MySQL Cookbook

By Paul DuBois

Publisher : O'Reilly
Pub Date : October 2002

Preface

The MySQL database management system has become quite popular in recent years. This has
been true especially in the Linux and open source communities, but MySQL's presence in the
commercial sector now is increasing as well. It is well liked for several reasons: MySQL is fast,
and it's easy to set up, use, and administrate. MySQL runs under many varieties of Unix and
Windows, and MySQL-based programs can be written in many languages. MySQL is especially
heavily used in combination with a web server for constructing database-backed web sites that
involve dynamic content generation.

With MySQL's rise in popularity comes the need to address the questions posed by its users
about how to solve specific problems. That is the purpose of MySQL Cookbook. It's designed to
serve as a handy resource to which you can turn when you need quick solutions or techniques
for attacking particular types of questions that come up when you use MySQL. Naturally,
because it's a cookbook, it contains recipes: straightforward instructions you can follow rather
than develop your own code from scratch. It's written using a problem-and-solution format
designed to be extremely practical and to make the contents easy to read and assimilate. It
contains many short sections, each describing how to write a query, apply a technique, or
develop a script to solve a problem of limited and specific scope. This book doesn't attempt to
develop full-fledged applications. Instead, it's intended to assist you in developing such
applications yourself by helping you get past problems that have you stumped.

For example, a common question is, "How can | deal with quotes and special characters in
data values when I'm writing queries?" That's not difficult, but figuring out how to do it is
frustrating when you're not sure where to start. This book demonstrates what to do; it shows
you where to begin and how to proceed from there. This knowledge will serve you repeatedly,
because after you see what's involved, you'll be able to apply the technique to any kind of
data, such as text, images, sound or video clips, news articles, compressed files, PDF files, or
word processing documents. Another common question is, "Can | access tables from two
databases at the same time?" The answer is "Yes," and it's easy to do because it's just a
matter of knowing the proper SQL syntax. But it's hard to do until you see how; this book will
show you. Other things that you'll learn from this book include:

How to use SQL to select, sort, and summarize records.

How to find matches or mismatches between records in two tables.

How to perform a transaction.

How to determine intervals between dates or times, including age calculations.

How to remove duplicate records.

How to store images into MySQL and retrieve them for display in web pages.

How to convert the legal values of an ENUMcolumn into radio buttons in a web page,
or the values of a SET column into checkboxes.

How to get LOAD DATA to read your datafiles properly, or find out which values in the

file are bad.

How to use pattern matching techniques to cope with mismatches between the CCYY-
MWt DD date format that MySQL uses and dates in your datafiles.
How to copy a table or a database to another server.

How to resequence a sequence number column, and why you really don't want to.

One part of knowing how to use MySQL is understanding how to communicate with the
server—that is, how to use SQL, the language through which queries are formulated.
Therefore, one major emphasis of this book is on using SQL to formulate queries that answer
particular kinds of questions. One helpful tool for learning and using SQL is the mysql client
program that is included in MySQL distributions. By using this client interactively, you can
send SQL statements to the server and see the results. This is extremely useful because it
provides a direct interface to SQL. The mysql client is so useful, in fact, that the entire first
chapter is devoted to it.

But the ability to issue SQL queries alone is not enough. Information extracted from a
database often needs to be processed further or presented in a particular way to be useful.
What if you have queries with complex interrelationships, such as when you need to use the
results of one query as the basis for others? SQL by itself has little facility for making these
kinds of choices, which makes it difficult to use decision-based logic to determine which
queries to execute. Or what if you need to generate a specialized report with very specific
formatting requirements? This too is difficult to achieve using just SQL. These problems bring
us to the other major emphasis of the book—how to write programs that interact with the
MySQL server through an application programming interface (APIl). When you know how to
use MySQL from within the context of a programming language, you gain the ability to exploit
MySQL's capabilities in the following ways:

You can remember the result from a query and use it at a later time.

You can make decisions based on success or failure of a query, or on the content of
the rows that are returned. Difficulties in implementing control flow disappear when
using an API because the host language provides facilities for expressing decision-
based logic: if-then-else constructs, while loops, subroutines, and so forth.

You can format and display query results however you like. If you're writing a
command-line script, you can generate plain text. If it's a web-based script, you can
generate an HTML table. If it's an application that extracts information for transfer to
some other system, you might write a datafile expressed in XML.

When you combine SQL with a general purpose programming language and a MySQL client
API, you have an extremely flexible framework for issuing queries and processing their results.
Programming languages increase your expressive capabilities by giving you a great deal of
additional power to perform complex database operations. This doesn't mean this book is
complicated, though. It keeps things simple, showing how to construct small building blocks
by using techniques that are easy to understand and easily mastered.

I'll leave it to you to combine these techniques within your own programs, which you can do to
produce arbitrarily complex applications. After all, the genetic code is based on only four

nucleic acids, but these basic elements have been combined to produce the astonishing array
of biological life we see all around us. Similarly, there are only 12 notes in the scale, but in the
hands of skilled composers, they can be interwoven to produce a rich and endless variety of
music. In the same way, when you take a set of simple recipes, add your imagination, and
apply them to the database programming problems you want to solve, you can produce that
are perhaps not works of art, but certainly applications that are useful and that will help you
and others be more productive.

MySQL APIs Used in This Book

MySQL programming interfaces exist for many languages, including (in alphabetical order) C,
C++, Eiffel, Java, Pascal, Perl, PHP, Python, Ruby, Smalltalk, and Tcl.B Given this fact, writing
a MySQL cookbook presents an author with something of a challenge. Clearly the book should
provide recipes for doing many interesting and useful things with MySQL, but which API or
APIs should the book use? Showing an implementation of every recipe in every language
would result either in covering very few recipes or in a very, very large book! It would also
result in a lot of redundancy when implementations in different languages bear a strong
resemblance to each other. On the other hand, it's worthwhile taking advantage of multiple
languages, because one language often will be more suitable than another for solving a
particular type of problem.

U To see what APIs are currently available, visit the development portal at the
MySQL web site, located at http://www.mysgl.com/portal/development/html/.

To resolve this dilemma, I've picked a small number of APIs from among those that are
available and used them to write the recipes in this book. This limits its scope to a manageable
number of APIs while allowing some latitude to choose from among them. The primary APIls
covered here are:

Perl
Using the DBI module and its MySQL-specific driver
PHP
Using its set of built-in MySQL support functions
Python
Using the DB-API module and its MySQL-specific driver
Java ™
Using a MySQL-specific driver for the Java Database Connectivity (JDBC) interface

Why these languages? Perl and PHP were easy to pick. Perl is arguably the most widely used
language on the Web, and it became so based on certain strengths such as its text-processing

http://www.mysql.com/portal/development/html/

capabilities. In particular, it's very popular for writing MySQL programs. PHP also is widely
deployed, and its use is increasing steadily. One of PHP's strengths is the ease with which you
can use it to access databases, making it a natural choice for MySQL scripting. Python and
Java are not as popular as Perl or PHP for MySQL programming, but each has significant
numbers of followers. In the Java community in particular, MySQL seems to be making strong
inroads among developers who use JavaServer Pages (JSP) technology to build database-
backed web applications. (An anecdotal observation: After | wrote MySQL (New Riders),
Python and Java were the two languages not covered in that book that readers most often
said they would have liked to have seen addressed. So here they are!)

I believe these languages taken together reflect pretty well the majority of the existing user
base of MySQL programmers. If you prefer some language not shown here, you can still use
this book, but be sure to pay careful attention to Chapter 2, to familiarize yourself with the
book’s primary API languages. Knowing how database operations are performed with the APIs
used here will help you understand the recipes in later chapters so that you can translate them
into languages not discussed.

Who This Book Is For

This book should be useful for anybody who uses MySQL, ranging from novices who want to
use a database for personal reasons, to professional database and web developers. The book
should also appeal to people who do not now use MySQL, but would like to. For example, it
should be useful to beginners who want to learn about databases but realize that Oracle isn't
the best choice for that.

If you're relatively new to MySQL, you'll probably find lots of ways to use it here that you
hadn't thought of. If you're more experienced, you'll probably be familiar with many of the
problems addressed here, but you may not have had to solve them before and should find the
book a great timesaver; take advantage of the recipes given in the book and use them in your
own programs rather than figuring out how to write the code from scratch.

The book also can be useful for people who aren't even using MySQL. You might suppose that
because this is a MySQL cookbook and not a PostgreSQL cookbook or an InterBase cookbook
that it won't apply to databases other than MySQL. To some extent that's true, because some
of the SQL constructs are MySQL-specific. On the other hand, many of the queries are
standard SQL that is portable to many other database engines, so you should be able to use
them with little or no modification. And several of our programming language interfaces
provide database-independent access methods; you use them the same way regardless of
which database you're connecting to.

The material ranges from introductory to advanced, so if a recipe describes techniques that
seem obvious to you, skip it. Or if you find that you don't understand a recipe, it may be best
to set it aside for a while and come back to it later, perhaps after reading some of the
preceding recipes.

More advanced readers may wonder on occasion why in a book on MySQL | sometimes
provide explanatory material on certain basic topics that are not directly MySQL-related, such
as how to set environment variables. | decided to do this based on my experience in helping
novice MySQL users. One thing that makes MySQL attractive is that it is easy to use, which
makes it a popular choice for people without extensive background in databases. However,
many of these same people also tend to be thwarted by simple barriers to more effective use
of MySQL, as evidenced by the common question, "How can | avoid having to type the full
pathname of mysql each time | invoke it?" Experienced readers will recognize immediately
that this is simply a matter of appropriately setting the PATH environment variable to include
the directory where mysql is installed. But other readers will not, particularly Windows users
who are used to dealing only with a graphical interface and, more recently, Mac OS X users
who find their familiar user interface now augmented by the powerful but sometimes
mysterious command line provided by the Terminal application. If you are in this situation,
you'll find these more elementary sections helpful in knocking down barriers that keep you
from using MySQL more easily. If you're a more advanced user, just skip over such sections.

What's in This Book

It's very likely when you use this book that you'll have an application in mind you're trying to
develop but are not sure how to implement certain pieces of it. In this case, you'll already
know what type of problem you want to solve, so you should search the table of contents or
the index looking for a recipe that shows how to do what you want. Ideally, the recipe will be
just what you had in mind. Failing that, you should be able to find a recipe for a similar
problem that you can adapt to suit the issue at hand. (I try to explain the principles involved
in developing each technique so that you'll be able to modify it to fit the particular
requirements of your own applications.)

Another way to approach this book is to just read through it with no specific problem in mind.
This can help you because it will give you a broader understanding of the things MySQL can
do, so | recommend that you page through the book occasionally. It's a more effective tool if
you have a general familiarity with it and know the kinds of problems it addresses. The
following paragraphs summarize each chapter, to help give you an overview of the book's
contents.

Chapter 1, describes how to use the standard MySQL command-line client. mysql is often the
first interface to MySQL that people use, and it's important to know how to exploit its
capabilities. This program allows you to issue queries and see the results interactively, so it's
good for quick experimentation. You can also use it in batch mode to execute canned SQL
scripts or send its output into other programs. In addition, the chapter discusses other ways to
use mysql, such as how to number output lines or make long lines more readable, how to
generate various output formats, and how to log mysql sessions.

Chapter 2, demonstrates the basic elements of MySQL programming in each APl language:
how to connect to the server, issue queries, retrieve the results, and handle errors. It also
discusses how to handle special characters and NULL values in queries, how to write library

files to encapsulate code for commonly used operations, and various ways to gather the
parameters needed for making connections to the server.

Chapter 3, covers several aspects of the SELECT statement, which is the primary vehicle for
retrieving data from the MySQL server: specifying which columns and rows you want to
retrieve, performing comparisons, dealing with NULL values, selecting one section of a query
result, using temporary tables, and copying results into other tables. Later chapters cover
some of these topics in more detail, but this chapter provides an overview of the concepts on
which they depend. You should read it if you need some introductory background on record
selection, for example, if you don't yet know a lot about SQL.

Chapter 4, describes how to deal with string data. It addresses string comparisons, pattern
matching, breaking apart and combining strings, dealing with case-sensitivity issues, and
performing FULLTEXT searches.

Chapter 5, shows how to work with temporal data. It describes MySQL's date format and how
to display date values in other formats. It also covers conversion between different temporal
units, how to perform date arithmetic to compute intervals or generate one date from another,
leap-year calculations, and how to use MySQL's special TI MESTAMP column type.

Chapter 6, describes how to put the rows of a query result in the order you want. This includes
specifying the sort direction, dealing with NULL values, accounting for string case sensitivity,
and sorting by dates or partial column values. It also provides examples that show how to sort
special kinds of values, such as domain names, IP numbers, and ENUMvalues.

Chapter 7, shows techniques that are useful for assessing the general characteristics of a set
of data, such as how many values it contains or what the minimum, maximum, or average
values are.

Chapter 8, describes how to alter the structure of tables by adding, dropping, or modifying
columns, and how to set up indexes.

Chapter 9, discusses how to get information about the data a query returns, such as the
number of rows or columns in the result, or the name and type of each column. It also shows
how to ask MySQL what databases and tables are available or about the structure of a table
and its columns.

Chapter 10, describes how to transfer information between MySQL and other programs. This
includes how to convert files from one format to another, extract or rearrange columns in
datafiles, check and validate data, rewrite values such as dates that often come in a variety of
formats, and how to figure out which data values cause problems when you load them into
MySQL with LOAD DATA.

Chapter 11, discusses AUTO | NCREMENT columns, MySQL's mechanism for producing

sequence numbers. It shows how to generate new sequence values or determine the most

recent value, how to resequence a column, how to begin a sequence at a given value, and
how to set up a table so that it can maintain multiple sequences at once. It also shows how to
use AUTO | NCREMENT values to maintain a master-detail relationship between tables,

including some of the pitfalls to avoid.

Chapter 12, shows how to perform joins, which are operations that combine rows in one table
with those from another. It demonstrates how to compare tables to find matches or
mismatches, produce master-detail lists and summaries, enumerate many-to-many
relationships, and update or delete records in one table based on the contents of another.

Chapter 13, illustrates how to produce descriptive statistics, frequency distributions,
regressions, and correlations. It also covers how to randomize a set of rows or pick a row at
random from the set.

Chapter 14, discusses how to identify, count, and remove duplicate records—and how to
prevent them from occurring in the first place.

Chapter 15, shows how to handle multiple SQL statements that must execute together as a
unit. It discusses how to control MySQL's auto-commit mode, how to commit or roll back
transactions, and demonstrates some workarounds you can use if transactional capabilities are
unavailable in your version of MySQL.

Chapter 16, gets you set up to write web-based MySQL scripts. Web programming allows you
to generate dynamic pages or collect information for storage in your database. The chapter
discusses how to configure Apache to run Perl, PHP, and Python scripts, and how to configure
Tomcat to run Java scripts written using JSP notation. It also provides an overview of the Java
Standard Tag Library (JSTL) that is used heavily in JSP pages in the following chapters.

Chapter 17, shows how to use the results of queries to produce various types of HTML
structures, such as paragraphs, lists, tables, hyperlinks, and navigation indexes. It also
describes how to store images into MySQL, retrieve and display them later, and how to send a
downloadable result set to a browser.

Chapter 18, discusses ways to obtain input from users over the Web and use it to create new
database records or as the basis for performing searches. It deals heavily with form
processing, including how to construct form elements, such as radio buttons, pop-up menus,
or checkboxes, based on information contained in your database.

Chapter 19, describes how to write web applications that remember information across
multiple requests, using MySQL for backing store. This is useful when you want to collect
information in stages, or when you need to make decisions based on what the user has done
earlier.

Appendix A, indicates where to get the source code for the examples shown in this book, and
where to get the software you need to use MySQL and write your own database programs.

Appendix B, provides a general overview of JSP and installation instructions for the Tomcat
web server. Read this if you need to install Tomcat or are not familiar with it, or if you're
never written JSP pages.

Appendix C, lists sources of information that provide additional information about topics
covered in this book. It also lists some books that provide introductory background for the
programming languages used here.

As you get into later chapters, you'll sometimes find recipes that assume a knowledge of
topics covered in earlier chapters. This also applies within a chapter, where later sections often
use techniques discussed earlier in the chapter. If you jump into a chapter and find a recipe
that uses a technique with which you're not familiar, check the table of contents or the index
to find out where the technique is covered. You should find that it's been explained earlier. For
example, if you find that a recipe sorts a query result using an ORDER BY clause that you don't
understand, turn to Chapter 6, which discusses various sorting methods and explains how
they work.

Platform Notes

Development of the code in this book took place under MySQL 3.23 and 4.0. Because new
features are added to MySQL on a regular basis, some examples will not work under older
versions. I've tried to point out version dependencies when introducing such features for the
first time.

The MySQL language APl modules that | used include DBI 1.20 and up, DBD::mysql 2.0901
and up, MySQLdb 0.9 and up, MM.MySQL 2.0.5 and up, and MySQL Connector/J 2.0.14. DBI
requires Perl 5.004_05 or higher up through DBI 1.20, after which it requires Perl 5.005_03 or
higher. MySQLdb requires Python 1.5.6 or higher. MM.MySQL and MySQL Connector/J require
Java SDK 1.1 or higher.

Language processors include Perl 5.6 and 5.6.1; PHP 3 and 4; Python 1.5.6, 2.2; and 2.3, and
Java SDK 1.3.1. Most PHP scripts shown here will run under either PHP 3 or PHP 4 (although |
strongly recommend PHP 4 over PHP 3). Scripts that require PHP 4 are so noted.

I do not assume that you are using Unix, although that is my own preferred development
platform. Most of the material here should be applicable both to Unix and Windows. The
operating systems | used most for development of the recipes in this book were Mac OS X;
RedHat Linux 6.2, 7.0, and 7.3; and various versions of Windows (Me, 98, NT, and 2000).

I do assume that MySQL is installed already and available for you to use. | also assume that if
you plan to write your own MySQL-based programs, you're reasonably familiar with the
language you'll use. If you need to install software, see Appendix A. If you require background
material on the programming languages used here, see Appendix C.

Conventions Used in This Book

The following font conventions have been used throughout the book:
Const ant wi dt h

Used for program listings, as well as within paragraphs to refer to program elements such as variable or function
names.

Constant wi dth bold
Used to indicate text that you type when running commands.
Constant widthitalic
Used to indicate variable input; you should substitute a value of your own choosing.
Italic
Used for URLs, hostnames, names of directories and files, Unix commands and options, and occasionally for emphasis.

Commands often are shown with a prompt to illustrate the context in which they are used.
Commands that you issue from the command line are shown with a %prompt:

% chnod 600 ny. cnf

That prompt is one that Unix users are used to seeing, but it doesn't necessarily signify that a
command will work only under Unix. Unless indicated otherwise, commands shown with a %

prompt generally should work under Windows, too.

If you should run a command under Unix as the r oot user, the prompt is # instead:
chkconfig --add tontat4

For commands that are specific only to Windows, the C. \ > prompt is used:

C.\> copy C\nysqgl\lib\cygwi nbl9.dll C. \Wndows\ System

SQL statements that are issued from within the mysql client program are shown with a
nmysql > prompt and terminated with a semicolon:

nysql > SELECT * FROM ny_t abl e;

For examples that show a query result as you would see it when using mysql, | sometimes
truncate the output, using an ellipsis (. . .) to indicate that the result consists of more rows
than are shown. The following query produces many rows of output, of which those in the
middle have been omitted:

nysql > SELECT nane, abbrev FROM states ORDER BY nane;

| Arizona |
| West Virginia |

W/
| Wsconsin | W |
| Wom ng | W

Examples that just show the syntax for SQL statements do not include the mysql > prompt,
but they do include semicolons as necessary to make it clear where statements end. For
example, this is a single statement:

CREATE TABLE t1 (i INT)
SELECT * FROM t 2;

But this example represents two statements:

CREATE TABLE t1 (i INT);
SELECT * FROM t 2;

The semicolon is a notational convenience used within mysqgl as a statement terminator. But it
is not part of SQL itself, so when you issue SQL statements from within programs that you
write (for example, using Perl or Java), you should not include terminating semicolons.

This icon indicates a tip, suggestion, or general note.

The Companion Web Site

MySQL Cookbook has a companion web site that you can visit to obtain the source code and
sample data for examples developed throughout this book:

http://www.Kitebird.com/mysagl-cookbook/

The main software distribution is named r eci pes and you'll find many references to it
throughout the book. You can use it to save a lot of typing. For example, when you see a
CREATE TABLE statement in the book that describes what a database table looks like, you'll
find a SQL batch file in the tables directory of the r eci pes distribution that you can use to
create the table instead of typing out the definition. Change location into the tables directory,
then execute the following command, where fi | enane is the name of the containing the
CREATE TABLE statement:

http://www.kitebird.com/mysql-cookbook/

% nmysqgl cookbook < fil enane

If you need to specify MySQL username or password options, put them before the database
name.

For more information about the distributions, see Appendix A.

The Kitebird site also makes some of the examples from the book available online so that you
can try them out from your browser.

Comments and Questions

Please address comments and questions concerning this book to the publisher:
O'Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)
O'Reilly keeps a web page for this book that you can access at:

http://www.oreilly.com/catalog/mysqlckbk/

To comment or ask technical questions about this book, send email to:

bookguestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O'Reilly Network,
see the O'Reilly web site at:

http://www.oreilly.com

Additional Resources

Any language that attracts a following tends to benefit from the efforts of its user community,
because people who use the language produce code that they make available to others. Perl in
particular is served by an extensive support network designed to provide external modules
that are not distributed with Perl itself. This is called the Comprehensive Perl Archive Network
(CPAN), a mechanism for organizing and distributing Perl code and documentation. CPAN

http://www.oreilly.com/catalog/mysqlckbk/
http://www.oreilly.com

contains modules that allow database access, web programming, and XML processing, to
name a few of direct relevance to this cookbook. External support exists for the other
languages as well, though none of them currently enjoys the same level of organization as
CPAN. PHP has the PEAR archive, and Python has a module archive called the Vaults of
Parnassus. For Java, a good starting point is Sun's Java site. Sites that you can visit to find
more information are shown in the following table.

API language Where to find external support

Perl http://cpan.perl.org/

PHP http://pear.php.net/

Python http://www.python.org/

Java http://java.sun.com/

Acknowledgments

I'd like to thank my technical reviewers, Tim Allwine, David Lane, Hugh Williams, and Justin
Zobel. They made several helpful suggestions and corrections with regard to both
organizational structure and technical accuracy. Several members of MySQL AB were gracious
enough to add their comments: In particular, principal MySQL developer Monty Widenius
combed the text and spotted many problems. Arjen Lentz, Jani Tolonen, Sergei Golubchik, and
Zak Greant reviewed sections of the manuscript as well. Andy Dustman, author of the Python
MySQLdb module, and Mark Matthews, author of MM.MySQL and MySQL Connector/J, also
provided feedback. My thanks to all for improving the manuscript; any errors remaining are
my own.

Laurie Petrycki, executive editor, conceived the idea for the book and provided valuable overall
editorial guidance and cattle-prodding. Lenny Muellner, tools expert, assisted in the conversion
of the manuscript from my original format into something printable. David Chu acted as
editorial assistant. Ellie Volckhausen designed the cover, which | am happy to see is reptilian
in nature. Linley Dolby served as the production editor and proofreader, and Colleen Gorman,
Darren Kelly, Jeffrey Holcomb, Brian Sawyer, and Claire Cloutier provided quality control.

Thanks to Todd Greanier and Sean Lahman of The Baseball Archive for all their hard work in
putting together the baseball database that is used for several of the examples in this book.

Some authors are able to compose text productively while sitting at a keyboard, but | write
better while sitting far from a computer—preferably with a cup of coffee. That being so, I'd like
to acknowledge my debt to the Sow's Ear coffee shop in Verona for providing pleasant
surroundings in which to spend many hours scribbling on paper.

http://cpan.perl.org/
http://pear.php.net/
http://www.python.org/
http://java.sun.com/

My wife Karen provided considerable support and understanding in what turned out to be a
much longer endeavor than anticipated. Her encouragement is much appreciated, and her
patience something to marvel at.

Chapter 1. Using the mysql Client Program

Section 1.1. Introduction

Section 1.2. Setting Up a MySQL User Account

Section 1.3. Creating a Database and a Sample Table

Section 1.4. Starting and Terminating mysal

Section 1.5. Specifying Connection Parameters by Using Option Files

Section 1.6. Protecting Option Files

Section 1.7. Mixing Command-Line and Option File Parameters

Section 1.8. What to Do if mysqgl Cannot Be Found

Section 1.9. Setting Environment Variables

Section 1.10. Issuing Queries

Section 1.11. Selecting a Database

Section 1.12. Canceling a Partially Entered Query

Section 1.13. Repeating and Editing Queries

Section 1.14. Using Auto-Completion for Database and Table Names

Section 1.15. Using SQL Variables in Queries

Section 1.16. Telling mysgl to Read Queries from a File

Section 1.17. Telling mysgl to Read Queries from Other Programs

Section 1.18. Specifying Queries on the Command Line

Section 1.19. Using Copy and Paste as a mysql Input Source

Section 1.20. Preventing Query Output from Scrolling off the Screen

Section 1.21. Sending Query Output to a File or to a Program

Section 1.22. Selecting Tabular or Tab-Delimited Query Output Format

Section 1.23. Specifying Arbitrary Output Column Delimiters
Section 1.24. Producing HTML Output

Section 1.25. Producing XML Output

Section 1.26. Suppressing Column Headings in Query Output
Section 1.27. Numbering Query Output Lines

Section 1.28. Making Long Output Lines More Readable
Section 1.29. Controlling mysql's Verbosity Level

Section 1.30. Logging Interactive mysql Sessions

Section 1.31. Creating mysql Scripts from Previously Executed Queries
Section 1.32. Using mysql as a Calculator

Section 1.33. Using mysql in Shell Scripts

1.1 Introduction

The MySQL database system uses a client-server architecture that centers around the server,
mysqld. The server is the program that actually manipulates databases. Client programs don't
do that directly; rather, they communicate your intent to the server by means of queries
written in Structured Query Language (SQL). The client program or programs are installed
locally on the machine from which you wish to access MySQL, but the server can be installed
anywhere, as long as clients can connect to it. MySQL is an inherently networked database
system, so clients can communicate with a server that is running locally on your machine or
one that is running somewhere else, perhaps on a machine on the other side of the planet.
Clients can be written for many different purposes, but each interacts with the server by
connecting to it, sending SQL queries to it to have database operations performed, and
receiving the query results from it.

One such client is the mysql program that is included in MySQL distributions. When used
interactively, mysql prompts for a query, sends it to the MySQL server for execution, and
displays the results. This capability makes mysql useful in its own right, but it's also a valuable
tool to help you with your MySQL programming activities. It's often convenient to be able to
quickly review the structure of a table that you're accessing from within a script, to try a query
before using it in a program to make sure it produces the right kind of output, and so forth.
mysql is just right for these jobs. mysqgl also can be used non-interactively, for example, to
read queries from a file or from other programs. This allows you to use it from within scripts
or cron jobs or in conjunction with other applications.

This chapter describes mysql's capabilities so that you can use it more effectively. Of course,
to try out for yourself the recipes and examples shown in this book, you'll need a MySQL user
account and a database to work with. The first two sections of the chapter describe how to use
mysql to set these up. For demonstration purposes, the examples assume that you'll use
MySQL as follows:

The MySQL server is running on the local host.
Your MySQL username and password are cbuser and cbpass.

Your database is named cookbook.

For your own experimentation, you can violate any of these assumptions. Your server need
not be running locally, and you need not use the username, password, or database name that
are used in this book. Naturally, if you don't use MySQL in the manner just described, you'll
need to change the examples to use values that are appropriate for your system. Even if you
do use different names, | recommend that you at least create a database specifically for trying
the recipes shown here, rather than one you're using currently for other purposes. Otherwise,
the names of your existing tables may conflict with those used in the examples, and you'll
have to make modifications to the examples that are unnecessary when you use a separate
database.

1.2 Setting Up a MySQL User Account
1.2.1 Problem

You need to create an account to use for connecting to the MySQL server running on a given
host.

1.2.2 Solution

Use the GRANT statement to set up the MySQL user account. Then use that account's name

and password to make connections to the server.

1.2.3 Discussion

Connecting to a MySQL server requires a username and password. You can also specify the
name of the host where the server is running. If you don't specify connection parameters
explicitly, mysql assumes default values. For example, if you specify no hostname, mysql
typically assumes the server is running on the local host.

The following example shows how to use the mysql program to connect to the server and
issue a GRANT statement that sets up a user account with privileges for accessing a database
named cookbook. The arguments to mysql include -h localhost to connect to the MySQL
server running on the local host, -p to tell mysqgl to prompt for a password, and -u root to
connect as the MySQL r oot user. Text that you type is shown in bold; non-bold text is

program output:

% nmysqgl -h local host -p -u root

Ent er password:; ****x*

mysqgl > GRANT ALL ON cookbook.* TO 'chuser' @I ocal host' | DENTI FI ED BY
' cbpass';

Query OK, 0 rows affected (0.09 sec)

nysql> QU T

Bye

After you enter the mysql command shown on the first line, if you get a message indicating
that the program cannot be found or that it is a bad command, see Recipe 1.8. Otherwise,
when mysql prints the password prompt, enter the MySQL r oot password where you see the
*¥Fxxk**E*(If the MySQL r oot user has no password, just press Return at the password

prompt.) Then issue a GRANT statement like the one shown.

To use a database name other than cookbook, substitute its name where you see cookbook
in the GRANT statement. Note that you need to grant privileges for the database even if the
user account already exists. However, in that case, you'll likely want to omit the | DENTI FI ED
BY ' cbpass' part of the statement, because otherwise you'll change that account's current

password.

The hostname part of ' cbuser' @1 ocal host' indicates the host from which you'll be
connecting to the MySQL server to access the cookbook database. To set up an account that
will connect to a server running on the local host, use | ocal host , as shown. If you plan to
make connections to the server from another host, substitute that host in the GRANT
statement. For example, if you'll be connecting to the server as cbuser from a host named
xyz.com, the GRANT statement should look like this:

nysql > GRANT ALL ON cookbook.* TO 'cbuser' @xyz.com | DENTI FI ED BY
' cbpass';

It may have occurred to you that there's a bit of a paradox involved in the procedure just
described. That is, to set up a user account that can make connections to the MySQL server,
you must connect to the server first so that you can issue the GRANT statement. I'm assuming
that you can already connect as the MySQL r oot user, because GRANT can be used only by a
user such as r oot that has the administrative privileges needed to set up other user accounts.
If you can't connect to the server as r 00t , ask your MySQL administrator to issue the GRANT
statement for you. Once that has been done, you should be able to use the new MySQL
account to connect to the server, create your own database, and proceed from there on your
own.

MySQL Accounts and Login Accounts

MySQL accounts and login accounts for your operating system are different. For
example, the MySQL r oot user and the Unix r oot user are separate and have
nothing to do with each other, even though the username is the same in each case.
This means they are very likely to have different passwords. It also means you
cannot create new MySQL accounts by creating login accounts for your operating
system; use the GRANT statement instead.

1.3 Creating a Database and a Sample Table
1.3.1 Problem

You want to create a database and to set up tables within it.

1.3.2 Solution

Use a CREATE DATABASE statement to create a database, a CREATE TABLE statement for

each table you want to use, and | NSERT to add records to the tables.

1.3.3 Discussion

The GRANT statement used in the previous section defines privileges for the cookbook

database, but does not create it. You need to create the database explicitly before you can use

it. This section shows how to do that, and also how to create a table and load it with some
sample data that can be used for examples in the following sections.

After the cbuser account has been set up, verify that you can use it to connect to the MySQL
server. Once you've connected successfully, create the database. From the host that was
named in the GRANT statement, run the following commands to do this (the host named after

-h should be the host where the MySQL server is running):

% nmysqgl -h local host -p -u chuser
Enter password: cbpass

nysql > CREATE DATABASE cookbook;
Query OK, 1 row affected (0.08 sec)

Now you have a database, so you can create tables in it. Issue the following statements to
select cookbook as the default database, create a simple table, and populate it with a few

records:!

[If you don't want to enter the complete text of the | NSERT statements (and
I don't blame you), skip ahead to Recipe 1.13 for a shortcut. And if you don't
want to type in any of the statements, skip ahead to Recipe 1.16.

nysql > USE cookbook;

nysql > CREATE TABLE |inbs (thing VARCHAR(20), legs INT, arns |INT);
nysqgl > | NSERT I NTO |i nmbs (thing,!|egs,arns) VALUES(' human', 2, 2);
nysql > | NSERT INTO |i mbs (thing,!legs,arns) VALUES('insect',6,0);

nysql > | NSERT INTO |i mbs (thing,!|egs,arns) VALUES('squid', 0, 10);

nysql > | NSERT I NTO |i nmbs (thing,legs,arns) VALUES('octopus',O0, 8);

nysqgl > | NSERT INTO |i nbs (thing,!|egs,arnms) VALUES('fish',0,0);

nysql > | NSERT I NTO |i nbs (thing,legs,arns) VALUES(' centi pede', 100, 0);

nmysqgl > | NSERT INTO |i mbs (thing,|egs,arns) VALUES('table',4,0);

nmysql > | NSERT INTO |i mbs (thing,!|egs,arnms) VALUES('arnthair',4,2);

nysqgl > | NSERT INTO |i mbs (thing,!|egs,arns) VALUES(' phonograph', 0, 1);

nysql > | NSERT INTO linbs (thing,|egs,arns) VALUES('tripod',3,0);

nysqgl > | NSERT INTO linbs (thing,|egs,arns) VALUES(' Peg Leg Pete', 1, 2);
nysqgl > | NSERT INTO |i mbs (thing,|egs,arns) VALUES(' space alien', NULL, NULL);

The table is named | i mbs and contains three columns to records the number of legs and arms
possessed by various life forms and objects. (The physiology of the alien in the last row is
such that the proper values for the ar ns and | egs column cannot be determined; NULL

indicates "unknown value.")

Verify that the table contains what you expect by issuing a SELECT statement:

nysql > SELECT * FROM | i nbs;

Fememeeme e +o- oo - +oo - +
| thing | legs | arms |
Fememeeme e +o- oo - +oo - +
human	2	2
insect	6	0
squid	0	10
octopus	0	8
fish	0	0

| centipede |
| table |
| arnchair |
| phonograph
| tripod |
| Peg Leg Pete |
| space alien

+

12 rows in set (0.00 sec)

At this point, you're all set up with a database and a table that can be used to run some
example queries.

1.4 Starting and Terminating mysq|l
1.4.1 Problem

You want to start and stop the mysqgl program.

1.4.2 Solution

Invoke mysgl from your command prompt to start it, specifying any connection parameters
that may be necessary. To leave mysql, use a QUI T statement.

1.4.3 Discussion

To start the mysqgl program, try just typing its name at your command-line prompt. If mysq|l
starts up correctly, you'll see a short message, followed by a nmysql > prompt that indicates
the program is ready to accept queries. To illustrate, here's what the welcome message looks
like (to save space, | won't show it in any further examples):

% nysql
Wel come to the MySQ. nonitor. Conmands end with ; or \g.
Your MySQL connection id is 18427 to server version: 3.23.51-10g

Type '"help;' or "\h' for help. Type '\c' to clear the buffer.
nysql >

If mysq|l tries to start but exits immediately with an "access denied" message, you'll need to
specify connection parameters. The most commonly needed parameters are the host to
connect to (the host where the MySQL server runs), your MySQL username, and a password.
For example:

% nmysqgl -h local host -p -u chuser
Enter password: cbpass

In general, I'll show mysqgl commands in examples with no connection parameter options. |
assume that you'll supply any parameters that you need, either on the command line, or in an
option file (Recipe 1.5) so that you don't have to type them each time you invoke mysq|l.

If you don't have a MySQL username and password, you need to obtain permission to use the
MySQL server, as described earlier in Recipe 1.2.

The syntax and default values for the connection parameter options are shown in the following
table. These options have both a single-dash short form and a double-dash long form.

Parameter type Option syntax forms Default value
Hostname -h host nanme--host=host nane | ocal host
Username -uU user name--user=user name Your login name
Password -p--password None

As the table indicates, there is no default password. To supply one, use --password or -p, then
enter your password when mysql prompts you for it:

%

nysql -p
Ent er password: <—enter your password here

If you like, you can specify the password directly on the command line by using either -
ppasswor d (note that there is no space after the -p) or --password=passwor d. | don't
recommend doing this on a multiple-user machine, because the password may be visible
momentarily to other users who are running tools such as ps that report process information.

If you get an error message that mysql cannot be found or is an invalid command when you
try to invoke it, that means your command interpreter doesn't know where mysql is installed.

See Recipe 1.8.

To terminate a mysql session, issue a QUI T statement:

nysql> QU T

You can also terminate the session by issuing an EXI T statement or (under Unix) by typing
Ctrl-D.

The way you specify connection parameters for mysql also applies to other MySQL programs
such as mysqldump and mysqgladmin. For example, some of the actions that mysqgladmin can
perform are available only to the MySQL r oot account, so you need to specify name and

password options for that user:

% nmysqgl adm n -p -u root shutdown
Ent er password:

1.5 Specifying Connection Parameters by Using Option Files
1.5.1 Problem

You don't want to type connection parameters on the command line every time you invoke
mysql.

1.5.2 Solution

Put the parameters in an option file.

1.5.3 Discussion

To avoid entering connection parameters manually, put them in an option file for mysql to
read automatically. Under Unix, your personal option file is named .my.cnf in your home
directory. There are also site-wide option files that administrators can use to specify
parameters that apply globally to all users. You can use /etc/my.cnf or the my.cnf file in the
MySQL server's data directory. Under Windows, the option files you can use are C:\my.cnf, the
my.ini file in your Windows system directory, or my.cnf in the server's data directory.

Windows may hide filename extensions when displaying files, so a
file named my.cnf may appear to be named just my. Your version of
Windows may allow you to disable extension-hiding. Alternatively,

issue a DI Rcommand in a DOS window to see full names.

The following example illustrates the format used to write MySQL option files:

general client program connection options
[client]

host =I ocal host

user =cbuser

passwor d=cbpass

options specific to the nysql program
[nysal]

no- aut o- r ehash

specify pager for interactive node
pager =/ usr/ bin/less

This format has the following general characteristics:

Lines are written in groups. The first line of the group specifies the group name inside
of square brackets, and the remaining lines specify options associated with the group.
The example file just shown has a [client] group and a [nysql] group. Within a

group, option lines are written in nane=val ue format, where nane corresponds to an

option name (without leading dashes) and val ue is the option's value. If an option

doesn't take any value (such as for the no- aut o- r ehash option), the name is listed
by itself with no trailing =val ue part.

If you don't need some particular parameter, just leave out the corresponding line. For
example, if you normally connect to the default host (I ocal host), you don't need
any host line. If your MySQL username is the same as your operating system login
name, you can omit the user line.

In option files, only the long form of an option is allowed. This is in contrast to
command lines, where options often can be specified using a short form or a long
form. For example, the hostname can be given using either -h host nane or --
host=host nane on the command line; in an option file, only host =host nane is
allowed.

Options often are used for connection parameters (such as host , user, and

passwor d). However, the file can specify options that have other purposes. The
pager option shown for the [mysql] group specifies the paging program that mysq|l
should use for displaying output in interactive mode. It has nothing to do with how the
program connects to the server.

The usual group for specifying client connection parameters is [¢l i ent] . This group
actually is used by all the standard MySQL clients, so by creating an option file to use
with mysql, you make it easier to invoke other programs such as mysqgldump and
mysqgladmin as well.

You can define multiple groups in an option file. A common convention is for a
program to look for parameters in the [¢l i ent] group and in the group named after
the program itself. This provides a convenient way to list general client parameters
that you want all client programs to use, but still be able to specify options that apply
only to a particular program. The preceding sample option file illustrates this
convention for the mysql program, which gets general connection parameters from the
[client] group and also picks up the no- aut o- r ehash and pager options from the
[mysql] group. (If you put the mysqgl-specific options in the [cl i ent] group, that
will result in "unknown option" errors for all other programs that use the [cl i ent]
group and they won't run properly.)

If a parameter is specified multiple times in an option file, the last value found takes
precedence. This means that normally you should list any program-specific groups
after the [cl i ent] group so that if there is any overlap in the options set by the two
groups, the more general options will be overridden by the program-specific values.
Lines beginning with # or ; characters are ignored as comments. Blank lines are
ignored, too.

Option files must be plain text files. If you create an option file with a word processor
that uses some non-text format by default, be sure to save the file explicitly as text.
Windows users especially should take note of this.

Options that specify file or directory pathnames should be written using / as the

pathname separator character, even under Windows.

If you want to find out which options will be taken from option files by mysql, use this
command:

% nmysqgl --print-defaults

You can also use the my_print_defaults utility, which takes as arguments the names of the
option file groups that it should read. For example, mysql looks in both the [cl i ent] and

[mysql] groups for options, so you can check which values it will take from option files like
this:

% nmy_print_defaults client nysql
1.6 Protecting Option Files
1.6.1 Problem

Your MySQL username and password are stored in your option file, and you don't want other
users reading it.

1.6.2 Solution

Change the file's mode to make it accessible only by you.

1.6.3 Discussion

If you use a multiple-user operating system such as Unix, you should protect your option file
to prevent other users from finding out how to connect to MySQL using your account. Use
chmod to make the file private by setting its mode to allow access only by yourself:

% chnmod 600 . my. cnf
1.7 Mixing Command-Line and Option File Parameters
1.7.1 Problem

You'd rather not store your MySQL password in an option file, but you don't want to enter your
username and server host manually.

1.7.2 Solution

Put the username and host in the option file, and specify the password interactively when you
invoke mysql; it looks both in the option file and on the command line for connection
parameters. If an option is specified in both places, the one on the command line takes
precedence.

1.7.3 Discussion

mysql first reads your option file to see what connection parameters are listed there, then
checks the command line for additional parameters. This means you can specify some options
one way, and some the other way.

Command-line parameters take precedence over parameters found in your option file, so if for
some reason you need to override an option file parameter, just specify it on the command
line. For example, you might list your regular MySQL username and password in the option file
for general purpose use. If you need to connect on occasion as the MySQL r oot user, specify

the user and password options on the command line to override the option file values:
% nysql -p -u root

To explicitly specify "no password™ when there is a non-empty password in the option file, use
-p on the command line, and then just press Return when mysqgl prompts you for the
password:

%
nysql -p
Ent er password: <—press Return here

1.8 What to Do if mysql Cannot Be Found
1.8.1 Problem

When you invoke mysqgl from the command line, your command interpreter can't find it.

1.8.2 Solution

Add the directory where mysql is installed to your PATH setting. Then you'll be able to run

mysql from any directory easily.

1.8.3 Discussion

If your shell or command interpreter can't find mysql when you invoke it, you'll see some sort
of error message. It may look like this under Unix:

% nysql
nysql : Command not found.

Or like this under Windows:

C:\> nysql
Bad command or invalid fil enane

One way to tell your shell where to find mysql is to type its full pathname each time you run
it. The command might look like this under Unix:

% /usr /1 ocal / mysql / bi n/ nysql

Or like this under Windows:
C.\> C\nysqgl\bin\nysql

Typing long pathnames gets tiresome pretty quickly, though. You can avoid doing so by
changing into the directory where mysql is installed before you run it. However, I recommend
that you not do that. If you do, the inevitable result is that you'll end up putting all your
datafiles and query batch files in the same directory as mysql, thus unnecessarily cluttering up
what should be a location intended only for programs.

A better solution is to make sure that the directory where mysql is installed is included in the
PATH environment variable that lists pathnames of directories where the shell looks for
commands. (See Recipe 1.9.) Then you can invoke mysql from any directory by entering just
its name, and your shell will be able to find it. This eliminates a lot of unnecessary pathname
typing. An additional benefit is that because you can easily run mysqgl from anywhere, you will
have no need to put your datafiles in the same directory where mysql is located. When you're
not operating under the burden of running mysqgl from a particular location, you'll be free to
organize your files in a way that makes sense to you, not in a way imposed by some artificial
necessity. For example, you can create a directory under your home directory for each
database you have and put the files associated with each database in the appropriate
directory.

I've pointed out the importance of the search path here because | receive many questions
from people who aren't aware of the existence of such a thing, and who consequently try to do
all their MySQL-related work in the bin directory where mysql is installed. This seems
particularly common among Windows users. Perhaps the reason is that, except for Windows
NT and its derivatives, the Windows Help application seems to be silent on the subject of the
command interpreter search path or how to set it. (Apparently, Windows Help considers it
dangerous for people to know how to do something useful for themselves.)

Another way for Windows users to avoid typing the pathname or changing into the mysq|l
directory is to create a shortcut and place it in a more convenient location. That has the
advantage of making it easy to start up mysql just by opening the shortcut. To specify
command-line options or the startup directory, edit the shortcut's properties. If you don't
always invoke mysql with the same options, it might be useful to create a shortcut
corresponding to each set of options you need—for example, one shortcut to connect as an
ordinary user for general work and another to connect as the MySQL r oot user for

administrative purposes.

1.9 Setting Environment Variables
1.9.1 Problem

You need to modify your operating environment, for example, to change your shell's PATH

setting.

1.9.2 Solution

Edit the appropriate shell startup file. Under Windows NT-based systems, another alternative

is to use the System control panel.

1.9.3 Discussion

The shell or command interpreter you use to run programs from the command-line prompt
includes an environment in which you can store variable values. Some of these variables are
used by the shell itself. For example, it uses PATH to determine which directories to look in for
programs such as mysgl. Other variables are used by other programs (such as PERL5LI B,

which tells Perl where to look for library files used by Perl scripts).

Your shell determines the syntax used to set environment variables, as well as the startup file
in which to place the settings. Typical startup files for various shells are shown in the following
table. If you've never looked through your shell's startup files, it's a good idea to do so to
familiarize yourself with their contents.

Shell Possible startup files
csh, tcsh Jlogin, .cshrc, .tcshrc
sh, bash, ksh .profile .bash_profile, .bash_login, .bashrc
DOS prompt C:\AUTOEXEC.BAT

The following examples show how to set the PATH variable so that it includes the directory
where the mysqgl program is installed. The examples assume there is an existing PATH setting
in one of your startup files. If you have no PATH setting currently, simply add the appropriate

line or lines to one of the files.

If you're reading this section because you've been referred here from
another chapter, you'll probably be more interested in changing
some variable other than PATH. The instructions are similar because

you use the same syntax.

The PATH variable lists the pathnames for one or more directories. If an environment
variable's value consists of multiple pathnames, it's conventional under Unix to separate them
using the colon character (:). Under Windows, pathnames may contain colons, so the

separator is the semicolon character (;).

To set the value of PATH, use the instructions that pertain to your shell:

For csh or tcsh, look for a set env PATH command in your startup files, then add the
appropriate directory to the line. Suppose your search path is set by a line like this in
your .login file:

setenv PATH /bin:/usr/bin:/usr/local/bin

If mysql is installed in /usr/local/mysqgl/bin, add that directory to the search path by
changing the set env line to look like this:

setenv PATH /usr/local /nysql /bin:/bin:/usr/bin:/usr/local/bin

It's also possible that your path will be set with set pat h, which uses different

syntax:
set path = (/usr/local/nysqgl/bin /bin /usr/bin /usr/local/bin)

For a shell in the Bourne shell family such as sh, bash, or ksh, look in your startup files
for a line that sets up and exports the PATH variable:

export PATH=/bi n:/usr/bin:/usr/local/bin
The assignment and the export might be on separate lines:

PATH=/ bi n: /usr/ bin:/usr/local/bin
export PATH

Change the setting to this:
export PATH=/usr/| ocal / mysql /bin:/bin:/usr/bin:/usr/local/bin

Or:

PATH=/ usr/ 1 ocal / mysql / bi n: /bin:/usr/bin:/usr/local/bin
export PATH

Under Windows, check for a line that sets the PATH variable in your AUTOEXEC.BAT
file. It might look like this:

PATH=C: \ W NDOWS5; C: \ W NDOAS\ COMVAND

Or like this:

SET PATH=C: \ W NDOWS; C: \ W NDOWS\ COMVAND

Change the PATH value to include the directory where mysql is installed. If this is
C:\mysql\bin, the resulting PATH setting looks like this:

PATH=C: \ nysql \ bi n; C: \ W NDOWS5; C: \ W NDOAS\ COMVAND

Or:
SET PATH=C: \ nysql \ bi n; C:\ W NDOWS5; C: \ W NDOAS\ COVIVAND

Under Windows NT-based systems, another way to change the PATH value is to use
the System control panel (use its Environment or Advanced tab, whichever is present).
In other versions of Windows, you can use the Registry Editor application.
Unfortunately, the name of the Registry Editor key that contains the path value seems
to vary among versions of Windows. For example, on the Windows machines that |
use, the key has one name under Windows Me and a different name under Windows
98; under Windows 95, | couldn't find the key at all. It's probably simpler just to edit
AUTOEXEC.BAT.

After setting an environment variable, you'll need to cause the modification to take effect.
Under Unix, you can log out and log in again. Under Windows, if you set PATH using the
System control panel, you can simply open a new DOS window. If you edited AUTOEXEC.BAT
instead, restart the machine.

1.10 Issuing Queries
1.10.1 Problem

You've started mysqgl and now you want to send queries to the MySQL server.

1.10.2 Solution

Just type them in, but be sure to let mysgl know where each one ends.

1.10.3 Discussion

To issue a query at the mysql > prompt, type it in, add a semicolon (;) at the end to signify
the end of the statement, and press Return. An explicit statement terminator is necessary;
mysql doesn't interpret Return as a terminator because it's allowable to enter a statement
using multiple input lines. The semicolon is the most common terminator, but you can also use
\ g ("go") as a synonym for the semicolon. Thus, the following examples are equivalent ways
of issuing the same query, even though they are entered differently and terminated
differently 1%

[21 Example queries in this book are shown with SQL keywords like SELECT in
uppercase for distinctiveness, but that's simply a typographical convention.
You can enter keywords in any lettercase.

nysql > SELECT NOW);

T +
| NOW) |
T +
| 2001-07-04 10: 27: 23 |
e +
nysql > SELECT
-> NOWN)\g

e +
| NOW) |
e +
| 2001-07-04 10: 27:28 |
e +

Notice for the second query that the prompt changes from nysql > to - > on the second input
line. mysqgl changes the prompt this way to let you know that it's still waiting to see the query
terminator.

Be sure to understand that neither the ; character nor the \ g sequence that serve as query
terminators are part of the query itself. They're conventions used by the mysql program,
which recognizes these terminators and strips them from the input before sending the query
to the MySQL server. It's important to remember this when you write your own programs that
send queries to the server (as we'll begin to do in the next chapter). In that context, you don't
include any terminator characters; the end of the query string itself signifies the end of the
query. In fact, adding a terminator may well cause the query to fail with an error.

1.11 Selecting a Database
1.11.1 Problem

You want to tell mysql which database to use.

1.11.2 Solution

Name the database on the mysqgl command line or issue a USE statement from within mysq|l.

1.11.3 Discussion

When you issue a query that refers to a table (as most queries do), you need to indicate which
database the table is part of. One way to do so is to use a fully qualified table reference that
begins with the database name. (For example, cookbook. | i nbs refers to the | i nbs table in
the cookbook database.) As a convenience, MySQL also allows you to select a default
(current)