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Basic Differentiation Rules

%[cu] = cu’ 2. %[u +yv]=u"%£v
%[ﬂ - V”V;Z“V 5. d%[c] =0

=1 8. < {luf] - T, w0
%[e”] = ey’ 11. %[loga u] = (lnuc;)u

%[sin u] = (cos u)u’ 14. %[cos u] = —(sin u)u’
%[cot u] = —(csc® u)u’ 17. %[sec u] = (sec u tan u)u’
%[arcsin u] = ﬁ 20. a[arccos ul = %’uz
%[arccot ul = 1__'_—'4;2 23. %[arcsec ul = Ml;ﬁ
% [sinh u] = (cosh u)u’ 26. % [cosh u] = (sinh u)u’

% [coth u] = —(csch? u)u’ 29. % [sech u] = —(sech u tanh u)u’
%[sinh_1 u] = # 32. di;c[cosh‘1 ul = u;/— :
%[coth—1 u] = I f/uz 35. %[sech_l ul = #\/%

Basic Integration Formulas

1. f kf (1) du = k J f(u) du

etdu =e" + C
cosudu = sinu + C

cotu du = In|sinu| + C

cscudu = —In|cscu + cotu| + C
csc2udu = —cotu + C
cscucotudu = —cscu + C
du
arctan + C
2+ u? a

|
|
g
J
J
J
J

12.

15.

18.

21.

24.

27.

30.

33.

36.

d
X dx[ln ul =

dx
d

4

%[a"] = (In a)a“u

d%[tan ul =
d%[csc ul =
d%[arctan ul =
d%[arccsc ul =

d
T [tanh u] =

d
T [csch u] =

i[tanh‘1 ul =

[csch Tyl =

d
. —[wv] = uwv’ + v’

n—lu/

’

(sec? u)u’

—(csc u cot u)u’

4

u
1+ u?

_u’
|u| Vu? — 1

(sech? u)u’

—(csch u coth u)u’

4

u
1 — u?

/

|u|\/1 + u?

(M)+g ]du—ff(u)du+f()d

adu—

6.

8.

12.

14.

16.

18.

1
= _arcsec ™ =
/2 — &2 a

“+ C

sinudu = —cosu + C

tan u du = —In|cos u| + C

sec2udu = tanu + C

secutanu du = secu + C

\/7 = arcs1n;+ C

+C

f
J
J
10. Jsecudu = Infsec u + tanu| + C
J
J
[
=
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Definition of the Six Trigonometric Functions
Right triangle definitions, where 0 < 6 < /2.

@ 0 sint9=m cs<:0=hﬂ

s Z hyp opp

5 o& cos¢9=a—dj secO=hﬂ

0 hyp adj

Adjacent opp adj

t = — = —

an 0 adi cot 0 opp
Circular function definitions, where 0 is any angle.
t S sin 6§ = Y csc O = L
.y r= vty r Y
X r
A\ cos @ =— secl=—
- A . ; .
K/ tan 6 == cotfh = —
X y

Reciprocal Identities

. 1
sinx =—— secx=—— fanx = ——
cscx cos x c

ot x

1
CSCx = — CoS x = cotx = ———
sin x se€C x tan x

Tangent and Cotangent Identities

sin x COS x
tan x = cotx = —
COS x sin x

Pythagorean ldentities
sinx + cos?x = 1

1 + tan%x = sec?x 1 + cot?x = csc?x

Cofunction Identities

[T T .
smE—x = COS X COSE_X = S x

csc<7—T — x) = sec x tan(z - x) = cotx
2 2

sec7—T—x>—cscx cot7—T—x>—tanx
2 2

Reduction Formulas

sin(—x) = —sinx cos(—x) = cosx
csc(—x) = —cscx  tan(—x) = —tan x

sec(—x) = secx cot(—x) = —cot x

Sum and Difference Formulas
sin(u & v) = sin u cos v & cos u sin v
cos(u + v) = cos u cos v I sin u sin v
tan u £ tanv

tan(ly +v) = ————
(e £ v) 1 ¥ tan u tan v

Double-Angle Formulas

sin 2u = 2 sin u cos u

cos2u = cos?u — sinu =2cos’u —1=1—2sin*u
2 tan u

tan2u = —— ———

1 — tan“ u

Power-Reducing Formulas

Gin? y = 1 — cos2u
2

5 1 + cos2u

cos*u = ————
2

tan® u = 1 — cos2u

1 + cos2u

Sum-to-Product Formulas

sinu + sinv = 2 sin(u * v) cos(u — v)
2 2
sin(u — v)
2
u-+v u-—v
—+ =
cos u + cosv 2cos( > )cos( > )

cosu —cosv = —2 sin(u * v) sin(u — v)
v 2 2

Product-to-Sum Formulas

. . u-+v
sinu — sinv = 2 cos >

1

sinusiny = E[cos(u — ) — cos(u + v)]
1

COS U COS V = E[COS(M —v) + cos(u + v)]

sinu cos v = %[sin(u +v) + sin(u — v)]

cos usiny = %[sin(u +v) — sin(u — v)]
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9th

Welcome to the Ninth Edition of Multivariable Calculus! We are proud to offer
you a new and revised version of our textbook. Much has changed since we wrote the
first edition over 35 years ago. With each edition we have listened to
you, our users, and have incorporated many of your suggestions
for improvement.

6th

7th

8th

Throughout the years, our objective has always been to write in a precise,
readable manner with the fundamental concepts and rules of calculus clearly defined
and demonstrated. When writing for students, we strive to offer features and
materials that enable mastery by all types of learners. For the instructors, we aim to
provide a comprehensive teaching instrument that employs proven pedagogical
techniques, freeing instructors to make the most efficient use of classroom time.

This revision brings us to a new level of change and improvement. For the past
several years, we’ve maintained an independent website—CalcChat.com—that
provides free solutions to all odd-numbered exercises in the text. Thousands of
students using our textbooks have visited the site for practice and help with their
homework. With the Ninth Edition, we were able to use information from
CalcChat.com, including which solutions students accessed most often, to help guide
the revision of the exercises. This edition of Calculus will be the first calculus textbook
to use actual data from students.

We have also added a new feature called Capstone exercises to this edition. These
conceptual problems synthesize key topics and provide students with a better
understanding of each section’s concepts. Capstone exercises are excellent for
classroom discussion or test prep, and instructors may find value in integrating these
problems into their review of the section. These and other new features join our
time-tested pedagogy, with the goal of enabling students and instructors to make the
best use of this text.

We hope you will enjoy the Ninth Edition of Multivariable Calculus. As always,
we welcome comments and suggestions for continued improvements.

Sy »
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.extbook Features

Tools to Build Mastery

— CAPSTONES )

NEW! Capstone exercises

section. These exercises synthesize the main

concepts of each section ai

topics relate. They are often multipart problems that
contain conceptual and noncomputational parts, and

can be used for classroom

now appear in every

nd show students how the

discussion or test prep.

CAPSTONE

70. Use the graph of f” shown in the figure to answer the
following, given that f(0) = —4.

(a) Approximate the slope of fat x = 4. Explain.

(b) Is it possible that f(2) = —1? Explain.

(c) Is f(5) — f(4) > 0? Explain.

(d) Approximate the value of x where f is maximum.
Explain.

(e) Approximate any intervals in which the graph of f is
concave upward and any intervals in which it is concave
downward. Approximate the x-coordinates of any
points of inflection.

(f) Approximate the x-coordinate of the minimum of f”(x).

WRITING ABOUT CONCEPTS

(g) Sketch an approximate graph of f. To print an enlarged
copy of the graph, go to the website

59. The graph of fis shown in the figure.

5 6 17

(a) Evaluate f:j(x) dx.

is translated two units upward.

60.

represent about the dog?

www.mathgraphs.com.

(b) Determine the average value of f on the interval [1, 7].

(c¢) Determine the answers to parts (a) and (b) if the graph

If r/(t) represents the rate of growth of a dog in pounds
per year, what does r(r) represent? What does f;'r’(t) dt

WRITING ABOUT CONCEPTS )

These writing exercises are questions designed to test
students’ understanding of basic concepts in each
section. The exercises encourage students to verbalize
and write answers, promoting technical communication
skills that will be invaluable in their future careers.

— STUDY TIPS )

The devil is in the details. Study Tips help point out some of the troublesome
common mistakes, indicate special cases that can cause confusion, or
expand on important concepts. These tips provide students with valuable
information, similar to what an instructor might comment on in class.

Because integration is
usually more difficult than differentiation,
you should always check your answer to
an integration problem by differentiating.
For instance, in Example 4 you should
differentiate 3(2x —=*2 =
that you obtain the

Later in this chapter,
you will learn convenient methods for
calculating [, f(x) dx for continuous
r now, you must use the

EXAMPLE [ Evaluation of a Definite Integral
3

Evaluate f (=x2 + 4x — 3) dx using each of the following values.
1

3 3 3
J’xzdxzé, fxdx:4, fdx:2
1 3 1 1

Solution

f (=x*+4x — 3)dx = f (—x2)dx + f 4x dx + f (—3) dx
1 1 1 1

3 3 3
:—J xzdx+4j xdx—3j dx
1 1 1

-(%{’) +44) - 30)

Remember that you can  fon.
check your answer by differentiating.

EXAMPLES )

Throughout the text, examples are worked out
step-by-step. These worked examples
demonstrate the procedures and techniques for
solving problems, and give students an increased
understanding of the concepts of calculus.
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— EXERCISES )

Practice makes perfect. Exercises are often the
first place students turn to in a textbook. The
authors have spent a great deal of time analyzing
and revising the exercises, and the result is a
comprehensive and robust set of exercises at the
end of every section. A variety of exercise types
and levels of difficulty are included to
accommodate students with all learning styles.

In addition to the exercises in the book, 3,000
algorithmic exercises appear in the WebAssign®
course that accompanies Calculus.

Textbook Features

mExercises e wwCalchatcom

In Exercises 1 and 2, use Example 1 as a model to evaluate the

or worked-out solutions to add-numbered erercises

In Exercises 13-22, set up a definite integral that yields the area

limit of the region. (Do not evaluate the integral.)
iﬂr‘]_\,‘ 13. /() =5 14. f(x) = 6 — 3x
d s s
over the region bounded by the graphs of the equations. 5]
LfW=Va y=0, x=0, x=3 N
(Hint: Lete, = 3i%/n2) !
2000 = Y% y=0, x=0, x=1 2
(Hint: Lete, = i*/n’) ! v
8
In E es 3-8, evaluate the definite integral by the limit t2aas
definition.

15, flo =4 =[x 16 £(0) =

J.J 8dx
"
s,j oy
-
A J’t\f + 1) dv

4.f xdx
6.J 42 dx
1

8. f @ + 3) dx

63. Respiratory Cycle The volume V, in liters, of air in the lungs
during a five-second respiratory cycle is approximated by the
model V = 0.1729 + 0.1522¢% ~ 0.0374r%, where 1 i the time
in seconds. Approximate the average volume of air in the lungs
during one cycle,

I 64. Average Sales A company fits a model to the monthly sales
data for a seasonal product. The model is

=2

' e
| Y(/|73+\X+ﬂjxm(?>, 0

APPLICATIONS )

“When will I use this?” The authors attempt to answer this question
for students with carefully chosen applied exercises and examples.
Applications are pulled from diverse sources, such as current events,
world data, industry trends, and more, and relate to a wide range of
interests. Understanding where calculus is (or can be) used promotes
fuller understanding of the material.

where § is sales (in thousands) and  is time in months.

() Use a graphing wiility to graph /(1) = 0.5 sin(m1/6) for
0= 1= 24, Use the graph to explain why the average
value of £(1) is 0 over the interval

(b) Use a graphing utility to graph S() and the line
(1) = t/4 + 18 in the same viewing window. Use the
graph and the result of part () to explain why g is called
the trend line.

¥ 65. Modeling Data  An experimental vehicle is tested on a
straight track. It starts from rest, and its velocity v (in meters per
second) is recorded every 10 nds for 1 minute (see table).

(2) Use a_graphing utility to find a model of the form
v=ar* + b* + ct + d for the data

(b) Use a graphing uility to plot the data and graph the model.

() Use the Fundamental Theorem of Calculus to approximate
the distance traveled by the vehicle during the test.
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I REVIEW EXERCISES -

In Exercises 1 and 2, use the graph of £ to sketch a graph of /.
To an enlarged copy of the graph, go to the website
www.mathgraphs.com.

Loy 2

In Exercises 3-8, find the indefinite integral.
. 2
3 [ @2+ 3 4| s=ar

5. I‘#m f-.f
175

7. J‘m — 9sinx) dr

8. f(i cos ¥ — 2 sec? x) dv

9. Find the particular solution of the differential equation
F(x) = ~6x whose graph passes through the point (1, ~2).

10. Find the particular solution of the differential equation
F7(9 = 6(x — 1) whose graph passes through the point (2, 1)
and is tangent to the line 3x — y = 5 = 0 at that point

" Slope Fields Tn Exercises 11 and 12, a differential equation, a
point, and a slope field are given. (a) Sketch two approximate
solutions of the differential equation on the slope field, one of
which passes through the given point. (To print an enlarged copy

mathgraphs.com.) (b) Use

integration to find the part
equation and use a graphing

& &
noo-s w2y %o
ds - ar

13. Velocity and Acceleration An airplane taking off from a

runway travels 3600 feet before lifting off. The airplane starts
on, and makes the run
i off?

from rest, moves with constant accel
in 30 seconds. With what speed do

14. Velocity and Acceleration The speed of a car traveling in a
straight line is reduced from 45 to 30 per hour in a
distance of 264 feet. Find the distance in which the car can be
brought 1o res miles per hour, assuming the same
constant deceleration.

1. Velocity and Acceleration A ball is thrown vertically upward
from ground level with an initial velocity of 96 feet per second.
() How long will it take the ball (o rise t0 its maximum height?
What is the maximum height?

(b) After how many seconds is the velocity of the ball one-half
the initial velocity?

(€) What i the height of the ball when its velocity is one-half
the initial velocity?

16. Modeling Data  The table shows the velocities (in miles per

hour) of two cars on an entrance ramp to an interstate highway.
The time 1 is in seconds.

REVIEW EXERCISES

Review Exercises at the end of each chapter provide more
practice for students. These exercise sets provide a
comprehensive review of the chapter’s concepts and are
an excellent way for students to prepare for an exam.

clo | s [0]1s| 202530

wlo|as| 7 16]20]45]6s

vl o |20 [ 38|51 ] 60|64 6s

(@) Rewrite the velocities in feet per sccond

" (b) Use the regression capabilities of a graphing utility to find
quadratic models for the data in part (a)

(©) Approximate the distance traveled by each car during the

30 seconds. Explain the difference in the distances.

In Exercises 17 and 18, use sigma notation to write the sum.

R B

3 30 310)

i () GIE e O

n

|
7. o
! 3(1)

In Exercises 19-22, use the properties of summation and
Theorem 4.2 to evaluate the sum.

1. 32 2. S
w S e

2.

2= 1)

in sigma notation (a) the sum of the first ten positive odd

integers, (b) the sum of the cubes of the first n positive integers,
and (©)6 + 10 + 14+ 18 + - - - + 42
24, Evaluate each sum for x, = 2.5, = — 1, x; = 5, x, = 3, and

1

. s
@ 13 o3

@ S -x)

@ PROBLEM SOLVING

. (d) Locate all points of inflection of § on the interval (0, 3).
.LuL[n:J‘%m x>0 "

6. The Two-Point Gaussian Quadrature Approximation for fis
' 1 1
av=g(-2) (2=
J"/ml ( J] /(\ﬁ)

(@ Us s o o appovimte [ cos s Find e ror
of the approximation. -1

(@ Find L(1)

(b) Find L'(x) and L'(1)

() Use a graphing utility to approximate the value of x (1o three
decimal places) for which L(x) =

.-

(@ Prove that Lix,x,) = Lix,) + L(x,) for all positive values of
xy and x,

(b) Use this formula to approximate J dx

1
e
(©) Prove that the Two-Point Gaussian Quadrature Approxi-

W2 Let Y ,J sin £ dt,
: mation is exact for all polynomials of degree 3 or less.

(@) Use a graphing utility to complete the table. N
7. Archimedes showed that the area of a parabolic arch is equal to
the product of the base and the height (see figure)

—

) LetG) = —5 Fl) = —— [ sin 12 dr. Use a graphing
y Tk () Graph the parabolic arch bounded by y = 9 — x* and the

x-axis. Use an appropriate integral to find the area A
(b) Find the base and height of the arch and verify Archimedes’

formula.

e lim Glx).

(©) Prove Archimedes® formula for a general parabola.

*

Galileo Galilei (1564-1642) stated the following proposition

P.S. PROBLEM SOLVING )

() Use the definition of the derivative to find the exact value of
the limit lim G(x).

In Exercises 3 and 4, (a) write the area under the graph of the
given function defined on the given interval o Then (b)
evaluate the sum in part (a), and (c) evaluate the limit using the
result of part (b).

3y=x-ad+ae [0.2)

(i 0 =tk D2n = DG+ 30— 1)

M

. The graph of the function f consists of the three line segments
2 (62

concerning falling objects:
The time in which any space is traversed by a uniformly
accelerating body is equal 1o the time in which that same
space would be traversed by the same body moving at a
uniform speed whose value is the mean of the highest
speed of the accelerating body and the speed just before
acceleration began.

Use the techniques of this chapter to verify this proposition.

jsining 1he poinis (0.0) ) and (8 3) The funciion

These sets of exercises at the end of each chapter test students’ abilities
with challenging, thought-provoking questions.
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Textbook Features

Classic Calculus with Contemporary Relevance

— THEOREMS )

Theorems provide the
conceptual framework for
calculus. Theorems are
clearly stated and separated
from the rest of the text

by boxes for quick visual
reference. Key proofs often
follow the theorem, and
other proofs are provided in
an in-text appendix.

THEOREM 4.9 THE FUNDAMENTAL THEOREM OF CALCULUS

ative of f on the interval [a, b], then

f fx)dx = F(b) — F(a).

If a function f'is continuous on the closed interval [a, b] and F is an antideriv-

DEFINITION OF DEFINITE INTEGRAL

partitions A

lim
[A[—0 i=1

limit is denoted by

If 7 is defined on the closed interval [a, b] and the limit of Riemann sums over

i flc;,) Ax,

exists (as described above), then fis said to be integrable on [a, b] and the

R b
||B\I—I>lo izl fle,) Ax, = L f(x) dx.

The limit is called the definite integral of f from a to b.
lower limit of integration, and the number b is the uppe

DEFINITIONS

As with the theorems,
definitions are clearly
stated using precise,
formal wording and are
separated from the text
by boxes for quick
visual reference.

the next example.

EXAMPLE [ Change of Variables

Find fsinz 3x cos 3x dx.

— PROCEDURES )

Formal procedures are set apart from
the text for easy reference. The
procedures provide students with step-
by-step instructions that will help them
solve problems quickly and efficiently.

Solution  Because sin? 3x = (sin 3x)?, you can let u = sin 3x. Then
du = (cos 3x)(3) dx.
Now, because cos 3x dx is part of the original integral, you can write

% = cos 3x dx.

Substituting « and du/3 in the original integral yields

fsinz 3x cos 3x dx = fuz %

1
= gjuz du

immediately see. Like the
study tips, notes can be
invaluable to students.

1w}
= (%) +
i{5)+e

— NOTES
= %sin3 3x+ C.
Notes provide additional details about theorems, You can check this by differentiaing.
definitions, and examples. They offer additional insight, ar N
. . . . - [5 sin? 3)(] = (5)(3)(>m 3x)2(cos 3x)(3)
or important generalizations that students might not o

= sin® 3x cos 3x

There are two important points that should be made concerning the Trapezoidal Rule
(or the Midpoint Rule). First, the approximation tends to become more accurate as n increases.
For instance, in Example 1, if n = 16, the Trapezoidal Rule yields an approximation of 1.994.
Second, although you could have used the Fundamental Theorem to evaluate the integral in
Example 1, this theorem cannot be used to evaluate an integral as simple as [;'sin x> dx because
sin x> has no elementary antiderivative. Yet, the Trapezoidal Rule can be applied easily to
estimate this integral. |

To complete the change of variables in Example 5, you solved for x in terms of
u. Sometimes this is very difficult. Fortunately it is not always necessary, as shown in

that you have
u




Expanding the Experience of Calculus

— _CHAPTER OPENERS )

chapter material.

Chapter Openers provide initial motivation for the upcoming

Along with a map of the chapter objectives,

an important concept in the chapter is related to an application
of the topic in the real world. Students are encouraged to see
the real-life relevance of calculus.

Textbook Features

xiii

Differential Equations

In this chapter, you wil study one of the
most important applications of calculus—
differential equations. You will learn
several methods for solving different
types of differential equations, such

as homogeneous, first-order linear, and
Bernoulli. Then you will apply these
methods to solve differential equations

in applied problems,

In this chapter, you should learn the
following,

etch a slope field of a
a

1 equation, and fi

Explorations provide students with
unique challenges to study concepts e
that have not yet been formally

solution. (6.1)

= How (o use an exponential function
to model growth and decay. (6.2)

= How to use separation of variables

EXPLORATION

The Converse of Theorem 4.4 Is the converse of Theorem 4.4 true? That is,
if a function is integrable, does it have to be continuous? Explain your reasoning
and give examples.

Describe the relationships among continuity, differentiability, and
integrability. Which is the strongest condition? Which is the weakest? Which

conditions imply other conditions
EXPLORATION

EXPLORATIONS )

Finding Antiderivatives For
cach derivative, describe the
original function F.
a F)=2 b Flx)=x
> 1
e Fly)=x d Flx)= =
. 1 .
e Fl)=—= f F(x)=cosx

What strategy did you use to find
F?

covered. They allow students to learn

by discovery and introduce topics

related to ones they are presently studying.
By exploring topics in this way, students are
encouraged to think outside the box.

0 solve a differential equation. (6.3)

= How to solve a first-order linear
differential equation and a Bemoulli
differential equation. (6.4)

Dr ey
Depending on the type of bacteria, the time it takes for a cultur

Section 6.3, Exercise 84.)

can vary greatly from several minutes to several days. How could you use a
differential equation to model the growth rate of a bacteria culture’s weight? (See

A function y = f(x) is a solution of a differential equation if the equation is satisfied when y and its derivatives are

shape of all solutions of a differential equation. (See Section 6.1.)

replaced by f(x) and its erivatives. One way to solve a differential equation is to use slope fields, which show the general

HISTORICAL NOTES AND BIOGRAPHIES )—

Historical Notes provide students with
background information on the foundations of

calculus, and Biographies
help humanize calculus
and teach students about

r PUTNAM EXAM CHALLENGES )

Putnam Exam questions
appear in selected sections
and are drawn from actual

PUTNAM EXAM CHALLENGE

139. If g, a;, . . . a, are real numbers satisfying
A
2

o9
nt1

show that the equation

the people who contributed
to its formal creation.

Gy + @t ayt e axt =0

has at least one real zero,

exercises will

140. Find all the continuous positive functions f(x), for
0 = x = 1 such that

|
j fldx =1

o

j fWxdx = a
o

j fO dx = o

where ais a real number.

students.

These problems we
Competition. © The Mathemaical

SECTION PROJECTS )

Putnam Exams. These

push the limits

of students’ understanding
of calculus and provide extra
challenges for motivated

Projects appear in selected sections and more deeply
explore applications related to the topics being studied.
They provide an interesting and engaging way for students

SUM OF THE FIRST 100 INTEGERS
her of Carl Friedrich Gauss (1777-1855)
him to add all the integers from 1 to
lhen Gauss returned with the correct

GEORG FRIEDRICH BERNHARD RIEMANN
(1826-1866) 1 after oy a few moments, the teacher

only look at him in astounded silence.

German mathematician Riemann did his most what Gauss did:

famous work in the areas of non-Euclidean

geometry, differential equations, and number It 2+ 3+ -+ 100
theory. It was Riemann's results in physics - 99+ 98+ -+ 1
and mathematics that formed the structure |+ 101 + 101 + <4 101
on which Einstein's General Theory of Relativity 101

is based. f— = 5050

generalized by Theorem 4.2, where

® - 1000101) _
=g

SECTION PROJECT

Demonstrating the Fundamental Theorem

Use a gra
interval

F) = [ sin® ran

ility to graph the function y, = sin® 1 on the
Let F(x) be the following function of x.

graph F.,

(b) Use the integration capabilities of a graphing utility to

() Use the differentiation capabilities of a graphing utility to graph
F/(x). How is this graph related to the graph in part (b)?

to work and investigate ideas collaboratively.

(a) Complete the table. Explain why the values of F are increasing

[+ [0t [ s [ w2 20 [ 5w 7]

(ol [T T [ [ 1]

(d) Verify that the derivative of y = (1/2): — (sin 21)/4 is sin® 1
Graph y and write a short paragraph about how this graph is
related to those in parts (b) and ().
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Integrated Technology for Today’s World

CEXAMPLE Bl change of Vari

Find Jx\/Zx — 1ldx.
Solution

as shown.

u=2x-—1

—

1(145/2 u
=4
4\5/2 3

x=(u+1)/2

— Q= R L x - PR C

ables

As in the previous example, let u = 2x — 1 and obtain dx = du/2.
Because the integrand contains a factor of x, you must also solve for x in terms of u,

Solve for x in terms of u.

Now, using substitution, you obtain
+
jx\/2x —ldx = f(%) u'/? (%)

= if(u”z + u'/2) du

3/2

o)re

CAS INVESTIGATIONS )————

Examples throughout the book are
accompanied by CAS Investigations.
These investigations are linked
explorations that use a computer
algebra system (e.g., Maple®) to
further explore a related example

in the book. They allow students to
explore calculus by manipulating
functions, graphs, etc. and observing
the results. (Formerly called Open
Explorations)

GRAPHING TECH EXERCISES )

exercises are marked with

Understanding is often enhanced by using a
graph or visualization. Graphing Tech Exercises
are exercises that ask students to make use of a
graphing utility to help find a solution. These

55.

I 1-' Slope Fields 1In Exercises 55 and 56, (a) use a graphing utility
to graph a slope field for the differential equation, (b) use
integration and the given point to find the particular solution of
the differential equation, and (c) graph the solution and the
slope field in the same viewing window.

dy
dx

=2x, (=2, -2)

s6. =2 /x4 12)
dx

a special icon.

@D 49. Investigation Consider the function
Sl y) =22 = y?

at the point (4, —3, 7).

(a) Use a computer algebra system to graph the surface |EE)
represented by the function.

(b) Determine the directional derivative D, f(4, —3) as a
function of 6, where u = cos fi + sin 0j. Use a computer
algebra system to graph the function on the interval [0, 27).

(c) Approximate the zeros of the function in part (b) and
interpret each in the context of the problem

In Exercises 79-82, use a computer algebra system to graph the
plane.
79.2x+y—z=6

81 —5x+4y —62=—8

80. x —3z=3
82, 2.lx — 47y —z= -3

In Exercises 8386, determine if any of the planes are parallel
or identical.

(d) Approximate the critical numbers of the function in part (b)
and interpret each in the context of the problem.

(e) Find [[Vf(4, =3)| and explain its relationship to your

answers in part (d).

(f) Use a computer algebra syst
of the function f at the level
the vector in the direction
relationship to the level curve,

21 u=(4-357)
v=1(2593)

23 u=—3i+2j - 5k
v = 04i — 08j + 0.2k

@D In Exercises 21-24, use a computer algebra system to find u x v
and a unit vector orthogonal to u and v.

2. u=(-8,-64)
v =(10,-12,-2)
24. u =07k
v =150+ 6.2k

— CAS EXERCISES )

exercises may best be solved

NEW! Like the Graphing Tech Exercises, some

algebra system. These CAS Exercises are new to
this edition and are denoted by a special icon.

using a computer

TECHNOLOGY )7

Throughout the book,
technology boxes give students
a glimpse of how technology
may be used to help solve
problems and explore the
concepts of calculus. They
provide discussions of not only
where technology succeeds, but
also where it may fail.

—@ELITITIED Most graphing utilities and computer algebra systems have built-in
programs that can be used to approximate the value of a definite integral. Try using
such a program to approximate the integral in Example 1. How close is your
approximation?

When you use such a program, you need to be aware of its limitations. Often,
you are given no indication of the degree of accuracy of the approximation. Other
times, you may be given an approximation that is completely wrong. For instance,
try using a built-in numerical integration program to evaluate

2
fm
X

Your calculator should give an error message. Does yours?




.dditional Resources

Student Resources

Student Solutions Manual—Need a leg up on your homework or help to
prepare for an exam? The Student Solutions Manual contains worked-out
solutions for all odd-numbered exercises in the text. It is a great resource to
help you understand how to solve those tough problems.

Notetaking Guide—This notebook organizer is designed to help you organize
your notes, and provides section-by-section summaries of key topics and other
helpful study tools. The Notetaking Guide is available for download on the
book’s website.

WebAssign®—The most widely used homework system in higher education,
WebAssign offers instant feedback and repeatable problems, everything you
could ask for in an online homework system. WebAssign’s homework system
lets you practice and submit homework via the web. It is easy to use and loaded
with extra resources. With this edition of Larson’s Calculus, there are over
3,000 algorithmic homework exercises to use for practice and review.

DVD Lecture Series—Comprehensive, instructional lecture presentations
serve a number of uses. They are great if you need to catch up after missing
a class, need to supplement online or hybrid instruction, or need material for
self-study or review.

CalcLabs with Maple® and Mathematica® — Working with Maple or
Mathematica in class? Be sure to pick up one of these comprehensive manuals
that will help you use each program efficiently.

XV



XVi Additional Resources

Instructor Resources

WebAssign®—Instant feedback, grading precision, and ease of use are just
three reasons why WebAssign is the most widely used homework system in
higher education. WebAssign’s homework delivery system lets instructors
deliver, collect, grade, and record assignments via the web. With this edition
of Larson’s Calculus, there are over 3,000 algorithmic homework exercises to
choose from. These algorithmic exercises are based on the section exercises
from the textbook to ensure alignment with course goals.

Instructor’s Complete Solutions Manual—This manual contains worked-out
solutions for all exercises in the text. It also contains solutions for the special
features in the text such as Explorations, Section Projects, etc. It is available
on the Instructor’s Resource Center at the book’s website.

Instructor’s Resource Manual—This robust manual contains an abundance
of resources keyed to the textbook by chapter and section, including chapter
summaries and teaching strategies. New to this edition’s manual are the
authors’ findings from CalcChat.com (see A Word from the Authors). They
offer suggestions for exercises to cover in class, identify tricky exercises
with tips on how best to use them, and explain what changes were made in
the exercise set based on the research.

Power Lecture—This comprehensive CD-ROM includes the Instructor’s
Complete Solutions Manual, PowerPoint® slides, and the computerized test
bank featuring algorithmically created questions that can be used to create,
deliver, and customize tests.

Computerized Test Bank—Create, deliver, and customize tests and study
guides in minutes with this easy to use assessment software on CD. The
thousands of algorithmic questions in the test bank are derived from the
textbook exercises, ensuring consistency between exams and the book.

JoinIn on TurningPoint—Enhance your students’ interactions with you,
your lectures, and each other. Cengage Learning is now pleased to offer you
book-specific content for Response Systems tailored to Larson’s Calculus,
allowing you to transform your classroom and assess your students’ progress
with instant in-class quizzes and polls.



Vec

This chapter introduces vectors and the
three-dimensional coordinate system.
Vectors are used to represent lines and
planes, and are also used to represent
quantities such as force and velocity. The
three-dimensional coordinate system is used
to represent surfaces such as ellipsoids and
elliptical cones. Much of the material

in the remaining chapters relies on an
understanding of this system.

In this chapter, you should learn the
following.

B How to write vectors, perform basic

vector operations, and represent 0

vectors graphically. (11.1)

® How to plot points in a three-dimensional
coordinate system and analyze vectors
in space. (11.2)

® How to find the dot product of two
vectors (in the plane or in space). (11.3)

B How to find the cross product of two
vectors (in space). (11.4)

B How to find equations of lines and planes
in space, and how to sketch their graphs.
(11.5)

B How to recognize and write equations
of cylindrical and quadric surfaces and
of surfaces of revolution. (11.6)

B How to use cylindrical and spherical
coordinates to represent surfaces in
space. (11.7)

tors and the

Geometry of Space

Two tughoats are pushing an ocean liner, as shown above. Each hoat is exerting

_—m a force of 400 pounds. What is the resultant force on the ocean liner? (See
Section 11.1, Example 7.)

L \

\4 v

in the plane and in space. You will also learn
shown above represent vector addition in the

Vectors indicate quantities that involve both magnitude and direction. In Chapter 11, you will study operations of vectors

how to represent vector operations geometrically. For example, the graphs
plane.

Mark Hunt/Hunt Stock
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764 Chapter 11 Vectors and the Geometry of Space

@ Vectors in the Plane

0
L ]
Terminal
-~ point
P PQ
Initial
point

A directed line segment
Figure 11.1

—

Equivalent directed line segments
Figure 11.2

! ! !
PIOO) 1 5 5 4

The vectors u and v are equivalent.
Figure 11.3

=

m Write the component form of a vector.

m Perform vector operations and interpret the results geometrically.
B Write a vector as a linear combination of standard unit vectors.
B Use vectors to solve problems involving force or velocity.

Component Form of a Vector

Many quantities in geometry and physics, such as area, volume, temperature, mass,
and time, can be characterized by a single real number scaled to appropriate units of
measure. These are called scalar quantities, and the real number associated with each
is called a scalar.

Other quantities, such as force, velocity, and acceleration, involve both magnitude
and direction and cannot be characterized completely by a single real number. A
directed line segment is used to represent such a quantity, as shown in Figure 11.1.
The directed line segment PQ has initial point P and terminal point Q, and its length
(or magnitude) is denoted by || PQ |. Directed line segments that have the same length
and direction are equivalent, as shown in Figure 11.2. The set of all directed line
segments that are equivalent to a given directed line segment PQ is a vector in the
plane and is denoted by v = @ In typeset material, vectors are usually denoted by
lowercase, boldface letters such as u, v, and w. When written by hand, however,
vectors are often denoted by letters with arrows above them, such as @, v°, and W.

Be sure you understand that a vector represents a ser of directed line segments
(each having the same length and direction). In practice, however, it is common not to
distinguish between a vector and one of its representatives.

EXAMPLE [El] Vector Representation by Directed Line Segments

Let v be represented by the directed line segment from (0, 0) to (3, 2), and let u be
represented by the directed line segment from (1, 2) to (4, 4). Show that v and u are
equivalent.

Solution Let P(0,0) and Q(3,2) be the initial and terminal points of v, and let
R(1, 2) and S(4, 4) be the initial and terminal points of u, as shown in Figure 11.3. You
can use the Distance Formula to show that PQ and RS have the same length.

”@” = (3 - 0)2 + (2 - 0)2 = V13 Length of@
||fS|| = \/(4 - 1)2 + (4 - 2)2 = V13 Lengthofﬁ

Both line segments have the same direction, because they both are directed toward the
upper right on lines having the same slope.

—~ 2-0 2

Sl fPO=—"—"—==

ope of PQ 3.0 3
and

—~ 4-2 2

SlopeofRS—ﬁ—g

Because PQ and RS have the same length and direction, you can conclude that the two
vectors are equivalent. That is, v and u are equivalent. ]
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A vector in standard position
Figure 11.4
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Component form of v: v = (—5,12)
Figure 11.5
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The directed line segment whose initial point is the origin is often the most
convenient representative of a set of equivalent directed line segments such as those
shown in Figure 11.3. This representation of v is said to be in standard position. A
directed line segment whose initial point is the origin can be uniquely represented by
the coordinates of its terminal point Q(v,, v,), as shown in Figure 11.4.

DEFINITION OF COMPONENT FORM OF A VECTOR IN THE PLANE

If v is a vector in the plane whose initial point is the origin and whose terminal
point is (v,, v,), then the component form of v is given by

vV = (v, V,).

The coordinates v, and v, are called the components of v. If both the initial
point and the terminal point lie at the origin, then v is called the zero vector
and is denoted by 0 = (0, 0).

This definition implies that two vectors u = (u,u,) and v = (v, v,) are equal if and
only if u; = v, and u, = v,.

The following procedures can be used to convert directed line segments to
component form or vice versa.

1. If P(p,,p,) and Q(q,, g,) are the initial and terminal points of a directed line
segment, the component form of the vector v represented by @ is (v, vy) =
(g, = P1» 4> — P,)- Moreover, from the Distance Formula you can see that the
length (or magnitude) of v is

||V|| = \/(ql = p1)2 A (q2 = p2)2 Length of a vector

= SEFVL
2. If v = (v, vy), v can be represented by the directed line segment, in standard
position, from P(0, 0) to Q(v,, v,).

The length of v is also called the norm of v. If || v|| = 1, v is a unit vector.
Moreover, || v|| = 0 if and only if v is the zero vector 0.

EXAMPLE [EJ Finding the Component Form and Length of a Vector
Find the component form and length of the vector v that has initial point (3, —7) and
terminal point (—2, 5).

Solution Let P(3, —7) = (p,, p,) and O(—2,5) = (¢, ¢,)- Then the components
of v.= (v, v,) are

vi=¢, —p=-2-3=-5
vw=¢,—p,=5— (=7 =12
So, as shown in Figure 11.5, v = (=35, 12), and the length of v is
vl = V(=52 + 122
= /169
= 13. [ |
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The scalar multiplication of v

Figure 11.6

WILLIAM ROWAN HAMILTON
(1805-1865)

Some of the earliest work with vectors was
done by the Irish mathematician William
Rowan Hamilton. Hamilton spent many
years developing a system of vector-like
quantities called quaternions. Although
Hamilton was convinced of the benefits of
quaternions, the operations he defined did not
produce good models for physical phenomena.
[t wasn't until the latter half of the nineteenth
century that the Scottish physicist James
Maxwell (1831-1879) restructured Hamilton’s
quaternions in a form useful for representing
physical quantities such as force, velocity,

and acceleration.

Vectors and the Geometry of Space

Vector Operations

DEFINITIONS OF VECTOR ADDITION AND SCALAR MULTIPLICATION

Letu = (u,;, u,) and v = (v, v,) be vectors and let ¢ be a scalar.

1. The vector sum of u and v is the vectoru + v = (u; + vy, u, + v,).
2. The scalar multiple of ¢ and u is the vector cu = {cu,, cu,).
3. The negative of v is the vector

—v = (=1 = (v, -,
4. The difference of u and v is

u—v=u+(=v)=(u —v,u — v,).

Geometrically, the scalar multiple of a vector v and a scalar c is the vector that is
|c| times as long as v, as shown in Figure 11.6. If ¢ is positive, cv has the same
direction as v. If ¢ is negative, cv has the opposite direction.

The sum of two vectors can be represented geometrically by positioning the
vectors (without changing their magnitudes or directions) so that the initial point of
one coincides with the terminal point of the other, as shown in Figure 11.7. The
vector u + v, called the resultant vector, is the diagonal of a parallelogram having u
and v as its adjacent sides.

P

To findu + v, (1) move the initial point of v (2) move the initial point of u
to the terminal point of u, or to the terminal point of v.
Figure 11.7

Figure 11.8 shows the equivalence of the geometric and algebraic definitions of
vector addition and scalar multiplication, and presents (at far right) a geometric
interpretation of u — v.

(ku,, ku,) _
Uy + vy, uy +v,) }
(uy, uy) - |
" u+v A N ! K,
'y 7 |
: 1 : )

- Y, 7 : u+(-v)

[—:—AWJ -t
Vl Ltl kul
Vector addition Scalar multiplication Vector subtraction

Figure 11.8
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EXAMPLE [EJ Vector Operations

Givenv = (—2,5) and w = (3, 4), find each of the vectors.
a.%v b.w-—v c. v+ 2w
Solution
a. v = (3(-2).36)) = (- 1.3)
b.w—v=M —v,w,—v)=3-(-2),4-5)=(,—-1)
c. Using 2w = (6, 8), you have
v+2w=(-2,5)+(6,8)
=(-2+6,5+38)
= (4, 13). n

Vector addition and scalar multiplication share many properties of ordinary
arithmetic, as shown in the following theorem.

THEOREM 11.1 PROPERTIES OF VECTOR OPERATIONS

Let u, v, and w be vectors in the plane, and let ¢ and d be scalars.
lL.L.utv=v+u Commutative Property
2.u+v)+w=u+(v+w Associative Property
.u+0=u Additive Identity Property

4. u+(—u)=0 Additive Inverse Property

5. c(du) = (cd)u

6. (c + d)u = cu + du Distributive Property

7. clu 4+ v) = cu+ cv Distributive Property

8. I(u) =u,0u) =0

The proof of the Associative Property of vector addition uses the Associative
Property of addition of real numbers.
(u + V) + w = [<u]s M2> + <V1, v2>] + <W1’ W2>
= (uy+ v, uy +vy) + (wy, wy)
= ((u; +v) +wy, (uy +v,) +wy)
=(u, + (v, +wy),up, + (v, + wy))
=(upuy) + (v T wvy, Fwy) =u+ (v+w
Similarly, the proof of the Distributive Property of vectors depends on the Distributive
Property of real numbers.
(¢ + du = (¢ + d)uy, u,)
= <(C + d)ul’ (C + d)"‘2>
= (cu, + duy, cu, + du,)
= (cuy, cuy) + (duy, du,) = cu + du

The other properties can be proved in a similar manner. [
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The Granger Collection

EMMY NOETHER (1882-1935)

One person who contributed to our knowledge
of axiomatic systems was the German
mathematician Emmy Noether. Noether is
generally recognized as the leading woman
mathematician in recent history.

FOR FURTHER INFORMATION For
more information on Emmy Noether,
see the article “Emmy Noether, Greatest
Woman Mathematician” by Clark
Kimberling in The Mathematics Teacher.
To view this article, go to the website
www.matharticles.com.

Vectors and the Geometry of Space

Any set of vectors (with an accompanying set of scalars) that satisfies the eight
properties given in Theorem 11.1 is a vector space.* The eight properties are the
vector space axioms. So, this theorem states that the set of vectors in the plane (with
the set of real numbers) forms a vector space.

THEOREM 11.2 LENGTH OF A SCALAR MULTIPLE

Let v be a vector and let ¢ be a scalar. Then

||CV|| = |C| ||V|| |c] is the absolute value of c.

Because cv = {(cv,, cv,), it follows that
= Vev))? + (ev,)?
le[ Vi +v3

le[ ¥l u

levll = Kev, ev)

In many applications of vectors, it is useful to find a unit vector that has the same
direction as a given vector. The following theorem gives a procedure for doing this.

THEOREM 11.3 UNIT VECTOR IN THE DIRECTION OF v

If v is a nonzero vector in the plane, then the vector

a= Y -1,
vl vl

has length 1 and the same direction as v.

Because 1/||v|| is positive and w = (1/||v[) v, you can conclude that u has
the same direction as v. To see that |[u| = 1, note that

I(ga)

lulf =
1
= v vl
1
=V
v vl
= 1.
So, u has length 1 and the same direction as v. ]

In Theorem 11.3, u is called a unit vector in the direction of v. The process of
multiplying v by 1/||v|| to get a unit vector is called normalization of v.

* For more information about vector spaces, see Elementary Linear Algebra, Sixth Edition, by
Larson and Falvo (Boston: Houghton Mifflin Harcourt Publishing Company, 2009).
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u+v

Triangle inequality
Figure 11.9

Standard unit vectors i and j
Figure 11.10
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EXAMPLE [E§ Finding a Unit Vector

Find a unit vector in the direction of v = (—2, 5) and verify that it has length 1.
Solution From Theorem 11.3, the unit vector in the direction of v is

v (=2,5)

= - 1 <_25>:<_25>
(M (=27 + (67 V29 ” J29° 29/

This vector has length 1, because
VG -G - Ve 550 :
29 29 29 29 29 ’

Generally, the length of the sum of two vectors is not equal to the sum of
their lengths. To see this, consider the vectors u and v as shown in Figure 11.9. By
considering u and v as two sides of a triangle, you can see that the length of the third
side is |u + v||, and you have

lo + vl < ulf +v].

Equality occurs only if the vectors u and v have the same direction. This result is
called the triangle inequality for vectors. (You are asked to prove this in Exercise 91,
Section 11.3.)

Standard Unit Vectors

The unit vectors (1, 0) and (0, 1) are called the standard unit vectors in the plane
and are denoted by

i= (1, 0> and ji= <0, 1) Standard unit vectors
as shown in Figure 11.10. These vectors can be used to represent any vector uniquely,
as follows.
vV ={v,v,) = (v, 0) + (0,v,) = v{(1,0) + vx{(0, 1) = vi + v,j

The vector v = v,i + v, j is called a linear combination of i and j. The scalars v,
and v, are called the horizontal and vertical components of v.

EXAMPLE [EJ] Writing a Linear Combination of Unit Vectors

Let u be the vector with initial point (2, —5) and terminal point (—1, 3), and let
v = 2i — j. Write each vector as a linear combination of i and j.

a. u b. w = 2u — 3v

Solution

a. u=<(q —p.q ~p)
=(=1-2,3-(=9)
=(—3,8) = —3i + §j
b. w = 2u — 3v = 2(=3i + 8j) — 3(2i — })
—6i + 16j — 6i + 3j
—12i + 19j =
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The angle 6 from the positive x-axis to the

vector u
Figure 11.11

y
400 cos(—20°)
o
F\z\ $-20°5

400 o

e
400 cos(20°)

400 sin(—20°)

The resultant force on the ocean liner that is
exerted by the two tugboats

Figure 11.12

Vectors and the Geometry of Space

If u is a unit vector and 6 is the angle (measured counterclockwise) from the
positive x-axis to u, then the terminal point of u lies on the unit circle, and you have

u = (cos 0, sin 6) = cos O + sin 6j Unit vector

as shown in Figure 11.11. Moreover, it follows that any other nonzero vector v making

an angle 6 with the positive x-axis has the same direction as u, and you can write

v = ||v|{cos 6, sin ) = || v cos 0i + | v||sin 6j.

EXAMPLE [J] Writing a Vector of Given Magnitude and Direction

The vector v has a magnitude of 3 and makes an angle of 30° = 7r/6 with the positive
x-axis. Write v as a linear combination of the unit vectors i and j.

Solution Because the angle between v and the positive x-axis is § = /6, you can
write the following.

v = ||v| cos i + ||v| sin 0j
= 3c0sgi + 3sin%j
_3V3..3

L3
2 1) -

Applications of Vectors

Vectors have many applications in physics and engineering. One example is force. A
vector can be used to represent force, because force has both magnitude and direction.
If two or more forces are acting on an object, then the resultant force on the object is
the vector sum of the vector forces.

EXAMPLE Finding the Resultant Force

Two tugboats are pushing an ocean liner, as shown in Figure 11.12. Each boat is
exerting a force of 400 pounds. What is the resultant force on the ocean liner?

Solution Using Figure 11.12, you can represent the forces exerted by the first and
second tugboats as
F, = 400(cos 20°, sin 20°)
= 400 cos(20°)i + 400 sin(20°)j
F, = 400{cos(—20°), sin(—20°))
= 400 cos(20°)i — 400 sin(20°)j.
The resultant force on the ocean liner is
F=F, +F,
= [400 cos(20°)i + 400 sin(20°)j] + [400 cos(20°)i — 400 sin(20°)j]
= 800 cos(20°)i = 752i.

So, the resultant force on the ocean liner is approximately 752 pounds in the direction
of the positive x-axis. [ |

In surveying and navigation, a bearing is a direction that measures the acute
angle that a path or line of sight makes with a fixed north-south line. In air navigation,
bearings are measured in degrees clockwise from north.
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) C EXAMPLE [EJ Finding a Velocity
X N

An airplane is traveling at a fixed altitude with a negligible wind factor. The airplane
I is traveling at a speed of 500 miles per hour with a bearing of 330°, as shown in Figure
11.13(a). As the airplane reaches a certain point, it encounters wind with a velocity of
70 miles per hour in the direction N 45° E (45° east of north), as shown in Figure

Vi 11.13(b). What are the resultant speed and direction of the airplane?

(a) Direction without wind

120° Solution Using Figure 11.13(a), represent the velocity of the airplane (alone) as
v, = 500 cos(120°)i + 500 sin(120°)j.

The velocity of the wind is represented by the vector

v, = 70 cos(45°)i + 70 sin(45°)j.

Na
V2 N

The resultant velocity of the airplane (in the wind) is

\ v=v, +v, =500cos(120°i + 500 sin(120°)j + 70 cos(45°)i + 70 sin(45°)j

W=¢g—E ~ —200.5i + 482.5j.
S
To find the resultant speed and direction, write v = ||v|/(cos 81 + sin 6 j). Because
 \\' [v]| = V/(—200.5)% + (482.5)% = 522.5, you can write
Wind Vj
~200.5. 4825\ o o
V= 522.5( =375 5735 _]> ~ 522.5[cos(112.6°)i + sin(112.6°)j].

(b) Direction with wind

Figure 11.13

@ Exercises

In Exercises 1-4, (a) find the component form of the vector v
and (b) sketch the vector with its initial point at the origin.

1. y 2. y
G4 3,4)

1(3, -2

(1,2)

—_ N W A
<
—_ N W

N
(-
o\ -

L
%
o ——
0 ——
g
W
=
[
N o=
%_H
N ——

3 y 4. y
1 4
: )
} } } } x
-4 -2 2 4 v
vl @
4.3 T 2.-3)
_6 } } } } x
6 -2 -1 ‘ 1 2

The new speed of the airplane, as altered by the wind, is approximately 522.5 miles per
hour in a path that makes an angle of 112.6° with the positive x-axis. [

See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

In Exercises 5-8, find the vectors u and v whose initial and
terminal points are given. Show that u and v are equivalent.

5. u (3,2), (5,6) 6. u: (—4,0), (1,8)
v: (1,4), (3,8) vi (2,-1), (7,7)

7. u: (0,3), (6, —2) 8. u: (—4,—1), (11, —4)
v: (3,10), (9,5) v: (10, 13), (25, 10)

In Exercises 9-16, the initial and terminal points of a vector v
are given. (a) Sketch the given directed line segment, (b) write
the vector in component form, (c) write the vector as the linear
combination of the standard unit vectors i and j, and (d) sketch
the vector with its initial point at the origin.

.. . Terminal .. . Terminal
Initial Point Point Initial Point Point
9. (2,0) (5,5) 10. (4, —6) (3,6)
11. (8,3) 6,—1) 12. (0, —4) (—=5,—-1)

The icon C indicates that you will find a CAS Investigation on the book’s website. The CAS
Investigation is a collaborative exploration of this example using the computer algebra systems

Maple and Mathematica.
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Initial Poin  Términal Initial Poin ~ 14™inal
13. (6,2) (6. 6) 14. (7,-1) (—3,-1)
15. (3,3) (3.3) 16. (0.12,0.60)  (0.84,1.25)

In Exercises 17 and 18, sketch each scalar multiple of v.

17. v = (3,5)
(@ 2v (b)) —3v  (c) v (d) 3v
18. v = (=2, 3)

(a) 4v  (b) —%V (c) Ov.  (d) —6v

In Exercises 19-22, use the figure to sketch a graph of the
vector. To print an enlarged copy of the graph, go to the website
www.mathgraphs.com.

y

~

~ /)

19. —u
2l.u —v

20. 2u
22. u + 2v

In Exercises 23 and 24, find (a) %u, (b) v — u, and (c¢) 2u + 5v.

23. u=({4,9)
v={(2,-5)

24. u = (—3,-8)
v = (8,25)

In Exercises 25-28, find the vector v where u = (2, —1) and
w = (1, 2). Illustrate the vector operations geometrically.

26. v=u-+w
28. v = 5u — 3w

25.v=%u
27. v=u+ 2w

In Exercises 29 and 30, the vector v and its initial point are
given. Find the terminal point.

29. v = (—1, 3); Initial point: (4, 2)
30. v = (4, —9); Initial point: (5, 3)

In Exercises 31-36, find the magnitude of v.

3. v=17i 32. v=-3i
33. v=(4,3) 34. v = (12, -5)
35. v=06i — 5j 36. v=—10i + 3j

In Exercises 37-40, find the unit vector in the direction of v and
verify that it has length 1.

37. v = (3,12)
. v=(19

38. v=(—5,15)
40. v =(—-6.2,34)

In Exercises 41-44, find the following.

(@) [ ull () [ vl © [u+ v
u v utv
@ HHH © HH H © ’\|u+vn‘
41. u=(1,-1) 42.u={0,1)
v=1(—12) v={(3-3)
43. u=(1,3) 4. u=(2,—4)
v =1(2,3) v=1(55)

In Exercises 45 and 46, sketch a graph of u, v, and u + v. Then
demonstrate the triangle inequality using the vectors u and v.

45. u=(2,1), v=(54) 46. u = (—3,2), v=(1,-2)

In Exercises 47-50, find the vector v with the given magnitude
and the same direction as u.

Magnitude Direction
47. |vl=6 u = (0,3)
48. |v| = 4 u={(11)
49. vl =5 u=(-1,2)
50. ||v]| =2 u=(J33)

In Exercises 51-54, find the component form of v given its
magnitude and the angle it makes with the positive x-axis.

5L v[=3 6=0°
53. |v[l=2 6=150°

52. ||v] =5, 6=120°
54. |v|=4, 6=35°
In Exercises 55-58, find the component form of u + v given the

lengths of u and v and the angles that u and v make with the
positive x-axis.

55. Jull=1, 6,=0° 56. |ul| =4, 6,=0°
[vl=3 6 =45 vl =2 6, =60°

57. |ul|=2, 6,=4 58. |ul| =5, 6,=-05
Ivl=1, 6, =2 Ivl=5 6,=05

v

WRITING ABOUT CONCEPTS

59. In your own words, state the difference between a scalar
and a vector. Give examples of each.

60. Give geometric descriptions of the operations of addition of
vectors and multiplication of a vector by a scalar.

61. Identify the quantity as a scalar or as a vector. Explain your
reasoning.

(a) The muzzle velocity of a gun
(b) The price of a company’s stock

62. Identify the quantity as a scalar or as a vector. Explain your
reasoning.

(a) The air temperature in a room
(b) The weight of a car
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In Exercises 63-68, find a and b such that v = au + bw, where
u=(1,2)and w = (1, —1).

63. v=(21) 64. v = (0, 3)
65. v = (3,0) 66. v = (3, 3)
67. v={(1,1) 68. v=1(-1,7)

In Exercises 69-74, find a unit vector (a) parallel to and
(b) perpendicular to the graph of f at the given point. Then
sketch the graph of f and sketch the vectors at the given point.

Function Point
69. f(x) = x? (3,9)
70. f(x) = —x*+ 5 (1,4)
71 f(x) = x* (1, 1)
72. f(x) = X3 (—2,—-8)
73. f(x) = /25 — x2 (3,4)

74. f(x) = tan x (%’ 1>
In Exercises 75 and 76, find the component form of v given the

magnitudes of u and u + v and the angles that u and u + v
make with the positive x-axis.

75. [ul| = 1, 6 = 45°
lu+v[|=2,6=90°

76. |[u|| = 4, 6 = 30°
lu+v]|=6,0=120°

e 77. Programming You are given the magnitudes of u and v and
the angles that u and v make with the positive x-axis. Write a pro-
gram for a graphing utility in which the output is the following.

@u+v (b ||u+v|

(c) The angle that u + v makes with the positive x-axis

(d) Use the program to find the magnitude and direction of the
resultant of the vectors shown.

y

45
120°
J-s0°
32\

X

CAPSTONE

78. The initial and terminal points of vector v are (3, —4) and
(9, 1), respectively.

(a) Write v in component form.

(b) Write v as the linear combination of the standard unit
vectors i and j.

(c) Sketch v with its initial point at the origin.
(d) Find the magnitude of v.
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e In Exercises 79 and 80, use a graphing utility to find the
magnitude and direction of the resultant of the vectors.

79. y 80. y

F F,

o ,
L\, F 1140

(33° 200°
) ~10°
3/~ 125° i 3| 7 F
F2

81. Resultant Force Forces with magnitudes of 500 pounds and
200 pounds act on a machine part at angles of 30° and —45°,
respectively, with the x-axis (see figure). Find the direction and
magnitude of the resultant force.

Figure for 81

Figure for 82

P 82. Numerical and Graphical Analysis Forces with magnitudes
of 180 newtons and 275 newtons act on a hook (see figure). The
angle between the two forces is 6 degrees.

(a) If 6 = 30°, find the direction and magnitude of the resultant
force.

(b) Write the magnitude M and direction « of the resultant
force as functions of 6, where 0° < 6 < 180°.

(c) Use a graphing utility to complete the table.

60 | 0° | 30° | 60° | 90° | 120° | 150° | 180°

M

(49

(d) Use a graphing utility to graph the two functions M and a.

(e) Explain why one of the functions decreases for increasing
values of A whereas the other does not.

83. Resultant Force Three forces with magnitudes of 75 pounds,
100 pounds, and 125 pounds act on an object at angles of 30°,
45°, and 120°, respectively, with the positive x-axis. Find the

direction and magnitude of the resultant force.

84. Resultant Force Three forces with magnitudes of 400
newtons, 280 newtons, and 350 newtons act on an object at
angles of —30°, 45°, and 135°, respectively, with the positive

x-axis. Find the direction and magnitude of the resultant force.

Think About It
acting on a point.

85. Consider two forces of equal magnitude

(a) If the magnitude of the resultant is the sum of the magni-
tudes of the two forces, make a conjecture about the angle
between the forces.
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(b) If the resultant of the forces is 0, make a conjecture about
the angle between the forces.

(c) Can the magnitude of the resultant be greater than the sum
of the magnitudes of the two forces? Explain.

86. Graphical Reasoning Consider two forces F, = (20, 0) and
F, = 10{cos 6, sin 6).
(a) Find |F, + F,.
(b) Determine the magnitude of the resultant as a function of 6.

Use a graphing utility to graph the function for
0=6<2m

(c) Use the graph in part (b) to determine the range of the
function. What is its maximum and for what value of 6 does
it occur? What is its minimum and for what value of 6 does
it occur?

(d) Explain why the magnitude of the resultant is never 0.

87. Three vertices of a parallelogram are (1, 2), (3, 1), and (8, 4).
Find the three possible fourth vertices (see figure).

y

6Ak
SAV
4+ e (8,4)
3Ak
2+ e(1,2)

1+ e(3, 1

> x

]
T
9 10

I
T
8

9

T R [ L
LI — T
—4-3-2-1 4123456

88. Use vectors to find the points of trisection of the line segment

with endpoints (1, 2) and (7, 5).

Cable Tension In Exercises 89 and 90, use the figure to
determine the tension in each cable supporting the given load.

89. 90.

91. Projectile Motion A gun with a muzzle velocity of 1200 feet
per second is fired at an angle of 6° above the horizontal. Find
the vertical and horizontal components of the velocity.

92. Shared Load To carry a 100-pound cylindrical weight, two
workers lift on the ends of short ropes tied to an eyelet on the
top center of the cylinder. One rope makes a 20° angle away
from the vertical and the other makes a 30° angle (see figure).
(a) Find each rope’s tension if the resultant force is vertical.

(b) Find the vertical component of each worker’s force.

2

Figure for 92 Figure for 93

93. Navigation A plane is flying with a bearing of 302°. Its
speed with respect to the air is 900 kilometers per hour. The
wind at the plane’s altitude is from the southwest at 100
kilometers per hour (see figure). What is the true direction of
the plane, and what is its speed with respect to the ground?

94. Navigation A plane flies at a constant groundspeed of 400
miles per hour due east and encounters a 50-mile-per-hour
wind from the northwest. Find the airspeed and compass
direction that will allow the plane to maintain its groundspeed
and eastward direction.

True or False? In Exercises 95-100, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

95. If u and v have the same magnitude and direction, then u and
v are equivalent.

96. If u is a unit vector in the direction of v, then v = ||v| u.

97. If u = ai + bj is a unit vector, then a®> + b> = 1.

98. If v=ai+ bj =0,thena = —b.

99. If ¢ = b, then ||ai + bj|| = V2a.

100. If u and v have the same magnitude but opposite directions,

thenu + v = 0.

101. Prove that u = (cos )i — (sin §)j and v = (sin 6)i + (cos 6)j
are unit vectors for any angle 6.
102. Geometry Using vectors, prove that the line segment joining

the midpoints of two sides of a triangle is parallel to, and one-
half the length of, the third side.

103. Geometry Using vectors, prove that the diagonals of a
parallelogram bisect each other.

104. Prove that the vector w = ||u||v + ||v|u bisects the angle
between u and v.

105. Consider the vector u = (x, y). Describe the set of all points
(x, y) such that |Jul| = 5.

PUTNAM EXAM CHALLENGE

106. A coast artillery gun can fire at any angle of elevation
between 0° and 90° in a fixed vertical plane. If air resistance
is neglected and the muzzle velocity is constant (= v,),
determine the set H of points in the plane and above the
horizontal which can be hit.

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.
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>

xz-plane yz-plane

>y
x4~ xy-plane

The three-dimensional coordinate system
Figure 11.14

Z Z
y
X y
Right-handed Left-handed
system system

Figure 11.16

B Understand the three-dimensional rectangular coordinate system.
H Analyze vectors in space.
m Use three-dimensional vectors to solve real-life problems.

Coordinates in Space

Up to this point in the text, you have been primarily concerned with the
two-dimensional coordinate system. Much of the remaining part of your study of
calculus will involve the three-dimensional coordinate system.

Before extending the concept of a vector to three dimensions, you must be able
to identify points in the three-dimensional coordinate system. You can construct
this system by passing a z-axis perpendicular to both the x- and y-axes at the origin.
Figure 11.14 shows the positive portion of each coordinate axis. Taken as pairs,
the axes determine three coordinate planes: the xy-plane, the xz-plane, and the
yz-plane. These three coordinate planes separate three-space into eight octants.
The first octant is the one for which all three coordinates are positive. In this three-
dimensional system, a point P in space is determined by an ordered triple (x, y, z)
where x, y, and z are as follows.

x = directed distance from yz-plane to P
y = directed distance from xz-plane to P

z = directed distance from xy-plane to P

Several points are shown in Figure 11.15.

- e y

(1,6,0)

Points in the three-dimensional coordinate system are
represented by ordered triples.
Figure 11.15

A three-dimensional coordinate system can have either a left-handed or a right-
handed orientation. To determine the orientation of a system, imagine that you are
standing at the origin, with your arms pointing in the direction of the positive x- and
y-axes, and with the z-axis pointing up, as shown in Figure 11.16. The system is
right-handed or left-handed depending on which hand points along the x-axis. In this
text, you will work exclusively with the right-handed system.

\[Jf3) The three-dimensional rotatable graphs that are available in the premium eBook for
this text will help you visualize points or objects in a three-dimensional coordinate system. B
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()Cz, Yos ZZ)

P |Z2_Z1|

/\
x” (xl’ Vi Zl) / .(.)C =7
2 Ypr )
A/ (xz_x])2+(yz_y])2

The distance between two points in space
Figure 11.17
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Figure 11.18

Vectors and the Geometry of Space

Many of the formulas established for the two-dimensional coordinate system can
be extended to three dimensions. For example, to find the distance between two points
in space, you can use the Pythagorean Theorem twice, as shown in Figure 11.17. By
doing this, you will obtain the formula for the distance between the points (x;, y,, z;)
and (x5, ¥, Z,)-

d= \/(xz - xl)z + ()’2 - )’1)2 + (Zz - Zl)2

Distance Formula

EXAMPLE [l Finding the Distance Between Two Points in Space

The distance between the points (2, —1, 3) and (1, 0, —2) is
d=J01 =22+ 0+ 1)+ (—2—3)2
=J1+1+25
= V27
=3.3. n

Distance Formula

A sphere with center at (x,, y,. z,) and radius r is defined to be the set of all points
(x,y, z) such that the distance between (x, y, z) and (x,, Yo, Zo) is . You can use the
Distance Formula to find the standard equation of a sphere of radius r, centered at
(X0» Yo» 20)- If (x, y, z) is an arbitrary point on the sphere, the equation of the sphere is

= x)+ (= y)* + (2 — 20> =12 Equation of sphere

as shown in Figure 11.18. Moreover, the midpoint of the line segment joining the
points (x,, y;, z;) and (x,, y,, z,) has coordinates

X +x + Z) 2
( ! 2 1Y 4 2, Midpoint Formula

2 7 2 72

EXAMPLE [FJ Finding the Equation of a Sphere

Find the standard equation of the sphere that has the points (5, —2, 3) and (0, 4, —3)
as endpoints of a diameter.
Solution Using the Midpoint Formula, the center of the sphere is

<5+O—2+43—3>:<§10>
27 2 72 27 )

Midpoint Formula
By the Distance Formula, the radius is

r=\/(O—§>2+(4—1)2+(—3—0)2=\/97=

Therefore, the standard equation of the sphere is

5\ 2 2
(x 2)—I—(y 1) +z—4.

4|3
A=

Equation of sphere



The standard unit vectors in space

Figure 11.19

Q(CIp q5> ‘13)

V= <q1 —P149 P93 _173>
Figure 11.20
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Vectors in Space

In space, vectors are denoted by ordered triples v = (v,, v,, v;). The zero vector is
denoted by 0 = (0,0,0). Using the unit vectors i = (1,0,0), j = (0, 1,0),
and k = (0,0, 1) in the direction of the positive z-axis, the standard unit vector
notation for v is

v=vi+vjt+vk

as shown in Figure 11.19. If v is represented by the directed line segment from
P(py, P2 P3) t0 O(qy, g5 g5), as shown in Figure 11.20, the component form of v is
given by subtracting the coordinates of the initial point from the coordinates of the
terminal point, as follows.

V=v, V5 v3) ={q, — P-4 ~ Pp 43 — P3)

VECTORS IN SPACE

Let u = (uy, u,, u3) and v = (v, v,, v;) be vectors in space and let ¢ be a
scalar.

1. Equality of Vectors: w = v if and only if u; = v,, u, = v,, and uy = v;,.
2. Component Form: If v is represented by the directed line segment from
P(pl’ Pz’ P3) to Q(qls CIZ’ q3)9 then

V= (Vi vav3) =gy = PisGa ~ Pr q3 — P3)-
3. Length: |v| = Vv + v} +v3
1
4. Unit Vector in the Direction of v: ﬁ = <”V”> WV Vg v3), VEO

5. Vector Addition: v +u = (v, + uj, vy + uy, v3 + us)

6. Scalar Multiplication: cv = {cv,, cv,, cV3)

[[Jf3) The properties of vector addition and scalar multiplication given in Theorem 11.1 are
also valid for vectors in space. |

O EXAMPLE [EJ Finding the Component Form of a Vector in Space

Find the component form and magnitude of the vector v having initial point (=2, 3, 1)
and terminal point (0, —4, 4). Then find a unit vector in the direction of v.

Solution The component form of v is
V=Aq, = P19 —P»qs —P3) =0 —(=2), -4 -3,4—1)
=(2,-7,3)
which implies that its magnitude is
IVl = VZ+ (=77 + 32 = Jer.

The unit vector in the direction of v is

v 1 2 -7 3
u=,7—71=" = 2’ _7’ 3 = <7 T >~ .
[Iv]] \/62< ) J62 J62 /62
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/|

u=2v

Parallel vectors
Figure 11.21

The points P, Q, and R lie on the same line.

Figure 11.22

Vectors and the Geometry of Space

Recall from the definition of scalar multiplication that positive scalar multiples of
a nonzero vector v have the same direction as v, whereas negative multiples have the
direction opposite of v. In general, two nonzero vectors u and v are parallel if there
is some scalar ¢ such that u = cv.

DEFINITION OF PARALLEL VECTORS

Two nonzero vectors u and v are parallel if there is some scalar ¢ such that
u = cv.

For example, in Figure 11.21, the vectors u, v, and w are parallel because u = 2v and
W= —V.

EXAMPLE [} Parallel Vectors

Vector w has initial point (2, —1, 3) and terminal point (—4, 7, 5). Which of the
following vectors is parallel to w?

a.u=3,—4 —1)

b. v = (12, —16,4)

Solution Begin by writing w in component form.
w=(-4-27-(=1),5-3)=(-6,8,2)

a. Because u = (3, —4, —1) = —%(—6, 8,2) = —% w, you can conclude that u is
parallel to w.

b. In this case, you want to find a scalar ¢ such that

(12, —16,4) = ¢(—6, 8, 2).
12=—-6c > c= -2
—16= 8 —>c= -2
4= 2c—>c= 2

Because there is no ¢ for which the equation has a solution, the vectors are not
parallel.

EXAMPLE [EJ] Using Vectors to Determine Collinear Points

Determine whether the points P(1, —2, 3), O(2, 1, 0), and R(4, 7, —6) are collinear.

Solution The component forms of @ and PR are
PO=(2-1,1-(-2),0-3)=(1,3-3)
and
PR=(4-1,7-(-2),-6—3) =(3,9, —9).

These two vectors have a common initial point. So, P, Q, and R lie on the same line
if and only if PQ and PR are parallel—which they are because PR = 3 PQ, as shown
in Figure 11.22. u



P(0,0,4)

0,(0,~1,0)

Figure 11.23
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EXAMPLE [} Standard Unit Vector Notation

a. Write the vector v = 4i — 5k in component form.

b. Find the terminal point of the vector v = 7i — j + 3k, given that the initial point
is P(—2,3,5).

Solution

a. Because j is missing, its component is 0 and
v=4i - 5k = (4,0, —5).

b. You need to find Q(q,, ¢,, g5) such that v = PO = 7i — j + 3k. This implies that
g —(=2)=17, q,—3=—1, and gq; — 5 = 3. The solution of these three
equations is ¢, = 5, ¢, = 2, and ¢q; = 8. Therefore, Q is (5, 2, 8). [

Application

EXAMPLE Measuring Force

A television camera weighing 120 pounds is supported by a tripod, as shown in Figure
11.23. Represent the force exerted on each leg of the tripod as a vector.

Solution  Let the vectors F,, F,, and F; represent the forces exerted on the three legs.
From Figure 11.23, you can determine the directions of F,, F,, and F; to be as
follows.

PO, =(0—0,—1-0,0—4)=(0,—1,—4)

@2:<‘2F3—0,;—0,0—4>:<‘2@,;,—4>

N 31 > < V31 >
PQ3—< 2 O,2 0,0 —4)= 5> 4
Because each leg has the same length, and the total force is distributed equally among

the three legs, you know that ||F,|| = |[F,| = ||F5|. So, there exists a constant ¢ such
that

V31 /31
F, =c¢(0,-1,-4), F,= c<2,2, —4). and Fy = =775, —4).
Let the total force exerted by the object be given by F = (0, 0, —120). Then, using
the fact that
F=F +F, +F,

you can conclude that F;, F,, and F; all have a vertical component of —40. This
implies that c(—4) = —40 and ¢ = 10. Therefore, the forces exerted on the legs can
be represented by

F, = (0, — 10, —40)

F, = (5./3,5, —40)

F, = (—5./3,5, —40). =
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@ EXEI’C ISES See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

In Exercises 1 and 2, approximate the coordinates of the points.

2.

In Exercises 3—6, plot the points on the same three-dimensional
coordinate system.

3. (a) (2,1,3) ®) (—1,2,1)
4. (@) (3, -2,5) ®) (2.4, -2)
5. () (5,-2,2) ®) (5, -2, -2)
6. () (0,4, —5) (b) (4,0,5)

In Exercises 7-10, find the coordinates of the point.

7. The point is located three units behind the yz-plane, four units
to the right of the xz-plane, and five units above the xy-plane.

8. The point is located seven units in front of the yz-plane, two
units to the left of the xz-plane, and one unit below the xy-plane.

9. The point is located on the x-axis, 12 units in front of the
yz-plane.

10. The point is located in the yz-plane, three units to the right of
the xz-plane, and two units above the xy-plane.

11. Think About It What is the z-coordinate of any point in the
xy-plane?

12. Think About It What is the x-coordinate of any point in the
yz-plane?

In Exercises 13-24, determine the location of a point (x,y, z)
that satisfies the condition(s).

13.z=6 4. y=2
15. x = -3 16. z = —3
17. y < 0 18. x > 0
19. |y| =3 20. |x| > 4
21. xy >0, z= -3 22. xy <0, z=4
23. xyz < 0 24. xyz > 0

In Exercises 25-28, find the distance between the points.

25.(0,0,0), (—4,2,7)
26. (-2,3,2), (2,-5,-2)
27. (1, -2,4), (6,-2,-2)
28. (2,2,3), (4, -5,6)

In Exercises 29-32, find the lengths of the sides of the triangle
with the indicated vertices, and determine whether the triangle
is a right triangle, an isosceles triangle, or neither.

29. (0,0,4),(2,6,7), (6,4, —8)

30. (3,4,1),(0,6,2),(3,5,6)

31. (-1,0,-2),(-1,5,2),(=3,—-1,1)

32. (4,-1,-1),(2,0,—4),(3,5,—1)

33. Think About It The triangle in Exercise 29 is translated
five units upward along the z-axis. Determine the coordinates of
the translated triangle.

34. Think About It The triangle in Exercise 30 is translated
three units to the right along the y-axis. Determine the coordi-
nates of the translated triangle.

In Exercises 35 and 36, find the coordinates of the midpoint of
the line segment joining the points.

35. (5,-9,7),(—2,3,3) 36. (4,0, —6), (8, 8, 20)

In Exercises 37-40, find the standard equation of the sphere.

37. Center: (0,2,5) 38. Center: (4, —1,1)
Radius: 2 Radius: 5

39. Endpoints of a diameter: (2, 0, 0), (0, 6, 0)

40. Center: (—3, 2, 4), tangent to the yz-plane

In Exercises 41-44, complete the square to write the equation of
the sphere in standard form. Find the center and radius.

41. x>+ y?+ 22— 2x+ 6y +8+1=0

2. 2+y>+2+9x—2y+10z+19=0

43, 92 + 92 + 922 —6x + 18y + 1 =0

44, 4x% + 4y? + 472 — 24x — 4y + 87— 23 =0

In Exercises 45-48, describe the solid satisfying the condition.
45. x> + y2 + z2 < 36 46. x>+ y> + 2> 4

47. x> +y2 + 72 < 4x — 6y + 87 — 13

48. x> +y> + 72> —dx + 6y — 8z — 13

In Exercises 49-52, (a) find the component form of the vector v,

(b) write the vector using standard unit vector notation, and (c)
sketch the vector with its initial point at the origin.

49.
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51.

In Exercises 53-56, find the component form and magnitude of
the vector v with the given initial and terminal points. Then find
a unit vector in the direction of v.

Initial Point Terminal Point
53. (3,2,0) (4,1,6)
54. (4, -5,2) (—=1,7,-3)
55. (—4,3,1) (—5,3,0)
56. (1, —2,4) (2,4, -2)

In Exercises 57 and 58, the initial and terminal points of a
vector v are given. (a) Sketch the directed line segment, (b) find
the component form of the vector, (c) write the vector using
standard unit vector notation, and (d) sketch the vector with its
initial point at the origin.

57. Initial point: (—1, 2, 3)
Terminal point: (3, 3, 4)

58. Initial point: (2, —1, —2)
Terminal point: (—4, 3,7)

In Exercises 59 and 60, the vector v and its initial point are
given. Find the terminal point.

59. v=(3,-5,6)
Initial point: (0, 6, 2)

60. v = <1, _%’%>
Initial point: (0, 2, %)

In Exercises 61 and 62, find each scalar multiple of v and sketch
its graph.

6l. v =1(1,2,2) 62. v=1(2-21)
(@ 2v (b) —v (@) —v (b) 2v
© v (@ Ov © v (@3

In Exercises 63—-68, find the vector z, given that u = (1, 2, 3),
v=1(2,2,—1),and w = (4,0, —4).

63. u-—v
65.z=2u+4v —w
67.2z —3u=w

64. u-—v-+2w
66.z=5u—3v—%w

68. 2u+v—-—w+3z2=0

7= 7=

In Exercises 69-72, determine which of the vectors is (are)
parallel to z. Use a graphing utility to confirm your results.

69. z = (3,2,-5) 70. z = 3i — 3j + 3k

(@) (—6, —4, 10) (a) 6i — 4j + 9k
®) (2.3 -9 (b) —i+% -3k
(c) €6,4,10) (c) 12i + 9k

@ (1, -4,2) (d) 3i —j + 3k
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71. z has initial point (1, — 1, 3) and terminal point (—2, 3, 5).
(a) —6i + 8j + 4k (b) 4j + 2k
72. z has initial point (5, 4, 1) and terminal point (=2, —4, 4).
(a) (7,6,2) (b) (14, 16, —6)
In Exercises 73-76, use vectors to determine whether the points
are collinear.
73. (0, =2, -5),(3,4,4),(2,2,1)
74. (4,-2,7),(=2,0,3),(7,-3,9)
75. (1,2,4),(2,5,0), (0, 1, 5)
76. (0,0,0), (1,3, —2), (2, —6,4)

In Exercises 77 and 78, use vectors to show that the points form
the vertices of a parallelogram.

77. (2,9, 1), (3,11, 4), (0, 10, 2), (1, 12, 5)
78. (1,1,3), (9, =1, =2), (11,2, =9), (3,4, —4)

In Exercises 79-84, find the magnitude of v.

79. v = (0,0, 0)
81. v = 3j — 5k
83. v=i-2j-3k

80. v = (1,0,3)
82. v=2i+5—k
84. v = —4i +3j + 7k

In Exercises 85-88, find a unit vector (a) in the direction of v
and (b) in the direction opposite of v.

85. v=(2—1,2)
87. v =(3,2,-5)

86. v = (6,0, 8)
88. v =(8,0,0)

P 89. Programming You are given the component forms of the
vectors u and v. Write a program for a graphing utility in which
the output is (a) the component form of u + v, (b) |u + v||,
() ||lul, and (d) ||v|. (¢) Run the program for the vectors
u=(—1,3,4)andv = (5,4.5, —6).

90. Consider the two nonzero vectors u and v, and let s and ¢ be
real numbers. Describe the geometric figure generated by
the terminal points of the three vectors rv, u + tv, and
su + fv.

In Exercises 91 and 92, determine the values of ¢ that satisfy the
equation. Letu = —i + 2j + 3kand v = 2i + 2j — k.
9L |[ev]| =7 92. |[cu|| = 4

In Exercises 93-96, find the vector v with the given magnitude
and direction u.

Magnitude Direction
93. 10 u=(0,3,3)
9. 3 u=(11,1)
95. 3 u=(2,-21)
96. 7 u=(-4,6,2)



782 Chapter 11 Vectors and the Geometry of Space

In Exercises 97 and 98, sketch the vector v and write its compo-
nent form.

97. v lies in the yz-plane, has magnitude 2, and makes an angle of
30° with the positive y-axis.

98. v lies in the xz-plane, has magnitude 5, and makes an angle of
45° with the positive z-axis.

In Exercises 99 and 100, use vectors to find the point that lies
two-thirds of the way from P to Q.

99. P(4,3,0), 0(1,-3,3) 100. P(1,2,5), 0(6,8,2)

101. Letu =i+ j,v=j+ k,andw = au + bv.
(a) Sketch u and v.
(b) If w = 0, show that a and b must both be zero.
(c) Find @ and b such that w =i + 2j + k.
(d) Show that no choice of a and b yields w = i + 2j + 3k.

102. Writing The initial and terminal points of the vector v are
(%, ¥1> z;) and (x, y, z). Describe the set of all points (x, y, z)
such that ||v|| = 4.

WRITING ABOUT CONCEPTS

103. A point in the three-dimensional coordinate system has
coordinates (x, Yo, zo)- Describe what each coordinate
measures.

104. Give the formula for the distance between the points
(x5 ¥ 2,) and (x5, ¥5, 25)-

105. Give the standard equation of a sphere of radius r,
centered at (o, Yo, 2o)-

106. State the definition of parallel vectors.

107. Let A, B, and C be vertices of a triangle. Findﬁ + ﬁ + @

108. Let r = (x,y,z) and r, = (1, 1, 1). Describe the set of all
points (x, v, z) such that |r — r, = 2.

109. Numerical, Graphical, and Analytic Analysis The lights in
an auditorium are 24-pound discs of radius 18 inches. Each
disc is supported by three equally spaced cables that are L
inches long (see figure).

(a) Write the tension 7 in each cable as a function of
L. Determine the domain of the function.

(b) Use a graphing utility and the function in part (a) to
complete the table.

L |20 2530 35|40 45|50

T

(c) Use a graphing utility to graph the function in part (a).
Determine the asymptotes of the graph.

(d) Confirm the asymptotes of the graph in part (c) analytically.

(e) Determine the minimum length of each cable if a cable is
designed to carry a maximum load of 10 pounds.

110. Think About It Suppose the length of each cable in Exercise
109 has a fixed length L = q, and the radius of each disc is r,
inches. Make a conjecture about the limit lim 7 and give a
reason for your answer. o

111. Diagonal of a Cube Find the component form of the unit
vector v in the direction of the diagonal of the cube shown in
the figure.

Z
A

Ve
X

lIvil=1

Figure for 111 Figure for 112

112. Tower Guy Wire The guy wire supporting a 100-foot tower
has a tension of 550 pounds. Using the distances shown in the
figure, write the component form of the vector F representing
the tension in the wire.

113. Load Supports Find the tension in each of the supporting
cables in the figure if the weight of the crate is 500 newtons.

A1 O

Figure for 113 Figure for 114

114. Construction A precast concrete wall is temporarily kept in
its vertical position by ropes (see figure). Find the total force
exerted on the pin at position A. The tensions in AB and AC
are 420 pounds and 650 pounds.

115. Write an equation whose graph consists of the set of points

P(x,y,z) that are twice as far from A(0, —1,1) as from
B(1,2,0).
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@ The Dot Product of Two Vectors

EXPLORATION

Interpreting a Dot Product
Several vectors are shown below
on the unit circle. Find the dot
products of several pairs of
vectors. Then find the angle
between each pair that you used.
Make a conjecture about the
relationship between the dot
product of two vectors and the
angle between the vectors.

90°

Use properties of the dot product of two vectors.

Find the angle between two vectors using the dot product.
Find the direction cosines of a vector in space.

Find the projection of a vector onto another vector.

Use vectors to find the work done by a constant force.

The Dot Product

So far you have studied two operations with vectors—vector addition and multiplication
by a scalar—each of which yields another vector. In this section you will study a third
vector operation, called the dot product. This product yields a scalar, rather than a
vector.

DEFINITION OF DOT PRODUCT

The dot product of u = (u, u,) and v = (v, v,) is
UV =1uy + u,.
The dot product of u = (u, u,, u3) and v = (v, v,, v5) is

UV =uy + Uy, + usv;.

[[13) Because the dot product of two vectors yields a scalar, it is also called the scalar
product (or inner product) of the two vectors. |

THEOREM 11.4 PROPERTIES OF THE DOT PRODUCT

Let u, v, and w be vectors in the plane or in space and let ¢ be a scalar.

lL.u-v=v-u Commutative Property

.u-(v+w=u-v+tu-w Distributive Property

. 0-v=20

2
3.clu*v)=cu-v=u-cv
4
5.v-v=]|v|?

To prove the first property, let u = (u,, u,, u5) and v.= (v, v,, v;). Then
-V =uy, t+ouy, tousp,
=viuy + Vol t+ valg
=v-u
For the fifth property, let v = (v, v,, v;). Then

ey = 2 2 2

Vev=yf+vy+ v
—( /2 2 2)2
_( V1+V2+V3)

= [Iv[P

Proofs of the other properties are left to you. [ |
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TN
L
Origin

The angle between two vectors
Figure 11.24

EXAMPLE [l Finding Dot Products

Givenu = (2, —2),v = (5, 8), and w = (—4, 3), find each of the following.

au-v b. (u - v)w
c.u-Q2v) d |w|?
Solution

au-v=1(2-2)-(,8 =25 +(—2)8) = -6

b. (u-v)w = —6(—4,3) = (24, —18)

c.u-(2v) =2w-v)=2(—-6)=—12 Theorem 11.4

d. ||W||2 =W'*'W Theorem 11.4
=(—4,3) - (—4,3) Substitute (—4, 3) for w.
= (—4)(—4) + 3)(3) Definition of dot product
=25 Simplify.

Notice that the result of part (b) is a vector quantity, whereas the results of the other
three parts are scalar quantities. [ |

Angle Between Two Vectors

The angle between two nonzero vectors is the angle 6, 0 < 6 < 7, between their
respective standard position vectors, as shown in Figure 11.24. The next theorem
shows how to find this angle using the dot product. (Note that the angle between the
zero vector and another vector is not defined here.)

THEOREM 11.5 ANGLE BETWEEN TWO YECTORS

If 6 is the angle between two nonzero vectors u and v, then

u-v
lal[ vl

cos 6 =

Consider the triangle determined by vectors u, v, and v — u, as shown in
Figure 11.24. By the Law of Cosines, you can write

v = uf? = flulP + []v[* = 2fu]{lv] cos 6.
Using the properties of the dot product, the left side can be rewritten as
lv—uP=F-uw--u
=v-uw-v—(v—u)-u
=V:'v—-u-v—-v-utu-u
= [IvIF = 2u - v + [Jul?
and substitution back into the Law of Cosines yields
VI[P =20 - v+ flul? = flul? + [Iv[* = 2]u] [v] cos &

~2|ulff[v] cos 6

—2u-v
u-v
[l {Iv]

cos 6 =
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If the angle between two vectors is known, rewriting Theorem 11.5 in the form

u-v= ||ll|| ||V|| cos 6 Alternative form of dot product

produces an alternative way to calculate the dot product. From this form, you can see
that because ||u|| and ||v| are always positive, u - v and cos 6 will always have the
same sign. Figure 11.25 shows the possible orientations of two vectors.

Opposite u-v<O0 u-v=0 u-v>0 Same
direction direction
2] B 0 u 0 u
<—C ) 0 u
[ ey
u v v v v v
0= m/2 <0< 0=1m/2 0<O<m/2 6=0
cos = —1 —l<cosf<0 cosO=0 0<cosfO<1 cosh=1

Figure 11.25

From Theorem 11.5, you can see that two nonzero vectors meet at a right angle
if and only if their dot product is zero. Two such vectors are said to be orthogonal.

DEFINITION OF ORTHOGONAL VECTORS

The vectors u and v are orthogonal if u + v = 0.

\[[3 The terms “perpendicular,” “orthogonal,” and “normal” all mean essentially the same
thing—meeting at right angles. However, it is common to say that two vectors are orthogonal,
two lines or planes are perpendicular, and a vector is normal to a given line or plane. |

From this definition, it follows that the zero vector is orthogonal to every vector
u, because 0 - u = 0. Moreover, for 0 < 6 < 71, you know that cos # = 0 if and only
if @ = /2. So, you can use Theorem 11.5 to conclude that two nonzero vectors are
orthogonal if and only if the angle between them is /2.

C EXAMPLE [J Finding the Angle Between Two Vectors
Foru = (3,—1,2),v=(—4,0,2),w=(1,—1,—=2),and z = (2,0, — 1), find the
angle between each pair of vectors.
a. uandv b. uand w c. vand z

Solution
A cos f = U’V:—12+0+4: —8 :—4
' [l {|v]| J14J/20 21445 J70

4
=~ 2.069 radians.
V70

u-wo_ 3+1—-4 _ 0 —0
ullw| V146 /34
Because u - w = 0, u and w are orthogonal. So, 6 = /2.
cos 0 = v-z:—8+0—2:—10:_
vzl V205 100

Consequently, 6§ = 7. Note that v and z are parallel, with v = —2z. [ |

Becauseu - v < 0, 6 = arccos

b. cos 6 = ”
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X

Direction angles
Figure 11.26

o = angle between v and i

B = angle between v and j

Y = angle between v and k
z

2 v=2i+3j+4k

The direction angles of v
Figure 11.27

Direction Cosines

For a vector in the plane, you have seen that it is convenient to measure direction in
terms of the angle, measured counterclockwise, from the positive x-axis to the vector.
In space it is more convenient to measure direction in terms of the angles between the
nonzero vector v and the three unit vectors i, j, and k, as shown in Figure 11.26. The
angles «, B, and vy are the direction angles of v, and cos «, cos 3, and cos y are the
direction cosines of v. Because

v - i=|v||i] cosa=|v|cosa
and
Vei=(v,v,,vy) - (1,0,0) = v,

it follows that cos a = v,/||v|. By similar reasoning with the unit vectors j and k, you
have

cos o = ”‘;7]” a is the angle between v and i.
Vs, .

cos B = m B is the angle between v and j.
V3 .

cos y = m v is the angle between v and k.

Consequently, any nonzero vector v in space has the normalized form

\% Vi, Vy. Vg . .
T =i+ —j + 7ok = cos ai + cos Bj + cos vk
VI vl vl vl

and because v/||v|| is a unit vector, it follows that

cos?a + cos? B + cos?y = 1.

EXAMPLE [EJ Finding Direction Angles

Find the direction cosines and angles for the vector v = 2i + 3j + 4k, and show that
cos?a + cos? B+ cos? y = 1.

Solution Because ||v|| = /22 + 32 + 42 = /29, you can write the following.
Vi 2

cosa = m = E > a= 68.2° Angle between v and i
cosB=r2 =S . ges61° Angle bet dj
T T -~ . ngle netween v an
vl /29 : !
cosy =2 = 4 = ~ 42.0° Angle bet dk
- n — - -~ . ngle between v an
YTVl T V29 Y :
Furthermore, the sum of the squares of the direction cosines is
4 9 16
cosza+coszﬁ+coszy=5+5 2
_2
29
= 1.
See Figure 11.27. [ |
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The force due to gravity pulls the boat
against the ramp and down the ramp.
Figure 11.28

u=w +w,
Figure 11.30
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Projections and Vector Components

You have already seen applications in which two vectors are added to produce a
resultant vector. Many applications in physics and engineering pose the reverse
problem—decomposing a given vector into the sum of two vector components. The
following physical example enables you to see the usefulness of this procedure.

Consider a boat on an inclined ramp, as shown in Figure 11.28. The force F due
to gravity pulls the boat down the ramp and against the ramp. These two forces, w,
and w,, are orthogonal—they are called the vector components of F.

F = w, + W, Vector components of F

The forces w, and w, help you analyze the effect of gravity on the boat. For example,
w, indicates the force necessary to keep the boat from rolling down the ramp, whereas
W, indicates the force that the tires must withstand.

DEFINITIONS OF PROJECTION AND VECTOR COMPONENTS

Let u and v be nonzero vectors. Moreover, let u = w, + w,, where w, is
parallel to v, and w, is orthogonal to v, as shown in Figure 11.29.

1. w, is called the projection of u onto v or the vector component of u along
v, and is denoted by w, = proj,u.

2. w, = u — w, is called the vector component of u orthogonal to v.

6 is acute. 6 is obtuse.

w, = proj,u = projection of uontov = vector component of u along v
w, = vector component of u orthogonal to v
Figure 11.29

EXAMPLE n Finding a Vector Component of u Orthogonal to v

Find the vector component of u = (5, 10) that is orthogonal to v = (4, 3), given that
w, = proj,u = (8, 6) and

u=(510)=w, +w,
Solution Because u = w, + w,, where w, is parallel to v, it follows that w, is the
vector component of u orthogonal to v. So, you have
W, =u—Ww,
= (5,10) — (8,6)
= (—3,4).

Check to see that w, is orthogonal to v, as shown in Figure 11.30. |
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Note the distinction between
the terms “component” and “vector com-
ponent.” For example, using the standard
unit vectors with u = u,i + u,j, u, is
the component of u in the direction of i
and u,i is the vector component in the
direction of i.

u=3i-5j+2k
v=Ti+j-2k

u=w, +w,
Figure 11.31

Figure 11.32

From Example 4, you can see that it is easy to find the vector component w, once
you have found the projection, w,, of u onto v. To find this projection, use the dot
product given in the theorem below, which you will prove in Exercise 92.

THEOREM 11.6 PROJECTION USING THE DOT PRODUCT

If u and v are nonzero vectors, then the projection of u onto v is given by

proj,u = (LZ> V.
vl

The projection of u onto v can be written as a scalar multiple of a unit vector in
the direction of v. That is,

<1|T§||2V)V: <u'v>vn:“‘)n:n = k=T

vl /v lv

= |lul| cos 6.

The scalar k is called the component of u in the direction of v.

EXAMPLE E Decomposing a Vector into Vector Components

Find the projection of u onto v and the vector component of u orthogonal to v for the
vectorsu = 3i — 5j + 2k and v = 7i + j — 2k shown in Figure 11.31.

Solution The projection of u onto v is

u-v 12 14 2 4
= (T )v = (22 )7i+j — 2k) = —i + 5 — -k
i <||v||2>V (54)”‘ Jm=gitgi—g

The vector component of u orthogonal to v is the vector

w2=u—w1=(3i—5j+2k)—<%i+%j—gk>:§i_4§j+%k_

EXAMPLE [} Finding a Force

A 600-pound boat sits on a ramp inclined at 30°, as shown in Figure 11.32. What force
is required to keep the boat from rolling down the ramp?

Solution Because the force due to gravity is vertical and downward, you can
represent the gravitational force by the vector F = — 600j. To find the force required
to keep the boat from rolling down the ramp, project F onto a unit vector v in the
direction of the ramp, as follows.

V3

1
v = cos 30°i + sin 30°j = Ti + Ej

Unit vector along ramp

Therefore, the projection of F onto v is given by
. F- 1 3, 1.
w, = proj,F = <||V||Z>V =(F-v)v= (—600)<E>V = —300({1 + 2J>.
The magnitude of this force is 300, and therefore a force of 300 pounds is required to
keep the boat from rolling down the ramp. [ ]
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Work
F
””””” The work W done by the constant force F acting along the line of motion of an object
is given by
P Q

W = (magnitude of force)(distance) = |[F| | PQ||

Work = PO
ork =il Pl as shown in Figure 11.33(a). If the constant force F is not directed along the line of

motion, you can see from Figure 11.33(b) that the work W done by the force is

W = lproizgF [P0 = (cos O)[F| [P = ¥ - 7.

(a) Force acts along the line of motion.

This notion of work is summarized in the following definition.

DEFINITION OF WORK

The work W done by a constant force F as its point of application moves

Work = ||projz5F|| || PO ~_x
ork=lproizg POl along the vector PQ is given by either of the following.

(b) Force acts at angle 6 with the line of motion.

Figure 11.33 1. W = [jprojz5 F||[PO]| Projection form

2. W=F- PQ Dot product form

EXAMPLE [l Finding Work

To close a sliding door, a person pulls on a rope with a constant force of 50 pounds at
a constant angle of 60°, as shown in Figure 11.34. Find the work done in moving the
door 12 feet to its closed position.

Solution  Using a projection, you can calculate the work as follows.

W= ||pr0]@F|| ||@|| Projection form for work
= cos(60°) [[F[| PO
1
= —(50)(12)
2
Figure 11.34 = 300 foot-pounds ]
@ EXEI’C ISeS See www.CalcChat.com for worked-out solutions to odd-numbered exercises.
In Exercises 1-8, find (a) u * v, (b) u - u, (¢) [u|?, (d) (u - v)v, 13. u=3i+jv=—2i+4j
d < (2v).

and (&) u - (2v) 14. u = cos<g)i + sin(%)j

l.u=(3,4), v=(-1,5) 2. u=(4,10), v=(-2,3)

3u=(6-4), v=(-32) 4 u=(-48), v=(75) v= cos(STW)i + sin(%)j

j‘“:f’_3’4>l;V:<0’6’5>:'“:;’ V:lzk 15. u=(1,1,1) 16. u =3 +2j + k

Lu=2i—j+ Lu=2i+j—
u lkj u 1 3J o v=4(21,-1) v =2i — 3j
=i— =i-—3j+
vl vorTa 17. u = 3i + 4j 18. u=2i — 3j + k

In Exercises 9 and 10, find u - v. v=-2j+3k v=i—-2j+k

9. |[u] = 8, |v[ = 5, and the angle between u and v is /3. In Exercises 19-26, determine whether u and v are orthogonal,
10. ||u|| = 40, ||v| = 25, and the angle between u and v is 57/6. parallel, or neither.

19. u=(40), v=(1

In Exercises 11-18, find the angle 6 between the vectors.
20. u=(2,18), v={(3 -}

11. u = (1, 1),v = (2, —=2) 12. u= 3, 1),v=(2,—-1)
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21. u = (4,3) 22. u=—3(i—2j)
_ (L _2 Come s
v—<§,—§> v =2i—4j
23. u=j+ 6k 24, u=—-2i+3j—k
v=i—-2j—k v=2i+j—k

25. u=(2,-31)
v=(-1,-1,-1)

26. u = {cos 6, sin 6, —1)
v = (sin 0, —cos 6, 0)

In Exercises 27-30, the vertices of a triangle are given.
Determine whether the triangle is an acute triangle, an obtuse
triangle, or a right triangle. Explain your reasoning.

27. (1,2,0),(0,0,0), (=2,1,0)

28. (—3,0,0),(0,0,0),(1,2,3)

29. (2,0,1),(0,1,2),(-0.5,1.5,0)

30. (2, -7,3),(—1,5,8), (4,6, —1)

In Exercises 31-34, find the direction cosines of u and demon-
strate that the sum of the squares of the direction cosines is 1.

3Lu=i+2j+2k
32.u=5i+3j—k
33. u=(0,6 —4)
34. u = {(a,b,c)

In Exercises 35-38, find the direction angles of the vector.

35. u=3i+2j — 2k
37.u=(-1,52)

36. u= —4i + 3j + 5k
38. u=(-2,61)

In Exercises 39 and 40, use a graphing utility to find the
magnitude and direction angles of the resultant of forces F, and
F, with initial points at the origin. The magnitude and terminal
point of each vector are given.

Vector Magnitude Terminal Point
39. F, 50 1Ib (10, 5,3)
F, 80 1b (12,7, -5)
40. F, 300 N (=20, —10,5)
F, 100 N (5. 15,0)

41. Load-Supporting Cables A load is supported by three cables,
as shown in the figure. Find the direction angles of the load-
supporting cable OA.

Z

(—4,-6, 10)
B.
4,-6, 10) (0, 10, 10)
[ °
c / A
4/Y3001b y

42. Load-Supporting Cables The tension in the cable OA in
Exercise 41 is 200 newtons. Determine the weight of the load.

In Exercises 43-50, (a) find the projection of u onto v, and (b)
find the vector component of u orthogonal to v.

43. u=(6,7), v={(14)

4. u=9,7), v=(1,3)

45. u =20+ 3j, v=5i+j

46. u = 2i — 3j, v =3i+ 2j

47. u =(0,3,3), v=(—1,1,1)
48. u = (8,2,0), v=4(2,1,—-1)
49. u=2i+j+2k v=3j+dk
50. u=1i+4k, v=23i+2k

WRITING ABOUT CONCEPTS

51. Define the dot product of vectors u and v.

52. State the definition of orthogonal vectors. If vectors are
neither parallel nor orthogonal, how do you find the angle
between them? Explain.

53. Determine which of the following are defined for nonzero

vectors u, v, and w. Explain your reasoning.

@ u-(v+w (b) (u - v)w

©u-v+w (d) [l - (v + w)
54. Describe direction cosines and direction angles of a vector v.
55.

56.

Give a geometric description of the projection of u onto v.

What can be said about the vectors u and v if (a) the
projection of u onto v equals u and (b) the projection of u
onto v equals 0?

57. If the projection of u onto v has the same magnitude as the
projection of v onto u, can you conclude that ||ul| = ||v]|?
Explain.

CAPSTONE

58. What is known about 6, the angle between two nonzero
vectors u and v, if
(a) u-v=0?

®u-v>0? ()u-v<0?

59. Revenue The vector u = (3240, 1450, 2235) gives the
numbers of hamburgers, chicken sandwiches, and cheeseburgers,
respectively, sold at a fast-food restaurant in one week. The
vector v = (1.35, 2.65, 1.85) gives the prices (in dollars) per unit
for the three food items. Find the dot product u - v, and explain

what information it gives.

60.

B= 61.

Revenue Repeat Exercise 59 after increasing prices by 4%.
Identify the vector operation used to increase prices by 4%.

Programming Given vectors u and v in component form,
write a program for a graphing utility in which the output is
(a) ||u , (b) ||V , and (c) the angle between u and v.

Programming Use the program you wrote in Exercise 61 to

find the angle between the vectors u = (8, —4,2) and
v =(2,5,2).

= 2.



e 63. Programming Given vectors u and v in component form,

write a program for a graphing utility in which the output is the
component form of the projection of u onto v.

e 64. Programming Use the program you wrote in Exercise 63 to

find the projection of uw onto v for u = (5,6,2) and
v ={(—1,3,4).

Think About It In Exercises 65 and 66, use the figure to
determine mentally the projection of u onto v. (The coordinates
of the terminal points of the vectors in standard position are
given.) Verify your results analytically.

65. y 66.
6+ °
VA4, 6

oL 4,6)
zak

1 f——t>x

-4 w/| 2 4 6
[ ]

(=2,-3)+

In Exercises 67-70, find two vectors in opposite directions that
are orthogonal to the vector u. (The answers are not unique.)

67. u = —ji +3j
69. u=(3,1,-2)

68. u = 9i — 4j
70. u = (4, —3,6)

71. Braking Load A 48,000-pound truck is parked on a 10° slope
(see figure). Assume the only force to overcome is that due to
gravity. Find (a) the force required to keep the truck from
rolling down the hill and (b) the force perpendicular to the hill.

(5.-5,20) oB
Co )Z'(—s,—s,zo)

Weight = 48,000 Ib 1000 kg

Figure for 71 Figure for 72

72. Load-Supporting Cables Find the magnitude of the projection
of the load-supporting cable OA onto the positive z-axis as
shown in the figure.

73. Work An object is pulled 10 feet across a floor, using a force

of 85 pounds. The direction of the force is 60° above the
horizontal (see figure). Find the work done.

H _BHHBE

Not drawn to scale

Figure for 73

Figure for 74
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74. Work A toy wagon is pulled by exerting a force of 25 pounds
on a handle that makes a 20° angle with the horizontal (see
figure in left column). Find the work done in pulling the wagon
50 feet.

75. Work A car is towed using a force of 1600 newtons. The
chain used to pull the car makes a 25° angle with the horizontal.
Find the work done in towing the car 2 kilometers.

76. Work A sled is pulled by exerting a force of 100 newtons on
a rope that makes a 25° angle with the horizontal. Find the work
done in pulling the sled 40 meters.

True or False? In Exercises 77 and 78, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

77. fu-v=u-wandu # 0, thenv = w.

78. If u and v are orthogonal to w, then u + v is orthogonal to w.

79. Find the angle between a cube’s diagonal and one of its edges.

80. Find the angle between the diagonal of a cube and the diagonal
of one of its sides.

In Exercises 81-84, (a) find all points of intersection of the
graphs of the two equations, (b) find the unit tangent vectors to
each curve at their points of intersection, and (c) find the angles
(0° < 6 < 90°) between the curves at their points of intersection.
8l. y=2x% y=x'/3

82.y=2x3 y=x/3

8. y=1—-x y=x>-1

84. (y+ 10 =x, y=x>-1

85. Use vectors to prove that the diagonals of a rhombus are
perpendicular.

86. Use vectors to prove that a parallelogram is a rectangle if and
only if its diagonals are equal in length.

87. Bond Angle Consider a regular tetrahedron with vertices
(0,0,0), (k, k,0), (k, 0, k), and (0, k, k), where k is a positive
real number.

(a) Sketch the graph of the tetrahedron.
(b) Find the length of each edge.
(c) Find the angle between any two edges.

(d) Find the angle between the line segments from the centroid
(k/2, k/2, k/2) to two vertices. This is the bond angle for a
molecule such as CH, or PbCl,, where the structure of the
molecule is a tetrahedron.

88. Consider  the  vectors u = {cos a, sin a, 0) and
v = (cos B, sin B, 0), where a > . Find the dot product of the
vectors and use the result to prove the identity

cos(a — B) = cos acos B + sin a sin B.
89. Prove that [u — v|? = [u/|> + ||v|? — 2u - v.
90. Prove the Cauchy-Schwarz Inequality |u - v| < |lul| | v]|

91. Prove the triangle inequality |u + v| < [Jul| + | v].
92. Prove Theorem 11.6.
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Vectors and the Geometry of Space

@ The Cross Product of Two Vectors in Space

EXPLORATION

Geometric Property of the Cross
Product Three pairs of vectors
are shown below. Use the defini-
tion to find the cross product of
each pair. Sketch all three vectors
in a three-dimensional system.
Describe any relationships among
the three vectors. Use your
description to write a conjecture
aboutu, v,and u x v.

a. u=(3,03), v=(30-3)

® Find the cross product of two vectors in space.
B Use the triple scalar product of three vectors in space.

The Cross Product

Many applications in physics, engineering, and geometry involve finding a vector in
space that is orthogonal to two given vectors. In this section you will study a product
that will yield such a vector. It is called the cross product, and it is most conveniently
defined and calculated using the standard unit vector form. Because the cross product
yields a vector, it is also called the vector product.

DEFINITION OF CROSS PRODUCT OF TWO YECTORS IN SPACE
Let

u=ui+uj+uk and v=vi+v,j+ vk
be vectors in space. The cross product of u and v is the vector

uxXv= (U — uw)i — (uy; — up,)j + (W, — uy)k.

L3 Be sure you see that this definition applies only to three-dimensional vectors. The
cross product is not defined for two-dimensional vectors. |

A convenient way to calculate u x v is to use the following determinant form with
cofactor expansion. (This 3 x 3 determinant form is used simply to help remember the
formula for the cross product—it is technically not a determinant because the entries
of the corresponding matrix are not all real numbers.)

i j Kk
uXxXyv=|uy Uy Uy ~<—  Put “u” in Row 2.
vy v,y Vs <~— Put “v” in Row 3.

uy, us|.

Vi V3 Vi "
= (uyvy — uw)i — (uyvy — up)j + (uv, — uy)k

Note the minus sign in front of the j-component. Each of the three 2 x 2 determinants

can be evaluated by using the following diagonal pattern.

>"|=ad — be

Here are a couple of examples.

e [T S e
4

-6

) - @6 - 00 - 12



NOTATION FOR DOT AND CROSS
PRODUCTS

The notation for the dot product and cross
product of vectors was first introduced by
the American physicist Josiah Willard Gibbs
(1839-1903). In the early 1880s, Gibbs built
a system to represent physical quantities
called “vector analysis.” The system was a

departure from Hamilton’s theory of quaternions.
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EXAMPLE [l Finding the Cross Product

Givenu =i — 2j + kand v = 3i + j — 2Kk, find each of the following.

a. uxyv b. vxu C. VXV
Solution
i J k
-2 1 1 1 1 -2
auxv=|l -2 1=‘ i—‘ ‘j-i—‘ ‘k
3 A 1 2 3 2 3 1
=4 -1Di—(-2-3j+ 1 +6)k
=3i+5j+7k
i j k
1 =2 3 =2 3 1
b. vxu=|3 1 —22‘ i—‘ ‘j-l—‘ ‘k
A | 2 1 1 1 1 2

=(1-4i-B+2j+(—6—- 1Dk
= —3i-5j-7k

Note that this result is the negative of that in part (a).

i j k
c.vxv=1|3 1 —=2(=0 [ |
3 1 -2

The results obtained in Example 1 suggest some interesting algebraic properties
of the cross product. For instance, u x v = —(v x u), and v x v = 0. These
properties, and several others, are summarized in the following theorem.

THEOREM 11.7 ALGEBRAIC PROPERTIES OF THE CROSS PRODUCT

Let u, v, and w be vectors in space, and let ¢ be a scalar.
l.uxv=—(vxu)

2.ux(v+w) =@@xv)+ (uxw

3. clu xv) =(cu) x v=ux(cv)

4. ux0=0xu=20

50.uxu=0

6

.uc(vxw)=@xv)w

To prove Property 1, let u = uji + u,j + uzk and v = vji + v,j + v;k.
Then,

uxyv= (”2"3 - ”3V2)i - (M1V3 - “3V1)j + (“1"2 - “2V1)k
and
vxu= (vauz — vauri — (viuz — vau))j + (vius — voupk

which implies that u x v = —(v x u). Proofs of Properties 2, 3, 5, and 6 are left as
exercises (see Exercises 59-62). [ |
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It follows from Properties 1
and 2 in Theorem 11.8 that if n is a unit
vector orthogonal to both u and v, then

ux v ==x(|u] |v]sin6)n.

u
The vectors u and v form adjacent sides of a
parallelogram.
Figure 11.35

Vectors and the Geometry of Space

Note that Property 1 of Theorem 11.7 indicates that the cross product is not
commutative. In particular, this property indicates that the vectors u X v and v x u
have equal lengths but opposite directions. The following theorem lists some other
geometric properties of the cross product of two vectors.

THEOREM 11.8 GEOMETRIC PROPERTIES OF THE CROSS PRODUCT

Let u and v be nonzero vectors in space, and let 6 be the angle between u and v.

1. u x v is orthogonal to both u and v.
2. lux v| = [ull[}v]sin 6
3. u x v = 0 if and only if u and v are scalar multiples of each other.

4. ||u x v| = area of parallelogram having u and v as adjacent sides.

To prove Property 2, note because cos 6 = (u - v)/(|[u] || v
lafl [[v][ sin 6 = [jul| [[v|«/1 = cos*6
(ll . V)2
REELE
[P v]? = (u - v)?
VWt ui+ud)E+ v+ v — (upy, + uw, + uzvy)?

= V(uvy — uzy)? + (uv; —

), it follows that

bl IVl /1

up)? + (uyw, — uw,)?

la < v|.

To prove Property 4, refer to Figure 11.35, which is a parallelogram having v and u
as adjacent sides. Because the height of the parallelogram is ||v| sin 6, the area is
Area = (base)(height)
= [[ull [Iv] sin®

= [lu x v].

Proofs of Properties 1 and 3 are left as exercises (see Exercises 63 and 64). [ |

Both u x v and v x u are perpendicular to the plane determined by u and v. One
way to remember the orientations of the vectors u, v, and u X v is to compare them
with the unit vectors i, j, and k = i X j, as shown in Figure 11.36. The three vectors
u, v, and u x v form a right-handed system, whereas the three vectors u, v, and v x u
form a left-handed system.

k=ixj

Plane determined
by uand v

Right-handed systems
Figure 11.36
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O EXAMPLE |3 Using the Cross Product

The vector u x v is orthogonal to both u
and v.
Figure 11.37

67 =247

The area of the parallelogram is approximately
32.19.
Figure 11.38

Find a unit vector that is orthogonal to both
u=i—4j+k and v=2i+ 3j.

Solution The cross product u x v, as shown in Figure 11.37, is orthogonal to both u

and v.
i j Kk
uxv=1|1 —4 1 Cross product
2 3 0
= —3i+2j+ 11k
Because

Jluxv|]|=V(=3)>+22+112= /134
a unit vector orthogonal to both u and v is

uxv _ 3 - 2 - llk
x|~ V134 U134 U134

\[1J3 In Example 2, note that you could have used the cross product v x u to form a unit
vector that is orthogonal to both u and v. With that choice, you would have obtained the
negative of the unit vector found in the example. |

EXAMPLE [EJ Geometric Application of the Cross Product

Show that the quadrilateral with vertices at the following points is a parallelogram,
and find its area.

A=(520) B=(261)
C=24,7) D =(5,0,6)

Solution From Figure 11.38 you can see that the sides of the quadrilateral corre-
spond to the following four vectors.

AB = —3i+4j +k CD =3i—4j — k= —4B
AD = 0i — 2j + 6k CB = 0i + 2j — 6k = —AD

So, AB is parallel to CD and AD is parallel to CB. and you can conclude that the
quadrilateral is a parallelogram with AB and AD as adjacent sides. Moreover, because

i J k
AB x AD = |—3 4 1 Cross product
0 -2 6

= 26i + 18j + 6k
the area of the parallelogram is
4B x AD|| = /1036 =~ 32.19.

Is the parallelogram a rectangle? You can determine whether it is by finding the angle
between the vectors AB and AD. [
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The moment of F about P
Figure 11.39

X

A vertical force of 50 pounds is applied at

point Q.
Figure 11.40

FOR FURTHER INFORMATION To
see how the cross product is used to
model the torque of the robot arm of a
space shuttle, see the article “The Long
Arm of Calculus” by Ethan Berkove
and Rich Marchand in The College
Mathematics Journal. To view this
article, go to the website
www.matharticles.com.

In physics, the cross product can be used to measure torque—the moment M of
a force F about a point P, as shown in Figure 11.39. If the point of application of the
force is Q, the moment of F about P is given by

_
M = PQ x F. Moment of F about P

The magnitude of the moment M measures the tendency of the vector PQ to rotate
counterclockwise (using the right-hand rule) about an axis directed along the vector M.

EXAMPLE [Z§ An Application of the Cross Product

A vertical force of 50 pounds is applied to the end of a one-foot lever that is attached
to an axle at point P, as shown in Figure 11.40. Find the moment of this force about
the point P when 6 = 60°.

Solution  If you represent the 50-pound force as F = — 50Kk and the lever as

PO = cos(60°)j + sin(60°)k = %j + ?k

the moment of F about P is given by

i j k
M=P0xF =y % @ = —25i. Moment of F about P
0 0 -50
The magnitude of this moment is 25 foot-pounds. [ |

In Example 4, note that the moment (the tendency of the lever to rotate about its axle)
is dependent on the angle §. When 6 = 77/2, the moment is 0. The moment is greatest when
0=0. ]

The Triple Scalar Product
For vectors u, v, and w in space, the dot product of u and v x w
u-(vxw)

is called the triple scalar product, as defined in Theorem 11.9. The proof of this
theorem is left as an exercise (see Exercise 67).

THEOREM 11.9 THE TRIPLE SCALAR PRODUCT

Foru = wi+ u,j + u;k,v=vi+v,j+ vk andw = wji + w,j + wik,
the triple scalar product is given by

Uy Uy U
u-(vxw =1|v, v, vy
W, oW, ws

\[J§3 The value of a determinant is multiplied by — 1 if two rows are interchanged. After
two such interchanges, the value of the determinant will be unchanged. So, the following triple
scalar products are equivalent.

u-(vxw =v-(wxu)=w:-(uxv) [ ]


www.matharticles.com

VXW

~ \4
[ proj, . wull

Area of base = ||v x w|
Volume of parallelepiped = |u - (v x w)|
Figure 11.41

o
0,2,-2)

The parallelepiped has a volume of 36.
Figure 11.42
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If the vectors u, v, and w do not lie in the same plane, the triple scalar product
u - (v x w) can be used to determine the volume of the parallelepiped (a polyhedron,
all of whose faces are parallelograms) with u, v, and w as adjacent edges, as shown in
Figure 11.41. This is established in the following theorem.

THEOREM 11.10 GEOMETRIC PROPERTY OF THE TRIPLE SCALAR PRODUCT

The volume V of a parallelepiped with vectors u, v, and w as adjacent edges
is given by

V=lu-(vxw)

In Figure 11.41, note that

[v x w| = area of base
and

[proj,..,ull = height of parallelepiped.
Therefore, the volume is

V = (height)(area of base) = ||proj, ull[lv x w||

- PRy )
lv > wl
= |u - (vxw). n

EXAMPLE E Volume by the Triple Scalar Product

Find the volume of the parallelepiped shown in Figure 11.42 having
u=3i—-5+k, v=2j— 2k, and w = 3i + j + k as adjacent edges.

Solution By Theorem 11.10, you have

V= |ll . (V X W)l Triple scalar product

3 =5 1
=10 2 =2
3 1 1
2 =2 0o —2 0 2
B 3‘1 1’ B (_5)‘3 1‘ " “)‘3 1’
= 3(4) + 5(6) + 1(—6)
= 36. [ |

A natural consequence of Theorem 11.10 is that the volume of the parallelepiped
is 0 if and only if the three vectors are coplanar. That is, if the vectors u = (u;, u,, i),
v = (v}, V5, v3), and W = (w,, w,, w;) have the same initial point, they lie in the same
plane if and only if

u-(vxw =1|v, v,
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@ EXEI’C ISES See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

In Exercises 1-6, find the cross product of the unit vectors and
sketch your result.

1. jxi 2.ixj
3. jxk 4. k xj
5.ixk 6. k xi

In Exercises 7-10, find (a) u x v, (b) v x u, and (¢) v x v.

8. u=3i+ 5k
v =2i+3j—-2k
10. u = (3, =2, —2)
v={(1,51)

7. u = —2i + 4
v =3i+2j+ 5k

9. u=(7,3,2)
v={(1,-1,5)

In Exercises 11-16, find u x v and show that it is orthogonal to
both u and v.

11. u = (12, —3,0) 12.u=(-1,1,2)

v=1(-2,50) v =10,1,0)
13.u=(2 -31) 14. u = (- 10,0, 6

v=(1,-21) v =15 -3,0)
15.u=i+j+k 16. u = i + 6j

v=2i+j-k v=-2i+j+k

Think About It 1In Exercises 17-20, use the vectors u and v
shown in the figure to sketch a vector in the direction of the
indicated cross product in a right-handed system.

18. vxu

17. u x v
19. (-v) xu

20. u x (u x v)

X In Exercises 21-24, use a computer algebra system to find u x v

and a unit vector orthogonal to u and v.

21. u=(4,-35,7)
v =1(259,3)
23 u=—3i +2j - 5k
v =04i — 0.8j + 0.2k

22, u=(-8,—6,4)
v = (10, =12, —2)
24. u = 0.7k
v = 1.5i + 6.2k

= 25. Programming Given the vectors u and v in component form,

write a program for a graphing utility in which the output is
u x vand [u x v].

P 26. Programming Use the program you wrote in Exercise 25 to

find u x v and |lu x v|| foru = (—2,6,10) and v = (3, 8, 5).

Area In Exercises 27-30, find the area of the parallelogram
that has the given vectors as adjacent sides. Use a computer
algebra system or a graphing utility to verify your result.

27.u=j 28. u=i+j+tk
v=j+k v=j+k

29. u=(3,2-1) 30. u=(2,—-1,0)
v=<(1,2,3) v=(-1,2,0)

Area In Exercises 31 and 32, verify that the points are the
vertices of a parallelogram, and find its area.

31. A(0,3,2), B(1,5,5), C(6,9,5),D(5,7,2)

32. A2, -3,1),B(6,5,—1),C(7,2,2), D3, —6,4)

Area In Exercises 33-36, find the area of the triangle with the
given vertices. (Hint: %" ux v || is the area of the triangle having
u and v as adjacent sides.)

33. A(0,0,0), B(1,0,3), C(—3,2,0)

34. A2, —-3,4), B(0,1,2), C(—1,2,0)

35. A(2,-7,3), B(—1,5,8), C(4,6,—1)

36. A(1,2,0), B(—2,1,0), C(0,0,0)

37. Torque A child applies the brakes on a bicycle by applying a
downward force of 20 pounds on the pedal when the crank
makes a 40° angle with the horizontal (see figure). The crank is
6 inches in length. Find the torque at P.

AURIVTHAMDMAVURILAARS

2000 Ib

Figure for 37

Figure for 38

38. Torque Both the magnitude and the direction of the force on
a crankshaft change as the crankshaft rotates. Find the torque
on the crankshaft using the position and data shown in the figure.

oo 39. Optimization A force of 56 pounds acts on the pipe wrench

shown in the figure on the next page.

(a) Fgl the magnitude of the moment about O by evaluating
|OA x F|. Use a graphing utility to graph the resulting
function of 6.

(b) Use the result of part (a) to determine the magnitude of the
moment when 6 = 45°.

(c) Use the result of part (a) to determine the angle 6 when the
magnitude of the moment is maximum. Is the answer what
you expected? Why or why not?


www.CalcChat.com

12 in.,

<——15in.

Figure for 39

Figure for 40

40. Optimization A force of 180 pounds acts on the bracket
shown in the figure.

(a) Determine the vector AB and the vector F representing the
force. (F will be in terms of 6.)

(b) Find the magnitude of the moment about A by evaluating
4B x F|.

(c) Use the result of part (b) to determine the magnitude of the
moment when 6 = 30°.

(d) Use the result of part (b) to determine the angle 6 when the
magnitude of the moment is maximum. At that angle, what
is the relationship between the vectors F and AB?Is it what
you expected? Why or why not?

(e) Use a graphing utility to graph the function for the
magnitude of the moment about A for 0° < 6 < 180°. Find
the zero of the function in the given domain. Interpret the
meaning of the zero in the context of the problem.

In Exercises 41-44, find u - (v x w).

41. u =i 42.u=(1,1,1)
v=j v=1(210)
w =k w = (0,0, 1)
43. u = (2,0, 1) 4. u = (2,0,0)
v =0,3,0) v=(1,1,1)
w=(0,0,1) w = (0,2,2)

Volume In Exercises 45 and 46, use the triple scalar product to
find the volume of the parallelepiped having adjacent edges u,
v, and w.

45, u=i+]j 46. u = (1,3, 1)
v=j+Kk v =0, 6, 6)
w=i+k w=(—4,0,—-4)

z Zz
A A
2 6 v !
4 |
2 b
w ]
N l 4, T g Y
17 u ‘2 >y x w
2 2 >
»
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Volume 1In Exercises 47 and 48, find the volume of the
parallelepiped with the given vertices.
47. (0,0,0),(3,0,0),(0,5,1),(2,0,5)
(3,5,1),(5,0,5),(2,5,6), (5,5, 6)
48. (0,0,0),(0,4,0),(=3,0,0),(-1,1,5)
(=3,4,0),(-1,5,5), (=4, 1,5),(=4,5,5)
49. If u x v=0 and u - v = 0, what can you conclude about u
and v?

50. Identify the dot products that are equal. Explain your reasoning.
(Assume u, v, and w are nonzero vectors.)

@ u-(vxw) () (vxw-u
() (uxv) -w d (ux —w) - v
(e) u-(wxv) ) w-(vxu)
(@ (Fuxv)-w (h) (Wxu)-v

WRITING ABOUT CONCEPTS

51. Define the cross product of vectors u and v.
52. State the geometric properties of the cross product.

53. If the magnitudes of two vectors are doubled, how will the
magnitude of the cross product of the vectors change? Explain.

CAPSTONE

54. The vertices of a triangle in space are (x,, y;, z,), (X3 Y2, 25),
and (x5, y3, z3)- Explain how to find a vector perpendicular
to the triangle.

True or False? In Exercises 55-58, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

55. It is possible to find the cross product of two vectors in a
two-dimensional coordinate system.

56. If u and v are vectors in space that are nonzero and nonparallel,
thenu X v=v x u.

57. fu # 0andu x v=u x w, thenv = w.

58. fu#0,u-v=u-w,andu xv=uxw,thenv =w.

In Exercises 59-66, prove the property of the cross product.

59. ux(v+w =@xv)+ (uxw)
60. c(u x v) = (cu) x v=u x (cv)
6l.uxu=90

62.u-(vxw =@uxv)-w

63. u x v is orthogonal to both u and v.

64. u x v = 0 if and only if u and v are scalar multiples of each
other.

65. Prove that |ju x v|| = |Jul| ||v] if u and v are orthogonal.

66. Provethatu x (v xw) = (u - w)v — (u - v)w.

67. Prove Theorem 11.9.
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@ Lines and Planes in Space

2

O, y,2)
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Line L and its direction vector v
Figure 11.43

The vector v is parallel to the line L.
Figure 11.44

B Write a set of parametric equations for a line in space.

B Write a linear equation to represent a plane in space.

B Sketch the plane given by a linear equation.

® Find the distances between points, planes, and lines in space.

Lines in Space

In the plane, slope is used to determine an equation of a line. In space, it is more
convenient to use vectors to determine the equation of a line.

In Figure 11.43, consider the line L through the point P(x,, y,, z;) and parallel to
the vector v = {a, b, c). The vector v is a direction vector for the line L, and a, b, and
c are direction numbers. One way of describing the line L is to say that it consists of
all points Q(x, y, z) for which the vector PQ is parallel to v. This means that PQ is
a scalar multiple of v, and you can write @ = tv, where t is a scalar (a real
number).

@ ={x—x,y —y,2—z) = {at, bt ct) = tv

By equating corresponding components, you can obtain parametric equations of a
line in space.

THEOREM 11.11 PARAMETRIC EQUATIONS OF A LINE IN SPACE

A line L parallel to the vector v = {a, b, ¢) and passing through the point
P(x,, y,, z;) is represented by the parametric equations

x=x +tat, y=y +bt, and z =17z + ct.

If the direction numbers a, b, and ¢ are all nonzero, you can eliminate the
parameter ¢ to obtain symmetric equations of the line.

X=X _ Y= _2T7%4 . .
= = Symmetric equations
a b c

EXAMPLE [El Finding Parametric and Symmetric Equations

Find parametric and symmetric equations of the line L that passes through the point
(1, =2, 4) and is parallel to v = (2,4, —4).

Solution To find a set of parametric equations of the line, use the coordinates
x, = 1,y, = —2, and z; = 4 and direction numbers a = 2, b = 4, and ¢ = —4 (see
Figure 11.44).

x=1+2t, y=-2+4t, z=4—4¢ Parametric equations
Because a, b, and c are all nonzero, a set of symmetric equations is

x—1_y+2 _z-4
2 4 -4

Symmetric equations |



i

n-@=0

The normal vector n is orthogonal to each
vector PQ in the plane.
Figure 11.45
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Neither parametric equations nor symmetric equations of a given line are unique.
For instance, in Example 1, by letting = 1 in the parametric equations you would
obtain the point (3, 2, 0). Using this point with the direction numbers a = 2, b = 4,
and ¢ = —4 would produce a different set of parametric equations

x=3+2t, y=2+4, and z= —4t.

O EXAMPLE [EJ Parametric Equations of a Line Through Two Points

Find a set of parametric equations of the line that passes through the points (—2, 1, 0)
and (1, 3, 5).

Solution Begin by using the points P(—2, 1, 0) and Q(1, 3, 5) to find a direction
vector for the line passing through P and Q, given by

v=P0 =(1-(-2,3-1,5-0)= (3,25 = (ab,c).
Using the direction numbers @ = 3, b = 2, and ¢ = 5 with the point P(—2, 1, 0), you
can obtain the parametric equations

x=—-2+3t y=1+2t, and z =5t [ |

As t varies over all real numbers, the parametric equations in Example 2 determine the
points (x,y, z) on the line. In particular, note that t = 0 and t = 1 give the original points
(=2,1,0) and(1, 3, 5). |

Planes in Space

You have seen how an equation of a line in space can be obtained from a point on the
line and a vector parallel to it. You will now see that an equation of a plane in space
can be obtained from a point in the plane and a vector normal (perpendicular) to the
plane.

Consider the plane containing the point P(x,, y,, z,) having a nonzero normal
vector n = {(a, b, ¢), as shown in Figure 11.45. This plane consists of all points
O(x, v, z) for which vector @ is orthogonal to n. Using the dot product, you can write
the following.

n-P0 =0

(a,b,c) * {x — XY = V2 — Z1> =0

alx —x) +bly—y) +tclz—2)=0
The third equation of the plane is said to be in standard form.

THEOREM 11.12 STANDARD EQUATION OF A PLANE IN SPACE

The plane containing the point (x,, y,, z;) and having normal vector n =(a, b, ¢)
can be represented by the standard form of the equation of a plane

a(x - xl) + b(y - )’1) + C(Z - Zl) =0.

By regrouping terms, you obtain the general form of the equation of a plane in space.

ax + by +cz+d=0 General form of equation of plane
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(=2, 1,4)

A plane determined by u and v
Figure 11.46

e

The angle 6 between two planes
Figure 11.47

Given the general form of the equation of a plane, it is easy to find a normal
vector to the plane. Simply use the coefficients of x, y, and z and write n = (a, b, c).

EXAMPLE [E} Finding an Equation of a Plane in Three-Space

Find the general equation of the plane containing the points (2, 1, 1), (0, 4, 1), and
(_ 25 17 4)'

Solution  To apply Theorem 11.12 you need a point in the plane and a vector that is
normal to the plane. There are three choices for the point, but no normal vector is
given. To obtain a normal vector, use the cross product of vectors u and v extending
from the point (2, 1, 1) to the points (0, 4, 1) and (=2, 1, 4), as shown in Figure 11.46.
The component forms of u and v are
u=0-24-1,1-1)=(=2,3,0)
v=(-2-2,1-1,4—-1)=(-4,0,3)

and it follows that

n=uxy
i j K
=1-2 3 0
—4 0 3
= 9i + 6j + 12k
=<{a, b, c)

is normal to the given plane. Using the direction numbers for n and the point
(x;, 1> 21) = (2, 1, 1), you can determine an equation of the plane to be

a(x_xl) + b(y _y1) + C(Z_Zl) =0

9(x —2) + 6(y — )+ 12(z—1)=0 Standard form
9x + 6y + 122 — 36 =0 General form
3x+ 2y +4z—12=0. Simplified general form |

In Example 3, check to see that each of the three original points satisfies the equation
3x +2y +4z—12=0. [ |

Two distinct planes in three-space either are parallel or intersect in a line. If they
intersect, you can determine the angle (0 < 6 < 77/2) between them from the angle
between their normal vectors, as shown in Figure 11.47. Specifically, if vectors n, and
n, are normal to two intersecting planes, the angle 6 between the normal vectors is
equal to the angle between the two planes and is given by

In, - ny

cos 0 = 57—
[, [} [,

Angle between two planes

Consequently, two planes with normal vectors n, and n, are
1. perpendicularifn; -+ n, = 0.

2. parallel if n, is a scalar multiple of n,.
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Plane 2
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Figure 11.48
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EXAMPLE [ Finding the Line of Intersection of Two Planes

Find the angle between the two planes given by

x—2y+z=0 Equation of plane 1
2x + 3y —2z=0 Equation of plane 2

and find parametric equations of their line of intersection (see Figure 11.48).

Solution Normal vectors for the planes are n, = (1, —2, 1) and n, = (2, 3, —2).

Consequently, the angle between the two planes is determined as follows.

In, -y

[l [,

_ =6l
V6 V17
_5

AT

=~ 0.59409

cos 6 = Cosine of angle between n; and n,

This implies that the angle between the two planes is § =~ 53.55°. You can find the line
of intersection of the two planes by simultaneously solving the two linear equations
representing the planes. One way to do this is to multiply the first equation by —2 and
add the result to the second equation.

x—2y+ z=0 > —2x+4y—-2z=0
2x+ 3y —2z=0 2x + 3y —2z=0

4
Ty —dz=0 > y=7Z

Substituting y = 4z/7 back into one of the original equations, you can determine that
x = z/7. Finally, by letting r = z/7, you obtain the parametric equations

xX=1t y= 4t, and z =Tt Line of intersection

which indicate that 1, 4, and 7 are direction numbers for the line of intersection.

Note that the direction numbers in Example 4 can be obtained from the cross
product of the two normal vectors as follows.

i j k
nxn,=|1 -2 1
2 3 -2

-2 1‘i_‘1 l‘j+‘1 —z‘k

3 -2 2 -2 2 3
=i+4j+ 7k

This means that the line of intersection of the two planes is parallel to the cross
product of their normal vectors.

The three-dimensional rotatable graphs that are available in the premium eBook for
this text can help you visualize surfaces such as those shown in Figure 11.48. If you have access
to these graphs, you should use them to help your spatial intuition when studying this section
and other sections in the text that deal with vectors, curves, or surfaces in space. [ |
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z Plane: 2x + z=1
A

0,0, 1)
°

Plane 2x + z = 1 is parallel to the y-axis.
Figure 11.50

Vectors and the Geometry of Space

Sketching Planes in Space

If a plane in space intersects one of the coordinate planes, the line of intersection is
called the trace of the given plane in the coordinate plane. To sketch a plane in space,
it is helpful to find its points of intersection with the coordinate axes and its traces in
the coordinate planes. For example, consider the plane given by
3x + 2y + 4z = 12. Equation of plane
You can find the xy-trace by letting z = 0 and sketching the line
3x + 2y =12

Xxy-trace

in the xy-plane. This line intersects the x-axis at (4, 0, 0) and the y-axis at (0, 6, 0). In
Figure 11.49, this process is continued by finding the yz-trace and the xz-trace, and
then shading the triangular region lying in the first octant.

Z Z

xz-trace (y = 0):
3x+4z=12

xy-trace (z = 0): yz-trace (x = 0):
I+ 2= 12 2 +dz=12
Traces of the plane 3x + 2y + 4z = 12

Figure 11.49

If an equation of a plane has a missing variable, such as 2x + z = 1, the plane
must be parallel to the axis represented by the missing variable, as shown in Figure
11.50. If two variables are missing from an equation of a plane, it is parallel to the
coordinate plane represented by the missing variables, as shown in Figure 11.51.

2 Z 2
A A A

~
° y

S
X@ia@ x* '
a

Plane by + d = 0 is parallel
to the xz-plane

Plane ¢z + d = 0 is parallel
to the xy-plane

Plane ax + d = 0 is parallel
to the yz-plane
Figure 11.51
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The distance between a point and a plane
Figure 11.52
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Distances Between Points, Planes, and Lines

This section is concluded with the following discussion of two basic types of
problems involving distance in space.

1. Finding the distance between a point and a plane

2. Finding the distance between a point and a line

The solutions of these problems illustrate the versatility and usefulness of vectors in
coordinate geometry: the first problem uses the dot product of two vectors, and the
second problem uses the cross product.

The distance D between a point Q and a plane is the length of the shortest line
segment connecting Q to the plane, as shown in Figure 11.52. If P is any point in the
plane, you can find this distance by projecting the vector @ onto the normal vector
n. The length of this projection is the desired distance.

THEOREM 11.13 DISTANCE BETWEEN A POINT AND A PLANE

The distance between a plane and a point Q (not in the plane) is

N PO - n
p - lproi70] - 1202

where P is a point in the plane and n is normal to the plane.

To find a point in the plane given by ax + by + cz + d = 0(a # 0), lety = 0
and z = 0. Then, from the equation ax + d = 0, you can conclude that the point
(=d/a, 0, 0) lies in the plane.

EXAMPLE [E} Finding the Distance Between a Point and a Plane

Find the distance between the point Q(1, 5, —4) and the plane given by

3x—y+2z=6.
Solution  You know that n = (3, —1, 2) is normal to the given plane. To find a point
in the plane, let y = 0 and z = 0, and obtain the point P(2, 0, 0). The vector from P
to Q is given by

PO=(1-25-0,—-4-0)

= <— 1’ 5’ _4>'

Using the Distance Formula given in Theorem 11.13 produces

PO -n| _[(-15.-4)-(3.-1.2)]
[n]| JOF1+4
_|=3-5-8]
N
16

-5

Distance between a point and a plane

The choice of the point P in Example 5 is arbitrary. Try choosing a different point in
the plane to verify that you obtain the same distance. |
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From Theorem 11.13, you can determine that the distance between the point
(X, Yo» 20) and the plane given by ax + by + cz +d = 0 is

lalxy — x)) + b(yy — y)) + clzg — 2))

D=
Ja* + b+ 2

or

_ |ax, + by, + czo + d|

D Distance between a point and a plane
NGRS

where P(x,, y,, z;) is a point in the plane and d = —(ax, + by, + cz,).

EXAMPLE [} Finding the Distance Between Two Parallel Planes
e ) i Find the distance between the two parallel planes given by
3 3x—y+2z—6=0 and 6x — 2y +4z+4=0.

Solution  The two planes are shown in Figure 11.53. To find the distance between the
planes, choose a point in the first plane, say (xo, yo, z,) = (2, 0, 0). Then, from the

_6 second plane, you can determine thata = 6,b = —2, ¢ = 4, and d = 4, and conclude
(2,0,0) that the distance is
(Y .
e - 2 D laxy + by, + czy + d| . N Cand 4ol
~ = 1stance between a point and a ane
D * Ja? + b2+ 2 P P
6x—2y+4z44=0 _ 16(2) + (=2)(0) + (4)(0) + 4]

. ) /62 —9)2 2
The distance between the parallel planes is 6% + (-2 + 4
approximately 2.14. _ 16 _ 8 ~ 214

Figure 11.53 U6 J14

The formula for the distance between a point and a line in space resembles that
for the distance between a point and a plane—except that you replace the dot product
with the length of the cross product and the normal vector n with a direction vector
for the line.

THEOREM 11.14 DISTANCE BETWEEN A POINT AND A LINE IN SPACE

The distance between a point Q and a line in space is given by

where u is a direction vector for the line and P is a point on the line.

In Figure 11.54, let D be the distance between the point Q and the given
line. Then D = ||PQ]|| sin 6, where @ is the angle between u and PQ. By Property 2 of
Theorem 11.8, you have

[u]l[PQ] sin 6 = [[u x PQ| = PO x u].
Consequently,
The distance between a point and a line s ||@ X ul
Figure 11.54 b= ”PQ” sin 0= ||u|| . -
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EXAMPLE Finding the Distance Between a Point and a Line

Find the distance between the point Q(3, — 1, 4) and the line given by
x=—-24+3t, y=-2t, and z=1+ 4z

Solution Using the direction numbers 3, —2, and 4, you know that a direction
vector for the line is

u=3,-24). Direction vector for line
To find a point on the line, let # = 0 and obtain

P=(-2,0,1). Point on the line
So,

PO=@3-(-2),-1—-0,4—1)=,—1,3)

and you can form the cross product

i J k
PO xu=15 -1 3l =2 —11j — 7k = (2, — 11, = 7).
3 =2 4
Finally, using Theorem 11.14, you can find the distance to be
PO x u
L _ |70 = ul
[[ull
. . V174
The distance between the point Q and the =—
line is /6 ~ 2.45. V29
Figure 11.55 = \/6 ~ 2.45. See Figure 11.55. [ |
@ EXEI‘C ISesS See www.CalcChat.com for worked-out solutions to odd-numbered exercises.
In Exercises 1 and 2, the figure shows the graph of a line given In Exercises 3 and 4, determine whether each point lies on the

by the parametric equations. (a) Draw an arrow on the line to line.
indicate its orientation. To print an enlarged copy of the graph,

go to the website www.mathgraphs.com. (b) Find the coordinates 3ox=-2+ty=3tz=4+1

of two points, P and Q, on the line. Determine the vector PQ. (a) (0,6,6) (b) (2,3,5)
What is the relationship between the components of the vector x—3 y—7
and the coefficients of ¢ in the parametric equations? Why is this 4. ), =z+2

true? (c) Determine the coordinates of any points of intersection
with the coordinate planes. If the line does not intersect a
coordinate plane, explain why.

(@ (7,23,0) ) (1,-1,-3)

In Exercises 5-10, find sets of (a) parametric equations and
Lx=1+3¢ 2. x =2 — 3 (b) symmetric equations of the line through the point parallel to
the given vector or line (if possible). (For each line, write the

o y=2 direction numbers as integers.)
z=2+5¢ z=1-—1
z z Point Parallel to
5. (0,0,0) v=(315)
6. (0.0,0) v=(-2.31)
\ 7. (=2,0,3) v =2i+4j— 2k

8. (-3,0,2) v=06j+ 3k

x y x y 9. (1,0, 1) x=3+3y=5-2t,z=—7+1¢

-1 + 1

10. (—3,5,4) Ll A

3 -2


www.mathgraphs.com
www.CalcChat.com
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In Exercises 11-14, find sets of (a) parametric equations and (b)
symmetric equations of the line through the two points (if pos-
sible). (For each line, write the direction numbers as integers.)
12. (0,4,3),(—1,2,5)

14. (0, 0, 25), (10, 10, 0)

1. (5.-3,-2).(-%21)
13. (7, —2,6),(=3,0,6)

In Exercises 15-22, find a set of parametric equations of the
line.

15. The line passes through the point (2, 3, 4) and is parallel to the
xz-plane and the yz-plane.

16. The line passes through the point (—4, 5, 2) and is parallel to
the xy-plane and the yz-plane.

17. The line passes through the point (2, 3, 4) and is perpendicular
to the plane given by 3x + 2y — z = 6.

18. The line passes through the point (—4, 5, 2) and is perpendicular
to the plane given by —x + 2y + z = 5.

19. The line passes through the point (5, —3, —4) and is parallel to

v={(2,-1,3).
20. The line passes through the point (—1, 4, —3) and is parallel to
v =>5i—j.

21. The line passes through the point (2, 1, 2) and is parallel to the
linex=—-t,y=1+tz=—-2+rt

22. The line passes through the point (—6, 0, 8) and is parallel to
thelinex =5 —2t,y = —4+ 21,z = 0.

In Exercises 23-26, find the coordinates of a point P on the line
and a vector v parallel to the line.

23. x=3—1t, y=—-1+2t, z=-2

24, x =41, y=5—1t z=4+ 3t
x—7 y+6 x+3 'y z-—3
fp S S A N . =2 =

25 2 > z+2 26 5 3 3

In Exercises 27-30, determine if any of the lines are parallel or
identical.
27. L;:x=6—3t, y=-2+2t, z=5+4t
Ly x=6t, y=2—4t, z=13-8¢
10—61, y=3+4t, z=17+ 8¢
=—4+6t, y=3+4t, z=5—6t
342, y=—-6t, z=1-2t
1+2t, y=—-1—1¢ z=3t
=—-1+2t, y=3-10t, z=1— 4t

28.

o~

. v

=R R R R R R
I

L:x=5+2, y=1—t z=8+3t
-8 y+5 z+9
29. L, R S
L.x+7:y—4=z+6
2 1 5
L.x+4=y—1=z+18
-8 4 -6
— + —
L4:x 2y 3:z 4

-2 1 1.5

30. L, | 2
x—1 y—1_ z+3

L,: = =
4 2 4
L.x+2_y—1_z—3
S| 0.5 1
x—=3 y+1 z-2
S T R

In Exercises 31-34, determine whether the lines intersect, and if
so, find the point of intersection and the cosine of the angle of
intersection.
3l.x=4r+2, y=3, z=-t+1
x=2s+2, y=2s+3, z=s5s+1
R2.x=-3t+1l,y=44+1,z=2t+4
x=3s+1,y=2s+4,z=—s+ 1

x_y—2_ x—1 _z+3
33.3 T z+1, 7 y+2 3

x—-2 y—-2_ x—3 ozt 2
34. 3 T ¢ 3, 2 =y+5= 1

X In Exercises 35 and 36, use a computer algebra system to graph

the pair of intersecting lines and find the point of intersection.

3[.x=2tr+3,y=5t—-2,z=—t+1
x=—-2s+7,y=s+8,z=2s — 1

36. x=2t— 1l,y=—4r+ 10,z =1t
x=-55—12,y=3s+ 1l,z=—-2s — 4

Cross Product In Exercises 37 and 38, (a) find the coordinates
of three p01nts P, Q, and R in the plane, and determine the
vectors PQ and ﬁ (b) Find PQ X PR What is the relation-
ship between the components of the cross product and the
coefficients of the equation of the plane? Why is this true?

37. 4x — 3y — 62 =106 38. 2x + 3y + 4z =4

z Z
A A

-y ~y

In Exercises 39 and 40, determine whether the plane passes
through each point.

39 x+2y—4z-1=0

(@ (=7,2,-1 (b) (5,2,2)
40. 2x +y+37—6=0
(a) (3,6, -2) () (=1,5,-1)



In Exercises 41-46, find an equation of the plane passing
through the point perpendicular to the given vector or line.

Point Perpendicular to
41. (1,3, -7) n=j
42. (0,—1,4) n =k
43. (3,2,2) n=2+3—-Kk
44. (0,0,0) n=—3i+2k
45. (—1,4,0) x=—-1+2t,y=5—-t,z=3—-2t
46. 3,2,2) XZI:erz:Zj;

In Exercises 47-58, find an equation of the plane.

47. The plane passes through (0, 0, 0), (2, 0, 3), and (-3, —1, 5).
48. The plane passes through (3, — 1, 2), (2, 1, 5), and (1, —2, —2).
49. The plane passes through (1, 2, 3), (3,2, 1), and (— 1, —2, 2).

50. The plane passes through the point (1, 2, 3) and is parallel to
the yz-plane.

51. The plane passes through the point (1, 2, 3) and is parallel to
the xy-plane.

52. The plane contains the y-axis and makes an angle of 7/6 with
the positive x-axis.

53. The plane contains the lines given by

x—1_ x—2 y—1 z—-2
5 =Y 4 =7z and 3 "4 T 1

54. The plane passes through the point (2, 2, 1) and contains the
line given by

x_y—4_
27 -1 ¢

55. The plane passes through the points (2,2, 1) and (=1, 1, —1)
and is perpendicular to the plane 2x — 3y + z = 3.

56. The plane passes through the points (3,2, 1) and (3, 1, —5)
and is perpendicular to the plane 6x + 7y + 2z = 10.

57. The plane passes through the points (1, =2, —1) and (2, 5, 6)
and is parallel to the x-axis.

58. The plane passes through the points (4,2, 1) and (—3,5,7)
and is parallel to the z-axis.

In Exercises 59 and 60, sketch a graph of the line and find the
points (if any) where the line intersects the xy-, xz-, and yz-planes.

59. x=1-2t, y=-2+3t, z=—-4+1t

In Exercises 61-64, find an equation of the plane that
contains all the points that are equidistant from the given points.

61. (2,2,0), (0,2,2)
63. (=3,1,2), (6,—2,4)

62. (1,0,2), (2,0,1)
64. (=5,1,-3), (2,—1,6)

11.5 Lines and Planes in Space 809

In Exercises 65-70, determine whether the planes are parallel,

orthogonal, or neither. If they are neither parallel nor

orthogonal, find the angle of intersection.

65. 5x — 3y +z= 66. 3x +y—4z =
x+4y+7z=1 —Ox —3y+ 12z=4

67. x — 3y +6z=4 68. 3x +2y —z=17
Sx+y—z=4 x—4y+2z2=0

69. x — 5y —z=1 70. 2x —z =1
5x =25y —5z= -3 4x +y+8=10

In Exercises 71-78, sketch a graph of the plane and label any
intercepts.

71 4x + 2y + 6z = 12 72. 3x + 6y + 2z =06
73. 2x —y+3z=4 74. 2x —y+z=4
75. x+z=6 76. 2x + y =8

77. x =5 78. z =38

@® In Exercises 79-82, use a computer algebra system to graph the

plane.

79. 2x +y—2z=6
81. —5x +4y —6z=—38

80. x —3;=3
82. 2.1x — 47y — 7= —3

In Exercises 83-86, determine if any of the planes are parallel
or identical.
83. P: I5x — 6y +24z=17 84. P;: 2x —y +3z=238

Py =5x+2y—8:=6 Py 3x —5y—2z=6
6x —4y +4z=9 Py 8x—4y+12z=5
3x =2y —2z=4 P, —4x —2y + 6z =11
3x =2y +5z=10
—6x+4y —10z=5
—3x+2y +5z=28
75x — 50y + 125z = 250
: —60x + 90y + 30z = 27
6x — 9y —3z=2
: —20x + 30y + 10z =9
c12x — 18y + 6z =5

~ %

.

85.

v v v v
wooND T

.

86.

Frrs

In Exercises 87— 90, describe the family of planes represented by
the equation, where c is any real number.

87.x+ty+z=c¢
89. cy+z=0

88. x+y=c
90. x +cz=0
In Exercises 91 and 92, (a) find the angle between the two

planes, and (b) find a set of parametric equations for the line of
intersection of the planes.

91. 3x + 2y —z =17
x—4y+2z=0

92. 6x =3y +z=5
—x+y+52=5
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In Exercises 93-96, find the point(s) of intersection (if any) of
the plane and the line. Also determine whether the line lies in
the plane.

93, 2x — 2y + z = 12, _l:LG/z):ﬂ

2 —1 2
94. 2x + 3y = =5, x;1=%22;3
95. 2x + 3y = 10, x;12%21_3
96. 5x + 3y = 17, xg4:y_+31:z;rz

In Exercises 97-100, find the distance between the point and the
plane.

97. (0,0, 0) 98. (0,0, 0)
2x + 3y +z=12 S5x+y—z=9
99. (2,8,4) 100. (1,3, —1)

2x+y+z=5 3x —4y+5z=6

In Exercises 101-104, verify that the two planes are parallel,

and find the distance between the planes.

101. x — 3y + 4z =10
x—3y+4z=6

103. —3x+6y+7z=1
6x — 12y — 147 = 25

102. 4x — 4y + 9z =7
4x — 4y + 9z = 18
104. 2x — 4z =4
2x — 4z =10
In Exercises 105-108, find the distance between the point and
the line given by the set of parametric equations.
105. (1,5,-2); x=4t—2, y=3, z=—t+1
106. (1,—2,4); x=2t, y=t—3, z=2t+2
107. (=2,1,3); x=1—1t y=2+t z= -2t
108. (4,—1,5); x=3, y=1+3t, z=1+1¢

In Exercises 109 and 110, verify that the lines are parallel, and
find the distance between them.
109. Li: x=2—1t, y=3+12t z=4+1
Ly x=3t, y=1—-6t, z=4—3t
110. Li: x=3+6t, y=—-2+09, z=1- 12t
Ly x=—-1+4, y=3+6t, z=—38

WRITING ABOUT CONCEPTS

111. Give the parametric equations and the symmetric equations
of a line in space. Describe what is required to find these
equations.

112. Give the standard equation of a plane in space. Describe
what is required to find this equation.

113. Describe a method of finding the line of intersection of
two planes.

114. Describe each surface given by the equations x = a,
y=b,and z = c.

WRITING ABOUT CONCEPTS (continued)

115. Describe a method for determining when two planes
ax + by +cz+d =0and
ax + by +czt+d,=0
are (a) parallel and (b) perpendicular. Explain your
reasoning.

116. Let L, and L, be nonparallel lines that do not intersect. Is
it possible to find a nonzero vector v such that v is
perpendicular to both L, and L,? Explain your reasoning.

117. Find an equation of the plane with x-intercept (a, 0, 0),
y-intercept (0, b, 0), and z-intercept (0, 0, ¢). (Assume a,
b, and ¢ are nonzero.)

CAPSTONE

118. Match the equation or set of equations with the description
it represents.

(a) Set of parametric equations of a line

(b) Set of symmetric equations of a line

(c) Standard equation of a plane in space

(d) General form of an equation of a plane in space
@) (= 6)/2=(y+1)/-3=2/1

(i) 2x =7y + 5z + 10 =0
(i) x=4+Tt,y=3+1tz=3 -3t

V) 2x— D+ (y+3)—4z—-5=0

119. Describe and find an equation for the surface generated by all
points (x, y, z) that are four units from the point (3, —2, 5).

120. Describe and find an equation for the surface generated by
all points (x,y,z) that are four units from the plane
4x — 3y + z = 10.

121. Modeling Data Per capita consumptions (in gallons) of
different types of milk in the United States from 1999 through
2005 are shown in the table. Consumptions of flavored milk,
plain reduced-fat milk, and plain light and skim milks are repre-
sented by the variables x, y, and z, respectively. (Source:
U.S. Department of Agriculture)

Year | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005

x 1.4 1.4 1.4 1.6 1.6 1.7 1.7
y 7.3 7.1 7.0 7.0 6.9 6.9 6.9
¥4 6.2 6.1 5.9 5.8 5.6 55 5.6

A model for the data is given by 0.92x — 1.03y + z = 0.02.

(a) Complete a fourth row in the table using the model to
approximate z for the given values of x and y. Compare the
approximations with the actual values of z.

(b) According to this model, any increases in consumption of

two types of milk will have what effect on the consumption
of the third type?



122. Mechanical Design The figure shows a chute at the top of a
grain elevator of a combine that funnels the grain into a bin.
Find the angle between two adjacent sides.

. 8in.
8 in.

8 in.

6 in.

123. Distance Two insects are crawling along different lines in
three-space. At time ¢ (in minutes), the first insect is at the
point (x,y,z) on the linex=6+1 y=8—1tz=3+ 1t
Also, at time ¢, the second insect is at the point (x, y, z) on the
linex=1+¢ty=2+1tz=2t
Assume that distances are given in inches.

(a) Find the distance between the two insects at time r = 0.

(b) Use a graphing utility to graph the distance between the
insects from r = O to t = 10.

(c) Using the graph from part (b), what can you conclude
about the distance between the insects?

(d) How close to each other do the insects get?

124.

125.

126.

127.

128.
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Find the standard equation of the sphere with center (—3, 2, 4)
that is tangent to the plane given by 2x + 4y — 3z = 8.

Find the point of intersection of the plane 3x —y + 4z =7
and the line through (5, 4, —3) that is perpendicular to this
plane.

Show that the plane 2x — y — 3z = 4 is parallel to the line
x=—-2+4+2t, y=—1+4t, z=4, and find the distance
between them.

Find the point of intersection of the line through (1, —3, 1)
and (3, —4, 2), and the plane given by x — y + z = 2.

Find a set of parametric equations for the line passing through
the point (1,0,2) that is parallel to the plane given by
x+y+z=15, and perpendicular to the line x =1,
y=1+tz=1+1t

True or False? In Exercises 129-134, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

129.

130.

131.
132.

133.
134.

If v=a,i+ b,j + ¢k is any vector in the plane given by
ax + byy + ¢,z +d, = 0, thena,a, + byb, + c,c, = 0.
Every two lines in space are either intersecting or parallel.

Two planes in space are either intersecting or parallel.
If two lines L, and L, are parallel to a plane P, then L, and L,
are parallel.

Two planes perpendicular to a third plane in space are parallel.

A plane and a line in space are either intersecting or parallel.

SECTION PROJECT

Distances in Space

You have learned two distance formulas in this section—the
distance between a point and a plane, and the distance between a
point and a line. In this project you will study a third distance
problem—the distance between two skew lines. Two lines in space
are skew if they are neither parallel nor intersecting (see figure).

(a) Consider the following two lines in space.
Lix=4+5,y=5+5,z=1—-4
Lyx=4+s,y=—-6+8s,z=7—3s

(i) Show that these lines are not parallel.

(i1) Show that these lines do not intersect, and therefore are
skew lines.

(iii) Show that the two lines lie in parallel planes.

(iv) Find the distance between the parallel planes from part
(iii). This is the distance between the original skew
lines.

(b) Use the procedure in part (a) to find the distance between
the lines.

L:x=2t, y=4t z= 06t
Lyx=1—-s,y=4+s,z=—-1+s

(c) Use the procedure in part (a) to find the distance between
the lines.

Lix=3ty=2—-tz=—-1+1t
Lyx=1+4s,y=—-2+s,z=—-3—3s

(d) Develop a formula for finding the distance between the
skew lines.

Lix=x +*at,y=y +bt z=2z +ct

Lyx=x,+ a5, y =y, + bys, 2=2, + ¢y

L,
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@ Surfaces in Space

~

>y

x A

Right circular cylinder:

2= g2

y - =a

Rulings are parallel to z-axis.
Figure 11.56

Ruling Generating

intersecting C ;  yrve C
A

Cylinder: Rulings intersect C and are parallel
to the given line.
Figure 11.57

B Recognize and write equations of cylindrical surfaces.
B Recognize and write equations of quadric surfaces.
B Recognize and write equations of surfaces of revolution.

Cylindrical Surfaces

The first five sections of this chapter contained the vector portion of the preliminary
work necessary to study vector calculus and the calculus of space. In this and the next
section, you will study surfaces in space and alternative coordinate systems for space.
You have already studied two special types of surfaces.

1. Spheres: (x — x,)2 + (y — y)> + (z — z,)* = 12
2. Planes:ax + by + cz+d =0

Section 11.2

Section 11.5

A third type of surface in space is called a cylindrical surface, or simply a
cylinder. To define a cylinder, consider the familiar right circular cylinder shown in
Figure 11.56. You can imagine that this cylinder is generated by a vertical line moving
around the circle x> + y? = a@? in the xy-plane. This circle is called a generating
curve for the cylinder, as indicated in the following definition.

DEFINITION OF A CYLINDER

Let C be a curve in a plane and let L be a line not in a parallel plane. The set
of all lines parallel to L and intersecting C is called a cylinder. C is called the
generating curve (or directrix) of the cylinder, and the parallel lines are
called rulings.

(3 Without loss of generality, you can assume that C lies in one of the three coordinate
planes. Moreover, this text restricts the discussion to right cylinders—cylinders whose rulings
are perpendicular to the coordinate plane containing C, as shown in Figure 11.57. |

For the right circular cylinder shown in Figure 11.56, the equation of the
generating curve is

X+ y2 = a’ Equation of generating curve in xy-plane

To find an equation of the cylinder, note that you can generate any one of the rulings
by fixing the values of x and y and then allowing z to take on all real values. In this
sense, the value of z is arbitrary and is, therefore, not included in the equation. In other
words, the equation of this cylinder is simply the equation of its generating curve.

x> + y2 =a’ Equation of cylinder in space

EQUATIONS OF CYLINDERS

The equation of a cylinder whose rulings are parallel to one of the coordinate
axes contains only the variables corresponding to the other two axes.




In the table on pages 814
and 815, only one of several orientations
of each quadric surface is shown. If the
surface is oriented along a different
axis, its standard equation will change
accordingly, as illustrated in Examples 2
and 3. The fact that the two types of
paraboloids have one variable raised
to the first power can be helpful in
classifying quadric surfaces. The other
four types of basic quadric surfaces have
equations that are of second degree in all
three variables.
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EXAMPLE [El Sketching a Cylinder

Sketch the surface represented by each equation.

a z=y>2 b. z=sinx, 0<x < 2w

Solution
a. The graph is a cylinder whose generating curve, z = y?, is a parabola in the

yz-plane. The rulings of the cylinder are parallel to the x-axis, as shown in Figure
11.58(a).

b. The graph is a cylinder generated by the sine curve in the xz-plane. The rulings are
parallel to the y-axis, as shown in Figure 11.58(b).

Generating curve C
lies in yz-plane

Generating curve C
lies in xz-plane i

I8}

2
A

>y
/s
>y X)
x A
Cylinder: z = y? Cylinder: z = sin x
(a) Rulings are parallel to x-axis. (b) Rulings are parallel to y-axis.
Figure 11.58 [ |

Quadric Surfaces

The fourth basic type of surface in space is a quadric surface. Quadric surfaces are
the three-dimensional analogs of conic sections.

QUADRIC SURFACE

The equation of a quadric surface in space is a second-degree equation in
three variables. The general form of the equation is

Ax2+ By* + C2+ Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0.

There are six basic types of quadric surfaces: ellipsoid, hyperboloid of one
sheet, hyperboloid of two sheets, elliptic cone, elliptic paraboloid, and
hyperbolic paraboloid.

The intersection of a surface with a plane is called the trace of the surface in the
plane. To visualize a surface in space, it is helpful to determine its traces in some well-
chosen planes. The traces of quadric surfaces are conics. These traces, together with
the standard form of the equation of each quadric surface, are shown in the table on
pages 814 and 815.
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Ellipsoid

> N
S}
)
>

2
Z yz-trace
+ - = 1

xz-trace
+

Q‘H

o

Q“%
&

[

Trace Plane

Ellipse Parallel to xy-plane
Ellipse Parallel to xz-plane
=y Ellipse Parallel to yz-plane

The surface is a sphere if
a=b=c#0.

xy-trace

Hyperboloid of One Sheet

2

2
L2

2 2
L y — 1 A
a2 b2 C2

Trace Plane

Ellipse Parallel to xy-plane
Hyperbola  Parallel to xz-plane
Hyperbola  Parallel to yz-plane

The axis of the hyperboloid xy-trace -y
corresponds to the variable whose
coefficient is negative.

X‘

zZ-trace
xz-trace Y

Hyperboloid of Two Sheets

A 2 xr y? yz-trace xz-trace

|

I

I
—
>N

a
e .";
"“-.'-.'-:-__-_ i f=T Trace Plane

?“L:.,E L Ellipse Parallel to xy-plane
- - Hyperbola  Parallel to xz-plane

I Hyperbola  Parallel to yz-plane parallel to no xy-trace
xy-plane

o ey . . x ~
-‘:f-.a- T, The axis of the hyperboloid Y
corresponds to the variable whose
] coefficient is positive. There is
no trace in the coordinate plane
perpendicular to this axis.
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Elliptic Cone

A ) ) 5 xz-trace
X y Z
—+5-—5=0
a> b
Trace Plane
Ellipse Parallel to xy-plane
Hyperbola  Parallel to xz-plane
Hyperbola  Parallel to yz-plane (xy -trac.et)
one poin
The axis of the cone corresponds =y
to the variable whose coefficient is x parallel to
negative. The traces in the coordi- xy-plane
nate planes parallel to this axis are
intersecting lines.
yz-trace
Elliptic Paraboloid
7= iz + Lz yz-trace xz-trace
2 2
a b
Trace Plane
Ellipse Parallel to xy-plane
Parabola Parallel to xz-plane
Parabola Parallel to yz-plane
The axis of the paraboloid corre- parallel to
sponds to the variable raised to the xy-plane
first power.
x“ xy-trace
(one point)
Hyperbolic Paraboloid
z 2 2
A 7= Lz _ % yz-trace
b a
.“-"Er_.:h i Trace Plane
- L -\'f- . - 1
1 o -\..-__.-_.__ ._‘.I' "'--.. A 1__-\.I
e :-‘gﬂ-_,fﬁ'zlf" A Hyperbola  Parallel to xy-plane
L P R AT T ~ ~
N 4 AT PR e Ay Y Parabola Parallel to xz-plane 4
Foada Fd eyt s ]
= .':{I L gy -r-l.l-*': AT ' Parabola Parallel to yz-plane x4
] f h'_'l—Jln".f. F—,I !
.’} Vs .';' AT The axis of the paraboloid corre-
I .I i) AN :lllfl'll'l""ll' o sponds to the variable raised to the
! Lt -
Lyt "'I' i IFI' N first power. parallel to
Lo f,'.-"" xy-plane

xz-trace
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2 2 z
y <
T 22
3 F 3
2
1
52 L) -y
4
4
X
Hyperboloid of two sheets:
2 2
I _Z _ 2o
g-3 ¢!
Figure 11.59
Elliptic paraboloid:
x= y2 + 472 z
A
2
—4
x=y?
2
4 >y
2 2
y? + ZT =1
10
»
X
x =472

Figure 11.60

Vectors and the Geometry of Space

To classify a quadric surface, begin by writing the surface in standard form. Then,
determine several traces taken in the coordinate planes or taken in planes that are
parallel to the coordinate planes.

EXAMPLE [J Sketching a Quadric Surface

Classify and sketch the surface given by 4x — 3y? + 1272 + 12 = 0.
Solution  Begin by writing the equation in standard form.
452 = 3y2 + 1222+ 12 =0

x2 y2

Write original equation.

_3+Z_Z2_1:O Divide by —12.
2 2 2
X <

); — ? — T =1 Standard form

From the table on pages 814 and 815, you can conclude that the surface is a hyper-
boloid of two sheets with the y-axis as its axis. To sketch the graph of this surface, it
helps to find the traces in the coordinate planes.

y2 )C2
xy-trace (Z = 0): ———=1 Hyperbola
4 3
2 2
xz-trace (y = 0): x? + ZT =-1 No trace
2 2
yz-trace (x = 0)2 yz - ZT =1 Hyperbola

The graph is shown in Figure 11.59.

EXAMPLE [EJ Sketching a Quadric Surface

Classify and sketch the surface given by x — y? — 4z2 = 0.

Solution Because x is raised only to the first power, the surface is a paraboloid. The
axis of the paraboloid is the x-axis. In the standard form, the equation is
x = y> + 4%

Standard form

Some convenient traces are as follows.

xy-trace (z = 0): x=y? Parabola
xz-trace (y = 0): x = 472 Parabola
y2 o2
parallel to yz-plane (x = 4): T + 1= 1 Ellipse
The surface is an elliptic paraboloid, as shown in Figure 11.60. |

Some second-degree equations in x, y, and z do not represent any of the basic
types of quadric surfaces. Here are two examples.

2+y+22=0
x*+y =1

Single point

Right circular cylinder



G=27 +1? =1

4 2 7 !

>

2,-1,1)

Y----o

5

s
X

An ellipsoid centered at (2, — 1, 1)
Figure 11.61
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For a quadric surface not centered at the origin, you can form the standard
equation by completing the square, as demonstrated in Example 4.

O EXAMPLE [Z§ A Quadric Surface Not Centered at the Origin

Classify and sketch the surface given by
X2+22+ 22 —4x+4y—22+3=0.

Solution  Completing the square for each variable produces the following.
(P —dx+ ) +2(y2+2y+ )+ (2—-2z+ )=-3
(P —dx+4+2(y*+2y+ D)+ (2—2z+1)=-3+4+2+1

B x=22+20+ 1) +E—-1)2=4
k=22 G112 (=12
Lttt =1

From this equation, you can see that the quadric surface is an ellipsoid that is centered
at (2, —1, 1). Its graph is shown in Figure 11.61. [ |

—m A computer algebra system can help you visualize a surface in
space.* Most of these computer algebra systems create three-dimensional illusions

by sketching several traces of the surface and then applying a “hidden-line” routine
that blocks out portions of the surface that lie behind other portions of the surface.
Two examples of figures that were generated by Mathematica are shown below.

2z Z

A Generated by Mathematica
Generated by Mathematica -

Elliptic paraboloid Hyperbolic paraboloid
_r.z I
T ‘T 16 16

Using a graphing utility to graph a surface in space requires practice. For one
thing, you must know enough about the surface to be able to specify a viewing
window that gives a representative view of the surface. Also, you can often improve
the view of a surface by rotating the axes. For instance, note that the elliptic
paraboloid in the figure is seen from a line of sight that is “higher” than the line of
sight used to view the hyperbolic paraboloid.

*Some 3-D graphing utilities require surfaces to be entered with parametric equations. For
a discussion of this technique, see Section 15.5.
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Circular Generating curve

cross section A VT (@)
0,0,2)
*-1-(0,7(2),2)
[
wyna— \
r(z)
I y
'
X
Figure 11.62
Z
A Surface:
X2+ 7= % y3
>y

Generating curve
Ox2 = y3

Figure 11.63

Vectors and the Geometry of Space

Surfaces of Revolution

The fifth special type of surface you will study is called a surface of revolution. In
Section 7.4, you studied a method for finding the area of such a surface. You will now
look at a procedure for finding its equation. Consider the graph of the radius function

Generating curve

y=r()

in the yz-plane. If this graph is revolved about the z-axis, it forms a surface of revolu-
tion, as shown in Figure 11.62. The trace of the surface in the plane z = z, is a circle
whose radius is r(z,) and whose equation is

x4 y? = [z

Replacing z, with z produces an equation that is valid for all values of z. In a similar
manner, you can obtain equations for surfaces of revolution for the other two axes, and
the results are summarized as follows.

Circular trace in plane: z = gz,

SURFACE OF REVOLUTION

If the graph of a radius function r is revolved about one of the coordinate
axes, the equation of the resulting surface of revolution has one of the following
forms.

1. Revolved about the x-axis: y> + z2 = [r(x)]?

2. Revolved about the y-axis: x> + z2 = [r(y)]?

3. Revolved about the z-axis: x> + y? = [r(z)]?

EXAMPLE E Finding an Equation for a Surface of Revolution

a. An equation for the surface of revolution formed by revolving the graph of

y=- Radius function
Z

about the z-axis is

2+ =[rd)P

12
x2+y2=<*>.
Z

b. To find an equation for the surface formed by revolving the graph of 9x> = y?
about the y-axis, solve for x in terms of y to obtain

Revolved about the z-axis

Substitute 1/z for r(z).

Radius function

1
x =12 = 1),

So, the equation for this surface is

¥+ 2 =[r(y))?
2
P2+ 2= (%y_z/z)

1
X2+ 22 =gy

Revolved about the y-axis
Substitute 3 y3/2 for r(y).

Equation of surface

The graph is shown in Figure 11.63.



Generating curve
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The generating curve for a surface of revolution is not unique. For instance, the
surface

X2 + Z2 — 6‘72-‘}

can be formed by revolving either the graph of x = ¢~ about the y-axis or the graph
of z = e about the y-axis, as shown in Figure 11.64.

Zz q
N z Qeneratmg curve
Surface: A in yz-plane
Pi2=e® z=eY
>y I )
A =y
x A

Generating curve
in xy-plane
x=e”

Figure 11.64

EXAMPLE [} Finding a Generating Curve for a Surface of Revolution

Find a generating curve and the axis of revolution for the surface given by

2+ 32 +2=0.

Generating curve

in xy-plane . inyzplane Solution  You now know that the equation has one of the following forms
x=+/9-3y2 A z= V9 -3y? ’
2+ 32 =[rz)]? Revolved about z-axis
4+ 2= [r(x)]? Revolved about x-axis
2+ 22 =[r(y)]? Revolved about y-axis
Because the coefficients of x*> and z? are equal, you should choose the third form and
write
x>+ 72 =9 — 3y’
>y
The y-axis is the axis of revolution. You can choose a generating curve from either of
oA the following traces.
x*=9 - 3y2 Trace in xy-plane
?2=9— 3y2 Trace in yz-plane
For example, using the first trace, the generating curve is the semiellipse given by
Surface:
x*+3y2+7%2=9 x=J9 - 3y2. Generating curve

Figure 11.65

The graph of this surface is shown in Figure 11.65. [
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@ EXEI’C ISES See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

In Exercises 1-6, match the equation with its graph. [The (c) (d) i
graphs are labeled (a), (b), (c), (d), (e), and (f).]
z z
(@) : ) i o
6 3
4 2
) y X =
x "3 5 a 4 4 *
6 Y -3 Figures for 17
@D 18. Use a computer algebra system to graph a view of the cylinder
y? 4+ z? = 4 from each point.
z Zz
(c) : @ (a) (10, 0,0)
) ’ (b) (0. 10,0)
2 (c) (10, 10, 10)
-5
4 ~y ,2 6= In Exercises 19-32, identify and sketch the quadric surface. Use
x 3 x a computer algebra system to confirm your sketch.
2 2 2 2
19. 2 +5 +2=1 20. -+ L+ 2=
) 2 () z T 16 25 25
A A
3 3 21. 16x> — y? + 1672 = 22. —8x% + 18y* + 1872 =
2 2 2
1 23. 42 — 2 — 2 = 24.zz—x2—Z=1
432 LNy g 7Y 25. x> —y+ 2= 26. 7 = x> + 4y?
R j» 27. x> —=y2+2z=0 28. 3z = —y% + x?
2
R 2.2 =247 30. 22 = 2y + 22
L. -+—+==1 2. 15x2 — 4y + 1522 = —4
9 16 9 31.16x2 + 9y + 1622 — 32x — 36y + 36 = 0
3432 -y 42 =4 4. y? =4 4922 32,007 + 32— 922 — 54y — 4y — 54z + 4 =0

5.4x2 —4y + 2=

In Exercises 7-16, describe and sketch the surface.

6. 4x> —y2 +47=0

@D In Exercises 33-42, use a computer algebra system to graph the
surface. (Hint: It may be necessary to solve for z and acquire
two equations to graph the surface.)

7.y=5 8.z=2
9. y2 4+ 72 = 10. X2 + 72 = 25 33. z =2cosx 34. z= x>+ 0.5)?
1. 22— y=0 12.y2+7=6 35, 722 = x2 + 7.5)? 36. 3.25y = x> + 7?2
2
13. 4% + y2 = 4 14. )2 — 2= 16 3. a2 4yt = (2) B a4yl e
15. z —siny =0 16. z — e =0 N
—X

39.z=10 - V 40. z=—">——

17. Think About It The four figures are graphs of the quadric ‘ =l TR y?
surface z = x> + y?. Match each of the four graphs with the 41. 6x2 — 4y + 622 = —36 42. 9x2 + 4y — 822 =72

point in space from which the paraboloid is viewed. The four

points are (0, 0, 20), (0, 20, 0), (20, 0, 0), and (10, 10, 20).

(@) z

A

In Exercises 43—46, sketch the region bounded by the graphs of
the equations.

43. z=2Ux>+y% z=2
44. 7 = 4—-x%x=0,y=0,z=0
45. >+ y2=1,x+2z=2,2=0

46. z= V4 —x?—y%, y=27,2=0

(b)

b4
A

4 —x2 y=


www.CalcChat.com

In Exercises 47-52, find an equation for the surface of
revolution generated by revolving the curve in the indicated
coordinate plane about the given axis.

Equation of Curve  Coordinate Plane  Axis of Revolution

47. 2 =4y yz-plane y-axis
48. z = 3y yz-plane y-axis
49, z = 2y yz-plane z-axis
50. 2z = \/m xz-plane Xx-axis
51. xy =2 xy-plane Xx-axis
52. z=1Iny yz-plane z-axis

In Exercises 53 and 54, find an equation of a generating curve
given the equation of its surface of revolution.

53. x>+ y2=22=0

WRITING ABOUT CONCEPTS

55. State the definition of a cylinder.

54. x*> + 72 = cos?y

56. What is meant by the trace of a surface? How do you find a
trace?

57. Identity the six quadric surfaces and give the standard form
of each.

CAPSTONE

58. What does the equation z = x? represent in the xz-plane?
What does it represent in three-space?

In Exercises 59 and 60, use the shell method to find the volume
of the solid below the surface of revolution and above the
xy-plane.

59. The curve z = 4x — x? in the xz-plane is revolved about the
Z-axis.

60. The curve z = siny (0 < y < ) in the yz-plane is revolved
about the z-axis.

In Exercises 61 and 62, analyze the trace when the surface
r=bet iy

is intersected by the indicated planes.

61. Find the lengths of the major and minor axes and the coordinates

of the foci of the ellipse generated when the surface is
intersected by the planes given by

(a) z=2 and (b) z = 8.

62. Find the coordinates of the focus of the parabola formed when
the surface is intersected by the planes given by

(@ y=4 and (b) x = 2.

In Exercises 63 and 64, find an equation of the surface satisfying
the conditions, and identify the surface.

63. The set of all points equidistant from the point (0, 2, 0) and the
planey = —2
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64. The set of all points equidistant from the point (0, 0, 4) and the
xy-plane

65. Geography Because of the forces caused by its rotation,
Earth is an oblate ellipsoid rather than a sphere. The equatorial
radius is 3963 miles and the polar radius is 3950 miles. Find an
equation of the ellipsoid. (Assume that the center of Earth is
at the origin and that the trace formed by the plane z = 0
corresponds to the equator.)

66. Machine Design The top of a rubber bushing designed to
absorb vibrations in an automobile is the surface of revolution
generated by revolving the curve z =3y + 1 (0 < y < 2) in
the yz-plane about the z-axis.

(a) Find an equation for the surface of revolution.

(b) All measurements are in centimeters and the bushing is set
on the xy-plane. Use the shell method to find its volume.

(c) The bushing has a hole of diameter 1 centimeter through its
center and parallel to the axis of revolution. Find the
volume of the rubber bushing.

67. Determine the intersection of the hyperbolic paraboloid
7z = y*/b*> — x*/a® with the plane bx + ay — z = 0. (Assume
a,b > 0.

68. Explain why the curve of intersection of the surfaces
x2+3y2 =222+ 2y =4 and 2x% + 6y? —4z2 —3x =2
lies in a plane.

True or False? In Exercises 69-72, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

69. A sphere is an ellipsoid.

70. The generating curve for a surface of revolution is unique.

71. All traces of an ellipsoid are ellipses.

72. All traces of a hyperboloid of one sheet are hyperboloids.

73. Think About It Three types of classic “topological” surfaces
are shown below. The sphere and torus have both an “inside”
and an “outside.” Does the Klein bottle have both an inside and
an outside? Explain.

Sphere Torus

Klein bottle Klein bottle
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Cylindrical and Spherical Coordinates

Cylindrical coordinates:

222324 y2
Rectangular y

; . tan 6 = =
coordinates: X
x=rcos 6 =2
y=rsin @
z=2 . (x, y,2)

Pl (1,62

1
1
Il
*
N
N

Figure 11.66

(% y,2)=(-2V3,2,3)

L 4

(r,0,2)= (4, %, 3)

Figure 11.67

B Use cylindrical coordinates to represent surfaces in space.
B Use spherical coordinates to represent surfaces in space.

Cylindrical Coordinates

You have already seen that some two-dimensional graphs are easier to represent in
polar coordinates than in rectangular coordinates. A similar situation exists for
surfaces in space. In this section, you will study two alternative space-coordinate
systems. The first, the cylindrical coordinate system, is an extension of polar
coordinates in the plane to three-dimensional space.

THE CYLINDRICAL COORDINATE SYSTEM

In a cylindrical coordinate system, a point P in space is represented by an
ordered triple (7, 6, 7).

1. (r, 6) is a polar representation of the projection of P in the xy-plane.
2. zis the directed distance from (7, ) to P.

To convert from rectangular to cylindrical coordinates (or vice versa), use the
following conversion guidelines for polar coordinates, as illustrated in Figure 11.66.

Cylindrical to rectangular:

X = rcos 6, y = rsin 6, 2=z
Rectangular to cylindrical:
2 — X2 2 tan9=X, 2=z
X

The point (0, 0, 0) is called the pole. Moreover, because the representation of a point
in the polar coordinate system is not unique, it follows that the representation in the
cylindrical coordinate system is also not unique.

EXAMPLE II Converting from Cylindrical to Rectangular Coordinates

5
Convert the point (r, 6,7) = <4, %, 3) to rectangular coordinates.

Solution  Using the cylindrical-to-rectangular conversion equations produces

x=4cos5w=4<—ﬁ> =-2J3

6 2
y=4sin%=4<%> =
z=3.

So, in rectangular coordinates, the point is (x,y,z) = (—2\/§, 2, 3), as shown in
Figure 11.67. u



11.7  Cylindrical and Spherical Coordinates 823

Z

EXA . o .
e 0-(ED MPLE E Converting from Rectangular to Cylindrical Coordinates

Convert the point (x, y, z) = (1, \@, 2) to cylindrical coordinates.
Solution Use the rectangular-to-cylindrical conversion equations.

r=+J1+3==2

tan = /3 > 0=arctan(\/§)+n77=7§r+n77

z=2

You have two choices for r and infinitely many choices for 6. As shown in Figure
11.68, two convenient representations of the point are

Y 0= (2, % 2) or (72, 4?”, 2) -
<2, g, 2> r > 0 and 6 in Quadrant I
Figure 11.68

41 .
-2, 7, 2. r < 0 and 0 in Quadrant III |

Cylindrical coordinates are especially convenient for representing cylindrical
surfaces and surfaces of revolution with the z-axis as the axis of symmetry, as shown
in Figure 11.69.

x2+y2=9 x2+y2=4z %2+ y2=2z2 x2+y2-z2=1
r=3 r=2\/z F=7 r2=Z2+1
Z Z Z
A z A I\
A
A 4 Y
N -y - - >y
y &
X - X A X
x* Yy 'fr
Cylinder Paraboloid Cone Hyperboloid

Figure 11.69

Vertical planes containing the z-axis and horizontal planes also have simple cylindrical
coordinate equations, as shown in Figure 11.70.

~

A Vertical z Horizontal
. A plane:
plane: o
O=c ; z=
! 1
! 1
1 | .
H ! . 1
: ! 1 I
' - | |
s I
~__ T - -y | ! >
O0=c 7|4 X
| >y
x* L

Figure 11.70
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Rectangular:
x2+y2=4z% i
3

<)

Figure 11.71

Rectangular:
yi=x

Figure 11.72

Cylindrical:
r2cos20+z2+1=0

z
A
3

Rectangular:
y2 _ x2 _ z2 =

Figure 11.73

Vectors and the Geometry of Space

Cylindrical:
r?=4z2

Cylindrical:
r=csc6cotf

Z
A

2

EXAMPLE ﬂ Rectangular-to-Cylindrical Conversion

Find an equation in cylindrical coordinates for the surface represented by each
rectangular equation.

a. x? + y2 =472

b. y2 =x

Solution

a. From the preceding section, you know that the graph x> + y? = 4z2 is an elliptic
cone with its axis along the z-axis, as shown in Figure 11.71. If you replace
x2 + y?2 with r2, the equation in cylindrical coordinates is

X2+ yz = 472
r? = 472,

Rectangular equation

Cylindrical equation

b. The graph of the surface y?> = x is a parabolic cylinder with rulings parallel to the
z-axis, as shown in Figure 11.72. By replacing y> with 72 sin? § and x with r cos 6,
you obtain the following equation in cylindrical coordinates.

2=x Rectangular equation

y
r2sin? O = rcos 0

r(rsin? @ — cos 6) = 0

Substitute r sin 6 for y and r cos 6 for x.

Collect terms and factor.

rsin? —cos =0 Divide each side by r.
cos 6 Solve
r = N olve 1or r.
sin? @

r = csc fcot O Cylindrical equation

Note that this equation includes a point for which » = 0, so nothing was lost by
dividing each side by the factor r. [ |

Converting from cylindrical coordinates to rectangular coordinates is less
straightforward than converting from rectangular coordinates to cylindrical coordi-
nates, as demonstrated in Example 4.

EXAMPLE [ Cylindrical-to-Rectangular Conversion

Find an equation in rectangular coordinates for the surface represented by the
cylindrical equation

r2cos20+ 72+ 1=0.
Solution

r2cos20+z72+1=0

Cylindrical equation

r?(cos?2 @ —sin20) +z2+1=0 Trigonometric identity
r2cos? 0 — r?sin? 0 + 72 = —1
x? — y2 +z722=-1 Replace r cos 6 with x and r sin 6 with y.
y2 —-x2—-z2=1 Rectangular equation

This is a hyperboloid of two sheets whose axis lies along the y-axis, as shown in
Figure 11.73. u
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Spherical Coordinates

In the spherical coordinate system, each point is represented by an ordered triple: the
first coordinate is a distance, and the second and third coordinates are angles. This
system is similar to the latitude-longitude system used to identify points on the
surface of Earth. For example, the point on the surface of Earth whose latitude is 40°
North (of the equator) and whose longitude is 80° West (of the prime meridian) is
shown in Figure 11.74. Assuming that the Earth is spherical and has a radius of 4000
miles, you would label this point as

(4000, —80°, 50°).

—/ ™~

Radius 80° clockwise from 50° down from
prime meridian North Pole
Equator
Figure 1174 THE SPHERICAL COORDINATE SYSTEM

In a spherical coordinate system, a point P in space is represented by an

ordered triple (p, 6, ¢).

1. pis the distance between P and the origin, p = 0.

2. Ois the same angle used in cylindrical coordinates for r = 0.

3. ¢ is the angle between the positive z-axis and the line segment ﬁ,
0<¢=m

Note that the first and third coordinates, p and ¢, are nonnegative. p is the
lowercase Greek letter rho, and ¢ is the lowercase Greek letter phi.

The relationship between rectangular and spherical coordinates is illustrated in
Figure 11.75. To convert from one system to the other, use the following.

Spherical to rectangular:

X = psin ¢ cos 6, y = psin ¢ sin 6, Z = pcos ¢

Rectangular to spherical:

VxEE+yr+ 22

p*=x2+ y2 + 22, tan = i, ¢ = arccos(+>

Spherical coordinates

Figure 11.75 ) L .
To change coordinates between the cylindrical and spherical systems, use the

following.

Spherical to cylindrical (r = 0):

r? = p?sin® ¢, 0= 0, Z = pcos ¢

Cylindrical to spherical (r = 0):

Z
= Jr2 + 72, 0=0, = arccos| ——=
P ¢ o



826 Chapter 11 Vectors and the Geometry of Space

Rectangular: Spherical:
22 4+y2+z2-4z=0 p=4cos ¢
z
A
4
-2
! 1
2 2 >y

A
X

Figure 11.77

The spherical coordinate system is useful primarily for surfaces in space that have
a point or center of symmetry. For example, Figure 11.76 shows three surfaces with
simple spherical equations.

Zz z z
A A A
p=c
™
o - -~
Tt my
X 4 ~— >y ~y
A bB=c A
Sphere: Vertical half-plane: Half-cone: T
O<c< >
pmc o=c ome - (0<e<3)

Figure 11.76

OEXAMPLE I} Rectangular-to-Spherical Conversion

Find an equation in spherical coordinates for the surface represented by each
rectangular equation.

a. Cone: x2 + y2 = 72
b. Sphere: x2 + y2 + z2 — 47 =0
Solution
a. Making the appropriate replacements for x, y, and z in the given equation yields the
following.
X2+ 2 =72
p? sin? ¢ cos? 0 + p? sin? ¢ sin? O = p? cos? ¢
p?sin? ¢ (cos? O + sin? 6) = p? cos? ¢
p? sin? ¢ = p?cos? ¢

sin® ¢ 0
cos? ¢ P
tan’> ¢ = 1 ¢ = m/dor = 3m/4

The equation ¢ = /4 represents the upper half-cone, and the equation ¢ = 377/4
represents the lower half-cone.

b. Because p> = x> + y? + zZ2and z = p cos ¢, the given equation has the following
spherical form.

p> —4pcosp=0 > p(p—4cos¢p) =0
Temporarily discarding the possibility that p = 0, you have the spherical equation
p—4cosdp=0 or p = 4 cos ¢.

Note that the solution set for this equation includes a point for which p = 0, so
nothing is lost by discarding the factor p. The sphere represented by the equation
p = 4 cos ¢ is shown in Figure 11.77. ]
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In Exercises 1-6, convert the point from cylindrical coordinates
to rectangular coordinates.

1. (=7,0,5) 2. 2,—m —4)
3. (3, m/4,1) 4. (6, —m/4,2)
5. (4,77/6,3) 6. (—0.5,4m/3,8)

In Exercises 7-12, convert the point from rectangular coordinates
to cylindrical coordinates.

7. (0,5, 1) 8. (22, -2.2.4)
9. (2, —2, —4) 10. (3, -3,7)
11. (1, V3,4) 12. (23, -2,6)

In Exercises 13-20, find an equation in cylindrical coordinates
for the equation given in rectangular coordinates.

13. z=4 14. x=9

15. x> +y2 + 22 =17 16. z = x> + y2 — 11

17. y = x? 18. x% + y? = 8x

19. 2 = 10 — 22 20, 2+ )2+2—3,=0

In Exercises 21-28, find an equation in rectangular coordinates
for the equation given in cylindrical coordinates, and sketch its
graph.

21. r =3 22, z=2
23. 6= /6 24. r =1z
25. 124+ 2=5 26. z = r?cos? 6
27. r=12sin 0 28. r =2cos 0

In Exercises 29-34, convert the point from rectangular coordinates
to spherical coordinates.

29. (4,0,0) 30. (—4,0,0)
31. (—2,2.3.4) 32. (2.2.4.2)
33. (V3. 1,23) 34. (—1,2,1)

In Exercises 35—-40, convert the point from spherical coordinates
to rectangular coordinates.
35. (4, w/6, w/4)

37. (12, —m/4,0)

39. (5, w/4,3m/4)

36. (12, 37/4, 7/9)
38. (9, w/4, m)
40. (6, m, 7/2)

In Exercises 41-48, find an equation in spherical coordinates
for the equation given in rectangular coordinates.

4. y =2 42.:=6
43. x>+ y2 + 72 =49 44, x® + y> - 372 =
45. x> +y2 =16 46. x = 13

47. x> + y? =272 48. x>+ y2+722-92=0

Cylindrical and Spherical Coordinates

827

In Exercises 49-56, find an equation in rectangular coordinates
for the equation given in spherical coordinates, and sketch its

graph.
49. p=5
T
51. ¢ = —
¢ 6
53. p=4cos ¢
55. p=csc ¢

37

50. 6 = n

T

52. ¢ =

¢ 2
54. p=2sec ¢

56. p = 4csc ¢psec O

In Exercises 57-64, convert the point from cylindrical coordinates

to spherical coordinates.

57. (4, w/4,0)
59. (4, /2, 4)
61. (4, —m/6,6)
63. (12, m,5)

58. (3, —m/4,0)
60. (2,27/3, —2)
62. (—4, w/3,4)
64. (4, 7/2,3)

In Exercises 65-72, convert the point from spherical coordinates

to cylindrical coordinates.

65. (10, 7/6, 7/2)
67. (36, m, 7/2)

69. (6, — /6, 7/3)
71. (8, 77/6, w/6)

66. (4, w/18, 7/2)
68. (18, 7/3, 7/3)
70. (5, —5/6, m)
72. (7, w/4, 3m/4)

@ In Exercises 73-88, use a computer algebra system or graphing
i, utility to convert the point from one system to another among

the rectangular, cylindrical, and spherical coordinate systems.

Rectangular Cylindrical Spherical

73. (4,6,3) ] ]
74. (6, =2, —3) ] ]
75. I (5. 7/9.8) I
76. I (10, =0.75, 6) [
77. I [ ] (20, 27/3, w/4)
78. [ ] (7.5,0.25, 1)
79. (3, -2,2) [ ] ]
80. (3v2,3v2,-3) N I
81. (5/2,4/3,-3/2) N I
82. (0, -5, 4) [ ] [
3. I (5,3m/4, —5) ]
s4. I (—2.117/6,3)
ss. I (=3.5,25,6) [
so. NG (8.25,1.3, —4) ]
87. I I (3,3/4, 7/3)
ss. I ] (8, —m/6, m)
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In Exercises 89-94, match the equation (written in terms of
cylindrical or spherical coordinates) with its graph. [The graphs
are labeled (a), (b), (¢), (d), (e), and (f).]

Z Zz
(a) iz (b) :
4 1
P . |
Lo i
o
-3 2 N o |
* 32 23 ’ 4 i 4 !
>
X
(©) : (d i
5 5
5 >y
f 5 7Y x* 3
X
(e : ® :
2 3
1
-2 .
2 S~—— 2 Y
y T -2
x4 Xa b »y
T
89. r=5 90. 0 = 1
9. p=5 92. ¢:%
93. r2=¢ 9. p=4secd

WRITING ABOUT CONCEPTS

95. Give the equations for the coordinate conversion from
rectangular to cylindrical coordinates and vice versa.

96. Explain why in spherical coordinates the graph of 6 = c is
a half-plane and not an entire plane.

97. Give the equations for the coordinate conversion from
rectangular to spherical coordinates and vice versa.

CAPSTONE

98. (a) For constants a, b, and ¢, describe the graphs of the
equations r =a, § =b, and z = ¢ in cylindrical
coordinates.

(b) For constants a, b, and ¢, describe the graphs of the
equations p =a, 6 =5b, and ¢ = c in spherical
coordinates.

In Exercises 99-106, convert the rectangular equation to an
equation in (a) cylindrical coordinates and (b) spherical
coordinates.

99. x2 + y2 4+ 72 =25 100. 4(x2 + y2) = 72
101, x>+ y2+22—-22=0 102. x2 4+ y2 =¢
103. x> + y> =4y 104. x> + y> = 36
105. 2 — y2 =9 106. y = 4

In Exercises 107-110, sketch the solid that has the given
description in cylindrical coordinates.

107.0 <0< 7/2,0<r<20<z<4

108. —7/2 <0< 7/2,0<r<3,0<z<rcosb

109. 0 < 0<2m0<r<ar<z<a

110 0 = 0 <2m2 <r<4,72< —r2+6r—-38

IN

In Exercises 111-114, sketch the solid that has the given
description in spherical coordinates.

111. 0
112. 0
113. 0
114. 0

IN

0<2m0=<¢<7/6,0<p=<asedo
0<2mm/4<d<m/2,0<p<1
0<w/2,0<¢d=<m/2,0<p=<2
0<m0<so¢dp<u/2,1<p<3

INIA

IN

Think About It In Exercises 115-120, find inequalities that
describe the solid, and state the coordinate system used.
Position the solid on the coordinate system such that the
inequalities are as simple as possible.

115. A cube with each edge 10 centimeters long

116. A cylindrical shell 8 meters long with an inside diameter of
0.75 meter and an outside diameter of 1.25 meters

117. A spherical shell with inside and outside radii of 4 inches and
6 inches, respectively

118. The solid that remains after a hole 1 inch in diameter is drilled
through the center of a sphere 6 inches in diameter

119. The solid inside both x> + y> 4+ z> = 9 and
3\2 9
(x =3 +»2=3

120. The solid between the spheres x> 4+ y> + z>2 =4 and
x2 + y? 4+ z2 = 9, and inside the cone 7> = x? + y?

True or False? In Exercises 121-124, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

121. In cylindrical coordinates, the equation » = z is a cylinder.

122. The equations p = 2 and x? + y? + z?> = 4 represent the
same surface.

123. The cylindrical coordinates of a point (x, y, z) are unique.

124. The spherical coordinates of a point (x, y, z) are unique.

125. Identify the curve of intersection of the surfaces (in cylindrical
coordinates) z = sin fand r = 1.

126. Identify the curve of intersection of the surfaces (in spherical
coordinates) p = 2 sec ¢ and p = 4.
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In Exercises 1 and 2, let u = @ and v = ﬁ, and (a) write u
and v in component form, (b) write u as the linear combination
of the standard unit vectors i and j, (c) find the magnitude of v,
and (d) find 2u + v.
1. P=(1,2),0=41),R=(54)
2.P=(-2,-1,0=(5-1,R=(24)

In Exercises 3 and 4, find the component form of v given its
magnitude and the angle it makes with the positive x-axis.

3. |v|| =8, 6=60° 4. ||v| =3 6 =1225°

5. Find the coordinates of the point in the xy-plane four units to
the right of the xz-plane and five units behind the yz-plane.

6. Find the coordinates of the point located on the y-axis and
seven units to the left of the xz-plane.

In Exercises 7 and 8, determine the location of a point (x, y, z)
that satisfies the condition.

7. yz >0 8 xy <0

In Exercises 9 and 10, find the standard equation of the sphere.

9. Center: (3, —2, 6); Diameter: 15
10. Endpoints of a diameter: (0, 0, 4), (4, 6, 0)

In Exercises 11 and 12, complete the square to write the equation
of the sphere in standard form. Find the center and radius.

1. x> +y>+ 722 —4x—6y+4=0

12 24+ y2+ 22— 10x + 6y — 4z +34=0

In Exercises 13 and 14, the initial and terminal points of a
vector are given. (a) Sketch the directed line segment, (b) find
the component form of the vector, (c) write the vector using
standard unit vector notation, and (d) sketch the vector with its
initial point at the origin.

13. Initial point: (2, —1, 3)
Terminal point: (4,4, —7)

14. Initial point: (6, 2, 0)
Terminal point: (3, —3, 8)

In Exercises 15 and 16, use vectors to determine whether the
points are collinear.

15. (3,4, -1), (=1,6,9), (5,3, —6)
16. (5, —4,7), (8, —5,5), (11,6,3)

17. Find a unit vector in the direction of u = (2, 3, 5).

18. Find the vector v of magnitude 8 in the direction (6, — 3, 2).
In Exercises 19 and 20, letu = @ andv = ﬁ, and find (a) the
component forms of u and v, (b) u - v,and (c) v - v.

19. P=(5,0,0), 0 =(4,4,0),R = (2,0,6)

20. P=(2,-1,3), 0=1(0,5,1), R=(5,5,0)

In Exercises 21 and 22, determine whether u and v are
orthogonal, parallel, or neither.

21. u=<(7,-2,3)
v=1(-1,4,5)

22. u=(-4,3,-6)
v = (16, —12,24)

In Exercises 23-26, find the angle 6 between the vectors.

23. u = 5[cos(37/4)i + sin(37/4)j]

v = 2[cos(27/3)i + sin(27/3)j]
2. u=6i+2—3k v=—i+5j
25. u = (10, =5,15), v=<(=2,1,-3)
26. u=(1,0,-3), v=1{(2-21)

27. Find two vectors in opposite directions that are orthogonal to
the vector u = (5, 6, —3).

28. Work An object is pulled 8 feet across a floor using a force of
75 pounds. The direction of the force is 30° above the horizontal.
Find the work done.

In Exercises 29-38, let u = (3, —2,1), v = (2, —4, —3), and
w=(=1,2,2).

29. Show thatu - u = |juf*

30. Find the angle between u and v.

31. Determine the projection of w onto u.

32. Find the work done in moving an object along the vector u if
the applied force is w.

33. Determine a unit vector perpendicular to the plane containing
v and w.

34. Show thatu x v = —(v x u).

35. Find the volume of the solid whose edges are u, v, and w.

36. Show thatu x (v + w) = (u x v) + (u x w).

37. Find the area of the parallelogram with adjacent sides u and v.

38. Find the area of the triangle with adjacent sides v and w.

39. Torque The specifications for a tractor state that the torque on
a bolt with head size % inch cannot exceed 200 foot-pounds.
Determine the maximum force || F|| that can be applied to the
wrench in the figure.
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40. Volume Use the triple scalar product to find the volume of the
parallelepiped having adjacent edges u = 2i + j, v = 2j + k,
andw = —j + 2k.

In Exercises 41 and 42, find sets of (a) parametric equations
and (b) symmetric equations of the line through the two points.
(For each line, write the direction numbers as integers.)

41. (3,0,2), (9,11,6) 42. (—-1,4,3), (8,10,5)

In Exercises 43—46, (a) find a set of parametric equations for the
line, (b) find a set of symmetric equations for the line, and (c)
sketch a graph of the line.

43. The line passes through the point (1, 2, 3) and is perpendicular
to the xz-plane.

44. The line passes through the point (1, 2, 3) and is parallel to the
line given by x =y = z.

45. The intersection of the planes 3x — 3y — 7z = —4 and
x—y+2z=23.

46. The line passes through the point (0, 1, 4) and is perpendicular
tou=(2,—5 1)andv = (=3,1,4).

In Exercises 47-50, find an equation of the plane and sketch its

graph.

47. The plane passes through
(=3,-4,2),(—=3,4,1),and (1, 1, —2).

48. The plane passes through the point (-2, 3, 1) and is perpendi-
cularton = 3i — j + k.

49. The plane contains the lines given by

S
5 =y=1

and

x+ 1

= =y—1=z—-2

50. The plane passes through the points (5, 1, 3) and (2, —2, 1) and
is perpendicular to the plane 2x + y — z = 4.

51. Find the distance between the point (1,0, 2) and the plane
2x — 3y + 6z = 6.

52. Find the distance between the point (3, —2, 4) and the plane
2x — 5y + z = 10.

53. Find the distance between the planes 5x — 3y + z = 2 and
5x —3y+z=-3.

54. Find the distance between the point (=35, 1, 3) and the line
givenbyx=1+¢ty=3—2randz =5 —1t.

In Exercises 55—-64, describe and sketch the surface.

55.x+2y+3:=6

56. y = 72
57.y =1z
58. y = cosz

2y

59. —+—+2z22=1
6 9 ¢

60. 16x2 + 16y2 — 972 =
2y
e m 2=

61 16 9 z 1
x2 y2 ZZ

R

62 25 4 100 !

63. x> + 7> =

64. y2 + 72 =16

65. Find an equation of a generating curve of the surface of
revolution y2 + z2 — 4x = 0.

66. Find an equation of a generating curve of the surface of
revolution x> + 2y? + z2 = 3y.

67. Find an equation for the surface of revolution generated by
revolving the curve z2 = 2y in the yz-plane about the y-axis.

68. Find an equation for the surface of revolution generated by
revolving the curve 2x + 3z = 1 in the xz-plane about the
X-axis.

In Exercises 69 and 70, convert the point from rectangular
coordinates to (a) cylindrical coordinates and (b) spherical
coordinates.

69. (—212.2./2.2) 70. <\/§ 3 3\/§>

4°4 2

In Exercises 71 and 72, convert the point from cylindrical
coordinates to spherical coordinates.

71. (100, Jg, 50) 72. (81, 75?777 27\@)

In Exercises 73 and 74, convert the point from spherical
coordinates to cylindrical coordinates.

T 3
73. <25, 1 4)
T 21T
74. <12, 53 )

In Exercises 75 and 76, convert the rectangular equation to
an equation in (a) cylindrical coordinates and (b) spherical
coordinates.

75. x> —y? =2z 76. x> + y2 + 72 =16

In Exercises 77 and 78, find an equation in rectangular
coordinates for the equation given in cylindrical coordinates,
and sketch its graph.

77. r = 5cos 0 78. z =4

In Exercises 79 and 80, find an equation in rectangular
coordinates for the equation given in spherical coordinates, and
sketch its graph.

ko

79.622 80. p =3 cos ¢
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1. Using vectors, prove the Law of Sines: If a, b, and c are the three
sides of the triangle shown in the figure, then

sinA sinB sinC

lall bl llell

2. Consider the function f(x) = f Jtt+ 1at.
0

e (a) Use a graphing utility to graph the function on the interval
—2=<x=<2
(b) Find a unit vector parallel to the graph of fat the point (0, 0).
(c) Find a unit vector perpendicular to the graph of f at the point
(0,0).
(d) Find the parametric equations of the tangent line to the
graph of £ at the point (0, 0).

3. Using vectors, prove that the line segments joining the midpoints
of the sides of a parallelogram form a parallelogram (see figure).

4. Using vectors, prove that the diagonals of a rhombus are
perpendicular (see figure).

5. (a) Find the shortest distance between the point Q(2, 0, 0) and
the line determined by the points P,(0, 0, 1) and P,(0, 1, 2).
(b) Find the shortest distance between the point Q(2, 0, 0) and
the line segment joining the points P,(0,0,1) and

P,(0, 1,2).
6. Let P, be a point in the plane with normal vector n. Describe the

set of points P in the plane for which (n + ﬁg) is orthogonal to
(n — PR).

P.S. Problem Solving 831

7. (a) Find the volume of the solid bounded below by the parab-
oloid z = x> + y? and above by the plane z = 1.

(b) Find the volume of the solid bounded below by the elliptic

2
paraboloid z = % + %

2
and above by the plane z = k,

where k£ > 0.

(c) Show that the volume of the solid in part (b) is equal to
one-half the product of the area of the base times the
altitude, as shown in the figure.

< Base
A

|

Altitude

8. (a) Use the disk method to find the volume of the sphere
X2+ y2 4+ 2 =2
2

. ) X y2 ZZ
(b) Find the volume of the ellipsoid 2 + =

7 + i 1.
9. Sketch the graph of each equation given in spherical coordi-
nates.

(a) p=2sin¢
(b) p=2cos ¢
10. Sketch the graph of each equation given in cylindrical coordi-
nates.
(@) r =2cos 6

(b) z = r%cos 20

11. Prove the following property of the cross product.

uxv)xwxz)=@xv-zw—(uxv-:wz

= 12. Consider the line given by the parametric equations

x=—1+3, y=3+1 z=2-1

and the point (4, 3, s) for any real number s.

(a) Write the distance between the point and the line as a
function of s.

(b) Use a graphing utility to graph the function in part (a). Use
the graph to find the value of s such that the distance
between the point and the line is minimum.

(c) Use the zoom feature of a graphing utility to zoom out
several times on the graph in part (b). Does it appear that
the graph has slant asymptotes? Explain. If it appears to
have slant asymptotes, find them.
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A tetherball weighing 1 pound is pulled outward from the pole
by a horizontal force u until the rope makes an angle of 6
degrees with the pole (see figure).

(a) Determine the resulting tension in the rope and the magni-
tude of u when 6 = 30°.

(b) Write the tension 7 in the rope and the magnitude of u as
functions of 6. Determine the domains of the functions.

(c) Use a graphing utility to complete the table.

0 0° | 10° | 20° | 30° | 40° | 50° | 60°

T

lu]

(d) Use a graphing utility to graph the two functions for
0° < 6 < 60°.

(e) Compare T and ||ul| as 6 increases.
(f) Find (if possible) lim 7 and lim |u|. Are the
0—m/2~ O— /2~

results what you expected? Explain.

Figure for 13

A 14,

15.

Figure for 14

A loaded barge is being towed by two tugboats, and the magni-
tude of the resultant is 6000 pounds directed along the axis of
the barge (see figure). Each towline makes an angle of 6
degrees with the axis of the barge.

(a) Find the tension in the towlines if 6 = 20°.

(b) Write the tension 7 of each line as a function of 6. Deter-
mine the domain of the function.

(c) Use a graphing utility to complete the table.

10° | 20° | 30° | 40° | 50° | 60°

T

(d) Use a graphing utility to graph the tension function.
(e) Explain why the tension increases as 6 increases.

Consider the vectors u = (cosa,sina,0) and v=
(cos B, sin B, 0), where a > B. Find the cross product of the
vectors and use the result to prove the identity

sin(e — B) = sin acos B — cos «a sin B.

16.

17.

18.

19.

20.

Los Angeles is located at 34.05° North latitude and 118.24°
West longitude, and Rio de Janeiro, Brazil is located at 22.90°
South latitude and 43.23° West longitude (see figure). Assume
that Earth is spherical and has a radius of 4000 miles.

z Prime
meridian

——
Los Angeles ,4//‘.5_\\\\

TN
A
he.

Rio de Janeiro

(a) Find the spherical coordinates for the location of each city.

(b) Find the rectangular coordinates for the location of each
city.

(c) Find the angle (in radians) between the vectors from the
center of Earth to the two cities.

(d) Find the great-circle distance s between the cities.
(Hint: s = r6)

(e) Repeat parts (a)—(d) for the cities of Boston, located at
42.36° North latitude and 71.06° West longitude, and
Honolulu, located at 21.31° North latitude and 157.86°
West longitude.

Consider the plane that passes through the points P, R, and S.

Show that the distance from a point Q to this plane is

[u - (v x w)

Distance =
f[u < vl

Whereu=ﬁ,v=ﬁ,andw=@.

Show that the distance between the parallel planes
ax + by + cz+d, =0andax + by + cz +d, =01is

|d1 - d2|
NZZar=

Show that the curve of intersection of the plane z = 2y and the
cylinder x? + y2 = 1 is an ellipse.

Distance =

Read the article “Tooth Tables: Solution of a Dental Problem
by Vector Algebra” by Gary Hosler Meisters in Mathematics
Magazine. (To view this article, go to the website
www.matharticles.com.) Then write a paragraph explaining
how vectors and vector algebra can be used in the construction
of dental inlays.


www.matharticles.com

This chapter introduces the concept of
vector-valued functions. Vector-valued
functions can be used to study curves in
the plane and in space. These functions
can also be used to study the motion of
an object along a curve.

In this chapter, you should learn the
following.

B How to analyze and sketch a space
curve represented by a vector-valued
function. How to apply the concepts of
limits and continuity to vector-valued
functions. (12.1)

B How to differentiate and integrate
vector-valued functions. (12.2)

B How to describe the velocity and
acceleration associated with a vector-
valued function and how to use a | o
vector-valued function to analyze
projectile motion. (12.3)

® How to find tangent vectors and normal
vectors. (12.4)

B How to find the arc length and curvature
of a curve. (12.5)

Vector-Valued Functions

Jerry Driendl/Getty Images

A Ferris wheel is constructed using the basic principles of a bicycle wheel. You can

—m use a vector-valued function to analyze the motion of a Ferris wheel, including its
position and velocity. (See P.S. Problem Solving, Exercise 14.)

v(l)
v(0) v(0)

a(l)

v(l), v(2)
v(0)

a2)
a(l)

v(l), v(2)

a(0) a(0)

find a particle’s velocity and acceleration.

a(0)

a(0)

A vector-valued function maps real numbers to vectors. You can use a vector-valued function to represent the motion
of a particle along a curve. In Section 12.3, you will use the first and second derivatives of a position vector to

833
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@ Vector-Valued Functions

r(t,)

) ¢
r(z,)

Curve in a plane

4

Curve in space

1
1
1
|
1
1
1
1
:
1
*

Curve C is traced out by the terminal point
of position vector r(t).
Figure 12.1

B Analyze and sketch a space curve given by a vector-valued function.
m Extend the concepts of limits and continuity to vector-valued functions.

Space Curves and Vector-Valued Functions

In Section 10.2, a plane curve was defined as the set of ordered pairs (f(r), g(7))
together with their defining parametric equations

x=f(@) and y=g()

where f and g are continuous functions of 7 on an interval /. This definition can be
extended naturally to three-dimensional space as follows. A space curve C is the set
of all ordered triples (f(z), g(#), h(7)) together with their defining parametric equations

x=f@), y = g(1), and z = h(?)

where f, g, and & are continuous functions of # on an interval /.

Before looking at examples of space curves, a new type of function, called a
vector-valued function, is introduced. This type of function maps real numbers to
vectors.

DEFINITION OF VECTOR-VALUED FUNCTION

A function of the form

r() = f(Oi + g(0j Plane
or

r()) = f(Oi + g(0j + h(Hk Space

is a vector-valued function, where the component functions f, g, and % are
real-valued functions of the parameter f. Vector-valued functions are sometimes

denoted as r(t) = (f(1), g(t)) or r() = (f(r), g(1), h(z)).

Technically, a curve in the plane or in space consists of a collection of points and
the defining parametric equations. Two different curves can have the same graph. For
instance, each of the curves given by

r(f) =sinti+ costj and r(r) = sin i + cos 12

has the unit circle as its graph, but these equations do not represent the same curve—
because the circle is traced out in different ways on the graphs.

Be sure you see the distinction between the vector-valued function r and the
real-valued functions f, g, and h. All are functions of the real variable ¢, but r(¢) is a
vector, whereas f(¢), g(t), and h(z) are real numbers (for each specific value of 7).

Vector-valued functions serve dual roles in the representation of curves. By
letting the parameter ¢ represent time, you can use a vector-valued function to
represent motion along a curve. Or, in the more general case, you can use a vector-
valued function to trace the graph of a curve. In either case, the terminal point of the
position vector r(f) coincides with the point (x, y) or (x, v, z) on the curve given by the
parametric equations, as shown in Figure 12.1. The arrowhead on the curve indicates
the curve’s orientation by pointing in the direction of increasing values of 7.



r(t) =2 cos ti — 3 sin £j

The ellipse is traced clockwise as ¢ increases
from 0 to 277

Figure 12.2
4 o
(4,0,4m) Cylinder:
o 47 x2+y2=16
v
>y
4,0, 0)). 4

r(f)=4cos ti + 4 sin tj + tk

As t increases from 0 to 477, two spirals on
the helix are traced out.
Figure 12.3

In 1953 Francis Crick and James D. Watson
discovered the double helix structure of
DNA.
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Unless stated otherwise, the domain of a vector-valued function r is considered
to be the intersection of the domains of the component functions f, g, and h. For
instance, the domain of r(f) = Inti + /1 — tj + tk is the interval (0, 1].

EXAMPLE [l Sketching a Plane Curve

Sketch the plane curve represented by the vector-valued function
r(f) =2costi — 3sintj, 0 <t <2m Vector-valued function

Solution From the position vector r(z), you can write the parametric equations
x=2cost and y = —3sint. Solving for cost and sin¢ and using the identity
cos?t + sin?t = 1 produces the rectangular equation

2 2

X Y
273

=1. Rectangular equation

The graph of this rectangular equation is the ellipse shown in Figure 12.2. The curve
has a clockwise orientation. That is, as ¢ increases from O to 27, the position vector
r(7) moves clockwise, and its terminal point traces the ellipse.

C EXAMPLE |3 Sketching a Space Curve

Sketch the space curve represented by the vector-valued function
r(f) = 4 costi + 4sin tjt+tk, 0=<t<4m Vector-valued function

Solution From the first two parametric equations x = 4 cos ¢ and y = 4 sin ¢, you
can obtain

x* +y? = 16. Rectangular equation

This means that the curve lies on a right circular cylinder of radius 4, centered about
the z-axis. To locate the curve on this cylinder, you can use the third parametric equa-
tion z = . In Figure 12.3, note that as f increases from 0 to 4, the point (x, y, z)
spirals up the cylinder to produce a helix. A real-life example of a helix is shown in
the drawing at the lower left. [ |

In Examples 1 and 2, you were given a vector-valued function and were asked
to sketch the corresponding curve. The next two examples address the reverse
problem—finding a vector-valued function to represent a given graph. Of course, if
the graph is described parametrically, representation by a vector-valued function is
straightforward. For instance, to represent the line in space given by

x=2+1t y=73t and z=4 —1t
you can simply use the vector-valued function given by
r() = 2+ )i+ 3tj + 4 — k.

If a set of parametric equations for the graph is not given, the problem of representing
the graph by a vector-valued function boils down to finding a set of parametric
equations.

The icon C indicates that you will find a CAS Investigation on the book’s website. The CAS
Investigation is a collaborative exploration of this example using the computer algebra systems
Maple and Mathematica.
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There are many ways to parametrize this
graph. One way is to let x = ¢.
Figure 12.4

Curves in space can be specified
in various ways. For instance, the curve
in Example 4 is described as the
intersection of two surfaces in space.

Vector-Valued Functions

EXAMPLE ﬂ Representing a Graph by a Vector-Valued Function

Represent the parabola given by y = x> 4+ 1 by a vector-valued function.

Solution  Although there are many ways to choose the parameter ¢, a natural choice
istoletx = £. Theny = > + 1 and you have

r(t) = ti + (12 + 1)j.

Vector-valued function

Note in Figure 12.4 the orientation produced by this particular choice of parameter.
Had you chosen x = —t as the parameter, the curve would have been oriented in the
opposite direction.

EXAMPLE ﬂ Representing a Graph by a Vector-Valued Function

Sketch the space curve C represented by the intersection of the semiellipsoid

and the parabolic cylinder y = x2. Then, find a vector-valued function to represent the
graph.

Solution The intersection of the two surfaces is shown in Figure 12.5. As in
Example 3, a natural choice of parameter is x = ¢. For this choice, you can use the
given equation y = x? to obtain y = ¢2. Then, it follows that

z? S ot 242020 (6+P4 -1

n-'"1n

24 24 24

Because the curve lies above the xy-plane, you should choose the positive square root
for z and obtain the following parametric equations.

_ 6+ 24—
LT 6

The resulting vector-valued function is

6+ )4 -1
6

x=1t y=1> and

r()) =ti + 1% + k, —2<r<2. Vector-valued function
(Note that the k-component of r(¢) implies —2 < ¢ < 2.) From the points (—2, 4, 0)
and (2, 4, 0) shown in Figure 12.5, you can see that the curve is traced as f increases
from —2 to 2.

Z
Parabolic cylinder A b
0,0,2) Ca=
2 e y=t
6+ -1
Ellipsoid A L=y 6
Curve in
1 space
[ )
A (=2,4,0)
* (2,4,0) sy
° y

The curve C is the intersection of the semiellipsoid and the parabolic cylinder.
Figure 12.5 u



°0

r(n

As t approaches a, r(f) approaches the limit L.
For the limit L to exist, it is not necessary that
r(a) be defined or that r(a) be equal to L.
Figure 12.6
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Limits and Continuity

Many techniques and definitions used in the calculus of real-valued functions can be
applied to vector-valued functions. For instance, you can add and subtract vector-
valued functions, multiply a vector-valued function by a scalar, take the limit of a
vector-valued function, differentiate a vector-valued function, and so on. The basic
approach is to capitalize on the linearity of vector operations by extending the
definitions on a component-by-component basis. For example, to add or subtract two
vector-valued functions (in the plane), you can write

r, () + 1,(0) = [/[(0i + g,(0j] + [LO1 + g,(0)]] Sum
= [f1(t) +f2(t)]i + [gl(t) + gz(t)]j
r,(0) — (1) = [(0i + g,(0j] — [LD1 + g,0)]] Difference

= [A0) — £@O]i + [g,(1) — g, 0)]j
Similarly, to multiply and divide a vector-valued function by a scalar, you can write
cr(t) = o[ f,(0i + g,(0j] Scalar multiplication
ch@i + cg,(0)j
@ _ [f]([)i + gl(t)j],

Cc c
_ N0, a0
Cc Cc

c#0 Scalar division

This component-by-component extension of operations with real-valued functions to
vector-valued functions is further illustrated in the following definition of the limit of
a vector-valued function.

DEFINITION OF THE LIMIT OF A VECTOR-VALUED FUNCTION

1. If r is a vector-valued function such that r(f) = f(¢)i + g(2)j, then

limr(r) = [lim f(t)]i + [}ﬂrj g(t)]j Plane

1—a 1—a
provided f and g have