
Table of Contents
BackCover
OOP Demystified
Introduction
Chapter 1: A Look at How We See the World
Why an Object?
Inheritance
Objects in the Business World
Real-Life Objects and Object-Oriented Programming
Quiz
Chapter 2: What Is a Class?
A Class
Combining a Class with a Program
Declaring an Instance of a Class
Calling a Method
Quiz
Chapter 3: Encapsulation
What Is Encapsulation?
Why Use Encapsulation?
Protection Using Access Specifiers
Encapsulation in Action Using C++
Encapsulation in Action Using Java
Quiz
Chapter 4: Methods and Polymorphism
Interface
Binding
Run-Time Polymorphism
Quiz
Chapter 5: Inheritance
The Class Hierarchy

Simple Inheritance Using C++
Simple Inheritance Using Java
Level Inheritance Using C++
Level Inheritance Using Java
Multiple Inheritance Using C++
Multiple Inheritance Using Java
Quiz
Chapter 6: Abstraction
Abstraction in Action
Frameworks, Libraries, and Abstraction
Quiz
Chapter 7: Identifying and Describing Objects
Class Definition and Class Diagram
Relationships Among Objects
Quiz
Chapter 8: Real-World Modeling
Real-World Hierarchy
The Real-World Challenges of Object-Oriented Programming
The Computer World vs. the Real World
Quiz
Chapter 9: Collaboration
OOP Collaboration
Quiz
Chapter 10: Case Modeling
Oh No, Not End Users
Gathering Requirements
Essential Use Case
System Use Case
Business Rules
User Interface Diagramming
Defining Classes from Our Designs

Identifying Technical Requirements
Change Cases
Project Management
Quiz
Chapter 11: Interfaces
Interface Diagrams
Show Me the HTML
The HTMLSource Interface
The Classes, Before an Interface Is Implemented
Implementing Interfaces in Java and C#
Bringing It All Together
What About C++?
Components
Standard Interfaces
Ultimate Base Classes
Quiz
Chapter 12: Object-Oriented Programming Languages
The Three Dominant Modern OOPLs
Quiz
Appendix A: Final Exam
Appendix B: Answers to Quizzes and Final Exam
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11

Chapter 12
Answers to Final Exam
Appendix C: Classes in Java
Packages
Appendix D: Classes in C++
Unions, Structs, and Classes
Objects and Functions, Copy Constructors
Enums Inside Classes
Static Members
Appendix E: Class Definitions in C#
Assemblies
Index
Index_B
Index_C
Index_D
Index_E
Index_F
Index_G
Index_H
Index_I
Index_J
Index_K
Index_L
Index_M
Index_N
Index_O
Index_P
Index_Q
Index_R
Index_S
Index_T

Index_U
Index_V
Index_W
Index_Z
List of Figures
List of Tables

OOP Demystified: A Self-Teaching Guide
by Jim Keogh and Mario Giannini ISBN:0072253630

McGraw-Hill/Osborne © 2004

This easy-to-understand, step-by-step guidebook will help
you figure out the ins and outs of object-oriented
programming (OOP). Coverage includes class diagrams,
interfaces, case modeling, and much more.

Table of Contents
OOP Demystified
Introduction
Chapter 1 -A Look at How We See the World
Chapter 2 -What Is a Class?
Chapter 3 -Encapsulation
Chapter 4 -Methods and Polymorphism
Chapter 5 - Inheritance
Chapter 6 -Abstraction
Chapter 7 - Identifying and Describing Objects
Chapter 8 -Real-World Modeling
Chapter 9 -Collaboration
Chapter 10 -Case Modeling
Chapter 11 - Interfaces
Chapter 12 -Object-Oriented Programming Languages
Appendix A -Final Exam
Appendix B -Answers to Quizzes and Final Exam
Appendix C -Classes in Java
Appendix D -Classes in C++
Appendix E -Class Definitions in C#
Index
List of Figures
List of Tables

Back Cover

Want to learn about object-oriented programming quickly and
easily? Looking to brush up on modeling, classes, and attributes?
Then OOP Demystified is the easy-to-understand, step-by-step
guidebook that will help you figure out the ins and outs of object-
oriented programming (OOP).

Written for anyone without formal training in the subject, OOP
Demystified teaches complex OOP topics in clear, plain language—
from the reasons why objects are successful as models for
programming to case modeling, class diagrams, interfaces, and
much more. The authors leave out unnecessary, time-consuming
information to deliver the essentials you need to begin and maintain
all your OOP projects.

This one-of-a-kind self-teaching text offers:

An easy way to understand OOP

A quiz at the end of each chapter

A final exam at the end of the book

No unnecessary technical jargon

a time-saving approach

About the Authors

Jim Keogh is a member of the faculty of Columbia University, where
he teaches courses on Java Application Development, and is a
member of the Java Community Process Program. He developed the
first e-commerce track at Columbia and became its first
chairperson. Him spent more than a decade developing advanced
systems for major Wall Street firms and is also the author of several
best-selling computer books.

Mario Giannini is the President of code Fighter, Inc., co-author of
Windows Programming Programmers Notebook, and Chair of the

Software Development Program at Columbia University’s
Information Technology Programs. With over 20 years of software
development experience on CP/M, Unix, and Windows, he feels
lucky to be fascinated with the ever-changing field of software
development after all these years.

OOP Demystified
James Keogh
& Mario Giannini

McGraw-Hill/Osborne
2100 Powell Street, 10th Floor
Emeryville, California 94608
U.S.A.

To arrange bulk purchase discounts for sales promotions, premiums, or fund-raisers, please
contact McGraw-Hill/Osborne at the above address. For information on translations or
book distributors outside the U.S.A., please see the International Contact Information page
immediately following the index of this book.

OOP Demystified

Copyright © 2004 by The McGraw-Hill Companies. All rights reserved. Printed in the United
States of America. Except as permitted under the Copyright Act of 1976, no part of this
publication may be reproduced or distributed in any form or by any means, or stored in a
database or retrieval system, without the prior written permission of publisher, with the
exception that the program listings may be entered, stored, and executed in a computer
system, but they may not be reproduced for publication.

1234567890 FGR FGR 01987654

ISBN 0-07-225363-0

Publisher
Brandon A. Nordin

Vice President & Associate Publisher
Scott Rogers

Editorial Director
Wendy Rinaldi

Project Editor
Jennifer Malnick

Acquisitions Coordinator
Athena Honore

Technical Editor
Jeff Kent

Copy Editor
Bart Reed

Proofreader
Marian Selig

Indexer
Claire Splan

Composition
Tara A. Davis, Lucie Ericksen

Illustrators
Kathleen Edwards, Melinda Lytle

Cover Series Design
Margaret Webster-Shapiro

Cover Illustration
Lance Lekander

This book was composed with Corel VENTURA™ Publisher.

Information has been obtained by McGraw-Hill/Osborne from sources believed to be
reliable. However, because of the possibility of human or mechanical error by our sources,
McGraw-Hill/Osborne, or others, McGraw-Hill/Osborne does not guarantee the accuracy,
adequacy, or completeness of any information and is not responsible for any errors or
omissions or the results obtained from the use of such information.

This book is dedicated to Anne, Sandy, Joanne,
Amber-Leigh Christine, and Graaf, without whose
help and support this book couldn’t be written.
—Jim

For my son, Nicholas, whose inquisitive mind
and endless smile reminds me what it’s all about.
—Mario

About the Authors

Jim Keogh is a member of the faculty of Columbia University, where he teaches courses on
Java Application Development, and is a member of the Java Community Process Program.
He developed the first e-commerce track at Columbia and became its first chairperson. Jim
spent more than a decade developing advanced systems for major Wall Street firms and is
also the author of several best-selling computer books.

Mario Giannini is the President of Code Fighter, Inc., co-author of Windows Programming
Programmers Notebook, and Chair of the Software Development Program at Columbia
University’s Information Technology Programs. With over 20 years of software development
experience on CP/M, Unix, and Windows, he feels lucky to be fascinated with the ever-
changing field of software development after all these years.

Introduction
This book is for everyone who wants to learn object-oriented programming without taking a
formal course. It is also designed as a supplemental classroom text. Start at the beginning
of this book and then go straight through to the end for best results.

If you are confident about the topics covered in these chapters, then take the quiz at the
end of each one to see if you actually know the material before skipping any chapter.

If you get 90 percent of the answers correct, skip the chapter. If you get 75 to 89 percent
correct, skim through the text of chapter. If you get less than 75 percent of the answers
correct, find a quiet place and begin reading. Doing so will get you in shape to tackle the
rest of the chapters on object-oriented programming.

In order to learn object-oriented programming, you must have some computer skills, but
don’t be intimidated. None of the knowledge you need goes beyond basic computer know-
how.

This book contains a lot of practice quizzes and exam questions, which are similar to the
kinds of questions used in an object-oriented programming course. You may and should
refer to the chapter texts when taking them. When you think you’re ready, take the quiz,
write down your answers, and then give your list of answers to a friend. Have your friend
tell you your score, but not which questions were wrong. Stay with one chapter until you
pass the quiz. You’ll find the answers in Appendix B.

There is a final exam at the end of this book, in Appendix A, which contains practical
questions drawn from all chapters of this book. Take the exam when you have finished the
book and have completed all the quizzes. A satisfactory score is at least 75 percent. Have
a friend tell you your score without letting you know which questions you missed.

We recommend that you spend an hour or two each day and expect to complete one
chapter each week. Take it at a steady pace; take time to absorb the material. Don’t rush.
You’ll complete the course in a few months; then you can use this book as a comprehensive
permanent reference.

Chapter 1: A Look at How We See the World
How do you see the world? The answer depends on your background. A scientist might see
the world as molecular structures. An artist sees the world as shapes and colors. And some
of us might say the world is a collection of stuff. Probably the first thing that came to mind
when you read this question was, What does it matter how anyone sees the world? It
matters a lot to a programmer who has to write a computer program that emulates the real
world.

The Stuff That Stuff Is Made Of
Comedian George Carlin sums up how most of us see the world in his famous comedy
routine. Carlin says we see the world as stuff, and he is probably right. Stuff is anything you
have and anything you want. A house is stuff. Things you have in your house are stuff.
Things you throw away are stuff, and so are the things you want to buy. And the stuff we
have, such as a house, is made up of other stuff, such as windows and doors.

Admittedly the term stuff is less technical that you expect in a book on object-oriented
programming, but it does give you a reference point to begin learning object-oriented
programming.

Technically, stuff is an object. That is, a house is an object. The things you have in your
house are objects. Things your throw away are objects, and things you want to buy are
objects. All of us, regardless of our background, view the world as objects. An object is a
person, place, thing, concept, or possibly event.

The best way to learn about objects is to examine the most important object, us. Each of us
is considered an object in the world of object-oriented programming. We call this object a
person.

A person as well as a house, car, and any other real-world objects are described by using
two groups of features: attributes and behaviors. An attribute is a characteristic of an
object. For example, a person has a first name, last name, height, and weight. First name,
last name, height, and weight are attributes of all persons. As you can imagine, hundreds of
other attributes characterize a person, but we’ll stop at four. A behavior is an action that an
object is capable of performing. A person sits, stands, walks, and runs, among thousands
of other behaviors a person performs.

You can probably imagine how an automobile, airplane, and even a sales order form are
objects, each having attributes and behavior. Attributes and behaviors of an automobile and
airplane are fairly obvious. Both have width, height, weight, wheels, an engine, and many
other attributes. An automobile and airplane move in a direction, stop, are steered to a
different direction, and can perform hundreds of other actions (behaviors).

However, you might be scratching your head trying to determine the attributes and
behaviors of a sales order form (see Figure 1-1). Its attributes are customer name,
customer address, item ordered, amount due, and other pieces of information found on a
sales order form. Its behaviors include collecting information, modifying information, and
processing the sales order.

Figure 1-1: An order form is an object that contains attributes and
behaviors.

Abstract Objects and Instances

Throughout this book, you’ll see how programmers view an object in two ways—as an
abstract object and as a real object. The term abstract object can seem a bit, let’s say,
abstract to understand. Think of an abstract object as a description of a real object minus
details. For example, an abstract person is a description of a person that contains attributes
and behaviors. Here are four attributes that might be found in an abstract person (notice
that these attributes simply identify a kind of characteristic, such as first name or weight,
but don’t specify a name or measurement):

First Name

Last Name

Height

Weight

The abstract object is used as the model for a real object. A real person has all the
attributes and behaviors defined in the abstract object and contains details missing from the
abstract object.

For example, the abstract person is a model for a real person. The abstract person states
that a real person must have a first name, last name, height, and weight. A real person
specifies values associated with these attributes, such as:

Bob

Smith

6 feet tall

160 pounds

As you’ll see in later chapters, programmers create an abstract object and then use the
abstract object to create a real object. A real object is called an instance of the abstract
object. You can say that a real person is an instance of the abstract person.

Some programmers like to think of an abstract object as a cookie cutter. A cookie cutter
shaped as a cookie, but isn’t a cookie. You might say that a cookie cutter is an abstract
cookie used to define what a real cookie looks like. A cookie cutter is used to cut out real
cookies from a sheet of dough. That is, a cookie cutter is used to create instances of a
cookie.

Why an Object?
By now you’re wondering what is so revolutionary about looking at the world as objects.
The short answer is that focusing on objects makes it easy for us to understand complex
things. Objects enable us to look at details that are of interest to us and ignore other details
that we are not interested in.

This is evident when you meet your teacher. A teacher is a person and has many of the
attributes and behaviors that you posses. Yet, you probably ignore many of the teacher’s
attributes and behaviors and focus on only those that pertain to your education.

Likewise, the teacher focuses on your attributes and behaviors that indicate how well you
are learning material in class. Other attributes, such as your performance in an unrelated
class or your height and weight, are ignored by the teacher. Similarly, a teacher may not
care if you drive a car or walk to campus.

Both you and your teacher simplify your relationship by deciding attributes and behaviors
that are important to each of your objectives and then use only those attributes and
behaviors in your relationship.

Inheritance
Inheritance is an important feature of object-oriented programming because it is a way for
one object to receive attributes and behaviors of another object in what programmers call
an “is a” relationship. As an example, let’s use the Person and Student objects to discuss
how inheritance works.

Previously in this chapter, you learned that Person has many attributes and behaviors. In
this example, we’ll limit Person’s attributes and behaviors to those shown in Table 1-1.

Table 1-1: Attributes and Behaviors of Person

Attributes Behaviors

First Name Sitting

Last Name Standing

Address Walking

Telephone Number Running

Student has the same attributes and behaviors as Person because Student is a person. In
addition, Student has attributes and behaviors that are unique to a student. Some of these
are shown in Table 1-2.

Table 1-2: Attributes and Behaviors of Student

Attributes Behaviors

Student Number Taking a test

Major Attending class

Grade Point Average Doing homework

It makes sense that Student inherits attributes and behaviors of Person because Student
has an “is a” relationship with Person. That is, a student is a person. You’ll learn how to
define objects in Chapter 2 and how objects are inherited in Chapter 5. For now, let’s
consider Table 1-1 as the definition of Person and Table 1-2 as the definition of Student.

Table 1-1 and Table 1-2 simply define Person and Student, but they don’t create a real
person or real student. For that, you need to create an instance of Person or Student. An
instance is a real object. Therefore, an instance of Person is a real person, and an instance
of Student is a real student.

Once Student inherits from Person, an instance of Student has the attributes and behaviors

of Person and Student, just as if all attributes and behaviors were defined in Student. Table
1-3 shows the attributes and behaviors of an instance of Student after Student inherits from
Person.

Table 1-3: Attributes and Behaviors Available to an Instance of Student

Attributes Behaviors

First Name Sitting

Last Name Standing

Address Walking

Telephone Number Running

Student Number Taking a test

Major Attending class

Grade Point Average Doing homework

This means that a programmer who creates only an instance of Student can access
attributes and behaviors of Person without creating an instance of Person. The programmer
accesses attributes and behaviors of Person by using the instance of Student.

Why Use Inheritance?

Maintaining objects can become a nightmare for programmers, as you’ll quickly discover
once you start creating your own object-oriented programs. Real-world programs require
many objects, each having many attributes and behaviors. It becomes your responsibility to
organize these objects so you can easily change them as requirements for your program
change.

Here’s the dilemma: Let’s say you don’t define a Person object. Instead, attributes and
behaviors that would normally be defined in a Person object (refer to Table 1-1) are placed
in objects that are persons. These objects are Student, Teacher, Department Chair, Dean,
Secretary, and Bursar. In other words, attributes and behaviors listed in Table 1-1 are
repeated six times, once for each of the six objects.

Now for the problem: You need to insert a Cell Phone attribute. It makes sense to insert the
Cell Phone attribute in the Person object because many people have cell phones, but the
Person object isn’t defined. The only solution is to insert the Cell Phone attribute into all six
objects.

Real-world programmers don’t do this because they know to group together into one object
those attributes and behaviors that are common to multiple objects. In this example,

common attributes and behaviors of a person are defined in the Person object. The other
five objects inherit the Person object and its attributes and behaviors.

Inserting the Cell Phone attribute becomes an easy task because the change is made to
one object—the Person object. The other objects automatically receive the Cell Phone
attribute when they inherit the Person object.

Objects in the Business World
You will find yourself using objects that are common in business to build an object-oriented
business system. Let’s take a look at a supermarket to get a better understanding of a
business system and the objects used in business (see Figure 1-2). You’ve visited plenty of
supermarkets, so you probably have a general idea of how a supermarket receives
merchandise from a warehouse.

Figure 1-2: A supermarket uses a business system and business objects to restock
shelves with merchandise.

Each week supermarket employees survey the shelves and the storeroom to determine
what products to order from the supermarket’s central warehouse. They place information
about each product and the quantity to order on an order form, which then is sent to the
warehouse for fulfillment.

At the warehouse, information on the order form is transferred to a pick list used by
warehouse employees while going through the warehouse “picking” products to fill the
order. Products are listed on a packing slip and then placed in cartons. A packing slip lists
all the products contained in the carton and their quantities. A shipping label is placed on a
carton, and a shipping order is written. The shipping order has instructions on where the
cartons are to be delivered. A trucker then uses the shipping order to deliver the carton to
the supermarket.

Employees in the supermarket read the label on each carton to be sure that the carton is
addressed to them. They open the carton and read the packing slip. Items on the packing
slip are compared to items in the carton. Any discrepancies are noted and reported to the
warehouse in a memo. Items are then removed from the carton and placed on supermarket
shelves.

There are many objects in the system a supermarket uses to order merchandise to restock
shelves. These include an employee, a building, cartons, and a truck. However, we are
interested in objects of the system, such as the form used to order merchandise.

What business objects do you see in the supermarket ordering system? Time’s up!
Compare your list of objects to this list:

Order form

Pick list

Packing slip

Shipping order

Shipping label

Each object has attributes and behaviors. Attributes include the product number, product
name, and quantity, which are found in each of these objects, except for the shipping label.
Attributes of the shipping label object include the name and address of the supermarket and
the name and address of the shipper.

Many objects used in business are forms that someone fills out, such as an order form. It is
hard to imagine an object having a behavior because it doesn’t do anything. It is not like a
window that opens and closes.

However, an object does have behaviors. Here are a few behaviors of an order form object:

Enter information

Modify information

Delete modified information

Display the form

Process the order

Modify the order

Cancel the order

Real-Life Objects and Object-Oriented Programming
For decades, programmers have undertaken the enormous job of writing computer
programs that automate the way business is conducted. In the “olden days,” as some
programmers might say, a program consisted of one long series of step-by-step
instructions that directed the computer to do something. Typically programs were used to
automate a business process such as processing an order, which is the same thing that
programs do today.

Once the automation fever caught on, businesses demanded that programs take over many
business operations. Programs grew in size and complexity and soon became
unmanageable, expensive, and time consuming to maintain.

Procedural programming came to rescue programmers. Procedural programming organizes
instructions into groups that perform one task, called a procedure. Procedures are referred
to as functions or methods in some programming languages. Think of a procedure as
instructions used to enter a new order, display an existing order, or perform any task.

Procedural programming simplified programming by making it easy for a programmer to
quickly sift through hundreds of lines of instructions to locate a procedure that needed to be
upgraded.

In addition, procedural programming provided another benefit that made a programmer’s life
more bearable. Procedures, written in a programming language such as C, can be reused
in other programs that require the same procedures. Programmers refer to this as reusable
code.

Here’s how reusable code works: Let’s say that a programmer writes a procedure in an
order-processing program that matches a ZIP code with a city and state. This enables a
sales representative to enter a customer’s ZIP code and then let the computer look up the
city and state associated with the ZIP code.

You can imagine that many programs within a company have the same need. Rather than
rewrite the ZIP code procedure for each of those programs, a programmer can use the
same ZIP code procedure in those programs. This saves time and money, and it produces
reliable programs because the ZIP code procedure is already thoroughly tested.

Procedural programming revolutionized how programs were written, but there was another
problem that still needed to be addressed. The real world, which a program mimics, is
organized into objects, and not procedures. An object consists of attributes and behaviors,
as you know.

Each time a new program was written, the programmer had the challenge of re-creating an
object-oriented world using a procedural programming language. It was like trying to slip an
octagonal peg into a round hole. The peg fits with a little coaxing, but it’s never a perfect fit.

The problem was solved with the introduction of object-oriented programming in the 1980s.
Object-oriented programming uses an object-oriented programming language such as C++
or Java to mimic real-world objects in a program by defining a class. A class is composed
of data members and member methods. Data members are sometimes referred to as
fields and are used to store attributes of an object. Member methods are sometimes
referred to as member functions and define an object’s behavior. You’ll learn much more
about classes throughout chapters of this book.

Quiz
1. What is an object?

2. What is an attribute of an object?

3. What is a behavior of an object?

4. Why it is important for programmers to use object-oriented programming to
develop computer systems?

5. Explain the role of inheritance in object-oriented programming.

6. How can object-oriented programming help maintain complex computer
systems?

7. Identify the attributes of the order form in Figure 1-1.

8. Identify the behaviors of the order form in Figure 1-1.

9. Describe objects in a college that might inherit a Person object.

10. Draw a diagram that shows the relationships of objects that you listed in your
answer to Question 9.

Answers

1. An object is a person, place, thing, concept, or possibly event.

2. An attribute is a characteristic of an object.

3. A behavior is an action that an object is capable of performing.

4.
Focusing on objects makes it easy for us to understand complex things. Objects enable
us to look at details that are of interest to us and ignore other details that we are not
interested in.

5. Inheritance is a way for one object to receive attributes and behaviors of another
object in what programmers call an “is a” relationship.

6.

Attributes and behaviors need to be defined in one object, such as Person. Other
objects that require those attributes and behaviors—such as Student, Teacher,
Department Chair, Dean, Secretary, and Bursar—can inherit the object. This allows for
attributes and behaviors to be defined in only one object, making it easy to add new
attributes and behaviors or remove existing attributes and behaviors.

7.

The attributes of the order form in Figure 1-1 are as follows:

Customer Name

Customer Address

Customer Number

P.O. Number

Date Shipped

Shipped Via

Required Date

Terms

Quantity

Item ID

Item Name

Unit Price

Amount

Subtotal

Sales Tax

Shipping & Handling

Total Due

8.

The behaviors of the order form in Figure 1-1 are as follows:

Enter order information

Modify order information

Delete order

Process order

Look up order

9.

These are common objects that inherit a Person object:

Student

Instructor

Dean

President

Board of Trustees

Security Manager

Security Guard

Bookstore Manager

Sales Assistant

Department Chair

Bursar

Registrar

Maintenance Manager

Maintenance Worker

Secretary

10. See Figure B-1.

Chapter 2: What Is a Class?
How can you squeeze four students inside a computer? The answer is, by using a series of
zeros and ones. That wasn’t the punch line you expected to hear, but it is true. Computers
view students—and the world—as a bunch of zeros and ones, collectively called data. And
clever programmers manipulate data to represent real-world objects by using a class. No,
not a class of students, but a class that represents a real object inside a program. You’ll be
learning about classes in this chapter.

The Object of Objects
A real-world object, such as the registration form used to register for a course, consists of
attributes and behaviors (see Figure 2-1). An attribute is data associated with an object.
The course name, course number, and your name and student number are examples of
data associated with the registration form. A behavior is something performed by an object,
such as processing, modifying, or canceling a course registration.

Figure 2-1: Real-world objects, such as a course-registration form, have attributes and
behaviors.

A programmer’s job is to use an object-oriented programming language to translate
attributes and behaviors of a real-world object into a class that consists of attributes and
methods understood by a computer.

Note

Method and function are terms used to define a behavior in a program. Java
programmers use the term method, and C++ programmers call it a function.
Regardless of the name, a method and a function are used for the same purpose.
Let’s keep things simple when talking about behavior by using the term method
throughout this book when referring to behavior, unless we are talking specifically
about a C++ program.

A Class
A class is a template that defines attributes and methods of a real-word object. Think of a
class as a cookie cutter of the letter A. The cookie cutter isn’t the letter A but rather defines
what the letter A looks like. If you want a letter A, then place the cookie cutter on a cookie
sheet of dough. If you want to make another letter A, you use the same cookie cutter and
repeat the process. You can make as many letter A’s as you wish by using the cookie
cutter.

The same is true about a class. When you want an object represented by the class, you
create an instance of the class. An instance is the same as the letter A appearing on the
cookie sheet of dough after you remove the cookie cutter.

Each instance contains the same attributes and methods that are defined in the class,
although each instance has its own copy of those attributes. Instances use the same
methods. Going a bit crackers with this explanation? Let’s go to the cookie cutter to cut
through the confusion. Remember that instance is another word for saying “a real cookie
that is defined by the cookie cutter (class template).” Suppose the cookie cutter is in the
shape of a dog. The dog’s legs are of a particular width and length, as is the dog’s tail.
These are attributes of the dog. Each time the cookie cutter cuts into the dough, another
dog cookie is created (instance). Say that you make two dog cookies this way. Each dog
cookie (instance) has legs and a tail of the same width and length, but each has its own set
(copy) of legs and a tail that is independent of other dog cookies.

A method is a behavior that is performed by a dog cookie. Okay, a dog cookie doesn’t
really do anything but sit quietly in your hand, so we’ll have to use our imagination and
pretend that the dog cookie can stand up on its legs only if you and you alone tell it how to
stand up. The dog cookie ignores everyone else’s instructions. Each dog cookie uses the
same copy of the method (that is, your instructions) to perform the behavior of standing up
on its legs.

Defining a Class

A class is defined in a class definition. A class definition defines attributes and methods that
are members of the class. The form used to define a class is dependent on the
programming language used to write the program. Here’s a simple class definition using
Java:
class RegistrationForm {
int studentNumber;
 int courseNumber;
}

And here’s the same class definition using C++ (notice that a semicolon must follow the
closing brace; otherwise, you’ll receive a compiler error):

class RegistrationForm {
 int studentNumber;
 int courseNumber;
};

A class definition has three parts:

Keyword class

Class name

Class body

The keyword class tells the compiler that you are defining a class. A keyword (also known
as a reserved word) is a word that has special meaning to the programming language. The
class name is a symbol given by the programmer that uniquely identifies a class from
another class. The name of a class should relate to the real-world object that it is emulating,
and the first letter of the name should be capitalized. In the previous example, the class
name is RegistrationForm and represents a form used to register students for classes.

The class body is the portion of the class definition that is identified by open and close
braces. Attributes and methods are defined within those braces. Two attributes are defined
in this example—a student number and a course number. We’ll include methods in the class
later in this chapter.

Attributes

You probably remember from your programming course that a variable name is a reference
to a memory location where you can store data. An attribute of a class is a variable called
an instance variable. An instance variable references a memory address within the block of
memory reserved for an instance. You can use an instance variable to store data in
memory. It is called an instance variable because it is in the attribute portion of the class
instance.

Memory is reserved by using a statement in a class definition that declares an instance
variable. A statement is a computer instruction. Here is a declaration statement that
declares two instance variables:
class RegistrationForm {
 int studentNumber;
 int courseNumber;
}

A variable and an instance variable are very similar, with a few exceptions. A variable is
declared in a declaration statement within a program. Memory is reserved when the
declaration statement executes. An instance variable is declared in a class definition.

However, memory is reserved only when an instance is declared because a class definition
is a template, and an instance is the computer’s version of a real object.

Declaring an Instance Variable

An instance variable is declared within a class definition using a declaration statement. The
form of a declaration is dependent on the programming language used to write the
program. A declaration statement in Java or C++ consists of the following three parts, as
illustrated in the class definitions shown earlier in this chapter:

Data type

Instance variable name

Semicolon

Data Type

A data type is a keyword that tells the computer the kind of data you want to store in a
memory location. The data type implies to the computer how much memory to reserve and
how to handle the data stored once it is stored at that memory location.

Data types can baffle even professional programmers, so you’re in good company if you
are a little intimidated by the term data type. However, it is very important that you have a
firm understanding of what a data type is and how to specify a data type when declaring a
variable.

Think of a data type as the term “case of baseballs.” You call the warehouse manager and
say that you need to reserve enough space to hold one case of baseballs (see Figure 2-2).
The warehouse manager knows how much space to reserve because he knows the size of
a case of baseballs.

Figure 2-2: A data type is similar to the term “a case of baseballs” because you and the
warehouse manager know the size of a case of baseballs.

The same is true about a data type. You tell the computer to reserve space for an integer
by using the data type int. The computer already knows how much memory to reserve to
store an integer.

The data type also tells the computer the kind of data that will be stored at the memory
location. This is important because computers manipulate data of some data types

differently than data of other data types. This is similar to the warehouse manager who
treats a case of fuel oil differently than a case of baseballs.

Here’s another example: Suppose you want to store the number 1 in memory. You must
decide whether the number 1 is an integer or a character. An integer can be used in
arithmetic, whereas a character (such as the numbers in a house address) cannot be used
in arithmetic until the character is converted to an integer. The data type tells the computer
whether a number is an integer or a character. The computer then knows to use the
appropriate steps to manipulate the data.

Each programming language has its own set of data types, commonly referred to as
primitive data types, because they are basic data types. Table 2-1 contains primitive data
types common to many programming languages.

Table 2-1: Primitive Data Types

Data Type Range of Values

byte –128 to 127

short –32,768 to 32,767

int –2,147,483,648 to 2,147,483,647

long –9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

char 65,000 (Unicode)

float 3.4e–038 to 3.4e+038

double 1.7e–308 to 1.7e+308

boolean true or false

Instance Variable Name

The name of an instance variable is a symbol given to that instance variable by a
programmer, and it should represent the nature of the data stored at the memory location.
For example, studentNumber is a perfect name for a variable used to store a student
number because the name tells you the nature of the data associated with the variable. The
variable name is used throughout the program to refer to the contents of the corresponding
memory location.

The declaration statement must end with a semicolon in Java and C++. Otherwise, an error
message is displayed when you try building the program.

Methods

Real-world objects have behaviors such as dropping a course, which you learned about in
the previous chapter. A behavior is emulated in a program by a method that is associated
with a class definition called a member method. Each instance of the class accesses a
member method whenever the behavior needs to be performed in the program.

Think of a method as a group of statements that performs a specific behavior and is defined
by specifying the following:

Method name

Method argument list

Method body

Return value

Programmers call this a method definition.

Method Name

A method name is a symbol a programmer gives to a method, much like how an instance
variable name is a symbol used to refer to a location in memory. The name of the method
should reflect the kind of behavior the method performs. For example, dropCourse is a
good name for a method that drops a course from a student’s schedule.

Argument List

Some methods don’t require data from outside the method to perform a behavior. For
example, a method that erases information entered into a registration form can do this with
data already in the method definition.

Other methods require data from outside the method to perform a behavior. For example,
the dropCourse method needs to know the course and the student who registered for the
course in order to remove the course from the student’s schedule. This data isn’t included in
the method definition but must be provided by part of the program that calls the method
(see the “Calling a Method” section of this chapter).

An argument list is data outside the method definition that is needed by the method to
perform a behavior. For example, the dropCourse method has an argument list containing
the course number and the student number needed to remove the course from the student’s
schedule.

Data in an argument list is called an argument, and there can be one or multiple arguments
in an argument list, depending on the nature of the behavior performed by the method.

An argument is declared by specifying a data type and a name for the argument. This is

similar to declaring an instance variable, except the declaration is within parentheses and
appears to the right of the method name, as shown here:
dropCourse(int courseNumber, int studentNumber)

This example contains two arguments: int courseNumber and int studentNumber.
Collectively they are called an argument list. A comma must separate argument
declarations. Once an argument is declared, the name of the argument is used in
statements within the method definition to refer to data that is assigned to the argument
when the method is called.

Method Body

The method body is part of a method that contains statements that are executed when the
method is called. A method body is defined by open and close braces, called a code block.
Statements are executed within the method body sequentially, beginning with the first
statement and continuing until either a return statement is executed or the end of the
method body is reached.

Defining a Method Within a Class Definition

A method definition is placed within the class definition, as shown in the following example.
This method is called dropCourse and has two arguments—the course number and the
student number. A value isn’t returned by the dropCourse method, so the return value data
type is void.

There aren’t any statements in the method body because we don’t want to clutter the
example with unnecessary statements; instead, we included a comment showing you where
statements belong:
class RegistrationForm {
 int studentNumber;
 int courseNumber;
 void dropCourse(int courseNumber, int studentNumber) {
 //Place statements for dropping a course here
 }
}

Return Value

Some methods do their thing and don’t need to return any value to the statement that called
them. This is the case with the method that erases information on a registration form
because nothing needs to be returned.

Other methods are required to return data back to the part of the program that called them
to give it the result. Data returned by a method is called a return value. For example, a

method that calculates an expression, such as adding together two numbers, returns the
result of the calculation as the return value.

Two steps are required in order to return a value. First, the data type of the return value
must be specified to the left of the method name in the method definition. If a method does
not return a value, then void is used as the data type, as shown here (the keyword void
tells the computer that nothing is returned by the method):
 void dropCourse(int courseNumber, int studentNumber)

However, let’s suppose that the dropCourse() method returns true if it successfully drops
the course and returns false if it is unable to drop the course. True and false are Boolean
values. Therefore, the data type of the dropCourse() method must be changed to boolean,
as shown here:
boolean dropCourse(int courseNumber, int studentNumber)

The second step is to use a return statement within the body of the method definition. The
format of the return statement is dependent on the programming language used to write the
program. In Java and C++, the return statement consists of three parts: the keyword
return, the value to be returned, and a semicolon. The value can be the actual data, a
variable, or an argument, as shown here:
return true;
return status;

The first return statement returns the Boolean value true. The second return statement
returns a variable called status. Some place in the body of the method, the status variable
is assigned a value of true or false, depending on whether or not the course is successfully
dropped.

Combining a Class with a Program
Now that you know how to define a class and its attributes and methods, let’s place a class
definition in a program. A class definition is placed outside the main part of the program.
We use the term main part because a program takes on a different form depending on
what language is used to write the program.

The main part of a C++ program is the main function. A function is similar in concept to a
method. The main function is the entry point into the program. The main part of a Java
program is the main method of a class for applications, and it’s the Applet.init method
for applets.

A class definition must appear outside the main function in a C++ program and outside the
Java application class definition in a Java program. We’ll use a Java program called
MyJavaApplication to illustrate where to place a class definition in a program.

The first part is the Java application class definition called MyJavaApplication, and the
other part is the RegistrationForm class definition, which is defined in the previous
section. Both are shown next.

The RegistrationForm class definition is placed outside of the MyJavaApplication
class definition. Both are classes, each representing different things. The
MyJavaApplication class represents the Java program, and the RegistrationForm
class represents a registration form used to register students for class.
class MyJavaApplication {
public static void main (String args[]) {
 RegistrationForm regForm = new RegistrationForm();
 regForm.dropCourse(102,1234);
 }
}
class RegistrationForm {
 void dropCourse(int courseNumber, int studentNumber) {
 System.out.println("Course " + courseNumber + " has been
dropped from student " + studentNumber);
 }
}

Declaring an Instance of a Class
An instance of a class must be declared before attributes and methods of the class can be
used in a program. That is, you must cut out a cookie in the dough using the cookie cutter
before you can bake the cookie. The cookie cutter is the class definition, and the cookie
cutout of the dough is an instance. Remember that a class definition (cookie cutter) only
describes attributes and methods (that is, the legs and tail of the dog cookie) of the class.

Let’s assume that a class definition has two attributes: studentNumber and courseNumber.
In this example, both are integers that require 2 bytes of memory. Figure 2-3 shows how
the instance of this class appears in memory. The class definition doesn’t reserve any
memory but simply defines what memory must be reserved when an instance is created.

Figure 2-3: This figure shows how an instance of the RegistrationForm class reserves
memory.

An instance of a class is created in a declaration statement, as shown in this Java example:
RegistrationForm myRegistrationForm = new RegistrationForm();

This statement looks imposing, so let’s take apart the statement and see how it works.
We’ll begin with the right side of the assignment operator:
new RegistrationForm()

This tells the computer to dynamically reserve a block of memory the size of the
RegistrationForm class. Dynamically means that memory is reserved when the
computer executes the program, which is called runtime. Memory for most variables and
arrays is reserved at compile time, using the following declaration statement:
int grade;

The class size is the size of all the class’s attributes. Reserving memory dynamically occurs
when the program executes rather than when the program is compiled.

Once the computer reserves the block of memory, it returns a pointer to the first memory
address of the block. A pointer is like someone pointing to your instructor’s office.

Let’s move on to the second part of the statement:
RegistrationForm myRegistrationForm

This portion of the statement declares a reference to an instance of the
RegistrationForm class called myRegistrationForm. This is a mouthful to say, so
let dissect it to get a better understanding at what it means.

A reference is something that refers you to something else. In this case, the reference is
going to refer you to an instance of the RegistrationForm class.

The name of the reference in the previous example is myRegistrationForm. This is like
saying myRootCanalSpecialist. You use the name of the reference whenever you
want to refer to the instance of RegistrationForm.

A reference is not an instance of a class. It is only a symbol that refers to an instance. The
final part of the declaration statement assigns the pointer to the instance to the reference
using the assignment operator. You then use the reference (myRegistrationForm) in the
program whenever you want to refer to the instance of the class.

Initializing an Instance Variable

Initialization is the process of assigning a value to a variable when the variable is declared.
Programmers do this to prevent a possible error if the variable is used without being
assigned a value. Think of this as telling the computer to give you what is in a carton, but
you’ve never stored anything in the carton, so the computer complains.

As you probably remember from your programming course, a variable is initialized by
assigning a value to the variable when it is declared, such as in the following statement:
String status = "No Change";

In C++, an instance variable cannot be initialized this way, but in Java it can. For C++, an
instance variable must be initialized using a special member method called a constructor
that’s automatically called when an instance of a class is declared. The constructor has the
same name as the class. Constructors exist in both C++ and Java, as well as in other OOP
languages.

How to define a constructor to initialize an instance variable is shown next. This listing
defines the RegistrationForm class that you learned about. The RegistrationForm
class declares an attribute called status and defines two methods. The first method is
RegistrationForm, which is the constructor because it has the same name as the class.
The other method is dropCourse, which you saw earlier.

The constructor assigns the message Course Not Changed to the instance variable
status. This is the default status for each instance of the class. The value of the status
instance variable is changed from the default value to the message Course Dropped by
the dropCourse method.
class MyJavaApplication {

 public static void main (String args[]) {
 RegistrationForm regForm = new RegistrationForm();
 regForm.dropCourse(CS102,1234);
 System.out.println("Status: " + regForm.status);
 }
}
class RegistrationForm {
 String status;

 void RegistrationForm () {
 status = "Course Not Changed.";
 }
 void dropCourse(int courseNumber, int studentNumber)
{status = "Course: "+ courseNumber + " is dropped for
student: " + studentNumber;
 }
}

Accessing an Instance Variable

An instance variable is accessed in a program basically the same way you call a method
member. First, create an instance of the class and then use the name of the instance and
the dot operator to reference the instance variable. Here’s how to access the status
instance variable from within your program:
instanceName.instanceVariableName

An instance of the RegistrationForm class, called regForm, is declared in the main
method. Next, the dropCourse method is called as described in the “Calling a Method”
section of this chapter. After the dropCourse method executes, the value of the status
instance value is printed on the screen by directly accessing the instance variable.

Assigning a Value to an Instance Variable from Your Program

The value of an instance variable can be changed using an assignment statement in your
program. This process is nearly identical to how a value is assigned to a variable, except
that you use the name of the instance to reference the instance variable, as shown here:
regForm.status = "No Status";

Any change in the value of the instance variable is accessible to the member methods. How
this is done is shown below. After an instance of the RegistrationForm class is
declared in the main method, an assignment statement changes the default value of the
instance variable status to the message No Status.

The next statement calls the displayStatus method that is defined in the
RegistrationForm class. This method displays the value of the status instance variable
on the screen. The message No Status appears when this method is called.

The dropCourse method then changes the value of the status instance variable to Course
Dropped, which is then displayed by the program.

Caution

Many programmers frown on letting a program directly change the value of an
instance value because this practice is fraught with the danger that the data
will be corrupted. Programmers prefer that only member methods change an
instance variable’s value. That way, safeguards can be placed in the member
method to prevent data from being corrupted. A program then calls the
member method whenever it needs to change the value of an instance
variable.
class MyJavaApplication {
 public static void main (String args[]) {
 RegistrationForm regForm = new RegistrationForm();
 regForm.status = "No Status";
 regForm.displayStatus();
 regForm.dropCourse(CS102,1234);
 System.out.println("Status: " + regForm.status);
 }
}
class RegistrationForm {
 String status;
 void RegistrationForm () {
 status = "Course Not Changed.";
 }
 void dropCourse(int courseNumber, int studentNumber) {
 status = "Course: "+ courseNumber + " is dropped for
student: " + studentNumber;

 }
 void displayStatus();
 System.out.println("Status: " + status);
 }
}

Calling a Method
Before you can call a member method, you must declare an instance of the class, unless
the method being called is a static method. A static method is a method that is not
associated with a class, which you’ll learn about in Chapter 4. As you’ll remember, creating
an instance makes a real copy of the attributes and methods of the class. The instance is
then used to call the method.

Let’s see how this works in the preceding listing. The first statement in the main method
declares an instance of the RegistrationForm class. The instance is called regForm.

Once the instance is declared, the name of the instance is used to call the dropCourse
method, which is defined in the RegistrationForm class. The method is called by using
the following items:

The name of the instance

The dot operator

The name of the method

The dot operator is a period that says, “The method to my right is a member of the instance
to my left and is used to reference attributes and methods of an instance of a class.”

Passing Parameters

If a method has an argument list, then data must be included between the parentheses
when the method is called. This is called passing a parameter. Data placed between the
parentheses is called a parameter list. Each data element on the parameter list is called a
parameter, and a comma must separate each parameter.

Most programmers treat parameters and arguments synonymously.

The dropCourse method requires two parameters because its method definition defines
two arguments in its argument list. This means that we must pass two parameters when
calling the dropCourse method. Each parameter must match the corresponding argument
in the argument list.

Think of parameters in a parameter list and arguments in an argument list stacked on top of
each other, as shown here. A parameter must be in the same order as its corresponding
argument and must be of a compatible data type to the corresponding argument data type:
dropCourse(102, 1234);
void dropCourse(int courseNumber, int studentNumber) {

Values of the parameters are copied to arguments in the argument list. This is referred to

as passing by value. Values in the parameter list appear in two locations in memory—one
location for the copy in the parameter list, and another location for the copy in the argument
list.

The names of arguments are used in statements within the method to access values stored
in arguments. In the previous listing (in the section “Assigning a Value to an Instance
Variable from Your Program”) names of arguments are used in a statement that prints the
value of each argument on the screen.

Using a Return Value

The part of the program that calls a method accesses a return value by using an
assignment operator placed to the left of the call to the method. As you’ll probably recall
from your programming course, an assignment operator copies the value on the right of the
assignment operator to the variable or expression on the left of the assignment operator.

Let’s see how this works. The next listing defines a class called RegistrationForm that
contains the dropCourse() member method, which is used to drop a course, and returns a
Boolean value as the return value.

An instance of the RegistrationForm class called regForm is declared in the second
statement within the main method and is used to call the add method, passing it two
parameters. Notice that two things happen in the statement that calls the dropCourse()
method.

First, the dropCourse() method is called. Then, once the dropCourse() method has finishing
doing its thing, the value returned by the dropCourse() method is assigned to the variable
result using the assignment operator. The result variable is then used in the conditional
expression in the if statement. A message reporting the results of the dropCourse()
method is then displayed on the screen.
class MyJavaApplication {
public static void main (String args[]) {
 RegistrationForm regForm = new RegistrationForm();
 boolean result;
 result = regForm.dropCourse(102,1234);
 if (result)
 System.out.println("Course dropped.");
 else
 System.out.println("Unable to drop the course.");
 }
}
class RegistrationForm {
 boolean dropCourse(int courseNumber, int studentNumber) {
 return true;

 }
}

Quiz
1. What is an instance variable?

2. How do you determine the size of a class?

3. Explain the steps necessary to create an instance of a class.

4. How do you declare an instance variable?

5. What is a data type?

6. Explain the parts of a method definition.

7. What is the difference between an argument list and a parameter list?

8. Explain the steps for calling a member method.

9. What is a constructor and how do you define one?

10. How do you access an instance variable from within your program?

Answers

1. An instance variable is an attribute of a class.

2. You determine the class size by adding the size of all its attributes.

3.

You declare an instance of a class by first reserving memory for the class using the
new operator followed by the constructor of the class (new RegistrationForm()).
Next, declare a reference to the class and give that reference a name
(RegistrationForm myRegistrationform). Finally, assign a reference to the
memory reserved for the class to the reference using an assignment statement.

4. An instance variable is declared by specifying the data type of the variable, followed by
the variable name, and ending with a semicolon within the body of a class definition.

5. A data type is a keyword that tells the computer the kind of data you want to store in a
memory location.

6. A method definition consists of the name of a method, an argument list (if any), the
data type of the value returned by the method, and the method body.

Although some programmers consider an argument list and a parameter list to be the
same thing, other programmers consider a parameter list to be values passed to a

7. method when the method is called, and they consider an argument list to be values
defined within the method definition that receive values passed to the method.

8.
A member method is called by first declaring an instance of a class and then using the
name of the instance followed by the dot operator and the name of the method
—myInstance.myMethod(), for example.

9.

A constructor is a method of a class that is called automatically when an instance of a
class is declared. A constructor is defined in the class and must have the same name
as the class name. A class can have multiple constructors, each with a different
argument list. The argument list is traditionally used with the constructor to initialize
instance variables of the class.

10.
An instance variable is accessed by first declaring an instance of a class and then
using the name of the instance followed by the dot operator and the name of the
variable—myInstance.myVariable, for example.

Chapter 3: Encapsulation
Encapsulation is one of those computer terms that has an overtone of sci-fi and rocket
science combined, and yet you use encapsulation every day of your life. Do you have your
credit cards, money, and your driver’s licenses in your wallet? Do you have pens, paper,
textbook, and your laptop in a bag that you take to school? If so, then you use
encapsulation. Encapsulation is putting related things together to form a new object. It may
seem trivial, but you’ll learn in this chapter that encapsulation has revolutionized the way
programs are written and has become a cornerstone of object-oriented programming.

Parts of a Program Come Together
For a long time, programmers used procedural programming languages such as C to group
together instructions into one task, called a procedure. A procedure is the same as a
function in C and C++ and a method in Java.

Think of a procedure as the definition of an object’s behavior. For example, there is a
procedure for a student to register for a course. The student is the object and the
procedure, to register for a course, is a behavior performed by a student. Attributes of a
student, such as student ID, are used to carry out the procedure.

In the real world, objects and their behaviors and attributes are grouped together. For
example, you can’t register for a course if you are not a student. Steps are taken to prevent
someone who is not a student from receiving a student ID and from submitting a course
registration. This is because attributes of a student and behaviors of a student are grouped
together and associated with a student. If you are not a student, then you cannot perform
the behaviors of a student.

However, in the world of procedural programming, procedures and attributes are not
grouped together and associated with an object. This means a programmer could call the
registration procedure to register a person who is not a student.

The following example illustrates this problem. This is a C/C++ program that defines a
function (procedure) called registration. The registration() function receives a
student ID and course number in its argument list and displays those values in a message
on the screen. As you’ll recall from your programming classes, an argument list contains
information needed for the procedure to carry out its task.

Two variables (attributes) are declared in the main() function. These are studentID and
courseNumber. Each is initialized with a value, which is passed to the registration()
function in the next statement.

Notice that there is no association between variables and the registration() method,
except that variable names and the name of the function imply they have something to do
with a student:
#include <string>
#include <iostream>
using namespace std;
void registration(string studentID, string courseNumber)
{
 cout << "Registration Accepted: " + studentID + " "
 + courseNumber << endl;
}
int main()

{
 string studentID = "12345", courseNumber = "9876";
 registration(studentID, courseNumber);
 return 0;
}

The lack of an association between attributes and a procedure is a drawback of procedural
programming languages. This is of little concern when one programmer develops an entire
application because the programmer knows not to pass the registration() function a
variable containing a nonstudent. It becomes troublesome when a team of programmers
designs the application because each programmer on the team must remember to pass the
registration() function only student information.

Here’s the problem: There is no way in a procedural programming language to force an
association between attributes and procedures, which can lead to inadvertent misuse of the
association by the programming team.

Here’s the solution: Write the program using an object-oriented programming language such
as C++ or Java. An object-oriented programming language enables a programmer to
encapsulate attributes and procedures and associate them with an object. This greatly
reduces the misuse to attributes and procedures.

The solution came with the introduction of object-oriented programming in the 1980s.
Object-oriented programming uses an object-oriented programming language such as C++
or Java to mimic real-world objects in a program by defining a class.

What Is Encapsulation?
Encapsulation is a technique of linking together attributes and procedures to form an object.
The only way to access attributes and procedures of an object is to create an instance of
the object.

As you’ll recall from Chapter 2, you create an object within a program by defining a class.
The class definition contains the definitions of attributes and procedures (functions in C++
and methods in Java).

Figure 3-1 shows a diagram of a class that defines the object Student. The top of the
diagram is the list of attributes that describe a student. These are a student’s ID, student
name, and whether or not the student graduated. The bottom of the diagram is a list of
procedures associated with a student. These write and display information about a student.
The attributes and procedures described in Figure 3-1 are said to be encapsulated in the
Student class.

Figure 3-1: A class diagram showing attributes and procedures that are encapsulated in
the Student class definition.

Why Use Encapsulation?
Some programmers may think encapsulation is simply a clever way to make your program
orderly by putting related attributes and procedures under one roof. Although this is true,
protection is the reason for encapsulation.

Previously you learned in this chapter that there is really no protection against the improper
use of attributes and procedures in procedural programming. Both are available for a
programmer to use without any checks and balances.

You might say that encapsulation enables a programmer to institute those checks and
balances by placing attributes and procedures in a class and then defining rules in the class
to control its access.

Protection Using Access Specifiers
A programmer controls access to attributes and procedures of a class by using access
specifiers within a class definition. An access specifier is a keyword of a programming
language that tells the computer what part of the program can access attributes and
procedures that are members of a class.

Think of access specifiers as cafeterias. There is the students’ cafeteria, the teachers’
cafeteria, and a luncheonette. Each is an access specifier. Only students can use the
facilities (attributes and procedures) of the students’ cafeteria. Only teachers can use the
facilities of the teachers’ cafeteria. However, on occasion, a friend of a teacher is permitted
to eat lunch in the teachers’ cafeteria, and anyone can use the facilities of the luncheonette.

Java and C++ have three kinds of access specifiers—public, private, and protected. The
public access specifier (the luncheonette, in this example) determines attributes and
procedures that are accessible by using an instance of the class. The private access
specifier (the students’ and teachers’ cafeterias) identifies attributes and procedures that
are only accessible by a procedure that is a defined by the class. The protected access
specifier (a teacher’s friend eating at the teachers’ cafeteria) stipulates attributes and
procedures that can be inherited and used by another class. More on inheritance a little
later in this chapter.

Public Access Specifier

When you declare an instance of a class (see Chapter 2), you can use the instance to
access attributes and procedures that are defined in the public access specifier section of
the class. You define the public access specifier section of the class by using the keyword
public, as shown in the following example.

This example is written in C++ and requires that a colon follow the keyword public and
that public attributes and procedures be defined beneath the public keyword. As you’ll
see in the “Encapsulation in Action Using Java” section of this chapter, Java requires that
the keyword public be used at the beginning of each definition of public attributes and
procedures.

One procedure defined in this example is placed beneath the public access specifier. This
means the procedure can be called directly from within the program by declaring an
instance of the Student class. Here’s the example:
class Student
{
 public:
 void Display(){
 //Place statements here

 }
 };

You can access directly the attributes and procedures defined using the keyword public
within the program by using the name of the instance, the dot operator, and the name of the
attribute or procedure being accessed.

Let’s say that you want to display student information from within a program. Here’s what
you need to do:
#include <iostream>
using namespace std;
class Student
{
 public:
 void Display(){
 cout << "Statements go here." << endl;
 }
 };
int main() {
 Student myStudent;
 myStudent.Display();
return 0;
}

The first statement in the main() function declares an instance of the Student class. The
second statement calls the Display() procedure of the Student class.

Private Access Specifier

The private access specifier restricts access to attributes and procedures for procedures
that are members of the same class. The next example illustrates how this is done. The
goal is to prevent the student ID, student name, and graduation status attributes from being
used directly by the instance of the Student class. This is accomplished by using the
private access specifier.

The private access specifier does not prevent the Display() procedure from accessing
these attributes because the Display() procedure is a member of the Student class.
Notice that you don’t need to create an instance of the Student class to use other
members (attributes and procedures) within the procedures of the class.
#include <iostream>
using namespace std;
class Student
{

 public:
 void Display(){
 cout << "Student: " << m_ID << " " << m_First << " " <<
 m_Last << "
Graduated: " << m_Graduation << endl;
 }
 private:
 int m_ID, m_Graduation;
 char m_First[16], m_Last[16];
 };
int main() {
 Student myStudent;
 myStudent.Display();
return 0;
}

The technique shown in the previous example is a cornerstone of object-oriented
programming because it requires that other programmers use a member procedure to
access attributes of the class. This enables the programmer who created the class to
encode rules in member procedures that govern how attributes are to be used.

Suppose you were a programmer who wanted to display student information. You couldn’t
access student information directly. Instead, you must call a procedure member of the class
to display student information. This gives the programmer who defined the class total
control over what attributes are accessed and how they are displayed.

Protected Access Specifier

The protected access specifier identifies the attributes and procedures that can be used
only by procedures that are members of the class and by procedures that are members of
a class that inherits the class.

The class being inherited is called the super class (Java) or the base class (C++), and the
class that inherits another class is called the subclass (Java) or the derived class (C++).

Inheritance is covered in Chapter 5, but we’ll give you a sneak preview here and throughout
this chapter so you’ll be able to understand how the protected access specifier works. Let’s
say that there are two classes. One class is called Student and the other GradStudent.

The Student class contains attributes and behaviors that are characteristic of all students.
The GradStudent class contains attributes and behaviors that are unique to graduate
students (see Figure 3-2), which include the attributes and behaviors of all students. A
graduate student is, after all, a student.

Figure 3-2: The GradStudent class has attributes and procedures that are the same and
some that are different from the Student class.

Rather than duplicate the attributes and behaviors of the Student class in the
GradStudent class, we can use an object-oriented programming language to have the
GradStudent class inherit all or some of the attributes and behaviors of the Student
class.

Attributes and behaviors defined using the public access specifier and the protected access
specifier can be directly used by the GradStudent class. The following C++ example
shows how to use the protected access specifier:
#include <iostream>
using namespace std;
class Student
{
 public:
 void Display(){
 cout << "Student: " << m_ID << " " << m_First << " "
 << m_Last << "
Graduated: " << m_Graduation << endl;
 }
 protected:
 int m_ID, m_Graduation;
 char m_First[16], m_Last[16];
 };
int main() {
 Student myStudent;
 myStudent.Display();
return 0;

Encapsulation in Action Using C++
Let’s take a look at how the public and private access specifiers are used in a C++
program. The following example defines a class called Student whose attributes are a
student ID, student name, and the student’s graduation status. Two member functions are
defined in the Student class. (We’ll use the term member function in place of the term
procedure in this section because a procedure in C++ is called a function.)

Functions associated with a class are called member functions. The first member function
is Write(), and it assigns values to attributes. The other member function is Display(),
which displays values stored in attributes. This is the same Display() member function
you learned about in the previous section. Neither member functions return a value.

We want attributes of the Student class to be accessed only through the Write() and
Display() functions and not directly within the program by using an instance of the
Student class. That is, the only way to store a value in an attribute or to display attributes
is by calling a member function of the Student class.

To make this happen, we’ll need to place the definition of the Write() and Display()
functions beneath the public access specifier and then place attributes below the private
access specifier.

Note

In the real world, class definitions are typically contained in a class library that is
made accessible to a program during the linking process. The programmer
doesn’t have direct access to the class definition. Instead, the programmer is
provided with documentation of public and protected attributes and member
functions, when available, of the class definition. In this example, the programmer
would receive documentation on how to use the Write() member function and
the Display() member function of the Student class. The programmer would
not know anything about the attributes of the Student class because the
attributes are in the private access specifier and cannot be directly accessed by
the programmer from within the program. In the real world, the class
documentation mentions private members to help a programmer understand how
the public function accesses them.

Inside the Write() Member Function

You’ll remember from Figure 3-1 that the Student class has two behaviors that are
encoded in the form of the Write() member function and the Display() member
function. The Write() member function writes values to attributes of the class, and the
Display() member function displays those attributes.

The Write() member function has four arguments in its argument list, as shown here:

Write(int ID, int Grad, char Fname[], char Lname[])

The first two arguments are integers representing the student ID and an indicator of
whether the student has graduated. The other two arguments are character arrays that
represent the first name and last name of the student.

Notice that these arrays don’t have a definitive size, as indicated by the empty brackets. As
you’ll recall from your C++ programming class, the size of these arrays is set when the
student’s first and last names are received by the member function. The size then becomes
the same size as the student’s first and last name.

The body of the definition of the Write() member function assigns values of the argument
list to attributes. An assignment statement is used to assign values to integer attributes. The
strcpy() function is called to assign the values of the Fname and Lname character
arrays, which are strings, to the corresponding attributes.

Inside the Display() Member Function

The Display() member function, shown here, reads values of attributes and displays
each of them on the screen. A series of insertion operators (<<) form a cascade of strings
and attributes to create the text that is shown. (Refer to C++ Demystified, also by
McGraw-Hill/Osborne, to brush up on your C++ programming terms.)
void Display(){
 cout << "Student: " << m_ID << " " << m_First << " " << m_Last << "
 Graduated:
 " << m_Graduation << endl;
}

Names of attributes are dispersed throughout string literals. String literals are labels for the
attributes when they are displayed. The insertion operator sends the output to the instance
of cout, which references standard out. Standard out is typically the screen.

Inside the main() Function

An instance of the Student class called myStudent is declared in the first statement of
the main() function. You’ll recall from your C++ programming course that the main()
function is the entry point into a C++ program.

The second statement uses the name of the instance to call the Write() member function.
The parameter list of the Write() member function consists of the student’s ID, an integer
indicating whether or not the student has graduated, and the student’s first name and last
name. We’ll use 1 to indicate that the student has graduated and 0 to indicate that the
student hasn’t graduated yet.

The last statement in the main() function uses the name of the instance to call the
Display() member function, which displays the value of attributes on the screen.

A compiler error occurs if the programmer attempts to directly access attributes of the
Student class because attributes are within the private access specifier section of the
class definition.
#include <string>
#include <iostream>
using namespace std;
class Student
{
 public:
 void Write(int ID, int Grad, char Fname[], char Lname[]) {
 m_ID = ID;
 m_Graduation = Grad;
 strcpy(m_First,Fname);
 strcpy(m_Last, Lname);
 }
 void Display(){
 cout << "Student: " << m_ID << " " << m_First << " "
 << m_Last << " Graduated: " << m_Graduation << endl;
 }
 private:
 int m_ID, m_Graduation;
 char m_First[16], m_Last[16];
};
void main()
{
 Student myStudent;
 myStudent.Write(10, 1,"Bob","Smith");
 myStudent.Display();
}

If you use an instance to access a private or protected member of a class, you’ll experience
a compiler error. In the last statement of the next example, the program tries to access the
m_ID member of the Student class. The m_ID member is a private member and can only
be accessed by a member function of the Student class.

You’ll receive the following error message if you try to compile this example:
'm_ID' : cannot access private member declared in class 'Student'
#include <string>
#include <iostream>
using namespace std;

class Student
{
 public:
 void Write(int ID, int Grad, char Fname[], char Lname[]) {
 m_ID = ID;
 m_Graduation = Grad;
 strcpy(m_First,Fname);
 strcpy(m_Last, Lname);
 }
 void Display(){
 cout << "Student: " << m_ID << " " << m_First << " " << m_Last
 << " Graduated: " << m_Graduation << endl;
 }
 private:
 int m_ID, m_Graduation;
 char m_First[16], m_Last[16];
};
void main()
{
 Student myStudent;
 myStudent.Write(10, 1,"Bob","Smith");
 myStudent.Display();
 myStudent.m_ID = 2;
}

Protected Access Specifier in Action

You learned previously in this chapter that a class can inherit attributes and procedures of
another class that are defined within the public access specifier or protected access
specifier of the class. You’ll learn all the nitty-gritty about inheritance in Chapter 5, but let’s
take a glimpse of what’s to come by reviewing an example of the protected access
specifier.

The following example defines two classes: Student and GradStudent. The Student
class defines attributes and procedures of any student, which you saw in the previous
example. The GradStudent class defines attributes and procedures of a graduate
student. A graduate student is a student; therefore, a graduate student has the attributes
and procedures of a student. In addition, a graduate student has attributes and procedures
that are unique to only a graduate student.

This is a perfect situation to have the GradStudent class inherit the Student class. In
C++, you indicate that a class inherits from another class by placing a colon and the name
of the inherited class in the class definition, as shown in this example. Notice that a colon

and the name of the Student class follow the GradStudent class name. This tells the
computer that the GradStudent class inherits the Student class.

Also notice that attributes of the Student class are placed in the protected access
specifier section of the Student class definition. This makes the attributes available to
member functions defined in the Student class and member functions defined in the
GradStudent class, but those attributes cannot be directly accessed by other parts of the
program.
#include <string>
#include <iostream>
using namespace std;
class Student
{
 public:
 void Write(int ID, int Grad, char Fname[], char Lname[]) {
 m_ID = ID;
 m_Graduation = Grad;
 strcpy(m_First,Fname);
 strcpy(m_Last, Lname);
 }
 void Display(){
 cout << "Student: " << m_ID << " " << m_First << " " << m_Last
 << " Graduated: " << m_Graduation << endl;
 }
 protected:
 int m_ID, m_Graduation;
 char m_First[16], m_Last[16];
 };
class GradStudent : Student
{
 public:
 void Write(int ID, int Grad, char Fname[], char Lname[], int yrGrad,
 char unSch[], char major[]) {
 m_ID = ID;
 m_Graduation = Grad;
 YearGraduated = yrGrad;
 strcpy(m_First,Fname);
 strcpy(m_Last, Lname);
 strcpy(m_UndergradSchool,unSch);
 strcpy(m_Major, major);
 }
 void Display(){
 cout << "Student: " << m_ID << " " << m_First << " " << m_Last

 << " Graduated: " << m_Graduation << " " << m_UndergradSchool
 << " " << m_Major << " " << YearGraduated<< endl;
 }
 private:
 int YearGraduated;
 char m_UndergradSchool[80];
 char m_Major[80];
};
void main()
{
 GradStudent myStudent;
 myStudent.Write(10, 1,"Bob","Smith", 2000,"Columbia University", "CS");
 myStudent.Display();
}

Inside the GradStudent Class

The GradStudent class definition defines its own versions of the Write() member
function and the Display() member function. We use the term member function instead
of procedure because this example is written in C++, where procedures are called
functions and functions defined in a class are called member functions.

There is a practical reason for having to redefine these member functions. The Write()
member function and the Display() member function of the Student class cannot write
values to or display attributes of the GradStudent class. The redefined member functions
in the GradStudent class write values to attributes and display attributes defined both in
the Student class and in the GradStudent class.

Notice that the redefined member functions use attributes defined in the Student class as
if it was defined in the GradStudent class. This is made possible because the
GradStudent class inherits attributes defined in the protected access specifier section of
the Student class.

The GradStudent class defines its own attributes that are placed in the private access
specifier section of the class. Only member functions defined in the GradStudent class
can access these attributes. The Student class does not have access to member
functions and attributes defined in the GradStudent class. You’ll learn the reason for this
in Chapter 5.

The attributes defined in the GradStudent class are used to store the year that the
student was awarded an undergraduate degree. Other attributes are used to store the
name of the school that awarded the degree and the student’s undergraduate major.

The main function in this example is nearly identical to the main function of the previous

example with two exceptions. First, an instance of the GradStudent class is declared
rather than an instance of the Student class because the program is focused on a
graduate student rather than any kind of student. The other exception is that the program
calls member functions of the GradStudent class.

How does the computer know to use the Write() and Display() member functions
defined in the GradStudent class and not those defined in the Student class?

The answer: By default, the computer uses a member function defined in the
GradStudent class whenever there is a conflict with a member function named in the
Student class.

Encapsulation in Action Using Java
Encapsulation is used in a Java program nearly the same way as it is used in a C++
program, except different syntax applies. Let’s take a look at how encapsulation works in
Java. The next example is the Java version of the C++ program that illustrates the private
access specifier.

Two classes are defined in this example. The first class is StudentInfo, which is the Java
application class. As you’ll recall from your Java application course, a Java application is
contained within a class definition called the Java application class. The Java application
class is the entry point to a Java application.

The other class definition is Student. The Student class is the class that defines
attributes and methods of a student and has the same purpose as the Student class in the
previous C++ examples. We’ll use the term method instead of procedure in this section
because a procedure in Java is called a method.

Let’s begin our exploration with the definition of the Student class. You’ll need to
understand how the Student class works before you can understand how the class is
used in the Java application class.

Notice that the Student class resembles the Student class defined in the C++ example.
Both class definitions define the same two methods and the same four attributes. These
methods also perform the same functionality as methods defined in the Student class of
the C++ example.

However, there are three subtle differences in the Java version. Notice that the class
definition doesn’t have a public access specifier section and a private access specifier
section. Instead, the keywords public and private precede the name of the attribute
and method to perform the same functionality as the public access specifier section and
private access specifier section in the C++ version of this program.

Another difference is that the String data type is used instead of a char array for the
student’s name. The last difference is the way text is displayed on the screen in the
Display() member method. In Java, the System.out.print() method is used to
display text on the screen. The System.out.print() method displays text without a
carriage return and line feed at the end of the line. We do this because the Display()
member method of the GradStudent class definition displays text on the same line as the
Display member method of the Student class. You’ll see how this is done in the next
example:
class StudentInfo {
 public static void main (String args[]) {
 Student myStudent = new Student();
 myStudent.Write(10, 1,"Bob","Smith");

 myStudent.Display();
 }
}
class Student
{
 public void Write(int ID, int Grad, String Fname, String Lname) {
 m_ID = ID;
 m_Graduation = Grad;
 m_First = Fname;
 m_Last = Lname;
 }
 public void Display(){
 System.out.println("Student: " + m_ID + " " + m_First + " " +
 m_Last + " Graduated: " + m_Graduation);
 }
 private int m_ID, m_Graduation;
 private String m_First;
 private String m_Last;
}

Protected Access Specifier in Action

The protected keyword is used in a Java class definition to tell the computer that another
class can inherit an attribute or member method. This is nearly identical to the protected
access specifier used in the C++ example.

The following is the Java application version of the C++ example that defines a Student
class and a GradStudent class, shown previously in this chapter. As you probably
suspect, there are subtle differences between the two programs. We’ll explore those
differences here.

The following example declares three classes. The first two class definitions are the same
as in the example of the private access specifier. The third class definition is new. It is the
definition of a graduate student and is called GradStudent. The GradStudent class
inherits attributes and member methods of the Student class by using the keyword
extends followed by the name of the class it inherits, which is Student in this example.

The Student class definition is nearly the same as the Student class definition used in
the private access specifier example, with one exception. Notice that attributes are
preceded with the keyword protected, which tells the computer that attributes can be
accessed by member methods of the GradStudent class. The GradStudent class
definition is the same as the GradStudent class definition in the C++ example.

An instance of the GradStudent class is declared in the main() method of the Java

application class definition and is then used to call the Write() method to assign values to
attributes of the GradStudent class and attributes inherited from the Student class.
Those values are then displayed on the screen by calling the Display() method of the
GradStudent class.

Notice that the Display() method of the GradStudent class is slightly different from the
Display() method of the Student class. This looks a little confusing, so let’s take a
closer look, beginning with the Display() method of the Student class.

The Display() method of the Student class displays values of attributes defined in the
Student class. The Display() method of the GradStudent class enhances the
capability of the Display() method of the Student class by displaying both attributes of
the Student class and attributes of the GradStudent class. Here’s how this is done:
Remember that the GradStudent class inherits public and protected members of the
Student class. This means that the Display() method of the GradStudent class can
call the Display() method of the Student class, which it does in this example. A class
that is being inherited is called a super class, and the keyword super is used to access its
attributes and member methods.

In this example, super.Display() tells the computer to call the Display() method of
the Student class, which displays attributes of the Student class on the screen. The next
statement displays attributes of the GradStudent class on the same lines as attributes of
the Student class.
class StudentInfo {
 public static void main (String args[]) {
 GradStudent myStudent = new GradStudent();
 myStudent.Write(10, 1,"Bob","Smith", 2000,"Columbia University",
 "CS");
 myStudent.gradDisplay();
 }
}
class Student
{
 public void Write(int ID, int Grad, String Fname, String Lname) {
 m_ID = ID;
 m_Graduation = Grad;
 m_First = Fname;
 m_Last = Lname;
 }
 public void Display(){
 System.out.print("Student: " + m_ID + " " + m_First + " " +
 m_Last + " Graduated: " + m_Graduation);
 }

 protected int m_ID, m_Graduation;
 protected String m_First;
 protected String m_Last;
}
class GradStudent extends Student
{
 public void Write(int ID, int Grad, String Fname, String Lname, int
 yrGrad, String unSch, String major) {
 m_ID = ID;
 m_Graduation = Grad;
 YearGraduated = yrGrad;
 m_First = Fname;
 m_Last = Lname;
 m_UndergradSchool = unSch;
 m_Major = major;
 }
 public void Display(){
 super.Display();
 System.out.println(" " + m_UndergradSchool + " " + m_Major +
 " " + YearGraduated);
 }
 int YearGraduated;
 private String m_UndergradSchool;
 private String m_Major;
};

Quiz
1. What is encapsulation?

2. What is the benefit of using encapsulation?

3. What is an access specifier?

4. What is a public access specifier?

5. What is a private access specifier?

6. What is a protected access specifier?

7. What portions of a super class can be used by a subclass?

8. How are access specifiers used differently in Java and C++?

9. Can a super class access portions of a subclass?

10. Why do programmers require that some attributes of a class be accessed only
by a member procedure?

Answers

1. Encapsulation is a technique of linking together attributes and procedures to form an
object.

2.
Encapsulation enables a programmer to institute “checks and balances” by placing
attributes and procedures in a class and then defining rules in the class to control its
access.

3.
An access specifier is a programming language keyword that tells the computer what
part of the application can access data and functions/methods defined within the
access specifier.

4. The public access specifier determines attributes and procedures that are accessible
by using an instance of the class.

5. The private access specifier identifies attributes and procedures that are only
accessible by a procedure that is defined by the class.

6. The protected access specifier stipulates attributes and procedures that can be
inherited and used by another class.

7. A subclass inherits public and protected portions of the super class.

8.
In C++, access specifiers define a section of a class that contains attributes and
member functions. In Java, each attribute and member method contains the access
specifier.

9. A super class cannot access any portion of a subclass.

10.

Programmers require that some attributes of a class be accessed only by a member
procedure in order to validate values assigned to attributes. A programmer who wants
access to some attributes calls a member procedure, which applies any validation rules
before assigning values to attributes.

Chapter 4: Methods and Polymorphism
Polymorphism sounds like a disease old people are tested for every year. However, you
probably surmise that polymorphism has something to do with object-oriented programming
rather than medicine. Polymorphism means that something has the ability to appear in
many shapes—and that something is a method of an object- oriented programming
language. In this case, a shape is the behavior that method performs. In this chapter, you’ll
learn about polymorphism and how to use it in an object-oriented program.

Methods
Let’s begin our trek into the world of polymorphism with a look back at methods. You might
wonder why we begin with a review of methods. We do so because you implement
polymorphism in your program by defining two or more methods (more on this in the next
section).

You learned in Chapter 2 that a method definition defines a behavior of an object. For
example, the method Display() has the behavior of displaying student information.
Student is the object. You define a method by specifying the method name, an argument list
(if any), the body of the method, and a return value (if any).

The name of the method is used to call the method from a statement in a program, and the
argument list contains data needed for the method to perform its behavior. Collectively, the
name of the method and its argument are called the method’s signature.

The body of the method contains one or more statements that execute when the method is
called. This is where the behavior is actually performed. The return value is the value
returned to the program after the method finishes completing its behavior. Some methods
don’t require an argument list or return value.

Polymorphism

Polymorphism technically means that one thing has the ability to take many shapes, as you
learned in the introduction to this chapter. In programming terms, the “thing” is the name of
a method and the “shape” is the behavior performed by the method. Therefore,
polymorphism in programming terms means that the name of a method can have many
behaviors.

Confused? Then you’re in good company. The concept of polymorphism confuses many
programmers, but the confusion usually goes away as soon as you see an example of
polymorphism in action.

A real-world example of polymorphism is an on/off switch. Everyone is familiar with the
concept of an on/off switch, what it does, and how to operate one. They realize that to start
or activate something, you turn it on, and to stop or deactivate it, you turn it off. In other
words, it works as a sort of “toggle.” However, the reality is that, internally, the on/of switch
for your house lights is dramatically different from the on/off switch for your computer.
Polymorphism in this case involves two same-named items (on/off switches) performing the
same task (turning something on or off), despite being very different internally.

Let’s return to the StudentInfo Java application from Chapter 3 and modify it to illustrate
polymorphism. As you’ll recall, the application defines two classes: the Student class and
the GradStudent class, as shown here:

class Student
{
 public void Write(int ID, int Grad, String Fname, String Lname) {
 m_ID = ID;
 m_Graduation = Grad;
 m_First = Fname;
 m_Last = Lname;
 }
 public void Display(){
 System.out.println("Student: " + m_ID + " " + m_First + " " +
 m_Last + " Graduated: " + m_Graduation);
 }
 private int m_ID, m_Graduation;
 private String m_First;
 private String m_Last;
}
 class GradStudent extends Student
{
 public void Write(int ID, int Grad, String Fname, String Lname, int yrGrad, String unSch, String major) {
 super.Write(ID, Fname, Lname, Grad);
 m_UndergradSchool = unSch;
 m_Major = major;
 YearGraduated = yrGrad;
 }
 public void Display(){
 super.Display();
 System.out.println(" Graduated: " + m_Graduation + " " +
 m_UndergradSchool + " " + m_Major + " " + YearGraduated);
 }
 private YearGraduated;
 private String m_UndergradSchool;
 private String m_Major;
}

Each has the member methods Write() and Display(). The Write() method assigns
values to instance variables of each class. The Display() method displays those values.
Though not specifically noted in Chapter 3, each of these classes was actually designed
with polymorphism already in mind. Each class contains methods named Display() and
Write() that perform similar tasks, but are done differently. This is polymorphism in
action.

Imagine if different names were used for the Display() method in each class, such as
StudentDisplay() and GradDisplay(). A programmer who wanted to use these

classes would need to memorize the name of each method for each object. This can easily
become a challenge, especially if each class has many methods.

Programmers avoid any head scratching over methods and method signatures by
performing a little polymorphism magic. They define a method in each class, with the same
name, that performs a similar behavior. This requires the programmer to remember one
name that is associated with a behavior. The sample classes (Student and
GradStudent) each have their own Display() method.

Figure 4-1 is the Java application class definition of the next program, which shows
polymorphism at work. The main() method in Figure 4-1 is practically the same as the
main() method of the Java StudentInfo application in Chapter 3. However, there are a few
minor modifications.

Figure 4-1: The Display() method in this program is an example of
polymorphism.

The first two statements create instances of the Student class and the GradStudent
class. The Write() method for each instance is then called to assign values passed as
parameters to attributes of the instance.

Polymorphism is used in the last two statements in this example. Both statements call the
Display() method. However, because the student object is an instance of the Student
class, the Student class’s Display() method is called, and because the grad object is
an instance of the GradStudent class, the GradStudent class’s Display() method is
called. Note how the two lines are nearly identical, except for the instances of their classes.

This is polymorphism at work—one thing (the Display() method) has different shapes
(behaviors, depending on the objects used to call the method). The same can be said about
the Write() method because both classes define a Write() method.

Here is the complete Java application that illustrates polymorphism. The application
declares an instance of the GradStudent class and then calls the Write() method to
write information about a graduate student to instance variables of the Student class and
the GradStudent class. The Display() method is then called to display instance
variables on the screen.

 class StudentInfo {
 public static void main (String args[]) {
 GradStudent myStudent = new GradStudent();
 myStudent.Write(10, 1,"Bob","Smith", 2000,"Columbia University",
 "CS");
 myStudent.Display();
 }
}
class Student
{
 public void Write(int ID, int Grad, String Fname, String Lname) {
 m_ID = ID;
 m_Graduation = Grad;
 m_First = Fname;
 m_Last = Lname;
 }
 public void Display(){
 System.out.println("Student: " + m_ID + " " + m_First + " " + m_Last
 + " Graduated: " + m_Graduation);
 }
 private int m_ID, m_Graduation;
 private String m_First;
 private String m_Last;
}

class GradStudent extends Student
{
 public void Write(int ID, int Grad, String Fname, String Lname,
int yrGrad, String unSch, String major) {
 super.Write(ID, Fname, Lname, Grad);
 m_UndergradSchool = unSch;
 m_Major = major;
 YearGraduated = yrGrad;
 }
 public void Display(){
 super.Display();
 System.out.println(" Graduated: " + m_Graduation + " " +
 m_UndergradSchool + " " + m_Major + " " + YearGraduated);
 }
 private YearGraduated;
 private String m_UndergradSchool;
 private String m_Major;

}

Overloading Methods

Overloading is another one of those terms you hear used in conjunction with polymorphism.
It means that two or more methods are defined using the same name, but with different
argument lists. Overloading methods provides us with a way to define similar behavior to
work with different types of data by writing a version of a method for each data type that is
used.

Any variation in the argument list makes a method distinct from other methods of the same
name. That is, the number of arguments, the data type of arguments, and the order in which
arguments appear are considered different argument lists.

Let’s say that you want to display attributes of the Student class and attributes of the
GradStudent class. You could define two methods called Display() that are not
associated with either class. One of these methods requires an instance of the Student
class as its argument. The other method requires an instance of the GradStudent class
as its argument. The second definition of the Display() method is said to overload the
first definition of the Display() method.

The programmer simply calls the Display() method and passes it either the instance of
the Student class or the instance of the GradStudent class. The compiler determines
which version of Display() to use by the object passed to the Display() method.

The following example defines two versions of the Display() method. The first version
requires an instance of the Student class as its argument list. The second version requires
an instance of the GradStudent class. Each version calls the instance’s Display()
method to display attributes of the instance.
 public static void Display(Student s) {
 s.Display();
 }
 public static void Display(GradStudent g) {
 g.Display();
 }

Because these examples might be found in the StudentApp class (not Student or
GradStudent), we may opt to make them static. By making them static, we indicate that
the methods can work on their own and that we don’t need to declare a StudentApp object
to use them.

Polymorphism Using C++

The previous example uses Java to illustrate polymorphism. Polymorphism can also be

implemented using C++, which is shown in the next example. This C++ program defines a
Student class and a GradStudent class. The GradStudent class inherits the Student
class.

Both class definitions define a Write() member function and a Display() member
function, similar to the previous Java program. The Write() member function assigns
values of its argument list to attributes of the class. The Display() member function
displays those attributes on the screen.

The Student class contains attributes that are common to all students: a student ID, the
student name, and an indication of whether the student has graduated. The GradStudent
class has attributes that pertain to a graduate student. These are the name of the student’s
undergraduate school, the year the student received an undergraduate degree, and the
student’s undergraduate major. The GradStudent class also can access protected
attributes of the Student class because the GradStudent class inherits the Student
class.

As with the Java example, the GradStudent class’s Display method calls the Student
base class’s Display method to reuse code. Also, the signatures of the Display method
in Student and GradStudent are identical.

The main() function contains the actual C++ program, which is practically the same
program as the main() method in the Java example. The first two statements declare an
instance of the Student class and the GradStudent class. The next two statements use
those instances to call the Write() method of each instance, passing it information about
students. The last two statements call the Display() function for the respective classes.
Also, as with the Java program, the compiler uses the appropriate function for the given
class.

Here is the output of the following program:

ID: 100

First: Harry

Last: Kim

Graduation: 2008

ID: 101

First: Elizabeth

Last: Jones

Graduation: 2008

Major: Comp Sci

Undergrad school: Columbia

Undergrad graduation: 2002
 #include <iostream>
#include <string.h>
using namespace std;
class Student
{
 protected:
 int m_Graduation, m_ID;
 char m_First[16], m_Last[16];
 public:
 void Display()
 {
 cout << "ID: " << m_ID << endl;
 cout << "First: " << m_First << endl;
 cout << "Last: " << m_Last << endl;
 cout << "Graduation: " << m_Graduation << endl;
 }
 void Write(int ID, char First[], char Last[], int Graduation)
 {
 m_ID = ID;
 strcpy(m_First, First);
 strcpy(m_Last, Last);
 m_Graduation = Graduation;
 }
 Student()
 {
 m_ID = m_Graduation = 0;
 m_First[0] = m_Last[0] = '\0';
 }
};

class GradStudent : public Student
{
 protected:
 int m_UndergradGraduation;
 char m_UndergradSchool[64];
 char m_Major[64];
 public:

 GradStudent()
 {
 m_UndergradGraduation=0;
 m_UndergradSchool[0] = m_Major[0] = '\0';
 }
 void Write(int ID, char First[], char Last[], int Graduation,
 char Major[], char UndergradSchool[], int UndergradGraduation)
 {
 Student::Write(ID, First, Last, Graduation);
 strcpy(m_Major, Major);
 strcpy(m_UndergradSchool, UndergradSchool);
 m_UndergradGraduation = UndergradGraduation;
 }
 void Display()
 {
 Student::Display();
 cout << "Major: " << m_Major << endl;
 cout << "Undergrad school: " << m_UndergradSchool << endl;
 cout << "Undergrad graduation: " << m_UndergradGraduation <<
 endl;
 }
};

int main()
{
 Student student;
 GradStudent gradStudent;
 student.Write(100, "Harry", "Kim", 2008);
 gradStudent.Write(101, "Elizabeth", "Jones", 2008, "Comp Sci",
 "Columbia", 2002);
 student.Display();
 gradStudent.Display();
 return 0;
}

An important benefit of polymorphism is that it gives programmers the ability to develop
interfaces for complex applications. You’ve probably heard the term interface used in
connection with Application Programming Interface (API), which you use to build
applications. An API consists of classes and methods used to perform complex behaviors
within your program. You simply invoke appropriate classes and methods within your

program to perform corresponding behaviors, and you don’t have to worry about how those
behaviors are actually performed because the API takes care of that for you.

Interface
Think of an interface as a go-between, much like your television remote control. When you
press the On button, the remote control relays your request to the appropriate component
on the television. The component handles all the complexities involved in powering up your
television.

You also use the same On button on the same remote control to turn on your VCR, DVD
player, and other televisions. The remote control is programmed to know how to relay your
request to these other devices. You only need to learn how to use buttons on the remote
control. You don’t need to learn what happens after you press a remote control button.

The remote control is an interface. Buttons on the remote control are methods, and
pressing a button is calling a method. Each button is a form of polymorphism and, in a
sense, is overloaded. That is, you press the same On button to turn on the television, VCR,
and DVD player. The remote control knows which device to turn on (behavior) by the other
buttons you press on the remote control (argument list). For example, if you press the VCR
button and then the On button, the remote control knows to turn on the VCR.

Interface Design

Some companies have standard interfaces for objects and behaviors that are shared
among applications within their firm. A standard interface specifies a method name,
argument list, return value, and behavior.

For example, we can say that the Display() method is an interface used to display
attributes of objects. Previously in this chapter, you saw two examples of Display()
methods: member functions, and static or non-class methods that were overloaded. For the
overloaded examples, the name of the method is Display(), and it has one argument—a
reference to an object. The behavior of the Display() method is to display attributes of
the object passed to it.

An application programmer who wants to display attributes of an object calls the
Display() method for the class, or the static/non-member Display method, and passes
it a reference to an object. The application programmer is not concerned how the
Display() method displays those attributes.

The programmer who designs the object used by the application programmer must define a
method that adheres to the interface standard. The object and the method are then
provided to the application programmer. The application programmer then uses the
interface to call the behavior from within the program.

Some programmers refer to polymorphism as “one interface that has multiple methods.”
The interface enables an application programmer to enlist a general behavior while the

situation determines the exact behavior that is performed. For example, in the static method
examples, Display() is the general behavior, and the object passed to the Display()
method is the situation that determines which version of the Display() method is called.

The application programmer must know only the general behavior needed to be performed
by the program and then call the appropriate interface. The compiler then takes over and
determines the specific behavior to perform.

Binding
Every time you call a method in your application, the call to the method must be associated
with the method definition. Programmers refer to this as binding. Binding occurs either at
compile time or at run time. Binding at compile time is called early binding and is performed
if all the information needed to invoke the method is known when the application is
compiled. Binding at runtime is called late binding and is performed if some information is
missing at compile time that is known only when the application runs.

Early binding is used for normal method calls. No time is lost when the program runs
because binding is completed when the executable program is created. This is an
advantage over late binding.

Late binding is implemented using a virtual function, which is discussed in the next section. A
virtual function uses a base reference to point to the type of object used by a method. In
many situations, the reference to the object is not known until run time. Therefore, binding
cannot occur during compile time and must wait until the program runs to bind the method
call to the method.

Although late binding causes an application to run slightly slower, late binding enables a
program to respond to events that occur during execution. You don’t have to write code for
contingencies that might occur during run time, which is an important advantage of late
binding.

Run-Time Polymorphism
Previously you learned that polymorphism is used by programmers to define a standard
interface that enables application programmers to invoke common behaviors by calling the
same method name. You also learned that late binding provides flexibility for a program to
respond to events occurring while the program executes.

Run-time polymorphism is a way for a programmer to take advantage of the benefits
offered by polymorphism and late binding. Run-time polymorphism uses virtual functions to
create a standard interface and to call the underlying functions. Those function definitions
are bound to function calls during run time.

The term virtual function is one of those computer terms that is baffling the first few times
you hear it used. Let’s pick apart the term and review an example to clear up any confusion
you might have.

Virtual means that something appears to be real, but isn’t real. For example, a flight
simulator lets you fly a virtual airplane. The airplane isn’t really there, but you have the
feeling you are flying a real airplane.

In the case of a virtual function, the computer is tricked into thinking a function is defined,
but the function doesn’t have to be defined at that moment. Instead, the virtual function can
be a placeholder for the real function. The real function is defined when the program is
running.

Run-Time Polymorphism in Action

Examining an example is the best way to understand how run-time polymorphism works.
The following example is very similar to the previous C++ example. Both programs write
and display information about a student. The previous example is a C++ program that uses
overloaded methods to implement polymorphism. The following example is a C++ program
that uses virtual functions to implement polymorphism.

Three classes are defined in this example: Student, UndergradStudent, and
GraduateStudent. The Student class is the base class that is inherited by the other
classes in the program. A base class is a class that is inherited by another class, which is
called a derived class.

The Student class defines an attribute called m_ID that is used to store the student’s ID.
It also defines a constructor that receives the student ID in the argument list and assigns
the student ID to the m_ID attributes. The constructor is called whenever an instance of the
class is declared. The last two statements in the Student class definition define two virtual
functions: Display() and Write().

The declaration of a virtual function in C++ consists of the keyword virtual, the function
signature (name and argument list), and a return value. In Java, methods are virtual by
default, unless you use the final keyword. Virtual functions may be actual functions or
merely placeholders for real functions that derived classes must provide.

If you define a virtual function without a body, that means the derived class must provide it
(it has no choice, and the program will not compile otherwise). Classes with such functions
are called abstract classes, because they aren’t complete classes and are more a guideline
for creating actual classes. (For example, an abstract class might state “you must create
the Display() method.”) In C++, you can create a virtual function without a body by
appending =0 after its signature (also known as a pure virtual function). You use the
abstract keyword in Java to create a virtual function without a body.

The UndergradStudent class and GraduateStudent class are practically the same
except the Display() function identifies the student as either an undergraduate or
graduate student when student information is shown on the screen. Both classes define a
Write() function and a Display() function. The Write() function copies student
information received in the argument list to attributes of the class. The Display() function
displays the contents of those attributes and the student ID attribute in the Student class.

The main() function is where all the action takes place. The first statement declares a
pointer that points to an instance of the Student class. The next two statements declare
an instance of the UndergradStudent class and the GraduateStudent class. Notice
that the student ID is passed to the constructor of each instance. Each constructor calls the
constructor of the Student class, which assigns the student ID to the m_ID attribute.

Run-time polymorphism is implemented in the next three statements, beginning with the
assignment of the address of uStudent to the pointer p. The pointer is then used with the
pointer-to-member (->) operator to point to the function Write() and then Display().
After attributes of the undergraduate student are displayed, the program assigns the
address of gStudent to the pointer p and then proceeds to call the Write() and
Display() functions.

Here is the output of the next program:

Undergraduate Student: 10 Bob Smith 1

Graduate Student: 23 Mary Jones 1
 #include <iostream>
#include <string>
using namespace std;
class Student {
 protected:
 int m_ID;

 public:
 Student (int i) {
 m_ID = i;
 }
 virtual void display() = 0;
 virtual void write(int, char[], char[]) = 0;
};

class UndergradStudent : public Student {
 protected:
 int m_Graduation;
 char m_First[80];
 char m_Last[80];
 public:
 UndergradStudent(int i) : Student (i) { }
 void write(int Grad, char Fname[], char Lname[]) {
 m_Graduation = Grad;
 strcpy(m_First,Fname);
 strcpy(m_Last, Lname);
 }
 void display() {
 cout << "Undergraduate Student: "<< m_ID << " " << m_First
 <<" " << m_Last << " " << m_Graduation<< endl;
 }
};
class GraduateStudent : public Student {
 protected:
 int m_Graduation;
 char m_First[80];
 char m_Last[80];
 public:
 GraduateStudent(int i) : Student(i) { }
 void write(int Grad, char Fname[], char Lname[]) {
 m_Graduation = Grad;
 strcpy(m_First,Fname);
 strcpy(m_Last, Lname);
 }
 void display() {
 cout << "Graduate Student: "<< m_ID << " " << m_First <<" " <<
 m_Last << " " << m_Graduation<< endl;
 }
};

int main()
{
 Student * p;
 UndergradStudent uStudent(10);
 GraduateStudent gStudent(23);
 p = &uStudent;
 p->write(1,"Bob","Smith") ;
 p->display();
 p = &gStudent;
 p->write(1,"Mary","Jones") ;
 p->display();
 return 0;
}

Quiz
1. What is polymorphism?

2. How is polymorphism implemented?

3. What is late binding?

4. What is early binding?

5. What is the advantage of run-time polymorphism?

6. What is the advantage of compile-time polymorphism?

7. What is an interface?

8. How does polymorphism enable the implementation of an interface?

9. What is a virtual function?

10. What is overloading a method?

Answers

1.
Polymorphism technically means that one thing has the ability to take many shapes. In
programming terms, the “thing” is the name of a method and the “shape” is the
behavior performed by the method.

2. Polymorphism is implemented by overloading a method or by using virtual functions.

3.
Late binding is the binding of a method call to a method definition and is performed at
run time if some information is missing at compile time that is known only when the
application runs.

4. Early binding is the binding of a method call to a method definition and is performed at
compile time if all the information is available at compile time.

5. The advantage of run-time polymorphism is that a program can respond to events that
occur during execution.

6. The advantage of compile-time polymorphism is that no time is lost in binding when the
program runs because binding is completed when the executable program is created.

7.
An interface specifies a standard method name, argument list, return value, and
behavior. Programmers who develop classes and methods define methods that adhere

to an interface.

8. Polymorphism permits an interface to be defined as a set of standard methods and
behaviors by using overloaded methods and virtual methods.

9. A virtual function is a placeholder for the real function that is defined when the
programming is running.

10. Overloading is a technique for implementing polymorphism by defining two or more
methods with the same name but different argument lists.

Chapter 5: Inheritance
Life would be so much easier if a long-lost relative left you his multimillion-dollar estate. You
could be ahead of the game, picking up where your relative left off by benefiting from his
hard work. Get real. You probably have a better chance of becoming President of the
United States. However, you can pick up where other programmers left off by inheriting
their work into your program. It’s not the same as inheriting a multimillion-dollar estate, but
inheriting part of a program saves you countless hours of programming—and avoids a lot of
head banging. Inheritance is a cornerstone of object-oriented programming and is the topic
of this chapter.

Inheritance: The Only Way to Program
Inheritance in object-oriented programming is very similar to the way we inherit
characteristics from our parents. Characteristics in object-oriented programming terms are
attributes and behaviors of a class—that is, the data and methods of a class.

Biological inheritance creates a hierarchical classification that enables you to trace your
heritage to generations of relatives who have come before you. The same is true in object-
oriented programming. A hierarchical relationship develops as classes inherit from other
classes within a program. You can trace this relationship to determine the origins of a class.

Inheritance is a cornerstone of object-oriented programming because it enables objects to
inherit attributes and behaviors from other objects, thereby reducing the amount of new
code that must be designed, written, and tested each time a new program is developed.

In Chapter 4, you saw how a graduate student object inherits attributes and behaviors of a
student object, which are common to all kinds of students. The programmer who created
the graduate student object had to focus on defining attributes and behaviors that are
common to a graduate student and not those of a student.

Inheritance provides a way to distribute control for development and maintenance of
objects. For example, a programmer might be responsible for creating and maintaining the
student object. Another programmer might develop and maintain the graduate student
object. Whenever a change occurs that affects all students, those changes are made to the
student object and are then inherited by the graduate student object. Only the programmer
responsible for the student object needs to address those changes because the graduate
student object inherits any changes made to the student object.

Inheritance also provides a way to limit access to attributes and behaviors. Previously in
Chapter 4, you learned how the public, private, and protected access specifiers are used to
determine parts of the program that can access attributes and behaviors.

Members of a class defined using the public access specifier are available to other
members of the class, other classes, and to all parts of the program.

Those members defined using the private access specifier are only accessible by members
of the class. They are unavailable to other classes and other parts of the program. The
protected access specifier identifies attributes and behaviors that are available to members
of the class and available to other classes inherited from it.

The purpose of limiting access to attributes and behaviors is to ensure the integrity of the
object by controlling how other classes and parts of the program interact with it. A good
example of this was shown in Chapter 4. A member method of the student class must be
used to access the names of students. The student first name and last name attributes
cannot be accessed directly either by another class or from within the program. The

member method contains routines to ensure the integrity of student names.

The Class Hierarchy
The hierarchical relationship between classes is sometimes referred to as a parent-child
relationship. In a parent-child relationship, the child inherits all attributes and behaviors of
the parent, and it uses the parent’s access specifier to control how those inherited items
are available to other classes or functions.

In C++, the parent is referred to as a base class, and the child is called a derived class. In
Java, the parent is the super class, and the child is the subclass. Regardless of the terms,
the relationship and functionality of a parent class and child class are the same.

Defining a parent-child relationship is intuitive in many situations. For example, it is easy to
see how a student is the parent of a graduate student because a graduate student has the
same attributes and behaviors of a student, and then some. However, sometimes this
relationship is illusive because the relationship isn’t clear—and maybe it doesn’t exist at all.

Programmers use the “is a” test to determine if a relationship exists between classes. The
“is a” test determines if the child “is a” parent. For example, a graduate student “is a”
student. If an “is a” relationship makes sense, then a parent-child relationship exists and the
child can inherit from the parent. If an “is a” relationship doesn’t make sense, then a parent-
child relationship doesn’t exist and the child cannot inherit from the parent, as in the case of
an automobile and airplane. An automobile “is a(n)” airplane? This is nonsense, so you
shouldn’t attempt to create such a relationship.

Types of Inheritance

You have three ways to implement inheritance in a program: simple inheritance, multiple
inheritance, and level inheritance. Each enables a class to access attributes and behaviors
of another class using slightly different techniques.

Simple

Simple inheritance occurs when there is one parent-child relationship. That is, one child
inherits from one parent. Simple inheritance is shown in Figure 5-1. Two classes are
represented in this diagram. These are the Student class and the GradStudent class.
The Student class is the parent in this relationship and is inherited by the GradStudent
class, which is the child.

Figure 5-1: Simple inheritance consists of one parent-child relationship. Here, the
Student class is the parent and the GradStudent class is the child.

Inheritance occurs from the parent to the child. A parent class cannot access attributes and
behavior of a child class. In Figure 5-1, the Student class cannot call the Write() and
Display() members of the GradStudent class. However, the GradStudent class can
call the Student class’s versions of these members.

Multiple

Multiple inheritance occurs when the relationship involves multiple parents and a child. In
other words, the child inherits from more than one parent. This is shown in Figure 5-2. In
this example, the GradStudent class inherits from both the Person class and the
Student class. The Person class and the Student class are both parents to the
GradStudent class, which is the child in this relationship.

Figure 5-2: Multiple inheritance occurs when one class inherits from two other
classes.

The GradStudent class inherits the characteristics of a person from the Person class.
These are the weight, height, and sex attributes and the Walk() and Sit() methods. You
might be wondering how a graduate student walks and sits inside a program. It is difficult to
image how this is done. Although we use them in this chapter for illustrative purposes, these
behaviors could be programmed into a virtual reality application that shows an animated
graduate student walking across campus to a class.

You must keep several factors in mind when implementing multiple inheritance:

Each class that is inherited must pass the “is a” test. In Figure 5-2, the graduate
student must be a student and a person in order to inherit from both parents. If the
graduate student fails this test, it cannot inherit from the corresponding parent.

Parent classes are independent of each other. That is, the Student class has no
knowledge of the Person class, and vice versa. The Student class cannot access
attributes and behaviors of the Person class because only the GradStudent
class inherits from the Person class. Likewise, the Person class does not inherit
from the Student class.

Inheritance occurs in one direction from the parent to the child, which is identical to
simple inheritance.

Any number of parent classes can be inherited by a child class as long as they pass
the “is a” test.

Note

Multiple inheritance can lead to an interesting and potentially confusing
issue referred to as the diamond problem. Imagine that we have a base
class called IDObject, which contains an ID attribute to hold a unique ID
value. Now, we derive from that class a Student and Instructor
class. So far so good: We have a Student and Instructor class,
both of which have inherited a unique ID attribute. Now, imagine we
create a TeacherAssistant class multiple derived from Student and
Instructor. This new class has two unique IDs. This is called the
diamond problem because if we draw the inheritance chart, it will be
shaped like a diamond. Though we can make it work, this example can
lead to confusion when we want to get the ID for the
TeacherAssistant class: Which one do we want? Whereas C++
supports multiple inheritance, Java and C# do not. Java and C# provide
something called interfaces, which are discussed in more detail in the
“Multiple Inheritance in Java” section, later in this chapter. As explained
in that section, interfaces are different from inheritance.

Level Inheritance

Level inheritance happens when a child inherits from a parent and then becomes a parent
itself to a child. This might sound a little confusing, but it becomes clear by looking at Figure
5-3, which rearranges the Person class, Student class, and GradStudent class into a
level inheritance.

Figure 5-3: Level inheritance occurs when each class inherits one other class as shown
here.

The Person class is a parent class that is inherited by the Student class. The Student

class is a child class in the Person class–Student class relationship. However, another
parent-child relationship exists when the GradStudent class inherits the Student class.
In this relationship, the Student class is the parent class, and the GradStudent class is
the child class. This means that the Student class has a duel role in inheritance. It is both
a child and a parent.

Each parent-child relationship is considered a level. That is, the Person class–Student
class relationship is the first level, and the Student class– GradStudent class is the
second level. You can have as many levels as required by your program; however, many
programmers stop at three levels because it becomes a bit unwieldy to manage beyond
three levels.

In level inheritance, the final child class, which is the GradStudent class in the previous
example, inherits attributes and behaviors for all classes in the level chain. Here’s how this
works: The Student class inherits attributes and behaviors from the Person class. Once
inherited, these attributes and behaviors are considered members of the Student class,
just as if they were defined in the Student class. When the GradStudent class inherits
from the Student class, the GradStudent class has access to the Student class’s
attributes and behavior that now include those inherited from the Person class. As you’ll
remember, only attributes and behaviors designated as public or protected are inherited.

Although the last child class (that is, the GradStudent class) doesn’t directly inherit from
the Person class, the Person class still must pass the “is a” test. That is, a graduate
student “is a” person.

There is an important difference between multiple inheritance and level inheritance. In
multiple inheritance, parent classes are independent of each other. In level inheritance, a
parent class that is also a child class (that is, the Student class) can access other parent
classes within the leveling chain.

Choosing the Right Type of Inheritance

With three options to choose from, you’re probably scratching your head wondering how
you will choose. Well, there isn’t a magic formula that will provide you with the best choice.
Instead, you’ll need to use some good-old common sense and apply your knowledge of
inheritance to meet your programming objectives.

Deciding when to apply simple inheritance is intuitive because you make this choice when
there is only one parent-child relationship between two objects. If you have a child class
that inherits a single parent class, then simple inheritance is the only way to go.

Head scratching usually occurs when a child inherits directly or indirectly from more than
one parent. This is the case with the GradStudent class, which inherits from both the
person class and the student class. Here you have two choices: multiple inheritance and

level inheritance.

Some programmers decide which of these to use by determining if there is an “is a”
relationship between the two parent classes. For example, is a student a person? If so,
then the better choice is to use level inheritance because this maintains the natural
relationship between parent classes. That is, other kinds of “student” classes besides
GradStudent are likely to inherit the Student class and the Person class. Once the
Student class inherits the Person class, all “student” classes inherit the Person class
when they inherit the Student class. This is illustrated in Figure 5-4, where the
UndergradStudent, GradStudent, and ContinuingEdStudent classes all inherit the
Student class and indirectly inherit the Person class.

Figure 5-4: Use level inheritance when there is a relationship between two or more
parent classes. Here a relationship between Student and Person exists because a
student is a person.

In contrast, multiple inheritance is the way to go when there isn’t a definitive relationship
between two parents. A definitive relationship is when the relationship always passes the “is
a” test. If the relationship passes the test sometimes but fails other times, it is not a
definitive relationship.

Let’s say that an undergraduate student is an athlete and a writer. This means that the
UndergradStudent class inherits attributes and behaviors from the Athlete class and
the Writer class. However, there isn’t a definitive relationship between these two parent
classes. That is, an athlete may or may not be a writer, and a writer may or may not be an
athlete. This is a clear case where multiple inheritance is the better choice to use in the
program, as shown in Figure 5-5.

Figure 5-5: Use multiple inherits when there isn’t a relationship between two or more
parent classes. Here there isn’t a relationship between Athlete and
Writer.

Simple Inheritance Using C++
Simple inheritance is implemented using C++ by defining two classes. One class is the base
class, and the other class is the derived class. Make sure that the derived class passes the
“is a” test. That is, the derived class “is a” base class.

The following example illustrates how to use simple inheritance in C++. The two classes
defined in this program are the Student class and the GradStudent class. The Student
class is the base class, and the GradStudent class is the derived class.

The Student class definition (shown here) contains two member functions: Write() and
Display(). Both of these are defined within the public access specifier section of the
class, which means that they can be called from the program and from the derived class.
class Student
{
 protected:
 int m_Graduation, m_ID;
 char m_First[16], m_Last[16];
 public:
 virtual void Display()
 {
 cout << "ID: " << m_ID << endl;
 cout << "First: " << m_First << endl;
 cout << "Last: " << m_Last << endl;
 cout << "Graduation: " << m_Graduation << endl;
 }
 void Write(int ID, char First[], char Last[], int Graduation)
 {
 m_ID = ID;
 strcpy(m_First, First);
 strcpy(m_Last, Last);
 m_Graduation = Graduation;
 }
 Student()
 {
 m_ID = m_Graduation = 0;
 m_First[0] = m_Last[0] = '\0';
 }
};

The Write() member function receives student information as arguments that are then
assigned to attributes of the Student class. The Display() member function displays
the values of those attributes on the screen.

The attributes of the Student class are defined in the protected access specifier section
of the class definition. These attributes are the student ID, student name, and whether or
not the student graduated.

The GradStudent class definition (shown here) follows the Student class definition in
this example. As you’ll remember from your C++ course, you specify that a derived class
inherits a base class by using the colon, the access specifier (optional), and the name of the
base class in the class header. In this example, the GradStudent class is shown inheriting
the Student class:
class GradStudent : public Student
{
 protected:
 int m_UndergradGraduation;
 char m_UndergradSchool[64];
 char m_Major[64];
 public:
 GradStudent()
 {
 m_UndergradGraduation=0;
 m_UndergradSchool[0] = m_Major[0] = '\0';
 }
 virtual void Write(int ID, char First[], char Last[], int Graduation,
 char Major[], char UndergradSchool[], int UndergradGraduation)
 {
 Student::Write(ID, First, Last, Graduation);
 strcpy(m_Major, Major);
 strcpy(m_UndergradSchool, UndergradSchool);
 m_UndergradGraduation = UndergradGraduation;
 }
 virtual void Display()
 {
 Student::Display();
 cout << "Major: " << m_Major << endl;
 cout << "Undergrad school: " << m_UndergradSchool << endl;
 cout << "Undergrad graduation: " << m_UndergradGraduation << endl;
 }
};

The GradStudent class contains the Write() and Display() member functions in its
public access specifier section. Notice that the Write() member function receives both
student information and graduate student information as argument. The student information
is assigned to attributes of the Student class (using the Student class’s Write()
method), and graduate student information is assigned to attributes of the GradStudent

class. Likewise, the Display() member function of the GradStudent class displays the
values assigned to attributes of both classes.

The Write() and Display() member functions of the GradStudent class have access
to attributes of the Student class because the Student class is inherited by the
GradStudent class and because attributes of the Student class are contained within the
protected access specifier of that class.

The GradStudent class defines three attributes that specify the year the student received
an undergraduate degree, the name of the undergraduate school, and the student’s major.
All these attributes are defined within the private accessor specifier of the class, making
them accessible only to member functions of the GradStudent class.

An instance of the GradStudent object called g and a Student object called s are declared
within the main() function of the program. The instance name is then used to call the
Write() member function of the GradStudent class and is passed student information.
This information is then shown on the screen when the Display() member function is
called.

Here’s what is displayed on the screen when the following program executes:

ID: 100
First: Harry
Last: Kim
Graduation: 2008
ID: 101
First: Elizabeth
Last: Jones
Graduation: 2008
Major: Comp Sci
Undergrad school: Columbia
Undergrad graduation: 2002
#include <iostream>
#include <string.h>
using namespace std;
class Student
{
 protected:
 int m_Graduation, m_ID;
 char m_First[16], m_Last[16];
 public:
 virtual void Display()
 {
 cout << "ID: " << m_ID << endl;

 cout << "First: " << m_First << endl;
 cout << "Last: " << m_Last << endl;
 cout << "Graduation: " << m_Graduation << endl;
 }
 void Write(int ID, char First[], char Last[], int Graduation)
 {
 m_ID = ID;
 strcpy(m_First, First);
 strcpy(m_Last, Last);
 m_Graduation = Graduation;
 }
 Student()
 {
 m_ID = m_Graduation = 0;

 m_First[0] = m_Last[0] = '\0';
 }
};
class GradStudent : public Student
{
 protected:
 int m_UndergradGraduation;
 char m_UndergradSchool[64];
 char m_Major[64];
 public:
 GradStudent()
 {
 m_UndergradGraduation=0;
 m_UndergradSchool[0] = m_Major[0] = '\0';
 }
 virtual void Write(int ID, char First[], char Last[], int Graduation,
 char Major[], char UndergradSchool[], int UndergradGraduation)
 {
 Student::Write(ID, First, Last, Graduation);
 strcpy(m_Major, Major);
 strcpy(m_UndergradSchool, UndergradSchool);
 m_UndergradGraduation = UndergradGraduation;
 }
 virtual void Display()
 {
 Student::Display();
 cout << "Major: " << m_Major << endl;

 cout << "Undergrad school: " << m_UndergradSchool << endl;
 cout << "Undergrad graduation: " << m_UndergradGraduation << endl;
 }
};
int main()
{
 Student s;
 GradStudent g;
 s.Write(100, "Harry", "Kim", 2008);
 g.Write(101, "Elizabeth", "Jones", 2008, "Comp Sci", "Columbia", 2002);
 s.Display();
 g.Display();
 return 0;
}

Simple Inheritance Using Java
Simple inheritance is implemented in a Java application using a technique similar to that
used in the C++ example. The Java application must define a super class and a subclass,
as shown in the following example. The Student class is the super class, which is the
same as a base class in C++. The GradStudent class is the subclass, similar to the
derived class in the previous example.

The Student class definition is the same as the Student class definition in C++, except
that the access specifiers are placed in each statement and method definition. The
GradStudent class definition is very similar to the GradStudent class definition in C++,
except for two variations.

First, the extends keyword is used in Java to signify inheritance. The extends keyword
must be followed by the name of the super class that is being inherited, which is the
Student class in this example.

The other variation is found within the Display() method. The first statement within the
Display() method definition calls the Student class’s Display() method using the
keyword super. You use super whenever you want to reference a member of the super
class. In this example, the Student class’s Display() method causes values of the
Student class attributes to be displayed on the screen. The second statement within the
GradStudent class’s Display() method definition causes attributes of the
GradStudent class to be shown on the screen following the student information.

The main method of this example is identical to the main() function of the C++ version of
this application, except this example uses Java syntax to declare an instance of the
GradStudent class, which you’ll remember from your Java course.

Here’s what the following program displays on the screen:

ID: 100
First: Mike
Last: Lee
Graduation: 2008
ID: 101
First: Marta
Last: Enriquez
Graduation: 2008
Major: Computer Science
Undergrad Graduation year: 2002
Undergrad School: Columbia
class Student {

 protected int nID, nGraduation;
 protected String sFirst, sLast;
 public Student() {
 nID = 0;
 nGraduation = 0;
 sFirst = new String();
 sLast = new String();
 }
 public void Display() {
 System.out.println("ID: " + nID);
 System.out.println("First: " + sFirst);
 System.out.println("Last: " + sLast);
 System.out.println("Graduation: " + nGraduation);
 }
 public void Write(int ID, String First, String Last, int Graduation) {
 nID = ID;
 sFirst = First;
 sLast = Last;
 nGraduation = Graduation;
 }
}
class GradStudent extends Student {
 String sMajor, sUndergradSchool;
 int nUndergradGraduation;
 public GradStudent() {
 sMajor = "";
 sUndergradSchool="";
 nUndergradGraduation=0;
 }
 public void Display() {
 super.Display();
 System.out.println("Major: " + sMajor);
 System.out.println("Undergrad Graduation year: " +
 nUndergradGraduation);
 System.out.println("Undergrad School: " + sUndergradSchool);
 }
 public void Write(int ID, String First, String Last, int Graduation,
 String Major, String UndergradSchool, int UndergradGraduation) {
 super.Write(ID, First, Last, Graduation);
 sUndergradSchool = UndergradSchool;
 sMajor = Major;
 nUndergradGraduation = UndergradGraduation;

 }
}
public class StudentApp {
 public static void main(String[] args) {
 Student s = new Student();
 GradStudent g = new GradStudent();
 s.Write(100, "Mike", "Lee", 2008);
 g.Write(101, "Marta", "Enriquez", 2008, "Computer Science", "Columbia", 2002);
 s.Display();
 g.Display();
 }
 public static void Display(Student s) {
 s.Display();
 }
 public static void Display(GradStudent g) {
 g.Display();
 }
}

Level Inheritance Using C++
Level inheritance is implemented in C++ by defining at least three classes. The first two
classes have a parent-child relationship, and the second and third classes must also have a
parent-child relationship. Each child class must pass the “is a” test in order to inherit from
the parent class.

The following example shows level inheritance in a C++ program. Three classes are defined
in this example: the Person class, the Student class, and the GradStudent class. The
Person class is a base class and is the parent in the parent-child relationship with the
Student class. The Student class is the derived class in this relationship. That is, the
Student class inherits from the Person class.

The Person class defines two member functions within the public access specific section
of the class definition. These are Write() and Display(). The Write() member
function assigns information about a person that is received as arguments to the attributes
of the class. The Display() member function shows values of those attributes on the
screen.

Both the Student class definition and the GradStudent class definition are the same, as
you saw in the “Simple Inheritance Using C++” section of this chapter. However, you’ll
notice that the Student class inherits from the Person class and that the GradStudent
class inherits from the Student class.

The Student class is both a derived class and a base class. It is a derived class in the
parent-child relationship with the Person class, and it is a base class in the parent-child
relationship with the GradStudent class.

Look carefully at the definitions of the Write() member function and Display() member
function of the GradStudent class and you’ll notice that both member functions access
methods of the Person class and the Student class. This is made possible by level
inheritance.

The Student class inherits members of the Person class that are defined in the public
and protected access specifier sections of the Person class. This inheritance is passed
along to the GradStudent class when the GradStudent class inherits from the Student
class. Any member of the Person class that is accessible to the Student class is also
accessible to the GradStudent class.

The main() function of this example is nearly identical to the main() function of the simple
inheritance example, except the Write() member function is passed information about the
person as well as about the student and the graduate student.

Here is the output of the following program:

ID: 100
First: Harry
Last: Kim
Graduation: 2008
ID: 101
First: Elizabeth
Last: Jones
Graduation: 2008
Major: Comp Sci
Undergrad school: Columbia
Undergrad graduation: 2002
#include <iostream>
#include <string.h>
using namespace std;
class Person
{
 protected:
 int m_ID;
 char m_First[16], m_Last[16];
 public:
 Person()
 {
 m_ID = 0;
 m_First[0] = m_Last[0] = '\0';
 }
 virtual void Display()

 {
 cout << "ID: " << m_ID << endl;
 cout << "First: " << m_First << endl;
 cout << "Last: " << m_Last << endl;
 }
 void Write(int ID, char First[], char Last[])
 {
 m_ID = ID;
 strcpy(m_First, First);
 strcpy(m_Last, Last);
 }
};
class Student : public Person
{
 protected:

 int m_Graduation;
 public:
 virtual void Display()
 {
 Person::Display();
 cout << "Graduation: " << m_Graduation << endl;
 }
 void Write(int ID, char First[], char Last[], int Graduation)
 {
 Person::Write(ID, First, Last);
 m_Graduation = Graduation;
 }
 Student()
 {

 m_Graduation = 0;
 }
};
class GradStudent : public Student
{
 protected:
 int m_UndergradGraduation;
 char m_UndergradSchool[64];
 char m_Major[64];
 public:
 GradStudent()
 {
 m_UndergradGraduation=0;
 m_UndergradSchool[0] = m_Major[0] = '\0';
 }
 virtual void Write(int ID, char First[], char Last[], int Graduation,
 char Major[], char UndergradSchool[], int UndergradGraduation)
 {
 Student::Write(ID, First, Last, Graduation);
 strcpy(m_Major, Major);
 strcpy(m_UndergradSchool, UndergradSchool);
 m_UndergradGraduation = UndergradGraduation;
 }
 virtual void Display()
 {
 Student::Display();
 cout << "Major: " << m_Major << endl;

 cout << "Undergrad school: " << m_UndergradSchool << endl;
 cout << "Undergrad graduation: " << m_UndergradGraduation << endl;
 }
};
int main()
{
 Student s;
 GradStudent g;
 s.Write(100, "Harry", "Kim", 2008);
 g.Write(101, "Elizabeth", "Jones", 2008, "Comp Sci", "Columbia", 2002);
 s.Display();
 g.Display();
 return 0;
}

Level Inheritance Using Java
Java implements level inheritance very similarly to how level inheritance is implemented in
C++, as shown in this next example. The same three classes defined in the C++ program
are also defined in this Java application. Each class has the same attributes and member
methods that perform the same functionality as their counterparts in the C++ program.

The Person class is inherited by the Student class using the keyword extends. The
Student class is inherited by the GradStudent class also using the keyword extends.
The Display() method of the Student class and of the GradStudent class each call
the Display() method of its super class in order to display values of the super class’s
attributes. This is similar to how attributes of a super class are displayed in simple
inheritance using Java.

The main() method in this example contains practically the same statements found in the
simple inheritance example, except the Write() method is passed information about a
person as well as information about a student and a graduate student. The Display()
method within the main() method displays values of attributes of all the classes on the
screen.

Here is what is displayed on the screen when you run the following program:

ID: 100
First: Mike
Last: Lee
Graduation: 2008
ID: 101
First: Marta
Last: Enriquez
Graduation: 2008
Major: Computer Science
Undergrad Graduation year: 2002
Undergrad School: Columbia
class Person {
 protected int nID;
 protected String sFirst, sLast;
 public Person() {
 nID = 0;
 sFirst = "";
 sLast = "";
 }
 public void Display() {
 System.out.println("ID: " + nID);

 System.out.println("First: " + sFirst);
 System.out.println("Last: " + sLast);
 }
 public void Write(int ID, String First, String Last) {
 nID = ID;
 sFirst = First;
 sLast = Last;
 }
}
class Student extends Person{
 protected int nGraduation;
 public Student() {
 nGraduation = 0;

 }
 public void Display() {
 super.Display();
 System.out.println("Graduation: " + nGraduation);
 }
 public void Write(int ID, String First, String Last, int Graduation) {
 super.Write(ID, First, Last);
 nGraduation = Graduation;
 }
}
class GradStudent extends Student {
 String sMajor, sUndergradSchool;
 int nUndergradGraduation;
 public GradStudent() {
 sMajor = "";
 sUndergradSchool="";
 nUndergradGraduation=0;
 }
 public void Display() {
 super.Display();
 System.out.println("Major: " + sMajor);
 System.out.println("Undergrad Graduation year: " +
 nUndergradGraduation);
 System.out.println("Undergrad School: " + sUndergradSchool);
 }
 public void Write(int ID, String First, String Last, int Graduation,
 String Major, String UndergradSchool, int UndergradGraduation) {
 super.Write(ID, First, Last, Graduation);

 sUndergradSchool = UndergradSchool;
 sMajor = Major;
 nUndergradGraduation = UndergradGraduation;
 }
}
public class StudentApp {
 public static void main(String[] args) {
 Student s = new Student();
 GradStudent g = new GradStudent();
 s.Write(100, "Mike", "Lee", 2008);
 g.Write(101, "Marta", "Enriquez", 2008, "Computer Science", "Columbia", 2002);
 s.Display();
 g.Display();
 }
 public static void Display(Student s) {
 s.Display();
 }
 public static void Display(GradStudent g) {
 g.Display();
 }
}

Multiple Inheritance Using C++
Previously in this chapter you learned that multiple inheritance is a way for a child to inherit
from two unrelated parents. The example in this section shows how to implement multiple
inheritance using C++.

This example introduces two new classes: Instructor and Worker. The Worker class
contains attributes and methods for working with an income attribute. The Instructor
class is derived from the Person class (inheriting the ID and the first and last name
attributes and methods) as well as the Worker class. This is done to emphasize that a
worker need not be a person to generate an income (for example, the worker could be a
vending machine). However, an instructor is both a person and an income producer, so we
use multiple inheritance.

The Instructor class has a parent-child relationship with both the Person class and the
Worker class. The Person class and the Worker class are both base classes, and the
Instructor class is the derived class.

Multiple inheritance is specified in the class header of the derived class, as shown in the
Instructor class definition of this example. The class names of classes inherited by the
derived class are specified to the right of the colon after the accessor specifier. Each class
inherited by the Instructor class must be separated by a comma.

The result of this program is the same as the level inheritance example. The Write()
member function of the Instructor class is passed information for all classes. The
Display() member function is called to display those values on the screen.

Here is what is displayed on the screen when you run the following program:

ID: 102
First: Marcos
Last: Lopez
Income: 100000
Tenured: Yes
#include <iostream>
#include <string.h>
using namespace std;
class Person
{
 protected:
 int m_ID;
 char m_First[16], m_Last[16];
 public:
 Person()

 {
 m_ID = 0;
 m_First[0] = m_Last[0] = '\0';
 }
 virtual void Display()
 {
 cout << "ID: " << m_ID << endl;
 cout << "First: " << m_First << endl;
 cout << "Last: " << m_Last << endl;
 }
 void Write(int ID, char First[], char Last[])
 {
 m_ID = ID;
 strcpy(m_First, First);
 strcpy(m_Last, Last);
 }
};
class Worker
{
 protected:
 int m_Income;
 public:
 Worker()
 {
 m_Income = 0;
 }
 void Write(int Income)
 {
 m_Income = Income;
 }
 void Display()
 {
 cout << "Income: " << m_Income << endl;
 }

};
class Instructor : public Person, public Worker
{
 protected:
 bool m_Tenured;
 public:

 Instructor()
 {
 m_Tenured = false;
 }
 void Write(int ID, char First[], char Last[], bool Tenured,
 int Salary)
 {
 Person::Write(ID, First, Last);
 Worker::Write(Salary);
 m_Tenured = Tenured;
 }
 void Display()
 {
 Person::Display();
 Worker::Display();
 cout << "Tenured: " << (m_Tenured?"Yes":"No") << endl;
 }
};
int main()
{
 Instructor i;
 i.Write(102, "Marcos", "Lopez", true, 100000);
 i.Display();
 return 0;
}

Multiple Inheritance Using Java
Multiple inheritance is not supported in Java. Therefore, you’ll need to use level inheritance
whenever you want a class to inherit from two or more other classes. Remember that each
class must pass the “is a” test. Any class that fails this test should not be used in level
inheritance.

Java instead provides interfaces, which can in some ways act or seem like multiple
inheritance. However, an interface is best thought of as something like a purely abstract
class. That is to say, it declares the names of member functions but doesn’t actually provide
any reusable code from which you can employ inheritance. If you implement an interface in
a Java class, you must create all the needed code yourself for those functions. For this
reason, interfaces are not really a part of inheritance.

Interfaces should really be considered a set of promises. If a class implements an interface
(and therefore contains all the code needed to implement it), then other objects can
communicate or work with the class via the interface.

Quiz
1. What is inheritance?

2. What is simple inheritance?

3. What is level inheritance?

4. What is multiple inheritance?

5. What is the “is a” test?

6. When would you use multiple inheritance?

7. When would you use level inheritance?

8. What is the maximum number of levels in level inheritance?

9. What members of a class can another class inherit?

10. What is the difference between base class/derived class and super
class/subclass?

Answers

1. Inheritance is a programming technique that enables a class to inherit some or all
attributes and behaviors of another class.

2. Simple inheritance is a type of inheritance in which a class inherits from just one class.

3.

Level inheritance is a type of inheritance in which two or more levels of inheritance
exist. Each level consists of a parent-child relationship whereby the child of the middle
level is also the parent of the lower level. The last child in level inheritance inherits
directly and indirectly from other levels.

4. Multiple inheritance is a type of inheritance in which a child inherits from multiple
parents, but no relationship exists among those parents.

5.
The “is a” test is given to determine if a child “is a” parent. For example, is a graduate
student a student? If so, the child (graduate student) can inherit from the parent
(student). If not, the child cannot inherit from the parent.

6. Multiple inheritance should be used whenever a child needs to inherit attributes and
behaviors from parents that are not related to each other.

7. Level inheritance should be used whenever a child needs to inherit attributes and
behaviors from parents that are related to each other.

8.
There is no maximum number of levels in level inheritance. However, you should use no
more than three levels; otherwise, you run the risk that the levels will become
unmanageable.

9. A child can inherit public and protected members of a parent class.

10.
Base class is the term used in C++ to refer to a parent class. Derived class is the C++
term for a child class. A super class is Java’s parent class, and Java’s child class is
called a subclass.

Chapter 6: Abstraction
You probably heard the story of the multimillionaire who told her son that he would inherit
the family fortune if he promised to continue working after she passed on. Mom dies. The
money starts pouring in, and somehow the son forgets about his promise. However, a
clause in her will forces him back to work. So what does this have to do with abstraction? It
is abstraction! Abstraction is a way a programmer of a super class (mom) forces a
programmer of a subclass (son) to define a behavior. You’ll learn about the whys and hows
of abstraction in this chapter.

Abstraction: The Enforcer
Let’s begin exploring abstraction by revisiting the concepts class, super class, and
subclass, which you learned about in Chapter 5. A class contains data and behaviors that
are associated with an object. For example, a student ID is data, and registering a student
is a behavior that is likely to be found in a Student class.

Programmers define a super class whenever two or more objects use data and a behavior.
A super class is Java’s version of a base class in C++. The super class is then inherited by
other classes that require the data and behavior. These classes are called subclasses in
Java and derived classes in C++.

For example, the UndergradStudent class and the GradStudent class are likely to
inherit the Student class in order to access the student ID and registration behavior, as
well as other data and behaviors defined in the Student class (see Figure 6-1).

Figure 6-1: The Student class is the super class and is inherited by the
UndergradStudent class and the GradStudent class, which are
subclasses.

To avoid confusion, we’ll use the terms super class and subclass in this chapter, but
everything we say about them also applies to a base class and derived class in C++.

A behavior defined in a super class is referred to as default behavior because it specifies
instructions that are followed by all subclasses that use the behavior. A programmer who
defines a subclass has the option of using a default behavior or redefining the behavior to
suit the needs of the subclass.

Let’s say that graduate students have an entirely different registration process than other
students. Therefore, the default registration behavior in the super class cannot be used by
the subclass. The programmer who defines the subclass ignores the default registration
behavior and defines a new registration behavior that is specifically designed for a graduate
student. (You learned how this is done in Chapter 5.)

This seems a sound decision, but suppose the programmer of a subclass forgets to
redefine the registration behavior and uses the default behavior instead. The default
registration behavior performs, but it registers the graduate student using the default
registration process. The graduate student is registered, although improperly, because the
programmer forgot to define the registration behavior for a graduate student. The default
registration process may not address any idiosyncrasies required to register a graduate
student.

Function vs. Functionality

Sometimes a behavior is common to multiple subclasses, but there isn’t a default set of
instructions to use to perform the behavior. For example, the registration process might be
different for each category of student. This means the UndergradStudent class has a
different registration process than the GradStudent class, but both classes must have a
registration behavior (see Figure 6-2).

Figure 6-2: Both subclasses have the same function but each has different
functionality.

Programmers distinguish a behavior from instructions used to perform the behavior using
the terms function and functionality. A function is a behavior. This is like the registration
process. Functionality is the set of instructions used to perform the behavior. These are the
steps used to register a student. Programmers make this distinction in order to implement
abstraction.

The Power of Abstraction

Abstraction is the technique used by the programmer of a super class to require that
programmers of its subclasses define the functionality of a behavior. Let’s return to the
example of the Student class and the GradStudent class to see how this works.

The programmer of the GradStudent class must redefine the registration function that is
defined in the Student class because the registration function defined by the Student
class is inappropriate for a graduate student.

There is the possibility that the programmer will forget to define a new registration function
and use the default registration function instead. However, the programmer can be forced
to define the registration function if the programmer of the super class makes the super
class an abstract class.

An abstract class is a class that cannot be instantiated. That is, you cannot declare an
instance of an abstract class. An abstract class must be inherited by a subclass in order for
its data and behavior to be used in an application.

An abstract class can contain member methods (Java) or member functions (C++) that are
designated by the programmer of the super class as abstract. This requires that the
programmer of a subclass redefine the abstract method (function); otherwise, a compile
error is displayed.

For example, the Student class can be designed as an abstract class and its registration
method can be an abstract method. The programmer of the GradStudent class is forced
to redefine the registration method in order to successfully compile the application (see
Figure 6-3). You might say that abstraction is a way to remind a programmer of the missing
method.

Figure 6-3: Subclasses must define all abstract methods of the super
class.

The Abstract Method

An abstract method does not require instructions because instructions are provided in the
redefined method contained in the subclass. However, the programmer of the super class
must define an empty abstract method as a member of the abstract class.

Some programmers look at this as specifying a required behavior (function) without defining
how the behavior is performed (functionality). The subclass defines how the behavior is
performed.

For example, the programmer of the Student class tells programmers of sub-classes that
they must define a registration process by defining an abstract registration method in the
super class. It is the job of the programmer of the GradStudent class to define
instructions on how to register a graduate student.

In other words, the programmer of the super class specifies that there must be a
registration function, and the programmer of the subclass defines its functionality.

Abstraction in Action
An abstraction is implemented by defining an abstract class using the abstract keyword
in Java. This is shown in the following example, which defines the Student class as an
abstract class. Remember that you cannot create an instance of any class designated as
an abstract class. This means that you cannot declare an instance of the Student class.
The Student class must be inherited by a subclass, which is shown later in this section.
abstract class Student
{

}

You can define data members and member methods of an abstract class. Member
methods may or may not be designated an abstract method based on the needs of the
class. A member method designated as an abstract method forces the programmer of the
subclass to redefine the abstract member method.

Member methods not designated an abstract member method do not have to be defined in
the subclass. The programmer who defines the subclass has the option of redefining the
method or using the super class version of the method.

You define an abstract method in Java by using the keyword abstract followed by the
data type of the return value and the signature of the method. This is illustrated in the next
example, where we inserted the register() member method into the definition of the
Student class.

In this example, the register() member method is granted public access using the public
access specifier. It is an abstract method that doesn’t return a value and doesn’t have an
argument list. The register() method also doesn’t have a body defined for it because
the register() method is an abstract method. The body of an abstract method is defined
when the method is redefined by a subclass.

After the following Java example is the equivalent in C++, using a pure virtual function. A
pure virtual function in C++ is indicated with the special =0 postfix, which identifies it as an
abstract method, and the class it is in becomes an abstract class.
//Java
abstract class Student
{
 public abstract void register();
}

//C++
class Student // C++ example
{
public:
 virtual void register() =0 ;
}

The subclass definition must inherit the super class and define any methods that are
designated abstract in the super class. This is shown in the following example, where the
GradStudent class inherits the Student class by using the extends keyword.

Notice that the register() method is defined within the GradStudent class. The
programmer who defined the GradStudent class doesn’t have any alternative but to
define the register() method. Failure to do so causes a compile error, which you’ll see
in the next section.

We purposely kept the register() method simple by having it display a one-line
message on the screen when the method is invoked. You can easily use this example as a
model for more complex methods in your own applications:
class GradStudent extends Student{
 public void register() {
 System.out.print("Graduate Student Registered.");
 }

The application can only declare an instance of the subclass, which is the GradStudent
class in this example. Furthermore, only the register() method defined in the
GradStudent class can be called from within the application, as shown in the next
example. You cannot call the register() method defined in the Student class because
that method is an abstract method and cannot be directly accessed from the application.
class AbstractDemo {
 public static void main (String args[]) {
 GradStudent myGradStudent = new GradStudent();
 myGradStudent.register();
 }
}

Here is the complete Java application that uses an abstract class and abstract member
method. The first statement within the main() method uses the new operator to declare an
instance of the GradStudentclass. It also declares a reference to the GradStudent
class, which is assigned the location of the instance.

The next statement calls the register() method of the GradStudent class, which
displays a message on the screen saying that the graduate student has been registered.

class AbstractDemo {
 public static void main (String args[]) {
 GradStudent myGradStudent = new GradStudent();
 myGradStudent.register();
 }
}
abstract class Student
{
 public abstract void register();
}
class GradStudent extends Student{
 public void register() {
 System.out.print("Graduate Student Registered.");
 }
}

A similar example in C++ of a derived class that provides the required “pure virtual”
(abstract) method, as dictated by its base class, would look like the following:
class GradStudent : public Student{
 public:
 void register() {
 cout << "Graduate Student Registered."<<endl;
 }
 }
}

Errors Galore

Expect compiler errors whenever abstraction is used in an application, but look upon those
errors as a good thing. The purpose of abstraction is to force a programmer to define a
method that is designated as an abstract method in a super class. Abstraction is also used
to prevent an instance of a super class from being declared in an application.

The reason for imposing these limitations is because the abstract class has some but not
necessarily all the detail needed to implement default methods. In previous examples, you
saw that the Student class requires a registration procedure but doesn’t have sufficient
information to define details of that procedure. Programmers of subclasses that inherit the
Student class provide those details.

Three common errors occur when abstraction is used:

The failure of the programmer to define an abstract method in a subclass

An attempt by the programmer to call the super class’s abstract method

An attempt to declare an instance of the abstract super class in the program

Let’s take a look at how failure to define an abstract method in a subclass can cause a
compiler error. The next example is similar to other applications used in this chapter. It
defines the Student class as an abstract class that contains the register() method,
which is designated as an abstract method.

The programmer of the GradStudent class is expected to define details of the
register() method, but the programmer decides not to do so because the register()
method isn’t called in the program (see Figure 6-4). You’ll notice this in the main() method,
where the program simply creates an instance of the GradStudent class.

Figure 6-4: Failure to define the abstract member in a subclass causes a compiler
error.

Try compiling this program and you’ll discover that the compiler complains because the
register() method is defined in the GradStudent class. You’ll probably see an error
message similar to this:
class GradStudent must be declared abstract. It does not define void register() from class Student.

You can fix this problem by defining a register() method in the GradStudent class
definition and then recompiling the program, like so:
class AbstractDemo {
 public static void main (String args[]) {
 GradStudent myGradStudent = new GradStudent();
 }
}
abstract class Student
{
 public abstract void register();

}
class GradStudent extends Student{
}

Another common error occurs when the programmer of the subclass decides to call the
abstract method rather than defining a corresponding method in the subclass. This is a
common rookie mistake when abstract classes from a class library are used in an
application because the programmer gets used to having all the methods defined for them in
the super class and doesn’t realize that an abstract method must be redefined in the
subclass.

The follow example illustrates this problem. This application is nearly identical to the
previous application except the programmer of the GradStudent class defines the
register() method by simply calling the super class’s register() method.

This is an acceptable practice, but not when the register() method is designated an
abstract method. Try compiling this program and you’ll receive the following error message.
You can correct this problem by removing the call to the super.register() method in
the GradStudent class’s register() method.
Can't directly invoke abstract method void register() in class Student.
 super.register();
 ^

class AbstractDemo {
 public static void main (String args[]) {
 GradStudent myGradStudent = new GradStudent();
 myGradStudent.register();
 }
}
abstract class Student
{
 public abstract void register();
}
class GradStudent extends Student{
 public void register() {
 super.register();
 }
}

The third common error that some programmers experience when using abstraction is to
attempt to declare an instance of an abstract class. This is shown in the next example,
where the programmer declares an instance of the Student class, called myStudent, in

the second statement of the main() method.

You’ve seen a similar statement used successfully in Chapter 4. This statement would also
be successful here if it weren’t for the fact that the Student class is an abstract class. You
simply cannot declare an instance of an abstract class.

Try compiling this program, and you receive the following error message:
class Student is an abstract class. It can't be instantiated.
 Student myStudent = new Student();

You can correct this error by removing the second statement in the main() method,
thereby not attempting to declare an instance of the Student class, as shown here:
class AbstractDemo {
 public static void main (String args[]) {
 GradStudent myGradStudent = new GradStudent();
 Student myStudent = new Student();
 myGradStudent.register();
 }
}
abstract class Student
{
 public abstract void register();
}

class GradStudent extends Student{
 public void register() {
 System.out.print("Graduate Student Registered.");
 }
}

Frameworks, Libraries, and Abstraction
Abstraction is sometimes a game of guessing the future. You try to design a class, or set of
classes, that will hopefully be in use for several years. How can you predict today what can
be useful tomorrow? The answer is, of course, experience. As you develop more
experience in working with classes, you start to see how the OO paradigm works. Also,
you start to appreciate the tools it provides.

There are times when a decision is made that might seem to defeat the purpose of a single
class. These are usually the times when a single class isn’t really the goal, but really an
entire class library or framework is the important part. Put another way, you may find
yourself writing a class that requires you to implement certain abstract methods from a
base class that simply might not make sense.

If you look at it on the basis of just your class, it might seem silly. But, if you consider the
larger picture of the framework or library, it will start to make sense. Let’s take a look at a
perfectly good example in Java: the String class and its toString method.

Java has a String class, which contains, of course, a string. Now, in this String class is
a method called toString. And what does toString give us? A string that represents
our data. How silly is that? A String class that has a method to return a string variable.

Turns out, it’s really not silly at all, but quit ingenious if we look at the Java Library. See,
toString isn’t just part of the String class, it’s part of the Object class from which all
Java classes are derived. This means that toString is really defined for all Java objects.
This is exceptionally cool when we consider that for debugging purposes we should be able
to display the contents of “any” Java object using the following code:
System.out.print(AnyObject.toString()); !

We are bypassing a few of the details of implementation, and not showing any actual code,
in order to make a point: The needs of the many outweigh the needs of the one. Or, it is
often better to design a set of classes with an overall usefulness that a small number of
classes might not seem to benefit from. The truth is, we would probably figure out by
looking closer at them that they probably all do benefit.

Quiz
1. What is abstraction?

2. When should abstraction be used in a program?

3. What is an abstract method?

4. Can an abstract method be called within a program?

5. What happens if an abstract method is not redefined?

6. Can an instance of an abstract class be declared in a program?

7. Can an abstract method be called directly by a subclass?

8. Must an abstract method be redefined by a subclass?

9. Must all methods in an abstract class be designated as abstract?

10. Must all methods in an abstract class be redefined in a subclass?

Answers

1. Abstraction is a way for the programmer of a super class to require the programmer of
a subclass to define a method.

2. Abstraction should be used in a program when there isn’t any way to define a good
default method in the super class.

3. An abstract method is a method defined in a super class that must be redefined in a
subclass that inherits the super class.

4. An abstract method cannot be called within a program.

5. A compiler error occurs if an abstract method is not redefined.

6. An instance of an abstract class cannot be declared in a program.

7. An abstract method cannot be called directly by a subclass.

8.
A programmer of a subclass that inherits an abstract super class must redefine the
abstract methods defined in the subclass, even if those methods are not called within
the application.

9. A super class can contain a mixture of abstract methods and non-abstract methods.

10. Only abstract methods must be redefined in a subclass that inherits from the abstract
super class.

Chapter 7: Identifying and Describing Objects
Object-oriented programming is as easy a playing a game of Password. Fans of the Game
Show Network remember the popular game where a player identifies something to another
player by describing it. Try playing Password the next time your party hits a lull and you’ll
see how easy it is—or isn’t—to describe something. What does the game Password have
to do with object-oriented programming? Both require you to identify an object by describing
it. A Password player describes an object to a fellow player, whereas a programmer
describes an object to a program in the form of a class definition. Describing an object is a
deceivingly simply concept to understand, but one that is difficult to do. We’ll show you how
the pros do it in this chapter.

An Object
The world would be a difficult place in which to live if we only described things based on
their attributes and behaviors like we do when playing the game Password. Think for a
moment. How would you describe yourself as a student without using the word student? It
wouldn’t be easy because we don’t look at the world as descriptions of things. Instead,
everything in our world is viewed as an object.

If someone asks, What do you do? You probably reply by saying you are a student. No
further explanation is needed because everyone knows the characteristics of a student.
They know you are low on funds, pay tuition, attend classes, do homework, and go to all-
night parties to break the tension.

If someone asks, How do you go to school? You probably say that you drive a car. Again,
no further explanation is required. Everyone knows what a car is. You don’t need to go into
a lengthy descriptions of the car you drive.

As you learned at the beginning of this book, object-oriented programming is centered on
identifying and describing real-world objects so they can be used by a program the same
way that we use objects in real life. Throughout this book you learned how to create objects
in C++ and Java programs by defining classes and then declaring instances of those
classes in your programs.

We’ll switch gears a bit in this chapter and explore techniques object-oriented programmers
use to identify and describe real-world objects so that those objects can be encoded into an
object-oriented program. Once you’ve mastered these techniques, you’ll be able to translate
an object you see around you into one or more classes in your program.

Let’s begin our exploration with the definition of an object. An object is a person, place, or
thing—such as a student, a campus, or a book—that is defined by an object name,
attributes, and behaviors.

An object name is the name of an object, such as student, campus, or book. An attribute is
information about the object, such as a student name (Bob Smith), the name of a campus
(Morningside Heights campus), or the title of a book (Object-Oriented Programming
Demystified). A behavior is an activity that is associated with an object. For example, a
student registers for class. The campus is open or closed. And the book can be opened or
closed.

Identifying Attributes

Some attributes are easy to identify because we use them to describe an object. For
example, attributes of a student object are the student’s name, home address, home
telephone number, and personal e-mail address. You probably can think of other attributes

that describe a student.

Other attributes are not obvious. Let’s say you are identifying attributes of a window. You
are likely to mention the height, length, and width of the window and maybe the color of the
window frame. However, you also need to identify the opaqueness of glass and other finer
attributes that the average person overlooks when seeing a window. Admittedly you can
find yourself going crazy trying to identify all attributes of an object because there are so
many of them in a typical object.

Object-oriented programmers determine the number and type of attributes that they need to
identify based on the goals of the system they are developing. For example, a college
admission system contains a student object. This system needs a set of attributes that
identifies a student, provides student contact information, the student’s academic record,
and recommendations. The system doesn’t need the student’s complete medical history,
psychological profile, or genealogical background.

In contrast, a system that simulates a window, such as a Computer Aided Design
application, needs to have sufficient attributes of a window in order to project how the
window reacts to different circumstances. For example, the tensile strength of the window
is needed in order to depict how the window reacts to hurricanes. Tensile strength is an
attribute that is an indicator of how much pressure the window can withstand before
breaking.

Therefore, you should determine the needs of your system before embarking on identifying
attributes of objects that will be used by your system. Limit your selection of attributes to
only those attributes your system requires. This ensures that you spend your time efficiently
and identify only the attributes of an object needed by your system.

Describing Attributes

Identifying the proper set of attributes for your system is half the job. You still need to
describe each attribute. Think of identifying an attribute as naming the attribute, and think of
describing an attribute as assigning the attribute name a value.

Some descriptions are intuitive, such as using inches to describe the height of a window.
Other descriptions are more challenging. For example, how would you describe the color of
a window? You might say, the window is white, blue, black, or the name of any color.
However, those colors are vague because each of those colors has a hundred or more
shades. When you say that the window is blue, you really mean that the window is one of
many shades of blue.

Attributes that have subjective values are difficult to describe because the system that you
develop requires precise values and not subjective values. Fortunately, there are standard
ways of precisely defining subjective values of many attributes. It is your job to learn those
standards before you begin identifying attributes. Typically, the business unit who is

sponsoring your system can provide you with those standards.

For example, several standards are used to precisely define a color as a unique number.
You would use the standard that is appropriate for your system to describe the color
attribute of an object.

Decomposing Attributes to Data

Some programmers who are not familiar with object-oriented programming confuse
attributes of an object with data associated with an object. Previously you learned that an
attribute is information that describes an object. Data is the smallest amount of meaningful
information.

This sounds confusing at first, but an example will quickly make this clear. At attribute of a
student object is the student’s name. However, the student’s name isn’t the smallest amount
of meaningful information. The smallest amount of information is the student’s first name,
middle name, and last name, each of which is called data.

Object-oriented programmers decompose each attribute into data and then use data in the
corresponding class definition to describe the object. Decomposition is the technique that
reduces an attribute into its data components.

The best way to decompose attributes is to make a two-column list, as show in Table 7-1.
List the attribute in the first column and then ask yourself whether the attribute is the
smallest amount of meaningful information that describes the object.

Table 7-1: Decomposing Attributes to Data

Attribute Data

Student Name First Name
 Middle Name
 Last Name

Student Address Street Address 1
 Street Address 2
 City
 State
 Zip Code

Graduated Graduated

If so, then use the attribute as data. For example, the attribute Graduated, shown at the

bottom of Table 7-1, is the smallest amount of meaningful information. It cannot be
decomposed. Therefore, the attribute is data and is listed in the data column.

If the attribute is not the smallest amount of meaningful information, then decompose (break
down) the attribute into its data components. Table 7-1 illustrates the decomposition of the
Student Name and Student Address attributes.

Identifying Behaviors

A behavior of an object is something an object does. Some behaviors are obvious and easy
to identify, such as a student registering for a course. Other behaviors are less obvious and
can be illusive to identify, such as how a window behaves when the full force of a hurricane
bears down on the window glass.

You can imagine that an object performs hundreds of behaviors. However, you don’t need
to identify all of them. Instead, you need to identify behaviors that are relative to the goal of
your system. Let’s say you are writing a Computer Aided Design application that is used to
design a house. One of the objects you’ll need is a window. The application shows how the
window looks when installed in the house. Therefore, you only need to include two
behaviors: open the window and close the window. You don’t need to include how the
window behaves in a hurricane because the application doesn’t simulate the structural
behavior of a window.

Object-oriented programmers identify behaviors of an object by brainstorming. They begin
by creating a two-column table, as shown in Table 7-2, and enter the name of each object
in the first column. Next, they asked themselves, What does the object do in relation to the
nature of the system that is being developed? Answers are behaviors and are listed in the
second column.

Table 7-2: Identifying Behaviors of an Object

Object Behavior

Student Register for course
 Drop course
 Take exam
 Select major
 Change major

Table 7-2 contains just a few behaviors that are associated with a student. You can easily
expand upon this list.

Describing Behaviors

Describing Behaviors

Once you identify all the behaviors of an object that are needed by your application, you
must describe each behavior in detail. The description of a behavior consists of data
needed to perform the behavior, the steps to perform, and the data that is a result of
performing the behavior, if there is any.

This should sound familiar to you. The description of a behavior is nearly identical to the
definition of a function (method in Java). When you define a function, you need to identify
the data needed to perform the function (arguments). You also need to define steps
required to perform the function (body of the function), and you need to define the data that
is returned after those steps are completed (return value).

There is a subtle difference between describing a behavior and defining a function. When
describing a behavior, object-oriented programmers use a processing model diagram to
illustrate the details of how the behavior is performed. The processing model diagram is
then translated into pseudo code, which is a combination of English and a programming
language that describes every detail of the processing model diagram. Pseudo code makes
it easy for a programmer to encode the behavior into a program.

When a function is defined, the programmer uses C++, Java, or another programming
language to define the details of how the function is to perform.

Processing Model

A processing model is shown in a diagram that describes how a behavior is performed. The
diagram is built using symbols to represent aspects of the process. Figure 7-1 contains
commonly used symbols that object-oriented programmers use to describe a processing
model. You probably recognize these as flow chart symbols.

Figure 7-1: Symbols used to create a processing model

The processing model diagram is a flow chart that provides both an iconic description and
textual description of a process. An iconic description is a picture of the process, whereas
a textual description describes the process in words.

A symbol conveys a common step in the process, such as displaying a prompt on the
screen or receiving input from the user of the system. Most systems have these common
steps. Within the symbol is textual information that provides information specific to the
system being described. For example, textual information in the display symbol describes
the flavor of information that is displayed on the screen. Likewise, textual information in the
input symbol describes the kind of information entered into the system by the user.

Any process can be described in detail by arranging these symbols into a processing flow
that complements the processing that you want to describe. Let’s say that you want to
describe the process used by a student to enroll in a course. Here’s how this process
works.

First, the system prompts the student to enter the course number. After the student enters
the course number, the system determines whether the course is open. If it is, then
information about the student is enrolled in the course by placing the student’s information in
the appropriate database file. A conformation notice is then displayed on the screen. If the
course is closed, a message is displayed on the screen informing the student that the
course is closed.

Figure 7-2 shows the processing model diagram that describes this process. Notice that the
diagram uses symbols rather than text to describe each step. The first step shows the
display symbol followed by the input symbol. Anyone who reads the diagram is expected to
know the meaning of those symbols because they are used in practically all processing
model diagrams.

Figure 7-2: A processing model that illustrates how a student registers for a
course

Within each symbol is text that provides information specific to each step. For example, the
first step has the text “Prompt student for course number.” This tells the reader of the
processing model diagram the nature of text that is displayed on the screen during that
step. You don’t need to enter the complete text in the symbol, but just enough information to
give the reader an idea what is being displayed at that moment in the process.

Figure 7-2 is just one of many processing model diagrams used to describe the details of
an application. There could be hundreds of such diagrams that are connected together to
describe the entire application. For example, the process shown in Figure 7-2 links to two
other processes—a process to determine whether the course is open and another process
that enrolls the student in the course. Each of these processes is represented in a rectangle
in the diagram. The programmer must review the corresponding processing model diagram
for each of these processes to determine the details on how they work.

Each process has a starting point and at least one termination point. There can be multiple
termination points if the process takes different paths, depending on the results of
evaluating a condition, as is the case in Figure 7-2. This process takes one of two paths,
depending on whether the course is open or closed. Each path has its own termination
point.

Each step of the process, as pictured by the symbols in the processing model diagram,
must connect to a previous step and to the next step in the process, as illustrated in Figure
7-2. Arrows are used to connect each step and show the processing flow. Although the
process in Figure 7-2 flows downward, processes can flow to previous steps. For example,
a step might test a condition. If the condition is true, then other steps are processed
afterward and the process returns to test the condition again. This process should sound
familiar to you because it is the process used in a loop.

Pseudo Code

Some programmers begin coding an application by using information contained in the
processing model diagram. Other programmers translate the processing model diagram
into pseudo code. Previously in this chapter you learned that pseudo code is a combination
of English words and programming language syntax that describe in words how a process
works.

The following example is the pseudo code translation of the processing model diagram
shown in Figure 7-2:
Prompt student to enter a course number
Read the course number
Determine if the course is open or closed
If the course is open
 Enroll the student
 Store the student's information into the course file
 Display enrollment confirmation on the screen.
else
 Display a message telling the student that the course is closed
end if

You can easily pick out English sentences from programming syntax and yet you don’t have
to be trained in programming to understand the process described in the pseudo code.
Anyone can read the pseudo code under the process.

Pseudo code does more than describe a process. It also organizes steps into the logical
sequence that the program must follow. This enables a programmer to focus on translating
pseudo code into programming syntax, sometimes by simply replacing each step in pseudo
code with the corresponding statement(s) of a programming language that is needed to
perform the step.

Class Definition and Class Diagram
Once a programmer identifies objects and their attributes and behaviors, the programmer
then focuses on encoding these objects into the program by defining classes. Each class is
an object, and members of the class are attributes and behaviors of the object. Throughout
the first six chapters of this book, you learned how to define a class and member attributes
and member behaviors of a class using Java and C++.

Some programmers create a class diagram before they set out to define classes for an
application. A class diagram illustrates classes that are used in the application and also
depicts the class hierarchy, which is like a genealogical chart that shows inheritance among
classes.

A class diagram shows the class name, member attributes, member behaviors, and
whether those member are defined in the public, protected, or private access specifier
areas of the class.

Figure 7-3 shows five class diagrams and the class hierarchy. The class hierarchy begins
with the Person class, which contains some attributes and behaviors related to every
person. The attributes are defined within the protected access specifier area so that they
can be accessed by member functions and by functions of classes that inherit the Person
class.

Figure 7-3: Class diagrams and the class hierarchy for various student
classes

Below the Person class in the class hierarchy is the Student class, which describes some
attributes and behaviors found in a student. At the bottom of the class hierarchy are three
classes: ContinuingEdStudent, UndergradStudent, and GradStudent. Each of these classes
inherits the public and protected members of the Person class and of the Student class. In
addition, each of these three classes defines attributes and member functions that are
unique to their type of student.

It is a good practice to develop class diagrams and a class hierarchy for your application

because programmers who develop the application and later maintain the application use
this as a roadmap to understand the classes associated with the application. For example,
a programmer who sets out to enhance the functionality of an application begins by
reviewing class diagrams and the class hierarchy to determine if all or a portion of the
functionality is already coded in an existing class. If so, the programmer can inherit the
class and avoid having to write code that already exists.

Relationships Among Objects
Some objects have functional relationships rather than a hierarchical relationship. A
functional relationship is one where two or more objects interact with each other but are not
directly related to each other. A hierarchical relationship is one where objects are directly
related through inheritance.

For example, a student fills out a registration form in order to register for a course. The
student and the registration form are both objects that have a functional relationship, and
neither is directly related through inheritance. The functional relationship is that a student
uses a registration form to register for class.

Object-oriented programmers determine the functional relationship among objects in order
to help them understand how objects work together to achieve the goal of the application.

An object is sometimes referred to as an entity. For example, a student is an entity, the
registration form is an entity, and a course is an entity. A functional relationship is also
known as an entity relationship.

Programmers categorize entity relationships in four ways:

One to One

A one-to-one entity relationship is where one entity is related to only one instance of
another entity, such as one student has one dorm room.

One to Many

A one-to-many entity relationship is where one entity is related to many instances of another
entity, such as one student takes multiple courses.

Many to One

A many-to-one entity relationship is where many instances of an entity are related to one
instance of another entity, such as many students are assigned to one course.

Many to Many

A many-to-many entity relationship is where many instances of an entity are related to many
instances of another entity, such as many students assigned to many classrooms.

Entity Relationship Diagram

Programmers illustrate entity relationships in an entity relationship diagram. An entity
relationship diagram depicts a graphic representation of how one entity is associated with
another entity.

An entity relationship diagram contains three components: entities, the functional
relationship, and a ratio that indicates the type of relationship. Look at Figure 7-4 to see
how these components are used.

Figure 7-4: tionship diagram of a student entity and a course entity

Figure 7-4 is an entity relationship between a student and a course. The functional
relationship is that a student enrolls in a course, and a course has enrollment. Both of these
functions result in a roster for the course. The roster is also an entity.

The type of a relationship is represented by a ratio. The student ratio 0:N means that a
student can register for no courses or many courses. The N in the ratio implies any number.
That is, a student can still be a student at the college without having to register for a
course. The course ratio 0:N means that a course might have no students enrolled or many
students enrolled. That is, the college can offer a course and no one enrolls in the course.

The ratio changes once a student registers for a course to reflect a change in relationship
among the entities. The student ratio is now 1:N, meaning that the student registered for at
least one course, but could register for many courses. Likewise, the course ratio is N:1,
indicating that many students can enroll in one course.

Programmers use an entity relationship diagram to help in the design of their application so
as to ensure that the application can handle all possible relationships. For example, the
registration application must be able to handle a course without an enrollment and a course
where any number of students can be enrolled.

Leveling Diagram

An object-oriented application can easily become complex and difficult to understand.
Programmers simplify this complexity by using a leveling diagram, which depicts an
application in layers, where the top level has the least amount of detail and is the easiest to
understand. Subsequent levels have more detail and are usually the hardest to understand.

Each level illustrates entities and processes. As the programmer drills down into the leveling
diagram, they learn more details about each process. Figure 7-5 shows the first level of a
leveling diagram that depicts how the bursar collects tuition from students.

Figure 7-5: The first level of the leveling diagram shows all the processes involved in
how the bursar collects tuition from students.

Rectangles are used to represent entities, which are Student and Bursar in this example.
Circles represent processes, such as registration, tuition, and payment of tuition. Also, two
parallel lines are used to signify a data store, which is simply a place where data is stored.
This example has two data stores: one that stores student information and another that
stores tuition information. Arrows are used to show a movement of data among entities,
processes, and data stores.

Notice that each process is assigned a unique number. This number is used to connect the
first level with lower levels of the leveling diagram. Take a look at Figure 7-6 and you’ll see
how this works.

Figure 7-6: Level 2 of the leveling diagram shows details of the Print Management
Reports process from Level 1.

Figure 7-6 is the second level of the level diagram and describes the Print Management
Reports process shown on Level 1. The Print Management Reports process actually has
many subprocesses—one for each report. The second level shows these processes. Notice
that each of the subprocesses is assigned a unique number. The number begins with

corresponding number of the process shown on Level 1. Each of these subprocesses
begins with 5, which is the number of the Print Management Reports process in Level 1.

The subprocess number contains a decimal followed by another number, which represents
the subprocess in Level 2. For example, Print Student List By ID is the first subprocess on
Level 2 and therefore is numbered 5.1. The number 5 links this subprocess to a process on
Level 1, and the number 1 indicates this is the first subprocess on Level 2.

The same progression is used for subsequent levels. For example, you would look in Level
3 at process 5.1.1 to learn the details of the process used to print the student list by ID.

Quiz
1. What is the difference between an attribute and data?

2. What is the purpose of using a leveling diagram?

3. What is an entity?

4. What is the purpose of using an entity relationship diagram?

5. What does 0:N mean?

6. What is the purpose of decomposing an attribute?

7. What is a processing model?

8. What is pseudo code?

9. What is a class diagram?

10. What is a many-to-one relationship?

Answers

1.
An attribute is information used to describe an object, whereas data is the smallest
amount of information used to describe an object. For example, a student name is an
attribute, and a student’s first name and last name are data.

2.
A leveling diagram is used to simplify the understanding of a complex application. The
first level of the leveling diagram provides a simplified overview of the application, and
subsequent levels provide a progressively more detailed view of the application.

3. Entity is another term used for “object.”

4.
The purpose of using an entity relationship diagram is to illustrate the functional
relationship between two or more entities that are not hierarchically related to each
other.

5.
0:N is a ratio used in an entity relationship diagram to define a relationship. For
example, 0:N in a student course relationship means that a student doesn’t have to
register for any course and could register for many courses.

6. Decomposing an attribute is the process of reducing an attribute to data.

7. A processing model is a diagram that illustrates the steps in a behavior of an object.

8.
Pseudo code is a textual description of a behavior that uses a combination of English
words and programming language syntax.

9. A class diagram is an illustration that describes a class, its attributes, and its
behaviors.

10.
A many-to-one relationship defines the relationship between two entities where there
are many instances of one entity to one instance of another. For example, many
students are in one course.

Chapter 8: Real-World Modeling
Remember back during your grammar school days when you tried to shape a hunk of
modeling clay into your favorite car? No matter how much you poked, pulled, and pounded,
the clay never resembled an automobile. And yet designers for auto manufacturers poke,
pull, and pound the same clay as you, but are able to transform the hunk of clay into a work
of art that eventually drives onto the showroom floor. Auto designers have the know-how to
model a real-world automobile out of clay. The same can be said about professional object-
oriented programmers. They have the skills to apply object-oriented programming theory to
model real-world objects in a program. You’ll learn those skills in this chapter.

Theory vs. the Real World
Experienced object-oriented programmers soon realize after learning their trade that the
real world isn’t as perfect as the examples used to explain the concepts of object-oriented
programming. Somehow the real world cannot always be organized into clearly defined
objects that can be represented by classes in an application.

Programmers have to be adept at applying object-oriented programming theory where it
makes sense without unnecessarily complicating the coding in an application. They also
have to be clever to know when not to use object-oriented programming in an application.

We’ll explore the realities of using object-oriented programming to model the real world
throughout this chapter and in doing so we’ll illustrate common problems and how
experienced programmers overcome them.

From Simple Beginnings

Some programmers believe the popularity of object-oriented programming was seeded by
the development of graphical user interfaces (GUIs) because a GUI is composed of objects
such as buttons, radio buttons, list boxes, and other familiar graphics. Each object is
encapsulated with data and behaviors.

For example, the push button object encapsulates data such as height, width, color, text,
and screen position. It also encapsulates behaviors such as the actions that occur when the
cursor is placed over the button, when the cursor moves away from the button, and when
the button is clicked.

A GUI screen is built by selecting objects from a toolbox and placing them on the screen.
The screen inherits all the data and behaviors of an object. The GUI is one of the successful
implementations of object-oriented programming theory because GUI objects fit the object-
oriented programming model.

Object-Oriented vs. Procedural Languages

Some programmers feel that object-oriented programming theory must be tempered with
the needs of real-world applications by combining object-oriented techniques and
procedural programming techniques to create a natural, easy-to-use and maintainable
application.

You might be wondering what the differences are between these two programming
techniques. We’ll turn to English language syntax to describe the difference. Object-oriented
programming groups things around nouns, such as customer and invoice, which you’ll
recognize as objects.

In contrast, procedural programming groups things around verbs. A verb in the real world is

a task. This means the focus of a procedural programmer is on tasks that are performed by
the application, whereas an object-oriented programmer focuses on an object, its data, and
its behaviors.

Procedural programmers also use nouns (such as customer and invoice), too, but they are
described in a database and not in the application code. For example, the task of searching
for an invoice stored in a database is separate from the invoice itself. This means you don’t
need to create an object called invoice in order to search for an invoice. In object-oriented
program, you need to create an invoice object because the search behavior is encapsulated
in the invoice object.

Behavior Problems

Some programmers feel the basic premise that objects have behaviors isn’t always true in
the real world. It works well for GUI objects, but some real-world objects can be acted
upon by behaviors of other objects or behaviors that are not associated with any object.

Take submitting an order form for processing as an example. Is this task associated with a
sales representative object? How about a customer who directly places the order without
the assistance of a sales representative? Maybe this is a stand-alone process that isn’t
associated directly with an object.

The real world doesn’t necessarily restrict a task to an object, although object- oriented
programming theory does require that a task be associated with an object. One of the
challenges of applying object-oriented programming techniques is to know when to hold true
to object-oriented programming theory and when to deviate from the theory to address real-
world problems that cannot be handled efficiently using object-oriented programming
techniques.

Object-oriented programming uses multilevel inheritance to avoid redundancy, but there is
redundancy in the real world. For example, employees and customers both have contact
information. An object-oriented programming approach might be to create an object called
contact information that is inherited by objects called employee and customer. In the real
world, contact information is directly related with an employee and customer without any
inheritance.

Simulation May Not Be the Objective

Another underlying premise of object-oriented programming is that object-oriented
programming is well-suited to simulate real-world objects in a computer application. This is
true; however, many business applications do not simulate real-world business situations. A
simulation is a technique that re-creates the real world in a computer in order to study how
the real world works and how to improve a real-world process. In contrast, the purpose of
a business application is to achieve a business objective using the best possible means. The

reality is that simulating the real world does not necessarily use the best possible means to
achieve a business objective.

Some programmers use airplanes and flying to illustrate the difference between simulating
real life and achieving an objective using efficient means. Prior to the airplane, real-world
flight was achieved by flapping wings. Therefore, if we set out to simulate flight, airplanes
would have flapping wings—and probably never would have gotten off the ground.
Simulation, therefore, isn’t a means to achieve the goal of flight.

On the surface, modeling the real world using object-oriented programming seems like a
good way to develop a business application that simulates real-world business situations.
However, simulation may not be the true objective of the application. Instead, the
application’s goal is to get something done efficiently. Blindly adhering to object-oriented
programming design philosophies may not produce the best business application because
object-oriented programming may not lend itself to designing an application that takes
advantage of the strengths of computers.

Although we look at the real world in terms of objects, that view sometimes doesn’t provide
us with the flexibility needed to provide the best possible flow of a business application.
Some programmers who strictly apply object-oriented programming design techniques to a
business application may gloss over simplicity and efficiency in order to fit the theoretical
design requirements. This results in failure to achieve the goal of the business application.

The objective of every programmer is to develop an application that improves the
processing flow and not simply to mirror the real world. It doesn’t make sense for an
application to simulate every step in a manual process when the process can be reduced to
fewer steps when performed by a computer.

Internal Model and External Model

You must strike a balance when using object-oriented programming to develop an
application. The desire to simulate the real world by creating objects that have data and
behaviors should not overshadow the need to develop an application that is efficient and
improves the business process.

Programmers strike this balance by developing two models: the internal model and the
external model. The internal model describes how an application works behind the scenes.
The external model describes how a person interacts with the application.

In a perfect world, a programmer develops an application where both the internal and
external models mirror real-world objects. For example, an order form is an object used to
record and process a customer order. Ideally, the order form that appears on the screen
should resemble the paper order form, thus enabling the user to relate the computerized
order form to the real-world order form. Likewise, behind the scenes an order form object
is created and is used to process order information.

In reality, the programmer probably uses the order form as the external model for an
application, but might decide not to create an order form object for the internal model
because it may not be the most efficient way to manage and process an order.

You should address the internal model and external model independently whenever you
develop an application. Don’t assume that you have to use object-oriented programming
concepts to address every aspect of an application. Instead, apply those concepts that
make sense for your application.

Hierarchical Problems

You won’t be able to use hierarchical classification to describe every real-life object
because the real world doesn’t work that way. You might find yourself going to great
lengths to develop a complex structure of objects in order to simulate the real world, when
in reality you don’t require such sophistication to achieve the business objective. Don’t
develop an object-oriented application in a vacuum. Always keep your sights on the
objective of the application.

Sometimes you might discover that procedural and relational design techniques are much
better suited for a portion of your application than object-oriented design. Procedural design
focuses on tasks, which some programmers refer to as the “verb approach” because a
procedure is an action. Relational design refers to application data stored in a relational
database. Some programmers refer to this as the “noun approach” because, collectively,
data describes a person, place, or thing.

One of the several attractions of a hierarchical solution is that we envision reuse of code in
the base or super classes. Although this is always a key goal for professional developers,
sometimes it just doesn’t work. For example, we have discussed student classes
extensively throughout this book. But, for all our design of these classes, they have no use if
we are next asked to design an application to track stock quotes.

Although hierarchical design is always desirable, don’t spend an inordinate amount of time
trying to design systems solely for the purpose of the design. Use your common sense, run
through several “what if” scenarios to see how things will work, and try to identify your
reusable code and objects.

You will typically find that your code reuse and hierarchy fall into three categories: objects
that are very reusable across different applications (such as a string class or stream
hierarchy), objects that are reusable within a particular set of programs (such as our
student class and hierarchy for academic institution programs), and objects that simply will
never be reused again, anywhere.

Task Oriented, Not Object Oriented

A staple of object-oriented programming is to encapsulate tasks within a real-world object.
However, sometimes this doesn’t make sense because a task is associated with many
objects instead of one object.

You’ll run into this problem from time to time when developing an object-oriented program.
Some programmers address this situation by creating a super class that defines the
common task and then have objects that are associated with the task inherit the super
class. Those subclasses can then call the task as required by the application.

Although this approach adheres to the principles of object-oriented programming, it can
result in an overly complex application, especially if the only purpose of the super class is to
facilitate the common task.

Professional programmers apply principles of object-oriented programming with a grain of
common sense. Simplicity overrules the need to strictly adhere to object-oriented
programming standards. They don’t build classes simply to adhere to standards when a
simpler alternative is available.

If there is a task that is associated with several classes, a programmer might consider
defining a function that isn’t a member of a class to handle the task. The function can be
designed to use a variety of objects as required by the application. Those objects can be
passed as parameters to the function.

Let’s use the task of registering a student for a class as an example. Several approaches
can be taken to implement the registration processing in an application. For example, you
can define a separate class for each type of student (undergraduate, graduate,
postgraduate, continuing education) and then define a registration member function for each
class.

The registration process is basically the same for all students; therefore, it might not make
sense to have several definitions of the same function. Another alternative is to define a
super class that contains the definition of the registration function. Each type of student
class then can inherit the super class and gain access to the registration function.

The super class approach is ideal if there are other commonalities among each type of
student class. Common data and functions can be defined in one place—in the super class.
This simplifies maintenance of the application.

Suppose the registration function is the only thing common among the types of student
classes. Does it make sense to create a new super class for the sole purpose of defining
the registration process? Some programmers will say yes, because doing so conforms to
object-oriented programming conventions. Other programmers will disagree because doing
so unnecessarily adds to the complexity of the application. A more desirable alternative is to
define a registration function that isn’t a member of a class. The registration function can be
designed to register any type of student.

Self-Contained Data vs. Wide Source of Data

Sometimes the real world isn’t built from well-defined objects, although object-oriented
programming theory assumes this to be the case. This is apparent in business applications
where data required by a process might come from multiple objects rather than
encapsulated into one object.

A typical example of this is the month-end processing common to nearly all businesses. A
month-end process summarizes the state of the business that occurs during the month.
Data used for month-end processes typically comes from a variety of objects associated
with multiple systems throughout the company.

For example, month-end processing summarizes customer account information, order
information, and inventory information. Each of these is likely generated by an accounting
system, transaction system, and inventory system. And within each of these systems is an
assortment of objects, such as customer, product, and order.

It is difficult to associate the month-end process with a single object because no one object
involved in the monthly summary process owns this process. A solution might be to define
another object for the sole purpose of defining the month-end process. However, doing so
unnecessarily complicates the application.

Therefore, modeling a real-world business using object-oriented programming isn’t as
straightforward as you might believe. There will be situations when the real world doesn’t fit
the theoretical object-oriented programming model, and you’ll need to be less rigid in
applying object-oriented programming theory to your application.

The World in Discrete Pieces

Developing a real-world object-oriented application is more challenging than the exercises
used to explain the concepts of object-oriented programming. This is because only real-
world objects that lend themselves to a class definition are used in those exercises.

Many instructors demonstrate the concept of object-oriented programming by using the
example of an airplane or automobile, where the engine, wheels, and other components are
objects contained by the airplane or automobile. These real-world objects fit nicely into an
object definition. However, not all real-world objects do—a factor that isn’t mentioned in
many books on object-oriented programming.

Do We Think in Objects?

Some programmers question whether we really view the real world as objects and feel that
we look at things as tasks and data rather than as objects. For example, when your house
is hot, you probably think about lowering the temperature by turning on the air conditioner or

by opening a window. You don’t think air condition, turn on, or window, open, which is the
logic used if you thought about objects first and then the behaviors associated with those
objects.

This subtle difference can become a mental roadblock for programmers who model the real
world in a computer application because programmers tend to mimic the way we look at the
real world. Programmers have to alter their natural thinking process in order to model the
real world.

OOP and Data

Data is another mental stumbling block when modeling the real world using object-oriented
programming. Data is encapsulated in an object according to object-oriented programming
theory. There are few data elements in an application that aren’t encapsulated with an
object.

The difficulty occurs when storing data in a database. Although there are object-oriented
databases, many programmers use one of the popular relational databases, such as
Oracle, DB2, or Sybase, as data storage for their applications.

A relational database doesn’t store objects; it stores data. This means the programmer
must write routines that extract encapsulated data in a form where data can be stored in a
relational database. Likewise, data retrieved from a relational database must be
restructured so that data can be encapsulated into one or more objects in the application.

Sometimes programmers build conversion routines into the member functions of an object
that are used to extract and restructure data to and from a relational database. Other times
programmers develop middleware software that sits between the application and the
relational database. Middleware software contains conversion routines that interact with
both the object-oriented application and the relational database.

A conversion routine maps fields to the data members of objects, and it maps data
members of objects to the fields of a relational database. This is a time-consuming process
that is required only because data is encapsulated in an object. Some programmers feel
conversion routines unnecessarily complicate an application—these routines are required
only because the application is written using an object-oriented programming language and
not because they are a requirement of the application.

Real-World Hierarchy
Another staple of object-oriented programming is that the real world is organized into
objects, and objects are associated with other objects in a hierarchy. In reality, objects
found in the real world form one of two kinds of hierarchies: a static hierarchy or a dynamic
hierarchy.

Objects in a static hierarchy don’t change or change very little over a long time period. Most
things in nature are objects that have a static hierarchy. These are also the same objects
used to describe the concepts of object-oriented programming.

An object in a dynamic hierarchy frequently changes its relationship with other objects in the
hierarchy. Objects used in business applications typically have a dynamic hierarchy. In fact,
some business objects tend to have a matrix hierarchy that consists of cross-relationships.
You’ve probably seen this in organizations for which you’ve worked where some workers
(objects) report directly to one boss and have a cross-reporting relationship to one or more
other bosses. Then the relationship changes when a reorganization occurs within the firm.

Relationships among nearly every object used to model an organization are fluid and
therefore don’t lend themselves to the nicely organized concepts defined in object-oriented
programming.

A dynamic hierarchy of objects used to model an organization can become troublesome to
programmers who must apply object-oriented theory in order to model the organization
within an application. Programmers might find themselves trying to fit an octagonal peg into
a round hole. The peg is almost round, but not round enough to meet the definition of the
circle.

The Morphing of a Hierarchy

Whenever a programmer encounters a conflict between object-oriented programming
theory and the real world, they have a tendency to carve the real world to adhere to object-
oriented programming theory. What results is the morphing of the hierarchy of the real
world when the real world is modeled in an application.

Morphing is evident when a real-world object is defined as a subobject. A subobject is a
division of a real-world object. An object has an “is a” relationship with a super class. For
example, a surfboard is a vehicle. A subobject might have an “is almost” relationship with a
super class, such as a tabletop is a vehicle when it is used as a surfboard.

The issue for a programmer is how to handle all the variations that exist in the real world
that are almost like well-defined objects. Polymorphism is a concept many programmers
use to address this issue. Previously in this book you learned that polymorphism enables a
programmer to use the same name for slightly different behaviors by changing the argument

list to specify which variation of the behavior to use in the application.

At first glance, polymorphism seems to address this issue, but what constitutes slightly
different behavior? Can a behavior that varies by 25 percent from the original behavior be
considered a slight difference? If so, then polymorphism can be applied. If not, then a new
member function needs to be defined.

The real world has many “is almost” objects that behave similarly to another behavior, but
the degree of the similarity falls within a very wide range. The programmer must decide
how similar a behavior is to another behavior and be careful not to morph the original
behavior too much; otherwise, application programmers won’t recognize the member
function.

Let’s say that an ordering system has multiple ways to retrieve an order. The order is an
object that has member functions an application programmer can use to retrieve an order. If
there are 30 ways to retrieve an order, then there could be 30 versions of the function that
retrieves an order. Is it feasible for the application programmer to learn all 30 versions of
the function? It might be more efficient to define more functions with fewer versions, where
each function focuses on a set of ways to retrieve an order.

“Is a” Problems

As you learned in earlier chapters, a programmer determines whether an object should
inherit another object if it passes the “is a” test. The “is a” test asks the question, Is object
A an object B? If so, then object A can inherit object B. For example, is a graduate student
a student? If so, then the graduate student object can inherit the student object. If not, then
the graduate student object cannot inherit the student object.

The “is a” test isn’t as flexible as a “has a” relationship, and some real-world objects don’t
have an “is a” relationship with other objects but do have a “has a” relationship with them.
This is true in business applications where there is a dynamic hierarchy among objects.

It’s also worth noting that although inheritance and containment define two classes that are
very closely related somehow—a truck “is a” vehicle, and a vehicle “has a(n)” engine—
some objects aren’t so closely related, but still need to interact with other objects. We are
referring to collaboration, which is described in more detail in the section titled “Common
Procedures.”

Collaboration is a means to define how objects will work together, without having to define
them in terms of inheritance or containment.

The Real-World Challenges of Object-Oriented
Programming
Now that you understand many of the challenges you’ll face applying object-oriented
programming theory in real-world situations, let’s take a closer look at common problems
and how the pros resolve them. Here’s what we’ll explore:

Data storage

Common procedures

Defining objects

Hierarchy

Data Storage

Data storage is a common challenge when designing an object-oriented program because
there is a philosophical conflict between the way many organizations store data and object-
oriented programming design, as you learned in this chapter.

Organizations use a relational database to store data, which coincides with the procedural
style of programming. Objects defined in object-oriented programming don’t lend
themselves easily to a relational database model because a relational database is not
suited for storing objects. An object-oriented database is designed to store objects;
however, typically organizations don’t use an object-oriented database.

Your problem is how to resolve this conflict when writing an object-oriented program that
requires data storage. Professional programmers address this issue by writing functions
that translate data members of objects to a relational database model, and vice versa.

To do this requires four functions: insert(), search(), modify(), and delete(). The
insert() function converts data members of objects defined by your application into data
elements, and it organizes the data elements into one or more records required by the
corresponding relational database. The insert() function also contains the SQL query
that places these records into the database.

The search() function retrieves one or more records from the relational database. It does
this by using a query to find the search criteria for the record and then converting the
returning record into the data members of a corresponding object within the application. The
object is then typically displayed on the screen.

The search() function is used in conjunction with the modify() and delete() functions.
After the desired data is displayed, the user of the application causes the modify() or
delete() function to be executed. The modify() function enables the user to change the

data of an object that was retrieved from the database. It then converts the data members
of the object to its corresponding record and then updates the record in the relational
database. The delete() function removes the record from the database.

Common Procedures

Previously in this chapter, you learned how object-oriented programming and the real world
don’t always compliment each other. The real world cannot always be nicely organized into
discrete objects. You should expect to run into conflicts between how the real world works
and object-oriented programming philosophy.

A common conflict occurs with procedures. Procedures should be encapsulated within an
object definition. Yet there are times when a procedure crosses the boundary of two or
more objects. It doesn’t make sense to encapsulate into any one object. This situation
leaves programmers in a dilemma of where to define the procedure in the application.

According to the spirit of object-oriented programming, the programmers should define an
object that encapsulates the procedure and then have other objects inherit it. In this way,
the procedure is available to multiple objects without having to repeat the procedure.

Although this approach is totally acceptable, it can lead to overly complex code that
contains too many objects for an application programmer to learn and remember. This is
especially true if there are many situations within the application where procedures can be
associated with more than one object.

Here’s what to do when you encounter this conflict. Balance the need to adhere to object-
oriented design philosophy and the need for an uncomplicated application. If the sole
purpose of defining an object is to accommodate a procedure, then consider defining the
procedure as a stand-alone procedure rather than defining another object. A stand-alone
procedure is acceptable in an object-oriented program if it makes sense to the application.

On the other hand, if the procedure can be encapsulated in an object that contains other
procedures that are common across my objects, then define a new object. It makes sense
to do so because the object can be used to accommodate more than one procedure.

Defining Objects

Identifying objects in the real world seems intuitive, but it can become challenging when you
actually have to define objects for your application because some real-world things could be
interpreted as two or more objects.

Take a student as an example. A student is an obvious object. However, there is more than
one kind of student. There are undergraduate students, graduate students, postgraduate
students, and continuing education students. Each kind of student can be its own object.
Alternatively, student can be the object, and attributes of student could describe the kind of

student.

You’ll run into similar conflicts when developing an object-oriented application. Programmers
resolve such conflicts by developing a “keep it simple” philosophy. Avoid creating too many
objects in an application. Don’t divide an object into many objects unless there is a
compelling reason to do so. Instead, define one object and use attributes and member
procedures to make the distinction among the different kinds of objects.

Throughout the examples in this book we’ve defined objects for each kind of student
because we used these objects to illustrate various features of object-oriented
programming. However, baring any unique requirement of an application, it makes sense to
define one object called student and then define attributes and member procedures to
distinguish each kind of student.

In general, the fewer objects that are defined in application, the easier it will be for
programmers to understand and maintain the code of an application. Some programmers
only define objects that directly correspond to major entities of a real-world process, such
as a customer, product, order form, invoice, and sales representative. They avoid defining
objects for the sake of adhering to strict object-oriented design philosophy because doing
so has a tendency to make an application overly and unnecessarily complex.

Hierarchy

There is a tendency for programmers who recently discover the power of object-oriented
programming to go wild creating a complex hierarchy for their applications and lose track of
the application’s goal. In doing so they create multilevel inheritance that is technically sound,
but a challenge to maintain.

Avoid creating unnecessary inheritance, especially inheritance that involves more than three
levels. Most real-world applications will be operational for years and maintained and
enhanced by a series of programmers who need to focus on upgrading the code rather than
learning a complex trail of inheritance within the application.

As a general rule, keep the hierarchy of your application to no more than three levels of
inheritance, unless additional levels have a direct, positive impact on achieving the objective
of the application. If the additional levels won’t materially improve the application, then don’t
implement those levels in your program.

The Computer World vs. the Real World
Another interesting aspect to note about object-oriented programming is that while we try
our best to mimic things in the real world, some things don’t have exact physical
counterparts in the real world. Some things are conceptual, or may at first be considered
too simple to be broken down into real-world objects.

For example, a sorting algorithm or technique isn’t a real world “thing” but rather more a
method. A linked list also isn’t a real-world thing, though we might see examples of them or
use them programmatically on a daily basis. With a bit of work, we can start to imagine how
these things might work in the real world, but it would be in a way that nobody actually does
things.

Let’s take the linked list example a step further: A linked list is a collection of “nodes.” Each
node contains a reference (or pointer) to the next node as well as some additional data we
wish to manage. Now, we would never actually have a linked list node in the real world, but
we can picture how one might work. Let’s imagine we have a blank fixed-page notebook,
where each page contains only a preprinted page number, as in Figure 8-1.

Figure 8-1: Start with a blank notebook page that contains a preprinted page
number.

We want to keep track of a person’s name and phone number, ordered by their name.
Now, in a linked list, the data portion would be the person’s name and number; this is what
we really are interested in working with. The linked list also has a reference to the next item
in the list, which makes everything work as desired. In our example now, the “reference” is
actually another page number representing the next person, but in a programming language
it might be an object reference, pointer, or index (into an array).

Let’s imagine that our first person to add is Eric Carruthers. We would write down on the
first page his name, because he is the first person. Because no other people exists after
him, we would also write down a “Next” and “Previous” value of 0, meaning there are no
more people before or after him. Our book now looks like Figure 8-2.

Figure 8-2: After entering Eric Carruthers on the page, we would note that there isn’t a
next or previous page because Eric Carruthers is the only name in the
book.

Next, Rene Winston is added to our book. We write her name on page 2, and we set her
Previous value to 1, meaning “go to page 1 for the person before.” We write 0 for the Next
value on her page, as we did for Eric, but we also modify Eric’s page so that Next now
indicates page 2. Figure 8-3 shows how the book looks now.

Figure 8-3: When we add Rene Winston to the book, we modify Eric’s page by changing
Next from 0

Finally, we add Harry Gee. Because our notebook isn’t a loose-leaf binder, we can’t just
reshuffle pages. Instead, we write his name on page 3. We have all our data, but we still
need to make the book “work,” so we write down page 2 as Harry’s Next value, and page 1
as Harry’s Previous value. We also need to modify Eric Carruthers’ record and change his
Next value to page 3, and we need to change Rene Winston’s record so that her Previous
value is page 3. The end result is shown in Figure 8-4.

Figure 8-4: When Harry Gee is entered into the book, we modify previous pages to
reflect the new addition.

As you can see from this example, a real-world implementation of a linked list would not be
a practical solution. In order to find a person, you would have to start at the first page and
read it to find out where the page for the next person (alphabetically) is, and keep doing
that until you find the person you want. However, in computer terms, this is a very

straightforward and rapid process (because a computer is performing the task, not a
human).

If you find yourself designing classes and find out that the system needs some sort of
mechanism that doesn’t have a real-world counterpart, don’t panic. Just switch to “computer
world” mode and design the objects to make them work as needed. Note that in this section
we have discussed something called a linked list, which, due to the fact that we can call it a
“thing” means there’s a good chance we can create a class for it.

Quiz
1. How is data stored in a typical object-oriented application?

2. How are approaches to programming analogous to nouns and verbs?

3. What prevents some business applications from being modeled using object-
oriented programming?

4. What is a dynamic hierarchy?

5. What is a static hierarchy?

6. How can a hierarchy be morphed?

7. Do we look at the real world as objects?

8. Explain the potential conflict between the simplicity of an application and
adherence to object-oriented programming theory.

9. Is the objective of an object-oriented program to simulate the real world?

10. What is the difference between an internal model and an external model?

Answers

1.

Many object-oriented applications store data in a relational database and use a
conversion routine to translate data from data members of objects into rows in a
relational database and to transfer data from a relational database to data members of
objects.

2. Objects are thought of as nouns, such as a person, place, or thing. Tasks are thought
of as verbs because they describe actions within an application.

3. Some business applications cannot be organized easily into discrete objects, which
posses a challenge for programmers.

4. A dynamic hierarchy is an organization of objects in which the relationship among the
objects is changed over a short timeframe.

5. A static hierarchy is an organization of objects in which the relationship among objects
is maintained over time.

6. A hierarchy is morphed when a member function has many versions of a behavior
requiring many overloaded functions.

7.
Some programmers feel we view the world as tasks rather than as objects. For
example, we think to turn on the air conditioner in hot weather, which is a task. We
don’t think air conditioner, turn on, which is the object-oriented logical approach.

8.

Object-oriented programming theory assumes that the real world is organized neatly
into objects that can be defined easily as objects in an object-oriented application.
Some aspects of the real world can be defined as objects; other aspects of the real
world don’t lend themselves to such a definition.

9.

Yes, the goal of an object-oriented program is to simulate real-world objects in a
computer application. However, many business applications do not simulate real-world
business situations. The reality is that simulating the real world does not necessarily
use the best possible means to achieve a business objective.

10. An internal model describes how an application works behind the scenes. An external
model describes how a person interacts with the application.

Chapter 9: Collaboration
Try telling your instructor on the next computer programming assignment that building a
computer program is a collaborative effort. You may get a few extra-credit points for being
observant, but it is unlikely that you’ll be allowed to collaborate with your friends to complete
the assignment. Although collaboration is frowned upon in the classroom, it is a cornerstone
of software development. Collaboration occurs when programmers of different skills join
forces to build an application. Collaboration also occurs in software design when
components collaborate to form an industrial-strength application. In this chapter, you’ll
learn how to design components so they collaborate in making a real-world application.

What Is Collaboration?
Collaboration occurs when two or more things work together or cooperate with each other
in order to achieve a common goal. Collaboration is used in a military operation where
branches of different military services join forces to achieve a strategic objective.
Accounting, manufacturing, marketing, distribution, sales, and other areas of a typical
corporation collaborate to satisfy customer needs and make a profit for the business. Even
different kinds of businesses, such as bankers, manufacturers, distributors, and retailers,
work with each other to build, sell, and deliver products that customers demand.

Processes are at the center of nearly all collaboration. A process is a collection of tasks
that is identified by a name and performed whenever the process executes. Think of a
process as a function or a method in a program. For example, taking a final examination is
a process and consists of a relatively standard set of tasks.

Typically a process collaborates with other related but different processes to achieve an
objective. Each process in a collaboration is unable to achieve the objective by itself and
therefore forms an interdependency among collaborative processes in order to achieve the
objective.

For example, an objective of your instructor is to determine whether you pass the course.
To do this, the instructor uses a collaborative collection of processes to assess how much
of the material presented in class you learned. These processes consist of homework
assignments, class participation, quizzes, a midterm examination, a final examination, and
possibly a course project. Individually, each process gives a glimpse of what you know but
is not sufficient to determine whether you have enough knowledge to pass the course.
However, collectively, these processes give your instructor and you a measure of your
knowledge.

Inside a Process

Each process performs a unique set of tasks. Some programmers say that a process does
one thing very well. By combining processes, a programmer is able to create an application
that does many things very well.

Similar to a function and method, a process performs one or more tasks depending on the
tasks defined in the process. A process may require input necessary for processing,
although not all processes require input. Likewise, a process may have output, but all
processing doesn’t require output.

Processes collaborate in two ways. Each process can interact with another, or each
process can execute independently of other processes. Interaction between processes
occurs when the output of a process becomes the input for another process. This exchange
of information is the way in which both processes collaborate with each other. The

exchange is similar to passing one or more parameters to a function or method.

An example of this is when a student registers for a course. Registration is a process. The
output of the registration process becomes input to the tuition process. The tuition process
receives the student’s ID, number of credits attempted, and the course number, among
other information. The tuition process then performs the tasks necessary to generate the
tuition bill, which is the output of the tuition process.

Not all processes collaborate directly with each other. Some collaboration occurs by simply
executing processes in a sequence. This happens when your instructor determines whether
you pass your course. Homework, quizzes, midterm exam, final exam, and course project
are all processes that collaboratively tell the instructor whether you learned the material
presented in the course. Each process executes independent of other processes but must
execute in the proper sequence in order to determine whether you pass.

OOP Collaboration
Sharing of processes is a hallmark of how real-world objects collaborate. A student cannot
attend class unless the student enters into collaboration with the registrar to enroll in a
course. Therefore, the student is said to share the process performed by the registrar
needed to enroll students into courses.

In object-oriented programming, collaboration occurs among objects that mimic real-world
objects inside an application. Throughout this book, you’ve learned that an object is a
person, place, or thing that has attributes and behaviors. As you’ll recall, an attribute is
data, and a behavior is a process referred to as a function or method, depending on the
object-oriented programming language being used to develop the application.

Let’s see how collaboration works by continuing the course registration example we’ve used
throughout this book. Here is the Student class we discussed extensively in other
chapters:
class Student
{
 protected:
 int m_Graduation, m_ID;
 char m_First[16], m_Last[16];
 public:
 virtual void Display()
 {
 cout << "ID: " << m_ID << endl;
 cout << "First: " << m_First << endl;
 cout << "Last: " << m_Last << endl;
 cout << "Graduation: " << m_Graduation << endl;
 }
 void Modify(int ID, char First[], char Last[],
 int Graduation)
 {
 m_ID = ID;
 strcpy(m_First, First);
 strcpy(m_Last, Last);
 m_Graduation = Graduation;
 }
 Student()
 {
 m_ID = m_Graduation = 0;
 m_First[0] = m_Last[0] = '\0';
 }
int GetID() cons

 {
 return(m_ID);
 }
};

Besides the Student class, we’ll also require another class to represent a course within
the application. We’ll call this class Course. The Course class contains all the information
about a specific course, such as the course name, the course ID, and the instructor for the
course, as shown in the following class definition. A course, however, does not contain
students. Students are enrolled and attend a course, but are not actually “inside” the
course.
class Course
{
 protected:
 char m_Name[50];
 int m_ID;
 public:
 Course()
 {
 m_Name[0] = '\0';
 m_ID = 0;
 }
 virtual void Display ()
 {
 cout << "Course Name: " << m_Name << endl;
 cout << "Course ID: " << m_ID << endl;
 }
 virtual void Modify(const char* Name, int ID)
 {
 strcpy(m_Name, Name);
 m_ID = ID;
 }
 int GetID() const
 {
 return(m_ID);
 }
};

As you’ve probably realized, something is missing from the Student class and the Course
class. The Student class makes no reference to courses being taken by a student.
Likewise, the Course class makes no reference to students who are taking the course.
Therefore, there isn’t any way for a student to register for a course and for a course to
produce a roster of students who are taking the course.

We fill this gap by defining another class that links students with courses. We’ll call this the
LinkCourseStudent class. Its definition is next. Notice that the LinkCourseStudent
class relates one student to one course rather than list all students registered for a
particular course. We do this because we’ll be declaring an array of instances of the
LinkCourseStudent class. Each array is a course, and elements of each array are
students enrolled in the course. The array is declared in the Enrollments class, which is
described here:
class LinkCourseStudent
{
 protected:
 int m_StudentID, m_CourseID;
 char m_Grade;
 public:
 LinkCourseStudent()
 {
 m_StudentID = m_CourseID = 0;
 m_Grade = '\0';
 }
 virtual void Modify(int StudentID, int CourseID,
 char Grade='\0')
 {
 m_StudentID = StudentID;
 m_CourseID = CourseID;
 m_Grade = Grade;
 }
 virtual void Display()
 {
 if(m_Grade != '\0')
 cout << "Grade: " << m_Grade << endl;
 else
 cout << "Grade not assigned" << endl;
 }
 bool operator==(const LinkCourseStudent& Src)
 {
 if(m_StudentID == Src.m_StudentID &&
 m_CourseID == Src.m_CourseID)
 return true;
 else
 return false;
 }
};

You will see in the definition of the LinkCourseStudent class that it contains three

attributes or data members: a Student ID, a Course ID, and a grade. Therefore, one
LinkCourseStudent object can be used to link one student to one course. It also
contains the student’s grade if available. In database terms, this would be referred to as a
join or link table, which essentially permits a many-to-many relationship between students
and courses (that is, many students to a course, and many courses to a student).

The Display method of the LinkCourseStudent class only displays the grade for the
given student in the given course. The student’s name could be printed using the Student
class’s Display method, and the course name could be printed using the Course class’s
Display method.

The Enrollments class is an array of all LinkCourseStudent objects. As a design
issue, we could have stated that either the Course class maintains its own enrollments for
its students or that the Student class maintains its own enrollments of classes. However,
in keeping with a typical database design, where the links between all Student objects
and all Course objects is maintained in a separate table, we will use the Enrollments
class, shown here, to manage the link between students and courses:
class Enrollments
{
 protected:
 vector< LinkCourseStudent > m_Links;
 public:
 bool Find(const Student& S, const Course& C)
 {
 return Find(S.GetID(), C.GetID());
 }
 bool Find(int sID, int cID)
 {
 bool isRegistered = false;
 LinkCourseStudent Tmp;
 Tmp.Modify(sID, cID);
 for(int i=0; i < m_Links.size(); i++)
 {
 if(Tmp == m_Links[i])
 {
 isRegistered = true;
 break;
 }
 }
 return(isRegistered);
 }
 bool Register(const Student& S, const Course& C)
 {

 if(Find(S, C))
 return(false);
 LinkCourseStudent Tmp;
 Tmp.Modify(S.GetID(), C.GetID());
 m_Links.push_back(Tmp);
 return(true);
 }
};

The last class we’ll need is the Registrar class. The Registrar class is the catalyst
that enables the student to register for a course and for the course to develop a roster.
Here is the Registrar class definition:
class Registrar
{
 protected:
 // 'vector' is an array-type collection class
 vector< Course > m_Courses;
 vector< Student > m_Students;
 Enrollments m_Enrollments;
 public:
 void AddCourse(const char* Name, int ID)
 {
 Course aCourse;
 aCourse.Modify(Name, ID);
 m_Courses.push_back(aCourse);
 }
 void AddStudent(int ID, char First[], char Last[],
 int Graduation)
 {
 Student aStudent;
 aStudent.Modify(ID, First, Last, Graduation);
 m_Students.push_back(aStudent);
 }
 Course GetCourse(int ID)
 {
 for(int i=0; i < m_Courses.size(); i++)
 if(m_Courses[i].GetID() == ID)
 return(m_Courses[i]);
 return(Course());
 }
 Student GetStudent(int ID)
 {
 for(int i=0; i < m_Students.size(); i++)

 if(m_Students[i].GetID() == ID)
 return(m_Students[i]);
 return(Student());
 }
 bool Register(int StudentID, int CourseID)
 {
 int TheStudent, TheCourse;
 for(TheStudent = 0; TheStudent < m_Students.size();
 TheStudent++)
 if(StudentID == m_Students[TheStudent].GetID())
 break;
 for(TheCourse = 0; TheCourse < m_Courses.size();
 TheCourse++)
 if(CourseID == m_Courses[TheCourse].GetID())
 break;
 if(TheStudent == m_Students.size() ||
 TheCourse == m_Courses.size())
 return(false);
 if(m_Enrollments.Register(m_Students[TheStudent],
 m_Courses[TheCourse]))
 return(true);
 else
 return(false);
 }
};

The Registrar class is the class that ties together all the other classes in our example.
Although it is a simplified view of a registration process, it is functional for the purposes of
our example. The Registrar class maintains an array of Student and Course objects as
well as an Enrollments object, which in turn maintains a link between students and the
courses in which they are enrolled.

It is possible for the Registrar class to have students who aren’t enrolled in any classes,
or courses without any students (just think, when a class is first added to the system, it
starts out empty). The Registrar class is designed to mimic the registration process and
to manage students. In this class, you will find the AddStudent, AddCourse,
GetStudent, and GetCourse methods, which permit you to add and retrieve students
and courses to and from the system.

Once students and courses are added, you can then begin registering students for courses.
You can also add students, register them, then add other students and register them as
well. However, our demonstration will not show this approach for the sake of simplicity.

The Registrar class also provides a Register method, which is used to register a

specific student with a course. Diagramming the collaboration between classes is usually
viewed as a small part of the entire application (described in more detail next), and an
application may have many such diagrams. The sample diagrams we present later on apply
specifically to the Register method of the Registrar class.

UML Sequence Diagrams

Ever see a map of the universe? Probably not a detailed one because a detailed map would
simply be too large and complicated to represent with any level of detail on a single piece of
paper. The way things really work is that a map has enough detail to get you to another
smaller, more-detailed map. So, we can see using a map of the United States to locate
New York, and then using a map of New York to locate New York City, and then a map of
New York City to locate Central Park.

When we use diagrams to represent programs, the same logic holds true. It would be too
complicated to represent an entire program with any level of detail in a single diagram. As
we show diagrams here, you will have to remember that they represent a different scale or
level of detail, typically broken into a specific feature of the application.

A UML (Unified Modeling Language) sequence diagram is a diagram that shows the typical
sequence of events for a process. It is not a flow control diagram, which also contains
conditional logic for branching, such as an if or while test.

Sequence diagrams are organized as a set of columns, where each column is an object and
shows (using arrows) how each object interacts with the other. At the top of each column, a
class name and optional object name (for use in the diagram) are used in the format Object:
Class. Down the columns, arrows are used to represent a method called by one of the
objects to identify the collaboration between the objects. If a method needs an object
parameter, that’s when we give one of the columns the optional object name.

The arrows in a sequence diagram are solid lines for method calls, and dashed lines for
their optional return values. The columns or lines descending from the class names are
called “life lines” and show the life span of the object.

Is main() a Class?

The UML sequence diagram is useful to represent how classes interact. This raises an
interesting question with C++: Is main() a class? (The answer is, of course, no; it’s a
function.) The reason this question might be asked is, if the sequence diagram represents
interactions between classes, then what interacts with that interaction?

In other words, if we have a diagram showing how to register a student, then what called
the StudentRegister method that the diagram represents? That code is probably in a
menu somewhere. Okay, so what interacted with that menu? Well, if the language is C++,

there’s a good chance it was main().

And therein lies the question: If main() is a method and not a class, how can we show the
interaction of something that isn’t a class using a sequence diagram? The answer is, we
wouldn’t. Ideally, the C++ program’s main() method would actually just be invoked to
create some sort of RegistrationApp class that is, in essence, the main application
object. Using this, we can safely ignore main().

This doesn’t come up as often in Java or C#, where everything must reside in a class.

Student Registration

Let’s use our new classes and work on some nifty diagrams. We will start by defining the
classes that represent the registration process: Student, Course, Registrar, and
Enrollments, as shown in Figure 9-1.

Figure 9-1: A diagram of the previously described classes

The process of registering for a course begins at the point where the registrar has already
been asked to register a student (aStudent) for a course (aCourse). Here’s what
happens next:

The registrar first checks whether the student is already registered by asking the
Enrollments object to find a specific LinkCourseStudent using the Find
function.

The Enrollments object asks the aCourse object for its unique ID, which is
returned as cID.

The Enrollments object asks the aStudent object for its unique ID, which is
returned as sID.

The Enrollments object then does a search of its own LinkCourseStudent
objects for one that has these two IDs (cID and sID).

The Enrollments object then returns a Boolean value called isRegistered if
the particular item is found.

We are only outlining one small section, which is to make sure that the student isn’t already

registered. The Registrar object would go on to interact further with the Enrollments
object to make sure the class isn’t full, then with the Student object to collect funds, and
then with the Enrollments object again to add the student to the course. Figure 9-2
shows the completed sequence diagram for our registration process.

Figure 9-2: The completed sequence diagram of the registration
process

UML Collaboration Diagrams

UML collaboration diagrams are used to display basic interaction with classes. Whereas the
sequence diagram shows a detailed step-by-step collaboration between objects, the
collaboration diagram is more a simplified, bird’s-eye view of the collaboration.

Collaboration diagrams merely need to show the objects and their basic connections. You
can optionally include the methods that actually perform the collaboration, and their
sequence, by listing the methods next to the connecting lines with a number indicating their
sequence. Of course, if you do this, what you would typically accomplish is a very
complicated diagram that’s best suited for the sequence diagram.

Figure 9-3 shows the collaboration diagram for our previous example. It shows that the
Registrar class interacts with the Enrollments class, but not directly with the Course
and Student classes. The Enrollments class, however, interacts with the Student and
Course classes.

Figure 9-3: A UML collaboration diagram

Messages

When discussing collaboration, we typically say that a class collaborates with another via a
message. For example, the Registrar class sends the Enrollments class a “Find”
message to see whether a student and course are already registered.

Although message is a wonderful design and analysis term, as a programmer you have to
keep in mind that a message is really just a function call. When we say that Registrar

sends a Find message to Enrollments, more technically what we are saying is that the
Registrar class will call the Find method in the Enrollments class.

By designing the sequence of collaboration before the classes, we can help identify what
methods will be needed in what classes, as well as what they need to do, what they will
accept as parameters, and what they will return as optional return values. For example, we
now know that the Enrollments class needs a Find method.

The use of the term message to refer to a method call is really nothing new. In Windows
programs, we often refer to Windows sending a “paint” message to a window so that it can
redraw itself (if, for example, it was behind another window that was just closed). In
Windows programming, applications have a WndProc (or window procedure) function,
which the Windows operating system calls with the given message. The C prototype for this
function looks like the following:
LRESULT WndProc(HWND hWnd, UINT Message,
 WPARAM wParam, LPARAM lParam);

The exact implementation of this function isn’t important, but look closely at the second
parameter: Message. When Windows wants an application to redraw itself, it finds the
WndProc for the given main window (don’t ask how Windows knows where it is, that’s its
job) and calls the WndProc, passing WM_PAINT as the second parameter.

This provides an interesting way of handling messages: Although we stated that a message
is simply a function call, it is possible that several messages may be handled by the same
function. As long as the information as to what message is being sent is passed to the
method, it can handle any number of messages.

Collaboration and Inheritance

Collaboration in itself is not closely related to inheritance, but it can raise some interesting
questions about design vs. coding. For example, we have an Enrollments class that we
never saw before. That class is really nothing more than a collection class of some other
type.

The Enrollments class might in fact be a vector class in C++, Java, or C# (except that
we specifically use the Find method). So, if the Enrollments class is really one of these
other classes, why not show that class name instead? Well, because Vector isn’t quite as
descriptive as Enrollments.

It’s more likely that the Enrollments class is derived from the vector class, with some
additional functionality added. The problem is, we have two people, or we wear two hats:
the designer and the programmer.

The designer might say, “I want an Enrollments class,” but the programmer might say

“You already have one; it’s called Vector.” Although code reuse is always important, don’t
lose sight of your goal: to design, build, and deliver a working application.

You would most likely choose to have the Enrollments class derived from the vector
class and provide the additional features as needed. You could opt to use the optional
Object: Name in the sequence diagram, such as “Enrollments: Vector,” but just the
mention of the name “vector” might cause confusion on a design scale.

Association

Which came first, the chicken or the egg? We could ask the same question about
association and collaboration. Association simply means that a class some how interacts
with another class. Well, if they interact, then they collaborate. In order for there to be
collaboration, there must be association.

This association means that the two classes need to know how to interact with one another.
They need to know the other’s methods, return values, and so on. We aren’t breaking the
encapsulation rules here, because the two classes don’t need to have detailed knowledge
of how the other works. They just need the basics, the interfaces.

This is normal methods and accessor methods come into play. Class design isn’t just “need
a class, design a class.” Using our diagrams and understanding collaboration both
contribute to the design of a class. As we see the class might need to collaborate with
other classes, we add more functionality or interfaces.

If we clearly define the collaboration for all our classes, and therefore their association, we
can create a clear definition of the class needed. With few exceptions (particularly in the
area of testing and debugging methods), any methods not used in a diagram should not be
added to a class.

It would by typical to start designing a class by thinking, “Okay, what does this class need?”
However, that would probably be a mistake. You can’t define the class on its own unless it’s
a very generic class such as a string or vector class. You have to know exactly how a class
fits into the scheme of the application, and how it will be used, before you can start
designing the class.

Avoid adding methods to classes “just in case.” Wait for a need to arise and then add them.
This need, of course, should arise during the design phase.

Self-Collaboration

Objects can collaborate with themselves as well as other objects. In our registration
example, note how the sequence diagram shows a circular arrow that states “Find.” This
means that the Enrollments class calls its own Find method after getting the ID of both

the student and course.

Although it is sometimes helpful to just point this out, it can also lead to the design of a given
class. For example, we discussed in previous chapters that classes typically have private,
public, and protected data members. Though not always the case, we might consider that
self-collaboration methods are protected or private methods in a class, not accessible from
the outside world.

Self-collaboration can occur as a single method or as multiple methods. Consider the
following scenario: The Enrollments objects needs to save itself to disk. In order to do
this, it would probably do something such as save the count of elements it has to disk and
then save each element—something like the following pseudo code:
void Enrollments::Save(File)
{
 int I;
 WriteInt(File, GetCount()); // Write count of elements
 for(i=0; I < GetCount(); i++)
 {
 GetAt(i).Save(File);
 }
}

You can see that the Save method of the Enrollments class is calling its own GetCount
and GetAt methods to save the data to disk. The Enrollments class’s Save method
calls the Save method for each of its elements. Note that to implement this functionality, our
demonstration classes would all need to be modified to include Save and Load methods.
To keep things simple, the preceding code is pseudo code and not actually implemented in
the Enrollments class described or the sample source code for this book.

Class Responsibility Collaborator

As you saw in the “UML Sequence Diagram” section, sequence diagrams typically show a
small part of the detailed interaction between two classes. A typical system would have
many such diagrams, and the diagrams themselves might even be to different “scales” to
describe certain degrees of abstraction.

The Class Responsibility Collaborator (CRC) diagram is intended to be an all- inclusive list
of how a single class is to be designed. As you create and maintain your sequence
diagrams, you will also want to maintain your CRC diagrams as well.

A CRC diagram lists the class name at the top and then two columns below for
responsibilities and collaborators. It does not make an attempt to define the collaboration
itself, such as what methods are called. Figure 9-4 shows a CRC diagram for our
Enrollments class.

Figure 9-4: The CRC diagram for the Enrollments class

As you can see from Figure 9-4, the Enrollments class maintains a collection of
LinkCourseStudent objects and provides methods to add, find, and delete these
objects. It also interacts with the Course and Student classes.

The Enrollments class doesn’t collaborate with the Registrar object because it
doesn’t call methods within the Registrar class. Although it is possible to define the
collaboration with the Registrar class, the diagram could quickly become complex. At
some point, we need to say that the collaboration stops at some level.

We also wouldn’t diagram items in the CRC card that weren’t directly collaborated with. For
example, in Figure 9-2, the Student class doesn’t directly interact with the Course class.
Therefore, we wouldn’t indicate this as a collaborator on the Student CRC.

Note CRC diagrams are often printed as a card and referred to as CRC cards. These
cards can be helpful for the “brainstorming” process of the design.

Quiz
1. What is collaboration?

2. What is a UML sequence diagram?

3. Are UML sequence diagrams usually all-inclusive diagrams?

4. Do UML sequence diagrams show flow control?

5. What does a dashed line indicate in a sequence diagram?

6. What does a solid line indicate in a sequence diagram between two objects?

7. What is a UML collaboration diagram?

8. Technically, what is a message?

9. Should you create diagrams using base class names if the derived object you
are using doesn’t use any methods outside its base class?

10. What is a Class Responsibility Collaborator diagram?

Answers

1. Collaboration describes how two or more classes interact and work with one another.

2. A UML (Unified Modeling Language) sequence diagram is used to represent a
sequence of operations between classes.

3. No. They are typically diagrams of smaller portions or overviews of an application. An
application may contain many sequence diagrams.

4. No. Unlike flow charts, sequence diagrams do not show flow control; they show
sequence.

5. A return value from a method call.

6. A method call from one object to the other, as indicated by an arrow.

7. A UML collaboration diagram shows the basic collaboration or relationship between
classes.

8.
A message is normally a method call. A class may receive a message by having one of
its methods called, or it may send a message to another class by invoking a method of

the other class.

9.
No. If you have a class derived from another, for diagram purposes, it is best to use
the more descriptive derived class name even if none of the derived class methods are
used (in other words, use Enrollments, not Vector).

10.

It is a diagram that shows the class name, its methods, and the classes with which it
collaborates. A CRC diagram provides an overview of how a class interacts with other
classes and what it provides. It is not concerned with sequences or detailed
collaboration descriptions.

Chapter 10: Case Modeling
So far, we have spent much of our time working on the design and creation of classes, and
you’ve been given examples of how these classes can be created using diagrams and
standard approaches. In this chapter, we are going to take a slight step back and talk
about the overall design and analysis of a system, which in turn dictates the needs for such
classes.

Although we will also be discussing classes and programming, it’s important to point out that
a fair amount of groundwork must be laid before the first line of code can actually be
written. Even if you are not directly responsible for the design and analysis of a system,
understanding and recognizing its workings will simply make you that much more valuable
as a developer.

About Case Modeling
Consider the following architect paradigm: Architects are never told “Hey, make me a
building.” Instead, a tremendous amount of research and analysis goes into the process of
designing a building that will meet the requirements of the buyer. In the creation of a
software application, we need to adopt this same mindset.

You most likely won’t be building an application that you will be using on a daily basis.
You’re building it for other people, the end users of the system. Although a good analyst
can make useful recommendations to the buyer of the application, their first job is to identify
the needs of the end user.

Another interesting comparison between architects and programmers is the detail of their
design before starting the actual construction. I’m afraid that if most programmers were
asked to create a building, they would build it, fill it with people, and then see if it fell down.
Not a good approach. Architects, on the other hand, can tell you exactly how much weight
any portion of any floor could withstand before it collapsed.

Of course, because an architect’s creation holds people and is therefore responsible for
human life, it demands a much higher degree of exactness than a program for which the
end user can simply be told to “try again and see if the problem reoccurs.”

Then again, a programmer might be creating an application for a heart monitor or
Emergency Response System. And even if the programmer is just creating a game, the
company’s success and livelihood may depend on the success of this application.
Therefore, you should examine your own programming tendencies and see if you can raise
the bar for your professional attention to detail, no matter how experienced you are. Before
you write the first line of code, you should have a clear, concise, and well-understood plan
for the code you are about to create.

Oh No, Not End Users
Yes, end users. The jokes here can be endless in the technical community. The office
assistant with the company for 30 years who still sees no reason why they just can’t use a
typewriter to write a letter, or when asked to send a copy of a disk sends you a Xeroxed
copy.

Like it or not, these are the people who will be using your system. Never lose sight of the
fact that you are developing a system for someone else to use—someone who may likely
be using it on a daily basis, eight hours a day, for several years.

When designing a new system, you should work with the users. You are actually working
for them. Take notes on all requests and desires, and don’t think like a programmer yet. As
a person is describing their needs about student registration, don’t immediately start
thinking “Okay, I can use a vector collection for that….” Take down all the information and
the user needs, and think about the system. Even if you know you are going to be the
person writing the code, design it as if you were creating the specification to hand off to
someone else to actually code. In other words, be prepared to switch hats from designer to
programmer, at a moment’s notice.

Respect, patience, and attention to detail with all users will help ensure you a successful
career. And, of course, you can also get some funny stories for your techie friends.

True story: While I was working in a service department in the early 1980s, a customer
called with a problem. At the time, computers used 5.25-inch floppy disks, which had a
small door on their drives that you had to close to hold the floppy in place. When I instructed
the customer to place a diskette in the drive and close the door, they asked, “Why, is this
confidential?”

Gathering Requirements
When designing a system, it is helpful to identify the people, organizations, or things that
might interact with it. We call these things “actors” in the system. Note that an actor doesn’t
have to be a person. If a system needs to output a file in a certain format for a government
agency, that agency might be considered an actor as well. Or, a board of directors may
have influence over the rules of a system, in which case the entire board can be viewed as
an actor. For the most part in our discussions here, however, actors will refer to people.

As you work with actors, you will certainly want to track information about them, such as
their name, contact number, e-mail address, position, and so on. Position, however, does
not necessarily play as vital a role as you might think in the design of a system. You might
have two actors in developing a mail-routing system: the person who distributes the mail,
and the president who will be paying for the system. In reality, the design of the system will
be more driven by the person who actually distributes the mail than the person who pays for
it. Of course, everyone gets to add their input.

Your first step is to identify who the actors in the system are and try to categorize them by
their expertise of the system. For example, in our student-registration system, the registrar
might be familiar with the typical daily operations of the office, but the Dean of Enrollments
Management might have a more intimate knowledge of the policies that dictate enrollment
or might even have knowledge of future changes.

We identify such actors as subject matter experts, or SMEs. These people, although they
may not be using the system on a daily basis, have an expert knowledge of the system you
are trying to automate.

You should start your interviewing with the SMEs. By doing this, you will gain a more
intimate knowledge of the needs of the system and what the future needs might be for it.
Also, you can identify which end users might also serve as good candidates for other
interviews.

The Interview

It may seem obvious to state, but when you’re performing an interview, be professional.
Schedule the appointment well in advance, with several hours of time allotted. Arrive on
time, and thank the person for their time in meeting with you. In your initial communication
with the person, request that they have ready any sample reports or forms they currently
use to do their job.

Have an agenda ready, and describe to the person the system you are going to create as
well as how they fit into the system. Identify what benefits the system will have for them,
and be sure to ask them what benefits they would like to see come out of it.

During the interview, ask the most important questions first, in case you run out of time. If a
user begins to repeat something you have already heard, don’t stop them by saying, “Yeah,
I got that.” Instead, use it as an opportunity to enforce your understanding and also to
present the image that you are on top of things. Listen more than you talk, and take
detailed notes on everything.

Make sure you follow up by summarizing your meeting in a nontechnical fashion, even if it’s
just a bulleted list, and send the person a copy of this document, thanking them again for
their time.

It can also be beneficial to organize a meeting with several actors at once. Everything
mentioned so far applies to a meeting with multiple actors as well, and you gain the
advantage of not having to go back and forth between users to confirm “he said, she said.”
During a meeting, to some degree you will need to play the ringleader and encourage the
discussion of ideas. First, listen to all ideas presented by members of the group and assess
how the group responds to those ideas. Invite input from all in attendance to either accept,
decline, or build upon the ideas. Encourage input from everyone.

Essential Use Case
An essential use case is a nontechnical view of how your system will work with its users. Its
goal is to describe various aspects or operations, as well as who might perform these
operations, be responsible for their input, or interested in their output. When you identify the
actors of a system or create use case diagrams, you are performing essential use case
modeling.

Figure 10-1 shows a simple use case diagram for our registration example. Note that it
does not attempt to indicate a particular sequence or flow (such as a sequence diagram or
flowchart would) but instead provides a graphic representation of the actors for our system
along with their primary interaction with the system.

Figure 10-1: A simple use case diagram for the registration example

The people in Figure 10-1 are used to represent the actors themselves, and the large
rectangle identifies our system. Inside the rectangle, text appears within ovals to identify
particular tasks or needs for the actors. The arrows identify the initiation or start of the
processes. Thus, we can deduce the following from our diagram (in no particular order):

A student enrolls in a course.

The registrar accepts the enrollment request and processes it.

An instructor receives a roster.

An instructor assigns grades for the course.

The registrar distributes the grades for the course.

Note that we don’t identify the details of the tasks. Does the registrar send an e-mail or
regular mail to the student? If e-mail, is it sent via SMTP or an internal Lotus Notes mail
system? What sort of database are the grades stored in? We can’t tell from this diagram,
and we shouldn’t be able to.

The purpose of the use case diagram is simply to identify the use of the system, not its
technical details.

Use case diagrams are accompanied by documentation that describes the actor(s) and the
task(s) involved. At the very least, you should document the following items:

The use case name

A paragraph summarizing the diagram

Prerequisites that must be met before a use case takes effect (for example, is the
student eligible?)

Results of the use case (for example, the student received her grade)

The basic path that the use case takes (such as the numbered list just mentioned)

References to business rules where applicable (described next)

An example of the documentation for an essential use case might be as follows:

Name: StudentRegister

Description: The student attempts to register, and if the registration is valid, he is
registered for the class.

Prerequisites: The student must have no outstanding bills, not already be enrolled
in the class, and be in good academic standing.

Path:
1. Student requests registration.

2. Registrar approves registration and places data into system.

3. System accepts or declines registration, and notifies registrar.

4. Registrar notifies student of registration result via e-mail.

Results: The student is either registered in class or is not. The student is sent e-
mail notification of the end result either way.

System Use Case
Whereas the essential use case approach defines the nontechnical aspect of a particular
task or goal, the system use case defines the technical aspect. It is important to note that
the use case diagram in Figure 10-1 can be used in both, as it demonstrates a particular
task and its actors.

System use cases differ from essential use cases in their documentation and how we
describe the process itself (as noted earlier, essential use cases are documented).
Whereas the essential use case documentation would refer to the basic steps, needs,
prerequisites, actors, and so on, the system use cases will document the technical aspects
of the system, such as the user interface elements, database elements, and so on.

In describing a system use case, we might also find references to user interface elements,
which are what make up the visual interface to the application. The most common user
interface is Windows, and we can easily imagine using dialog boxes and controls (buttons,
check boxes, list boxes, and so on) in the documentation process. Of course, not all
programs or program steps require a user interface. Server-type applications don’t have a
specific user interface but can still benefit from system use cases to describe technically
explicit operations.

Even the documentation here takes a bird’s-eye-view of the process. We might describe
our registration process in terms of “User login screen UI12 is displayed to retrieve the
user’s name and password” and “Logon table TBL3 is queried for a valid name and
password combination.” Note that UI12 and TBL3 are unique IDs given to a user interface
element and a database table. As we design systems, we want a way to easily refer back
to a specific item.

More technical (system) documentation for the use case diagram might look like the
following:

Name: StudentRegister

Description: The student attempts to register, and if the registration is valid, she is
registered for the class.

Prerequisites: The student must have no outstanding bills, not already be enrolled
in the class, and be in good academic standing.

Path:
1. The student requests registration into a class using form UI12.

2. The system checks business rules BR1, BR5, and BR9 to determine
whether the student is eligible. If not, student is notified immediately.

3. The system notifies the registrar of a new request using pop-up form
UI11.

4. The registrar reviews the data on form UI11 and approves or declines the
registration.

5. If the registration is approved, the system stores the registration data in
Enrollments table TBL3 and sends an e-mail to student using the Mailer
class.

Results: The student is either registered in class or is not. The student is sent e-
mail notification of the end result either way.

Business Rules
No, we don’t mean “business is the tops.” It’s a fact of life that we all have rules we must
follow, and a business is no different. As you might guess, a business rule defines a rule a
business must follow. For example, a business rule of our registration system might be that
students can only enroll in a new course if they have paid for all their previous courses in
full.

Any actor or SME of the system can define business rules. Going back to the “actor may
be a government agency” example, a government agency might define certain rules under
which a student is eligible for financial aid, and your system must implement those rules for
each student.

Business rules are implemented in a method of a class. Let’s go back to the “student must
be paid in full” business rule for our registration example.
class Student {
 public:
 bool PaidInFull() {
 /* Search database to determine if paid in full */
 }
 bool Enroll(const Course& aCourse) {
 if(PaidInFull() == false)
 return(false);
 else
 {
 /* Proceed with enrollment */
 }
 }
};

Note how the preceding class enforces the business rule about being fully paid. Because
the business rule is placed in the Enroll method, it is now impossible to enroll students
who aren’t completely paid in full. Of course, there might always be waivers or special
cases, so don’t be surprised to find out there are exceptions to the rules. Hopefully though,
if your actor interviews are done well, you can avoid these surprises.

We also decided to make the PaidInFull method a public method instead of a protected
method (which would only be usable from within the Student class or one of its
derivatives). We might decide that other portions of the system need to know whether the
student is paid in full, without actually trying to do an enrollment to find out.

We might also create classes that are, in essence, nothing but business rules. There are
times when COM and CORBA technologies work well with this, because these technologies
are more “plug and play” adaptable than typical classes. In other words, if we have some

sort of scheduling business rule class, and we identify that those business rules have
changed, we can modify the one business rule class, which then can be used by a number
of different programming languages or systems immediately.

COM stands for Component Object Model, and CORBA stand for Common Object Request
and Brokering Architecture. Both provide a similar goal: to create a class that can be
instantiated by different programming languages. For example, a COM class can be
instantiated as an object by C++, Visual Basic, Java, and a number of other programming
languages. COM is a Windows-based technology, whereas CORBA is found more on the
Unix platform.

Business rules are documented in a numbered fashion, such as “BR1: Students must be
paid in full before registration for any new classes will be accepted.” These business rules
are the outcome of your actor interviews and meetings, and often the SMEs provide the
most detailed and accurate business rules.

User Interface Diagramming
The user interface is one of the more subjective aspects of programming. For the most
part, we are talking about forms in which the user enters data, but the user interface is also
composed of menu items and reports. Basically, whatever the user sees or interacts with
defines the user interface.

Although programmers may tend to lay out the user interface in a manner they find both
attractive and functional, the initial designs will often not be perfect the first time. As you
design these sets of diagrams and forms, be prepared for change.

For example, we may think that the student’s address comes before their grade information
in the user interface. However, an SME might point out that the student’s address is
commonly entered just once, whereas the grade data is modified many times over the
student’s academic life. Having the address fields before the grades simply means the end
user must move through those fields to get to the ones they work with the most, thus
wasting time.

Use of screen real estate is also important. Try to fill up the screen with as much data as
possible, but leave a consistent amount of space (both horizontal and vertical) between the
controls on a form. If there is simply too much data to display on a single page, consider
adding user interface elements specifically designed to handle this situation, such as tabs or
pages, depending on the platform.

User Interface Flow Diagramming

User interface flow diagramming lets you define the flow of the program, from a menu
selection to a specific form, then to another form or dialog box. As with all diagrams, the
basic goal is to identify what is needed and how things should work. User interface flow
diagrams are most often used to define how the user will interact with the system for a
particular use case.

Figure 10-2 shows a simple user interface flow diagram for our registration example. The
text on the lines between the boxes indicates the form or user interface element to be used
at that particular stage, and the boxes contain the text defining the operation or stage. In
this example, we can see the following:

The student (user) selects the Register option from the main menu.

The student is then presented with a form titled Enrollment.

From the Enrollment form, the student must select a class. To enable them to do
this, the Course Selector form is displayed.

Once a course is selected, the student then selects a section (or schedule) for the

desired course using the Selection Selector form.

Once the student is registered, he is shown the Enrollment Verification form, which
displays the summary of his new registration.

Figure 10-2: A simple flow diagram describing the user interface for the
registration example

Note how we have each section or step of the user interface designed in terms of flow,
including the course selection, section selection, and confirmation. Every aspect of the
program must be accounted for.

User Interface Prototyping

User interface prototyping initially uses a diagram to define basically what will be displayed
on a specific form. We can’t write source code for a form until we know exactly what’s on it.

Figure 10-3 shows a simple user interface prototype diagram. Note that at this stage, we
don’t care about the specific types of controls and their layout. We are still in the design and
analysis phase, and spending too much time here in perfecting a user interface screen
would be a waste of time because it is a commonly changed aspect of most programs.

Figure 10-3: Boxes are used to group sets of one or more data

elements.

Figure 10-3 uses boxes to group sets of one or more pieces of data. You can see that, at
the top, the Student Information area shows the current student’s ID number, name, status,
payment status, and course status. We can imagine that Number, Name, and Status are all
single fields. Payment Status, on the other hand, may have data such as how much the
student has spent this year, in total, and how much they owe. This information is added at
the bottom of the box.

Figure 10-3 also shows that, on the same screen, we have information about the course
itself. It shows the number, name, status, and enrollments. It also provides a Select option,
which could be a button that permits the user to pop up a list of all the courses offered by
the institution.

As the user interface prototype is refined, you will eventually have defined all the
components that need to be on a specific form. At this point, you may want to consider
making actual prototype screens or mock programs. Doing this permits users to actually
see, and possibly interact, with the real screens. A number of professional tools are
available that permit you to create mock screens, but you may want to consider simply
making them in the actual programming tool you will be using for the project.

The benefit to creating the mock screens using the actual programming tool is that you can
then, if the design is approved, go ahead and use the code in the actual program. If you use
a design tool (unless it specifically exports its design to your programming tool) to create a
picture only, you will need to re-create the form from scratch in your development tool.
Many Rapid Application Development (RAD) tools such as Visual Studio .NET, Delphi, and
JBuilder make creating these mock screens very simple.

Defining Classes from Our Designs
Okay, now its time for the big step: taking your diagrams and documentation and start
coding your classes. Whoa, wait. Come back here. You need to design them first, not code
them.

We can start by defining the three main types of classes: actor classes, business classes,
and user interface classes.

Actor classes are classes that represent the actors within the system. Remember that an
actor may be a person or an organization such as a government agency. In our registration
example, we might say that one of the actors is the registrar who must approve each
registration request. (As a programmer, you might think that you can automate the process
completely, and perhaps you can. Just don’t be surprised if this becomes a decision of an
SME.)

Business classes are the classes that define the business rules, or the main logic of the
application. For example, we may have an Enrollment class that governs and enforces
the rules for enrolling in a class. Business rules (as described earlier) can get quite
complicated, and it is common to have multiple business classes in an application, some of
which collaborate with others. Sometimes, business classes can be thought of as
representing the actors within a system that are not soft-shelled creatures (in other words,
humans), such as a government agency.

User interface classes are classes that implement a specific user interface feature.
Examples of these might be the CFormView class in MFC, the JPanel in Java, and the
Form class in C#. Of course, these are really just base classes in their respective
languages, and we would design new classes derived from them to add the desired
functionality and controls we need in our application.

In earlier chapters, we discussed the process of designing classes. Simple rules such as
describing the requirements in plain English will yield nouns and verbs. The nouns become
classes, and verbs become the methods of the classes. It would also be good to take into
account the Class Responsibility Collaborator (CRC) diagrams and cards we discussed in
the previous chapter, to help define the classes themselves.

We should also discuss something that typically does not become a class: possessive
nouns. If something is a possessive noun, such as “student ID,” then it most likely isn’t a
class but rather a property or attribute of a class. Of course, then again, it may be a class.
We can easily identify that IDs come in various formats, such as Social Security numbers,
ISBN numbers, and business tax IDs. For these, we may want to create a class to ensure
proper formatting and validation when needed. The rule is, as always, use common sense
and rethink the problem a couple times before finalizing your solution.

Identifying Technical Requirements
Now, this really has very little to do with programming, but we also need to identify the
technical requirements of the system. Technical requirements define what is needed by the
system as well as what the system needs to do or be able to do in order to successfully
accomplish its job.

Technical requirements are usually dictated to you, and you simply document and enforce
them. They normally don’t affect any classes or designs.

Let’s imagine that we have decided to document our technical requirements as a sort of
numbered list, where each item is described and uniquely identified. We will number our
items using the format SR1, meaning System Requirement 1. Therefore, we might come up
with the following:

SR1 Host System

The system must be hosted on the university’s existing Acme computer system. A browser
interface and web connection is to be used for the user interface.

SR2 Database System

The database system must utilize, and be stored on, the university’s existing SQL Server.

SR3 E-mail System

A new e-mail server must be installed for the purpose of e-mail notifications. A new machine
is to be purchased, installed, and properly set up to serve as the e-mail server.

SR4 System Metrics

The system must be able to manage 5,000 students per year, and 1,000,000 students in
total. It must be able to manage 500 course offerings, of up to five sections each. Also, 250
instructors per year must be tracked, with a total history of up to 1,000 instructors.

Note how each item has a simple number, a brief description of what it is we need to
ensure, and then a more descriptive paragraph of the actual requirement. Although these
items may not have an important impact on the design of classes, they still might have some
impact. For example, we can see that up to 250 active instructors must be logged, so while
designing the Instructor class we might decide that a single-byte value is all that’s
needed to identify a unique instructor (byte values range from 0 to 255). Of course, this
specific example is somewhat overly detailed, and using a simple two-byte integer is more
convenient and practical.

Change Cases
Another aspect of design, which doesn’t really directly impact class design significantly,
involves change cases. It’s a fact of life that things change. People change (and change
jobs), business rules change, and government agencies change. Therefore, your program
will also change.

Change cases are documented much like technical requirements, using a simple numbered
text approach. What you want to do is identify portions of your system that may be eligible
for change some time in the future, and document them.

These change cases should include a single-line description of the anticipated change, a
possibility indicator of the chance the change will be needed, and what sort of impact the
change will have on your system. By describing these changes now, management has the
ability to try and manage them.

The project manager may decide that a specific section of a design is complete but then
suddenly get wind of a new change. Based on the impact and likelihood of the change, the
project manager may authorize the design to be modified accordingly, or they may simply
defer the change until it is a certain requirement.

Here’s an example of the documentation for change cases (note that “CC” in the numbering
system refers to “change case”):

CC1: A telephone response system needs to be implemented.

Impact: Moderate. The existing user interface classes that work with the console
need to have telephony-compatible versions created. The business rules and actor
classes have been separated from the user interface, so these classes need not be
aware of the change.

Likelihood: Likely. The Vice Dean wants this implemented, but the Dean does not.
The Dean will be retiring next year, however.

Project Management
We’re afraid the days of considering building a model car project are over. Software
development is a full-time job, and indeed many organizations have at least one individual
who operates under the title “Project Manager” to help make sure that a project is
completed successfully.

So far, we have talked about gathering requirements and the design and analysis phases,
and the preceding section described change cases to handle program changes. We’ll now
discuss the final topic (which really isn’t technically a programming issue): project
management. We’ll begin our discussion differently from any of the previous topics with the
assumption that the designing, coding, and testing phases are already or nearly completed.

You can choose from a number of commercial packages to assist you in project
management, such as Microsoft Project for general projects and StarBase StarTeam for
software development projects. These applications basically help you to track and plan
project progress.

We will take a hierarchical view of project management. Starting at the top, we will begin to
drill down into the smaller details and identify some of the key aspects of each level.

Clients

This is a really a good place to start because the clients are the people who pay us.
Keeping track of your clients is, of course, a primary goal. A client is usually a company,
though some organizations develop software internally, in which case a client may be
another department or cost center.

You should make sure you keep track of every contact at your client company, even if they
leave. Keep their name, address, e-mail address, phone number, cell phone number, and
so on. Make sure you have a good relationship with them, and know what they are
responsible for. Identify who pays the bills, who approves the bills, who defines the
business rules, who provides technical support, and so on. This sort of data is fairly
common in all businesses, so it should be fairly straightforward.

It never hurts to provide a follow-up call on a project just to check the status and
satisfaction of the client. Software development is a service-based business, and if your
clients feel that you are providing a professional service, your success is all the more
ensured.

Projects

Clients have one or more projects. All the design and analysis work we have done so far is
organized into a project somewhere. A project is typically an application, system, or major

change. An application is an individual program, whereas a system is a set of applications.
A major change is an extensive amount of work needed to modify or change an existing
application or system.

Projects should be documented with a brief description, a more detailed paragraph
describing the system, the scheduled completion date, and the status and priority of the
project. When we define the status of a project, we typically say it is either Initial Design,
Pending Approval, Approved, In Progress, In Release, Completed, or Deferred. Priority is
simply High, Medium, or Low.

Work Requests

Projects are made up of work requests, which define specific requests of the client. This is
a very broad definition. A work request may be found at the very start of a project for the
very first client meeting, or for a bug found in the system after it is placed into production.

Work is typically assigned one of the types shown in Table 10-1.

Table 10-1: Work Assignment Types

Type Description

Work Request A request to do some thing, such as create a backup,
generate some statistics, or attend a meeting.

Defect A defect is a bug report or a bug within the system.

Support A request for assistance on a specific issue on the system.

Work requests typically have a brief description and a more detailed “Notes” section. The
following items refer to the request, and a “Solution” section may also be present:

Project University Registration

Work Request Identify why reports are printing in landscape orientation

Type Support

Notes All reports printed in room 212 are printed in landscape.

A work request also has a priority (High, Medium, or Low) as well as a status and a
responsibility. The Responsibility field identifies the person in your organization responsible
for completing the work request. The status of a work request is typically one of the options
shown in Table 10-2.

Table 10-2: Status of a Work Request

Status Description

Pending Approval The request must be approved before it's begun.

Approved The request is approved and ready to begin.

Deferred The request was deferred and may be reinstated later.

Closed The request was closed and will not be reinstated later.

Duplicate The request was a duplicate of another request.

Documented
Typically for bugs, this status indicates that the user
misunderstood how the system operates, and they think a
particular operation is problematic when in fact it isn't.

Completed The request has been completed by your company.

Verified Completed The client has agreed that the request is completed to their
satisfaction.

Systems can also determine whether a work request may generate other work requests.
That is to say, someone may be assigned a work request of “Design registration system.”
That person then creates work requests for their employees, breaking this monolithic
request into smaller requests, and so on. Managers use work requests in this manner.

Finally, a work request may be considered a milestone or significantly important somehow.
The milestone may be the completion of a project or the end of a work request that
indicates another pending request may now be started. Where applicable, you should
document the milestones as well for the requests.

Tasks

Tasks represent the lowest detail of work, and work requests are linked to them. Tasks are
often used for the purposes of estimating and billing. As a programmer, you may receive a
work request of “Create enrollment form.” You would then enter one or more tasks to
complete this work, with an estimate of the amount of time each will take you.

Once the tasks are begun, you would normally record the amount of time each task takes.
Companies may have various rules of thumb on how these tasks are organized, such as
stating that a single task should not take more than eight hours. So, what do you do if you
estimate a task will take 40 hours? You break that single task down into smaller tasks.

Clients and end users normally don’t see the tasks, as they are intended for the people who
normally do the actual work (such as programmers) and their managers. They provide the
estimates and hourly accounting needed to manage a project. Where possible, you should
put in as much detail concerning your tasks as possible.

Tasks also have a priority and a status, with the status typically being one of the options in
Table 10-3.

Table 10-3: Task Status

Status Description

Open The task is defined, but not yet begun.

In Progress The task has begun.

Completed The task is completed.

Estimation

Estimation can be an art form. No one but you can guess how long it will take you to
perform a certain task. However, by knowing what needs to be done, breaking the
estimates down into manageable tasks, and knowing your own abilities through your own
experience, you’ll find that estimation isn’t very hard. Although an estimate is just that (an
estimate, not a guarantee), you should make every effort to provide fair and accurate
estimates.

The first step in the estimation process is to quantify. If asked to create a form, you have to
know whether there are two edit boxes on that form or 20. For those edit boxes, you have
to know which ones are stored in a table and which aren’t. You also have to know which
tables in a database are affected by the edit boxes, and so on.

Hopefully, these items are completely addressed in the design and analysis specification,
like the user interface prototype described earlier.

You also have to know how to estimate each individual item. If the task is for something you
are familiar with, this will be easy. If it’s not a familiar task to you, however, this is where
the real estimation process comes in. Based on your own talents, you have to guess how
long it will take you to complete a task you may never have done before.

In these situations, you would do a small amount of research, try to gauge the task’s
difficulty, and compare this with your own expertise and ability to learn new things. Don’t
look at a new task and think, “Okay, two hours.” Instead, do some research and try to be
accurate. Then again, you don’t want to suffer from “analysis paralysis,” where you spend
all your time thinking how you will perform the task.

Programmers have a tendency to fall into dangerous waters with estimates. Case in point: I
had a specification for a program I knew had to be completed in two weeks. I gave that
spec to a programmer and requested an estimate. About four hours later, the programmer
returned with an estimate of exactly 80 hours, or two weeks. Although this was great news,
I really had to question the programmer about the coincidence of the estimate matching

exactly my deadline. Sure enough, the programmer’s response was, “Well, you said you
needed it in two weeks, so I’ll do it in two weeks.”

Such thinking makes a project manager’s job a nightmare. Estimates aren’t used just to see
how long you think something will take, but rather to manage a project. If the programmer
came back to me with a three-week estimate (which turned out to be the real case), I
would know that I needed to add another programmer to the project. However, by trying to
fudge his estimate to make me happy, he denied me the ability to make that decision.

Quiz
1. What is an actor?

2. What is a subject matter expert?

3. In your initial communication with a subject matter expert or an actor, what
should you request from them?

4. What should be the first thing you do when interviewing a subject matter expert
or actor?

5. What is an essential use case?

6. What is the purpose of a use case diagram?

7. What does the system use case define?

8. What is the purpose of business rules?

9. What do you use to define the flow of the program from a menu selection to a
specific form?

10. What is an actor class?

Answers

1. An actor is a person, organization, or thing that might interact with a system.

2. A subject matter expert (SME) is a person who has expert knowledge of the system
but may not use the system.

3. You should request that they have ready any sample reports or forms that they
currently use to do their job.

4. Ask the most important questions first, in case you run out of time.

5. An essential use case is a nontechnical view of how your system will work with its
users.

6. The purpose of the use case diagram is simply to identify the use of the system, not its
technical details.

7. The system use case defines the technical aspect of the system.

8. Business rules define the rules a business must follow, and they must be incorporated
into the system.

9. User interface flow diagramming lets you define the flow of the program, from a menu
selection to a specific form.

10. An actor class is a class that represents an actor within a system.

Chapter 11: Interfaces
The telephone is one of the many technologies we take for granted. You can go anywhere
in the country and use a telephone to call home. You don’t think twice about how to use the
phone because, regardless of the manufacturer, all telephones have the same keypad and
work the same way—they all have the same user interface. Anyone who learns how to use
one phone can use the same skills to use any other phone. When you dial home, you are
connected in a second, regardless of the technology used in the telephone. The concept of
a common interface also applies to an object-oriented program, although not necessarily a
user interface. In this chapter you’ll explore interfaces used in object-oriented programming
and how they increase the flexibility of program development.

Inside Interfaces
When a person in the computer industry hears the term interface, he usually thinks of a user
interface, such as the Windows or Mac OS X operating system shells. Interfaces in
programming serve a similar need, but at a very different level.

A user interface defines how a user interacts with a program. Thanks to modern graphical
user interfaces (GUIs), users know how to exit or terminate the programs on their systems,
even if it’s the first time they’ve run a particular program. This standard approach of various
programs on the same operating system leads to a reduced learning curve for new
applications.

The interfaces we are interested in, however, are not user interfaces but rather interfaces
for object-oriented programming and design. Simply put, an interface defines a set of
methods needed to provide a particular feature or behavior in a class. An interface may
also provide any number of attributes, but these are not required.

Because an interface defines a certain behavior or feature, we will be using it to add a
behavior to a generic class. We can then write methods that take as a parameter the
interface, but we can pass to that parameter the class that implements the interface.

Interfaces are supported syntactically by a number of languages, but we will be discussing
only Java and C# here. C++ doesn’t provide direct support for interfaces; however, there
are some “tricks” we can perform to simulate their behavior.

Interfaces Are Not Classes

An interface might initially start to look like a class. Let’s consider the previous definition a
bit closer: “Simply put, an interface defines a set of methods needed to provide a particular
feature or behavior in a class.” Right about now you might be thinking, “Okay, so let’s see
here…something that defines a set of methods. Sounds like a class to me.”

Ok, you got us there. Let’s clarify a bit further: Although interfaces define methods, they do
not contain any actual code. Fine, now you’re thinking, “Are you wasting my time? I can
create a class with methods, and make all the methods ‘pure virtual’ in C++ or ‘abstract’ in
Java, and have the same thing.” And a very astute observation on your part that is.
Interfaces are very similar to classes that contain nothing but abstract methods.

But, consider this: Java and C# do not support multiple inheritance. This means that if you
were to create two such classes with only abstract methods, you couldn’t use both of them
as your base class. And this is where, syntactically, interfaces are different.

Although Java and C# don’t support multiple inheritance, they do support multiple interfaces.
Therefore, if we wanted to define one interface to provide a behavior such as generating
HTML output, and another interface to provide a behavior such as storing or retrieving itself

to or from a database, we could do it.

Rather than create a class derived from another class with all abstract methods in it, we
create a class that “implements” an interface. “Hmmm,” you might be thinking, “if an
interface is like a behavior or feature, then I guess something that implements the interface
could be said to ‘implement a behavior’ or ‘implement a feature.’ Why, then, don’t they call
an interface a feature or a behavior?” Well, if they called it a behavior, someone would have
said, “Gee, that sounds like an interface to me.”

In summary, because an interface doesn’t provide any code and requires you to write code
in your class, this isn’t “inheritance.” Therefore, multiple interfaces don’t qualify as multiple
inheritance.

Interface Diagrams
You have two principle ways in which to diagram an interface: You can diagram the
interface itself, and you can show within the diagram that a class implements the interface.

Figure 11-1 shows a diagram that represents an interface. The first line, called the
stereotype, describes what the box represents, and the second line provides the name of
the interface. Below that you find the methods of the interface. You can then optionally
create a diagram that has an arrow going from a class to the interface, to indicate that it
implements that interface.

Figure 11-1: A typical interface diagram

Figure 11-2 shows a diagram using a type of shorter notation, referred to as the lollipop
notation. This notation doesn’t provide details about the interface but rather merely that a
class implements it. The interface name appears in the circle, and a line connects it to the
class that implements it (in this case, Course).

Figure 11-2: This diagram shows that a class implements the
interface.

The shorter notation obviously saves space and is simpler to reproduce, but it’s best used
for well-known interfaces, whether in the language or the application itself.

Show Me the HTML
In order for you to understand interfaces, we’ll start out with a conceptual example. We
have been working with a school registration system throughout the book, so we’ll stick with
that example. In our registration system, so far we have seen similar (or derived) classes
such as Student and Instructor (potentially derived from a Person class) as well as
dissimilar classes such as Enrollment and Course.

Because Course, Person, and Enrollment are dissimilar, they probably won’t share the
same base class (we’ll discuss “super” base classes later). But, as it turns out, we may
want to have a standard method in each of these classes to permit us to display the data of
an object.

Because we have already discussed a Display method common to each of the classes,
let’s make this example a bit more interesting. Our goal is to introduce a standard method,
called GetHTML, for objects to generate their own HTML source for display in a web page.

Now you might be jumping ahead here. Perhaps you are thinking, “Why do I need this
‘interface’ thingy? Why can’t I just add the GetHTML method to the desired classes?” Well,
the fact is, we will be doing this, but you will see how interfaces permit us to treat classes
such as Student and Course as generic providers of HTML data, rather than as two
distinct classes.

A Quick Introduction to HTML

If you’ve been on the Internet, you have seen HTML in action. The Hypertext Markup
Language defines the appearance and content of a web page. When you visit a website,
typically your browser asks the web server for an HTML file, which the server “serves up”
to you. Your browser then follows the HTML commands (or “tags”) and renders the proper
appearance intended by the author of the HTML file.

Although some web pages can be fairly complicated, you can normally visit any web page
and view the HTML source for that page. In Internet Explorer, you would select View |
Source from the main menu to view the HTML source for the current page.

HTML is defined as a set of tags that control the formatting of a page. These tags normally
are used in pairs, where the text or content of the web page is wrapped by the tags. Table
11-1 gives a brief summary of the common HTML tags, some of which we will be using in
our example:

Table 11-1: Common HTML Tags

Start tag End tag Description

 None Indicates a line break.

The text between the tags is displayed in a
bold font.
Example:
Bold text.

<P> </P>
Denotes a paragraph.
Example:
<P> Paragraph1</P><P>Paragraph2</P>

<TABLE> </TABLE> Denotes a tabular or columnar table.

<TR> </TR> Denotes a row within a table.

<TD> </TD>

Denotes a cell or column within a table.
Example:
<TR><TD>Jones</TD><TD>Tom</TD>
</TR>

The HTMLSource Interface
We want to create our own interface, which we will call HTMLSource. The feature this
interface will provide is the ability to format its data as HTML.

Now, before we go much further, you should be aware that providing user interface
functionality in a class that also implements some sort of logic or rule functionality is
typically considered bad design. Ideally, logical classes are separated from user interface
classes. A more realistic example would be to provide an XMLSource interface to provide
XML-formatted data. However, XML and its usage are more complicated than we have
space to cover.

The HTMLSource interface we’ll create will have a single method, GetHTML(), that returns
the object’s data in an HTML-formatted string.

The interface in Java would look like the following:
package Registration;
public interface HTMLSource
{
 public String GetHTML();
}

Note the use of the interface keyword to declare HTMLSource as an interface, not a
class. Inside you can see fairly typical method signature:
public String GetHTML();

This means that GetHTML is a method that accepts no parameters and returns a string.
Note, however, that unlike a normal Java class, the body of the function is not defined as or
marked “abstract.” By being in an interface, it is implicitly abstract.

The same interface in a C# program would look pretty similar:
namespace Registration
{
 public interface IHTMLSource
 {
 string GetHTML();
 }
}

Again, C# uses the same interface keyword, which is followed by the interface name,
and inside you find the return data type, method name, and argument list but not the body
of the method. Note that by popular convention (but not by requirement), interfaces in C#
normally start with the letter I.

The Classes, Before an Interface Is Implemented
Our example will use four classes: Person, Student, Instructor, and Course. The
class Person will provide the first and last name attributes (data members) and will serve
as the base class for Student and Instructor. The Course class will not be derived
from anything, and for the sake of simplicity will contain nothing but the course name.

The Java classes are defined as follows:
/////// Person.java
package Registration;
public class Person {
 protected String FirstName, LastName;
 public void Modify(String First, String Last)
 {
 FirstName = First;
 LastName = Last;
 }
 public void Display()
 {
 System.out.print(FirstName + " " + LastName);
 }
}

/////// Student.java
package Registration;
public class Student extends Person {
 protected int GraduationYear;
 public Student() {
 GraduationYear = 0;
 }
 public void Modify(String First, String Last, int Graduation) {
 super.Modify(First, Last);
 GraduationYear = Graduation;
 }
 public void Display() {
 super.Display();
 System.out.print(" " + GraduationYear);
 }
}
/////// Instructor.java
package Registration;
public class Instructor extends Person {
 protected boolean IsTenured;

 public Instructor() {
 IsTenured = false;
 }
 public void Modify(String First, String Last, boolean Tenured) {
 super.Modify(First, Last);
 IsTenured = Tenured;
 }
 public void Display() {
 super.Display();
 if(IsTenured)
 System.out.print(" (Tenured)");
 else
 System.out.print(" (Not tenured)");
 }
}
/////// Course.java
package Registration;
public class Course {
 protected String Name;
 public Course() {
 }
 public void Modify(String CourseName) {
 Name = CourseName;
 }
 public void Display() {
 System.out.print(Name);
 }
}

The matching classes in C# would be declared as follows:
/////// Person.cs
using System;
namespace Registration
{
 public class Person {
 protected string FirstStr, LastStr;
 public void Modify(String First, String Last) {
 FirstStr = First;
 LastStr = Last;
 }
 public void Display() {
 System.Console.Out.Write(FirstStr + " " + LastStr);
 }

 }
}

/////// Student.cs
using System;
namespace Registration
{
 public class Student : Person
 {
 protected int GraduationYear;
 public Student() {
 GraduationYear = 0;
 }
 public void Modify(String First, String Last, int Graduation)
 {
 base.Modify(First, Last);
 GraduationYear = Graduation;
 }
 public void Display() {
 base.Display();
 System.Console.Out.Write(" " + GraduationYear);
 }
 }
}

/////// Instructor.cs
using System;
namespace Registration
{
 public class Instructor: Person
 {
 protected bool TenuredBool;
 public Instructor() {
 TenuredBool = false;
 }
 public void Modify(String First, String Last, bool Tenured)
 {
 base.Modify(First, Last);
 TenuredBool = Tenured;
 }

 public void Display() {
 base.Display();
 if(TenuredBool)
 System.Console.Out.Write(" (Tenured)");
 else
 System.Console.Out.Write(" (Not tenured)");
 }
 }
}
/////// Course.cs
using System;
namespace Registration
{
 public class Course
 {
 protected string NameStr;
 public void Modify(String Name) {
 NameStr = Name;
 }
 public void Display() {
 System.Console.Out.Write(NameStr);
 }
 }
}

Implementing Interfaces in Java and C#
Now that our classes are defined, we need to actually implement them. We need to indicate
in the class declaration that we intend to implement the interface, and we also need to write
the methods that are contained in the interface.

In Java, we write the following to modify the Student class:
/////// Student.java
package Registration;
public class Student extends Person implements HTMLSource {
 protected int GraduationYear;
 public Student() {
 GraduationYear = 0;
 }
 public void Modify(String First, String Last, int Graduation)
 {
 super.Modify(First, Last);
 GraduationYear = Graduation;
 }
 public void Display()
 {
 super.Display();
 System.out.print(" " + GraduationYear);
 }
 public String GetHTML()

 {

 String Ret = new String();

 Ret = ""+FirstName+" "+

 LastName+" Graduates in "+

 GraduationYear;

 return(Ret);

 }

}

Note how the first line of Student has been modified to use the syntax implements
HTMLSource, which means we will be implementing that behavior. The next step is to add
the GetHTML method to the class (listed in the preceding code in bold font).

Taking the same approach for C#, we write the following:
/////// Student.cs
using System;
namespace Registration
{
 public class Student : Person, IHTMLSource

 {
 protected int GraduationYear;
 public Student() {
 GraduationYear = 0;
 }
 public void Modify(String First, String Last, int
 Graduation) {
 base.Modify(First, Last);
 GraduationYear = Graduation;
 }
 new public void Display() {
 base.Display();
 System.Console.Out.Write(" " + GraduationYear);
 }
 public string GetHTML() {

 return "" + FirstStr + " "+ LastStr +

 " Graduates in " +

 GraduationYear;

 }

 }
}

In this C# example, note that the syntax for declaring that you are implementing an interface
only requires you to list the interface name after the class name is declared. In the
preceding code, we state that we are deriving from Person and are implementing
IHTMLSource, because Person is a class and IHTMLSource is an interface.

Bringing It All Together
Having the classes functional and implementing the proper interface are important, but we
are still missing the demonstrational code that shows why the interface is different from a
class with only abstract methods in it. The answer is presented here, and it requires us to
write a function that takes an interface (not a class) as a parameter.

In Java, we would write this as follows:
protected void ShowHTML(HTMLSource SomeObject)
{
 System.out.println(SomeObject.GetHTML());
}

The C# version would be nearly identical:
protected void ShowHTML(IHTMLSource SomeObject)
{
 System.Console.Out.WriteLine(SomeObject.GetHTML());
}

Now, in both Java and C#, we have a ShowHTML method that accepts any object that
implements the HTMLSource interface. With this knowledge, it is safe for the preceding
ShowHTML function to call the GetHTML method on the received object.

Figure 11-3 shows what our diagramming now looks like, with multiple classes that
implement an interface.

Figure 11-3: A diagram showing multiple classes that implement an
interface

What About C++?
As stated at the beginning of this chapter, C++ does not provide syntactical support for
interfaces. However, C++ does provide support for multiple inheritance. Earlier on we
described how an interface is very similar to a class with all abstract methods. The problem
in Java and C# is a lack of multiple inheritance, which means we can’t use this type of class
and therefore have to use interfaces.

In C++, thanks to multiple inheritance, we can do something very similar by using a class
with all abstract (or pure-virtual) methods. Consider the following C++ class:
class HTMLSource
{
 public:
 virtual string GetHTML() const = 0;
};

Here we have a class with a single pure-virtual function, much like the Java and C#
interfaces from earlier. Now, we declare a Student class, derived from the Person class
and the HTMLSource class, and provide the GetHTML method:
class Student: public Person, HTMLSource
{
 public:
 string GetHTML()
 {
 return "" + FirstStr + " "+ LastStr +
 " Graduates in " + GraduationYear;
 }
 // Portions of class removed for readability
};

As in Java and C#, we write a function in C++ that takes an HTMLSource object as a
parameter and can accept any class with HTMLSource somewhere in its ancestry:
void ShowHTML(const HTMLSource& Src)
{
 cout << Src.GetHTML();
}

Components
A component is a class designed to fit into some preexisting class framework. It may do so
through inheritance or by implementing one or more interfaces, but it must follow the rules
of components for the environment in which it is being developed.

The more common examples of components include the controls and beans found and used
in modern Integrated Development Environments (IDEs). Java development tools and .NET
Framework tools usually implement some type of form designer, where you can drag and
drop controls such as buttons from a tool palette onto a form.

The items that appear in the tool palette are examples of the types of components we are
talking about, and they are often written in the language of the IDE itself. For example, the
JButton class in Java can be displayed in the tool palette of most modern Java IDEs
because it was written to meet the requirements of doing so. You can drag the button from
the tool palette, drop it on a form or panel, and then view the source code and see the
declaration and initialization of the JButton object added to your source code
automatically.

These types of components are a key aspect of Rapid Application Development (RAD) and
have been popular for a number of years. The simplicity of the visual interface is very
attractive for its speed and simplicity. You may even work with components visually at
design time (while you build the application) even if they have no visual appearance at run
time (while the program is executing).

An example might be an FTP component that provides File Transfer Protocol support but
doesn’t have a specific display at run time (too many things must be done to be wrapped up
neatly in a user interface). In such a case, you still see a benefit to just dragging the
component onto the form because this action is quicker and less prone to mistakes than
manual typing. You can also normally use such components as normal classes (because
they are, after all, classes) and manually declare and initialize them a needed.

Therefore, components typically implement the following types of behavior, using inheritance
and/or interfaces specific to the language:

Support for introspection Allows an IDE to analyze how a component works.

Support for customization Allows a programmer to alter the appearance and
behavior of a component.

Support for events Allows components to fire events and inform IDEs about the
events they can fire.

Support for properties Allows components to be manipulated programmatically as
well as to support any customization.

Support for persistence Allows components that have been customized in an
application builder to have their state saved and restored. Typically persistence is
used with an IDE’s Save and Load menu commands to restore any work that has
gone into constructing an application.

For Java, the component type is JavaBeans, whereas C# simply has “components.”

Standard Interfaces
In order to help your understanding of interfaces, it’s useful to take a look at what other
developers have created. In this section we will look at some of the common interfaces
provided by Java and C#. This is by no means a complete list of interfaces, but it will show
you some patterns in how the architects of these languages and their associated class and
interface libraries designed their systems.

As we discuss these interfaces, keep the following in mind: Interfaces implement a
behavior, which implies some other code will be calling methods within the interface. In our
example, although all our classes implement the HTMLSource interface, it’s the ShowHTML
method that makes use of the interface. You can consider interfaces as providing “callback”
functions.

Standard Java Interfaces

The following is a list of some commonly used Java interfaces, with a brief description of
each.

actionListener

The actionListener interface is implemented by classes that want to be notified of
actions. This is commonly seen implemented in classes such as forms to respond to user
interface events such as button clicks. The actionPerformed method is the only member
of this interface.

BeanInfo

This interface is implemented by JavaBean classes that want to provide information about
what they provide. See the section titled “Components” for more information on JavaBeans.

Cloneable

Classes that provide a valid clone method should implement this interface. It has no
methods but is used to indicate whether it is safe to call the clone method for an object.

Collection

Classes that maintain a collection implement this interface. It has methods that work with
collections such as add, clear, isEmpty, size, and so on.

Note that the predefined collection classes such as LinkedList, Vector, HashSet, and
so on, all implement this interface.

Iterator

Classes that provide some sort of collection usually implement this interface. Methods in the
Iterator interface include hasNext, next, and remove.

Serializable

Classes that have their data saved to and loaded from a stream implement this interface.

Standard C# Interfaces

The following is a list of some commonly used C# interfaces, with a brief description of
each.

ICloneable

Implemented by classes that support the clone method.

IComponent

If a class is to be considered a component, it should implement this interface. Note that the
Component class implements this interface.

IContainer

Classes that contain components implement this interface. For example, the Form class is
derived from a class that implements this interface.

ICollection

Classes that maintain a collection of data implement ICollection. Many classes are
precreated with this interface already implemented.

INumerator

Classes that provide iteration or enumeration implement this interface.

ISerializable

Classes that have their data saved to and loaded from a stream implement this interface.

As you can tell from these lists, interfaces tend to be generic behaviors, such as “implement
a collection.” You’ll also note that Java and C# have similar interfaces. Interfaces make up a
key part of how the JavaBeans and C# components work, in that they have predefined
behaviors your new classes must implement before these classes can be considered a
bean or component.

Ultimate Base Classes
Where do I begin? Many object-oriented programming languages (OOPLs) define a default
class that all new classes are derived from, unless you specifically indicate a different base.
Of course, if you do specify a different base class, your base class must have a base.

Java and C# both implement this “default ultimate class” behavior (C++ does not). In Java,
if you don’t specify a base class to a new class, it will default to the Object class as its base
(or super) class. C# uses the same name, Object, for its ultimate base class.

Ultimate base classes are used for a number of reasons, but they are typically designed to
permit you to work with data in a generic manner. When the designers of the Java and C#
languages created their library frameworks, they implemented a design that would be
extremely helpful most of the time, but sometimes would just not be applicable. To dive into
this statement a bit further, let’s look at the Java and C# ultimate base classes, listed in
Tables 11-2 and 11-3, respectively.

Table 11-2: The Java.lang.Object Class

Method Access Description

Object Constructor Public Initializes an object.

clone Protected Creates and returns a copy of this object.

equals Public Indicates whether some other object is
“equal to” this one.

finalize Protected
Called by the garbage collector on an object
when it determines there are no more
references to the object.

getClass Public Returns the runtime class of the object.

hashCode Public Returns a hash code value for the object.

notify Public Wakes up a single thread that is waiting on
this object's monitor.

notifyAll Public Wakes up all threads that are waiting on this
object's monitor.

toString Public Returns a string representation of the object.

Wait Public
Overloaded versions. Causes the current
thread to wait for some event or operation
for this object.

Table 11-3: The C# System.Object Class

Table 11-3: The C# System.Object Class

Method Access Description

Object Public This constructor initializes a new instance of
the Object class.

Equals Public Determines whether two Object instances
are equal.

GetHashCode Public
Serves as a hash function for a particular
type, suitable for use in hashing algorithms
and data structures such as a hash table.

GetType Public Gets the type of the current instance.

ReferenceEquals Public Determines whether the specified Object
instances are the same instance.

ToString Public Returns a string that represents the current
object.

Finalize Protected

Allows an object to attempt to free
resources and perform other cleanup
operations before it is reclaimed by garbage
collection. In C#, finalizers are expressed
using destructor syntax.

MemberwiseClone Protected Creates a shallow copy of the current
object.

With the exception of the threading functions in the Java class, you can begin to see some
similarities in the design of the classes:

They have a method to compare to objects.

They have a method to clone a new object from an existing object.

They have a method to convert an object to a string.

They have a finalize method to destruct the object.

This certainly goes a long way toward polymorphism. Just image, any object in Java or C#
has the ability to format itself into a string or to see whether it is equal to some other object.
However, don’t forget that someone, somewhere had to write that code. If you create a
new class in Java or C# and you want that object to be able to convert a formatted string
for itself implicitly, you would want to create a toString method in Java or a ToString
method in C#.

So what’s the downside to these ultimate base classes? For one, having all objects
implement a toString method may simply not be practical. For example, if we had a
class for creating and manipulating images, what would toString return for that? For this
reason, these ultimate base classes are kept to a bare minimum.

How do these ultimate base classes tie into interfaces? As you’ll remember from our
discussion at the beginning of this chapter, we explored the similarities between an interface
and a base class. We determined that although they are mostly similar, there are a few
distinguishing differences. We could have, in theory, designed our examples for this class so
that we have an ultimate base class of HTMLSource that provides an abstract GetHTML
method and then provide it in each of our derived classes. However, we didn’t do this for
the following two reasons:

First of all, we simply can’t. The ultimate base classes for Java and C# are already
defined, and we can’t add a GetHTML method to them. The issue is that we can’t
go and change base classes (or we probably shouldn’t, even if we could).

We want to keep ultimate base classes simple and not add methods that are
specific to a task or operation, such as dealing with HTML.

Quiz
1. What is an interface?

2. What is an interface diagram?

3. Why is an interface used in a program?

4. What is the difference between an interface and a user interface?

5. Does the C programming language use interfaces?

6. What kind of inheritance is similar to an interface?

7. Can an interface be used with C++?

8. Why do Java and C# support interfaces?

9. What is a component?

10. Give an example of a component.

Answers

1.
An interface specifies what a class must do, but not how it does it. It is syntactically
similar to a class, but its methods are declared without any body. A class implements
an interface by creating a complete set of methods defined by the interface.

2. An interface diagram shows how a class can implement an interface.

3.
An interface is used in a program to enable similar classes to have a standard behavior
while having the programmer who builds these classes define how the behavior is
performed.

4.

The purpose of a user interface is to enable a user to use a program. An interface is a
standard behavior. Programmers who use a class that implements an interface can
expect that the class will define a set of standard methods. Programmers who build
classes for use by other programmers must define a set of standard methods that
conform to a standard interface.

5. The C programming language doesn’t use an interface because C is not an object-
oriented programming language.

6. An interface is similar to multiple inheritance.

7. C++ does not support an interface, but it does support multiple inheritance.

8. Java and C# support interfaces because they do not support multiple inheritance.

9.
A component is a class designed to fit into some preexisting class framework and may
do so through inheritance or by implementing one or more interfaces. However, it must
follow its environment’s rules for components.

10.
An Integrated Development Environment is a good example because it enables
programmers to drag and drop components such as buttons from a tool palette onto a
form.

Chapter 12: Object-Oriented Programming Languages
In this chapter we will dive into a discussion and comparison of several common and current
object-oriented programming languages (OOPLs). But before doing that, however, we
should really dive into a brief history of programming in general.

The primary difference between an OOPL and a purely procedural (non-object-oriented)
language is that an OOPL provides a syntax to incorporate object-oriented concepts such
as inheritance, polymorphism, and so on. Although the languages provide this ability on a
syntax level, its important to recognize that OOP was not just “created,” but grew out of
good ideas and common practices of programmers.

A History of Computers and Programming
There really is no exactly defined start of computers—they can be traced to a number of
origins, not the least of which is simply the creation of numbers and math itself. As you may
be aware, all computers work internally with the binary numbering system, where all data is
represented with 1s and 0s (because, being electronic devices, they have a state of on or
off).

It may surprise you to learn that we will start our history discussion in the early 1940s. But
to be more accurate, the groundwork was laid long before that. For example, the Fibonacci
Series commonly used in programming exercises and used to define timing of recursive
function calls was actually defined by the Italian mathematician Fibonacci in the thirteenth
century!

In order to detail computer history, we first must define what a computer is. It can be
argued that the abacus was a form of computer, but we will say that in order to be
considered a direct ancestor of the modern computer, a computer must be able to store
internally and execute a program. Amazingly, our history then starts in 1943, or several
years before that if we take into consideration the designing stage of building a computer.

With the preceding definition, we would say that the first recognized digital computer was
ENIAC (Electronic Numerical Integrator And Computer). ENIAC was built between 1943 and
1946 by the University of Pennsylvania for the United States government. It was designed
to calculate bombing tables and trajectories for the military.

ENIAC was a behemoth of a machine, weighing over 30 tons, and containing more than
19,000 vacuum tubes (the predecessor to the transistor, “tubes” are electronic devices
enclosed in glass, which you can still see today in many modern televisions) and 1,500
relays. In order to program the ENIAC, the technicians of the day would actually rewire the
computer system, if a programming change was made. Truly a “hard-wired” system.

Around 1945, John von Neumann wrote a paper in which he outlined a method for storing a
“program” in a manner more convenient to change. The ENIAC was modified so that it used
switches to create a program. Instead of changing wires, programmers would flip switches
to define the desired behavior.

In 1945, Grace Hopper became the first programmer to coin the term bug. One of her
programs was not operating as expected. After checking her logic, she reportedly opened
the computer system and found a moth stuck between two tubes. Amazingly, 60 years
later, and the term bug is still used. Hopper also did a large amount of work on developing
languages and compilers, and her work led to the creation of the COBOL programming
language.

In 1946, Konrad Zuse developed the first high-level language, called Plankalkul. Although it
was modeled on von Neumann’s work, it contained a number of improvements over von

Neumann’s programming model. Zuse’s work is not widely recognized in the computer
industry, but he is sometimes attributed with building the first truly digital computer system.

In 1948, IBM created the Selective Sequence Electronic Calculator machine. Measuring
25´40 feet, this system used punch cards and tape to be programmed. In 1949, Maurice
Wilkes built the EDSAC system, commonly thought of as the first stored-program system,
which contained 1K words of memory. Wilkes had a set of punch cards he kept in a library
for reusable procedures.

In 1950, Engineering Research Associates built the first commercially available computer:
the ERA 1101. The first machine was purchased by the United States Navy and contained
one million bits of memory on a magnetic drum. The year 1950 also saw the SEAC
(Standards Eastern Automatic Computer) built by the National Bureau of Standards, which
was the first computer to replace tubes with diodes.

The year 1951 saw the creation of the UNIVAC system by Remington Rand (who employed
Grace Hopper at one time). This was the first computer to gain public attention and was the
inspiration for a number of clones to come later, such as the MANIAC, ILLIAC, and
SILLIAC.

Between 1949 and 1956, a number of small languages appeared. Languages such as A-0,
Short Code, and AUTOCODE were designed to make the tedious task of assembling code
easier. By modern definitions, assembly language is the language used by a particular CPU
itself that these languages were all very close to. But, up to this point, there was no
“central” processing unit, and what we now call a CPU was built from several distinctly
different pieces.

In 1957, the first “modern” programming language made its appearance: FORTRAN
(FORmula TRANslating), which is still in use today. In 1959, COBOL and LISP appeared,
and in 1960, ALGOL 60, a predecessor for PASCAL, appeared. A number of languages
and versions of languages began to appear during this time.

Between 1962 and 1967, SIMULA, the first object-oriented programming language,
appeared. Simula II followed it in 1967.

In 1970, Kenneth Thompson, who created the UNIX operating system, created the B
language so that UNIX would have a programming language for creating applications. The
core of UNIX was originally created in assembly language, with various programs later
developed in B. In 1972, Dennis Ritchie created the C language, based on the B language,
which Thompson then used to rewrite UNIX. Also, 1973 saw the first published C reference
book.

The year 1972 saw the introduction of Smalltalk, based in part on SIMULA. Smalltalk would
be one of the more prevalent programming languages until C++ would appear.

Between 1983 and 1985, Bjarne Stroustrup created the C++ language, modeled after C.
Originally called “C with Classes,” this language would acquire ANSI standardization in
1989. C++ would be one of the major programming languages of all time, still in widespread
use today.

In 1991, James Gosling, Patrick Naughton, and Mike Sheridan of Sun created Java. Java
was originally intended to be a system for programming small devices such as cable boxes,
and the programming language was only a small part of the system. Around 1995, the
popularity of the Internet changed the intentions of Java, and Sun targeted it to be a
multiplatform programming environment and language.

In 2000, Microsoft created the C# programming language, which was EMCA certified that
same year. Often compared to Java, C# incorporates the same “environment” approach as
Java, but it’s currently still available only on the Windows platform (an open-source project
is underway to create an open-source version of the .NET Framework for the C# language
and the Common Language Runtime).

The Three Dominant Modern OOPLs
Certainly, we need to pay more detailed attention to the common object-oriented
programming languages of our day. These are C++, Java, and C#, listed in order of their
creation.

C++

C++ was created between 1983 and 1985 by Bjarne Stroustrup of Bell Labs. It was
approved as an ANSI standard programming language in 1989 and has enjoyed widespread
usage since the mid 80s.

Reusable Code

C++ has an extensive amount of low-level code prewritten in its standard library, but it
mostly is geared toward collections and low-level data structures such as stacks and
queues. Common programming tasks, such as working with databases, images, and
Internet connections, are not provided by the C++ language itself but rather by add-on
libraries or the operating system.

Performance

C++ is based on C, which is known as a high-performance language. Because of the many
similarities, you will often see the two mentioned together, such as referring to a C/C++
topic, as we will be doing here.

C/C++ gains its high-performance advantage at the cost of ease of use. Although C/C++
lets you directly manipulate memory within the level of security provided by the operating
system, doing so incorrectly is a common problem. C/C++ lets programmers directly work
with any portion of memory they want, and it often requires programmers to manage their
own resources. As you’ll see, this fact leads to one of the most common misunderstandings
about the C++ language.

Most programmers learn C before C++. Because C++ is based on C, this is a well-
regarded approach. A typical topic in both C and C++ is pointers, which permit
programmers to control dynamically allocated memory, work directly with any area of
memory, and other tasks. When going from C to C++, most students continue to apply the
C paradigm to this topic rather than the C++ approach.

For example, consider the following example in C, which is a function that loads a file into
memory:
 char* Load(const char* Filename)
{
 char * pRet;

 FILE * File;
 int Size;
 File = fopen(Filename, "r");
 if(File == NULL)
 return(NULL); // Can't open file error
 fseek(File, 0, SEEK_END);
 Size = ftell(File) + 1;
 fseek(File, 0, SEEK_BEG);
 pRet = malloc(Size * sizeof(char));
 if(pRet == NULL)
 {
 fclose(File);
 return(NULL); // Out of memory error
 }
 if(fread(pRet, sizeof(char), Size, File) != Size)
 {
 fclose(File);
 free(pRet);
 return(NULL); // File read error
 }
 fclose(File);
 return(pRet);
}

The Load function works properly, but look at the code and how it returns a pointer that it
doesn’t free. This is by design, and whoever calls this function must remember to free the
memory. The misunderstanding is that many new C++ programmers still continue to write
code like this. Instead, they should adapt the C++ approach by wrapping the code up into a
class. Here’s an example:
 class TextFile
{
 protected:
 char* m_pText;
 public:
 TextFile() // Constructor
 {
 m_pText = NULL;
 }
 ~TextFile() // Destructor
 {
 free(m_pText);
 }
 const char* GetText() // Accessor function

 {
 return(m_pText);
 }
 bool Load(const char* Filename)
 {
 char * pTmp;
 FILE * File;
 int Size;
 File = fopen(Filename, "r");
 if(File == NULL)
 return(false); // Can't open file error
 fseek(File, 0, SEEK_END);
 Size = ftell(File) + 1;
 fseek(File, 0, SEEK_BEG);
 pTmp = malloc(Size * sizeof(char));
 if(pTmp == NULL)
 {
 fclose(File);
 return(false); // Out of memory error
 }
 if(fread(pTmp, sizeof(char), Size, File) != Size)
 {
 fclose(File);
 free(pTmp);
 return(false); // File read error
 }
 free(m_pText);
 fclose(File);
 return(true);
 }
};

Note that in this example we could have used C++ streams to do the file operation, but we
wanted to keep the code looking as similar as possible to the C example. The real
demonstration here is that now the user of this class needn’t be worried about releasing the
memory allocated by the Load function.

Of course, “not worrying” isn’t completely true. There are always exceptions to the rules,
where common sense is the only true rule. What we think we have is a completely safe
class that wraps and protects the m_pText pointer. Look, we even have an accessor
function called GetText. But, consider the following problematic sample usage:
 TextFile F;
F.Load(Datafile);

free(F.GetText());

Note that here we are accidentally (and incorrectly) freeing the return value of the
GetText, which is the m_pText data member.

Therefore, in this case C++ doesn’t make it impossible to shoot yourself in the foot, only
harder.

Performance: Compiled Code

C++ is a compiled language. This means that when you write the source code, you must
compile and link it to get an executable. This executable is now in machine code for the
specific computer on which it was compiled (although cross-compilers permit you to compile
programs for other computers, such as building a Palm handheld program on a Windows
PC).

Compiled code has a performance benefit over its counterpart, interpreted code. Compiled
code, however, must be recompiled to be executed on another platform.

Security

C++ does not provide any sort of security. Any C++ program has the ability to access any
block of memory or any resource it wants to (although operating systems such as Windows
and UNIX have security to try and stop rogue programs from doing anything inappropriate).

Portability

Because it is an ANSI standard, C++ is the same language on all platforms. However,
because C++ is a compiled language, you must compile an application before using it on a
new platform. Because the user interface varies among platforms, this is one of the major
issues in porting a program from one operating system to another.

Garbage Collection

C++ does not support garbage collection, the ability of a language to automatically clean up
resources (memory, specifically) itself. In C++, if you allocate a block of memory, you are
responsible for freeing it as well. The benefit to this feature is that destructors in C++ are
true destructors. The downside is that it’s possible through a programming error that a
destructor is not called at all (which can result in resource leaks).

User Interface

The C++ language does not provide any user interface elements other than buffer console
input and output. This means that it has no native support for graphical user interfaces such
as Windows, Mac OS X, and the XWindow system. Instead, all these environments have

their own application programming interface (API) that permits C++ to be used with them.

Multiple Inheritance

C++ provides support for multiple inheritance, which means that one class can have several
simultaneous base classes (as opposed to multiple parents).

Templates

C++ provides a feature called templates. A template can be thought of as the mother of all
macros. Templates are used like cookie cutters to define classes and functions that are
used to create new classes and functions.

Templates are created using the template keyword and a format, which permits you to
define parameters in the creation of the class or function. These parameters are more like
empty holes in the definition that are filled when you actually create or use one of the
objects or methods.

Here’s an example of a template class definition:
 template< class RealType >
class DataFile
{
 protected:
 RealType* m_pData;
 int m_Size;
 public:
 RealType GetAt(int Index)
 {
 if(Index < 0 || Index > m_Size)
 throw "Bad index";
 return(m_pData[Index]);
 }
 DataFile()
 {
 m_Size = 0;
 m_pData = 0;
 }
 ~DataFile()
 {
 free(m_pData);
 }
 bool Load(const char* Filename)
 {
 RealType * pTmp;

 FILE * File;
 File = fopen(Filename, "rb");
 if(File == NULL)
 return(false); // Can't open file error
 fseek(File, 0, SEEK_END);
 m_Size = ftell(File) / sizeof(RealType);
 fseek(File, 0, SEEK_SET);
 pTmp = (RealType*)malloc(m_Size * sizeof(RealType));
 if(pTmp == NULL)
 {
 fclose(File);
 return(false); // Out of memory error
 }
 if(m_Size != (int)fread(pTmp, sizeof(RealType),
 m_Size, File))
 {
 fclose(File);
 free(pTmp);
 return(false); // File read error
 }
 free(m_pData);
 m_pData = pTmp;
 fclose(File);
 return(true);
 }
};

In this example, the first line contains the template keyword, which contains one
parameter: RealType. When we use the template class, we must define the value to be
used wherever RealType appears within the template.

We declare a template object as follows:
 DataFile<char> chFile;

Note that the class name is still DataFile, but we include the < and > brackets to define
char as the value for RealType. Therefore, when the compiler sees this, it creates a
brand-new class from DataFile and char (unless it has already created it). This is
different if a class already exists, in which case you create an instance of the class. A
template tells Java to create a new class unless the class already exists. This process
means that the following code fragment from the original DataFile would go from
 template< class RealType >
class DataFile
{

 protected:
 RealType* m_pData;
 int m_Size;

to this:
 class DataFile
{
 protected:
 char* m_pData;
 int m_Size;
 class Person : public IDObject, public Instructor
 {
};

Java

Java was initially started in 1991 by James Gosling and others, with the intent of creating a
smart environment for devices such as cable boxes. In 1995, however, its direction was
changed to work with computers of all sizes. This change was due to the popularity of the
Internet, and the diversity of the machines on which it ran.

Initially, Java adopted a “write once, run anywhere” approach, with the hopes of creating an
environment that would enable programmers to create a program once and then run it on
any type of device. In order to do this, the Java system was designed on several key
components: the Java language, the Java Virtual Machine (JVM), and the Java API.

The Java language is, of course, the language itself and its given syntax. The Java Virtual
Machine is a program running on a computer that interprets the “tokenized” source code of
a Java program and executes it. Java is an interpreted, not compiled, language. The Java
API is a rich set of classes that provides support for a wide range of features and
capabilities in an application.

Java ran into two main problems, however: First, the initial Java Virtual Machines were not
completely compatible between the various platforms. Typically, large applications would
have parts of a program that would work okay on one platform, but not another, and vice
versa. These initial incompatibilities meant that larger, robust systems would not be as
reliable and functional as if a traditional programming language had been used.

The second issue Java ran into was that the “write once, run anywhere” philosophy was
blown out of proportion. In reality, you can’t create a typical desktop application and then
expect it to work on a handheld phone computer because of the physical aspects: Desktops
have much more memory, storage, and screen real estate than a typical mobile phone
does. Although lower classes could be created for immediate use, designing systems for
servers, desktops, and devices proved to be a tremendously different task and approach.

To address this, Sun eventually released three different versions of Java, as listed in Table
12-1.

Table 12-1: Editions of Java

Edition Geared Toward

J2EE Enterprise Server or “enterprise” computing

J2SE Standard Desktop PCs

J2ME Micro Devices such as handheld PDAs and phones

Reusable Code

Java has an extensive collection of reusable classes. Common programming tasks such as
working with databases, images, and Internet connections are built into Java, as are
controls and user interface elements such as buttons and check boxes.

Performance: Interpreted Code

Because Java is interpreted, its performance is typically slower than that of a compiled
language such as C++. The Java Virtual Machine interprets the tokenized “bytecode” of a
Java program and executes it. The Java Virtual Machine is, in essence, a program that runs
a program.

The benefit of the JVM however, is that the same tokenized code can run on different
platforms without having to be recompiled, as long as that platform has a JVM.

Security

Java introduced a security model that stops programs from doing explicitly bad or
dangerous things. Because programs run under the JVM, they can only do what the JVM
permits them to do. Because the JVM does not permit a program to directly access
memory, a Java program cannot do so.

The security model used by Java programs falls into two main categories: applets and
applications. Applets are small Java programs specifically designed to be hosted in a web
browser such as Internet Explorer or Netscape Navigator. Applets have a very strict
security model and are prohibited from performing tasks such as creating connections to
systems other than from the system that originated the web page. An applet can connect
only to systems that generated the web page that contains the applet.

Applications implement security on a “sandbox” principle. This means that on a given
computer, you can configure the various security attributes for an application and what sort
of operations it can perform.

Because of its bytecode nature, however, security in Java is more open than in C++ in one
particular aspect: Java programs are easier to decompile (the process of going from
tokenized code back to source code). Although the source code generated by popular
decompilation programs is hard to read, to say the least, it is much less complicated to
read than a program that generates a compiled application (such as a C++ program). For
companies wishing to protect their software from hacking or copyright infringement, this is
not welcome news.

Portability

Portability has been one of the major strengths of Java. The ability to run the same program
on a Macintosh as on a Windows PC makes it very attractive. The initial compatibility
problems have been worked out (for some time), and this remains a very positive and
robust feature of the language.

In order to run a program on a different operating system, you merely need the appropriate
JVM installed on the computer. The problem is that there are several versions (not to be
confused with “editions”) of Java (version 1.5 will probably be released by the time you read
this). A Java 1.4 program will not work on a computer that only has Java 1.2 installed.
Many companies that distribute Java applications will install their own Java Runtime
Environment (or JRE) to ensure the program will operate correctly.

As described earlier in Table 12-1, Java is available for servers, desktops, and handheld
devices.

One of the disadvantages of Java is that there is no recognized standard. Whereas C++
and C# both have achieved some sort of recognized standard by a noncommercial
committee, Java has not. Sun remains the owner and director of Java, and they decide how
and when to change it. Sun recognizes that making drastic changes at this point in time
would be a serious error, but the change from 1.0 to 1.1 was a major change that left many
programmers wary of future changes. Furthermore, many companies such as HP and IBM
are also greatly interested in furthering Java, and they have made their own non-Sun-
approved additions (the SWT found in the open-source Eclipse project is a notable item).

Garbage Collection

Java implements garbage collection, meaning that you don’t have to worry about releasing
the memory you have allocated. If you create an object in Java, you are given a reference
to it. If that reference goes out of scope, Java will automatically release any memory that
the object used.

Consider the following C++ and Java examples:
 // C++:
void Foo()

{
 DataFile* pFile = new DataFile;
 pFile->Open("log.dat");
}
// Java
public void Foo()
{
 DataFile File = new DataFile
 File.Open("log.dat");
}

In the C++ function, a DataFile object is dynamically created, and the new operator
returns a pointer. We then use the pFile pointer to open a file and then just leave the
function. Because C++ doesn’t do garbage collection, the object allocated in Foo (and all
the data it may contain) is lost because we don’t do anything else with the pointer and we
don’t explicitly delete the object. The C++ Foo function, therefore, has a memory leak.

In the Java function, we are doing something similar. A new DataFile object is
dynamically created, but we now get a reference to the actual object. As in the C++
example, we open a file and then leave the function. In Java, however, the JVM will see that
the File variable (the only reference to the actual object) has gone out of scope and is no
longer available. When the last reference to an object goes out of scope, the JVM marks
the object as available for garbage collection, and it will be removed from memory when
possible. The removal of the object is an implicit operation.

Some issues arise from garbage collection, however, particularly in the Java
implementation:

Collection Times Are Unpredictable

Objects are “marked” for collection when their last reference goes out of scope, but this
does not mean these objects are actually removed from memory at that time. Java
implements a garbage collector that runs in a separate thread of execution along with your
program, periodically checking for things to clean up. There is no guarantee if or when the
collection will run.

Because this collection occurs when the collector gets around to it, it is possible that a bug-
free program could repeatedly create a number of objects marked for collection but not
actually removed from memory. Because the objects may not have been removed from
memory yet, the program could receive an out-of-memory error when creating a new
object, even though it released the last reference for all the objects it had previously
created.

Java does permit you to force garbage collection as needed, but this introduces a certain
amount of overhead.

Java Doesn’t Implement True Destructors

Java defines a near-equivalent to a C++ destructor with its finalize method in a class.
However, because garbage collection doesn’t guarantee that the objects will actually be
released, it is possible that the finalize method will never get called.

For C++ programmers, this means that the destructors they rely on are not so reliable in
the Java language. Therefore, a more manual process, when compared to C++, is required
to perform your own “close” or “shutdown” operations on an object when you are done
using it in Java.

User Interface

Java provides a rich set of user interface classes for creating applications. The original set
of classes was called the Abstract Windowing Toolkit, but it has been replaced for the most
part by the Swing classes.

Using these classes, you can create Java applications with buttons, lists, check boxes, and
other user interface elements. Although Java lacks an official standard, these classes have
remained fairly compatible since the release of the 1.1 version of the Java Development Kit
(JDK).

Swing also provides control over the appearance of the user interface components. This is
to say that the same button running on the same computer can have several different
appearances in a Java, based on the selected “look and feel.”

Multiple Inheritance

Java does not support multiple inheritance. Many people argue that Java provides
interfaces, which are similar, but the reality is that interfaces do not provide for reusable
code. Interfaces can mimic multiple inheritance, but the programmer must still write the
code for the interface in each class that specifies and implements it.

The issue with multiple inheritance revolves around whether the benefits it provides in terms
of reuse offset the complexity of the “diamond problem” it creates. The complexity revolves
around the confusion in a scenario where you have two classes derived from the same base
class used as the multiple base classes of some new class. In this scenario, you would
have two of the same ultimate base classes in your new class.

Generics/Templates

Although the current version of Java (1.4) does not support templates, as C++ does,
templates will be a part of version 1.5, which may be available by the time you read this. In
Java version 1.5, the feature is called generics instead of templates, but the result is the
same: You can create generic-type-safe classes that the compiler builds for you as

needed.

Some people considered the lack of templates/generics in Java version 1.4 and earlier to
be a benefit, stating that the C++ implementation is too difficult to master or could lead to
sloppy object designs. Although it is true that a well-designed object library or framework
can mostly eliminate the need for templates/generics, as is often the case in programming,
if the feature exists and it is helpful, you should use it.

Generics are considered one of the major changes to the 1.5 version of the Java language.

C#

C# (pronounced C-sharp) was created by Microsoft as a new programming language in late
1999/early 2000 to be released with their .NET endeavor. Its programming paradigm is very
similar to Java, and much like Java, C# implements a sort of tokenized bytecode system
with the promise of multiplatform compatibility. In 2000, the EMCA approved C# as a
standard language at the request of Microsoft. This was an unusual thing for Microsoft,
because it meant that the C# language was now a defined standard that Microsoft would
not be able to alter as they might see fit. Many in the industry saw this as a benefit of C#,
giving it an identity independent from Microsoft.

The theory behind C# is similar to that of Java, in that it is a language that can be used to
create multiplatform programs. In practice, however, Microsoft views C# as a means of
creating programs on Windows platforms. Although open-source projects exist to port the
system to other platforms, their success is not guaranteed, and Microsoft has made no
announcements of support for non-Windows platforms.

In Windows, a typical program is composed of a binary executable file. That is to say, the
source code for the program is compiled into a machine-executable format. .NET still
provides this means of software development, although it’s specifically referred to as
“unmanaged code.”

A new model under .NET mimics the Java platform: An application called the Common
Language Runtime (CLR) is used to interpret and execute bytecodes of instructions,
tokenized from various source modules. This is identical in concept to how the Java Virtual
Machine (JVM) works. The .NET CLR has two distinct differences from the JVM:

The primary language for the CLR, C#, is now a standardized language. Whereas
Sun maintains control of Java, C# is accepted by the European Computer
Manufacturers Association as a standard language. This means that Microsoft
cannot make changes to the language on a whim, and backward compatibility must
be maintained.

What’s more, the CLR supports languages besides C#, such as C++, COBOL, and
Java. Although these languages are not typically supported in their entirety, they are

implemented in majority.

The CLR supports compilation to native machine code for improved performance.

Also, like the JVM, the CLR maintains control over executing code, and has the ability to
stop malicious programs. Like in Java, CLR programs tend to be slower than their machine-
executable counterparts. Programs written for the CLR are referred to as “managed code.”

The CLR also provides other features, such as the implementation of a standard class set
and a Common Type System for implementing data types in the same manner (a “time”
object is the same in C#, Managed C++, and Managed COBOL).

Reusable Code

C# contains a vast amount of reusable code, just like Java does. Using the .NET
Framework classes, support for database connections, images, Internet connections, and
so on are provided.

Performance: Interpreted and Compiled Code?

Like Java programs, C# programs are compiled into a tokenized “bytecode” that a separate
program can understand and execute. The Common Language Runtime (CLR) is the
program that works with the tokenized bytecode of C#.

The CLR actually goes beyond a “virtual machine” approach, however, and actually
compiles applications on the fly to native code, thus improving their performance. In the
case of web server applications called often, such as ASP.NET, the results of the
compilation are cached and reused, again for better performance.

So C# goes through distinct steps: Programs written in it are first “compiled” into a CLR-
compatible format (similar to what Java does), and then compiled into native machine code
by the CLR the first time it is run.

C# provides native support for COM components and the Windows API, as well as
restricted use of native pointers. This means, though the language may not be as fast as a
direct executable application (because of CLR interpretation), performance will typically not
be as poor as that experienced by Java applications.

Security

C# implements security control like Java in a sandbox format, but the basic control is set up
by an assembly, which helps define the operations a particular program or class is allowed
to perform.

Unlike Java however, C# does support pointers to directly operate on memory, although
their usage can be controlled by security settings.

Portability

C# is theoretically portable, but no non-Microsoft operating systems currently can use it.
This is not to say it is completely nonportable, however. Microsoft also has the handheld
operating system currently called “Windows Mobile” (formerly Windows CE, Windows
PocketPC, PocketPC 2000, and so on), which is distributed with the .NET Framework and
the CLR needed to execute C# compiled programs.

As with Java, C# can be used on web servers, desktops, and handheld devices, as long as
they are running the appropriate version of Windows.

Garbage Collection

Like Java, C# implements automatic garbage collection. Although destructors can be
declared in C#, it is important to note that they are called when the garbage collector
determines an object is no longer reachable by code and when memory space is needed.

Destructors have the same format in C# as in C++:
 ~ClassName();

The garbage collector will invoke this method automatically, when it sees fit.

In the event you are handling nonmanaged (non-CLR) resources, you may want to force the
garbage collection for the object. In order to do this, you must declare your class to
implement the Idisposable interface, and you must also provide a Dispose method. A
typical example follows:
 using System;
class Testing : Idisposable

{
 bool is_disposed = false;
 protected virtual void Dispose(bool disposing)
 {
 if (!is_disposed) // only dispose once!
 {
 if (disposing)
 {
 // Not in destructor, OK to reference other objects
 }
 // perform cleanup for this object
 }
 this.is_disposed = true;
 }
 public void Dispose()

 {
 Dispose(true);
 // tell the GC not to finalize
 GC.SuppressFinalize(this);
 }
 ~Testing()
 {
 Dispose(false);
 }
}

User Interface

C# does provide rich user interface support, but C# is limited to the Windows operating. C#
also provides the ability to use existing ActiveX controls in a simple manner.

Like Java and its JavaBeans, the C# language was designed to facilitate easily creating
components or add-ons that can be tied to the IDE used to develop programs. This means
that you can easily create new controls of your own design and quickly and easily use them
as a native part of the IDE’s component gallery.

Multiple Inheritance

C# does not support multiple inheritance as C++ does. It does support interfaces, however,
in a fashion similar to Java. As with Java, interfaces define code that must be written, not
code that is reused.

Generics/Templates

C# does not provide support for templates or generics as C++ and Java 1.5 do.

Assemblies

An assembly implements the set of information for one or more of the code files shown in
Table 12-2.

Table 12-2: Assembly Implementations

Assembly Description

Versioning Groups modules that should have the same version information.

Deployment Groups code modules and resources that support your model of
deployment.

Groups modules if they can be logically used together for some

Reuse
purpose. For example, an assembly consisting of types and
classes used infrequently for program maintenance can be put in
the same assembly. In addition, types that you intend to share
with multiple applications should be grouped into an assembly,
and the assembly should be signed with a strong name.

Security Groups modules containing types that require the same security
permissions.

Scoping Groups modules containing types whose visibility should be
restricted to the same assembly.

Assemblies are nothing more than text files similar to source code. They can be embedded
within a CLR-executable program or defined outside the CLR for multiple files. Many
programs can include an assembly in the single executable files. The following is a brief
example of an assembly for a C# project:
 using System.Reflection;
using System.Runtime.CompilerServices;
[assembly: AssemblyTitle("")]
[assembly: AssemblyDescription("")]
[assembly: AssemblyConfiguration("")]
[assembly: AssemblyCompany("")]
[assembly: AssemblyProduct("")]
[assembly: AssemblyCopyright("")]
[assembly: AssemblyTrademark("")]
[assembly: AssemblyCulture("")]
[assembly: AssemblyVersion("1.0.*")]
[assembly: AssemblyDelaySign(false)]
[assembly: AssemblyKeyFile("")]
[assembly: AssemblyKeyName("")]

Quiz
1. How was the ENIAC originally programmed?

2. What are the two contributions of Grace Hopper?

3. What is the importance of the EDSAC system?

4. What was the first modern programming language?

5. What is Dennis Ritchie’s contribution to programming?

6. What is Bjarne Stroustrup’s contribution to programming?

7. Why is C/C++ considered a high-performance programming language?

8. What was the original purpose of the Java programming language?

9. What is the Java Virtual Machine?

10. What is the primary weakness of the C# programming language?

Answers

1. The ENIAC was programmed by rewiring the computer.

2. Grace Hopper coined the term bug and helped developed the COBOL programming
language.

3. The EDSAC system is commonly thought of as the first stored-program system.

4. FORTRAN was the first modern programming language.

5. Dennis Ritchie created the C programming language.

6. Bjarne Stroustrup created the C++ programming language.

7. C/C++ is considered a high-performance programming language because it lets you
directly manipulate memory.

8. The Java programming language was originally intended to program smart devices
such as cable television boxes.

9. The Java Virtual Machine is a program running on a computer that interprets the
“tokenized” source code of a Java program and executes it.

10.
The primary weakness of the C# programming language is that there is no guarantee
C# will be supported for non-Windows platforms. Microsoft, who created C#, views C#
as a means of creating programs on Windows platforms.

Appendix A: Final Exam
1. What is a class?

2. What is an object?

3. Define what an attribute or property of an object is.

4. Define what an object behavior is.

5. Describe the methods and attributes of a Card class to represent a card used
in card games.

6. Define inheritance.

7. Describe the benefits of inheritance.

8. Which of these is a base class: Vehicle or Minivan?

9. Which is an example of inheritance: an Engine class and a Diesel class, or an
Engine class and a Car class?

10. What is a business object?

11. What is a characteristic?

12. What is a class definition?

13. What is an argument list?

14. What is a return value?

15. If Engine were a class in Java, how would you define an instance of it?

16. If Engine were a class in C++, how would you define an instance of it?

17. What is a constructor?

18. What is a destructor?

19. What is garbage collection?

20. How do you access members of an object?

21. Define encapsulation.

22. Define polymorphism.

23. Define overloading.

24. Define binding.

25. Define runtime polymorphism.

26. What is a virtual function?

27. How would you define a virtual method in C++?

28. How would you define a virtual method in Java and C#?

29. Define method overloading.

30. Compare Public, Protected, and Private members of a class.

31. Define simple inheritance.

32. Define multiple inheritance.

33. What is the “Diamond Problem” of multiple inheritance?

34. Define level inheritance.

35. What is the maximum number of levels for level inheritance?

36. What are the terms typically used to refer to the parent and child classes in
C++ and Java?

37. Define abstraction.

38. What is the difference between functionality and function?

39. What is an abstract method?

40. Define an abstract class.

41. What is data decomposition?

42. What is an iconic description?

43. Define pseudo code.

44. What is an entity?

45. What is an entity relationship?

46. What is a many-to-many relationship?

47. Define a leveling diagram.

48. What is a class diagram?

49. What is an internal model?

50. What is an external model?

51. What is the “is a” test?

52. What is the “has a” test?

53. Define collaboration.

54. What is UML?

55. What is a sequence diagram?

56. What is a collaboration diagram?

57. What is a message?

58. What is association?

59. What is self-collaboration?

60. What is a Class Responsibility Collaborator diagram?

61. What is an actor?

62. What is an SME?

63. What is an Essential Use Case?

64. What is a System Case?

65. What are business rules?

66. What is a User Interface diagram?

67. What is a User Interface-Flow diagram?

68. What is a Change Case?

69. What is an interface?

70. Describe some of the basic units of project management.

71. Describe three common errors when using abstraction.

72. What is a framework?

73. Describe three basic categories of reuse.

74. How are approaches to OO programming analogous to nouns and verbs?

75. How can a hierarchy be morphed?

76. When might you use multiple inheritance?

77. What is early binding?

78. What is late binding?

79. Do UML sequence diagrams show flow control?

80. What is a finalize method in Java?

81. What is the difference between static and non-static class members?

82. What is the Java syntax to declare class Derived from class Base?

83. What is the C++ syntax to declare class Derived from class Base?

84. What is the C# syntax to declare class Derived from class Base?

85. What does the final keyword in Java mean when applied to a class?

86. Is Java a compiled or interpreted language?

87. Is C++ a compiled or interpreted language?

88. Is C# a compiled or interpreted language?

89. Which language supports multiple inheritance: Java, C++, or C#?

90. Which language offers the best portability to other platforms: Java, C++, or
C#?

91. Describe one advantage and disadvantage of garbage collection.

92. Which language provides the easiest access directly to memory?

93. Which languages support interfaces syntactically: Java, C++, or C#?

94. Which languages support templates or generics: Java, C++, or C#?

95. What are the three editions of Java?

96. What is the JVM?

97. What is the CLR?

98. What has the smallest footprint, memory-wise: Java, C++, or C#?

99. What was one of the first stored-program computer systems?

100. Where did the term “bug” come from?

Answers

1. A class is a set of methods and data items combined in a single entity. It provides
some service or does some work and serves as a functionality package.

2. An object is an instance of a class. A class is essentially a data type, and an object is
a variable of that data type.

3. An attribute or property is a piece of data in a class. It has a value at any given time
and may be readable, writable, or both.

4. Object behavior defines how an object works under certain operations.

5.
Attibutes: Suit, Value, FaceUp

Methods: GetSuit, SetSuit, GetValue, SetValue, IsFaceUp, Flip

6. Inheritance means that a class is based upon the methods and attributes of an
existing class.

7. Code reuse

8. Vehicle, because a minivan “is a” vehicle—the minivan is derived from vehicle.

9. Engine and Diesel, because Diesel “is a” type of engine. A Car “has a(n)” engine,
which describes containment, not inheritance.

10.

A business object is a class used by a business system or application, such as an
order form.

11. A characteristic is an attribute or method that distinguishes two classes.

12. A class definition defines attributes and methods that are members of the class.

13. An argument list is a list of data items passed to a method or function for it to do its
job.

14. A return value is a value that a method returns as its output or result. Return values
are optional.

15. Engine anEngine = new Engine();

16. Engine anEngine;

17. A constructor is a special method that initializes the attributes of a class.

18.

A destructor is a special method that releases any resources (such as memory) from
an object instance. Java does not implement “true” destructors, while C++ does
because Java performs garbage collection while C++ doesn’t (and garbage collection
is not guaranteed to run before the program terminates).

19.
Garbage collection is the ability of a language to automatically remove objects
created in memory when the last reference or use of the object goes out of scope or
is no longer needed.

20. In Java, C++, and C#, you use the dot (.) operator. C++ also uses the arrow (->)
operator if you have a pointer to an object.

21. Encapsulation is the grouping of concepts or behaviors into a class. It defines how the
class behaves, without offering details as to how it implements that behavior.

22.

Polymorphism means that something has many shapes and that something is a
method of an object-oriented programming language. In programming terms, a thing
is the name of a method and a shape is the behavior performed by a method.
Polymorphism means that one or more methods with the same name exist for many
behaviors.

23.
Overloading is another one of those terms you hear used in conjunction with
polymorphism. Overloading means that two or more methods are defined using the
same name, but with different argument list.

24.

Binding is the association of a method definition (or function body) with a call to a
method, and occurs either at compile time or at runtime. Compile-time or Early binding
is used for normal method calls. No time is lost when the program runs because
binding is completed when the executable program is created. Runtime or Late
binding is implemented using a virtual function, which uses a base reference to point
to the type of object that contains the correct method definition.

25.
Run-time polymorphism uses virtual functions to create a standard interface and to
call the underlying functions. Those function definitions are bound to function calls
during run time.

26.

A virtual function is used to trick the computer into thinking a function is defined, but
the function doesn’t have to be defined at that moment. Instead, the virtual function
can be a placeholder for the real function that is defined in a program. Virtual
functions help support run-time polymorphism.

27.

Use the keyword virtual in the declaration of the method, such as Foo:
class Boo {
public:
virtual void Foo();
};

28.
Methods are virtual in Java and C# by default. To create a virtual method without any
body in these languages, use the abstract keyword in the declaration of the
method.

29. Method Overloading is a technique to implement polymorphism by defining two or
more methods with the same name but different argument list.

30.
Public members are seen by all methods, even ones outside the class. Protected
members are seen only to that class and ones derived from it. Private members are
seen only by that class, and nothing else.

31. Simple inheritance occurs when there is one parent-child relationship—that is, one
child inherits from one parent.

32.
Multiple inheritance is where there is a multiple parent-child relationship. The child
inherits from more than one parent. Java and C# do not support multiple inheritance,
but C++ does.

33.

It describes a situation where a single base class (such as Person) contains a data
member such as Name, and then two classes are derived from it such as Student
and Instructor. Now that Student and Instructor contain a Name member, if
we were to create a new class derived from both (such as a TeachingAssistant

class), then the object could have two names for what is really one person.

34.
Level inheritance happens when a child inherits from a parent and then becomes a
parent itself to a child.

35.
There is no practical limit—if you find a compiler that can’t handle 1,000 levels of
inheritance, the real problem is that you have a poor design because there are too
many levels of inheritance. A rule of thumb is to try and limit things to three levels.

36. C++ typically uses the terms base class and derived class, while Java typically uses
super class and subclass.

37. Abstraction is a way a programmer of a super class forces a programmer of a
subclass to define a behavior.

38. Programmers distinguish a behavior from instructions used to perform the behavior
using the term’s functionality and function.

39.

An abstract method does not provide a method body. A class with an abstract
method requires derived classes to implement the method body. A class with an
abstract method is called an abstract class. Abstract methods are called “pure virtual”
methods in C++.

40.

An abstract class is one that has one or more abstract methods. Because of this, you
cannot instantiate an object of this type. You must create a derived class that
provides the method bodies for the abstract methods, and then you can instantiate the
derived class.

41.
Object-oriented programmers decompose each attribute into data and then use data
in the corresponding class definition to describe the object. Decomposition is the
technique that reduces an attribute into its data components.

42. An iconic description is a graphic picture of the process. Textual description describes
the process in words.

43.

Pseudo code is a combination of English words and programming language syntax
that describe in words how a process works. The result is not entirely English, nor a
syntactically correct program. It’s used to enforce understanding and requirements
without actually writing a program.

44. An entity refers to an individual item, and may be a single piece of data or an object.

45. Entity relationship (or functional relationship) describes how objects are related or
interact with one another.

It defines a relationship between two different types (such as Student and Course)

46. where any single first type (Student) can be related to 1 or more of the second type
(Course), and vice versa. For example, one student may be registered in many
courses, and a course may have many students.

47.
A leveling diagram depicts an application in layers where the top level has the least
amount of detail and is the easiest to understand. Subsequent levels have more detail
and are usually the hardest to understand.

48. A class diagram is an illustration that describes a class, its attributes, and its
behaviors.

49. The internal model describes how an application works behind the scenes.

50. The external model describes how a person interacts with the application.

51.
The “is a” test asks the question is object A a type of object B. If so, then object A
can inherit object B. For example, a Minivan is a type of Vehicle, so Minivan can be
derived from Vehicle.

52.
The “has a” test asks the question does object A have an object B. If so, then object
A would have a data member of type Object B. For example, a Vehicle has an
Engine, so a Vehicle object would have an Engine object as a data member.

53.
Collaboration occurs when two or more things work together or cooperate with each
other in order to achieve a common goal. In programming, it means that one class
might have methods that call methods from another class.

54. UML stands for Unified Modeling Language, and is a set of diagramming and text
standard to help define a process and classes involved in the process.

55. A Sequence diagram is a diagram that shows the typical sequence of events for a
process.

56. Collaboration diagrams are used to display basic interaction between classes.

57.

When discussing collaboration, we typically say that a class collaborates with another
via a Message. Technically, a message is a function call, so if we say that class A
sends a message to class B, we are saying that class A is calling a method in a class
B object.

58. Association means that the two classes need to know how to interact with one
another, and is part of the description of collaboration.

59. Self-collaboration is when a class invokes its own methods.

60. The Class Responsibility Collaborator (CRC) diagram is intended to be an all-inclusive
list of how a single class is to be designed. A CRC diagram lists the class name at the
top, and then two columns below for responsibilities and collaborators.

61.
An actor is a person, organization, or anything that might interact with a system.
Actors don’t need to be persons. If a system needs to output a file in a certain format
for a government agency, then that agency might be considered an actor as well.

62.
An SME (Subject Matter Expert) is a person who has intimate knowledge about the
work or process for which you are developing a system. They don’t need to have any
computer experience.

63. An Essential Use Case is a nontechnical view of how your system will work with its
users.

64. A System Use Case defines the technical view of how your system will work.

65. Business Rules are the rules and laws that govern how a business operates. An SME
is typically the most accurate source of business rules.

66. User Interface Diagrams are prototypes or designs for a programs user interface. It
may contain forms and controls, as well as menu items.

67. User Interface-Flow diagrams let you define the flow of the program in terms of the
user interface, such as the steps a user must take to perform some process.

68.
A Change case represents possible or definite changes to a system. The goal of the
change case is to design a flexible system and anticipate possible or definite changes
so that the system can be designed to be easily adaptable.

69.
An interface represents a set of standard methods to provide some behavior or
feature to a class. For a class to have some certain behavior, it declares that it will
implement the interface that defines the behavior.

70.

Client—Entity for which the work is being done.

Project—The definition of the project and the group for the remaining items. Clients
can have multiple projects.

Work Request—Identifies a request, feature, change, or bug report. Projects are
made up of requests and features initially, and then as time goes on features,
changes, and bug reports are added.

Task—The work performed by the entity developing the project. Tasks are the work
performed to complete a Work Request.

71.
Failure of a programmer to define an abstract method in a subclass, an attempt by
the programmer to call the super class’s abstract method, and an attempt to declare
an instance of the abstract super class in the program.

72. A framework is a set of classes or class library that has been designed to work well
together and that follows a certain paradigm.

73.

Objects that are very reusable across different applications (like a string class or
stream hierarchy), objects that are reusable within a particular set of programs (like a
student class and hierarchy for academic institution programs), and objects that
simply will never be reused again anywhere.

74. Objects are thought of as nouns (person, place, or thing). Tasks are thought of as
verbs because they describe action within an application.

75. A hierarchy is morphed when a member function has many versions of a behavior
requiring many overloaded functions.

76. Multiple inheritance should be used whenever a child needs to inherit attributes and
behaviors from parents that are not related to each other.

77. Early binding is the binding of a method call to a method definition and is performed at
compile time if all the information is available at compile time.

78.
Late binding is the binding of a method call to a method definition and is performed at
run time. It implicitly makes use of base class pointers or references to derived
objects, and methods must be virtual.

79. No. Unlike flow charts, Sequence diagrams do not show flow control; they show
sequence.

80. It represents the pseudo-destructor for a class. If garbage is collected, the finalize
method is called, but there is no guarantee when or even if this will occur.

81.

Nonstatic data members occur in each instance of the class and nonstatic methods
can work with them as well as static methods. Static data members occur only once
no matter how many instances of a class and static methods can only work directly
with static data members. You do not need to declare an instance of a class to use
its static methods or properties.

82. public class Derived extends Base { ...

83. class Derived : public Base { ... // public may also be private or
protected.

84. class Derived : Base { ...

85. It means that no class can be derived from it.

86. It is compiled into bytecode, and then the Java Virtual Machine interprets the byte
code.

87. It is compiled into native machine code.

88. It is compiled into byte code, and then the CLR recompiles it into native machine
code.

89. C++

90.
Java, since its bytecode can be used without recompiling. C# and the CLR are
designed for this ability, but only currently available on Windows Desktop and
Windows Mobile operating systems.

91.
Garbage collection releases the programming from the task of manually releasing
memory. The disadvantage is that garbage collection systems are unpredictable as to
when they release memory and may require manual coding to do so.

92. C++, which supports pointers directly to memory. C# includes some support for
memory access and Java provides none.

93. Java and C#. C++ can mimic this behavior by defining an abstract class and using
multiple inheritance.

94. C++ and Java version 1.5

95. J2EE—Java Enterprise Edition for servers, J2SE—Java Standard Edition for
desktops, and J2ME—Java Micro Edition for handheld devices.

96. The JVM, or Java Virtual Machine, is the program that must be installed on a
computer in order to interpret and execute the compiled byte code of a Java program.

97.
The CLR, or Common Language Runtime, is the program that must be installed on a
computer in order to interpret and compile the bytecode generated by compiling a C#
program.

98. C++, because it doesn’t require a JVM or CLR to be in memory while it runs.

99. ENIAC, built in the mid-1940s

100. Grace Hopper coined the term when she found a moth stuck between some tubes,
which was causing her program to act incorrectly.

Appendix B: Answers to Quizzes and Final Exam

Chapter 1
1. An object is a person, place, thing, concept, or possibly event.

2. An attribute is a characteristic of an object.

3. A behavior is an action that an object is capable of performing.

4. Focusing on objects makes it easy for us to understand complex things. Objects
enable us to look at details that are of interest to us and ignore other details that
we are not interested in.

5. Inheritance is a way for one object to receive attributes and behaviors of another
object in what programmers call an “is a” relationship.

6. Attributes and behaviors need to be defined in one object, such as Person. Other
objects that require those attributes and behaviors—such as Student, Teacher,
Department Chair, Dean, Secretary, and Bursar—can inherit the object. This
allows for attributes and behaviors to be defined in only one object, making it easy
to add new attributes and behaviors or remove existing attributes and behaviors.

7. The attributes of the order form in Figure 1-1 are as follows:

Customer Name

Customer Address

Customer Number

P.O. Number

Date Shipped

Shipped Via

Required Date

Terms

Quantity

Item ID

Item Name

Unit Price

Amount

Subtotal

Sales Tax

Shipping & Handling

Total Due

8. The behaviors of the order form in Figure 1-1 are as follows:

Enter order information

Modify order information

Delete order

Process order

Look up order

9. These are common objects that inherit a Person object:

Student

Instructor

Dean

President

Board of Trustees

Security Manager

Security Guard

Bookstore Manager

Sales Assistant

Department Chair

Bursar

Registrar

Maintenance Manager

Maintenance Worker

Secretary

10. See Figure B-1.

Figure B-1: The relationship between the Person object and objects that are
persons

Chapter 2
1. An instance variable is an attribute of a class.

2. You determine the class size by adding the size of all its attributes.

3. You declare an instance of a class by first reserving memory for the class using
the new operator followed by the constructor of the class (new
RegistrationForm()). Next, declare a reference to the class and give that
reference a name (RegistrationForm myRegistrationform). Finally,
assign a reference to the memory reserved for the class to the reference using an
assignment statement.

4. An instance variable is declared by specifying the data type of the variable,
followed by the variable name, and ending with a semicolon within the body of a
class definition.

5. A data type is a keyword that tells the computer the kind of data you want to
store in a memory location.

6. A method definition consists of the name of a method, an argument list (if any),
the data type of the value returned by the method, and the method body.

7. Although some programmers consider an argument list and a parameter list to be
the same thing, other programmers consider a parameter list to be values passed
to a method when the method is called, and they consider an argument list to be
values defined within the method definition that receive values passed to the
method.

8. A member method is called by first declaring an instance of a class and then using
the name of the instance followed by the dot operator and the name of the method
—myInstance.myMethod(), for example.

9. A constructor is a method of a class that is called automatically when an instance
of a class is declared. A constructor is defined in the class and must have the
same name as the class name. A class can have multiple constructors, each with
a different argument list. The argument list is traditionally used with the constructor
to initialize instance variables of the class.

10. An instance variable is accessed by first declaring an instance of a class and then
using the name of the instance followed by the dot operator and the name of the
variable—myInstance.myVariable, for example.

Chapter 3
1. Encapsulation is a technique of linking together attributes and procedures to form

an object.

2. Encapsulation enables a programmer to institute “checks and balances” by placing
attributes and procedures in a class and then defining rules in the class to control
its access.

3. An access specifier is a programming language keyword that tells the computer
what part of the application can access data and functions/methods defined within
the access specifier.

4. The public access specifier determines attributes and procedures that are
accessible by using an instance of the class.

5. The private access specifier identifies attributes and procedures that are only
accessible by a procedure that is defined by the class.

6. The protected access specifier stipulates attributes and procedures that can be
inherited and used by another class.

7. A subclass inherits public and protected portions of the super class.

8. In C++, access specifiers define a section of a class that contains attributes and
member functions. In Java, each attribute and member method contains the
access specifier.

9. A super class cannot access any portion of a subclass.

10. Programmers require that some attributes of a class be accessed only by a
member procedure in order to validate values assigned to attributes. A
programmer who wants access to some attributes calls a member procedure,
which applies any validation rules before assigning values to attributes.

Chapter 4
1. Polymorphism technically means that one thing has the ability to take many

shapes. In programming terms, the “thing” is the name of a method and the
“shape” is the behavior performed by the method.

2. Polymorphism is implemented by overloading a method or by using virtual
functions.

3. Late binding is the binding of a method call to a method definition and is performed
at run time if some information is missing at compile time that is known only when
the application runs.

4. Early binding is the binding of a method call to a method definition and is
performed at compile time if all the information is available at compile time.

5. The advantage of run-time polymorphism is that a program can respond to events
that occur during execution.

6. The advantage of compile-time polymorphism is that no time is lost in binding
when the program runs because binding is completed when the executable
program is created.

7. An interface specifies a standard method name, argument list, return value, and
behavior. Programmers who develop classes and methods define methods that
adhere to an interface.

8. Polymorphism permits an interface to be defined as a set of standard methods
and behaviors by using overloaded methods and virtual methods.

9. A virtual function is a placeholder for the real function that is defined when the
programming is running.

10. Overloading is a technique for implementing polymorphism by defining two or more
methods with the same name but different argument lists.

Chapter 5
1. Inheritance is a programming technique that enables a class to inherit some or all

attributes and behaviors of another class.

2. Simple inheritance is a type of inheritance in which a class inherits from just one
class.

3. Level inheritance is a type of inheritance in which two or more levels of inheritance
exist. Each level consists of a parent-child relationship whereby the child of the
middle level is also the parent of the lower level. The last child in level inheritance
inherits directly and indirectly from other levels.

4. Multiple inheritance is a type of inheritance in which a child inherits from multiple
parents, but no relationship exists among those parents.

5. The “is a” test is given to determine if a child “is a” parent. For example, is a
graduate student a student? If so, the child (graduate student) can inherit from the
parent (student). If not, the child cannot inherit from the parent.

6. Multiple inheritance should be used whenever a child needs to inherit attributes
and behaviors from parents that are not related to each other.

7. Level inheritance should be used whenever a child needs to inherit attributes and
behaviors from parents that are related to each other.

8. There is no maximum number of levels in level inheritance. However, you should
use no more than three levels; otherwise, you run the risk that the levels will
become unmanageable.

9. A child can inherit public and protected members of a parent class.

10. Base class is the term used in C++ to refer to a parent class. Derived class is the
C++ term for a child class. A super class is Java’s parent class, and Java’s child
class is called a subclass.

Chapter 6
1. Abstraction is a way for the programmer of a super class to require the

programmer of a subclass to define a method.

2. Abstraction should be used in a program when there isn’t any way to define a
good default method in the super class.

3. An abstract method is a method defined in a super class that must be redefined in
a subclass that inherits the super class.

4. An abstract method cannot be called within a program.

5. A compiler error occurs if an abstract method is not redefined.

6. An instance of an abstract class cannot be declared in a program.

7. An abstract method cannot be called directly by a subclass.

8. A programmer of a subclass that inherits an abstract super class must redefine
the abstract methods defined in the subclass, even if those methods are not called
within the application.

9. A super class can contain a mixture of abstract methods and non-abstract
methods.

10. Only abstract methods must be redefined in a subclass that inherits from the
abstract super class.

Chapter 7
1. An attribute is information used to describe an object, whereas data is the

smallest amount of information used to describe an object. For example, a student
name is an attribute, and a student’s first name and last name are data.

2. A leveling diagram is used to simplify the understanding of a complex application.
The first level of the leveling diagram provides a simplified overview of the
application, and subsequent levels provide a progressively more detailed view of
the application.

3. Entity is another term used for “object.”

4. The purpose of using an entity relationship diagram is to illustrate the functional
relationship between two or more entities that are not hierarchically related to
each other.

5. 0:N is a ratio used in an entity relationship diagram to define a relationship. For
example, 0:N in a student course relationship means that a student doesn’t have to
register for any course and could register for many courses.

6. Decomposing an attribute is the process of reducing an attribute to data.

7. A processing model is a diagram that illustrates the steps in a behavior of an
object.

8. Pseudo code is a textual description of a behavior that uses a combination of
English words and programming language syntax.

9. A class diagram is an illustration that describes a class, its attributes, and its
behaviors.

10. A many-to-one relationship defines the relationship between two entities where
there are many instances of one entity to one instance of another. For example,
many students are in one course.

Chapter 8
1. Many object-oriented applications store data in a relational database and use a

conversion routine to translate data from data members of objects into rows in a
relational database and to transfer data from a relational database to data
members of objects.

2. Objects are thought of as nouns, such as a person, place, or thing. Tasks are
thought of as verbs because they describe actions within an application.

3. Some business applications cannot be organized easily into discrete objects,
which posses a challenge for programmers.

4. A dynamic hierarchy is an organization of objects in which the relationship among
the objects is changed over a short timeframe.

5. A static hierarchy is an organization of objects in which the relationship among
objects is maintained over time.

6. A hierarchy is morphed when a member function has many versions of a behavior
requiring many overloaded functions.

7. Some programmers feel we view the world as tasks rather than as objects. For
example, we think to turn on the air conditioner in hot weather, which is a task. We
don’t think air conditioner, turn on, which is the object-oriented logical approach.

8. Object-oriented programming theory assumes that the real world is organized
neatly into objects that can be defined easily as objects in an object-oriented
application. Some aspects of the real world can be defined as objects; other
aspects of the real world don’t lend themselves to such a definition.

9. Yes, the goal of an object-oriented program is to simulate real-world objects in a
computer application. However, many business applications do not simulate real-
world business situations. The reality is that simulating the real world does not
necessarily use the best possible means to achieve a business objective.

10. An internal model describes how an application works behind the scenes. An
external model describes how a person interacts with the application.

Chapter 9
1. Collaboration describes how two or more classes interact and work with one

another.

2. A UML (Unified Modeling Language) sequence diagram is used to represent a
sequence of operations between classes.

3. No. They are typically diagrams of smaller portions or overviews of an application.
An application may contain many sequence diagrams.

4. No. Unlike flow charts, sequence diagrams do not show flow control; they show
sequence.

5. A return value from a method call.

6. A method call from one object to the other, as indicated by an arrow.

7. A UML collaboration diagram shows the basic collaboration or relationship
between classes.

8. A message is normally a method call. A class may receive a message by having
one of its methods called, or it may send a message to another class by invoking
a method of the other class.

9. No. If you have a class derived from another, for diagram purposes, it is best to
use the more descriptive derived class name even if none of the derived class
methods are used (in other words, use Enrollments, not Vector).

10. It is a diagram that shows the class name, its methods, and the classes with
which it collaborates. A CRC diagram provides an overview of how a class
interacts with other classes and what it provides. It is not concerned with
sequences or detailed collaboration descriptions.

Chapter 10
1. An actor is a person, organization, or thing that might interact with a system.

2. A subject matter expert (SME) is a person who has expert knowledge of the
system but may not use the system.

3. You should request that they have ready any sample reports or forms that they
currently use to do their job.

4. Ask the most important questions first, in case you run out of time.

5. An essential use case is a nontechnical view of how your system will work with its
users.

6. The purpose of the use case diagram is simply to identify the use of the system,
not its technical details.

7. The system use case defines the technical aspect of the system.

8. Business rules define the rules a business must follow, and they must be
incorporated into the system.

9. User interface flow diagramming lets you define the flow of the program, from a
menu selection to a specific form.

10. An actor class is a class that represents an actor within a system.

Chapter 11
1. An interface specifies what a class must do, but not how it does it. It is

syntactically similar to a class, but its methods are declared without any body. A
class implements an interface by creating a complete set of methods defined by
the interface.

2. An interface diagram shows how a class can implement an interface.

3. An interface is used in a program to enable similar classes to have a standard
behavior while having the programmer who builds these classes define how the
behavior is performed.

4. The purpose of a user interface is to enable a user to use a program. An interface
is a standard behavior. Programmers who use a class that implements an
interface can expect that the class will define a set of standard methods.
Programmers who build classes for use by other programmers must define a set
of standard methods that conform to a standard interface.

5. The C programming language doesn’t use an interface because C is not an object-
oriented programming language.

6. An interface is similar to multiple inheritance.

7. C++ does not support an interface, but it does support multiple inheritance.

8. Java and C# support interfaces because they do not support multiple inheritance.

9. A component is a class designed to fit into some preexisting class framework and
may do so through inheritance or by implementing one or more interfaces.
However, it must follow its environment’s rules for components.

10. An Integrated Development Environment is a good example because it enables
programmers to drag and drop components such as buttons from a tool palette
onto a form.

Chapter 12
1. The ENIAC was programmed by rewiring the computer.

2. Grace Hopper coined the term bug and helped developed the COBOL
programming language.

3. The EDSAC system is commonly thought of as the first stored-program system.

4. FORTRAN was the first modern programming language.

5. Dennis Ritchie created the C programming language.

6. Bjarne Stroustrup created the C++ programming language.

7. C/C++ is considered a high-performance programming language because it lets
you directly manipulate memory.

8. The Java programming language was originally intended to program smart devices
such as cable television boxes.

9. The Java Virtual Machine is a program running on a computer that interprets the
“tokenized” source code of a Java program and executes it.

10. The primary weakness of the C# programming language is that there is no
guarantee C# will be supported for non-Windows platforms. Microsoft, who
created C#, views C# as a means of creating programs on Windows platforms.

Answers to Final Exam
1. A class is a set of methods and data items combined in a single entity. It provides

some service or does some work and serves as a functionality package.

2. An object is an instance of a class. A class is essentially a data type, and an
object is a variable of that data type.

3. An attribute or property is a piece of data in a class. It has a value at any given
time and may be readable, writable, or both.

4. Object behavior defines how an object works under certain operations.

5. Attibutes: Suit, Value, FaceUp
Methods: GetSuit, SetSuit, GetValue, SetValue, IsFaceUp, Flip

6. Inheritance means that a class is based upon the methods and attributes of an
existing class.

7. Code reuse

8. Vehicle, because a minivan “is a” vehicle—the minivan is derived from vehicle.

9. Engine and Diesel, because Diesel “is a” type of engine. A Car “has a(n)” engine,
which describes containment, not inheritance.

10. A business object is a class used by a business system or application, such as an
order form.

11. A characteristic is an attribute or method that distinguishes two classes.

12. A class definition defines attributes and methods that are members of the class.

13. An argument list is a list of data items passed to a method or function for it to do
its job.

14. A return value is a value that a method returns as its output or result. Return
values are optional.

15. Engine anEngine = new Engine();

16. Engine anEngine;

17. A constructor is a special method that initializes the attributes of a class.

18. A destructor is a special method that releases any resources (such as memory)
from an object instance. Java does not implement “true” destructors, while C++
does because Java performs garbage collection while C++ doesn’t (and garbage

collection is not guaranteed to run before the program terminates).

19. Garbage collection is the ability of a language to automatically remove objects
created in memory when the last reference or use of the object goes out of scope
or is no longer needed.

20. In Java, C++, and C#, you use the dot (.) operator. C++ also uses the arrow (->)
operator if you have a pointer to an object.

21. Encapsulation is the grouping of concepts or behaviors into a class. It defines how
the class behaves, without offering details as to how it implements that behavior.

22. Polymorphism means that something has many shapes and that something is a
method of an object-oriented programming language. In programming terms, a
thing is the name of a method and a shape is the behavior performed by a
method. Polymorphism means that one or more methods with the same name
exist for many behaviors.

23. Overloading is another one of those terms you hear used in conjunction with
polymorphism. Overloading means that two or more methods are defined using
the same name, but with different argument list.

24. Binding is the association of a method definition (or function body) with a call to a
method, and occurs either at compile time or at runtime. Compile-time or Early
binding is used for normal method calls. No time is lost when the program runs
because binding is completed when the executable program is created. Runtime
or Late binding is implemented using a virtual function, which uses a base
reference to point to the type of object that contains the correct method definition.

25. Run-time polymorphism uses virtual functions to create a standard interface and to
call the underlying functions. Those function definitions are bound to function calls
during run time.

26. A virtual function is used to trick the computer into thinking a function is defined,
but the function doesn’t have to be defined at that moment. Instead, the virtual
function can be a placeholder for the real function that is defined in a program.
Virtual functions help support run-time polymorphism.

27. Use the keyword virtual in the declaration of the method, such as Foo:
class Boo {
public:
virtual void Foo();
};

28. Methods are virtual in Java and C# by default. To create a virtual method without

any body in these languages, use the abstract keyword in the declaration of the
method.

29. Method Overloading is a technique to implement polymorphism by defining two or
more methods with the same name but different argument list.

30. Public members are seen by all methods, even ones outside the class. Protected
members are seen only to that class and ones derived from it. Private members
are seen only by that class, and nothing else.

31. Simple inheritance occurs when there is one parent-child relationship—that is, one
child inherits from one parent.

32. Multiple inheritance is where there is a multiple parent-child relationship. The child
inherits from more than one parent. Java and C# do not support multiple
inheritance, but C++ does.

33. It describes a situation where a single base class (such as Person) contains a
data member such as Name, and then two classes are derived from it such as
Student and Instructor. Now that Student and Instructor contain a
Name member, if we were to create a new class derived from both (such as a
TeachingAssistant class), then the object could have two names for what is really
one person.

34. Level inheritance happens when a child inherits from a parent and then becomes a
parent itself to a child.

35. There is no practical limit—if you find a compiler that can’t handle 1,000 levels of
inheritance, the real problem is that you have a poor design because there are too
many levels of inheritance. A rule of thumb is to try and limit things to three levels.

36. C++ typically uses the terms base class and derived class, while Java typically
uses super class and subclass.

37. Abstraction is a way a programmer of a super class forces a programmer of a
subclass to define a behavior.

38. Programmers distinguish a behavior from instructions used to perform the
behavior using the term’s functionality and function.

39. An abstract method does not provide a method body. A class with an abstract
method requires derived classes to implement the method body. A class with an
abstract method is called an abstract class. Abstract methods are called “pure
virtual” methods in C++.

40. An abstract class is one that has one or more abstract methods. Because of this,

you cannot instantiate an object of this type. You must create a derived class that
provides the method bodies for the abstract methods, and then you can instantiate
the derived class.

41. Object-oriented programmers decompose each attribute into data and then use
data in the corresponding class definition to describe the object. Decomposition is
the technique that reduces an attribute into its data components.

42. An iconic description is a graphic picture of the process. Textual description
describes the process in words.

43. Pseudo code is a combination of English words and programming language syntax
that describe in words how a process works. The result is not entirely English, nor
a syntactically correct program. It’s used to enforce understanding and
requirements without actually writing a program.

44. An entity refers to an individual item, and may be a single piece of data or an
object.

45. Entity relationship (or functional relationship) describes how objects are related or
interact with one another.

46. It defines a relationship between two different types (such as Student and Course)
where any single first type (Student) can be related to 1 or more of the second
type (Course), and vice versa. For example, one student may be registered in
many courses, and a course may have many students.

47. A leveling diagram depicts an application in layers where the top level has the
least amount of detail and is the easiest to understand. Subsequent levels have
more detail and are usually the hardest to understand.

48. A class diagram is an illustration that describes a class, its attributes, and its
behaviors.

49. The internal model describes how an application works behind the scenes.

50. The external model describes how a person interacts with the application.

51. The “is a” test asks the question is object A a type of object B. If so, then object A
can inherit object B. For example, a Minivan is a type of Vehicle, so Minivan can
be derived from Vehicle.

52. The “has a” test asks the question does object A have an object B. If so, then
object A would have a data member of type Object B. For example, a Vehicle has
an Engine, so a Vehicle object would have an Engine object as a data member.

53. Collaboration occurs when two or more things work together or cooperate with
each other in order to achieve a common goal. In programming, it means that one
class might have methods that call methods from another class.

54. UML stands for Unified Modeling Language, and is a set of diagramming and text
standard to help define a process and classes involved in the process.

55. A Sequence diagram is a diagram that shows the typical sequence of events for a
process.

56. Collaboration diagrams are used to display basic interaction between classes.

57. When discussing collaboration, we typically say that a class collaborates with
another via a Message. Technically, a message is a function call, so if we say that
class A sends a message to class B, we are saying that class A is calling a
method in a class B object.

58. Association means that the two classes need to know how to interact with one
another, and is part of the description of collaboration.

59. Self-collaboration is when a class invokes its own methods.

60. The Class Responsibility Collaborator (CRC) diagram is intended to be an all-
inclusive list of how a single class is to be designed. A CRC diagram lists the class
name at the top, and then two columns below for responsibilities and
collaborators.

61. An actor is a person, organization, or anything that might interact with a system.
Actors don’t need to be persons. If a system needs to output a file in a certain
format for a government agency, then that agency might be considered an actor
as well.

62. An SME (Subject Matter Expert) is a person who has intimate knowledge about
the work or process for which you are developing a system. They don’t need to
have any computer experience.

63. An Essential Use Case is a nontechnical view of how your system will work with
its users.

64. A System Use Case defines the technical view of how your system will work.

65. Business Rules are the rules and laws that govern how a business operates. An
SME is typically the most accurate source of business rules.

66. User Interface Diagrams are prototypes or designs for a programs user interface.
It may contain forms and controls, as well as menu items.

67. User Interface-Flow diagrams let you define the flow of the program in terms of
the user interface, such as the steps a user must take to perform some process.

68. A Change case represents possible or definite changes to a system. The goal of
the change case is to design a flexible system and anticipate possible or definite
changes so that the system can be designed to be easily adaptable.

69. An interface represents a set of standard methods to provide some behavior or
feature to a class. For a class to have some certain behavior, it declares that it
will implement the interface that defines the behavior.

70. Client—Entity for which the work is being done.

Project—The definition of the project and the group for the remaining items.
Clients can have multiple projects.

Work Request—Identifies a request, feature, change, or bug report. Projects are
made up of requests and features initially, and then as time goes on features,
changes, and bug reports are added.

Task—The work performed by the entity developing the project. Tasks are the
work performed to complete a Work Request.

71. Failure of a programmer to define an abstract method in a subclass, an attempt
by the programmer to call the super class’s abstract method, and an attempt to
declare an instance of the abstract super class in the program.

72. A framework is a set of classes or class library that has been designed to work
well together and that follows a certain paradigm.

73. Objects that are very reusable across different applications (like a string class or
stream hierarchy), objects that are reusable within a particular set of programs
(like a student class and hierarchy for academic institution programs), and objects
that simply will never be reused again anywhere.

74. Objects are thought of as nouns (person, place, or thing). Tasks are thought of as
verbs because they describe action within an application.

75. A hierarchy is morphed when a member function has many versions of a behavior
requiring many overloaded functions.

76. Multiple inheritance should be used whenever a child needs to inherit attributes
and behaviors from parents that are not related to each other.

77. Early binding is the binding of a method call to a method definition and is
performed at compile time if all the information is available at compile time.

78. Late binding is the binding of a method call to a method definition and is performed
at run time. It implicitly makes use of base class pointers or references to derived
objects, and methods must be virtual.

79. No. Unlike flow charts, Sequence diagrams do not show flow control; they show
sequence.

80. It represents the pseudo-destructor for a class. If garbage is collected, the finalize
method is called, but there is no guarantee when or even if this will occur.

81. Nonstatic data members occur in each instance of the class and nonstatic
methods can work with them as well as static methods. Static data members
occur only once no matter how many instances of a class and static methods can
only work directly with static data members. You do not need to declare an
instance of a class to use its static methods or properties.

82. public class Derived extends Base { ...

83. class Derived : public Base { ... // public may also be private or
protected.

84. class Derived : Base { ...

85. It means that no class can be derived from it.

86. It is compiled into bytecode, and then the Java Virtual Machine interprets the byte
code.

87. It is compiled into native machine code.

88. It is compiled into byte code, and then the CLR recompiles it into native machine
code.

89. C++

90. Java, since its bytecode can be used without recompiling. C# and the CLR are
designed for this ability, but only currently available on Windows Desktop and
Windows Mobile operating systems.

91. Garbage collection releases the programming from the task of manually releasing
memory. The disadvantage is that garbage collection systems are unpredictable
as to when they release memory and may require manual coding to do so.

92. C++, which supports pointers directly to memory. C# includes some support for
memory access and Java provides none.

93. Java and C#. C++ can mimic this behavior by defining an abstract class and using

multiple inheritance.

94. C++ and Java version 1.5

95. J2EE—Java Enterprise Edition for servers, J2SE—Java Standard Edition for
desktops, and J2ME—Java Micro Edition for handheld devices.

96. The JVM, or Java Virtual Machine, is the program that must be installed on a
computer in order to interpret and execute the compiled byte code of a Java
program.

97. The CLR, or Common Language Runtime, is the program that must be installed on
a computer in order to interpret and compile the bytecode generated by compiling
a C# program.

98. C++, because it doesn’t require a JVM or CLR to be in memory while it runs.

99. ENIAC, built in the mid-1940s

100. Grace Hopper coined the term when she found a moth stuck between some
tubes, which was causing her program to act incorrectly.

Appendix C: Classes in Java
Creating a new class in Java requires the use of the class keyword:
Modifier class ClassName [extends SuperClass] [implements Interface] { }

If a class is defined as part of a package, then its full name is package-
name.classname. If it is not in a package, then the full name is classname. This
information is important for instantiating and using classes that have already been defined
(by Sun or a third party).

The Modifier may be one or more of the following:

Modifier Meaning

Public
The class can be accessed by any other class, even outside its package
(if it has one). If left off, then only classes in the same package can
access the class.

Final The class cannot be subclassed (derived from). A class with any final
member functions is not required to be considered final itself.

Abstract
The class cannot be instantiated, and must be used as a super class
(base class). If a class defines any abstract members, it should also
be declared abstract itself. Mutually exclusive with final.

Extends

The keyword extends means that the new class is derived from another class, mentioned
after the extends keyword. If the new class is termed a subclass, its base class is termed
a super class. If the super class is an abstract class, then the new class must implement
any required abstract methods for it to be instantiated.

Implements

The implements keyword means the new class will provide the required functions to
implement an interface. See “Interfaces” for additional information.

Fields and Member Functions

Classes have fields (or members) that describe an object. Fields are defined as a list of
data declarations of either fundamental and/or class type. A field data member is declared
in the following manner:
Modifier DataType MemberName, MemberName2;

A member function is declared in the following manner:
Modifier Datatype MemberName([ParamList]);

The modifiers for each field are the following:

Modifier Meaning

public Other classes can access the field.

private The field cannot be accessed outside of the class.

protected The field can be accessed by the class that defines it, and its
subclasses.

abstract

You’re giving the signature of the method (declaring it as a member) but
giving no implementation of the method. All nonabstract classes that
derive from the class containing one or more abstract methods must
implement all abstract methods. Does not apply to data fields.

final

For data members The field must be given an initial value in the
declaration; the value can’t be changed later (similar to a const in C++).
For function members The function cannot be overridden or defined in
subclasses. The body of the function must be declared.

static

For data members The field does not require an object instance for
access. Member is not created per instance but per class.
For function members The function can be invoked without
instantiating an object. The functions have no “this” reference.

The following example shows a simple class with a couple of simple fields: one is the
intrinsic, int, and the other is a special class, String (that is usually instantiated via
new).
public class OurApplet
{
 public int xPosition;
 private String author;
}

Data members can be initialized optionally in the same line in which they are declared. An
alternative means to declare and initialize the data members in the above class might be
public class OurApplet
{
 public int xPosition=0;
 private String author="Mario";

}

Methods

Classes use methods to communicate with other objects. Methods allow you to set or get
information about the current state of the object. This type of implementation encapsulates
the data for the class. In the preceding example class, you would want the class to support
methods to get and set the xPosition and String fields within the class.

Like classes and fields, methods also have modifiers (public, private, and so on) that
describe the scope of the method. When a method is final, it means subclasses can’t
override or hide the method.

Methods can return one value. This means that you can write a Get type of method that
returns the xPosition, or you can return an error value. Consider the following code that
implements a couple of simple methods—getPosition and putPosition—on the class
just shown, OurApplet:
public class OurApplet

{
 private int xPosition;
 String author;
 public OurApplet () { // a Constructor
 xPosition = 0;
 }
 public void putPosition(int x) {
 xPosition = x;
 }
 public int getPosition() {
 return xPosition;
 }
}

Constructors

A constructor is a function within a class that has the same name as the class and no return
type, which is automatically used to initialize the object. When you call new to instantiate a
new object, the constructor for that class instance is invoked. As with other functions,
constructors can be overloaded.
Public class OurPoint {
 Private int xPosition, yPosition;
 OurPoint() {
 yPosition = 0;

 xPosition = 0;}
 OurPoint(int X, int Y) {
 yPosition = X;
 xPosition = Y;
 }

Here’s a sample:
OurPoint P = new OurPoint(4, 5); // Invoke second constructor

Subclasses may invoke their super class constructors specifically, using the super
keyword. The constructor is the only function permitted to use the super keyword. The
format is
Public class SomeClass extends SomeSuperClass {
 SomeClass(int X) // Constructor
 {
 super(x); // Invoke Super class constructor, that accepts an integer.

Finalizers

Some languages implement a destructor function, which like the constructor is
automatically invoked. Destructors, however, are invoked when the object goes out of
scope. Java does not implement destructors, but does provide a special function called
finalize, which performs a similar task.

In Java, because of garbage collection, there is no guarantee as to when an object will be
released, or if it will be released at all. There are various methods to manually invoke
garbage collection (such as System.gc()), but the fact that normal execution may not
invoke a finalizer is the reason that destructors are not supported.

Finalizers are used to release system resources, such as an open file or socket handle,
used by a class. Finalizers can not be overridden, and they always have the same
signature:
Protected void finalize() {
}

Static and Nonstatic Initializers

In addition to autoinitialization and constructors, classes may define a static initializer and
nonstatic initializer section. These initializers are used when initialization of a data member
requires more than a simple, single, line of code. They are declared like functions inside the
class with { and } to denote the code section, but with no function name.

Static initializers are run when the class is loaded by the classLoader the first time.
Nonstatic initializers are run when each instance of a new object is created.

Public class Foo {
 public static int si;
 public int i;

 static { // Static Initializer
 si = 1;
 }
 { // Nonstatic Initializer
 i = 2;
 }

Interfaces
An interface can contain one or more member functions of constant declarations, and in
some ways is similar to an abstract super class. Interfaces differ from abstract classes
in the following manner:

An interface cannot implement any member functions, while an abstract class
can.

A class can implement many interfaces, but have only one super class.

An interface is not part of any hierarchy.

Interfaces can be modified after being used as a super class for other interfaces,
but it is strongly recommended not to.

Defining an interface requires use of the interface keyword—for example:
Modifier interface InterfaceName extends SuperClassName
{
 // Member function signatures (bodies are not defined)
 // Constant declarations
}

Interface Modifiers may only be public and/or abstract. Their definition is similar to that of
the class keyword. The abstract keyword is implicit, and should not be used in newer
Java programs.

An example of an interface is as follows:
public interface Securable {
 boolean Encrypt(String Key);
 boolean Decrypt(String Key);
}

If a class is created, which specifies implements Securable, then that class must
provide the Encrypt and Decrypt functions to fulfill the requirements of the Securable
interface.

Packages
A package is a group of classes, and is used to organize your source code. The keyword
package at the start of a .java file declares the package name for the classes within the
file. Multiple .java files may declare themselves a part of the same package.

Package names are usually implemented in dotted notation, and simulate a hierarchical
structure. Packages starting with “java.” are a code part of the Java environment (javax. is
an exception, for the Swing components). Package names are also used to enable the use
of two classes with the same name, as long as their package names differ.

By convention, companies creating their own packages usually use their internet domain
names in reverse order, along with a description of the package itself. For example,
com.microsoft.sql would be the package created by www. microsoft.com for their
SQL JDBC driver. Org.openroad.security might be the package the
www.openroad.org created for its security classes.

If you do not specify a package name in your .java file, then your classes are considered a
part of the default package and have no package name. This is a very poor practice for
anything but small test programs and classes. For example:
package org.openroad.security;

public class Crypt {
 boolean setKey(String Key) {…};
 String getKey(){ … };
}

Using the import keyword, you are specifying which classes or packages you want to be
able to refer to be their simple names. For example, without an import statement, the class
above would be called org.openroad.security.Crypt. But, by including “import
org.openroad.security.Crypt” in the program, the name would simply be Crypt. You can
also use wildcards when declaring an import statement, to simply access to all classes at a
specific level in the package, such as import org.openroad.security.*; to import
all the openroad security classes.

In order for predefined classes to be used from their packages, you must also set up your
CLASSPATH environment variable correctly. The CLASSPATH environment variable defines
where the java compiler and the JRE are to look for user packages. The CLASSPATH value
contains a list of directory names and/or jar file names.

In order to use the above class properly as a reusable class, you should do the following:

http://www.openroad.org

Create the class and specify the proper package name.

Compile the .java file, and create a .class file.

Copy the .class file to a folder structure that mimics the package name. For
example:
C:\MyJavaClasses\org\opernroad\security

Set the CLASSPATH environment variable to point to the folder containing the root
of the folder structure. Also include the “.” Folder. For example:
SET CLASSPATH=C:\MyJavaClasses;

Write a new program in a separate folder where the Crypt files do not exist. The
code should look similar to the following:
import org.openroad.security.*;
public class MyApp {
public static void main(String[] args)
 {
 Crypt cr = new Crypt();
 …
 }

The new application should compile and run cleanly, even though Crypt.class is
not in the current folder.

Note
If you alter the CLASSPATH variable, you should be sure to include the “.”
path (current directory) in its definition. Otherwise, classes in the current
directory will not be identified by the JRE tools.

Appendix D: Classes in C++
Creating a class in C++ is similar to creating a structure. Class objects have members just
like a structure, but instead of just data, they also have code or functions as members. The
basic template is this:
 class ClassName
 {
 public:

 ClassName(); // Constructor
 ~ClassName(); //Destructor
 private:

 protected:

 };

The class keyword begins the definition.

The ClassName becomes the name for the class, and is used later to create instances of
it.

The public keyword defines a section where the members are visible or accessible to
other objects or functions.

The private keyword defines a section where the members are invisible or nonaccessible
to other objects or functions. This is the default if no access type is specified. This feature
helps C++ implement data abstraction.

The protected keyword defines a section where the members are like private, except
that they will be visible to other classes derived from this class.

Constructor and Destructor
Inside the public section just shown, the functions ClassName and ~ClassName are
defined (like in a prototype). These are the constructor and destructor for this class. The
constructor is called whenever an instance of a class is created, and the destructor is called
when the instance is destroyed.

Note

The constructor and destructor are functions with the same name as the class,
and have no return type. The destructor name is preceded with the tilde (~), and
never accepts an argument. The constructor may be overloaded. Constructors
and destructors are not required, but are most commonly implemented.

Member Functions

In order to write any member function’s body, it is usually done outside the definition (the
only difference between regular functions and members is the presence of ClassName::
as part of the name) in the following format:
ClassName::MemberFunction()
{
}

When a member function definition inside the class definition is followed by the const
keyword, it means that the function will not change any of the (nonstatic) data members of
that object. For instance:
class MDate {
public:
 bool IsValid() const;

private:
 int M, D, Y;
};

In the previous example, the IsValid member function of the MDate class has a const
following its name and parameter list. This means that the code inside this function will not
change any of the nonstatic data members, such as M, D, and Y.

Inline Functions

Inline functions can be created within the class definition, without the inline keyword. The
format requires the function’s body to follow the member definition:
 class Example
 {

 public:
 Example(); // Constructor
 ~Example (); // Destructor
 int IsExampleEmpty(void) { return(IsEmpty); };
 // Automatic
inline function
 private:
 int IsEmpty;
 };

Unions, Structs, and Classes
The similarities between unions, structures, and classes in C++ goes a little further then
might be expected. In C++, unions and classes may also include the protected,
private, and public, as well as constructors, destructors, and other member functions.
In fact, the struct is converted into a class by the C++ compiler. The only difference
between these types is that union and struct members are public by default, where in a
class the default is private.

Objects and Functions, Copy Constructors
Objects can be passed as regular variables (or references or pointers) to functions, but
some care must taken be taken. When an object is passed as a parameter, an exact copy
of the object is made without invoking the object’s constructor. On the other hand, the
object’s destructor is called for that copy when it is no longer needed. Some objects
(especially ones where memory is allocated) will not work properly under these conditions.

In order to eliminate this problem, a class must implement a copy constructor, a special
constructor that takes as an argument a const reference to that same type. For example:
class Mobject
{
public:
 MObject(); // Regular constructor
 Mobject(const Mobject &Original);// Note Original is not a required
 name.
}

The copy constructor (instead of the default constructor) is called when an object is passed
to a function, for autoinitialization, or when an object is returned from a function. It is not
called during a normal assignment (you may write an overloaded operator to handle this).
For example:
Foo(SomeObject); // Copy constructor called to make a
 copy of SomeObject
MObject A = B; // Copy ctor called for auto-initialization
 B is an
MObject)
A = B; // Copy constructor is NOT called.

Enums Inside Classes
You can place an enum definition within a class, and have the enum values follow the
standard class access rules of private, public, and protected. Once defined, you access the
enum as any other member, but for public members outside the class you must use the
scope resolution operator:
#include <iostream>
class MDate
{
public:
 enum Day { Sun, Mon, Tue, Wed, Thu, Fri, Sat };
 MDate() { M=0; D=0; Y=0; WeekDay=Sun; }; //
Use 'Sun' constant value
 Day GetWeekDay(void) { return(WeekDay); }; //
Use 'Day' data type
private:
 Day WeekDay; // Use of Day data type
 char M, Y, D;
};
void main(void)
{
 MDate Today;
 MDate::Day D; // Note scope resolution operator
 D = Today.GetWeekDay();
 if(D == MDate::Sun) // Note scope resolution operator
 cout << "All is well\n";
}

Static Members
Static data members are members that exist only once, no matter how many instances of a
class are created. These static members can be viewed almost like a global variable,
except that they are accessed within an object. Remember that all objects (of the same or
derived class) will share the same static member. You must declare the actual static
variable outside the class definition—and inside. For example:
#include <iostream>

enum Modes { off, on };

void TurnStreetLights(int Mode)
{
 cout << "Traffic lights turned " << (Mode ? "on":"off")
 << endl;
}

class Cars
{
public:
 Cars() {
 if(CarsOnRoad == 0)
 TurnStreetLights(on);
 CarsOnRoad++; };
 ~Cars() {
 if(--CarsOnRoad == 0)
 TurnStreetLights(off);
 };
private:
 static int CarsOnRoad; // This defines CarsOnRoads as static
};

int Cars::CarsOnRoad; // Note 2nd declaration,
this is the actual variable
void main(void)
{
 Cars Me;
}

Functions within classes may also be static, in which case they can only access other static
functions or static data members.

Appendix E: Class Definitions in C#
A C# class is defined in the following format:
[attributes] [modifiers] class identifier [:base-list] { class-body }[;]

where attributes may be one of the following:

public The class is available to all other pieces of code.

Internal The class is available only to other pieces of code in the same
assembly.

Note Protected and Private are not permissible at the class definition
level, except for nested classes.

Modifiers may be

abstract The class is an abstract class, and can only be used as a base class for
new classes.

sealed The class is a sealed class, and cannot be used as the base class of a
new class.

The new keyword is not permissible at the class definition level, but is used to make
members of a base class invisible to a derived class (new appears in the derived class).

The base-list is a list of base classes. Unlike C++ where a derived class defines the
accessibility of its base class, the base class defines accessibility. For example, if a base
class declared itself as internal, then a derived class would inherit the base classes
members as internal.

A class can contain declarations of the following member types: constructors, destructors,
constants, fields, methods, properties, indexers, and operators. Fields are common data
members.

Properties are methods that define accessor functions for some value or property of the
class. There is no property keyword; instead the declaration of the property appears in
formatting the code:
public class Picture
{
 private int m_RotateAngle;
 public int RotateAngle

 {

 get{ return(m_RotateAngle); }
 set{ if(value>=0 && value<=359) m_RotateAngle = value; }
 }
…

Indexers are methods that provide an index operator on the class. The special format of
declaration is similar to a property, only it uses the this keyword in the declaration as the
property name. For example:
public class Picture
{
 private int[] m_TagID;
 public int this[int Index] // Index can be of any data type.
 {
 set { if(Index >=0 && Index <= m_TagID.Length)
m_TagID[Index]=value; }
 get { if(Index >=0 && Index <= m_TagID.Length)
 return(m_TagID[Index]); else return(-1);
 }
 }
…

Operator methods are operator overloads similar to those in C++. The main difference is
that the methods must be declared public static, and all parameters are passed to them
(unlike the implicit left-hand operator this in C++). An example of an operator would be
the following:
Class Date {

 public static int operator+(Date D, int Days) {…};

Destructors and Garbage Collection
Like Java, C# implements automatic garbage collection. Though a destructor can be
declared in C#, it is important to note that they are called when the Garbage Collector
determines the object is no longer reachable by code, and when memory space is needed.

A destructor has the same format in C# as in C++: ~ClassName();. The garbage
collector will invoke this method automatically, when it sees fit.

In the event you are handling nonmanaged (non-CLR) resources, you may want to force the
garbage collection for the object. In order to do this, you must declare your class to
implement the IDispose interface, and also provide a Dispose method. A typical example
is
using System;
class Testing : IDisposable

{
 bool is_disposed = false;
 protected virtual void Dispose(bool disposing)
 {
 if (!is_disposed) // only dispose once!
 {
 if (disposing)
 {
 // Not in destructor, OK to reference other objects
 }
 // perform cleanup for this object
 }
 this.is_disposed = true;
 }
 public void Dispose()

 {
 Dispose(true);
 // tell the GC not to finalize
 GC.SuppressFinalize(this);
 }
 ~Testing()
 {
 Dispose(false);
 }
}

Assemblies
An assembly implements the following set of information for one or more code files:

Versioning Group modules that should have the same version information.

Deployment Group code modules and resources that support your model of
deployment.

Reuse Group modules if they can be used together logically for some purpose. For
example, an assembly consisting of types and classes used infrequently for
program maintenance can be put in the same assembly. In addition, types that you
intend to share with multiple applications should be grouped into an assembly and
the assembly should be signed with a strong name.

Security Group modules containing types that require the same security
permissions.

Scoping Group modules containing types whose visibility should be restricted to the
same assembly.

Assemblies are nothing more than text files similar to source code. They can be embedded
within a CLR-executable program, or defined outside the CLR for multiple files. Many
programs can include an assembly in the single executable files. The following is a brief
example of an Assembly for a C# project:
using System.Reflection;
using System.Runtime.CompilerServices;

[assembly: AssemblyTitle("")]
[assembly: AssemblyDescription("")]
[assembly: AssemblyConfiguration("")]
[assembly: AssemblyCompany("")]
[assembly: AssemblyProduct("")]
[assembly: AssemblyCopyright("")]
[assembly: AssemblyTrademark("")]
[assembly: AssemblyCulture("")]
[assembly: AssemblyVersion("1.0.*")]
[assembly: AssemblyDelaySign(false)]
[assembly: AssemblyKeyFile("")]
[assembly: AssemblyKeyName("")]

Index
References to figures are in italics.

A
abstract classes, 56–57, 90

See also classes
abstract methods, 90–91

See also methods
abstract objects, 2–4

See also objects
abstraction, 90, 91–97

compiler errors, 94–97
frameworks, libraries and, 97–98

access specifiers, 30–34
private, 30, 32, 62
protected, 30, 33–34, 38–40, 42–44, 62
public, 30, 31–32, 62

actionListener interface, 183
actor classes, 160
answers

Chapter 1 quiz, 215–217
Chapter 2 quiz, 217–218
Chapter 3 quiz, 218
Chapter 4 quiz, 219
Chapter 5 quiz, 219–220
Chapter 6 quiz, 220–221
Chapter 7 quiz, 221
Chapter 8 quiz, 222
Chapter 9 quiz, 222–223
Chapter 10 quiz, 223–224
Chapter 11 quiz, 224
Chapter 12 quiz, 224–225
final exam, 225–232

argument lists, 17
assemblies

C#, 207–208, 250
assembly languages, 191
association, 146

attributes, 14–16
decomposing to data, 102–103
defined, 2, 3, 11, 100
describing, 101–102
identifying, 100–101
inheritance, 4–6

Index

B
base classes, 33, 56, 63

ultimate, 185–187
See also classes

BeanInfo interface, 183
behaviors

default, 88–89
defined, 2, 3, 11, 100
describing, 103–107
identifying, 103
inheritance, 4–6
of an order form object, 9
problems, 117
processing models, 104–107
pseudo code, 104, 107

binding, 55
bugs, 190
business classes, 160
business rules, 155–157

Index

C
C language, 191
C#

assemblies, 207–208
class definitions in, 247–250
development of, 192, 204–205
garbage collection, 206–207
generics, 207
implementing interfaces in, 178–179
multiple inheritance, 207
performance, 205
portability, 206
reusable code, 205
security, 205
templates, 207
user interface, 207

C++
classes, 241–246
compiled code, 195
development of, 192
encapsulation, 34–40
functions, 12
garbage collection, 196
and interfaces, 180–181
level inheritance using, 76–79
main function, 19
multiple inheritance, 82–84, 196
performance, 193–195
polymorphism using, 51–53
portability, 196
reusable code, 192
security, 196
simple inheritance using, 69–73
templates, 196–198
user interface, 196

case diagrams, 152–154
case modeling, 149–150
change cases, 162

Class Responsibility Collaborator (CRC), 147–148
See also collaboration

classes
abstract, 56–57, 90
actor, 160
base, 33, 56, 63
body, 13
business, 160
in C++, 241–246
combining with a program, 19–20
constructors, 236
declaring an instance of a class, 20–24
defined, 10, 12, 87
defining from designs, 160
defining methods with a class definition, 18
definition, 13, 108
derived, 33, 56, 63, 88
diagrams, 108, 109
enums inside classes, 244–245
extends keyword, 234
fields and member functions, 234–235
finalizers, 237
GradStudent, 40
hierarchy, 63–69, 108, 109, 127–128
implements keyword, 234
before an interface is defined, 174–178
interfaces vs., 170–171
in Java, 233–240
keyword, 13
main(), 142
methods in Java, 235–236
modifiers in Java, 233, 234–235
names, 13
size, 21
static and nonstatic initializers, 237
subclasses, 33, 63, 88
super, 33, 43, 63, 87–88
ultimate base classes, 185–187
user interface, 160

clients, 163
Cloneable interface, 183
collaboration, 124

association, 146
Class Responsibility Collaborator (CRC), 147–148
defined, 133–135
and inheritance, 145
messages, 144–145
OOP, 135–148
self-collaboration, 146–147
UML collaboration diagrams, 143–145

Collection interface, 183
COM, 156
Common Language Runtime (CLR), 204–205
Common Object Request and Brokering Architecture, 156
compiled code, C++, 195
compiler errors, 94–97
Component Object Model, 156
components, 181–182
constructors, 236

in C++, 242–243
initializing an instance variable, 22
See also copy constructors

copy constructors
in C++, 243–244
See also constructors

CORBA, 156
CRC, 147–148

Index

D
data members, defined, 10
data storage, 125–126
data stores, 111
data types, 14–16

primitive, 15–16
derived classes, 33, 56, 63, 88

See also classes
destructors

in C#, 249–250
in C++, 242–243
Java, 202–203

diamond problem, 65
Display() member function, 36
dot operators, 24

Index

E
EDSAC, 191
encapsulation, 27, 29–30

in Java, 41–44
reasons to use, 30
using C++, 34–40

end users, 150–151
ENIAC, 190
entities, 110

leveling diagrams, 111–113
See also objects

entity relationships, 110
diagrams, 110–111

enums, inside classes, 244–245
ERA 1101, 191
errors, 94–97
essential use cases, 152–154

See also system use cases
estimation, 166–167
exam, 211–214

answers, 225–232
extends keyword, 234
external models, 118–119

Index

F
Fibonacci Series, 190
fields

defined, 10
in Java, 234–235

final exam, 211–214
answers, 225–232

finalizers, 237
flow diagramming, 157–158
FORTRAN, 191
frameworks, and abstraction, 97–98
functionality vs. function, 89–90
functions, 9

in C++, 12, 243–244
vs. functionality, 89–90
main(), 19, 36–38
pure virtual functions, 92
virtual, 56
See also methods; procedures

Index

G
garbage collection

C#, 206–207, 249–250
C++, 196
Java, 201–203

gathering requirements, 151–152
generics

C#, 207
Java, 203–204

Gosling, James, 192
GradStudent class, 40
graphic user interfaces (GUIs), 116

Index

H
history of computers and programming, 190–192
Hopper, Grace, 190
HTML, 172–173
HTMLSource interface, 173–174
Hypertext Markup Language. See HTML

Index

I
ICloneable interface, 184
ICollection interface, 184
IComponent interface, 184
iconic descriptions, 104
IContainer interface, 184
ILLIAC, 191
implements keyword, 234
inheritance, 4–6, 61–62

choosing the right type, 67–69
collaboration and, 145
diamond problem, 65
level, 66–67, 76–79, 79–82
multiple, 64–65, 82–85, 196, 203, 207
reasons to use, 6
simple, 63–64, 69–73, 74–76
types of, 63–67
unnecessary, 127–128
using C++, 69–73, 76–79, 82–84
using Java, 74–76, 79–82, 84–85

initialization, 21–22
initializers, 237
inline functions, in C++, 243
instance variables, 14

accessing, 22–23
assigning a value to from your program, 23–24
initializing, 21–22
names, 16

instances, 4, 12
declaring an instance of a class, 20–24

interfaces, 53, 84–85, 169–170
C#, 184
C++, 180–181
classes, 170–171, 174–178
components, 181–182

design, 54–55
diagrams, 171–172
graphic user interfaces (GUIs), 116
HTMLSource, 173–174
implementing in Java and C#, 178–179
in Java, 238
multiple classes implementing, 179–180
standard, 183–184
user interface diagramming, 157–159

internal models, 118–119
interviews, 152
INumerator interface, 184
“is a” test, 124
ISerializable interface, 184
Iterator interface, 184

Index

J
Java

classes, 233–240
development of, 192, 199
encapsulation, 41–44
garbage collection, 201–203
generics, 203–204
implementing interfaces in, 178–179
interfaces, 84–85
level inheritance using, 79–82
methods, 12
multiple inheritance, 84–85, 203
performance, 200
portability, 201
reusable code, 200
security, 200
simple inheritance using, 74–76
standard interfaces, 183–184
templates, 203–204
user interface, 203

join tables, 138

Index

K
keyword classes, 13

Index

L
leveling diagrams, 111–113
libraries, and abstraction, 97–98
link tables, 138
linked lists, 130
lollipop notation, 171–172

Index

M
main() function, 19, 36–38
MANIAC, 191
many-to-many entity relationships, 110
many-to-one entity relationships, 110
member functions, 10, 34

in C++, 242–243
Display(), 36
in Java, 234–235
redefining, 40
Write(), 35
See also member methods

member methods, 10, 16
See also member functions

messages, 144–145
See also collaboration

methods, 9, 16–19
abstract, 90–91
argument lists, 17
binding, 55
body, 17–18
calling, 24–26
defined, 13
defining within a class definition, 18
definition, 16
in Java, 12, 235–236
names, 17
overloading, 50
and polymorphism, 45–53
return value, 18–19, 25–26
signatures, 46
static, 24, 50
See also functions; procedures

multiple inheritance, 203
C#, 207
C++, 196

Index

N
Naughton, Patrick, 192
nonstatic initializers, 237

Index

O
object-oriented programming. See OOP
object-oriented programming languages. See OOPLs
objects

abstract, 2–4
in the business world, 7–9
in C++, 243–244
collaboration, 124
decomposing attributes to data, 102–103
defined, 2, 3, 4, 11, 100
defining, 127
describing attributes, 101–102
describing behaviors, 103–107
entity relationships, 110–111
identifying attributes, 100–101
identifying behaviors, 103
“is a” test, 124
names, 100
relationships among, 108–113
subobjects, 123

one-to-many entity relationships, 110
one-to-one entity relationships, 110
OOP, 10

behavior problems, 117
collaboration, 135–148
computer world vs. real world, 128–130
and data, 122
graphic user interfaces (GUIs), 116
hierarchical problems, 119
internal and external models, 118–119
morphing of a hierarchy, 123–124
vs. procedural languages, 116–117
real-world challenges of, 125–128
real-world hierarchy, 123–124
redundancy, 117
self-contained data vs. wide source of data, 121
simulations, 117–118
task-oriented, 120–121

theory vs. real world, 116–122
OOPLs, 189

See also C#; C++; Java
operators, dot, 24
overloading, 50

Index

P
packages, in Java, 238–240
parameters, passing, 25
parent-child relationships, 63
performance

C#, 205
C++, 193–195
Java, 200

pointers, 21
polymorphism, 45, 46–50

interfaces, 53, 54–55
morphing of a hierarchy, 123–124
run-time, 55–59
using C++, 51–53

portability
C#, 206
C++, 196
Java, 201

primitive data types, 15–16
See also data types

private access specifiers, 30, 32, 62
See also access specifiers

procedural languages vs. object-oriented programming, 116–117
procedural programming, 9–10
procedures, 9, 27–28

common, 126
See also functions; methods

processes
collaboration, 134–135
leveling diagrams, 111–113

processing models, 104–107
project management, 162–167
projects, 163
protected access specifiers, 30, 33–34, 62

in C++, 38–40
in Java, 42–44
See also access specifiers

prototyping, 158–159
pseudo code, 104, 107
public access specifiers, 30, 31–32, 62

See also access specifiers
pure virtual functions, 92

Index

Q
quizzes

answers, 215–225
Chapter 1, 10
Chapter 2, 26
Chapter 3, 44
Chapter 4, 59
Chapter 5, 85
Chapter 6, 98
Chapter 7, 113
Chapter 8, 131
Chapter 9, 148
Chapter 10, 167
Chapter 11, 187
Chapter 12, 209

Index

R
redundancy, 117
references, 21
reserved words, 13
return value, 18–19

using, 25–26
See also methods

reusable code, 9–10
C#, 205
C++, 192
Java, 200

Ritchie, Dennis, 191
run-time polymorphism, 55–59

See also polymorphism

Index

S
SEAC, 191
security

C#, 205
C++, 196
Java, 200

self-collaboration, 146–147
See also collaboration

sequence diagrams, 141–142
Serializable interface, 184
Sheridan, Mike, 192
SILLIAC, 191
SIMULA, 191
simulations, 117–118
Smalltalk, 191
SMEs, 151
statements, 14
static initializers, 237
static members, in C++, 245–246
static methods, 24
Stroustrup, Bjarne, 192
structs, in C++, 243
subclasses, 33, 63, 88

See also classes
subject matter experts, 151
subobjects, 123

See also objects
super classes, 33, 43, 63, 87–88

See also classes
supermarket ordering system example, 7–9
system use cases, 154–155

See also essential use cases

Index

T
tasks, 165–166
technical requirements, identifying, 161
templates

C#, 207
C++, 196–198
Java, 203–204

textual descriptions, 104
Thompson, Kenneth, 191

Index

U
ultimate base classes, 185–187
UML collaboration diagrams, 143–145
UML sequence diagrams, 141–142
unions, in C++, 243
UNIVAC, 191
user interface classes, 160
user interface diagramming, 157–159

flow diagramming, 157–158
prototyping, 158–159

user interfaces
C#, 207
C++, 196
Java, 203

Index

V
variables. See also instance variables
virtual functions, 56

pure, 92
von Neumann, John, 190

Index

W
Wilkes, Maurice, 191
work requests, 164–165
Write() member function, 35

Index

Z
Zuse, Konrad, 191

List of Figures

Chapter 1: A Look at How We See the World
Figure 1-1: An order form is an object that contains attributes and behaviors.

Figure 1-2: A supermarket uses a business system and business objects to restock
shelves with merchandise.

Chapter 2: What Is a Class?
Figure 2-1: Real-world objects, such as a course-registration form, have attributes and
behaviors.

Figure 2-2: A data type is similar to the term “a case of baseballs” because you and the
warehouse manager know the size of a case of baseballs.

Figure 2-3: This figure shows how an instance of the RegistrationForm class reserves
memory.

Chapter 3: Encapsulation
Figure 3-1: A class diagram showing attributes and procedures that are encapsulated in
the Student class definition.

Figure 3-2: The GradStudent class has attributes and procedures that are the same and
some that are different from the Student class.

Chapter 4: Methods and Polymorphism
Figure 4-1: The Display() method in this program is an example of polymorphism.

Chapter 5: Inheritance
Figure 5-1: Simple inheritance consists of one parent-child relationship. Here, the Student
class is the parent and the GradStudent class is the child.

Figure 5-2: Multiple inheritance occurs when one class inherits from two other classes.

Figure 5-3: Level inheritance occurs when each class inherits one other class as shown
here.

Figure 5-4: Use level inheritance when there is a relationship between two or more
parent classes. Here a relationship between Student and Person exists because a
student is a person.

Figure 5-5: Use multiple inherits when there isn’t a relationship between two or more
parent classes. Here there isn’t a relationship between Athlete and Writer.

Chapter 6: Abstraction
Figure 6-1: The Student class is the super class and is inherited by the
UndergradStudent class and the GradStudent class, which are subclasses.

Figure 6-2: Both subclasses have the same function but each has different functionality.

Figure 6-3: Subclasses must define all abstract methods of the super class.

Figure 6-4: Failure to define the abstract member in a subclass causes a compiler error.

Chapter 7: Identifying and Describing Objects
Figure 7-1: Symbols used to create a processing model

Figure 7-2: A processing model that illustrates how a student registers for a course

Figure 7-3: Class diagrams and the class hierarchy for various student classes

Figure 7-4: tionship diagram of a student entity and a course entity

Figure 7-5: The first level of the leveling diagram shows all the processes involved in how
the bursar collects tuition from students.

Figure 7-6: Level 2 of the leveling diagram shows details of the Print Management
Reports process from Level 1.

Chapter 8: Real-World Modeling
Figure 8-1: Start with a blank notebook page that contains a preprinted page number.

Figure 8-2: After entering Eric Carruthers on the page, we would note that there isn’t a
next or previous page because Eric Carruthers is the only name in the book.

Figure 8-3: When we add Rene Winston to the book, we modify Eric’s page by changing
Next from 0

Figure 8-4: When Harry Gee is entered into the book, we modify previous pages to
reflect the new addition.

Chapter 9: Collaboration
Figure 9-1: A diagram of the previously described classes

Figure 9-2: The completed sequence diagram of the registration process

Figure 9-3: A UML collaboration diagram

Figure 9-4: The CRC diagram for the Enrollments class

Chapter 10: Case Modeling
Figure 10-1: A simple use case diagram for the registration example

Figure 10-2: A simple flow diagram describing the user interface for the registration
example

Figure 10-3: Boxes are used to group sets of one or more data elements.

Chapter 11: Interfaces
Figure 11-1: A typical interface diagram

Figure 11-2: This diagram shows that a class implements the interface.

Figure 11-3: A diagram showing multiple classes that implement an interface

Appendix B: Answers to Quizzes and Final Exam
Figure B-1: The relationship between the Person object and objects that are persons

List of Tables

Chapter 1: A Look at How We See the World
Table 1-1: Attributes and Behaviors of Person

Table 1-2: Attributes and Behaviors of Student

Table 1-3: Attributes and Behaviors Available to an Instance of Student

Chapter 2: What Is a Class?
Table 2-1: Primitive Data Types

Chapter 7: Identifying and Describing Objects
Table 7-1: Decomposing Attributes to Data

Table 7-2: Identifying Behaviors of an Object

Chapter 10: Case Modeling
Table 10-1: Work Assignment Types

Table 10-2: Status of a Work Request

Table 10-3: Task Status

Chapter 11: Interfaces
Table 11-1: Common HTML Tags

Table 11-2: The Java.lang.Object Class

Table 11-3: The C# System.Object Class

Chapter 12: Object-Oriented Programming Languages
Table 12-1: Editions of Java

Table 12-2: Assembly Implementations

	OOP Demystified James Keogh & Mario Giannini McGraw-Hill/Osborne2100 Powell Street, 10th FloorEmeryville, California €94608U.S.A. To arrange bulk purchase discounts for sales promotions, premiums, or fund-raisers, please contact McGraw-Hill/Osborne at the above address. For information on translations or book distributors outside the U.S.A., please see the International Contact Information page immediately following the index of this book. OOP Demystified Copyright © 2004 by The McGraw-Hill Companies. All rights reserved. Printed in the United States of America. Except as permitted under the Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of publisher, with the exception that the program listings may be entered, stored, and executed in a computer system, but they may not be reproduced for publication. 1234567890 FGR FGR 01987654 ISBN 0-07-22
	Introduction This book is for everyone who wants to learn object-oriented programming without taking a formal course. It is also designed as a supplemental classroom text. Start at the beginning of this book and then go straight through to the end for best results. If you are confident about the topics covered in these chapters, then take the quiz at the end of each one to see if you actually know the material before skipping any chapter. If you get 90 percent of the answers correct, skip the chapter. If you get 75 to 89 percent correct, skim through the text of chapter. If you get less than 75 percent of the answers correct, find a quiet place and begin reading. Doing so will get you in shape to tackle the rest of the chapters on object-oriented programming. In order to learn object-oriented programming, you must have some computer skills, but don’t be intimidated. None of the knowledge you need goes beyond basic computer know-how. This book contains a lot of practice quizzes and exam
	Chapter 1: A Look at How We See the World How do you see the world? The answer depends on your background. A scientist might see the world as molecular structures. An artist sees the world as shapes and colors. And some of us might say the world is a collection of stuff. Probably the first thing that came to mind when you read this question was, What does it matter how anyone sees the world? It matters a lot to a programmer who has to write a computer program that emulates the real world. The Stuff That Stuff Is Made Of Comedian George Carlin sums up how most of us see the world in his famous comedy routine. Carlin says we see the world as stuff, and he is probably right. Stuff is anything you have and anything you want. A house is stuff. Things you have in your house are stuff. Things you throw away are stuff, and so are the things you want to buy. And the stuff we have, such as a house, is made up of other stuff, such as windows and doors. Admittedly the term stuff is less technical
	Chapter 1: A Look at How We See the World
	Why an Object?By now you’re wondering what is so revolutionary about looking at the world as objects. The short answer is that focusing on objects makes it easy for us to understand complex things. Objects enable us to look at details that are of interest to us and ignore other details that we are not interested in. This is evident when you meet your teacher. A teacher is a person and has many of the attributes and behaviors that you posses. Yet, you probably ignore many of the teacher’s attributes and behaviors and focus on only those that pertain to your education. Likewise, the teacher focuses on your attributes and behaviors that indicate how well you are learning material in class. Other attributes, such as your performance in an unrelated class or your height and weight, are ignored by the teacher. Similarly, a teacher may not care if you drive a car or walk to campus. Both you and your teacher simplify your relationship by deciding attributes and behaviors that are important to
	InheritanceInheritance is an important feature of object-oriented programming because it is a way for one object to receive attributes and behaviors of another object in what programmers call an “is a” relationship. As an example, let’s use the Person and Student objects to discuss how inheritance works. Previously in this chapter, you learned that Person has many attributes and behaviors. In this example, we’ll limit Person’s attributes and behaviors to those shown in Table 1-1. Table 1-1: Attributes and Behaviors of Person Attributes Behaviors First Name Sitting Last Name Standing Address Walking Telephone Number Running Student has the same attributes and behaviors as Person because Student is a person. In addition, Student has attributes and behaviors that are unique to a student. Some of these are shown in Table 1-2. Table 1-2: Attributes and Behaviors of Student Attributes Behaviors Student Number Taking a test Major Attending class Grade Point Average Doing homework It makes sen
	Objects in the Business World You will find yourself using objects that are common in business to build an object-oriented business system. Let’s take a look at a supermarket to get a better understanding of a business system and the objects used in business �⠀猀攀攀 䘀椀最甀爀攀 ⴀ㈀). You’ve visited plenty of supermarkets, so you probably have a general idea of how a supermarket receives merchandise from a warehouse. Figure 1-2: A supermarket uses a business system and business objects to restock shelves with merchandise. Each week supermarket employees survey the shelves and the storeroom to determine what products to order from the supermarket’s central warehouse. They place information about each product and the quantity to order on an order form, which then is sent to the warehouse for fulfillment. At the warehouse, information on the order form is transferred to a pick list used by warehouse employees while going through the warehouse “picking” products to fill the order. Products are list
	Real-Life Objects and Object-Oriented ProgrammingFor decades, programmers have undertaken the enormous job of writing computer programs that automate the way business is conducted. In the “olden days,” as some programmers might say, a program consisted of one long series of step-by-step instructions that directed the computer to do something. Typically programs were used to automate a business process such as processing an order, which is the same thing that programs do today. Once the automation fever caught on, businesses demanded that programs take over many business operations. Programs grew in size and complexity and soon became unmanageable, expensive, and time consuming to maintain. Procedural programming came to rescue programmers. Procedural programming organizes instructions into groups that perform one task, called a procedure. Procedures are referred to as functions or methods in some programming languages. Think of a procedure as instructions used to enter a new order, dis
	Quiz 1.€ What is an object? 2.€ What is an attribute of an object? 3.€ What is a behavior of an object? 4.€ Why it is important for programmers to use object-oriented programming to develop computer systems? 5.€ Explain the role of inheritance in object-oriented programming. 6.€ How can object-oriented programming help maintain complex computer systems? 7.€ Identify the attributes of the order form in Figure 1-1. 8.€ Identify the behaviors of the order form in Figure 1-1. 9.€ Describe objects in a college that might inherit a Person object. 10.€ Draw a diagram that shows the relationships of objects that you listed in your answer to Question 9. Answers 1.€ An object is a person, place, thing, concept, or possibly event. 2.€ An attribute is a characteristic of an object. 3.€ A behavior is an action that an object is capable of performing. 4.€ Focusing on objects makes it easy for us to understand complex things. Objects enable us to look at details that are of interest to us and ignore
	Chapter 2: What Is a Class? How can you squeeze four students inside a computer? The answer is, by using a series of zeros and ones. That wasn’t the punch line you expected to hear, but it is true. Computers view students—and the world—as a bunch of zeros and ones, collectively called data. And clever programmers manipulate data to represent real-world objects by using a class. No, not a class of students, but a class that represents a real object inside a program. You’ll be learning about classes in this chapter. The Object of Objects A real-world object, such as the registration form used to register for a course, consists of attributes and behaviors �⠀猀攀攀 䘀椀最甀爀攀 ㈀ⴀ). An attribute is data associated with an object. The course name, course number, and your name and student number are examples of data associated with the registration form. A behavior is something performed by an object, such as processing, modifying, or canceling a course registration. Figure 2-1: Real-world objects, s
	Chapter 2: What Is a Class?
	A ClassA class is a template that defines attributes and methods of a real-word object. Think of a class as a cookie cutter of the letter A. The cookie cutter isn’t the letter A but rather defines what the letter A looks like. If you want a letter A, then place the cookie cutter on a cookie sheet of dough. If you want to make another letter A, you use the same cookie cutter and repeat the process. You can make as many letter A’s as you wish by using the cookie cutter. The same is true about a class. When you want an object represented by the class, you create an instance of the class. An instance is the same as the letter A appearing on the cookie sheet of dough after you remove the cookie cutter. Each instance contains the same attributes and methods that are defined in the class, although each instance has its own copy of those attributes. Instances use the same methods. Going a bit crackers with this explanation? Let’s go to the cookie cutter to cut through the confusion. Remember t
	Combining a Class with a ProgramNow that you know how to define a class and its attributes and methods, let’s place a class definition in a program. A class definition is placed outside the main part of the program. We use the term main part because a program takes on a different form depending on what language is used to write the program. The main part of a C++ program is the main function. A function is similar in concept to a method. The main function is the entry point into the program. The main part of a Java program is the main method of a class for applications, and it’s the Applet.init method for applets. A class definition must appear outside the main function in a C++ program and outside the Java application class definition in a Java program. We’ll use a Java program called MyJavaApplication to illustrate where to place a class definition in a program. The first part is the Java application class definition called MyJavaApplication, and the other part is the RegistrationFor
	Declaring an Instance of a Class An instance of a class must be declared before attributes and methods of the class can be used in a program. That is, you must cut out a cookie in the dough using the cookie cutter before you can bake the cookie. The cookie cutter is the class definition, and the cookie cutout of the dough is an instance. Remember that a class definition �⠀挀漀漀欀椀攀 挀甀琀琀攀爀) only describes attributes and methods �⠀琀栀愀琀 椀猀Ⰰ 琀栀攀 氀攀最猀 愀渀搀 琀愀椀氀 漀昀 琀栀攀 搀漀最 挀漀漀欀椀攀) of the class. Let’s assume that a class definition has two attributes: studentNumber and courseNumber. In this example, both are integers that require 2 bytes of memory. Figure 2-3 shows how the instance of this class appears in memory. The class definition doesn’t reserve any memory but simply defines what memory must be reserved when an instance is created. Figure 2-3: This figure shows how an instance of the RegistrationForm class reserves memory. An instance of a class is created in a declaration statement, as shown
	Calling a Method Before you can call a member method, you must declare an instance of the class, unless the method being called is a static method. A static method is a method that is not associated with a class, which you’ll learn about in Chapter 4. As you’ll remember, creating an instance makes a real copy of the attributes and methods of the class. The instance is then used to call the method. Let’s see how this works in the preceding listing. The first statement in the main method declares an instance of the RegistrationForm class. The instance is called regForm. Once the instance is declared, the name of the instance is used to call the dropCourse method, which is defined in the RegistrationForm class. The method is called by using the following items: The name of the instance The dot operator The name of the method The dot operator is a period that says, “The method to my right is a member of the instance to my left and is used to reference attributes and methods of an instance
	Quiz 1.€ What is an instance variable? 2.€ How do you determine the size of a class? 3.€ Explain the steps necessary to create an instance of a class. 4.€ How do you declare an instance variable? 5.€ What is a data type? 6.€ Explain the parts of a method definition. 7.€ What is the difference between an argument list and a parameter list? 8.€ Explain the steps for calling a member method. 9.€ What is a constructor and how do you define one? 10.€ How do you access an instance variable from within your program? Answers 1.€ An instance variable is an attribute of a class. 2.€ You determine the class size by adding the size of all its attributes. 3.€ You declare an instance of a class by first reserving memory for the class using the new operator followed by the constructor of the class (new RegistrationForm()). Next, declare a reference to the class and give that reference a name (RegistrationForm myRegistrationform). Finally, assign a reference to the memory reserved for the class to the
	Chapter 3: Encapsulation Encapsulation is one of those computer terms that has an overtone of sci-fi and rocket science combined, and yet you use encapsulation every day of your life. Do you have your credit cards, money, and your driver’s licenses in your wallet? Do you have pens, paper, textbook, and your laptop in a bag that you take to school? If so, then you use encapsulation. Encapsulation is putting related things together to form a new object. It may seem trivial, but you’ll learn in this chapter that encapsulation has revolutionized the way programs are written and has become a cornerstone of object-oriented programming. Parts of a Program Come Together For a long time, programmers used procedural programming languages such as C to group together instructions into one task, called a procedure. A procedure is the same as a function in C and C++ and a method in Java. Think of a procedure as the definition of an object’s behavior. For example, there is a procedure for a student t
	Chapter 3: Encapsulation
	What Is Encapsulation? Encapsulation is a technique of linking together attributes and procedures to form an object. The only way to access attributes and procedures of an object is to create an instance of the object. As you’ll recall from Chapter 2, you create an object within a program by defining a class. The class definition contains the definitions of attributes and procedures �⠀昀甀渀挀琀椀漀渀猀 椀渀 䌀⬀⬀ 愀渀搀 洀攀琀栀漀搀猀 椀渀 䨀愀瘀愀). Figure 3-1 shows a diagram of a class that defines the object Student. The top of the diagram is the list of attributes that describe a student. These are a student’s ID, student name, and whether or not the student graduated. The bottom of the diagram is a list of procedures associated with a student. These write and display information about a student. The attributes and procedures described in Figure 3-1 are said to be encapsulated in the Student class. Figure 3-1: A class diagram showing attributes and procedures that are encapsulated in the Student class definiti
	Why Use Encapsulation? Some programmers may think encapsulation is simply a clever way to make your program orderly by putting related attributes and procedures under one roof. Although this is true, protection is the reason for encapsulation. Previously you learned in this chapter that there is really no protection against the improper use of attributes and procedures in procedural programming. Both are available for a programmer to use without any checks and balances. You might say that encapsulation enables a programmer to institute those checks and balances by placing attributes and procedures in a class and then defining rules in the class to control its access.
	Protection Using Access SpecifiersA programmer controls access to attributes and procedures of a class by using access specifiers within a class definition. An access specifier is a keyword of a programming language that tells the computer what part of the program can access attributes and procedures that are members of a class. Think of access specifiers as cafeterias. There is the students’ cafeteria, the teachers’ cafeteria, and a luncheonette. Each is an access specifier. Only students can use the facilities �⠀愀琀琀爀椀戀甀琀攀猀 愀渀搀 瀀爀漀挀攀搀甀爀攀猀) of the students’ cafeteria. Only teachers can use the facilities of the teachers’ cafeteria. However, on occasion, a friend of a teacher is permitted to eat lunch in the teachers’ cafeteria, and anyone can use the facilities of the luncheonette. Java and C++ have three kinds of access specifiers—public, private, and protected. The public access specifier �⠀琀栀攀 氀甀渀挀栀攀漀渀攀琀琀攀Ⰰ 椀渀 琀栀椀猀 攀砀愀洀瀀氀攀) determines attributes and procedures that are accessible by u
	Encapsulation in Action Using C++Let’s take a look at how the public and private access specifiers are used in a C++ program. The following example defines a class called Student whose attributes are a student ID, student name, and the student’s graduation status. Two member functions are defined in the Student class. �⠀圀攠ᤀ氀氀 甀猀攀 琀栀攀 琀攀爀洀 洀攀洀戀攀爀 昀甀渀挀琀椀漀渀 椀渀 瀀氀愀挀攀 漀昀 琀栀攀 琀攀爀洀 瀀爀漀挀攀搀甀爀攀 椀渀 琀栀椀猀 猀攀挀琀椀漀渀 戀攀挀愀甀猀攀 愀 瀀爀漀挀攀搀甀爀攀 椀渀 䌀⬀⬀ 椀猀 挀愀氀氀攀搀 愀 昀甀渀挀琀椀漀渀⸀) Functions associated with a class are called member functions. The first member function is Write�⠀), and it assigns values to attributes. The other member function is Display�⠀), which displays values stored in attributes. This is the same Display�⠀) member function you learned about in the previous section. Neither member functions return a value. We want attributes of the Student class to be accessed only through the Write�⠀) and Display�⠀) functions and not directly within the program by using an instance of the Student class. That is, the on
	Encapsulation in Action Using Java Encapsulation is used in a Java program nearly the same way as it is used in a C++ program, except different syntax applies. Let’s take a look at how encapsulation works in Java. The next example is the Java version of the C++ program that illustrates the private access specifier. Two classes are defined in this example. The first class is StudentInfo, which is the Java application class. As you’ll recall from your Java application course, a Java application is contained within a class definition called the Java application class. The Java application class is the entry point to a Java application. The other class definition is Student. The Student class is the class that defines attributes and methods of a student and has the same purpose as the Student class in the previous C++ examples. We’ll use the term method instead of procedure in this section because a procedure in Java is called a method. Let’s begin our exploration with the definition of th
	Quiz 1. What is encapsulation? 2. What is the benefit of using encapsulation? 3. What is an access specifier? 4. What is a public access specifier? 5. What is a private access specifier? 6. What is a protected access specifier? 7. What portions of a super class can be used by a subclass? 8. How are access specifiers used differently in Java and C++? 9. Can a super class access portions of a subclass? 10. Why do programmers require that some attributes of a class be accessed only by a member procedure? Answers 1. Encapsulation is a technique of linking together attributes and procedures to form an object. 2. Encapsulation enables a programmer to institute “checks and balances” by placing attributes and procedures in a class and then defining rules in the class to control its access. 3. An access specifier is a programming language keyword that tells the computer what part of the application can access data and functions/methods defined within the access specifier. 4. The p
	Chapter 4: Methods and Polymorphism Polymorphism sounds like a disease old people are tested for every year. However, you probably surmise that polymorphism has something to do with object-oriented programming rather than medicine. Polymorphism means that something has the ability to appear in many shapes—and that something is a method of an object- oriented programming language. In this case, a shape is the behavior that method performs. In this chapter, you’ll learn about polymorphism and how to use it in an object-oriented program. Methods Let’s begin our trek into the world of polymorphism with a look back at methods. You might wonder why we begin with a review of methods. We do so because you implement polymorphism in your program by defining two or more methods �⠀洀漀爀攀 漀渀 琀栀椀猀 椀渀 琀栀攀 渀攀砀琀 猀攀挀琀椀漀渀). You learned in Chapter 2 that a method definition defines a behavior of an object. For example, the method Display�⠀) has the behavior of displaying student information. Student is the ob
	Chapter 4: Methods and Polymorphism
	Interface Think of an interface as a go-between, much like your television remote control. When you press the On button, the remote control relays your request to the appropriate component on the television. The component handles all the complexities involved in powering up your television. You also use the same On button on the same remote control to turn on your VCR, DVD player, and other televisions. The remote control is programmed to know how to relay your request to these other devices. You only need to learn how to use buttons on the remote control. You don’t need to learn what happens after you press a remote control button. The remote control is an interface. Buttons on the remote control are methods, and pressing a button is calling a method. Each button is a form of polymorphism and, in a sense, is overloaded. That is, you press the same On button to turn on the television, VCR, and DVD player. The remote control knows which device to turn on �⠀戀攀栀愀瘀椀漀爀) by the other buttons
	BindingEvery time you call a method in your application, the call to the method must be associated with the method definition. Programmers refer to this as binding. Binding occurs either at compile time or at run time. Binding at compile time is called early binding and is performed if all the information needed to invoke the method is known when the application is compiled. Binding at runtime is called late binding and is performed if some information is missing at compile time that is known only when the application runs. Early binding is used for normal method calls. No time is lost when the program runs because binding is completed when the executable program is created. This is an advantage over late binding. Late binding is implemented using a virtual function, which is discussed in the next section. A virtual function uses a base reference to point to the type of object used by a method. In many situations, the reference to the object is not known until run time. Therefore, bind
	Run-Time PolymorphismPreviously you learned that polymorphism is used by programmers to define a standard interface that enables application programmers to invoke common behaviors by calling the same method name. You also learned that late binding provides flexibility for a program to respond to events occurring while the program executes. Run-time polymorphism is a way for a programmer to take advantage of the benefits offered by polymorphism and late binding. Run-time polymorphism uses virtual functions to create a standard interface and to call the underlying functions. Those function definitions are bound to function calls during run time. The term virtual function is one of those computer terms that is baffling the first few times you hear it used. Let’s pick apart the term and review an example to clear up any confusion you might have. Virtual means that something appears to be real, but isn’t real. For example, a flight simulator lets you fly a virtual airplane. The airplane isn
	Quiz 1. What is polymorphism? 2. How is polymorphism implemented? 3. What is late binding? 4. What is early binding? 5. What is the advantage of run-time polymorphism? 6. What is the advantage of compile-time polymorphism? 7. What is an interface? 8. How does polymorphism enable the implementation of an interface? 9. What is a virtual function? 10. What is overloading a method? Answers 1. Polymorphism technically means that one thing has the ability to take many shapes. In programming terms, the “thing” is the name of a method and the “shape” is the behavior performed by the method. 2. Polymorphism is implemented by overloading a method or by using virtual functions. 3. Late binding is the binding of a method call to a method definition and is performed at run time if some information is missing at compile time that is known only when the application runs. 4. Early binding is the binding of a method call to a method definition and is performed at compile time if all the i
	Chapter 5: Inheritance Life would be so much easier if a long-lost relative left you his multimillion-dollar estate. You could be ahead of the game, picking up where your relative left off by benefiting from his hard work. Get real. You probably have a better chance of becoming President of the United States. However, you can pick up where other programmers left off by inheriting their work into your program. It’s not the same as inheriting a multimillion-dollar estate, but inheriting part of a program saves you countless hours of programming—and avoids a lot of head banging. Inheritance is a cornerstone of object-oriented programming and is the topic of this chapter. Inheritance: The Only Way to Program Inheritance in object-oriented programming is very similar to the way we inherit characteristics from our parents. Characteristics in object-oriented programming terms are attributes and behaviors of a class—that is, the data and methods of a class. Biological inheritance creates a hie
	Chapter 5: Inheritance
	The Class Hierarchy The hierarchical relationship between classes is sometimes referred to as a parent-child relationship. In a parent-child relationship, the child inherits all attributes and behaviors of the parent, and it uses the parent’s access specifier to control how those inherited items are available to other classes or functions. In C++, the parent is referred to as a base class, and the child is called a derived class. In Java, the parent is the super class, and the child is the subclass. Regardless of the terms, the relationship and functionality of a parent class and child class are the same. Defining a parent-child relationship is intuitive in many situations. For example, it is easy to see how a student is the parent of a graduate student because a graduate student has the same attributes and behaviors of a student, and then some. However, sometimes this relationship is illusive because the relationship isn’t clear—and maybe it doesn’t exist at all. Programmers use the “
	Simple Inheritance Using C++Simple inheritance is implemented using C++ by defining two classes. One class is the base class, and the other class is the derived class. Make sure that the derived class passes the “is a” test. That is, the derived class “is a” base class. The following example illustrates how to use simple inheritance in C++. The two classes defined in this program are the Student class and the GradStudent class. The Student class is the base class, and the GradStudent class is the derived class. The Student class definition �⠀猀栀漀眀渀 栀攀爀攀) contains two member functions: Write�⠀) and Display�⠀). Both of these are defined within the public access specifier section of the class, which means that they can be called from the program and from the derived class. class Student{ protected: int m_Graduation, m_ID; char m_First[16], m_Last[16]; public: virtual void Display�⠀) { cout << "ID: " << m_ID << endl; cout << "First: " << m_First << endl; cout << "Last: " << m_Last << endl; cout
	Simple Inheritance Using Java Simple inheritance is implemented in a Java application using a technique similar to that used in the C++ example. The Java application must define a super class and a subclass, as shown in the following example. The Student class is the super class, which is the same as a base class in C++. The GradStudent class is the subclass, similar to the derived class in the previous example. The Student class definition is the same as the Student class definition in C++, except that the access specifiers are placed in each statement and method definition. The GradStudent class definition is very similar to the GradStudent class definition in C++, except for two variations. First, the extends keyword is used in Java to signify inheritance. The extends keyword must be followed by the name of the super class that is being inherited, which is the Student class in this example. The other variation is found within the Display() method. The first statement within the Disp
	Level Inheritance Using C++Level inheritance is implemented in C++ by defining at least three classes. The first two classes have a parent-child relationship, and the second and third classes must also have a parent-child relationship. Each child class must pass the “is a” test in order to inherit from the parent class. The following example shows level inheritance in a C++ program. Three classes are defined in this example: the Person class, the Student class, and the GradStudent class. The Person class is a base class and is the parent in the parent-child relationship with the Student class. The Student class is the derived class in this relationship. That is, the Student class inherits from the Person class. The Person class defines two member functions within the public access specific section of the class definition. These are Write�⠀) and Display�⠀). The Write�⠀) member function assigns information about a person that is received as arguments to the attributes of the class. The Disp
	Level Inheritance Using JavaJava implements level inheritance very similarly to how level inheritance is implemented in C++, as shown in this next example. The same three classes defined in the C++ program are also defined in this Java application. Each class has the same attributes and member methods that perform the same functionality as their counterparts in the C++ program. The Person class is inherited by the Student class using the keyword extends. The Student class is inherited by the GradStudent class also using the keyword extends. The Display�⠀) method of the Student class and of the GradStudent class each call the Display�⠀) method of its super class in order to display values of the super class’s attributes. This is similar to how attributes of a super class are displayed in simple inheritance using Java. The main�⠀) method in this example contains practically the same statements found in the simple inheritance example, except the Write�⠀) method is passed information about a p
	Multiple Inheritance Using C++ Previously in this chapter you learned that multiple inheritance is a way for a child to inherit from two unrelated parents. The example in this section shows how to implement multiple inheritance using C++. This example introduces two new classes: Instructor and Worker. The Worker class contains attributes and methods for working with an income attribute. The Instructor class is derived from the Person class (inheriting the ID and the first and last name attributes and methods) as well as the Worker class. This is done to emphasize that a worker need not be a person to generate an income (for example, the worker could be a vending machine). However, an instructor is both a person and an income producer, so we use multiple inheritance. The Instructor class has a parent-child relationship with both the Person class and the Worker class. The Person class and the Worker class are both base classes, and the Instructor class is the derived class. Multiple inhe
	Multiple Inheritance Using JavaMultiple inheritance is not supported in Java. Therefore, you’ll need to use level inheritance whenever you want a class to inherit from two or more other classes. Remember that each class must pass the “is a” test. Any class that fails this test should not be used in level inheritance. Java instead provides interfaces, which can in some ways act or seem like multiple inheritance. However, an interface is best thought of as something like a purely abstract class. That is to say, it declares the names of member functions but doesn’t actually provide any reusable code from which you can employ inheritance. If you implement an interface in a Java class, you must create all the needed code yourself for those functions. For this reason, interfaces are not really a part of inheritance. Interfaces should really be considered a set of promises. If a class implements an interface �⠀愀渀搀 琀栀攀爀攀昀漀爀攀 挀漀渀琀愀椀渀猀 愀氀氀 琀栀攀 挀漀搀攀 渀攀攀搀攀搀 琀漀 椀洀瀀氀攀洀攀渀琀 椀琀), then other objects can
	Quiz 1. What is inheritance? 2. What is simple inheritance? 3. What is level inheritance? 4. What is multiple inheritance? 5. What is the “is a” test? 6. When would you use multiple inheritance? 7. When would you use level inheritance? 8. What is the maximum number of levels in level inheritance? 9. What members of a class can another class inherit? 10. What is the difference between base class/derived class and super class/subclass? Answers 1. Inheritance is a programming technique that enables a class to inherit some or all attributes and behaviors of another class. 2. Simple inheritance is a type of inheritance in which a class inherits from just one class. 3. Level inheritance is a type of inheritance in which two or more levels of inheritance exist. Each level consists of a parent-child relationship whereby the child of the middle level is also the parent of the lower level. The last child in level inheritance inherits directly and indirectly from other levels. 4. Mu
	Chapter 6: Abstraction You probably heard the story of the multimillionaire who told her son that he would inherit the family fortune if he promised to continue working after she passed on. Mom dies. The money starts pouring in, and somehow the son forgets about his promise. However, a clause in her will forces him back to work. So what does this have to do with abstraction? It is abstraction! Abstraction is a way a programmer of a super class �⠀洀漀洀) forces a programmer of a subclass �⠀猀漀渀) to define a behavior. You’ll learn about the whys and hows of abstraction in this chapter. Abstraction: The Enforcer Let’s begin exploring abstraction by revisiting the concepts class, super class, and subclass, which you learned about in Chapter 5. A class contains data and behaviors that are associated with an object. For example, a student ID is data, and registering a student is a behavior that is likely to be found in a Student class. Programmers define a super class whenever two or more objects
	Chapter 6: Abstraction
	Abstraction in ActionAn abstraction is implemented by defining an abstract class using the abstract keyword in Java. This is shown in the following example, which defines the Student class as an abstract class. Remember that you cannot create an instance of any class designated as an abstract class. This means that you cannot declare an instance of the Student class. The Student class must be inherited by a subclass, which is shown later in this section. abstract class Student{ } You can define data members and member methods of an abstract class. Member methods may or may not be designated an abstract method based on the needs of the class. A member method designated as an abstract method forces the programmer of the subclass to redefine the abstract member method. Member methods not designated an abstract member method do not have to be defined in the subclass. The programmer who defines the subclass has the option of redefining the method or using the super class version of the meth
	Frameworks, Libraries, and AbstractionAbstraction is sometimes a game of guessing the future. You try to design a class, or set of classes, that will hopefully be in use for several years. How can you predict today what can be useful tomorrow? The answer is, of course, experience. As you develop more experience in working with classes, you start to see how the OO paradigm works. Also, you start to appreciate the tools it provides. There are times when a decision is made that might seem to defeat the purpose of a single class. These are usually the times when a single class isn’t really the goal, but really an entire class library or framework is the important part. Put another way, you may find yourself writing a class that requires you to implement certain abstract methods from a base class that simply might not make sense. If you look at it on the basis of just your class, it might seem silly. But, if you consider the larger picture of the framework or library, it will start to make
	Quiz 1. What is abstraction? 2. When should abstraction be used in a program? 3. What is an abstract method? 4. Can an abstract method be called within a program? 5. What happens if an abstract method is not redefined? 6. Can an instance of an abstract class be declared in a program? 7. Can an abstract method be called directly by a subclass? 8. Must an abstract method be redefined by a subclass? 9. Must all methods in an abstract class be designated as abstract? 10. Must all methods in an abstract class be redefined in a subclass? Answers 1. Abstraction is a way for the programmer of a super class to require the programmer of a subclass to define a method. 2. Abstraction should be used in a program when there isn’t any way to define a good default method in the super class. 3. An abstract method is a method defined in a super class that must be redefined in a subclass that inherits the super class. 4. An abstract method cannot be called within a program. 5. A compiler e
	Chapter 7: Identifying and Describing Objects Object-oriented programming is as easy a playing a game of Password. Fans of the Game Show Network remember the popular game where a player identifies something to another player by describing it. Try playing Password the next time your party hits a lull and you’ll see how easy it is—or isn’t—to describe something. What does the game Password have to do with object-oriented programming? Both require you to identify an object by describing it. A Password player describes an object to a fellow player, whereas a programmer describes an object to a program in the form of a class definition. Describing an object is a deceivingly simply concept to understand, but one that is difficult to do. We’ll show you how the pros do it in this chapter. An Object The world would be a difficult place in which to live if we only described things based on their attributes and behaviors like we do when playing the game Password. Think for a moment. How would you
	Chapter 7: Identifying and Describing Objects
	Class Definition and Class Diagram Once a programmer identifies objects and their attributes and behaviors, the programmer then focuses on encoding these objects into the program by defining classes. Each class is an object, and members of the class are attributes and behaviors of the object. Throughout the first six chapters of this book, you learned how to define a class and member attributes and member behaviors of a class using Java and C++. Some programmers create a class diagram before they set out to define classes for an application. A class diagram illustrates classes that are used in the application and also depicts the class hierarchy, which is like a genealogical chart that shows inheritance among classes. A class diagram shows the class name, member attributes, member behaviors, and whether those member are defined in the public, protected, or private access specifier areas of the class. Figure 7-3 shows five class diagrams and the class hierarchy. The class hierarchy begi
	Relationships Among ObjectsSome objects have functional relationships rather than a hierarchical relationship. A functional relationship is one where two or more objects interact with each other but are not directly related to each other. A hierarchical relationship is one where objects are directly related through inheritance. For example, a student fills out a registration form in order to register for a course. The student and the registration form are both objects that have a functional relationship, and neither is directly related through inheritance. The functional relationship is that a student uses a registration form to register for class. Object-oriented programmers determine the functional relationship among objects in order to help them understand how objects work together to achieve the goal of the application. An object is sometimes referred to as an entity. For example, a student is an entity, the registration form is an entity, and a course is an entity. A functional re
	Quiz 1. What is the difference between an attribute and data? 2. What is the purpose of using a leveling diagram? 3. What is an entity? 4. What is the purpose of using an entity relationship diagram? 5. What does 0:N mean? 6. What is the purpose of decomposing an attribute? 7. What is a processing model? 8. What is pseudo code? 9. What is a class diagram? 10. What is a many-to-one relationship? Answers 1. An attribute is information used to describe an object, whereas data is the smallest amount of information used to describe an object. For example, a student name is an attribute, and a student’s first name and last name are data. 2. A leveling diagram is used to simplify the understanding of a complex application. The first level of the leveling diagram provides a simplified overview of the application, and subsequent levels provide a progressively more detailed view of the application. 3. Entity is another term used for “object.” 4. The purpose of using an entity relat
	Chapter 8: Real-World Modeling Remember back during your grammar school days when you tried to shape a hunk of modeling clay into your favorite car? No matter how much you poked, pulled, and pounded, the clay never resembled an automobile. And yet designers for auto manufacturers poke, pull, and pound the same clay as you, but are able to transform the hunk of clay into a work of art that eventually drives onto the showroom floor. Auto designers have the know-how to model a real-world automobile out of clay. The same can be said about professional object-oriented programmers. They have the skills to apply object-oriented programming theory to model real-world objects in a program. You’ll learn those skills in this chapter. Theory vs. the Real World Experienced object-oriented programmers soon realize after learning their trade that the real world isn’t as perfect as the examples used to explain the concepts of object-oriented programming. Somehow the real world cannot always be organiz
	Chapter 8: Real-World Modeling
	Real-World Hierarchy Another staple of object-oriented programming is that the real world is organized into objects, and objects are associated with other objects in a hierarchy. In reality, objects found in the real world form one of two kinds of hierarchies: a static hierarchy or a dynamic hierarchy. Objects in a static hierarchy don’t change or change very little over a long time period. Most things in nature are objects that have a static hierarchy. These are also the same objects used to describe the concepts of object-oriented programming. An object in a dynamic hierarchy frequently changes its relationship with other objects in the hierarchy. Objects used in business applications typically have a dynamic hierarchy. In fact, some business objects tend to have a matrix hierarchy that consists of cross-relationships. You’ve probably seen this in organizations for which you’ve worked where some workers �⠀漀戀樀攀挀琀猀) report directly to one boss and have a cross-reporting relationship to
	The Real-World Challenges of Object-Oriented Programming Now that you understand many of the challenges you’ll face applying object-oriented programming theory in real-world situations, let’s take a closer look at common problems and how the pros resolve them. Here’s what we’ll explore: Data storage Common procedures Defining objects Hierarchy Data Storage Data storage is a common challenge when designing an object-oriented program because there is a philosophical conflict between the way many organizations store data and object-oriented programming design, as you learned in this chapter. Organizations use a relational database to store data, which coincides with the procedural style of programming. Objects defined in object-oriented programming don’t lend themselves easily to a relational database model because a relational database is not suited for storing objects. An object-oriented database is designed to store objects; however, typically organizations don’t use an object-oriented
	The Computer World vs. the Real WorldAnother interesting aspect to note about object-oriented programming is that while we try our best to mimic things in the real world, some things don’t have exact physical counterparts in the real world. Some things are conceptual, or may at first be considered too simple to be broken down into real-world objects. For example, a sorting algorithm or technique isn’t a real world “thing” but rather more a method. A linked list also isn’t a real-world thing, though we might see examples of them or use them programmatically on a daily basis. With a bit of work, we can start to imagine how these things might work in the real world, but it would be in a way that nobody actually does things. Let’s take the linked list example a step further: A linked list is a collection of “nodes.” Each node contains a reference �⠀漀爀 瀀漀椀渀琀攀爀) to the next node as well as some additional data we wish to manage. Now, we would never actually have a linked list node in the real
	Quiz 1.€ How is data stored in a typical object-oriented application? 2.€ How are approaches to programming analogous to nouns and verbs? 3.€ What prevents some business applications from being modeled using object- oriented programming? 4.€ What is a dynamic hierarchy? 5.€ What is a static hierarchy? 6.€ How can a hierarchy be morphed? 7.€ Do we look at the real world as objects? 8.€ Explain the potential conflict between the simplicity of an application and adherence to object-oriented programming theory. 9.€ Is the objective of an object-oriented program to simulate the real world? 10.€ What is the difference between an internal model and an external model? Answers 1.€ Many object-oriented applications store data in a relational database and use a conversion routine to translate data from data members of objects into rows in a relational database and to transfer data from a relational database to data members of objects. 2.€ Objects are thought of as nouns, such as a person, place,
	Chapter 9: Collaboration Try telling your instructor on the next computer programming assignment that building a computer program is a collaborative effort. You may get a few extra-credit points for being observant, but it is unlikely that you’ll be allowed to collaborate with your friends to complete the assignment. Although collaboration is frowned upon in the classroom, it is a cornerstone of software development. Collaboration occurs when programmers of different skills join forces to build an application. Collaboration also occurs in software design when components collaborate to form an industrial-strength application. In this chapter, you’ll learn how to design components so they collaborate in making a real-world application. What Is Collaboration? Collaboration occurs when two or more things work together or cooperate with each other in order to achieve a common goal. Collaboration is used in a military operation where branches of different military services join forces to ach
	Chapter 9: Collaboration
	OOP CollaborationSharing of processes is a hallmark of how real-world objects collaborate. A student cannot attend class unless the student enters into collaboration with the registrar to enroll in a course. Therefore, the student is said to share the process performed by the registrar needed to enroll students into courses. In object-oriented programming, collaboration occurs among objects that mimic real-world objects inside an application. Throughout this book, you’ve learned that an object is a person, place, or thing that has attributes and behaviors. As you’ll recall, an attribute is data, and a behavior is a process referred to as a function or method, depending on the object-oriented programming language being used to develop the application. Let’s see how collaboration works by continuing the course registration example we’ve used throughout this book. Here is the Student class we discussed extensively in other chapters: class Student{ protected: int m_Graduation, m_ID; char m
	Quiz 1. What is collaboration? 2. What is a UML sequence diagram? 3. Are UML sequence diagrams usually all-inclusive diagrams? 4. Do UML sequence diagrams show flow control? 5. What does a dashed line indicate in a sequence diagram? 6. What does a solid line indicate in a sequence diagram between two objects? 7. What is a UML collaboration diagram? 8. Technically, what is a message? 9. Should you create diagrams using base class names if the derived object you are using doesn’t use any methods outside its base class? 10. What is a Class Responsibility Collaborator diagram? Answers 1. Collaboration describes how two or more classes interact and work with one another. 2. A UML �⠀唀渀椀昀椀攀搀 䴀漀搀攀氀椀渀最 䰀愀渀最甀愀最攀) sequence diagram is used to represent a sequence of operations between classes. 3. No. They are typically diagrams of smaller portions or overviews of an application. An application may contain many sequence diagrams. 4. No. Unlike flow charts, sequence diagrams do not show
	Chapter 10: Case Modeling So far, we have spent much of our time working on the design and creation of classes, and you’ve been given examples of how these classes can be created using diagrams and standard approaches. In this chapter, we are going to take a slight step back and talk about the overall design and analysis of a system, which in turn dictates the needs for such classes. Although we will also be discussing classes and programming, it’s important to point out that a fair amount of groundwork must be laid before the first line of code can actually be written. Even if you are not directly responsible for the design and analysis of a system, understanding and recognizing its workings will simply make you that much more valuable as a developer. About Case Modeling Consider the following architect paradigm: Architects are never told “Hey, make me a building.” Instead, a tremendous amount of research and analysis goes into the process of designing a building that will meet the re
	Chapter 10: Case Modeling
	Oh No, Not End UsersYes, end users. The jokes here can be endless in the technical community. The office assistant with the company for 30 years who still sees no reason why they just can’t use a typewriter to write a letter, or when asked to send a copy of a disk sends you a Xeroxed copy. Like it or not, these are the people who will be using your system. Never lose sight of the fact that you are developing a system for someone else to use—someone who may likely be using it on a daily basis, eight hours a day, for several years. When designing a new system, you should work with the users. You are actually working for them. Take notes on all requests and desires, and don’t think like a programmer yet. As a person is describing their needs about student registration, don’t immediately start thinking “Okay, I can use a vector collection for that….” Take down all the information and the user needs, and think about the system. Even if you know you are going to be the person writing the cod
	Gathering RequirementsWhen designing a system, it is helpful to identify the people, organizations, or things that might interact with it. We call these things “actors” in the system. Note that an actor doesn’t have to be a person. If a system needs to output a file in a certain format for a government agency, that agency might be considered an actor as well. Or, a board of directors may have influence over the rules of a system, in which case the entire board can be viewed as an actor. For the most part in our discussions here, however, actors will refer to people. As you work with actors, you will certainly want to track information about them, such as their name, contact number, e-mail address, position, and so on. Position, however, does not necessarily play as vital a role as you might think in the design of a system. You might have two actors in developing a mail-routing system: the person who distributes the mail, and the president who will be paying for the system. In reality,
	Essential Use CaseAn essential use case is a nontechnical view of how your system will work with its users. Its goal is to describe various aspects or operations, as well as who might perform these operations, be responsible for their input, or interested in their output. When you identify the actors of a system or create use case diagrams, you are performing essential use case modeling. Figure 10-1 shows a simple use case diagram for our registration example. Note that it does not attempt to indicate a particular sequence or flow (such as a sequence diagram or flowchart would) but instead provides a graphic representation of the actors for our system along with their primary interaction with the system. Figure 10-1: A simple use case diagram for the registration example The people in Figure 10-1 are used to represent the actors themselves, and the large rectangle identifies our system. Inside the rectangle, text appears within ovals to identify particular tasks or needs for the actors
	System Use CaseWhereas the essential use case approach defines the nontechnical aspect of a particular task or goal, the system use case defines the technical aspect. It is important to note that the use case diagram in Figure 10-1 can be used in both, as it demonstrates a particular task and its actors. System use cases differ from essential use cases in their documentation and how we describe the process itself (as noted earlier, essential use cases are documented). Whereas the essential use case documentation would refer to the basic steps, needs, prerequisites, actors, and so on, the system use cases will document the technical aspects of the system, such as the user interface elements, database elements, and so on. In describing a system use case, we might also find references to user interface elements, which are what make up the visual interface to the application. The most common user interface is Windows, and we can easily imagine using dialog boxes and controls (buttons, chec
	Business RulesNo, we don’t mean “business is the tops.” It’s a fact of life that we all have rules we must follow, and a business is no different. As you might guess, a business rule defines a rule a business must follow. For example, a business rule of our registration system might be that students can only enroll in a new course if they have paid for all their previous courses in full. Any actor or SME of the system can define business rules. Going back to the “actor may be a government agency” example, a government agency might define certain rules under which a student is eligible for financial aid, and your system must implement those rules for each student. Business rules are implemented in a method of a class. Let’s go back to the “student must be paid in full” business rule for our registration example. class Student { public: bool PaidInFull�⠀) { /* Search database to determine if paid in full */ } bool Enroll�⠀ 挀漀渀猀琀 䌀漀甀爀猀攀☀ 愀䌀漀甀爀猀攀 ) { if�⠀ 倀愀椀搀䤀渀䘀甀氀氀(�⤀ 㴀㴀 昀愀氀猀攀 ) return�⠀ 昀愀氀猀攩ਾ㸊敮摯扪ਊ㠷㜠〠潢樊㰼ਯ䑥獴⁛㐶㘠〠删⽘奚‵‱㔷ㄠ湵汬崊⽎數琠㠷㠠〠刊⽐慲敮琠㠰㤠〠刊⽐牥瘠㠷㘠〠刊⽔楴汥 User Interface Diagramming The user interface is one of the more subjective aspects of programming. For the most part, we are talking about forms in which the user enters data, but the user interface is also composed of menu items and reports. Basically, whatever the user sees or interacts with defines the user interface. Although programmers may tend to lay out the user interface in a manner they find both attractive and functional, the initial designs will often not be perfect the first time. As you design these sets of diagrams and forms, be prepared for change. For example, we may think that the student’s address comes before their grade information in the user interface. However, an SME might point out that the student’s address is commonly entered just once, whereas the grade data is modified many times over the student’s academic life. Having the address fields before the grades simply means the end user must move through those fields to get to the ones they work with the most,⤊㸾湤潢樊ਸ㜸‰扪਼㰊⽄敳琠嬴㜰‰⁒ 塙娠㔠㜸㠠湵汬崊⽎數琠㠷㤠〠刊⽐慲敮琠㠰㤠〠刊⽐牥瘠㠷㜠〠刊⽔楴汥 Defining Classes from Our Designs Okay, now its time for the big step: taking your diagrams and documentation and start coding your classes. Whoa, wait. Come back here. You need to design them first, not code them. We can start by defining the three main types of classes: actor classes, business classes, and user interface classes. Actor classes are classes that represent the actors within the system. Remember that an actor may be a person or an organization such as a government agency. In our registration example, we might say that one of the actors is the registrar who must approve each registration request. �⠀䄀猀 愀 瀀爀漀最爀愀洀洀攀爀Ⰰ 礀漀甀 洀椀最栀琀 琀栀椀渀欀 琀栀愀琀 礀漀甀 挀愀渀 愀甀琀漀洀愀琀攀 琀栀攀 瀀爀漀挀攀猀猀 挀漀洀瀀氀攀琀攀氀礀Ⰰ 愀渀搀 瀀攀爀栀愀瀀猀 礀漀甀 挀愀渀⸀ 䨀甀猀琀 搀漀渠ᤀ琀 戀攀 猀甀爀瀀爀椀猀攀搀 椀昀 琀栀椀猀 戀攀挀漀洀攀猀 愀 搀攀挀椀猀椀漀渀 漀昀 愀渀 匀䴀䔀⸀) Business classes are the classes that define the business rules, or the main logic of the application. For example, we may have an Enrollment class that governs and enforces the rules for enrolling in a class. Business⤊㸾湤潢樊ਸ㜹‰扪਼㰊⽄敳琠嬴㜲‰⁒ 塙娠㔠㜸㠠湵汬崊⽎數琠㠸〠〠刊⽐慲敮琠㠰㤠〠刊⽐牥瘠㠷㠠〠刊⽔楴汥 Identifying Technical Requirements Now, this really has very little to do with programming, but we also need to identify the technical requirements of the system. Technical requirements define what is needed by the system as well as what the system needs to do or be able to do in order to successfully accomplish its job. Technical requirements are usually dictated to you, and you simply document and enforce them. They normally don’t affect any classes or designs. Let’s imagine that we have decided to document our technical requirements as a sort of numbered list, where each item is described and uniquely identified. We will number our items using the format SR1, meaning System Requirement 1. Therefore, we might come up with the following: SR1 Host System The system must be hosted on the university’s existing Acme computer system. A browser interface and web connection is to be used for the user interface. SR2 Database System The database system must utilize, and be stored on, the unive⤊㸾湤潢樊ਸ㠰‰扪਼㰊⽄敳琠嬴㜴‰⁒ 塙娠㔠㜸㠠湵汬崊⽎數琠㠸ㄠ〠刊⽐慲敮琠㠰㤠〠刊⽐牥瘠㠷㤠〠刊⽔楴汥 Change Cases Another aspect of design, which doesn’t really directly impact class design significantly, involves change cases. It’s a fact of life that things change. People change �⠀愀渀搀 挀栀愀渀最攀 樀漀戀猀), business rules change, and government agencies change. Therefore, your program will also change. Change cases are documented much like technical requirements, using a simple numbered text approach. What you want to do is identify portions of your system that may be eligible for change some time in the future, and document them. These change cases should include a single-line description of the anticipated change, a possibility indicator of the chance the change will be needed, and what sort of impact the change will have on your system. By describing these changes now, management has the ability to try and manage them. The project manager may decide that a specific section of a design is complete but then suddenly get wind of a new change. Based on the impact and likelihood of the change,⤊㸾湤潢樊ਸ㠱‰扪਼㰊⽄敳琠嬴㠰‰⁒ 塙娠㔠㈳㔴畬汝ਯ乥硴‸㠲‰⁒ਯ偡牥湴‸〹‰⁒ਯ偲敶‸㠰‰⁒ਯ呩瑬攠⣾倀爀漀樀攀挀琀 䴀愀渀愀最攀洀攀渀琀圀攠ᤀ爀攀 愀昀爀愀椀搀 琀栀攀 搀愀礀猀 漀昀 挀漀渀猀椀搀攀爀椀渀最 戀甀椀氀搀椀渀最 愀 洀漀搀攀氀 挀愀爀 瀀爀漀樀攀挀琀 愀爀攀 漀瘀攀爀⸀ 匀漀昀琀眀愀爀攀 搀攀瘀攀氀漀瀀洀攀渀琀 椀猀 愀 昀甀氀氀ⴀ琀椀洀攀 樀漀戀Ⰰ 愀渀搀 椀渀搀攀攀搀 洀愀渀礀 漀爀最愀渀椀稀愀琀椀漀渀猀 栀愀瘀攀 愀琀 氀攀愀猀琀 漀渀攀 椀渀搀椀瘀椀搀甀愀氀 眀栀漀 漀瀀攀爀愀琀攀猀 甀渀搀攀爀 琀栀攀 琀椀琀氀攀†ᰀ倀爀漀樀攀挀琀 䴀愀渀愀最攀爠ᴀ 琀漀 栀攀氀瀀 洀愀欀攀 猀甀爀攀 琀栀愀琀 愀 瀀爀漀樀攀挀琀 椀猀 挀漀洀瀀氀攀琀攀搀 猀甀挀挀攀猀猀昀甀氀氀礀⸀ 匀漀 昀愀爀Ⰰ 眀攀 栀愀瘀攀 琀愀氀欀攀搀 愀戀漀甀琀 最愀琀栀攀爀椀渀最 爀攀焀甀椀爀攀洀攀渀琀猀 愀渀搀 琀栀攀 搀攀猀椀最渀 愀渀搀 愀渀愀氀礀猀椀猀 瀀栀愀猀攀猀Ⰰ 愀渀搀 琀栀攀 瀀爀攀挀攀搀椀渀最 猀攀挀琀椀漀渀 搀攀猀挀爀椀戀攀搀 挀栀愀渀最攀 挀愀猀攀猀 琀漀 栀愀渀搀氀攀 瀀爀漀最爀愀洀 挀栀愀渀最攀猀⸀ 圀攠ᤀ氀氀 渀漀眀 搀椀猀挀甀猀猀 琀栀攀 昀椀渀愀氀 琀漀瀀椀挀 (which really isn’t technically a programming issue�⤀㨀 瀀爀漀樀攀挀琀 洀愀渀愀最攀洀攀渀琀⸀ 圀攠ᤀ氀氀 戀攀最椀渀 漀甀爀 搀椀猀挀甀猀猀椀漀渀 搀椀昀昀攀爀攀渀琀氀礀 昀爀漀洀 愀渀礀 漀昀 琀栀攀 瀀爀攀瘀椀漀甀猀 琀漀瀀椀挀猀 眀椀琀栀 琀栀攀 愀猀猀甀洀瀀琀椀漀渀 琀栀愀琀 琀栀攀 搀攀猀椀最渀椀渀最Ⰰ 挀漀搀椀渀最Ⰰ 愀渀搀 琀攀猀琀椀渀最 瀀栀愀猀攀猀 愀爀攀 愀氀爀攀愀搀礀 漀爀 渀攀愀爀氀礀 挀漀洀瀀氀攀琀攀搀⸀ 夀漀甀 挀愀渀 挀栀漀漀猀攀 昀爀漀洀 愀 渀甀洀戀攀爀 漀昀 挀漀洀洀攀爀挀椀愀氀 瀀愀挀欀愀最攀猀 琀漀 愀猀猀椀猀琀 礀漀甀 椀渀 瀀爀漀樀攀挀琀 洀愀渀愀最攀洀攀渀琀Ⰰ 猀甀挀栀 愀猀 䴀椀挀爀漀猀漀昀琀 倀爀漀樀攀挀琀 昀漀爀 最攀渀攀爀愀氀 瀀爀漀樀攀挀琀猀 愀渀搀 匀琀愀爀䈀愀猀攀 匀琀愀爀吀攀愀洀 昀漀爀 猀漀昀琀眀愀爀攀 搀攀瘀攀氀漀瀀洀攀渀琀 瀀爀漀樀攀挀琀猀⸀ 吀栀攀猀攀 愀瀀瀀氀椀挀愀琀椀漀渀猀 戀愀猀椀挀愀氀氀礀 栀攀氀瀀 礀漀甀 琀漀 琀爀愀挀欀 愀渀搀 瀀氀愀渀 瀀爀漀樀攀挀琩ਾ㸊敮摯扪ਊ㠸㈠〠潢樊㰼ਯ䑥獴⁛㐸㘠〠删⽘奚‵‷㠸畬汝ਯ乥硴‸㠳‰⁒ਯ偡牥湴‸〹‰⁒ਯ偲敶‸㠱‰⁒ਯ呩瑬攠⡑畩稠ㄮꀠ坨慴猠慮捴潲㼠㈮ꀠ坨慴猠愠獵扪散琠浡瑴敲硰敲琿″⺠⁉渠祯畲湩瑩慬潭浵湩捡瑩潮⁷楴栠愠獵扪散琠浡瑴敲硰敲琠潲渠慣瑯爬⁷桡琠獨潵汤⁹潵敱略獴牯洠瑨敭㼠㐮ꀠ坨慴桯畬搠扥⁴桥楲獴⁴桩湧⁹潵漠睨敮湴敲癩敷楮朠愠獵扪散琠浡瑴敲硰敲琠潲捴潲㼠㔮ꀠ坨慴猠慮獳敮瑩慬⁵獥慳政‶⺠⁗桡琠楳⁴桥⁰畲灯獥映愠畳攠捡獥楡杲慭㼠㜮ꀠ坨慴潥猠瑨攠獹獴敭⁵獥慳攠摥晩湥㼠㠮ꀠ坨慴猠瑨攠灵牰潳攠潦畳楮敳猠牵汥猿‹⺠⁗桡琠摯⁹潵⁵獥⁴漠摥晩湥⁴桥汯眠潦⁴桥⁰牯杲慭牯洠愠浥湵敬散瑩潮⁴漠愠獰散楦楣潲洿‱〮ꀠ坨慴猠慮捴潲污獳㼠䅮獷敲猠ㄮꀠ䅮捴潲猠愠灥牳潮Ⱐ潲条湩穡瑩潮Ⱐ潲⁴桩湧⁴桡琠浩杨琠楮瑥牡捴⁷楴栠愠獹獴敭⸠㈮ꀠ䄠獵扪散琠浡瑴敲硰敲琠⡓䵅⤠楳⁰敲獯渠睨漠桡猠數灥牴湯睬敤来映瑨攠獹獴敭畴慹潴⁵獥⁴桥祳瑥洮″⺠⁙潵桯畬搠牥煵敳琠瑨慴⁴桥礠桡癥敡摹湹慭灬攠牥灯牴猠潲潲浳⁴桡琠瑨敹畲牥湴汹⁵獥⁴漠摯⁴桥楲潢⸠㐮ꀠ䅳欠瑨攠浯獴浰潲瑡湴ⁱ略獴楯湳楲獴Ⱐ楮慳攠祯甠牵渠潵琠潦⁴業攮‵⺠⁁渠敳獥湴楡氠畳攠捡獥猠愠湯湴散桮楣慬⁶楥眩ਾ㸊敮摯扪ਊ㠸㌠〠潢樊㰼ਯ䑥獴⁛㐹㈠〠删⽘奚‵‱㔷ㄠ湵汬崊⽎數琠㠸㐠〠刊⽐慲敮琠㠰㤠〠刊⽐牥瘠㠸㈠〠刊⽔楴汥 Chapter 11: Interfaces The telephone is one of the many technologies we take for granted. You can go anywhere in the country and use a telephone to call home. You don’t think twice about how to use the phone because, regardless of the manufacturer, all telephones have the same keypad and work the same way—they all have the same user interface. Anyone who learns how to use one phone can use the same skills to use any other phone. When you dial home, you are connected in a second, regardless of the technology used in the telephone. The concept of a common interface also applies to an object-oriented program, although not necessarily a user interface. In this chapter you’ll explore interfaces used in object-oriented programming and how they increase the flexibility of program development. Inside Interfaces When a person in the computer industry hears the term interface, he usually thinks of a user interface, such as the Windows or Mac OS X operating system shells. Interfaces in programmin⤊㸾湤潢樊ਸ㠴‰扪਼㰊⽄敳琠嬴㤰‰⁒ 塙娠㔠㜸㠠湵汬崊⽎數琠㠸㔠〠刊⽐慲敮琠㠰㤠〠刊⽐牥瘠㠸㌠〠刊⽔楴汥 䍨慰瑥爠ㄱ㨠䥮瑥牦慣敳⤊㸾湤潢樊ਸ㠵‰扪਼㰊⽄敳琠嬴㤸‰⁒ 塙娠㔠㜸㠠湵汬崊⽎數琠㠸㘠〠刊⽐慲敮琠㠰㤠〠刊⽐牥瘠㠸㐠〠刊⽔楴汥 Interface DiagramsYou have two principle ways in which to diagram an interface: You can diagram the interface itself, and you can show within the diagram that a class implements the interface. Figure 11-1 shows a diagram that represents an interface. The first line, called the stereotype, describes what the box represents, and the second line provides the name of the interface. Below that you find the methods of the interface. You can then optionally create a diagram that has an arrow going from a class to the interface, to indicate that it implements that interface. Figure 11-1: A typical interface diagram Figure 11-2 shows a diagram using a type of shorter notation, referred to as the lollipop notation. This notation doesn’t provide details about the interface but rather merely that a class implements it. The interface name appears in the circle, and a line connects it to the class that implements it �⠀椀渀 琀栀椀猀 挀愀猀攀Ⰰ 䌀漀甀爀猀攀). Figure 11-2: This diagram shows that a class implements the⤊㸾湤潢樊ਸ㠶‰扪਼㰊⽄敳琠嬵〰‰⁒ 塙娠㔠㜸㠠湵汬崊⽎數琠㠸㜠〠刊⽐慲敮琠㠰㤠〠刊⽐牥瘠㠸㔠〠刊⽔楴汥 Show Me the HTMLIn order for you to understand interfaces, we’ll start out with a conceptual example. We have been working with a school registration system throughout the book, so we’ll stick with that example. In our registration system, so far we have seen similar �⠀漀爀 搀攀爀椀瘀攀搀) classes such as Student and Instructor �⠀瀀漀琀攀渀琀椀愀氀氀礀 搀攀爀椀瘀攀搀 昀爀漀洀 愀 倀攀爀猀漀渀 挀氀愀猀猀) as well as dissimilar classes such as Enrollment and Course. Because Course, Person, and Enrollment are dissimilar, they probably won’t share the same base class �⠀眀攠ᤀ氀氀 搀椀猀挀甀猀猀†ᰀ猀甀瀀攀爠ᴀ 戀愀猀攀 挀氀愀猀猀攀猀 氀愀琀攀爀). But, as it turns out, we may want to have a standard method in each of these classes to permit us to display the data of an object. Because we have already discussed a Display method common to each of the classes, let’s make this example a bit more interesting. Our goal is to introduce a standard method, called GetHTML, for objects to generate their own HTML source for display in a web page. Now you might be jumping ahead here.⤊㸾湤潢樊ਸ㠷‰扪਼㰊⽄敳琠嬵〴‰⁒ 塙娠㔠㜸㠠湵汬崊⽎數琠㠸㠠〠刊⽐慲敮琠㠰㤠〠刊⽐牥瘠㠸㘠〠刊⽔楴汥 The HTMLSource InterfaceWe want to create our own interface, which we will call HTMLSource. The feature this interface will provide is the ability to format its data as HTML. Now, before we go much further, you should be aware that providing user interface functionality in a class that also implements some sort of logic or rule functionality is typically considered bad design. Ideally, logical classes are separated from user interface classes. A more realistic example would be to provide an XMLSource interface to provide XML-formatted data. However, XML and its usage are more complicated than we have space to cover. The HTMLSource interface we’ll create will have a single method, GetHTML�⠀), that returns the object’s data in an HTML-formatted string. The interface in Java would look like the following: package Registration;public interface HTMLSource{ public String GetHTML�⠀);} Note the use of the interface keyword to declare HTMLSource as an interface, not a class. Inside you can see fa⤊㸾湤潢樊ਸ㠸‰扪਼㰊⽄敳琠嬵‰⁒ 塙娠㔠ㄵ㜱畬汝ਯ乥硴‸㠹‰⁒ਯ偡牥湴‸〹‰⁒ਯ偲敶‸㠷‰⁒ਯ呩瑬攠⡔桥⁃污獳敳Ⱐ䉥景牥渠䥮瑥牦慣攠䥳⁉浰汥浥湴敤併爠數慭灬攠睩汬⁵獥潵爠捬慳獥猺⁐敲獯測⁓瑵摥湴Ⱐ䥮獴牵捴潲Ⱐ慮搠䍯畲獥⸠周攠捬慳猠健牳潮⁷楬氠灲潶楤攠瑨攠晩牳琠慮搠污獴慭攠慴瑲楢畴敳 摡瑡敭扥牳⤠慮搠睩汬敲癥猠瑨攠扡獥污獳潲⁓瑵摥湴湤⁉湳瑲畣瑯爮⁔桥⁃潵牳攠捬慳猠睩汬潴攠摥物癥搠晲潭湹瑨楮本湤潲⁴桥慫攠潦業灬楣楴礠睩汬潮瑡楮潴桩湧畴⁴桥潵牳攠湡浥⸠周攠䩡癡污獳敳牥敦楮敤猠景汬潷猺 ⼯⼯⼯⁐敲獯渮橡癡灡捫慧攠剥杩獴牡瑩潮㭰畢汩挠捬慳猠健牳潮⁻⁰牯瑥捴敤⁓瑲楮朠䙩牳瑎慭攬⁌慳瑎慭攻⁰畢汩挠癯楤⁍潤楦礨⁓瑲楮朠䙩牳琬⁓瑲楮朠䱡獴 ⁻⁆楲獴乡浥‽⁆楲獴㬠䱡獴乡浥‽⁌慳琻⁽⁰畢汩挠癯楤⁄楳灬慹⠩⁻⁓祳瑥洮潵琮灲楮琨⁆楲獴乡浥••⁌慳瑎慭攩㬠絽 ⼯⼯⼯⁓瑵摥湴慶慰慣歡来⁒敧楳瑲慴楯渻灵扬楣污獳⁓瑵摥湴硴敮摳⁐敲獯渠笠灲潴散瑥搠楮琠䝲慤畡瑩潮奥慲㬠灵扬楣⁓瑵摥湴⠩⁻⁇牡摵慴楯湙敡爠㴠〻⁽⁰畢汩挠癯楤⁍潤楦礨⁓瑲楮朠䙩牳琬⁓瑲楮朠䱡獴Ⱐ楮琠䝲慤畡瑩潮 ⁻異敲⹍潤楦礨⁆楲獴Ⱐ䱡獴 㬠䝲慤畡瑩潮奥慲‽⁇牡摵慴楯渻⁽⁰畢汩挠癯楤⁄楳灬慹⠩⁻異敲⹄椩ਾ㸊敮摯扪ਊ㠸㤠〠潢樊㰼ਯ䑥獴⁛㔱㠠〠删⽘奚‵‱㔷ㄠ湵汬崊⽎數琠㠹〠〠刊⽐慲敮琠㠰㤠〠刊⽐牥瘠㠸㠠〠刊⽔楴汥 䥭灬敭敮瑩湧⁉湴敲晡捥猠楮⁊慶愠慮搠䌣⁎潷⁴桡琠潵爠捬慳獥猠慲攠摥晩湥搬⁷攠湥敤⁴漠慣瑵慬汹浰汥浥湴⁴桥洮⁗攠湥敤⁴漠楮摩捡瑥渠瑨攠捬慳猠摥捬慲慴楯渠瑨慴⁷攠楮瑥湤⁴漠業灬敭敮琠瑨攠楮瑥牦慣攬湤⁷攠慬獯敥搠瑯⁷物瑥⁴桥整桯摳⁴桡琠慲攠捯湴慩湥搠楮⁴桥湴敲晡捥⸠䥮⁊慶愬⁷攠睲楴攠瑨攠景汬潷楮朠瑯潤楦礠瑨攠却畤敮琠捬慳猺 ⼯⼯⼯⁓瑵摥湴慶慰慣歡来⁒敧楳瑲慴楯渻灵扬楣污獳⁓瑵摥湴硴敮摳⁐敲獯渠業灬敭敮瑳⁈呍䱓潵牣攠笠灲潴散瑥搠楮琠䝲慤畡瑩潮奥慲㬠灵扬楣⁓瑵摥湴⠩⁻⁇牡摵慴楯湙敡爠㴠〻⁽⁰畢汩挠癯楤⁍潤楦礨⁓瑲楮朠䙩牳琬⁓瑲楮朠䱡獴Ⱐ楮琠䝲慤畡瑩潮 ⁻異敲⹍潤楦礨⁆楲獴Ⱐ䱡獴 㬠䝲慤畡瑩潮奥慲‽⁇牡摵慴楯渻⁽⁰畢汩挠癯楤⁄楳灬慹⠩⁻異敲⹄楳灬慹⠩㬠卹獴敭畴物湴⠠∠∠⬠䝲慤畡瑩潮奥慲 㬠素灵扬楣⁓瑲楮朠䝥瑈呍䰨⤠笠却物湧⁒整‽敷⁓瑲楮木⤻⁒整‽•㱂㸢⭆楲獴乡浥⬢♮扳瀻∫⁌慳瑎慭攫∼⽂㸦湢獰㭇牡摵慴敳渠∫⁇牡摵慴楯湙敡爻整畲渨⁒整 㬠素素乯瑥潷⁴桥楲獴楮攠潦⁓瑵摥湴慳敥渠浯摩晩敤⁴漠畳攠瑨攠獹湴慸浰汥浥湴猠䡔䵌卯畲捥Ⱐ睨楣栠浥慮猠睥⁷楬氠扥浰汥浥湴楮⤊㸾湤潢樊ਸ㤰‰扪਼㰊⽄敳琠嬵㈳‰⁒ 塙娠㔠㜸㠠湵汬崊⽎數琠㠹ㄠ〠刊⽐慲敮琠㠰㤠〠刊⽐牥瘠㠸㤠〠刊⽔楴汥 䉲楮杩湧⁉琠䅬氠呯来瑨敲䡡癩湧⁴桥污獳敳畮捴楯湡氠慮搠業灬敭敮瑩湧⁴桥⁰牯灥爠楮瑥牦慣攠慲攠業灯牴慮琬畴⁷攠慲攠獴楬氠浩獳楮朠瑨攠摥浯湳瑲慴楯湡氠捯摥⁴桡琠獨潷猠睨礠瑨攠楮瑥牦慣攠楳楦晥牥湴牯洠愠捬慳猠睩瑨湬礠慢獴牡捴整桯摳渠楴⸠周攠慮獷敲猠灲敳敮瑥搠桥牥Ⱐ慮搠楴敱畩牥猠畳⁴漠睲楴攠愠晵湣瑩潮⁴桡琠瑡步猠慮湴敲晡捥 湯琠愠捬慳猩猠愠灡牡浥瑥爮⁉渠䩡癡Ⱐ睥⁷潵汤⁷物瑥⁴桩猠慳潬汯睳㨠灲潴散瑥搠癯楤⁓桯睈呍䰨⁈呍䱓潵牣攠卯浥佢橥捴 笠卹獴敭畴物湴汮⠠卯浥佢橥捴⹇整䡔䵌⠩ 㭽⁔桥⁃⌠癥牳楯渠睯畬搠扥敡牬礠楤敮瑩捡氺⁰牯瑥捴敤⁶潩搠卨潷䡔䵌⠠䥈呍䱓潵牣攠卯浥佢橥捴 笠卹獴敭⹃潮獯汥⹏畴⹗物瑥䱩湥⠠卯浥佢橥捴⹇整䡔䵌⠩ 㭽⁎潷Ⱐ楮潴栠䩡癡湤⁃⌬⁷攠桡癥⁓桯睈呍䰠浥瑨潤⁴桡琠慣捥灴猠慮礠潢橥捴⁴桡琠業灬敭敮瑳⁴桥⁈呍䱓潵牣攠楮瑥牦慣攮⁗楴栠瑨楳湯睬敤来Ⱐ楴猠獡晥潲⁴桥⁰牥捥摩湧⁓桯睈呍䰠晵湣瑩潮⁴漠捡汬⁴桥⁇整䡔䵌整桯搠潮⁴桥散敩癥搠潢橥捴⸠䙩杵牥‱ㄭ㌠獨潷猠睨慴畲楡杲慭浩湧潷潯歳楫攬⁷楴栠浵汴楰汥污獳敳⁴桡琠業灬敭敮琠慮湴敲晡捥⸠䙩杵⤊㸾湤潢樊ਸ㤱‰扪਼㰊⽄敳琠嬵㈵‰⁒ 塙娠㔠㜸㠠湵汬崊⽎數琠㠹㈠〠刊⽐慲敮琠㠰㤠〠刊⽐牥瘠㠹〠〠刊⽔楴汥 What About C++?As stated at the beginning of this chapter, C++ does not provide syntactical support for interfaces. However, C++ does provide support for multiple inheritance. Earlier on we described how an interface is very similar to a class with all abstract methods. The problem in Java and C# is a lack of multiple inheritance, which means we can’t use this type of class and therefore have to use interfaces. In C++, thanks to multiple inheritance, we can do something very similar by using a class with all abstract �⠀漀爀 瀀甀爀攀ⴀ瘀椀爀琀甀愀氀) methods. Consider the following C++ class: class HTMLSource{ public: virtual string GetHTML�⠀) const = 0;}; Here we have a class with a single pure-virtual function, much like the Java and C# interfaces from earlier. Now, we declare a Student class, derived from the Person class and the HTMLSource class, and provide the GetHTML method: class Student: public Person, HTMLSource{ public: string GetHTML�⠀) { return "" + FirstStr + " "+ LastStr + "&n⤊㸾湤潢樊ਸ㤲‰扪਼㰊⽄敳琠嬵㈷‰⁒ 塙娠㔠㜸㠠湵汬崊⽎數琠㠹㌠〠刊⽐慲敮琠㠰㤠〠刊⽐牥瘠㠹ㄠ〠刊⽔楴汥 䍯浰潮敮瑳䄠捯浰潮敮琠楳污獳敳楧湥搠瑯楴湴漠獯浥⁰牥數楳瑩湧污獳牡浥睯牫⸠䥴慹漠獯⁴桲潵杨湨敲楴慮捥爠批浰汥浥湴楮朠潮攠潲潲攠楮瑥牦慣敳Ⱐ扵琠楴畳琠景汬潷⁴桥畬敳映捯浰潮敮瑳潲⁴桥湶楲潮浥湴渠睨楣栠楴猠扥楮朠摥癥汯灥搮⁔桥潲攠捯浭潮硡浰汥猠潦潭灯湥湴猠楮捬畤攠瑨攠捯湴牯汳湤敡湳潵湤湤⁵獥搠楮潤敲渠䥮瑥杲慴敤⁄敶敬潰浥湴⁅湶楲潮浥湴猠⡉䑅猩⸠䩡癡敶敬潰浥湴⁴潯汳湤久吠䙲慭敷潲欠瑯潬猠畳畡汬礠業灬敭敮琠獯浥⁴祰攠潦潲洠摥獩杮敲Ⱐ睨敲攠祯甠捡渠摲慧湤牯瀠捯湴牯汳畣栠慳畴瑯湳牯洠愠瑯潬⁰慬整瑥湴漠愠景牭⸠周攠楴敭猠瑨慴灰敡爠楮⁴桥⁴潯氠灡汥瑴攠慲攠數慭灬敳映瑨攠瑹灥猠潦潭灯湥湴猠睥牥⁴慬歩湧扯畴Ⱐ慮搠瑨敹牥晴敮⁷物瑴敮渠瑨攠污湧畡来映瑨攠䥄䔠楴獥汦⸠䙯爠數慭灬攬⁴桥⁊䉵瑴潮污獳渠䩡癡慮攠摩獰污祥搠楮⁴桥⁴潯氠灡汥瑴攠潦潳琠浯摥牮⁊慶愠䥄䕳散慵獥琠睡猠睲楴瑥渠瑯敥琠瑨攠牥煵楲敭敮瑳映摯楮朠獯⸠奯甠捡渠摲慧⁴桥畴瑯渠晲潭⁴桥⁴潯氠灡汥瑴攬牯瀠楴渠愠景牭爠灡湥氬湤⁴桥渠癩敷⁴桥⤊㸾湤潢樊ਸ㤳‰扪਼㰊⽄敳琠嬵㌱‰⁒ 塙娠㔠㜸㠠湵汬崊⽎數琠㠹㐠〠刊⽐慲敮琠㠰㤠〠刊⽐牥瘠㠹㈠〠刊⽔楴汥 Standard Interfaces In order to help your understanding of interfaces, it’s useful to take a look at what other developers have created. In this section we will look at some of the common interfaces provided by Java and C#. This is by no means a complete list of interfaces, but it will show you some patterns in how the architects of these languages and their associated class and interface libraries designed their systems. As we discuss these interfaces, keep the following in mind: Interfaces implement a behavior, which implies some other code will be calling methods within the interface. In our example, although all our classes implement the HTMLSource interface, it’s the ShowHTML method that makes use of the interface. You can consider interfaces as providing “callback” functions. Standard Java Interfaces The following is a list of some commonly used Java interfaces, with a brief description of each. actionListener The actionListener interface is implemented by classes that want to be⤊㸾湤潢樊ਸ㤴‰扪਼㰊⽄敳琠嬵㌷‰⁒ 塙娠㔠ㄵ㜱畬汝ਯ乥硴‸㤵‰⁒ਯ偡牥湴‸〹‰⁒ਯ偲敶‸㤳‰⁒ਯ呩瑬攠⣾唀氀琀椀洀愀琀攀 䈀愀猀攀 䌀氀愀猀猀攀猀 圀栀攀爀攀 搀漀 䤀 戀攀最椀渀㼀 䴀愀渀礀 漀戀樀攀挀琀ⴀ漀爀椀攀渀琀攀搀 瀀爀漀最爀愀洀洀椀渀最 氀愀渀最甀愀最攀猀 (OOPLs�⤀ 搀攀昀椀渀攀 愀 搀攀昀愀甀氀琀 挀氀愀猀猀 琀栀愀琀 愀氀氀 渀攀眀 挀氀愀猀猀攀猀 愀爀攀 搀攀爀椀瘀攀搀 昀爀漀洀Ⰰ 甀渀氀攀猀猀 礀漀甀 猀瀀攀挀椀昀椀挀愀氀氀礀 椀渀搀椀挀愀琀攀 愀 搀椀昀昀攀爀攀渀琀 戀愀猀攀⸀ 伀昀 挀漀甀爀猀攀Ⰰ 椀昀 礀漀甀 搀漀 猀瀀攀挀椀昀礀 愀 搀椀昀昀攀爀攀渀琀 戀愀猀攀 挀氀愀猀猀Ⰰ 礀漀甀爀 戀愀猀攀 挀氀愀猀猀 洀甀猀琀 栀愀瘀攀 愀 戀愀猀攀⸀ 䨀愀瘀愀 愀渀搀 䌀⌀ 戀漀琀栀 椀洀瀀氀攀洀攀渀琀 琀栀椀猀†ᰀ搀攀昀愀甀氀琀 甀氀琀椀洀愀琀攀 挀氀愀猀猠ᴀ 戀攀栀愀瘀椀漀爀 (C++ does not�⤀⸀ 䤀渀 䨀愀瘀愀Ⰰ 椀昀 礀漀甀 搀漀渠ᤀ琀 猀瀀攀挀椀昀礀 愀 戀愀猀攀 挀氀愀猀猀 琀漀 愀 渀攀眀 挀氀愀猀猀Ⰰ 椀琀 眀椀氀氀 搀攀昀愀甀氀琀 琀漀 琀栀攀 伀戀樀攀挀琀 挀氀愀猀猀 愀猀 椀琀猀 戀愀猀攀 (or super�⤀ 挀氀愀猀猀⸀ 䌀⌀ 甀猀攀猀 琀栀攀 猀愀洀攀 渀愀洀攀Ⰰ 伀戀樀攀挀琀Ⰰ 昀漀爀 椀琀猀 甀氀琀椀洀愀琀攀 戀愀猀攀 挀氀愀猀猀⸀ 唀氀琀椀洀愀琀攀 戀愀猀攀 挀氀愀猀猀攀猀 愀爀攀 甀猀攀搀 昀漀爀 愀 渀甀洀戀攀爀 漀昀 爀攀愀猀漀渀猀Ⰰ 戀甀琀 琀栀攀礀 愀爀攀 琀礀瀀椀挀愀氀氀礀 搀攀猀椀最渀攀搀 琀漀 瀀攀爀洀椀琀 礀漀甀 琀漀 眀漀爀欀 眀椀琀栀 搀愀琀愀 椀渀 愀 最攀渀攀爀椀挀 洀愀渀渀攀爀⸀ 圀栀攀渀 琀栀攀 搀攀猀椀最渀攀爀猀 漀昀 琀栀攀 䨀愀瘀愀 愀渀搀 䌀⌀ 氀愀渀最甀愀最攀猀 挀爀攀愀琀攀搀 琀栀攀椀爀 氀椀戀爀愀爀礀 昀爀愀洀攀眀漀爀欀猀Ⰰ 琀栀攀礀 椀洀瀀氀攀洀攀渀琀攀搀 愀 搀攀猀椀最渀 琀栀愀琀 眀漀甀氀搀 戀攀 攀砀琀爀攀洀攀氀礀 栀攀氀瀀昀甀氀 洀漀猀琀 漀昀 琀栀攀 琀椀洀攀Ⰰ 戀甀琀 猀漀洀攀琀椀洀攀猀 眀漀甀氀搀 樀甀猀琀 渀漀琀 戀攀 愀瀀瀀氀椀挀愀戀氀攀⸀ 吀漀 搀椀瘀攀 椀渀琀漀 琀栀椀猀 猀琀愀琀攀洀攀渀琀 愀 戀椀琀 昀甀爀琀栀攀爀Ⰰ 氀攀琠ᤀ猀 氀漀漀欀 愀琀 琀栀攀 䨀愀瘀愀 愀渀搀 䌀⌀ 甀氀琀椀洀愀琀攀 戀愀猀攀 挀氀愀猀猀攀猀Ⰰ 氀椀猩ਾ㸊敮摯扪ਊ㠹㔠〠潢樊㰼ਯ䑥獴⁛㔴ㄠ〠删⽘奚‵‷㠸畬汝ਯ乥硴‸㤶‰⁒ਯ偡牥湴‸〹‰⁒ਯ偲敶‸㤴‰⁒ਯ呩瑬攠⡑畩稠ㄮꀠ坨慴猠慮湴敲晡捥㼠㈮ꀠ坨慴猠慮湴敲晡捥楡杲慭㼠㌮ꀠ坨礠楳渠楮瑥牦慣攠畳敤渠愠灲潧牡洿‴⺠⁗桡琠楳⁴桥楦晥牥湣攠扥瑷敥渠慮湴敲晡捥湤⁵獥爠楮瑥牦慣政‵⺠⁄潥猠瑨攠䌠灲潧牡浭楮朠污湧畡来⁵獥湴敲晡捥猿‶⺠⁗桡琠歩湤映楮桥物瑡湣攠楳業楬慲⁴漠慮湴敲晡捥㼠㜮ꀠ䍡渠慮湴敲晡捥攠畳敤⁷楴栠䌫⬿‸⺠⁗桹漠䩡癡湤⁃⌠獵灰潲琠楮瑥牦慣敳㼠㤮ꀠ坨慴猠愠捯浰潮敮琿‱〮ꀠ䝩癥渠數慭灬攠潦潭灯湥湴⸠䅮獷敲猠ㄮꀠ䅮湴敲晡捥灥捩晩敳⁷桡琠愠捬慳猠浵獴漬畴潴潷琠摯敳琮⁉琠楳祮瑡捴楣慬汹業楬慲⁴漠愠捬慳猬畴瑳整桯摳牥散污牥搠睩瑨潵琠慮礠扯摹⸠䄠捬慳猠業灬敭敮瑳渠楮瑥牦慣攠批牥慴楮朠愠捯浰汥瑥整映浥瑨潤猠摥晩湥搠批⁴桥湴敲晡捥⸠㈮ꀠ䅮湴敲晡捥楡杲慭桯睳潷污獳慮浰汥浥湴渠楮瑥牦慣攮″⺠⁁渠楮瑥牦慣攠楳⁵獥搠楮⁰牯杲慭⁴漠敮慢汥業楬慲污獳敳⁴漠桡癥瑡湤慲搠扥桡癩潲⁷桩汥慶楮朠瑨攠灲潧牡浭敲⁷桯畩汤猠瑨敳攠捬慳獥猠摥晩湥潷⁴桥敨慶楯爠楳⁰敲景牭敤⸠㐮ꀠ周攠灵牰潳攠潦⁵獥爠楮瑥牦慣攠楳⁴漠敮慢汥⤊㸾湤潢樊ਸ㤶‰扪਼㰊⽄敳琠嬵㐷‰⁒ 塙娠㔠ㄵ㜱畬汝ਯ乥硴‸㤷‰⁒ਯ偡牥湴‸〹‰⁒ਯ偲敶‸㤵‰⁒ਯ呩瑬攠⣾䌀栀愀瀀琀攀爀 ㈀㨀 伀戀樀攀挀琀ⴀ伀爀椀攀渀琀攀搀 倀爀漀最爀愀洀洀椀渀最 䰀愀渀最甀愀最攀猀 䤀渀 琀栀椀猀 挀栀愀瀀琀攀爀 眀攀 眀椀氀氀 搀椀瘀攀 椀渀琀漀 愀 搀椀猀挀甀猀猀椀漀渀 愀渀搀 挀漀洀瀀愀爀椀猀漀渀 漀昀 猀攀瘀攀爀愀氀 挀漀洀洀漀渀 愀渀搀 挀甀爀爀攀渀琀 漀戀樀攀挀琀ⴀ漀爀椀攀渀琀攀搀 瀀爀漀最爀愀洀洀椀渀最 氀愀渀最甀愀最攀猀 (OOPLs�⤀⸀ 䈀甀琀 戀攀昀漀爀攀 搀漀椀渀最 琀栀愀琀Ⰰ 栀漀眀攀瘀攀爀Ⰰ 眀攀 猀栀漀甀氀搀 爀攀愀氀氀礀 搀椀瘀攀 椀渀琀漀 愀 戀爀椀攀昀 栀椀猀琀漀爀礀 漀昀 瀀爀漀最爀愀洀洀椀渀最 椀渀 最攀渀攀爀愀氀⸀ 吀栀攀 瀀爀椀洀愀爀礀 搀椀昀昀攀爀攀渀挀攀 戀攀琀眀攀攀渀 愀渀 伀伀倀䰀 愀渀搀 愀 瀀甀爀攀氀礀 瀀爀漀挀攀搀甀爀愀氀 (non-object-oriented�⤀ 氀愀渀最甀愀最攀 椀猀 琀栀愀琀 愀渀 伀伀倀䰀 瀀爀漀瘀椀搀攀猀 愀 猀礀渀琀愀砀 琀漀 椀渀挀漀爀瀀漀爀愀琀攀 漀戀樀攀挀琀ⴀ漀爀椀攀渀琀攀搀 挀漀渀挀攀瀀琀猀 猀甀挀栀 愀猀 椀渀栀攀爀椀琀愀渀挀攀Ⰰ 瀀漀氀礀洀漀爀瀀栀椀猀洀Ⰰ 愀渀搀 猀漀 漀渀⸀ 䄀氀琀栀漀甀最栀 琀栀攀 氀愀渀最甀愀最攀猀 瀀爀漀瘀椀搀攀 琀栀椀猀 愀戀椀氀椀琀礀 漀渀 愀 猀礀渀琀愀砀 氀攀瘀攀氀Ⰰ 椀琀猀 椀洀瀀漀爀琀愀渀琀 琀漀 爀攀挀漀最渀椀稀攀 琀栀愀琀 伀伀倀 眀愀猀 渀漀琀 樀甀猀琀†ᰀ挀爀攀愀琀攀搀Ⱐᴀ 戀甀琀 最爀攀眀 漀甀琀 漀昀 最漀漀搀 椀搀攀愀猀 愀渀搀 挀漀洀洀漀渀 瀀爀愀挀琀椀挀攀猀 漀昀 瀀爀漀最爀愀洀洀攀爀猀⸀ 䄀 䠀椀猀琀漀爀礀 漀昀 䌀漀洀瀀甀琀攀爀猀 愀渀搀 倀爀漀最爀愀洀洀椀渀最 吀栀攀爀攀 爀攀愀氀氀礀 椀猀 渀漀 攀砀愀挀琀氀礀 搀攀昀椀渀攀搀 猀琀愀爀琀 漀昀 挀漀洀瀀甀琀攀爀猠᐀琀栀攀礀 挀愀渀 戀攀 琀爀愀挀攀搀 琀漀 愀 渀甀洀戀攀爀 漀昀 漀爀椀最椀渀猀Ⰰ 渀漀琀 琀栀攀 氀攀愀猀琀 漀昀 眀栀椀挀栀 椀猀 猀椀洀瀀氀礀 琀栀攀 挀爀攀愀琀椀漀渀 漀昀 渀甀洀戀攀爀猀 愀渀搀 洀愀琀栀 椀琀猀攀氀昀⸀ 䄀猀 礀漀甀 洀愀礀 戀攀 愀眀愀爀攀Ⰰ 愀氀氀 挀漀洀瀀甀琀攀爀猀 眀漀爀欀 椀渀琀攀爀渀愀氀氀礀 眀椀琀栀 琀栀攀 戀椀渀愀爀礀 渀甀洀戀攀爀椀渀最 猀礀猀琀攀洀Ⰰ 眀栀攀爀攀 愀氀氀 搀愀琩ਾ㸊敮摯扪ਊ㠹㜠〠潢樊㰼ਯ䑥獴⁛㔴㔠〠删⽘奚‵‷㠸畬汝ਯ乥硴‸㤸‰⁒ਯ偡牥湴‸〹‰⁒ਯ偲敶‸㤶‰⁒ਯ呩瑬攠⡃桡灴敲‱㈺⁏扪散琭佲楥湴敤⁐牯杲慭浩湧⁌慮杵慧敳⤊㸾湤潢樊ਸ㤸‰扪਼㰊⽄敳琠嬵㜰‰⁒ 塙娠㔠㘲㘹畬汝ਯ乥硴‸㤹‰⁒ਯ偡牥湴‸〹‰⁒ਯ偲敶‸㤷‰⁒ਯ呩瑬攠⡔桥⁔桲敥⁄潭楮慮琠䵯摥牮⁏佐䱳䍥牴慩湬礬⁷攠湥敤⁴漠灡礠浯牥整慩汥搠慴瑥湴楯渠瑯⁴桥潭浯渠潢橥捴ⵯ物敮瑥搠灲潧牡浭楮朠污湧畡来猠潦畲慹⸠周敳攠慲攠䌫⬬⁊慶愬湤⁃⌬楳瑥搠楮牤敲映瑨敩爠捲敡瑩潮⸠䌫⬠䌫⬠睡猠捲敡瑥搠扥瑷敥渠ㄹ㠳湤‱㤸㔠批⁂橡牮攠却牯畳瑲異映䉥汬⁌慢献⁉琠睡猠慰灲潶敤猠慮⁁乓䤠獴慮摡牤⁰牯杲慭浩湧慮杵慧攠楮‱㤸㤠慮搠桡猠敮橯祥搠睩摥獰牥慤⁵獡来楮捥⁴桥楤‸び⸠剥畳慢汥⁃潤攠䌫⬠桡猠慮硴敮獩癥浯畮琠潦潷敶敬潤攠灲敷物瑴敮渠楴猠獴慮摡牤楢牡特Ⱐ扵琠楴潳瑬礠楳敡牥搠瑯睡牤潬汥捴楯湳湤潷敶敬慴愠獴牵捴畲敳畣栠慳瑡捫猠慮搠煵敵敳⸠䍯浭潮⁰牯杲慭浩湧⁴慳歳Ⱐ獵捨猠睯牫楮朠睩瑨慴慢慳敳Ⱐ業慧敳Ⱐ慮搠䥮瑥牮整潮湥捴楯湳Ⱐ慲攠湯琠灲潶楤敤礠瑨攠䌫⬠污湧畡来瑳敬映扵琠牡瑨敲礠慤搭潮楢牡物敳爠瑨攠潰敲慴楮朠獹獴敭⸠健牦潲浡湣攠䌫⬠楳慳敤渠䌬⁷桩捨猠歮潷渠慳楧栭灥牦潲浡湣攠污湧畡来⸠䉥捡畳攠潦⁴桥慮礠獩浩污物瑩敳Ⱐ祯甠睩汬晴敮敥⁴桥⁴睯敮瑩潮敤⁴潧整桥爬畣栠慳敦敲物湧⁴漠愠䌯䌫⬠瑯灩挬猠睥⁷楬氠扥⤊㸾湤潢樊ਸ㤹‰扪਼㰊⽄敳琠嬵㠸‰⁒ 塙娠㔠㜸㠠湵汬崊⽎數琠㤰〠〠刊⽐慲敮琠㠰㤠〠刊⽐牥瘠㠹㠠〠刊⽔楴汥 Quiz 1. How was the ENIAC originally programmed? 2. What are the two contributions of Grace Hopper? 3. What is the importance of the EDSAC system? 4. What was the first modern programming language? 5. What is Dennis Ritchie’s contribution to programming? 6. What is Bjarne Stroustrup’s contribution to programming? 7. Why is C/C++ considered a high-performance programming language? 8. What was the original purpose of the Java programming language? 9. What is the Java Virtual Machine? 10. What is the primary weakness of the C# programming language? Answers 1. The ENIAC was programmed by rewiring the computer. 2. Grace Hopper coined the term bug and helped developed the COBOL programming language. 3. The EDSAC system is commonly thought of as the first stored-program system. 4. FORTRAN was the first modern programming language. 5. Dennis Ritchie created the C programming language. 6. Bjarne Stroustrup created the C++ programming language. 7. C/C++ is considered a high-perf⤊㸾湤潢樊ਹ〰‰扪਼㰊⽄敳琠嬶ㄸ‰⁒ 塙娠㔠㜸㠠湵汬崊⽎數琠㤰ㄠ〠刊⽐慲敮琠㠰㤠〠刊⽐牥瘠㠹㤠〠刊⽔楴汥 䍨慰瑥爠ㄩਾ㸊敮摯扪ਊ㤰ㄠ〠潢樊㰼ਯ䑥獴⁛㘲㔠〠删⽘奚‵‷㠸畬汝ਯ乥硴‹〲‰⁒ਯ偡牥湴‸〹‰⁒ਯ偲敶‹〰‰⁒ਯ呩瑬攠⡃桡灴敲′⤊㸾湤潢樊ਹ〲‰扪਼㰊⽄敳琠嬶㈷‰⁒ 塙娠㔠㜸㠠湵汬崊⽎數琠㤰㌠〠刊⽐慲敮琠㠰㤠〠刊⽐牥瘠㤰ㄠ〠刊⽔楴汥 䍨慰瑥爠㌩ਾ㸊敮摯扪ਊ㤰㌠〠潢樊㰼ਯ䑥獴⁛㘲㤠〠删⽘奚‵‷㠸畬汝ਯ乥硴‹〴‰⁒ਯ偡牥湴‸〹‰⁒ਯ偲敶‹〲‰⁒ਯ呩瑬攠⡃桡灴敲‴⤊㸾湤潢樊ਹ〴‰扪਼㰊⽄敳琠嬶㌱‰⁒ 塙娠㔠㜸㠠湵汬崊⽎數琠㤰㔠〠刊⽐慲敮琠㠰㤠〠刊⽐牥瘠㤰㌠〠刊⽔楴汥 䍨慰瑥爠㔩ਾ㸊敮摯扪ਊ㤰㔠〠潢樊㰼ਯ䑥獴⁛㘳㌠〠删⽘奚‵‷㠸畬汝ਯ乥硴‹〶‰⁒ਯ偡牥湴‸〹‰⁒ਯ偲敶‹〴‰⁒ਯ呩瑬攠⡃桡灴敲‶⤊㸾湤潢樊ਹ〶‰扪਼㰊⽄敳琠嬶㌵‰⁒ 塙娠㔠㜸㠠湵汬崊⽎數琠㤰㜠〠刊⽐慲敮琠㠰㤠〠刊⽐牥瘠㤰㔠〠刊⽔楴汥 䍨慰瑥爠㜩ਾ㸊敮摯扪ਊ㤰㜠〠潢樊㰼ਯ䑥獴⁛㘳㜠〠删⽘奚‵‷㠸畬汝ਯ乥硴‹〸‰⁒ਯ偡牥湴‸〹‰⁒ਯ偲敶‹〶‰⁒ਯ呩瑬攠⡃桡灴敲‸⤊㸾湤潢樊ਹ〸‰扪਼㰊⽄敳琠嬶㌹‰⁒ 塙娠㔠㜸㠠湵汬崊⽎數琠㤰㤠〠刊⽐慲敮琠㠰㤠〠刊⽐牥瘠㤰㜠〠刊⽔楴汥 䍨慰瑥爠㤩ਾ㸊敮摯扪ਊ㤰㤠〠潢樊㰼ਯ䑥獴⁛㘴ㄠ〠删⽘奚‵‷㠸畬汝ਯ乥硴‹‰⁒ਯ偡牥湴‸〹‰⁒ਯ偲敶‹〸‰⁒ਯ呩瑬攠⡃桡灴敲‱〩ਾ㸊敮摯扪ਊ㤱〠〠潢樊㰼ਯ䑥獴⁛㘴㌠〠删⽘奚‵‷㠸畬汝ਯ乥硴‹ㄱ‰⁒ਯ偡牥湴‸〹‰⁒ਯ偲敶‹〹‰⁒ਯ呩瑬攠⡃桡灴敲‱ㄩਾ㸊敮摯扪ਊ㤱ㄠ〠潢樊㰼ਯ䑥獴⁛㘴㔠〠删⽘奚‵‷㠸畬汝ਯ乥硴‹ㄲ‰⁒ਯ偡牥湴‸〹‰⁒ਯ偲敶‹‰⁒ਯ呩瑬攠⡃桡灴敲‱㈩ਾ㸊敮摯扪ਊ㤱㈠〠潢樊㰼ਯ䑥獴⁛㜷〠〠删⽘奚‵‷㠸畬汝ਯ乥硴‹ㄳ‰⁒ਯ偡牥湴‸〹‰⁒ਯ偲敶‹ㄱ‰⁒ਯ呩瑬攠⡃桡灴敲‱㨠䄠䱯潫琠䡯眠坥⁓敥⁴桥⁗潲汤⤊㸾湤潢樊ਹㄳ‰扪਼㰊⽄敳琠嬷㜲‰⁒ 塙娠㔠㜸㠠湵汬崊⽎數琠㤱㐠〠刊⽐慲敮琠㠰㤠〠刊⽐牥瘠㤱㈠〠刊⽔楴汥 䍨慰瑥爠㈺⁗桡琠䥳⁃污獳㼩ਾ㸊敮摯扪ਊ㤱㐠〠潢樊㰼ਯ䑥獴⁛㜷㐠〠删⽘奚‵‷㠸畬汝ਯ乥硴‹ㄵ‰⁒ਯ偡牥湴‸〹‰⁒ਯ偲敶‹ㄳ‰⁒ਯ呩瑬攠⡃桡灴敲″㨠䕮捡灳畬慴楯温ਾ㸊敮摯扪ਊ㤱㔠〠潢樊㰼ਯ䑥獴⁛㜷㘠〠删⽘奚‵‷㠸畬汝ਯ乥硴‹ㄶ‰⁒ਯ偡牥湴‸〹‰⁒ਯ偲敶‹ㄴ‰⁒ਯ呩瑬攠⡃桡灴敲‴㨠䵥瑨潤猠慮搠偯汹浯牰桩獭⤊㸾湤潢樊ਹㄶ‰扪਼㰊⽄敳琠嬷㜸‰⁒ 塙娠㔠㜸㠠湵汬崊⽎數琠㤱㜠〠刊⽐慲敮琠㠰㤠〠刊⽐牥瘠㤱㔠〠刊⽔楴汥 䍨慰瑥爠㔺⁉湨敲楴慮捥⤊㸾湤潢樊ਹㄷ‰扪਼㰊⽄敳琠嬷㠰‰⁒ 塙娠㔠㜸㠠湵汬崊⽎數琠㤱㠠〠刊⽐慲敮琠㠰㤠〠刊⽐牥瘠㤱㘠〠刊⽔楴汥 䍨慰瑥爠㘺⁁扳瑲慣瑩潮⤊㸾湤潢樊ਹㄸ‰扪਼㰊⽄敳琠嬷㠲‰⁒ 塙娠㔠㜸㠠湵汬崊⽎數琠㤱㤠〠刊⽐慲敮琠㠰㤠〠刊⽐牥瘠㤱㜠〠刊⽔楴汥 䍨慰瑥爠㜺⁉摥湴楦祩湧湤⁄敳捲楢楮朠佢橥捴猩ਾ㸊敮摯扪ਊ㤱㤠〠潢樊㰼ਯ䑥獴⁛㜸㐠〠删⽘奚‵‷㠸畬汝ਯ乥硴‹㈰‰⁒ਯ偡牥湴‸〹‰⁒ਯ偲敶‹ㄸ‰⁒ਯ呩瑬攠⡃桡灴敲‸㨠剥慬ⵗ潲汤⁍潤敬楮朩ਾ㸊敮摯扪ਊ㤲〠〠潢樊㰼ਯ䑥獴⁛㜸㘠〠删⽘奚‵‷㠸畬汝ਯ乥硴‹㈱‰⁒ਯ偡牥湴‸〹‰⁒ਯ偲敶‹ㄹ‰⁒ਯ呩瑬攠⡃桡灴敲‹㨠䍯汬慢潲慴楯温ਾ㸊敮摯扪ਊ㤲ㄠ〠潢樊㰼ਯ䑥獴⁛㜸㠠〠删⽘奚‵‷㠸畬汝ਯ乥硴‹㈲‰⁒ਯ偡牥湴‸〹‰⁒ਯ偲敶‹㈰‰⁒ਯ呩瑬攠⡃桡灴敲‱〺⁃慳攠䵯摥汩湧⤊㸾湤潢樊ਹ㈲‰扪਼㰊⽄敳琠嬷㤰‰⁒ 塙娠㔠㜸㠠湵汬崊⽎數琠㤲㌠〠刊⽐慲敮琠㠰㤠〠刊⽐牥瘠㤲ㄠ〠刊⽔楴汥 䍨慰瑥爠ㄱ㨠䥮瑥牦慣敳⤊㸾湤潢樊ਹ㈳‰扪਼㰊⽄敳琠嬷㤸‰⁒ 塙娠㔠㜸㠠湵汬崊⽎數琠㤲㐠〠刊⽐慲敮琠㠰㤠〠刊⽐牥瘠㤲㈠〠刊⽔楴汥 䍨慰瑥爠ㄺ⁁⁌潯欠慴⁈潷⁗攠卥攠瑨攠坯牬搩ਾ㸊敮摯扪ਊ㤲㐠〠潢樊㰼ਯ䑥獴⁛㠰〠〠删⽘奚‵‷㠸畬汝ਯ乥硴‹㈵‰⁒ਯ偡牥湴‸〹‰⁒ਯ偲敶‹㈳‰⁒ਯ呩瑬攠⡃桡灴敲′㨠坨慴⁉猠愠䍬慳猿⤊㸾湤潢樊ਹ㈵‰扪਼㰊⽄敳琠嬸〲‰⁒ 塙娠㔠㜸㠠湵汬崊⽎數琠㤲㘠〠刊⽐慲敮琠㠰㤠〠刊⽐牥瘠㤲㐠〠刊⽔楴汥 䍨慰瑥爠㜺⁉摥湴楦祩湧湤⁄敳捲楢楮朠佢橥捴猩ਾ㸊敮摯扪ਊ㤲㘠〠潢樊㰼ਯ䑥獴⁛㠰㐠〠删⽘奚‵‷㠸畬汝ਯ乥硴‹㈷‰⁒ਯ偡牥湴‸〹‰⁒ਯ偲敶‹㈵‰⁒ਯ呩瑬攠⡃桡灴敲‱〺⁃慳攠䵯摥汩湧⤊㸾湤潢樊ਹ㈷‰扪਼㰊⽄敳琠嬸〶‰⁒ 塙娠㔠㜸㠠湵汬崊⽎數琠㤲㠠〠刊⽐慲敮琠㠰㤠〠刊⽐牥瘠㤲㘠〠刊⽔楴汥 䍨慰瑥爠ㄱ㨠䥮瑥牦慣敳⤊㸾湤潢樊ਹ㈸‰扪਼㰊⽄敳琠嬸〸‰⁒ 塙娠㔠㜸㠠湵汬崊⽐慲敮琠㠰㤠〠刊⽐牥瘠㤲㜠〠刊⽔楴汥 䍨慰瑥爠ㄲ㨠佢橥捴ⵏ物敮瑥搠偲潧牡浭楮朠䱡湧畡来猩ਾ㸊敮摯扪ਊ㤲㤠〠潢樊㰼 䱥湧瑨ㄠ㜶㤴〠⽆楬瑥爠嬯䙬慴敄散潤敝 䱥湧瑨‴㌹㘱 䑌‷㘹㐰‾㸊獴牥慭鲌밉恔헙㝾캹矶緦츾줤饉昦〡鋋ሖƉ눥桊䀄ᒔ␢Ɋ襫₨僫湅겢⢴ؐࡠᕽ헖ꪯ�扟哒桫ℳ�앾﷿맜珎㵷饳鿥䘈ར偦戴璝瑭ꇧ秘束빲藼轮䈈�寔맸磒ཷ衿䂈꽝뱬淗⍤鈐뫿脥埌忸﹛ၺ爻�뼄㨬羵簋읇뫤ꭶ赵ﰚꆧ墄㳉旋⾟켜�¡鞪嶺㨍壺㥂뽯藫께藣唈贩當忑祬传掓ᕡ⚏㜣ม⸋ꎌ镫昫婄Ⲙ⎄朸阣꓾覴颶ﲚ䅲睇焂츊ⅼ䡁롔⫑돜嶰佅䇘緌㷈譐�뱸⇜댔䖊垕踲嚸쌻䈱琟稔䗑ঋ幆蟑藨䤴ڵꁻ큄稖᧑櫼٢億赇�ᅁ᎐፳먌疣俑冔䑓킟뀅黓谺鄃ᕊ彀㤅괯ᶀꮴ栜塀㪈韡ᤨ෭䦤ધ㞕ร❊雞⩽G辠佱뒴୍苖柈谒栝﨑늠ꯐ꽋ꜩ⟐˴ᒾᅿ腂ꠃ浤獬彩
	User Interface Diagramming The user interface is one of the more subjective aspects of programming. For the most part, we are talking about forms in which the user enters data, but the user interface is also composed of menu items and reports. Basically, whatever the user sees or interacts with defines the user interface. Although programmers may tend to lay out the user interface in a manner they find both attractive and functional, the initial designs will often not be perfect the first time. As you design these sets of diagrams and forms, be prepared for change. For example, we may think that the student’s address comes before their grade information in the user interface. However, an SME might point out that the student’s address is commonly entered just once, whereas the grade data is modified many times over the student’s academic life. Having the address fields before the grades simply means the end user must move through those fields to get to the ones they work with the most,
	Defining Classes from Our Designs Okay, now its time for the big step: taking your diagrams and documentation and start coding your classes. Whoa, wait. Come back here. You need to design them first, not code them. We can start by defining the three main types of classes: actor classes, business classes, and user interface classes. Actor classes are classes that represent the actors within the system. Remember that an actor may be a person or an organization such as a government agency. In our registration example, we might say that one of the actors is the registrar who must approve each registration request. �⠀䄀猀 愀 瀀爀漀最爀愀洀洀攀爀Ⰰ 礀漀甀 洀椀最栀琀 琀栀椀渀欀 琀栀愀琀 礀漀甀 挀愀渀 愀甀琀漀洀愀琀攀 琀栀攀 瀀爀漀挀攀猀猀 挀漀洀瀀氀攀琀攀氀礀Ⰰ 愀渀搀 瀀攀爀栀愀瀀猀 礀漀甀 挀愀渀⸀ 䨀甀猀琀 搀漀渠ᤀ琀 戀攀 猀甀爀瀀爀椀猀攀搀 椀昀 琀栀椀猀 戀攀挀漀洀攀猀 愀 搀攀挀椀猀椀漀渀 漀昀 愀渀 匀䴀䔀⸀) Business classes are the classes that define the business rules, or the main logic of the application. For example, we may have an Enrollment class that governs and enforces the rules for enrolling in a class. Business
	Identifying Technical Requirements Now, this really has very little to do with programming, but we also need to identify the technical requirements of the system. Technical requirements define what is needed by the system as well as what the system needs to do or be able to do in order to successfully accomplish its job. Technical requirements are usually dictated to you, and you simply document and enforce them. They normally don’t affect any classes or designs. Let’s imagine that we have decided to document our technical requirements as a sort of numbered list, where each item is described and uniquely identified. We will number our items using the format SR1, meaning System Requirement 1. Therefore, we might come up with the following: SR1 Host System The system must be hosted on the university’s existing Acme computer system. A browser interface and web connection is to be used for the user interface. SR2 Database System The database system must utilize, and be stored on, the unive
	Change Cases Another aspect of design, which doesn’t really directly impact class design significantly, involves change cases. It’s a fact of life that things change. People change �⠀愀渀搀 挀栀愀渀最攀 樀漀戀猀), business rules change, and government agencies change. Therefore, your program will also change. Change cases are documented much like technical requirements, using a simple numbered text approach. What you want to do is identify portions of your system that may be eligible for change some time in the future, and document them. These change cases should include a single-line description of the anticipated change, a possibility indicator of the chance the change will be needed, and what sort of impact the change will have on your system. By describing these changes now, management has the ability to try and manage them. The project manager may decide that a specific section of a design is complete but then suddenly get wind of a new change. Based on the impact and likelihood of the change,
	Project ManagementWe’re afraid the days of considering building a model car project are over. Software development is a full-time job, and indeed many organizations have at least one individual who operates under the title “Project Manager” to help make sure that a project is completed successfully. So far, we have talked about gathering requirements and the design and analysis phases, and the preceding section described change cases to handle program changes. We’ll now discuss the final topic �⠀眀栀椀挀栀 爀攀愀氀氀礀 椀猀渠ᤀ琀 琀攀挀栀渀椀挀愀氀氀礀 愀 瀀爀漀最爀愀洀洀椀渀最 椀猀猀甀攀): project management. We’ll begin our discussion differently from any of the previous topics with the assumption that the designing, coding, and testing phases are already or nearly completed. You can choose from a number of commercial packages to assist you in project management, such as Microsoft Project for general projects and StarBase StarTeam for software development projects. These applications basically help you to track and plan project
	Quiz 1.€ What is an actor? 2.€ What is a subject matter expert? 3.€ In your initial communication with a subject matter expert or an actor, what should you request from them? 4.€ What should be the first thing you do when interviewing a subject matter expert or actor? 5.€ What is an essential use case? 6.€ What is the purpose of a use case diagram? 7.€ What does the system use case define? 8.€ What is the purpose of business rules? 9.€ What do you use to define the flow of the program from a menu selection to a specific form? 10.€ What is an actor class? Answers 1.€ An actor is a person, organization, or thing that might interact with a system. 2.€ A subject matter expert (SME) is a person who has expert knowledge of the system but may not use the system. 3.€ You should request that they have ready any sample reports or forms that they currently use to do their job. 4.€ Ask the most important questions first, in case you run out of time. 5.€ An essential use case is a nontechnical view
	Chapter 11: Interfaces The telephone is one of the many technologies we take for granted. You can go anywhere in the country and use a telephone to call home. You don’t think twice about how to use the phone because, regardless of the manufacturer, all telephones have the same keypad and work the same way—they all have the same user interface. Anyone who learns how to use one phone can use the same skills to use any other phone. When you dial home, you are connected in a second, regardless of the technology used in the telephone. The concept of a common interface also applies to an object-oriented program, although not necessarily a user interface. In this chapter you’ll explore interfaces used in object-oriented programming and how they increase the flexibility of program development. Inside Interfaces When a person in the computer industry hears the term interface, he usually thinks of a user interface, such as the Windows or Mac OS X operating system shells. Interfaces in programmin
	Chapter 11: Interfaces
	Interface DiagramsYou have two principle ways in which to diagram an interface: You can diagram the interface itself, and you can show within the diagram that a class implements the interface. Figure 11-1 shows a diagram that represents an interface. The first line, called the stereotype, describes what the box represents, and the second line provides the name of the interface. Below that you find the methods of the interface. You can then optionally create a diagram that has an arrow going from a class to the interface, to indicate that it implements that interface. Figure 11-1: A typical interface diagram Figure 11-2 shows a diagram using a type of shorter notation, referred to as the lollipop notation. This notation doesn’t provide details about the interface but rather merely that a class implements it. The interface name appears in the circle, and a line connects it to the class that implements it �⠀椀渀 琀栀椀猀 挀愀猀攀Ⰰ 䌀漀甀爀猀攀). Figure 11-2: This diagram shows that a class implements the
	Show Me the HTMLIn order for you to understand interfaces, we’ll start out with a conceptual example. We have been working with a school registration system throughout the book, so we’ll stick with that example. In our registration system, so far we have seen similar �⠀漀爀 搀攀爀椀瘀攀搀) classes such as Student and Instructor �⠀瀀漀琀攀渀琀椀愀氀氀礀 搀攀爀椀瘀攀搀 昀爀漀洀 愀 倀攀爀猀漀渀 挀氀愀猀猀) as well as dissimilar classes such as Enrollment and Course. Because Course, Person, and Enrollment are dissimilar, they probably won’t share the same base class �⠀眀攠ᤀ氀氀 搀椀猀挀甀猀猀†ᰀ猀甀瀀攀爠ᴀ 戀愀猀攀 挀氀愀猀猀攀猀 氀愀琀攀爀). But, as it turns out, we may want to have a standard method in each of these classes to permit us to display the data of an object. Because we have already discussed a Display method common to each of the classes, let’s make this example a bit more interesting. Our goal is to introduce a standard method, called GetHTML, for objects to generate their own HTML source for display in a web page. Now you might be jumping ahead here.
	The HTMLSource InterfaceWe want to create our own interface, which we will call HTMLSource. The feature this interface will provide is the ability to format its data as HTML. Now, before we go much further, you should be aware that providing user interface functionality in a class that also implements some sort of logic or rule functionality is typically considered bad design. Ideally, logical classes are separated from user interface classes. A more realistic example would be to provide an XMLSource interface to provide XML-formatted data. However, XML and its usage are more complicated than we have space to cover. The HTMLSource interface we’ll create will have a single method, GetHTML�⠀), that returns the object’s data in an HTML-formatted string. The interface in Java would look like the following: package Registration;public interface HTMLSource{ public String GetHTML�⠀);} Note the use of the interface keyword to declare HTMLSource as an interface, not a class. Inside you can see fa
	The Classes, Before an Interface Is ImplementedOur example will use four classes: Person, Student, Instructor, and Course. The class Person will provide the first and last name attributes (data members) and will serve as the base class for Student and Instructor. The Course class will not be derived from anything, and for the sake of simplicity will contain nothing but the course name. The Java classes are defined as follows: /////// Person.javapackage Registration;public class Person { protected String FirstName, LastName; public void Modify(String First, String Last) { FirstName = First; LastName = Last; } public void Display() { System.out.print(FirstName + " " + LastName); }} /////// Student.javapackage Registration;public class Student extends Person { protected int GraduationYear; public Student() { GraduationYear = 0; } public void Modify(String First, String Last, int Graduation) { super.Modify(First, Last); GraduationYear = Graduation; } public void Display() { super.Di
	Implementing Interfaces in Java and C# Now that our classes are defined, we need to actually implement them. We need to indicate in the class declaration that we intend to implement the interface, and we also need to write the methods that are contained in the interface. In Java, we write the following to modify the Student class: /////// Student.javapackage Registration;public class Student extends Person implements HTMLSource { protected int GraduationYear; public Student() { GraduationYear = 0; } public void Modify(String First, String Last, int Graduation) { super.Modify(First, Last); GraduationYear = Graduation; } public void Display() { super.Display(); System.out.print(" " + GraduationYear); } public String GetHTML() { String Ret = new String(); Ret = ""+FirstName+" "+ LastName+" Graduates in "+ GraduationYear; return(Ret); } } Note how the first line of Student has been modified to use the syntax implements HTMLSource, which means we will be implementin
	Bringing It All TogetherHaving the classes functional and implementing the proper interface are important, but we are still missing the demonstrational code that shows why the interface is different from a class with only abstract methods in it. The answer is presented here, and it requires us to write a function that takes an interface (not a class) as a parameter. In Java, we would write this as follows: protected void ShowHTML(HTMLSource SomeObject){ System.out.println(SomeObject.GetHTML());} The C# version would be nearly identical: protected void ShowHTML(IHTMLSource SomeObject){ System.Console.Out.WriteLine(SomeObject.GetHTML());} Now, in both Java and C#, we have a ShowHTML method that accepts any object that implements the HTMLSource interface. With this knowledge, it is safe for the preceding ShowHTML function to call the GetHTML method on the received object. Figure 11-3 shows what our diagramming now looks like, with multiple classes that implement an interface. Figu
	What About C++?As stated at the beginning of this chapter, C++ does not provide syntactical support for interfaces. However, C++ does provide support for multiple inheritance. Earlier on we described how an interface is very similar to a class with all abstract methods. The problem in Java and C# is a lack of multiple inheritance, which means we can’t use this type of class and therefore have to use interfaces. In C++, thanks to multiple inheritance, we can do something very similar by using a class with all abstract �⠀漀爀 瀀甀爀攀ⴀ瘀椀爀琀甀愀氀) methods. Consider the following C++ class: class HTMLSource{ public: virtual string GetHTML�⠀) const = 0;}; Here we have a class with a single pure-virtual function, much like the Java and C# interfaces from earlier. Now, we declare a Student class, derived from the Person class and the HTMLSource class, and provide the GetHTML method: class Student: public Person, HTMLSource{ public: string GetHTML�⠀) { return "" + FirstStr + " "+ LastStr + "&n
	ComponentsA component is a class designed to fit into some preexisting class framework. It may do so through inheritance or by implementing one or more interfaces, but it must follow the rules of components for the environment in which it is being developed. The more common examples of components include the controls and beans found and used in modern Integrated Development Environments (IDEs). Java development tools and .NET Framework tools usually implement some type of form designer, where you can drag and drop controls such as buttons from a tool palette onto a form. The items that appear in the tool palette are examples of the types of components we are talking about, and they are often written in the language of the IDE itself. For example, the JButton class in Java can be displayed in the tool palette of most modern Java IDEs because it was written to meet the requirements of doing so. You can drag the button from the tool palette, drop it on a form or panel, and then view the s
	Standard Interfaces In order to help your understanding of interfaces, it’s useful to take a look at what other developers have created. In this section we will look at some of the common interfaces provided by Java and C#. This is by no means a complete list of interfaces, but it will show you some patterns in how the architects of these languages and their associated class and interface libraries designed their systems. As we discuss these interfaces, keep the following in mind: Interfaces implement a behavior, which implies some other code will be calling methods within the interface. In our example, although all our classes implement the HTMLSource interface, it’s the ShowHTML method that makes use of the interface. You can consider interfaces as providing “callback” functions. Standard Java Interfaces The following is a list of some commonly used Java interfaces, with a brief description of each. actionListener The actionListener interface is implemented by classes that want to be
	Ultimate Base Classes Where do I begin? Many object-oriented programming languages �⠀伀伀倀䰀猀) define a default class that all new classes are derived from, unless you specifically indicate a different base. Of course, if you do specify a different base class, your base class must have a base. Java and C# both implement this “default ultimate class” behavior �⠀䌀⬀⬀ 搀漀攀猀 渀漀琀). In Java, if you don’t specify a base class to a new class, it will default to the Object class as its base �⠀漀爀 猀甀瀀攀爀) class. C# uses the same name, Object, for its ultimate base class. Ultimate base classes are used for a number of reasons, but they are typically designed to permit you to work with data in a generic manner. When the designers of the Java and C# languages created their library frameworks, they implemented a design that would be extremely helpful most of the time, but sometimes would just not be applicable. To dive into this statement a bit further, let’s look at the Java and C# ultimate base classes, lis
	Quiz 1.€ What is an interface? 2.€ What is an interface diagram? 3.€ Why is an interface used in a program? 4.€ What is the difference between an interface and a user interface? 5.€ Does the C programming language use interfaces? 6.€ What kind of inheritance is similar to an interface? 7.€ Can an interface be used with C++? 8.€ Why do Java and C# support interfaces? 9.€ What is a component? 10.€ Give an example of a component. Answers 1.€ An interface specifies what a class must do, but not how it does it. It is syntactically similar to a class, but its methods are declared without any body. A class implements an interface by creating a complete set of methods defined by the interface. 2.€ An interface diagram shows how a class can implement an interface. 3.€ An interface is used in a program to enable similar classes to have a standard behavior while having the programmer who builds these classes define how the behavior is performed. 4.€ The purpose of a user interface is to enable a
	Chapter 12: Object-Oriented Programming Languages In this chapter we will dive into a discussion and comparison of several common and current object-oriented programming languages �⠀伀伀倀䰀猀). But before doing that, however, we should really dive into a brief history of programming in general. The primary difference between an OOPL and a purely procedural �⠀渀漀渀ⴀ漀戀樀攀挀琀ⴀ漀爀椀攀渀琀攀搀) language is that an OOPL provides a syntax to incorporate object-oriented concepts such as inheritance, polymorphism, and so on. Although the languages provide this ability on a syntax level, its important to recognize that OOP was not just “created,” but grew out of good ideas and common practices of programmers. A History of Computers and Programming There really is no exactly defined start of computers—they can be traced to a number of origins, not the least of which is simply the creation of numbers and math itself. As you may be aware, all computers work internally with the binary numbering system, where all dat
	Chapter 12: Object-Oriented Programming Languages
	The Three Dominant Modern OOPLsCertainly, we need to pay more detailed attention to the common object-oriented programming languages of our day. These are C++, Java, and C#, listed in order of their creation. C++ C++ was created between 1983 and 1985 by Bjarne Stroustrup of Bell Labs. It was approved as an ANSI standard programming language in 1989 and has enjoyed widespread usage since the mid 80s. Reusable Code C++ has an extensive amount of low-level code prewritten in its standard library, but it mostly is geared toward collections and low-level data structures such as stacks and queues. Common programming tasks, such as working with databases, images, and Internet connections, are not provided by the C++ language itself but rather by add-on libraries or the operating system. Performance C++ is based on C, which is known as a high-performance language. Because of the many similarities, you will often see the two mentioned together, such as referring to a C/C++ topic, as we will be
	Quiz 1. How was the ENIAC originally programmed? 2. What are the two contributions of Grace Hopper? 3. What is the importance of the EDSAC system? 4. What was the first modern programming language? 5. What is Dennis Ritchie’s contribution to programming? 6. What is Bjarne Stroustrup’s contribution to programming? 7. Why is C/C++ considered a high-performance programming language? 8. What was the original purpose of the Java programming language? 9. What is the Java Virtual Machine? 10. What is the primary weakness of the C# programming language? Answers 1. The ENIAC was programmed by rewiring the computer. 2. Grace Hopper coined the term bug and helped developed the COBOL programming language. 3. The EDSAC system is commonly thought of as the first stored-program system. 4. FORTRAN was the first modern programming language. 5. Dennis Ritchie created the C programming language. 6. Bjarne Stroustrup created the C++ programming language. 7. C/C++ is considered a high-perf
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 1: A Look at How We See the World
	Chapter 2: What Is a Class?
	Chapter 3: Encapsulation
	Chapter 4: Methods and Polymorphism
	Chapter 5: Inheritance
	Chapter 6: Abstraction
	Chapter 7: Identifying and Describing Objects
	Chapter 8: Real-World Modeling
	Chapter 9: Collaboration
	Chapter 10: Case Modeling
	Chapter 11: Interfaces
	Chapter 1: A Look at How We See the World
	Chapter 2: What Is a Class?
	Chapter 7: Identifying and Describing Objects
	Chapter 10: Case Modeling
	Chapter 11: Interfaces
	Chapter 12: Object-Oriented Programming Languages

