e�x sin y

R � ��x, y�: 0 � x � 4, 0 � y � 10�
f �x, y� � exy

R � ��x, y�: x2 � y2 �
�

2�R � ��x, y�: x2 � y 2 � 4�

f �x, y� � cos�x2 � y 2�f �x, y� � e�x sin y

R � ��x, y�: 0 � x � 4, 0 � y � x�
f �x, y� � x2 � 3xy � y 2

R: square with vertices �1, 1�, ��1, 1�, ��1, �1�, �1, �1�
f �x, y� � x3 � 3xy � y3

R.f

f �x, y� �
2
5 y5
2f �x, y� � e x

R � {�x, y�: 0 } x } 1, 0 } y } 1}.f

9��100

R: circle bounded by x2 � y2 � 9

f �x, y� �
1
4�x2 � y 2

�100

R: square with vertices �0, 0�, �4, 0�, �4, 4�, �0, 4�
f �x, y� � 10 �

1
2 y 2

R.
z � f �x, y�

R � ��x, y�: 0 � x � 1, 0 � y � 1�
f �x, y� �

2
3x3
2 � cos x

R � ��x, y�: 0 � x � 1, 0 � y � 1�
f �x, y� � 4 � x2 � y 2

R � ��x, y�: 0 � f �x, y� � 16�R � ��x, y�: 0 � f �x, y��
f �x, y� � x2 � y 2f �x, y� � 9 � x2 � y 2

R: triangle with vertices �0, 0�, �2, 0�, �2, 2�
f �x, y� � 2x � y 2

R: triangle with vertices �0, 0�, �1, 0�, �1, 1�
f �x, y� � 2y � x2

R.z � f �x, y�

x2 � y 2 � 4
z � 2�x2 � y 2

x2 � y 2 � 9
x2 � y 2 � z2 � 25

z � 16 � x2 � y2

z � 24 � 3x � 2y

R � ��x, y�: x2 � y 2 � a2�
f �x, y� � �a2 � x2 � y 2

R � ��x, y�: x2 � y 2 � b2, 0 < b < a�
f �x, y� � �a2 � x2 � y 2

R � ��x, y�: x2 � y 2 � 16�f �x, y� � xy,

R � ��x, y�: 0 � f �x, y� � 1�f �x, y� � �x2 � y 2,

R � ��x, y�: x2 � y 2 � 4�
f �x, y� � 13 � x2 � y 2

R � ��x, y�: 0 � x �
�

4
, 0 � y � tan x�

f �x, y� � ln
sec x

R � ��x, y�: 0 � x � 2, 0 � y � 2 � x�
f �x, y� � 2 �

2
3 y3
2

R: rectangle with vertices �0, 0�, �0, 4�, �3, 4�, �3, 0�
f �x, y� � 3 � x3
2

R: square with vertices �0, 0�, �3, 0�, �0, 3�, �3, 3�
f �x, y� � y 2

R: square with vertices �0, 0�, �2, 0�, �0, 2�, �2, 2�
f �x, y� � 9 � x2

R � ��x, y�: x2 � y 2 � 9�R � ��x, y�: x2 � y 2 � 4�
f �x, y� � 12 � 2x � 3yf �x, y� � 7 � 2x � 2y

R: square with vertices �0, 0�, �3, 0�, �0, 3�, �3, 3�
f �x, y� � 15 � 2x � 3y

R: triangle with vertices �0, 0�, �4, 0�, �0, 4�
f �x, y� � 2x � 2y

R.z � f �x, y�

14.5 Surface Area 1025

14.5 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

CAS

CAS

35. State the double integral definition of the area of a surface
given by over the region in the plane.

36. Consider the surface and the surface area
of over each region Without integrating, order the 
surface areas from least to greatest. Explain your reasoning.

(a) rectangle with vertices 

(b) triangle with vertices 

(c)

37. Will the surface area of the graph of a function 
over a region increase if the graph is shifted units 
vertically? Why or why not?

kR
z � f �x, y�

R � ��x, y�: x2 � y2 � 4, first quadrant only�
�0, 2��2, 0�,�0, 0�,R:

�0, 2��2, 2�,�2, 0�,�0, 0�,R:

R.f
f �x, y� � x2 � y2

xy-Rz � f �x, y�S

WRITING ABOUT CONCEPTS
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39. Find the surface area of the solid of intersection of the cylinders
and (see figure).

Figure for 39 Figure for 40

40. Show that the surface area of the cone 
over the circular region in the plane is

(see figure).

41. Product Design A company produces a spherical object of
radius 25 centimeters. A hole of radius 4 centimeters is drilled
through the center of the object. Find (a) the volume of the
object and (b) the outer surface area of the object.

42. Modeling Data A rancher builds a barn with dimensions 
30 feet by 50 feet. The symmetrical shape and selected heights
of the roof are shown in the figure.

(a) Use the regression capabilities of a graphing utility to find
a model of the form for the roof
line.

(b) Use the numerical integration capabilities of a graphing
utility and the model in part (a) to approximate the volume
of storage space in the barn.

(c) Use the numerical integration capabilities of a graphing
utility and the model in part (a) to approximate the surface
area of the roof.

(d) Approximate the arc length of the roof line and find the
surface area of the roof by multiplying the arc length by the
length of the barn. Compare the results and the integrations
with those found in part (c).

z � ay3 � by2 � cy � d

y

x

50

20

25
(0, 25)

(5, 22)

(10, 17)

(15, 0)

z

�r 2�k2 � 1
xy-x2 � y 2 � r 2

k > 0,z � k�x2 � y 2,

y

x

z = k    x2 + y2, k > 0

r r

z

x

y3

2

−3

−2

3

y2 + z2 = 1

x2 + z2 = 1

z

y 2 � z2 � 1x2 � z2 � 1
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38. Answer the following questions about the surface area on
a surface given by a positive function over a
region in the plane. Explain each answer.

(a) Is it possible for to equal the area of 

(b) Can be greater than the area of 

(c) Can be less than the area of R?S

R?S

R?S

xy-R
z � f �x, y�

S

CAPSTONE

A well-known property of liquids is that they will rise in narrow
vertical channels—this property is called “capillary action.”
The figure shows two plates, which form a narrow wedge, in a
container of liquid. The upper surface of the liquid follows a
hyperbolic shape given by

where and are measured in inches. The constant depends on
the angle of the wedge, the type of liquid, and the material that
comprises the flat plates.

(a) Find the volume of the liquid that has risen in the wedge.
(Assume )

(b) Find the horizontal surface area of the liquid that has risen in
the wedge.

Adaptation of Capillary Action problem from “Capillary
Phenomena” by Thomas B. Greenslade, Jr., Physics Teacher, May
1992. By permission of the author.

x

y

= 2 arctan (0.01)θ

13 in.

9 in.

z

k � 1.

kzy,x,

z �
k

�x2 � y 2

Capillary Action

S E C T I O N  P R O J E C T
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14.6 Triple Integrals and Applications
■ Use a triple integral to find the volume of a solid region.
■ Find the center of mass and moments of inertia of a solid region.

Triple Integrals
The procedure used to define a triple integral follows that used for double integrals.
Consider a function of three variables that is continuous over a bounded solid region

Then, encompass with a network of boxes and form the inner partition
consisting of all boxes lying entirely within as shown in Figure 14.52. The volume
of the box is

Volume of box

The norm of the partition is the length of the longest diagonal of the boxes in
the partition. Choose a point in each box and form the Riemann sum

Taking the limit as leads to the following definition.

Some of the properties of double integrals in Theorem 14.1 can be restated in
terms of triple integrals.

1.

2.

3.

In the properties above, is the union of two nonoverlapping solid subregions and
If the solid region is simple, the triple integral can be evaluated

with an iterated integral using one of the six possible orders of integration:

dz dy dx.dy dz dxdx dz dydz dx dydy dx dzdx dy dz

��� f�x, y, z� dVQQ2.
Q1Q

��
Q

� f �x, y, z� dV � ��
Q1

� f �x, y, z� dV � ��
Q2

� f �x, y, z� dV

��
Q

� � f �x, y, z� ± g�x, y, z�� dV � ��
Q

� f �x, y, z� dV ± ��
Q

�g�x, y, z� dV

��
Q

� cf �x, y, z� dV � c��
Q

� f �x, y, z� dV

��� →  0

	
n

i�1
 f�xi, yi, zi� �Vi.

�xi, yi, zi�
n�� �

ith�Vi � �xi�yi�zi.

ith
Q,

QQ.
f

DEFINITION OF TRIPLE INTEGRAL

If is continuous over a bounded solid region , then the triple integral of f
over Q is defined as

provided the limit exists. The volume of the solid region is given by

Volume of Q � ��
Q

� dV.

Q

��
Q

� f�x, y, z� dV � lim
���→0

 	
n

i�1
 f�xi, yi, zi� �Vi

Qf

y

x

z

Solid region Q

y

x

z

Volume of

Figure 14.52

Q 
 	
n

i�1

 �Vi
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The following version of Fubini’s Theorem describes a region that is considered
simple with respect to the order Similar descriptions can be given for the
other five orders.

To evaluate a triple iterated integral in the order hold both and con-
stant for the innermost integration. Then, hold constant for the second integration.

EXAMPLE 1 Evaluating a Triple Iterated Integral

Evaluate the triple iterated integral

Solution For the first integration, hold and constant and integrate with respect
to 

For the second integration, hold constant and integrate with respect to 

Finally, integrate with respect to 

■

Example 1 demonstrates the integration order For other orders, you can
follow a similar procedure. For instance, to evaluate a triple iterated integral in the
order hold both and constant for the innermost integration and integrate
with respect to Then, for the second integration, hold constant and integrate with
respect to Finally, for the third integration, integrate with respect to z.y.

zx.
zydx dy dz,

dz dy dx.

 
 65.797

 � 19�e2

3
� 1�

 
19
6 �2

0
 x3ex dx �

19
6 
ex�x3 � 3x2 � 6x � 6��

2

0

x.

 �
19
6

 �2

0
 x3ex dx

 �2

0
�x

0
 ex�x2 � 3xy � 2y2� dy dx � �2

0
 
ex�x2y �

3xy2

2
�

2y3

3 ��
x

0
 dx

y.x

 � �2

0
�x

0
 ex�x2 � 3xy � 2y2� dy dx

 �2

0
�x

0
�x�y

0
 ex� y � 2z� dz dy dx � �2

0
�x

0
 ex�yz � z2��

x�y

0
dy dx

z.
yx

�2

0
�x

0
�x�y

0
 ex� y � 2z� dz dy dx.

x
yxdz dy dx,

dz dy dx.
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THEOREM 14.4 EVALUATION BY ITERATED INTEGRALS

Let be continuous on a solid region defined by

where and are continuous functions. Then,

��
Q

� f�x, y, z� dV � �b

a
�h2�x�

h1�x�
�g

2
�x, y�

g1�x, y�
 f�x, y, z� dz dy dx.

g2h1, h2, g1,

g1�x, y� � z � g2�x, y�h1�x� � y � h2�x�,a � x � b,

Qf

E X P L O R A T I O N

Volume of a Paraboloid Sector
On pages 997 and 1006, you were
asked to summarize the different
ways you know of finding the
volume of the solid bounded by
the paraboloid

and the plane. You now know one
more way. Use it to find the volume
of the solid.

y

x

a

z

a

a2

−a

xy-

a > 0z � a2 � x2 � y2,
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To find the limits for a particular order of integration, it is generally advisable first
to determine the innermost limits, which may be functions of the outer two variables.
Then, by projecting the solid onto the coordinate plane of the outer two variables,
you can determine their limits of integration by the methods used for double integrals.
For instance, to evaluate

first determine the limits for and then the integral has the form

By projecting the solid onto the plane, you can determine the limits for and 
as you did for double integrals, as shown in Figure 14.53.

EXAMPLE 2 Using a Triple Integral to Find Volume

Find the volume of the ellipsoid given by 

Solution Because and play similar roles in the equation, the order of integration
is probably immaterial, and you can arbitrarily choose Moreover, you can
simplify the calculation by considering only the portion of the ellipsoid lying in the
first octant, as shown in Figure 14.54. From the order you first determine the
bounds for 

In Figure 14.55, you can see that the boundaries for and are and
so the volume of the ellipsoid is

■ �
64�

3
.

 � 4� 
4x �
x3

3 �
2

0

 � 8�2

0
 �4 � x2���

2� dx

 � 8�2

0
�0 � �4 � x2� arcsin�1� � 0 � 0� dx

 � 8�2

0
 
y�4 � x2 � y2 � �4 � x2� arcsin� y

�4 � x2��
�4�x2

 

0
dx

 � 16�2

0
��4�x2

0
 ��4 � x2� � y2 dy dx

 � 8�2

0
��4�x2

0
z�2�4�x2�y2

0
 dy dx

 � 8�2

0
��4�x2

0
�2�4�x2�y2

0
 dz dy dx

 V � ��
Q

� dV

0 � y � �4 � x2,
0 � x � 2yx

0 � z � 2�4 � x2 � y2

z.
dz dy dx,

dz dy dx.
zy,x,

4x2 � 4y2 � z2 � 16.

yxxy-Q

�� 
�g
2
�x, y�

g1�x, y�
 f�x, y, z� dz� dy dx.

z,

��
Q

� f�x, y, z� dz dy dx

Q
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x y

Q

Projection onto xy-plane

z = g1(x, y)

z

z = g2(x, y)

Solid region lies between two surfaces.
Figure 14.53

Q

2

2

1

4

x

0 ≤ z ≤ 2    4 − x2 − y2

Ellipsoid: 4x2 + 4y2 + z2 = 16

z

y

Figure 14.54

x

0 ≤ y ≤    4 − x2

1

1

2

2

x2 + y2 = 4

0 ≤ x ≤ 2y

Figure 14.55

Integration tables (Appendix B),
Formula 37
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Example 2 is unusual in that all six possible orders of integration produce 
integrals of comparable difficulty. Try setting up some other possible orders of 
integration to find the volume of the ellipsoid. For instance, the order yields
the integral

If you solve this integral, you will obtain the same volume obtained in Example 2.
This is always the case—the order of integration does not affect the value of the
integral. However, the order of integration often does affect the complexity of the
integral. In Example 3, the given order of integration is not convenient, so you can
change the order to simplify the problem.

EXAMPLE 3 Changing the Order of Integration

Evaluate 

Solution Note that after one integration in the given order, you would encounter the
integral which is not an elementary function. To avoid this problem,
change the order of integration to so that is the outer variable. From Figure
14.56, you can see that the solid region is given by

and the projection of in the plane yields the bounds

and

So, evaluating the triple integral using the order produces

■ � 1.

 � �cos�y2�����2

0

 � 2����2

0
  y sin�y2� dy

 � 2����2

0
 x sin� y2��

y

0
 dy

 � 2 ����2

0
�y

0
 sin�y2� dx dy

 ����2

0
 �y

0
�3

1
 sin� y2� dz dx dy � ����2

0
�y

0
z sin�y2��

3

1
 dx dy

dz dx dy

0 � x � y.0 � y � ��

2

xy-Q

1 � z � 3x � y � ��

2
,0 � x � ��

2
,

Q
ydz dx dy,

2� sin� y2� dy,

����2

0
����2

x
�3

1
 sin �y2� dz dy dx.

V � 8�4

0
��16�z2�2

0
��16�4y2�z2�2

0
 dx dy dz.

dx dy dz
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x

y

z

1

2

3

y = x

π )) 2
π
2

, , 3 

π )) 2
π
2

, , 1 

π
2 π

2

Q: 0 ≤ x ≤ 

x ≤ y ≤

1 ≤ z ≤ 3

π
2
π
2

Figure 14.56
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EXAMPLE 4 Determining the Limits of Integration

Set up a triple integral for the volume of each solid region.

a. The region in the first octant bounded above by the cylinder and lying
between the vertical planes and 

b. The upper hemisphere given by 

c. The region bounded below by the paraboloid and above by the sphere

Solution

a. In Figure 14.57, note that the solid is bounded below by the plane and
above by the cylinder So,

Bounds for 

Projecting the region onto the plane produces a parallelogram. Because two
sides of the parallelogram are parallel to the axis, you have the following bounds:

and

So, the volume of the region is given by

b. For the upper hemisphere given by you have

Bounds for 

In Figure 14.58, note that the projection of the hemisphere onto the plane is the
circle given by and you can use either order or Choosing
the first produces

and

which implies that the volume of the region is given by

c. For the region bounded below by the paraboloid and above by the
sphere you have

Bounds for 

The sphere and the paraboloid intersect at Moreover, you can see in Figure
14.59 that the projection of the solid region onto the plane is the circle given by

Using the order produces

and

which implies that the volume of the region is given by

■V � ��
Q

� dV � ��2

��2
 ��2�x2

��2�x2
��6�x2�y2

x2�y2
 dz dy dx.

��2 � x � �2��2 � x2 � y � �2 � x2

dy dxx2 � y2 � 2.
xy-

z � 2.

zx2 � y2 � z � �6 � x2 � y2.

x2 � y2 � z2 � 6,
z � x2 � y2

V � ��
Q

� dV � �1

�1
��1�y2

��1�y2
��1�x2�y2

0
 dz dx dy.

�1 � y � 1��1 � y2 � x � �1 � y2

dy dx.dx dyx2 � y2 � 1,
xy-

z0 � z � �1 � x2 � y2.

z � �1 � x2 � y2,

V � ��
Q

� dV � �1

0
�3�y

1�y
�1�y2

0
 dz dx dy.

0 � y � 1.1 � y � x � 3 � y

x-
xy-

z0 � z � 1 � y2.

z � 1 � y2.
�z � 0�xy-

x2 � y2 � z2 � 6
z � x2 � y2

z � �1 � x2 � y2

x � y � 3x � y � 1
z � 1 � y2
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x

y

3

1

1

x = 1 − y

x = 3 − y

z = 1 − y2

Δy

Q: 0 ≤ z ≤ 1 − y2

1 − y ≤ x ≤ 3 − y
0 ≤ y ≤ 1

z

Figure 14.57

x

y
1 1

1

z = 1 − x2 − y2

Hemisphere:

Circular base:
x2 + y2 = 1

−1 ≤ y ≤ 1
1 − y2 ≤ x ≤     1 − y2−

0 ≤ z ≤     1 − x2 − y2

z

Q:

Figure 14.58

y
x

2 2

−2

3

Sphere:
x2 + y2 + z2 = 6

−    2 − x2  ≤ y ≤     2 − x2

−       ≤ x ≤     22

x2 + y2 ≤ z ≤     6 − x2 − y2

z

Q:

Paraboloid:
z = x2 + y2

Figure 14.59

1053714_1406.qxp  10/27/08  1:34 PM  Page 1031



Center of Mass and Moments of Inertia
In the remainder of this section, two important engineering applications of triple
integrals are discussed. Consider a solid region whose density is given by the 
density function The center of mass of a solid region of mass is given by

where

Mass of the solid

First moment about plane

First moment about plane

First moment about plane

and

The quantities and are called the first moments of the region about
the and planes, respectively.

The first moments for solid regions are taken about a plane, whereas the second
moments for solids are taken about a line. The second moments (or moments of
inertia) about the and axes are as follows.

Moment of inertia about axis

Moment of inertia about axis

Moment of inertia about axis

For problems requiring the calculation of all three moments, considerable effort can
be saved by applying the additive property of triple integrals and writing

and

where and are as follows.

Iyz � ��
Q

� x2��x, y, z� dV

Ixz � ��
Q

� y2��x, y, z� dV

Ixy � ��
Q

� z2��x, y, z� dV

IyzIxy, Ixz,

Iz � Iyz � IxzIy � Iyz � Ixy,Ix � Ixz � Ixy,

z-Iz � ��
Q

� �x2 � y2���x, y, z� dV

y-Iy � ��
Q

� �x2 � z2���x, y, z� dV

x-Ix � ��
Q

� � y2 � z2���x, y, z� dV

z-y-,x-,

xy-xz-,yz-,
QMxyMxz,Myz,

z �
Mxy

m
.y �

Mxz

m
,x �

Myz

m
,

xy-Mxy � ��
Q

� z��x, y, z� dV

xz-Mxz � ��
Q

� y��x, y, z� dV

yz-Myz � ��
Q

� x��x, y, z� dV

 m � ��
Q

� ��x, y, z� dV

�x, y, z�,
mQ�.

Q
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x

y

z

Figure 14.60

E X P L O R A T I O N

Sketch the solid (of uniform 
density) bounded by and

where From your
sketch, estimate the coordinates
of the center of mass of the solid.
Now use a computer algebra 
system to verify your estimate.
What do you observe?

x2 � y 2 � 1.

z �
1

1 � x2 � y2

z � 0

NOTE In engineering and physics,
the moment of inertia of a mass is used
to find the time required for the mass 
to reach a given speed of rotation about
an axis, as shown in Figure 14.60. The
greater the moment of inertia, the longer
a force must be applied for the mass to
reach the given speed.
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EXAMPLE 5 Finding the Center of Mass of a Solid Region

Find the center of mass of the unit cube shown in Figure 14.61, given that the density
at the point is proportional to the square of its distance from the origin.

Solution Because the density at is proportional to the square of the distance
between and you have

You can use this density function to find the mass of the cube. Because of
the symmetry of the region, any order of integration will produce an integral of
comparable difficulty.

The first moment about the plane is

Note that can be factored out of the two inner integrals, because it is constant with
respect to and After factoring, the two inner integrals are the same as for the mass

Therefore, you have

So,

Finally, from the nature of and the symmetry of and in this solid region, you

have and the center of mass is ■� 7
12, 7

12, 7
12�.x � y � z,

zy,x,�

x �
Myz

m
�

7k�12
k

�
7
12

.

 �
7k
12

.

 � k
x4

4
�

x2

3 �
1

0

 Myz � k�1

0
 x�x2 �

2
3� dx

m.
z.y

x

 � k�1

0
 x
�1

0
�1

0
 �x2 � y2 � z2� dz dy� dx.

 Myz � k�1

0
�1

0
�1

0
 x�x2 � y2 � z2� dz dy dx

yz-

 � k
x3

3
�

2x
3 �

1

0
� k

 � k�1

0
 �x2 �

2
3

 � dx

 � k�1

0
 
�x2 �

1
3�y �

y3

3 �
1

0
 dx

 � k�1

0
�1

0
 �x2 � y2 �

1
3

 � dy dx

 � k�1

0
�1

0
 
�x2 � y2�z �

z3

3 �
1

0
 dy dx

 m � �1

0
�1

0
�1

0
 k�x2 � y2 � z2� dz dy dx

��x, y, z� � k�x2 � y2 � z2�.

�x, y, z�,�0, 0, 0�
�x, y, z�

�x, y, z�
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x

y

1

1
1

(x, y, z)

z

Variable density:

Figure 14.61
��x, y, z� � k�x2 � y2 � z2�
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EXAMPLE 6 Moments of Inertia for a Solid Region

Find the moments of inertia about the and axes for the solid region lying between
the hemisphere

and the plane, given that the density at is proportional to the distance
between and the plane.

Solution The density of the region is given by Considering the
symmetry of this problem, you know that and you need to compute only one
moment, say From Figure 14.62, choose the order and write

Wallis’s Formula

So, ■

In Example 6, notice that the moments of inertia about the and axes are equal
to each other. The moment about the axis, however, is different. Does it seem that
the moment of inertia about the axis should be less than or greater than the moments
calculated in Example 6? By performing the calculations, you can determine that

This tells you that the solid shown in Figure 14.62 has a greater resistance to rotation
about the or axis than about the axis.z-y-x-

Iz �
16
3

k�.

z-
z-

y-x-

Ix � 8k� � Iy.

 � 8k�.

 � �256k
5 ��5�

32�

 �
4k
5 �

��2

0
 64 cos6 	 d	

x � 2 sin 	 �
4k
5 �

2

0
 �4 � x2�5�2 dx

 �
k
4�

2

�2
 
8
5

�4 � x2�5�2 dx

 �
k
4�

2

�2
 
�4 � x2�2y �

y5

5 � 
�4�x2

��4�x2
 dx

 �
k
4�

2

�2
��4�x2

��4�x2

 ��4 � x2�2 � y4� dy dx

 � k�2

�2
��4�x2

��4�x2

 
y2�4 � x2 � y2�
2

�
�4 � x2 � y2�2

4 � dy dx

 � k�2

�2
��4�x2

��4�x2

 
y2z2

2
�

z4

4 �
�4�x2�y2

0

 dy  dx

 � �2

�2
��4�x2

��4�x2
��4�x2�y2

0
 � y2 � z2��kz� dz dy dx

 Ix � ��
Q

� �y2 � z2���x, y, z� dV

dz dy dxIx.
Ix � Iy,

��x, y, z� � kz.

xy-(x, y, z�
�x, y, z�xy-

z � �4 � x2 � y2

y-x-
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x

y

z

2

2

2

z =     4 − x2 − y2

Hemisphere:

Circular base:
x2 + y2 = 4

−2 ≤ x ≤ 2
−    4 − x2 ≤ y ≤     4 − x2

0 ≤ z ≤     4 − x2 − y2

Variable density: 
Figure 14.62

��x, y, z� � kz
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In Exercises 1–8, evaluate the iterated integral.

1. 2.

3. 4.

5. 6.

7. 8.

In Exercises 9 and 10, use a computer algebra system to
evaluate the iterated integral.

9.

10.

In Exercises 11 and 12, use a computer algebra system to
approximate the iterated integral.

11.

12.

In Exercises 13–18, set up a triple integral for the volume of the
solid.

13. The solid in the first octant bounded by the coordinate planes
and the plane 

14. The solid bounded by and 

15. The solid bounded by and 

16. The solid bounded by and 

17. The solid that is the common interior below the sphere
and above the paraboloid 

18. The solid bounded above by the cylinder and below
by the paraboloid 

Volume In Exercises 19–22, use a triple integral to find the
volume of the solid shown in the figure.

19. 20.

21. 22.

Volume In Exercises 23–26, use a triple integral to find the 
volume of the solid bounded by the graphs of the equations.

23. first octant

24.

25.

26. first octant

In Exercises 27–32, sketch the solid whose volume is given by
the iterated integral and rewrite the integral using the indicated
order of integration.

27.

Rewrite using the order 

28.

Rewrite using the order 

29.

Rewrite using the order 

30.

Rewrite using the order 

31.

Rewrite using the order 

32.

Rewrite using the order 

In Exercises 33–36, list the six possible orders of integration for
the triple integral over the solid region 

33.

34.

35.

36. Q � ��x, y, z�: 0 � x � 1, y � 1 � x2, 0 � z � 6�
Q � ��x, y, z�: x2 � y2 � 9, 0 � z � 4�
Q � ��x, y, z�: 0 � x � 2, x2 � y � 4, 0 � z � 2 � x�
Q � ��x, y, z�: 0 � x � 1, 0 � y � x, 0 � z � 3�

��
Q

� xyz dV.Q,

dx dy dz.
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�4

0
��4�x��2

0
��12�3x�6y��4

0
 dz dy dx

dx dz dy.

�1

�1
�1

y2
�1�x

0
dz dx dy

dy dz dx.

�1

0
�0

�1
�y2

0
 dz dy dx

z � x, y � x � 2, y � x2,

z � 2 � y, z � 4 � y2, x � 0, x � 3, y � 0

z � 9 � x3, y � �x2 � 2, y � 0, z � 0, x ≥ 0

z � 4 � x2, y � 4 � x2,

z = 36 − x2 − y2

yx

36

1212

z

z = 0

x2 + y2 + z2 = a2

y
x

a

a a

z

0 ≤ x ≤ 2 
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In Exercises 37 and 38, the figure shows the region of integra-
tion for the given integral. Rewrite the integral as an equivalent
iterated integral in the five other orders.

37. 38.

Mass and Center of Mass In Exercises 39– 42, find the mass
and the indicated coordinates of the center of mass of the solid
of given density bounded by the graphs of the equations.

39. Find using 

40. Find using 

41. Find using 

42. Find using 

Mass and Center of Mass In Exercises 43 and 44, set up the
triple integrals for finding the mass and the center of mass of
the solid bounded by the graphs of the equations.

43.

44.

Think About It The center of mass of a solid of constant
density is shown in the figure. In Exercises 45–48, make a
conjecture about how the center of mass will change for
the nonconstant density Explain.

45.

46.

47.

48.

Centroid In Exercises 49–54, find the centroid of the solid
region bounded by the graphs of the equations or described by
the figure. Use a computer algebra system to evaluate the triple
integrals. (Assume uniform density and find the center of mass.)

49. 50.

51.

52.

53. 54.

Moments of Inertia In Exercises 55–58, find and for
the solid of given density. Use a computer algebra system to
evaluate the triple integrals.

55. (a) 56. (a)

(b) (b)

57. (a) 58. (a)

(b) (b)

Moments of Inertia In Exercises 59 and 60, verify the moments
of inertia for the solid of uniform density. Use a computer
algebra system to evaluate the triple integrals.

59.

Iz �
1

12m�3a2 � L2�
Iy �

1
2ma2

x
y

a

a
L

a
L
2

z
Ix �

1
12m�3a2 � L2�

x

y
2

4

4

z = 4 − y2
z

x

y
4

4

4

z = 4 − xz

� � k�4 � z�� � ky

� � kz��x, y, z� � k

x

ya
2

a
2

a
2

z

x

y
a

a

a

z

��x, y, z� � k�x2 � y 2�� � kxyz

��x, y, z� � k� � k

IzIx, Iy,

x
y

(0, 0, 4)

(0, 3, 0)
(5, 0, 0)

z

x

y
5 cm20 cm

12 cm

z

z �
1

y 2 � 1
, z � 0, x � �2, x � 2, y � 0, y � 1

z � �16 � x2 � y 2, z � 0

y � �9 � x2, z � y, z � 0z �
h
r
�x2 � y 2, z � h

��x, y, z� � kxz2�y � 2�2

��x, y, z� � k�y � 2�
��x, y, z� � kz

y

x

21

2

3

4

4
3

2

z

2, 0, )) 8
5

��x, y, z� � kx

� �x, y, z�.
�x, y, z�

��x, y, z� � kz

x � 0, x � a, y � 0, y � b, z � 0, z � c

��x, y, z� � kxy

x � 0, x � b, y � 0, y � b, z � 0, z � b

Q: 
x
a

�
y
b

�
z
c

� 1 �a, b, c > 0�, x � 0, y � 0, z � 0

��x, y, z� � k.y

Q: z � 4 � x, z � 0, y � 0, y � 4, x � 0

��x, y, z� � kx.z

Q: 3x � 3y � 5z � 15, x � 0, y � 0, z � 0

��x, y, z� � ky.y

Q: 2x � 3y � 6z � 12, x � 0, y � 0, z � 0

��x, y, z� � k.x

y = x

y

x

9

6

3

3

3

z

z = 9 − x2

x ≥ 0
y ≥ 0
z ≥ 0

z = 1 − y

x = 1 − y2

y
x

1

1
1

z

x ≥ 0
y ≥ 0
z ≥ 0

�3

0
�x

0
�9�x2

0
 dz dy dx�1

0
�1�y2

0
�1�y

0
 dz dx dy
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60.

Moments of Inertia In Exercises 61 and 62, set up a triple
integral that gives the moment of inertia about the -axis of the
solid region of density 

61.

62.

In Exercises 63 and 64, using the description of the solid region,
set up the integral for (a) the mass, (b) the center of mass, and
(c) the moment of inertia about the -axis.

63. The solid bounded by and with density
function 

64. The solid in the first octant bounded by the coordinate planes
and with density function 

Average Value In Exercises 69–72, find the average value of
the function over the given solid. The average value of a contin-
uous function over a solid region is

where is the volume of the solid region 

69. over the cube in the first octant bounded by
the coordinate planes and the planes and 

70. over the cube in the first octant bounded by the
coordinate planes and the planes and 

71. over the tetrahedron in the first octant
with vertices and 

72. over the solid bounded by the sphere

73. Find the solid region where the triple integral

is a maximum. Use a computer algebra system to approximate
the maximum value. What is the exact maximum value?

74. Find the solid region where the triple integral

is a maximum. Use a computer algebra system to approximate
the maximum value. What is the exact maximum value?

75. Solve for in the triple integral.

76. Determine the value of such that the volume of the ellipsoid
is 16�.x2 � �y2�b2� � �z2�9� � 1

b

�1

0
�3�a�y2

0
�4�x�y2

a

 dz dx dy �
14
15

a

��
Q

��1 � x2 � y2 � z2� dV

Q

��
Q

��1 � 2x2 � y2 � 3z2� dV

Q

x2 � y2 � z2 � 3
f �x, y, z� � x � y

�0, 0, 2��0, 2, 0��2, 0, 0�,�0, 0, 0�,
f �x, y, z� � x � y � z

z � 4y � 4,x � 4,
f �x, y, z� � xyz

z � 1y � 1,x � 1,
f �x, y, z� � z2 � 4

Q.V

1
V��

Q

� f �x, y, z� dV

Qf �x, y, z�

� � kxyx2 � y2 � z2 � 25

� � kz
z � 0z � 4 � x2 � y2

z

� � kx2

Q � ��x, y, z�: x2 � y 2 � 1, 0 � z � 4 � x2 � y 2�
� � �x2 � y 2 � z2

Q � ��x, y, z�: �1 � x � 1, �1 � y � 1, 0 � z � 1 � x�

�.Q
z

Iz �
1
12m�a2 � c2�

Iy �
1
12m�b2 � c2�

x y

ac

b

z

a
2

b
2

c
2

Ix �
1
12m�a2 � b2�
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65. Define a triple integral and describe a method of evaluating
a triple integral.

66. Determine whether the moment of inertia about the axis
of the cylinder in Exercise 59 will increase or decrease for
the nonconstant density and 

67. Consider two solids, solid and solid of equal weight as
shown below.

(a) Because the solids have the same weight, which has the
greater density?

(b) Which solid has the greater moment of inertia? Explain.

(c) The solids are rolled down an inclined plane. They are
started at the same time and at the same height. Which
will reach the bottom first? Explain.

Axis of
revolution

Axis of
revolution

Solid A Solid B

B,A

a � 4.��x, y, z� � �x2 � z2

y-

WRITING ABOUT CONCEPTS

68. Think About It Of the integrals (a)–(c), which one is

equal to Explain.

(a)

(b)

(c) �2

0
�3

1
�1

�1
  f �x, y, z� dy dx dz

�1

�1
�2

0
�3

1
  f �x, y, z� dx dy dz

�3

1
�2

0
�1

�1
  f �x, y, z� dz dx dy

�3

1
�2

0
�1

�1
  f �x, y, z� dz dy dx?
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77. Evaluate

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.
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■ Write and evaluate a triple integral in cylindrical coordinates.
■ Write and evaluate a triple integral in spherical coordinates.

Triple Integrals in Cylindrical Coordinates
Many common solid regions such as spheres, ellipsoids, cones, and paraboloids can
yield difficult triple integrals in rectangular coordinates. In fact, it is precisely this
difficulty that led to the introduction of nonrectangular coordinate systems. In this
section, you will learn how to use cylindrical and spherical coordinates to evaluate
triple integrals.

Recall from Section 11.7 that the rectangular conversion equations for cylindrical
coordinates are

In this coordinate system, the simplest solid region is a cylindrical block 
determined by

as shown in Figure 14.63. To obtain the cylindrical coordinate form of a triple 
integral, suppose that is a solid region whose projection onto the plane can be
described in polar coordinates. That is,

is in 

and

If is a continuous function on the solid you can write the triple integral of over
as

where the double integral over is evaluated in polar coordinates. That is, is a plane
region that is either simple or -simple. If is simple, the iterated form of the
triple integral in cylindrical form is

r-R�r-
RR

��
Q

� f�x, y, z� dV � �
R
� ��h

2
�x, y�

h1�x, y�
 f�x, y, z� dz� dA

Q
fQ,f

g1��� � r � g2����.R � ��r, ��: �1 � � � �2,

h1�x, y� � z � h2�x, y��R,Q � ��x, y, z�: �x, y�

xy-RQ

z1 � z � z2�1 � � � �2,r1 � r � r2,

z � z.

y � r sin �

x � r cos �
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14.7 Triple Integrals in Cylindrical and Spherical Coordinates

An easy way to remember these conversions is to note that the equations
for and are the same as in polar coordinates and is unchanged. ■zyx

STUDY TIP

��
Q

� f�x, y, z� dV � ��2

�1

�g2���

g1���
�h2�r cos �, r sin ��

h1�r cos �, r sin ��
 f�r cos �, r sin �, z�r dz dr d�.

NOTE This is only one of six possible orders of integration. The other five are 
and ■d� dr dz.d� dz dr,dr d� dz,dr dz d�,

dz d� dr,

π

Δri

Δzi

= 0θ

=

riΔθ

2

z

θ

Volume of cylindrical block:

Figure 14.63
�Vi � ri � ri ��i � zi

PIERRE SIMON DE LAPLACE (1749–1827)

One of the first to use a cylindrical coordinate
system was the French mathematician Pierre
Simon de Laplace. Laplace has been called
the “Newton of France,” and he published
many important works in mechanics, differential
equations, and probability.
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To visualize a particular order of integration, it helps to view the iterated integral
in terms of three sweeping motions—each adding another dimension to the solid. For
instance, in the order the first integration occurs in the direction as a point
sweeps out a ray. Then, as increases, the line sweeps out a sector. Finally, as 
increases, the sector sweeps out a solid wedge, as shown in Figure 14.64.

EXAMPLE 1 Finding Volume in Cylindrical Coordinates

Find the volume of the solid region cut from the sphere by the
cylinder as shown in Figure 14.65.

Solution Because the bounds on are

Let be the circular projection of the solid onto the -plane. Then the bounds on 
are and So, the volume of is

■ 	 9.644.

 �
16
9

�3� � 4�

 �
32
3 �� � sin � �

sin3 �
3 �

�
2

0

 �
32
3

 ��
2

0
 �1 � �cos ���1 � sin2 ��� d�

 �
4
3

 ��
2

0
 �8 � 8 cos3 �� d�

 � 2 ��
2

0
 �

2
3

 �4 � r2�3
2�
2 sin �

0
d�

 � 2��
2

0
�2 sin �

0
 2r
4 � r2 dr d�

 � 2��
2

0
�2 sin �

0
�
4�r2

�
4�r2
 r dz dr d�

 V � ��

0
�2 sin �

0
�
4�r2

�
4�r2

 r dz dr d�

Q0 � � � �.0 � r � 2 sin �
Rr�R

�
4 � r2 � z � 
4 � r2.

zx2 � y2 � z2 � r2 � z2 � 4,

r � 2 sin �,
x2 � y2 � z2 � 4Q

z�
r-dr d� dz,
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E X P L O R A T I O N

Volume of a Paraboloid Sector On pages
997, 1006, and 1028, you were asked to
summarize the different ways you know
of finding the volume of the solid bounded
by the paraboloid 

and the plane. You now know one more
way. Use it to find the volume of the solid.
Compare the different methods. What are
the advantages and disadvantages of each?

xy-

a > 0z � a2 � x2 � y2,

y

x

a

z

a

a2

−a

θ = 0

z

π=
2

θ

Integrate with respect to r.

θ = 0

z

π=
2

θ

Integrate with respect to �.

θ = 0

z

π=
2

θ

Integrate with respect to 
Figure 14.64

z.

Sphere:
x2 + y2 + z2 = 4

Cylinder:
r = 2 sin θ

x
y

z

R
3

2

3

Figure 14.65
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EXAMPLE 2 Finding Mass in Cylindrical Coordinates

Find the mass of the ellipsoid given by lying above the
plane. The density at a point in the solid is proportional to the distance between the

point and the plane.

Solution The density function is The bounds on are

where and as shown in Figure 14.66. The mass of the
solid is 

■

Integration in cylindrical coordinates is useful when factors involving 
appear in the integrand, as illustrated in Example 3.

EXAMPLE 3 Finding a Moment of Inertia

Find the moment of inertia about the axis of symmetry of the solid bounded by the
paraboloid and the plane as shown in Figure 14.67. The density at
each point is proportional to the distance between the point and the axis.

Solution Because the axis is the axis of symmetry, and it
follows that

In cylindrical coordinates, So, you have

■ �  
2�k

5
 �2

7
 z7
2�

4

0
�

512k�

35
.

 �
k
5

 �4

0
 z5
2 �2�� dz

 � k �4

0
�2�

0
 
z5
2

5
 d� dz

 � k �4

0
�2�

0
 
r5

5
 �

z

0
d� dz

 Iz � k �4

0
�2�

0
�
z

0
 r2�r�r dr d� dz

0 � r � 
x2 � y2 � 
z.

Iz � ��
Q

� k�x2 � y2�
x2 � y2 dV.

	�x, y, z� � k
x2 � y2,z-

z-
z � 4,z � x2 � y2

Q

x2 � y2

 � 8k�2�

0
 d� � 16�k.

 �
k
2

 �2�

0
 �8r2 � r4�

2

0
d�

 �
k
2

 �2�

0
�2

0
 �16r � 4r3� dr d�

 �
k
2

 �2�

0
�2

0
 z2r�
16�4r2

0
dr d�

 m � �2�

0
�2

0
�
16�4r2

0
 kzr dz dr d�

0 � � � 2�,0 � r � 2

0 � z � 
16 � 4x2 � 4y2 � 
16 � 4r2

z	�r, �, z� � kz.

xy-
xy-

4x2 � 4y2 � z2 � 16,Q
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0 ≤ z ≤    16 − 4r2

x

y

z

2

2

4

Ellipsoid:  4x2 + 4y2 + z2 = 16

Figure 14.66

y

x

2 2

−2

11

5

Q:  Bounded by

z = x2 + y2

z = 4

z

Figure 14.67
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Triple Integrals in Spherical Coordinates
Triple integrals involving spheres or cones are often easier to evaluate by converting
to spherical coordinates. Recall from Section 11.7 that the rectangular conversion
equations for spherical coordinates are

In this coordinate system, the simplest region is a spherical block determined by

where and as shown in Figure 14.68. If
is a point in the interior of such a block, then the volume of the block can be

approximated by (see Exercise 18 in the Problem Solving
exercises at the end of this chapter).

Using the usual process involving an inner partition, summation, and a limit, you
can develop the following version of a triple integral in spherical coordinates for a
continuous function defined on the solid region 

This formula can be modified for different orders of integration and generalized to
include regions with variable boundaries.

Like triple integrals in cylindrical coordinates, triple integrals in spherical
coordinates are evaluated with iterated integrals. As with cylindrical coordinates, you
can visualize a particular order of integration by viewing the iterated integral in terms
of three sweeping motions—each adding another dimension to the solid. For instance,
the iterated integral

(which is used in Example 4) is illustrated in Figure 14.69.
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4

0
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0
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 d	 d
 d�

Q.f

�V 	 	2 sin 
 �	 �
 ��
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2 � �,�2 � �1 � 2�,	1 � 0,


1 � 
 � 
2��1 � � � �2,��	, �, 
�: 	1 � 	 � 	2,

z � 	 cos 
.

y � 	 sin 
 sin �

x � 	 sin 
 cos �
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� f�x, y, z� dV � ��2
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�
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 f�	 sin 
 cos �, 	 sin 
 sin �, 	 cos 
�	2 sin 
 d	 d
 d�
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x

2 1

1

−2
2

ρ

Cone:
x2 + y2 = z2 x2 + y2 + z2 = 9

= 3ρ

Sphere:

y

x

φ

z

2 1
−2

2
y

x

θ
z

2 1
−2

2

varies from 0 to 3 with and held
constant.
Figure 14.69

�
	 varies from 0 to 
with held constant.�

�
4
 varies from 0 to 2�.�

x

y

θφρi i isin Δ

ρΔ i φρi iΔ

z

Spherical block:

Figure 14.68

�Vi 	 	i
2 sin 
i �	i �
i ��i

NOTE The Greek letter used in spherical coordinates is not related to density. Rather, it
is the three-dimensional analog of the used in polar coordinates. For problems involving
spherical coordinates and a density function, this text uses a different symbol to denote density.
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EXAMPLE 4 Finding Volume in Spherical Coordinates

Find the volume of the solid region bounded below by the upper nappe of the cone
and above by the sphere as shown in Figure 14.70.

Solution In spherical coordinates, the equation of the sphere is

Furthermore, the sphere and cone intersect when

and, because it follows that

Consequently, you can use the integration order where 
and The volume is

EXAMPLE 5 Finding the Center of Mass of a Solid Region

Find the center of mass of the solid region of uniform density, bounded below by
the upper nappe of the cone and above by the sphere 

Solution Because the density is uniform, you can consider the density at the point
to be By symmetry, the center of mass lies on the axis, and you need only

calculate where from Example 4. Because
it follows that

So,

and the center of mass is approximately ■�0, 0, 1.92�.
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m,

z-k.�x, y, z�

x2 � y2 � z2 � 9.z2 � x2 � y2
Q

 � 9�2�

0
 �1 �


2
2 � d� � 9� �2 � 
2 � 	 16.563.

 � 9�2�

0
 �cos 
�

�
4

0
d�

 � �2�

0
��
4

0
 9 sin 
 d
 d�

 V � ��
Q

� dV � �2�

0
��
4

0
�3

0
 	2 sin 
 d	 d
 d�

0 � � � 2�.0 � 
 � �
4,
0 � 	 � 3,d	 d
 d�,


 �
�

4
.� 3


2��
1
3� � cos 


z � 	 cos 
,

z �
3

2

�x2 � y2� � z2 � �z2� � z2 � 9

	 � 3.	2 � x2 � y2 � z2 � 9

x2 � y2 � z2 � 9,z2 � x2 � y2
Q
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Sphere:

x2 + y2 + z2 = 9

x

y

z

3

3
2

1
3

2

−2−3
1

Upper nappe
of cone:
z2 = x2 + y2

Figure 14.70
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In Exercises 1–6, evaluate the iterated integral.

1. 2.

3.

4.

5.

6.

In Exercises 7 and 8, use a computer algebra system to evaluate
the iterated integral.

7.

8.

In Exercises 9–12, sketch the solid region whose volume is given
by the iterated integral, and evaluate the iterated integral.

9. 10.

11.

12.

In Exercises 13–16, convert the integral from rectangular
coordinates to both cylindrical and spherical coordinates, and
evaluate the simplest iterated integral.

13.

14.

15.

16.

Volume In Exercises 17–22, use cylindrical coordinates to find
the volume of the solid.

17. Solid inside both and

18. Solid inside and outside 

19. Solid bounded above by and below by 

20. Solid bounded above by and below by

21. Solid bounded by the graphs of the sphere and
the cylinder 

22. Solid inside the sphere and above the upper
nappe of the cone 

Mass In Exercises 23 and 24, use cylindrical coordinates to
find the mass of the solid 

23.

24.

In Exercises 25–30, use cylindrical coordinates to find the
indicated characteristic of the cone shown in the figure.

25. Volume Find the volume of the cone.

26. Centroid Find the centroid of the cone.

27. Center of Mass Find the center of mass of the cone assuming
that its density at any point is proportional to the distance
between the point and the axis of the cone. Use a computer
algebra system to evaluate the triple integral.

28. Center of Mass Find the center of mass of the cone assuming
that its density at any point is proportional to the distance
between the point and the base. Use a computer algebra system
to evaluate the triple integral.

29. Moment of Inertia Assume that the cone has uniform density
and show that the moment of inertia about the axis is

30. Moment of Inertia Assume that the density of the cone is
and find the moment of inertia about

the axis.

Moment of Inertia In Exercises 31 and 32, use cylindrical
coordinates to verify the given formula for the moment of
inertia of the solid of uniform density.

31. Cylindrical shell:

0 � z � h0 < a � r � b,

Iz �
1
2m�a2 � b2�

z-
	 �x, y, z� � k
x2 � y 2

Iz �
3

10mr0
2.

z-

x

y

h

r0

z = h 1 − r
r0

( (
z

	�x, y, z� � k

y � 0�x2 � y2 � 4, x � 0,Q � ��x, y, z�: 0 � z � 12e��x2�y2�,

	�x, y, z� � k
x2 � y2

x2 � y2 � 4�Q � ��x, y, z�: 0 � z � 9 � x � 2y,

Q.

z2 � x2 � y 2
x2 � y 2 � z2 � 4

r � a cos �
r2 � z2 � a2

z � x2 � y2
z � 2 � x2 � y2

z � 2x2 � 2y2z � 2x

z � 
x2 � y 2x2 � y 2 � z2 � 16

�x � a
2�2 � y2 � �a
2�2
x2 � y 2 � z2 � a2

�3

0
�
9�x2

0
�
9�x2�y2

0
 
x2 � y 2 � z2 dz dy dx

�a

�a

 �
a2�x2

�
a2�x2

 �a�
a2�x2�y2

a

 x dz dy dx

�2

0
�
4�x2

0
 �
16�x2�y2

0
 
x2 � y 2 dz dy dx

�2

�2
�
4�x2

�
4�x2

 �4

x2�y2

 x dz dy dx

�2�

0
��

0
�5

2
 	2 sin 
 d	 d
 d�

�2�

0
��
2

�
6
�4

0
 	2 sin 
 d	 d
 d�

�2�

0
�
5

0
�5�r 2

0
 r dz dr d���
2

0
�3

0
 �e�r 2

0
r dz dr d�

��
2

0
��

0
�sin �

0
 �2 cos 
�	2 d	 d� d


�4

0
�z

0
��
2

0
 rer  d� dr dz

��
4

0
��
4

0
�cos �

0
 	2 sin 
 cos 
 d	 d� d


�2�

0
��
4

0
�cos 


0
 	2 sin 
 d	 d
 d�

��
2

0
��

0
�2

0
 e�	3 	2 d	 d� d


��
2

0
�2 cos2

 �

0
�4�r2

0
 r sin� dz dr d�

��
4

0
�6

0
�6�r

0
 rz dz dr d��5

�1
��
2

0
�3

0
 r cos � dr d� dz
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14.7 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.
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32. Right circular cylinder:

Use a computer algebra system to evaluate the triple integral.

Volume In Exercises 33–36, use spherical coordinates to find
the volume of the solid.

33. Solid inside outside and
above the plane

34. Solid bounded above by and below by

35. The torus given by (Use a computer algebra system
to evaluate the triple integral.)

36. The solid between the spheres and
and inside the cone 

Mass In Exercises 37 and 38, use spherical coordinates to find
the mass of the sphere with the given density.

37. The density at any point is proportional to the distance between
the point and the origin.

38. The density at any point is proportional to the distance of the
point from the axis.

Center of Mass In Exercises 39 and 40, use spherical coordi-
nates to find the center of mass of the solid of uniform density.

39. Hemispherical solid of radius 

40. Solid lying between two concentric hemispheres of radii and
where 

Moment of Inertia In Exercises 41 and 42, use spherical
coordinates to find the moment of inertia about the z-axis of the
solid of uniform density.

41. Solid bounded by the hemisphere 
and the cone 

42. Solid lying between two concentric hemispheres of radii and
where 

49. Find the “volume” of the “four-dimensional sphere”

by evaluating

50. Use spherical coordinates to show that

��

��
��

��
��

��


x2 � y2 � z2 e��x2�y2�z2� dx dy dz � 2�.

16�a

0
�
a2�x2

0
 �
a2�x2�y2

0
 �
a2�x2�y2�z2

0

dw dz dy dx.

x2 � y 2 � z2 � w2 � a2

r < RR,
r


 � �
4
�
4 � 
 � �
2,	 � cos 
,

r < RR,
r

r

z-

x2 1 y 2 1 z2 � a2

z2 � x2 � y 2b > a,x2 � y 2 � z2 � b2,
x2 � y 2 � z2 � a2

	 � 4 sin 


z � 
x2 � y2

x2 � y2 � z2 � z

xy-
z � 
x2 � y2,x2 � y2 � z2 � 9,

0 � z � hr � 2a sin �,

Iz �
3
2ma2
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CAS

CAS

48. Convert the integral from rectangular coordinates to both 
(a) cylindrical and (b) spherical coordinates. Without calcu-
lating, which integral appears to be the simplest to evaluate?
Why?

�a

0
�
a2�x2

0
�
a2�x2�y2

0
 
x2 � y2 � z2 dz dy dx

CAPSTONE

43. Give the equations for conversion from rectangular to 
cylindrical coordinates and vice versa.

44. Give the equations for conversion from rectangular to
spherical coordinates and vice versa.

45. Give the iterated form of the triple integral 
in cylindrical form.

46. Give the iterated form of the triple integral 
in spherical form.

47. Describe the surface whose equation is a coordinate equal to
a constant for each of the coordinates in (a) the cylindrical
coordinate system and (b) the spherical coordinate system.

��
Q

� f �x, y, z� dV

��
Q

� f �x, y, z� dV

WRITING ABOUT CONCEPTS

51. Find the volume of the region of points such that

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.

�x2 � y2 � z2 � 8�2 � 36�x2 � y2�.
�x, y, z�

PUTNAM EXAM CHALLENGE

■ FOR FURTHER INFORMATION For more information on these
types of spheres, see the article “Heat Therapy for Tumors” by Leah
Edelstein-Keshet in The UMAP Journal. 

In parts (a) and (b), find the volume of the wrinkled sphere or
bumpy sphere. These solids are used as models for tumors.

(a) Wrinkled sphere (b) Bumpy sphere

x

y

Generated by Maple

z

x

y

Generated by Maple

z

0 � � � 2�, 0 � 
 � �0 � � � 2�, 0 � 
 � �

	 � 1 � 0.2 sin 8� sin 4
	 � 1 � 0.2 sin 8� sin 


Wrinkled and Bumpy Spheres

S E C T I O N  P R O J E C T
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14.8 Change of Variables: Jacobians 1045

14.8 Change of Variables: Jacobians
■ Understand the concept of a Jacobian.
■ Use a Jacobian to change variables in a double integral.

Jacobians
For the single integral

you can change variables by letting so that and obtain

where and Note that the change of variables process introduces an
additional factor into the integrand. This also occurs in the case of double
integrals

Jacobian

where the change of variables and introduces a factor called
the Jacobian of and with respect to and In defining the Jacobian, it is
convenient to use the following determinant notation.

EXAMPLE 1 The Jacobian for Rectangular-to-Polar Conversion

Find the Jacobian for the change of variables defined by

and

Solution From the definition of the Jacobian, you obtain

■ � r.

 � r cos2 � � r sin2 �

 � �cos �     

sin �     

�r sin �
r cos � �

 
��x, y�
��r, �� � � �x

�r
    

�x
��

�y
�r

    
�y
�� �  

y � r sin �.x � r cos �

v.uyx
y � h�u, v�x � g�u, v�

�
R
� f �x, y� dA � �

S
� f �g�u, v�, h�u, v��� �x

�u
 
�y
�v

�
�y
�u

 
�x
�v

 � du dv

g��u�
b � g�d�.a � g�c�

�b

a

 f �x� dx � �d

c

 f �g�u��g��u� du

dx � g��u� du,x � g�u�,

�b

a

 f �x� dx

DEFINITION OF THE JACOBIAN

If and then the Jacobian of and with respect to 
and denoted by is

��x, y�
��u, v� � � �x

�u
    

�x
�v

�y
�u

    
�y
�v � �

�x
�u

 �y
�v

�
�y
�u

 �x
�v

.

��x, y����u, v�,v,
uyxy � h�u, v�,x � g�u, v�

CARL GUSTAV JACOBI (1804 –1851)

The Jacobian is named after the German
mathematician Carl Gustav Jacobi. Jacobi 
is known for his work in many areas of 
mathematics, but his interest in integration
stemmed from the problem of finding the 
circumference of an ellipse.
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Example 1 points out that the change of variables from rectangular to polar
coordinates for a double integral can be written as

where is the region in the -plane that corresponds to the region in the plane,
as shown in Figure 14.71. This formula is similar to that found in Theorem 14.3 on
page 1006.

In general, a change of variables is given by a one-to-one transformation from
a region in the plane to a region in the plane, to be given by

where and have continuous first partial derivatives in the region Note that the
point lies in and the point lies in In most cases, you are hunting for a
transformation in which the region is simpler than the region 

EXAMPLE 2 Finding a Change of Variables to Simplify a Region

Let be the region bounded by the lines

and

as shown in Figure 14.72. Find a transformation from a region to such that is
a rectangular region (with sides parallel to the or axis).

Solution To begin, let and Solving this system of equations
for and produces where

and

The four boundaries for in the plane give rise to the following bounds for in
the plane.

The region is shown in Figure 14.73. Note that the transformation 

maps the vertices of the region onto the vertices of the region For instance,

■ T�1, �4� � �1
3�2�1� � 4� , 13 �1 � ��4�� � � ��2

3, 53�.
 T�4, �4� � �1

3�2�4� � 4� , 13 �4 � ��4�� � � �4
3, 83�

 T�4, 0� � �1
3�2�4� � 0� , 13 �4 � 0� � � �8

3, 43�
 T�1, 0� � �1

3�2�1� � 0� , 13 �1 � 0� � � �2
3, 13�

R.S

T�u, v� � �x, y� � 	1
3

�2u � v�, 1
3

�u � v�

S

v � �4x � 2y � �4

v � 0x � 2y � 0

u � 4x � y � 4

u � 1x � y � 1

Bounds in the uv-PlaneBounds in the xy-Plane

uv-
Sxy-R

y �
1
3

�u � v�.x �
1
3

�2u � v�

T�u, v� � �x, y�,yx
v � x � 2y.u � x � y

v-u-
SRST

x � y � 1x � y � 4,x � 2y � �4,x � 2y � 0,

R

R.S
R.�x, y�S�u, v�

S.hg

T�u, v� � �x, y� � �g�u, v�, h�u, v��

xy-Ruv-S
T

xy-Rr�S

 � �
S
� f �r cos �, r sin �����x, y�

��r, �� � dr d�

 �
R
�

 
 f �x, y� dA � �

S
� f �r cos �, r sin ��r dr d�,  r > 0
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r

α

β

a b

S

αθ

θ

=

β=

r = br = a

θθ θT(r,   ) = (r cos   , r sin   )
θ

x

R

αθ

θ

=

β=

r = a

r = b

y

is the region in the -plane that
corresponds to in the -plane.
Figure 14.71

xyR
r�S

321

3

1

−2

−1

−2

x

4
3

8
3

x − 2y = −4

, 
x − 2y = 0

R

x + y = 4
x + y = 1

))
5
3

2
3
, − ))

1
3

2
3
, ))

8
3

4
3
, ))

y

Region in the -plane
Figure 14.72

xyR

u
32−1

−1

−3

−2

−5

u = 4u = 1
(4, 0)

S

v = 0

(1, −4) (4, −4)

v = −4

(1 , 0)

v

Region in the -plane
Figure 14.73

uvS
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Change of Variables for Double Integrals

Consider the case in which is a rectangular region in the plane with
vertices and as shown in Figure
14.74. The images of these vertices in the plane are shown in Figure 14.75. 
If and are small, the continuity of and implies that is approximately a 
parallelogram determined by the vectors and So, the area of is

Moreover, for small and the partial derivatives of and with respect to can
be approximated by

and

Consequently,

Similarly, you can approximate by which implies that

It follows that, in Jacobian notation,

Because this approximation improves as and approach 0, the limiting case can
be written as

So,

■�
R
�f �x, y� dx dy � �

S
�f �g�u, v�, h�u, v�����x, y�

��u, v�� du dv.

dA � �MN
\

� MQ
\

� � � ��x, y�
��u, v� � du dv.

	v	u

	A � �MN
\

� MQ
\

� � � ��x, y�
��u, v� � 	u 	v.

	u 	vk.��x
�u
�x
�v

     

�y
�u
�y
�v��MN

\

� MQ
\

� �i

�x
�u 	u

�x
�v 	v

     

j

�y
�u 	u

�y
�v 	v

     

k

0

0�
�x
�v

 	v i �
�y
�v

 	vj,MQ
\

 �
�x
�u

 	u i �
�y
�u

 	uj.

 � �gu�u, v� 	u� i � �hu�u, v� 	u� j

 MN
\

� �g�u � 	u, v� � g�u, v�� i � �h�u � 	u, v� � h�u, v��j

hu�u, v� �
h�u � 	u, v� � h�u, v�

	u
.gu�u, v� �

g�u � 	u, v� � g�u, v�
	u

uhg	v,	u

	A � � MN
\

� MQ
\

� .

RMQ
\

.MN
\

Rhg	v	u
xy-

�u, v � 	v�,�u � 	u, v � 	v�,�u � 	u, v�,�u, v�,
uv-SPROOF
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u

(u, v + Δv) (u + Δu, v + Δv)

(u, v) (u + Δu, v)

S

v

Area of

Figure 14.74
	u > 0,  	v > 0

S � 	u 	v

x

R

x = g(u, v)
y = h(u, v)

M = (x, y)

Q P

N

y

The vertices in the -plane are

and

Figure 14.75
h�u, v � 	v��.Q�g�u, v � 	v�,

h�u � 	u, v � 	v��,
P�g�u � 	u, v � 	v�,h�u � 	u, v��,

N�g�u � 	u, v�,M�g�u, v�, h�u, v��,
xy

THEOREM 14.5 CHANGE OF VARIABLES FOR DOUBLE INTEGRALS

Let be a vertically or horizontally simple region in the plane, and let be 
a vertically or horizontally simple region in the plane. Let from to be
given by where and have continuous
first partial derivatives. Assume that is one-to-one except possibly on the
boundary of If is continuous on and is nonzero on then

�
R
� f �x, y�dx dy � �

S
� f �g�u, v�, h�u, v��� ��x, y�

��u, v� � du dv.

S,��x, y����u, v�R,fS.
T

hgT�u, v� � �x, y� � �g�u, v�, h�u, v��,
RSTuv-
Sxy-R
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The next two examples show how a change of variables can simplify the
integration process. The simplification can occur in various ways. You can make a
change of variables to simplify either the region or the integrand or both.

EXAMPLE 3 Using a Change of Variables to Simplify a Region

Let be the region bounded by the lines

and

as shown in Figure 14.76. Evaluate the double integral

Solution From Example 2, you can use the following change of variables.

and

The partial derivatives of and are

and

which implies that the Jacobian is

So, by Theorem 14.5, you obtain

■ �
164
9

.

 �
1
9 


8u3

3
� 4u2 �

64
3

u�
4

1

 �
1
9

 �4

1
 	8u2 � 8u �

64
3 
 du

 �
1
9

 �4

1
 
2u2v �

uv2

2
�

v3

3 �
0

�4
 du

 � �4

1
�0

�4
 
1
9

 �2u2 � uv � v2� dv du

 �
R
� 3xy dA � �

S
� 3
1

3
 �2u � v� 1

3
�u � v��� ��x, y�

��u, v� � dv du

 � �
1
3

.

 � �
2
9

�
1
9

 � �2313 1
3

�
1
3�

 
��x, y�
��u, v� � � �x

�u
    

�x
�v

�y
�u

    
�y
�v � 

�y
�v

� �
1
3

�y
�u

�
1
3

,
�x
�v

�
1
3

,
�x
�u

�
2
3

,

yx

y �
1
3

 �u � v�x �
1
3

 �2u � v�

�
R
� 3xy dA.

x � y � 1x � y � 4,x � 2y � �4,x � 2y � 0,

R

f �x, y�,R
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321

3

1

−2

−1

−2

x

x − 2y = −4

x − 2y = 0

R

x + y = 4
x + y = 1

y

Figure 14.76
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EXAMPLE 4 Using a Change of Variables to Simplify an Integrand

Let be the region bounded by the square with vertices and 
Evaluate the integral

Solution Note that the sides of lie on the lines 
and as shown in Figure 14.77. Letting and you
can determine the bounds for region in the plane to be

and

as shown in Figure 14.78. Solving for and in terms of and produces

and

The partial derivatives of and are

and

which implies that the Jacobian is

By Theorem 14.5, it follows that

■

In each of the change of variables examples in this section, the region has been
a rectangle with sides parallel to the or axis. Occasionally, a change of variables
can be used for other types of regions. For instance, letting changes
the circular region to the elliptical region x2 � �y2�4� � 1.u2 � v2 � 1

T�u, v� � �x, 12 y�
v-u-

S

 � 2.363.

 �
13
6

�2 � sin 2�

 �
13
6 
2 �

1
2

 sin 2 �
1
2

 sin��2��

 �
13
6 
v �

1
2

 sin 2v�
1

�1

 �
13
6

 �1

�1
 �1 �  cos 2v� dv

 �
13
3

 �1

�1
 sin2 v dv

 �
1
2

 �1

�1
 �sin2 v� u

3

3 �
3

1
 dv

 �
R
� �x � y�2 sin2�x � y� dA � �1

�1
�3

1
 u2 sin2 v	1

2
 du dv

� �
1
4

�
1
4

� �
1
2

.� � 1
2

       
1
2

1
2

    �
1
2 �  

��x, y�
��u, v� � � �x

�u
    

�x
�v

�y
�u

    
�y
�v � 

�y
�v

� �
1
2

�y
�u

�
1
2

,
�x
�v

�
1
2

,
�x
�u

�
1
2

,

yx

y �
1
2

�u � v�.x �
1
2

�u � v�

vuyx

�1 
 v 
 11 
 u 
 3

uv-S
v � x � y,u � x � yx � y � �1,

x � y � 3,x � y � 1,x � y � 1,R

�
R
� �x � y�2 sin2�x � y� dA.

�1, 0�.�2, 1�,�1, 2�,�0, 1�,R
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2

−1

3

3−1
x

(1, 2)

(2, 1)

R

x −
 y 

= −1

(1, 0)
x + y = 1

(0, 1)

x −
 y 

= 1

x + y = 3

y

Region in the -plane
Figure 14.77

xyR

u
321

1

−1

(3, 1)(1, 1)

S

u = 3

v = 1

v = −1

u = 1

(1, −1) (3, −1)

v

Region in the -plane
Figure 14.78
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In Exercises 1–8, find the Jacobian for the
indicated change of variables.

1.

2.

3.

4.

5.

6.

7.

8.

In Exercises 9–12, sketch the image in the -plane of the
region in the -plane using the given transformations.

9. 10.

11. 12.

In Exercises 13 and 14, verify the result of the indicated example
by setting up the integral using or for Then use
a computer algebra system to evaluate the integral.

13. Example 3 14. Example 4

In Exercises 15–20, use the indicated change of variables to
evaluate the double integral.

15. 16.

Figure for 15 Figure for 16

17. 18.

19. 20.

In Exercises 21–28, use a change of variables to find the volume
of the solid region lying below the surface and above
the plane region 

21.

region bounded by the square with vertices 

22.

region bounded by the parallelogram with vertices 

23.

region bounded by the square with vertices 
�2, 2��4, 4�,

�6, 2�,�4, 0�,R:

f �x, y� � �x � y�ex�y

�4, 2��2, 5�,��2, 3�,
�0, 0�,R:

f �x, y� � �3x � 2y�2�2y � x

�2, 1��1, 2�,
�0, 1�,�1, 0�,R:

f �x, y� � 48xy

R.
z � f �x, y�

R

x

y

1 2 3 4

2

3 xy = 4

xy = 1 y = 4

y = 1R

x

y

3

1

2

3

y = 2x

y =     x1
4

y = 4
x

y = 1
x

x �
u
v
,  y � vx ��v

u
,  y � �uv

�
R
� y sin xy dA�

R
�e�xy�2 dA

x
1

−1

−1 (0, 0)

(1, 1)(−1, 1)

y

x

4

2

6

6

−2
8

(3, 3) (7, 3)

(4, 0)(0, 0)

y

y �
1
2�u � v�y � u

x �
1
2�u � v�x � u � v

�
R
� 4�x � y�ex�y dA�

R
� y�x � y� dA

x

(0, 1)

1

2

1 2

(1, 2)

(2, 1)

(1, 0)

y

x

1

1

−1

−1

(0, 1)

(1, 0)

(0, −1)

(−1, 0)

y

y � �
1
2�u � v�y �

1
2�u � v�

x �
1
2�u � v�x �

1
2�u � v�

�
R
� 60xy dA�

R
� 4�x2 � y2� dA

dA.dx dydy dx

10
3

x

y

2
3

1
3
, ))

4
3

1
3
, − ))

8
3

4
3
, ))

2
3
, ))

R

−1−2 1 2 3
−1

2

3

4

x

y

1 2

1

2

1
2

1
2
, ))

3
2

3
2
, ))

(1, 2)(0, 1)

R

y �
1
3�2v � u�y �

1
2�u � v�

x �
1
3�v � u�x �

1
2�u � v�

x

R
(4, 1)

(0, 0)

6

5

4

3

2

1

(2, 2)

(6, 3)

2 63 4 5

y

x

R

(2, 3)

(3, 0)

(0, 0)

1

2

2

3

3

y

y �
1
3�u � v�y � 3v

x �
1
3�4u � v�x � 3u � 2v

xyR
uvS

x �
u
v
, y � u � v

x � eu  sin v, y � eu cos v

x � u � a, y � v � a

x � u cos � � v sin �, y � u sin � � v cos �

x � uv � 2u, y � uv

x � u � v2, y � u � v

x � au � bv, y � cu � dv

x � �
1
2�u � v�, y �

1
2�u � v�

��x, y�/��u, v�
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24.

region bounded by the square with vertices 

25.

region bounded by the parallelogram with vertices 

26.

region bounded by the parallelogram with vertices 

27.

region bounded by the triangle with vertices 
where 

28.

region bounded by the graphs of 
Hint: Let 

29. The substitutions and make the region
(see figure) into a simpler region in the plane. Determine

the total number of sides of that are parallel to either the 
axis or the axis.

31. Consider the region in the plane bounded by the ellipse

and the transformations and 

(a) Sketch the graph of the region and its image under the
given transformation.

(b) Find 

(c) Find the area of the ellipse.

32. Use the result of Exercise 31 to find the volume of each dome-
shaped solid lying below the surface and above the
elliptical region (Hint: After making the change of variables
given by the results in Exercise 31, make a second change of
variables to polar coordinates.)

(a)

(b)

In Exercises 35–40, find the Jacobian for the
indicated change of variables. If 
and then the Jacobian of and with respect
to and is

35.

36.

37.

38.

39. Spherical Coordinates

40. Cylindrical Coordinates

x � r cos �, y � r sin �, z � z

x � � sin � cos �, y � � sin � sin �, z � � cos �

x � u � v � w, y � 2uv, z � u � v � w

x �
1
2�u � v�, y �

1
2�u � v�, z � 2uvw

x � 4u � v, y � 4v � w, z � u � w

x � u�1 � v�, y � uv�1 � w�, z � uvw

��x, y, z�
��u, v, w� � ��x

�u
�y
�u
�z
�u

     

�x
�v
�y
�v
�z
�v

     

�x
�w
�y
�w
�z
�w�.

wu, v,
zx, y,z � h�u, v, w�,
y � g�u, v, w�,x � f �u, v, w�,

��x, y, z�/��u, v, w�

R:  
x2

a2 �
y2

b2 
 1

f �x, y� � A cos	
2�x2

a2 �
y2

b2 

R:  

x2

16
�

y2

9

 1

f �x, y� � 16 � x2 � y2

R.
z � f �x, y�

��x, y�
��u, v�.

SR

y � bv.x � au

x2

a2 �
y2

b2 � 1

xy-R

x

y

2 4 6 8

4

8

2

6

(2, 7)

(6, 3)

(0, 0)

R

v-u-
S

uv-SR
v � x � yu � 2x � y

x � u, y � v�u.��x � 4
x � 1,xy � 4,xy � 1,R:

f �x, y� �
xy

1 � x2y2

a  >  0�0, a�,
�a, 0�,�0, 0�,R:

f �x, y� � �x � y

�4, 2��2, 5�,��2, 3�,
�0, 0�,R:

f �x, y� � �3x � 2y��2y � x�3�2

�4, �1��5, 0�,�1, 1�,
�0, 0�,R:

f �x, y� � ��x � y��x � 4y�
�
�2, 
�2��
, 
�,�3
�2, 
�2�,

�
, 0�,R:

f �x, y� � �x � y�2 sin2�x � y�
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30. Find a transformation 
that when applied to the region will result in the image 
(see figure). Explain your reasoning.

u

v

(−2, 6)

(−2, 2) (0, 2)

(0, 6)

S

−1−2−3−4−5 1 2

1

5

3

x

y

(1, 1)

(4, 2)

(6, 4)
(3, 3)

R

1 2 3 4 5 6

1

2

3

4

5

SR
�g�u, v�, h�u, v��T�u, v� � �x, y� �

CAPSTONE

33. State the definition of the Jacobian.

34. Describe how to use the Jacobian to change variables in
double integrals.

WRITING ABOUT CONCEPTS

41. Let be the area of the region in the first quadrant bounded
by the line the -axis, and the ellipse 
Find the positive number such that is equal to the area
of the region in the first quadrant bounded by the line

the -axis, and the ellipse 
This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.

1
9 x2 � y2 � 1.yy � mx,

Am

1
9 x2 � y2 � 1.xy �

1
2 x,

A

PUTNAM EXAM CHALLENGE
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In Exercises 1 and 2, evaluate the integral.

1.

2.

In Exercises 3–6, sketch the region of integration. Then 
evaluate the iterated integral. Change the coordinate system
when convenient.

3.

4.

5.

6.

Area In Exercises 7–14, write the limits for the double integral

for both orders of integration. Compute the area of by letting
and integrating.

7. Triangle: vertices 

8. Triangle: vertices 

9. The larger area between the graphs of and 

10. Region bounded by the graphs of and 

11. Region enclosed by the graph of 

12. Region bounded by the graphs of 
and 

13. Region bounded by the graphs of and 

14. Region bounded by the graphs of and 

Think About It In Exercises 15 and 16, give a geometric argu-
ment for the given equality. Verify the equality analytically.

15.

16.

Volume In Exercises 17 and 18, use a multiple integral and a
convenient coordinate system to find the volume of the solid.

17. Solid bounded by the graphs of 
and 

18. Solid bounded by the graphs of 
and 

Average Value In Exercises 19 and 20, find the average of
over the region 

19.

rectangle with vertices 

20.

square with vertices 

21. Average Temperature The temperature in degrees Celsius on
the surface of a metal plate is 

where and are measured in centimeters. Estimate the 
average temperature if varies between 0 and 3 centimeters and

varies between 0 and 5 centimeters.

22. Average Profit A firm’s profit from marketing two soft 
drinks is 

where and represent the numbers of units of the two soft
drinks. Use a computer algebra system to evaluate the double
integral yielding the average weekly profit if varies between
40 and 50 units and varies between 45 and 60 units.

Probability In Exercises 23 and 24, find such that the 
function is a joint density function and find the required
probability, where

23.

24.

Approximation In Exercises 25 and 26, determine which value
best approximates the volume of the solid between the -plane
and the function over the region. (Make your selection on the
basis of a sketch of the solid and not by performing any 
calculations.)

25.

triangle with vertices 

(a) (b) 5 (c) 13 (d) 100 (e)

26.

circle bounded by 

(a) (b) (c) (d) 3 (e) 152
3�15�

x2 � y2 � 1R:

f �x, y� � 10x2y2

�1009
2

�3, 3��3, 0�,�0, 0�,R:

f �x, y� � x � y

xy

P�0 � x � 0.5, 0 � y � 0.25�

f �x, y� � �kxy,    
0,

0 � x � 1, 0 � y � x
elsewhere

P�0 � x � 1, 0 � y � 1�

f �x, y� � �kxye��x�y�,    
0,

x � 0, y � 0
elsewhere

P�a } x } b, c } y } d� � �d

c
�b

a
 f �x, y� dx dy.

k

y
x

yx

P � 192x � 576y � x2 � 5y2 � 2xy � 5000

P

y
x

yx

T�x, y� � 40 � 6x2 � y2

�0, 0�, �3, 0�, �3, 3�, �0, 3�R:

f �x� � 2x2 � y2

�2, 2�, ��2, 2�, ��2, �2�, �2, �2�R:

f �x� � 16 � x2 � y2

R.f �x, y�

y � xx � 3,
y � 0,z � 0,z � x � y,

x � 4x � 0,
y � 0,z � 0,z � x2 � y � 4,

�5

3
�5�x

0
 ex�y dy dx�2

0
�5�y

3y�2
 ex�y dx dy � �3

0
�2x�3

0
ex�y dy dx �

 �2	2

2
�	8�x2�2

0
 �x � y� dy dx

�1

0
�2	2�y2

2y

�x � y� dx dy � �2

0
�x�2

0
�x � y� dy dx �

x � 2y � y2x � �y

x � y2 � 1x � y � 3

y � 2
y � 0,x � 0,x � y2 � 1,

y2 � x2 � x4

y � x2 � 2xy � 6x � x2

x � 3x2 � y2 � 25

�0, 0�, �3, 0�, �2, 2�
�0, 0�, �3, 0�, �0, 1�

f �x, y� � 1
R

�
R
� f �x, y� dA

�	3

0
�2�	4�y2

2�	4�y2

 dx dy

�3

0
�	9�x2

0
 4x dy dx

�2

0
�2x

x2

 �x2 � 2y� dy dx

�1

0
�1�x

0
 �3x � 2y� dy dx

�2y

y

 �x2 � y2� dx

�x2

1
x ln y dy
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True or False? In Exercises 27–30, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

27.

28. If is continuous over and and

then

29.

30.

In Exercises 31 and 32, evaluate the iterated integral by
converting to polar coordinates.

31. 32.

Area In Exercises 33 and 34, use a double integral to find the
area of the shaded region.

33. 34.

Volume In Exercises 35 and 36, use a multiple integral and a
convenient coordinate system to find the volume of the solid.

35. Solid bounded by the graphs of and outside
the cylinder and inside the hyperboloid

36. Solid that remains after drilling a hole of radius through the
center of a sphere of radius 

37. Consider the region in the plane bounded by the graph of
the equation

(a) Convert the equation to polar coordinates. Use a graphing
utility to graph the equation.

(b) Use a double integral to find the area of the region 

(c) Use a computer algebra system to determine the volume of
the solid over the region and beneath the hemisphere

38. Combine the sum of the two iterated integrals into a single
iterated integral by converting to polar coordinates. Evaluate
the resulting iterated integral.

Mass and Center of Mass In Exercises 39 and 40, find the mass
and center of mass of the lamina bounded by the graphs of the
equations for the given density or densities. Use a computer
algebra system to evaluate the multiple integrals.

39. first quadrant

(a)

(b)

40. first quadrant

In Exercises 41 and 42, find and for the lamina
bounded by the graphs of the equations. Use a computer
algebra system to evaluate the double integrals.

41.

42.

Surface Area In Exercises 43–46, find the area of the surface
given by over the region 

43.

44.

Use a computer algebra system to evaluate the integral.

45.

triangle bounded by the graphs of the equations 
and 

46.

triangle bounded by the graphs of the equations 
and 

47. Building Design A new auditorium is built with a foundation
in the shape of one-fourth of a circle of radius 50 feet. So, it
forms a region bounded by the graph of 

with and The following equations are models for
the floor and ceiling.

Floor:

Ceiling:

(a) Calculate the volume of the room, which is needed to
determine the heating and cooling requirements.

(b) Find the surface area of the ceiling.

z � 20 �
xy

100

z �
x � y

5

y ≥ 0.x ≥ 0

x2 � y2 � 502

R

y � 2y � �x,
y � x,R:

f �x, y� � 4 � x2

y � 3y � �x,
y � x,R:

f �x, y� � 9 � y2

R � 
�x, y�:  0 � x � 2, 0 � y � x�
f �x, y� � 16 � x � y2

R � 
�x, y�:  x2 � y2
≤ 25�

f �x, y� � 25 � x2 � y2

R.z � f �x, y�

� � kyx > 0,y � 0,y � 4 � x2,

� � kxx � a,x � 0,y � b,y � 0,

yIx, Iy, I0, x,

� � k,y �
h
2 �2 �

x
L

�
x2

L2
,

� � k�x2 � y2�
� � kxy

y � 2x3,y � 2x,

�8�	13

0
�3x�2

0
xy dy dx � �4

8�	13
 �	16�x2

0
xy dy dx

z � 	9 � x2 � y2 .
R

R.

�x2 � y2�2 � 9�x2 � y2�.

xy-R

R �b < R�
b

x2 � y2 � z2 � 1
x2 � y2 � 1

z � h,z � 0

π
2

0

r = 2 sin 2θ

2

π
2

1 2 4
0

r = 2 + cos θ

�4

0
�	16�y2

0
 �x2 � y2� dx dy�h

0
�x

0
 	x2 � y 2 dy dx

�1

0
�1

0
 

1
1 � x2 � y2 dx dy <

�

4

�1

�1
�1

�1
 cos�x2 � y2� dx dy � 4�1

0
�1

0
 cos�x2 � y2� dx dy

�
R1

� f �x, y� dA � �
R2

� f �x, y� dA.

�
R1

� dA � �
R2

� dA

R2,R1f

�b

a
�d

c

 f �x�g� y� dy dx � ��b

a

 f �x� dx���d

c
 g�y� dy�
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48. Surface Area The roof over the stage of an open air theater at
a theme park is modeled by

where the stage is a semicircle bounded by the graphs of
and 

(a) Use a computer algebra system to graph the surface.

(b) Use a computer algebra system to approximate the number
of square feet of roofing required to cover the surface.

In Exercises 49–52, evaluate the iterated integral.

49.

50.

51.

52.

In Exercises 53 and 54, use a computer algebra system to
evaluate the iterated integral.

53.

54.

Volume In Exercises 55 and 56, use a multiple integral to find
the volume of the solid.

55. Solid inside the graphs of and 

56. Solid inside the graphs of and 

Center of Mass In Exercises 57–60, find the center of mass 
of the solid of uniform density bounded by the graphs of the
equations.

57. Solid inside the hemisphere and
outside the cone 

58. Wedge:

59. first octant

60. (the larger solid)

Moment of Inertia In Exercises 61 and 62, find the moment of
inertia of the solid of given density.

61. The solid of uniform density inside the paraboloid
and outside the cylinder 

62. density proportional to the distance from
the center

63. Investigation Consider a spherical segment of height from
a sphere of radius where and constant density

(see figure).

(a) Find the volume of the solid.

(b) Find the centroid of the solid.

(c) Use the result of part (b) to find the centroid of a 
hemisphere of radius 

(d) Find 

(e) Find 

(f) Use the result of part (e) to find for a hemisphere.

64. Moment of Inertia Find the moment of inertia about the

axis of the ellipsoid where 

In Exercises 65 and 66, give a geometric interpretation of the
iterated integral.

65.

66.

In Exercises 67 and 68, find the Jacobian for the
indicated change of variables.

67.

68.

In Exercises 69 and 70, use the indicated change of variables to
evaluate the double integral.

69. 70.

x
1

1

6

3

6

54

5

4

2
R

xy = 5

x = 5

x = 1

xy = 1

y

x
1

1

2

2

3

3

4

4

R
(1, 2)

(2, 1)

(3, 2)

(2, 3)

y

y �
v
u

x � u,y �
1
2

�u � v�x �
1
2

�u � v�,

�
R
� 

x
1 � x2y2 dA�

R
� ln�x � y� dA

y � u2 � v2x � u2 � v2,

y � 2u � 3vx � u � 3v,

��x, y�/��u, v�

��

0
�2

0
�1�r2

0
r dz dr d	

�2�

0
��

0
�6 sin 


0
�2 sin 
 d� d
 d	

a > 0.x2 � y 2 �
z2

a2 � 1,z-

Iz

Iz.

lim
h→0

 z.

a.

h

��x, y, z� � k
h � a,a,

h

x2 � y2 � z2 � a2,

z � 0.
x2 � y2 � 9,z � 16 � x2 � y2,

Iz

z � 4x2 � y2 � z2 � 25,

x2 � y2 � z2 � a2,

z � 0y � 0,z � cy �c > 0�,x2 � y2 � a2,


 � ��4
��4  ≤  
  ≤  ��2,� � cos 
,

r � 2 sin 	z � 0,r2 � z � 16,

r2 � z2 � 4r � 2 cos 	

�2

0
�	4�x2

0
�	4�x2�y2

0
 xyz dz dy dx

�1

�1
�	1�x2

�	1�x2
�	1�x2�y2

�	1�x2�y2
 �x2 � y2� dz dy dx

�5

0
�	25�x2

0
�	25�x2�y2

0
 

1
1 � x2 � y2 � z2 dz dy dx

�a

0
�b

0
�c

0
 �x2 � y2 � z2� dx dy dz

�2

�2
�	4�x2

�	4�x2

 ��x2�y2��2

0
 �x2 � y2� dz dy dx

�3

�3
�	9�x2

�	9�x2

 �9

x2�y2
 	x2 � y2 dz dy dx

y � 0.y � 	502 � x2

f �x, y� � 25�1 � e��x2�y2��1000 cos2�x2 � y2

1000 
�
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1. Find the volume of the solid of intersection of the three cylinders
and (see figure).

2. Let and be positive real numbers. The first octant of the
plane is shown in the figure. Show that the
surface area of this portion of the plane is equal to 

where is the area of the triangular region in the plane,
as shown in the figure.

3. Derive Euler’s famous result that was mentioned in Section 9.3,

by completing each step.

(a) Prove that 

(b) Prove that by 

using the substitution 

(c) Prove that 

by using the substitution 

(d) Prove the trigonometric identity 

(e) Prove that 

(f ) Use the formula for the sum of an infinite geometric series to 

verify that 

(g) Use the change of variables and to 

prove that 

4. Consider a circular lawn with a radius of 10 feet, as shown in
the figure. Assume that a sprinkler distributes water in a radial
fashion according to the formula

(measured in cubic feet of water per hour per square foot of
lawn), where is the distance in feet from the sprinkler. Find the
amount of water that is distributed in 1 hour in the following two
annular regions.

Is the distribution of water uniform? Determine the amount of
water the entire lawn receives in 1 hour.

5. The figure shows the region bounded by the curves 

and Use the change of variables

and to find the area of the region 

x

R
y =    x

y =    2x

y

y =   x21
3

y =   x21
4

R.y � u2�3 v1�3x � u1�3v2�3

y �
x2

4
.y �

x2

3
,y � 	2x,

y � 	x,R

4 ft

1 ft

AB

B � 
�r, 	�: 9 � r � 10, 0 � 	 � 2�}

A � 
�r, 	�: 4 � r � 5, 0 � 	 � 2�}

r

f �r� �
r

16
�

r2

160

�
�

n�1
 
1
n2 � �1

0
�1

0
 

1
1 � xy

 dx dy � I1 � I2 �
�2

6
.

v �
y � x
	2

u �
x � y
	2

�
�

n�1
 
1
n2 � �1

0
�1

0
 

1
1 � xy

 dx dy.

I2 � �	2

	2�2
��u�	2

u�	2
 

2
2 � u2 � v2 dv du �

�2

9
.

1� sin 	
cos 	

� tan����2� � 	

2 
.

u � 	2 sin 	.

 � 4���2

��6
 arctan 

1 � sin 	
cos 	

 d	

I2 � �	2

	2�2
��u�	2

u�	2
 

2
2 � u2 � v2 dv du

u � 	2 sin 	.

I1 � �	2�2

0
�u

�u

 
2

2 � u2 � v2 dv du �
�2

18

� dv
2 � u2 � v2 �

1
	2 � u2 arctan 

v
	2 � u2

� C.

�
�

n�1
 
1
n2 �

�2

6
,

x
yR

z

xy-RA�R�

A�R�
c

	a2 � b2 � c2

ax � by � cz � d
dc,b,a,

y y
x x

z z

3

33

−3

−3

3

33

−3

−3

x2 � y2 � 1y2 � z2 � 1,x2 � z2 � 1,
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6. The figure shows a solid bounded below by the plane and
above by the sphere 

(a) Find the volume of the solid using cylindrical coordinates.

(b) Find the volume of the solid using spherical coordinates.

7. Sketch the solid whose volume is given by the sum of the
iterated integrals

Then write the volume as a single iterated integral in the order

8. Prove that 

In Exercises 9 and 10, evaluate the integral. (Hint: See Exercise
69 in Section 14.3.)

9.

10.

11. Consider the function

Find the relationship between the positive constants and 
such that is a joint density function of the continuous random
variables and 

12. Find the volume of the solid generated by revolving the region
in the first quadrant bounded by about the axis. Use
this result to find

13. From 1963 to 1986, the volume of the Great Salt Lake approxi-
mately tripled while its top surface area approximately doubled.
Read the article “Relations between Surface Area and Volume in
Lakes” by Daniel Cass and Gerald Wildenberg in The College
Mathematics Journal. Then give examples of solids that have
“water levels” and such that and

(see figure), where is volume and is area.

Figure for 13

14. The angle between a plane and the plane is where
The projection of a rectangular region in onto

the plane is a rectangle whose sides have lengths and 
as shown in the figure. Prove that the area of the rectangular
region in is 

15. Use the result of Exercise 14 to order the planes in ascending
order of their surface areas for a fixed region in the plane.
Explain your ordering without doing any calculations.

(a)

(b)

(c)

(d)

16. Evaluate the integral 

17. Evaluate the integrals

and

Are the results the same? Why or why not?

18. Show that the volume of a spherical block can be approximated
by

�V � �2 sin 
 �� �
 �	.

�1

0
�1

0
 

x � y
�x � y�3 dy dx.

�1

0
�1

0
 

x � y
�x � y�3 dx dy

��

0
��

0
 

1
�1 � x2 � y2�2 dx dy.

z4 � 3 � x � 2y

z3 � 10 � 5x � 9y

z2 � 5

z1 � 2 � x

xy-R

Δx

θ

θArea: sec ΔxΔy

Area in xy-plane: ΔxΔy

Δy

P

sec 	 �x �y.P

�y,�xxy-
P0 � 	 < ��2.

	,xy-P

A(b)

A(a)

V(a)

V(b)

AVA�b� � 2A�a�
V�b� � 3V�a�ba

��

��

e�x2
 dx.

y-y � e�x2

y.x
f

ka

f �x, y� � �ke��x�y��a,

0,
    

x � 0, y � 0

elsewhere.

�1

0
	ln 

1
x
 dx

��

0
x2e�x2 dx

lim
n→�

 �1

0
�1

0
 xn yn dx dy � 0.

dy dz dx.

�6

0
�3

z�2
�y

z�2
 dx dy dz ��6

0
��12�z��2

3
�6�y

z�2
 dx dy dz.

z

x

y22

4

−2

x2 + y2 + z2 = 8

x2 � y2 � z2 � 8.
z � 2
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10571057

15 Vector Analysis

In Chapter 15, you will combine your knowledge of vectors with your knowledge of integral calculus. Section 15.1
introduces vector fields, such as those shown above. Examples of vector fields include velocity fields, electromagnetic
fields, and gravitational fields.

NASA

In this chapter, you will study vector
fields, line integrals, and surface integrals.
You will learn to use these to determine
real-life quantities such as surface area,
mass, flux, work, and energy.

In this chapter, you should learn the 
following.

■ How to sketch a vector field, determine
whether a vector field is conservative,
find a potential function, find curl, and
find divergence. (15.1)

■ How to find a piecewise smooth 
parametrization, write and evaluate a
line integral, and use Green’s Theorem.
(15.2, 15.4)

■ How to use the Fundamental Theorem 
of Line Integrals, independence of path,
and conservation of energy. (15.3)

■ How to sketch a parametric surface,
find a set of parametric equations to 
represent a surface, find a normal vector,
find a tangent plane, and find the area 
of a parametric surface. (15.5)

■ How to evaluate a surface integral,
determine the orientation of a surface,
evaluate a flux integral, and use the
Divergence Theorem. (15.6, 15.7)

■ How to use Stokes’s Theorem to evaluate 
a line integral or a surface integral and
how to use curl to analyze the motion 
of a rotating liquid. (15.8)

While on the ground awaiting liftoff, space shuttle astronauts have access to a 
basket and slide wire system that is designed to move them as far away from the
shuttle as possible in an emergency situation. Does the amount of work done by 
the gravitational force field vary for different slide wire paths between two fixed
points? (See Section 15.3, Exercise 39.)

■

■
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■ Understand the concept of a vector field.
■ Determine whether a vector field is conservative.
■ Find the curl of a vector field.
■ Find the divergence of a vector field.

Vector Fields
In Chapter 12, you studied vector-valued functions—functions that assign a vector to
a real number. There you saw that vector-valued functions of real numbers are useful
in representing curves and motion along a curve. In this chapter, you will study two
other types of vector-valued functions—functions that assign a vector to a point in the
plane or a point in space. Such functions are called vector fields, and they are useful
in representing various types of force fields and velocity fields.

The gradient is one example of a vector field. For example, if

then the gradient of 

Vector field in the plane

is a vector field in the plane. From Chapter 13, the graphical interpretation of this field
is a family of vectors, each of which points in the direction of maximum increase
along the surface given by 

Similarly, if

then the gradient of 

Vector field in space

is a vector field in space. Note that the component functions for this particular vector
field are and 

A vector field 

is continuous at a point if and only if each of its component functions and is
continuous at that point.

PN,M,

F�x, y, z� � M�x, y, z�i � N�x, y, z�j � P�x, y, z�k

2z.2x, 2y,

 � 2x i � 2yj � 2zk

 �f�x, y, z� � fx�x, y, z�i � fy�x, y, z�j � fz�x, y, z�k

f

f�x, y, z� � x2 � y2 � z2

z � f�x, y�.

 � �2xy � 3y3�i � �x2 � 9xy2�j

 �f�x, y� � fx�x, y�i � fy�x, y�j

f

f�x, y� � x2y � 3xy3

1058 Chapter 15 Vector Analysis

15.1 Vector Fields

DEFINITION OF VECTOR FIELD

A vector field over a plane region is a function that assigns a vector
to each point in 

A vector field over a solid region in space is a function that assigns a
vector to each point in Q.F�x, y, z�

FQ

R.F�x, y�
FR

NOTE Although a vector field consists of infinitely many vectors, you can get a good idea of
what the vector field looks like by sketching several representative vectors whose initial
points are ■�x, y�.

F�x, y�
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Some common physical examples of vector fields are velocity fields,
gravitational fields, and electric force fields.

1. Velocity fields describe the motions of systems of particles in the plane or in space.
For instance, Figure 15.1 shows the vector field determined by a wheel rotating on
an axle. Notice that the velocity vectors are determined by the locations of their
initial points—the farther a point is from the axle, the greater its velocity. Velocity
fields are also determined by the flow of liquids through a container or by the flow
of air currents around a moving object, as shown in Figure 15.2.

2. Gravitational fields are defined by Newton’s Law of Gravitation, which states
that the force of attraction exerted on a particle of mass located at by a
particle of mass located at is given by

where is the gravitational constant and is the unit vector in the direction from
the origin to In Figure 15.3, you can see that the gravitational field has
the properties that always points toward the origin, and that the magni-
tude of is the same at all points equidistant from the origin. A vector field
with these two properties is called a central force field. Using the position vector

for the point you can write the gravitational field as

3. Electric force fields are defined by Coulomb’s Law, which states that the force
exerted on a particle with electric charge located at by a particle with
electric charge located at is given by

where and is a constant that depends on the
choice of units for and 

Note that an electric force field has the same form as a gravitational field. That is,

Such a force field is called an inverse square field.

F�x, y, z� �
k

�r�2 u.

q2.�r�, q1,
cu � r��r�,r � x i � yj � zk,

F�x, y, z� �
cq1q2

�r�2  u

�0, 0, 0�q2

�x, y, z�q1

 �
�Gm1m2

�r�2  u.

F�x, y, z� �
�Gm1m2

�r�2 � r
�r��

F�x, y, z�,

r � x i � yj � zk

F�x, y, z�
F�x, y, z�

F�x, y, z�.
uG

F�x, y, z� �
�Gm1m2

x2 � y2 � z2 u

�0, 0, 0�m2

�x, y, z�m1

15.1 Vector Fields 1059

DEFINITION OF INVERSE SQUARE FIELD

Let be a position vector. The vector field is an
inverse square field if

where is a real number and is a unit vector in the direction of r.u � r��r�k

F�x, y, z� �
k

�r�2 u

Fr�t� � x�t�i � y�t�j � z�t�k

Velocity field

Rotating wheel
Figure 15.1

Air flow vector field
Figure 15.2

x

y

m1 is located at (x, y, z).
m2 is located at (0, 0, 0).

(x, y, z)

z

Gravitational force field
Figure 15.3
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Because vector fields consist of infinitely many vectors, it is not possible to 
create a sketch of the entire field. Instead, when you sketch a vector field, your goal
is to sketch representative vectors that help you visualize the field.

EXAMPLE 1 Sketching a Vector Field

Sketch some vectors in the vector field given by

Solution You could plot vectors at several random points in the plane. However, it is
more enlightening to plot vectors of equal magnitude. This corresponds to finding
level curves in scalar fields. In this case, vectors of equal magnitude lie on circles.

Vectors of length 

Equation of circle

To begin making the sketch, choose a value for and plot several vectors on the 
resulting circle. For instance, the following vectors occur on the unit circle.

These and several other vectors in the vector field are shown in Figure 15.4. Note in
the figure that this vector field is similar to that given by the rotating wheel shown in
Figure 15.1.

EXAMPLE 2 Sketching a Vector Field

Sketch some vectors in the vector field given by

Solution For this vector field, vectors of equal length lie on ellipses given by

which implies that

For sketch several vectors of magnitude 1 at points on the ellipse
given by

For sketch several vectors of magnitude 2 at points on the ellipse
given by

These vectors are shown in Figure 15.5. ■

4x2 � y2 � 4.

2x i � yjc � 2,

4x2 � y2 � 1.

2x i � yjc � 1,

4x2 � y2 � c2.

�F� � ��2x�2 � � y�2 � c

F�x, y� � 2xi � yj.

F�0, �1� � i�0, �1�
F��1, 0� � �j��1, 0�
F�0, 1� � �i�0, 1�
F�1, 0� � j�1, 0�
Vector                  Point     

c

 x2 � y2 � c2

 �x2 � y2 � c

c �F � � c

F�x, y� � �yi � xj.

1060 Chapter 15 Vector Analysis

3

31

2

1

x

F(x, y) = −yi + xj
Vector field:

y

Figure 15.4

Vector field:
F(x, y) = 2xi + yj

x
2−2 3−3−4

−4

−3

4

3
c = 2

c = 1

y

Figure 15.5
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EXAMPLE 3 Sketching a Velocity Field

Sketch some vectors in the velocity field given by

where 

Solution You can imagine that describes the velocity of a liquid flowing through
a tube of radius 4. Vectors near the axis are longer than those near the edge of the
tube. For instance, at the point the velocity vector is whereas
at the point the velocity vector is Figure 15.6 shows these
and several other vectors for the velocity field. From the figure, you can see that the
speed of the liquid is greater near the center of the tube than near the edges of the tube.

■

Conservative Vector Fields
Notice in Figure 15.5 that all the vectors appear to be normal to the level curve from
which they emanate. Because this is a property of gradients, it is natural to ask
whether the vector field given by is the gradient of some
differentiable function The answer is that some vector fields can be represented as
the gradients of differentiable functions and some cannot—those that can are called
conservative vector fields.

EXAMPLE 4 Conservative Vector Fields

a. The vector field given by is conservative. To see this, consider
the potential function Because

it follows that is conservative.

b. Every inverse square field is conservative. To see this, let

and

where Because

it follows that is conservative. ■F

 �
k

�r�2 u

 �
k

�r�2 
r

�r�

 �
k

x2 � y2 � z2 � x i � yj � zk
�x2 � y2 � z2�

 �f �
kx

�x2 � y2 � z2�3�2 i �
ky

�x2 � y2 � z2�3�2 j �
kz

�x2 � y2 � z2�3�2 k

u � r��r�.

f�x, y, z� �
�k

�x2 � y2 � z2
F�x, y, z� �

k
�r�2 u

F

�f � 2x i � yj � F

f�x, y� � x2 �
1
2 y2.

F�x, y� � 2x i � yj

f.
F�x, y� � 2x i � yj

v�0, 3, 0� � 7k.�0, 3, 0�,
v�0, 0, 0� � 16k,�0, 0, 0�,

z-
v

x2 � y2 � 16.

v�x, y, z� � �16 � x2 � y2�k
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DEFINITION OF CONSERVATIVE VECTOR FIELD

A vector field is called conservative if there exists a differentiable function
such that The function is called the potential function for F.fF � �f.f

F

x

y

Velocity field:
v(x, y, z) = (16 − x2 − y2)k

44

16

z

Figure 15.6
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As can be seen in Example 4(b), many important vector fields, including gravita-
tional fields and electric force fields, are conservative. Most of the terminology in this
chapter comes from physics. For example, the term “conservative” is derived from the
classic physical law regarding the conservation of energy. This law states that the sum
of the kinetic energy and the potential energy of a particle moving in a conservative
force field is constant. (The kinetic energy of a particle is the energy due to its motion,
and the potential energy is the energy due to its position in the force field.)

The following important theorem gives a necessary and sufficient condition for a
vector field in the plane to be conservative.

To prove that the given condition is necessary for to be conservative,
suppose there exists a potential function such that

Then you have

and, by the equivalence of the mixed partials and you can conclude that
for all in The sufficiency of this condition is proved in

Section 15.4. ■

EXAMPLE 5 Testing for Conservative Vector Fields in the Plane

Decide whether the vector field given by is conservative.

a. b.

Solution

a. The vector field given by is not conservative because

and

b. The vector field given by is conservative because

and ■
�N
�x

�
�

�x
	 y
 � 0.

�M
�y

�
�

�y
	2x
 � 0

F�x, y� � 2x i � yj

�N
�x

�
�

�x
	xy
 � y.

�M
�y

�
�

�y
	x2y
 � x2

F�x, y� � x2yi � xyj

F�x, y� � 2xi � yjF�x, y� � x2yi � xyj

F

R.�x, y��N��x � �M��y
fyx,fxy

fyx�x, y� �
�N
�x

fy�x, y� � N

fxy�x, y� �
�M
�y

fx�x, y� � M

F�x, y� � �f�x, y� � Mi � Nj.

f
FPROOF

1062 Chapter 15 Vector Analysis

THEOREM 15.1 TEST FOR CONSERVATIVE VECTOR FIELD IN THE PLANE

Let and have continuous first partial derivatives on an open disk The
vector field given by is conservative if and only if

�N
�x

�
�M
�y

.

F�x, y� � Mi � Nj
R.NM

NOTE Theorem 15.1 is valid on simply connected domains. A plane region is simply 
connected if every simple closed curve in encloses only points that are in See Figure 15.26
in Section 15.4. ■

R.R
R
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Theorem 15.1 tells you whether a vector field is conservative. It does not tell you
how to find a potential function of The problem is comparable to antidifferentiation.
Sometimes you will be able to find a potential function by simple inspection. For
instance, in Example 4 you observed that 

has the property that 

EXAMPLE 6 Finding a Potential Function for 

Find a potential function for

Solution From Theorem 15.1 it follows that is conservative because

and

If is a function whose gradient is equal to then

which implies that

and

To reconstruct the function from these two partial derivatives, integrate with
respect to and integrate with respect to as follows.

Notice that is constant with respect to and is constant with respect to To
find a single expression that represents let 

and

Then, you can write

You can check this result by forming the gradient of You will see that it is equal to
the original function ■F.

f.

 � x2y �
y2

2
� K.

 f�x, y� � x2y � g�y� � K

h�x� � K.g�y� � �
y2

2

f�x, y�,
y.h�x)xg�y�

f�x, y� � � fy�x, y� dy � � �x2 � y� dy � x2y �
y2

2
� h�x�

f�x, y� � � fx�x, y� dx � � 2xy dx � x2y � g�y�

y,fy�x, y�x
fx�x, y�f

fy�x, y� � x2 � y.

fx�x, y� � 2xy

�f�x, y� � 2xyi � �x2 � y�j

F�x, y�,f

�

�x
	x2 � y
 � 2x.

�

�y
	2xy
 � 2x

F

F�x, y� � 2xyi � �x2 � y�j.

F�x, y


�f�x, y� � 2x i � yj.

f�x, y� � x2 �
1
2

 y2

F.
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NOTE Notice that the solution in Example 6 is comparable to that given by an indefinite
integral. That is, the solution represents a family of potential functions, any two of which differ
by a constant. To find a unique solution, you would have to be given an initial condition 
satisfied by the potential function. ■
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Curl of a Vector Field
Theorem 15.1 has a counterpart for vector fields in space. Before stating that result,
the definition of the curl of a vector field in space is given.

The cross product notation used for curl comes from viewing the gradient as
the result of the differential operator acting on the function In this context, you
can use the following determinant form as an aid in remembering the formula for curl.

EXAMPLE 7 Finding the Curl of a Vector Field

Find curl of the vector field given by

Is irrotational?

Solution The curl of is given by

Because is irrotational. ■Fcurl F � 0,

 � 0.

 � �2z � 2z�i � �0 � 0�j � �2x � 2x�k

 � � �
�y

x2 � z2

      

�
�z

2yz�i � � �
�x

2xy

      

�
�z

2yz�j � � �
�x

2xy

      

�
�y

x2 � z2�k
 � � i

�
�x

2xy

      

j

�
�y

x2 � z2

       

k

�
�z

2yz�
curl F�x, y, z� � � � F�x, y, z�

F

F

F�x, y, z� � 2xyi � �x2 � z2�j � 2yzk.

F

 � ��P
�y

�
�N
�z �i � ��P

�x
�

�M
�z �j � ��N

�x
�

�M
�y �k

 � � i

�
�x

M

    

j

�
�y

N

     

k

�
�z

P �
 curl F�x, y, z� � � � F�x, y, z�

f.�
�f
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DEFINITION OF CURL OF A VECTOR FIELD

The curl of is

 � ��P
�y

�
�N
�z �i � ��P

�x
�

�M
�z �j � ��N

�x
�

�M
�y �k.

 curl F�x, y, z� � � � F�x, y, z�

F�x, y, z� � Mi � Nj � Pk

NOTE If then is said to be irrotational. ■Fcurl F � 0,

The icon indicates that you will find a CAS Investigation on the book’s website. The CAS
Investigation is a collaborative exploration of this example using the computer algebra systems
Maple and Mathematica.
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Later in this chapter, you will assign a physical interpretation to the curl of a
vector field. But for now, the primary use of curl is shown in the following test for
conservative vector fields in space. The test states that for a vector field in space, the
curl is at every point in its domain if and only if is conservative. The proof is 
similar to that given for Theorem 15.1.

From Theorem 15.2, you can see that the vector field given in Example 7 is
conservative because Try showing that the vector field 

is not conservative—you can do this by showing that its curl is 

For vector fields in space that pass the test for being conservative, you can find a
potential function by following the same pattern used in the plane (as demonstrated in
Example 6).

EXAMPLE 8 Finding a Potential Function for 

Find a potential function for 

Solution From Example 7, you know that the vector field given by is conservative.
If is a function such that then

and

and integrating with respect to and separately produces

Comparing these three versions of you can conclude that

and

So, is given by

■f�x, y, z� � x2y � yz2 � K.

f�x, y, z�

k�x, y� � x2y � K.h�x, z� � K,g� y, z� � yz2 � K,

f�x, y, z�,

f�x, y, z� � � P dz � � 2yz dz � yz2 � k�x, y�.

f�x, y, z� � � N dy � � �x2 � z2� dy � x2y � yz2 � h�x, z�

f�x, y, z� � � M dx � � 2xy dx � x2y � g� y, z�

zy,x,

fz�x, y, z� � 2yzfy�x, y, z� � x2 � z2,fx�x, y, z� � 2xy,

F�x, y, z� � �f�x, y, z�,f
F

F�x, y, z� � 2xyi � �x2 � z2�j � 2yzk.

F�x, y, z


curl F�x, y, z� � �x3y2 � 2xy�j � �2xz � 2x3yz�k 	 0.

F�x, y, z� � x3y2z i � x2zj � x2yk

curl F�x, y, z� � 0.

F0
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THEOREM 15.2 TEST FOR CONSERVATIVE VECTOR FIELD IN SPACE

Suppose that and have continuous first partial derivatives in an open
sphere in space. The vector field given by is
conservative if and only if

That is, is conservative if and only if

and
�N
�x

�
�M
�y

.
�P
�x

�
�M
�z

,
�P
�y

�
�N
�z

,

F

curl F�x, y, z� � 0.

F�x, y, z� � Mi � Nj � PkQ
PN,M,

NOTE Theorem 15.2 is valid for 
simply connected domains in space. 
A simply connected domain in space 
is a domain for which every simple
closed curve in (see Section 15.4) 
can be shrunk to a point in without
leaving D.

D
D

D

NOTE Examples 6 and 8 are
illustrations of a type of problem called
recovering a function from its gradient.
If you go on to take a course in
differential equations, you will study
other methods for solving this type of
problem. One popular method gives an
interplay between successive “partial
integrations” and partial differentiations.
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Divergence of a Vector Field
You have seen that the curl of a vector field is itself a vector field. Another important
function defined on a vector field is divergence, which is a scalar function.

The dot product notation used for divergence comes from considering as a
differential operator, as follows.

EXAMPLE 9 Finding the Divergence of a Vector Field

Find the divergence at for the vector field

Solution The divergence of is

At the point the divergence is

■

There are many important properties of the divergence and curl of a vector field
(see Exercises 83– 89). One that is used often is described in Theorem 15.3. You are

asked to prove this theorem in Exercise 90.
F

div F�2, 1, �1� � 3�22��12���1� � �12.

�2, 1, �1�,

div F�x, y, z� �
�

�x
	x3y2z
 �

�

�y
	x2z
 �

�

�z
	x2y
 � 3x2y2z.

F

F�x, y, z� � x3y2zi � x2zj � x2yk.

�2, 1, �1�

 �
�M
�x

�
�N
�y

�
�P
�z

 � 
 F�x, y, z� � �� �

�x�i � � �

�y�j � � �

�z�k� 
 �M i � Nj � Pk�

�

F
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DEFINITION OF DIVERGENCE OF A VECTOR FIELD

The divergence of is

Plane

The divergence of is

Space

If then is said to be divergence free.Fdiv F � 0,

div F�x, y, z� � � 
 F�x, y, z� �
�M
�x

�
�N
�y

�
�P
�z

.

F�x, y, z� � Mi � Nj � Pk

div F�x, y� � � 
 F�x, y� �
�M
�x

�
�N
�y

.

F�x, y� � Mi � Nj

THEOREM 15.3 DIVERGENCE AND CURL

If is a vector field and and have continuous
second partial derivatives, then

div�curl F� � 0.

PN,M,F�x, y, z� � Mi � Nj � Pk

NOTE Divergence can be viewed as a
type of derivative of in that, for vector
fields representing velocities of moving
particles, the divergence measures the
rate of particle flow per unit volume 
at a point. In hydrodynamics (the study
of fluid motion), a velocity field that is
divergence free is called incompressible.
In the study of electricity and magnetism,
a vector field that is divergence free is
called solenoidal.

F
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In Exercises 1–6, match the vector field with its graph. [The
graphs are labeled (a), (b), (c), (d), (e), and (f).]

(a) (b)

(c) (d)

(e) (f)

1. 2.

3. 4.

5. 6.

In Exercises 7–16, compute and sketch several representative
vectors in the vector field.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

In Exercises 17–20, use a computer algebra system to graph
several representative vectors in the vector field.

17.

18.

19.

20.

In Exercises 21–30, find the conservative vector field for the
potential function by finding its gradient.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

In Exercises 31–34, verify that the vector field is conservative.

31. 32.

33. 34.

In Exercises 35–38, determine whether the vector field is 
conservative. Justify your answer.

35.

36.

37.

38.

In Exercises 39– 48, determine whether the vector field is 
conservative. If it is, find a potential function for the vector field.

39. 40.

41. 42.

43. 44.

45. 46.

47.

48.

In Exercises 49–52, find curl F for the vector field at the given
point.

49.

50.

51.

52. �3, 2, 0�F�x, y, z� � e�xyz �i � j � k�
�0, 0, 1�F�x, y, z� � ex sin yi � ex cos yj

�2, �1, 3�F�x, y, z� � x2zi � 2xzj � yzk

�2, 1, 3�F�x, y, z� � xyzi � xyz j � xyzk

Point        Vector Field                                

F�x, y� �
2xi � 2yj
�x2 � y 2�2

F�x, y� � ex �cos yi � sin yj�

F�x, y� �
xi � yj
x2 � y 2F�x, y� �

2y
x

 i �
x2

y 2 j

F�x, y� �
1
y2 �yi � 2xj�F�x, y� � 15y3i � 5xy2j

F�x, y� � xex2y �2yi � xj�F�x, y� � 2xyi � x2j

F�x, y� � 3x2y2 i � 2x3yjF�x, y� � yi � xj

F�x, y� �
1

�1 � xy
�yi � xj�

F�x, y� �
1

�x2 � y2
� i � j�

F�x, y� �
2
y2 e 2x�y�yi � xj�

F�x, y� � 5y2�yi � 3xj�

F�x, y� �
1
xy

�yi � xj�F�x, y� � sin y i � x cos yj

F�x, y� �
1
x2� yi � xj�F�x, y� � xy2i � x 2yj

h�x, y, z� � x arcsin yzh�x, y, z� � xy ln�x � y�

g�x, y, z� �
y
z

�
z
x

�
xz
y

g�x, y, z� � z � yex2

f �x, y, z� � �x2 � 4y2 � z2f �x, y, z� � 6xyz

g�x, y� � sin 3x cos 4yg�x, y� � 5x2 � 3xy � y 2

f �x, y� � x2 �
1
4 y2f �x, y� � x2 � 2y2

F�x, y, z� � x i � yj � zk

F�x, y, z� �
x i � yj � zk
�x2 � y 2 � z 2

F�x, y� � �2y � 3x�i � �2y � 3x�j
F�x, y� �

1
8�2xyi � y 2j�

F�x, y, z� � x i � yj � zkF�x, y, z� � i � j � k

F�x, y� � �x2 � y 2�i � jF�x, y� � 4x i � yj

F�x, y� � x iF�x, y, z� � 3yj

F�x, y� � y i � 2x jF�x, y� � y i � xj

F�x, y� � 2iF�x, y� � i � j

��F��
F�x, y� � �1

2xy, 14x2�F�x, y� � �x, sin y�
F�x, y� � x i � 3yjF�x, y� � y i � xj

F�x, y� � x jF�x, y� � y i

x
2 3−2−3 −1

−3

1

2

3

y

x

−5

5

y

x

5

−5

5

y

x

5

5

y

x

6

6

−6

−6

y

x
4

4

y
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15.1 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

CAS
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In Exercises 53–56, use a computer algebra system to find the
curl F for the vector field.

53.

54.

55.

56.

In Exercises 57–62, determine whether the vector field F is 
conservative. If it is, find a potential function for the vector field.

57.

58.

59.

60.

61.

62.

In Exercises 63–66, find the divergence of the vector field F.

63.

64.

65.

66.

In Exercises 67–70, find the divergence of the vector field F at
the given point.

67.

68.

69.

70.

In Exercises 75 and 76, find curl

75. 76.

In Exercises 77 and 78, find curl

77.

78.

In Exercises 79 and 80, find 

79. 80.

In Exercises 81 and 82, find 

81.

82.

In Exercises 83–90, prove the property for vector fields F and G
and scalar function (Assume that the required partial
derivatives are continuous.)

83.

84.

85.

86.

87.

88.

89.

90. (Theorem 15.3)

In Exercises 91–93, let and let

91. Show that 92. Show that 

93. Show that 

True or False? In Exercises 95–98, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

95. If then as 

96. If and is on the positive -axis, then
the vector points in the negative -direction.

97. If is a scalar field, then curl is a meaningful expression.

98. If is a vector field and then is irrotational but
not conservative.

Fcurl F � 0,F

ff

y
y�x, y�F�x, y� � 4xi � y2j

�x, y� → �0, 0�.�F�x, y�� → 0F�x, y� � 4xi � y2j,

�f n � nf n�2F.

��1
f � � �

F
f 3.��ln f � �

F
f 2.

f �x, y, z
 ���F�x, y, z
��.
F�x, y, z
 � xi 1 yj 1 zk,

div�curl F� � 0

div� f F� � f div F � �f 
 F

� � � f F� � f �� � F� � ��f � � F

� � 	�f � �� � F�
 � � � �� � F�
div�F � G� � �curl F� 
 G � F 
 �curl G�
div�F � G� � div F � div G

curl��f � � � � ��f � � 0

curl�F � G� � curl F � curl G

f.

F�x, y, z� � x2zi � 2xz j � yzk

F�x, y, z� � xyzi � yj � zk

div�curl F
 � � 
 �� � F
.

G�x, y, z� � x2i � yj � z2kG�x, y, z� � x i � yj � zk

F�x, y, z� � x i � zkF�x, y, z� � i � 3xj � 2yk

div�F � G
 � � 
 �F � G
.

F�x, y, z� � x2zi � 2xz j � yzk

F�x, y, z� � xyzi � yj � zk

�curl F
 � � � �� � F
.

G�x, y, z� � x2i � yj � z 2kG�x, y, z� � x i � yj � zk

F�x, y, z� � x i � zkF�x, y, z� � i � 3xj � 2yk

�F � G
 � � � �F � G
.

�3, 2, 1�F�x, y, z� � ln�xyz��i � j � k�
�3, 0, 0�F�x, y, z� � ex sin yi � ex cos yj � z2k

�2, �1, 3�F�x, y, z� � x2z i � 2xzj � yzk

�2, 1, 1�F�x, y, z� � xyzi � xyj � zk

Point        Vector Field                                

F�x, y, z� � ln�x2 � y 2�i � xyj � ln�y 2 � z2�k
F�x, y, z� � sin x i � cos yj � z2k

F�x, y� � xe x i � yey j

F�x, y� � x2 i � 2y 2j

F�x, y, z� �
x

x2 � y 2 i �
y

x2 � y 2 j � k

F�x, y, z� �
z
y
 i �

xz
y 2 j �

x
y

k

F�x, y, z� � yezi � ze xj � xeyk

F�x, y, z� � sin zi � sin xj � sin yk

F�x, y, z� � y2z3i � 2xyz3j � 3xy2z2k

F�x, y, z� � xy2z2i � x2yz2j � x2y2zk

F�x, y, z� � �x2 � y 2 � z 2 �i � j � k�
F�x, y, z� � sin�x � y�i � sin�y � z�j � sin�z � x�k

F�x, y, z� �
yz

y � z
i �

xz
x � z

 j �
xy

x � y
k

F�x, y, z� � arctan�x
y� i � ln�x2 � y 2 j � k

1068 Chapter 15 Vector Analysis
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71. Define a vector field in the plane and in space. Give some
physical examples of vector fields.

72. What is a conservative vector field, and how do you test for
it in the plane and in space?

73. Define the curl of a vector field.

74. Define the divergence of a vector field in the plane and in
space.

WRITING ABOUT CONCEPTS

94. (a) Sketch several representative vectors in the vector field
given by

(b) Sketch several representative vectors in the vector field
given by

(c) Explain any similarities or differences in the vector
fields and G�x, y�.F�x, y�

G�x, y� �
xi � yj
�x2 � y2

.

F�x, y� �
xi � yj
�x2 � y2

.

CAPSTONE
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15.2 Line Integrals 1069

15.2 Line Integrals
■ Understand and use the concept of a piecewise smooth curve.
■ Write and evaluate a line integral.
■ Write and evaluate a line integral of a vector field.
■ Write and evaluate a line integral in differential form.

Piecewise Smooth Curves
A classic property of gravitational fields is that, subject to certain physical constraints,
the work done by gravity on an object moving between two points in the field is
independent of the path taken by the object. One of the constraints is that the path must
be a piecewise smooth curve. Recall that a plane curve given by

is smooth if 

and

are continuous on and not simultaneously 0 on Similarly, a space curve
given by

is smooth if

and

are continuous on and not simultaneously 0 on A curve is piecewise
smooth if the interval can be partitioned into a finite number of subintervals, on
each of which is smooth.

EXAMPLE 1 Finding a Piecewise Smooth Parametrization

Find a piecewise smooth parametrization of the graph of shown in Figure 15.7.

Solution Because consists of three line segments and you can construct
a smooth parametrization for each segment and piece them together by making the last

value in correspond to the first value in as follows.

So, is given by

Because and are smooth, it follows that is piecewise smooth. ■

Recall that parametrization of a curve induces an orientation to the curve. For
instance, in Example 1, the curve is oriented such that the positive direction is from

following the curve to Try finding a parametrization that induces
the opposite orientation.

�1, 2, 1�.�0, 0, 0�,

CC3C1, C2,

r�t� � �2tj,
�t � 1�i � 2j,
i � 2j � �t � 2�k,

0 � t � 1
1 � t � 2
2 � t � 3

.

C

2 � t � 3z�t� � t � 2,y�t� � 2,C3: x�t� � 1,

1 � t � 2z�t� � 0,y�t� � 2,C2: x�t� � t � 1,

0 � t � 1z�t� � 0,y�t� � 2t,C1: x�t� � 0,

Ci�1,t-Cit-

C3,C2,C1,C

C

C
[a, b]

C�a, b�.[a, b]

dz
dt

dy
dt

,
dx
dt

,

a � t � br�t� � x�t�i � y�t�j � z�t�k,

C
�a, b�.[a, b]

dy
dt

dx
dt

a � t � br�t� � x�t�i � y�t�j,

C

JOSIAH WILLARD GIBBS (1839–1903)

Many physicists and mathematicians have
contributed to the theory and applications
described in this chapter—Newton, Gauss,
Laplace, Hamilton, and Maxwell, among
others. However, the use of vector analysis to
describe these results is attributed primarily 
to the American mathematical physicist
Josiah Willard Gibbs.

T
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 G
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er

 C
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le
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io
n

x

y

1

1

C1

C2

C3

(0, 0, 0) (1, 2, 1)

(0, 2, 0)

(1, 2, 0)

C = C1 + C2 + C3

z

Figure 15.7
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Line Integrals
Up to this point in the text, you have studied various types of integrals. For a single
integral

Integrate over interval 

you integrated over the interval Similarly, for a double integral

Integrate over region 

you integrated over the region in the plane. In this section, you will study a new type
of integral called a line integral

Integrate over curve 

for which you integrate over a piecewise smooth curve (The terminology is
somewhat unfortunate—this type of integral might be better described as a “curve
integral.”)

To introduce the concept of a line integral, consider the mass of a wire of finite
length, given by a curve in space. The density (mass per unit length) of the wire at
the point is given by Partition the curve by the points 

producing subarcs, as shown in Figure 15.8. The length of the subarc is given by
Next, choose a point in each subarc. If the length of each subarc is small,

the total mass of the wire can be approximated by the sum

Mass of wire 

If you let denote the length of the longest subarc and let approach 0, it seems
reasonable that the limit of this sum approaches the mass of the wire. This leads to the
following definition.

As with the integrals discussed in Chapter 14, evaluation of a line integral is
best accomplished by converting it to a definite integral. It can be shown that if is
continuous, the limit given above exists and is the same for all smooth parametrizations
of C.

f

�� ��� �

� �
n

i�1
 f �xi, yi, zi� �si.

�xi, yi, zi��si.
ithn

P0, P1, .  .  . , Pn

Cf �x, y, z�.�x, y, z�
C

C.

C.�
C

  f �x, y� ds

R

R.�
R
� f �x, y� dA

[a, b].

[a, b].�b

a

 f �x� dx
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x
y

P0

P1
P2

Pi

Pi − 1
Pn − 1

Pn

Δsi

(xi, yi, zi)

C

z

Partitioning of curve C
Figure 15.8

DEFINITION OF LINE INTEGRAL

If is defined in a region containing a smooth curve of finite length, then
the line integral of f along C is given by

Plane

or

Space

provided this limit exists.

�
C

 f �x, y, z� ds � lim
���→0

 �
n

i�1
 f �xi, yi, zi� �si

�
C

 f �x, y� ds � lim
���→0

 �
n

i�1
 f �xi, yi� �si

Cf
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To evaluate a line integral over a plane curve given by use
the fact that

A similar formula holds for a space curve, as indicated in Theorem 15.4.

Note that if the line integral gives the arc length of the curve as
defined in Section 12.5. That is,

EXAMPLE 2 Evaluating a Line Integral

Evaluate

where is the line segment shown in Figure 15.9.

Solution Begin by writing a parametric form of the equation of the line segment:

and

Therefore, and which implies that

So, the line integral takes the following form.

■ �
5	6

6

 �	6 
t3

3
�

t2

2�
1

0

 � 	6�1

0
 �t2 � t� dt

 �
C

 �x2 � y � 3z� ds � �1

0
 �t2 � 2t � 3t�	6 dt

	�x��t�
2 � � y��t�
2 � �z��t�
2 � 	12 � 22 � 12 � 	6.

z��t� � 1,y��t� � 2,x��t� � 1,

z � t,  0 � t � 1.x � t,  y � 2t,

C

�
C

 �x2 � y � 3z� ds

C,f �x, y, z� � 1,

ds � �r��t�� dt � 	�x��t�
2 � �y��t�
2 dt.

r�t� � x�t�i � y�t�j,C
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THEOREM 15.4 EVALUATION OF A LINE INTEGRAL AS A DEFINITE INTEGRAL

Let be continuous in a region containing a smooth curve If is given by
where then

If is given by where then

�
C

 f �x, y, z� ds � �b

a

 f �x�t�, y�t�, z�t��	�x��t�
2 � �y��t�
2 � �z��t�
2 dt.

a � t � b,r�t� � x�t�i � y�t�j � z�t�k,C

�
C

 f �x, y� ds � �b

a

 f �x�t�, y�t��	�x��t�
2 � �y��t�
2 dt.

a � t � b,r�t� � x�t�i � y�t�j,
CC.f

�
C

 1 ds � �b

a

 �r��t�� dt � length of curve C.

NOTE The value of the line integral 
in Example 2 does not depend on the
parametrization of the line segment 
(any smooth parametrization will produce
the same value). To convince yourself of
this, try some other parametrizations, such
as 

or
�1 � t � 0.z � �t,

y � �2t,x � �t,�
1
2 � t � 0,

z � 1 � 2t,y � 2 � 4t,x � 1 � 2t, 

C

x

y

1

1

1

2

C(0, 0, 0) (1, 2, 1)

z

Figure 15.9
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Suppose is a path composed of smooth curves If is
continuous on it can be shown that

This property is used in Example 3.

EXAMPLE 3 Evaluating a Line Integral Over a Path

Evaluate where is the piecewise smooth curve shown in Figure 15.10.

Solution Begin by integrating up the line using the following parametrization.

For this curve, which implies that and So,

and you have

Next, integrate down the parabola using the parametrization

For this curve, which implies that and
So,

and you have

Consequently,

■

For parametrizations given by it is helpful to
remember the form of as

This is demonstrated in Example 4.

ds
r�t� � x�t�i � y�t�j � z�t�k,

�
C

 x ds � �
C1

 x ds � �
C2

 x ds �
	2
2

�
1
12

�53�2 � 1� � 1.56.

 �
1
12

�53�2 � 1�.

 � �
1
8


2
3

�1 � 4�1 � t�2
3�2�
1

0

 �
C2

 x ds � �1

0
 �1 � t�	1 � 4�1 � t�2 dt

	�x��t�
2 � � y��t�
2 � 	1 � 4�1 � t�2

y��t� � �2�1 � t�.
x��t� � �1r�t� � �1 � t�i � �1 � t�2j,

C2: x � 1 � t,  y � �1 � t�2,  0 � t � 1.

y � x2,

�
C1

 x ds � �1

0
 t	2 dt �

	2
2

 t2�
1

0
�

	2
2

.

	�x��t�
2 � � y��t�
2 � 	2

y��t� � 1.x��t� � 1r�t� � ti � tj,

C1: x � t, y � t,  0 � t � 1

y � x,

C�
C

 x ds,

�
C

 f �x, y� ds � �
C1

 f �x, y� ds � �
C2

 f �x, y� ds � .  .  . � �
Cn

 f �x, y� ds.

C,
fCn.C2, .  .  . ,C1,C
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ds � �r��t�� dt � 	�x��t�
2 � �y��t�
2 � �z��t�
2 dt.

1

1

x

(1, 1)

y = x2

C = C1 + C2

y = x

C2

C1

(0, 0)

y

Figure 15.10
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EXAMPLE 4 Evaluating a Line Integral

Evaluate where is the curve represented by

Solution Because and

it follows that

■

The next example shows how a line integral can be used to find the mass of a
spring whose density varies. In Figure 15.11, note that the density of this spring
increases as the spring spirals up the axis.

EXAMPLE 5 Finding the Mass of a Spring

Find the mass of a spring in the shape of the circular helix

where the density of the spring is as shown in Figure 15.11.

Solution Because

it follows that the mass of the spring is

The mass of the spring is approximately 144.47. ■

 � 144.47.

 � 6��1 �
3�

	2�
 � 
t �

t2

2	2�
6�

0

 Mass � �
C

 �1 � z� ds � �6�

0
�1 �

t
	2� dt

�r��t�� �
1
	2

	��sin t�2 � �cos t�2 � �1�2 � 1

	�x, y, z� � 1 � z,

r�t� �
1
	2

�cos t i � sin tj � tk�,  0 � t � 6�

z-

 � 15.29.

 �
1
3

�13	13 � 1�

 �
1
3
�1 � 4t � t2�3�2�

2

0

 �
1
2�

2

0
 2�t � 2��1 � 4t � t2�1�2 dt

 �
C

 �x � 2� ds � �2

0
 �t � 2�	1 � 4t � t2 dt

�r��t�� � 	�x��t�
2 � � y��t�
2 � �z��t�
2 � 	1 � 4t � t2

r��t� � i � 2t1�2j � tk

r�t� � t i �
4
3

 t3�2j �
1
2

 t2k,  0 � t � 2.

C�
C

 �x � 2� ds,
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x

y2 2

Density:
(x, y, z) = 1 + zρ

r(t) = 1
2

z

(cos ti + sin tj + tk)

Figure 15.11
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Line Integrals of Vector Fields
One of the most important physical applications of line integrals is that of finding the
work done on an object moving in a force field. For example, Figure 15.12 shows an
inverse square force field similar to the gravitational field of the sun. Note that the
magnitude of the force along a circular path about the center is constant, whereas the
magnitude of the force along a parabolic path varies from point to point.

To see how a line integral can be used to find work done in a force field 
consider an object moving along a path in the field, as shown in Figure 15.13. To
determine the work done by the force, you need consider only that part of the force
that is acting in the same direction as that in which the object is moving (or the 
opposite direction). This means that at each point on you can consider the 
projection of the force vector onto the unit tangent vector On a small 
subarc of length the increment of work is

where is a point in the subarc. Consequently, the total work done is given
by the following integral.

At each point on the force in the direction of motion is 
Figure 15.13

This line integral appears in other contexts and is the basis of the following definition
of the line integral of a vector field. Note in the definition that

 � F 
 dr.

 � F 
 r��t� dt

 F 
 T ds � F 

r��t�

�r��t�� �r��t�� dt

�F 
 T�T.C,

x

y

(F   T)T•

T
F

z

C

x

y

z

(F   T)T•

T

C

T has the
direction
of F.

x

y

(F   T)T•

F

T

C

z

W � �
C

 F�x, y, z� 
 T�x, y, z� ds

ith�xi, yi, zi�

 � �F�xi, yi, zi� 
 T�xi, yi, zi�
 �si

 �Wi � �force��distance�

�si,
T.FF 
 T

C,

C
F,
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Inverse square force field F

Vectors along a parabolic path in the force
field 
Figure 15.12

F

DEFINITION OF THE LINE INTEGRAL OF A VECTOR FIELD

Let be a continuous vector field defined on a smooth curve given by 
The line integral of on is given by

�
C

 F 
 dr � �
C

 F 
 T ds � �b

a

 F�x�t�, y�t), z�t�� 
 r��t� dt.

CFa � t � b.
r�t�,CF
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EXAMPLE 6 Work Done by a Force

Find the work done by the force field

Force field 

on a particle as it moves along the helix given by

Space curve 

from the point to as shown in Figure 15.14.

Solution Because

it follows that and So, the force field can be written
as

To find the work done by the force field in moving a particle along the curve use
the fact that

and write the following.

■ �
3�

4

 �
1
4

 t�
3�

0

 � �3�

0
 
1
4

 dt

 � �3�

0
�1

2
 sin t cos t �

1
2

 sin t cos t �
1
4� dt

 � �3�

0
 ��

1
2

 cos t i �
1
2

 sin tj �
1
4

k� 
 ��sin t i � cos tj � k� dt

 � �b

a

 F�x�t�, y�t�, z�t�� 
 r��t� dt

 W � �
C

 F 
 dr

r��t� � �sin t i � cos tj � k

C,

F�x�t�, y�t�, z�t�� � �
1
2

 cos t i �
1
2

 sin tj �
1
4

k.

z�t� � t.y�t� � sin t,x�t� � cos t,

 � cos t i � sin tj � tk

 r�t� � x�t�i � y�t�j � z�t�k

��1, 0, 3��,�1, 0, 0�

Cr�t� � cos t i � sin tj � tk

FF�x, y, z� � �
1
2

 x i �
1
2

 yj �
1
4

k
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y

2

−2

−1

1

2

−2

−1

3π

π

x

(−1, 0, 3  )

(1, 0, 0)

πz

Figure 15.14

y

x

Generated by Mathematica

z

Figure 15.15

NOTE In Example 6, note that the and components of the force field end up contributing
nothing to the total work. This occurs because in this particular example the component of the
force field is the only portion of the force that is acting in the same (or opposite) direction in
which the particle is moving (see Figure 15.15). ■

z-
y-x-

The computer-generated view of the force field in Example 6
shown in Figure 15.15 indicates that each vector in the force field points toward
the axis.z-

TECHNOLOGY
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For line integrals of vector functions, the orientation of the curve is important.
If the orientation of the curve is reversed, the unit tangent vector is changed to

and you obtain

EXAMPLE 7 Orientation and Parametrization of a Curve

Let and evaluate the line integral for each parabolic curve
shown in Figure 15.16.

a.

b.

Solution

a. Because and

the line integral is

b. Because and

the line integral is

The answer in part (b) is the negative of that in part (a) because and represent
opposite orientations of the same parabolic segment. ■

C2C1

 � �
69
2

.

 � 
�
t4

2
� t3 � 2t2�

4

1

 � �4

1
 ��2t3 � 3t2 � 4t� dt

 � �4

1
 �4t � t2 � 4t2 � 2t3� dt

 �
C2

 F 
 dr � �4

1
 ��4t � t2�i � t2j
 
 �i � �4 � 2t�j
 dt

F�x�t�, y�t�� � �4t � t2�i � t2j

r2� �t� � i � �4 � 2t�j

 �
69
2

.

 � 
�
t4

2
� 7t3 � 34t2 � 64t�3

0

 � �3

0
 ��2t3 � 21t2 � 68t � 64� dt

 � �3

0
 ��4t � t2 � 64 � 64t � 20t2 � 2t3� dt

 �
C1

 F 
 dr � �3

0
 ��4t � t2�i � �4 � t�2j
 
 ��i � �4 � 2t�j
 dt

F�x�t�, y�t�� � �4t � t2�i � �4 � t�2j

r1� �t� � �i � �4 � 2t�j

C2: r2�t� � t i � �4t � t2�j,  1 � t � 4

C1: r1�t� � �4 � t�i � �4t � t2�j,  0 � t � 3

�C F 
 drF�x, y� � yi � x2j

�
�C

 F 
 dr � ��
C

 F 
 dr.

�T�t�,
T�t�

C
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32

4

3

2

1

1

x

y

(4, 0)

C1
C2

(1, 3)

r2(t) = ti + (4t − t2)j

r1(t)  = (4 − t)i + (4t − t2)j

C2:

C1:

Figure 15.16

NOTE Although the value of the line
integral in Example 7 depends on the
orientation of it does not depend on
the parametrization of To see this, let

be represented by

where The graph of this
curve is the same parabolic segment
shown in Figure 15.16. Does the value of
the line integral over agree with the
value over or Why or why not?C2?C1

C3

�1 � t � 2.

r3 � �t � 2�i � �4 � t2�j

C3

C.
C,
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Line Integrals in Differential Form
A second commonly used form of line integrals is derived from the vector field nota-
tion used in the preceding section. If is a vector field of the form 
and is given by then is often written as 

This differential form can be extended to three variables. The parentheses are often
omitted, as follows.

and

Notice how this differential notation is used in Example 8.

EXAMPLE 8 Evaluating a Line Integral in Differential Form

Let be the circle of radius 3 given by

as shown in Figure 15.17. Evaluate the line integral

Solution Because and you have and
So, the line integral is

■    �
243�

4
.

    � 81
sin 2t
2

�
3
8

 t �
3 sin 4t

32 �
2�

0

    � 81�2�

0

cos 2t �

3
4�

1 � cos 4t
2 �� dt

    � 81�2�

0
�cos2 t � sin2 t �

3
4

 sin2 2t� dt

    � 81�2�

0
�cos4 t � sin4 t � 3 cos2 t sin2 t� dt

    � �2�

0
 ��27 sin3 t���3 sin t� � �27 cos3 t � 81 cos t sin2 t��3 cos t�
 dt

    � �
C

 y3 dx � �x3 � 3xy2� dy

 �
C

 M dx � N dy

dy � 3 cos t dt.
dx � �3 sin t dty � 3 sin t,x � 3 cos t

�
C

 y3 dx � �x3 � 3xy2� dy.

0 � t � 2�r�t� � 3 cos t i � 3 sin tj,

C

�
C

 M dx � N dy � P dz�
C

 M dx � N dy

 � �
C

 �M dx � N dy�

 � �b

a

 �M 
dx
dt

� N 
dy
dt� dt

 � �b

a

 �Mi � Nj� 
 �x��t�i � y��t�j� dt

 �
C

 F 
 dr � �
C

 F 

dr
dt

 dt

M dx � N dy.F 
 drr�t� � x�t�i � y�t�j,C
F�x, y� � Mi � Nj,F
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NOTE The orientation of affects the
value of the differential form of a line
integral. Specifically, if has the
orientation opposite to that of then

So, of the three line integral forms 
presented in this section, the orientation of

does not affect the form 
but it does affect the vector form and the
differential form.

�C  f �x, y� ds,C

 ��
C

 M dx � N dy.

�
�C

 M dx � N dy �

C,
�C

C

x

r(t) = 3 cos ti + 3 sin tj

2

2

4

4

−2

−2

−4

−4

y

Figure 15.17
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For curves represented by you can let and obtain the
parametric form

and

Because for this form, you have the option of evaluating the line integral in
the variable or the variable This is demonstrated in Example 9.

EXAMPLE 9 Evaluating a Line Integral in Differential Form

Evaluate

where is the parabolic arc given by from to as shown in
Figure 15.18.

Solution Rather than converting to the parameter you can simply retain the
variable and write

Then, in the direction from to the line integral is

See Example 7. ■�
69
2

. � 
2x2 � x3 �
x4

2 �
1

4

 � �1

4
 �4x � 3x2 � 2x3� dx

 �
C

 y dx � x2 dy � �1

4
 ��4x � x2� dx � x2�4 � 2x� dx


�1, 3�,�4, 0�

dy � �4 � 2x� dx.y � 4x � x2

x
t,

�1, 3�,�4, 0�y � 4x � x2C

�
C

 y dx � x2 dy

t.x
dx � dt

a � t � b.y � g�t�,x � t

x � ta � x � b,y � g�x�,
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3

2

1

4321

4

x

C: y = 4x − x2

y

(1, 3)

(4, 0)

Figure 15.18

E X P L O R A T I O N

Finding Lateral Surface Area The figure below shows a piece of tin that has
been cut from a circular cylinder. The base of the circular cylinder is modeled
by At any point on the base, the height of the object is
given by

Explain how to use a line integral to find the surface area of the piece of tin.

. 

x
y 

1 + cos πx
4

x2 + y2 = 9
(x, y) 

2 

1

−2
−1

z

3

3

f �x, y� � 1 � cos 
�x
4

.

�x, y�x2 � y2 � 9.
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In Exercises 1–6, find a piecewise smooth parametrization of
the path (Note that there is more than one correct answer.)

1. 2.

3. 4.

5. 6.

In Exercises 7–10, evaluate the line integral along the given
path.

7. 8.

9. 10.

In Exercises 11–14, (a) find a parametrization of the path and
(b) evaluate

along 

11. line segment from to 

12. line segment from to 

13. counterclockwise around the circle from 
to 

14. counterclockwise around the circle from 
to 

In Exercises 15–18, (a) find a parametrization of the path 
and (b) evaluate

along 

15. axis from to 

16. axis from to 

17. counterclockwise around the triangle with vertices ,
and 

18. counterclockwise around the square with vertices ,
, , and 

In Exercises 19 and 20, (a) find a piecewise smooth parametriza-
tion of the path shown in the figure, and (b) evaluate

along 

19. 20.

Mass In Exercises 21 and 22, find the total mass of two turns
of a spring with density in the shape of the circular helix

21.

22.

Mass In Exercises 23–26, find the total mass of the wire with
density 

23.

24.

25.

26.
0 � t � 2��k > 0�,

	�x, y, z� � k � zr�t� � 2 cos ti � 2 sin tj � 3tk,

1 � t � 3�k > 0�,	�x, y, z� � kzr�t� � t2i � 2tj � tk,

0 � t � 1	�x, y� �
3
4

y,r�t� � t2i � 2tj,

0 � t � �	�x, y� � x � y,r�t� � cos ti � sin tj,

�.

	�x, y, z� � z

	�x, y, z� �
1
2�x2 � y2 � z2�

r�t� � 2 cos t i 1 2 sin t j 1 tk, 0 � t � 4�.

�

x

y

z

C
1

1

(0, 0, 0) (0, 1, 0)

(0, 1, 1)

z

(0, 0, 0)

(1, 0, 1)

(1, 0, 0)

(1, 1, 1)

C

1

1
x

y

C.

�
C
 �2x 1 y2 � z� ds

C

�0, 2��2, 2��2, 0�
�0, 0�C:

�0, 1��1, 0�,
�0, 0�C:

y � 9y � 1y-C:

x � 1x � 0x-C:

C.

�
C
 �x 1 4	y� ds

C,

�0, 2�
�2, 0�x2 � y2 � 4C:

�0, 1�
�1, 0�x2 � y2 � 1C:

�2, 4��0, 0�C:

�1, 1��0, 0�C:

C.

�
C

 �x2 1 y2� ds

C,

 0 � t � 1 0 � t � ��2

C: r�t� � 12ti � 5tj � 84tkC: r�t� � sin ti � cos tj � 2k

�
C

 2xyz ds�
C

 �x2 � y2 � z2� ds

 0 � t � 2 0 � t � 1

C: r�t� � ti � �2 � t�jC: r�t� � 4ti � 3tj

�
C

 3�x � y� ds�
C

 xy ds

x

2

4

2

−2

−4

−2

C

x2

16
+ = 1

y
y2

9

x

2

1

21

−2

−2 −1

x2 + y2 = 9

C

y

2

4

5

1

3

x
2 4 51 3

C

(5, 4)

y

x

2

1

3

21 3

C

(3, 3)

y

x

2

4

1

3

2 41 3

C (2, 4)

y = x2

y

x

1

1

C

(1, 1)

y = x

y =    x

y

C.
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15.2 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.
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In Exercises 27–32, evaluate

where is represented by 

27.

28.

29.

30.

31.

32.

In Exercises 33 and 34, use a computer algebra system to
evaluate the integral

where is represented by 

33.

34.

Work In Exercises 35–40, find the work done by the force field
F on a particle moving along the given path.

35.

from to 

Figure for 35 Figure for 36

36.

from to 

37.

counterclockwise around the triangle with vertices ,
, and (Hint: See Exercise 17a.)

Figure for 37 Figure for 38

38.

counterclockwise along the semicircle from
to 

39.

Figure for 39 Figure for 40

40.

line from to 

In Exercises 41– 44, determine whether the work done along the
path is positive, negative, or zero. Explain.

41.

42.

x

C

y

x

C

y

C

�5, 3, 2��0, 0, 0�C:

F�x, y, z� � yzi � xzj � xyk

y

x

z

5

3

3

2

1C

yx

z

π

3

π2

3

−3 −3

C

0 � t � 2�C: r�t� � 2 cos ti � 2 sin tj � tk,

F�x, y, z� � x i � yj � 5zk

��2, 0��2, 0�
y � 	4 � x2C:

F�x, y� � �yi � xj

−1−2 1 2
−1

1

3

x

y

C

1

1

x

y

(0, 1)

C

�0, 1��1, 0�
�0, 0�C:

F�x, y� � xi � yj

�0, 1��1, 0�y � sin3 tC: x � cos3 t,

F�x, y� � x2i � xyj

1

1

x

y

C

2 4 6 8

2

4

6

8

x

y

(2, 8)

C

�2, 8��0, 0�C: x � t, y � t3
F�x, y� � x i � 2yj

0 � t � 2C: r�t� � ti � tj � etk,

F�x, y, z� �
xi � yj � zk
	x2 � y2 � z2

1 � t � 3C: r�t� � ti � t2j � ln tk,

F�x, y, z� � x2zi � 6yj � yz2k

r�t�.C

�
C
 F 
 dr

0 � t � �C: r�t� � 2 sin ti � 2 cos tj �
1
2t2k,

F�x, y, z� � x2i � y2j � z2k

0 � t � 1C: r�t� � ti � t2j � 2tk,

F�x, y, z� � xyi � xz j � yzk

�2 � t � 2C: r�t� � ti � 	4 � t2j,

F�x, y� � 3x i � 4yj

0 � t � ��2C: r�t� � cos ti � sin tj,

F�x, y� � 3x i � 4yj

0 � t � ��2C: r�t� � 4 cos ti � 4 sin tj,

F�x, y� � xyi � yj

0 � t � 1C: r�t� � ti � tj,

F�x, y� � xi � yj

r�t�.C

�
C
 F 
 dr
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43.

44.

In Exercises 45 and 46, evaluate for each curve.
Discuss the orientation of the curve and its effect on the value of
the integral.

45.

(a)

(b)

46.

(a)

(b)

In Exercises 47– 50, demonstrate the property that

regardless of the initial and terminal points of if the tangent
vector is orthogonal to the force field F.

47.

48.

49.

50.

In Exercises 51–54, evaluate the line integral along the path 
given by where 

51. 52.

53. 54.

In Exercises 55–62, evaluate the integral

along the path 

55. axis from to 

56. axis from to 

57. line segments from to and to 

58. line segments from to and to 

59. arc on from to 

60. arc on from to 

61. parabolic path from to 

62. elliptic path from to 

Lateral Surface Area In Exercises 63–70, find the area of the
lateral surface (see figure) over the curve in the -plane and
under the surface where

Lateral surface area 

63. line from to 

64. line from to 

65. from to 

66. from to 

67. from to 

68. from to 

69. from to 

70.

71. Engine Design A tractor engine has a steel component with
a circular base modeled by the vector-valued function

Its height is given by 
(All measurements of the component are in centimeters.)

(a) Find the lateral surface area of the component.

(b) The component is in the form of a shell of thickness 0.2
centimeter. Use the result of part (a) to approximate the
amount of steel used in its manufacture.

(c) Draw a sketch of the component.

z � 1 � y2.r�t� � 2 cos t i � 2 sin tj.

C: x2 � y2 � 4f �x, y� � x2 � y2 � 4,

�0, 1��1, 0�C: y � 1 � x2f �x, y� � xy,

�0, 1��1, 0�C: y � 1 � x2f �x, y� � y � 1,

�0, 1��1, 0�C: y � 1 � x2f �x, y� � h,

�0, 1��1, 0�C: x2 � y2 � 1f �x, y� � x � y,

�0, 1��1, 0�C: x2 � y2 � 1f �x, y� � xy,

�4, 4)�0, 0�C:f �x, y� � y,

�3, 4��0, 0�C:f �x, y� � h,

x

y
P

Q

Δsi

(xi, yi)

C: Curve in xy-plane

Surface:
z = f (x, y)

Lateral
surface

z

� �
C

 f �x, y� ds.

z � f �x, y�,
xyC

�4, 0��0, 3�y � 3 cos t,x � 4 sin t,C:

�2, 8��0, 0�y � 2t2,x � t,C:

�4, 8��0, 0�y � x3�2C:

�1, 0��0, 1�y � 1 � x2C:

�2, �3��0, �3��0, �3��0, 0�C:

�3, 3��3, 0��3, 0��0, 0�C:

y � 2y � 0y-C:

x � 5x � 0x-C:

C.

�
C
 �2x � y� dx 1 �x 1 3y� dy

�
C

 �3y � x� dx � y2 dy�
C

 xy dx �  y dy

�
C

 �x � 3y2� dx�
C

 �x � 3y2� dy

0 � t � 1.y � 10t,x � 2t,
C

C: r�t� � 3 sin ti � 3 cos tj

F�x, y� � xi � yj

C: r�t� � t i � t2j

F�x, y� � �x3 � 2x2�i � �x �
y
2�j

C: r�t� � t i � t3j

F�x, y� � �3yi � xj

C: r�t� � t i � 2tj

F�x, y� � yi � xj

r� �t�
C,

�
C
 F 
 dr � 0

0 � t � ��2r2�t� � �1 � 2 cos t�i � �4 cos2 t�j,
0 � t � 2r1�t� � �t � 1�i � t2j,

F�x, y� � x2yi � xy3�2j

0 � t � 2r2�t� � 2�3 � t�i � �2 � t�j,
1 � t � 3r1�t� � 2ti � �t � 1�j,

F�x, y� � x2i � xyj

�C F 
 dr

x

y

C

x

y

C
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72. Building Design The ceiling of a building has a height above
the floor given by and one of the walls follows
a path modeled by Find the surface area of the wall if

(All measurements are in feet.)

Moments of Inertia Consider a wire of density given by
the space curve

The moments of inertia about the - and -axes are given by

In Exercises 73 and 74, find the moments of inertia for the wire
of density 

73. A wire lies along and
with density 

74. A wire lies along and
with density 

75. Investigation The top outer edge of a solid with vertical sides
and resting on the plane is modeled by

where all measure-
ments are in centimeters. The intersection of the plane

with the top of the solid is a horizontal
line.

(a) Use a computer algebra system to graph the solid.

(b) Use a computer algebra system to approximate the lateral
surface area of the solid.

(c) Find (if possible) the volume of the solid.

76. Work A particle moves along the path from the point
to the point The force field is measured at five

points along the path, and the results are shown in the table. Use
Simpson’s Rule or a graphing utility to approximate the work
done by the force field.

77. Work Find the work done by a person weighing 175 pounds
walking exactly one revolution up a circular helical staircase of
radius 3 feet if the person rises 10 feet.

78. Investigation Determine the value of such that the work
done by the force field

on an object moving along the parabolic path 
between the points and is a minimum. Compare
the result with the work required to move the object along the
straight-line path connecting the points.

True or False? In Exercises 83–86, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

83. If is given by then

84. If then 

85. The vector functions and 
define the same curve.

86. If then and are orthogonal.

87. Work Consider a particle that moves through the force field
from the point to the point

along the curve Find the value of 
such that the work done by the force field is 1.

ky � t.x � kt�1 � t�,�0, 1�
�0, 0�F�x, y� � � y � x�i � xyj

TF�
C

F 
 T ds � 0,

0 � t � 1,�1 � t�i � �1 � t�2j,
r2 �0 � t � 1,r1 � t i � t2j,

�
C1

 f �x, y� ds � �
C2

 f �x, y� ds � 0.C2 � �C1,

�
C

 xy ds � �1

0
 t2 dt.

0 � t � 1,y�t� � t,x�t� � t,C

�1, 0���1, 0�
y � c�1 � x2�

F�x, y� � 15��4 � x2y�i � xyj


c

F�1, 1�.�0, 0�
y � x2

y � b ��3 < b < 3�

r�t� � 3 cos t i � 3 sin tj � �1 � sin2 2t�k,
xy-

	�x, y� � y.a > 0,
0 � t � 2�r�t� � a cos ti � a sin tj,

	�x, y� � 1.a > 0,
0 � t � 2�r�t� � a cos ti � a sin tj,

�.

Iy � �
C
 x2� �x, y� ds.

Ix � �
C
 y2� �x, y� ds

yx

C: r�t� � x�t�i 1 y�t�j,  0 � t � b.

� �x, y�

0 � x � 40.
y � x3�2.
z � 20 �

1
4x,

1082 Chapter 15 Vector Analysis
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�x, y� �0, 0� �1
4, 1

16� �1
2, 14� �3

4, 9
16� �1, 1�

F�x, y� �5, 0� �3.5, 1� �2, 2� �1.5, 3� �1, 5�

79. Define a line integral of a function along a smooth curve
in the plane and in space. How do you evaluate the line

integral as a definite integral?

80. Define a line integral of a continuous vector field on a
smooth curve How do you evaluate the line integral as a
definite integral?

81. Order the surfaces in ascending order of the lateral surface
area under the surface and over the curve from

to in the plane. Explain your ordering
without doing any calculations.

(a) (b)

(c) (d) z4 � 10 � x � 2yz3 � 2

z2 � 5 � xz1 � 2 � x

xy-�4, 2��0, 0�
y � 	x

C.
F

C
f

WRITING ABOUT CONCEPTS

82. For each of the following, determine whether the work done
in moving an object from the first to the second point
through the force field shown in the figure is positive,
negative, or zero. Explain your answer. 

(a) From to 

(b) From to 

(c) From to �0, 3��5, 0�
�0, 3���3, 0�

x

y�3, 3���3, �3�

CAPSTONE
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15.3 Conservative Vector Fields and Independence of Path 1083

15.3 Conservative Vector Fields and Independence of Path
■ Understand and use the Fundamental Theorem of Line Integrals.
■ Understand the concept of independence of path.
■ Understand the concept of conservation of energy.

Fundamental Theorem of Line Integrals
The discussion at the beginning of the preceding section pointed out that in a gravita-
tional field the work done by gravity on an object moving between two points in the
field is independent of the path taken by the object. In this section, you will study an 
important generalization of this result—it is called the Fundamental Theorem of
Line Integrals.

To begin, an example is presented in which the line integral of a conservative
vector field is evaluated over three different paths.

EXAMPLE 1 Line Integral of a Conservative Vector Field

Find the work done by the force field

on a particle that moves from to along each path, as shown in Figure 15.19.

a. b. c.

Solution

a. Let for so that

and

Then, the work done is

b. Let for so that

and

Then, the work done is

c. Let for so that

and

Then, the work done is

So, the work done by a conservative vector field is the same for all paths. ■

W � �
C3

 F � dr � �2

0
 

5
128

t4 dt �
1

128
t5�

2

0
�

1
4

.

F�x, y� �
1
32

t4 i �
1
16

t2j.dr � �1
2

i �
3
8

t2j� dt

0 � t � 2,r�t� �
1
2ti �

1
8t3j

W � �
C2

 F � dr � �1

0
 
5
8

t3�2 dt �
1
4

t5�2�
1

0
�

1
4

.

F�x, y� �
1
2

t3�2i �
1
4

t2j.dr � �i �
1

2	t
j� dt

0 � t � 1,r�t� � ti � 	t j

W � �
C1

 F � dr � �1

0
 
3
4

t2 dt �
1
4

t3�
1

0
�

1
4

.

F�x, y� �
1
2

t2i �
1
4

t2j.dr � �i � j� dt

0 � t � 1,r�t� � ti � tj

C3: y � x3C2: x � y2C1: y � x

�1, 1��0, 0�

F�x, y� �
1
2

xyi �
1
4

x2j

x
1

1 (1, 1)

(0, 0)

C1

C1: y = x

y

(a)

x
1

1 (1, 1)

(0, 0)

C2

C2: x = y2

y

(b)

x
1

1 (1, 1)

(0, 0)

C3

C3: y = x3

y

(c)
Figure 15.19

1053714_1503.qxp  10/27/08  1:45 PM  Page 1083



In Example 1, note that the vector field is conservative
because where In such cases, the following theorem
states that the value of is given by

A proof is provided only for a smooth curve. For piecewise smooth curves,
the procedure is carried out separately on each smooth portion. Because 

it follows that

and, by the Chain Rule (Theorem 13.6), you have

The last step is an application of the Fundamental Theorem of Calculus. ■

In space, the Fundamental Theorem of Line Integrals takes the following form.
Let be a piecewise smooth curve lying in an open region and given by

If is conservative and and are continuous, then

where 
The Fundamental Theorem of Line Integrals states that if the vector field is

conservative, then the line integral between any two points is simply the difference in
the values of the potential function at these points.f

F
F�x, y, z� � �f�x, y, z�.

 � f �x�b�, y�b�, z�b�� � f �x�a�, y�a�, z�a��

 �
C

 F � dr � �
C

 �f � dr

PN,M,F�x, y, z� � Mi � Nj � Pk

a � t � b.r�t� � x�t�i � y�t�j � z�t�k,

QC

 � f �x�b�, y�b�� � f�x�a�, y�a��.

�
C

 F � dr � �b

a

 
d
dt


 f�x�t�, y�t��� dt

 � �b

a

 �fx�x, y�dx
dt

� fy�x, y�dy
dt � dt

�
C

 F � dr � �b

a

 F �
dr
dt

 dt

�f�x, y� � fx�x, y�i � fy�x, y�j,
F�x, y� �

PROOF

 �
1
4

.

 �
1
4

� 0

 �
C

 F � dr � f�x�1�, y�1�� � f�x�0�, y�0��


C  F � dr
f�x, y� �

1
4x2y.F�x, y� � �f�x, y�,

F�x, y� �
1
2xyi �

1
4x2j

1084 Chapter 15 Vector Analysis

THEOREM 15.5 FUNDAMENTAL THEOREM OF LINE INTEGRALS

Let be a piecewise smooth curve lying in an open region and given by

If is conservative in and and are continuous in 
then

where is a potential function of That is, F�x, y� � �f�x, y�.F.f

�
C

 F � dr � �
C

 �f � dr � f �x�b�, y�b�� � f�x�a�, y�a��

R,NMR,F�x, y� � Mi � Nj

a � t � b.r�t� � x�t�i � y�t�j,

RC

NOTE Notice how the Fundamental
Theorem of Line Integrals is similar to
the Fundamental Theorem of Calculus
(Section 4.4), which states that

where F��x� � f �x�.

�b

a

 f �x� dx � F�b� � F�a�
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EXAMPLE 2 Using the Fundamental Theorem of Line Integrals

Evaluate where is a piecewise smooth curve from to and

as shown in Figure 15.20.

Solution From Example 6 in Section 15.1, you know that is the gradient of 
where

Consequently, is conservative, and by the Fundamental Theorem of Line Integrals,
it follows that

Note that it is unnecessary to include a constant as part of because it is canceled
by subtraction.

EXAMPLE 3 Using the Fundamental Theorem of Line Integrals

Evaluate where is a piecewise smooth curve from to and

as shown in Figure 15.21.

Solution From Example 8 in Section 15.1, you know that is the gradient of 
where Consequently, is conservative, and by the
Fundamental Theorem of Line Integrals, it follows that

■

In Examples 2 and 3, be sure you see that the value of the line integral is the same
for any smooth curve that has the given initial and terminal points. For instance, in
Example 3, try evaluating the line integral for the curve given by

You should obtain

 � 17.

 �
C

 F � dr � �1

0
 �30t2 � 16t � 1� dt

r�t� � �1 � t�i � �1 � t�j � 3tk.

C

 � 17.

 � 
�0�2�2� � �2��3�2� � 
�1�2�1� � �1��0�2�

 �
C

 F � dr � f�0, 2, 3� � f �1, 1, 0�

Ff�x, y, z� � x2y � yz2 � K.
fF

F�x, y, z� � 2xyi � �x2 � z2�j � 2yzk

�0, 2, 3��1, 1, 0�C�
C

 F � dr,

f,K

 � 4.

 � �12�2� �
22

2 � � ���1�2�4� �
42

2 �

 �
C

 F � dr � f�1, 2� � f ��1, 4�

F

f�x, y� � x2y �
y2

2
� K.

fF

F�x, y� � 2xyi � �x2 � y�j

�1, 2���1, 4�C�
C

 F � dr,

15.3 Conservative Vector Fields and Independence of Path 1085

x

1

1

2

2

3

4

−1−2

(1, 2)

(−1, 4)

C

y
F(x, y) = 2xyi + (x2 − y)j

Using the Fundamental Theorem of Line
Integrals, 
Figure 15.20


C F � dr.

C

(1, 1, 0)

(0, 2, 3)

x y

2
2

1

1

2

3

z

F(x, y, z) = 2xyi + (x2 + z2)j + 2yzk

Using the Fundamental Theorem of Line
Integrals, 
Figure 15.21


C F � dr.
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Independence of Path
From the Fundamental Theorem of Line Integrals it is clear that if is continuous 
and conservative in an open region the value of is the same for every
piecewise smooth curve from one fixed point in to another fixed point in This
result is described by saying that the line integral is independent of path in
the region 

A region in the plane (or in space) is connected if any two points in the region
can be joined by a piecewise smooth curve lying entirely within the region, as shown
in Figure 15.22. In open regions that are connected, the path independence of

is equivalent to the condition that is conservative.

If is conservative, then, by the Fundamental Theorem of Line Integrals,
the line integral is independent of path. Now establish the converse for a plane region

Let and let be a fixed point in If is any point
in choose a piecewise smooth curve running from to and define 

by

The existence of in is guaranteed by the fact that is connected. You can show
that is a potential function of by considering two different paths between 
and For the first path, choose in such that This is possible
because is open. Then choose and as shown in Figure 15.23. Using the
independence of path, it follows that

Because the first integral does not depend on and because in the second
integral, you have

and it follows that the partial derivative of with respect to is For the
second path, choose a point Using reasoning similar to that used for the first
path, you can conclude that Therefore,

and it follows that is conservative. ■F

 � F�x, y�
 � M i � Nj

 �f�x, y� � fx�x, y�i � fy�x, y�j

fy�x, y� � N.
�x, y1�.

fx�x, y� � M.xf

f�x, y� � g�y� � �
C2

 M dx

dy � 0x,

 � �
C1

 M dx � N dy � �
C2

M dx � N dy.

f�x, y� � �
C

 M dx � N dy

C2,C1R
x 	 x1.R�x1, y��x, y�.

�x0, y0�Ff
RRC

� �
C

 M dx � N dy.f�x, y� � �
C

 F � dr

f
�x, y�,�x0, y0�CR,
�x, y�R.�x0, y0�F�x, y� � Mi � Nj,R.

FPROOF

F
C F � dr

R.

C F � dr

R.RC

C F � drR,

F
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R1 is connected.

R1

R2 is not
connected.

R2

C
A

B

Figure 15.22

C2

C3

C4C1

(x0, y0)

(x1, y)

(x, y1)

(x, y)

Figure 15.23

THEOREM 15.6 INDEPENDENCE OF PATH AND CONSERVATIVE 
VECTOR FIELDS

If is continuous on an open connected region, then the line integral

is independent of path if and only if is conservative.F

�
C

 F � dr

F
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EXAMPLE 4 Finding Work in a Conservative Force Field

For the force field given by

show that is independent of path, and calculate the work done by on an
object moving along a curve from to 

Solution Writing the force field in the form you have
and and it follows that

So, is conservative. If is a potential function of then

By integrating with respect to and separately, you obtain

By comparing these three versions of you can conclude that

Therefore, the work done by along any curve from to is

■

How much work would be done if the object in Example 4 moved from the point
to and then back to the starting point The

Fundamental Theorem of Line Integrals states that there is zero work done.
Remember that, by definition, work can be negative. So, by the time the object gets
back to its starting point, the amount of work that registers positively is canceled out
by the amount of work that registers negatively.

�0, 
�2, 1�?�1, 
, 3��0, 
�2, 1�

 � 4 � e.

 � ��e � 6� � �0 � 2�

 � �ex cos y � 2z�
�1, 
, 3�

�0, 
�2, 1�

 W � �
C

 F � dr

�1, 
, 3��0, 
�2, 1�CF

f�x, y, z� � ex cos y � 2z � K.

f�x, y, z�,

f�x, y, z� � � fz�x, y, z� dz � � 2 dz � 2z � k�x, y�.

f�x, y, z� � � fy�x, y, z� dy � � �ex sin y dy � ex cos y � h�x, z�

f�x, y, z� � � fx�x, y, z� dx � � ex cos y dx � ex cos y � g�y, z�

zy,x,

fz�x, y, z� � 2.

fy�x, y, z� � �ex sin y

fx�x, y, z� � ex cos y

F,fF

�N
�x

� �ex sin y �
�M
�y

.

�P
�x

� 0 �
�M
�z

�P
�y

� 0 �
�N
�z

P � 2,N � �ex sin y,M � ex cos y,
F�x, y, z� � Mi � Nj � Pk,

�1, 
, 3�.�0, 
�2, 1�C
F
C F � dr

F�x, y, z� � ex cos yi � ex sin yj � 2k
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A curve given by for is closed if By the
Fundamental Theorem of Line Integrals, you can conclude that if is continuous and
conservative on an open region then the line integral over every closed curve is 0.

EXAMPLE 5 Evaluating a Line Integral

Evaluate where

and is the semicircular path from to as shown in Figure 15.24.

Solution You have the following three options.

a. You can use the method presented in the preceding section to evaluate the line
integral along the given curve. To do this, you can use the parametrization

where For this parametrization, it follows
that and

This integral should dampen your enthusiasm for this option.

b. You can try to find a potential function and evaluate the line integral by the
Fundamental Theorem of Line Integrals. Using the technique demonstrated in
Example 4, you can find the potential function to be 
and, by the Fundamental Theorem,

c. Knowing that is conservative, you have a third option. Because the value of the
line integral is independent of path, you can replace the semicircular path with a
simpler path. Suppose you choose the straight-line path from to 
Then, where So, and 

so that

Of the three options, obviously the third one is the easiest. ■

�
C1

F � dr � �
C2

F � dr � �2

0
1 dt � t�

2

0
� 2.

�3xy2 � 1�j � i � j,
F�x, y� � �y3 � 1�i �dr � i dt0 � t � 2.r�t� � ti,

�2, 0�.�0, 0�C2

F

W � �
C1

 F � dr � f�2, 0� � f�0, 0� � 2.

f�x, y� � xy3 � x � y � K,

�
C1

 F � dr � �


0
 �sin t � sin4 t � cos t � 3 sin2 t cos t � 3 sin2 t cos2 t� dt.

dr � r��t� dt � �sin t i � cos tj� dt,
0 � t � 
.r�t� � �1 � cos t�i � sin tj,

�2, 0�,�0, 0�C1

F�x, y� � �y3 � 1�i � �3xy2 � 1�j

�
C1

 F � dr,

CR,
F

r�a� � r�b�.a � t � br�t�C
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THEOREM 15.7 EQUIVALENT CONDITIONS

Let have continuous first partial derivatives in an
open connected region and let be a piecewise smooth curve in The
following conditions are equivalent.

1. is conservative. That is, for some function 

2. is independent of path.

3. for every closed curve in R.C�
C

 F � dr � 0

�
C

 F � dr

f.F � �fF

R.CR,
F�x, y, z� � Mi � Nj � Pk

NOTE Theorem 15.7 gives you options
for evaluating a line integral involving a
conservative vector field. You can use a
potential function, or it might be more
convenient to choose a particularly simple
path, such as a straight line.

C2: r(t) = ti

x
1

1

2(0, 0)

(2, 0)

C1

C2

y

C1: r(t) = (1 − cos t)i + sin tj

Figure 15.24
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Conservation of Energy
In 1840, the English physicist Michael Faraday wrote, “Nowhere is there a pure
creation or production of power without a corresponding exhaustion of something to
supply it.” This statement represents the first formulation of one of the most important
laws of physics—the Law of Conservation of Energy. In modern terminology, the
law is stated as follows: In a conservative force field, the sum of the potential and
kinetic energies of an object remains constant from point to point.

You can use the Fundamental Theorem of Line Integrals to derive this law. From
physics, the kinetic energy of a particle of mass and speed is The
potential energy of a particle at point in a conservative vector field is
defined as where is the potential function for 
Consequently, the work done by along a smooth curve from to is

as shown in Figure 15.25. In other words, work is equal to the difference in the
potential energies of and Now, suppose that is the position vector for a
particle moving along from to At any time the particle’s
velocity, acceleration, and speed are and 
respectively. So, by Newton’s Second Law of Motion, and the
work done by is

Equating these two results for produces

which implies that the sum of the potential and kinetic energies remains constant from
point to point.

p�A� � k�A� � p�B� � k�B�
p�A� � p�B� � k�B� � k�A�

W

 � k�B� � k�A�.

 �
1
2

m
v�b��2 �
1
2

m
v�a��2

 �
m
2 �
v�t��2�

b

a

 �
m
2 ��v�t��2�

b

a

 �
m
2

 �b

a

 
d
dt


�v�t��2� dt

 �
m
2

 �b

a

 
d
dt


v�t� � v�t�� dt

 � �b

a

 m
v��t� � v�t�� dt

 � �b

a

 F � v�t� dt � �b

a

 
mv��t�� � v�t� dt

 W � �
C

 F � dr � �b

a

 F � r��t� dt

F
F � ma�t� � m�v��t��,

v�t� � �v�t��,a�t� � r� �t�,v�t� � r��t�,
t,B � r�b�.A � r�a�C

r�t�B.A
W

 � p�A� � p�B�

 � �p�x, y, z��
B

A

W � �
C

 F � dr � f �x, y, z��
B

A

BACF
F.fp�x, y, z� � �f �x, y, z�,

F�x, y, z�p
k �

1
2 mv2.vm
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x

C

A

B

F

y

The work done by along is 

Figure 15.25

W � �
C

 F � dr � p�A� � p�B�.

CF

MICHAEL FARADAY (1791–1867)

Several philosophers of science have consid-
ered Faraday’s Law of Conservation of Energy
to be the greatest generalization ever 
conceived by humankind. Many physicists
have contributed to our knowledge of this law.
Two early and influential ones were James
Prescott Joule (1818–1889) and Hermann
Ludwig Helmholtz (1821–1894).
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In Exercises 1–4, show that the value of is the same for
each parametric representation of 

1.

(a)

(b)

2.

(a)

(b)

3.

(a)

(b)

4.

(a)

(b)

In Exercises 5–10, determine whether or not the vector field is
conservative.

5.

6.

7.

8.

9.

10.

In Exercises 11–24, find the value of the line integral

(Hint: If F is conservative, the integration may be easier on an
alternative path.)

11.

(a)

(b)

12.

(a)

(b) The closed path consisting of line segments from to
from to and then from to 

13.

(a)

(b)

(c)

14.

(a)

(b)

15.

(a) (b)

(c) (d)

16.

(a) (b)

(c) (d)

17.

(a) ellipse from to 

(b) parabola from to �0, 4��2, 0�y � 4 � x2C:

�0, 4��5, 0�x2

25
�

y 2

16
� 1C:

�
C

 2xy dx � �x2 � y 2� dy

x
−1

1

−1
(0, −1)

(0, 1)

C4

y
x =     1 − y2

x

2

4

6

8

1 2

(2, e2)

(0, 1)

C3

y = ex

y

x
−1

1

−1
(0, −1)

(0, 1)

C2

y
x =     1 − y2

x
1

1

2

2

3

3

4

4

(0, 0)

(2, 3)

(4, 1)
C1

y

�
C

 �2x � 3y � 1� dx � �3x � y � 5� dy

x
1−1

−1

(−1, 0) (1, 0)

C4

y
y =     1 − x2

1 2

1

(−1, −1) (1, −1)

(−1, 2) (2, 2)C3

y

x

x
1−1

−1

(−1, 0) (1, 0)

C2

y =     1 − x2
y

x
1

1

2

2

3

3

4

4

(0, 0)

(3, 4)

(4, 4)

C1

y

�
C

 y 2 dx � 2xy dy

0 � t � 2r2�t� � �t � 1� i �
1
3�t � 3� j,

1 � t � 3r1�t� � t i �
1
t

j,

F�x, y� � xy 2 i � 2x2y j

0 � t � 1r3�t� � t i � t 3j,

0 � t � 1r2�t� � t i � t 2j,

0 � t � 1r1�t� � t i � t j,

F�x, y� � y i � x j

�0, 3��3, 0��3, 0�,�0, 0��0, 0�,
�0, 3�

0 � t � 3r1�t� � t i � �t � 3� j,

F�x, y� � yexy i � xexy j

0 � t � 1r2�t� � t i � t3j,

0 � t � 1r1�t� � t i � t 2 j,

F�x, y� � 2xy i � x2 j

�
C
 F � dr.

F�x, y, z� � sin yz i � xz cos yz j � xy sin yzk

F�x, y, z� � y 2z i � 2xyz j � xy 2 k

F�x, y, z� � y ln z i � x ln z j �
xy
z

k

F�x, y� �
1
y2 � y i � xj�

F�x, y� � 15x2y 2 i � 10x3yj

F�x, y� � ex�sin y i � cos yj�

1 � w � e3r2�w� � �2 � ln w� i � �3 � ln w�j,

0 � t � 3r1�t� � �2 � t� i � �3 � t�j,

F�x, y� � y i � x2 j

0 � t � 3r2�t� � 	t � 1 i � 	t j,

0 � 
 �



3
r1�
� � sec 
 i � tan 
 j,

F�x, y� � y i � x j

0 � w � 2r2�w� � w2 i � w j,

0 � t � 4r1�t� � t i � 	t j,

F�x, y� � �x2 � y 2� i � x j

0 � 
 �



2
r2�
� � sin 
 i � sin2 
 j,

0 � t � 1r1�t� � t i � t 2j,

F�x, y� � x2 i � xy j

C.

C F � dr
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18.

(a)

(b)

19.

(a)

(b)

20.

(a)

(b)

21.

(a)

(b)

22.

(a)

(b)

23.

(a)

(b)

24.

(a)

(b)

In Exercises 25–34, evaluate the line integral using the
Fundamental Theorem of Line Integrals. Use a computer
algebra system to verify your results.

25.

smooth curve from to 

26.

smooth curve from to 

27.

line segment from to 

28.

line segment from to 

29.

cycloid from to 

30.

circle clockwise from to

31.

(a) line segment from to 

(b) line segments from to to 

(c) line segments from to to to

32. Repeat Exercise 31 using the integral

33.

smooth curve from to 

34.

smooth curve from to 

Work In Exercises 35 and 36, find the work done by the force
field F in moving an object from to 

35.

36.

37. Work A stone weighing 1 pound is attached to the end of a
two-foot string and is whirled horizontally with one end held
fixed. It makes 1 revolution per second. Find the work done by
the force that keeps the stone moving in a circular path.
[Hint: Use Force (mass)(centripetal acceleration).]

38. Work If is a constant force
vector field, show that the work done in moving a particle along
any path from to is 

39. Work To allow a means of escape for workers in a hazardous
job 50 meters above ground level, a slide wire is installed. 
It runs from their position to a point on the ground 50 meters
from the base of the installation where they are located. Show
that the work done by the gravitational force field for a
175-pound worker moving the length of the slide wire is the
same for each path.

(a)

(b)

40. Work Can you find a path for the slide wire in Exercise 39
such that the work done by the gravitational force field would
differ from the amounts of work done for the two paths given?
Explain why or why not.

r�t� � t i �
1
50�50 � t�2j

r�t� � t i � �50 � t�j

W � F � PQ
\

.QP

F�x, y, z� � a1i � a2j � a3k

�
F

Q�3, 2�P��1, 1�,F�x, y� �
2x
y

i �
x2

y 2 j;

Q�5, 9�P�0, 0�,F�x, y� � 9x2y 2 i � �6x3y � 1�j;

Q.P

�3, 4, 0��0, 0, 0�C:

�
C

 6x dx � 4z dy � �4y � 20z� dz

�


2
, 3, 4��0, 0, 0�C:

�
C

 �sin x dx � z dy � y dz

�
C

 zy dx � xz dy � xy dz.

�1, 1, 1�
�1, 1, 0��1, 0, 0��0, 0, 0�C:

�1, 1, 1��0, 0, 1��0, 0, 0�C:

�1, 1, 1��0, 0, 0�C:

�
C

 �z � 2y� dx � �2x � z� dy � �x � y� dz

�1, 5�
�7, 5��x � 4�2 � �y � 5�2 � 9C:

�
C

 
2x

�x2 � y2�2 dx �
2y

�x2 � y 2�2 dy

�2
, 0��0, 0�y � 1 � cos 
x � 
 � sin 
,C:

�
C

 ex sin y dx � ex cos y dy

�2	3, 2��1, 1�C:

�
C

 
y dx � x dy

x2 � y 2

�3


2
, 




2��0, �
�C:

�
C

 cos x sin y dx � sin x cos y dy

�3, 2���1, 1�C:

�
C

 
2�x � y�i � 2�x � y�j� � dr

�3, 8��0, 0�C:

�
C

 �3y i � 3x j� � dr

0 � t � 1r2�t� � 4t i � 4tj,

0 � t � 2r1�t� � t2 i � t 2 j,

F�x, y, z� � y sin z i � x sin z j � xy cos xk

0 � t � 1r2�t� � �4 � 8t� i � 3k,

0 � t � 
r1�t� � 4 cos t i � 4 sin t j � 3k,

F�x, y, z� � ez�y i � x j � xyk�
0 � t � 1r2�t� � �1 � 2t� i � 
tk,

0 � t � 
r1�t� � cos t i � sin t j � tk,

F�x, y, z� � �y i � x j � 3xz2 k

0 � t � 1r2�t� � t i � tj � �2t � 1�2k,

0 � t � 1r1�t� � t i � t 2j � k,

F�x, y, z� � �2y � x� i � �x2 � z� j � �2y � 4z�k

0 � t � 1r2�t� � �1 � 2t� i � 
2tk,

0 � t � 
r1�t� � cos t i � sin t j � t2 k,

F�x, y, z� � i � z j � yk

0 � t � 2r2�t� � t 2 i � tj � t 2k,

0 � t � 4r1�t� � t i � 2 j � tk,

F�x, y, z� � yz i � xz j � xyk

0 � t �



2
r2�t� � 2 cos t i � 2 sin t j,

0 � t � 2r1�t� � t3 i � t 2 j,

�
C

 �x2 � y 2� dx � 2xy dy
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41. State the Fundamental Theorem of Line Integrals.

42. What does it mean that a line integral is independent of
path? State the method for determining if a line integral is
independent of path.

WRITING ABOUT CONCEPTS
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43. Think About It Let Find the

value of the line integral

(a) (b)

(c) (d)

In Exercises 45 and 46, consider the force field shown in the
figure. Is the force field conservative? Explain why or why not.

45. 46.

True or False? In Exercises 47–50, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

47. If and have the same initial and terminal points and
then 

48. If and is given by 
then 

49. If is conservative in a region bounded by a simple closed
path and lies within then is independent of path.

50. If and then is conservative.

51. A function is called harmonic if Prove that if

is harmonic, then

where is a smooth closed curve in the plane.

52. Kinetic and Potential Energy The kinetic energy of an object
moving through a conservative force field is decreasing at a rate
of 15 units per minute. At what rate is the potential energy
changing?

53. Let 

(a) Show that

where

and 

(b) If for find 

(c) If for find 

(d) If for find 
Why doesn’t this contradict Theorem 15.7?

(e) Show that ��arctan 
x
y� � F.


C F � dr.0 � t � 2
,r�t� � cos t i � sin t j


C F � dr.0 � t � 
,r�t� � cos t i � sin t j


C F � dr.0 � t � 
,r�t� � cos t i � sin t j

N �
�x

x2 � y 2.M �
y

x2 � y 2

�N
�x

�
�M
�y

F�x, y� �
y

x2 � y 2 i �
x

x2 � y2 j.

C

�
C

 ��f
�y

 dx �
�f
�x

 dy� � 0

f

�2f
�x2 �

�2f
�y 2 � 0.f

F�M��x � �N��y,F � M i � N j


C F � drR,C
RF


C F � dr � 0.0 � t � 
,
r�t� � �4 sin t�i � �3 cos t�j,CF � y i � x j


C1
 F � dr1 � 
C3

 F � dr3.
C1
 F � dr1 � 
C2

 F � dr2,
C3C1, C2,

x

y

x

y

y

x

C4

y

x

C3

y

x

C2

y

x

C1

�
C

F � dr.

F�x, y� �
y

x2 � y2 i �
x

x2 � y2 j.
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44. Consider the force field shown in the figure.

(a) Give a verbal argument that the force field is not
conservative because you can identify two paths that
require different amounts of work to move an object
from to Identify two paths and state
which requires the greater amount of work. To print an 
enlarged copy of the graph, go to the website 
www.mathgraphs.com.

(b) Give a verbal argument that the force field is not
conservative because you can find a closed curve 
such that

�
C

 F � dr 	 0.

C

�3, 4�.��4, 0�

x

−5

−5

y

CAPSTONE
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15.4 Green’s Theorem 1093

15.4 Green’s Theorem
■ Use Green’s Theorem to evaluate a line integral.
■ Use alternative forms of Green’s Theorem.

Green’s Theorem
In this section, you will study Green’s Theorem, named after the English mathematician
George Green (1793–1841). This theorem states that the value of a double integral
over a simply connected plane region is determined by the value of a line 
integral around the boundary of 

A curve given by where is simple if it does not
cross itself—that is, for all and in the open interval A plane
region is simply connected if every simple closed curve in encloses only points
that are in (see Figure 15.26).

A proof is given only for a region that is both vertically simple and horizon-
tally simple, as shown in Figure 15.27.

On the other hand,

Consequently,

Similarly, you can use and to show that By
adding the integrals and you obtain the conclusion stated in the
theorem. ■

�C N dy,�C M dx
�C N dy � �R� �N��x dA.g2� y�g1� y�

�
C

 M dx � ��
R
� 

�M
�y

 dA.

 � �b

a

 �M�x, f2�x�� � M�x, f1�x��� dx.

 � �b

a

 M�x, y�	
f2�x�

f1 �x�
dx

 �
R
� 

�M
�y

 dA � �b

a
�f

2
�x�

f1�x�
 
�M
�y

 dy dx

 � �b

a

 �M�x, f1�x�� � M�x, f2�x��� dx

 � �b

a

 M�x, f1�x�� dx � �a

b

 M�x, f2�x�� dx

 �
C

 M dx � �
C1

 M dx � �
C2

 M dx

PROOF

R
RR

�a, b�.dcr�c� � r�d�
a � t � b,r�t� � x�t�i � y�t�j,C

R.
R

THEOREM 15.8 GREEN’S THEOREM

Let be a simply connected region with a piecewise smooth boundary 
oriented counterclockwise (that is, is traversed once so that the region 
always lies to the left). If and have continuous first partial derivatives in
an open region containing then

�
C

 M dx � N dy � �
R
� 
�N

�x
�

�M
�y � dA.

R,
NM

RC
C,R

r(a) = r(b)

R1

R2

R3

Simply connected

Not simply connected

Figure 15.26

x
C = C1 + C2

C1: y = f1(x)

C2:
y = f2(x)

R

a b

y

is vertically simple.R

x
C ′ = C ′1 + C ′2

C ′2: x = g2(y)

R

d

c

C ′1:
x = g1(y)

y

is horizontally simple.
Figure 15.27
R
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EXAMPLE 1 Using Green’s Theorem

Use Green’s Theorem to evaluate the line integral

where is the path from to along the graph of and from to
along the graph of as shown in Figure 15.28.

Solution Because and it follows that

and

Applying Green’s Theorem, you then have

■

Green’s Theorem cannot be applied to every line integral. Among other restric-
tions stated in Theorem 15.8, the curve must be simple and closed. When Green’s
Theorem does apply, however, it can save time. To see this, try using the techniques
described in Section 15.2 to evaluate the line integral in Example 1. To do this, you
would need to write the line integral as

where is the cubic path given by

from to and is the line segment given by

from to t � 1.t � 0

r�t� � �1 � t�i � �1 � t�j

C2t � 1,t � 0

r�t� � t i � t3j

C1

  �
C1

 y3 dx � �x3 � 3xy 2� dy � �
C2

 y3 dx � �x3 � 3xy2� dy

�
C

 y3 dx � �x3 � 3xy2� dy �

C

 �
1
4

.

 � �3x4

4
�

x6

2 	
1

0

 � �1

0
 �3x3 � 3x5� dx

 � �1

0
 3x2y	

x

x3
 dx

 � �1

0
�x

x3

 3x2 dy dx

 � �1

0
�x

x3

 ��3x2 � 3y2� � 3y2� dy dx

 �
C

 y3 dx � �x3 � 3xy2� dy � �
R
� 
�N

�x
�

�M
�y � dA

�M
�y

� 3y2.
�N
�x

� 3x2 � 3y2

N � x3 � 3xy2,M � y3

y � x,�0, 0�
�1, 1�y � x3�1, 1��0, 0�C

�
C

 y3 dx � �x3 � 3xy2� dy
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x
1

1

C = C1 + C2

C1

C2

(1, 1)

(0, 0)

y = x

y = x3

y

is simple and closed, and the region 
always lies to the left of
Figure 15.28

C.
RC

GEORGE GREEN (1793–1841)

Green, a self-educated miller’s son, first
published the theorem that bears his name in
1828 in an essay on electricity and magnetism.
At that time there was almost no mathematical
theory to explain electrical phenomena.
“Considering how desirable it was that a
power of universal agency, like electricity,
should, as far as possible, be submitted to
calculation, . . . I was induced to try whether
it would be possible to discover any general
relations existing between this function and
the quantities of electricity in the bodies
producing it.”
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EXAMPLE 2 Using Green’s Theorem to Calculate Work

While subject to the force

a particle travels once around the circle of radius 3 shown in Figure 15.29. Use
Green’s Theorem to find the work done by 

Solution From Example 1, you know by Green’s Theorem that

In polar coordinates, using and the work done is

■

When evaluating line integrals over closed curves, remember that for conservative
vector fields (those for which ), the value of the line integral is 0. This
is easily seen from the statement of Green’s Theorem:

EXAMPLE 3 Green’s Theorem and Conservative Vector Fields

Evaluate the line integral

where is the path shown in Figure 15.30.

Solution From this line integral, and So, and
This implies that the vector field is conservative, and

because is closed, you can conclude that

■�
C

 y3 dx � 3xy2 dy � 0.

C
F � Mi � Nj�M��y � 3y2.

�N��x � 3y2N � 3xy2.M � y3

C

�
C

 y3 dx � 3xy2 dy

�
C

 M dx � N dy � �
R
� 
�N

�x
�

�M
�y � dA � 0.

�N��x � �M��y

 �
243�

4
.

 �
243
8 �	 �

sin 2	

2 	
2�

0

 �
243
8

 �2�

0
 �1 � cos 2	� d	

 � 3 �2�

0
 
81
4

 cos2 	 d	

 � 3�2�

0
 
r4

4
 cos2 		

3

0
d	

 � 3�2�

0
�3

0
 r3 cos2 	 dr d	

 W � �
R
� 3x2 dA � �2�

0
�3

0
 3�r cos 	�2 r dr d	

dA � r dr d	,x � r cos 	

�
C

 y3 dx � �x3 � 3xy2� dy � �
R
� 3x2 dA.

F.

F�x, y� � y3i � �x3 � 3xy2�j
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x

r = 3

C

−2 −1 1 2

2

1

−1

−2

y

F(x, y) = y3i + (x3 + 3xy2)j

Figure 15.29

x

C

y

is closed.
Figure 15.30
C
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EXAMPLE 4 Using Green’s Theorem for a Piecewise Smooth Curve

Evaluate

where is the path enclosing the annular region shown in Figure 15.31.

Solution In polar coordinates, is given by for Moreover,

So, by Green’s Theorem,

■

In Examples 1, 2, and 4, Green’s Theorem was used to evaluate line integrals as
double integrals. You can also use the theorem to evaluate double integrals as line
integrals. One useful application occurs when 

Among the many choices for and satisfying the stated condition, the choice of
and produces the following line integral for the area of region R.N � x�2M � �y�2

NM

 � area of region R

�N
�x

�
�M
�y

� 1 � �
R
� 1 dA

 �
C

 M dx � N dy � �
R
� 
�N

�x
�

�M
�y � dA

�N��x � �M��y � 1.

 � �
104
3

.

 � �
52
3 �sin 	 � cos 		

�

0

 � ��

0
 
�

52
3 ��cos 	 � sin 	� d	

 � ��

0
�2�cos 	 � sin 	� r

3

3 	
3

1
d	

 � ��

0
�3

1
 �2r�cos 	 � sin 	�r dr d	

 �
C

 �arctan x � y2� dx � �ey � x2� dy � �
R
��2�x � y� dA

�N
�x

�
�M
�y

� �2x � 2y � �2�r cos 	 � r sin 	�.

0 � 	 � �.1 � r � 3R

C

�
C

 �arctan x � y2� dx � �ey � x2� dy
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x

C

(0, 3)

(3, 0)(1, 0)(−1, 0)(−3, 0)

R

y

is piecewise smooth.
Figure 15.31
C

THEOREM 15.9 LINE INTEGRAL FOR AREA

If is a plane region bounded by a piecewise smooth simple closed curve 
oriented counterclockwise, then the area of is given by

A �
1
2

 �
C

 x dy � y dx.

R
C,R
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EXAMPLE 5 Finding Area by a Line Integral

Use a line integral to find the area of the ellipse

Solution Using Figure 15.32, you can induce a counterclockwise orientation to the
elliptical path by letting

and

So, the area is

■

Green’s Theorem can be extended to cover some regions that are not simply
connected. This is demonstrated in the next example.

EXAMPLE 6 Green’s Theorem Extended to a Region with a Hole

Let be the region inside the ellipse and outside the circle
Evaluate the line integral

where is the boundary of as shown in Figure 15.33.

Solution To begin, you can introduce the line segments and as shown in
Figure 15.33. Note that because the curves and have opposite orientations, the
line integrals over them cancel. Furthermore, you can apply Green’s Theorem to the
region using the boundary to obtain

■ � 10�.

 � 2�� �3��2� � � �12��
 � 2��ab � �r2�
 � 2�area of R�

 � 2�
R
� dA

 � �
R
� �2x � 2 � 2x� dA

 �
C

 2xy dx � �x2 � 2x� dy � �
R
� 
�N

�x
�

�M
�y � dA

C1 � C4 � C2 � C3R

C4C3

C4,C3

R,C � C1 � C2

�
C

 2xy dx � �x2 � 2x� dy

x2 � y2 � 1.
�x2�9� � � y2�4� � 1R

 � � ab.

 �
ab
2 �t	

2�

0

 �
ab
2

 �2�

0
 �cos2 t � sin2 t� dt

 A �
1
2

 �
C

 x dy � y dx �
1
2

 �2�

0
 ��a cos t��b cos t� dt � �b sin t���a sin t� dt�

0 � t � 2�.y � b sin t,x � a cos t

x2

a2 �
y2

b2 � 1.
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x

b
a

x2 y2

a2 b2 = 1+

R

y

Figure 15.32

x

C1: Ellipse
C2: Circle

C3: y = 0, 1 ≤ x ≤ 3
C4: y = 0, 1 ≤ x ≤ 3

C2

C3

C4

C1 R

3

2

−2

−3

y

Figure 15.33
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In Section 15.1, a necessary and sufficient condition for conservative vector fields
was listed. There, only one direction of the proof was shown. You can now outline the
other direction, using Green’s Theorem. Let be defined on an open
disk You want to show that if and have continuous first partial derivatives and

then is conservative. Suppose that is a closed path forming the boundary of a
connected region lying in Then, using the fact that you can apply
Green’s Theorem to conclude that

This, in turn, is equivalent to showing that is conservative (see Theorem 15.7).

Alternative Forms of Green’s Theorem
This section concludes with the derivation of two vector forms of Green’s Theorem
for regions in the plane. The extension of these vector forms to three dimensions is the
basis for the discussion in the remaining sections of this chapter. If is a vector field
in the plane, you can write

so that the curl of as described in Section 15.1, is given by

Consequently,

With appropriate conditions on and you can write Green’s Theorem in
the vector form

First alternative form

The extension of this vector form of Green’s Theorem to surfaces in space produces
Stokes’s Theorem, discussed in Section 15.8.

 � �
R
� �curl F� 
 k dA.

 �
C

 F 
 dr � �
R
� 
�N

�x
�

�M
�y � dA

R,C,F,

 �
�N
�x

�
�M
�y

.

 �curl F� 
 k � ��
�N
�z

 i �
�M
�z

 j � 
�N
�x

�
�M
�y �k	 
 k

 � �
�N
�z

 i �
�M
�z

 j � 
�N
�x

�
�M
�y �k.

curl F � � � F � 
 i

�
�x

M

     

j

�
�y

N

     

k

�
�z

0 

F,

F�x, y, z� � Mi � Nj � 0k

F

F

 � 0.

 � �
R
� 
�N

�x
�

�M
�y � dA

 �
C

 F 
 dr � �
C

 M dx � N dy

�M��y � �N��x,R.
CF

�M
�y

�
�N
�x

NMR.
F�x, y� � Mi � Nj
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For the second vector form of Green’s Theorem, assume the same conditions for
and Using the arc length parameter for you have So,

a unit tangent vector to curve is given by From
Figure 15.34 you can see that the outward unit normal vector can then be
written as

Consequently, for you can apply Green’s Theorem to obtain

Green’s Theorem

Therefore,

Second alternative form

The extension of this form to three dimensions is called the Divergence Theorem,
discussed in Section 15.7. The physical interpretations of divergence and curl will be
discussed in Sections 15.7 and 15.8.

�
C

 F 
 N ds � �
R
� div F dA.

 � �
R
� div F dA.

 � �
R
� 
�M

�x
�

�N
�y � dA

 � �
C

 �N dx � M dy

 � �
C

 M dy � N dx

 � �b

a

 
M 
dy
ds

� N 
dx
ds� ds

 �
C

 F 
 N ds � �b

a

 �Mi � Nj� 
 � y
�s�i � x
�s�j� ds

F�x, y� � Mi � Nj,

N � y
�s�i � x
�s�j.

N
r
�s� � T � x
�s�i � y
�s�j.CT

r�s� � x�s�i � y�s�j.C,sR.C,F,
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In Exercises 1–4, verify Green’s Theorem by evaluating both
integrals

for the given path.

1. boundary of the region lying between the graphs of 
and 

2. boundary of the region lying between the graphs of 
and 

3. square with vertices 

4. rectangle with vertices and 

In Exercises 5 and 6, verify Green’s Theorem by using a
computer algebra system to evaluate both integrals

for the given path.

5. circle given by 

6. boundary of the region lying between the graphs of 
and in the first quadrant

In Exercises 7–10, use Green’s Theorem to evaluate the integral

for the given path.

7. boundary of the region lying between the graphs of 
and 

8.

9. boundary of the region lying inside the rectangle bounded
by and and outside the
square bounded by and 

10. boundary of the region lying inside the semicircle
and outside the semicircle y � �9 � x2y � �25 � x2

C:

y � 1y � �1,x � 1,x � �1,
y � 3,y � �3,x � 5,x � �5,

C:

x � 2 cos 	, y � sin 	C:

y � x2 � 2x
y � xC:

�
C
 � y � x� dx 1 �2x � y� dy

y � x3
y � xC:

x2 � y 2 � 4C:

�
C
 xe y dx 1 ex dy � �

R
� ��N

�x
�

�M
�y � dA

�0, 4��0, 0�, �3, 0�, �3, 4�,C:

�0, 0�, �1, 0�, �1, 1�, �0, 1�C:

y � �x
y � xC:

y � x2
y � xC:

�
C
 y2 dx 1 x2 dy � �

R
� ��N

�x
�

�M
�y � dA

15.4 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

θ
T

N = −n

n

C

Figure 15.34
N � sin 	 i � cos 	 j

 � �sin 	 i � cos 	 j

 n � cos
	 �
�

2 �i � sin
	 �
�

2 �j

 T � cos 	 i � sin 	 j

CAS
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In Exercises 11–20, use Green’s Theorem to evaluate the line
integral.

11.

boundary of the region lying between the graphs of 
and 

12.

boundary of the region lying between the graphs of 
and 

13. 14.

15.

16.

17.

boundary of the region lying between the graphs of 
and 

18.

boundary of the region lying between the graphs of the
circle and the ellipse 

19.

boundary of the region lying between the graphs of
and 

20.

boundary of the region lying between the squares with
vertices and and 

and 

Work In Exercises 21–24, use Green’s Theorem to calculate
the work done by the force F on a particle that is moving coun-
terclockwise around the closed path 

21.

22.

23.

boundary of the triangle with vertices and

24.

boundary of the region lying between the graphs of 
and 

Area In Exercises 25–28, use a line integral to find the area of
the region 

25. region bounded by the graph of 

26. triangle bounded by the graphs of and

27. region bounded by the graphs of and

28. region inside the loop of the folium of Descartes bounded by
the graph of

In Exercises 31 and 32, use Green’s Theorem to verify the line
integral formulas.

31. The centroid of the region having area bounded by the 
simple closed path is

32. The area of a plane region bounded by the simple closed path 

given in polar coordinates is 

Centroid In Exercises 33–36, use a computer algebra system
and the results of Exercise 31 to find the centroid of the region.

33. region bounded by the graphs of and 

34. region bounded by the graphs of and 

35. region bounded by the graphs of and 

36. triangle with vertices and where

Area In Exercises 37– 40, use a computer algebra system and
the results of Exercise 32 to find the area of the region bounded
by the graph of the polar equation.

37.

38.

39. (inner loop)

40.

41. (a) Evaluate where is the unit

circle given by 

(b) Find the maximum value of 

where is any closed curve in the plane, oriented 
counterclockwise.

xy-C

�
C 

 y3 dx � �27x � x3� dy,

r�t� � cos t i � sin t j, 0 � t � 2�.

C1�
C1 

y3 dx � �27x � x3� dy,

r �
3

2 � cos 	

r � 1 � 2 cos 	

r � a cos 3	

r � a�1 � cos 	�

�a � b � a
�b, c�,�a, 0�,��a, 0�,R:

0 � x � 1y � x,y � x3R:

y � 0y � �a2 � x2R:

y � 4 � x2y � 0R:

A �
1
2�C

 r 2 d	.

C

y � �
1

2A
 �

C

 y 2 dx.x �
1

2A
 �

C

 x2 dy,

C
A

y �
3t 2

t 3 � 1
x �

3t
t3 � 1

,

R:

y � x2 � 1
y � 5x � 3R:

x � 2y � 8
3x � 2y � 0,x � 0,R:

x2 � y 2 � a2R:

R.

x � 9y � 0,
y � �x,C:

F�x, y� � �3x2 � y�i � 4xy 2 j

�0, 5�
�5, 0�,�0, 0�,C:

F�x, y� � �x3�2 � 3y�i � �6x � 5�y �j
r � 2 cos 	C:

F�x, y� � �ex � 3y�i � �ey � 6x�j
x2 � y2 � 1C:

F�x, y� � xyi � �x � y�j

C.

�2, �2���2, �2�,��2, 2�,
�2, 2�,�1, �1�,��1, �1�,��1, 1�,�1, 1�,

C:

�
C

 3x2ey dx � ey dy

x2 � y 2 � 9x2 � y 2 � 1
C:

�
C

 �x � 3y� dx � �x � y� dy

y � 2 sin 	
x � 3 cos 	,y � 6 sin 	x � 6 cos 	,

C:

�
C

 �e�x2�2 � y� dx � �e�y 2�2 � x� dy

y � �x
y � xC:

�
C

 cos y dx � �xy � x sin y� dy

x � 4 � 2 cos 	, y � 4 � sin 	C:

�
C

 2 arctan 
y
x
 dx � ln�x2 � y 2� dy

x2 � y 2 � a2C:

�
C

 ex cos 2y dx � 2ex sin 2y dy

r � 1 � cos 	C:x2 � y 2 � 16C:

�
C

 �x2 � y 2� dx � 2xy dy�
C

 �x2 � y 2� dx � 2xy dy

x � 9y � �x,
y � 0,C:

�
C

 y 2 dx � xy dy

y � 1 � x2
y � 0C:

�
C

 2xy dx � �x � y� dy
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29. State Green’s Theorem.

30. Give the line integral for the area of a region bounded by
a piecewise smooth simple curve C.

R

WRITING ABOUT CONCEPTS

CAS

CAS
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43. Think About It Let

where is a circle oriented counterclockwise. Show that 
if does not contain the origin. What is if does contain 
the origin?

44. (a) Let be the line segment joining and Show
that 

(b) Let be the vertices of a
polygon. Prove that the area enclosed is

Area In Exercises 45 and 46, use the result of Exercise 44(b) to
find the area enclosed by the polygon with the given vertices.

45. Pentagon:

46. Hexagon:

In Exercises 47 and 48, prove the identity where is a simply
connected region with boundary Assume that the required
partial derivatives of the scalar functions and are continuous.
The expressions and are the derivatives in the 
direction of the outward normal vector of and are defined
by and 

47. Green’s first identity:

[Hint: Use the second alternative form of Green’s Theorem and
the property 

48. Green’s second identity:

(Hint: Use Green’s first identity, given in Exercise 47, twice.)

49. Use Green’s Theorem to prove that

if and are differentiable functions and is a piecewise
smooth simple closed path.

50. Let where and have continuous first partial
derivatives in a simply connected region Prove that if is
simple, smooth, and closed, and then

�
C

 F 
 dr � 0.

Nx � My,
CR.

NMF � Mi � Nj,

Cgf

�
C

  f �x� dx � g�y� dy � 0

�
R
� � f �2g � g�2f � dA � �

C

 � f DNg � g DN f � ds

div � f G� � f div G � �f 
 G.�

�
R
� � f � 2g � �f 
 �g� dA � �

C

 f DNg ds

DNg � �g 
 N.DN f � �f 
 N,
C,N

DN gDN f
gf

C.
R

�0, 0�, �2, 0�, �3, 2�, �2, 4�, �0, 3�, ��1, 1�
�0, 0�, �2, 0�, �3, 2�, �1, 4�, ��1, 1�

 �xn�1 yn � xn yn�1� � �xn y1 � x1 yn��.
 12��x1y2 � x2 y1� � �x2 y3 � x3 y2� � .  .  . �

�xn, yn��x2, y2�, .  .  . ,�x1, y1�,
�C �y dx � x dy � x1 y2 � x2 y1.

�x2, y2�.�x1, y1�C

CIC
I � 0C

I � �
C

 
y dx � x dy

x2 � y 2
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42. For each given path, verify Green’s Theorem by showing
that

For each path, which integral is easier to evaluate? Explain.

(a) triangle with vertices 

(b) circle given by x2 � y2 � 1C:

�0, 0�, �4, 0�, �4, 4�C:

�
C

 y
2 dx � x2 dy � �

R
�
�N

�x
�

�M
�y � dA.

CAPSTONE

(a) Sketch the plane curve represented by the vector-valued
function on the interval 
Show that the rectangular equation corresponding to is the
hyperbola Verify your sketch by using a graphing
utility to graph the hyperbola.

(b) Let be the point on the hyperbola
corresponding to for Use the formula for area

to verify that the area of the region shown in the figure is 

(c) Show that the area of the indicated region is also given by the
integral

Confirm your answer in part (b) by numerically approximating
this integral for 2, 4, and 10.

(d) Consider the unit circle given by Let be the
angle formed by the axis and the radius to The area of
the corresponding sector is That is, the trigonometric 
functions and could have been
defined as the coordinates of that point on the unit
circle that determines a sector of area Write a short para-
graph explaining how you could define the hyperbolic functions
in a similar manner, using the “unit hyperbola”

x

(cosh   , sinh   )φ φ

(0, 0) (1, 0)

y

x2 � y 2 � 1.

1
2	.

�cos 	, sin 	�
g�	� � sin 	f �	� � cos 	

1
2	.

�x, y�.x-
	x2 � y2 � 1.

� � 1,

A � �sinh �

0
 ��1 � y 2 � �coth ��y� dy.

1
2�.

A �
1
2

 �
C

 x dy � y dx

� > 0.r���
P � �cosh �, sinh ��

x2 � y 2 � 1.
r�t�

0 � t � 5.r�t� � cosh t i � sinh tj

Hyperbolic and Trigonometric Functions

S E C T I O N  P R O J E C T
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■ Understand the definition of a parametric surface, and sketch the surface.
■ Find a set of parametric equations to represent a surface.
■ Find a normal vector and a tangent plane to a parametric surface.
■ Find the area of a parametric surface.

Parametric Surfaces
You already know how to represent a curve in the plane or in space by a set of
parametric equations—or, equivalently, by a vector-valued function.

Plane curve

Space curve

In this section, you will learn how to represent a surface in space by a set of parametric
equations—or by a vector-valued function. For curves, note that the vector-valued
function is a function of a single parameter For surfaces, the vector-valued
function is a function of two parameters and 

If is a parametric surface given by the vector-valued function then is traced
out by the position vector as the point moves throughout the domain 
as shown in Figure 15.35.

Figure 15.35

r(u, v)

y
x

S

z

u

D
(  , )u  v

v

D,�u, v�r�u, v�
Sr,S

v.u
t.r

r�t� � x�t�i � y�t�j � z�t�k
r�t� � x�t�i � y�t�j
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15.5 Parametric Surfaces

DEFINITION OF PARAMETRIC SURFACE

Let and be functions of and that are continuous on a domain in
the plane. The set of points given by

Parametric surface

is called a parametric surface. The equations

and Parametric equations

are the parametric equations for the surface.

z � z�u, v�y � y�u, v�,x � x�u, v�,

r�u, v� � x�u, v�i � y�u, v�j � z�u, v�k

�x, y, z�uv-
Dvuzy,x,

Some computer algebra systems are capable of graphing surfaces
that are represented parametrically. If you have access to such software, use it to
graph some of the surfaces in the examples and exercises in this section.

TECHNOLOGY
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EXAMPLE 1 Sketching a Parametric Surface

Identify and sketch the parametric surface given by

where and 

Solution Because and you know that for each point 
on the surface, and are related by the equation In other words, each
cross section of taken parallel to the plane is a circle of radius 3, centered on the

axis. Because where you can see that the surface is a right
circular cylinder of height 4. The radius of the cylinder is 3, and the axis forms the
axis of the cylinder, as shown in Figure 15.36. ■

As with parametric representations of curves, parametric representations of
surfaces are not unique. That is, there are many other sets of parametric equations that
could be used to represent the surface shown in Figure 15.36.

EXAMPLE 2 Sketching a Parametric Surface

Identify and sketch the parametric surface given by

where and 

Solution To identify the surface, you can try to use trigonometric identities to
eliminate the parameters. After some experimentation, you can discover that

So, each point on lies on the unit sphere, centered at the origin, as shown in Figure
15.37. For fixed traces out latitude circles

that are parallel to the plane, and for fixed traces out longitude (or
meridian) half-circles. ■

r�u, v�v � ci,xy-

0 � di � �x2 � y2 � sin2 di,

r�u, v�u � di,
S

 � 1.

 � sin2 u � cos2 u

 � sin2 u�cos2 v � sin2 v� � cos2 u

 � sin2 u cos2 v � sin2 u sin2 v � cos2 u 

 x2 � y2 � z2 � �sin u cos v�2 � �sin u sin v�2 � �cos u�2

0 � v � 2�.0 � u � �

r�u, v� � sin u cos vi � sin u sin vj � cos uk

S

z-
0 � v � 4,z � v,z-

xy-S
x2 � y2 � 32.yx

�x, y, z�y � 3 sin u,x � 3 cos u

0 � v � 4.0 � u � 2�

r�u, v� � 3 cos ui � 3 sin uj � vk

S
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NOTE To convince yourself further that the vector-valued function in Example 2 traces out
the entire unit sphere, recall that the parametric equations

and

where and describe the conversion from spherical to rectangular
coordinates, as discussed in Section 11.7. ■

0 � � � �,0 � � � 2�

z � � cos �y � � sin � sin �,x � � sin � cos �,

x
y

3

4

z

Figure 15.36

x y

z

c1

c2c3

c4

d1

d2

d3

d4

Figure 15.37
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Finding Parametric Equations for Surfaces
In Examples 1 and 2, you were asked to identify the surface described by a given set
of parametric equations. The reverse problem—that of writing a set of parametric
equations for a given surface—is generally more difficult. One type of surface for
which this problem is straightforward, however, is a surface that is given by

You can parametrize such a surface as

EXAMPLE 3 Representing a Surface Parametrically

Write a set of parametric equations for the cone given by

as shown in Figure 15.38.

Solution Because this surface is given in the form you can let and be
the parameters. Then the cone is represented by the vector-valued function

where varies over the entire plane. ■

A second type of surface that is easily represented parametrically is a surface of
revolution. For instance, to represent the surface formed by revolving the graph of

about the axis, use

and

where and 

EXAMPLE 4 Representing a Surface of Revolution Parametrically

Write a set of parametric equations for the surface of revolution obtained by revolving

about the axis.

Solution Use the parameters and as described above to write

and

where and The resulting surface is a portion of Gabriel’s
Horn, as shown in Figure 15.39. ■

The surface of revolution in Example 4 is formed by revolving the graph of
about the axis. For other types of surfaces of revolution, a similar parame-

trization can be used. For instance, to parametrize the surface formed by revolving the
graph of about the axis, you can use

and y � f �u� sin v.x � f �u� cos v,z � u,

z-x � f �z�

x-y � f �x�

0 � v � 2�.1 � u � 10

z � f �u� sin v �
1
u

 sin vy � f �u� cos v �
1
u

 cos v,x � u,

vu

x-

1 � x � 10f �x� �
1
x
,

0 � v � 2�.a � u � b

z � f �u� sin vy � f �u� cos v,x � u,

x-a � x � b,y � f �x�,

xy-�x, y�

r�x, y� � x i � yj � �x2 � y2 k

yxz � f �x, y�,

z � �x2 � y2

r�x, y� � x i � yj � f �x, y�k.

z � f �x, y�.

1104 Chapter 15 Vector Analysis

x y

3

2

2
12

−2

1

z

Figure 15.38

x

y1

10

1

z

Figure 15.39
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Normal Vectors and Tangent Planes
Let be a parametric surface given by

over an open region such that and have continuous partial derivatives on 
The partial derivatives of r with respect to and are defined as

and

Each of these partial derivatives is a vector-valued function that can be interpreted
geometrically in terms of tangent vectors. For instance, if is held constant, then

is a vector-valued function of a single parameter and defines a curve that
lies on the surface The tangent vector to at the point 

is given by

as shown in Figure 15.40. In a similar way, if is held constant, then 
is a vector-valued function of a single parameter and defines a curve that lies on
the surface The tangent vector to at the point is
given by

If the normal vector is not for any in the surface is called smooth
and will have a tangent plane. Informally, a smooth surface is one that has no sharp
points or cusps. For instance, spheres, ellipsoids, and paraboloids are smooth, whereas
the cone given in Example 3 is not smooth.

SD,�u, v�0ru 	 rv

rv�u0, v0� �

x

v

�u0, v0�i �

y

v

�u0, v0�j �

z

v

�u0, v0�k.

z�u0, v0��y�u0, v0�,�x�u0, v0�,C2S.
C2

r�u0, v�u � u0

ru�u0, v0� �

x

u

�u0, v0�i �

y

u

�u0, v0�j �

z

u

�u0, v0�k

z�u0, v0��
y�u0, v0�,�x�u0, v0�,C1S.

C1r�u, v0�
v � v0

rv �

x

v

�u, v�i �

y

v

�u, v�j �

z

v

�u, v�k.

ru �

x

u

�u, v�i �

y

u

�u, v�j �

z

u

�u, v�k

vu
D.zy,x,D

r�u, v� � x�u, v�i � y�u, v�j � z�u, v�k

S
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x
y

(x0, y0, z0)

C1C2

rv ru

S

z
N

Figure 15.40

NORMAL VECTOR TO A SMOOTH PARAMETRIC SURFACE

Let be a smooth parametric surface

defined over an open region in the plane. Let be a point in 
A normal vector at the point

is given by

N � ru�u0, v0� 	 rv�u0, v0� � � i


x

u


x

v

     

j


y

u


y

v

     

k


z

u


z

v�.

�x0, y0, z0� � �x�u0, v0�, y�u0, v0�, z�u0, v0��

D.�u0, v0�uv-D

r�u, v� � x�u, v�i � y�u, v�j � z�u, v�k

S

NOTE Figure 15.40 shows the normal vector The vector is also normal to 
and points in the opposite direction. ■

Srv 	 ruru 	 rv.
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EXAMPLE 5 Finding a Tangent Plane to a Parametric Surface

Find an equation of the tangent plane to the paraboloid given by

at the point (1, 2, 5).

Solution The point in the plane that is mapped to the point is
The partial derivatives of are

and

The normal vector is given by

which implies that the normal vector at is So, an
equation of the tangent plane at is

The tangent plane is shown in Figure 15.41. ■

Area of a Parametric Surface
To define the area of a parametric surface, you can use a development that is similar
to that given in Section 14.5. Begin by constructing an inner partition of consisting
of rectangles, where the area of the rectangle is as shown in
Figure 15.42. In each let be the point that is closest to the origin. At the point

on the surface construct a tangent plane 
The area of the portion of that corresponds to can be approximated by a
parallelogram in the tangent plane. That is, So, the surface of is given
by The area of the parallelogram in the tangent plane is

which leads to the following definition.

��uiru 	 �virv� � �ru 	 rv� �ui �vi

� �Si � � �Ti.
S�Ti � �Si.

�Ti,Di,S
Ti.S,z�ui, vi��y�ui, vi�,�xi, yi, zi� � �x�ui, vi�,

�ui, vi�Di

�Ai � �ui �vi,Diithn
D

 �2x � 4y � z � �5.

 �2�x � 1� � 4� y � 2� � �z � 5� � 0

�1, 2, 5�
ru 	 rv � �2i � 4j � k.�1, 2, 5�

ru 	 rv � � i
1
0

j
0
1

k
2u
2v � � �2ui � 2vj � k

rv � j � 2vk.ru � i � 2uk

r�u, v� � �1, 2�.
�x, y, z� � �1, 2, 5�uv-

r�u, v� � ui � vj � �u2 � v2�k

1106 Chapter 15 Vector Analysis

AREA OF A PARAMETRIC SURFACE

Let be a smooth parametric surface

defined over an open region in the plane. If each point on the surface 
corresponds to exactly one point in the domain then the surface area of 
is given by

Surface area

where and rv �

x

v

 i �

y

v

 j �

z

v

 k.ru �

x

u

 i �

y

u

 j �

z

u

 k

� 	
S
	 dS � 	

D
	 �ru 	 rv� dA

SD,
Suv-D

r�u, v� � x�u, v�i � y�u, v�j � z�u, v�k

S

y

x

22

6

7

−2 −1

(1, 2, 5)

1 3
3

−3

z

Figure 15.41

Di

u

Δui

Δvi

(ui, vi)

v

y
x

Δvirv

Δuiru

S

z

Figure 15.42
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For a surface given by this formula for surface area corresponds to that
given in Section 14.5. To see this, you can parametrize the surface using the vector-
valued function

defined over the region in the plane. Using

and

you have

and This implies that the surface area of 
is

EXAMPLE 6 Finding Surface Area

Find the surface area of the unit sphere given by

where the domain is given by and 

Solution Begin by calculating and 

The cross product of these two vectors is

which implies that

Finally, the surface area of the sphere is

■ � 4�.

 � 	2�

0
 2 dv

 A � 	
D
	 �ru 	 rv� dA � 	2�

0
	�

0
 sin u du dv

sin u > 0 for 0 � u � � � sin u.

 � �sin2 u

  � �sin4 u � sin2 u cos2 u

 �ru 	 rv� � ��sin2 u cos v�2 � �sin2 u sin v�2 � �sin u cos u�2

 � sin2 u cos vi � sin2 u sin vj � sin u cos uk

ru 	 rv � � i
cos u cos v

�sin u sin v

j
cos u sin v
sin u cos v

k
�sin u

0 �
rv � �sin u sin vi � sin u cos vj

ru � cos u cos vi � cos u sin vj � sin uk

rv.ru

0 � v � 2�.0 � u � �D

r�u, v� � sin u cos vi � sin u sin vj � cos uk

 � 	
R
	 �1 � 
 fx�x, y��2 � 
 fy�x, y��2 dA.

 Surface area � 	
R
	 �rx 	 ry� dA

S�rx 	 ry� � �
 fx�x, y��2 � 
 fy�x, y��2 � 1.

rx 	 ry � � i
1
0

j
0
1

k
fx�x, y�
fy�x, y� � � �fx�x, y�i � fy�x, y�j � k

ry � j � fy�x, y�krx � i � fx�x, y�k

xy-R

r�x, y� � xi � yj � f �x, y�k

z � f �x, y�,S
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NOTE The surface in Example 6 does
not quite fulfill the hypothesis that each
point on the surface corresponds to
exactly one point in For this surface,

for any fixed value of
However, because the overlap consists

of only a semicircle (which has no area),
you can still apply the formula for the
area of a parametric surface.

u.
r�u, 0� � r�u, 2��

D.
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EXAMPLE 7 Finding Surface Area

Find the surface area of the torus given by

where the domain is given by and (See Figure 15.43.)

Solution Begin by calculating and 

The cross product of these two vectors is

which implies that

Finally, the surface area of the torus is

■

If the surface is a surface of revolution, you can show that the formula for
surface area given in Section 7.4 is equivalent to the formula given in this section. For
instance, suppose is a nonnegative function such that is continuous over the
interval Let be the surface of revolution formed by revolving the graph of 
where about the axis. From Section 7.4, you know that the surface area
is given by

To represent parametrically, let and where
and Then,

Try showing that the formula

is equivalent to the formula given above (see Exercise 58).

Surface area � 	
D
	 �ru 	 rv� dA

r�u, v� � ui � f �u� cos vj � f �u� sin vk.

0 � v � 2�.a � u � b
z � f �u� sin v,y � f �u� cos v,x � u,S

Surface area � 2�	b

a

 f �x��1 � 
 f
�x��2 dx.

x-a � x � b,
f,S
a, b�.

f
f

S

 � 8�2.

 � 	2�

0
 4� dv

 A � 	
D
	 �ru 	 rv� dA � 	2�

0
	2�

0
 �2 � cos u� du dv

 � 2 � cos u.

 � �2 � cos u��cos2 u � sin2 u

 � �2 � cos u��cos2 u�cos2 v � sin2 v� � sin2 u

 �ru 	 rv� � �2 � cos u���cos v cos u�2 � �sin v cos u�2 � sin2 u

 � ��2 � cos u� �cos v cos ui � sin v cos uj � sin uk�

ru 	 rv � � i
�sin u cos v

��2 � cos u� sin v

j
�sin u sin v

�2 � cos u� cos v

k
cos u

0 �
rv � ��2 � cos u� sin vi � �2 � cos u� cos vj

ru � �sin u cos vi � sin u sin vj � cos uk

rv.ru

0 � v � 2�.0 � u � 2�D

r�u, v� � �2 � cos u� cos vi � �2 � cos u� sin vj � sin uk

1108 Chapter 15 Vector Analysis

E X P L O R A T I O N

For the torus in Example 7,
describe the function for
fixed Then describe the function

for fixed v.r�u, v�
u.

r�u, v�

x

y

z

Figure 15.43
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In Exercises 1– 6, match the vector-valued function with its
graph. [The graphs are labeled (a), (b), (c), (d), (e), and (f).]

(a) (b)

(c) (d)

(e) (f)

1.

2.

3.

4.

5.

6.

In Exercises 7– 10, find the rectangular equation for the surface
by eliminating the parameters from the vector-valued function.
Identify the surface and sketch its graph.

7.

8.

9.

10.

In Exercises 11–16, use a computer algebra system to graph the
surface represented by the vector-valued function.

11.

12.

13.

14.

15.

16.

Think About It In Exercises 17–20, determine how the graph
of the surface differs from the graph of 

(see figure), where and
(It is not necessary to graph s.)

17.

18.

19.

20.

In Exercises 21–30, find a vector-valued function whose graph
is the indicated surface.

21. The plane 

22. The plane 

23. The cone 

24. The cone 

25. The cylinder 

26. The cylinder 

27. The cylinder 

28. The ellipsoid 

29. The part of the plane that lies inside the cylinder

30. The part of the paraboloid that lies inside the
cylinder x2 � y2 � 9

z � x2 � y2

x2 � y2 � 9
z � 4

x2

9
�

y2

4
�

z2

1
� 1

z � x2

4x2 � y2 � 16

x2 � y2 � 25

x � �16y2 � z2

y � �4x2 � 9z2

x � y � z � 6

z � y

0 � v � 2�0 � u � 2,

s�u, v� � 4u cos vi � 4u sin vj � u2k

0 � v � 2�0 � u � 3,

s�u, v� � u cos vi � u sin vj � u2k

0 � v � 2�0 � u � 2,

s�u, v� � u cos vi � u2j � u sin vk

0 � v � 2�0 � u � 2,

s�u, v� � u cos vi � u sin vj � u2k

y
x 2

−2 −2

2

4

r(u, v)

z

0 � v � 2�.
0 � u � 2u cos vi 1 u sin vj 1 u2k

r�u, v
 �s�u, v


0 � v � 2�0 � u �
�

2
,

r�u, v� � cos3 u cos vi � sin3 u sin vj � uk

0 � v � 2�0 � u � �,

r�u, v� � �u � sin u�cos vi � �1 � cos u�sin vj � uk

0 � v � 3�0 � u � 1,

r�u, v� � 2u cos vi � 2u sin vj � vk

0 � v � 2�0 � u � 2,

r�u, v� � 2 sinh u cos vi � sinh u sin vj � cosh uk

0 � v � 2�0 � u � 2�,

r�u, v� � 2 cos v cos ui � 4 cos v sin uj � sin vk

0 � v � 2�0 � u � 1,

r�u, v� � 2u cos vi � 2u sin vj � u4k

r�u, v� � 3 cos v cos ui � 3 cos v sin uj � 5 sin vk

r�u, v� � 2 cos ui � vj � 2 sin uk

r�u, v� � 2u cos vi � 2u sin vj �
1
2 u2k

r�u, v� � ui � vj �
v
2

k

r�u, v� � 4 cos ui � 4 sin uj � vk

r�u, v� � 2 cos v cos ui � 2 cos v sin uj � 2 sin vk

r�u, v� � ui �
1
4v3j � vk

r�u, v� � ui �
1
2�u � v�j � vk

r�u, v� � u cos vi � u sin vj � uk

r�u, v� � ui � vj � uvk

x
y

2 2

2

z

x

y4 4

4

−4

z

x
y22

2

z

x
y

4 4

2

z

2

x 

y
2

2 

−2 −1

1

1

z

x

y 

2 

2

2 

−2

−2 

1 

z 
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15.5 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

CAS
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Surface of Revolution In Exercises 31–34, write a set of 
parametric equations for the surface of revolution obtained by
revolving the graph of the function about the given axis.

31. axis

32. axis

33. axis

34. axis

Tangent Plane In Exercises 35–38, find an equation of the
tangent plane to the surface represented by the vector-valued
function at the given point.

35.

Figure for 35 Figure for 36

36.

37.

38.

Area In Exercises 39– 46, find the area of the surface over the
given region. Use a computer algebra system to verify your
results.

39. The part of the plane where
and 

40. The part of the paraboloid  
where and 

41. The part of the cylinder 
where and 

42. The sphere 
where and 

43. The part of the cone 
where and 

44. The torus 
where and 

45. The surface of revolution 
where and 

46. The surface of revolution 
where and 

49. Show that the cone in Example 3 can be represented parametri-
cally by where and
0 � v � 2�.

0 � ur�u, v� � u cos vi � u sin vj � uk,

0 � v � 2�0 � u � �sin u sin vk,
r�u, v� � sin u cos vi � uj �

0 � v � 2�0 � u � 4uk,
r�u, v� � �u cos vi � �u sin vj �

0 � v � 2�0 � u � 2�,a > b,b sin vk,
r�u, v� � �a � b cos v�cos ui � �a � b cos v�sin uj �

0 � v � 2�0 � u � b
r�u, v� � au cos vi � au sin vj � uk,

0 � v � 2�0 � u � �
r�u, v� � a sin u cos v i � a sin u sin vj �a cos uk,

0 � v � b0 � u � 2�
r�u, v� � a cos ui � a sin uj � vk,

0 � v � 2�0 � u � 2u2k,
r�u, v� � 2u cos v i � 2u sin vj �

0 � v � 10 � u � 2
r�u, v� � 4ui � vj � vk,

x

(−4, 0, 2)
2

4

4

246 −2 −4 −6

z

y

r�u, v� � 2u cosh vi � 2u sinh vj �
1
2 u2k,  ��4, 0, 2�

x

y

(0, 6, 4)

5

6

2
4

6

24

−6

z

r�u, v� � 2u cos vi � 3u sin vj � u2k,  �0, 6, 4�
r�u, v� � ui � vj � �uv k,  �1, 1, 1�

x 

y 

(1, 1, 1) 

1 

1 

2 

2 

2 

z 

x

y 

(1, −1, 1)
2

2

2

−2−1

−2

z 

r�u, v� � �u � v�i � �u � v�j � vk,  �1, �1, 1�

y-z � y2 � 1,  0 � y � 2

z-x � sin z,  0 � z � �

x-y � �x,  0 � x � 4

x-y �
x
2

,  0 � x � 6

Axis of RevolutionFunction                         
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47. Define a parametric surface.

48. Give the double integral that yields the surface area of a
parametric surface over an open region D.

WRITING ABOUT CONCEPTS

50. The four figures below are graphs of the surface

Match each of the four graphs with the point in space from
which the surface is viewed. The four points are ,

and 

(a) (b)

(c) (d)

y

z

x

z

yx

z

y

z

�10, 10, 10�.�0, 10, 0�,��10, 10, 0�,
�10, 0, 0�

0 � v � 2�.0 � u � ��2,

r�u, v� � ui � sin u cos vj � sin u sin vk,

CAPSTONE
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51. Astroidal Sphere An equation of an astroidal sphere in 
and is

A graph of an astroidal sphere is shown below. Show that this
surface can be represented parametrically by

where and 

52. Use a computer algebra system to graph three views of the
graph of the vector-valued function

from the points and 

53. Investigation Use a computer algebra system to graph the
torus

for each set of values of and where and
Use the results to describe the effects of and 

on the shape of the torus.

(a) (b)

(c) (d)

54. Investigation Consider the function in Exercise 14.

(a) Sketch a graph of the function where is held constant at
Identify the graph.

(b) Sketch a graph of the function where is held constant at
Identify the graph.

(c) Assume that a surface is represented by the vector-valued
function What generalization can you make
about the graph of the function if one of the parameters is
held constant?

55. Surface Area The surface of the dome on a new museum is
given by

where and is in meters. Find the
surface area of the dome.

56. Find a vector-valued function for the hyperboloid

and determine the tangent plane at .

57. Graph and find the area of one turn of the spiral ramp

where and 

58. Let be a nonnegative function such that is continuous over
the interval Let be the surface of revolution formed by
revolving the graph of where about the axis.
Let and where 
and Then, is represented parametrically by

Show that the 
following formulas are equivalent.

Surface area 

Surface area 

59. Open-Ended Project The parametric equations

where and represent the surface
shown below. Try to create your own parametric surface using
a computer algebra system.

60. Möbius Strip The surface shown in the figure is called a
Möbius strip and can be represented by the parametric equations

where and Try to graph
other Möbius strips for different values of using a computer
algebra system.

y

x

z

−1
−4

−3

2

−2

3

12
4

a
a � 3.0 � v � 2�,�1 � u � 1,

z � u sin 
v
2

y � �a � u cos 
v
2� sin v,x � �a � u cos 

v
2� cos v,

�� � v � �,�� � u � �

z � sin�3u � 2v� � 2 sin�3u � v�

y � 3 � cos u
7 � cos�3u � 2v� � 2 cos�3u � v��

x � 3 � sin u
7 � cos�3u � 2v� � 2 cos�3u � v��

� 	
D
	 �ru 	 rv� dA

� 2�	b

a

 f �x��1 � 
 f
�x��2 dx

r�u, v� � ui � f �u� cos vj � f �u� sin vk.
S0 � v � 2�.

a � u � bz � f �u�sin v,y � f �u� cos v,x � u,
x-a � x � b,f,

S
a, b�.
f
f

0 � v � 2�.0 � u � 3

r�u, v� � u cos vi � u sin vj � 2vk

�1, 0, 0�

x2 � y2 � z2 � 1

r0 � v � 2�,0 � u � ��3,

r�u, v� � 20 sin u cos vi � 20 sin u sin vj � 20 cos uk

r � r�u, v�.

v � 2��3.
v

u � 1.
u

a � 8,  b � 3a � 8,  b � 1

a � 4,  b � 2a � 4,  b � 1

ba0 � v � 2�.
0 � u � 2�b,a

 �a � b cos v� sin uj � b sin vk

r�u, v� � �a � b cos v� cos ui �

�10, 10, 10�.�0, 0, 10�,�10, 0, 0�,

0 � v � �0 � u � �,r�u, v� � u cos vi � u sin vj � vk,

x 
y

z 

0 � v � 2�.0 � u � �

r�u, v� � a sin3 u cos3 vi � a sin3 u sin3 vj � a cos3 uk

x2�3 � y2�3 � z2�3 � a2�3.

z
y,x,

15.5 Parametric Surfaces 1111
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■ Evaluate a surface integral as a double integral.
■ Evaluate a surface integral for a parametric surface.
■ Determine the orientation of a surface.
■ Understand the concept of a flux integral.

Surface Integrals
The remainder of this chapter deals primarily with surface integrals. You will first
consider surfaces given by Later in this section you will consider more
general surfaces given in parametric form.

Let be a surface given by and let be its projection onto the 
plane, as shown in Figure 15.44. Suppose that and are continuous at all

points in and that is defined on Employing the procedure used to find surface
area in Section 14.5, evaluate at and form the sum

where Provided the limit of this sum

as approaches 0 exists, the surface integral of f over S is defined as

This integral can be evaluated by a double integral.

For surfaces described by functions of and (or and ), you can make the
following adjustments to Theorem 15.10. If is the graph of and is its
projection onto the plane, then

If is the graph of and is its projection onto the plane, then

If the surface integral over yields the surface area of For instance,
suppose the surface is the plane given by where and 
The surface area of is square units. Try verifying that �S� f �x, y, z� dS � �2.�2S

0 � y � 1.0 � x � 1z � x,S
S.Sf�x, y, z� � 1,

�
S
� f�x, y, z� dS � �

R
� f�g� y, z�, y, z��1 � �gy�y, z��2 � �gz�y, z��2 dA.

yz-Rx � g� y, z�S

�
S
� f�x, y, z� dS � �

R
� f�x, g�x, z�, z��1 � �gx�x, z��2 � �gz�x, z��2 dA.

xz-
Ry � g�x, z�S

zyzx

�
S
� f�x, y, z� dS � lim

	 �	→0
 


n

i�1
 f�xi, yi, zi� �Si. 

	� 	
�Si � �1 � �gx�xi, yi��2 � �gy�xi, yi��2 �Ai.



n

i�1
 f�xi, yi, zi� �Si

�xi, yi, zi�f
S.fR

gygx,g,xy-
Rz � g�x, y�S

z � g�x, y�.

1112 Chapter 15 Vector Analysis

15.6 Surface Integrals

THEOREM 15.10 EVALUATING A SURFACE INTEGRAL

Let be a surface with equation and let be its projection onto
the plane. If and are continuous on and is continuous on 
then the surface integral of over is

�
S
� f�x, y, z� dS � �

R
� f�x, y, g�x, y���1 � �gx�x, y��2 � �gy�x, y��2 dA.

Sf
S,fRgygx,g,xy-

Rz � g�x, y�S

x

y

(xi, yi, zi)

(xi, yi)
R

S: z = g(x, y)

z

Scalar function assigns a number to each
point of
Figure 15.44

S.
f
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EXAMPLE 1 Evaluating a Surface Integral

Evaluate the surface integral

where is the first-octant portion of the plane 

Solution Begin by writing as

Using the partial derivatives and you can write

Using Figure 15.45 and Theorem 15.10, you obtain

■

An alternative solution to Example 1 would be to project onto the plane, as
shown in Figure 15.46. Then, and

So, the surface integral is

Try reworking Example 1 by projecting onto the plane.xz-S

 �
243
2

.

 �
3
8

 �6

0
�36y � y3� dy

 � �6

0
��6�y��2

0
 �y2 � 2yz�
3

2� dz dy

 �
S
� �y2 � 2yz� dS � �

R
� f�g� y, z�, y, z��1 � �gy�y, z��2 � �gz�y, z��2 dA

�1 � �gy�y, z��2 � �gz�y, z��2 ��1 �
1
4

� 1 �
3
2

.

x �
1
2�6 � y � 2z�,

yz-S

 �
243

2
.

 � �
3
2

�3 � x�4�
3

0

 � 6�3

0
 �3 � x�3 dx

 � 3�3

0
�2�3�x�

0
 y�3 � x� dy dx

 � �
R
� �y2 � 2y
1

2��6 � 2x � y��
3
2� dA

 �
S
� �y2 � 2yz� dS � �

R
� f�x, y, g�x, y���1 � �gx�x, y��2 � �gy�x, y��2 dA

�1 � �gx�x, y��2 � �gy�x, y��2 ��1 � 1 �
1
4

�
3
2

.

gy�x, y� � �
1
2,gx�x, y� � �1

 g�x, y� �
1
2

�6 � 2x � y�.

 z �
1
2

�6 � 2x � y�

S

2x � y � 2z � 6.S

�
S
� � y2 � 2yz� dS

15.6 Surface Integrals 1113

x y

S

y = 2(3 − x)

z = 1
2

(6 − 2x − y)

(3, 0, 0)

(0, 0, 3)

(0, 6, 0)

z

Figure 15.45

x y

S

(3, 0, 0)

(0, 0, 3)

(0, 6, 0)

z =
6 − y

2

z

x = 1
2

(6 − y − 2z)

Figure 15.46
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In Example 1, you could have projected the surface onto any one of the three
coordinate planes. In Example 2, is a portion of a cylinder centered about the axis,
and you can project it onto either the plane or the plane.

EXAMPLE 2 Evaluating a Surface Integral

Evaluate the surface integral

where is the first-octant portion of the cylinder between and
as shown in Figure 15.47.

Solution Project onto the plane, so that and obtain

Theorem 15.10 does not apply directly, because is not continuous when 
However, you can apply Theorem 15.10 for and then take the limit as 
approaches 3, as follows.

■ � 36 � 12�

 � 36 � 24
�

2�
 � lim

b→3�
 3
4b � 8 arcsin 

b
3�

 � lim
b→3�

 3�4y � 8 arcsin 
y
3�

b

0

 � lim
b→3�

 3�b

0
 
 8
�9 � y2

� 4� dy

 � lim
b→3�

 3�b

0
 

x2

2�9 � y2
� x�

4

0
 dy

 � lim
b→3�

 3�b

0
�4

0
 
 x
�9 � y2

� 1� dx dy

 �
S
� �x � z� dS � lim

b→3�
 �b

0
�4

0
 �x � �9 � y2 � 3

�9 � y2
 dx dy

b0 � b < 3
y � 3.gy

 �
3

�9 � y2
.

 �1 � �gx�x, y��2 � �gy�x, y��2 ��1 � 
 �y
�9 � y2�

2

z � g�x, y� � �9 � y2,xy-S

x � 4,
x � 0y2 � z2 � 9S

�
S
� �x � z� dS

xy-xz-
x-S

S

1114 Chapter 15 Vector Analysis

x

y

1
2

3 3

3

4

S: y2 + z2 = 9

R: 0 ≤ x ≤ 4
0 ≤ y ≤ 3

z

Figure 15.47

Some computer algebra systems are capable of evaluating
improper integrals. If you have access to such computer software, use it to evaluate
the improper integral

Do you obtain the same result as in Example 2?

�3

0
�4

0
 �x � �9 � y2 � 3

�9 � y2
 dx dy.

TECHNOLOGY

1053714_1506.qxp  10/27/08  1:47 PM  Page 1114



You have already seen that if the function defined on the surface is simply
the surface integral yields the surface area of 

On the other hand, if is a lamina of variable density and is the density at
the point then the mass of the lamina is given by

EXAMPLE 3 Finding the Mass of a Surface Lamina

A cone-shaped surface lamina is given by

as shown in Figure 15.48. At each point on the density is proportional to the
distance between the point and the axis. Find the mass of the lamina.

Solution Projecting onto the plane produces

with a density of Using a surface integral, you can find the
mass to be

Polar coordinates

■ �
8�5k

3 ���
2�

0
�

16�5k�

3
.

 �
8�5k

3 �2�

0
 d�

 �
�5k

3 �2�

0
 r3�

2

0
d�

 � k�2�

0
�2

0
 ��5r�r dr d�

 � k�
R
� �5�x2 � y2 dA

 � k�
R
� �x2 � y2�1 �

4x2

x2 � y2 �
4y2

x2 � y2 dA

 � �
R
� k�x2 � y2�1 � �gx�x, y��2 � �gy�x, y��2 dA

 m � �
S
� 	�x, y, z� dS

	�x, y, z� � k�x2 � y2.

R: x2 � y2 � 4

0 � z � 4S: z � 4 � 2�x2 � y2 � g�x, y�,

xy-S

mz-
S,

0 � z � 4z � 4 � 2�x2 � y2,

S

Mass of lamina � �
S
� 	�x, y, z� dS.

�x, y, z�,
	�x, y, z�S

Area of surface � �
S
� 1 dS

S.f�x, y, z� � 1,
Sf
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Use a computer algebra system to confirm the result shown in
Example 3. The computer algebra system Maple evaluated the integral as follows.

k�2

�2
��4�y2

��4�y2

 �5�x2 � y2 dx dy � k�2�

0
�2

0
 ��5r�r dr d� �

16�5k�

3

TECHNOLOGY

yx

4

3

2

1

2
1

1
2

z = 4 − 2 x2 + y2
Cone:

R: x2 + y2 = 4

z

Figure 15.48
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Parametric Surfaces and Surface Integrals
For a surface given by the vector-valued function

Parametric surface

defined over a region in the -plane, you can show that the surface integral of
over is given by

Note the similarity to a line integral over a space curve 

Line integral

EXAMPLE 4 Evaluating a Surface Integral

Example 2 demonstrated an evaluation of the surface integral

where is the first-octant portion of the cylinder between and
(see Figure 15.49). Reevaluate this integral in parametric form.

Solution In parametric form, the surface is given by

where and To evaluate the surface integral in parametric
form, begin by calculating the following.

So, the surface integral can be evaluated as follows.

■ � 12� � 36

 � �3�

4
x2 � 9x�

4

0

 � �4

0
 
3�

2
x � 9� dx

 � �4

0
 �3x� � 9 cos ��

��2

0
 dx

 �
D
� �x � 3 sin ��3 dA � �4

0
���2

0
 �3x � 9 sin �� d� dx

 	rx 
 r� 	 � �9 cos2 � � 9 sin2 � � 3

 rx 
 r� � � i
1
0

j
0

�3 sin �

k
0

3 cos � � � �3 cos � j � 3 sin �k

 r� � �3 sin � j � 3 cos �k

 rx � i

0 � � � ��2.0 � x � 4

r�x, �� � xi � 3 cos �j � 3 sin �k

x � 4
x � 0y2 � z2 � 9S

�
S
� �x � z� dS

�
C

 f�x, y, z� ds � �b

a

 f�x�t�, y�t�, z�t�� 	r��t�	 dt

C.

�
S
� f �x, y, z� dS � �

D
� f�x�u, v�, y�u, v�, z�u, v�� 	ru�u, v� 
 rv�u, v�	 dA.

Sf�x, y, z�
uvD

r�u, v� � x�u, v�i � y�u, v�j � z�u, v�k

S

1116 Chapter 15 Vector Analysis

y

x

3

3

4
3

2
1

z

Generated by Mathematica

Figure 15.49

NOTE Notice that and can be written as and 
■	ru�u, v� 
 rv�u, v� 	 dA.

dS �ds � 	r��t� 	 dtdSds

1053714_1506.qxp  10/27/08  1:47 PM  Page 1116



Orientation of a Surface
Unit normal vectors are used to induce an orientation to a surface in space. A 
surface is called orientable if a unit normal vector can be defined at every 
nonboundary point of in such a way that the normal vectors vary continuously over
the surface If this is possible, is called an oriented surface.

An orientable surface has two distinct sides. So, when you orient a surface, you
are selecting one of the two possible unit normal vectors. If is a closed surface such
as a sphere, it is customary to choose the unit normal vector to be the one that points
outward from the sphere.

Most common surfaces, such as spheres, paraboloids, ellipses, and planes, are
orientable. (See Exercise 43 for an example of a surface that is not orientable.)
Moreover, for an orientable surface, the gradient vector provides a convenient way to
find a unit normal vector. That is, for an orientable surface given by

Orientable surface

let

Then, can be oriented by either the unit normal vector

Upward unit normal vector

or the unit normal vector

Downward unit normal vector

as shown in Figure 15.50. If the smooth orientable surface is given in parametric
form by

Parametric surface

the unit normal vectors are given by

and

N �
rv 
 ru

	rv 
 ru 	
.

N �
ru 
 rv

	ru 
 rv	

r�u, v� � x�u, v�i � y�u, v�j � z�u, v�k

S

 �
gx�x, y�i � gy�x, y�j � k

�1 � �gx�x, y��2 � �gy�x, y��2

 N �
��G�x, y, z�
	�G�x, y, z�	

 �
�gx�x, y�i � gy�x, y�j � k

�1 � �gx�x, y��2 � �gy�x, y��2

 N �
�G�x, y, z�

	�G�x, y, z�	

S

G�x, y, z� � z � g�x, y�.

z � g�x, y�

S

N
S

S
SS.

S
N

S
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NOTE Suppose that the orientable surface is given by or Then you
can use the gradient vector

or

to orient the surface. ■

G�x, y, z� � x � g�y, z��G�x, y, z� � i � gy�y, z�j � gz� y, z�k

G�x, y, z� � y � g�x, z��G�x, y, z� � �gx�x, z�i � j � gz�x, z�k

x � g�y, z�.y � g�x, z�

x

y

N =

Upward direction

S

z

S: z = g(x, y)

∇G

⎜⎜∇G ⎜⎜

is oriented in an upward direction.S

y

Downward direction

S

x

z

S: z = g(x, y)

−∇G

⎜⎜∇G ⎜⎜
N =

is oriented in a downward direction.
Figure 15.50
S
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Flux Integrals
One of the principal applications involving the vector form of a surface integral relates
to the flow of a fluid through a surface Suppose an oriented surface is submerged
in a fluid having a continuous velocity field Let be the area of a small patch of
the surface over which is nearly constant. Then the amount of fluid crossing this
region per unit of time is approximated by the volume of the column of height 
as shown in Figure 15.51. That is,

Consequently, the volume of fluid crossing the surface per unit of time (called the
flux of across ) is given by the surface integral in the following definition.

Geometrically, a flux integral is the surface integral over of the normal
component of If is the density of the fluid at the flux integral

represents the mass of the fluid flowing across per unit of time.
To evaluate a flux integral for a surface given by let

Then, can be written as follows.

 � �G�x, y, z� dA

 �
�G�x, y, z�

��gx�2 � �gy�2 � 1
��gx�2 � �gy�2 � 1 dA

 N dS �
�G�x, y, z�

	�G�x, y, z�	
 dS

N dS

G�x, y, z� � z � g�x, y�.

z � g�x, y�,
S

�
S
� 	 F 
 N dS

�x, y, z�,	�x, y, z�F.
S

SF
S

�V � �height��area of base� � �F 
 N��S.

F 
 N,
FS

�SF.
SS.

1118 Chapter 15 Vector Analysis

DEFINITION OF FLUX INTEGRAL

Let where and have continuous first 
partial derivatives on the surface oriented by a unit normal vector The flux
integral of across is given by

�
S
� F 
 N dS.

SF
N.S

PN,M,F�x, y, z� � M i � Nj � Pk,

THEOREM 15.11 EVALUATING A FLUX INTEGRAL

Let be an oriented surface given by and let be its projection
onto the plane.

Oriented upward

Oriented downward

For the first integral, the surface is oriented upward, and for the second integral,
the surface is oriented downward.

�
S
� F 
 N dS � �

R
� F 
 �gx�x, y�i � gy�x, y�j � k� dA

�
S
� F 
 N dS � �

R
� F 
 ��gx�x, y�i � gy�x, y�j � k� dA

xy-
Rz � g�x, y�S

x

y

ΔS

N F

F · N

z

The velocity field indicates the direction of
the fluid flow.
Figure 15.51

F
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EXAMPLE 5 Using a Flux Integral to Find the Rate of Mass Flow

Let be the portion of the paraboloid

lying above the plane, oriented by an upward unit normal vector, as shown in
Figure 15.52. A fluid of constant density is flowing through the surface according
to the vector field

Find the rate of mass flow through 

Solution Begin by computing the partial derivatives of 

and

The rate of mass flow through the surface is

Polar coordinates

■

For an oriented surface given by the vector-valued function

Parametric surface

defined over a region in the plane, you can define the flux integral of across
as

Note the similarity of this integral to the line integral

A summary of formulas for line and surface integrals is presented on page 1121.

�
C

 F 
 dr � �
C

 F 
 T ds.

 � �
D
� F 
 �ru 
 rv� dA.

 �
S
� F 
 N dS � �

D
� F 
 
 ru 
 rv

	ru 
 rv	� 	ru 
 rv	
  
dA

S
Fuv-D

r�u, v� � x�u, v�i � y�u, v�j � z�u, v�k

S

 � 24�	.

 � 	�2�

0
 12 d�

 � 	�2�

0
�2

0
 �4 � r2�r dr d�

 � 	�
R
� �4 � x2 � y2� dA

 � 	�
R
� �2x2 � 2y2 � �4 � x2 � y2�� dA

 � 	�
R
� �x i � yj � �4 � x2 � y2�k� 
 �2x i � 2yj � k� dA

 �
S
� 	F 
 N dS � 	�

R
� F 
 ��gx�x, y�i � gy�x, y�j � k� dA

S

gy�x, y� � �2y

gx�x, y� � �2x

g.

S.

F�x, y, z� � x i � yj � zk.

S	
xy-

z � g�x, y� � 4 � x2 � y2

S
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x

y44

6

8

−4

z

Figure 15.52
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EXAMPLE 6 Finding the Flux of an Inverse Square Field

Find the flux over the sphere given by

Sphere 

where is an inverse square field given by

Inverse square field 

and Assume is oriented outward, as shown in Figure 15.53.

Solution The sphere is given by

where and The partial derivatives of are

and

which implies that the normal vector is

Now, using

it follows that

Finally, the flux over the sphere is given by

■ � 4�kq.

 � �2�

0
��

0
 kq sin u du dv

 �
S
� F 
 N dS � �

D
� �kq sin u� dA

S

 � kq sin u.

 � kq�sin3 u cos2 v � sin3 u sin2 v � sin u cos2 u�
    a2�sin2 u cos vi � sin2 u sin vj � sin u cos uk��

 F 
 �ru 
 rv� �
kq
a3 ��a sin u cos vi � a sin u sin vj � a cos uk� 


 �
kq
a3 �a sin u cos vi � a sin u sin vj � a cos uk�

 � kq
xi � yj � zk

	xi � yj � zk	3

 F�x, y, z� �
kqr
	r	3

 � a2�sin2 u cos vi � sin2 u sin vj � sin u cos uk�.

 ru 
 rv � � i
a cos u cos v

�a sin u sin v

j
a cos u sin v
a sin u cos v

k
�a sin u

0 �
ru 
 rv

rv�u, v� � �a sin u sin vi � a sin u cos vj

ru�u, v� � a cos u cos v i � a cos u sin vj � a sin uk

r0 � v � 2�.0 � u � �

 � a sin u cos vi � a sin u sin vj � a cos uk

 r�u, v� � x�u, v�i � y�u, v�j � z�u, v�k

Sr � x i � yj � zk.

FF�x, y, z� �
kq

	r	2 
r

	r	
�

kqr
	r	3

F

Sx2 � y2 � z2 � a2

S

1120 Chapter 15 Vector Analysis

x
y

z

S: x2 + y2 + z2 = a2

R: x2 + y2 ≤ a2

N

N

N

N

aa

a
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The result in Example 6 shows that the flux across a sphere in an inverse square
field is independent of the radius of In particular, if is an electric field, the result in
Example 6, along with Coulomb’s Law, yields one of the basic laws of electrostatics,
known as Gauss’s Law:

Gauss’s Law

where is a point charge located at the center of the sphere and is the Coulomb
constant. Gauss’s Law is valid for more general closed surfaces that enclose the 
origin, and relates the flux out of the surface to the total charge inside the surface.

This section concludes with a summary of different forms of line integrals and
surface integrals.

q

kq

�
S
� E 
 N dS � 4�kq

ES.
S

15.6 Surface Integrals 1121

SUMMARY OF LINE AND SURFACE INTEGRALS

Scalar form

Vector form

Scalar form

Vector form (upward normal)

Scalar form

Vector form�
S
� F 
 N dS � �

D
� F 
 �ru 
 rv� dA

�
S
� f�x, y, z� dS � �

D
� f�x�u, v�, y�u, v�, z�u, v�� dS

dS � 	ru�u, v� 
 rv�u, v�	 dA

Surface Integrals  � parametric form�                                 

�
S
� F 
 N dS � �

R
� F 
 ��gx�x, y�i � gy�x, y�j � k� dA

�
S
� f�x, y, z� dS � �

R
� f�x, y, g�x, y���1 � �gx�x, y��2 � �gy�x, y��2 dA

dS � �1 � �gx�x, y��2 � �gy�x, y��2 dA

Surface Integrals  �z � g�x, y��                                                                                 

 � �b

a

 F�x�t�, y�t�, z�t�� 
 r��t� dt

�
C

 F 
 dr � �
C

 F 
 T ds

�
C

 f�x, y, z� ds � �b

a

 f�x�t�, y�t�, z�t�� ds

 � ��x��t��2 � � y��t��2 � �z��t��2 dt

ds � 	r��t�	 dt

Line Integrals                                                    
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In Exercises 1–4, evaluate 

1.

2.

3.

4.

In Exercises 5 and 6, evaluate 

5. first octant

6.

In Exercises 7 and 8, use a computer algebra system to evaluate

7.

8.

In Exercises 9 and 10, use a computer algebra system to evaluate

9.

10.

Mass In Exercises 11 and 12, find the mass of the surface
lamina of density 

11. first octant,

12.

In Exercises 13–16, evaluate 

13.

14.

15.

16.

In Exercises 17–22, evaluate 

17.

18.

19.

20.

21.

22.

In Exercises 23–28, find the flux of F through 

where N is the upward unit normal vector to 

23.

first octant

24.

first octant

25.

26.

first octant

27.

28.

In Exercises 29 and 30, find the flux of F over the closed surface.
(Let N be the outward unit normal vector of the surface.)

29.

30.

unit cube bounded by 

31. Electrical Charge Let be an 
electrostatic field. Use Gauss’s Law to find the total charge
enclosed by the closed surface consisting of the hemisphere

and its circular base in the plane.xy-z � �1 � x2 � y 2

E � yz i � xz j � xyk

z � 1
z � 0,y � 1,y � 0,x � 1,x � 0,S:

F�x, y, z� � 4xy i � z2j � yzk

z � 0z � 16 � x2 � y 2,S:

F�x, y, z� � �x � y� i � yj � zk

z � �a2 � x2 � y2S:

F�x, y, z� � x i � yj � 2zk

x2 � y 2 � 4z � x2 � y 2,S:

F�x, y, z� � 4 i � 3j � 5k

x2 � y 2 � z 2 � 36,S:

F�x, y, z� � x i � yj � zk

z � 0z � 1 � x2 � y 2,S:

F�x, y, z� � x i � yj � zk

z � 6 � 3x � 2y,S:

F�x, y, z� � x i � yj

z � 1 � x � y,S:

F�x, y, z� � 3z i � 4j � yk

S.

�
S
� F 
 N dS

S,

0 � z � x0 � x � 3,x2 � y 2 � 9,S:

f �x, y, z� � x2 � y 2 � z2

0 � z � 90 � y � 3,0 � x � 3,x2 � y 2 � 9,S:

f �x, y, z� � x2 � y 2 � z2

�x � 1�2 � y 2 � 1z � �x2 � y 2,S:

f �x, y, z� � �x2 � y2 � z2

x2 � y 2 � 4z � �x2 � y 2,S:

f �x, y, z� � �x2 � y2 � z2

4 � x 2 � y 2 � 16z � x2 � y 2,S:

f �x, y, z� �
xy
z

x2 � y 2 � 1z � x � y,S:

f �x, y, z� � x2 � y 2 � z2

�
S
� f �x, y, z� dS.

0 � v � �0 � u � 4,

r�u, v� � 4u cos v i � 4u sin v j � 3ukS:

f �x, y� � x � y

0 � v � 10 � u �
�

2
,

r�u, v� � 2 cos u i � 2 sin u j � vkS:

f �x, y� � x � y

0 � v � 10 � u �
�

2
,

r�u, v� � 2 cos u i � 2 sin u j � vkS:

f �x, y� � xy

0 � v � 20 � u � 1,r�u, v� � u i � vj � 2vk,S:
f �x, y� � y � 5

�
S
� f �x, y� dS.

	�x, y, z� � kzz � �a2 � x2 � y 2,S:

	�x, y, z� � x2 � y 22x � 3y � 6z � 12,S:

�.S

0 � y �
1
2

x0 � x �
�

2
,z � cos x,S:

0 � y � 20 � x � 2,z � 10 � x2 � y 2,S:

�
S
� �x2 � 2xy� dS.

0 � y � 40 � x � 4,z �
1
2xy,S:

0 � y � x 0 � x � 2,z � 9 � x2, S:

�
S
� xy dS.

0 � y � �4 � x20 � x � 2,z � h,S:

z � 3 � x � y,S:

�
S
� xy dS.

0 � y � x0 � x � 1,z �
2
3x3�2,  S:

x2 � y2 � 1z � 2,S:

0 � y � 40 � x � 2,z � 15 � 2x � 3y,S:

0 � y � 30 � x � 4,z � 4 � x,S:

�
S
� �x � 2y 1 z� dS.
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32. Electrical Charge Let be an 
electrostatic field. Use Gauss’s Law to find the total charge
enclosed by the closed surface consisting of the hemisphere

and its circular base in the plane.

Moment of Inertia In Exercises 33 and 34, use the following
formulas for the moments of inertia about the coordinate axes
of a surface lamina of density 

33. Verify that the moment of inertia of a conical shell of uniform
density about its axis is where is the mass and is the
radius and height.

34. Verify that the moment of inertia of a spherical shell of uniform
density about its diameter is where is the mass and is
the radius.

Moment of Inertia In Exercises 35 and 36, find for the given
lamina with uniform density of 1. Use a computer algebra
system to verify your results.

35.

36.

Flow Rate In Exercises 37 and 38, use a computer algebra
system to find the rate of mass flow of a fluid of density 
through the surface oriented upward if the velocity field is
given by 

37.

38.

43. Investigation

(a) Use a computer algebra system to graph the vector-valued
function

This surface is called a Möbius strip.

(b) Explain why this surface is not orientable.

(c) Use a computer algebra system to graph the space curve
represented by Identify the curve.

(d) Construct a Möbius strip by cutting a strip of paper,
making a single twist, and pasting the ends together.

(e) Cut the Möbius strip along the space curve graphed in part
(c), and describe the result.

r�u, 0�.

�1 � v � 1.0 � u � �,v cos uk,

r�u, v� � �4 � v sin u� cos�2u�i � �4 � v sin u� sin�2u�j �

z � �16 � x2 � y 2S:

z � 0z � 16 � x2 � y 2,S:

F�x, y, z� � 0.5zk.
S

�

0 � z � hz � x2 � y 2,

0 � z � hx2 � y 2 � a2,

Iz

am2
3ma2,

am1
2ma2,

Iz � �
S
� �x2 1 y2���x, y, z� dS

Iy � �
S
� �x2 1 z2���x, y, z� dS

Ix � �
S
� � y2 1 z2���x, y, z� dS

�.

xy-z � �1 � x2 � y 2

E � x i � y j � 2zk

15.6 Surface Integrals 1123

CAS

39. Define a surface integral of the scalar function over a
surface Explain how to evaluate the surface
integral.

40. Describe an orientable surface.

41. Define a flux integral and explain how it is evaluated.

42. Is the surface shown in the figure orientable? Explain.

Double twist

z � g�x, y�.
f

WRITING ABOUT CONCEPTS

44. Consider the vector field

and the orientable surface given in parametric form by

(a) Find and interpret 

(b) Find as a function of and 

(c) Find and at the point 

(d) Explain how to find the normal component of to the 
surface at Then find this value.

(e) Evaluate the flux integral �
S
�F 
 N dS.

P.
F

P�3, 1, 4�.vu

v.uF 
 �ru 
 rv�
ru 
 rv.

0 � u � 2, �1 � v � 1.

r�u, v� � �u � v2�i � �u � v�j � u2k,

S

F�x, y, z� � zi � xj � yk

CAPSTONE

Consider the parametric surface given by the function

(a) Use a graphing utility to graph for various values of the
constants and Describe the effect of the constants on the
shape of the surface.

(b) Show that the surface is a hyperboloid of one sheet given by

(c) For fixed values describe the curves given by

(d) For fixed values describe the curves given by

(e) Find a normal vector to the surface at �u, v� � �0, 0�.

b sinh uk.r�u, v0� � a cosh u cos v0 i � a cosh u sin v0 j �

v � v0,

b sinh u0k.r�u0, v� � a cosh u0 cos vi � a cosh u0 sin vj �

u � u0,

x2

a2 �
y 2

a2 �
z2

b2 � 1.

b.a
r

r�u, v� � a cosh u cos v i � a cosh u sin vj � b sinh uk.

Hyperboloid of One Sheet

S E C T I O N  P R O J E C T

CAS
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■ Understand and use the Divergence Theorem.
■ Use the Divergence Theorem to calculate flux.

Divergence Theorem
Recall from Section 15.4 that an alternative form of Green’s Theorem is

In an analogous way, the Divergence Theorem gives the relationship between a triple
integral over a solid region and a surface integral over the surface of In the state-
ment of the theorem, the surface is closed in the sense that it forms the complete
boundary of the solid Regions bounded by spheres, ellipsoids, cubes, tetrahedrons,
or combinations of these surfaces are typical examples of closed surfaces. Assume that

is a solid region on which a triple integral can be evaluated, and that the closed
surface is oriented by outward unit normal vectors, as shown in Figure 15.54. With
these restrictions on and the Divergence Theorem is as follows.

Figure 15.54

x

y

S1

S2

N

N

S1: Oriented by
upward unit normal vector

S2: Oriented by
downward unit normal vector

z

Q,S
S

Q

Q.
S

Q.Q

 � �
R
� div F dA.

 �
C

 F � N ds � �
R
� ��M

�x
�

�N
�y � dA

1124 Chapter 15 Vector Analysis

15.7 Divergence Theorem

THEOREM 15.12 THE DIVERGENCE THEOREM

Let be a solid region bounded by a closed surface oriented by a unit normal
vector directed outward from If is a vector field whose component functions
have continuous first partial derivatives in then

�
S
� F � N dS � ��

Q

� div F dV.

Q,
FQ.

SQ

NOTE As noted at the left above, the Divergence Theorem is sometimes called Gauss’s
Theorem. It is also sometimes called Ostrogradsky’s Theorem, after the Russian mathematician
Michel Ostrogradsky (1801–1861). ■

CARL FRIEDRICH GAUSS (1777–1855)

The Divergence Theorem is also called
Gauss’s Theorem, after the famous German
mathematician Carl Friedrich Gauss. Gauss is
recognized, with Newton and Archimedes, as
one of the three greatest mathematicians in
history. One of his many contributions to
mathematics was made at the age of 22,
when, as part of his doctoral dissertation, he
proved the Fundamental Theorem of Algebra.
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If you let the theorem takes the form

You can prove this by verifying that the following three equations are valid.

Because the verifications of the three equations are similar, only the third is discussed.
Restrict the proof to a simple solid region with upper surface

Upper surface

and lower surface

Lower surface

whose projections onto the plane coincide and form region If has a lateral
surface like in Figure 15.55, then a normal vector is horizontal, which implies that

Consequently, you have

On the upper surface the outward normal vector is upward, whereas on the lower
surface the outward normal vector is downward. So, by Theorem 15.11, you have
the following.

Adding these results, you obtain

■ � ��
Q

� 
�P
�z

 dV.

 � �
R
� ��g

2
�x, y�

g
1
�x, y�

 
�P
�z

 dz� dA

 �
S
� Pk � N dS � �

R
� 	P�x, y, g2�x, y�� � P�x, y, g1�x, y��
 dA

 � �
R
� P�x, y, g2�x, y�� dA

 �
S2

� Pk � N dS � �
R
� P�x, y, g2�x, y��k � ��

�g2

�x
 i �

�g2

�y
 j � k� dA

 � ��
R
� P�x, y, g1�x, y�� dA

 �
S1

�
 
 Pk � N dS � �

R
� P�x, y, g1�x, y��k � ��g1

�x
 i �

�g1

�y
 j � k� dA

S1,
S2,

�
S
� Pk � N dS � �

S1

� Pk � N dS � �
S2

� Pk � N dS � 0.

Pk � N � 0.
S3

QR.xy-

z � g1�x, y�

z � g2�x, y�

�
S
� Pk � N dS � ��

Q

� 
�P
�z

 dV

�
S
� Nj � N dS � ��

Q

� 
�N
�y

 dV

�
S
� Mi � N dS � ��

Q

� 
�M
�x

 dV

 � ��
Q

� ��M
�x

�
�N
�y

�
�P
�z � dV.

 �
S
� F � N dS � �

S
� �Mi � N � Nj � N � Pk � N� dS

F�x, y, z� � Mi � Nj � Pk,PROOF

15.7 Divergence Theorem 1125

NOTE This proof is restricted to a 
simple solid region. The general proof is
best left to a course in advanced calculus.

x
y

S1: z = g1(x, y)

S1

S2

S3

N (upward)

N (horizontal)

N (downward)

R

z

S2: z = g2(x, y)

Figure 15.55
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EXAMPLE 1 Using the Divergence Theorem

Let be the solid region bounded by the coordinate planes and the plane 
and let Find

where is the surface of 

Solution From Figure 15.56, you can see that is bounded by four subsurfaces. So,
you would need four surface integrals to evaluate

However, by the Divergence Theorem, you need only one triple integral. Because

you have

■ �
63
2

.

 � �18y � 3y2 �
10y3

3
�

y4

2 �
3

0

 � �3

0
 �18 � 6y � 10y2 � 2y3� dy

 � �3

0
 �12x � 2x2 � 8xy � 2x2y � 4xy2�

3�y

0

 dy

 � �3

0
�3�y

0
 �12 � 4x � 8y � 4xy � 4y2� dx dy

 � �3

0
�3�y

0
 �2z � 2yz��

6�2x�2y

0

 dx  dy

 � �3

0
�3�y

0
�6�2x�2y

0
 �2 � 2y� dz dx dy

 �
S
� F � N dS � ��

Q

� div F dV

 � 2 � 2y

 � 1 � 2y � 1

 div F �
�M
�x

�
�N
�y

�
�P
�z

�
S
� F � N dS.

Q

Q.S

�
S
� F � N dS

F � x i � y2j � zk.z � 6,
2x � 2y �Q

1126 Chapter 15 Vector Analysis

x

y

4 3

3
4

6

S1: xz-plane

S2: yz-plane

S3: xy-plane
S4: 2x + 2y + z = 6

S4

z

Figure 15.56

If you have access to a computer algebra system that can evaluate
triple-iterated integrals, use it to verify the result in Example 1. When you are using
such a utility, note that the first step is to convert the triple integral to an iterated
integral—this step must be done by hand. To give yourself some practice with this
important step, find the limits of integration for the following iterated integrals.
Then use a computer to verify that the value is the same as that obtained in Example 1.

�?

?
�?

?
�?

?
 �2 � 2y� dx dy dz�?

?
�?

?
�?

?
 �2 � 2y� dy dz dx,

TECHNOLOGY
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EXAMPLE 2 Verifying the Divergence Theorem

Let be the solid region between the paraboloid

and the plane. Verify the Divergence Theorem for

Solution From Figure 15.57 you can see that the outward normal vector for the
surface is whereas the outward normal vector for the surface is

So, by Theorem 15.11, you have

On the other hand, because

you can apply the Divergence Theorem to obtain the equivalent result

■ � ��
Q

� 0 dV � 0.

�
S
� F � N dS � ��

Q

� div F dV

div F �
�

�x
	2z
 �

�

�y
	x
 �

�

�z
	y2
 � 0 � 0 � 0 � 0

 � 0.

 � �2

�2
 0 dy

 � �2

�2
�8x2 � x4 � 2x2y2 � x2y��4�y2

��4�y2  
dy

 � �2

�2
��4�y2

��4�y2

 �16x � 4x3 � 4xy2 � 2xy� dx dy

 � �2

�2
��4�y2

��4�y2

 	4x�4 � x2 � y2� � 2xy
 dx dy

 � �2

�2
 ��4�y2

��4�y2

 �4xz � 2xy� dx dy

 � ��2

�2
��4�y2

��4�y2

 y2 dx dy � �2

�2
��4�y2

��4�y2

 �4xz � 2xy � y2� dx dy

 � �
R
� �y2 dA � �

R
� �4xz � 2xy � y2� dA

 � �
S1

� F � ��k� dS � �
S2

� F �
�2xi � 2yj � k�
�4x2 � 4y2 � 1

 dS

 � �
S1

� F � N1 dS � �
S2

� F � N2 dS

 �
S
� F � N dS

N2 �
2x i � 2yj � k
�4x2 � 4y2 � 1

.

S2N1 � �k,S1

F�x, y, z� � 2z i � xj � y2k.

xy-

z � 4 � x2 � y2

Q

15.7 Divergence Theorem 1127

y
x

22

4

R: x2 + y2 ≤ 4
N1 = −k

N2

S2: z = 4 − x2 − y2

S1: z = 0

z

Figure 15.57
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EXAMPLE 3 Using the Divergence Theorem

Let be the solid bounded by the cylinder the plane and the
plane, as shown in Figure 15.58. Find

where is the surface of and 

Solution Direct evaluation of this surface integral would be difficult. However, by
the Divergence Theorem, you can evaluate the integral as follows.

Notice that cylindrical coordinates with and were used to
evaluate the triple integral. ■

Even though the Divergence Theorem was stated for a simple solid region 
bounded by a closed surface, the theorem is also valid for regions that are the finite
unions of simple solid regions. For example, let be the solid bounded by the closed
surfaces and as shown in Figure 15.59. To apply the Divergence Theorem to this
solid, let The normal vector to is given by on and by on

So, you can write

 � ��
S1

� F � N1 dS � �
S2

� F � N2 dS.

 � �
S1

�F � ��N1� dS � �
S2

� F � N2 dS

 ��
Q

� div F dV � �
S
� F � N dS

S2.
N2S1�N1SNS � S1 � S2.

S2,S1

Q

Q

dV � r dz dr d�x � r cos �

 � �12�

 � �48 sin � � 6�� �
1
2

 sin 2���
2�

0

 � �2�

0
 �48 cos � � 12 cos2 ��d�

 � �2�

0
�2

0
�18r2 cos � � 3r3 cos2 �� dr d�

 � �2�

0
�2

0
�6�r cos�

0
 �3r cos ��r dz dr d�

 � ��
Q

� 3x dV

 � ��
Q

� �2x � x � 0� dV

 �
S
� F � N dS � ��

Q

� div F dV

F�x, y, z� � �x2 � sin z�i � �xy � cos z�j � eyk.

QS

�
S
� F � N dS

xy-
x � z � 6,x2 � y2 � 4,Q

1128 Chapter 15 Vector Analysis
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y

6

7

8

9

2 2

Plane:
x + z = 6

Cylinder:
x2 + y2 = 4

z

Figure 15.58

x
y

−N1

N2

S1

S2

z

Figure 15.59
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Flux and the Divergence Theorem
To help understand the Divergence Theorem, consider the two sides of the equation

You know from Section 15.6 that the flux integral on the left determines the total fluid
flow across the surface per unit of time. This can be approximated by summing the
fluid flow across small patches of the surface. The triple integral on the right 
measures this same fluid flow across but from a very different perspective—namely,
by calculating the flow of fluid into (or out of) small cubes of volume The flux
of the cube is approximately

Flux of cube

for some point in the cube. Note that for a cube in the interior of the
gain (or loss) of fluid through any one of its six sides is offset by a corresponding loss
(or gain) through one of the sides of an adjacent cube. After summing over all the
cubes in the only fluid flow that is not canceled by adjoining cubes is that on the
outside edges of the cubes on the boundary. So, the sum

approximates the total flux into (or out of) and therefore through the surface 
To see what is meant by the divergence of at a point, consider to be the

volume of a small sphere of radius and center contained in region 
as shown in Figure 15.60. Applying the Divergence Theorem to produces

where is the interior of Consequently, you have

and, by taking the limit as you obtain the divergence of at the point

The point in a vector field is classified as a source, a sink, or incompressible,
as follows.

1. Source, if See Figure 15.61(a).

2. Sink, if See Figure 15.61(b).

3. Incompressible, if  See Figure 15.61(c).div F � 0

div F < 0

div F > 0

�x0, y0, z0�

 � flux per unit volume at �x0, y0, z0�

 div F�x0, y0, z0� � lim
	→0

 
flux of F across S	


V	

�x0, y0, z0�.
F	 →  0,

div F�x0, y0, z0� �
flux of F across S	


V	

S	.Q	

 � div F�x0, y0, z0,� 
V	

 Flux of F across S	 � ��
Q	

� div F dV

S	

Q,�x0, y0, z0�,	S	


V	F
S.Q,



n

i�1
 div F�xi, yi, zi� 
Vi

Q,

Q,ith�xi, yi, zi�

� div F�xi, yi, zi� 
Viith

ith

Vi.

S,

S

�
S
� F � N dS � ��

Q

� div F dV.

15.7 Divergence Theorem 1129

x
y

(x0, y0, z0)

S

Solid
region Q

α

z

Figure 15.60

NOTE In hydrodynamics, a source is a point at which additional fluid is considered as being
introduced to the region occupied by the fluid. A sink is a point at which fluid is considered as
being removed. ■

(a) Source: div F > 0

(b) Sink: div F < 0

(c) Incompressible:
Figure 15.61

div F � 0
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EXAMPLE 4 Calculating Flux by the Divergence Theorem

Let be the region bounded by the sphere Find the outward flux
of the vector field through the sphere.

Solution By the Divergence Theorem, you have

Spherical coordinates

■ �
768�

5
.

 � 24� �32
5 �

 � 12��2

0
 2�4 d�

 � 6�2

0
��

0
 2��4 sin �  d� d�

 � 6�2

0
��

0
�2�

0
 �4 sin � d� d� d�

 � ��
Q

� 6�x2 � y2 � z2� dV

 Flux across S � �
S
� F � N dS � ��

Q

� div F dV

F�x, y, z� � 2x3i � 2y3j � 2z3k
x2 � y2 � z2 � 4.Q

1130 Chapter 15 Vector Analysis

In Exercises 1–6, verify the Divergence Theorem by evaluating

as a surface integral and as a triple integral.

1.

cube bounded by the planes 

2.

cylinder 

Figure for 1 Figure for 2

3.

surface bounded by the plane and the
coordinate planes

4.

surface bounded by the planes and and the
coordinate planes

Figure for 3 Figure for 4

5.

surface bounded by and 

6.

surface bounded by and z � 4z � �x2 � y2S:

F�x, y, z� � xy2i � yx2j � ek

z � 0z � 1 � x2 � y2S:

F�x, y, z� � xzi � zyj � 2z2k

yx
4

4

4

z

y

x

3

6

6

z

z � 4 � xy � 4S:

F�x, y, z� � xyi � zj � �x � y�k

2x � 4y � 2z � 12S:

F�x, y, z� � �2x � y�i � �2y � z�j � zk

y
x

2

h

2

z

x
yaa

a

z

0 
 z 
 hx2 � y 2 � 4,S:

F�x, y, z� � 2x i � 2yj � z 2k

z � az � 0,
y � a,y � 0,x � a,x � 0,S:

F�x, y, z� � 2x i � 2yj � z 2k

�
S
� F � N dS

15.7 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.
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In Exercises 7–18, use the Divergence Theorem to evaluate

and find the outward flux of F through the surface of the solid
bounded by the graphs of the equations. Use a computer
algebra system to verify your results.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

In Exercises 19 and 20, evaluate

where is the closed surface of the solid bounded by the graphs
of and and the coordinate planes.

19.

20.

23. (a) Use the Divergence Theorem to verify that the volume of
the solid bounded by a surface is

(b) Verify the result of part (a) for the cube bounded by 
and 

25. Verify that

for any closed surface 

26. For the constant vector field 
verify that

where is the volume of the solid bounded by the closed
surface 

27. Given the vector field verify that

where is the volume of the solid bounded by the closed
surface 

28. Given the vector field verify that

In Exercises 29 and 30, prove the identity, assuming that 
and N meet the conditions of the Divergence Theorem and that
the required partial derivatives of the scalar functions and 
are continuous. The expressions and are the deriva-
tives in the direction of the vector N and are defined by

29.

[Hint: Use ]

30.

(Hint: Use Exercise 29 twice.)

��
Q

� � f �2g � g�2f � dV � �
S
� � f DNg � g DN f � dS

div � fG� � f div G � �f � G.

��
Q

� � f �2g � �f � �g�dV � �
S
� f DNg dS

DN g � �g � N.DN f � �f � N,

DN gDN f
gf

S,Q,

1
�F�

 �
S
� F � N dS �

3
�F�

 ��
Q

� dV.

F�x, y, z� � x i � yj � zk,

S.
V

�
S
� F � N dS � 3V

F�x, y, z� � x i � yj � zk,

S.
V

�
S
� F � N dS � 0

F�x, y, z� � a1i � a2 j � a3k,

S.

�
S
� curl F � N dS � 0

z � a.z � 0,y � a,y � 0,x � a,
x � 0,

�
S
� x dy dz � �

S
� y dz dx � �

S
� z dx dy.

S

F�x, y, z� � xy cos z i � yz sin xj � xyzk

F�x, y, z� � �4xy � z2�i � �2x2 � 6yz�j � 2xzk

z � 9 � y2,x � 4
S

�
S
� curl F � N dS

z � �4 � x2 � y 2, z � 0S:

F�x, y, z� � 2�x i � yj � zk�
x2 � y 2 � z2 � 16S:

F�x, y, z� � xyi � 4yj � xzk

z � 4 � y, z � 0, x � 0, x � 6, y � 0S:

F�x, y, z� � xez i � yez j � ez k

z � 4 � y, z � 0, x � 0, x � 6, y � 0S:

F�x, y, z� � x3i � x2yj � x2ey k

z �
1
2�x2 � y 2, z � 8S:

F�x, y, z� � �xy 2 � cos z�i � �x2y � sin z�j � e z k

x2 � y2 � 25, z � 0, z � 7S:

F�x, y, z� � x i � y 2j � zk

x2 � y 2 � 4, z � 0, z � 5S:

F�x, y, z� � xyz j

x2 � y 2 � z 2 � 9S:

F�x, y, z� � x i � yj � zk

z � �a2 � x2 � y 2, z � 0S:

F�x, y, z� � xy i � yz j � yzk

z � �a2 � x2 � y 2, z � 0S:

F�x, y, z� � x2i � 2xyj � xyz 2k

x � 0, x � a, y � 0, y � a, z � 0, z � aS:

F�x, y, z� � x2z2i � 2yj � 3xyzk

x � 0, x � a, y � 0, y � a, z � 0, z � aS:

F�x, y, z� � x2i � y 2j � z 2k

�
S
� F � N dS
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24. Let and let be the cube bounded
by the planes and

Verify the Divergence Theorem by evaluating

as a surface integral and as a triple integral.

�
S
�F � N dS

z � 1.
z � 0,y � 1,y � 0,x � 1,x � 0,

SF�x, y, z� � xi � yj � zk

CAPSTONE

21. State the Divergence Theorem.

22. How do you determine if a point in a vector field
is a source, a sink, or incompressible?

�x0, y0, z0�

WRITING ABOUT CONCEPTS
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■ Understand and use Stokes’s Theorem.
■ Use curl to analyze the motion of a rotating liquid.

Stokes’s Theorem
A second higher-dimension analog of Green’s Theorem is called Stokes’s Theorem,
after the English mathematical physicist George Gabriel Stokes. Stokes was part of a
group of English mathematical physicists referred to as the Cambridge School, which
included William Thomson (Lord Kelvin) and James Clerk Maxwell. In addition to
making contributions to physics, Stokes worked with infinite series and differential
equations, as well as with the integration results presented in this section.

Stokes’s Theorem gives the relationship between a surface integral over an
oriented surface and a line integral along a closed space curve forming the boundary
of as shown in Figure 15.62. The positive direction along is counterclockwise 
relative to the normal vector That is, if you imagine grasping the normal vector 
with your right hand, with your thumb pointing in the direction of your fingers will
point in the positive direction as shown in Figure 15.63.

Figure 15.62

Direction along is counterclockwise
relative to 
Figure 15.63

N.
C

N

S

C

y

x

C

R

N

Surface S

z

C,
N,

NN.
CS,

CS

1132 Chapter 15 Vector Analysis

15.8 Stokes’s Theorem

NOTE The line integral may be written in the differential form or in
the vector form ■�C F � T ds.

 �C M dx � N dy � P dz

THEOREM 15.13 STOKES’S THEOREM

Let be an oriented surface with unit normal vector bounded by a piecewise
smooth simple closed curve with a positive orientation. If is a vector field
whose component functions have continuous first partial derivatives on an
open region containing and then

�
C

 F � dr � �
S
� �curl F� � N dS.

C,S

FC
N,S

GEORGE GABRIEL STOKES (1819–1903)

Stokes became a Lucasian professor of math-
ematics at Cambridge in 1849. Five years
later, he published the theorem that bears his
name as a prize examination question there.

B
et

tm
an

n/
C

or
bi

s
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EXAMPLE 1 Using Stokes’s Theorem

Let be the oriented triangle lying in the plane as shown in Figure
15.64. Evaluate

where 

Solution Using Stokes’s Theorem, begin by finding the curl of 

Considering you can use Theorem 15.11 for an upward
normal vector to obtain

■

Try evaluating the line integral in Example 1 directly, without using Stokes’s
Theorem. One way to do this would be to consider as the union of and 
as follows.

The value of the line integral is

 � �9.

 � 9 � 9 � 9

 � �3

0
 t2 dt � �6

3
 ��2t � 6� dt � �9

6
 ��2t � 12� dt

 �
C

 F � dr � �
C1

 F � r1��t� dt � �
C2

 F � r2��t� dt � �
C3

 F � r3��t� dt

6 � t � 9C3: r3�t� � �t � 6� i � �18 � 2t�k,

3 � t � 6C2: r2�t� � �6 � t�j � �2t � 6�k,

0 � t � 3C1: r1�t� � �3 � t� i � tj,

C3,C2,C1,C

 � �9.

 � ��2y3

3
� 5y2 � 12y�

3

0

 � �3

0
 ��2y2 � 10y � 12� dy

 � �3

0
�3�y

0
 �2y � 4� dx dy

 � �
R
� ��i � j � 2yk� � �2 i � 2 j � k� dA

 � �
R
� ��i � j � 2yk� � ��gx�x, y� i � gy�x, y�j � k	 dA

 �
C

 F � dr � �
S
��curl F� � N dS

z � 6 � 2x � 2y � g�x, y�,

curl F � 
 i

�
�x

�y2

     

j

�
�y

z

     

k

�
�z

x 
 � �i � j � 2yk

F.

F�x, y, z� � �y2 i � zj � xk.

�
C

 F � dr

2x � 2y � z � 6,C
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y

x

C1

C2
C3

3 3

6

N (upward)

S: 2x + 2y + z = 6

x + y = 3

R

z

Figure 15.64
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EXAMPLE 2 Verifying Stokes’s Theorem

Let be the portion of the paraboloid lying above the -plane,
oriented upward (see Figure 15.65). Let be its boundary curve in the -plane,
oriented counterclockwise. Verify Stokes’s Theorem for

by evaluating the surface integral and the equivalent line integral.

Solution As a surface integral, you have 
and

By Theorem 15.11, you obtain

As a line integral, you can parametrize as

For you obtain

■ � 4	.

 � 2�t �
1
2

 sin 2t�
2	

0

 � 2 �2	

0
 �1 � cos 2t� dt

 � �2	

0
 4 cos2 t dt

 � �2	

0
 �0 � 2 cos t�2 cos t� � 0	 dt

 � �
C

 2z dx � x dy � y2 dz

 �
C

 F � dr � �
C

 M dx � N dy � P dz

F�x, y, z� � 2z i � xj � y2k,

0 � t � 2	.r�t� � 2 cos t i � 2 sin tj � 0k,

C

 � Area of circle of radius 2 � 4	.

 � �2

�2
 2�4 � x2 dx

 � �2

�2
 �2xy2 � 2y2 � y���4�x2

��4�x2 
dx

 � �2

�2
��4�x2

��4�x2

 �4xy � 4y � 1� dy dx

 �
S
� �curl F� � N dS � �

R
� �2yi � 2 j � k� � �2x i � 2yj � k� dA

curl F � 
 i
�

�x

2z

     

j
�

�y

x

     

k
�

�z

y2
 � 2y i � 2j � k.

gy � �2y,
gx � �2x,z � g�x, y� � 4 � x2 � y2,

F�x, y, z� � 2zi � xj � y2k

xyC
xyz � 4 � x2 � y2S

1134 Chapter 15 Vector Analysis

y

x

z

3

−3
3

4

R

N (upward)

S

S: z = 4 − x2 − y2

R: x2 + y2 ≤ 4

C

Figure 15.65
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Physical Interpretation of Curl
Stokes’s Theorem provides insight into a physical interpretation of curl. In a vector
field let be a small circular disk of radius centered at and with
boundary as shown in Figure 15.66. At each point on the circle has a 
normal component and a tangential component The more closely and

are aligned, the greater the value of So, a fluid tends to move along the 
circle rather than across it. Consequently, you say that the line integral around 
measures the circulation of around That is,

Now consider a small disk to be centered at some point on the surface
as shown in Figure 15.67. On such a small disk, curl is nearly constant, because

it varies little from its value at Moreover, curl is also nearly constant
on because all unit normals to are about the same. Consequently, Stokes’s
Theorem yields

So,

Assuming conditions are such that the approximation improves for smaller and
smaller disks it follows that

which is referred to as the rotation of F about N. That is,

rotation of about at 

In this case, the rotation of is maximum when curl and have the same direction.
Normally, this tendency to rotate will vary from point to point on the surface and
Stokes’s Theorem

Surface integral Line integral

says that the collective measure of this rotational tendency taken over the entire
surface (surface integral) is equal to the tendency of a fluid to circulate around the
boundary (line integral).C

S

�
C

 F � dr�
S
� �curl F� � N dS �

S,
NFF

�x, y, z�.NFcurl F�x, y, z� � N �

�curl F� � N � lim

→0

 
1

	
2 �
C


 F � T ds

�
 →  0�,

 � rate of circulation.

 �
circulation of F around C


area of disk S


 �curl F� � N �
�

C


 F � T ds

	
2

 � �curl F� � N�	
2�.

 � �curl F� � N �
S


� dS

 �
C


 F � T ds � �
S


� �curl F� � N dS

S
S
,
F � N�x, y, z�.
FS,

�x, y, z�S


�
C


 F � T ds � circulation of F around C
.

C�.F
C


F � T.T
FF � T.F � N

FC
 ,C
 ,
�x, y, z�
,S
F,

15.8 Stokes’s Theorem 1135

α
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T

F

N

F   T

F   NCα

α

Figure 15.66

( , , )x  y  z

N
S

curl F

Sα

Figure 15.67
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EXAMPLE 3 An Application of Curl

A liquid is swirling around in a cylindrical container of radius 2, so that its motion is
described by the velocity field

as shown in Figure 15.68. Find

where is the upper surface of the cylindrical container.

Solution The curl of is given by

Letting you have

■ � 16	.

 � �2	

0
 8 d�

 � �2	

0
 r

3�
2

0
 d�

 � �2	

0
�2

0
 �3r�r dr d�

 �
S
� �curl F� � N dS � �

R
� 3�x2 � y2 dA

N � k,

curl F � 
 i

�

�x

�y�x2 � y2

     

j

�

�y

x�x2 � y2

     

k

�

�z

0 
 � 3�x2 � y2 k.

F

S

�
S
� �curl F� � N dS

F�x, y, z� � �y�x2 � y2 i � x�x2 � y2 j

1136 Chapter 15 Vector Analysis

y

x
2

2

z

Figure 15.68

NOTE If throughout region the rotation of about each unit normal is 0.
That is, is irrotational. From earlier work, you know that this is a characteristic of conservative
vector fields. ■

F
NFQ,curl F � 0

SUMMARY OF INTEGRATION FORMULAS

�
C

 F � dr � �
S
� �curl F� � N dS�

S
� F � N dS � ��

Q

� div F dV

Stokes's Theorem:                               Divergence Theorem:                        

�
C

 F � N ds � �
R
� div F dA

�
C

 M dx � N dy � �
R
�
�N

�x
�

�M
�y � dA � �

C

F � T ds � �
C

 F � dr � �
R
� �curl F� � kdA

Green's Theorem:                                                                                                                                       

�
C

 F � dr � �
C

 � f � dr � f �x�b�, y�b�� � f �x�a�, y�a���b

a

 F��x� dx � F�b� � F�a�

Fundamental Theorem of Line Integrals:                                 Fundamental Theorem of Calculus:
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In Exercises 1–6, find the curl of the vector field F.

1.

2.

3.

4.

5.

6.

In Exercises 7–10, verify Stokes’s Theorem by evaluating

as a line integral and as a double integral.

7.

8.

9.

10.

In Exercises 11–20, use Stokes’s Theorem to evaluate 
Use a computer algebra system to verify your results. In each
case, is oriented counterclockwise as viewed from above.

11.

triangle with vertices 

12.

triangle with vertices 

13.

14.

15.

16.

17.

over in the first octant

18.

the first-octant portion of over 

19.

is the downward unit normal to the surface.

20.

the first-octant portion of over 

Motion of a Liquid In Exercises 21 and 22, the motion of a
liquid in a cylindrical container of radius 1 is described by the
velocity field Find where is the
upper surface of the cylindrical container.

21. 22.

25. Let and be scalar functions with continuous partial deriva-
tives, and let and satisfy the conditions of Stokes’s
Theorem. Verify each identity.

(a)

(b) (c)

26. Demonstrate the results of Exercise 25 for the functions
and Let be the hemisphere

27. Let be a constant vector. Let be an oriented surface with a
unit normal vector bounded by a smooth curve Prove that

�
S
� C � N dS �

1
2�C

 �C 
 r� � dr.

C.N,
SC

z � �4 � x2 � y2.
Sg�x, y, z� � z.f �x, y, z� � xyz

�C � f � g � g� f � � dr � 0�C � f � f � � dr � 0

�C � f �g� � dr � �S� �� f 
 � g� � N dS

SC
gf

F�x, y, z� � �z i � ykF�x, y, z� � i � j � 2k

S�S� �curl F� � N dS,F�x, y, z�.

x2 � y2 � a2z � x2S:

x2 � y2 � a2F�x, y, z� � xyz i � y j � zk,

N

0 � y � a0 � x � a,S: z � x2,

F�x, y, z� � xyz i � y j � zk

x2 � y2 � 16x2 � z2 � 16S:

x2 � y2 � 16F�x, y, z� � yz i � �2 � 3y� j � �x2 � y2�k,

r � 2 sin 2�z � 9 � 2x � 3yS:

F�x, y, z� � �ln�x2 � y2 i � arctan 
x
y
 j � k

S: z � �4 � x2 � y2

F�x, y, z� � x2 i � z2 j � xyzk

S: z � �4 � x2 � y2

F�x, y, z� � z2 i � y j � zk

z  ≥  0S: z � 9 � x2 � y2,

F�x, y, z� � 4xz i � y j � 4xyk

z  ≥  0S: z � 1 � x2 � y2,

F�x, y, z� � z2 i � 2x j � y2 k

�0, 0, 2��1, 1, 1�,�0, 0, 0�,C:

F�x, y, z� � arctan 
x
y
 i � ln�x2 � y2 j � k

�0, 0, 2��0, 2, 0�,�2, 0, 0�,C:

F�x, y, z� � 2y i � 3z j � xk

C

�C F � dr.

0 � y � a0 � x � a,S: z � y2,

F�x, y, z� � z2 i � x2 j � y2 k

S: 6x � 6y � z � 12, first octant

F�x, y, z� � xyz i � y j � zk

S: z � �1 � x2 � y2

F�x, y, z� � ��y � z� i � �x � z� j � �x � y�k

z � 0S: z � 9 � x2 � y2,

F�x, y, z� � ��y � z� i � �x � z� j � �x � y�k

�
C
 F � T ds ��

C
 F � dr

F�x, y, z� � arcsin y i � �1 � x2 j � y2 k

F�x, y, z� � ex2�y2 i � ey2�z2j � xyzk

F�x, y, z� � x sin y i � y cos x j � yz2 k

F�x, y, z� � 2z i � 4x2j � arctan xk

F�x, y, z� � x2 i � y2 j � x2 k

F�x, y, z� � �2y � z� i � ezj � xyzk
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23. State Stokes’s Theorem.

24. Give a physical interpretation of curl.

WRITING ABOUT CONCEPTS

28. Verify Stokes’s Theorem for each given vector field and
upward oriented surface. Is the line integral or the double
integral easier to set up? to evaluate? Explain.

(a)

square with vertices 

(b)

the portion of the paraboloid that lies
below the plane z � 4

z � x2 � y2S:

F�x, y, z� � z2i � x2j � y2k

�0, 1, 0�
�1, 1, 0�,�1, 0, 0�,�0, 0, 0�,C:

F�x, y, z� � ey�zi

CAPSTONE

29. Let 

Prove or disprove that there is a vector-valued function
with the 

following properties.

(i) have continuous partial derivatives for all

(ii) Curl for all 

(iii)

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.

F�x, y, 0� � G�x, y�.
�x, y, z� � �0, 0, 0�;F � 0

�x, y, z� � �0, 0, 0�;
PN,M,

P�x, y, z��N�x, y, z�,F�x, y, z� � �M�x, y, z�,

G�x, y� � 
 �y
x2 � 4y2, 

x
x2 � 4y2, 0�.
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In Exercises 1 and 2, compute and sketch several represen-
tative vectors in the vector field. Use a computer algebra system
to verify your results.

1. 2.

In Exercises 3 and 4, find the gradient vector field for the scalar
function.

3. 4.

In Exercises 5–12, determine whether the vector field is conser-
vative. If it is, find a potential function for the vector field.

5.

6.

7.

8.

9.

10.

11.

12.

In Exercises 13–20, find (a) the divergence of the vector field F
and (b) the curl of the vector field F.

13.

14.

15.

16.

17.

18.

19.

20.

In Exercises 21–26, evaluate the line integral along the given
path(s).

21.

(a) line segment from to 

(b) one revolution counterclockwise, starting
at 

22.

(a) line segment from to 

(b) counterclockwise around the triangle with vertices

23.

24.

25.

(a) line segment from to 

(b) one revolution counterclockwise around the circle

26.

In Exercises 27 and 28, use a computer algebra system to
evaluate the line integral over the given path.

27. 28.

Lateral Surface Area In Exercises 29 and 30, find the lateral
surface area over the curve in the -plane and under the
surface 

29.

from to 

30.

from to 

In Exercises 31–36, evaluate 

31.

32.

33.

34.

curve of intersection of and from
to 

35.

curve of intersection of and from
to 

36.

curve of intersection of and from
to �0, 2, 0��0, �2, 0�

x2 � y2 � 4z � x2C:

F�x, y, z� � �x2 � z� i � �y2 � z� j � x k

�2, 2, 8��0, 0, 0�
y � xz � x2 � y2C:

F�x, y, z� � �y � z� i � �x � z� j � �x � y�k

�0, 0, 2��2, 2, 0�
y2 � z2 � 4x2 � z2 � 4C:

F�x, y, z� � �2y � z� i � �z � x� j � �x � y�k

0 � t � 2�C: r�t� � 2 cos t i � 2 sin t j � tk,

F�x, y, z� � x i � y j � zk

0 � t � 2�C: r�t� � 4 cos t i � 3 sin t j,

F�x, y� � �x � y� i � �x � y� j

0 � t � 1C: r�t� � t2 i � t2j,

F�x, y� � xy i � 2xy j

�
C
 F � dr.

�2, 4��0, 0�C: y � x2

f �x, y� � 12 � x � y

�2, 4��0, 0�C: y � 2x

f �x, y� � 3 � sin�x � y�

z � f �x, y�.
xyC

0 � t � 40 � t � ��2

r�t� � t i � t2 j � t 3�2k,r�t� � a cos3 t i � a sin3 t j,

�
C

 �x2 � y2 � z2� ds�
C

 �2x � y� ds

0 � t � ��2C: r �t� � �cos t � t sin t� i � �sin t � t sin t� j,

�
C

 �2x � y� dx � �x � 3y� dy

y � 3 sin tx � 3 cos t,
C:

�3, �3��0, 0�C:

�
C

 �2x � y� dx � �x � 2y� dy

0 � t � 2�C: r�t� � �cos t � t sin t� i � �sin t � t cos t�j,

�
C

 �x2 � y2� ds

0 � t � 2�C: r �t� � �1 � sin t� i � �1 � cos t� j,

�
C

 �x2 � y2� ds

�0, 2��4, 0�,�0, 0�,
C:

�5, 4��0, 0�C:

�
C

 xy ds

�1, 0�
x2 � y2 � 1,C:

�3, 4��0, 0)C:

�
C

 �x2 � y2� ds

F�x, y, z� �
z
x
 i �

z
y
 j � z2 k

F�x, y, z� � ln�x2 � y2� i � ln�x2 � y2� j � zk

F�x, y, z� � �x2 � y� i � �x � sin2y� j

F�x, y, z� � arcsin x i � xy2 j � yz2 k

F�x, y, z� � �3x � y� i � �y � 2z� j � �z � 3x�k

F�x, y, z� � �cos y � y cos x� i � �sin x � x sin y� j � xyzk

F�x, y, z� � y2 j � z2 k

F�x, y, z� � x2 i � xy2 j � x2zk

F�x, y, z� � sin z�y i � x j � k�

F�x, y, z� �
yz i � xz j � xyk

y2z2

F�x, y, z� � �4xy � z2� i � �2x2 � 6yz� j � 2xz k

F�x, y, z� � 4xy2i � 2x2 j � 2z k

F�x, y� � ��2y3 sin 2x� i � 3y2�1 � cos 2x� j
F�x, y� � �xy2 � x2� i � �x2y � y2� j

F�x, y� �
1
y
 i �

y
x2 j

F�x, y� � �
y
x2 i �

1
x
 j

f �x, y, z� � x2eyzf �x, y, z� � 2x2 � xy � z2

F�x, y� � i � 2y jF�x, y, z� � x i � j � 2k

�F�
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In Exercises 37 and 38, use a computer algebra system to
evaluate the line integral.

37.

from to and from to 

38.

39. Work Find the work done by the force field 
along the path from to 

40. Work A 20-ton aircraft climbs 2000 feet while making a 
turn in a circular arc of radius 10 miles. Find the work done by
the engines.

In Exercises 41 and 42, evaluate the integral using the
Fundamental Theorem of Line Integrals.

41.

smooth curve from to 

42.

smooth curve from to 

43. Evaluate the line integral 

(a)

(b)

(c) Use the Fundamental Theorem of Line Integrals, where 
is a smooth curve from to 

44. Area and Centroid Consider the region bounded by the 
axis and one arch of the cycloid with parametric equations

and Use line integrals to
find (a) the area of the region and (b) the centroid of the region.

In Exercises 45 –50, use Green’s Theorem to evaluate the line
integral.

45.

boundary of the square with vertices 

46.

boundary of the square with vertices 

47.

48.

49.

boundary of the region between the graphs of and

50.

In Exercises 51 and 52, use a computer algebra system to graph
the surface represented by the vector-valued function.

51.

52.

53. Investigation Consider the surface represented by the vector-
valued function

Use a computer algebra system to do the following.

(a) Graph the surface for and 

(b) Graph the surface for and 

(c) Graph the surface for and 

(d) Graph and identify the space curve for and

(e) Approximate the area of the surface graphed in part (b).

(f ) Approximate the area of the surface graphed in part (c).

54. Evaluate the surface integral over the surface 

where and 

55. Use a computer algebra system to graph the surface and
approximate the surface integral

where is the surface

over and 0  ≤  v  ≤  2�.0  ≤  u  ≤  2

S: r�u, v� � u cos v i � u sin v j � �u � 1��2 � u�k

S

�S��x � y� dS

S

0 � v � �.0 � u � 2

r�u, v� � �u � v� i � �u � v� j � sin v k

S:�
S
� z dS

v �
�

4
.

0 � u � 2�

0 � v �
�

2
.0 � u �

�

4

�

4
� v �

�

2
.0 � u � 2�

�
�

2
� v �

�

2
.0 � u � 2�

r�u, v� � 3 cos v cos u i � 3 cos v sin u j � sin v k.

0 � v � 2�0 � u � 4,

r�u, v� � e�u�4 cos v i � e�u�4 sin v j �
u
6

 k

0 � v � 2�0 � u �
�

3
,

r �u, v� � sec u cos v i � �1 � 2 tan u� sin v j � 2u k

x2�3 � y2�3 � 1C:

�
C

 y2 dx � x4�3 dy

y � 1
y � x2C:

�
C

 xy dx � x2 dy

x2 � y2 � a2C:

�
C

 �x2 � y2� dx � 2xy dy

y � 4 sin tx � 4 cos t,C:

�
C

 xy2 dx � x2y dy

�2, 2�
�2, 0�,�0, 2�,�0, 0�,C:

�
C

 xy dx � �x2 � y2� dy

�1, 1�
�1, 0�,�0, 1�,�0, 0�,C:

�
C

 y dx � 2x dy

y � a�1 � cos ��.x � a�� � sin ��
x-

�4, 2�.�1, 1�
C

1 � t � 4C: r�t� � t i � 	t j,

0 � t � 1C: r�t� � �1 � 3t� i � �1 � t� j,

�
C

 y2 dx � 2xy dy.

�4, 4, 4��0, 0, 1�C:

�
C

 y dx � x dy �
1
z
 dz

�1, 3, 2��0, 0, 0�C:

�
C

 2xyz dx � x2z dy � x2y dz

90	

�4, 8�.�0, 0�y � x3�2
F � x i � 	y j

0 � t � �
r�t� � �2 cos t � 2t sin t� i � �2 sin t � 2t cos t� j,C:

F�x, y� � �2x � y� i � �2y � x� j

�
C

 F � dr

�0, 0��2, 4�y � 2x�2, 4��0, 0�C: y � x2

�
C

 xy dx � �x2 � y2� dy
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56. Mass A cone-shaped surface lamina is given by

At each point on the density is proportional to the distance
between the point and the axis. 

(a) Sketch the cone-shaped surface.

(b) Find the mass of the lamina.

In Exercises 57 and 58, verify the Divergence Theorem by
evaluating

as a surface integral and as a triple integral.

57.

solid region bounded by the coordinate planes and the plane

58.

solid region bounded by the coordinate planes and the plane

In Exercises 59 and 60, verify Stokes’s Theorem by evaluating

as a line integral and as a double integral.

59.

portion of over the square in the plane with
vertices 

is the upward unit normal vector to the surface.

60.

first-octant portion of the plane 

61. Prove that it is not possible for a vector field with twice-
differentiable components to have a curl of xi � yj � zk.

3x � y � 2z � 12S:

F�x, y, z� � �x � z� i � �y � z� j � x2 k

N

�0, a��a, a�,�a, 0�,�0, 0�,
xy-z � y2S:

F�x, y, z� � �cos y � y cos x� i � �sin x � x sin y� j � xyzk

�
C
 F � dr

2x � 3y � 4z � 12
Q:

F�x, y, z� � x i � y j � zk

2x � 3y � 4z � 12
Q:

F�x, y, z� � x2 i � xy j � zk

�
S
 �F � N dS

m

z-
S,

0 � z � a2.z � a�a � 	x2 � y2�,
S

1140 Chapter 15 Vector Analysis

You have learned many calculus techniques for finding the area of
a planar region. Engineers use a mechanical device called a
planimeter for measuring planar areas, which is based on the area
formula given in Theorem 15.9 (page 1096). As you can see in the
figure, the planimeter is fixed at point (but free to pivot) and has
a hinge at The end of the tracer arm moves counterclockwise
around the region A small wheel at is perpendicular to and
is marked with a scale to measure how much it rolls as traces out
the boundary of region In this project you will show that the area
of is given by the length of the tracer arm multiplied by the
distance that the wheel rolls.

Assume that point traces out the boundary of for
Point will move back and forth along a circular arc

around the origin . Let denote the angle in the figure and let
denote the coordinates of 

(a) Show that the vector is given by the vector-valued function

(b) Show that the following two integrals are equal to zero.

(c) Use the integral to show

that the following two integrals are equal.

(d) Let Explain why the distance that
the wheel rolls is given by

(e) Show that the area of region is given by 

O

r( )t

θ
A(x, y)

R

L Wheel

B

I4 � DL.
I1 � I2 � I3 �R

D � �
C

 N � Tds.

DN � �sin � i � cos � j.

I4 � �b

a

 
1
2

 L 
�sin � 
dx
dt

� cos � 
dy
dt� dt

I3 � �b

a

 
1
2

 L 
y sin � 
d�

dt
� x cos � 

d�

dt� dt

�b

a

 �x�t� sin ��t� � y�t� cos ��t�

dt

I2 � �b

a

 
1
2

 
x 
dy
dt

� y 
dx
dt� dt

I1 � �b

a

 
1
2

 L2 
d�

dt
 dt

r�t� � �x�t� � L cos ��t�
 i � �y�t� � L sin ��t�
 j.

OB
\

A.�x�t�, y�t��
��t�O

Aa � t � b.
RB

D
ABLR

R.
B

ABBR.
ABA.
O

The Planimeter

S E C T I O N  P R O J E C T

■ FOR FURTHER INFORMATION For more information about
using calculus to find irregular areas, see “The Amateur Scientist”
by C. L. Strong in the August 1958 issue of Scientific American.
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1. Heat flows from areas of higher temperature to areas of lower
temperature in the direction of greatest change. As a result,
measuring heat flux involves the gradient of the temperature.
The flux depends on the area of the surface. It is the normal
direction to the surface that is important, because heat that flows
in directions tangential to the surface will produce no heat loss.
So, assume that the heat flux across a portion of the surface of
area is given by where is the temper-
ature, is the unit normal vector to the surface in the direction
of the heat flow, and is the thermal diffusivity of the material.
The heat flux across the surface is given by

Consider a single heat source located at the origin with
temperature

(a) Calculate the heat flux across the surface

as shown in the figure.

(b) Repeat the calculation in part (a) using the parametrization

2. Consider a single heat source located at the origin with
temperature

(a) Calculate the heat flux across the surface

as shown in the figure.

(b) Repeat the calculation in part (a) using the parametrization

Figure for 2

3. Consider a wire of density given by the space curve

The moments of inertia about the and axes are given by

Find the moments of inertia for a wire of uniform density 
in the shape of the helix

(see figure).

Figure for 3 Figure for 4

4. Find the moments of inertia for the wire of density 
given by the curve

(see figure).

5. The Laplacian is the differential operator

and Laplace’s equation is

Any function that satisfies this equation is called harmonic.
Show that the function is harmonic.w � 1�f

�2w �
�2w
�x2 �

�2w
�y 2 �

�2w
�z2 � 0.

�2 � � � � �
�2

�x2 �
�2

�y 2 �
�2

�z2

0 � t � 1r�t� �
t2

2
i � tj �

2	2 t 3�2

3
k,C:


 �
1

1 � t

z

x y1
2

1

1

2

t2
i + t j +r(t) = k

2
2   2t3/2

3z

x
y2

2

2

4

6

8

10

12

r(t) = 3 cos t i + 3 sin t j + 2tk

0 � t � 2�r�t� � 3 cos ti � 3 sin tj � 2tk,


 � 1

Iz � �C �x2 � y2�
�x, y, z� ds.

Iy � �C �x2 � z2�
�x, y, z� ds

Ix � �C �y2 � z2�
�x, y, z� ds

z-y-,x-,

a � t � b.r�t� � x�t�i � y�t�j � z�t�k,C:


�x, y, z�

1

1 1

z

y
x

S
N

0 � v � 2�.

0 � u �
�

2
,z � cos u,y � sin u sin v,x � sin u cos v,

S � ��x, y, z�: z � 	1 � x2 � y2, x2 � y2 � 1�

T�x, y, z� �
25

	x2 � y2 � z2
.

0 � v � 1.
�

3
� u �

2�

3
,z � sin u,y � v,x � cos u,

1

2

1 1

z

y
x

S

N

S � ��x, y, z�: z � 	1 � x2, �
1
2

� x �
1
2

, 0 � y � 1�

T�x, y, z� �
25

	x2 � y2 � z2
.

H � �
S
� � k�T � N dS.

S
k

N
T�H � �k�T � N dS,�S
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6. Consider the line integral

where is the boundary of the region lying between the graphs
of and 

(a) Use a computer algebra system to verify Green’s Theorem
for an odd integer from 1 through 7.

(b) Use a computer algebra system to verify Green’s Theorem
for an even integer from 2 through 8.

(c) For an odd integer, make a conjecture about the value of
the integral.

7. Use a line integral to find the area bounded by one arch of the
cycloid 
as shown in the figure.

Figure for 7 Figure for 8

8. Use a line integral to find the area bounded by the two loops of
the eight curve

as shown in the figure.

9. The force field acts on an object
moving from the point to the point as shown in
the figure.

(a) Find the work done if the object moves along the path 

(b) Find the work done if the object moves along the path

(c) Suppose the object moves along the path 
Find the value of the constant that

minimizes the work.

10. The force field is shown in the
figure below. Three particles move from the point to the
point along different paths. Explain why the work done is
the same for each particle, and find the value of the work.

11. Let be a smooth oriented surface with normal vector 
bounded by a smooth simple closed curve Let be a
constant vector, and prove that

12. How does the area of the ellipse compare with the 

magnitude of the work done by the force field

on a particle that moves once around the ellipse (see figure)?

13. A cross section of Earth’s magnetic field can be represented as
a vector field in which the center of Earth is located at the
origin and the positive axis points in the direction of the
magnetic north pole. The equation for this field is

where is the magnetic moment of Earth. Show that this
vector field is conservative.

m

 �
m

�x2 � y2�5�2 �3xyi � �2y2 � x2�j


 F�x, y� � M�x, y�i � N�x, y�j

y-

y

x
1

1

−1

−1

F�x, y� � �
1
2

yi �
1
2

xj

x2

a2 �
y2

b2 � 1

�
S
��2v � N� dS � �

C

�v � r� � dr.

vC.
N,S

y

x

6

5

4

3

2

1

1 2 3 4 5 6

�2, 4�
�1, 1�

F�x, y� � �3x2 y2�i � �2x3y�j

cc > 0.0 � y � 1,
x � c�y � y2�,

0 � y � 1.x � y � y2,

0 � y � 1.
x � 0,

y

x

1

1

�0, 1�,�0, 0�
F�x, y� � �x � y�i � �x2 � 1�j

0 � t � 2�y�t� � sin t,x�t� �
1
2

 sin 2t,

x
1−1

−1

1

y

x
2  a

2a

π

y

0 � � � 2�,y��� � a�1 � cos ��,x��� � a�� � sin ��,

n

n,

n,

y � 0.y � 	a2 � x2  �a > 0�
C

�
C

 yn dx � xn dy
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11431143

16 Additional Topics in
Differential Equations

You can use power series to solve certain types of differential equations. A Taylor series was used to find the series
solution of You can use n terms of the series to approximate y. As more terms of the series are used, the
closer the approximation gets to y. In the graphs, the series solution is shown using 2 terms, 4 terms, and 6 terms,
along with y. Can you identify the graphs? (See Section 16.4.)

y� � y2 � x.

© Benelux/zefa/Corbis

In Chapter 6, you studied differential 
equations. In this chapter, you will learn
additional techniques for solving 
differential equations.

In this chapter, you should learn the 
following.

■ How to recognize and solve exact 
differential equations. (16.1)

■ How to solve second-order homoge-
neous linear differential equations and
higher-order homogeneous linear 
differential equations. (16.2)

■ How to solve second-order nonhomo-
geneous linear differential equations.
(16.3)

■ How to use power series to solve 
differential equations. (16.4)

Differential equations can be used to model many real-life applications. How can
you use a differential equation to describe the fall of a parachutist? (See Section
16.3, Section Project.)

■

■
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■ Solve an exact differential equation.
■ Use an integrating factor to make a differential equation exact.

Exact Differential Equations
In Chapter 6, you studied applications of differential equations to growth and decay
problems. You also learned more about the basic ideas of differential equations and
studied the solution technique known as separation of variables. In this chapter, you
will learn more about solving differential equations and using them in real-life 
applications. This section introduces you to a method for solving the first-order 
differential equation

for the special case in which this equation represents the exact differential of a 
function 

From Section 13.3, you know that if has continuous second partials, then

This suggests the following test for exactness.

Exactness is a fragile condition in the sense that seemingly minor alterations in
an exact equation can destroy its exactness. This is demonstrated in the following
example.

�M
�y

�
�2f

�y�x
�

�2f
�x�y

�
�N
�x

.

f

z � f �x, y�.

M�x, y� dx � N�x, y� dy � 0

1144 Chapter 16 Additional Topics in Differential Equations

16.1 Exact First-Order Equations

DEFINITION OF AN EXACT DIFFERENTIAL EQUATION

The equation is an exact differential equation
if there exists a function of two variables and having continuous partial
derivatives such that

and

The general solution of the equation is f �x, y� � C.

fy�x, y� � N�x, y�.fx�x, y� � M�x, y�

yxf
M�x, y� dx � N�x, y� dy � 0

THEOREM 16.1 TEST FOR EXACTNESS

Let and have continuous partial derivatives on an open disk The differ-
ential equation is exact if and only if

�M
�y

�
�N
�x

.

M�x, y� dx � N�x, y� dy � 0
R.NM

NOTE Every differential equation of the form

is exact. In other words, a separable differential equation is actually a special type of an exact
equation. ■

M�x� dx � N�y� dy � 0
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EXAMPLE 1 Testing for Exactness

a. The differential equation is exact because

and

But the equation is not exact, even though it is obtained
by dividing each side of the first equation by 

b. The differential equation is exact because

and

But the equation is not exact, even though it 
differs from the first equation only by a single sign. ■

Note that the test for exactness of is the same as the
test for determining whether is the gradient of a 
potential function (Theorem 15.1). This means that a general solution to
an exact differential equation can be found by the method used to find a potential
function for a conservative vector field.

EXAMPLE 2 Solving an Exact Differential Equation

Solve the differential equation 

Solution The given differential equation is exact because

The general solution, is given by

In Section 15.1, you determined by integrating with respect to and 
reconciling the two expressions for An alternative method is to partially 
differentiate this version of with respect to y and compare the result with

In other words,

So, and it follows that Therefore,

and the general solution is Figure 16.1 shows the solution curves
that correspond to 10, 100, and 1000. ■C � 1,

x2y � x3 � y2 � C.

f �x, y� � x2y � x3 � y2 � C1

g�y� � �y2 � C1.g��y� � �2y,

g��y� � �2y

fy�x, y� �
�

�y
 �x2y � x3 � g�y�� � x2 � g��y� � x2 � 2y.

N�x, y�

N�x, y�.
f �x, y�

f �x, y�.
yN�x, y�g�y�

� � �2xy � 3x2� dx � x2y � x3 � g�y�. f �x, y� � � M�x, y� dx

f �x, y� � C,

�M
�y

�
�

�y
 �2xy � 3x2� � 2x �

�N
�x

�
�

�x
 �x2 � 2y�.

�2xy � 3x2� dx � �x2 � 2y� dy � 0.

f �x, y� � C
F�x, y� � M�x, y� i � N�x, y�j

M�x, y� dx � N�x, y� dy � 0

cos y dx � �y2 � x sin y� dy � 0

�N
�x

�
�

�x
 � y2 � x sin y� � �sin y.

�M
�y

�
�

�y
 �cos y� � �sin y

cos y dx � �y2 � x sin y� dy � 0

x.
�y2 � 1� dx � xy dy � 0

�N
�x

�
�

�x
 � yx2� � 2xy.

�M
�y

�
�

�y
 �xy2 � x� � 2xy

�xy2 � x� dx � yx2 dy � 0

16.1 Exact First-Order Equations 1145

The icon indicates that you will find a CAS Investigation on the book’s website. The CAS
Investigation is a collaborative exploration of this example using the computer algebra systems
Maple and Mathematica.

x

y

4−4 8

8

−8 12

12

16

20

24

−12

C = 1
C = 10

C = 100

C = 1000

Figure 16.1
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EXAMPLE 3 Solving an Exact Differential Equation

Find the particular solution of

that satisfies the initial condition when 

Solution The differential equation is exact because

Because is simpler than it is better to begin by integrating 

So, and

which implies that , and the general solution is

General solution

Applying the given initial condition produces

which implies that So, the particular solution is

Particular solution

The graph of the particular solution is shown in Figure 16.3. Notice that the graph 
consists of two parts: the ovals are given by and the axis is given
by ■

In Example 3, note that if the total differential of 
is given by

In other words, is called an exact differential equation because
is exactly the differential of f �x, y�.M dx � N dy

M dx � N dy � 0

 � M�x, y� dx � N�x, y� dy.

 � �cos x � x sin x � y2� dx � 2xy dy

 dz � fx�x, y� dx � fy�x, y� dy

zz � f �x, y� � xy2 � x cos x,

x � 0.
y-y2 � cos x � 0,

xy2 � x cos x � 0.

C � 0.

��1�2 � � cos � � C

xy2 � x cos x � C.

f �x, y� � xy2 � x cos x � C1

 � x cos x � C1

 g�x� � � �cos x � x sin x� dx

g��x� � cos x � x sin x

g��x� � cos x � x sin x

fx�x, y� �
�

�x
 �xy2 � g�x�� � y2 � g��x� � cos x � x sin x � y2

M�x, y�

f �x, y� � � N�x, y� dy � � 2xy dy � xy2 � g�x�

N�x, y�.M�x, y�,N�x, y�

�

�y
 �cos x � x sin x � y2� � 2y �

�

�x
 �2xy�.

�N
�x

�M
�y

x � �.y � 1

�cos x � x sin x � y2� dx � 2xy dy � 0

1146 Chapter 16 Additional Topics in Differential Equations

x

y

2

4

−2

−4

π 2π 3ππ−3π− 2π−

(   , 1)π

Figure 16.3

You can use a
graphing utility to graph a particular
solution that satisfies the initial 
condition of a differential equation. 
In Example 3, the differential 
equation and initial conditions are 
satisfied when 
which implies that the particular 
solution can be written as or

On a graphing utility
screen, the solution would be repre-
sented by Figure 16.2 together with
the axis.

Figure 16.2

−4

−4

4

� 4�

y-

y � ±��cos x.
x � 0

xy2 � x cos x � 0,

TECHNOLOGY
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Integrating Factors
If the differential equation is not exact, it may be possible
to make it exact by multiplying by an appropriate factor which is called an
integrating factor for the differential equation.

EXAMPLE 4 Multiplying by an Integrating Factor

a. If the differential equation

Not an exact equation

is multiplied by the integrating factor the resulting equation

Exact equation

is exact—the left side is the total differential of 

b. If the equation

Not an exact equation

is multiplied by the integrating factor the resulting equation

Exact equation

is exact—the left side is the total differential of ■

Finding an integrating factor can be difficult. However, there are two classes of 
differential equations whose integrating factors can be found routinely—namely,
those that possess integrating factors that are functions of either alone or alone.
The following theorem, which is presented without proof, outlines a procedure for
finding these two special categories of integrating factors.

yx

x�y.

1
y
 dx �

x
y2 dy � 0

u�x, y� � 1�y2,

y dx � x dy � 0

x2y.

2xy dx � x2 dy � 0

u�x, y� � x,

2y dx � x dy � 0

u�x, y�,
M�x, y� dx � N�x, y� dy � 0

16.1 Exact First-Order Equations 1147

THEOREM 16.2 INTEGRATING FACTORS

Consider the differential equation 

1. If

is a function of alone, then is an integrating factor.

2. If

is a function of alone, then is an integrating factor.e	k�y� dyy

1
M�x, y� �Nx�x, y� � My�x, y�� � k�y�

e	h�x� dxx

1
N�x, y� �My�x, y� � Nx�x, y�� � h�x�

M�x, y� dx � N�x, y� dy � 0.

If either or is constant, Theorem 16.2 still applies. As an aid to
remembering these formulas, note that the subtracted partial derivative identifies both
the denominator and the variable for the integrating factor. ■

k�y�h�x�STUDY TIP

E X P L O R A T I O N

In Example 4, show that the 
differential equations

and 

are exact.

1
y
 dx �

x
y2 dy � 0

2xy dx � x2 dy � 0

1059996_1601.qxp  11/3/08  4:20 PM  Page 1147



EXAMPLE 5 Finding an Integrating Factor

Solve the differential equation 

Solution The given equation is not exact because and 
However, because

it follows that is an integrating factor. Multiplying the given 
differential equation by produces the exact differential equation

whose solution is obtained as follows.

Therefore, and which implies that 

The general solution is or ■

The next example shows how a differential equation can help in sketching a force
field given by 

EXAMPLE 6 An Application to Force Fields

Sketch the force field given by

by finding and sketching the family of curves tangent to F.

Solution At the point in the plane, the vector has a slope of

which, in differential form, is

From Example 5, you know that the general solution of this differential equation 
is or Figure 16.4 shows several 
representative curves from this family. Note that the force vector at is tangent to
the curve passing through ■�x, y�.

�x, y�
y2 � x � 1 � Ce�x.y2 � x � 1 � Ce�x,

 �y2 � x� dx � 2y dy � 0.

 2y dy � ��y2 � x� dx

dy
dx

�
��y2 � x���x2 � y2

2y��x2 � y2
�

��y2 � x�
2y

F�x, y��x, y�

F�x, y� �
2y

�x2 � y2
 i �

y2 � x
�x2 � y2

 j

F�x, y� � M�x, y� i � N�x, y�j.

y2 � x � 1 � Ce�x.y2ex � xex � ex � C,

f �x, y� � y2ex � xex � ex � C1.

g�x� � �xex � ex � C1,g��x� � �xex

g��x� � �xex

fx�x, y� � y2ex � g��x� � y2ex � xex

M�x, y�

f �x, y� � � N�x, y� dy � � 2yex dy � y2ex � g�x�

�y2ex � xex� dx � 2yex dy � 0

ex
e	h�x� dx � e	 dx � ex

My�x, y� � Nx�x, y�
N�x, y� �

2y � 0
2y

� 1 � h�x�

Nx�x, y� � 0.My�x, y� � 2y

�y2 � x� dx � 2y dy � 0.

1148 Chapter 16 Additional Topics in Differential Equations
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−1−3

−2

−3

y

x

j
x

2

y

x

2
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i

2

2

x
),,(xF

Force field:

y
y

y2 = x − 1 + Ce−x

y y
Family of curves tangent to F:

Figure 16.4
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In Exercises 1–4, determine whether the differential equation is
exact. Explain your reasoning.

1.

2.

3.

4.

In Exercises 5–14, determine whether the differential equation
is exact. If it is, find the general solution.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

In Exercises 15–18, (a) sketch an approximate solution of the
differential equation satisfying the initial condition on the slope
field, (b) find the particular solution that satisfies the initial 
condition, and (c) use a graphing utility to graph the particular
solution. Compare the graph with the sketch in part (a).

15.

16.

17.

18.

Figure for 15 Figure for 16

Figure for 17 Figure for 18

In Exercises 19–24, find the particular solution that satisfies the
initial condition.

19.

20.

21.

22.

23.

24.

In Exercises 25–34, find the integrating factor that is a function
of or alone and use it to find the general solution of the 
differential equation.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

In Exercises 35–38, use the integrating factor to find the 
general solution of the differential equation.

35.

36.

37.

38. �y3 dx � �xy2 � x2� dy � 0u�x, y� � x�2y�2

��y5 � x2y� dx � �2xy4 � 2x3� dy � 0u�x, y� � x�2y�3

�3y2 � 5x2y� dx � �3xy � 2x3� dy � 0u�x, y� � x2y

�4x2y � 2y2� dx � �3x3 � 4xy� dy � 0u�x, y� � xy2

Differential Equation                              Integrating Factor

��2y3 � 1� dx � �3xy2 � x3� dy � 0

2y dx � �x � sin�y � dy � 0

�x2 � 2x � y� dx � 2 dy � 0

y2 dx � �xy � 1� dy � 0

�2x2y � 1� dx � x3 dy � 0

�x � y� dx � tan x dy � 0

�5x2 � y2� dx � 2y dy � 0

�5x2 � y� dx � x dy � 0

�2x3 � y� dx � x dy � 0

y dx � �x � 6y2� dy � 0

yx

y��1� � 8�2xy2 � 4� dx � �2x2y � 6� dy � 0

y�0� � �3�2xy � 9x2� dx � �2y � x2 � 1� dy � 0

y�3� � 1�x2 � y2� dx � 2xy dy � 0

y�0� � �e3x�sin 3y dx � cos 3y dy� � 0

y�0� � 4
1

x2 � y2 �x dx �  y dy� � 0

y�2� � 4
y

x � 1
 dx � �ln�x � 1� � 2y� dy � 0

Initial ConditionDifferential Equation                          

y

x
84−4−8

8

4

−4

−8

x
−4 −2 2 4

−4

−2

2

4

y

y

x
42−2−4

4

2

−2

−4

x
−4 −2 2 4

−4

−2

4

2

y

�4, 5��x2 � y� dx � �y2 � x� dy � 0

�4, 3�1
�x2 � y2

 �x dx � y dy� � 0

�1, ��2xy dx � �x2 � cos y� dy � 0


1
2

, 
�

4��2x tan y � 5� dx � �x2sec2y� dy � 0

Initial ConditionDifferential Equation                          

ey cos xy � y dx � �x � tan xy� dy� � 0

1
�x � y�2 �y2 dx � x2 dy� � 0

e��x2�y2��x dx � y dy� � 0

1
x2 � y2 �x dy � y dx� � 0

2y2exy2
 dx � 2xyexy2

 dy � 0

�4x3 � 6xy2� dx � �4y3 � 6xy� dy � 0

2 cos�2x � y� dx � cos�2x � y� dy � 0

�3y2 � 10xy2� dx � �6xy � 2 � 10x2y� dy � 0

yex dx � ex dy � 0

�2x � 3y� dx � �2y � 3x� dy � 0

yexy dx � xexy dy � 0

x sin y dx � x cos y dy � 0

�1 � xy� dx � �y � xy� dy � 0

�2x � xy2� dx � �3 � x2y� dy � 0

16.1 Exact First-Order Equations 1149

16.1 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

1059996_1601.qxp  11/3/08  4:20 PM  Page 1149

www.CalcChat.com


39. Show that each expression is an integrating factor for the
differential equation

(a) (b) (c) (d)

40. Show that the differential equation

is exact only if If show that is an integrating
factor, where

In Exercises 41– 44, use a graphing utility to graph the family of
curves tangent to the given force field.

41.

42.

43.

44.

In Exercises 45 and 46, find an equation of the curve with the
specified slope passing through the given point.

45.

46.

47. Cost If represents the cost of producing x units in a
manufacturing process, the elasticity of cost is defined as

Find the cost function if the elasticity function is

where and 

Euler’s Method In Exercises 49 and 50, (a) use Euler’s Method
and a graphing utility to graph the particular solution of the initial
value problem over the indicated interval with the specified
value of and initial condition, (b) find the exact solution of the 
differential equation analytically, and (c) use a graphing utility
to graph the particular solution and compare the result with the
graph in part (a).

Differential Initial

49. 0.05

50. 0.2

51. Euler’s Method Repeat Exercise 49 for and 
discuss how the accuracy of the result changes.

52. Euler’s Method Repeat Exercise 50 for and 
discuss how the accuracy of the result changes.

True or False? In Exercises 55–58, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

55. The differential equation is exact.

56. If is exact, then is also
exact.

57. If is exact, then 
is also exact.

58. The differential equation is exact.

In Exercises 59 and 60, find all values of such that the differ-
ential equation is exact.

59.

60.

61. Find all nonzero functions and such that

is exact.

62. Find all nonzero functions such that

is exact.

g�y� ey dx � xy dy � 0

g

g�y� sin x dx � y2 f �x� dy � 0

gf

�ye2xy � 2x� dx � �kxe2xy � 2y� dy � 0

�xy2 � kx2y � x3� dx � �x3 � x2y � y2� dy � 0

k

f �x� dx � g�y� dy � 0

N� dy � 0
� f �x� � M � dx � �g�y� �M dx � N dy � 0

xM dx � xN dy � 0M dx � N dy � 0

2xy dx � �y2 � x2�  dy � 0

h � 0.5

h � 1

y�0� � 1�0, 5�y� �
6x � y2

y�3y � 2x�

y�2� � 1�2, 4�y� �
�xy

x2 � y2

Condition     h   IntervalEquation            

h

x  ≥ 100.C�100� � 500

E�x� �
20x � y

2y � 10x

E�x� �
marginal cost
average cost

�
C��x�

C�x��x
�

x
y
 
dy
dx

.

y � C�x�

�0, 2�dy
dx

�
�2xy

x2 � y2

�2, 1�dy
dx

�
y � x
3y � x

PointSlope              

F�x, y� � �1 � x2� i � 2xy j

F�x, y� � 4x2y i � 
2xy2 �
x
y2� j

F�x, y� �
x

�x2 � y2
 i �

y
�x2 � y2

 j

F�x, y� �
y

�x2 � y2
 i �

x
�x2 � y2

 j

n � �
2a � b
a � b

.m � �
2b � a
a � b

,

xmyna � b,a � b.

�axy2 � by� dx � �bx2y � ax� dy � 0

1
x2 � y2

1
xy

1
y2

1
x2

y dx � x dy � 0.
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48. In Chapter 6, you solved the first-order linear differential
equation

by using the integrating factor

Show that you can obtain this integrating factor by using the
methods of this section.

u�x� � e�P�x� dx.

dy
dx

� P�x�y � Q�x�

CAPSTONE

53. Explain how to determine whether a differential equation is
exact.

54. Outline the procedure for finding an integrating factor for
the differential equation M�x, y� dx � N�x, y� dy � 0.

WRITING ABOUT CONCEPTS
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16.2 Second-Order Homogeneous Linear Equations 1151

16.2 Second-Order Homogeneous Linear Equations
■ Solve a second-order linear differential equation.
■ Solve a higher-order linear differential equation.
■ Use a second-order linear differential equation to solve an applied problem.

Second-Order Linear Differential Equations
In this section and the following section, you will learn methods for solving higher-
order linear differential equations.

Homogeneous equations are discussed in this section, and the nonhomogeneous
case is discussed in the next section.

The functions are linearly independent if the only solution of the
equation

is the trivial one, Otherwise, this set of functions is
linearly dependent.

EXAMPLE 1 Linearly Independent and Dependent Functions

a. The functions

and

are linearly independent because the only values of and for which

for all are and 

b. It can be shown that two functions form a linearly dependent set if and only if one
is a constant multiple of the other. For example,

and

are linearly dependent because

has the nonzero solutions and ■C2 � 1.C1 � �3

C1x � C2�3x� � 0

y2�x� � 3xy1�x� � x

C2 � 0.C1 � 0x

C1 sin x � C2x � 0

C2C1

y2�x� � xy1�x� � sin x

C1 � C2 � .  .  . � Cn � 0.

y1, y2, .  .  . , yn

DEFINITION OF LINEAR DIFFERENTIAL EQUATION OF ORDER n

Let and be functions of with a common (interval) domain.
An equation of the form

is called a linear differential equation of order If the equation
is homogeneous; otherwise, it is nonhomogeneous.

f �x� � 0,n.

y�n� � g1�x�y�n�1� � g2�x�y�n�2� � .  .  . � gn�1�x�y� � gn�x�y � f �x�

xfg1, g2, .  .  . , gn

NOTE Notice that this use of the term homogeneous differs from that in Section 6.3. ■

C1y1 � C2y2 � .  .  . � Cnyn � 0
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The following theorem points out the importance of linear independence in
constructing the general solution of a second-order linear homogeneous differential
equation with constant coefficients.

This theorem is proved in only one direction. If and are solutions, you
obtain the following system of equations.

Multiplying the first equation by , multiplying the second by and adding the
resulting equations together produces

which means that

is a solution, as desired. The proof that all solutions are of this form is best left to a
full course on differential equations. ■

Theorem 16.3 states that if you can find two linearly independent solutions, you
can obtain the general solution by forming a linear combination of the two solutions.

To find two linearly independent solutions, note that the nature of the equation
suggests that it may have solutions of the form If so, then

and So, by substitution, is a solution if and only if 

Because is never 0, is a solution if and only if

This is the characteristic equation of the differential equation

Note that the characteristic equation can be determined from its differential equation
simply by replacing with with and with 1.ym,y�m2,y�

y� � ay� � by � 0.

y � emxemx

 emx�m2 � am � b� � 0.

 m2emx � amemx � bemx � 0

 y� � ay� � by � 0

y � emxy� � m2emx.y� � memx
y � emx.y� � ay� � by � 0

y � C1y1 � C2y2

�C1y1� �x� � C2y2� �x�� � a�C1y1��x� � C2y2��x�� � b�C1y1�x� � C2y2�x�� � 0

C2,C1

y2� �x� � ay2� �x� � by2�x� � 0

y1� �x� � ay1� �x� � by1�x� � 0

y2y1PROOF

1152 Chapter 16 Additional Topics in Differential Equations

THEOREM 16.3 LINEAR COMBINATIONS OF SOLUTIONS

If and are linearly independent solutions of the differential equation
then the general solution is

where and are constants.C2C1

y � C1y1 � C2y2

y� � ay� � by � 0,
y2y1

Characteristic equationm2 � am � b � 0.
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EXAMPLE 2 Characteristic Equation with Distinct Real Zeros

Solve the differential equation

Solution In this case, the characteristic equation is

Characteristic equation

so, Therefore, and are particular solutions
of the given differential equation. Furthermore, because these two solutions are linearly
independent, you can apply Theorem 16.3 to conclude that the general solution is

General solution ■

The characteristic equation in Example 2 has two distinct real zeros. From
algebra, you know that this is only one of three possibilities for quadratic equations.
In general, the quadratic equation has zeros

and

which fall into one of three cases.

1. Two distinct real zeros,

2. Two equal real zeros,

3. Two complex conjugate zeros, and 

In terms of the differential equation these three cases correspond
to three different types of general solutions.

y� � ay� � by � 0,

m2 � � � �im1 � � � �i

m1 � m2

m1 	 m2

m2 �
�a � �a2 � 4b

2
m1 �

�a � �a2 � 4b
2

m2 � am � b � 0

y � C1e
2x � C2e

�2x.

y2 � em2x � e�2xy1 � em1x � e2xm � ±2.

m2 � 4 � 0

y� � 4y � 0.

16.2 Second-Order Homogeneous Linear Equations 1153

THEOREM 16.4 SOLUTIONS OF y ay by 0

The solutions of

fall into one of the following three cases, depending on the solutions of the
characteristic equation,

1. Distinct Real Zeros If are distinct real zeros of the characteristic
equation, then the general solution is

2. Equal Real Zeros If are equal real zeros of the characteristic
equation, then the general solution is

3. Complex Zeros If and are complex zeros of
the characteristic equation, then the general solution is

y � C1e
�x cos �x � C2e

�x sin �x.

m2 � � � �im1 � � � �i

y � C1e
m1x � C2xem1x � �C1 � C2x�em1x.

m1 � m2

y � C1e
m1x � C2e

m2x.

m1 	 m2

m2 � am � b � 0.

y� � ay� � by � 0

�1�1�

E X P L O R A T I O N

For each differential equation
below, find the characteristic
equation. Solve the characteristic
equation for and use the values
of to find a general solution to
the differential equation. Using
your results, develop a general
solution to differential equations
with characteristic equations that
have distinct real roots.

(a)

(b) y� � 6y� � 8y � 0

y� � 9y � 0

m
m,

■ FOR FURTHER INFORMATION For
more information on Theorem 16.4, see
“A Note on a Differential Equation” by
Russell Euler in the 1989 winter issue of
the Missouri Journal of Mathematical
Sciences.
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EXAMPLE 3 Characteristic Equation with Complex Zeros

Find the general solution of the differential equation

Solution The characteristic equation

has two complex zeros, as follows.

So, and and the general solution is

The graphs of the basic solutions and 
along with other members of the family of solutions, are shown in Figure 16.5.

■

EXAMPLE 4 Characteristic Equation with Repeated Zeros

Solve the differential equation

subject to the initial conditions and 

Solution The characteristic equation

has two equal zeros given by So, the general solution is

General solution

Now, because when you have

Furthermore, because when you have

Therefore, the solution is

Particular solution

Try checking this solution in the original differential equation. ■

y � 2e�2x � 5xe�2x.

 5 � C2.

 1 � �2�2��1� � C2��2�0��1� � 1�
 y� � �2C1e

�2x � C2��2xe�2x � e�2x�

x � 0,y� � 1

2 � C1�1� � C2�0��1� � C1.

x � 0,y � 2

y � C1e
�2x � C2xe�2x.

m � �2.

m2 � 4m � 4 � �m � 2�2 � 0

y��0� � 1.y�0� � 2

y� � 4y� � 4y � 0

g�x� � e�3x sin �3x,f �x� � e�3x cos �3x

y � C1e
�3x cos�3x � C2e

�3x sin�3x.

� � �3,� � �3

 � �3 ± �3i

 � �3 ± ��3

 �
�6 ± 2��3

2

 �
�6 ± ��12

2

 m �
�6 ± �36 � 48

2

m2 � 6m � 12 � 0

y� � 6y� � 12y � 0.

1154 Chapter 16 Additional Topics in Differential Equations

x
1 432

3
f

g
f + g

g − f

y

The basic solutions in Example 3,
and
are shown in the

graph along with other members of the 
family of solutions. Notice that as 
all of these solutions approach 0.
Figure 16.5

x →
,

g�x� � e�3x sin�3x,
f �x� � e�3x cos �3x

NOTE In Example 3, note that although the characteristic equation has two complex zeros,
the solution of the differential equation is real. ■
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Higher-Order Linear Differential Equations
For higher-order homogeneous linear differential equations, you can find the general
solution in much the same way as you do for second-order equations. That is, you begin
by determining the zeros of the characteristic equation. Then, based on these zeros,
you form a linearly independent collection of solutions. The major difference is that
with equations of third or higher order, zeros of the characteristic equation may occur
more than twice. When this happens, the linearly independent solutions are formed by
multiplying by increasing powers of as demonstrated in Examples 6 and 7.

EXAMPLE 5 Solving a Third-Order Equation

Find the general solution of 

Solution The characteristic equation is

Because the characteristic equation has three distinct zeros, the general solution is

General solution

EXAMPLE 6 Solving a Third-Order Equation

Find the general solution of 

Solution The characteristic equation is

Because the zero occurs three times, the general solution is

General solution

EXAMPLE 7 Solving a Fourth-Order Equation

Find the general solution of 

Solution The characteristic equation is as follows.

Because each of the zeros and occurs
twice, the general solution is

General solution

■

y � C1 cos x � C2 sin x � C3x cos x � C4x sin x.

m2 � � � �i � 0 � im1 � � � �i � 0 � i

 m � ± i

 �m2 � 1�2 � 0

 m4 � 2m2 � 1 � 0

y�4� � 2y� � y � 0.

y � C1e
�x � C2xe�x � C3x

2e�x.

m � �1

 m � �1.

 �m � 1�3 � 0

 m3 � 3m2 � 3m � 1 � 0

y��� � 3y� � 3y� � y � 0.

y � C1 � C2e
�x � C3e

x.

 m � 0, 1, �1.

 m�m � 1��m � 1� � 0

 m3 � m � 0

y��� � y� � 0.

x,

n
nn
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Application
One of the many applications of linear differential equations is describing the motion
of an oscillating spring. According to Hooke’s Law, a spring that is stretched (or
compressed) units from its natural length tends to restore itself to its natural length
by a force that is proportional to That is, where is the spring
constant and indicates the stiffness of the given spring.

Suppose a rigid object of mass is attached to the end of a spring and causes a
displacement, as shown in Figure 16.6. Assume that the mass of the spring is
negligible compared with If the object is pulled downward and released, the
resulting oscillations are a product of two opposing forces—the spring force

and the weight of the object. Under such conditions, you can use a
differential equation to find the position of the object as a function of time 
According to Newton’s Second Law of Motion, the force acting on the weight is

where is the acceleration. Assuming that the motion is
undamped—that is, there are no other external forces acting on the object—it follows
that and you have

Undamped motion of a spring

EXAMPLE 8 Undamped Motion of a Spring

A four-pound weight stretches a spring 8 inches from its natural length. The weight is
pulled downward an additional 6 inches and released with an initial upward velocity
of 8 feet per second. Find a formula for the position of the weight as a function of 
time 

Solution By Hooke’s Law, so Moreover, because the weight is
given by it follows that So, the resulting differential equation
for this undamped motion is

Because the characteristic equation has complex zeros 
the general solution is

Using the initial conditions, you have

Consequently, the position at time is given by

■y �
1
2

 cos 4�3 t �
2�3

3
 sin 4�3 t.

t

y��0� � 8C2 �
2�3

3
.8 � �4�3 �1

2��0� � 4�3 C2�1�

 y��t� � �4�3 C1 sin 4�3 t � 4�3 C2 cos 4�3 t

y�0� �
1
2C1 �

1
2

1
2

� C1�1� � C2�0�

 � C1 cos 4�3 t � C2 sin 4�3 t.

 y � C1e
0 cos 4�3 t � C2e

0 sin 4�3 t

m � 0 ± 4�3i,m2 � 48 � 0

d2y
dt2

� 48y � 0.

m � w	g �
4
32 �

1
8.mg,

wk � 6.4 � k�2
3�,

t.

d2y
dt2

� � k
m

 �y � 0.

�ky,m�d2y	dt2� �

a � d2y	dt2F � ma,

t.y
mgF�y� � �ky

m.

m

kF� y� � �ky,y.F
ly
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m

l = natural
length

y = displacement

A rigid object of mass m attached to the end
of the spring causes a displacement of y.
Figure 16.6
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Suppose the object in Figure 16.7 undergoes an additional damping or frictional
force that is proportional to its velocity. A case in point would be the damping force
resulting from friction and movement through a fluid. Considering this damping force,

the differential equation for the oscillation is 

or, in standard linear form,

Damped motion of a spring
d2y
dt2

�
p
m

 �dy
dt� �

k
m

 y � 0.

m 
d2y
dt2

� �ky � p 
dy
dt

�p�dy	dt�,
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In Exercises 1– 4, verify the solution of the differential equation.
Then use a graphing utility to graph the particular solutions for
several different values of and What do you observe?

1.

2.

3.

4.

In Exercises 5–30, find the general solution of the linear
differential equation.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. Consider the differential equation and the
solution Find the particular
solution satisfying each of the following initial conditions.

(a)

(b)

(c)

32. Determine and such that is a particular
solution of the differential equation where

In Exercises 33–38, find the particular solution of the linear
differential equation that satisfies the initial conditions.

33. 34.

35. 36.

37. 38.

In Exercises 39–44, find the particular solution of the linear 
differential equation that satisfies the boundary conditions, if
possible.

39. 40.

41. 42.

43. 44.

y�0� � 4,  y��� � 8y�0� � 2,  y�1� � �1

y� � 6y� � 45y � 04y� � 28y� � 49y � 0

y�0� � 3,  y�2� � 0y�0� � 3,  y��� � 5

4y� � 20y� � 21y � 0y� � 9y � 0

y�0� � 2,  y��� � �5y�0� � 1,  y�1� � 3

4y� � y � 0y� � 4y� � 3y � 0

y�0� � 3,  y��0� � �1y�0� � 2,  y��0� � 1

4y� � 4y� � y � 0y� � 2y� � 3y � 0

y�0� � 2,  y��0� � 1y�0� � 0,  y��0� � 2

9y� � 6y� � y � 0y� � 16y � 0

y�0� � 3,  y��0� � 3y�0� � 1,  y��0� � �4

y� � 7y� � 12y � 0y� � y� � 30y � 0

y��0� � �5.
y� � �y � 0,

y � C sin�3 t�C

y�0� � �1,  y��0� � 3

y�0� � 0,  y��0� � 2

y�0� � 2,  y��0� � 0

y � C1 cos 10x � C2 sin 10x.
y� � 100y � 0

y��� � 3y� � 3y� � y � 0y��� � 3y� � 7y� � 5y � 0

y��� � y� � y� � y � 0y��� � 6y� � 11y� � 6y � 0

y�4� � y� � 0y�4� � y � 0

2y� � 6y� � 7y � 09y� � 12y� � 11y � 0

3y� � 4y� � y � 0y� � 3y� � y � 0

y� � 4y� � 21y � 0y� � 2y� � 4y � 0

y� � 2y � 0y� � 9y � 0

y� � 4y � 0y� � y � 0

9y� � 12y� � 4y � 016y� � 8y� � y � 0

y� � 10y� � 25y � 0y� � 6y� � 9y � 0

16y� � 16y� � 3y � 02y� � 3y� � 2y � 0

y� � 6y� � 5y � 0y� � y� � 6y � 0

y� � 2y� � 0y� � y� � 0

y� � 2y� � 10y � 0y � C1e
�x cos 3x � C2e

�x sin 3x

y� � 4y � 0y � C1 cos 2x � C2 sin 2x

y� � 4y � 0y � C1e
2x � C2e

�2x

y� � 6y� � 9y � 0y � �C1 � C2x�e�3x

Differential EquationSolution                                         

C2.C1

16.2 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

A damped vibration could be caused by 
friction and movement through a liquid.
Figure 16.7

45. Is the differential equation homoge-
neous? Why or why not?

46. The solutions of the differential equation
fall into what three cases? What is the relationship of these
solutions to the characteristic equation of the differential
equation?

47. Two functions are said to be linearly independent provided
what?

y� � ay� � by � 0

y� � y� � 5y � sin x

WRITING ABOUT CONCEPTS
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Vibrating Spring In Exercises 49–54, describe the motion of
a 32-pound weight suspended on a spring. Assume that the
weight stretches the spring foot from its natural position.

49. The weight is pulled foot below the equilibrium position and
released.

50. The weight is raised foot above the equilibrium position and
released.

51. The weight is raised foot above the equilibrium position
and started off with a downward velocity of foot per second.

52. The weight is pulled foot below the equilibrium position and
started off with an upward velocity of foot per second.

53. The weight is pulled foot below the equilibrium position and
released. The motion takes place in a medium that furnishes a
damping force of magnitude speed at all times.

54. The weight is pulled foot below the equilibrium position and
released. The motion takes place in a medium that furnishes a
damping force of magnitude at all times.

Vibrating Spring In Exercises 55– 58, match the differential
equation with the graph of a particular solution. [The graphs
are labeled (a), (b), (c), and (d).] The correct match can be made
by comparing the frequency of the oscillations or the rate at
which the oscillations are being damped with the appropriate
coefficient in the differential equation.

(a) (b)

(c) (d)

55. 56.

57. 58.

59. If the characteristic equation of the differential equation
has two equal real zeros given by 

show that is a solution.

60. If the characteristic equation of the differential equation

has complex zeros given by and 
show that

is a solution.

True or False? In Exercises 61–64, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

61. is the general solution of

62. is the general 
solution of

63. is a solution of
if and only if

64. It is possible to choose and such that is a solution
of 

The Wronskian of two differentiable functions and denoted
by is defined as the function given by the determinant

The functions and are linearly independent if there exists at
least one value of for which In Exercises 65–68,
use the Wronskian to verify the linear independence of the two
functions.

65. 66.

67. 68.

69. Euler’s differential equation is of the form

where and are constants.

(a) Show that this equation can be transformed into a second-
order linear equation with constant coefficients by using the
substitution 

(b) Solve 

70. Solve

where is constant, subject to the conditions and
y��� � 0.

y�0� � 0A

y� � Ay � 0

x2y� � 6xy� � 6y � 0.

x � et.

ba

x2y� � axy� � by � 0,  x  >  0

y2 � x2y2 � eax cos bx,  b 	 0

y1 � xy1 � eax sin bx

y2 � xeaxy2 � ebx,  a 	 b

y1 � eaxy1 � eax

W
 f, g� � 0.x
gf

W
 f, g� � � f
f�

g
g��.

W
 f, g�,
g,f

y� � ay� � by � 0.
y � x2exba

a1 � a0 � 0.a0y � 0
any�n� � an�1y

�n�1� � .  .  . � a1y� �y � x

y�4� � 2y� � y � 0.
y � �C1 � C2x�sin x � �C3 � C4x�cos x

9 � 0.
y� � 6y� �y � C1e

3x � C2e
�3x

y � C1e
�x cos �x � C2e

�x sin �x

m2 � � � �i,m1 � � � �i

y� � ay� � by � 0

y � C1e
rx � C2xerx

m � r,y� � ay� � by � 0

y� � y� �
37
4  y � 0y� � 2y� � 10y � 0

y� � 25y � 0y� � 9y � 0

61

3

3

x

y

5 642 3

3

x

y

6

3

42 31
x

y

5 6

3

421
x

y

1
4�v�

1
2

1
8

1
2

1
2

1
2

1
2

2
3

2
3

1
2

2
3
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48. Find all values of for which the differential equation
has a general solution of the indicated

form.

(a)

(b)

(c) y � C1e
�x cos �x � C2e

�x sin �x

y � C1e
m1x � C2xem1x

y � C1e
m1x � C2e

m2x

y� � 2ky� � ky � 0
k

CAPSTONE
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16.3 Second-Order Nonhomogeneous Linear Equations 1159

16.3 Second-Order Nonhomogeneous Linear Equations
■ Recognize the general solution of a second-order nonhomogeneous 

linear differential equation.
■ Use the method of undetermined coefficients to solve a second-order 

nonhomogeneous linear differential equation.
■ Use the method of variation of parameters to solve a second-order 

nonhomogeneous linear differential equation.

Nonhomogeneous Equations
In the preceding section, damped oscillations of a spring were represented by the
homogeneous second-order linear equation

Free motion

This type of oscillation is called free because it is determined solely by the spring and
gravity and is free of the action of other external forces. If such a system is also 
subject to an external periodic force such as caused by vibrations at the 
opposite end of the spring, the motion is called forced, and it is characterized by the 
nonhomogeneous equation

Forced motion

In this section, you will study two methods for finding the general solution of a
nonhomogeneous linear differential equation. In both methods, the first step is to find
the general solution of the corresponding homogeneous equation.

General solution of homogeneous equation

Having done this, you try to find a particular solution of the nonhomogeneous 
equation.

Particular solution of nonhomogeneous equation

By combining these two results, you can conclude that the general solution of the 
nonhomogeneous equation is as stated in the following theorem.y � yh � yp,

y � yp

y � yh

d2y
dt2 �

p
m

 �dy
dt� �

k
m

 y � a sin bt.

a sin bt,

d2y
dt2 �

p
m

 �dy
dt� �

k
m

 y � 0.

THEOREM 16.5 SOLUTION OF NONHOMOGENEOUS LINEAR EQUATION

Let

be a second-order nonhomogeneous linear differential equation. If is a 
particular solution of this equation and is the general solution of the corre-
sponding homogeneous equation, then

is the general solution of the nonhomogeneous equation.

y � yh � yp

yh

yp

y� � ay� � by � F�x�

SOPHIE GERMAIN (1776–1831)

Many of the early contributors to calculus
were interested in forming mathematical 
models for vibrating strings and membranes,
oscillating springs, and elasticity. One of
these was the French mathematician Sophie
Germain, who in 1816 was awarded a prize 
by the French Academy for a paper entitled
“Memoir on the Vibrations of Elastic Plates.”
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Method of Undetermined Coefficients
You already know how to find the solution of a linear homogeneous differential
equation. The remainder of this section looks at ways to find the particular solution 
If in

consists of sums or products of or you can find a particular
solution by the method of undetermined coefficients. The object of this method is
to guess that the solution is a generalized form of Here are some examples.

1. If choose 

2. If choose 

3. If choose 

Then, by substitution, determine the coefficients for the generalized solution.

EXAMPLE 1 Method of Undetermined Coefficients

Find the general solution of the equation

Solution To find solve the characteristic equation.

or

So, Next, let be a generalized form of 

Substitution into the original differential equation yields

By equating coefficients of like terms, you obtain

and

with solutions and Therefore,

and the general solution is

■ � C1e
�x � C2e

3x �
1
5

 cos x �
2
5

 sin x.

 y � yh � yp

yp �
1
5

 cos x �
2
5

 sin x

B � �
2
5.A �

1
5

2A � 4B � 2�4A � 2B � 0

 ��4A � 2B�cos x � �2A � 4B�sin x � 2 sin x.

 �A cos x � B sin x � 2A sin x � 2B cos x � 3A cos x � 3B sin x � 2 sin x

 y� � 2y� � 3y � 2 sin x

 yp� � �� cos x � B sin x

 yp� � �� sin x � B cos x

 yp � A cos x � B sin x

2 sin x.ypyh � C1e
�x � C2e

3x.

m � 3 m � �1

 �m � 1��m � 3� � 0

 m2 � 2m � 3 � 0

yh,

y� � 2y� � 3y � 2 sin x.

yp � �Ax � B� � C sin 2x � D cos 2x.F�x� � x � sin 2x,

yp � Axex � Bex.F�x� � 4xex,

yp � Ax2 � Bx � C.F�x� � 3x2,

F�x�.yp

yp

sin �x,xn, emx, cos �x,

y� � ay� � by � F�x�

F�x�
yp.

yh
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In Example 1, the form of the homogeneous solution

has no overlap with the function in the equation

However, suppose the given differential equation in Example 1 were of the form

Now it would make no sense to guess that the particular solution was 
because you know that this solution would yield 0. In such cases, you should alter
your guess by multiplying by the lowest power of x that removes the duplication. For
this particular problem, you would guess

EXAMPLE 2 Method of Undetermined Coefficients

Find the general solution of

Solution The characteristic equation  has solutions and
So,

Because your first choice for would be However,
because already contains a constant term you should multiply the polynomial
part by x and use

Substitution into the differential equation produces

Equating coefficients of like terms yields the system

with solutions and Therefore,

and the general solution is

■ � C1 � C2e
2x �

1
4

 x �
1
4

 x2 � 2ex.

 y � yh � yp

yp � �
1
4

 x �
1
4

 x2 � 2ex

C � �2.A � B � �
1
4

�C � 2�4B � 1,2B � 2A � 0,

 �2B � 2A� � 4Bx � Cex � x � 2ex.

 2B � Cex � 2�A � 2Bx � Cex� � x � 2ex

 y� � 2y� � x � 2ex

 yp� � 2B � Cex.

 yp� � A � 2Bx � Cex

 yp � Ax � Bx2 � Cex

C1,yh

�A � Bx� � Cex.ypF�x� � x � 2ex,

yh � C1 � C2e
2x.

m � 2.
m � 0m2 � 2m � 0

y� � 2y� � x � 2ex.

yp � Axe�x.

y � Ae�x,

y� � 2y� � 3y � e�x.

y� � ay� � by � F�x�.

F�x�

yh � C1e
�x � C2e

3x

16.3 Second-Order Nonhomogeneous Linear Equations 1161
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In Example 2, the polynomial part of the initial guess

for overlapped by a constant term with and it was necessary to
multiply the polynomial part by a power of x that removed the overlap. The next
example further illustrates some choices for that eliminate overlap with 
Remember that in all cases the first guess for should match the types of functions
occurring in 

EXAMPLE 3 Choosing the Form of the Particular Solution

Determine a suitable choice for for each differential equation, given its general 
solution of the homogeneous equation.

a.

b.

c.

Solution

a. Because the normal choice for would be However,
because already contains a linear term, you should multiply by 
to obtain

b. Because and each term in contains a factor of you can 
simply let

c. Because the normal choice for would be However, because
already contains an term, you should multiply by to

get

EXAMPLE 4 Solving a Third-Order Equation

Find the general solution of

Solution From Example 6 in the preceding section, you know that the homogeneous
solution is

Because let and obtain and So, by substitution,
you have

So, and which implies that Therefore, the general
solution is

■ � C1e
�x � C2xe�x � C3x

2e�x � 3 � x.

 y � yh � yp

yp � �3 � x.A � �3,B � 1

0 � 3�0� � 3�B� � A � Bx � �3B � A� � Bx � x.

yp� � 0.yp� � Byp � A � BxF�x� � x,

yh � C1e
�x � C2xe�x � C3x2e�x.

y��� � 3y� � 3y� � y � x.

yp � Ax2e2x.

x2xe2xyh � C1e
2x � C2xe2x

Ae2x.ypF�x� � e2x,

yp � A cos 3x � B sin 3x.

e�x,yhF�x� � 4 sin 3x

yp � Ax2 � Bx3 � Cx4.

x2yh � C1 � C2x
A � Bx � Cx2.ypF�x� � x2,

C1e
2x � C2xe2xy� � 4y� � 4 � e2x

C1e
�x cos 3x � C2e

�x sin 3xy� � 2y� � 10y � 4 sin 3x

C1 � C2xy� � x2

yh                                                y� � ay� � by � F�x�             

yp

F�x�.
yp

yh.yp

yh � C1 � C2e
2x,yp

�A � Bx� � Cex
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Variation of Parameters
The method of undetermined coefficients works well if is made up of polynomials
or functions whose successive derivatives have a cyclical pattern. For functions such
as and which do not have such characteristics, it is better to use a more 
general method called variation of parameters. In this method, you assume that 
has the same form as except that the constants in are replaced by variables.

EXAMPLE 5 Variation of Parameters

Solve the differential equation

Solution The characteristic equation has one 
repeated solution, So, the homogeneous solution is

Replacing and by and produces

The resulting system of equations is

Subtracting the second equation from the first produces Then, by
substitution in the first equation, you have Finally, integration yields

and

From this result it follows that a particular solution is

and the general solution is

■y � C1e
x � C2xex �

1
2

 xex � xex ln �x.

yp � �
1
2

 xex � �ln �x �xex

u2 �
1
2

 � 
1
x
 dx �

1
2

 ln x � ln �x.u1 � �� 
1
2

 dx � �
x
2

u1� � �
1
2.

u2� � 1��2x�.

 u1� e
x � u2� �xex � ex� �

ex

2x
.

 u1� e
x � u2� xex � 0

yp � u1y1 � u2y2 � u1e
x � u2xex.

u2u1C2C1

yh � C1y1 � C2y2 � C1e
x � C2xex.

m � 1.
m2 � 2m � 1 � �m � 1�2 � 0

x  >  0.y� � 2y� � y �
ex

2x
,

yhyh,
yp

tan x,1�x

F�x�
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VARIATION OF PARAMETERS

To find the general solution of the equation use the 
following steps.

1. Find 

2. Replace the constants by variables to form 

3. Solve the following system for and 

4. Integrate to find and The general solution is y � yh � yp.u2.u1

u1�y1� � u2�y2� � F�x�
u1�y1 � u2�y2 � 0

u2�.u1�

yp � u1y1 � u2y2.

yh � C1y1 � C2y2.

y� � ay� � by � F�x�,

E X P L O R A T I O N

Notice in Example 5 that the 
constants of integration were not
introduced when finding and

Show that if

and

then the general solution

yields the same result as that
obtained in the example.

 � 1
2 xex � xex ln �x

 � C1e
x � C2xex

 y � yh � yp

u2 � ln �x � a2

u1 � �
x
2

� a1

u2.
u1
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EXAMPLE 6 Variation of Parameters

Solve the differential equation

Solution Because the characteristic equation has solutions the
homogeneous solution is

Replacing and by and produces

The resulting system of equations is

Multiplying the first equation by and the second by produces

Adding these two equations produces which implies that

Integration yields

and

so that

and the general solution is

■ � C1 cos x � C2 sin x � cos x ln 	sec x � tan x	.
 y � yh � yp

 � �cos x ln 	sec x � tan x	
 yp � sin x cos x � cos x ln 	sec x � tan x	 � sin x cos x

 � �cos x

 u2 � � sin x dx

 � sin x � ln 	sec x � tan x	
 u1 � � �cos x � sec x� dx

 � cos x � sec x.

 �
cos2 x � 1

cos x

 u1� � �
sin2 x
cos x

u2� � sin x,

 �u1� sin x cos x � u2� cos2x � sin x.

 u1� sin x cos x � u2� sin2x � 0

cos xsin x

 �u1� sin x � u2� cos x � tan x.

 u1� cos x � u2� sin x � 0

yp � u1 cos x � u2 sin x.

u2u1C2C1

yh � C1 cos x � C2 sin x.

m � ± i,m2 � 1 � 0

y� � y � tan x.
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In Exercises 1–4, verify the solution of the differential equation.

1.

2.

3.

4.

In Exercises 5–10, find a particular solution of the differential
equation.

5. 6.

7. 8.

9. 10.

In Exercises 11–18, solve the differential equation by the
method of undetermined coefficients.

11. 12.

13. 14.

15.

16.

17. 18.

In Exercises 19–24, solve the differential equation by the
method of undetermined coefficients.

19. 20.

21. 22.

23. 24.

In Exercises 25–30, solve the differential equation by the
method of variation of parameters.

25. 26.

27. 28.

29. 30.

Electrical Circuits In Exercises 35 and 36, use the electrical
circuit differential equation

where is the resistance (in ohms), is the capacitance (in
farads), is the inductance (in henrys), is the electromotive
force (in volts), and is the charge on the capacitor (in
coulombs). Find the charge as a function of time for the 
electrical circuit described. Assume that and 

35.

36.

Vibrating Spring In Exercises 37–40, find the particular 
solution of the differential equation

for the oscillating motion of an object on the end of a spring. Use
a graphing utility to graph the solution. In the equation, is the
displacement from equilibrium (positive direction is downward)
measured in feet, and is time in seconds (see figure). The
constant is the weight of the object, is the acceleration due
to gravity, is the magnitude of the resistance to the motion,
is the spring constant from Hooke’s Law, and is the accel-
eration imposed on the system.

m

l = natural
length

y = displacement

Spring displacement

F
t�
kb

gw
t

y

w
g

y� 
t� 1 by�
t� 1 ky
t� �
w
g

F
t�

E�t� � 10 sin 5tR � 20, C � 0.02, L � 1,

E�t� � 12 sin 5tR � 20, C � 0.02, L � 2,

q� 
0� � 0.q
0� � 0
q

q
E
t�L

CR

d 2q
dt2

1 �R
L
 

dq
dt

1 � 1
LC
q � �1

L
E
t�

y� � 4y� � 4y �
e2x

x
y� � 2y� � y � ex  ln x

y� � 4y� � 4y � x2e2xy� � 4y � csc 2x

y� � y � sec x tan xy� � y � sec x

y�	

2� �
2
5

y�0� �
1
3

y� � 2y � sin xy� � 4y � xex � xe4x

y�0� � �1, y��0� � 2y�0� � 0, y��0� � �3

y� � y� � 2y � 3 cos 2xy� � y� � 2 sin x

y�0� � 1, y��0� � 6y�0� � 1, y��0� � 0

y� � 4y � 4y� � y � x3

y��� � 3y� � 2y � 2e�2xy� � 9y � sin 3x

16y� � 8y� � y � 4�x � ex�
y� � 10y� � 25y � 5 � 6ex

y� � 9y � 5e3xy� � 2y� � 2ex

y� � 2y� � 3y � x2 � 1y� � 3y� � 2y � 2x

y� � 4y� � 5y � ex cos xy� � 2y� � 15y � sin x

y� � y� � 3y � e2xy� � 8y� � 16y � e3x

y� � y� � 6y � 4y� � 7y� � 12y � 3x � 1

y� � y � csc x cot xy � �5 � ln 	sin x	�cos x � x sin x

y� � y � tan xy � 3 sin x � cos x ln 	sec x � tan x	
y� � y � cos xy � �2 �

1
2x�sin x

y� � y � 10e2xy � 2�e2x � cos x�

Differential EquationSolution                                               
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16.3 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

34. Think About It

(a) Explain how, by observation, you know that a particular
solution of the differential equation is

(b) Use your explanation in part (a) to give a particular
solution of the differential equation 

(c) Use your explanation in part (a) to give a particular
solution of the differential equation
y� � 2y� � 2y � 8.

y� � 5y � 10.

yp � 4.
y� � 3y � 12

CAPSTONE

31. Using the method of undetermined coefficients, determine
a suitable choice for given Explain
your reasoning. (You do not need to solve the differential
equation.)

32. Using the method of undetermined coefficients, determine
a suitable choice for given Explain
your reasoning. (You do not need to solve the differential
equation.)

y� � y� � 12y � e4x.yp

y� � y� � 12y � x2.yp

WRITING ABOUT CONCEPTS

33. Describe the steps for solving a differential equation by the
method of variation of parameters.

WRITING ABOUT CONCEPTS (cont inued)
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37.

38.

39.

40.

41. Vibrating Spring Rewrite in the solution for Exercise 37
by using the identity

where 

42. Vibrating Spring The figure shows the particular solution of
the differential equation

for values of the resistance component b in the interval 
(Note that when the problem is identical to that of
Exercise 40.)

(a) If there is no resistance to the motion describe the
motion.

(b) If what is the ultimate effect of the retarding force?

(c) Is there a real number M such that there will be no oscilla-
tions of the spring if Explain your answer.

43. Solve the differential equation

given that and are solutions of the 
corresponding homogeneous equation.

44. Solve the differential equation 

given that and are solutions of
the corresponding homogeneous equation.

True or False? In Exercises 45 and 46, determine whether the
statement is true or false.  If it is false, explain why or give an
example that shows it is false.

45. is a particular solution of the differential
equation

46. is a particular solution of the differential equation

y� � 6y� � e2x.

yp � �
1
8e2x

y� � 3y� � 2y � cos e�x.

yp � �e2x cos e�x

y2 � cos�ln x2�y1 � sin�ln x2�

x2y� � xy� � 4y � sin�ln x�

y2 � x ln xy1 � x

x2y� � xy� � y � 4x ln x

b  >  M ?

b  >  0,

�b � 0�,

y

t

b
Generated by Maple

b = 0

b = 1

b = 1
2

b �
1
2,

�0, 1�.

y�0� �
1
2

, y��0� � �4

4
32

 y� � by� �
25
2

 y � 0


 � arctan a�b.

a cos �t � b sin �t � �a2 � b2 sin��t � 
�

yh

y�0� �
1
2, y��0� � �4

4
32y� �

1
2y� �

25
2 y � 0

y�0� �
1
4, y��0� � �3

2
32y� � y� � 4y �

2
32�4 sin 8t�

y�0� �
1
4, y��0� � 0

2
32y� � 4y �

2
32 �4 sin 8t�

y�0� �
1
4, y��0� � 0

24
32y� � 48y �

24
32�48 sin 4t�
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47. For all real the real-valued function satisfies

(a) If for all real must for all real 
Explain.

(b) If for all real must for all real 
Explain.

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.

x?f �x� > 0x,f��x� > 0

x?f��x� > 0x,f �x� > 0

y� � 2y� � y � 2ex.

y � f �x�x,

PUTNAM EXAM CHALLENGE

The fall of a parachutist is described by the second-order linear 
differential equation

where is the weight of the parachutist, is the height at time 
is the acceleration due to gravity, and is the drag factor of the

parachute.

(a) If the parachute is opened at 2000 feet, and at that
time the velocity is feet per second, then for a
160-pound parachutist, using the differential equation is

Using the given initial conditions, verify that the solution of the
differential equation is 

(b) Consider a 192-pound parachutist who has a parachute with a
drag factor of  Using the initial conditions given in part
(a), write and solve a differential  equation that describes the fall
of the parachutist.

k � 9.

y � 1950 � 50e�1.6t � 20t.

�5y� � 8y� � 160.

k � 8,
y��0� � �100

y�0� � 2000,

kg
t,yw

w
g

 
d 2y
dt2 � k 

dy
dt

� w

Parachute Jump

S E C T I O N  P R O J E C T
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16.4 Series Solutions of Differential Equations 1167

16.4 Series Solutions of Differential Equations
■ Use a power series to solve a differential equation.
■ Use a Taylor series to find the series solution of a differential equation.

Power Series Solution of a Differential Equation
Power series can be used to solve certain types of differential equations. This section
begins with the general power series solution method.

Recall from Chapter 9 that a power series represents a function f on an interval of
convergence, and you can successively differentiate the power series to obtain a series
for and so on. These properties are used in the power series solution method
demonstrated in the first two examples.

EXAMPLE 1 Power Series Solution

Use a power series to solve the differential equation 

Solution Assume that is a solution. Then, Substituting
for and you obtain the following series form of the differential equation. (Note
that, from the third step to the fourth, the index of summation is changed to ensure that

occurs in both sums.)

Now, by equating coefficients of like terms, you obtain the recursion formula
which implies that

This formula generates the following results.

.  .  .

.  .  .

Using these values as the coefficients for the solution series, you have

■ � a0e
2x.

 � a0 �
�

n�0
 
�2x�n

n!

 y � �
�

n�0
 
2na0

n!
 xn

25a0

5!
24a0

4!
23a0

3!
22a0

2
2a0a0

a5a4a3a2a1a0

n  ≥  0.an�1 �
2an

n � 1
,

�n � 1�an�1 � 2an,

 �
�

n�0
 �n � 1�an�1x

n � �
�

n�0
 2anxn

 �
�

n�1
 nanxn�1 � �

�

n�0
 2anxn

 �
�

n�1
 nanxn�1 � 2 �

�

n�0
 anxn � 0

 y� � 2y � 0

xn

�2y,y�
y� � �nanxn�1.y � �anxn

y� � 2y � 0.

f�, f �,

E X P L O R A T I O N

In Example 1, the differential
equation could be solved easily
without using a series. Determine
which method should be used to
solve the differential equation

and show that the result is the
same as that obtained in the
example.

y� � 2y � 0
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In Example 1, the differential equation could be solved easily without using a
series. The differential equation in Example 2 cannot be solved by any of the methods
discussed in previous sections.

EXAMPLE 2 Power Series Solution

Use a power series to solve the differential equation 

Solution Assume that is a solution. Then you have

Substituting for and y in the given differential equation, you obtain the follow-
ing series.

To obtain equal powers of x, adjust the summation indices by replacing n by in
the left-hand sum, to obtain

By equating coefficients, you have from which
you obtain the recursion formula

and the coefficients of the solution series are as follows.

So, you can represent the general solution as the sum of two series—one for the even-
powered terms with coefficients in terms of and one for the odd-powered terms
with coefficients in terms of 

The solution has two arbitrary constants, and as you would expect in the 
general solution of a second-order differential equation. ■

a1,a0

 � a0 �
�

k�0
 
��1�kx2k

2k�k!� � a1 �
�

k�0
 

��1�kx2k�1

3 � 5 � 7 .  .  . �2k � 1�

 y � a0�1 �
x2

2
�

x4

2 � 4
� .  .  .� � a1�x �

x3

3
�

x5

3 � 5
� .  .  .�

a1.
a0

 a2k�1 �
��1�k a1

3 � 5 � 7 .  .  . �2k � 1� a2k �
��1�k a0

2 � 4 � 6 .  .  . �2k� �
��1�ka0

2k�k!�

��

 a7 � �
a5

7
� �

a1

3 � 5 � 7
 a6 � �

a4

6
� �

a0

2 � 4 � 6

 a5 � �
a3

5
�

a1

3 � 5
 a4 � �

a2

4
�

a0

2 � 4

 a3 � �
a1

3
 a2 � �

a0

2

n  ≥  0,an�2 � �
�n � 1�

�n � 2��n � 1� an � �
an

n � 2
,

�n � 2��n � 1�an�2 � ��n � 1�an,

�
�

n�0
 �n � 2��n � 1�an�2xn � � �

�

n�0
 �n � 1�anxn.

n � 2

 �
�

n�2
 n�n � 1�anxn�2 � � �

�

n�0
 �n � 1�anxn

 �
�

n�2
n�n � 1�anxn�2 � �

�

n�0
 nanxn � �

�

n�0
 anxn � 0

y�, xy�,

y� � �
�

n�2
 n�n � 1�anxn�2.xy� � �

�

n�1
 nanxn,y� � �

�

n�1
 nanxn�1,

�
�

n�0
anx

n

y� � xy� � y � 0.
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Approximation by Taylor Series
A second type of series solution method involves a differential equation with initial
conditions and makes use of Taylor series, as given in Section 9.10.

EXAMPLE 3 Approximation by Taylor Series

Use Taylor’s Theorem to find the first six terms of the series solution of

given the initial condition when Then, use this polynomial to approxi-
mate values of y for 

Solution Recall from Section 9.10 that, for 

Because and you obtain the following.

Therefore, the first six terms of the series solution are

Using this polynomial, you can compute values for y in the interval as
shown in the table below.

■

In addition to approximating values of a function, you can also use the series
solution to sketch a graph. In Figure 16.8, the series solution of using the
first two, four, and six terms are shown, along with an approximation found using a
computer algebra system. The approximations are nearly the same for values of 
close to 0. As approaches 1, however, there is a noticeable difference between the
approximations. For a series solution that is more accurate near repeat
Example 3 using c � 1.

x � 1,
x

x

y� � y2 � x

0 	 x 	 1,

 � 1 � x �
1
2

 x2 �
4
3!

 x3 �
14
4!

 x4 �
66
5!

 x5.

 y � y�0� � y��0�x �
y� �0�

2!
 x2 �

y����0�
3!

 x3 �
y�4��0�

4!
 x4 �

y�5��0�
5!

 x5

 y�5��0� � 28 � 32 � 6 � 66 y�5� � 2yy�4� � 8y�y��� � 6�y� �2

 y�4��0� � 8 � 6 � 14 y�4� � 2yy��� � 6y�y�

 y����0� � 2 � 2 � 4 y��� � 2yy� � 2�y��2

 y� �0� � 2 � 1 � 1 y� � 2yy� � 1

 y��0� � 1 y� � y2 � x

 y�0� � 1

y� � y2 � x,y�0� � 1

y � y�0� � y��0�x �
y� �0�

2!
 x2 �

y����0�
3!

 x3 � .  .  . .

c � 0,

0 	 x 	 1.
x � 0.y � 1

y� � y2 � x

16.4 Series Solutions of Differential Equations 1169

x
0.2

6 terms

4 terms

2 terms

1.00.80.60.4

8

6

4

2

y

Figure 16.8

x 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

y 1.0000 1.1057 1.2264 1.3691 1.5432 1.7620 2.0424 2.4062 2.8805 3.4985 4.3000
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In Exercises 1–6, verify that the power series solution of the 
differential equation is equivalent to the solution found using
previously learned solution techniques.

1. 2.

3. 4.

5. 6.

In Exercises 7–10, use power series to solve the differential
equation and find the interval of convergence of the series.

7. 8.

9. 10.

In Exercises 11 and 12, find the first three terms of each of 
the power series representing independent solutions of the 
differential equation.

11. 12.

In Exercises 13 and 14, use Taylor’s Theorem to find the first 
terms of the series solution of the differential equation under
the specified initial conditions. Use this polynomial to approxi-
mate for the given value of and compare the result with the
approximation given by Euler’s Method for 

13.

14.

17. Investigation Consider the differential equation
with the initial conditions and

(See Exercise 9.)

(a) Find the series solution satisfying the initial conditions.

(b) Use a graphing utility to graph the third-degree and fifth-
degree series approximations of the solution. Identify the
approximations.

(c) Identify the symmetry of the solution.

In Exercises 19–22, use Taylor’s Theorem to find the first 
terms of the series solution of the differential equation under
the specified initial conditions. Use this polynomial to approxi-
mate for the given value of 

19.

20.

21.

22.

In Exercises 23 –26, verify that the series converges to the 
given function on the indicated interval. (Hint: Use the given
differential equation.)

23.

Differential equation:

24.

Differential equation:

25.

Differential equation:

26.

Differential equation:

27. Airy’s Equation Find the first six terms in the series 
solution of Airy’s equation, y� � xy � 0.

�1 � x2�y� � xy� � 0

�
�

n�0
 

�2n�!x2n�1

�2nn!�2�2n � 1� � arcsin x, ��1, 1�

�x2 � 1�y� � 2xy� � 0

�
�

n�0
 
��1�nx2n�1

2n � 1
� arctan x, ��1, 1�

y� � y � 0

�
�

n�0
 
��1�nx2n

�2n�! � cos x, ���, ��

y� � y � 0

�
�

n�0
 
xn

n!
� ex, ���, ��

x �
1
5n � 4,y��0� � 1,y�0� � �2,y� � exy� � �sin x�y � 0,

x �
1
3n � 4,y��0� � 2,y�0� � 3,y� � x2y� � �cos x�y � 0,

y� � 2xy� � y � 0, y�0� � 1, y��0� � 2, n � 8, x �
1
2

y� � 2xy � 0, y�0� � 1, y��0� � �3, n � 6, x �
1
4

x.y

n

y��0� � 2.
y�0� � 0y� � xy� � 0

y� � 2xy � 0, y�0� � 1, n � 4, x � 1

y� � �2x � 1�y � 0, y�0� � 2, n � 5, x �
1
2

h � 0.1.
xy

n

y� � x2y � 0�x2 � 4�y� � y � 0

y� � xy� � y � 0y� � xy� � 0

y� � 2xy � 0y� � 3xy � 0

y� � k2y � 0y� � 4y � 0

y� � k2y � 0y� � 9y � 0

y� � ky � 0y� � y � 0
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15. Describe how to use power series to solve a differential
equation.

16. What is a recursion formula? Give an example.

WRITING ABOUT CONCEPTS

18. Investigation Consider the differential equation 

with initial conditions and 

(a) Find the solution of the differential equation using the  
techniques presented in Section 16.2.

y��0� � 6.y�0� � 2

y� � 9y � 0

CAPSTONE

(b) Find the series solution of the differential equation.

(c) The figure shows the graph of the solution of the 
differential equation and the third-degree and fifth-
degree polynomial approximations of the solution.
Identify each.

x

y

1 2

3

2

1

CAPSTONE (cont inued)
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In Exercises 1 and 2, determine whether the differential equation
is exact. Explain your reasoning.

1.

2.

In Exercises 3–8, determine whether the differential equation is
exact. If it is, find the general solution.

3.

4.

5.

6.

7.

8.

In Exercises 9 and 10, (a) sketch an approximate solution of the
differential equation satisfying the initial condition on the slope
field, (b) find the particular solution that satisfies the initial 
condition, and (c) use a graphing utility to graph the particular
solution. Compare the graph with the sketch in part (a).

9.

10.

In Exercises 11 and 12, find the particular solution that satisfies
the initial condition.

11.

12.

In Exercises 13–16, find the integrating factor that is a function
of or alone and use it to find the general solution of the 
differential equation.

13.

14.

15.

16.

In Exercises 17 and 18, verify the solution of the differential
equation. Then use a graphing utility to graph the particular
solutions for several different values of and What do you
observe?

17.

18.

In Exercises 19–22, find the particular solution of the differential
equation that satisfies the initial conditions. Use a graphing 
utility to graph the solution.

19.

20.

21.

22.

In Exercises 23 and 24, find the particular solution of the 
differential equation that satisfies the boundary conditions. Use
a graphing utility to graph the solution.

23.

24.

Think About It In Exercises 25 and 26, give a geometric 
argument to explain why the graph cannot be a solution of the
differential equation. It is not necessary to solve the differential
equation.

25. 26.

−3 −2 1 2 3

1

3

2

x

y

−3−3 −2 −1 1 2 3

1

3

2

5

4

x

y

y� � �
1
2 y�y� � y�

y�0� � 2, y���2� � 1y� � y � 0

y�1� � 4, y�2� � 0y� � 2y� � 5y � 0

Boundary ConditionsDifferential Equation

y�0� � 2, y��0� � 1y� � 12y� � 36y � 0

y�0� � 2, y��0� � 0y� � 2y� � 3y � 0

y�0� � 2, y��0� � �7y� � 4y� � 5y � 0

y�0� � 0, y��0� � 3y� � y� � 2y � 0

Initial Conditions       Differential Equation

y� � 4y � 0y � C1 cos 2x � C2 sin 2x

y� � 4y � 0y � C1e
2x � C2e

�2x

Differential EquationSolution                              

C2.C1

cos y dx � �2�x � y� sin y � cos y� dy � 0

dx � �3x � e�2y� dy � 0

2xy dx � �y2 � x2� dy � 0

�3x2 � y2� dx � 2xy dy � 0

yx

y�1� � 23x2y2 dx � �2x3y � 3y2� dy � 0,

y�2� � 0�2x � y � 3� dx � �x � 3y � 1� dy � 0,

y

x
42−2−4

4

2

−2

−4

y�0� � 1�6xy � y3� dx � �4y � 3x2 � 3xy2� dy � 0,

y

x
42−2−4

4

2

−2

−4

y�2� � 2�2x � y� dx � �2y � x� dy � 0,

y sin�xy� dx � �x sin�xy� � y� dy � 0

x
y
 dx �

x
y2 dy � 0

�3x2 � 5xy2� dx � �2y3 � 5xy2� dy � 0

�x � y � 5� dx � �x � 3y � 2� dy � 0

�2x � 2y3 � y� dx � �x � 6xy2� dy � 0

�10x � 8y � 2� dx � �8x � 5y � 2� dy � 0

�5x � y� dx � �5y � x� dy � 0

�y � x3 � xy2� dx � x dy � 0
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In Exercises 27–32, find the general solution of the second-order
differential equation.

27.

28.

29.

30.

31.

32.

In Exercises 33–38, find the particular solution of the differential
equation that satisfies the initial conditions.

33.

34.

35.

36.

37.

38.

Vibrating Spring In Exercises 39 and 40, describe the motion
of a 64-pound weight suspended on a spring. Assume that the
weight stretches the spring feet from its natural position.

39. The weight is pulled foot below the equilibrium position and
released.

40. The weight is pulled foot below the equilibrium position and
released. The motion takes place in a medium that furnishes a
damping force of magnitude speed at all times.

41. Investigation The differential equation

models the motion of a weight suspended on a spring.

(a) Solve the differential equation and use a graphing utility to
graph the solution for each of the assigned quantities for 

and 

(i)

(ii)

(iii)

(iv)

(b) Describe the effect of increasing the resistance to motion 

(c) Explain how the motion of the object would change if a
stiffer spring (increased ) were used.

(d) Matching the input and natural frequencies of a system is
known as resonance. In which case of part (a) does this
occur, and what is the result?

42. True or False? The function

is a particular solution of the differential equation

43. Think About It

(a) Explain how, by observation, you know that a form of a
particular solution of the differential equation

is

(b) Use your explanation in part (a) to find a particular solution
of the differential equation

(c) Compare the algebra required to find particular solutions in
parts (a) and (b) with that required if the form of the 
particular solution were 

44. Think About It Explain how you can find a particular 
solution of the differential equation

by observation.

In Exercises 45 and 46, find the series solution of the differen-
tial equation.

45.

46.

In Exercises 47 and 48, use Taylor’s Theorem to find the first 
terms of the series solution of the differential equation under
the specified initial conditions. Use this polynomial to approxi-
mate for the given value of 

47.

48. x �
1
2

n � 6,y��0� � 1,y�0� � 1,y� � xy � 0,

x �
1
4

n � 4,y��0� � 0,y�0� � 2,y� � y� � exy � 0,

x.y

n

y� � 3xy� � 3y � 0

�x � 4�y� � y � 0

y� � 4y� � 6y � 30

yp � A cos x � B sin x.

y� � 5y � 10 cos x.

yp � A sin x.

y� � 3y � 12 sin x

y� � 4y� � 5y � sin x � cos x.

yp �
1
4 cos x

k

b.

b � 1, k � 2, F�t� � 0

b � 0.1, k � 2, F�t� � 0

b � 0, k � 2, F�t� � 24 sin�2�2 t�
b � 0, k � 1, F�t� � 24 sin �t

F�t�.k,
b,

y�0� �
1
2

, y��0� � 0
8
32

y� � by� � ky �
8

32
F�t�,

1
8

1
2

1
2

4
3

y�0� � 1, y��0� � 1, y� �0� � 1y��� � y� � 4x2

y�0� � 1, y��0� � 3y� � y� � 2y � 1 � xe�x

y�0� � 2, y��0� �
10
3y� � 3y� � 6x

y�0� � 6, y��0� � �6y� � 4y � cos x

y�0� � 0, y��0� � 0y� � 25y � ex

y�0� � 2, y��0� � 0y� � y� � 6y � 54

Initial Conditions                      Differential Equation        

y� � 2y� � y �
1

x2ex

y� � 2y� � y � 2xex

y� � 5y� � 4y � x2 � sin 2x

y� � y � 2 cos x

y� � 2y � e2x � x

y� � y � x3 � x
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1. Find the value of that makes the differential equation

exact. Using this value of find the general solution.

2. The differential equation

is not exact, but the integrating factor makes it exact.

(a) Use this information to find the value of 

(b) Using this value of find the general solution.

3. Find the general solution of the differential equation

Show that the general solution can be written in the form

4. Find the general solution of the differential equation

Show that the general solution can be written in the form

5. Given that the characteristic equation of the differential equation

has two distinct real zeros, and where 
and are real, show that the general solution of the differential
equation can be written in the form

6. Given that and are positive and that is a solution of the
differential equation

show that 

7. Consider the differential equation

with boundary conditions and for some
nonzero real number 

(a) If show that the differential equation has only the
trivial solution 

(b) If show that the differential equation has only the 
trivial solution 

8. For the differential equation and boundary conditions given in
Exercise 7, and with find the value(s) of for which the
solution is nontrivial. Then find the corresponding solution(s).

9. Consider a pendulum of length that swings by the force of
gravity only.

For small values of the motion of the pendulum can
be approximated by the differential equation

where is the acceleration due to gravity.

(a) Find the general solution of the differential equation and
show that it can be written in the form

(b) Find the particular solution for a pendulum of length 0.25
meter if the initial conditions are radian and

radian per second. (Use meters per
second per second.)

(c) Determine the period of the pendulum.

(d) Determine the maximum value of 

(e) How much time from does it take for to be 0 the
first time? the second time?

(f) What is the angular velocity when the first time?
the second time?

10. A horizontal beam with a length of 2 meters rests on supports
located at the ends of the beam.

The beam is supporting a load of kilograms per meter. The
resulting deflection of the beam at a horizontal distance of 
meters from the left end can be modeled by

where is a positive constant.

(a) Solve the differential equation to find the deflection as a
function of the horizontal distance 

(b) Use a graphing utility to determine the location and value
of the maximum deflection.

x.
y

A

A 
d 2y
dx2 � 2Wx �

1
2

Wx2

xy
W

2 meters

� � 0��

�t � 0

�.

g � 9.8���0� � 0.5
��0� � 0.1

��t� � A cos� �g
L

�t � 	�	.

g

d 2�

dt 2 �
g
L

� � 0

� � ��t�,

L
θ

L

aa > 0,

y � 0.
a < 0,

y � 0.
a � 0,

L.
y�L� � 0y�0� � 0

y� � ay � 0

lim
x→


 y�x� � 0.

y� � ay� � by � 0

y�x�ba

y � erx�C1 cosh sx � C2 sinh sx�.

s
rm2 � r � s,m1 � r � s

y� � ay� � by � 0

y � C sin��x � 	�, 0 � 	 < 2�.

y� � �2y � 0.

y � C1 cosh ax � C2 sinh ax.

y� � a2y � 0, a > 0.

k,

k.

1�x2

�kx2 � y2� dx � kxy dy � 0

k,

�3x2 � kxy2� dx � �5x2y � ky2� dy � 0

k
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In Exercises 11–14, consider a damped mass-spring system
whose motion is described by the differential equation

The zeros of its characteristic equation are 

and

If , the system is overdamped; if , it is
critically damped; and if , it is underdamped.

(a) Determine whether the differential equation represents an
overdamped, critically damped, or underdamped system.

(b) Find the particular solution corresponding to the given
initial conditions.

(c) Use a graphing utility to graph the particular solution found
in part (b). Explain how the graph illustrates the type of
damping in the system.

11. 12.

13. 14.

15. Consider Airy’s equation given in Section 16.4, Exercise 27.
Rewrite the equation as Then use a
power series of the form

to find the first eight terms of the solution. Compare your result
with that of Exercise 27 in Section 16.4.

16. Consider Chebyshev’s equation

Polynomial solutions of this differential equation are called
Chebyshev polynomials and are denoted by They satisfy
the recursion equation

(a) Given that and determine the
Chebyshev polynomials and 

(b) Verify that and are solutions
of the given differential equation.

(c) Show that 

and 

17. The differential equation

is known as Bessel’s equation of order zero.

(a) Use a power series of the form 

to find the solution.

(b) Compare your result with that of the function given in
Section 9.8, Exercise 71.

18. The differential equation

is known as Bessel’s equation of order one.

(a) Use a power series of the form

to find the solution.

(b) Compare your result with that of the function given in
Section 9.8, Exercise 72.

19. Consider Hermite’s equation

(a) Use a power series of the form

to find the solution when 

[Hint: Choose the arbitrary constants such that the leading
term is ]

(b) Polynomial solutions of Hermite’s equation are called
Hermite polynomials and are denoted by The general
form for can be written as

where is the greatest integer less than or equal to 
Use this formula to determine the Hermite polynomials

and 

20. Consider Laguerre’s equation

(a) Polynomial solutions of Laguerre’s equation  are called
Laguerre polynomials and are denoted by Use a
power series of the form

to show that

Assume that 

(b) Determine the Laguerre polynomials 
and L4�x�.L3�x�,

L2�x�,L1�x�,L0�x�,
a0 � 1.

Lk�x� � 

k

n�0
 

��1�nk!xn

�k � n�!�n!�2.

y � 




n�0
  an x

n

Lk�x�.

xy� � �1 � x�y� � ky � 0.

H4�x�.H3�x�,H2�x�,H0�x�, H1�x�,

k�2.P

Hk�x� � 

P

n�0

��1�nk!�2x�k�2n

n!�k � 2n�!

Hk�x�
Hk(x).

�2x�k.

k � 4.

y � 




n�0
 an x

n

y� � 2xy� � 2ky � 0.

J1�x�

y � 




n�0
an x n

x2y� � xy� � �x2 � 1�y � 0

J0�x�

y � 




n�0
an xn

x2y� � xy� � x2y � 0

T7�x� � 64x7 � 112x5 � 56x3 � 7x.

T6�x� � 32x6 � 48x4 � 18x2 � 1,

T5�x� � 16x5 � 20x3 � 5x,

T4�x�T0�x�, T1�x�, T2�x�, T3�x�,
T4�x�.T2�x�, T3�x�,

T1�x� � x,T0�x� � 1

Tn�1�x� � 2xTn�x� � Tn�1�x).

Tk�x�.

�1 � x2�y� � xy� � k2y � 0.

y � 




n�0
an�x � 1�n

y� � �x � 1�y � y � 0.

y�0� � 2, y� �0� � �1y�0� � 2, y� �0� � �20

d 2y
dt 2 � 2 

dy
dt

� y � 0
d 2y
dt 2 � 20 

dy
dt

� 64y � 0

y�0� � 1, y� �0� � 4y�0� � 1, y� �0� � 1

d 2y
dt 2 � 2 

dy
dt

� 26y � 0
d 2y
dt 2 � 8 

dy
dt

� 16y � 0

�2 � �2 < 0
�2 � �2 � 0�2 � �2 > 0

m2 � �� � ��2 � �2.m1 � �� 1 ��2 � �2

d 2y
dt 2 1 2� 

dy
dt

1 �2y � 0.

1174 Chapter 16 Additional Topics in Differential Equations
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Proofs of Selected TheoremsA
THEOREM 1.2 PROPERTIES OF LIMITS (PROPERTIES 2, 3, 4, AND 5) (PAGE 59)

Let and be real numbers, let be a positive integer, and let and be
functions with the following limits.

and

2. Sum or difference:

3. Product:

4. Quotient: provided 

5. Power: lim
x→c

 � f�x��n
� Ln

K � 0lim
x→c

 
f�x�
g�x� �

L
K

, 

lim
x→c

 � f�x�g�x�� � LK 

lim
x→c

 � f�x� ± g�x�� � L ± K 

lim
x→c

 g�x� � K lim
x→c

 f�x� � L

gfncb

To prove Property 2, choose Because you know that there
exists such that implies You also know
that there exists such that implies Let 
be the smaller of and then implies that

and

So, you can apply the triangle inequality to conclude that

which implies that

The proof that

is similar.

To prove Property 3, given that

and

you can write

Because the limit of is and the limit of is you have

and lim
x→c  �g�x� � K� � 0.lim

x→c  � f�x� � L� � 0

K,g�x�L,f�x�

f�x�g�x� � � f �x� � L� �g�x� � �� � �Lg�x� � � f�x�� � LK.

lim
x→c  g�x� � Klim

x→c  f�x� � L

lim
x→c  � f �x� � g�x�� � L � K

lim
x→c

 � f�x� � g�x�� � L � K � lim
x→c

 f�x� � lim
x→c

 g�x�.

�� f�x� � g�x�� � �L � K�� � � f�x� � L� � �g�x� � K� <
�

2
�

�

2
� �

�g�x� � K� <
�

2
.� f�x� � L� <

�

2

0 < �x � c� < 		2;	1

	�g�x� � K� < ��2.0 < �x � c� < 	2	2 > 0
� f �x� � L� < ��2.0 < �x � c� < 	1	1 > 0

��2 > 0,� > 0.PROOF

A2
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Let Then there exists such that if then

and

which implies that

So,

Furthermore, by Property 1, you have

and

Finally, by Property 2, you obtain

To prove Property 4, note that it is sufficient to prove that

Then you can use Property 3 to write

Let Because there exists such that if

then 

which implies that

That is, for 

or

Similarly, there exists a such that if then

Let be the smaller of and For you have

So,

Finally, the proof of Property 5 can be obtained by a straightforward application of
mathematical induction coupled with Property 3. ■

lim
x→c  

1
g�x� �

1
K

.

1

�K� 

2

�K� 
�K�2

2
 � � �.� 1

g�x� �
1
K� � �K � g�x�

g�x�K � �
1

�K� 

1

�g�x�� �K � g�x��  <

0 < �x � c� < 	,	2.	1	

�g�x� � K� < �K�2

2
 �.

0 < �x � c� < 	2,	2 > 0

1

�g�x�� <
2

�K�
.�K�

2
< �g�x��

0 < �x � c� < 	1,

�K� � �g�x� � ��K� � g�x��� � �g�x�� � ��K� � g�x�� < �g�x�� �
�K�
2

.

�g�x� � K� < �K�
2

0 < �x � c� < 	1,

	1 > 0lim
x→c  g�x� � K,� > 0.

lim
x→c  

f�x�
g�x� � lim

x→c
 f�x� 1

g�x� � lim
x→c

 f�x� 
  lim
x→c

 
1

g�x� �
L
K

.

lim
x→c  

1
g�x� �

1
K

.

 � LK.

 � 0 � LK � KL � LK

 lim
x→c  f�x�g�x� � lim

x→c
 � f�x� � L� �g�x� � K� � lim

x→c
 Lg�x� � lim

x→c
 Kf�x� � lim

x→c
 LK

lim
x→c  Kf�x� � KL.lim

x→c  Lg�x� � LK

lim
x→c  [ f�x� � L� �g�x� � K� � 0.

�� f�x� � L� �g�x� � K� � 0� � � f�x� � L� �g�x� � K� < �� < �.

�g�x� � K � 0� < �� f�x� � L � 0� < �

0 < �x � c� < 	,	 > 00 < � < 1.

Appendix A Proofs of Selected Theorems A3
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Consider the case for which and is any positive integer. For a given
you need to find such that

whenever

which is the same as saying

whenever

Assume which implies that Now, let be the smaller
of the two numbers.

and

Then you have

■

For a given you must find such that

whenever

Because the limit of as is you know there exists such that

whenever

Moreover, because the limit of as is you know there exists such
that

whenever

Finally, letting you have

whenever ■0 < �x � c� < 	.� f�g�x�� � f�L�� < �

u � g�x�,

0 < �x � c� < 	.�g�x� � L� < 	1

	 > 0L,x → cg�x�
�u � L� < 	1.� f�u� � f�L�� < �

	1 > 0f�L�,x → Lf�x�

0 < �x � c� < 	.� f�g�x�� � f�L�� < �

	 > 0� > 0,PROOF

 �� < n�x � n�c < �.

 n�c � � < n�x  < n�c � �

 � n�c � ��n
< x  < � n�c � ��n

 � n�c � ��n
� c < x � c  < � n�c � ��n

� c

 ��c � � n�c � ��n
 � < x � c  < � n�c � ��n

� c

 �	 < x � c  < 	

� n�c � ��n
� cc � � n�c � ��n

	0 < n�c � � < n�c.� < n�c,

�	 < x � c < 	.�� < n�x � n�c < �

0 < �x � c� < 	� n�x � n�c� < �

	  >  0�  >  0,
nc  >  0PROOF

A4 Appendix A Proofs of Selected Theorems

THEOREM 1.4 THE LIMIT OF A FUNCTION INVOLVING A RADICAL (PAGE 60)

Let be a positive integer. The following limit is valid for all if is odd,
and is valid for if is even.

lim
x→c  

n�x � n�c.

nc > 0
ncn

THEOREM 1.5 THE LIMIT OF A COMPOSITE FUNCTION (PAGE 61)

If and are functions such that and then

lim
x→c  f�g�x�� � f 	 lim

x→c
  g�x�
 � f�L�.

lim
x→L  f�x� � f�L�,lim

x→c  g�x� � Lgf
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Let be the limit of as Then, for each there exists a 
such that in the open intervals and and

whenever

Because for all in the open interval other than it follows that

whenever

So, the limit of as is also ■

For there exist and such that

whenever

and

whenever

Because for all in an open interval containing except possibly
at itself, there exists such that for Let

be the smallest of and Then, if it follows that
and which implies that

and

and

Now, because it follows that which
implies that Therefore,

■lim
x→c  f�x� � L.

� f�x� � L� < �.
L � � < f�x� < L � �,h�x� � f �x� � g�x�,

g�x� < L � �. L � � < h�x�
�� < g�x� � L < ��� < h�x� � L < �

�g�x� � L� < �,�h�x� � L� < �
0 < �x � c� < 	,	3.	1, 	2,	

0 < �x � c� < 	3.h�x� � f�x� � g�x�	3 > 0c
c,xh�x� � f�x� � g�x�

0 < �x � c� < 	2.�g�x� � L� < �

0 < �x � c� < 	1�h�x� � L� < �

	2 > 0	1 > 0� > 0PROOF

L.x → cf�x�

0 < �x � c� < 	.� f�x� � L� < �

x � c,xf�x� � g�x�

0 < �x � c� < 	.�g�x� � L� < �

�c, c � 	�,�c � 	, c�f�x� � g�x�
	 > 0� > 0x → c.g�x�LPROOF

Appendix A Proofs of Selected Theorems A5

THEOREM 1.7 FUNCTIONS THAT AGREE AT ALL BUT ONE POINT (PAGE 62)

Let be a real number and let for all in an open interval
containing If the limit of as approaches exists, then the limit of 
also exists and

lim
x→c  f�x� � lim

x→c  g�x�.

f�x�cxg�x�c.
x � cf�x� � g�x�c

THEOREM 1.8 THE SQUEEZE THEOREM (PAGE 65)

If for all in an open interval containing except possibly
at itself, and if

then exists and is equal to L.lim
x→c  f �x�

lim
x→c  h�x� � L � lim

x→c
 g�x�

c
c,xh�x� � f�x� � g�x�
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Because and are continuous at you can write

and

For Property 1, when is a real number, it follows from Theorem 1.2 that

Thus, is continuous at 

For Property 2, it follows from Theorem 1.2 that

Thus, is continuous at 

For Property 3, it follows from Theorem 1.2 that

Thus, is continuous at 

For Property 4, when it follows from Theorem 1.2 that

Thus, is continuous at ■x � c.
f
g

  �
f
g

�c�.

  �
f�c�
g�c�

 �
lim
x→c  

f �x�

lim
x→c

 g�x�  

 lim
x→c

 
f
g

�x� � lim
x→c

 
f�x�
g�x�

g�c� � 0,

x � c.fg

 � � fg��c�.
 � f �c�g�c�

 � lim
x→c

 � f �x�� lim
x→c

 �g�x��

 lim
x→c

 � fg��x� � lim
x→c

 � f�x�g�x��

x � c.f ± g

 � � f ± g��c�.
 � f�c� ± g�c�

 � lim
x→c

 � f �x�� ± lim
x→c

 �g�x��

 lim
x→c

 � f ± g��x� � lim
x→c

 � f�x� ± g�x��

x � c.bf

lim
x→c

 ��bf��x�� � lim
x→c

 �bf�x�� � b lim
x→c

 � f�x�� � b f�c� � �bf��c�.

b

lim
x→c

 g�x� � g�c�.lim
x→c

  f�x� � f�c�

x � c,gfPROOF

A6 Appendix A Proofs of Selected Theorems

THEOREM 1.11 PROPERTIES OF CONTINUITY (PAGE 75)

If is a real number and and are continuous at then the following
functions are also continuous at 

1. Scalar multiple:

2. Sum or difference:

3. Product:

4. Quotient: if g�c� � 0
f
g

,

fg

f ± g

bf

c.
x � c,gfb
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Consider the case for which and there exists such that
implies Then for choose such that

implies that

and such that

implies that

Now let be the smaller of and Then it follows that

implies that

So, it follows that

and the line is a vertical asymptote of the graph of ■

The derivative of at is given by

Let Then as So, replacing by you have

■f��c� � lim
�x→0

  
f�c � �x� � f �c�

�x
� lim

x→c
  

f�x� � f �c�
x � c

.

x,c � �x�x → 0.x → cx � c � �x.

f��c� � lim
�x→0

 
f�c � �x� � f �c�

�x
.  

cfPROOF

h.x � c

lim
x→c�  

f�x�
g�x� � 


f�x�
g�x� >

f �c�
2

 � 2M
f�c�� � M.0 < x � c < 	

	2.	1	

0 < g�x� <
f �c�
2M

.0 < x � c < 	2

	2

f�c�
2

< f �x� <
3f�c�

2
0 < x � c < 	1

	1M > 0,g�x� > 0.c < x < b
b > cf�c� > 0,PROOF

Appendix A Proofs of Selected Theorems A7

THEOREM 1.14 VERTICAL ASYMPTOTES (PAGE 85)

Let and be continuous on an open interval containing If 
and there exists an open interval containing such that for

all in the interval, then the graph of the function given by

has a vertical asymptote at x � c.

h�x� �
f �x�
g�x�

x � c
g�x� � 0cg�c� � 0,

f�c� � 0,c.gf

ALTERNATIVE FORM OF THE DERIVATIVE (PAGE 101)

The derivative of at is given by

provided this limit exists.

f��c� � lim
x→c

  
f �x� � f �c�

x � c

cf
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In Section 2.4, you let and used the alternative form of the 
derivative to show that provided for values of 
other than Now consider a more general proof. Begin by considering the derivative
of 

For a fixed value of define a function such that

Because the limit of as doesn’t depend on the value of you have

and you can conclude that is continuous at 0. Moreover, because when
the equation

is valid whether is zero or not. Now, by letting you can
use the continuity of to conclude that

which implies that

Finally,

and taking the limit as you have

■ �
du
dx



dy
du

.

 �
du
dx

 f��u�

 
dy
dx

�
du
dx � lim

�x→0  ���u�� �
du
dx

 f��u� �
dy
dx

�0� �
du
dx

 f��u�

�x → 0,

�x � 0�y � �u���u� � �uf��u� → �y
�x

�
�u
�x

 ���u� �
�u
�x

 f��u�,

lim
�x→0  ���u� � 0.

lim
�x→0  �u � lim

�x→0
�g�x � �x� � g�x�� � 0

g
�u � g�x � �x� � g�x�,�x

�y � �x���x� � �xf��x�

�x � 0,
�y � 0�

lim
�x→0  ���x� � lim

�x→0�
�y
�x

� f��x�� � 0

��0�,�x → 0���x�

���x� � 
0,

�y
� f��x�,

     

�x

�x � 0

�x � 0.

�x,

f��x� � lim
�x→0

  
f�x � �x� � f �x�

�x
� lim

�x→0
 
�y
�x

f.
c.

xg�x� � g�c�h��c� � f��g�c��g��c�,
h�x� � f�g�x��PROOF

A8 Appendix A Proofs of Selected Theorems

THEOREM 2.10 THE CHAIN RULE (PAGE 131)

If is a differentiable function of and is a differentiable
function of then is a differentiable function of and 

or, equivalently,

d
dx

� f �g�x��� � f��g�x��g��x�.

dy
dx

�
dy
du



du
dx

xy � f �g�x��x,
u � g�x�u,y � f �u�
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Assume that is concave upward on Then, is increasing on
Let be a point in the interval The equation of the tangent line to

the graph of at is given by

If is in the open interval then the directed distance from point (on the
graph of ) to the point (on the tangent line) is given by

Moreover, by the Mean Value Theorem there exists a number in such that

So, you have

The second factor is positive because Moreover, because is increasing,
it follows that the first factor is also positive. Therefore, and you
can conclude that the graph of lies above the tangent line at If is in the open 
interval a similar argument can be given. This proves the first statement. The
proof of the second statement is similar. ■

For Property 1, assume for all in Then, by Theorem 3.5,
is increasing on Thus, by the definition of concavity, the graph of is concave

upward on 

For Property 2, assume for all in Then, by Theorem 3.5, is
decreasing on Thus, by the definition of concavity, the graph of is concave
downward on ■�a, b�.

f�a, b�.
f��a, b�.xf��x� < 0

�a, b�.
f�a, b�.f�

�a, b�.xf��x� > 0PROOF

�a, c�,
xx.f

d > 0� f��z� � f��c��
f�c < x.�x � c�

 � � f��z� � f��c���x � c�.
 � f��z��x � c� � f��c��x � c�

 d � f�x� � f�c� � f��c��x � c�

f��z� �
f�x� � f�c�

x � c
.

�c, x�z

 � f�x� � f�c� � f��c��x � c�.
 d � f�x� � � f�c� � f��c��x � c��

�x, g�x��f
�x, f�x���c, b�,x

g�x� � f �c� � f��c��x � c�.

cf
I � �a, b�.c�a, b�.

f�I � �a, b�.fPROOF

Appendix A Proofs of Selected Theorems A9

CONCAVITY INTERPRETATION (PAGE 190)

1. Let be differentiable on an open interval If the graph of is concave
upward on then the graph of lies above all of its tangent lines on 

2. Let be differentiable on an open interval If the graph of is concave
downward on then the graph of lies below all of its tangent lines on I.fI,

fI.f

I.fI,
fI.f

THEOREM 3.7 TEST FOR CONCAVITY (PAGE 191)

Let be a function whose second derivative exists on an open interval 

1. If for all in then the graph of is concave upward in 

2. If for all in then the graph of is concave downward in I.fI,xf ��x� < 0

I.fI,xf ��x� > 0

I.f
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Begin by proving that

For let Then, for you have

So, by the definition of a limit at infinity, you can conclude that the limit of as
is 0. Now, using this result, and letting you can write the following.

The proof of the second part of the theorem is similar. ■

 � 0

 � c� n�0 �m

 � c	 n� lim
x→


 
1
x


m

 � c	 lim
x→


 n�1
x


m

 � c� lim
x→


 	 1
n�x


m

�

 lim
x→


 
c
xr � lim

x→

 

c
xm�n

r � m�n,x →

1�x

�1x � 0� < �.
1
x

< �x > M �
1
�

x  >  M,M � 1��.� > 0,

lim
x→


 
1
x

� 0.

PROOF

A10 Appendix A Proofs of Selected Theorems

THEOREM 3.10 LIMITS AT INFINITY (PAGE 199)

If is a positive rational number and is any real number, then

Furthermore, if is defined when then lim
x→�


 
c
xr � 0.x < 0,xr

lim
x→


 
c
xr � 0.

cr

THEOREM 4.2 SUMMATION FORMULAS (PAGE 260)

1.

2.

3.

4. �
n

i�1
i3 �

n2�n � 1�2

4

�
n

i�1
i2 �

n�n � 1��2n � 1�
6

�
n

i�1
i �

n�n � 1�
2

�
n

i�1
c � cn
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The proof of Property 1 is straightforward. By adding to itself times, you
obtain a sum of 

To prove Property 2, write the sum in increasing and decreasing order and add
corresponding terms, as follows.

So,

To prove Property 3, use mathematical induction. First, if the result is true
because

Now, assuming the result is true for you can show that it is true for 
as follows.

Property 4 can be proved using a similar argument with mathematical induction.
■

 �
�k � 1��k � 2��2�k � 1� � 1�

6

 �
k � 1

6
 ��2k � 3��k � 2��

 �
k � 1

6
 �2k2 � k � 6k � 6�

 �
k�k � 1��2k � 1�

6
� �k � 1�2

�
k�1

i�1
 i 2 � �

k

i�1
 i 2 � �k � 1�2

n � k � 1,n � k,

�
1

i�1
 i 2 � 12 � 1 �

1�1 � 1��2 � 1�
6

.

n � 1,

�
n

i�1
 i �

n�n � 1�
2

.

 2 �
n

i�1
 i � �n � 1� � �n � 1� � �n � 1� � .  .  . � �n � 1� � �n � 1�

 �
n

i�1
i �  n  � �n � 1� � �n � 2� � .  .  . �  2  �  1

 �
n

i�1
 i �  1  �  2  �  3  � .  .  . � �n � 1� �  n

cn.
ncPROOF

Appendix A Proofs of Selected Theorems A11

→ → → →

→ → → → →

termsn

THEOREM 4.8 PRESERVATION OF INEQUALITY (PAGE 278)

1. If is integrable and nonnegative on the closed interval then

2. If and are integrable on the closed interval and for
every in then

�b

a

 f �x� dx � �b

a

 g�x� dx.

�a, b�,x
f �x�  ≤  g�x��a, b�gf

0 � �b

a

 f �x� dx.

�a, b�,f
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To prove Property 1, suppose, on the contrary, that

Then, let be a partition of and let

be a Riemann sum. Because it follows that Now, for sufficiently
small, you have which implies that

which is not possible. From this contradiction, you can conclude that

To prove Property 2 of the theorem, note that implies that
So, you can apply the result of Property 1 to conclude that

■

Recall from Section P.3 that a function is one-to-one if for and in its
domain

Let Then for So is increasing on its entire domain

and therefore is strictly monotonic (see Section 3.3). Choose and in the
domain of such that Because is strictly monotonic, it follows that either

or

In either case, So, is one-to-one. To verify the limits, begin
by showing that From the Mean Value Theorem for Integrals, you can write 

where is in �1, 2�.c

ln 2 � �2

1
 
1
x
 dx �

1
c

�2 � 1� �
1
c

ln 2 �
1
2.

f�x� � ln xf�x1� � f �x2�.

f�x1� > f �x2�.f�x1� < f �x2�

fx1 � x2.f
x2x1�0, 
)

fx > 0.f��x� �
1
x

> 0f�x� � ln x.

f�x1� � f �x2�.x1 � x2

x2x1fPROOF

 �b

a

 f �x� dx � �b

a

 g�x� dx.

 0 � �b

a

 g�x� dx � �b

a

 f�x� dx

 0 � �b

a

 �g�x� � f�x�� dx

g�x� � f �x�  ≥  0.
f�x�  ≤  g�x�

0 � �b

a

 f�x� dx.

�
n

i�1
 f�ci� �xi � R < I �

I
2

< 0

�R � I� < �I�2,
���R � 0.f�x� � 0,

R � �
n

i�1
 f�ci� �xi

�a, b�,a � x0  <  x1  <  x2  <  .  .  .  <  xn � b

�b

a

 f �x� dx � I < 0.

PROOF

A12 Appendix A Proofs of Selected Theorems

PROPERTIES OF THE NATURAL LOGARITHMIC FUNCTION (PAGE 325)

The natural logarithmic function is one-to-one.

and lim
x→


 ln x � 
lim
x→0�

 ln x � �
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This implies that

Now, let be any positive (large) number. Because is increasing, it follows that
if then

However, because it follows that

This verifies the second limit. To verify the first limit, let Then, as
and you can write

■

To prove Property 1, first show that if is continuous on and has an inverse
function, then is strictly monotonic on Suppose that were not strictly monotonic.
Then there would exist numbers in such that but is not
between and Without loss of generality, assume By
the Intermediate Value Theorem, there exists a number between and such that

So, is not one-to-one and cannot have an inverse function. So, must
be strictly monotonic.

Because is continuous, the Intermediate Value Theorem implies that the set of 
values of 

forms an interval Assume that is an interior point of From the previous
argument, is an interior point of Let There exists such that

I1 � � f�1�a� � �1,  f
�1�a� � �1� � I.

0 < �1 < �� > 0.I.f�1�a�
J.aJ.

� f �x�: x � ��

f
f

fff�x0� � f�x3�.
x2x1x0

f �x1� < f�x3� < f�x2�.f�x3�.f�x1�
f�x2�x1 < x2 < x3,Ix1, x2, x3

fI.f
IfPROOF

 � �
.

 � � lim
z→


 ln z

 � lim
z→


 ��ln z�

lim
x→0�

 ln x � lim
x→0�	�ln 

1
x


x → 0�,
z →
z � 1�x.

ln x > 2N ln 2 � 2N	1
2
 � N.

ln 2 �
1
2,

ln x > ln 22N � 2N ln 2.

x > 22N,
ln xN

 1 �  ln 2 �
1
2

.

 1 �  
1
c

 �
1
2

1 �  c  � 2

Appendix A Proofs of Selected Theorems A13

THEOREM 5.8 CONTINUITY AND DIFFERENTIABILITY OF INVERSE 
FUNCTIONS (PAGE 347)

Let be a function whose domain is an interval If has an inverse function,
then the following statements are true.

1. If is continuous on its domain, then is continuous on its domain.

2. If is increasing on its domain, then is increasing on its domain.

3. If is decreasing on its domain, then is decreasing on its domain.

4. If is differentiable on an interval containing and then 
is differentiable at f �c�.

f�1f��c� � 0,cf

f�1f

f�1f

f�1f

fI.f
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Because is strictly monotonic on the set of values forms an interval
Let such that Finally, if

then 

So, is continuous at A similar proof can be given if is an endpoint.

To prove Property 2, let and be in the domain of with Then, there
exist and in the domain of such that

Because is increasing, holds precisely when Therefore,

which implies that is increasing. (Property 3 can be proved in a similar way.)

Finally, to prove Property 4, consider the limit

where is in the domain of and Because is differentiable on an 
interval containing is continuous on that interval, and so is at So,
implies that and you have

So, exists, and is differentiable at ■

From the proof of Theorem 5.8, letting you know that is differen-
tiable. Using the Chain Rule, differentiate both sides of the equation 
to obtain

Because you can divide by this quantity to obtain

■
d
dx

�g�x�� �
1

f��g�x��.

f��g�x�� � 0,

1 � f��g�x�� d
dx

�g�x��.

x � f�g�x��
ga � x,PROOF

f�c�.f�1� f�1���a�

 �
1

f��c�.

 �
1

lim
x→c

 
f�x� � f�c�

x � c

 � lim
x→c

 
1

	 f�x� � f�c�
x � c 


 � f�1���a� � lim
x→c

 
x � c

f�x� � f�c�

x → c,
y → aa.f�1fc,

ff�1�a� � c.f�1a

� f�1���a� � lim
y→a

 
f�1�y� � f�1�a�

y � a

f�1

f�1�y1� � x1 < x2 � f�1�y2�

x1 < x2.f�x1� < f �x2�f

f�x1� � y1 < y2 � f�x2�.

fx2x1

y1 < y2.f�1,y2y1

aa.f�1

� f�1�y� � f�1�a�� < �1 < �.�y � a� < 	,

�a � 	, a � 	� � J1.	 > 0J1 � J.
� f�x�: x � I1�I1,f

A14 Appendix A Proofs of Selected Theorems

THEOREM 5.9 THE DERIVATIVE OF AN INVERSE FUNCTION (PAGE 347)

Let be a function that is differentiable on an interval If has an inverse
function then is differentiable at any for which Moreover,

f��g�x�� � 0.g��x� �
1

f��g�x�� ,

f��g�x�� � 0.xgg,
fI.f
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To prove Property 2, you can write

Because the natural logarithmic function is one-to-one, you can conclude that

■

Let Taking the natural logarithm of each side, you have

Because the natural logarithmic function is continuous, you can write

Letting you have

Finally, because you know that and you can conclude that

■lim
x→


 	1 �
1
x


x

� e.

y � e,ln y � 1,

� 1.

�
1
x
  at  x � 1

 �
d
dx

 ln x  at  x � 1

� lim
t→0�

 
ln�1 � t� � ln 1

t
 ln y � lim

t→0�
 
ln�1 � t�

t

x �
1
t
,

 ln y � lim
x→


 �x ln	1 �
1
x
� � lim

x→

 
ln �1 � �1�x��

1�x �.

ln y � ln� lim
x→


 	1 �
1
x


x

�.

y � lim
x→


 	1 �
1
x


x

.PROOF

ea

eb � ea�b.

� ln�ea�b�� a � b ln	ea

eb
 � ln ea � ln eb

PROOF

Appendix A Proofs of Selected Theorems A15

THEOREM 5.10 OPERATIONS WITH EXPONENTIAL FUNCTIONS 
(PROPERTY 2) (PAGE 353)

2. (Let and be any real numbers.)ba
ea

eb � ea�b

THEOREM 5.15 A LIMIT INVOLVING e (PAGE 366)

lim
x→


 	1 �
1
x


x

� lim
x→


 	x � 1
x 


x

� e

THEOREM 5.16 DERIVATIVES OF INVERSE TRIGONOMETRIC FUNCTIONS
(arcsin u and arccos u) (PAGE 376)

Let be a differentiable function of 

d
dx

�arccos u� �
�u�

�1 � u2

d
dx

�arcsin u� �
u�

�1 � u2

x.u
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Method 1: Apply Theorem 5.9.

Let and Because is differentiable on
you can apply Theorem 5.9.

If is a differentiable function of then you can use the Chain Rule to write

where

Method 2: Use implicit differentiation.

Let So, and you can use implicit differentiation
as follows.

If is a differentiable function of then you can use the Chain Rule to write

where ■

You can assume that because otherwise, by Rolle’s Theorem, it
would follow that for some in Now, define as

Then

and

and by Rolle’s Theorem there exists a point in such that

which implies that  ■
f��c�
g��c� �

f�b� � f�a�
g�b� � g�a�.

h��c� � f��c� �
f�b� � f�a�
g�b� � g�a� g��c� � 0

�a, b�c

h�b� � f�b� � � f�b� � f�a�
g�b� � g�a�� g�b� �

f�a�g�b� � f �b�g�a�
g�b� � g�a�

h�a� � f�a� � � f�b� � f�a�
g�b� � g�a�� g�a� �

f�a�g�b� � f �b�g�a�
g�b� � g�a�

h�x� � f �x� � � f�b� � f �a�
g�b� � g�a�� g�x�.

h�x��a, b�.xg��x� � 0
g�a� � g�b�,PROOF

u� �
du
dx

.
d
dx

�arccos u� �
�u�

�1 � u2
,

x,u

 
dy
dx

�
�1
sin y

�
�1

�1 � cos2 y
�

�1
�1 � x2

 �sin y 
dy
dx

� 1

 cos y � x

cos y � x,0 � y � �.y � arccos x,

u� �
du
dx

.
d
dx

�arcsin u� �
u�

�1 � u2
,

x,u

�
1

�1 � x2
�

1
�1 � sin2�arcsin x�

�
1

cos�arcsin x� g��x� �
1

f��g�x��

���2 � y � ��2,
fg�x� � arcsin x.f�x� � sin x

PROOF

A16 Appendix A Proofs of Selected Theorems

THEOREM 8.3 THE EXTENDED MEAN VALUE THEOREM (PAGE 570)

If and are differentiable on an open interval and continuous on 
such that for any in then there exists a point in such

that 
f��c�
g��c� �

f�b� � f�a�
g�b� � g�a�.

�a, b�c�a, b�,xg��x� � 0
�a, b��a, b�gf
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You can use the Extended Mean Value Theorem to prove L’Hôpital’s Rule. Of the
several different cases of this rule, the proof of only one case is illustrated. The
remaining cases where and are left for you to prove.

Consider the case for which and Define the 
following new functions:

and

For any and are differentiable on and continuous on 
You can apply the Extended Mean Value Theorem to conclude that there exists a 
number in such that

Finally, by letting approach from the right, you have because
and

■

To find fix in and write where 
is the Taylor polynomial for Then let be a function of defined by

g�t� � f �x� � f�t� � f��t��x � t� � .  .  . �
f �n� �t�

n!
 �x � t�n � Rn�x� �x � t�n�1

�x � c�n�1.

tgf�x�.nth
Pn�x�Rn�x� � f�x� � Pn�x��x � c�IxRn�x�,PROOF

� lim
x→c�

 
f��x�
g��x�.� lim

z→c�
 
f��z�
g��z� lim

x→c�
 
f�x�
g�x� � lim

x→c�
 
f��z�
g��z�

c < z < x,
z → c�x → c�,cx

�
f �x�
g�x�.�

f��z�
g��z��

F�x�
G�x� 

F��z�
G��z� �

F�x� � F�c�
G�x� � G�c�

�c, x�z

�c, x�.�c, x�Gx, c < x < b, F

G�x� � 
g�x�,     
0,

x � c
x � c

.F�x� � 
f�x�,
0,

     x � c
     x � c

lim
x→c�

 g�x� � 0.lim
x→c�

 f�x� � 0PROOF

x → cx → c�

Appendix A Proofs of Selected Theorems A17

THEOREM 8.4 L’HÔPITAL’S RULE (PAGE 570)

Let and be functions that are differentiable on an open interval 
containing except possibly at itself. Assume that for all in

except possibly at itself. If the limit of as approaches 
produces the indeterminate form then

provided the limit on the right exists (or is infinite). This result also applies if
the limit of as approaches produces any one of the indeterminate
forms or ��
����
�.
�
, ��
��
, 
���
�,

cxf�x��g�x�

lim
x→c

  
f�x�
g�x� � lim  

x→c

f��x�
g��x�

0�0,
cxf�x��g�x�c�a, b�,

xg��x� � 0cc,
�a, b�gf

THEOREM 9.19 TAYLOR’S THEOREM (PAGE 656)

If a function is differentiable through order in an interval containing
then, for each in there exists between and such that

where Rn�x� �
f �n�1��z�
�n � 1�! �x � c�n�1.

� Rn�x�f �x� � f �c� � f��c��x � c� �
f � �c�
2!

 �x � c�2
� .  .  . �

f �n��c�
n!

 �x � c�n

cxzI,xc,
In � 1f
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The reason for defining in this way is that differentiation with respect to has a
telescoping effect. For example, you have

The result is that the derivative simplifies to

for all between and Moreover, for a fixed 

and

Therefore, satisfies the conditions of Rolle’s Theorem, and it follows that there is a
number between and such that Substituting for in the equation for

and then solving for you obtain

Finally, because you have

■

In order to simplify the notation, the theorem for the power series 
centered at will be proved. The proof for a power series centered at 
follows easily. A key step in this proof uses the completeness property of the set of
real numbers: If a nonempty set of real numbers has an upper bound, then it must
have a least upper bound (see page 603).

It must be shown that if a power series converges at then it
converges for all satisfying Because converges, lim

x→

 andn � 0.� anxn�b� < �d�.b

d � 0,x � d,� anxn

S

x � cx � 0
� anxnPROOF

 f�x� � f�c� � f��c��x � c� � .  .  . �
f �n��c�

n!
 �x � c�n � Rn�x�.

 0 � f�x� � f �c� � f��c��x � c� � .  .  . �
f �n��c�

n!
 �x � c�n � Rn�x�

g�c� � 0,

Rn�x� �
f �n�1��z�
�n � 1�!  �x � c�n�1.

g��z� � �
f �n�1��z�

n!
 �x � z�n � �n � 1�Rn�x� �x � z�n

�x � c�n�1 � 0

Rn�x�,g��t�
tzg��z� � 0.xcz

g

g�x� � f �x� � f�x� � 0 � .  .  . � 0 � f�x� � f �x� � 0.

g�c� � f �x� � �Pn�x� � Rn�x�� � f�x� � f�x� � 0

x,x.ct

g��t� � �
f �n�1��t�

n!
 �x � t�n � �n � 1�Rn�x� �x � t�n

�x � c�n�1

g��t�

� �f � �t��x � t�. 
d
dt

 ��f�t� � f��t��x � t�� � �f��t� � f��t� � f ��t��x � t�

tg

A18 Appendix A Proofs of Selected Theorems

THEOREM 9.20 CONVERGENCE OF A POWER SERIES (PAGE 662)

For a power series centered at precisely one of the following is true.

1. The series converges only at 

2. There exists a real number such that the series converges absolutely
for and diverges for 

3. The series converges absolutely for all 

The number is the radius of convergence of the power series. If the series
converges only at the radius of convergence is and if the series
converges for all the radius of convergence is The set of all values
of for which the power series converges is the interval of convergence of
the power series.

x
R � 
.x,
R � 0,c,

R

x.
�x � c� > R.�x � c� < R,

R > 0

c.

c,
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So, there exists such that for all Then for 

So, for which implies that

is a convergent geometric series. By the Comparison Test, the series converges.

Similarly, if the power series diverges at where then it diverges
for all satisfying If converged, then the argument above would
imply that converged as well.

Finally, to prove the theorem, suppose that neither Case 1 nor Case 3 is true. Then
there exist points and such that converges at and diverges at Let

is nonempty because If then 
which shows that is an upper bound for the nonempty set By the completeness
property, has a least upper bound,

Now, if then so diverges. And if then is not an upper
bound for so there exists in satisfying Since 
converges, which implies that converges. ■

If then, by definition, the conic must be a parabola. If then you
can consider the focus to lie at the origin and the directrix to lie to the right
of the origin, as shown in Figure A.1. For the point you have

and Given that it follows that

By converting to rectangular coordinates and squaring each side, you obtain

Completing the square produces

If this equation represents an ellipse. If then and the
equation represents a hyperbola. ■

1 � e2 < 0,e > 1,e < 1,

	x �
e2d

1 � e2

2

�
y2

1 � e2 �
e2d2

�1 � e2�2.

x2 � y2 � e2�d � x�2 � e2�d2 � 2dx � x2�.

r � e�d � r cos ��.�PF� � �PQ�e
e � �PF���PQ�,�PQ� � d � r cos �.�PF� � r

P � �r, �� � �x, y�,
x � dF

e � 1,e � 1,PROOF

� anxn
� anbnb � S,�b� > �x�.SbS,

�x��x� < R,� anxnx�S,�x� > R,

R.S
S.�d�

�x� � �d�,x � S,b � S.SS � �x: � anxn converges�.
d.b� anxndb

� anbn
� andn�d� > �b�.d

b � 0,x � b,� anxn

� anbn

� �bn

dn�
�bd� < 1,�b� < �d�,

�anbn� � �anbn 
dn

dn� � �and
n� �bn

dn� < �bn

dn�.
n � N,n � N.andn < 1N > 0

Appendix A Proofs of Selected Theorems A19

THEOREM 10.16 CLASSIFICATION OF CONICS BY ECCENTRICITY 
(PAGE 750)

Let be a fixed point ( focus) and let be a fixed line (directrix) in the plane.
Let be another point in the plane and let (eccentricity) be the ratio of the
distance between and to the distance between and The collection of
all points with a given eccentricity is a conic.

1. The conic is an ellipse if 

2. The conic is a parabola if 

3. The conic is a hyperbola if e > 1.

e � 1.

0 < e < 1.

P
D.PFP

eP
DF

x

Q
P

F

y

x = d

r

θ

Figure A.1
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A20 Appendix A Proofs of Selected Theorems

Let be the surface defined by where and are continuous
at Let and be points on surface as shown in Figure A.2. From this
figure, you can see that the change in from point to point is given by

Between and is fixed and changes. So, by the Mean Value Theorem, there is
a value between and such that

Similarly, between and is fixed and changes, and there is a value between
and such that

By combining these two results, you can write

If you define and as and 
it follows that

By the continuity of and and the fact that and 
it follows that and as and Therefore, by definition, is
differentiable. ■

Because and are differentiable functions of you know that both and
approach zero as approaches zero. Moreover, because is a differentiable

function of and you know that 
where both and as So, for 

from which it follows that

■�
�w
�x

 
dx
dt

�
�w
�y

 
dy
dt

. 
dw
dt

� lim
�t→0

 
�w
�t

�
�w
�x

 
dx
dt

�
�w
�y

 
dy
dt

� 0	dx
dt
 � 0	dy

dt


�w
�t

�
�w
�x

 
�x
�t

�
�w
�y

 
�y
�t

� �1 
�x
�t

� �2 
�y
�t

�t � 0��x, �y� → �0, 0�.�2 → 0�1

�w � ��w��x� �x � ��w��y� �y � �1�x � �2�y,y,x
f�t�y

�xt,hgPROOF

f�y → 0.�x → 0�2 → 0�1→ 0
� y � �y,y � y1x � x1 � x � �xfyfx

 � � fx�x, y� �x � fy�x, y� �y� � �1�x � �2�y.

 �z � �z1 � �z2 � ��1 � fx�x, y�� �x � ��2 � fy�x, y�� �y

�2 � fy�x � �x, y1� � fy�x, y�,�1 � fx�x1, y� � fx�x, y��2�1

�z � �z1 � �z2 � fx�x1, y��x � fy�x � �x, y1� �y.

�z2 � f �x � �x, y � �y� � f �x � �x, y� � fy�x � �x, y1� �y.

y � �yy
y1yxC,B

�z1� f �x � �x, y� � f �x, y� � fx�x1, y� �x.

x � �xxx1

xyB,A

 � �z1 � �z2.

 � � f �x � �x, y� � f �x, y�� � � f �x � �x, y � �y� � f �x � �x, y��
 �z � f �x � �x, y � �y� � f �x, y�

CAf
S,CB,A,�x, y�.

fyfx ,f,z � f �x, y�,SPROOF

THEOREM 13.4 SUFFICIENT CONDITION FOR DIFFERENTIABILITY (PAGE 919)

If is a function of and where and are continuous in an open region
then is differentiable on R.fR,

fyfxy,xf

THEOREM 13.6 CHAIN RULE: ONE INDEPENDENT VARIABLE (PAGE 925)

Let where is a differentiable function of and If and
where and are differentiable functions of then is a differen-

tiable function of and

dw
dt

�
�w
�x

 
dx
dt

�
�w
�y

 
dy
dt

.

t,
wt,hgy � h�t�,

x � g�t�y.xfw � f �x, y�,

1053714_App_A_Calc_Calc MV.qxp  10/30/08  4:45 PM  Page A20



Integration TablesB
Forms Involving 

1. 2.

Forms Involving 

3. 4.

5.

6.

7.

8.

9.

10. 11.

12. 13.

Forms Involving

14.

15.

Forms Involving 

16. � un�a � bu du �
2

b�2n � 3� �un�a � bu�3�2 � na � un�1�a � bu du�
�a � bu

� 
u

a � bu � cu2 du �
1
2c

 	ln
a � bu � cu2
 � b � 
1

a � bu � cu2 du�

b2 > 4ac
1

�b2 � 4ac
 ln
2cu � b � �b2 � 4ac

2cu � b � �b2 � 4ac
 � C,
� 

1
a � bu � cu2 du � �

a � bu � cu2,  b2 � 4ac

� 
1

u2�a � bu�2 du � �
1
a2� a � 2bu

u�a � bu� �
2b
a

 ln
 u
a � bu
� � C� 

1
u2�a � bu� du � �

1
a 	

1
u

�
b
a

 ln
 u
a � bu
� � C

� 
1

u�a � bu�2 du �
1
a

 	 1
a � bu

�
1
a

 ln
 u
a � bu
� � C� 

1
u�a � bu� du �

1
a

 ln
 u
a � bu
 � C

n � 1, 2, 3� 
u2

�a � bu�n du �
1
b3� �1

�n � 3��a � bu�n�3 �
2a

�n � 2��a � bu�n�2 �
a2

�n � 1��a � bu�n�1� � C,

� 
u2

�a � bu�3 du �
1
b3� 2a

a � bu
�

a2

2�a � bu�2 � ln
a � bu
� � C

� 
u2

�a � bu�2 du �
1
b3	bu �

a2

a � bu
� 2a ln
a � bu
� � C

� 
u2

a � bu
 du �

1
b3 ��bu

2
 �2a � bu� � a2 ln
a � bu
� � C

� 
u

�a � bu�n du �
1
b2� �1

�n � 2��a � bu�n�2 �
a

�n � 1��a � bu�n�1� � C,  n � 1, 2

� 
u

�a � bu�2 du �
1
b2 	 a

a � bu
� ln
a � bu
� � C� 

u
a � bu

 du �
1
b2�bu � a ln
a � bu
� � C

a � bu

� 
1
u

 du � ln
u
 � C� un du �
un�1

n � 1
� C,  n � �1

un

A21

b2 < 4ac
2

�4ac � b2
 arctan 

2cu � b
�4ac � b2

� C,
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A22 Appendix B Integration Tables

17.

18.

19.

20.

21.

22.

Forms Involving

23. 24.

25.

Forms Involving 

26.

27.

28. 29.

30. 31.

32. 33.

34.

35. 36.

Forms Involving 

37.

38. � u2�a2 � u2 du �
1
8

 �u�2u2 � a2��a2 � u2 � a4 arcsin 
u
a� � C

� �a2 � u2 du �
1
2

 	u�a2 � u2 � a2 arcsin 
u
a� � C

�a2 � u2,  a > 0

� 
1

�u2 ± a2�3�2 du �
±u

a2�u2 ± a2
� C� 

1

u2�u2 ± a2
 du � � 

�u2 ± a2

a2u
� C

� 
u2

�u2 ± a2 du �
1
2

 �u�u2 ± a2 � a2 ln
u � �u2 ± a2
� � C

� 
1

u�u2 � a2 du �
1
a

 arcsec 
u

a

� C� 
1

u�u2 � a2 du �
�1
a

 ln
a � �u2 � a2

u 
 � C

� 
1

�u2 ± a2 du � ln
u � �u2 ± a2
 � C��u2 ± a2

u2  du �
��u2 ± a2

u
� ln
u � �u2 ± a2
 � C

� 
�u2 � a2

u
 du � �u2 � a2 � a arcsec 
u


a
� C� 

�u2 � a2

u
 du � �u2 � a2 � a ln
a � �u2 � a2

u 
 � C

� u2�u2 ± a2 du �
1
8
 
u�2u2 ± a2��u2 ± a2 � a4 ln
u � �u2 ± a2
� � C

� �u2 ± a2 du �
1
2

 �u�u2 ± a2 ± a2 ln
u � �u2 ± a2
� � C

�u2 ± a2,  a > 0

� 
1

�a2 ± u2�n du �
1

2a2�n � 1� �
u

�a2 ± u2�n�1
� �2n � 3�� 

1
�a2 ± u2�n�1 du�,  n � 1

� 
1

u2 � a2 du � �� 
1

a2 � u2 du �
1

2a
 ln
u � a

u � a
 � C� 
1

a2 � u2 du �
1
a

 arctan 
u
a

� C

a2 ± u2,  a > 0

� 
un

�a � bu
 du �

2
�2n � 1�b 	un�a � bu � na � 

un�1

�a � bu
 du�

� 
u

�a � bu
 du �

�2�2a � bu�
3b2

�a � bu � C

� 
�a � bu

un
 du �

�1
a�n � 1� �

�a � bu�3�2

un�1 �
�2n � 5�b

2
 � 

�a � bu
un�1  du�,  n � 1

� 
�a � bu

u
 du � 2�a � bu � a� 

1

u�a � bu
 du

� 
1

un�a � bu
 du �

�1
a�n � 1� �

�a � bu
un�1 �

�2n � 3�b
2

 � 
1

un�1�a � bu
 du�,  n � 1

a < 0
2

��a
 arctan �a � bu

�a
� C,

� 
1

u�a � bu
 du � � a > 0

1
�a

 ln
�a � bu � �a
�a � bu � �a
 � C,
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39. 40.

41. 42.

43. 44.

45.

Forms Involving or 

46. 47.

48. 49.

50. 51.

52. 53.

54. 55.

56. 57.

58.

Forms Involving 

59. 60.

61.

62. or

63. 64.

65. 66.

67. 68.

69.

70. � cscn u du � �
cscn�2 u cot u

n � 1
�

n � 2
n � 1

 � cscn�2u du,  n � 1

� secn u du �
secn�2 u tan u

n � 1
�

n � 2
n � 1

 � 

 secn�2 u du,  n � 1

�cotn u du �  �
cotn�1u
n � 1

� � �cotn�2 u� du,  n � 1� tann u du �
tann�1 u
n � 1

� � tann�2 u du,  n � 1

� csc2 u du � �cot u � C� sec2 u du � tan u � C

� cot2 u du � �u � cot u � C� tan2 u du � �u � tan u � C

� csc u du � �ln
csc u � cot u
 � C� csc u du � ln
csc u � cot u
 � C

� sec u du � ln
sec u � tan u
 � C

� cot u du � ln
sin u
 � C� tan u du � �ln
cos u
 � C

tan u, cot u, sec u, csc u

� 
1

sin u cos u
 du � ln
tan u
 � C

� 
1

1 ± cos u
 du � �cot u ± csc u � C� 

1
1 ± sin u

 du � tan u � sec u � C

� un cos u du � un sin u � n �  un�1 sin u du� un sin u du � �un cos u � n� un�1 cos u du

� u cos u du � cos u � u sin u � C� u sin u du � sin u � u cos u � C

� cosn u du �
cosn�1 u sin u

n
�

n � 1
n

 � cosn�2 u du� sinn u du � �
sinn�1 u cos u

n
�

n � 1
n

 � sinn�2 u du

� cos2 u du �
1
2

 �u � sin u cos u� � C� sin2 u du �
1
2

 �u � sin u cos u� � C

� cos u du � sin u � C� sin u du � �cos u � C

cos usin u

� 
1

�a2 � u2�3�2 du �
u

a2�a2 � u2 � C

� 
1

u2�a2 � u2 du �
��a2 � u2

a2u
� C� 

u2

�a2 � u2 du �
1
2

 	�u�a2 � u2 � a2 arcsin 
u
a� � C

� 
1

u�a2 � u2 du �
�1
a

 ln
a � �a2 � u2

u 
 � C� 
1

�a2 � u2 du � arcsin 
u
a

� C

� 
�a2 � u2

u2  du �
��a2 � u2

u
� arcsin 

u
a

� C� 
�a2 � u2

u
 du � �a2 � u2 � a ln
a � �a2 � u2

u 
 � C
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A24 Appendix B Integration Tables

71. 72.

73. 74.

Forms Involving Inverse Trigonometric Functions

75. 76.

77. 78.

79. 80.

Forms Involving

81. 82.

83. 84.

85. 86.

Forms Involving

87. 88.

89.

90. 91.

Forms Involving Hyperbolic Functions

92. 93.

94. 95.

96. 97.

Forms Involving Inverse Hyperbolic Functions (in logarithmic form)

98. 99.

100. � du

u�a2 ± u2
� �

1
a

 ln 
a � �a2 ± u2


u
 � C

� du
a2 � u2 �

1
2a

 ln
a � u
a � u
 � C� C� du

�u2 ± a2
� ln �u � �u2 ± a2 �

�csch u coth u du � �csch u � C�sech u tanh u du � �sech u � C

�csch2 u du � �coth u � C�sech2 u du � tanh u � C

�sinh u du � cosh u � C�cosh u du � sinh u � C

� �ln u�n du � u�ln u�n � n � �ln u�n�1 du� �ln u�2 du � u 
2 � 2 ln u � �ln u�2� � C

� un ln u du �
un�1

�n � 1�2 
�1 � �n � 1� ln u� � C,  n � �1

� u ln u du �
u2

4
��1 � 2 ln u� � C� ln u du � u��1 � ln u� � C

ln u

� eau cos bu du �
eau

a2 � b2 �a cos bu � b sin bu� � C� eau sin bu du �
eau

a2 � b2 �a sin bu � b cos bu� � C

� 
1

1 � eu du � u � ln�1 � eu� � C�uneu du � uneu � n� un�1eu du

� ueu du � �u � 1�eu � C� eu du � eu � C

eu

� arccsc u du � u arccsc u � ln
u � �u2 � 1
 � C� arcsec u du � u arcsec u � ln
u � �u2 � 1
 � C

� arccot u du � u arccot u � ln�1 � u2 � C� arctan u du � u arctan u � ln�1 � u2 � C

� arccos u du � u arccos u � �1 � u2 � C� arcsin u du � u arcsin u � �1 � u2 � C

� 
1

1 ± csc u
 du � u � tan u ± sec u � C� 

1
1 ± sec u

 du � u � cot u � csc u � C

� 
1

1 ± cot u
 du �

1
2

 �u � ln
sin u ± cos u
� � C� 
1

1 ± tan u
 du �

1
2

 �u ± ln
cos u ± sin u
� � C 
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Chapter 11
Section 11.1 (page 771)

1. (a) 3. (a)
(b) (b)

5. 7.
9. (a) and (d) 11. (a) and (d)

(b) (b)
(c) (c)

13. (a) and (d) 15. (a) and (d)

(b)

(b) (c) (c)
17. (a) (b)

(c) (d)

19. 21.

23. (a) (b) (c)
25. 27.

29. 31. 7 33. 5 35.
37. 39.
41. (a) (b) (c) 1 (d) 1 (e) 1 (f) 1
43. (a) (b) (c) (d) 1 (e) 1 (f) 1
45.

47. 49. 51. 53.

55. 57.

59. Answers will vary. Example: A scalar is a single real number
such as 2. A vector is a line segment having both direction and 
magnitude. The vector given in component form, has a
direction of and a magnitude of 2.

61. (a) Vector; has magnitude and direction
(b) Scalar; has only magnitude

63. 65. 67.
69. (a) 71. (a)

(b) (b)

x

y

1 2

1

2
(a)

(b)(1, 1)

x

y

−2 2 4 6 8 10

2

4

6

8

10

(3, 9)

(a)

(b)

±�1��10� �3, �1�±�1��37 ��6, �1�
±�1��10� �1, 3�±�1��37��1, 6�

a �
2
3, b �

1
3a � 1, b � 2a � 1, b � 1

��6
��3, 1�,

�2 cos 4 � cos 2, 2 sin 4 � sin 2��2 � 3�2
2

, 
3�2

2 	
���3, 1��3, 0����5, 2�5��0, 6�

�74 � �5 � �41

u
 � 
v
 � �5 � �41 and 
u � v
 � �74

x

y

u

u + v

v

−1
1 2 3 4 5 6 7

1

2

3

4

5

6

7

�85�2�13�5�2
�5�2

�3�34�34, 5�34�34���17�17, 4�17�17�
�61�3, 5�

4

2

4

−2

6

u + 2w

2w

x

u

y

32

−1

1

−2

−3

3
2

x

u
u

y

�4, 3��3, �3
2�

�18, �7���2, �14��8
3, 6�

x
−v

u

u v−

y

x

−u

y

x
−1 1 2 3 4 5

−1

1

2

3

4

5 (3, 5)

v
v

y

10
3

2
3

2, ( (

x

(3, 5)

v

v

y

35
2

21
2

7
2

, ( (

−3 3 6 9 12 15 18
−3

3

6

9

12

15

18

�2, 10
3 ��21

2 , 35
2 �

x

(−9, −15)

(3, 5)

v

−3v

y

−3−6−9−12−15 3 6

−6

−9

−12

−15

3

6

x

(6, 10)

(3, 5)

v 2v

y

−2 2 4 6 8 10
−2

2

4

6

8

10

��9, �15��6, 10�
v � �i �

5
3jv � 4j�0, 4�

��1, 53�

21

3

2

−1−2
x

v

1
2

, 3( (

3
2

4
3

, ( (

5
3

−1, ( (

y

64

6

4

2

2
x

v

(6, 6)

(0, 4)

(6, 2)

y

v � �2i � 4jv � 3i � 5j
��2, �4��3, 5�

x

(8, 3)

(6, −1)

(−2, −4)

v

−2−4 2 4 8

−6

2

4

6

y

x
−1 1 2 3 4 5

−1

1

2

3

4

5 (3, 5)

(2, 0)

(5, 5)

v

y

u � v � �6, �5�u � v � �2, 4�

4

2

−2

−2

−4

−4−6−8
x

v(−6, 0)

y

5432

1

1

3

2

4

5

x

v

(4, 2)

y

��6, 0��4, 2�
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73. (a) 75.
(b)

77. (a)–(c) Answers will vary.
(d)

79. 1.33, 81. 584.6 lb 83. 228.5 lb
85. (a) (b)

(c) No, the resultant can only be less than or equal to the sum.
87.
89. Tension in cable 

Tension in cable 
91. Horizontal: 1193.43 93. north of west

Vertical: 125.43 882.9 
95. True 97. True 99. False. 

101–103. Proofs 105.

Section 11.2 (page 780)
1.
3. 5.

7. 9. 11. 0
13. Six units above the plane
15. Three units behind the plane
17. To the left of the plane
19. Within three units of the plane
21. Three units below the -plane, and below either quadrant I 

or III
23. Above the plane and above quadrants II or IV, below the

-plane and below quadrants I or III
25. 27. 29. Right triangle
31. Isosceles triangle
33.
35. 37.
39.
41.

Center:
Radius: 5

43.
Center:
Radius: 1

45. A solid sphere with center and radius 6
47. Interior of sphere of radius 4 centered at 
49. (a) 51. (a)

(b) (b)
(c) (c)

53. 55.

57. (a) and (d)

(b) (c)
59.
61. (a) (b)

(c) (d)

63. 65. 67.
69. a and b 71. a 73. Collinear 75. Not collinear

�7
2, 3, 52��6, 12, 6���1, 0, 4�

x

1
2

3

−3
−2

−2
−3

2
1

3
y

2

1

−2

−1

−3

3

z

〈0, 0, 0〉

x

1

−3
−2

−2
−3

2
3

y

2

−2

−3

3

z

3
2〈   , 3, 3〉

x

3
2

1

−3
−2

−2
−3

2
3

y

2

−2

−3

3

z

〈−1, −2, −2〉

x

y
21

1
−2

2
3

4

2

3

4

5

z

〈2, 4, 4〉

�3, 1, 8�
v � 4i � j � k�4, 1, 1�

x

y4
2

−2

2

4

2

3

4

5

z

(−1, 2, 3)
(3, 3, 4)

(0, 0, 0)

(4, 1, 1)
v

u �
1
�2

��1, 0, �1�u �
1

�38
�1, �1, 6�


v
 � �2
v
 � �38
v � ��1, 0, �1�v � �1, �1, 6�

x

y4
3

2
1

1

−3

−2

2
3

2

1

3

4

5

z

〈−3, 0, 3〉

x

y43
2

1
1

−3

−2

2
3

2

1

3

4

5

z

〈−2, 2, 2〉

v � �3i � 3kv � �2i � 2j � 2k
��3, 0, 3���2, 2, 2�

�2, �3, 4�
�0, 0, 0�

�1
3, �1, 0�

�x �
1
3�2

� �y � 1�2 � z2 � 1

�1, �3, �4�
�x � 1�2 � �y � 3�2 � �z � 4�2 � 25
�x � 1�2 � �y � 3�2 � �z � 0�2 � 10

�x � 0�2 � �y � 2�2 � �z � 5�2 � 4�3
2, �3, 5�

�0, 0, 9�, �2, 6, 12�, �6, 4, �3�
�41, �41, �14;

7, 7�5, 14;�61�69
xy

orxy-

xy
xz-

xz-
yz-

xy-
�12, 0, 0���3, 4, 5�

x

y32

−3

1

4

1
2

3

3

2
1

−2

−3

z

(5, −2, 2)

(5, −2, −2)
x

y432

4

1
2

3

3

4
5
6

z

(2, 1, 3) (−1, 2, 1)

B��1, �2, 2�A�2, 3, 4�,

x2 � y2 � 25

ai � bj
 � �2�a�

km�hft�sec
38.3�ft�sec

BC � 1958.1 lb
AC � 2638.2 lb

��4, �1�, �6, 5�, �10, 3�

� � 180�� � 0�

71.3�,10.7�,132.5�

direction � �8.26�Magnitude � 63.5,

x

y

−1 1 2 3 4 5

1

2

3

4
(3, 4)

(a)
(b)

±1
5 �3, 4�

���2�2, �2�2�±1
5 ��4, 3�
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77.

Because the given points form the 
vertices of a parallelogram.

79. 0 81. 83.
85. (a) (b)
87. (a) (b)
89. (a)–(d) Answers will vary.

(e)

91. 93. 95.
97. 99.

101. (a) (b)
(c)
(d) Not possible

103. is directed distance to plane.
is directed distance to plane.
is directed distance to plane.

105. 107.
109. (a)

(b)

(c) (d) Proof (e) 30 in.

111.
113. Tension in cable 

Tension in cable 
Tension in cable 

115.

Section 11.3 (page 789)
1. (a) 17 (b) 25 (c) 25 (d) (e) 34
3. (a) (b) 52 (c) 52 (d) (e)
5. (a) 2 (b) 29 (c) 29 (d) (e) 4
7. (a) 1 (b) 6 (c) 6 (d) (e) 2
9. 20 11. 13.

15. 17.
19. Neither 21. Orthogonal 23. Neither
25. Orthogonal 27. Right triangle; answers will vary.
29. Acute triangle; answers will vary.
31. 33.

35.
37.
39. Magnitude: 124.310 lb

41. 43. (a) (b)
45. (a) (b) 47. (a) (b)

49. (a) (b)
51. See “Definition of Dot Product,” page 783.
53. (a) and (b) are defined. (c) and (d) are not defined because it is

not possible to find the dot product of a scalar and a vector or to
add a scalar to a vector.

55. See Figure 11.29 on page 787.
57. Yes.

59. $12,351.25; Total revenue 61. (a)–(c) Answers will vary.
63. Answers will vary. 65.
67. Answers will vary. Example: and 
69. Answers will vary. Example: and 
71. (a) 8335.1 lb (b) 47,270.8 lb
73. 425 ft-lb 75. 2900.2 km-N
77. False. For example, and 

but 
79.
81. (a)

(b) To at 
To at 
To at 
To at 

(c) At 
At �0, 0�: � � 90�

�1, 1�: � � 45�

�0, ±1�(0, 0�:y � x 1�3

�±1, 0��0, 0�:y � x2

�±3�10�10, ±�10�10��1, 1�:y � x 1�3

�±�5�5, ±2�5�5��1, 1�:y � x2

�0, 0�, �1, 1�
arccos�1��3� � 54.7�

�2, 3� 	 �1, 4�.
�1, 1� 
 �1, 4� � 5,�1, 1� 
 �2, 3� � 5

��2, 0, �3��2, 0, 3�
��12, �2��12, 2�

u

 
u
 � 
v


 
1


v

�

1

u


 �u 
 v� 
v


v
2 � �v 
 u� 
u



u
2

 
 u 
 v

v
2 v 
 � 
 v 
 u


u
2 u 


�2, � 8
25, 6

25��0, 33
25, 44

25�
�2, 1, 1���2, 2, 2���

1
2, 52��5

2, 12�
�4, �1��2, 8�� � 45�� � 45�,
 � 90�,

� � 96.53�� � 61.39�,
 � 29.48�,


 � 100.5�, � � 24.1�, � � 68.6�


 � 43.3�, � � 61.0�, � � 119.0�

cos � � �2��13cos � �
2
3

cos � � 3��13cos � �
2
3

cos 
 � 0cos 
 �
1
3

arccos��8�13�65� � 116.3�arccos��2�3� � 61.9�

arccos
�1��5�2�� � 98.1���2
i � k

�0, 12, 10�
�52�78, �52��26

��17, 85�

�x �
4
3�2

� � y � 3�2 � �z �
1
3�2

�
44
9

226.521 NAD:
157.909 NAC:
202.919 NAB:

��3�3��1, 1, 1�

0 100
0

30 L = 18

T = 8

L 20 25 30 35 40 45 50

T 18.4 11.5 10 9.3 9.0 8.7 8.6

L > 18T � 8L��L2 � 182,
0�x � x0�2 � � y � y0�2 � �z � z0�2 � r 2

xy-z0

xz-y0

yz-x0

a � 1, a � b � 2, b � 1
a � 0, a � b � 0, b � 0

1

1

1

v

u

yx

z

�0, �3, ±1�

�2, �1, 2�

x

−2

−2
−1

2

1
y

2

1

−2

−1

z

〈0,     3, 1〉

〈0,     3, −1〉

�1, �1, 12��0, 10��2, 10��2 �±7
3


v
 � 9.014

u
 � 5.099

u � v
 � 8.732
u � v � �4, 7.5, �2�

��1��38��3, 2, �5��1��38��3, 2, �5�
�

1
3�2, �1, 2�1

3�2, �1, 2�
�14�34

AB
\

� CD
\

 and BD
\

� AC
\

,
AC

\

� ��2, 1, 1�
BD

\

� ��2, 1, 1�
CD

\

� �1, 2, 3�
AB

\

� �1, 2, 3�

A116 Answers to Odd-Numbered Exercises

1053714_ans_11.qxp  10/27/08  3:55 PM  Page A116



83. (a)
(b) To at 

To at 
To at 

To at 
(c) At 

At 
85. Proof
87. (a) (b) (c) (d)

89–91. Proofs

Section 11.4 (page 798)
1. 3.

5.

7. (a) 9. (a)
(b) (b)
(c) (c)

11. 13. 15.
17. 19.

21.

23.

25. Answers will vary. 27. 1 29. 31.

33. 35. 37. ft-lb

39. (a)

(b)
(c) This is what should be expected. When 

the pipe wrench is horizontal.
41. 1 43. 6 45. 2 47. 75
49. At least one of the vectors is the zero vector.
51. See “Definition of Cross Product of Two Vectors in Space,” page

792.
53. The magnitude of the cross product will increase by a factor 

of 4.
55. False. The cross product of two vectors is not defined in a two-

dimensional coordinate system.
57. False. Let and 

Then but 
59–67. Proofs

Section 11.5 (page 807)
1. (a)

(b)
(There are many correct answers.) The components of the
vector and the coefficients of are proportional because the
line is parallel to 

(c)
3. (a) Yes (b) No

5. 3, 1, 5

7.

9.

z � 1 � t
y � �2t

3, �2, 1
x � 1

3
�

y
�2

�
z � 1

1
x � 1 � 3t

z � 3 � 2t
y � 4t

2, 4, �2
x � 2

2
�

y
4

�
z � 3
�2

x � �2 � 2t

z � 5t
y � t

x
3

� y �
z
5

x � 3t

Numbers       Equations �b�                     Equations �a�    
DirectionSymmetricParametric

��1
5, 12

5 , 0�, �7, 0, 12�, �0, 73, 13�
PQ

\

.
t

P � �1, 2, 2�, Q � �10, �1, 17�, PQ
\

� �9, �3, 15�

y

x

z

v 	 w.u � v � u � w � 0,
w � ��1, 0, 0�.v � �1, 0, 0�,u � �1, 0, 0�,

� � 90�,� � 90�;
42�2 � 59.40

0
0

180

100

y = 84 sinθ

84 sin �

10 cos 40� � 7.66
�16,742

2
11
2

9�56�5

��3.6, �1.4, 1.6�, ��
1.8

�4.37
, �

0.7
�4.37

, 
0.8

�4.37	
��73.5, 5.5, 44.75�, ��

2.94
�11.8961

, 
0.22

�11.8961
, 

1.79
�11.8961	

x

y

v

u

z

4
64

1
2

3

1

3
2

4
5
6

x

y

v

u
4

64

1
2

3

1

3
2

4
5
6

z

��2, 3, �1���1, �1, �1��0, 0, 54�
00
�17i � 33j � 10k�20i � 10j � 16k
17i � 33j � 10k20i � 10j � 16k

x y

−1

i

k− j

z

1
1

1

−1

�j

x y

i

j

k

z

1
1

1

−1

i

x y

i

j

−k
1

1

1

−1

z�k

109.5�60�k�2

k

k k yx

z

(k, 0, k)

(k, k, 0)

(0, k, k)

��1, 0�: � � 53.13�

�1, 0�: � � 53.13�

�±�5�5, �2�5�5�(�1, 0�:y � x2 � 1

�±�5�5, ±2�5�5���1, 0�:y � 1 � x2

�±�5�5, ±2�5�5��1, 0�:y � x2 � 1
�±�5�5, �2�5�5��1, 0�:y � 1 � x2

��1, 0�, �1, 0�
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11.

13. Not possible

15. 17. 19.

21.

23.
25.
27. and is parallel to 29. and are identical.
31. 33. Not intersecting
35.

37. (a)

(There are many correct answers.)
(b)

The components of the cross product are proportional to 
the coefficients of the variables in the equation. The cross
product is parallel to the normal vector.

39. (a) Yes (b) Yes 41.
43. 45.
47. 49. 51.
53. 55. 57.
59.

61. 63.
65. Orthogonal 67. Neither; 69. Parallel
71. 73.

75. 77.

79. 81.

83. and are parallel. 85. and is parallel to 
87. The planes have intercepts at and for

each value of 
89. If is the plane; If the plane is parallel to

the axis and passes through and 
91. (a)

(b)

93. The line does not lie in the plane.
95. Not intersecting 97. 99.

101. 103. 105.
107. 109.
111. Parametric equations: and 

Symmetric equations:

You need a vector parallel to the line and a point
on the line.

113. Simultaneously solve the two linear equations representing the
planes and substitute the values back into one of the original
equations. Then choose a value for and form the corresponding
parametric equations for the line of intersection.

115. (a) Parallel if vector is a scalar multiple of

(b) Perpendicular if 
117.
119. Sphere:
121. (a)

The approximations are close to the actual values.
(b) Answers will vary.

Year 2003 2004 2005

z (approx.) 5.66 5.56 5.56

Year 1999 2000 2001 2002

z (approx.) 6.25 6.05 5.94 5.76

�x � 3�2 � �y � 2�2 � �z � 5�2 � 16
cbx � acy � abz � abc

� � ��2.a1a2 � b1b2 � c1c2 � 0;
� � 0.�a2, b2, c2�;

�a1, b1, c1�

t

P�x1, y1, z1�
v � �a, b, c�

x � x1

a
�

y � y1

b
�

z � z1

c

z � z1 � cty � y1 � bt,x � x1 � at,
�66�37�3�3

�2533�1727�94�1882�26�13
11�6�66�14�7

�2, �3, 2�;
z � 1 � 2t
y � 1 � t
x � 2
� � 65.91�

�0, 1, �c�.�0, 0, 0�x-
c 	 0,xy-z � 0c � 0,

c.
�0, 0, c��0, c, 0�,�c, 0, 0�,

P2.P1 � P4P2P1

Generated by Maple

y

x

1

−2

−12

z

yx

2
4

6

−6

2
4

6

Generated by Maple

z

x y5
5

3

z

(5, 0, 0)yx

z

(0, 0, 6)

(6, 0, 0)
8

8

8

x

y−1

−4

3

3

2

z

(0, −4, 0)

(2, 0, 0)

4
3 ((0, 0, 

x
y

6

6

4

6

4

z

(0, 0, 2)

(0, 6, 0)

(3, 0, 0)

83.5�

9x � 3y � 2z � 21 � 0x � z � 0

x
y

6 8

2

10

2

2

4
6

z

(−7, 10, 0)

0, −   , −      7
2

1
2 )) ) )−   , 0, −      10

3
1
3

−4
−6

−8

y � z � �17x � y � 11z � 5x � y � z � 5
z � 34x � 3y � 4z � 103x � 19y � 2z � 0

2x � y � 2z � 6 � 02x � 3y � z � 10
y � 3 � 0

PQ
\

� PR
\

� ��4, 3, 6�

PQ
\

� �0, �2, 1�, PR
\

� �3, 4, 0�
P � �0, 0, �1�, Q � �0, �2, 0�, R � �3, 4, �1�

�7, 8, �1�

x y

6
8

10

4

2

4

−8

−
4

6
8

10

(7, 8, −1)

z

�2, 3, 1�; cos � � 7�17�51
L3L1L3.L1 � L2

v � �4, 2, 1�P�7, �6, �2�;
v � ��1, 2, 0�P�3, �1, �2�;

z � 2 � t
y � 1 � t
x � 2 � t

z � �4 � 3tz � 4 � tz � 4 � t
y � �3 � ty � 3 � 2ty � 3
x � 5 � 2tx � 2 � 3tx � 2

z � 6
y � �2 � 2t

�10, 2, 0x � 7 � 10t
z � �2 � 9t
y � �3 � 11t

17, �11, �9
x � 5

17
�

y � 3
�11

�
z � 2
�9

x � 5 � 17t

Numbers       Equations �b�                  Equations �a�   
DirectionSymmetricParametric
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123. (a)
(b) (c) The distance is never zero.

(d) 5 in.

125. 127. 129. True 131. True
133. False. Plane and plane 

are perpendicular to plane but are not
parallel.

Section 11.6 (page 820)
1. c 2. e 3. f 4. b 5. d 6. a
7. Plane 9. Right circular cylinder

11. Parabolic cylinder 13. Elliptic cylinder

15. Cylinder 17. (a)
(b)
(c)
(d)

19. Ellipsoid 21. Hyperboloid of one sheet

23. Hyperboloid of two sheets 25. Elliptic paraboloid

27. Hyperbolic paraboloid 29. Elliptic cone

31. Ellipsoid 33.

35. 37.

39. 41.

43. 45.

47. 49. 51.
53.
55. Let be a curve in a plane and let be a line not in a parallel

plane. The set of all lines parallel to and intersecting is
called a cylinder. is called the generating curve of the cylinder,
and the parallel lines are called rulings.

57. See pages 814 and 815. 59.
61. (a) Major axis: (b) Major axis:

Minor axis: 4 Minor axis: 8
Foci: Foci:

63. Elliptic paraboloid
65.
67. 69. True

71. False. A trace of an ellipsoid can be a single point.
x � at, y � bt � ab2, z � 2abt � a2b2

x � at, y � �bt, z � 0;
x2�39632 � y2�39632 � z2�39502 � 1
x2 � z2 � 8y;

�0, ±4, 8��0, ±2, 2�

8�24�2
128��3

C
CL

LC
�or x � �2z �y � �2z

y 2 � z2 � 4�x24x2 � 4y 2 � z2x2 � z2 � 4y

x
y32

4

2

3

3

z

x
y

1
2

2

3

2

−2

−2

z

x

6

6

4

2

2

−6

−6

−4

−2

z

y
y

x

12

88

−8 −4

z

x y4

4

4

z

yx

2 2

−2
−2

2

z

x
y4

2

1

1

2

2

−2

z

y
x 2π 

3

3

z

x 

y

1

1

3

−3

−1

z

x y2 23 3

3

z

x
y3 4

2
1

−3

3

2

1

3

−3

−2

z

x 

y

3

3 
2

−3

z 

x y3

2

−2
−3

3

2

3

−3

−2

z

x
y2

2

2

z

�0, 20, 0�
�0, 0, 20�
�10, 10, 20�

x

y
3

3

4

2

1

z

�20, 0, 0�

x 
y

2 3 
3 

2 

3

z 

−3 

x
y

4

4

3

3

2

4

z

x y 4 
7 6 

4 

z 

x

3

2

1

−1

−2

−3

1

z

2

4
5 y

3
2

1

−2
−3

2x � 3y � z � 3
5x � 2y � 4z � 17x � y � 11z � 5

��1
2, �9

4, 14��77
13, 48

13, �23
13�

15
0

0

15

�70 in.
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73. The Klein bottle does not have both an “inside” and an “outside.”
It is formed by inserting the small open end through the side of
the bottle and making it contiguous with the top of the bottle.

Section 11.7 (page 827)
1. 3. 5.

7. 9. 11.
13. 15. 17.
19.
21. 23.

25. 27.

29. 31. 33.
35. 37. 39.
41. 43.
45. 47.
49. 51.

53. 55.

57. 59.
61. 63.
65. 67.
69. 71.

73.
75.
77.

79.

81.

83.
85.
87.
89. d 90. e 91. c 92. a 93. f 94. b
95. Rectangular to cylindrical:

Cylindrical to rectangular:

97. Rectangular to spherical:

Spherical to rectangular:

99. (a) (b)
101. (a) (b)
103. (a) (b)
105. (a)

(b)
107. 109.

111. 113.

115. Rectangular: 117. Spherical:

119. Cylindrical:
121. False. represents a cone.
123. False. See page 823. 125. Ellipse

Review Exercises for Chapter 11 (page 829)
1. (a) (b) (c) (d)

3. 5. ��5, 4, 0�v � �4, 4�3 �
v � �4, 2�

10i2�5u � 3i � ju � �3, �1�

r � z
0 � � � �r � 3 cos �,r2 � z2 � 9,

0 � z � 10
0 � y � 10

4 � � � 60 � x � 10

x

y

z

2

2

2

x 

y 

30 ° 

z 

a 

x y
a a 

−a − a 

a

z

x

y2
3

1

2 3

5

3

2

z

�2 � 9 csc2 ���cos2 � � sin2 ��
r 2 � 9��cos2 � � sin2 ��

� � 4 sin ��sin � � 4 sin � csc �r � 4 sin �
� � 2 cos �r 2 � �z � 1�2 � 1

� � 5r 2 � z2 � 25
x � � sin � cos �, y � � sin � sin �, z � � cos �

�2 � x2 � y2 � z2, tan � � y�x, � � arccos�z��x2 � y2 � z2�

x � r cos �, y � r sin �, z � z

r 2 � x2 � y2, tan � � y�x, z � z

�3, 3��4, ��3��2.598, 2.356, 1.5) ��1.837, 1.837, 1.5�
�6.946, 5.642, 0.528���3.5, 2.5, 6��2.804, �2.095, 6�
�7.071, 2.356, 2.356��5, 3��4, �5���3.536, 3.536, �5�
2.058��1.5�
�3.206, 0.490,�2.833, 0.490,�5

2, 43, �3
2�

1.064��0.588, 2�
�4.123, �0.588,�3.606,�3, �2, 2�

14.142�14.142�
�20, 2��3, ��4��14.142, 2.094,��7.071, 12.247,
�9.434, 0.349, 0.559��5, ��9, 8��4.698, 1.710, 8�
�7.810, 0.983, 1.177��7.211, 0.983, 3��4, 6, 3�
Spherical                 Cylindrical        Rectangular         

�4, 7��6, 4�3��3�3, ���6, 3�
�36, �, 0��10, ��6, 0�

�13, �, arccos
5�13���2�13, ���6, arccos
3��13 ��
�4�2, ��2, ��4��4, ��4, ��2�

x y 
1

2
1

2

1 

2

− 2 

−2 −2

− 1 

z 

x
y

3 3
2

1
2

5

4

3

2

−2 −3

z

x2 � y 2 � 1x2 � y 2 � �z � 2�2 � 4

x 

y

2 
1 1

2 

2

−2
−1

− 1 

−1

− 2 

z

x
y 

6 5 

5 6 

5 
6 

−6

z 

3x2 � 3y 2 � z2 � 0x 2 � y2 � z2 � 25
tan2 � � 2� � 4 csc �

� � 7� � 2 csc � csc �
�5

2, 52, �5�2�2��0, 0, 12���6, �2, 2�2 �
�4, ��6, ��6��4�2, 2��3, ��4��4, 0, ��2�

x

y1
2 2

1

2

−2

−2

−1

z

x y

3
3 

3

−3

z

x2 � y 2 � 2y � 0x2 � y 2 � z2 � 5

x

y

2 1

2

1

2

−2

−2

z

x 
y 3 4 4 3 

3 

−3 

2 

z 

x � �3y � 0x2 � y 2 � 9
r2 sin2 � � 10 � z2

r � sec � tan �r2 � z2 � 17z � 4
�2, ��3, 4��2�2, ���4, �4��5, ��2, 1�
��2�3, �2, 3��3�2�2, 3�2�2, 1���7, 0, 5�
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7. Above the -plane and to the right of the -plane or below the
-plane and to the left of the -plane

9.
11.

Center:
Radius: 3

13. (a) and (d) (b)
(c)

15. Collinear 17.
19. (a) (b) 3 (c) 45

21. Orthogonal 23. 25.

27. Answers will vary. Example:
29. 31.
33. or 
35. 4 37. 39.
41. (a)

(b)
43. (a) (b) None

(c)

45. (a) (b)
(c)

47. 49.

51. 53.
55. Plane 57. Plane

59. Ellipsoid 61. Hyperboloid of two sheets

63. Cylinder

65. Let and revolve around the axis.
67.
69. (a) (b)

71.

73.
75. (a) (b)

77. 79.

P.S. Problem Solving (page 831)
1–3. Proofs 5. (a) (b)
7. (a) (b)

(c)

9. (a) (b)

11. Proof

x

y

z

3
2

1

−2

−2
−3

3
2

1

x

y

z

3

−3

2

−2

3

 V �
1
2�area of base�height

 V �
1
2��ab�k 2

1
2��abk�k��2

�5 � 2.243�2�2 � 2.12

3 4
4

3
2

1

−3

3

x

y

z

23

3

x
y

z

x � y�x �
5
2�2

� y2 �
25
4

� � 2 sec 2� cos � csc2 �r2 cos 2� � 2z
�25�2�2, ���4, �25�2�2�
�50�5, ���6, arccos
1��5��

�2�5, 3��4, arccos
�5�5���4, 3��4, 2�
x2 � z2 � 2y

x-y � 2�x

x y

z

2

2

−2

x

y
5 5

2

−2

z

x

y

5
4

2

−2

−4

z

x

y

6

2

2

z

x

y

6

3

3
(0, 0, 2)

(6, 0, 0)

(0, 3, 0)

z

�35�78
7

x y

2

−2

−4

−2

4

2

−2

−4

2

4
4

z

x y

−2

−4

−4

−2

2

−2

2

4
4

z

x � 2y � 127x � 4y � 32z � 33 � 0

x

1
2

3
4

2

3

4

32 4−2

−3
−4

−3

−2

−4

−3−4

z

x � y � 1, z � 1x � t, y � �1 � t, z � 1

x y

2

−2

−2

−4

−4

4

2

−4

4
4

z

x � 1, y � 2 � t, z � 3
�x � 3��6 � y�11 � �z � 2��4
x � 3 � 6t, y � 11t, z � 2 � 4t

100 sec 20� � 106.4 lb�285
�1��5��2i � j��1��5���2i � j�

��
15
14, 57, � 5

14�� 
u
2 u 
 u � 14
��6, 5, 0�, �6, �5, 0�

�� � arccos��2 ��6
4 � � 15�

u � ��1, 4, 0�, v � ��3, 0, 6�
�1��38��2, 3, 5�

u � 2i � 5j � 10k

x

y
321

54
5

3

1
2
3

−2

−9
−10

−8

z

(2, −1, 3)

(4, 4, −7)
(2, 5, −10)

u � �2, 5, �10�

�2, 3, 0�
�x � 2�2 � � y � 3�2 � z2 � 9
�x � 3�2 � �y � 2�2 � �z � 6�2 �

225
4

xzxy
xzxy
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� 40� 50� 60�

T 1.3054 1.5557 2

�u� 0.8391 1.1918 1.7321

� 0� 10� 20� 30�

T 1 1.0154 1.0642 1.1547

�u� 0 0.1763 0.3640 0.5774

13. (a) Tension: lb
Magnitude of lb

(b)
(c)

(d) (e) Both are increasing functions.

(f) and 

Yes. As increases, both increase.
15. Proof

17.

19. Proof

Chapter 12
Section 12.1 (page 839)

1. 3.
5. 7.
9. (a) (b) (c) (d)

11. (a) (b) Not possible

(c)

(d)

13.
15.

17.

19. No, the dot product is a scalar.
21. b 22. c 23. d 24. a
25. (a) (b)

(c) (d)

27. 29.

31. 33.

35. 37.

39. 41.

43. 45.

Parabola Helix
47. (a) The helix is translated two units back on

the axis.
(b) The height of the helix increases at a

greater rate.
(c) The orientation of the graph is reversed.
(d) The axis of the helix is the axis.
(e) The radius of the helix is increased from

2 to 6.
49–55. Answers will vary.
57. Answers will vary. Sample answer:

0 � t � 4r3�t� � �4 � t�j,
0 � t � 2r2�t� � �2 � t�i � 4 j,

0 � t � 2r1�t� � t i � t2j,

x-

x-

yx

π2

π

2

−2
−2

2

z

y

x

2

3

−1

2 1
−2

2

z

yx

2
3

−2
−3

−1
−2

−3

−2

−3

−4

−5

1

z

x y5

2

6

4

2

−2

−4

−6

2, 4, )) 16
3

−2, 4, − )) 16
3

z

x

y
3

−3

3

6

z

x

y
3

−3
3

7

z

x

y

(0, 6, 5)

(1, 2, 3)(2, 2, 1)−

43 5 6

4

3

5

1

3

z

x
1296−6

−6

−3

−9

−12

−9−12

12

9

6

3

y

2 3−2−3

1

2

x

y

x
3 4 5

3
2

4
5

−1−4

−3
−2

y

21−2−5 −3

6
7

x

y

−1−2−3−4 1 2 3 4

−2

1

2

3

4

�20, 0, 0��0, 0, 20�
�10, 20, 10���20, 0, 0�

t2�5t � 1�;
x � �2 � t, y � 5 � t, z � �3 � 12t
r�t� � ��2 � t�i � �5 � t�j � ��3 � 12t�k
x � 3t, y � t, z � 2t
r�t� � 3t i � t j � 2tk
�t�1 � 25t�

ln�1 � �t�i �
�t

1 � �t
 j � 3�tk

ln�t � 4�i �
1

t � 4
 j � 3�t � 4�k

ln 2i �
1
2

 j � 6k

1
2�t��t � 4�i � �tj1

2�s � 1�2i � sjj1
2 i

���, ���0, ��
�0, �����, �1� � ��1, ��

 � �w 	 �u 
 v��
�u 
 v�

� ��u 
 v� 	 w�
�u 
 v�

� �u 	 �v 
 w��
�u 
 v�

 D � �PQ
\

	 n�
�n�

�0, 0, cos � sin � � cos � sin �	;
T and �u�


lim

→�
2�

 �u� � �lim

→�
2�

 T � �

0 60
0

T

⎜⎜u ⎜⎜

2.5

T � sec 
; �u� � tan 
; Domain: 0� � 
 � 90�

�3
3 � 0.5774u:
2�3
3 � 1.1547
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59. 61.

63.

and

65.

67.

69. 71. 73.
75. 77.
79. is an integer.
81. (a)

(b)
(c)

83. Answers will vary. Sample answer:

85–87. Proofs 89. Yes; Yes 91. Not necessarily
93. True 95. True

Section 12.2 (page 848)
1. 3.

is tangent to the is tangent to the 
curve at curve at 

5. 7.

is tangent to the is tangent to the
curve at curve at 

9.

11. 13.
15. 17.
19.
21.
23. (a) (b) (c)
25. (a) (b) (c) 0
27. (a) (b) (c)
29. (a)

(b) (c)

31.

x y

r″

r ′

⎜⎜r″⎜⎜

⎜⎜r ′ ⎜⎜

z

r� ��1
4�
�r� ��1
4��

�
1

2�� 4 � 4
���2� 2 i � �2� 2 j � 4k�

r� ��1
4�
�r� ��1
4�� �

1
�4�2 � 1

��2� i � �2� j � k�
t�cos t � t sin t, sin t � t cos t, 0	

�t cos t, t sin t, 1	
t3
2 � ti � tkt i � j �

1
2 t 2k

�4 cos t i � 4 sin tj�4 sin t i � 4 cos t j
18t3 � t6t i � j3t 2 i � t j

�sin t � t cos t, cos t � t sin t, 1	
�e�t i � �5tet � 5et�k

�3a sin t cos2 t i � 3a sin2 t cos t j6i � 14tj � 3t2k
�2 sin t i � 5 cos t j3t 2 i � 3j

r� �3�

2 
 � 2i � k

x y

)) 3π
2

2
1

2

−2

2π

πr

r′

0, −2, 

z

r�3�

2 
 � �2j � �3�

2 
k

t0.t0.
r� �t0�r� �t0�

1 2 3

1

2

3

(1, 1)

y

x

r

r ′

x

r

1

(0, 1)

y

r ′

r� �0� � i � 2jr� ��
2� � � i
r�0� � i � jr��
2� � j

t0.t0.
r� �t0�r� �t0�

r ′
x

r

y

4,   1
2( (

2

1

2

864

4

2

2

−2

−4

r ′

x
r

(4, 2)

y

r� �2� � 4i �
1
4 jr� �2� � 4i � j

r�2� � 4i �
1
2 jr�2� � 4i � 2j

0 � t � 2�

r�t� � 1.5 cos t i � 1.5 sin tj �
1
�

tk,

1

1

−1

2

3

2

−1

−2 −1

−2

2

z

x y

s�t� � t2 i � �t � 2�j � tk
s�t� � �t2 � 2�i � �t � 3�j � tk
s�t� � t2 i � �t � 3�j � �t � 3�k

���
2 � n�, �
2 � n��, n
��1, 1����, 0�, �0, ��

i � j � k0� i � j

x y

4

4

8

12

16

8
12

167 6 5

z

Because x � t, y2 � z2 � 4x2.
� 4t2. � 4t2�cos2 t � sin2 t�

� 4t2 cos2 t � 4t2 sin2 t  y2 � z2 � �2t cos t�2 � �2t sin t�2

Let x � t, y � 2t cos t, and z � 2t sin t. Then
r�t� � t i � tj � �4 � t2 k

x

y

z

4
(2, 2, 0)

(0, 0, 2)

2
3

4

3

r�t� � �1 � sin t�i � �2 cos tj � �1 � sin t�k
r�t� � �1 � sin t�i � �2 cos tj � �1 � sin t�k

x

y3

−3

−3

3

3

z

4 sin2 tk
r�t� � 2 sin t i � 2 cos tj �r�t� � t i � tj � 2t 2 k

x

y3

−3

3

4

z

x

y

5

1 2 3

−3

3
2

2, 2, 4− 2,     2, 4)( ( )−

z
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A124 Answers to Odd-Numbered Exercises

33. 35.
37. 39.
41. is an integer.
43. (a) (b) (c)

(d)
(e)
(f)

45. (a) (b)

47.

Maximum:

Minimum:

Orthogonal: is an integer.

49. 51.
53. 55.
57.
59. 61.
63.
65.
67. 69.
71.
73. See “Definition of the Derivative of a Vector-Valued Function”

and Figure 12.8 on page 842.
75. The three components of are increasing functions of at 
77– 83. Proofs
85. (a) The curve is a cycloid.

(b) The maximum of is 2; the minimum of is 0. The
maximum and the minimum of is 1.

87. Proof 89. True
91. False: Let then 

but 

Section 12.3 (page 856)
1. 3.

5. 7.

9.

11. 13.

15.

17.

19.

21. (a) (b)

23.

25.

27.

29.

31. 78 ft 33. Proof
35. (a)

r�t� � t i � ��0.004t2 � 0.37t � 6�j
 y � �0.004x2 � 0.37x � 6

v0 � 40�6 ft
sec;

0
0

300

50

r�t� � 44�3t i � �10 � 44t � 16t2�j
r�2� � �cos 2�i � �sin 2�j � 2k
r�t� � cos t i � sin t j � tk
v�t� � �sin t i � cos t j � k
r�2� �

17
3 j �

2
3k

r�t� � �t3
6 �
9
2t �

14
3 �j � �t3
6 �

1
2t �

1
3�k

v�t� � �t2
2 �
9
2�j � �t2
2 �

1
2�k

r�2� � 2�i � j � k�
r�t� � �t2
2��i � j � k�
v�t� � t�i � j � k�

z �
1
4 �

3
4 t

y � �1 � 2t
�1.100, �1.200, 0.325�x � 1 � t

a�t� � �2et sin t i � 2et cos t j � et k
�v�t�� � et�3

v�t� � �et cos t � et sin t�i � �et sin t � et cos t�j � et k
a�t� � �3 cos tj � 3 sin tk
�v�t� � � 5
v�t� � 4i � 3 sin tj � 3 cos tk
 a�t� � ��9
�9 � t2�3
2�k
�v�t� � � ��18 � t2�
�9 � t2�
 v�t� � i � j � �t
�9 � t2�k

a�t� � 2j � ka�t� � 0
�v�t� � � �1 � 5t2�v�t� � � �35
v�t� � i � 2t j � tkv�t� � i � 5j � 3k

v

x
2

a

4

2

π

π

π

(  , 2)

y

a��� � �j
v��� � 2i

2,    2)(

3

3

−3

−3
x

v

a

y

(1, 1)

a

v

2

1

2

3

4

5

6

7

8

−1 3 4 5 6 7 8

y

x

a��
4� � ��2 i � �2 ja�1� � 2i � 6j
v��
4� � ��2 i � �2 jv�1� � 2i � 3j

864

4

2

2

−4

−2

v

x

a
(4, 2)

y

64

2

−2

−4

v

x
(3, 0)

y

a�2� � 2ia�1� � 0
v�2� � 4i � jv�1� � 3i � j

�r� �t� � � 1.
d
dt ��r�t� �� � 0,r�t� � cos t i � sin tj � k,

�r� �
�r� ��r� �

40
0

0

5

t � t0.tu

��2 � e�t 2�
2�i � �e�t � 2�j � �t � 1�k
600�3 t i � ��16t2 � 600t�j2e2t i � 3�et � 1�j

2i � �e2 � 1�j � �e2 � 1�k
ai � aj � ��
2�k

4i �
1
2 j � ktan t i � arctan t j � C

�t2 � t�i � t 4 j � 2t3
2 k � C
ln t i � t j �

2
5 t 5
2 k � Ct2i � t j � tk � C

r� �t� � 2ti � 2kr� �t� � 3i � 2tj

n
n�

2
,


�3�

4 
 � 
�7�

4 
 � 1.287

−1 7
0

�


��

4
 � 
�5�

4 
 � 1.855


 �t� � arccos� �7 sin t cos t
�9 sin2 t � 16 cos2 t �9 cos2 t � 16 sin2 t


12t5i � 5t 4j7t6

�10 � 2t2�
�10 � t2

8t3i � �12t2 � 4t 3�j � �3t2 � 24t�k
�i � �9 � 2t�j � �6t � 3t2�k

8t � 9t2 � 5t 42ki � 3j � 2tk
n���
2 � n�, �
2 � n��,

���, 0), �0, �����, ��
�n�
2, �n � 1��
2����, 0�, �0, ��
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t 0 �
4 �
2 2�
3 �

Speed 3 3�10
2 6 3�13
2 3

(b) (c) 14.56 ft
(d) Initial velocity:

37. (a)
(b)

The minimum angle appears to be 
(c)

39. (a) (b)
41.
43. (a) (b)

Maximum height: 2.1 ft Maximum height: 10.0 ft
Range: 46.6 ft Range: 227.8 ft

(c) (d)

Maximum height: 34.0 ft Maximum height: 166.5 ft
Range: 136.1 ft Range: 666.1 ft

(e) (f)

Maximum height: 51.0 ft Maximum height: 249.8 ft
Range: 117.9 ft Range: 576.9 ft

45. Maximum height: 129.1 m
Range: 886.3 m

47.

(a) when 
(b) is maximum when 

49.

51. is a negative
multiple of a unit vector from to so is
directed toward the origin.

53. 55–57. Proofs
59. (a)

(b)

(c) (d) The speed is increasing when
the angle between and is 
in the interval and
decreasing when the angle is
in the interval 

61. The velocity of an object involves both magnitude and direction
of motion, whereas speed involves only magnitude.

63. (a) Velocity:
Acceleration:

(b) In general, if then:
Velocity:
Acceleration:

65. False; acceleration is the derivative of the velocity.
67. True

Section 12.4 (page 865)
1. 3.

5. 7.
9.

11. 13.

15.

17.

19. Tangent line:

21. 23.
25.
27.
29. N�3�
4� � ��2
2��i � j�

N�1� � ���14
14��i � 2j � 3k�
N�2� � ���5
5��2i � j�

N�2� � ��5
5� ��2i � j�1.2�

r�1.1� � �1.1, 0.1, 1.05	
 z � 1 �

1
2t y � t, x � 1 � t,

z � 18 � 18t
y � 9 � 6t
x � 3 � t

x

y

3
3

−3

6

6

9

9

12

12

15

15

18

18

zT�3� �
1

19�1, 6, 18	
z � 4
y � �2 � �2 t
x � �2 � �2 t
 T��
4� �

1
2 ���2, �2, 0	

z � tz � t
y � 3ty � 0
x � 3x � t
T�0� � ��10
10��3j � k)T�0� � ��2
2��i � k�

T�e� � �3ei � j�
�9e2 � 1 � 0.9926i � 0.1217j
T��
4� � ��2
2���i � j�T�1� � ��2
2��i � j�

y

x

x

y

r3� (t� � �2 r1� (�t�
r3� �t� � �r1� ��t�

r3�t� � r1��t�,
r2� (t� � 4r1� (2t�

r2� �t� � 2r1� �2t�

��
2, ��.

�0, �
2�,
av

−2−4−8 2 4 6 8−2

−4

−6

−8

2

4

6

8

x

y

a�t� � �6 cos t i � 3 sin t j
�v�t�� � 3�3 sin2 t � 1
v�t� � �6 sin t i � 3 cos tj

8�10 ft
sec

a�t��cos �t, sin �t�,�0, 0�
a�t�a�t� � �b�2�cos �ti � sin �tj� � ��2r�t�;

v�t� 	 r�t� � 0
v�t� � �b� sin �ti � b� cos �tj

�t � �, 3�, .  .  .�v�t��
�t � 0, 2�, 4�, .  .  .�v�t�� � 0

a�t� � b�2�sin �ti � cos �tj�
v�t� � b���1 � cos �t�i � sin �tj�

0
0

600

300

0
0

140

60

0
0

800

200

0
0

200

40

0
0

300

15

0
0

50

5

1.91�

v0 � 32 ft
sec
 � 58.28�v0 � 28.78 ft
sec;

0 � 19.38�


0 � 20�.

5000
0

100

θ0 = 10 θ0 = 15

θ0 = 20 θ0 = 25

r�t� � �440
3  cos 
0�ti � �3 � �440

3  sin 
0�t � 16t2� j


 � 20.14�
67.4 ft
sec;

0
0

18

120
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31. 33.

is undefined. The path is undefined. The path
is a line and the speed is is a line and the speed is
constant. variable.

35. 37.

39. 41.

43.

45.

47. The speed is constant because 
49.

51.

53.

55.
is undefined.

is undefined.
is undefined.

57.

59.

61.

63.

65.

67. Let be a smooth curve represented by on an open interval 
The unit tangent vector is defined as 

The principal unit normal vector is defined as 

The tangential and normal components of acceleration are
defined as 

69. (a) The particle’s motion is in a straight line.
(b) The particle’s speed is constant.

71. (a)

(b) Increasing because 
Maximum because 
Decreasing because 

73.

75.

B��
4� � � i
N��
4� � ���2
2�� j � k�
T��
4� � ��2
2��j � k�
B��
2� � ��17
17��i � 4k�
N��
2� � �j
T��
2� � ��17
17���4i � k�

aT < 0.t �
3
2:

aT � 0.t � 1:
aT > 0.t �

1
2:

aT � ��2� 2
2, aN � �2� 2
2t �
3
2:

aT � 0, aN � � 2t � 1:
aT � �2� 2
2, aN � �2� 2
2t �

1
2:

a�t� � aTT�t� � aNN�t�.

N�t� �
T��t�

�T��t��, T��t� � 0.

N�t� at t

r��t� � 0.T�t� �
r��t�

�r��t��,

T�t� at t
I.rC

aN � �5513
149

y
x 4 6 8

24

2

4

N

T

zaT � 74�149
149

N�2� � ��5513
5513���74i � 6j � k�
T�2� � ��149
149��i � 12j � 2k�

aN � 3
aT � 0
N��
2� � �k

x

y
2π

4π

3

3

zT
N

T��
2� �
1
5�4i � 3j�

aN � �2
aT � �3
N�0� � ��2
2��i � j�
T�0� � ��3
3��i � j � k�
aN � �30
6
aT � 5�6
6
N�1� � ��30
30���5i � 2j � k�
T�1� � ��6
6��i � 2j � k�
aN � 1
aT � 0
N��
3� � ��1
2�i � ��3
2�j
T��
3� � ��5
5�����3
2�i � �1
2�j � 2k�
aN

aT

N�1�
T�1� � ��14
14� �i � 2j � 3k�

1

−1

1−1
x

N

T

y

2,    2)(

N��
4� � ��2
2���i � j�
T��
4� � ��2
2���i � j�
r��
4� � �2 i � �2 j

−1−2 1 2

−1

1

2

3

y

x
T

N

1, 1
4))

N�1
4� � �2�5
5����1
2�i � j�
T�1
4� � ��5
5��2i � j�
r�1
4� � i � �1
4� j

N

x
32

T

3

2

1

1

2, 1
2

y

))

N�2� � ��17
17��i � 4j�
T�2� � ��17
17��4i � j�
r�2� � 2i �

1
2 j

aT � 0.�v�t�� � a�;
aN � a�2

aT � 0
N�t� � �cos��t�i � sin��t�j
T�t� � �sin��t�i � cos��t�j
aN � �3t0

aT � �2

N�t0� � ��sin �t0�i � �cos �t0�j
T�t0� � �cos �t0�i � �sin �t0�j

aN � �2e�
2aN � 6�5
5
aT � �2e�
2aT � �7�5
5
N��
2� � ���2
2��i � j�N�0� � ��5
5��2i � j�
T��
2� � ��2
2���i � j�T�0� � ��5
5��i � 2 j�
aN � 8�5
5aN � �2
aT � 14�5
5aT � ��2
N�1� � ���5
5��2i � j�N�1� � ��2
2��i � j�
T�1� � ���5
5��i � 2 j�T�1� � ��2
2��i � j�

N�t�N�t�
T�t� � iT�t� � i
a�t� � 8ia�t� � 0
v�t� � 8t iv�t� � 4i
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77.

79.

At maximum height,

81. (a)
(b)

(c)

(d)

(e)

The speed is decreasing when and have opposite signs.
83. (a)

(b)
because the speed is constant.

85. (a) The centripetal component is quadrupled.
(b) The centripetal component is halved.

87. 89.
91. False; centripetal acceleration may occur with constant speed.
93. (a) Proof (b) Proof 95–97. Proofs

Section 12.5 (page 877)
1. 3.

5.

7. (a)
(b) ft (c) 315.5 ft (d) 362.9 ft

9. 11.

13. 15. 8.37

17. (a) (b) 9.529
(c) Increase the number of line segments. (d) 9.571

19. (a) (b)

(c)

(d) Proof
21. 0 23. 25. 0 27. 29. 1
31. 33. 35.
37. 39. 41. 43.
45. is undefined.
47. 49.
51.
53.
55. (a)

(b) Because the curvature is not as great, the radius of the
curvature is greater.

57. 59.

(0, 1)
−6

0
3

6

(1, 2)
−6

−4

6

4

�x � 2�2 � �y � 3�2 � 8�x � 1�2 � �y �
5
2�2

� �1
2�2

�x � �
2�2 � y2 � 1
K � 12
1453
2,  1
K � 1453
2
12
K � 1
a,  1
K � a

K � 4,  1
K � 1
41
K � 17 3
2
4K � 4
173
2,
1
KK � 0,

7�26
67612
125

3
25�5
�1 � 5t2�3
2

�2
�4a�1 � cos �t�1
a1
4

�2
22
5

��0.433, 1.953, 1.789�s � 4:
�1.081, 1.683, 1.000�s � �5:

r�s� � 2 cos 
s
�5

 i � 2 sin 
s
�5

 j �
s
�5

 ks � �5 t

2�21 � 9.165
2��a2 � b2

x
y

(a, 0, 2  b)
2 b

b

(  , 0, 0)a

π
π

π

z

3�17�
2�26

x

y

(6  , 0, −1)

(0, −1, 0)

π
21

18
15

12
9

6

−12

−9

−6

−3

6

6

−6
−9

−12

9

zz

x

y

(0, 0, 0)
(−1, 4, 3)

1
1

2

−2
−3

3 −1

3

2

4

−2

2
3

4
5

649
8 � 81

r�t� � �50t�2�i � �3 � 50t�2 � 16t2�j
6a

x
a

a

−a

−a

y

�13�13 � 8�
273�10

y

x
(0, 0)

(1, 1)

1

1

y

x
6 9

−3

−6

3

(0, 0)

(9, −3)

4.67 mi
sec4.82 mi
sec

aT � 0
aN � 1000� 2aT � 0,

mi
h4�625� 2 � 1 � 314
aNaT

0

−20

4

40

aN

aT

t 2.0 2.5 3.0

Speed 104 105.83 109.98

t 0.5 1.0 1.5

Speed 112.85 107.63 104.61

a�t� � �32j
�v�t�� � 8�16t 2 � 60t � 225

v�t� � 60�3 i � �60 � 32t�j
Range � 398.186 ft
Maximum height � 61.245 ft

0
0

400

70

r�t� � 60�3 t i � �5 � 60t � 16t 2�j
aT � 0 and aN � 32.

aN �
32v0 cos 


�v0
2 cos2 
 � �v0 sin 
 � 32t�2

aT �
�32�v0 sin 
 � 32t�

�v0
2  cos2 
 � �v0 sin 
 � 32t�2

B��
3� � ��5
10��i � �3 j � 4k�
N��
3� � �

1
2��3 i � j�

T��
3� � ��5
5��i � �3 j � k�
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A128 Answers to Odd-Numbered Exercises

61. 63. (a) (b) 0

65. (a) as (No maximum) (b) 0
67. (a) (b) 0
69. (a) (b) 0
71. 73.

75. (a)

(b) Plane:

Space:

77. Yes, for example, has a curvature of 0 at its 
relative minimum The curvature is positive at any other
point on the curve.

79. Proof

81. (a)

(b)

(c)

The curvature tends to be greatest near the extrema of the
function and decreases as However, and do
not have the same critical numbers.
Critical numbers of 
Critical numbers of 

83. (a) 12.25 units (b) 85–87. Proofs
89. (a) 0 (b) 0 91. 93. Proof
95. 97. 3327.5 lb

Minimum:
There is no maximum.

99. Proof
101. False. See Exploration on page 869. 103. True
105–111. Proofs

Review Exercises for Chapter 12 (page 881)
1. (a) All reals except is an integer

(b) Continuous except at is an integer
3. (a) (b) Continuous for all 

5. (a) (b)

(c)

(d)
7. 9.

11. 13.

15.

17.
(Answer is not unique.)

19. 21.

23. (a) (b) (c)
(d)
(e)
(f)

25. and are increasing functions at and is a
decreasing function at 

27.
29.
31. 33.
35.
37.

39.

41.

43. About 191.0 ft 45. About 38.1 m
sec
r�4.1� � �0.1, 16.8, 2.05	
x�t� � t, y�t� � 16 � 8t, z�t� � 2 �

1
2 t

a�t� � �3 cos t �2 sin2 t � cos2 t�, 3 sin t�2 cos2 t � sin2 t�, 0	
�v�t�� � 3�sin2 t cos2 t � 1
v�t� � ��3 cos2 t sin t, 3 sin2 t cos t, 3	
a�t� � 6tj
�v�t�� � �17 � 9t 4

v�t� � 4i � 3t 2j � k
r�t� � �t2 � 1�i � �et � 2�j � �e�t � 4�k

2�e � 1�i � 8j � 2k32
3 j

1
2�t�1 � t2 � ln�t � �1 � t2�� � C
sin t i � �t sin t � cos t�j � C

t � t0.
z�t�t � t0,y�t�x�t�

�8
3t3 � 2t2�i � 8t 3j � �9t2 � 2t � 1�k

�10t � 1�
�10t2 � 2t � 1

�5i � �2t � 2�j � 2t2k
4t � 3t203i � j

x � t, y � �t, z � 2t2

4i � k

x

y

5

1 2 3

−3

3
2

z

r�t� � ��2 � 7t, �3 � 4t, 8 � 10t	
0 � t � 3r3�t� � �3 � t�i,

0 � t � 4r2�t� � 3i � �4 � t�j,
0 � t � 1r1�t� � 3t i � 4t j,

y

x

1 21

2

3

3

2

1

z

y

x

1 21
2

3

−2

2

3

1

z

x

y
2

1

2

1

zy

x
−1−2−4 1 2 4

−2

−4

1

2

4

2�t i � �t��t � 2�j � ���t � 3 � �3�k
�2c � 1�i � �c � 1�2j � �c � 1k

�3i � 4ji � �2k

t  >  0�0, ��
nt � ��
2� � n�,

n��
2� � n�,

K � 1
�4a�
K � �1
�4a���csc �

2��

1
4

1
2

x � 0, ±0.7647, ±0.4082K:
x � 0, ±�2
2 � ±0.7071f :

Kfx →  ±�.

3−3

−2

5

x2 � �y �
1
2


2

�
5
4

x � 1: −3 3

−2

f

2x2 � �y �
1
2


2

�
1
4

x � 0:

K �
2�6x2 � 1�

�16x 6 � 16x 4 � 4x2 � 1�3
2

�0, 0�.
y � x4K � �y� �;

K �
�T� �t��
�r� �t�� �

�r� �t� 
 r� �t��
�r� �t��3

K � � dT
ds � � �T� �s��

s � �b

a

��x� �t��2 � �y� �t��2 � �z� �t��2 dt � �b

a

�r� �t�� dt

��
2 � K�, 0��0, 1�
�±  arcsinh�1�, 1�
�1
�2, �ln 2
2�

x → 0K →�

�1, 3�

−2

x

y

π

π

π

A
B
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47. 49.

does not exist.
51. 53.

55. 57. 4.58 

59. 61.

60
63. 65.

67. 0 69. 71.
73. 75.
77. The curvature changes abruptly from zero to a nonzero

constant at the points and 

P.S. Problem Solving (page 883)
1. (a) (b) (c)
3. Initial speed:
5–7. Proofs
9. Unit tangent:

Unit normal:
Binormal:

11. (a) Proof (b) Proof

13. (a) (b) 6.766

(c)

(d) (e)

(f) As the graph spirals outward and the curvature
decreases.

Chapter 13
Section 13.1 (page 894)

1. Not a function because for some values of and for example
there are two -values.

3. is a function of and 5. is not a function of and 
7. (a) 6 (b) (c) 150 (d) (e) (f)
9. (a) 5 (b) (c) (d) (e) (f)

11. (a) (b) 0 (c) (d)
13. (a) (b) (c) (d) 4
15. (a) (b) (c) (d)
17. (a) (b)
19. Domain: is any real number, is any real number

Range:
21. Domain:

Range: all real numbers
23. Domain:

Range: all real numbers
25. Domain:

Range:
27. Domain:

Range:
29. Domain:

Range: all real numbers
31. (a) (b)

(c) (d)
33. 35.

x

y2 3
1

4

4

5

z

x

y4
2 3

1
3

5

2
1

2

3

5

z

�20, 20, 0��20, 15, 25�
��15, 10, 20��20, 0, 0�

y  <  �x � 4���x, y�:
0 � z � �

�1  ≤  x � y  ≤  1���x, y�:
0  ≤  z  ≤  2

x2 � y2  ≤  4���x, y�:

x � 0, y � 0���x, y�:

��x, y�: y � 0�
z � 0

�y��x, y�: x
2y � �y, �y � 02, �x � 0

9
4�

25
4�6�4
�3�3�23 sin 1�2

�
10
3�

3
2

2
3

tetxe25ey2�e3e2

5t2x5y�4
y.xzy.xz

zx 	 y 	 0�,
�yx

t →
,

lim
t→


 K 	 0

0 5
0

5

 K�2� � 0.51
K�1� 	 	��� 2 � 2�
��� 2 � 1�3�2 � 1.04
 K�0� 	 2�

K 	 	��� 2t2 � 2�
��� 2t2 � 1�3�2

−3 3

−2

2

x

y

z

π3

12
3

4 4

π6 T

T

B

B

N

N

�3
5, 0, 45�

�0, �1, 0�
��

4
5, 0, 35�

� � 63.43�447.21 ft�sec;
K 	 �a�aa

C.B

K 	 �2�4; r 	 2�2K 	 �17�289; r 	 17�17
�2�3�2�5���4 � 5t2�3�2

�65��23�29

x

y

z

π

4

468

6
8

(8, 0, 0)

0, 8, 
2

π
2 ))

x
y

6 8

2 4

10

2

2

6

4

8

10

12

z

(0, 0, 0)

(−9, 6, 12)

5�13

−10

10

2

−10 10−2 2
x

y

2−2−4

−4

2

−6

−8

−10

−12

−14

−16

4 6 8 10 12 14
x

y

(0, 0)

(10, −15)

z 	 t � ���3�
y 	 t � �3

mi�secx 	 ��3 t � 1

a 
 N 	
�5

�1 � 5t2
a 
 N 	

2
�e2t � e�2t

a 
 T 	
5t

�1 � 5t2
a 
 T 	

e2t � e�2t

�e2t � e�2t

a 	 2j � ka 	 et i � e�t j

v
 	 �1 � 5t2
v
 	 �e2t � e�2t

v 	 i � 2t j � tkv 	 et i � e�t j
a 
 N 	 1��2t�4t � 1�a 
 N

a 
 T 	 �1��4t�t�4t � 1�a 
 T 	 0

a 	 	�1��4t�t�
 ja 	 0


v
 	 �4t � 1��2�t�
v
 	 �10

v 	 i � 	1��2�t�
 jv 	 �i � 3j
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A130 Answers to Odd-Numbered Exercises

37. 39.

41. 43.

45. c 46. d 47. b 48. a
49. Lines: 51. Ellipses:

(except is the
point 

53. Hyperbolas: 55. Circles passing through 
Centered at 

57. 59.

61. The graph of a function of two variables is the set of all points
for which and is in the domain of The

graph can be interpreted as a surface in space. Level curves are
the scalar fields where is a constant.

63. the level curves are the lines 
65. The surface may be shaped like a saddle. For example, let

The graph is not unique; any vertical translation
will produce the same level curves.

67.

69. 71.

73. 75. (a) 243 board-ft
(b) 507 board-ft

77. 79. Proof

81.
83. (a)

(b)
The level curves are lines.

85. (a) (b) (c)
87. (a) No; the level curves are uneven and sporadically spaced.

(b) Use more colors.
89. False: let 91. True

Section 13.2 (page 904)
1–3. Proofs 5. 1 7. 12 9. 9, continuous

11. continuous 13. 0, continuous for 
15. continuous except at 17. 0, continuous
19. 0, continuous for 
21. continuous for 23. 0
25. Limit does not exist. 27. 4 29. Limit does not exist.
31. Limit does not exist. 33. 0
35. Limit does not exist. 37. Continuous, 1

x � y � z  ≥  02�2,
xy � 1, �xy� � 1

�0, 0�1
2,

y � 0e2,

f �x, y� 	 4.

BAC

P 	 520T��3V�
k 	

520
3

C 	 1.20xy � 1.50�xz � yz�

30

30

y

x

−30

c = 600
c = 500
c = 400

c = 300
c = 200
c = 100
c = 0

−30

x
y

− 2

− 2

2

212

z

x
y

− 4

− 4

4

44

z

x

y2

−1
−2

1

2

1

2

1

z

Inflation Rate

Tax Rate 0 0.03 0.05

0 $1790.85 $1332.56 $1099.43

0.28 $1526.43 $1135.80 $937.09

0.35 $1466.07 $1090.90 $900.04

f �x, y� 	 xy.

y 	 �1�c�x.f �x, y� 	 x�y;
cf �x, y� 	 c,

f.�x, y�z 	 f �x, y��x, y, z�

−6

−4

6

4

−9

−6

9

6

x
2

2
c = 1

c = −1

c = −2

c = 2

y
1
2

−c =

1
2

c =

3
2

c =

3
2

−c =

�1��2c�, 0�

1

1

−1

−1
x

c = 6
c = 5
c = 4
c = 3
c = 2
c = 1

c = −1
c = −2
c = −3
c = −4
c = −5
c = −6

y

�0, 0�xy 	 c

c = 0
c = 1

c = 2
c = 3

c = 4

x

y

2

−2 2

−2

�0, 0�.�
x2 � 4y2 	 0

4

4

2

2

−2

−2
x

c = −1 c = 0

c = 2

c = 4

y

x2 � 4y2 	 cx � y 	 c

x

y

z

x

y

z

x

y44

2

4

6

8

z

x

y22
−2

1

z
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�x, y� �1, 1� �0.5, 0.5� �0.1, 0.1�

f �x, y� 1
2

1
2

1
2

�x, y� �0.01, 0.01� �0.001, 0.001�

f �x, y� 1
2

1
2

�x, y� �1, 0� �0.5, 0� �0.1, 0� �0.01, 0� �0.001, 0�

f �x, y� 0 0 0 0 0

�x, y� ��0.0001, 0.01� ��0.000001, 0.001�

f �x, y� 1
2

1
2

�x, y� ��1, 1� ��0.25, 0.5� ��0.01, 0.1�

f �x, y� 1
2

1
2

1
2

�x, y� �0.0001, 0.01� �0.000001, 0.001�

f �x, y� �
1
2 �

1
2

�x, y� �1, 1� �0.25, 0.5� �0.01, 0.1�

f �x, y� �
1
2 �

1
2 �

1
2

39.

Limit does not exist.
Continuous except at 

41.

Limit does not exist.
Continuous except at 

43. is continuous. is continuous except at has a removable
discontinuity at 

45. is continuous. is continuous except at 
has a removable discontinuity at 

47. 0 49. Limit does not exist.

51. Limit does not exist.

53. 0 55. 0 57. 1 59. 1 61. 0
63. Continuous except at 65. Continuous
67. Continuous 69. Continuous
71. Continuous for 73. (a) (b)
75. (a) (b) 77. (a) (b)

79. True 81. False: let 

83. (a) (b) Limit does not exist.
(c) No, the limit does not exist. Different paths result in different

limits.
85. 0 87. 89. Proof
91. See “Definition of the Limit of a Function of Two Variables,” on

page 899; show that the value of is not the

same for two different paths to 
93. (a) True. To find the first limit, you substitute for To

find the second limit, you first substitute 3 for to find a
function of Then you substitute 2 for 

(b) False. The convergence of one path does not imply the 
convergence of all paths.

(c) False. Let 

(d) True. When you multiply 0 by any real number, you always
get 0.

Section 13.3 (page 914)
1. 3.
5. No. Because you are finding the partial derivative with respect 

to you consider to be constant. So, the denominator is 
considered a constant and does not contain any variables.

7. Yes. Because you are finding the partial derivative with respect
to you consider to be constant. So, both the numerator and
denominator contain variables.

9. 11.

13. 15.

17. 19.

21. 23.

25.

27. 29.

31. 33.
�z��y 	 �sec2�2x � y��z��y 	 �x sin xy
�z��x 	 2 sec2�2x � y��z��x 	 �y sin xy
fy �x, y� 	 y��x2 � y 2hy �x, y� 	 �2ye��x2�y2�
fx �x, y� 	 x��x2 � y 2hx �x, y� 	 �2xe��x2�y2�

�z��y 	 ��x3 � 12y3���2xy2�
�z��x 	 �x3 � 3y3���x2y�

�z��y 	 2y��x2 � y 2��z��y 	 �1�y
�z��x 	 2x��x2 � y 2��z��x 	 1�x
�z��y 	 2x2e2y�z��y 	 xexy

�z��x 	 2xe2y�z��x 	 yexy

�z��y 	 �4x � 6y�z��y 	 x��2�y�
�z��x 	 2x � 4y�z��x 	 �y

fy�x, y� 	 3x2y2fy �x, y� 	 �5
fx�x, y� 	 2xy3fx �x, y� 	 2

yx,

xy,

fy�4, 1�  >  0fx�4, 1�  <  0

f �x, y� 	 4��x � 2�2 � �y � 3�2

�x � 2�2 � �y � 3�2�
2

.

x.x.
y

�x, y�.�2, 3�
�x0, y0�.

lim
�x, y�→�x0 , y0�

f �x, y�

��2

a � 0(1 � a2��a,

f �x, y� 	 �ln(x2 � y2�,
0,

  x � 0, y � 0
x 	 0, y 	 0

.

x � 23 � y�x�y21�y
�42xy � 2x�3

�0, 0, 0�

x

y

−2

−3

−3

3
3

z

2

x

y2

−2

2

2

z

x

y

z

�0, 0�.g
�0, 0�.gf

�0, 0�.
g�0, 0�.gf

�0, 0�

x 	 �y2: 1
2

x 	 y2: �
1
2

�0, 0�

y 	 x: 1
2

y 	 0: 0
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35.

37. 39.

41. 43.

45. 47.

49. 51.

53.

55. 57.

18
59.

61. 63.

65. 67.
69.

71. 73.

75. 77.

79.

81. 83.
85. 87.

89.

No values of and exist such that 
91.

No values of and exist such that 
93.
95.
97.
99.

101.
103.
105.
107. Yes, 109. 0
111. If then to find you consider constant and differ-

entiate with respect to Similarly, to find you consider 
constant and differentiate with respect to 

113.

115. The mixed partial derivatives are equal. See Theorem 13.3.

117. (a) 72 (b) 72

119.

increases at a rate of 10 points per year of mental age when
the mental age is 12 and the chronological age is 10.

decreases at a rate of 12 points per year of chronological age
when the mental age is 12 and the chronological age is 10.

121. An increase in either the charge for food and housing or the
tuition will cause a decrease in the number of applicants.

123.
125.

127. (a)
(b) As the consumption of flavored milk increases, the 

consumption of plain light and skim milks decreases. As
the consumption of plain reduced-fat milk decreases,
the consumption of plain light and skim milks also decreases.

129. False; Let 131. Truez 	 x � y � 1.

�y�
�z�

�x�
�z��y 	 1.03�z��x 	 �0.92;

�nRT��VP� 	 �nRT��nRT� 	 �1 �T��P 
 �P��V 
 �V��T 	

 V 	 nRT�P  ⇒  �V��T 	 nR�P
 P 	 nRT�V  ⇒  �P��V 	 �nRT�V 2

 T 	 PV��nR�  ⇒  ����P 	 V��nR�
�T��y 	 �9��m�T��x 	 �2.4��m,

IQ

IQC 	 �
100M

C2 , IQC�12, 10� 	 �12

IQ

IQM 	
100
C

, IQM�12, 10� 	 10

y

x

2

4

4
2

4

z

y.
xfy,x.

yfxz 	 f �x, y�,
f �x, y� 	 cos�3x � 2y�.

�z��t 	 �e�t cos x�c 	 c2��2z��x2�
�2z��t2 	 �c 2��x � ct�2 	 c 2��2z��x2�
�2z��t2 	 �c 2 sin�x � ct� 	 c 2��2z��x2�
�2z��x2 � �2z��y2 	 e x sin y � e x sin y 	 0
�2z��x2 � �2z��y2 	 0 � 0 	 0

	 fyyx �x, y, z� 	 z2e�x sin yz fxyy �x, y, z� 	 fyxy �x, y, z�
	 fyyx �x, y, z� 	 0 fxyy �x, y, z� 	 fyxy �x, y, z�

fx�x, y� 	 fy�x, y� 	 0.yx
 �2z��y�x 	  �2z��x�y 	 4xy��x2 � y 2�2

�2z��y2 	 2�y2 � x2���x2 � y2�2

�2z��x2 	 �x4 � 4x2 y 2 � y4��	x2�x2 � y2�2

�z��y 	 �2y��x2 � y 2�
�z��x 	 �y 2 � x2��	x�x2 � y 2�


fx�x, y� 	 fy�x, y� 	 0.yx
 �2z��y�x 	 �2z��x�y 	 sec y tan y
�2z��y2 	 x sec y�sec2 y � tan2 y�
�2z��x2 	 0
�z��y 	 x sec y tan y
�z��x 	 sec y

x 	 0, y 	 0x 	 1, y 	 1
x 	 �6, y 	 4x 	 2, y 	 �2

 
�2z

�y�x
	

�2z
�x�y

	 �xy cos xy � sin xy

 
�2z
�y2 	 �x2 cos xy

 
�2z
�x2 	 �y2 cos xy

 
�2z

�y�x
	

�2z
�x�y

	 ex sec2 y 
�2z

�y�x
	

�2z
�x�y

	
�xy

�x2 � y2�3�2

 
�2z
�y 2 	 2ex sec2 y tan y 

�2z
�y 2 	

x2

�x2 � y 2�3�2

 
�2z
�x2 	 e x tan y 

�2z
�x2 	

y 2

�x2 � y 2�3�2

 
�2z

�y�x
	

�2z
�x�y

	 �2 
�2z

�y�x
	

�2z
�x�y

	 6y

 
�2z
�y 2 	 6 

�2z
�y2 	 6x

 
�2z
�x2 	 2 

�2z
�x2 	 0

fx 	 0; fy 	 0; fz 	 1

fx 	 1; fy 	 1; fz 	 1fx 	 3; fy 	 1; fz 	 2

 Fz �x, y, z� 	
z

x2 � y 2 � z2

�w
�z

	
z

�x2 � y 2 � z2

 Fy �x, y, z� 	
y

x2 � y 2 � z2

�w
�y

	
y

�x2 � y 2 � z2

 Fx �x, y, z� 	
x

x2 � y 2 � z2

�w
�x

	
x

�x2 � y 2 � z2

Hz �x, y, z� 	 3 cos�x � 2y � 3z�
Hy �x, y, z� 	 2 cos�x � 2y � 3z�
Hx �x, y, z� 	 cos�x � 2y � 3z�
�

1
2

z

x

y

160

2

4
3 4

y = 3

yx

x = 2
10

8
8

z

gy �1, 1� 	 �2
gx �1, 1� 	 �2

�z��y 	
1
4�z��y 	

1
4

�z��x 	 �
1
4�z��x 	

1
4

�z��y 	
1
2�z��y 	 0

�z��x 	 �1�z��x 	 �1
fy �x, y� 	 1��2�x � y�fy �x, y� 	 2
fx �x, y� 	 1��2�x � y�fx �x, y� 	 3

fy �x, y� 	 y2 � 1�z��y 	 3 cosh�2x � 3y�
fx �x, y� 	 1 � x2�z��x 	 2 cosh�2x � 3y�

�z��y 	 ey �x cos xy � sin xy�
�z��x 	 yey cos xy
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�r �h dV �V �V � dV

0.1 0.1 8.3776 8.5462 0.1686

0.1 �0.1 5.0265 5.0255 �0.0010

0.001 0.002 0.1005 0.1006 0.0001

�0.0001 0.0002 �0.0034 �0.0034 0.0000

133. (a)

(b)
(c)
(d) or both are not continuous at 

135. (a)

(b) and do not exist when 

Section 13.4 (page 923)
1.
3.
5.
7.
9.

11. (a)
(b)

13. (a)
(b)

15. (a)

(b)
17. 0.44 19.
21. If and and are increments of and and 

and are independent variables, then the total differential of the
dependent variable is

23. The approximation of by is called a linear approximation,
where represents the change in height of a plane that is
tangent to the surface at the point 

25.

27.

29. (a)
(b)

31. 33.
35. (a)

(b)
37. 10% 39. microhenrys

41. Answers will vary. 43. Answers will vary.
Example: Example:

45–47. Proofs

Section 13.5 (page 931)
1. 3. 5. (a) and (b) 
7. (a) and (b) 9. (a) and (b) 

11. 13.

15. 17.

19. 21.

23. 25.

27. 29.

31. 33.

35. 37.

39. 41.

43. (a)

(b)

45. (a)

(b)

47. 47 49.

51.

53.

55. 57.

59. Proof 61. (a) Proof (b) Proof 63–65. Proofs

28m cm2�sec
dT
dt

	
1

mR�V
dp
dt

� p
dV
dt �

4608� in.3�min; 624� in.2�min

�z
�y

	 �
fy�x, y, z�
fz�x, y, z�

�z
�x

	 �
fx�x, y, z�
fz�x, y, z�

dy
dx

	 �
fx�x, y�
fy�x, y�

dw�dt 	 ��w��x 
 dx�dt� � ��w��y 
 dy�dt�

xfx�x, y� � yfy�x, y� 	
xex�y

y
�

xex�y

y
	 0

f �tx, ty� 	 etx�ty 	 ex�y 	 f �x, y�; n 	 0

xfx�x, y� � yfy�x, y� 	
xy

�x2 � y2
	 1f �x, y�

f �tx, ty� 	
�tx��ty�

��tx�2 � �ty�2
	 t� xy

�x2 � y2� 	 t f �x, y�; n 	 1

�w
�z

	 �
y cos yz � w

z
�w
�z

	
w � y
x � z

�w
�y

	
x sin xy � z cos yz

z
�w
�y

	 �
x � z
x � z

�w
�x

	
y sin xy

z
�w
�x

	 �
y � w
x � z

�z
�y

	 �e�xz�z
�y

	 �1 �
sec2�x � y�
sec2�y � z�

�z
�x

	 �
�zexz � y�

xexz

�z
�x

	
�sec2�x � y�
sec2�y � z�

�z
�y

	 �
z

y � z
�z
�y

	
�y
z

�z
�x

	 �
x

y � z
�z
�x

	
�x
z

�
x2 � y 2 � x
x2 � y2 � y

y � 2x � 1
2y � x � 1

�w
�t

	 ses2�t2�1 � 2t2��w
�t

	 2st�s2 � 2t2�

�w
�s

	 tes2�t2�2s2 � 1��w
�s

	 t2�3s2 � t2�

�w��� 	 1�w��� 	 �2r2��3

�w��r 	 0�w��r 	 2r��2

�w��t 	 �cos�5s � t�, 0�w��t 	 4t, 0
�w��s 	 5 cos�5s � t�, 0�w��s 	 4s, 4

4
�et � e�t�2; 1�11�29�29 � �2.04

3�2t 2 � 1�2e2t

�e�tet�sin t � cos t�26t

�2 	 2x �x � ��x�2�2 	 0
�1 	 y �x�1 	 �x

L � 8.096 � 10�4 ± 6.6 � 10�6

1.047 ft3
V 	 18 sin � ft3; � 	 ��2

dC 	 ±2.4418; dC�C 	 19%10%
dz 	 ±0.4875; dz�z � 8.1%
dz 	 �0.92 dx � 1.03 dy

�A � dA 	 dl dh

dAΔAAd

ll Δ

Ad

hΔ

h

dA 	 h dl � l dh
P�x0, y0�.

dz
dz�z

dz 	 ��z��x� dx � ��z��y� dy 	 fx�x, y� �x � fy�x, y� �y.
z

y
xy,x�y�xz 	 f �x, y�

�0.012
dz � 1.1084
�z � 1.1854
f �2, 1� 	 e2 � 7.3891, f �2.1, 1.05� 	 1.05e2.1 � 8.5745,
dz 	 �0.5
f �2, 1� 	 11, f �2.1, 1.05� 	 10.4875, �z 	 �0.5125
dz 	 0.05
f �2, 1� 	 1, f �2.1, 1.05� 	 1.05, �z 	 0.05

dw 	 2z3y cos x dx � 2z3 sin x dy � 6z2 y sin x dz
dz 	 �ex sin y� dx � �ex cos y� dy
dz 	 �cos y � y sin x� dx � �x sin y � cos x� dy
dz 	 2�x dx � y dy���x2 � y2�2

dz 	 4xy3 dx � 6x 2y 2 dy

y 	 �x.fy�x, y�fx�x, y�
fx�0, 0� 	 1, fy�0, 0� 	 1

�0, 0�.fxy   or  fyx  

fxy �0, 0� 	 �1,  fyx �0, 0� 	 1
fx �0, 0� 	 0,  fy �0, 0� 	 0

fy �x, y� 	
x�x4 � 4x2y2 � y4�

�x2 � y2�2

fx �x, y� 	
y�x4 � 4x2y2 � y4�

�x2 � y2�2
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Section 13.6 (page 942)

1. 1 3. 5. 7. 9. 11.

13. 15. 17. 6

19. 21. 23. 25.
27. 29. 31.
33. 35.

37. 39.

41.

43. (a) (b) (c) (d)
45.
47. (a) Answers will vary. Example:

(b) (c)
The direction opposite that of the gradient

49. (a)

(b)

(c) (f)
Directions in which there 
is no change in 

(d)
Directions of greatest rate 
of change in 

(e) 10; Magnitude of the 
greatest rate of change

Orthogonal to the level curve
51. 53.
55. (a) (b) (c)

(d)

57. (a) (b) (c)

(d)

59. The directional derivative of in the direction of
is 

if the limit exists.
61. See the definition on page 936. See the properties on page 937.
63. The gradient vector is normal to the level curves.
65.
67. 69.

71. (a)

(b) There is no change in heat in directions perpendicular to the
gradient:

(c) The greatest increase is in the direction of the gradient:

73. True 75. True 77.
79. (a) Proof (b) Proof

(c)

Section 13.7 (page 951)
1. The level surface can be written as which

is an equation of a plane in space.
3. The level surface can be written as which

is an elliptic cone that lies on the axis.z-
4x2 � 9y2 � 4z2 	 0,

3x � 5y � 3z 	 15,

x

y

−2
−1

2

2

z

3

f �x, y, z� 	 e x cos y �  12 z2 � C
�3i �

1
2 j.

±�i � 6j�.

6

500

yx 6

z

y2 	 10x

1800

1800

A

B

1994

1671

1
625�7i � 24 j�

Du f �x, y� 	 lim
t→0

 
f �x � t cos �, y � t sin �� � f �x, y�

t

u 	 cos � i � sin �j
z 	 f �x, y�

y

x
321−3 −2 −1

−3

−2

1

2

3

y 	
3
2 x �

1
2��13�13��3i � 2j�6 i � 4j

y

x
15105−15 −10 −5

−10

−5

y 	 16x � 22��257�257��16i � j�16 i � j
3i � j�2i � 3j

f

� � 0.64, � � 3.79
f

x

y

2

−2
−4 2 4 6−6

−4

−6

4

6

Generated by Mathematica

� � 2.21, � � 5.36

4

2
−4

−8

−12

8

12

ππ

Generated by Mathematica

θ

Du f

Du  f �4, �3� 	 8 cos � � 6 sin �

x

y

z

2
5 i �

1
10 j�

2
5 i �

1
10 j

�4i � j
�13�6

�11�10�60�
1
5

3
5�5�2�12

x

y

3

6

9

(3, 2, 1)

z

yz�yzi � 2xzj � 2xyk�; �33
x i � yj � zk
�x2 � y 2 � z2

, 1

e�x��yi � j�; �26tan yi � x sec2 yj, �17

2	�x � y�i � xj
; 2�22�5�53�2

6i � 10j � 8k4i � j3i � 10j�8��5
	�2 � �3��2
 cos�2x � y��2�x � y�

8
32�3�3�

7
25�e�1
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x y f �x, y� P1�x, y� P2�x, y�

0 0 1 1 1

0 0.1 0.9048 0.9000 0.9050

0.2 0.1 1.1052 1.1000 1.1050

0.2 0.5 0.7408 0.7000 0.7450

1 0.5 1.6487 1.5000 1.6250

5. 7.
9. 11.

13. 15.
17. 19.
21. 23.
25. 27.
29. 31.

33. 35.

37.

39.

41. (a) (b) not orthogonal

43. (a) (b) not orthogonal

45. (a) (b) 0, orthogonal

47. 49. 51. 53.
55. 57. Proof 59. (a) Proof (b) Proof
61. or 
63.

65. Answers will vary.
67. (a) Line:

Plane:
(b) Line:

Plane:
(c)

69. (a) (b)

71.

Plane:

73.

Plane:

Therefore, the plane passes through the origin.
75. (a)

(b)
(c) If 

This is the second-degree Taylor polynomial for 
If 
This is the second-degree Taylor polynomial for 

(d)

(e) 77. Proof

Section 13.8 (page 960)
1. Relative minimum: 3. Relative minimum:
5. Relative minimum:
7. Relative minimum:
9. Relative maximum:

11. Relative minimum:
13. Relative minimum:
15. Relative maximum: �0, 0, 4�

�0, 0, 0�
�3, �4, �5�
�5, �1, 2�
�1, 1, 11�
��1, 3, �4�

�0, 0, 1��1, 3, 0�

z

f

P1

P2

y

x

4

2

2

1

−2

−2

−4

−2

e x.
P2�x, 0� 	 1 � x �

1
2x2.y 	 0,

e�y.
x 	 0, P2�0, y� 	 1 � y �

1
2 y2.

P2�x, y� 	 1 � x � y �
1
2 x2 � xy �

1
2 y2

P1�x, y� 	 1 � x � y

a2x0 x � b2y0 y � z0z 	 0
2a2x0�x � x0� � 2b2 y0�y � y0� � 2z0�z � z0� 	 0

Fz�x, y, z� 	 �2z
 Fy�x, y, z� 	 2b2y
 Fx�x, y, z� 	 2a2x
F�x, y, z� 	 a2x2 � b2y2 � z2

x0 x

a2 �
y0 y

b2 �
z0 z

c2 	 1

2x0

a2 �x � x0� �
2y0

b2 �y � y0� �
2z0

c2 �z � z0� 	 0

Fz�x, y, z� 	 2z�c2

 Fy�x, y, z� 	 2y�b2

 Fx�x, y, z� 	 2x�a2

F�x, y, z� 	
x2

a2 �
y2

b2 �
z2

c2 � 1

 � � 48.2�

 z 	 4
 y 	 2 � 2t

x
y

6
8

8

(1, 2, 4)

z x 	 1 � t

x

y

1

2 2
3

−2

−1

z

x
y

−1

32

1

z

6y � 25z � 32 	 0
x 	 �1, y 	 2 �

6
25t, z 	 �

4
5 � t

z 	 1
x 	 1, y 	 1, z 	 1 � t

 � Fz�x0, y0, z0��z � z0� 	 0

 Fx�x0, y0, z0��x � x0� � Fy�x0, y0, z0��y � y0�
�2, �1, 1���2, 1, �1�

�0, 0, 0�
�2, 2, �4��0, 3, 12�77.4�86.0�

x � 3
1

	
y � 1

5
	

z � 2
�4

16
25

,
x � 3

4
	

y � 3
4

	
z � 4
�3

1
2

,
x � 1

1
	

y � 1
�1

	
z � 1

1

�x � 1�
1

	
�y � 1�

�1
	

z � ���4�
2

x � y � 2z 	 ��2

x � 1
10

	
y � 2

5
	

z � 5
2

10x � 5y � 2z 	 30

x � 3
6

	
y � 2
�4

	
z � 5
�1

x � 1
2

	
y � 2

4
	

z � 4
1

6x � 4y � z 	 52x � 4y � z 	 14
x � 3 	 y � 3 	 z � 3
x � y � z 	 96x � 3y � 2z 	 11

x � 4y � 2z 	 183x � 4y � 25z 	 25�1 � ln 5�
2x � 3y � 3z 	 62x � 2y � z 	 2
3x � 4y � 5z 	 04x � 2y � z 	 2

��113�113� ��i � 6�3j � 2k���3�3� �i � j � k�

1
13�4i � 3j � 12k���145�145��12i � k�

��6�6��i � j � 2k�1
13�3i � 4j � 12k�
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17. 19.

Relative maximum: Relative minimum:
Relative minimum: Relative maxima:

Saddle points:
21. Relative maximum:
23. Saddle point: 25. Saddle point:
27. There are no critical numbers.
29. is never negative. Minimum: when 

31. Insufficient information 33. Saddle point
35.
37. (a) (b) Saddle point: (c)

(d)

39. (a) (b) Absolute minima:
(c) (d)

41. (a) (b) Absolute minimum: (c)
(d)

43. Relative minimum:
45. Absolute maximum:

Absolute minimum:
47. Absolute maximum:

Absolute minimum:
49. Absolute maxima:

Absolute minimum:
51. Absolute maxima:

Absolute minima:
53. Absolute maximum:

Absolute minimum:
55. Point A is a saddle point.
57. Answers will vary. 59. Answers will vary. 

Sample answer: Sample answer:

No extrema Saddle point
61. False. Let at the point 
63. False. Let (see Example 4 on page 958).

Section 13.9 (page 966)
1. 3. 5. 7. 10, 10, 10
9. $26.73

11. Let 

So, and Thus,
13. Let and be the length, width, and height, respectively, and

let be the given volume. Then and The
surface area is

So,
15. 17. Proof
19. km

21. (a)

The surface has a minimum.

x
y

46
8

24

20

4

2
2 4 6 8

S

��x � 4�2 � � y � 2�2

 S 	 �x2 � y 2 � ��x � 2�2 � � y � 2�2 �

y 	 �3�2 � 2�3��6 � 1.284 km
x 	 �2�2 � 0.707
x1 	 3; x2 	 6

x 	 3�V0, y 	 3�V0, and z 	 3�V0.

Sx 	 2�y � V0�x2� 	 0 � x2y � V0 	 0
Sy 	 2�x � V0�y2� 	 0   xy2 � V0 	 0

S 	 2xy � 2yz � 2xz 	 2�xy � V0�x � V0�y�.

z 	 V0�xy.V0 	 xyzV0

zy,x,
a 	 b 	 c 	 k�3.b 	 k�3.a 	 b

Va 	
4
3��kb � 2ab � b2�

Vb 	
4
3��ka � a2 � 2ab�

	 0

	 0� kb � 2ab � b2

   kb � a2 � 2ab

	 0

	 0

V 	 4�abc�3 	
4
3�ab�k � a � b� 	

4
3��kab � a2b � ab2�

a � b � c 	 k.
9 ft � 9 ft � 8.25 ft;

x 	 y 	 z 	 3�7�3

f �x, y� 	 x2y2

�0, 0, 1�.f �x, y� 	 1 � �x� � �y�

x
y

6

7

−3

36

z

x

y

2

30

45

60

75

2

z

�0, 0, 0�
�1, 1, 1�

�x, �x, 0�, �x� � 1
��2, �1, 9�, �2, 1, 9�

�0, 1, �2�
�±2, 4, 28�

�1, 2, 5�
�0, 1, 10�
�4, 2, �11�
�4, 0, 21�

�0, 3, �1�

4
2

6

x

y

2 4 6

z

6

Absolute
minimum (0, 0, 0)

�0, 0��0, 0, 0��0, 0�

4
2

6

x

y

−4

−2

4

z

6

Absolute
minimum
(1, a, 0)

Absolute
minimum
(b, −4, 0)

�1, a�, �b, �4�
�1, a, 0�, �b, �4, 0��1, a�, �b, �4�

x

y

−2

−2

−2

2

2
1

z

2

Saddle point
(0, 0, 0)

�0, 0��0, 0, 0��0, 0�
�4  <  fxy �3, 7�  <  4

z

yx

3
3

40

60

x 	 y � 0.z 	 0z

�1, �1, �1��0, 0, 0�
�40, 40, 3200�

�±1, 0, 1�
�0, ±1, 4��1, 0, �2�

�0, 0, 0���1, 0, 2�

−4

44

−4

5

6

yx

z

x

y

5

−4

−4

4

4

z
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(b)

(c)

(d)
(e)
(f) gives the direction of greatest rate of decrease of

Use when finding a maximum.
23. Write the equation to be maximized or minimized as a function

of two variables. Take the partial derivatives and set them equal
to zero or undefined to obtain the critical points. Use the Second
Partials Test to test for relative extrema using the critical points.
Check the boundary points.

25. (a) (b) 27. (a) (b) 2

29. 31.

33. (a)
(b) (c) 1.6

35.
41.4 bushels per acre

37.

39. 41.

43. (a)

(b)

45. (a) (b)
(c) (d) Proof

47. Proof

Section 13.10 (page 976)
1. 3.

5. 7.
9. 11. 13.

15. Maxima:

Minima:

17. 19. 21. 23.
25. 0.188 27. 29.
31. Optimization problems that have restrictions or constraints on

the values that can be used to produce the optimal solutions are
called constrained optimization problems.

33. 35.
37. $26.73 39.
41. Proof 43.
45. ft

47. and 49. Proof

51.
53.

55. (a)
(b)

Maximum values occur when � 	 �.

α β3

3

2

3

γ

g���3, ��3, ��3� 	
1
8

 Cost � $55,095.60
 y � 688.7
 x � 191.3

P�15,625�18, 3125� � 226,869

h 	 2 3� v0

2�
r 	 3� v0

2�

3�360 � 3�360 �
4
3 3�360

2�3a�3 � 2�3b�3 � 2�3c�3
a 	 b 	 c 	 k�39 ft � 9 ft � 8.25 ft;

x 	 y 	 z 	 3�3

��4, 0, 4��3

�11�23�2�2�2f �8, 16, 8� 	 1024

f ��2�2, ��2�2� 	 �
1
2

f ���2�2, �2�2� 	 �
1
2

f ���2�2, ��2�2� 	
5
2

f ��2�2, �2�2� 	
5
2

f �1
3, 13, 13� 	

1
3f �3, 3, 3� 	 27f �1, 1� 	 2

f �25, 50� 	 2600f �1, 2� 	 5
f �2, 2� 	 8f �5, 5� 	 25

x

4

4−4

−4

Constraint

y

Level curves
2

2

4

4

6

6

8

8

10

10

12

12

x
Constraint

Level curves

y

−2 24

−2,000

14,000

P 	 10,957.7e�0.1499hln P 	 �0.1499h � 9.3018

−1 14

−20

120

y 	 �0.22x2 � 9.66x � 1.79

−5

−2

7
(0, 0)

(2, 2)

(3, 6)

(4, 12)

14

−2

6−9
( 2, 0)−

( 1, 0)−

(0, 1)

(1, 2)

(2, 5)

8

y 	 x2 � xy 	
3
7 x2 �

6
5 x �

26
35

a�
n

i	1
 xi

2 � b�
n

i	1
 xi � cn 	 �

n

i	1
 yi

a�
n

i	1
 xi

3 � b�
n

i	1
 xi

2 � c�
n

i	1
 xi 	 �

n

i	1
 xi yi

a�
n

i	1
 xi

4 � b�
n

i	1
 xi

3 � c�
n

i	1
 xi

2 	 �
n

i	1
 xi

2 yi

y 	 14x � 19

0
50

250

80

y 	 1.6x � 84

−4 18

−6

(0, 6)

(4, 3)

(5, 0)

(8, 4)− (10, 5)−

y = −      x +175
148

945
148

8

−2 10

−1

7

(0, 0)
(1, 1)

(4, 2)

(3, 4)

(5, 5)

y x= +37 7
43 43

y 	 �
175
148 x �

945
148y 	

37
43 x �

7
43

y 	 �2x � 41
6y 	

3
4 x �

4
3

�S�x, y�S.
��S�x, y�

S 	 7.266�x4, y4� � �0.06, 0.45�;
�x2, y2� � �0.05, 0.90�t 	 1.344;

� � 186.0�

�
1
�2

 i � � 1
�2

�
2

�10�j

y � 2
��x � 4�2 � � y � 2�2

 Sy 	
y

�x2 � y 2
�

y � 2
��x � 2�2 � � y � 2�2

�

x � 4
��x � 4�2 � � y � 2�2

 Sx 	
x

�x2 � y2
�

x � 2
��x � 2�2 � � y � 2�2

�
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Review Exercises for Chapter 13 (page 978)
1.

3. (a)

(b) is a vertical translation of two units upward.
(c) is a horizontal translation of two units to the right.
(d)

5. 7.

9.

11. Limit: 13. Limit: 0
Continuous except at  Continuous 

15. 17.

19.

21. 23.

25. Answers will vary. Example:

27.

29.

31.

33.

35.
37. 0.6538 cm, 5.03% 39.
41.
43.

45.

47. 49. 51. 53.

55. (a) (b) (c)

(d)

57. Tangent plane:
Normal line:

59. Tangent plane:
Normal line:

61. 63.

65. Relative minimum: 67. Relative minimum:

69. The level curves are hyperbolas. The critical point may be
a saddle point or an extremum.

�0, 0�

22

6x
y

−2

−2

2

4

6

z

−4,    , −2(  )4
3

x

y

−24

−20

3 4
4

20

(1, 1, 3)

z��4, 43, �2�
�1, 1, 3�

� � 36.7��x � 2��1 	 �y � 2��1 	 �z � 5����4�
x 	 2, y 	 �3, z 	 4 � t

z 	 4
z 	 4 � ty 	 1 � 4t,x 	 2 � 4t,

4x � 4y � z 	 8

y

x
64−6 −4

−6

−4

−2

4

2

6

Tangent line

Unit normal
vector

y 	
27
8

x �
65
8

27
�793

i �
8

�793
j54i � 16j

��
1
2, 0�, 12�4, 4�, 4�22

3�50
�z��y 	 ��x � 2y � z���y � 2z�
�z��x 	 ��2x � y���y � 2z�
�w��t 	 �4r 2t � rt 2 � 4r 3���2r � t�2

�w��r 	 �4r 2t � 4rt2 � t 3���2r � t�2

dw�dt 	 �8t � 1���4t2 � t � 4�
±� in.3

�xy cos xy � sin xy� dx � �x2 cos xy� dy

�2z
�x2 �

�2z
�y2 	

6x2y � 2y3

�x2 � y2�3 �
�6x2y � 2y3

�x2 � y2�3 	 0

�2z��x2 � �2z��y2 	 2 � ��2� 	 0
hxy �x, y� 	 hyx �x, y� 	 cos y � sin x
hyy�x, y� 	 �x sin y
hxx �x, y� 	 �y cos x
fxy �x, y� 	 fyx �x, y� 	 �1
fyy �x, y� 	 12y
fxx �x, y� 	 6

x

y

3

3

−1

3

z

fz �x, y, z� 	 arctan y�x
ut �x, t� 	 �cn2e�n2t sin nxfy �x, y, z� 	 xz��x2 � y 2�
ux �x, t� 	 cne�n2t cos nxfx �x, y, z� 	 �yz��x2 � y 2�

gy �x, y� 	 	x�x 2 � y 2�
��x2 � y 2�2

gx �x, y� 	 	y� y 2 � x2�
��x2 � y 2�2

�z��y 	 �e�yfy �x, y� 	 �ex sin y
�z��x 	 �e�xfx �x, y� 	 ex cos y

�0, 0�

1
2

x

y3 3

3

−3

−3

−3

z

x

y

Generated by Mathematica

1

4

4

c = 12

c = −12 c = −2
c = 2

−4 1−1

−4

x

y

Generated by Mathematica

2−2

c = 10

c = 1

−2

2

x

y
2

2

4

5

z

z = f (x, 1)

x

y22

4

5

z

z = f (1, y)

fg
fg

x

y
22 1

−2

4

5

z

x
y3

2

2

−2

−2

z
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71. 73.
75. (a) (b) 50.6 kg
77. Maximum:
79.

P.S. Problem Solving (page 981)
1. (a) 12 square units (b) Proof (c) Proof
3. (a)

(b)
Then the tangent plane is

Intercepts:

5. (a) (b)

Maximum value: Maximum and minimum
value: 0
The method of Lagrange 
multipliers does not work 
because 

7.

9. (a)

(b)

11. (a)

(b)

(c)

(d)
No; The rate of change of is
greatest when the projectile is
closest to the camera.

(e) is maximum when second.
No; the projectile is at its maximum height when

seconds.

13. (a) (b)

Minimum: Minima:
Maxima: Maxima:
Saddle points: Saddle point:

(c)
Minimum: Minima:
Maxima: Maxima:
Saddle points: Saddle point:

15. (a)

(b)

(c) Height
(d)

17–19. Proofs

Chapter 14
Section 14.1 (page 990)

1. 3. 5.
7. 9. 11. 3

13. 15. 17. 2 19. 21. 1629 23. 25. 4
27. 29. 31. 33. Diverges 35. 24
37. 39. 41. 5 43. 45.
47. 49.

51. 53.

�1

0
��y

��y
 f �x, y� dx dy�ln 10

0
 �10

ex
 f �x, y� dy dx

x
− 2 − 1 1 2

2

3

4

y

1

2

4

6

8

2 3

y

x

�2

0
��4�y2

��4�y2
  f �x, y� dx dy�4

0
�4

x

 f �x, y� dy dx

−2 −1 1 2

−1

3

1

y

x

1 2 3 4

1

2

3

x

y

9
2�ab8

3
16
3

1
2� 2�32 �

1
8��2

2
3

1
3

1
2

8
3

x2(1 � e�x2
� x2e�x2��y�2� ��ln y�2 � y2�

�4x2 � x 4��2y ln�2y�2x2

dl � 0, dh � 0.01: dA � 0.06
dl � 0.01, dh � 0: dA � 0.01

1 cm

6 cm

1 cm

6 cm

�±1, 0, �e�1�
�0, 0, 0�

�0, ±1, �e�1��0, ±1, �e�1�
�±1, 0, �e�1��0, 0, 0�

�  <  0�  >  0
�0, 0, 0��±1, 0, e�1�

�0, ±1, 2e�1��0, ±1, 2e�1�
�±1, 0, �e�1��0, 0, 0�

x

y1
2

−1

1

z

x

y

1

2
2

z

t � �2 	 1.41

t � 0.98�

�

0 4

−5

30

d�

dt
�

�16�8�2 t 2 � 25t � 25�2 �
64t4 � 256�2 t3 � 1024t2 � 800�2 t � 625

� arctan
32�2 t � 16t2

32�2 t � 50 � � � arctan
 y
x � 50�

y � 32�2t � 16t 2

x � 32�2t
 � tf �x, y�
 � tCx ay1�a

 � Ctx ay1�a

C�tx�a�ty�1�af �tx, ty� �

 � f �x, y�
 � Cxay1�a

 � Cxay1�a�a � �1 � a��
 � axaCy1�a � �1 � a�xaC�y1�a�

xCy1�aax a�1 � yCx a�1 � a�y1�a�1x
�f
�x

� y
�f
�y

�

2 3�150 	 2 3�150 	 5 3�150�3

g�x0, y0� � 0.

2�2

y

x
32 41−1−2

−3

−2

−4

−1

1

2

k = 2k = 1k = 0

k = 3

g(x, y)

y

x
3 41−1

−3

−4

−1

1

k = 2k = 1k = 0

k = 3

g(x, y)

V �
1
3 bh �

9
2

�3x0, 0, 0�, �0, 3y0, 0�, 
0, 0, 
3

x0 y0
�

y0
 1
x0 y0

��x �x0� � x0
 1
x0 y0

�� y � y0� � x0 y0
z �
1

x0 y0
�� 0.

z0 � 1�x0 y0⇒ x0 y0z0 � 1
y0z0�x � x0� � x0z0�y � y0� � x0 y0�z � z0� � 0

z � �60 � 3�2 � 2�3��6 	 8.716 km
y � �3�3 	 0.577 km;x � �2�2 	 0.707 km;

f �1
3, 13, 13� �

1
3

y � 0.004x2 � 0.07x � 19.4
f �49.4, 253� � 13,201.8x1 � 94, x2 � 157
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55.

57.

59.

61.

63.

65. The first integral arises using vertical representative rectangles.
The second two integrals arise using horizontal representative
rectangles.
Value of the integrals:

67.

69.

71.

73. 75.
77. (a)

(b) (c)

79. 20.5648 81.
83. An iterated integral is an integral of a function of several 

variables. Integrate with respect to one variable while holding
the other variables constant.

85. If all four limits of integration are constant, the region of integra-
tion is rectangular.

87. True

Section 14.2 (page 1000)
1. 24 (approximation is exact)
3. Approximation: 52; Exact: 5. 400; 272
7. 9.

8 36

642

6

4

2

x

(3, 6)

y

31 2

3

1

2

x

y

160
3

15��2

67,520�693�8

0
� 3�x

x2�32
 �x2y � xy2� dy dx

x
2 4 6 8

−2

2

4

(8, 2)x y= 3

x y= 4    2

y

�ln 5�21664
105

�1

0
�1

y

sin x2 dx dy �
1
2

�1 � cos 1� 	 0.230

1

1

x

y

�1

0
�2

2x

4ey2
 dy dx � e4 � 1 	 53.598

321

3

2

1

x

y

�2

0
�2

x

x�1 � y3 dy dx �
26
9

321

3

2

1

x

y

15,625��24

�1

0
� 3�y

y2
 dx dy � �1

0
��x

x3
 dy dx �

5
12

2

2

1

1

3

x

(1, 1)

y
x =     y

x = y2

�2

0
�1

x�2
 dy dx � �1

0
�2y

0
 dx dy � 1

21

2

1

x

y

�2

0
 �x

0
 dy dx � �4

2
 �4�x

0
 dy dx � �2

0
 �4�y

y

 dx dy � 4

x

2

3

1 2 3 4

1

−1

y

�1

0
��1�y2

��1�y2
 dx dy � �1

�1
��1�x2

0
 dy dx �

�

2

x

1

1− 1

y

�1

0
�2

0
 dy dx � �2

0
�1

0
 dx dy � 2

31 2

3

2

1

x

y
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11. 13.

0

15.

17.

19.

21. 4 23. 4 25. 12 27. 29. 1 31.

33. 35.

37.

39.

41.

43.

45.

47. 49. 1.2315 51. Proof
53.

55.

57.

59. 2 61. 63. 65. 25,645.24
67. See “Definition of Double Integral” on page 994. The double

integral of a function over the region of integration
yields the volume of that region.

69. (a) The total snowfall in county 
(b) The average snowfall in county 

71. No; is the greatest possible value. 73. Proof; 
75. Proof; 77. 79. (a) 1.784 (b) 1.788
81. (a) 11.057 (b) 11.041 83. d

85. False. 

87. 89. 91. About 0.82736
93. Putnam Problem A2, 1989

Section 14.3 (page 1009)
1. Rectangular 3. Polar
5. The region is a half-circle of radius 8. It can be described in

polar coordinates as

7. The region is a cardioid with It can be described
in polar coordinates as 

9. 11. 0

13. 15.

17. 19. 21. 23. 25.

27. ���4

0
�2�2

0
 r2 dr d� �

4�2�

3

���2� sin 12
3243��104�a3�3

21
0

2
π

321
0

2
π

9
8 � 3� 2�325�5��6

4

 

0

2
π

21
0

2
π

��4
R � ��r, ��: 0 � r � 3 � 3 sin �, 0 � � � 2�
.

a � b � 3.R
R � ��r, ��: 0 � r � 8, 0 � � � �
.

R

x2 � y2 � 9R:1
2�1 � e�

V � 8�1

0
��1�y2

0
 �1 � x2 � y2 dx dy.

2500 m37
27

1
56�

R
R

f �x, y� 
 0

�e � 1�28
3

�1

0
�arccos y

0
sin x�1 � sin2 x dx dy �

1
3

�2�2 � 1�

x

2

1

2

y x= cos

π π

y

�2

�2
��4�x2

��4�x2
 �4 � y2 dy dx �

64
3

y

x
31−3 −1

−3

−1

1

3 x2 + y2 = 4

�1

0
�1�2

y�2
e�x2

 dx dy � 1 � e�1�4 	 0.221

x
1

1

1
2

1
2

y x= 2

y

81��2

�2

0
��2�2�y�1�2

��2�2�y�1�2
 �4y � x2 � 2y2� dx dy

4�2

0
��4�x2

0
 �x2 � y2� dy dx

2�2

0
��1��x�1�2

0
 �2x � x2 � y2� dy dx

�2

0
��4�x2

0
 �x � y� dy dx �

16
3

2�1

0
�x

0
 �1 � x2 dy dx �

2
3

�2

0
�4

0
 x2 dy dx �

32
3�1

0
�x

0
 xy dy dx �

1
8

32�2��33
8

�4

0
�3x�4

0
 x dy dx � �5

4
��25�x2

0
 x dy dx � 25

�3

0
��25�y2

4y�3
 x dx dy � 25

�4

3
 ��4�y

4�y

 �2y dx dy � �
6
5

�1

0
 �4�x2

4�x

 �2y dy dx � �
6
5

�2

1
�y

1
 

y
x2 � y2 dx dy � �4

2
�2

y�2
 

y
x2 � y2 dx dy �

1
2

 ln 
5
2

�2

1
�2x

x

 
y

x2 � y2 dy dx �
1
2

 ln 
5
2

�5

0
�3

0
 xy dx dy �

225
4

�3

0
�5

0
 xy dy dx �

225
4

a

xa−a

−a

y
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29.

31. 33. 35.

37. 39. 41. 1.2858
43. 45. 47.
49. 51.

53.

55. Let be a region bounded by the graphs of and
and the lines and When using polar

coordinates to evaluate a double integral over can be
partitioned into small polar sectors.

57. regions have fixed bounds for and variable bounds 
for 

regions have variable bounds for and fixed bounds 
for 

59. (a)

(b)

(c) Choose the integral in part (b) because the limits of integration
are less complicated.

61. Insert a factor of Sector of a circle 63. 56.051 65. c
67. False. Let and let be a sector where 

and 
69. (a) (b) 71. 486,788

73. (a)

(b)

(c)

75.

Section 14.4 (page 1018)

1. 3.

5. (a) (b)
(c)

7. (a) (b)
(c)

9. (a) (b)

(c)

11. 13.

15. (a) 

(b)

17. 19.

21.

23.

25.
27. 29. 31.

33. 35.

37. 39.

41.

43.

45.

47. See definitions on page 1014. 49. Answers will vary.
51. 53. 55. Proof

Section 14.5 (page 1025)
1. 24 3. 5.
7. 9. 11.

13. 15. 17.

19.

21.

23. 25. e�1

0
�1

0
 �1 � 4x2 � 4y2 dy dx 	 1.8616

�
�

6
�37�37 � 1� 	 117.3187

�3

�3
��9�x2

��9�x2
 �1 � 4x2 � 4y2 dy dx

�1

0
�x

0
 �5 � 4x2 dy dx �

27 � 5�5
12

	 1.3183

20�48�142�a�a � �a2 � b2 �
�2��2 � 14

27�31�31 � 8�
1
2�4�17 � ln�4 � �17��12�

L�2L�3

�a

0
��a2�x2

0
 k�a � y��y � a�2 dy dx � ka5
7�

16
�

17
15�

�4

0
��x

0
 kx�x � 6�2 dy dx �

42,752k
315

2k�b

�b
��b2�x2

0
 �x � a�2 dy dx �

k�b2

4
�b2 � 4a2�

 y � �70�14 y � �6�2
 x � �30�9 x � 4�15�5
 I0 � 55k�504 I0 � 592k�5
 Iy � k�18 Iy � 512k�5
 Ix � 3k�56 Ix � 16k
 y � 2�6�3 y � �2b�2
 x � 2�3�3 x � �3a�3
 I0 � 16k I0 � �3kab4 � 2ka3b2��12
 Iy � 16k�3 Iy � kb2a3�6
 Ix � 32k�3 Ix � kab4�4

y � a�2y � a�2y � �3h�3
x � a�2x � a�2x � �3b�3

m � k��3, �81�3��40��, 0�

m �
k
8

�1 � 5e�4�, 
e4 � 13
e4 � 5

, 
8

27�
e6 � 7

e6 � 5e2��
m �

k�a2

8
, 
4�2a

3�
, 

4a�2 � �2 �
3� �

m �
2kL
�

, 
L
2

, 
�

8�m � 256k�15, �0, 16�7�

m �
k
4

�e2 � 1�, 
 e2 � 1
2�e2 � 1�, 

4�e3 � 1�
9�e2 � 1��

m � k�e � 1�, 
 1
e � 1

, 
e � 1

4 �
m � 30k, �14�5, 4�5�m � k�4, �2�3, 8�15�


2�a2 � 15a � 75�
3�a � 10� , 

a
2�


a
2

� 5, 
2a
3 �
a

2
� 5, 

a
2�

m � ka3�6, �a�2, 3a�4�
m � ka3�3, �3a�8, 3a�4�m � ka2�2, �a�3, 2a�3�

m � ka3�2, �2a�3, a�2�
m � ka3�2, �a�2, 2a�3�m � ka2, �a�2, a�2�

m �
1
8m � 4

A �
��r2

2

2
�

��r 2
1

2
� ��
r1 � r2

2 ��r2 � r1� � r �r ��

���3

��4
 �4 csc �

2 csc �
 f r dr d�

�2

2��3
��3x

2
 f dy dx � �4��3

2
��3x

x

 f dy dx � �4

4��3
�4

x

 f dy dx

�4

2
�y

y��3
  f dx dy

�2�2�

0 � � � �.
0 � r � 6Rf �r, �� � r � 1

r;

�2�

0
�3

0
 f �r cos �, r sin �� r dr d�

�3

�3
��9�x2

��9�x2
  f �x, y� dy dx

r.
��-simple

r.
�r-simple

RR,
� � b.� � ar � g2���

r � g1���R

4�

3
� 2�3

r = 4 sin 3θ

r = 2

1 3 4
0

2
π

�
�

3
�

�3
2

1

r = 3 cos θ

r = 1 + cos θ

0

2
π

3

r = 2 cos θ

r = 1

0

2
π

�3��29�

2�4 � 2 3�264
9 �3� � 4�

250�

3
1
8���4

0
�2

1
 r� dr d� �

3� 2

64

���2

0
�2

0
 r2�cos � � sin �� dr d� �

16
3
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27. 2.0035 29.

31.

33.

35. If and its first partial derivatives are continuous on the closed
region in the plane, then the area of the surface given by

over is

37. No. The size and shape of the graph stay the same, just the 
position is changed. So, the surface area does not increase.

39. 16 41. (a) (b)

Section 14.6 (page 1035)

1. 18 3. 5. 7. 9.

11. 2.44167 13.

15.

17.

19. 21. 23. 25. 10
27.

29.

31.

33.

35.

37.

39. 41.

43.

45. will be greater than 2, and and will be unchanged.
47. and will be unchanged, and will be greater than 0.
49. 51. 53.
55. (a) (b)

57. (a) (b)

59. Proof 61.

63. (a)

(b) by symmetry.

(c)

65. See “Definition of Triple Integral” on page 1027 and Theorem
14.4, “Evaluation by Iterated Integrals,” on page 1028.

Iz � �2

�2
 ��4�x2

��4�x2
 �4�x2�y2

0
 kz�x2 � y2� dz dy dx

z �
1
m

 �2

�2
 ��4�x2

��4�x2
 �4�x2�y2

0
 kz2 dz dy dx

x � y � 0,

m � �2

�2
 ��4�x2

��4�x2
 �4�x2�y2

0
 kz dz dy dx

�1

�1
 �1

�1
 �1�x

0
 �x2 � y2��x2 � y2 � z2 dz dy dx

Iz � 2048k�3Iz � 256k
Iy � 1024k�3Iy � 512k�3
Ix � 2048k�3Ix � 256k
Iz � ka8�8Iz � 2ka5�3
Iy � ka8�8Iy � 2ka5�3
Ix � ka8�8Ix � 2ka5�3
�5, 6, 54��0, 0, 32��0, 0, 3h�4�

yzx
zyx

 Mxy � k�b

0
�b

0
�b

0
 xyz dz dy dx

 Mxz � k�b

0
�b

0
�b

0
 xy2 dz dy dx

 Myz � k�b

0
�b

0
�b

0
 x2y dz dy dx

 m � k�b

0
�b

0
�b

0
 xy dz dy dx

z � 1x �
3
2

m � 128k�3m � 8k

�1

0
��1�x

0
�1�y

0
 dz dy dx

�1

0
 �1��1�x

0
 ��1�x

0
 1 dy dz dx,�1

0
 �1

1��1�x

 �1�z

0
 1 dy dz dx �

�1

0
 �1

2z�z2
 ��1�x

0
 1 dy dx dz,�1

0
 �2z�z2

0
 �1�z

0
 1 dy dx dz �

�1

0
�1�y

0
�1�y2

0
 dx dz dy,�1

0
�1�z

0
�1�y2

0
 dx dy dz,

�3

�3
 �4

0
 ��9�y2

��9�y2
 xyz dx dz dy�4

0
 �3

�3
 ��9�y2

��9�y2
 xyz dx dy dz,

�4

0
 �3

�3
 ��9�x2

��9�x2
 xyz dy dx dz,�3

�3
 �4

0
 ��9�x2

��9�x2
 xyz dy dz dx,

�3

�3
 ��9�y2

��9�y2
 �4

0
 xyz dz dx dy,�3

�3
 ��9�x2

��9�x2
 �4

0
 xyz dz dy dx,

�1

0
�3

0
�1

y

 xyz dx dz dy�3

0
�1

0
�1

y

 xyz dx dy dz,

�3

0
�1

0
�x

0
 xyz dy dx dz,�1

0
�3

0
�x

0
 xyz dy dz dx,

�1

0
�1

y
�3

0
 xyz dz dx dy,�1

0
�x

0
�3

0
 xyz dz dy dx,

�1

0
�x

0
��1�y2

0
 dz dy dx

x

y

1

1

1

z

�3

0
��12�4z��3

0
��12�4z�3x��6

0
 dy dx dz

x

y2 3

3

4

z

�1

0
�1

0
���z

�1
 dy dz dx

x 

y 

1 

1 

−1 

z 

256
154�a3�3256

15

V � �4

�4
��16�x2

��16�x2
��80�x2�y2

�x2�y2��2
dz dy dx

V � ��6

��6
��6�y2

��6�y2
�6�x2�y2

0
 dz dx dy

V � �5

0
�5�x

0
�5�x�y

0
 dz dy dx

324
5�

40
3

15
2 �1 � 1�e�1

10

100��609 cm2812��609 cm3

�
R
� �1 � � fx�x, y��2 � � fy�x, y��2 dA.

Rz � f �x, y�
Sxy-R

f

�4

0
�10

0
 �1 � e2xy�x2 � y2� dy dx

�2

�2
��4�x2

��4�x2
 �1 � e�2x dy dx

�1

�1
�1

�1
 �1 � 9�x2 � y�2 � 9�y2 � x�2 dy dx
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67. (a) Solid 
(b) Solid has the greater moment of inertia because it is more

dense.
(c) Solid will reach the bottom first. Because Solid has a

greater moment of inertia, it has a greater resistance to
rotational motion.

69. 71.
73.
75. 77. Putnam Problem B1, 1965

Section 14.7 (page 1043)
1. 27 3. 5. 7.
9. 11.

13. Cylindrical:

Spherical:

15. Cylindrical:

Spherical:

17. 19. 21.
23. 25. 27.

29.

31. Proof 33. 35.

37. 39. 41.
43. Rectangular to cylindrical:

Cylindrical to rectangular:

45.

47. (a) constant: right circular cylinder about axis
constant: plane parallel to axis
constant: plane parallel to plane

(b) constant: sphere
constant: plane parallel to axis
constant: cone

49. 51. Putnam Problem A1, 2006

Section 14.8 (page 1050)
1. 3. 5. 1 7.
9. 11.

13.

15. 17. 36 19. 21. 96
23. 25. 27. 29. One
31. (a)

(b) (c)
33. See “Definition of the Jacobian” on page 1045. 35.
37. 39. 41. Putnam Problem A2, 1994

Review Exercises for Chapter 14 (page 1052)
1.
3. 5.

36

7.

9.

11. ���1��1�4y2��2

��1��1�4y2��2
 dx dy �

4
3

4�1

0
�x�1�x2

0
 dy dx � 4�1�2

0

� 25��2 � 12 � 25 arcsin 35 	 67.36

� �5

4
 ��25�y2

��25�y2

 dx dy

� ��4

�5
 ��25�y2

��25�y2
 dx dy � �4

�4
 �3

��25�y2
 dx dy

�3

�5
 ��25�x2

��25�x2
 dy dx

�3

0
��3�x��3

0
 dy dx � �1

0
�3�3y

0
 dx dy �

3
2

29
6

4321

4

3

2

1

x

y

y x= 9 − 2

321

3

2

1

x

y

y = x + 1

x � x3 � x3 ln x2

��2 sin ��uv
u2v

�abab

u
1

S

1

v

x

a

R

b

y

2
5a5�2100

912�e4 � 1�
�e�1�2 � e�2� ln 8 	 0.97988

3

� �4�3

2�3
��1�2�x�2

�1�2�x
3xy dy dx � �8�3

4�3
�4�x

�1�2�x
3xy dy dx �

164
9

�
R
�3xy dA � �2�3

�2�3
��1�2�x�2

1�x

3xy dy dx

2

1

(1, 0)

(1, −1)

(3, 0)

(3, −1)
−1

−2

u

v

u
1

1
(0, 1)

(1, 0)

v

�e2u1 � 2v�
1
2

1
2 � 2a 4

�

z-�

�

xy-z
z-�

z-r

��2

�1

 �g2���

g1���
 �h2�r cos �, r sin ��

h1�r cos �, r sin ��
 f �r cos �, r sin �, z�r dz dr d�

z � z
y � r sin �
x � r cos �
z � z
tan � � y�x
r2 � x2 � y2

k��192�0, 0, 3r�8�k�a 4

16�29��2

 Iz � 4k���2

0
 �r0

0
 �h�r0�r��r0

0
 r3 dz dr d� � 3mr0

2�10

�0, 0, h�5��r0
2h�348k�

�2a3�9��3� � 4���16�2a3�9�(3� � 4�

���4

0
�2�

0
�2a cos �

a sec �
 �3 sin2 � cos � d� d� d� � 0

�2�

0
�a

0
�a��a2�r2

a
 r2 cos � dz dr d� � 0

� �2�

0
���2

arctan�1�2�
�cot � csc �

0
 �3 sin2 � cos� d� d� d� � 0

�2�

0
�arctan�1�2�

0
�4 sec �

0
 �3 sin2 � cos � d� d� d�

�2�

0
�2

0
�4

r2

 r2 cos � dz dr d� � 0

�1 � e�9���4

64�3��3

x

y
4

4

4

z

x

y

z

1
2

2

3

3

3

1

��e4 � 3���852
45

a � 2, 16
3

4�6��45 	 0.6843z2 � y2 � 2x2 � 1;Q:

3
2

13
3

BA

B
B
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13.

15. Both integrations are over the common region as shown in the
figure. Both integrals yield 

17. 19. 21. 23. 0.070 25. c
27. True 29. True 31.
33. 35.
37. (a) (b) 9

(c)

(b) 9 (c)
39. (a) (b)
41.

43. 45.

47. (a) 30,415.74 (b) 2081.53 49.
51. 53. 55.
57. 59. 61.

63. (a) (b) (c)

(d) (e) (f)
65. Volume of a torus formed by a circle of radius 3, centered at

and revolved about the axis
67. 69.

P.S. Problem Solving (page 1055)
1. 3. (a)–(g) Proofs 5.

7. 9.

11. If then 
13. Answers will vary.
15. The greater the angle between the given plane and the plane,

the greater the surface area. So,
17. The results are not the same. Fubini’s Theorem is not valid

because is not continuous on the region 

Chapter 15
Section 15.1 (page 1067)

1. d 2. c 3. e 4. b 5. a 6. f
7. 9.

11. 13.

15. 17.

19. 21.

23. 25.
27.
29.
31–33. Proofs 35. Conservative because 
37. Not conservative because 
39. Conservative:
41. Conservative: f �x, y� � x2 y � K

f �x, y� � xy � K
�N��x � �M��y.

�N��x � �M��y.
�xy��x � y� � y ln�x � y��i � �xy��x � y� � x ln�x � y�� j
2xye x 2i � e x 2j � k

6yz i � 6xz j � 6xyk�10x � 3y�i � �3x � 2y�j

2xi � 4yj

y

x

2

2

2

1

11

z

x

y

4

4

4

−4

−4

z

x
−2 −1 1 2

2

1

−1

−2

y�3

x
−2

−2

−1 1 2

2

y

y
x 4

4

2

z

�16x2 � y23�y�

5

−5

5

−5
x

y

1

−4

−4
x

y

�x2 � y2�2

0 � y � 1.
0 � x � 1,f

z2 < z1 < z4 < z3.
xy-

1 � ka2 or a � 1��k .a, k > 0,

	3

0
 	2x

0
 	6�x

x

 dy dz dx � 18

���4

x

y

(0, 0, 0)

(3, 3, 6)

(3, 3, 0)
(0, 6, 0)

2

4

5

6

6

3

z

1
38�2 � �2�

5 ln 5 � 3 ln 3 � 2 
 2.751�9
z-�0, 3, 0�

4�a5�15���30�h3�20a2 � 15ah � 3h2�a

�0, 0, 
3
8

a��0, 0, 
3�2a � h�2

4�3a � h� �
1
3

�h2�3a � h�

833k��3�3a�8, 3a�8, 3a�8��0, 0, 14�
32
3 ���2 �

2
3�8��15�abc�3��a2 � b2 � c2�

324��5ft2ft3

1
6

�37�37 � 1��101�101 � 1��
6

y � b��3

x � a��2

I0 � �2ka2b3 � 3ka 4b��12
Iy � ka 4b�4
Ix � ka2b3�6

m � 17k�30, � 936
1309, 784

663�m � k�4, �32
45, 64

55�
3�3� � 16�2 � 20� 
 20.392

3�3� � 16�2 � 20� 
 20.392

−4

−6 6

4

r � 3�cos 2	

�h3�39��2
�h3�6��ln��2 � 1� � �2�

k � 1,13.67
C40
3

3296
15

(2, 1)

y x= 1
2

y x= 8 − 2

1 2 3

−1

1

2

x

1
2

y

R

4
3 �

4
3�2.

R,

	5

2
	�x�1

x�3
 dy dx � 2	2

1
	�x�1

0
 dy dx � 	2

�1
	y�3

y2�1
 dx dy �

9
2
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43. Not conservative 45. Not conservative
47. Conservative: 49.
51. 53.
55.
57. Conservative:

59. Not conservative 61. Conservative:
63. 65. 67. 4 69. 0
71. See “Definition of Vector Field” on page 1058. Some physical

examples of vector fields include velocity fields, gravitational
fields, and electric force fields.

73. See “Definition of Curl of a Vector Field” on page 1064.
75. 77. 79. 81. 0
83–89. Proofs
91.

93.

95. True
97. False. Curl is meaningful only for vector fields, when 

direction is involved.

Section 15.2 (page 1079)

1.

3.

5. 7. 20 9.
11. (a) (b)
13. (a) (b)
15. (a) (b)

17. (a)

(b)

19. (a) (b)

21. 23. 2
25. 27. 1 29. 31.
33. About 249.49 35. 66 37. 0 39.
41. Positive 43. Zero
45. (a) Orientation is from left to right, so the value is positive.

(b) Orientation is from right to left, so the value is
negative.

47.

49.

51. 1010 53. 55. 25 57. 59. 61.
63. 65. 67.
69.
71. (a) (b)

(c)

73.
75. (a)

(b)

(c)

77. 1750 ft-lb
79. See “Definition of Line Integral” on page 1070 and Theorem 15.4,

“Evaluation of a Line Integral as a Definite Integral” on page 1071.
81. The greater the height of the surface over the curve

the greater the lateral surface area.

83. False:

85. False: the orientations are different. 87.

Section 15.3 (page 1090)

1. (a)

(b)

3. (a)

(b) 	3

0
 
 �t

2�t � 1
�

�t � 1

2�t � dt 
 �1.317

	��3

0
�sec 	 tan2 	 � sec3 	� d	 
 �1.317

	��2

0
�sin2 	 cos 	 � 2 sin4 	 cos 	� d	 �

11
15

	1

0
�t2 � 2t 4� dt �

11
15

�12

	
C

 xy ds � �2	1

0
 t2 dt.

y � �x,
z3, z1, z2, z4;

 � 27��2 
 42.412 cm3

Volume � 2	3

0
 2�9 � y2
1 � 4

y2

9 �1 �
y2

9 �� dy

9� cm2 
 28.274 cm2

x

y3
4

3

3

2

1

4

z

Ix � Iy � a3�

x

y33

−3

4

5

z

12��5 
 7.54 cm312� 
 37.70 cm2

1
120�25�5 � 11�

�h�4��2�5 � ln�2 � �5 ��1
25h

316
3�

11
6

63
2

190
3

	
C 

F � dr � 0

F�t� � r��t� � t3 � 2t2 � 2t2 � t3 � 0
r��t� � i � 2tj
F�t� � �t3 � 2t2�i � �t � t2�2�j

	
C 

F � dr � 0

F�t� � r��t� � �2t � 2t � 0
r��t� � i � 2 j
F�t� � �2t i � tj

�
236
3 ;

236
3 ;

�10� 2

9
4

1
2�k�12��41�41 � 27�

8�5��1 � 4� 2�3� 
 795.7

23
6C: r�t� � �t i,

i � tk,
i � tj � k,

  
0 � t � 1
0 � t � 1
0 � t � 1

19
6 �1 � �2�

C: r�t� � �t i,
�2 � t�i � �t � 1�j,
�3 � t�j,

  
0 � t � 1
1 � t � 2
2 � t � 3

1�2C: r�t� � t i, 0 � t � 1
��2C: r�t� � cos t i � sin t j, 0 � t � ��2

2�2�3C: r�t� � t i � t j, 0 � t � 1

5��2r�t� � 3 cos t i � 3 sin tj,  0 � t � 2�

r�t� � �
t i,
3i � �t � 3�j,
�9 � t�i � 3j,
�12 � t�j,

  

0 � t � 3
3 � t � 6
6 � t � 9
9 � t � 12

r�t� � �ti � t j,
�2 � t�i � �2 � tj,

  0 � t � 1
1 � t � 2

f

 � nf n�2 F

 
f n � n��x2 � y2 � z2�n�1� xi � yj � zk
�x2 � y2 � z2�

 f n � �F�x, y, z��n � ��x2 � y2 � z2�n

 �
F
f 2

 
 ln f �
x

x2 � y2 � z2 i �
y

x2 � y2 � z2 j �
z

x2 � y2 � z2 k

 ln f �
1
2

 ln�x2 � y2 � z2�

 f �x, y, z� � �F�x, y, z�� � �x2 � y2 � z2

3z � 2xz j � yk9x j � 2yk

cos x � sin y � 2z2x � 4y
f �x, y, z� � xz�y � K

f �x, y, z� �
1
2�x2y2z2� � K

cos�y � z�i � cos�z � x�j � cos�x � y�k
2x��x2 � y2�k�2k

4i � j � 3kf �x, y� � ex cos y � K
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5. Conservative 7. Not conservative 9. Conservative
11. (a) 1 (b) 1 13. (a) 0 (b) (c)
15. (a) 64 (b) 0 (c) 0 (d) 0 17. (a) (b)
19. (a) 32 (b) 32 21. (a) (b) 23. (a) 0 (b) 0
25. 72 27. 29. 0 31. (a) 2 (b) 2 (c) 2
33. 11 35. 30,366 37. 0

39. (a) ft-lb

(b)

ft-lb
41. See Theorem 15.5, “Fundamental Theorem of Line Integrals,”

on page 1084.
43. (a) (b) (c) (d) 0
45. Yes, because the work required to get from point to point is 

independent of the path taken.
47. False. It would be true if were conservative.
49. True 51. Proof
53. (a) Proof (b) (c)

(d) does not contradict Theorem 15.7 because is not
continuous at in enclosed by 

(e)

Section 15.4 (page 1099)

1. 3. 0 5. About 19.99 7. 9. 56 11. 13. 0
15. 0 17. 19. 21. 23. 25. 27.
29. See Theorem 15.8 on page 1093. 31. Proof 33.
35. 37. 39.
41. (a) (b)

43.

when C is a circle that contains the origin.
45. 47–49. Proofs

Section 15.5 (page 1109)
1. e 2. f 3. b 4. a 5. d 6. c
7. 9.

Plane Cylinder

11. 13.

15.

17. The paraboloid is reflected (inverted) through the plane.
19. The height of the paraboloid is increased from 4 to 9.
21.
23. or

25.
27.
29.

31.

33.

35. 37. 39.
41. 43.
45.
47. See “Definition of Parametric Surface” on page 1102.
49–51. Proofs
53. (a) (b)

(c) (d)

The radius of the generating circle that is revolved about the
axis is and its center is units from the axis of revolution.

55.
57.

2� �3
2�13 � 2 ln�3 � �13 � � 2 ln 2�

x

y
42

4

−4 −2

π2

π4

z

400� m2

ab,z-

yx 12
12

12

−12

z

yx

3

9

−9

3

z

x y
66

4

z

x y

6
6

4
−6

−4

−6

z

���6� �17�17 � 1� 
 36.177
�ab2�a2 � 12�ab

8�24y � 3z � 12x � y � 2z � 0
0 � u � �, 0 � v � 2�

x � sin u cos v, y � sin u sin v, z � u

x � u, y �
u
2

 cos v, z �
u
2

 sin v,  0 � u � 6, 0 � v � 2�

r�u, v� � v cos ui � v sin uj � 4k,  0 � v � 3
r�u, v� � ui � vj � u2k
r�u, v� � 5 cos ui � 5 sin uj � vk
r�x, y� � xi � �4x2 � 9y2 j � zk

0 � v � 2�u � 0,r�u, v� �
1
2u cos vi � uj �

1
3u sin vk,

r�u, v� � ui � vj � vk

xy-

x

y3 3

5

2
21

−2

−2

−3

−3

−1

4

3

z

x

y
3 6 9

9

6
9

6

z

yx
2

2

3

2

1

z

x

y
5

5

−3

3

z

x

y43 5
5

−4

3
2

z

x2 � z2 � 4y � 2z � 0

19
2

I � �2�

	
C

 F � dr � 	
C

 M dx � N dy � 	
R
	 ��N

�x
�

�M
�y � dA � 0;

243��251��2
� � 3�3�23�a2�2� 8

15, 8
21�

�0, 85�
9
2�a2225

2�32�1
12

4
3

9
2

1
30

 
�arctan 
x
y� �

1�y
1 � �x�y�2 i �

�x�y2

1 � �x�y�2 j

C.R�0, 0�
F�2� ;

���

F

�2�2�2�

 � 8750

 dr � �i �
1
25�50 � t�j� dt ⇒ 7	50

0
 �50 � t� dt

dr � �i � j� dt ⇒ 	50

0
 175 dt � 8750

�1

17
6

2
3

64
3

64
3

�
1
2�

1
3
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59. Answers will vary. Sample answer: Let

where and 

Section 15.6 (page 1122)

1. 3. 5. 7.
9. About 11. 13. 15. 8 17.

19. 21. 23. 25. 27.
29. 31. 0 33. Proof 35. 37.
39. See Theorem 15.10, “Evaluating a Surface Integral,” on page

1112.
41. See “Definition of Flux Integral,” on page 1118; see Theorem

15.11, “Evaluating a Flux Integral,” on page 1118.
43. (a) (b) If a normal vector at a point

on the surface is moved
around the Möbius strip
once, it will point in the
opposite direction.

(c) (d) Construction
(e) A strip with a double twist

that is twice as long as the
Möbius strip.

Circle

Section 15.7 (page 1130)
1. 3. 18 5. 7. 9. 0 11.

13. 0 15. 2304 17. 19. 0
21. See Theorem 15.12, “The Divergence Theorem,” on page 1124.
23–29. Proofs

Section 15.8 (page 1137)
1. 3.
5. 7. 9. 0

11. 13. 15. 0 17. 19. 21. 0
23. See Theorem 15.13, “Stokes’s Theorem,” on page 1132.
25–27. Proofs 29. Putnam Problem A5, 1987

Review Exercises for Chapter 15 (page 1138)
1. 3.

5. Conservative:

7. Conservative:
9. Not conservative 11. Conservative:

13. (a) div (b)

15. (a) div 
(b)

17. (a) div 
(b)

19. (a) div 

(b)

21. (a) (b) 23. 25. (a) 18 (b)
27. 29. 31. 1
33. 35. 36 37. 39.
41. 6 43. (a) 15 (b) 15 (c) 15
45. 1 47. 0 49. 0
51.

53. (a) (b)

(c) (d)

Circle
(e) About 14.436 (f) About 4.269

55.

0
57. 66 59. 61. Proof

P.S. Problem Solving (page 1141)
1. (a) (b)
3.

5. Proof 7. 9. (a) 1 (b) (c) 11. Proof
13.

Therefore, and is conservative.F�N��x � �M��y
�N��x �  3mx�x2 � 4y2���x2 � y2�7�2

N � m�2y2 � x2��x2 � y2��5�2

�M��y � 3mx�x2 � 4y2���x2 � y2�7�2

M � 3mxy�x2 � y2��5�2

5
2

13
153a2�

Iz � 18�13�

Iy � ��13��3� �27 � 32�2�;Ix � ��13��3� �27 � 32�2�;
�25�2�6�k��25�2�6�k�

2a6�5

x

y3

2

3

−3

−3

−2

z

y
x

2
4

3

−3

−2

−3

−2
−4

−4

3

1

3

4

z

y
x

2
4

3

−3

−2

−3

−2
−3

−4

−4

3

2

3

4

z

y

x

2
2 3

3

4

−4

−4 −3

−2

−1

−3

3
4

z

x

y4

3
−4

−3

−2

4

−4

z

2
2

4

6

4

−4

−2
y

x

z

8
3�3 � 4�2 � 
 �7.0854

32� 2

��5�3��19 � cos 6� 
 13.4469a2�5
18�6�2�125

3

curl F �
2x � 2y
x2 � y2  k

F �
2x � 2y
x2 � y2 � 1

curl F � z2 i � y2k
F � 1��1 � x2 � 2xy � 2yz

curl F � xz i � yz j
F � �y sin x � x cos y � xy

curl F � �2xz j � y2kF � 2x � 2xy � x2

f �x, y, z� � x��yz� � K
f �x, y� �

1
2 x2y2 �

1
3 x3 �

1
3 y3 � K

f �x, y� � y�x � K

x
y

3

2

3

4

2

z

�4x � y�i � xj � 2zk�x2 � 5

a5�48
32��12

18�z�x � 2ey2�z2�i � yzj � 2ye x2�y2k
�2 � 1��1 � x2�� j � 8xk�xz � ez�i � �yz � 1�j � 2k

1024��3
108�3a 4�a 4

y
x

4

−4

2

2

−2

z

P

x
y6

4

6

−6

−4

−6

z

64��2�a3h384�

20�3��2�
4
3486�32��3

�3�12�5364
3�11.47

�391�17 � 1��24027�3�82�12�2

�� � v � �.�� � u � �

z � 5u � �2 � u� sin v
y � �2 � u��5 � cos v� sin 3�u
x � �2 � u��5 � cos v� cos 3�u
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Chapter 16
Section 16.1  (page 1149)

1. Exact; 

3. Not exact; 

5. 7.
9. Not exact 11. 13. Not exact

15. (a) Answers will vary.          17. (a) Answers will vary.

(b) (b)

(c) (c)

19. 21.
23.
25. Integrating factor: 27. Integrating factor:

29. Integrating factor:

31. Integrating factor: 33. Integrating factor:

35. 37. 39. Proof

41. 43.

45. 47.

49. (a) (c)

(b)

51. (a) (c)

(b) Less accurate
53. See Theorem 16.1 on page 1144.

55. False; 57. True 59.

61.

Section 16.2 (page 1157)
1.

approaches zero as 
3.

The graphs are basically the same shape, with left and right
shifts and varying ranges.

5. 7.
9. 11.

13. 15.

17. 19.

21.

23.

25.
27.
29.

31. (a) (b)

(c)

33. 35.

37.

39. 41. No Solution

43. 45. No; 

47. The functions and are linearly independent if the only 
solution of is 

49.

51.

53.

55. b 56. d 57. c 58. a 59. Proof

y �
e�t�16

2
 �cos 

�12,287 t
16

�
�12,287
12,287

 sin 
�12,287 t

16 �
y � �

2
3

 cos 4�3t �
�3
24

 sin 4�3t

y �
1
2 cos 4�3 t

C1 � C2 � 0.C1 y1 � C2 y2 � 0
y2y1

f �x� � 0.y � 2e7x�2 � ��
1

e7/2 � 2�xe7x�2

y � � e � 3
e � e3�e3x � �3 � e3

e � e3�ex

y � 2ex�3 �
1
3 xex�3

y �
1
2 sin 4xy �

1
11�e6x � 10e�5x�

y � �cos 10x �
3

10 sin 10x

y �
1
5 sin 10xy � 2 cos 10x

y � C1e
x � ex �C2 sin 2x � C3 cos 2x�

y � C1e
x � C2e

2x � C3e
3x

y � C1e
x � C2e

�x � C3 sin x � C4 cos x

y � e2x�3�C1 sin 
�7x

3
� C2 cos 

�7x
3 �

y � C1e�3��5�x�2 � C2e�3��5�x�2

y � ex �C1 sin�3x � C2 cos�3x�y � C1e
3x � C2e

�3x

y � C1 sin x � C2 cos xy � C1e
x�4 � C2xex�4

y � C1e
�3x � C2xe�3xy � C1e

x�2 � C2e
�2x

y � C1e
3x � C2e

�2xy � C1 � C2e
x

y3: C1 � 2, C2 � 3
y2: C1 � �1, C2 � 1
y1: C1 � 1, C2 � �1

−� �

−4

4

y3 y1y2

x →�.y

y3: C1 � �1, C2 � �2
y2: C1 � 1, C2 � 1
y1: C1 � 0, C2 � 1

−5

−5

5

5

y3

y2

y1

f �x� � �cos x � C1, g�y� �
1
3 y3 � C2

k � 3
�N
�x

� �2x.
�M
�y

� 2x,

y2�2x2 � y2� � 9

2

−1

−1 5

2

−1

−1 5

y2�2x2 � y2� � 9

2

−1

−1 5

2

−1

−1 5

C �
5�x2 � �x4 � 1,000,000x �

x
x2 � 2xy � 3y2 � 3

2

−2

−3 3

c = 4

c = 2

c = 6

4

−4

−6 6

c = 4

c = 1

c = 9

2x2y4 � x2 � Cx2 � y2 � C

y2

x
�

x
y2 � Cx4y3 � x2y4 � C

x�y � cos�y � Cxy � ln �y� � C
1��y1/y

y sin x � x sin x � cos x � C
cos x 

y
x

� 5x � C
x
y

� 6y � C

1�x21�y2

x2y � 3x3 � y2 � y � 6
e3x sin 3y � 0y ln�x � 1� � y2 � 16

6

−6

−9 9−6

−4

6

4

x2 � y2 � 25x2 tan y � 5x �
11
4

x

y

−4 −2 2 4

−4

−2

2

4
4

4

x

y

−4

−

arctan�x�y� � C
3xy2 � 5x2y2 � 2y � Cx2 � 3xy � y2 � C

My � x cos y, Nx � cos y

My � 2xy � Nx
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61. False; the general solution is 
63. True 65. Proof 67. Proof

69. (a) Proof (b)

Section 16.3 (page 1165)
1–3. Proofs 5. 7.

9.

11. 13.

15.

17.

19.
21.

23.

25.

27.

29.

31. This is a generalized form of 

33. See “Variation of Parameters” box on page 1163.

35.

37.

39.

41.

43. 45. True
47. (a) No (b) Yes

Putnam Problem A3, 1987

Section 16.4 (page 1170)
1–5. Proofs

7.

Interval of convergence:

9.

Interval of convergence:

11.

13. Taylor’s Theorem:

Euler’s Method:

15. Given a differential equation, assume that the solution is of the

form Then substitute and its derivatives into the

differential equation. You should then be able to determine the
coefficients for the solution series.

17. (a)

(b) (c) The solution is symmetric
about the origin.

19.

21.

23–25. Proofs

27.

Review Exercises for Chapter 16 (page 1171)

1. Not exact; 

3. Exact; 
5. Exact; 7. Not exact
9. (a) Answers will vary. (b)

(c)

11.

13. 15.

17.

Answers will vary.
y3: C1 � 0, C2 � 1
y2: C1 � 1, C2 � 0
y1: C1 � C2 � 1

−5

−1

5

7

y1

y3y2

xe3y � ey � C3x �
y2

x
� C

2xy � 2x2 � 6x � 3y2 � 2y � �4

−6 6

−4

4y

x

42−4

4

−4

x2 � y2 � xy � 4
�2xy � 3y2 � 4y � x2 � 10x � C
16xy � 10x2 � 4x � 5y2 � 4y � C

�M
�y

�
�N
�x

y � a0 � a1x �
a0

6
 x3 �

a1

12
 x4 �

a0

180
 x6 �

a1

504
 x7

y�1
3� 	 3.846y � 3 �

2x
1!

�
3x2

2!
�

2x3

3!
;

y�1
4� 	 0.253

y � 1 �
3x
1!

�
2x3

3!
�

12x4

4!
�

16x6

6!
�

120x7

7!

−4

−12

12

4

P3(x)
P5(x)

y � 2x �
x3

3
�

x5

20
� .  .  .

�a0, a1, . . .�

yy � 
 an xn.

y�1
2� 	 2.672

y�1
2� 	 2.547

2x4

4!
� .  .  .

y � 2 �
2x
1!

�
2x2

2!
�

10x3

3!
�

a1�x �
x3

24
�

7x5

1920
� .  .  .�y � a0�1 �

x2

8
�

x4

128
� .  .  .� �

���, ��

y � a0 � a1 

�

k�0
 

x2x�1

2k�k!��2k � 1�

���, ��

y � a0 

�

k�0
 
��3�k

2kk!
 x2k

y � C1x � C2x ln x �
2
3x�ln x�3

	
�5
4

 sin�8t � 2.6779� y �
�5
4

 sin�8t � � � arctan 
1
2�

0.3

−0.05

0 4

y � � 9
32 �

3
4t�e�8t �

1
32 cos 8t

2

−2

0 �

2

y �
1
4 cos 8t �

1
2 sin 8t � sin 4t

q �
3
25�e�5t � 5te�5t � cos 5t�

F�x� � x2.yp � Ax2 � Bx � C;

y � �C1 � C2x�ex �
x2ex

4
 �ln x2 � 3�

y � �C1 �
x
2�cos 2x � �C2 �

1
4

 ln�sin 2x��sin 2x

y � �C1 � ln�cos x��cos x � �C2 � x�sin x

y � �4
9

�
1
2

 x2�e4x �
1
9

 �1 � 3x�ex

y � �1 � 2e�x � sin x � cos x
y � 6 sin x � cos x � x3 � 6x

y � �C1 �
x
6�cos 3x � C2 sin 3x

y � �C1 � C2x�e5x �
3
8ex �

1
5

y � C1 � C2e
�2x �

2
3exy � C1e

x � C2e
2x � x �

3
2

yp � �
4

65 sin x �
1

130 cos x

yp � e3xyp �
1
4x �

1
16

y �
C1

x3 �
C2

x2

y � C1e
3x � C2xe3x.
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19. 21.

23.

25. is always positive according to the graph but is negative
when so 

27.
29.
31. 33.

35.

37.

39.

41. (a) (i)

(ii)

(iii)

(iv)

(b) The object would come to rest more quickly. It might not
oscillate at all, as in part (iv).

(c) The object would oscillate more rapidly.
(d) Part (ii). The amplitude becomes increasingly large.

43. (a) Only a second derivative is used, so a cosine is unnecessary.
(b)

(c) If then 
So it would be more difficult to solve for and 

45.

47.

P.S. Problem Solving (page 1173)
1.
3. Proof 5. Proof
7. (a) and (b) Proofs

9. (a) ; Proof

(b) (c)
(d) 0.128 (e)
(f)

11. (a) Critically damped (b)
(c)

Answers will vary.

13. (a) Overdamped (b)
(c)

Answers will vary.

15.

Answers will vary.

17. (a) (b)

19. (a)
(b)

H4�x� � 16x4 � 48x2 � 12

H3�x� � 8x3 � 12x

H2�x� � 4x2 � 2

H1�x� � 2x

H0�x� � 1
y � 16x4 � 48x2 � 12

y � a0 J0�x�y � a0 

�

k�0
 
��1�k x2k

22k�k!�2

�
�5a0 � 6a1�

720
�x � 1�6 �

�9a0 � 11a1�
5040

�x � 1�7

�
�a0 � 2a1�

24
�x � 1�4 �

�4a0 � a1�
120

�x � 1�5

y � a0 � a1�x � 1� �
a0

2
�x � 1�2 �

�a0 � a1�
6

�x � 1�3

0
0 2

2

y � e�16t � e�4t

0
0

2

2

y � e�4t � 5te�4t

	
�0.358� � �0.8012; 	
�0.860� � 0.8012
0.358 sec; 0.860 sec

Period 	 1 sec	�t� � 0.128 cos��39.2�t � 0.108��

	�t� � C1 cos��g
L

t� � C2 sin��g
L

t�

y � B1e
ax � B2e

�ax;
k � �5; 6x3 � 10y3 � 15x2y2 � C

y�1
4� 	 2.063y � 2 �

2x2

2!
�

4x4

4!
�

4x5

5!
;

y � a0 

�

n�0
 
xn

4n

B.A
yp� � �A cos x � B sin x.yp � A cos x � B sin x,

yp �
5
2 cos x

0.6

−0.2

0 3

y �
1
2e�2t�cos 2t � sin 2t)

1

−1

0 8

y �
e�t�5

398 
199 cos 
�199 t

5
� �199 sin

�199 t
5 �

60

−60

0 14

y �
1
2��1 � 6�2t�cos�2�2t� � 3 sin�2�2t��

12

−12

0 10

y �
1
2

 cos 2t �
12�

�2 � 4
 sin 2t �

24
4 � �2 sin �t

y �
1
2 cos�2�6 t�

y � �
1
2 �

1
27e�x �

1
9xe�x �

1
6x2e�x �

83
54e2x

y �
17
3 cos 2x � 3 sin 2x �

1
3 cos x

y �
11
5 �2e3x � 3e�2x� � 9y � �C1 � C2x �

1
3x3�ex

y � �C1 � x�sin x � C2 cos x
y � C1 sin x � C2 cos x � 5x � x3

y� � y
.x < 0,
y
y�

4

−2

−1 5

y � � 4e
sin 2 � tan 4 cos 2��e�x sin 2x � tan 4e�x cos 2x�

−6 6
0

8

−12 12

−8

8

y �
1
2e�3x �

3
2exy � e2x � e�x

Answers to Odd-Numbered Exercises A151

1053714_ans_16.qxp  10/27/08  4:00 PM  Page A151



This page intentionally left blank 



IN
D

E
X

A

Abel, Niels Henrik (1802–1829), 232
Absolute convergence, 636
Absolute maximum of a function, 164

of two variables, 954
Absolute minimum of a function, 164

of two variables, 954
Absolute value, 50

derivative involving, 330
function, 22

Absolute Value Theorem, 600
Absolute zero, 74
Absolutely convergent series, 636
Acceleration, 125, 851, 875

centripetal component of, 863
tangential and normal components of,

863, 877
vector, 862, 877

Accumulation function, 288
Addition of vectors, 766, 777
Additive Identity Property of Vectors, 767
Additive Interval Property, 276
Additive Inverse Property of Vectors, 767
Agnesi, Maria Gaetana (1718–1799), 201
Airy’s equation, 1170, 1174
d’Alembert, Jean Le Rond (1717–1783),

908
Algebraic function(s), 24, 25, 378

derivatives of, 136 
Algebraic properties of the cross product,

793 
Alternating series, 633

geometric, 633
harmonic, 634, 636, 638

Alternating Series Remainder, 635
Alternating Series Test, 633
Alternative form

of the derivative, 101, A7
of the directional derivative, 936
of Green's Theorem, 1098, 1099
of Log Rule for Integration, 334
of Mean Value Theorem, 175

Angle 
between two nonzero vectors, 784
between two planes, 802
of incidence, 698
of inclination of a plane, 949
of reflection, 698

Angular speed, 1017
Antiderivative, 248

of with respect to 249
finding by integration by parts, 527
general, 249

notation for, 249
representation of, 248
of a vector-valued function, 846

Antidifferentiation, 249
of a composite function, 297

Aphelion, 708, 757
Apogee, 708
Applied minimum and maximum 

problems, guidelines for solving, 219
Approximating zeros 

bisection method, 78
Intermediate Value Theorem, 77
Newton’s Method, 229

Approximation,
linear, 235, 920
Padé, 333
polynomial, 650
Stirling’s, 529
tangent line, 235
Two-point Gaussian Quadrature, 321

Arc length, 478, 479, 870
derivative of, 870
parameter, 870, 871
in parametric form, 724
of a polar curve, 745
of a space curve, 869
in the -plane, 1021

Arccosecant function, 373
Arccosine function, 373
Arccotangent function, 373
Archimedes (287–212 B.C.), 261

Principle, 518
spiral of, 725, 733, 749

Arcsecant function, 373
Arcsine function, 373

series for, 684
Arctangent function, 373

series for, 684
Area

found by exhaustion method, 261
line integral for, 1096
of a parametric surface, 1106
in polar coordinates, 741
problem, 45, 46
of a rectangle, 261
of a region between two curves, 449
of a region in the plane, 265
of a surface of revolution, 483

in parametric form, 726
in polar coordinates, 746

of the surface S, 1021
in the -plane, 1021

Associative Property of Vector Addition,
767

Astroid, 146
Astroidal sphere, 1111
Asymptote(s)

horizontal, 199
of a hyperbola, 703
slant, 211
vertical, 84, 85, A7

Average rate of change, 12
Average value of a function

on an interval, 286
over a region 999
over a solid region 1037

Average velocity, 113
Axis 

conjugate, of a hyperbola, 703
major, of an ellipse, 699
minor, of an ellipse, 699
of a parabola, 697
polar, 731
of revolution, 458
transverse, of a hyperbola, 703

B

Barrow, Isaac (1630–1677), 145
Base(s), 327, 362

of the natural exponential function, 362
of a natural logarithm, 327
other than 

derivatives for, 364
exponential function, 362
logarithmic function, 363

Basic differentiation rules for elementary
functions, 378

Basic equation obtained in a partial 
fraction decomposition, 556

guidelines for solving, 560
Basic integration rules, 250, 385, 522

procedures for fitting integrands to, 523
Basic limits, 59
Basic types of transformations, 23
Bearing, 770
Bernoulli equation, 438

general solution of, 439
Bernoulli, James (1654–1705), 717
Bernoulli, John (1667–1748), 554
Bessel function, 669, 670
Bessel’s equation, 1174
Bifolium, 146
Binomial series, 683
Bisection method, 78
Bose-Einstein condensate, 74
Boundary point of a region 898
Bounded

R,

e,

Q,
R,

xy

xy

x,f
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above, 603
below, 603
monotonic sequence, 603
region 954
sequence, 603

Brachistochrone problem, 717
Breteuil, Emilie de (1706–1749), 490
Bullet-nose curve, 138

C

Cantor set, 693
Capillary action, 1026
Cardioid, 736, 737
Carrying capacity, 427, 429
Catenary, 393
Cauchy, Augustin-Louis (1789–1857), 75
Cauchy-Riemann differential equations, 932
Cauchy-Schwarz Inequality, 791
Cavalieri’s Theorem, 468
Center

of curvature, 874
of an ellipse, 699
of gravity, 500, 501

of a one-dimensional system, 500
of a two-dimensional system, 501

of a hyperbola, 703
of mass, 499, 500, 501

of a one-dimensional system, 499, 500
of a planar lamina, 502

of variable density, 1014
of a solid region 1032
of a two-dimensional system, 501

of a power series, 661
Centered at 650
Central force field, 1059
Centripetal component of acceleration, 863
Centripetal force, 868
Centroid, 503

of a simple region, 1014
Chain Rule, 130, 131, 136, A8

implicit differentiation, 930
one independent variable, 925, A20
three or more independent variables, 928
and trigonometric functions, 135
two independent variables, 925

Change in 97
Change in 97
Change of variables, 300

for definite integrals, 303
for double integrals, 1047
guidelines for making, 301
for homogeneous equations, 426
to polar form, 1006
using a Jacobian, 1045

Characteristic equation of a differential
equation, 1152

Charles, Jacques (1746?1823), 74
Charles’s Law, 74

Chebyshev’s equation, 1174
Circle, 146, 696, 737
Circle of curvature, 161, 874
Circulation of around 1135
Circumscribed rectangle, 263
Cissoid, 146

of Diocles, 761
Classification of conics by eccentricity,

750, A19
Closed

curve, 1088
disk, 898
region 898
surface, 1124

Cobb-Douglas production function, 891
Coefficient, 24

correlation, 31
leading, 24

Collinear, 17
Combinations of functions, 25
Common logarithmic function, 363
Common types of behavior associated with

nonexistence of a limit, 51
Commutative Property

of the dot product, 783
of vector addition, 767

Comparison Test
Direct, 626
for improper integrals, 588
Limit, 628

Completeness, 77, 603
Completing the square, 383
Component of acceleration

centripetal, 863
normal, 863, 877
tangential, 863, 877

Component form of a vector in the plane, 765
Component functions, 834
Components of a vector,787

along 787
in the direction of 788
orthogonal to 787
in the plane, 765

Composite function, 25
antidifferentiation of, 297
continuity of, 75
derivative of, 130
limit of, 61, A4
of two variables, 887

continuity of, 903
Composition of functions, 25, 887
Compound interest formulas, 366
Compounding, continuous, 366
Computer graphics, 892
Concave downward, 190, A9
Concave upward, 190, A9
Concavity, 190, A9

test for, 191, A9
Conditional convergence, 636

Conditionally convergent series, 636
Conic(s), 696

circle, 696
classification by eccentricity, 750, A19
degenerate, 696
directrix of, 750
eccentricity, 750
ellipse, 696, 699
focus of, 750
hyperbola, 696, 703
parabola, 696, 697
polar equations of, 751

Conic section, 696
Conjugate axis of a hyperbola, 703
Connected region, 1086
Conservative vector field, 1061, 1083

independence of path, 1086
test for, 1062, 1065

Constant
Euler’s, 625
force, 489
function, 24
of integration, 249
Multiple Rule, 110, 136

differential form, 238
Rule, 107, 136
spring, 34
term of a polynomial function, 24

Constraint, 970
Continued fraction expansion, 693
Continuity

on a closed interval, 73
of a composite function, 75

of two variables, 903
differentiability implies, 103
and differentiability of inverse 

functions, 347, A13
implies integrability, 273
properties of, 75, A6
of a vector-valued function, 838

Continuous, 70
at 59, 70
on the closed interval 73
compounding, 366
everywhere, 70
function of two variables, 900
on an interval, 838
from the left and from the right, 73
on an open interval 70
in the open region 900, 904
at a point, 838, 902, 904
vector field, 1058

Continuously differentiable, 478
Contour lines, 889
Converge, 231, 597, 608
Convergence

absolute, 636
conditional, 636
endpoint, 664

R,
�a, b�,

�a, b�,
c,v,

v,
v,

R,

C� ,F

y,
x,

c,

Q,

R,
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of a geometric series, 610
of improper integral with infinite 

discontinuities, 583
integration limits, 580
interval of, 662, 666, A18
of Newton’s Method, 231, 232
of a power series, 662, A18
of -series, 621
radius of, 662, 666, A18
of a sequence, 597
of a series, 608
of Taylor series, 680
tests for series

Alternating Series Test, 633
Direct Comparison Test, 626
geometric series, 610
guidelines, 645
Integral Test, 619
Limit Comparison Test, 628
-series, 621

Ratio Test, 641
Root Test, 644
summary, 646

Convergent power series, form of, 678
Convergent series, limit of th term of, 612
Convex limaçon, 737
Coordinate conversion 

cylindrical to rectangular, 822
cylindrical to spherical, 825
polar to rectangular, 732
rectangular to cylindrical, 822
rectangular to polar, 732
rectangular to spherical, 825
spherical to cylindrical, 825
spherical to rectangular, 825

Coordinate planes, 775
-plane, 775
-plane, 775
-plane, 775

Coordinate system
cylindrical, 822
polar, 731
spherical, 825
three-dimensional, 775

Coordinates, polar, 731
area in, 741
area of a surface of revolution in, 746
converting to rectangular, 732
Distance Formula in, 739

Coordinates, rectangular, converting to
polar, 732

Copernicus, Nicolaus (1473–1543), 699
Cornu spiral, 761, 883
Correlation coefficient, 31
Cosecant function

derivative of, 123, 136
integral of, 339
inverse of, 373

derivative of, 376

Cosine function, 22
derivative of, 112, 136
integral of, 339
inverse of, 373

derivative of, 376, A15
series for, 684

Cotangent function
derivative of, 123, 136
integral of, 339
inverse of, 373

derivative of, 376
Coulomb’s Law, 491, 1059
Critical number(s)

of a function, 166
relative extrema occur only at, 166

Critical point(s)
of a function of two variables, 955
relative extrema occur only at, 955

Cross product of two vectors in space, 792
algebraic properties of, 793
determinant form, 792
geometric properties of, 794
torque, 796

Cruciform, 146
Cubic function, 24
Cubing function, 22
Curl of a vector field, 1064

and divergence, 1066
Curtate cycloid, 719
Curvature, 872

center of, 874
circle of, 161, 874
formulas for, 873, 877
radius of, 874
in rectangular coordinates, 874, 877
related to acceleration and speed, 875

Curve
astroid, 146
bifolium, 146
bullet-nose, 138
cissoid, 146
closed, 1088
cruciform, 146
equipotential, 428
folium of Descartes, 146, 749
isothermal, 428
kappa, 145, 147
lateral surface area over, 1081
lemniscate, 40, 144, 147, 737
level, 889
logistic, 429, 562
natural equation for, 883
orientation of, 1069
piecewise smooth, 716, 1069
plane, 711, 834
pursuit, 395, 397
rectifiable, 478
rose, 734, 737
simple, 1093

smooth, 478, 716, 844, 859, 1069
piecewise, 716, 1069

space, 834
tangent line to, 860

Curve sketching, summary of, 209
Cusps, 844
Cycloid, 716, 720

curtate, 719
prolate, 723

Cylinder, 812
directrix of, 812
equations of, 812
generating curve of, 812
right, 812
rulings of, 812

Cylindrical coordinate system, 822
pole of, 822

Cylindrical coordinates
converting to rectangular, 822
converting to spherical, 825

Cylindrical surface, 812

D

Damped motion of a spring, 1157
Darboux’s Theorem, 245
Decay model, exponential, 416
Decomposition of into partial

fractions, 555
Decreasing function, 179

test for, 179
Definite integral(s), 273

approximating
Midpoint Rule, 269, 313
Simpson’s Rule, 314
Trapezoidal Rule, 312

as the area of a region, 274
change of variables, 303
evaluation of a line integral as a, 1071
properties of, 277
two special, 276
of a vector-valued function, 846

Degenerate conic, 696
line, 696
point, 696
two intersecting lines, 696

Degree of a polynomial function, 24
Delta, -neighborhood, 898
Demand, 18
Density, 502
Density function 1012, 1032
Dependent variable, 19

of a function of two variables, 886
Derivative(s)

of algebraic functions, 136
alternative form, 101, A7
of arc length function, 870
Chain Rule, 130, 131, 136, A8

implicit differentiation, 930

�,

��,

N�x��D�x�

yz
xz
xy

n

p

p
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one independent variable, 925
three or more independent variables,

928
two independent variables, 925

of a composite function, 130
Constant Multiple Rule, 110, 136
Constant Rule, 107, 136
of cosecant function, 123, 136
of cosine function, 112, 136
of cotangent function, 123, 136
Difference Rule, 111, 136
directional, 933, 934, 941
of an exponential function, base 364
of a function, 99
General Power Rule, 132, 136
higher-order, 125
of hyperbolic functions, 392
implicit, 142
of an inverse function, 347, A14
of inverse trigonometric functions, 376,

A15
involving absolute value, 330
from the left and from the right, 101 
of a logarithmic function, base 364
of the natural exponential function, 354
of the natural logarithmic function, 328
notation, 99
parametric form, 721
partial, 908
Power Rule, 108, 136
Product Rule, 119, 136
Quotient Rule, 121, 136
of secant function, 123, 136
second, 125
Simple Power Rule, 108, 136
simplifying, 134
of sine function, 112, 136
Sum Rule, 111, 136
of tangent function, 123, 136
third, 125
of trigonometric functions, 123, 136
of a vector-valued function, 842

higher-order, 843
properties of, 844

Descartes, René (1596–1650), 2
Determinant form of cross product, 792
Difference quotient, 20, 97
Difference Rule, 111, 136

differential form, 238
Difference of two functions, 25
Difference of two vectors, 766
Differentiability

implies continuity, 103, 921
and continuity of inverse functions,

347, A13
sufficient condition for, 919, A19

Differentiable at 99
Differentiable, continuously, 478
Differentiable function

on the closed interval 101
on an open interval 99
in a region 919
of three variables, 920
of two variables, 919
vector-valued, 842

Differential, 236
as an approximation, 920
function of three or more variables, 918
function of three variables, 920
function of two variables, 918
of 236
of 236

Differential equation, 249, 406
Airy’s, 1170, 1174
Bernoulli equation, 438
Bessel’s

of order one, 1174
of order zero, 1174

Cauchy-Riemann, 932
characteristic equation of, 1152
Chebyshev’s, 1174
doomsday, 445
Euler’s equation, 1158
Euler’s Method, 410
exact, 1144
first-order linear, 434, 440
general solution of, 249, 406
Gompertz, 445
Hermite’s, 1174
higher-order linear homogeneous, 1155
homogeneous, 425, 1151

change of variables, 426
initial condition, 253, 407
integrating factor, 434, 1147
Laguerre’s, 1174
logistic, 245, 429
nonhomogeneous, 1151, 1159

solution of, 1159
order of, 406
particular solution of, 253, 407
power series solution of, 1167
second-order, 1151
separable, 423
separation of variables, 415, 423
singular solution of, 406
solution of, 406
summary of first-order, 440
Taylor series solution of, 1167
test for exactness, 1144

Differential form, 236
of a line integral, 1077

Differential formulas, 238
constant multiple, 238
product, 238
quotient, 238
sum or difference, 238

Differential operator, 1064, 1066
Laplacian, 1141

Differentiation, 99
basic rules for elementary functions, 378
implicit, 141

Chain Rule, 930
guidelines for, 142

involving inverse hyperbolic functions,
396

logarithmic, 329
numerical, 103
partial, 908
of power series, 666
of a vector-valued function, 843

Differentiation rules
basic, 378
Chain, 130, 131, 136, A8
Constant, 107, 136
Constant Multiple, 110, 136
cosecant function, 123, 136
cosine function, 112, 136
cotangent function, 123, 136
Difference, 111, 136
general, 136
General Power, 132, 136
Power, 108, 136

for Real Exponents, 365
Product, 119, 136
Quotient, 121, 136
secant function, 123, 136
Simple Power, 108, 136
sine function, 112, 136
Sum, 111, 136
summary of, 136
tangent function, 123, 136

Diminishing returns, point of, 227
Dimpled limaçon, 737
Direct Comparison Test, 626
Direct substitution, 59, 60
Directed distance, 501
Directed line segment, 764

equivalent, 764
initial point of, 764
length of, 764
magnitude of, 764
terminal point of, 764

Direction angles of a vector, 786
Direction cosines of a vector, 786
Direction field, 256, 325, 408
Direction of motion, 850
Direction numbers, 800
Direction vector, 800
Directional derivative, 933, 934

alternative form of, 936
of in the direction of 934, 941
of a function in three variables, 941

Directrix
of a conic, 750
of a cylinder, 812
of a parabola, 697

Dirichlet, Peter Gustav (1805–1859), 51

u,f

y,
x,

R,
�a, b�,
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Dirichlet function, 51
Discontinuity, 71

infinite, 580
nonremovable, 71
removable, 71

Disk, 458, 898
closed, 898
method, 459

compared to shell, 471
open, 898

Displacement of a particle, 291, 292
Distance 

between a point and a line in space, 806
between a point and a plane, 805
directed, 501
total, traveled on 292

Distance Formula
in polar coordinates, 739
in space, 776

Distributive Property
for the dot product, 783
for vectors, 767

Diverge, 597, 608
Divergence

of improper integral with infinite
discontinuities, 583
integration limits, 580

of a sequence, 597
of a series, 608
tests for series

Direct Comparison Test, 626
geometric series, 610
guidelines, 645
Integral Test, 619
Limit Comparison Test, 628
th-Term Test, 612
-series, 621

Ratio Test, 641
Root Test, 644
summary, 646

of a vector field, 1066
and curl, 1066

Divergence Theorem, 1099, 1124
Divergence-free vector field, 1066
Divide out like factors, 63
Domain 

feasible, 218
of a function, 19

explicitly defined, 21
of two variables, 886

implied, 21
of a power series, 662
of a vector-valued function, 835

Doomsday equation, 445
Dot product

Commutative Property of, 783
Distributive Property for, 783
form of work, 789
projection using the, 788

properties of, 783
of two vectors, 783

Double integral, 992, 993, 994
change of variables for, 1047
of over 994
properties of, 994

Doyle Log Rule, 896
Dummy variable, 275
Dyne, 489

E

the number, 327
limit involving, 366, A15

Eccentricity, 750, A19
classification of conics by, 750, A19
of an ellipse, 701
of a hyperbola, 704

Eight curve, 161
Elasticity of cost, 1150
Electric force field, 1059
Elementary function(s), 24, 378

basic differentiation rules for, 378
polynomial approximation of, 650
power series for, 684

Eliminating the parameter, 713
Ellipse, 696, 699

center of, 699
eccentricity of, 701
foci of, 699
major axis of, 699
minor axis of, 699
reflective property of, 701
rotated, 146
standard equation of, 699
vertices of, 699

Ellipsoid, 813, 814
Elliptic cone, 813, 815
Elliptic integral, 317
Elliptic paraboloid, 813, 815
Endpoint convergence, 664
Endpoint extrema, 164
Energy

kinetic, 1089
potential, 1089

Epicycloid, 719, 720, 724
Epsilon-delta, - definition of limit, 52
Equal vectors, 765, 777
Equality of mixed partial derivatives, 912
Equation(s)

Airy’s, 1170, 1174
basic, 556

guidelines for solving, 560
Bernoulli, 438
Bessel’s, 1174
characteristic, 1152
Chebyshev’s, 1174
of conics, polar, 751
of a cylinder, 812

doomsday, 445
of an ellipse, 699
general second-degree, 696
Gompertz, 445
graph of, 2
harmonic, 1141
Hermite’s, 1174
homogeneous, 1151
of a hyperbola, 703
nonhomogeneous, 1151
Laguerre’s, 1174
Laplace’s, 1141
of a line

general form, 14
horizontal, 14
point-slope form, 11, 14
slope-intercept form, 13, 14
in space, parametric, 800
in space, symmetric, 800
summary, 14
vertical, 14

of a parabola, 697
of a plane in space

general form, 801
standard form, 801

parametric, 711, 1102
finding, 715
graph of, 711

primary, 218, 219
related-rate, 149
secondary, 219
separable, 423
solution point of, 2
of tangent plane, 946

Equilibrium, 499
Equipotential

curves, 428
lines, 889

Equivalent
conditions, 1088
directed line segments, 764

Error
in approximating a Taylor polynomial,

656
in measurement, 237

percent error, 237
propagated error, 237
relative error, 237

in Simpson’s Rule, 315
in Trapezoidal Rule, 315

Escape velocity, 94
Euler, Leonhard (1707–1783), 24
Euler’s

constant, 625
differential equation, 1158
Method, 410, 1150

Evaluate a function, 19
Evaluating

a flux integral, 1118

�,�

e,

R,f

p
n

�a, b�,
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a surface integral, 1112
Evaluation

by iterated integrals, 1028
of a line integral as a definite integral,

1071
Even function, 26

integration of, 305
test for, 26

Everywhere continuous, 70
Evolute, 879
Exact differential equation, 1144
Exactness, test for, 1144
Existence

of an inverse function, 345
of a limit, 73
theorem, 77, 164

Expanded about approximating
polynomial, 650

Explicit form of a function, 19, 141
Explicitly defined domain, 21
Exponential decay, 416
Exponential function, 24

to base 362
derivative of, 364

integration rules, 356
natural, 352

derivative of, 354
properties of, 353

operations with, 353, A15
series for, 684

Exponential growth and decay model, 416
initial value, 416
proportionality constant, 416

Exponentiate, 353
Extended Mean Value Theorem, 245, 570,

A16
Extrema

endpoint, 164
of a function, 164, 954
guidelines for finding, 167
relative, 165

Extreme Value Theorem, 164, 954
Extreme values of a function, 164

F

Factorial, 599
Family of functions, 273
Famous curves

astroid, 146
bifolium, 146
bullet-nose curve, 138
circle, 146, 696, 737
cissoid, 146
cruciform, 146
eight curve, 161
folium of Descartes, 146, 749
kappa curve, 145, 147
lemniscate, 40, 144, 147, 737

parabola, 2, 146, 696, 697
pear-shaped quartic, 161
rotated ellipse, 146
rotated hyperbola, 146
serpentine, 127
top half of circle, 138
witch of Agnesi, 127, 146, 201, 841

Faraday, Michael (1791–1867), 1085
Feasible domain, 218
Fermat, Pierre de (1601–1665), 166
Fibonacci sequence, 606, 617
Field 

central force, 1059
direction, 256, 325, 408
electric force, 1059
force, 1058
gravitational, 1059
inverse square, 1059
slope, 256, 306, 325, 408
vector, 1058

over a plane region 1058
over a solid region 1058

velocity, 1058, 1059
Finite Fourier series, 544
First Derivative Test, 181
First moments, 1016, 1032
First partial derivatives, 908

notation for, 909
First-order differential equations

linear, 434, 440
solution of, 435

summary of, 440
Fitting integrands to basic rules, 523
Fixed plane, 880
Fixed point, 233
Fluid(s)

force, 510
pressure, 509
weight-densities of, 509

Flux integral, 1118
evaluating, 1118

Focal chord of a parabola, 697
Focus

of a conic, 750
of an ellipse, 699
of a hyperbola, 703
of a parabola, 697

Folium of Descartes, 146, 749
Force, 489

constant, 489
exerted by a fluid, 510
of friction, 876
resultant, 770
variable, 490

Force field, 1058
central, 1059
electric, 1059
work, 1074

Forced motion of a spring, 1159

Form of a convergent power series, 678
Fourier, Joseph (1768–1830), 671
Fourier series, finite, 544
Fourier Sine Series, 535
Fraction expansion, continued, 693
Fractions, partial, 554

decomposition of into, 555
method of, 554

Free motion of a spring, 1159
Frenet-Serret formulas, 884
Fresnel function, 321
Friction, 876
Fubini’s Theorem, 996

for a triple integral, 1028
Function(s), 6, 19

absolute maximum of, 164
absolute minimum of, 164
absolute value, 22
acceleration, 125
accumulation, 288
addition of, 25
algebraic, 24, 25, 378
antiderivative of, 248
arc length, 478, 479, 870
arccosecant, 373
arccosine, 373
arccotangent, 373
arcsecant, 373
arcsine, 373
arctangent, 373
average value of, 286, 999
Bessel, 669, 670
Cobb-Douglas production, 891
combinations of, 25
common logarithmic, 363
component, 834
composite, 25, 887
composition of, 25, 887
concave downward, 190, A9
concave upward, 190, A9
constant, 24
continuous, 70
continuously differentiable, 478
cosine, 22
critical number of, 166
cubic, 24
cubing, 22
decreasing, 179

test for, 179
defined by power series, properties of,

666
density, 1012, 1032
derivative of, 99
difference of, 25
differentiable, 99, 101
Dirichlet, 51
domain of, 19
elementary, 24, 378

algebraic, 24, 25

N�x��D�x�
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exponential, 24
logarithmic, 24
trigonometric, 24

evaluate, 19
even, 26
explicit form, 19, 141
exponential to base 362
extrema of, 164
extreme values of, 164
family of, 273
feasible domain of, 218
Fresnel, 321
Gamma, 578, 590
global maximum of, 164
global minimum of, 164
graph of, guidelines for analyzing, 209
greatest integer, 72
Gudermannian, 404
Heaviside, 39
homogeneous, 425, 931
hyperbolic, 390
identity, 22
implicit form, 19
implicitly defined, 141
increasing, 179

test for, 179
inner product of two, 544
integrable, 273
inverse, 343
inverse hyperbolic, 394
inverse trigonometric, 373
involving a radical, limit of, 60, A4
jerk, 162
limit of, 48
linear, 24
linearly dependent, 1151
linearly independent, 1151
local extrema of, 165
local maximum of, 165
local minimum of, 165
logarithmic, 324

to base 363
logistic growth, 367
natural exponential, 352
natural logarithmic, 324
notation, 19
odd 26
one-to-one, 21
onto, 21
orthogonal, 544
point of inflection, 192, 193
polynomial, 24, 60, 887
position, 32, 113, 855
potential, 1061
product of, 25
pulse, 94
quadratic, 24
quotient of, 25
radius, 818

range of, 19
rational, 22, 25, 887
real-valued, 19
relative extrema of, 165, 954
relative maximum of, 165, 954
relative minimum of, 165, 954
representation by power series, 671
Riemann zeta, 625
signum, 82
sine, 22
sine integral, 322
square root, 22
squaring, 22
standard normal probability density, 355
step, 72
strictly monotonic, 180, 345
sum of, 25
that agree at all but one point, 62, A5
of three variables

continuity of, 904
directional derivative of, 941
gradient of, 941

transcendental, 25, 378
transformation of a graph of, 23

horizontal shift, 23
reflection about origin, 23
reflection about -axis, 23
reflection about -axis, 23
reflection in the line 344
vertical shift, 23

trigonometric, 24
of two variables, 886

absolute maximum of, 954
absolute minimum of, 954
continuity of, 902
critical point of, 955
dependent variable, 886
differentiability implies continuity, 921
differentiable, 919
differential of, 918
domain of, 886
gradient of, 936
graph of, 888
independent variables, 886
limit of, 899
maximum of, 954
minimum of, 954
nonremovable discontinuity of, 900
partial derivative of, 908
range of, 886
relative extrema of, 954
relative maximum of, 954, 957
relative minimum of, 954, 957
removable discontinuity of, 900
total differential of, 918

unit pulse, 94
vector-valued, 834
Vertical Line Test, 22
Wronskian of two, 1158

of and 886
zero of, 26

approximating with Newton’s 
Method, 229

Fundamental Theorem
of Algebra, 1124
of Calculus, 282

guidelines for using, 283
Second, 289

of Line Integrals, 1083, 1084

G

Gabriel’s Horn, 586, 1104
Galilei, Galileo (1564–1642), 378
Galois, Evariste (1811–1832), 232
Gamma Function, 578, 590
Gauss, Carl Friedrich (1777–1855), 260,

1124
Gaussian Quadrature Approximation,

two-point, 321
Gauss’s Law, 1121
Gauss’s Theorem, 1124
General antiderivative, 249
General differentiation rules, 136
General form

of the equation of a line, 14
of the equation of a plane in space, 801
of the equation of a quadric surface, 813
of a second-degree equation, 694

General harmonic series, 621
General partition, 272
General Power Rule

for differentiation, 132, 136
for Integration, 302

General second-degree equation, 696
General solution 

of the Bernoulli equation, 439
of a differential equation, 249, 406
of a second-order nonhomogeneous 

linear differential equation, 1159
Generating curve of a cylinder, 812
Geometric power series, 671
Geometric properties of the cross product,

794
Geometric property of triple scalar product,

797
Geometric series, 610

alternating, 633
convergence of, 610
divergence of, 610

Germain, Sophie (1776–1831), 1159
Gibbs, Josiah Willard (1839–1903), 1069
Global maximum of a function, 164
Global minimum of a function, 164
Golden ratio, 606
Gompertz equation, 445
Grad, 936
Gradient, 1058, 1061

y,x

y � x,
y
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of a function of three variables, 941
of a function of two variables, 936
normal to level curves, 940
normal to level surfaces, 950
properties of, 937
recovering a function from, 1065

Graph(s)
of absolute value function, 22
of cosine function, 22
of cubing function, 22
of an equation, 2
of a function

guidelines for analyzing, 209
transformation of, 23
of two variables, 888

of hyperbolic functions, 391
of identity function, 22
intercept of, 4
of inverse hyperbolic functions, 395
of inverse trigonometric functions, 374
orthogonal, 147
of parametric equations, 711
polar, 733

points of intersection, 743
special polar graphs, 737

of rational function, 22
of sine function, 22
of square root function, 22
of squaring function, 22
symmetry of, 5

Gravitational field, 1059
Greatest integer function, 72
Green, George (1793–1841), 1094
Green’s Theorem, 1093

alternative forms of, 1098, 1099
Gregory, James (1638–1675), 666
Gudermannian function, 404
Guidelines

for analyzing the graph of a function, 209
for evaluating integrals involving 

secant and tangent, 539
for evaluating integrals involving 

sine and cosine, 536
for finding extrema on a closed 

interval, 167
for finding intervals on which a function

is increasing or decreasing, 180
for finding an inverse function, 346
for finding limits at infinity of rational

functions, 201
for finding a Taylor series, 682
for implicit differentiation, 142
for integration, 337
for integration by parts, 527
for making a change of variables, 301
for solving applied minimum and 

maximum problems, 219
for solving the basic equation, 560
for solving related-rate problems, 150

for testing a series for convergence or
divergence, 645

for using the Fundamental Theorem of
Calculus, 283

Gyration, radius of, 1017

H

Half-life, 362, 417
Hamilton, William Rowan (1805–1865), 766
Harmonic equation, 1141
Harmonic series, 621

alternating, 634, 636, 638
Heaviside, Oliver (1850–1925), 39
Heaviside function, 39
Helix, 835
Hermite’s equation, 1174
Heron’s Formula, 981
Herschel, Caroline (1750–1848), 705
Higher-order

derivative, 125
of a vector-valued function, 843

linear differential equations, 1155
partial derivatives, 912

Homogeneous of degree 425, 931
Homogeneous differential equation, 425

change of variables for, 426
Homogeneous equation, 1151
Homogeneous function, 425, 931
Hooke’s Law, 491, 1156
Horizontal asymptote, 199
Horizontal component of a vector, 769
Horizontal line, 14
Horizontal Line Test, 345
Horizontal shift of a graph of a function, 23
Horizontally simple region of integration,

986
Huygens, Christian (1629–1795), 478
Hypatia (370–415 A.D.), 696
Hyperbola, 696, 703

asymptotes of, 703
center of, 703
conjugate axis of, 703
eccentricity of, 704
foci of, 703
rotated, 146
standard equation of, 703
transverse axis of, 703
vertices of, 703

Hyperbolic functions, 390
derivatives of, 392
graphs of, 391
identities, 391, 392
integrals of, 392
inverse, 394

differentiation involving, 396
graphs of, 395
integration involving, 396

Hyperbolic identities, 391, 392

Hyperbolic paraboloid, 813, 815
Hyperboloid 

of one sheet, 813, 814
of two sheets, 813, 814

Hypocycloid, 720

I

Identities, hyperbolic, 391, 392
Identity function, 22
If and only if, 14
Image of under 19
Implicit derivative, 142
Implicit differentiation, 141, 930

Chain Rule, 930
guidelines for, 142

Implicit form of a function, 19
Implicitly defined function, 141
Implied domain, 21
Improper integral, 580

comparison test for, 588
with infinite discontinuities, 583

convergence of, 583
divergence of, 583

with infinite integration limits, 580
convergence of, 580
divergence of, 580

special type, 586
Incidence, angle of, 698
Inclination of a plane, angle of, 949
Incompressible, 1066, 1129
Increasing function, 179

test for, 179
Increment of 918
Increments of and 918
Indefinite integral, 249

pattern recognition, 297
of a vector-valued function, 846

Indefinite integration, 249
Independence of path and conservative

vector fields, 1086
Independent of path, 1086
Independent variable, 19

of a function of two variables, 886
Indeterminate form, 63, 85, 200, 214, 569,

572
Index of summation, 259
Inductive reasoning, 601
Inequality

Cauchy-Schwarz, 791
Napier’s, 342
preservation of, 278, A11
triangle, 769

Inertia, moment of, 1016, 1032
polar, 1016

Infinite discontinuities, 580
improper integrals with, 583

convergence of, 583
divergence of, 583

y,x
z,

f,x
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Infinite integration limits, 580
improper integrals with, 580

convergence of, 580
divergence of, 580

Infinite interval, 198
Infinite limit(s), 83

at infinity, 204
from the left and from the right, 83
properties of, 87

Infinite series (or series), 608
absolutely convergent, 636
alternating, 633

geometric, 633
harmonic, 634, 636
remainder, 635

conditionally convergent, 636
convergence of, 608
convergent, limit of th term, 612
divergence of, 608

th term test for, 612
geometric, 610
guidelines for testing for convergence

or divergence of, 645
harmonic, 621

alternating, 634, 636, 638
th partial sum, 608

properties of, 612
-series, 621

rearrangement of, 637
sum of, 608
telescoping, 609
terms of, 608

Infinity
infinite limit at, 204
limit at, 198, 199, A10

Inflection point, 192, 193
Initial condition(s), 253, 407
Initial point, directed line segment, 764
Initial value, 416
Inner partition, 992, 1027

polar, 1005
Inner product

of two functions, 544
of two vectors, 783

Inner radius of a solid of revolution, 461
Inscribed rectangle, 263
Inside limits of integration, 985
Instantaneous velocity, 114
Integrability and continuity, 273
Integrable function, 273, 994
Integral(s)

definite, 273
properties of, 277
two special, 276

double, 992, 993, 994
flux, 1118
elliptic, 317
of hyperbolic functions, 392
improper, 580

indefinite, 249
involving inverse trigonometric 

functions, 382
involving secant and tangent, guidelines

for evaluating, 539
involving sine and cosine, guidelines 

for evaluating, 536
iterated, 985
line, 1070
Mean Value Theorem, 285
of 313
single, 994
of the six basic trigonometric functions,

339
surface, 1112
trigonometric, 536
triple, 1027

Integral Test, 619
Integrand(s), procedures for fitting to basic

rules, 523
Integrating factor, 434, 1147
Integration

as an accumulation process, 453
Additive Interval Property, 276
basic rules of, 250, 385, 522
change of variables, 300

guidelines for, 301
constant of, 249
of even and odd functions, 305
guidelines for, 337
indefinite, 249

pattern recognition, 297
involving inverse hyperbolic functions,

396
Log Rule, 334
lower limit of, 273
of power series, 666
preservation of inequality, 278, A11
region of, 985
rules for exponential functions, 356
upper limit of, 273
of a vector-valued function, 846

Integration by parts, 527
guidelines for, 527
summary of common integrals using, 532
tabular method, 532

Integration by tables, 563
Integration formulas

reduction formulas, 565
special, 549
summary of, 1136

Integration rules
basic, 250, 385, 522
General Power Rule, 302
Power Rule, 250

Integration techniques
basic integration rules, 250, 385, 522
integration by parts, 527
method of partial fractions, 554

substitution for rational functions of 
sine and cosine, 566

tables, 563
trigonometric substitution, 545

Intercept(s), 4
-intercept, 4
-intercept, 4

Interest formulas, summary of, 366
Interior point of a region 898, 904
Intermediate Value Theorem, 77
Interpretation of concavity, 190, A9
Interval of convergence, 662, A18
Interval, infinite, 198
Inverse function, 343

continuity and differentiability of, 347,
A13

derivative of, 347, A14
existence of, 345
guidelines for finding, 346
Horizontal Line Test, 345
properties of, 363
reflective property of, 344

Inverse hyperbolic functions, 394
differentiation involving, 396
graphs of, 395
integration involving, 396

Inverse square field, 1059
Inverse trigonometric functions, 373

derivatives of, 376, A15
graphs of, 374
integrals involving, 382
properties of, 375 

Irrotational vector field, 1064
Isobars, 148, 889
Isothermal curves, 428
Isothermal surface, 892
Isotherms, 889
Iterated integral, 985

evaluation by, 1028
inside limits of integration, 985
outside limits of integration, 985

Iteration, 229
th term of a sum, 259

J

Jacobi, Carl Gustav (1804–1851), 1045
Jacobian, 1045
Jerk function, 162

K

Kappa curve, 145, 147
Kepler, Johannes, (1571–1630), 753
Kepler’s Laws, 753
Kinetic energy, 1089
Kirchhoff’s Second Law, 438 
Kovalevsky, Sonya (1850–1891), 898

i
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L

Lagrange, Joseph-Louis (1736–1813), 174,
970

Lagrange form of the remainder, 656
Lagrange multiplier, 970, 971
Lagrange’s Theorem, 971
Laguerre’s equation, 1174
Lambert, Johann Heinrich (1728–1777), 390
Lamina, planar, 502
Laplace, Pierre Simon de (1749–1827), 1038
Laplace Transform, 590
Laplace’s equation, 1141
Laplacian, 1141
Lateral surface area over a curve, 1081
Latus rectum, of a parabola, 697
Law of Conservation of Energy, 1089
Leading coefficient 

of a polynomial function, 24
test, 24

Least squares
method of, 964
regression, 7

line, 964, 965
Least upper bound, 603
Left-hand limit, 72
Left-handed orientation, 775
Legendre, Adrien-Marie (1752–1833), 965
Leibniz, Gottfried Wilhelm (1646–1716), 238
Leibniz notation, 238
Lemniscate, 40, 144, 147, 737
Length

of an arc, 478, 479
parametric form, 724
polar form, 745

of a directed line segment, 764
of the moment arm, 499
of a scalar multiple, 768
of a vector in the plane, 765
of a vector in space, 777
on -axis, 1021

Level curve, 889
gradient is normal to, 940

Level surface, 891
gradient is normal to, 950

L’Hôpital, Guillaume (1661–1704), 570
L’Hôpital’s Rule, 570, A17
Limaçon, 737

convex, 737
dimpled, 737
with inner loop, 737

Limit(s), 45, 48
basic, 59
of a composite function, 61, A4
definition of, 52
- definition of, 52

evaluating
direct substitution, 59, 60
divide out like factors, 63

rationalize the numerator, 63
existence of, 73
of a function involving a radical, 60, A4
of a function of two variables, 899
indeterminate form, 63
infinite, 83

from the left and from the right, 83
properties of, 87

at infinity, 198, 199, A10
infinite, 204
of a rational function, guidelines for 

finding, 201
of integration

inside, 985
lower, 273
outside, 985
upper, 273

involving 366, A15
from the left and from the right, 72
of the lower and upper sums, 265
nonexistence of, common types of 

behavior, 51
of th term of a convergent series, 612
one-sided, 72
of polynomial and rational functions, 60
properties of, 59, A2
of a sequence, 597

properties of, 598
strategy for finding, 62
of trigonometric functions, 61
two special trigonometric, 65
of a vector-valued function, 837

Limit Comparison Test, 628
Line(s)

contour, 889
as a degenerate conic, 696
equation of

general form, 14
horizontal, 14
point-slope form, 11, 14
slope-intercept form, 13, 14
summary, 14
vertical, 14

equipotential, 889
least squares regression, 964, 965
moment about, 499
normal, 945, 946

at a point, 147
parallel, 14
perpendicular, 14
radial, 731
secant, 45, 97
slope of, 10
in space

direction number of, 800
direction vector of, 800
parametric equations of, 800
symmetric equations of, 800

tangent, 45, 97

approximation, 235
at the pole, 736
with slope 97
vertical, 99

Line of impact, 945
Line integral, 1070

for area, 1096 
differential form of, 1077
evaluation of as a definite integral, 1071
of along 1070
independent of path, 1086
summary of, 1121
of a vector field, 1074

Line segment, directed, 764
Linear approximation, 235, 920
Linear combination of and 769
Linear combination of solutions, 1152
Linear function, 24
Linearly dependent functions, 1151
Linearly independent functions, 1151
Local maximum, 165
Local minimum, 165
Locus, 696
Log Rule for Integration, 334
Logarithmic differentiation, 329
Logarithmic function, 24, 324

to base 363
derivative of, 364

common, 363
natural, 324

derivative of, 328
properties of, 325, A12

Logarithmic properties, 325
Logarithmic spiral, 749
Logistic curve, 429, 562
Logistic differential equation, 245, 429

carrying capacity, 429
Logistic growth function, 367
Lorenz curves, 456
Lower bound of a sequence, 603
Lower bound of summation, 259
Lower limit of integration, 273
Lower sum, 263

limit of, 265
Lune, 553

M

Macintyre, Sheila Scott (1910–1960), 536
Maclaurin, Colin, (1698–1746), 678
Maclaurin polynomial, 652
Maclaurin series, 679
Magnitude

of a directed line segment, 764
of a vector in the plane, 765

Major axis of an ellipse, 699
Marginal productivity of money, 973
Mass, 498, 1118

center of, 499, 500, 501

a,

j,i

C,f

m,

n

e,
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of a one-dimensional system, 499, 500
of a planar lamina, 502

of variable density, 1014, 1032
of a solid region Q, 1032
of a two-dimensional system, 501

moments of, 1014
of a planar lamina of variable density,

1012
pound mass, 498
total, 500, 501

Mathematical model, 7, 964
Mathematical modeling, 33
Maximum

absolute, 164
of on 164
of a function of two variables, 954
global, 164
local, 165
relative, 165

Mean Value Theorem, 174
alternative form of, 175
Extended, 245, 570, A16
for Integrals, 285

Measurement, error in, 237
Mechanic’s Rule, 233
Method of 

Lagrange Multipliers, 970, 971
least squares, 964
partial fractions, 554
undetermined coefficients, 1160

Midpoint Formula, 776
Midpoint Rule, 269, 313
Minimum

absolute, 164
of on 164
of a function of two variables, 954
global, 164
local, 165
relative, 165

Minor axis of an ellipse, 699
Mixed partial derivatives, 912

equality of, 913
Möbius Strip, 1111
Model

exponential growth and decay, 416
mathematical, 7, 964

Modeling, mathematical, 33
Moment(s)

about a line, 499
about the origin, 499, 500
about a point, 499
about the -axis

of a planar lamina, 502
of a two-dimensional system, 501

about the -axis
of a planar lamina, 502
of a two-dimensional system, 501

arm, length of, 499
first, 1032

of a force about a point, 796
of inertia, 1016, 1032, 1141

polar, 1016
for a space curve, 1082

of mass, 1014
of a one-dimensional system, 500
of a planar lamina, 502

second, 1016, 1032
Monotonic sequence, 602

bounded, 603
Monotonic, strictly, 180, 345
Motion

of a liquid, 1136
of a spring

damped, 1156
forced, 1159
free, 1159
undamped, 1156

Mutually orthogonal, 428

N

factorial, 599
Napier, John (1550–1617), 324
Napier’s Inequality, 342
Natural equation for a curve, 883
Natural exponential function, 352

derivative of, 354
integration rules, 356
operations with, 353, A15
properties of, 353
series for, 684

Natural logarithmic base, 327
Natural logarithmic function, 324

base of, 327
derivative of, 328
properties of, 325, A12
series for, 684

Negative of a vector, 766
Net change, 291
Net Change Theorem, 291
Newton, Isaac (1642–1727), 96, 229
Newton’s Law of Cooling, 419
Newton’s Law of Gravitation, 1059
Newton’s Law of Universal Gravitation, 491
Newton’s Method for approximating the

zeros of a function, 229
convergence of, 231, 232
iteration, 229

Newton’s Second Law of Motion, 437, 854,
1156

Nodes, 844
Noether, Emmy (1882–1935), 768
Nonexistence of a limit, common types of

behavior, 51
Nonhomogeneous equation, 1151
Nonhomogeneous linear equations, 1159
Nonremovable discontinuity, 71, 902
Norm

of a partition, 272, 992, 1005, 1027
polar, 1005

of a vector in the plane, 765
Normal component

of acceleration, 862, 863, 877
of a vector field, 1118

Normal line, 945, 946
at a point, 147

Normal probability density function, 355
Normal vector(s), 785

principal unit, 860, 877
to a smooth parametric surface, 1105

Normalization of 768
Notation

antiderivative, 249
derivative, 99
for first partial derivatives, 909
function, 19
Leibniz, 238
sigma, 259

th Maclaurin polynomial for at 652
th partial sum, 608
th Taylor polynomial for at 652
th term

of a convergent series, 612
of a sequence, 596

th-Term Test for Divergence, 612
Number, critical, 166
Number 327

limit involving, 366, A15
Numerical differentiation, 103

O

Octants, 775
Odd function, 26

integration of, 305
test for, 26

Ohm’s Law, 241
One-dimensional system

center of gravity of, 500
center of mass of, 499, 500
moment of, 499, 500
total mass of, 500

One-sided limit, 72
One-to-one function, 21
Onto function, 21
Open disk, 898
Open interval

continuous on, 70
differentiable on, 99

Open region 898, 904
continuous in, 900, 904

Open sphere, 904
Operations 

with exponential functions, 353, A15
with power series, 673

Order of a differential equation, 406
Orientable surface, 1117

R,

e,

n

n
c,fn

n
c,fn

v,

n

y

x

I,f
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Orientation
of a curve, 1069
of a plane curve, 712
of a space curve, 834

Oriented surface, 1117
Origin

moment about, 499, 500
of a polar coordinate system, 731
reflection about, 23
symmetry, 5

Orthogonal 
functions, 544
graphs, 147
trajectory, 147, 428
vectors, 785

Ostrogradsky, Michel (1801–1861), 1124
Ostrogradsky’s Theorem, 1124
Outer radius of a solid of revolution, 461
Outside limits of integration, 985

P

Padé approximation, 333
Pappus

Second Theorem of, 508
Theorem of, 505

Parabola, 2, 146, 696, 697
axis of, 697
directrix of, 697
focal chord of, 697
focus of, 697
latus rectum of, 697
reflective property of, 698
standard equation of, 697
vertex of, 697

Parabolic spandrel, 507
Parallel

lines, 14
planes, 802
vectors, 778

Parameter, 711
arc length, 870, 871
eliminating, 713

Parameters, variation of, 1163
Parametric equations, 711

graph of, 711
finding, 715
of a line in space, 800
for a surface, 1102

Parametric form
of arc length, 724
of the area of a surface of revolution, 726
of the derivative, 721

Parametric surface, 1102
area of, 1106
equations for, 1102
partial derivatives of, 1105
smooth, 1105

normal vector to, 1105

surface area of, 1106
Partial derivatives, 908

first, 908
of a function of three or more variables,

911
of a function of two variables, 908
higher-order, 912
mixed, 912

equality of, 913
notation for, 909
of a parametric surface, 1105

Partial differentiation, 908
Partial fractions, 554

decomposition of into, 555
method of, 554

Partial sums, sequence of, 608
Particular solution

of a differential equation, 253, 407
of a nonhomogeneous linear equations,

1159
Partition

general, 272
inner, 992, 1027

polar, 1005
norm of, 272, 992, 1027

polar, 1005
regular, 272

Pascal, Blaise (1623–1662), 509
Pascal’s Principle, 509
Path, 899, 1069
Pear-shaped quartic, 161
Percent error, 237
Perigee, 708
Perihelion, 708, 757
Perpendicular

lines, 14
planes, 802
vectors, 785

Piecewise smooth curve, 716, 1069
Planar lamina, 502

center of mass of, 502
moment of, 502

Plane
angle of inclination of, 949
distance between a point and, 805
region

area of, 265
simply connected, 1062, 1093

tangent, 946
equation of, 946

vector in, 764
Plane curve, 711, 834

orientation of, 712
smooth, 1069

Plane in space
angle between two, 802
equation of

general form, 801
standard form, 801

parallel, 802
to the axis, 804
to the coordinate plane, 804

perpendicular, 802
trace of, 802

Planimeter, 1140
Point

as a degenerate conic, 696
of diminishing returns, 227
fixed, 233
of inflection, 192, 193
of intersection, 6

of polar graphs, 743 
moment about, 499
in a vector field

incompressible, 1129
sink, 1129
source, 1129

Point-slope equation of a line, 11, 14
Polar axis, 731
Polar coordinate system, 731

polar axis of, 731
pole (or origin), 731

Polar coordinates, 731
area in, 741
area of a surface of revolution in, 746
converting to rectangular, 732
Distance Formula in, 739

Polar curve, arc length of, 745
Polar equations of conics, 751
Polar form of slope, 735
Polar graphs, 733

cardioid, 736, 737
circle, 737
convex limaçon, 737
dimpled limaçon, 737
lemniscate, 737
limaçon with inner loop, 737
points of intersection, 743
rose curve, 734, 737

Polar moment of inertia, 1016
Polar sectors, 1004
Pole, 731

of cylindrical coordinate system, 822
tangent lines at, 736

Polynomial
Maclaurin, 652
Taylor, 161, 652

Polynomial approximation, 650
centered at 650
expanded about 650

Polynomial function, 24, 60
constant term of, 24
degree of, 24
leading coefficient of, 24
limit of, 60
of two variables, 887
zero, 24

Position function, 32, 113, 125

c,
c,
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for a projectile, 855
Potential energy, 1089
Potential function for a vector field, 1061
Pound mass, 498
Power Rule

for differentiation, 108, 136
for integration, 250, 302
for Real Exponents, 365

Power series, 661
centered at 661
convergence of, 662, A18
convergent, form of, 678
differentiation of, 666
domain of, 662
for elementary functions, 684
endpoint convergence, 664
geometric, 671
integration of, 666
interval of convergence, 662, A18
operations with, 673
properties of functions defined by, 666

interval of convergence of, 666
radius of convergence of, 666

radius of convergence, 662, A18
representation of functions by, 671
solution of a differential equation, 1167

Preservation of inequality, 278, A11
Pressure, fluid, 509
Primary equation, 218, 219
Principal unit normal vector, 860, 877
Probability density function, 355
Procedures for fitting integrands to basic

rules, 523
Product

of two functions, 25
inner, 544

of two vectors in space, 792
Product Rule, 119, 136

differential form, 238
Projectile, position function for, 855
Projection form of work, 789
Projection of onto 787

using the dot product, 788
Prolate cycloid, 723
Propagated error, 237
Properties

of continuity, 75, A6
of the cross product

algebraic, 793
geometric, 794

of definite integrals, 277
of the derivative of a vector-valued

function, 844
of the dot product, 783
of double integrals, 994
of functions defined by power series, 666
of the gradient, 937
of infinite limits, 87
of infinite series, 612

of inverse functions, 363
of inverse trigonometric functions, 375
of limits, 59, A2
of limits of sequences, 598
logarithmic, 325
of the natural exponential function, 325,

353
of the natural logarithmic function, 325,

A12
of vector operations, 767

Proportionality constant, 416
-series, 621

convergence of, 621
divergence of, 621
harmonic, 621

Pulse function, 94
unit, 94

Pursuit curve, 395, 397

Q

Quadratic function, 24
Quadric surface, 813

ellipsoid, 813, 814
elliptic cone, 813, 815
elliptic paraboloid, 813, 815
general form of the equation of, 813
hyperbolic paraboloid, 813, 815
hyperboloid of one sheet, 813, 814
hyperboloid of two sheets, 813, 814
standard form of the equations of, 813,

814, 815
Quaternions, 766
Quotient, difference, 20, 97
Quotient Rule, 121, 136

differential form, 238
Quotient of two functions, 25

R

Radial lines, 731
Radical, limit of a function involving a, 60,

A4
Radicals, solution by, 232
Radioactive isotopes, half-lives of, 417
Radius

of convergence, 662, A18
of curvature, 874
function, 818
of gyration, 1017
inner, 461
outer, 461

Ramanujan, Srinivasa (1887–1920), 675
Range of a function, 19

of two variables, 886
Raphson, Joseph (1648–1715), 229
Rate of change, 12, 911

average, 12
instantaneous, 12

Ratio, 12
golden, 606

Ratio Test, 641
Rational function, 22, 25

guidelines for finding limits at infinity
of, 201

limit of, 60
of two variables, 887

Rationalize the numerator, 63
Real Exponents, Power Rule, 365
Real numbers, completeness of, 77, 603
Real-valued function of a real variable 19
Reasoning, inductive, 601
Recovering a function from its gradient, 1065
Rectangle

area of, 261
circumscribed, 263
inscribed, 263
representative, 448

Rectangular coordinates
converting to cylindrical, 822
converting to polar, 732
converting to spherical, 825
curvature in, 874, 877

Rectifiable curve, 478
Recursion formula, 1167
Recursively defined sequence, 596
Reduction formulas, 565
Reflection

about the origin, 23
about the -axis, 23
about the -axis, 23
angle of, 698
in the line 344

Reflective property
of an ellipse, 701
of inverse functions, 344
of a parabola, 698

Reflective surface, 698
Refraction, 226, 977
Region of integration R, 985

horizontally simple, 986
-simple, 1006
-simple, 1006

vertically simple, 986
Region in the plane

area of, 265, 986
between two curves, 449

centroid of, 503
connected, 1086

Region 
boundary point of, 898
bounded, 954
closed, 898
differentiable function in, 919
interior point of, 898, 904
open, 898, 904

continuous in, 900, 904
simply connected, 1062, 1093

R

�
r
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Regression, least squares, 7, 964, 965
Regular partition, 272
Related-rate equation, 149
Related-rate problems, guidelines for solving,

150
Relation, 19
Relative error, 237
Relative extrema

First Derivative Test for, 181
of a function, 165, 954
occur only at critical numbers, 166
occur only at critical points, 955
Second Derivative Test for, 194
Second Partials Test for, 957

Relative maximum
at 165
First Derivative Test for, 181
of a function, 165, 954, 957
Second Derivative Test for, 194
Second Partials Test for, 957

Relative minimum
at 165
First Derivative Test for, 181
of a function, 165, 954, 957
Second Derivative Test for, 194
Second Partials Test for, 957

Remainder
alternating series, 635
of a Taylor polynomial, 656

Removable discontinuity, 71
of a function of two variables, 902

Representation of antiderivatives, 248
Representative element, 453

disk, 458
rectangle, 448
shell, 469
washer, 461

Resultant force, 770
Resultant vector, 766
Return wave method, 544
Review

of basic differentiation rules, 378
of basic integration rules, 385, 522

Revolution
axis of, 458
solid of, 458
surface of, 482

area of, 483, 726, 746
volume of solid of

disk method, 458
shell method, 469, 470
washer method, 461

Riemann, Georg Friedrich Bernhard
(1826–1866), 272, 638

Riemann sum, 272
Riemann zeta function, 625
Right cylinder, 812
Right-hand limit, 72
Right-handed orientation, 775

Rolle, Michel (1652–1719), 172
Rolle’s Theorem, 172
Root Test, 644
Rose curve, 734, 737
Rotated ellipse, 146
Rotated hyperbola, 146
Rotation of F about N, 1135
-simple region of integration, 1006

Rulings of a cylinder, 812

S

Saddle point, 957
Scalar, 764

field, 889
multiple, 766
multiplication, 766, 777
product of two vectors, 783
quantity, 764

Secant function
derivative of, 123, 136
integral of, 339
inverse of, 373

derivative of, 376
Secant line, 45, 97
Second derivative, 125
Second Derivative Test, 194
Second Fundamental Theorem of Calculus,

289
Second moment, 1016, 1032
Second Partials Test, 957
Second Theorem of Pappus, 508
Secondary equation, 219
Second-degree equation, general, 696
Second-order

homogeneous linear differential
equation, 1151

linear differential equation, 1151
nonhomogeneous linear differential

equation, 1151, 1159
solution of, 1159

Separable differential equation, 423
Separation of variables, 415, 423
Sequence, 596

Absolute Value Theorem, 600
bounded, 603
bounded above, 603
bounded below, 603
bounded monotonic, 603
convergence of, 597
divergence of, 597
Fibonacci, 606, 617
least upper bound of, 603
limit of, 597

properties of, 598
lower bound of, 603
monotonic, 602
th term of, 596

of partial sums, 608

pattern recognition for, 600
recursively defined, 596
Squeeze Theorem, 599
terms of, 596
upper bound of, 603

Series, 608
absolutely convergent, 636
alternating, 633

geometric, 633
harmonic, 634, 636, 638

Alternating Series Test, 633
binomial, 683
conditionally convergent, 636
convergence of, 608
convergent, limit of th term, 612
Direct Comparison Test, 626
divergence of, 608

th term test for, 612
finite Fourier, 544
Fourier Sine, 535
geometric, 610

alternating, 633
convergence of, 610
divergence of, 610

guidelines for testing for convergence
or divergence, 645

harmonic, 621
alternating, 634, 636, 638

infinite, 608
properties of, 612

Integral Test, 619
Limit Comparison Test, 628
Maclaurin, 679
th partial sum, 608
th term of convergent, 612

power, 661
-series, 621

Ratio Test, 641
rearrangement of, 637
Root Test, 644
sum of, 608
summary of tests for, 646
Taylor, 678, 679
telescoping, 609
terms of, 608

Serpentine, 127
Shell method, 469, 470

and disk method, comparison of, 471
Shift of a graph

horizontal, 23
vertical, 23

Sigma notation, 259
index of summation, 259
th term, 259

lower bound of summation, 259
upper bound of summation, 259

Signum function, 82
Simple curve, 1093
Simple Power Rule, 108, 136

i

p

n
n

n

n

n

r
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Simple solid region, 1125
Simply connected plane region, 1093
Simpson’s Rule, 314

error in, 315
Sine function, 22

derivative of, 112, 136
integral of, 339
inverse of, 373

derivative of, 376, A15
series for, 684

Sine integral function, 322
Sine Series, Fourier, 535
Single integral, 994
Singular solution, differential equation, 406
Sink, 1129
Slant asymptote, 211
Slope(s)

field, 256, 306, 325, 408
of the graph of at 97
of a line, 10
of a surface in - and -directions, 909
of a tangent line, 97

parametric form, 721
polar form, 735

Slope-intercept equation of a line, 13, 14
Smooth 

curve, 478, 716, 844, 859
on an open interval, 844
piecewise, 716

parametric surface, 1105
plane curve, 1069
space curve, 1069

Snell’s Law of Refraction, 226, 977
Solenoidal, 1066
Solid region, simple, 1125
Solid of revolution, 458

volume of
disk method, 458
shell method, 469, 470
washer method, 461

Solution 
curves, 407
of a differential equation, 406

Bernoulli, 439
Euler's Method, 410
first-order linear, 435
general, 249, 406, 1159
linear combinations of, 1152
particular, 253, 407, 1159
second-order linear nonhomogeneous,

1159
singular, 406
of 1153

point of an equation, 2
by radicals, 232

Some basic limits, 59
Somerville, Mary Fairfax (1780–1872), 886
Source, 1129
Space curve, 834

arc length of, 869
moments of inertia for, 1082
smooth, 1069

Spandrel, parabolic, 507
Special integration formulas, 549
Special polar graphs, 737
Special type of improper integral, 586
Speed, 114, 850, 851, 875, 877

angular, 1017
Sphere, 776

astroidal, 1111
open, 904
standard equation of, 776

Spherical coordinate system, 825
converting to cylindrical coordinates,

825
converting to rectangular coordinates,

825
Spiral

of Archimedes, 725, 733, 749
cornu, 761, 883
logarithmic, 749

Spring constant, 34, 1156
Square root function, 22
Squared errors, sum of, 964
Squaring function, 22
Squeeze Theorem, 65, A5

for Sequences, 599
Standard equation of

an ellipse, 699
a hyperbola, 703
a parabola, 697
a sphere, 776

Standard form of the equation of
an ellipse, 699
a hyperbola, 703
a parabola, 697
a plane in space, 801
a quadric surface, 813, 814, 815

Standard form of a first-order linear 
differential equation, 434

Standard normal probability density function,
355

Standard position of a vector, 765
Standard unit vector, 769

notation, 777
Step function, 72
Stirling’s approximation, 529
Stirling’s Formula, 360
Stokes, George Gabriel (1819–1903), 1132
Stokes’s Theorem, 1098, 1132
Strategy for finding limits, 62
Strictly monotonic function, 180, 345
Strophoid, 761
Substitution for rational functions of sine

and cosine, 566
Sufficient condition for differentiability,

919, A19
Sum(s)

th term of, 259
lower, 263

limit of, 265
th partial, 608

Riemann, 272
Rule, 111, 136

differential form, 238
of a series, 608
sequence of partial, 608
of the squared errors, 964
of two functions, 25
of two vectors, 766
upper, 263

limit of, 265
Summary

of common integrals using integration 
by parts, 532

of compound interest formulas, 366
of curve sketching, 209
of differentiation rules, 136
of equations of lines, 14
of first-order differential equations, 440
of integration formulas, 1136
of line and surface integrals, 1121
of tests for series, 646
of velocity, acceleration, and curvature,

877
Summation 

formulas, 260, A10
index of, 259
lower bound of, 259
upper bound of, 259

Surface
closed, 1124
cylindrical, 812
isothermal, 892
level, 891
orientable, 1117
oriented, 1117
parametric, 1102
parametric equations for, 1102
quadric, 813
reflective, 698
trace of, 813

Surface area 
of a parametric surface, 1106
of a solid, 1020, 1021

Surface integral, 1112
evaluating, 1112
summary of, 1121

Surface of revolution, 482, 818
area of, 483

parametric form, 726
polar form, 746

Symmetric equations, line in space, 800
Symmetry

tests for, 5
with respect to the origin, 5
with respect to the point 403�a, b�,

n
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with respect to the -axis, 5
with respect to the -axis, 5

T

Table of values, 2
Tables, integration by, 563
Tabular method for integration by parts, 532
Tangent function

derivative of, 123, 136
integral of, 339
inverse of, 373

derivative of, 376
Tangent line(s), 45, 97

approximation of at 235
to a curve, 860
at the pole, 736
problem, 45
slope of, 97

parametric form, 721
polar form, 735

with slope 97
vertical, 99

Tangent plane, 946
equation of, 946

Tangent vector, 850
Tangential component of acceleration, 862,

863, 877
Tautochrone problem, 717
Taylor, Brook (1685–1731), 652
Taylor polynomial, 161, 652

error in approximating, 656
remainder, Lagrange form of, 656

Taylor series, 678, 679
convergence of, 680
guidelines for finding, 682
solution of a differential equation, 1167

Taylor’s Theorem, 656, A17
Telescoping series, 609
Terminal point, directed line segment, 764
Terms

for exactness, 1144
of a sequence, 596
of a series, 608

Test(s)
comparison, for improper integrals, 588
for concavity, 191, A9
conservative vector field in the plane,

1062
conservative vector field in space, 1065
for convergence

Alternating Series, 633
Direct Comparison, 626
geometric series, 610
guidelines, 645
Integral, 619
Limit Comparison, 628
-series, 621

Ratio, 641

Root, 644
summary, 646

for even and odd functions, 26
First Derivative, 181
Horizontal Line, 345
for increasing and decreasing functions,

179
Leading Coefficient, 24
Second Derivative, 194
for symmetry, 5
Vertical Line, 22

Theorem
Absolute Value, 600
of Calculus, Fundamental, 282

guidelines for using, 283
of Calculus, Second Fundamental, 289
Cavalieri’s, 468
Darboux’s, 245
existence, 77, 164
Extended Mean Value, 245, 570, A16
Extreme Value, 164, 954
Intermediate Value, 77
Mean Value, 174

alternative form, 175
Extended, 245, 570, A16
for Integrals, 285

Net Change, 291
of Pappus, 505

Second, 508
Rolle’s, 172
Squeeze, 65, A5

for sequences, 599
Taylor’s, 656, A17

Theta,
simple region of integration, 1006

Third derivative, 125
Three-dimensional coordinate system, 775

left-handed orientation, 775
right-handed orientation, 775

Top half of circle, 138
Topographic map, 889
Torque, 500, 796
Torricelli’s Law, 445
Torsion, 884
Total differential, 918
Total distance traveled on 292
Total mass, 500, 501

of a one-dimensional system, 500
of a two-dimensional system, 501

Trace
of a plane in space, 802
of a surface, 813

Tractrix, 333, 395, 396
Trajectories, orthogonal, 147, 428
Transcendental function, 25, 378
Transformation, 23, 1046
Transformation of a graph of a function, 23

basic types, 23

horizontal shift, 23
reflection about origin, 23
reflection about -axis, 23
reflection about -axis, 23
reflection in the line 344
vertical shift, 23

Transverse axis of a hyperbola, 703
Trapezoidal Rule, 312

error in, 315
Triangle inequality, 769
Trigonometric function(s), 24

and the Chain Rule, 135
cosine, 22
derivative of, 123, 136
integrals of the six basic, 339
inverse, 373

derivatives of, 376, A15
graphs of, 374
integrals involving, 382
properties of, 375

limit of, 61
sine, 22

Trigonometric integrals, 536
Trigonometric substitution, 545
Triple integral, 1027

in cylindrical coordinates, 1038
in spherical coordinates, 1041

Triple scalar product, 796
geometric property of, 797

Two-dimensional system
center of gravity of, 501
center of mass of, 501
moment of, 501
total mass of, 501

Two-Point Gaussian Quadrature
Approximation, 321

Two special definite integrals, 276
Two special trigonometric limits, 65

U

Undamped motion of a spring, 1156
Undetermined coefficients, 1160
Unit pulse function, 94
Unit tangent vector, 859, 877
Unit vector, 765

in the direction of 768, 777
standard, 769

Universal Gravitation, Newton’s Law, 491
Upper bound

least, 603
of a sequence, 603
of summation, 259

Upper limit of integration, 273
Upper sum, 263

limit of, 265
-substitution, 297u

v,

y � x,
y
x

�a, b�,

�

p

m,

c,f

y
x
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IN
D

E
X

V

Value of at 19
Variable

dependent, 19
dummy, 275
force, 490
independent, 19

Variation of parameters, 1163
Vector(s)

acceleration, 862, 877
addition, 766, 767

associative property of, 767
commutative property of, 767

Additive Identity Property, 767
Additive Inverse Property, 767
angle between two, 784
component 

of along 787
of orthogonal to 787

component form of, 765
components, 765, 787
cross product of, 792
difference of two, 766
direction, 800
direction angles of, 786
direction cosines of, 786
Distributive Property, 767
dot product of, 783
equal, 765, 777
horizontal component of, 769
initial point, 764
inner product of, 783
length of, 765, 777
linear combination of, 769
magnitude of, 765
negative of, 766
norm of, 765
normal, 785
normalization of, 768
operations, properties of, 767
orthogonal, 785
parallel, 778
perpendicular, 785
in the plane, 764
principal unit normal, 860, 877
product of two vectors in space, 792
projection of, 787
resultant, 766
scalar multiplication, 766, 777
scalar product of, 783
in space, 777
standard position, 765
standard unit notation, 777
sum, 766
tangent, 850
terminal point, 764
triple scalar product, 796
unit, 765

in the direction of 768, 777

standard, 769
unit tangent, 859, 877
velocity, 850, 877
vertical component of, 769
zero, 765, 777

Vector field, 1058
circulation of, 1135
conservative, 1061, 1083

test for, 1062, 1065
continuous, 1058
curl of, 1064
divergence of, 1066
divergence-free, 1066
incompressible, 1129
irrotational, 1064
line integral of, 1074
normal component of, 1118
over a plane region 1058
over a solid region 1058
potential function for, 1061
rotation of, 1135
sink, 1129
solenoidal, 1066
source, 1129

Vector space, 768
axioms, 768

Vector-valued function(s), 834
antiderivative of, 846
continuity of, 838
continuous on an interval, 838
continuous at a point, 838
definite integral of, 846
derivative of, 842

higher-order, 843
properties of, 843

differentiation of, 843
domain of, 835
indefinite integral of, 846
integration of, 846
limit of, 837

Velocity, 114, 851
average, 113
escape, 94
function, 125
instantaneous, 114
potential curves, 428

Velocity field, 1058, 1059
incompressible, 1066

Velocity vector, 850, 877
Vertéré, 201
Vertex

of an ellipse, 699
of a hyperbola, 703
of a parabola, 697

Vertical asymptote, 84, 85, A7
Vertical component of a vector, 769
Vertical line, 14
Vertical Line Test, 22
Vertical shift of a graph of a function, 23
Vertical tangent line, 99

Vertically simple region of integration, 986
Volume of a solid

disk method, 459
with known cross sections, 463 
shell method, 469, 470
washer method, 461

Volume of a solid region, 994, 1027

W

Wallis, John (1616–1703), 538
Wallis’s Formulas, 538, 544
Washer, 461
Washer method, 461
Weierstrass, Karl (1815–1897), 955
Weight-densities of fluids, 509
Wheeler, Anna Johnson Pell (1883–1966),

435
Witch of Agnesi, 127, 146, 201, 841
Work, 489, 789

done by a constant force, 489
done by a variable force, 490
dot product form, 789
force field, 1074
projection form, 789

Wronskian of two functions, 1158

X

-axis
moment about, of a planar lamina, 502
moment about, of a two-dimensional 

system, 501
reflection about, 23
symmetry, 5

-intercept, 4
-plane, 775
-plane, 775

Y

-axis
moment about, of a planar lamina, 502
moment about, of a two-dimensional 

system, 501
reflection about, 23
symmetry, 5

-intercept, 4
Young, Grace Chisholm (1868–1944), 45

-plane, 775

Z

Zero factorial, 599
Zero of a function, 26

approximating 
bisection method, 78
Intermediate Value Theorem, 77
with Newton’s Method, 229

Zero polynomial, 24
Zero vector, 765, 777

yz

y

y

xz
xy
x

x

Q,
R,

v,

v,u
v,u

x,f
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Factors and Zeros of Polynomials
Let be a polynomial. If then is a of the 
polynomial and a solution of the equation Furthermore, is a factor of the polynomial.

Fundamental Theorem of Algebra
An degree polynomial has (not necessarily distinct) zeros. Although all of these 
zeros may be imaginary, a real polynomial of odd degree must have at least one real zero.

Quadratic Formula
If and then the real zeros of are 

Special Factors

Binomial Theorem

Rational Zero Theorem
If has integer coefficients, then every 
rational zero of is of the form where is a factor of and is a factor of 

Factoring by Grouping

Arithmetic Operations

Exponents and Radicals

n�a
b

�
n�a
n�b

�ax�y � axyn�ab � n�a n�ba�x �
1
ax

n�am � am�n�a
b�

x

�
ax

bx

n�a � a1�nax

ay � ax�y�a � a1�2axay � ax�y�ab�x � axbxa � 0a0 � 1,

ab � ac
a

� b � c
a � b
c � d

�
b � a
d � c

a�b
c� �

ab
c

a

�b
c�

�
ac
b

�a
b�
c

�
a
bc

�a
b�
�c

d�
� �a

b��
d
c� �

ad
bc

a � b
c

�
a
c

�
b
c

a
b

�
c
d

�
ad � bc

bd
ab � ac � a�b � c�

acx3 � adx2 � bcx � bd � ax2�cx � d� � b�cx � d� � �ax2 � b��cx � d�

an.sa0rx � r�s,p
p�x� � anxn � an�1x

n�1 � .  .  . � a1x � a0

�x � y�n � xn � nxn�1y �
n�n � 1�

2!
xn�2y2 � .  .  . ± nxyn�1  �  yn

�x � y�n � xn � nxn�1y �
n�n � 1�

2!
xn�2y2 � .  .  . � nxyn�1 � yn

�x � y�4 � x4 � 4x3y � 6x2y2 � 4xy3 � y4�x � y�4 � x4 � 4x3y � 6x2y2 � 4xy3 � y4

�x � y�3 � x3 � 3x2y � 3xy2 � y3�x � y�3 � x3 � 3x2y � 3xy2 � y3

�x � y�2 � x2 � 2xy � y2�x � y�2 � x2 � 2xy � y2

x4 � a4 � �x2 � a2��x2 � a2�x3 � a3 � �x � a��x2 � ax � a2�

x3 � a3 � �x � a��x2 � ax � a2�x2 � a2 � �x � a��x � a�

x � ��b ± �b2 � 4ac��2a.p0 � b2 � 4ac,p�x� � ax2 � bx � c,

nnth

�x � a�p�x� � 0.
zeroap�a� � 0,p�x� � anxn � an�1x

n�1 � .  .  . � a1x � a0
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FORMULAS FROM GEOMETRY

Triangle

(Law of Cosines)

c2 � a2 � b2 � 2ab cos �

Area �
1
2

bh

a

b

h
c

θ

h � a sin �

Right Triangle
(Pythagorean Theorem)

c2 � a2 � b2

a

b

c

Equilateral Triangle

Area �
�3s2

4

s

s

h
s

h �
�3s

2

Parallelogram

b

hArea � bh

Trapezoid a

h

b

a
b

h

Area �
h
2

�a � b�

Circle

Circumference � 2	r
rArea � 	r2

Sector of Circle
in radians

s � r�

Area �
�r2

2 r

s

θ

���

Circular Ring

 � 2	pw

 Area � 	�R2 � r2�
w � width of ring�

R

p w
r

�p � average radius,

Sector of Circular Ring

Area � �pw
� in radians�
 w � width of ring,

w

p

θ

�p � average radius,

Ellipse

Circumference � 2	�a2 � b2

2

a

bArea � 	ab

Cone

Volume �
Ah
3

h

A

�A � area of base�

Right Circular Cone

Lateral Surface Area � 	r�r2 � h2

r

h

Volume �
	r2h

3

Frustum of Right Circular Cone

Lateral Surface Area � 	s�R � r�
h R

r

s
Volume �

	�r2 � rR � R2�h
3

Right Circular Cylinder

Lateral Surface Area � 2	rh

r

h
Volume � 	r2h

Sphere

Surface Area � 4	r2

r
Volume �

4
3

	r3

Wedge

A � B sec �

 B � area of base�

B

A

θ

�A � area of upper face,

Tear out F
orm

ula C
ards for H

om
ew

ork S
uccess.
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Solar collector, 707
Sound intensity, 40, 333, 422
Speed, 29, 177, 880, 969

of sound, 287
Statics problems, 506
Stopping distance, 118, 129, 159, 241
Surface area, 154, 160

of a dome, 1111
of an oil spill, 455
of a pond, 515
of a satellite-signal receiving dish, 708

Suspension bridge, 488
Temperature, 18, 177, 207, 350, 413, 445

of a house, 309, 310
at which water boils, 333

Temperature distribution, 891, 896, 916,
938, 943, 944, 977, 981

Topography, 889, 944
Torque, 796, 798, 799, 829
Tossing bales, 857
Velocity, 118, 177, 294, 318

of a diver, 114
of a piston, 153
of a rocket, 594

Velocity and acceleration, 318, 322
on the moon, 162

Velocity in a resisting medium, 578
Vertical motion, 117, 158, 176, 177, 254,

257, 389, 400, 444
Vibrating spring, 158, 1158, 1165, 1166,

1172
Vibrating string, 535
Volume, 82, 118, 127, 154

of a box, 30, 921
of fluid in a storage tank, 552
of a goblet, 879
of the Great Salt Lake, 1056
of ice, 1011
of a pond, 476
of a pontoon, 473
of a pyramid, 464
of a shampoo bottle, 225
of a spherical ring, 517
of a trough, 924
of water in a conical tank, 149
of water in a fire truck tank, 709

Water depth in a tank, 467
Water flow, 296
Water running into a vase, 196
Wave equation, 915, 982
Wind chill, 924
Work, 317, 516

done by aircraft engines, 1139
done in closing a door, 789
done by an expanding gas, 494
done by a force field, 1080, 1082, 1091,

1139, 1142
done by a hydraulic cylinder, 568

done in lifting a chain, 494, 496, 516
done in moving a particle, 1100, 1142
done by a person walking up a 

staircase, 1082
done in pulling a sled, 791
done in pulling a toy wagon, 791
done in splitting a piece of wood, 497
done in towing a car, 791

Wrinkled and bumpy spheres, 1044

Business and Economics

Annuities, 617
Average production, 1002
Average profit, 1052
Average sales, 294
Break-even analysis, 37
Break-even point, 9
Capitalized cost, 589
Cash flow, 308
Cobb-Douglas production function, 891,

896, 973, 981
Compound interest, 367, 370, 402, 421,

578, 605, 690, 691
Consumer price index, 9
Consumer and producer surpluses, 518
Cost, 140, 295, 350
Declining sales, 418
Demand, 968
Demand function, 244
Depreciation, 308, 359, 370, 402, 616, 690
Elasticity of cost, 1150
Eliminating budget deficits, 456
Federal debt, 606
Home mortgage, 333, 404
Inflation, 369, 606
Inventory cost, 197, 243
Inventory management, 82, 118
Inventory replenishment, 127
Investment, 896, 916
Investment growth, 440, 441
Manufacturing, 310, 463, 468
Marginal costs, 916
Marginal productivity, 916
Marginal productivity of money, 973
Marginal revenue, 916
Marginal utility, 916
Marketing, 616
Maximum profit, 227, 963, 967, 980
Maximum revenue, 967
Minimum cost, 966, 967, 977, 980
Personal income, 606
Present value, 535, 616
Profit, 38, 457
Revenue, 456, 790
Salary, 617, 691
Sales, 29, 177, 309, 342, 443, 445

Wal-Mart, 897

Sales growth, 197, 243
Value of a mid-sized sedan, 360

Social and Behavioral Sciences

Cellular phone subscribers, 9
Crime, 234
Health maintenance organizations, 35
Learning curve, 421, 422, 441
Memory model, 535
Outlays for national defense, 243
Population, 421, 1011

of Colorado, 12
of United States, 16, 422

Population growth, 440, 443
Psychology, intelligence test, 916
Women in the work force, 968
World population, 969
World record times for running one mile, 207

Life Sciences

Bacterial culture growth, 367, 421, 433
Blood flow, 294
Carbon dioxide concentration, 7
Circulatory system, 139
Concentration of a tracer drug in a fluid,

446
DNA molecule, 835
Endangered species, 433
Epidemic model, 562
Forestry, 422, 896
Intravenous feeding, 441
Models for tumors, 1044
Organ transplants, 371
Population, 568
Population growth, 694

of bacteria, 127, 256, 342
of brook trout, 444
of coyotes, 427
of fish, 371
of fruit flies, 418

Respiratory cycle, 294, 320
Trachea contraction, 188

General

Applicants to a university, 916
Average typing speed, 197, 207
Dental inlays, 832
Folding paper, 246
Möbius Strip, 1111
Probability, 309, 361, 589, 616, 677, 688,

1003, 1011, 1052
Queuing model, 896
School commute, 27, 28
Sphereflake, 617
Spiral staircase, 881
Throwing a dart, 270

Index of Applications (continued from front inside cover)
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