|This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

| |l@ve RuBoard

. able of Contentd

.
>
o
[¢]

. Reviews
. xampleg

. Reader Reviewd

-
Java™ Swing, 2nd Edition

By Erian Colé,bobert Ecksteid, I!ames EIIiotl, Marc Loyl, bavid Wood

Publisher : O'Reilly

Pub Date : November 2002
ISBN : 0-596-00408-7
Pages - 1278

This second edition of Java Swing thoroughly covers all the features available in Java 2 SDK 1.3 and 1.4. More than
simply a reference, this new edition takes a practical approach. It is a book by developers for developers, with
hundreds of useful examples, from beginning level to advanced, covering every component available in Swing.
Whether you're a seasoned Java developer or just trying to find out what Java can do, you'll find Java Swing, 2nd
edition an indispensable guide.

| |l@ve RuBoard

http://www.oreilly.com/catalog/jswing2/reviews.html
http://examples.oreilly.com/jswing2/code/default.htm
http://www.oreilly.com/cgi-bin/reviews@bookident=jswing2
http://www.oreilly.com/catalog/jswing2/errata/default.htm
http://www.oreillynet.com/cs/catalog/view/au/994@x-t=book.view
http://www.oreillynet.com/cs/catalog/view/au/155@x-t=book.view
http://www.oreillynet.com/cs/catalog/view/au/993@x-t=book.view
http://www.oreillynet.com/cs/catalog/view/au/586@x-t=book.view
http://www.oreillynet.com/cs/catalog/view/au/807@x-t=book.view

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

|1@ve RuBoard

. Table of Content

Java™ Swing, 2nd Edition
Blerian Colel, l?obert Ecksteir{ l]ames EIIioti, I\/Iarc LO\j, IDavid Wood

Publisher : O'Reilly
Pub Date : November 2002
ISBN : 0-596-00408-7
Pages 11278

opyrigh

refacg

I/vhat This Book Coversl

hat's New in This Edition’i
n the Web Sit
Eonventions

How to Contact U
Acknowledgment:

t;hagter 1. Introducing Swin(J

ection 1.1. What Is Swing?
ection 1.2. Swing Features

Eection 1.3. Swin; Packa;es and Classe;

ection 1.4. The Model-View-Controller Architectur

Eection 1.6. The Swing Set Dema

Eection 1.7. Reading This Booll

bhagter 2. Jump-Starting a Swing Agglicatiod

ection 2.1. Upgrading Your AWT Program

ection 2 A Simple AWT Applicatior]

ection 2.3. Including Your First Swing Componen{

http://www.oreilly.com/catalog/jswing2/reviews.html
http://examples.oreilly.com/jswing2/code/default.htm
http://www.oreilly.com/cgi-bin/reviews@bookident=jswing2
http://www.oreilly.com/catalog/jswing2/errata/default.htm
http://www.oreillynet.com/cs/catalog/view/au/994@x-t=book.view
http://www.oreillynet.com/cs/catalog/view/au/155@x-t=book.view
http://www.oreillynet.com/cs/catalog/view/au/993@x-t=book.view
http://www.oreillynet.com/cs/catalog/view/au/586@x-t=book.view
http://www.oreillynet.com/cs/catalog/view/au/807@x-t=book.view

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

ection 2.4. Beyond Buttong
ection 2.5. What Is an Internal Frame?

Eection 2.6. A Bigger Applicatioq

hapter 3. Swing Component Basic
éection 3.1. Understanding Action;
Eection 3.3. Graphics Environmentg
ection 3.4. Sending Change Events in Swind

Eection 3.5. The JComponent Clasg

Eection 3.6. Responding to Keyboard Inpu_:l

I;;hagter 4. Labels and Iconé
Section 4.1. Labels

ection 4.2, Working with Image
ection 4.3. Support for HTM

Eection 4.4. lcong

Eection 4.5. Implementing Your Own Iconsl

ection 4.6. _Dynamic IconJ

Eection 4.7. The Imagelcon Class]

Bection 5.1. The ButtonModel Interfaﬁ
Eection 5.2. The DefaultButtonModel Clasg

Bection 5.4. The JButton Clasg

Eection 5.5. The JToggleButton Classl

Eection 5.6._The JToggleButton. ToggleButtonModel Clasg
ection 5.7. The JCheckBox Cla

Eection 5.8. The JRadioButton Clas;

hapter 6. Bounded-Range Component

Eection 6.1. The Bounded-Ran;e Model
Eection 6.2._The JScrollB@

ection 6.3. The JSlider Clas
Eection 6.4. The JProgressBar Clasg

ection 6.5. Monitoring Progres:

hapter 7. Lists, Combo Boxes, and Spinner:

Eection 7.2._Representing List Dat;
ection 7.3. Handling Selection
Eection 7.4. Displaying Cell Elementg
ection 7.5. The JList Clas

Eection 7.6. Combo Boxeg

Eection 7.7. The JComboBox Classl

ection 7.8. Spinner.
ection 7.9. Spinner Modeﬁ

Eection 7.10. Spinner Editcﬂ

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

hapter 8. Swing Container:

ection 8.1. A Simple Containe

Eection 8.2. The Root Pang
ection 8.3. Basic RootPaneContainer

Eection 8.4. The JFrame Clasé

Eection 8.6. The JApplet Clas;

bhagter 9. Internal Frameg
Bection 9.3. The JDesktopPane Class
Eection 9.4. The DesktopManager Interfacgl
Eection 9.5. Building a Desl?or]

bhagter 10. Swing Dialogg
Section 10.1. The JDialog Clas{

Bection 10.2. The JOptionPane Class

Bection 10.3. Using JOptionPan

Eection 10.4. Simple Exampleg

ection 10.5. Getting the Resulté
ection 10.6. A Comparison: Constructors Versus Static Methodsl

Eection 10.7. Using Internal Frame Dialogs with JDesktopPanel

hapter 11. Specialty Panes and Layout Managers

Section 11.1. The JSplitPane Clasg

Section 11.2. The JScrollPane Clasg
ection 11.3. The JTabbedPane Clas

ection 11.4. Layout Managerg

Eection 11.5. The SpringLayout CIaQ
Eection 11.6. Other Pane;

I;;hagter 12. Chooser Dialogé
Eection 12.1. The JFileChooser Clag

ection 12.2. The File Chooser Packaq;|
ection 12.3. The Color Choosevl

Eection 12.4. The JColorChooser Classl
Eection 12.5. Developing a Custom Chooser PaneI
ection 12.6. Developing a Custom Previe‘w Pane

ection 12.7. Developing a Custom Dialo:

hapter 13. Bordeer
ection 13.1. Introducing Borders]

Eection 13.2. Painting Borde‘rs Correctl}]
Eection 13.3. Swing Borderg
ection 13.4. Creating Your Own Bordel
t;hagter 14. Menus and Toolbarsl
Eection 14.1. Introducing Swing Menusl
ection 14.2. Menu Bar Selection Model

Eection 14.3. The JMenuBar Clasg

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

ection 14.4. The JMenultem Clas
ection 14.5. The JPopupMenu Cla;
Eection 14.6. The JMenu CIaQ

Eection 14.7. Selectable Menu Itemsl

ection 14.8. Toolbar:

hapter 15. Tableg

ection 15.1. The JTable Cla

ection 15.2. Implementing a Column Mode

Eection 15.3. Table Datg

Section 15.4. Selecting Table Entries

Section 15.5. Rendering Celld

Eection 15.6. Editin; Ce ;
Eection 15.7. Next Steps

bhagter 16. Advanced Table Examgleg
Eection 16.1. A Table with Row Heade;
Eection 16.2. Large Tables with Paging
ection 16.3. A Table with Custom Editing and Renderind

Eection 16.4. Charting Data with a TabIeMod_el

Ehaéter 17. Tree%

ection 17.1. A Simple TI’F‘A
Eection 17.2. Tree Modelq
ection 17.3. The JTree C@
Eection 17.4. Tree Nodes and Pathsl

Eection 17.5. Tree Selectioa

ection 17.6. Tree Evené

ection 17.7. Rendering and Editin

Eection 17.8. What Nex;;l.

hapter 18. Und
ection 18.1. The Swing Undo Facilig]

Eection 18.2. The UndoManager CIasJ
Eection 18.3. Extending UndoManaqe;I

bhagter 19. Text 101'
Eection 19.1. The Swing Text Comgoneng

ection 19.2. The JTextComponent Clas
ection 19.3. The JTextField Clasg

Eection 19.4. A Simple Form

Eection 19.5. The JPasswordField Clasé
ection 19.6. The JTextArea Clas

Eection 19.7. How It All Worg

hapter 20._Formatted Text Fieldsl

éection 20.1. The JFormattedTextField Clasg

Eection 20.2. Handling Numericq

Eection 20.3. The DefaultFormatter Claﬁ
ection 20.4. The MaskFormatter Clas:

Eection 20.5. The InternationalFormatter Clasg

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

ection 20.6. The DateFormatter Clas
ection 20.7. The NumberFormatter Cla:

Section 20.8. The DefaultFormatterFactory Clasg

ection 20.9. Formzitinq with Regular Expression

ection 20.10. The InputVerifier Clas

t;hagter 21. Carets, Highlighters, and Keymapsl
Eection 21.3. Keymaa

hapter 22. Styled Text Paneg

Section 22.1. The JTextPane Clasg
Eection 22.2. AttributeSets and St; e;

ection 22.3. The Document Mode

ection 22.4. Document Eventg

ection 22.5. Vie

Eection 22.6. _The DocumentFilter Cla%
ection 22.7. The NavigationFilter Clas:

t;hagter 23. Editor Panes and Editor Ki;é
Section 23.1. The JEditorPane Class

Section 23.2. Overview of the Editor Kitd

Eection 23.3. HTML and JEditorPang
Eection 23.4._Hyperlink Event%

ection 23.5. The HTMLEditorKit Clasg
Eection 23.6. Extendiné HTMLEditorKi

Bection 23.7. _Editing HTM
Section 23.8. Writing HTMI

Section 23.9. Reading HTM
Bection 23.10. A Custom EditorKi

I;;hagter 24. Drag and Drod
Section 24.1. What Is Drag and Drop?

ection 24.2. The Drop AP
Eection 24.3. The Dra; Gesture API
Eection 24.4. The Draé API
Eection 24.5. Rearranéina Tree%

ection 24.6. Finishing Touche

ection 25.1. How Accesswtv Work:

ection 25.2. The Accessibility Packal
Eection 25.3. Other Accessible O@
ection 25.4. Types of Accessibilit
ection 25.5. Classes Added in SDK 1.3 and 1.4!

Eection 25.6._The Accessibility Utility Classe;
Eection 25.7. Interfacing with Accessibilitq

bhagter 26. Look and Feel
Eection 26.1. Mac OS X and the Default Look-and-Fee

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

ection 26.2. How Does It Work’.l
ection 26.3. Key Look-and-Feel Classes and Interface:
Eection 26.4. The MuItiLookAndFeeI

ection 26.5. Auditory Cue:

ection 26.6. Look-and-Feel Customizatio

Eection 26.7. Creation of a Custom Look—and—FeeI

bhaster 27. Swing Utilitiesl
ection 27.1. Utility Classe:
Eection 27.3. Tooltip%
ection 27.4. Rendering Odds and Endé

ection 27.5. Event Utilitie

I;;halsgter 28. Swing Under the Hoodq
ection 28.1. Working with Focu
Eection 28.2. Multithreading Issues in Swind
Eection 28.3. Li?htwei?ht \ersus HeavyweightCoonnentg
ection 28.4. Painting and Repainting
Eection 28.5. Creating Your Own Componen

Pppendix A. Look-and-Feel Resource
Pppendix B. Component Action:
Eection B.1. JButton
ection B.2. JCheck@
ection B.3. JCheckBoxMenuItenl
Eection B.4. JComboBoX

ection B.5. JDesktopPan
ection B.6. JEditorPan

Eection B.7. JFormattedTex.tFieIa
Section 8.8 JintermalFramd
Eection B.13. JMenuIte;l
Eection B.14. JOptionPeﬁ]
ection B.15. JPasswordFiel
Eection B.16. JPoéuéMenL
Eection B.l7. JProg.ressBal
ection B.18. JRadioButto

Section B.19. JRadioButtonMenulte

Eection B.22. JScrol Pan;

ection B.23. JSlide

ection B.24. JSpinne

Section B.25. JSplitPang

Section B.26. JTabbedPane

Section B.27. JTablg
Eection B.28. JTextAreJ

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

ection B.29. JTextFiel
ection B.30. JTextPan
Eection B.31. JToggleButtod

ection B.32. JToolBal
ection B.33. JToolTi

Eection B.34. JTreq

ection B.35. JViewporl
ection B.36. Non-JComponent Container
ection B.37. Auditory Feedback Action

olopho

nde

| |l@ve RuBoard

|Vhis document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Copyright

Copyright © 2003, 1998 O'Reilly & Associates, Inc.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional use. Online editions

are also available for most titles (lwttp: /safari.oreillv.conl). For more information, contact our corporate/institutional

sales department: (800) 998-9938 or gorporate@oreilly.co

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Reilly &
Associates, Inc. Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and O'Reilly & Associates, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps. The association between the image of a
spider monkey and the topic of Java Swing is a trademark of O'Reilly & Associates, Inc. Java and all Java-based
trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc., in the United States and
other countries. O'Reilly & Associates, Inc. is independent of Sun Microsystems, Inc.

While every precaution has been taken in the preparation of this book, the publisher and authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

http://safari.oreilly.com/default.htm
mailto:corporate@oreilly.com

|Vhis document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Preface

When Java was first released, its user interface facilities were a significant weakness. The Abstract Window Toolkit
(AWT) was part of the JDK from the beginning, but it really wasn't sufficient to support a complex user interface. It
supported everything you could do in an HTML form and provided free-standing frames, menus, and a few other
objects, but you'd be hard-pressed to implement an application as complex as Quicken or Lotus Notes. AWT also had
its share of portability problems; it relied heavily on the runtime platform's native user interface components, and it
wasn't always possible to hide differences in the way these components behaved.

JDK 1.1 fixed a number of problems—most notably, it introduced a new event model that was much more efficient
and easier to use—but it didn't make any major additions to the basic components. We got a ScrollPane and a
PopupMenu, but that was about it. Furthermore, AWT still relied on the native components and therefore continued

to have portability problems.

In April 1997, Sun's Java group (then called JavaSoft) announced the Java Foundation Classes, or JFC, which
supersedes (and includes) AWT. A major part of the JFC was a set of much more complete, flexible, and portable
user interface components called "Swing." (The JFC also includes a comprehensive facility for 2D graphics, printing,
and Drag and Drop.) With Swing, you can design interfaces with tree components, tables, tabbed dialogs, tooltips,
and a growing set of other features that computer users are accustomed to.

In addition to the new components, Swing made three major improvements to the AWT. First, Swing doesn't rely on
the runtime platform's native components. It's written entirely in Java and creates its own components. This approach
solved most of the portability problems since components don't inherit weird behaviors from the runtime environment
or do they work against its grain. Second, because Swing is in complete control of the components, it's in control of
the way components look on the screen and gives you more control over how your applications look. You can choose
between several pre-built "look-and-feels" (L&Fs), or you can create your own if you want your software to show your
personal style (more appropriate for games than for daily productivity software, of course). This feature is called
"Pluggable Look-and-Feel," or PLAF. Third, Swing makes a very clear distinction between the data a component
displays (the "model") and the actual display (the "view"). While the fine points of this distinction are appreciated
mostly by computer scientists, it has important implications for all developers. This separation means that
components are extremely flexible. It's easy to adapt components to display new kinds of data that their original
design didn't anticipate or to change the way a component looks without getting tangled up in assumptions about the
data it represents.

The first official release of Swing, for use with JDK 1.1, took place in the spring of 1998. Swing (and the rest of JFC)
was built into Java 2 and revolutionized Java user interface development. The Swing components continue to evolve
with Java, and Java 2 SDK 1.4 is the best version yet. This book shows you how to join the revolution.

file:///C:/DOCUME~1/SIMULA~1/LOCALS~1/Temp/OReilly.Java.Swing.2nd.2002.chm/0596004087_

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

What This Book Covers

This book gives a complete introduction to the entire Swing component set. Of course, it shows you how to use all of
the components: how to display them on the screen, register for events, and get information from them. You'd expect
that in any Swing book. This book goes much further. It goes into detail about the model-delegate architecture behind
the components and discusses all of the data models. Understanding the models is essential when you're working on
an application that requires something significantly different from the components' default behavior. For example, if
you need a component that displays a different data type or one that structures data in some nonstandard way, you'll
need to work with the data models. This book also discusses how to write "accessible" user interfaces and how to
create your own look-and-feel.

There are a few topics this book doesn't cover, despite its girth. We assume you know the Java language. For Swing,
it's particularly important to have a good grasp of inner classes (both named and anonymous), which are used by
Swing itself and in our examples. We assume that you understand the JDK 1.1 event model, Java's mechanism for
communicating between asynchronous threads. Swing introduced many new event types, all of which are discussed
in this book, but we provide only an overview of the event mechanism as a whole. We also assume that you
understand the older AWT components, particularly the Component and Container classes, which are
superclasses of the Swing's JComponent. We assume that you understand the AWT layout managers, all of which

are usable within Swing applications. If you are new to Java, or would Ii review, you can find a complete

discussion of these topics in the Java AWT Reference by John Zukowsk L or a solid introduction irLearning Java by
Pat Niemeyer and Jonathan Knudsen (both published by O'Reilly). We do not assume that you know anything about
other JFC topics, like Java 2D—check out Java 2D by Jonathan Knudsen for that; all the drawing and font
manipulation in this book can be done with AWT. (We do cover the JFC Accessibility API, which is supported by
every Swing component, as well as the drag-and-drop facility, since this functionality is a requirement for modern

user interfaces.)

(1] PDFs for theJava AWT Reference are available at this book's web site,
ttp://www.oreilly.com/catalog/jswingd.

The major Swing classes fall into the following packages:

javax.accessibility

Classes that support accessibility for people who have difficulty using standard user interfaces. Covered in
hapter 25.

javax.swing

The bulk of the Swing components. Covered in l:hapter ii-k:hapter lz‘ andl:hapter 27|—khapter Zd

javax.swing.border

Classes for drawing fancy borders around components. Covered in .

http://www.oreilly.com/catalog/jswing2

|Vhis document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

javax.swing.colorchooser
Classes providing support for theJColorChooser component. Covered in
javax.swing.event
Swing events. Covered throughout the book.
javax.swing.filechooser
Classes providing support for theJFileChooser component. Covered in
javax.swing.plaf

Classes supporting the PLAF, including classes that implement the Metal and Multi L&Fs. (Implementations
of the Windows and Motif L&Fs are packaged under com.sun.java.swing.plaf, and the Macintosh Aqua

L&F is under com.apple.mrj.swing.) Covered in.

javax.swing.table

Classes i rovidini support for the JTable component JTable itself is injavax.swing). Covered in

E andChapter 16.
javax.swing.text

Classes providing support for the text components (such as JTextField; the components themselves are in

the javax.swing package). Covered inthagter lé-hhagter Zi

javax.swing.text.html and javax.swing.text.rtf

"Editor kits" for working with HTML and Microsoft RTF documents. Covered in . Thetext.html
package has a subpackage, parser, which includes tools for parsing HTML.

javax.swing.tree
Classes providing support for theJTree component JTree itself is injavax.swing). Covered in

javax.swing.undo

Classes that implement undoable operations. Covered i

file:///C:/DOCUME~1/SIMULA~1/LOCALS~1/Temp/OReilly.Java.Swing.2nd.2002.chm/0596004087_

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

What's New in This Edition?

This second edition covers the latest developments in the Java 2 Standard Edition SDK 1.3 and 1.4. We've tried to
highlight the changes from 1.2 in case you have to work with older releases for compatibility or political reasons.

For brevity's sake, we refer to Java versions by their SDK version number, describing this or that feature as having
been introduced in SDK 1.3 or 1.4. Earlier versions were called Java Development Kits, so in those cases we refer to
JDK 1.1 or 1.2.

This new edition incorporated your feedback from the first edition! The first edition was too heavy on the
documentation side for many readers. The Javadoc for the Swing packages continues to improve, and more and
more people are familiar with the patterns of Java classes and methods. With those two facts in mind, we try to focus
on the parts of the API that are interesting and useful rather than just including them because they exist. We added
many new examples and improved the existing examples. This book is a true and thorough revision of the first
edition, not a mere update.

As a quick reference to some of the changes you'll find in the 1.3 and 1.4 releases of the SDK, |Tab|e P-]I andh’ablel

list any significant changes to components and briefly describe those changes. We detail these changes
throughout the book as we discuss the particular components.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Table P-1. Swing changes in the Java 2 SDK 1.3

Component or

In chapter Description of changes or additions
feature
ITree Se-v-eral new propertie-s were added, including the click count to start
editing and the selection path.
Improved general performance and cell rendering. AbstractCellEditor is
JTable P g P . ¥
now the parent class of the DefaultCellEditor used by tables.
) A new resizeWeight property was added, and the
JSplitPane - . It prop) v
dividerLocationProperty is now bound.
. You can now remove the Ok and Cancel buttons. A new property,
JFileChooser nha ter 12 I
. acceptAllFileFilterUsed, was added.
JCheckBox bhagter é Added new borderPaintedFlat property.
DefaultButtonModel bhagterﬂ Added new getGroup() method.
Several fixes and newly public classes and methods. Internal frames are
JinternalFrame now invisible by default, and the default close operation is now
DISPOSE_ON_CLOSE.
JTabbedPane bhagter 11] Added newtoolTipTextAt indexed property.
Several fixes applied. Several improvements in general HTML support via
Chapter . . .
Text components | I hanter 2 the HTMLEditorKit and related classes. (XHTML documents are still not
-Chapter
supported.)
JViewport bhagter 1;] New scrollMode property added.
N int methods added: printComponent(), printBorder(),
JComponent ew print methods added: p p ().p 0
printChildren().
InputVerifier k;hagter 2§I New class added.
o Chapter New keyboard binding mechanism added. New classes, InputMap and
Keyboard binding - . . .
Pppendix ActionMap, replace Keymap functionality.
Border® New LineBorder constructor to support rounded corners added.
-] AbstractAction class was updated, and new constructors for
t , .
s e JCheckBox, JRadioButton, JToggleButton, JIMenu, JMenultem,
Action Chapter 5, i)
JCheckBoxMenultem, andJRadioButtonMenultem that useAction
Chapter 14
were added.
JToolBar thagter 14 Support for titling undocked toolbars added.
JPopupMenu bhagter 14 Added new popupTrigger boolean property.
Added new EXIT_ON_CLOSE constant for use with the
JFrame -
defaultCloseOperation property.
Added getListeners() method to several model classes, including
. . AbstractDocument, AbstractTableModel, AbstractListModel,
ListenerList

DefaultButtonModel, DefaultTreeModel, and
DefaultListSelectionModel.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Table P-2. Swing changes in the Java 2 SDK 1.4

Component or feature

In chapter

Description of changes or additions

JProgressBar hapter Added support for indeterminate progress bars.
JSpinner hapter Added new spinner class.
JFormattedTextField haoter 20 Added new formatted text field class that validates
user input.
A new focus model and methodology was introduced.
Focus Several of the old-style focus methods and classes

were deprecated as of 1.4.1.

New architecture introduced, and dragEnabled and

Drag and Drop hapter 24 |transferHandler properties added to several
components.
Box Now descends from JComponent.
More control over mnemonic underline location
JButton hapter 5
granted.
Added PopupMenuListener and support for cell size
JComboBox hapter pup PP

prototyping.

JFileChooser

Added support for modifying the properties of the
Open button (such as its text and tooltip). Also added
support for selecting multiple files. (The multiple file
selection mode was introduced in the 1.2 release but
was not implemented until 1.4.)

JinternalFrame

Q10
0 >0 o -0 |=
5} Q QD AL [V
O O
— — — — |t
@ D] @ |D
= = — = |=
Q = — N
AN

Long titles are now truncated, and the title bar is
rendered with a gradient.

Text components

(@)
>

apter
hapter

BRI

Tooltip support was improved. HTML support,
including accessibility in documents, was improved
(XHTML is still not supported). New replace()
method added to AbstractDocument.

JOptionPane bhagter 1d New input dialog methods added.
JPopupMenu k;hagter 14 Now properly supports key bindings.
Introduced scrollable tabs for panes with a large
JTabbedPane number of tabs. Mnemonic support for accessing tabs
was also added.
JTree NuII. roc?ts are now allowed, and first-letter keyboard
navigation was added.
. Iltems can now be arranged horizontally, and
List . e ’
first-letter keyboard navigation was added.
SwingConstants t;hagter 22| New constants, NEXT and PREVIOUS, were added.
. i New methods added, including calculatelnnerArea
SwingUtilities g (

) andapplyComponentOrientation()

|Vhis document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Chapter j
Chapter 2

General support for auditory cues was added. Access

LookAndFeel _ _
) to Windows desktop properties was also added.
Appendix B
requestFocus() andrequestFocusinWindow
JComponent q 0 a O

methods are now public.

MouseWheelEventMouseWheelListener

bhagter 1;]

New event and listener for mouse wheels added.

JRootPane k;hagter 1d Look-and-feel can now supply window decoration.
JScrollBar k;hagter d Now properly overrides setUI().
JScrollPane Now supports mouse wheel events. (This support can

be turned off.)

RepaintManager

bhagter Zd

New method to return aVolatilelmage.

SpringLayout

bhagter 1:_II

New class (and supporting classes) added.

| |l@ve RuBoard

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

On the Web Site

The web site for this book, lwttp://www.oreilIv.com/cataloq/iswinqzll, offers some important materials you'll want to

know about. All the examples in this book can be found there, as well as free utilities, PDFs of John Zukowsklava
AWT Reference (foundational for understanding Swing), and selected material from the first edition for those of you
working with older SDKs.

The examples are available as a JAR file, a ZIP archive, and a compressed TAR archive. The files named swing
were tested against J2SE SDK 1.4 for this edition. The files named swing-1e were tested against JDK 1.2 for the first
edition of the book. The files named swing-old were written with the beta releases of Swing and use the
com.java.swing hierarchies.

We also include a few free utilities on the site that you may want to check out:

macmetrics.jar

Lee Ann Rucker's MacMetrics theme. See for details on this helpful tool that enables
developers without access to Mac OS X to see how their applications' interfaces will look on that platform.

oraswing.jar

Our very own utilities bundle with documentation, including:

eel.jar

The Every Event Listener utility for debugging events from the various Swing and AWT components.
relativelayout.jar

A nifty XML-based layout manager.
mapper.jar

A quick helper for discoverini the InputMap and ActionMap entries (both bound and unbound) for any given component. This is the

utility we used to build ‘.
We may add other utilities as we receive feedback from readers, so be sure to check the README file on the site!

We owe a debt of gratitude to John Zukowski and O'Reilly & Associates, who have graciously allowed the classic
Java AWT Reference to be placed online at our site. You can download PDFs of the entire book.

The web site also includes some expanded material that we couldn't shoehorn into this edition of the book. For those
of you still working with JDK 1.2, we've included a PDF containing the " Keyboard Actions" section from Chapter 3 of
the first edition—the approach changed markedly with SDK 1.3. Regardless of your version of Java, if you're planning
on extending the HTMLEditorKit, you should check out the expanded material online. We cover the basics of this
editor kit in , but for those of you who want to dig in deep, you should download PDFs of the two chapters

http://www.oreilly.com/catalog/jswing2/default.htm

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

devoted to this topic..

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Conventions

This book follows certain conventions for font usage, property tables, and class diagrams. Understanding these conventions

up-front makes it easier to use this book.
This book uses the following font conventions:
Italic

Used for filenames, file extensions, URLs, application names, emphasis, and new terms when they are first

introduced
Constant width

Used for Java class names, functions, variables, components, properties, data types, events, and snippets of code
that appear in text

Constant width bold
Used for commands you enter at the command line and to highlight new code inserted in a running example

Constant width italic

Used to annotate output

This icon designates a note, which is an important aside to the nearby text.

This icon designates a warning relating to the nearby text.

Properties Tables

Swing components are all JavaBeans. Properties provide a powerful way to work with JavaBeans, so we use tables
throughout the book to present lists of properties is an example from the hypotheticaFOO class that shows how we

use these tables.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Table P-3. Properties of the fictional JFoo class

Property Datatype | get |is|set| Defaultvalue

b,o,1.4 boolean . - true

opaque

bbound, 0overridden, 1'4since 1.4

See also properties from the JComponent class|{able 3-6).

Properties tables tell you the data type; whether it has is, get, and set methods; and its default value, if any. Footnotes to the
properties tables tell you, among other things, whether a property is bound, protected, indexed, and/or overridden. We use
"overridden" to mean both actual overridden methods in the case of a concrete parent class and implemented methods in the
case of an abstract parent class or an interface. If it is a recent addition, the version of the SDK that added the property is noted

(assume 1.2 if there is no footnote).

indicates that aJF0O object has a read/write bound property namedopaque with the data typeboolean. The
property was introduced in the 1.4 release of the SDK. This property has accessor methods with the signatures:

public boolean getOpaque();
public boolean isOpaque();
public void setOpaque(boolean opaque);

These methods aren't listed separately when we discuss the class's other methods. Because opaque is a bound property,
changing its value generates a PropertyChange-Event. The overridden footnote indicates that theopaque property is also
inherited (or possibly implemented for the first time); it is listed here because the JFOO class has altered the property in some
way—e.g., the default value was changed, accessor methods were added, or new behavior when accessing or modifying the
value was specified. A cross-reference following the table says that JFOO has inherited properties from theJComponent class;

see the discussion of that class for details on these properties.

We've listed default values for properties wherever applicable. (Properties of interfaces, for example, will not have any values

listed.) To save space, we omit the new operator in these tables.

One more note about bound properties. The Swing developers introduced some confusion into the notion of a "bound property"
by adding a new lightweight event, ChangeEvent, which is a stateless version ofPropertyChangeEvent. In these tables, we
adhere strictly to the JavaBeans definition of a bound property: modifying a bound property generates a
PropertyChangeEvent.

Class Diagrams

The class diagrams that appear throughout the book are similar to those if.earning Java and other Java books from O'Reilly.
Solid lines indicate inheritance relationships; dotted lines indicate interface relationships. In , ClassA extends
AbstractClass, which implementsinterfaceX. There are two interface relationships that we don't show in this way. All Swing
classes implement Serializable, and showing this relationship explicitly would clutter the diagram; just assume that any Swing
class implements Serializable, unless stated otherwise in the text. Many Swing classes implement théAccessible interface;

rather than cluttering the diagrams, we show that a class implements Accessible with an A icon.

We also use the class diagrams to show information about relations between classes. In , the long, dashed arrow
indicates that ClassA uses ClassB. The label on the arrow indicates the nature of the relationship; other common relations are
"contains” and "creates." 1..* indicates the muiltiplicity of the relationship. Here, an instance o€ClassA uses one or more

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

instances of ClassB. Other multiplicities are1 (exactly one instance),0..* (any number of instances), and0..1 (zero or one

instance).

Figure P-1. Class diagram notation

|Vhis document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

How to Contact Us

Along with O'Reilly, we have verified the information in this book to the best of our abilities, but you may find that
features have changed (or even that we have made mistakes!). Please let us know about any errors you find, as well
as your suggestions for future editions, by writing to:

O'Reilly & Associates, Inc.

1005 Gravenstein Highway North
Sebastopol, CA 95472

(800) 998-9938 (U.S. and Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

You can also contact O'Reilly by email. To be put on the mailing list or request a catalog, send a message to:

nfo@oreilly.co

We have a web page for this book, where we list errata, examples, and any additional information. You can access
this page at:

l1ttp://WWW.oreillv.com/cataloq/iswinq2,|

To ask technical questions or comment on the book, send email to:

Ijookquestions@oreillv.corrl

For more information about O'Reilly books, conferences, Resource Centers, and the O'Reilly Network, see O'Reilly's

web site at:

http://www.oreillv.com_l

mailto:info@oreilly.com
http://www.oreilly.com/catalog/jswing2/default.htm
mailto:bookquestions@oreilly.com
http://www.oreilly.com/default.htm

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Acknowledgments

We're particularly indebted to our technical reviewers for this second edition: Christian Hessler, John Pyeatt, Maciek
Smuga-Otto, and Dave Wood.

Marc Loy

I'll start off the mutual admiration society by thanking my cohorts Jim and Brian. They came to the table after we lost
Dave and Bob (from the first edition) to other books, and well, life in general. This update would not have been
possible without them. Our editor Deb Cameron has the patience and diligence of some very patient and diligent god.
| continue to be amazed by the support and insight | receive from my colleagues Tom Berry, Damian Moshak, and
Brooks Graham. Gratitude for the inspiration to keep writing (even if it is technical) goes to Amy Hammond, my sister
and confidante. A special thanks to Kathy Godeken for an early push in the right direction. Words are not enough to
thank my partner Ron, so I'll not waste the space.

Brian Cole

Thanks to my family for putting up with me as an author. This goes tenfold for my partner, Beth, for that and more.
Thanks to Deb, who was very understanding about deadlines, and especially to Marc and Jim, who were always
willing to lend a hand despite deadlines of their own. Thanks to my employers and coworkers, who were willing to
accommodate my schedule. Finally, thanks to the anonymous programmer who discovered that running java with
-Dsun.java2d.noddraw=true fixes the appalling 1.3 drawing problems common on Win32 systems equipped with
some popular types of video cards. You saved me a lot of time.

James Elliott

Any list of thanks has to start with my parents for fostering my interest in computing even when we were living in
countries that made that a major challenge, and with my partner Joe for putting up with it today when it has flowered
into a major obsession. I'd also like to acknowledge my Madison employer, Berbee, for giving me an opportunity to
delve deeply into Java and build skills as an architect of reusable APIs; for letting me stay clear of the proprietary,
platform-specific tar pit that is engulfing so much of the programming world; for surrounding me with such incredible
colleagues; and for being supportive when | wanted to help with this book. Of course, | have Marc to thank for getting
me involved in this crazy adventure in the first place, and Deb for helping make sense of it.

| wanted to be sure this edition gave good advice about how to work with Swing on Mac OS X, Apple's excellent,
Unix-based environment for Java development, so | asked for some help. Lee Ann Rucker (who should also be
thanked for her heroic work of single-handedly implementing the new Mac OS Look-and-Feel while on loan from Sun

|Vhis document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

to Apple) shared some great ideas and approaches to writing solid, cross-platform Java applications, including the
MacMetrics theme described in ‘. Count me among the many people wishing Sun or Apple would put her

back on the Mac Java team! Eric Albert, another frequent source of insight on Apple's Java-Dev mailing list, gave me
more suggestions and pointed me to his excellent chapter in Early Adopter Mac OS X Java (Wrox Press). Finally,
Matt Drance at Apple's Developer Technical Support sent me an early (and helpful) version of his technical note on
how to make Java applications as Mac-friendly as possible. There are many others to whom I'm indebted, but I've

already used more than my fair share of space, so the rest of you know who you are!

We all want to thank the many members of O'Reilly's production department, who put in lots of work under a tight

schedule.

file:///C:/DOCUME~1/SIMULA~1/LOCALS~1/Temp/OReilly.Java.Swing.2nd.2002.chm/0596004087_

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Chapter 1. Introducing Swing

Welcome to Swing! By now, you're probably wondering what Swing is and how you can use it to spice up your Java
applications. Or perhaps you're curious as to how the Swing components fit into the overall Java strategy. Then
again, maybe you just want to see what all the hype is about. Well, you've come to the right place; this book is all
about Swing and its components. So let's dive right in and answer the first question that you're probably asking right
now, which is...

file:///C:/DOCUME~1/SIMULA~1/LOCALS~1/Temp/OReilly.Java.Swing.2nd.2002.chm/0596004087_

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

1.1 What Is Swing?

If you poke around the Java home page bttp://iava.sun.com/l), you'll find Swing described as a set of customizable
graphical components whose look-and-feel (L&F) can be dictated at runtime. In reality, however, Swing is much more
than this. Swing is the next-generation GUI toolkit that Sun Microsystems created to enable enterprise development
in Java. By enterprise development, we mean that programmers can use Swing to create large-scale Java
applications with a wide array of powerful components. In addition, you can easily extend or modify these
components to control their appearance and behavior.

Swing is not an acronym. The name represents the collaborative choice of its designers when the project was kicked
off in late 1996. Swing is actually part of a larger family of Java products known as the Java Foundation Classes (
JFC), which incorporate many of the features of Netscape's Internet Foundation Classes (IFC) as well as design
aspects from IBM's Taligent division and Lighthouse Design. Swing has been in active development since the beta
period of the Java Development Kit (JDK) 1.1, circa spring of 1997. The Swing APIs entered beta in the latter half of
1997 and were initially released in March 1998. When released, the Swing 1.0 libraries contained nearly 250 classes
and 80 interfaces. Growth has continued since then: at press time, Swing 1.4 contains 85 public interfaces and 451
public classes.

Although Swing was developed separately from the core Java Development Kit, it does require at least JDK 1.1.5 to
run. Swing builds on the event model introduced in the 1.1 series of JDKs; you cannot use the Swing libraries with
the older JDK 1.0.2. In addition, you must have a Java 1.1-enabled browser to support Swing applets. The Java 2
SDK 1.4 release includes many updated Swing classes and a few new features. Swing is fully integrated into both
the developer's kit and the runtime environment of all Java 2 releases (SDK 1.2 and higher), including the Java
Plug-In.

1.1.1 What Are the Java Foundation Classes?

The FCis a suite of libraries designed to assist programmers in creating enterprise applications with Java. The
Swing APl is only one of five libraries that make up the JFC. The JFC also consists of the Abstract Window Toolkit
(AWT), the Accessibility API, the 2D API, and enhanced support for Drag and Drop capabilities. While the Swing API
is the primary focus of this book, here is a brief introduction to the other elements in the JFC:

AWT
The Abstract Window Toolkit is the basic GUI toolkit shipped with all versions of the Java Development Kit.
While Swing does not reuse any of the older AWT components, it does build on the lightweight component
facilities introduced in AWT 1.1.

Accessibility

The accessibility package provides assistance to users who have trouble with traditional user interfaces.

http://java.sun.com/default.htm

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Accessibility tools can be used in conjunction with devices such as audible text readers or braille keyboards

to allow direct access to the Swing components. Accessibility is split into two parts: the Accessibility API,

which is shipped with the Swing distribution, and the Accessibility Utilities API, which is distributed

separately. All Swing components support accessibility, so this book dedicates an entire chapter “
to accessibility design and use.

2D API

The 2D API contains classes for implementing various painting styles, complex shapes, fonts, and colors.
This Java package is loosely based on APIs that were licensed from IBM's Taligent division. The 2D API
classes are not part of Swing, so they are not covered in this book.

Drag and Drop

Drag and Drop (DnD) is one of the more common metaphors used in graphical interfaces today. The user
is allowed to click and "hold" a GUI object, moving it to another window or frame in the desktop with
predictable results. The DnD API allows users to implement droppable elements that transfer information
between Java applications and native applications. AIt.houih DnD is not part of Swing, it is crucial to a

commercial-quality application. We tackle this topic in [Chapter 24.

enumerates the various components of the Java Foundation Classes. Because part of the Accessibility
APl is shipped with the Swing distribution, we show it overlapping Swing.

Figure 1-1. The five APIs of the JFC

||"' T l! e Ny i H 4 y
E Jawa Drag
AWT Swing i ﬁc{aﬂihility' 20 and
- Drop
i
" Fan ". I, AR A% A

1.1.2 Is Swing a Replacement for AWT?

No. Swing is actually built on top of the core AWT libraries. Because Swing does not contain any platform-specific
(native) code, you can deploy the Swing distribution on any platform that implements the Java 1.1.5 or above virtual
machine. In fact, if you have JDK 1.2 or higher on your platform, then the Swing classes are already available, and
there's nothing further to download. If you use a JDK version prior to 1.2, you can download the entire set of Swing

libraries as a set of Java Archive (JAR) files from the Swing home page, Ettg://'|ava.sun.com/groducts/'fd. In either

case, it is generally a good idea to visit this URL for any extra packages or L&Fs that may be distributed separately

from the core Swing libraries.

http://java.sun.com/products/jfc

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

shows the relationship between Swing, AWT, and the Java Development Kit in the 1.1 and higher JDKs. In
JDK 1.1, the Swing classes must be downloaded separately and included as an archive file on the classpath

(swingall.jar). 1 JDK 1.2 (and higher) comes with a Swing distribution.

[The standalone Swing distributions contain several other JAR filesswingall.jar is everything
(except the contents of multi.jar) wrapped into one lump and is all you normally need to know
about. For completeness, the other JAR files are: swing.jar, which contains everything but the
individual L&F packages; motif.jar, which contains the Motif (Unix) L&Fwindows.jar, which
contains the Windows L&F; multi.jar, which contains a special L&F that allows additional (often
nonvisual) L&Fss to be used in conjunction with the primary L&F; and beaninfo.jar, which
contains special classes used by GUI development tools.

Figure 1-2. Relationships between Swing, AWT, and the JDK in the 1.1 and higher SDKs

Swing contains many more graphical components than its immediate predecessor, AWT 1.1. Many are components
that were scribbled on programmer wishlists since Java first debuted—including tables, trees, internal frames, and a
plethora of advanced text components. In addition, Swing contains many design advances over AWT. For example,
Swing introduced an Action class that makes it easier to coordinate GUI components with their functionality. You'll
also find that a much cleaner design prevails throughout Swing; this cuts down on the number of unexpected
surprises that you're likely to face while coding.

Swing depends extensively on the event-handling mechanism of AWT 1.1, although it does not define a
comparatively large amount of events for itself. Each Swing component also contains a variable number of exportable
properties. This combination of properties and events in the design was no accident. Each of the Swing components,
like the AWT 1.1 components before them, adhere to the popular JavaBeans specification. As you might have
guessed, this means that you can import all of the Swing components into various GUI builder tools, which is useful
for powerful visual programming.

1.1.3 Rethinking the AWT

To understand why Swing exists, it helps to understand the market forces that drive Java as a whole. The Java
Programming Language was developed in 1993 and 1994, largely under the guidance of James Gosling and Bill Joy
at Sun Microsystems, Inc. When Sun released the Java Development Kit on the Internet, it ignited a firestorm of

|Vhis document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

excitement that swept through the computing industry. At first, developers primarily experimented with Java for
applets , mini-programs embedded in web browsers. However, as Java matured over the course of the next two
years, many developers began using Java to develop full-scale applications.

Or at least they tried. As developers ported Java to more and more platforms, its weak points started to show. The
language was robust and scalable, extremely powerful as a networking tool, and served well as an easy-to-lean
successor to the more established C++. The primary criticism, however, was that it was an interpreted language,
which means that by definition it executed code slower than its native, compiled equivalents. Consequently, many
developers flocked to just-in-time (JIT) compilers—highly optimized interpreters—to speed up their large-scale
applications. This solved many problems, but one weak point that continually received scathing criticism was the
graphical widgets that Java was built on: the Abstract Window Toolkit (AWT). The primary issue here was that AWT
provided only the minimal amount of functionality necessary to create a windowing application. For enterprise
applications, it quickly became clear that programmers needed something bigger.

After nearly a year of intense scrutiny, the AWT classes were ready for a change. From Java 1.0 to Java 1.1, the
AWT reimplemented its event model from a "chain" design to an "event subscriber" design. This meant that instead
of propagating events through a predefined hierarchy of components, interested classes simply registered with other
components to receive noteworthy events. Because events typically involve only the sender and receiver, this
eliminated much of the overhead in propagating them. When component events were triggered, an event object was
passed only to those classes interested in receiving them.

Sun developers also began to see that relying on native widgets for the AWT components was proving to be
troublesome. Similar components looked and behaved differently on many platforms, and coding for the
ever-expanding differences of each platform became a maintenance nightmare. In addition, reusing the component
widgets for each platform limited the abilities of the components and proved to be expensive on system memory.

Clearly, Sun knew that AWT wasn't enough. It wasn't that the AWT classes didn't work; they simply didn't provide the
functionality necessary for full-scale enterprise applications. At the 1997 JavaOne Conference in San Francisco,
JavaSoft announced the Java Foundation Classes. Key to the design of the JFC was that the new Swing
components would be written entirely in Java and have a consistent L&F across platforms. This allowed Swing and
the JFC to be used on any platform that supported Java 1.1 or later; all the user had to do was to include the
appropriate JAR files on the CLASSPATH to make each of the components available for use. Since JDK 1.2, Swing

has been part of the standard Java distribution; no special action is needed to use Swing components.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

1.2 Swing Features

Swing provides many features for writing large-scale applications in Java. Here is an overview of some of the more
popular features.

1.2.1 Pluggable Look-and-Feels

One of the most exciting aspects of the Swing classes is the ability to dictate the L&F of each of the components,
even resetting the L&F at runtime. L&Fs have become an important issue in GUI development over the past 10 years.
Many users are familiar with the Motif style of user interface, which was common in Windows 3.1 and is still in wide
use on Unix platforms. Microsoft created a more optimized L&F in their Windows 95/98/NT/2000 operating systems.
In addition, the Macintosh computer system has its own carefully designed L&F, which most Apple users feel

comfortable with.

Swing is capable of emulating several L&Fs and currently supports the Windows, Unix Motif, and "native" Java Metal
L&Fs. Mac OS X comes with full support for its own L&F based on Apple's Aqua Human Interface Guidelines,
although you can still access Metal if you prefer. In addition, Swing allows the user to switch L&Fs at runtime without
having to close the application. This way, a user can experiment to see which L&F is best for her with instantaneous
feedback. (In practice, nobody really does this, but it's still pretty cool from a geeky point of view.) And, if you're
feeling really ambitious as a developer (perhaps a game developer), you can create your own L&F for each one of
the Swing components!

The Metal L&F combines some of the best graphical elements in today's L&Fs and even adds a few surprises of its
own. ‘ shows an example of several L&Fs that you can use with Swing, including the Metal L&F. All Swing
L&Fs are built from a set of base classes called the Basic L&F. However, though we may refer to the Basic L&F from
time to time, you can't use it on its own. If you're lucky enough to be developing applications in the Mac OS X
environment, you'll be familiar with the L&F shown in .

Figure 1-3. Various L&Fs in the Java Swing environment

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

1.2.2 Lightweight Components

Most Swing components are lightweight. In the purest sense, this means that components are not dependent on
native peers to render themselves. Instead, they use simplified graphics primitives to paint themselves on the screen
and can even allow portions to be transparent.

Figure 1-4. The new Mac L&F in OS X

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

The ability to create lightweight components first emerged in JDK 1.1, although the majority of AWT components did
not take advantage of it. Prior to that, Java programmers had no choice but to subclass java.awt.Canvas or
java.awt.Panel if they wished to create their own components. With both classes, Java allocated an opaque peer
object from the underlying operating system to represent the component, forcing each component to behave as if it
were its own window, thereby taking on a rectangular, solid shape. Hence, these components earned the name
"heavyweight" because they frequently held extra baggage at the native level that Java did not use.

Heavyweight components were unwieldy for two reasons:

® Equivalent components on different platforms don't necessarily act alike. A list component on one platform,
for example, may work differently than a list component on another. Trying to coordinate and manage the
differences between components was a formidable task.

® The L&F of each component was tied to the host operating system and could not be changed.

With lightweight components, each component renders itself using the drawing primitives of the Graphics object
(e.g., drawLine(), fillRect(), etc.). Lightweight components always render themselves onto the surface of the
heavyweight top-level component they are contained in. With the arrival of JDK 1.1, programmers can directly extend
the java.awt.Component orjava.awt.Container classes when creating lightweight components. Unlike
java.awt.Canvas orjava.awt.Panel, these classes do not depend on a native peer and allow the developer to

render quickly to the graphics context of the container. This results in faster, less memory-intensive components than
were previously available in Java.

Almost all of the Swing components are lightweight; only a few top-level containers are not. This design allows
programmers to draw (and redraw) the L&F of their application at runtime, instead of tying it to the L&F of the host
operating system. In addition, the design of the Swing components supports easy modification of component
behavior. For example, you can tell almost any Swing component whether you wish it to accept or decline focus and
how it should handle keyboard input.

1.2.3 Additional Features

Several other features distinguish Swing from the older AWT components:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

L] Swing has wide variety of new components, such as tables, trees, sliders, spinners, progress bars, internal
frames, and text components.

® Swing components support the replacement of their insets with an arbitrary number of nested borders.

® Swing components can have tooltips placed over them. A tooltip is a textual pop up that momentarily
appears when the mouse cursor rests inside the component's painting region. Tooltips can be used to give

more information about the component in question.

® You can arbitrarily bind keyboard events to components, defining how they react to various keystrokes
under given conditions.

® There is additional debugging support for rendering your own lightweight Swing components.

We discuss each of these features in greater detail as we move through the next three chapters.

1.2.4 How Can | Use Swing?

Not everyone uses Swing for the same reasons. In fact, the Swing libraries have many levels of use, with varying
levels of prerequisite knowledge. Here are some potential uses:

® Use the Swing components as they are to build your own enterprise applications.
® Create your own Swing components—or extend those that already exist.

® Override or create a new L&F for one or more of the Swing components.

The first approach is what the vast majority of Swing programmers use. Here, using Swing components is just like
using the AWT components. A familiar set of components, containers, and layout managers are all available in the
Swing packages to help you get your application up and running quickly. If you're adept at AWT programming, you
probably need only a cursory introduction to each component to get started. You will we need to get into broader
issues only if you use some of the larger and newer component families, such as tables and text. If you are planning
to use each component as a JavaBean for visual programming, you also fall into this category.

Creating your own component, or extending an existing one, requires a deeper understanding of Swing. This includes
a firm understanding of Swing architecture, events, and lower-level classes. Also, if you decide to subclass a Swing
component, the responsibilities of that component must be adopted and handled accordingly—otherwise, your new
component may perform erratically.

Finally, you may wish to change the L&F of one or more Swing components. This is arguably the most complex of the
three routes that you can take—it requires a thorough knowledge of the design, architectural fundamentals, and
graphical primitives of each lightweight component. In addition, you need to understand how Swing's UIManager

and UlDefaults classes work together to "set" each component's L&F.

This book strives to help you with each of these issues. Because we anticipate that the vast majority of readers are in
the first category, we spend a great deal of time reviewing each component's properties and methods, as well as
providing source code for various scenarios that use these components. We try to document and illustrate the useful

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

parts of the components. The online documentation (called Javadoc) has matured along with the rest of Java; the
current stuff is always there first.

Programming your own L&F can get pretty complex; in fact, the source code for an entire L&F would far exceed the
size of this book. However, we don't want to leave you in the dark. If you are an experienced Swing programmer
already, and you're looking for a concise introduction on how to get started, see . This chapter provides
details on working with L&Fs as well as examples of how to code your own L&F for both simple and complex Swing

components.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

1.3 Swing Packages and Classes

Here is a short description of each package in the Swing libraries:

javax.accessibility

Contains classes and interfaces that can be used to allow assistive technologies to interact with Swing components.
Assistive technologies cover a broad range of items, from audible text readers to screen magnification. Although the

accessibility classes are technically not part of Swing, they are used extensively throughout the Swing components.
We discuss the accessibility package in greater detail in

javax.swing

Contains the core Swing components, including most of the model interfaces and support classes.

javax.swing.border

Contains the definitions for the abstract border class as well as eight predefined borders. Borders are not
components; instead, they are special graphical elements that Swing treats as properties and places around
components in place of their insets. If you wish to create your own border, you can subclass one of the existing

borders in this package, or you can code a new one from scratch.

javax.swing.colorchooser

Contains support for the JColorChooser component, discussed in.

javax.swing.event

Defines several new listeners and events that Swing components use to communicate asynchronous information
between classes. To create your own events, you can subclass various events in this package or write your own

event class.

javax.swing.filechooser

Contains support for the JFileChooser component, discussed in.

javax.swing.plaf

Defines the unique elements that make up the pluggable L&F for each Swing component. Its various subpackages

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

are devoted to rendering the individual L&Fs for each component on a platform-by-platform basis. (Concrete
implementations of the Windows and Motif L&Fs are in subpackages of com.sun.java.swing.plaf, and the Mac OS
L&F is under com.apple.mrj.swing.)

javax.swing.table

Provides models and views for the table component, which allows you to arrange various information in a grid format
with an appearance similar to a spreadsheet. Using the lower-level classes, you can manipulate how tables are
viewed and selected, as well as how they display their information in each cell.

javax.swing.text

Provides scores of text-based classes and interfaces supporting a common design known asdocument/view . The

text classes are among the more advanced Swing classes to learn, so we devote several chapters
-Chapter 23) to both the design fundamentals and the implementation of text applications.

javax.swing.text.html
Used specifically for reading and formatting HTML text through an ancillary editor kit.

javax.swing.text.html.parser

Contains support for parsing HTML.

javax.swing.text.rtf

Used specifically for reading and formatting Rich Text Format (RTF) text through an ancillary editor kit.

javax.swing.tree

Defines models and views for a hierarchal tree component, which may represent a file structure or a series of
properties.

javax.swing.undo
Contains the necessary functionality for implementing undoable functions.

By far the most widely used package is javax.swing. In fact, almost all the Swing components, as well as several utility
classes, are located inside this package. The only exceptions are borders and support classes for the trees, tables, and
text-based components. Because the latter components are much more extensible and often have many more classes to work
with, these classes have been divided into separate packages.

1.3.1 Class Hierarchy

shows a detailed overview of the Swing class hierarchy as it appears in the 1.48DK. At first glance, the class

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

hierarchy looks very similar to AWT. Each Swing component with an AWT equivalent shares the same name, except that the
Swing class is preceded by a capital J. In most cases, if a Swing component supersedes an AWT component, it can be used as

a drop-in replacement.

Figure 1-5. The Swing component hierarchy

Upon closer inspection, however, you will discover that there are welcome differences between the Swing and AWT
components. For example, the menu components, including JMenuBar, are now descendants of the same base component as
the others: JComponent. This is a change from the older AWT menu classes. Both the AWT 1.0 and 1.1 menu classes
inherited their own high-level component, MenuComponent, which severely limited their capabilities. In addition, this design
prevented menu bars from being positioned with layout managers inside containers; instead, Java simply attached menu bars to

the top of frames.

Also, note that Swing has redesigned the button hierarchy. It now includes a JToggleButton class, used in dual-state
components. For example, if you click on a toggle button while in the released position, the button switches to the pressed state
and remains in that state. When it is clicked again, the button returns to the released state. Note that JToggleButton outlines
behavior seen in radio buttons and checkboxes. Hence, these classes inherit from JToggleButton in the new Swing design.
Also note the addition of the JRadioButton and JRadioButtonMenultem classes in Swing. Until now, Java forced

developers to use the AWT checkbox equivalent to mimic radio buttons.

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

You might have noticed an increase in the number of frames and panes in Swing. For example, consider internal frames.
Swing supports placing frames inside other frames—this is commonly referred to as a multiple document interface (MDI) in the
Microsoft Windows world. You can assign these internal frames arbitrary vertical layers; these layers determine which internal
frame appears on top. In fact, even the simplest frame, JFrame, embraces the concept of layers by including support for

layered panes on which you can position different elements of your application. These topics are discussed in more detail in

bhagter § andk;hagter 11].

There are many other design enhancements in Swing—too many, in fact, to discuss here. However, before we go on, we should

discuss one of the fundamental designs behind every Swing component: the model-view-controller architecture.

file:///C:/DOCUME~1/SIMULA~1/LOCALS~1/Temp/OReilly.Java.Swing.2nd.2002.chm/0596004087_

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

1.4 The Model-View-Controller Architecture

Swing uses themodel-view-controller architecture (MVC) as the fundamental design behind each of its
components. Essentially, MVC breaks GUI components into three elements. Each of these elements plays a crucial
role in how the component behaves.

Model

The model encompasses the state data for each component. There are different models for different types
of components. For example, the model of a scrollbar component might contain information about the
current position of its adjustable "thumb," its minimum and maximum values, and the thumb's width (relative
to the range of values). A menu, on the other hand, may simply contain a list of the menu items the user
can select from. This information remains the same no matter how the component is painted on the screen;
model data is always independent of the component's visual representation.

View

The view refers to how you see the component on the screen. For a good example of how views can
differ, look at an application window on two different GUI platforms. Almost all window frames have a title
bar spanning the top of the window. However, the title bar may have a close box on the left side (like the
Mac OS platform), or it may have the close box on the right side (as in the Windows platform). These are
examples of different types of views for the same window object.

Controller

The controller is the portion of the user interface that dictates how the component interacts with events.
Events come in many forms — e.g., a mouse click, gaining or losing focus, a keyboard event that triggers a
specific menu command, or even a directive to repaint part of the screen. The controller decides how each
component reacts to the event—if it reacts at all.

shows how the model, view, and controller work together to create acrollbar component. The scrollbar
uses the information in the model to determine how far into the scrollbar to render the thumb and how wide the thumb
should be. Note that the model specifies this information relative to the minimum and the maximum. It does not give
the position or width of the thumb in screen pixels—the view calculates that. The view determines exactly where and
how to draw the scrollbar, given the proportions offered by the model. The view knows whether it is a horizontal or
vertical scrollbar, and it knows exactly how to shadow the end buttons and the thumb. Finally, the controller is
responsible for handling mouse events on the component. The controller knows, for example, that dragging the
thumb is a legitimate action for a scrollbar, within the limits defined by the endpoints, and that pushing on the end
buttons is acceptable as well. The result is a fully functional MVC scrollbar.

Figure 1-6. The three elements of a model-view-controller architecture

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Model: View: Controller:
Minimum=0 Accept mouse
Maximum=100 i clicks on end
'I.I'alu'i:ﬁ ﬂ buttons
Width=>5

Accept mouse

| drag on thumb
]

i »

1.4.1 MVC Interaction

With MVC, each of the three elements—the model, the view, and the controller—requires the services of another
element to keep itself continually updated. Let's continue discussing the scrollbar component.

We already know that the view cannot render the scrollbar correctly without obtaining information from the model first.
In this case, the scrollbar does not know where to draw its "thumb" unless it can obtain its current position and width
relative to the minimum and maximum. Likewise, the view determines if the component is the recipient of user events,
such as mouse clicks. (For example, the view knows the exact width of the thumb; it can tell whether a click occurred
over the thumb or just outside of it.) The view passes these events on to the controller, which decides how to handle
them. Based on the controller's decisions, the values in the model may need to be altered. If the user drags the
scrollbar thumb, the controller reacts by incrementing the thumb's position in the model. At that point, the whole cycle
repeats. The three elements, therefore, communicate their data as shown in figure 1-4.

Figure 1-7. Communication through the model-view-controller architecture

1.4.2 MVC in Swing

Swing actually uses a simplified variant of the MVC design called the model-delegate . This design combines the view
and the controller object into a single element, the Ul delegate , which draws the component to the screen and
handles GUI events. Bundling graphics capabilities and event handling is somewhat easy in Java, since much of the
event handling is taken care of in AWT. As you might expect, the communication between the model and the Ul

|Vhis document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

delegate then becomes a two-way street, as shown in .

Figure 1-8. With Swing, the view and the controller are combined into a Ul-delegate object

So let's review: each Swing component contains a model and a Ul delegate. The model is responsible for

maintaining information about the component's state. The Ul delegate is responsible for maintaining information about
how to draw the component on the screen. In addition, the Ul delegate (in conjunction with AWT) reacts to various
events that propagate through the component.

Note that the separation of the model and the Ul delegate in the MVC design is extremely advantageous. One unique
aspect of the MVC architecture is the ability to tie multiple views to a single model. For example, if you want to
display the same data in a pie chart and in a table, you can base the views of two components on a single data
model. That way, if the data needs to be changed, you can do so in only one place—the views update themselves
accordingly (Chapter 1§ has an example that does exactly this). In the same manner, separating the delegate from

the model gives the user the added benefit of choosing what a component looks like without affecting any of its data.
By using this approach, in conjunction with the lightweight design, Swing can provide each component with its own
pluggable L&F.

By now, you should have a solid understanding of how MVC works. However, we won't yet spoil the fun of using

MVC. Chapter 24 and[Chapter 3 go into further detail about how you can use MVC to your advantage in even the

simplest of applications.

file:///C:/DOCUME~1/SIMULA~1/LOCALS~1/Temp/OReilly.Java.Swing.2nd.2002.chm/0596004087_

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

1.5 Working with Swing

Our introduction to Swing wouldn't be complete unless we briefly mentioned some caveats of the Swing libraries.
There are two pertinent areas: multithreading and lightweight versus heavyweight components. Being aware of these
issues will help you make informed decisions while working with Swing. gives you in-depth guidance in
these difficult areas.

1.5.1 Multithreading

Shortly before the initial release of Swing, Sun posted an article recommending that developers not use

independent threads to change model states in components. 2 Instead, once a component has been painted to the
screen (or is about to be painted), updates to its model state should occur only from the event-dispatching queue.
The event-dispatching queue is a system thread used to communicate events to other components. It posts GUI
events, including those that repaint components.

2l ing Connection,
ttp://java.sun.com/products/jfc/tsc/swingdoc-archive/threads.html.

The issue here is an artifact of the MVC architecture and deals with performance and potential race conditions. As we
mentioned, a Swing component draws itself based on the state values in its model. However, if the state values
change while the component is in the process of repainting, the component may repaint incorrectly—this is
unacceptable. To compound matters, placing a lock on the entire model, as well as on some of the critical component
data, or even cloning the data in question, could seriously hamper performance for each refresh. The only feasible
solution, therefore, is to place state changes in serial with refreshes. This ensures that modifications in component
state do not occur at the same time Swing is repainting any components and prevents race conditions.

1.5.2 The Z-Order Caveat: Lightweight and Heavyweight Components

One of the most frequent issues to come out of lightweight/heavyweight component use is the idea of depth, or
z-order—that is, a well-defined method for how elements are stacked on the screen. Because of z-order, it is not
advisable to mix lightweight and heavyweight components in Swing.

To see why, remember that heavyweight components depend on peer objects used at the operating system level.
However, with Swing, only the top-level components are heavyweight: JApplet, JFrame, JDialog, andJWindow.
Also, recall that heavyweight components are always "opaque"—they have a rectangular shape and are
nontransparent. This is because the host operating system typically allocates the entire painting region to the
component, clearing it first.

The remaining components are lightweight. So here is the crux of the dilemma: when a lightweight component is

http://java.sun.com/products/jfc/tsc/swingdoc-archive/threads.html

|Vhis document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

placed inside a heavyweight container, it shares (and actually borrows) the graphics context of the heavyweight
component. The lightweight component must always draw itself on the same plane as the heavyweight component
that contains it; as a result, it shares the z-order of the heavyweight component. In addition, lightweight components
are bound to the clipping region of the top-level window or dialog that contains them. In effect, lightweight
components are all "drawings" on the canvas of a heavyweight component. The drawings cannot go beyond the
boundaries of the canvas and can always be covered by another canvas. Heavyweight components, however, are
free from this restriction. Therefore, they always appear on top of the lightweight components — whether that is the
intent or not.

Heavyweight components have other ramifications in Swing as well. They do not work well in scrollpanes, where they
can extend beyond the clipping boundaries; they also don't work in front of lightweight menus and menu bars (unless
certain precautions are taken) or inside internal frames. Some Swing classes, however, offer an interesting approach
to this problem. These classes allow you to specify whether the component draws itself using a lightweight or a
heavyweight window. Hence, with a bit of judicious programming, you can keep your components correctly
rendered—no matter where they are located.

|Vhis document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

1.6 The Swing Set Demo

If you're in a hurry to see all the components Swing has to offer, be sure to check out the Swing Set demonstration.
The demonstration is extremely easy to set up. If you have the 1.3 or 1.4 SDK, the demonstration is included. If you
have 1.2, you must first download and extract the demo classes and add them to your classpath. Then follow these
steps:

1. Change the directory to the demol/jfc/SwingSet2 directory. (For the 1.2 release, the directory is
demoljfc/SwingSet.)

2. Run the SwingSet2 (or SwingSet for 1.2) jar file:
% java -jar SwingSet2.jar

You should immediately see a splash screen indicating that the Swing Set demo is loading. When it finishes, a
window appears, similar to the one in .

Figure 1-9. The Swing Set demo

This demo contains a series of tabs that demonstrate almost all of the components in the Swing libraries. Be sure to
check out the internal frames demo and theMetal L&F. In addition, some of the Swing creators have added Easter
eggs" throughout the Swing Set demo. See if you can find some!

file:///C:/DOCUME~1/SIMULA~1/LOCALS~1/Temp/OReilly.Java.Swing.2nd.2002.chm/0596004087_

|Vhis document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

1.7 Reading This Book

We're well aware that most readers don't read the . You have our permission to skip it, provided that you look
at the Conventiong section. That section is particularly important because in this book we experiment with a few new

techniques for explaining the Swing classes. As we said earlier, everything in Swing is a JavaBean. This means that
much of an object's behavior is controlled by a set of properties, which are manipulated by accessor methods. For
example, the property color is accessed by thegetColor() (to find out the color) andsetColor() (to change the
color) methods. If a property has a boolean value, the get method is often replaced by an is method; for example,
the visible property would have theisVisible() andsetVisible() methods.

We found the idea of properties very powerful in helping us understand Swing. Therefore, rather than listing all of a
class's accessor methods, we decided to present a table for each class, listing the class's properties and showing the
property's data type, which accessor methods are present, whether the property is "bound" (i.e., changing the
property generates a PropertyChangeEvent), when it was introduced (1.2 is the default; 1.3 and 1.4 are marked
where appropriate), and the property's default value. This approach certainly saves paper (you didn't really want a
2,000-page book, did you?) and should make it easier to understand what a component does and how it is
structured. Furthermore, if you're not already in the habit of thinking in terms of the JavaBeans architecture, you
should get in the habit. It's a very powerful tool for understanding component design.

The conventions we use in the property tables — plus some other conventions that we use in class diagrams — are
explained in the Preface. So you may ignore the rest of the Preface as long as you familiarize yourself with the
conventions we're using.

The next chapter helps AWT developers get ajum% on Swing by presenting a simple application; those without AWT

experience may just want to skim the chapter. In Chapter 3, we continue our discussion by presenting some of the
fundamental classes of Swing and discribing how you can use the features inherent in each of these classes to

shorten your overall development time. Don't stop now—the best is yet to come!

|Vhis document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Chapter 2. Jump-Starting a Swing Application

Now that you have an overview of Swing, let's look at a few Swing components you can put into your applications
right now. This chapter shows you how to add images to buttons and how to create a rudimentary Swing application
using internal frames. We won't belabor the theory and background. You'll find everything we talk about now (and
tons more we don't discuss here) presented in later chapters in much greater detail. We just want to show you some
of the fun stuff right away.

This chapter, and only this chapter, assumes that you have prior experience with AWT and AWT-based programs that
you'd like to upgrade to use lightweight Swing components. If you are new to Java, this may not be the case; you are
probably interested in learning Swing without the need to upgrade AWT applications. You can either skim this chapter
or skip ahead to , which lays a foundation for the rest of your work in Swing.

If you want to see how easily Swing components can be dropped into existing AWT applications, though, read on.

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

2.1 Upgrading Your AWT Programs

One of the benefits of object-oriented languages is that you can upgrade pieces of a program without rewriting the
rest. While practice is never as simple as theory, with Swing it's close. You can use most of the Swing components
as drop-in replacements for AWT components with ease. The components sport many fancy new features worth
exploiting, but they still maintain the functionality of the AWT components you're familiar with. As a general rule, you
can stick a "J" in front of your favorite AWT component and put the new class to work as a Swing component.
Constructors for components such as JButton, JTextField, andJList can be used with the same arguments and
generate the same events as Button, TextField, andList. Some Swing containers, likeJFrame, take a bit of extra

work, but not much.

Graphical buttons are essential to modern user interfaces. Nice monitors and cheap hardware have made icons
almost a necessity. The AWT package in Java does not directly support image buttons. You could write an extension
to support them easily enough, but why bother when Swing's JButton class provides a standard way to add image

buttons?

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

2.2 A Simple AWT Application

You probably have some programs lying around that use regular AWT buttons that you'd love to replace with image
buttons, but you don't have the time or, honestly, the necessity to produce your own image button class. Let's look at
a simple application that demonstrates an upgrade path you can use on your own programs.

First, let's look at the code for this very simple application:

/I ToolbarFramel.java

/I A simple frame containing a "toolbar" made up of several java.awt.Button

/I objects. We'll be converting the Buttons to JButtons in the ToolbarFrame2.java
I file.

1

import java.awt.*;

import java.awt.event.*;

public class ToolbarFramel extends Frame {

Button cutButton, copyButton, pasteButton;
public ToolbarFramel() {
super("Toolbar Example (AWT)");
setSize(450, 250);
addWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent e) {
System.exit(0);
}
D;

ActionListener printListener = new ActionListener() {
public void actionPerformed(ActionEvent ae) {
System.out.printin(ae.getActionCommand());
}
h

Panel toolbar = new Panel();
toolbar.setLayout(new FlowLayout(FlowLayout.LEFT));

cutButton = new Button("Cut");
cutButton.addActionListener(printListener);
toolbar.add(cutButton);

|Vhis document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

copyButton = new Button("Copy");
copyButton.addActionListener(printListener);
toolbar.add(copyButton);

pasteButton = new Button("Paste");
pasteButton.addActionListener(printListener);
toolbar.add(pasteButton);

/I The "preferred" BorderLayout add call
add(toolbar, BorderLayout. NORTH);

}

public static void main(String argsl]) {
ToolbarFramel tf1 = new ToolbarFramel();
tfl.setVisible(true);

}
}

Our application has the very simple interface that is i

Figure 2-1. A simple application using three java.awt.Button objects

These buttons don't really do anything except report that they've been pressed. A standard 1.1-style handler for
action events reports button presses to standard output. It's not exciting, but it lets us demonstrate that Swing buttons
work the same way as AWT buttons. If you examine the code you'll notice that we had to register a window listener to
tell when the user is trying to close the window, and explicitly exit the program in response. Once you update your
programs to use Swing's JFrame rather than AWT'sFrame (as we will for the final example in this chapter), you get
this capability "for free” with JFrame's defaultCloseOperation property, described in.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

2.3 Including Your First Swing Component

The first step in adding a Swing component to your application is preparing th&wing package for use. As long as
you have installed SDK 1.2 or later, you don't have to take any special steps to use the Swing classes. If you're
preparing an application to run with JDK 1.1, you'll need to put the swingall.jar file on theCLASSPATH so that the

Swing components are available during compilation and at runtime.
In your source code, you include the Swing package by adding an import statement:
import javax.swing.*;

Now you're ready to replace yourButton objects withJButton objects. We'll also set up the application to take

advantage of Swing's L&F capabilities; we've put another row of buttons at the bottom of the frame that let you select
one of the standard L&Fs:

/I ToolbarFrame2.java

/I The Swing-ified button example
1

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class ToolbarFrame2 extends Frame {

/I This time, let's use JButtons!
JButton cutButton, copyButton, pasteButton;
JButton javaButton, macButton, motifButton, winButton;

public ToolbarFrame2() {
super("Toolbar Example (Swing)");
setSize(450, 250);

addWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent e) {
System.exit(0);
}
D;

ActionListener printListener = new ActionListener() {
public void actionPerformed(ActionEvent ae) {
System.out.printin(ae.getActionCommand());

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

}
h

/I JPanel works similarly to Panel, so we'll use it.
JPanel toolbar = new JPanel();
toolbar.setLayout(new FlowLayout(FlowLayout.LEFT));

cutButton = new JButton("Cut");
cutButton.addActionListener(printListener);
toolbar.add(cutButton);

copyButton = new JButton("Copy");
copyButton.addActionListener(printListener);
toolbar.add(copyButton);

pasteButton = new JButton("Paste");
pasteButton.addActionListener(printListener);
toolbar.add(pasteButton);

add(toolbar, BorderLayout. NORTH);

// Add the L&F controls.

JPanel InfPanel = new JPanel();
LnFListener InfListener = new LnFListener(this);
macButton = new JButton("Mac");
macButton.addActionListener(InfListener);
InfPanel.add(macButton);

javaButton = new JButton("Metal™);
javaButton.addActionListener(InfListener);
InfPanel.add(javaButton);

motifButton = new JButton("Motif");
motifButton.addActionListener(InfListener);
InfPanel.add(motifButton);

winButton = new JButton("Windows");
winButton.addActionListener(InfListener);
InfPanel.add(winButton);

add(InfPanel, BorderLayout.SOUTH);

public static void main(String args[]) {
ToolbarFrame?2 tf2 = new ToolbarFrame2();
tf2.setVisible(true);
}
}

As you can see in , the application is more or less the same. All we did was chandgutton to JButton and

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

add four more JButtons for L&F selection. We update the application's L&F in thenFListener class, which gets its
events from the simple Swing buttons at the bottom of the application. Apart from figuring out which button was
pressed, we must also force the L&F to change. That's pretty simple. The first step is setting the new L&F using the
UlManager.setLookAndFeel() method. (This is the method that needs the correct name for the L&F we want.)
Once the L&F is set, we want to make the change visible immediately, so we update the L&F for all of the
components using the SwingUltilities.updateComponentTreeUIl() method:

1

LnFListener.java

Il A listener that can change the L&F of a frame based on the actionCommand of an

/I ActionEvent object. Supported L&Fs are: Mac, Metal, Motif, and Windows. Not all

/I L&Fs will be available on a given machine. Notably, the Mac and Windows L&Fs work
/I only on their specific platforms.

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class LnFListener implements ActionListener {
Frame frame;

public LnFListener(Frame f) {
frame =f;

}

public void actionPerformed(ActionEvent e) {
String InfName = null;
if (e.getActionCommand().equals("Mac")) {
InfName = "com.apple.mrj.swing.MacLookAndFeel";
} else if (e.getActionCommand().equals("Metal")) {
InfName = "javax.swing.plaf.metal. MetalLookAndFeel";
} else if (e.getActionCommand().equals("Motif")) {
InfName = "com.sun.java.swing.plaf.motif. MotifLookAndFeel";
} else if (e.getActionCommand().equals("Windows")) {
InfName = "com.sun.java.swing.plaf.windows.WindowsLookAndFeel";
}else {
System.err.printin("Unrecognized L&F request action: " +
e.getActionCommand());
return;

}

try {
UlManager.setLookAndFeel(InfName);

SwingUtilities.updateComponentTreeUl(frame);

}

catch (UnsupportedLookAndFeelException ex1) {
System.err.printin("Unsupported LookAndFeel: " + InfName);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

}

catch (ClassNotFoundException ex2) {
System.err.printin("LookAndFeel class not found: " + InfName);

}

catch (InstantiationException ex3) {
System.err.printin("Could not load LookAndFeel: " + InfName);

}

catch (lllegalAccessException ex4) {
System.err.printin("Cannot use LookAndFeel: " + InfName);

}

}
}

With the JButton objects in place we get the application shown i.

Figure 2-2. The same application with JButtons for Cut, Copy, and Paste (in the Metal L&F)

When we run the new version of the application, we still get ActionEvent objects from pressing the buttons, and the
events are still delivered to the actionPerformed() method. OK, big deal. Now we have buttons that work just like
before and don't look particularly great. So what? Well, for one thing, we can now take advantage of the new Ul
management capabilities of Swing components. Swing provides L&Fs that we can use with any of its components. If
you press the Mac, Metal, Motif, or Windows button in this application, it switches from the current L&F to the
appropriate version (if it's available on your system). shows the effect.

Figure 2-3. JButtons using the Mac (left), Motif (right), and Windows (bottom) L&Fs

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Now we've got a bunch of JButtons. We're still using the old AWTPanel and Frame objects as containers for our
applications. You can change them easily, too. Changing Panel to JPanel is as simple as updating the buttons:
just do a global replace, and you're done. Updating Frame is a little more complex. Once you've replacedr-rame with
JFrame, you must also look at the calls t@dd() that put things in theJFrame. AJFrame has something in it called a

"content pane"; when we add something to a JFrame, we usually want to add it to this content pane:
getContentPane().add(something); // Formerly just add(something)

With these changes, the JFrame andJPanel also change their appearance when you change the application's L&F.
It may not be noticeable. But you'll also get the other new features that Swing gives you. We'll stick with the old
Frame andPanel for now, but we'll useJFrame andJPanel later in this chapter and throughout the book.

This is all very nice, but it's still not what we came for. We weren't interested in making minor changes in the way
our buttons look, though that's a nice side effect. So let's get to those images! First, we need to create what the
Swing components refer to as an Icon. You can get the details on icons i, but for now, just think of them as
nicely self-contained images we can use inside just about any of the Swing components that can display normal text
(such as labels, buttons, and menu items). We'll start out by adding an image to the text we're currently displaying in
each button. We can use all of the graphics formats Java supports (GIF, JPEG, and others) with icons, including
transparent and animated GIF-89a images. Here's the code to add images to each of our buttons:

cutButton = new JButton("Cut", new Imagelcon("cut.gif"));
cutButton.addActionListener(this);
toolbar.add(cutButton);

copyButton = new JButton("Copy", new Imagelcon("copy.gif"));
copyButton.addActionListener(this);
toolbar.add(copyButton);

pasteButton = new JButton("Paste", new Imagelcon("paste.gif"));
pasteButton.addActionListener(this);
toolbar.add(pasteButton);

This creates buttons with little icons to the left of the text. Any L&F can display the images. shows the
result.

Figure 2-4. Icon and text buttons in the Metal (left) and Mac (right) L&Fs

Adding the icons hasn't changed anything. In particular, our action event handlers are exactly the same as they were
with normal AWT buttons. But you probably see a problem developing. Our handler uses the buttons' text labels to
decide which button was pressed. That's not a problem since our buttons still display some text. What happens if we

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

throw that text out? How can we tell which button was pressed? First, let's look at the code to create an image-only
button:

copyButton = new JButton(new Imagelcon("copy.gif");
copyButton.addActionListener(this);
toolbar.add(copyButton);

If we do this for every button, the application looks like .

Figure 2-5. Icon-only JButtons in the Metal (left) and Windows (right) L&Fs

Now let's look back at the event handler we use:

public void actionPerformed(ActionEvent e) {
System.out.printin(e.getActionCommand());

This doesn't do much. Normally, you would need to distinguish between the various buttons or other components that
report to this handler. Since we implement the ActionListener interface directly in the application class, we can
use the simple route of checking the source of the event against the buttons we know we have. For example, we
could differentiate the Cut, Copy, and Paste buttons like this:

public void actionPerformed(ActionEvent ae) {

if (ae.getSource() == cutButton) {

System.out.printin("Got Cut event");

}

else if (ae.getSource() == copyButton) {
System.out.printin("Got Copy event");

}

else if (ae.getSource() == pasteButton) {
System.out.printin("Got Paste event");

However, we don't always have the luxury of implementing the event handler directly in our application, and we might
not want to pass around a huge list of button references to make it possible to write such code in other classes.
Instead, you can use the actionCommand property of theButton class to distinguish your buttons from one
another. The JButton class also implements this property, so we can just caetActionCommand() for each of the
buttons and pass in a unique string that we can check in the actionPerformed() method—regardless of which
class that method sits in. Using the actionCommand property to distinguish a component works for components
whose appearance might be changing for any of a variety of reasons. (For example, you might be writing an

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

international application in which the text on the button changes depending on the user's native language.)

Now, this is not the only or even the best way to handle events from our buttons, but it's a slightly more portable
version of our simple application. Later, we'll look at the new Action interface to better support this type of event

handling in a more object-oriented manner. For now, this code is easy to understand, even if it is a bit clunky.

/I ToolbarFrame4.java

/I The Swing-ified button example. The buttons in this toolbar all carry images
/[but no text.

1

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class ToolbarFrame4 extends Frame {

JButton cutButton, copyButton, pasteButton;
JButton javaButton, macButton, motifButton, winButton;

public ToolbarFrame4() {
super("Toolbar Example (Swing no text)");
setSize(450, 250);

addWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent e) {
System.exit(0);
}
D;

/I JPanel works much like Panel does, so we'll use it.
JPanel toolbar = new JPanel();
toolbar.setLayout(new FlowLayout(FlowLayout.LEFT));

CCPHandler handler = new CCPHandler();

cutButton = new JButton(new Imagelcon("cut.gif"));
cutButton.setActionCommand(CCPHandler.CUT);
cutButton.addActionListener(handler);
toolbar.add(cutButton);

copyButton = new JButton(new Imagelcon(“copy.gif"));
copyButton.setActionCommand(CCPHandler.COPY);
copyButton.addActionListener(handler);
toolbar.add(copyButton);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

pasteButton = new JButton(new Imagelcon("paste.qgif"));
pasteButton.setActionCommand(CCPHandler.PASTE);
pasteButton.addActionListener(handler);
toolbar.add(pasteButton);

add(toolbar, BorderLayout.NORTH);

/l Add the L&F controls.

JPanel InfPanel = new JPanel();
LnFListener InfListener = new LnFListener(this);
macButton = new JButton("Mac");
macButton.addActionListener(InfListener);
InfPanel.add(macButton);

javaButton = new JButton("Metal");
javaButton.addActionListener(InfListener);
InfPanel.add(javaButton);

motifButton = new JButton("Motif");
motifButton.addActionListener(InfListener);
InfPanel.add(motifButton);

winButton = new JButton("Windows");
winButton.addActionListener(InfListener);
InfPanel.add(winButton);

add(InfPanel, BorderLayout. SOUTH);

public static void main(String argsl]) {
ToolbarFrame4 tf4 = new ToolbarFrame4();
tf4.setVisible(true);
}
}

Here's the new event handler for this simple application. Notice that we set up some constants for the different
actions we plan to take. We can now use these constants in the setActionCommand() call of any application
whenever we're setting up Cut, Copy, or Paste buttons—regardless of what we display on the screen for the buttons.
We can now easily tell which action to take in the actionPerformed() method. However, you may still need to pass
a reference to objects that contain the buttons because you will most likely need to take a real action when the user
presses a button. We'll look at such a program a bit later in the chapter.

/I CCPHandler.java

/I A Cut, Copy, and Paste event handler. Nothing too fancy, just define some
/I constants that can be used to set the actionCommands on buttons.

1

import java.awt.event.*;

public class CCPHandler implements ActionListener {

|Vhis document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

public final static String CUT = "cut";
public final static String COPY = "copy";
public final static String PASTE = "paste”;

public void actionPerformed(ActionEvent e) {
String command = e.getActionCommand();
if (command == CUT) {// We can do this since we're comparing constants.
System.out.printin("Got Cut event");
}
else if (command == COPY) {
System.out.printin("Got Copy event");
}
else if (command == PASTE) {
System.out.printin("Got Paste event");
}
}
}

Finally, we should point out that although CCPHandler illustrates another way of handling button events, théAction
mechanism introduced at the end of this chapter, and discussed in depth at the start of, is more powerful,

object-oriented, and far more commonly used.

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

2.4 Beyond Buttons

Buttons are very useful, but even with great images forming the buttons, they still lack a certain glamour—every
application has buttons. For the next example, let's take a look at JInternalFrame , which allows you to create

free-standing frames with menus, title bars, and everything else a Frame needs right inside your application.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

2.5 What Is an Internal Frame?

Before we start coding, here's a brief rundown of the features of an internal frame:

Same functions as a normal Frame object, but confined to the visible area of the container it is placed in
Can be iconified (icon stays inside main application frame)

Can be maximized (frame consumes entire main application frame area)

Can be closed using the standard controls for application windows

Can be placed in a "layer," which dictates how the frame displays itself relative to other internal frames (a
frame in layer 1 can never hide a frame in layer 2)

To be honest, in practice, standalone frames are often more_useful than internal frames. You'll want to know about

both; we have chapters dedicated to each of these topics (Chapter §and[Chapter g, respectively).

shows a simple internal frame using theMetal L&F.

Figure 2-6. The SimplelnternalFrame application using the Metal L&F

For this first example, we'll add an empty internal frame to an application. Once that's working, we'll expand the simple

frame to create a couple of different types of internal frames and create the framework for a simple application.

One of the prerequisites for using internal frames is that you need a window capable of managing them. The_Swing
package provides the JDesktopPane class for this purpose. You'll see the details of thdDesktopPane in

but for now, here's how to get one started:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

/I Set up the layered pane.
JDesktopPane desktop = new JDesktopPane();
add(desktop, BorderLayout. CENTER);

With the desktop in place, you can create a new internal frame and show it. The JInternalFrame constructor takes
five arguments that tailor the look and functionality of the frame:

public JinternalFrame(String title,
boolean resizable,
boolean closable,
boolean maximizable,
boolean iconifiable);

We'll turn on every feature for the example. The following makes the internal frame visible:

internalFrame = new JinternalFrame("Internal Frame", true, true, true, true);
internalFrame.setBounds(50, 50, 200, 100);
desktop.add(internalFrame, new Integer(1));

The desktop.add() call does the real work here. You supply the internal frame and the "layer" your frame belongs in.
Layers are Integer objects. The values determine the order of your layers and what shows on top of what. For
example, frames in layer 2 always show on top of frames in layer 1, even if the frame in layer 1 has the keyboard focus.
But you do need to remember to give your frame both a size and a location. The internal frames have default preferred
and minimum sizes of 0 x 0.

shows how theJInternalFrame class also takes advantage of Swing's pluggable L&F feature. You can
switch the appearance of the frames, just like you did with the buttons.

Figure 2-7. The SimplelnternalFrame in the Motif (left) and Windows (right) L&Fs

You can even iconify these frames. They turn into an “iconified box" appropriate for the current L&F. shows
an iconified frame.

Figure 2-8. An iconified internal frame in the Mac (left) and Metal (right) L&Fs

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Here's the complete application with an open button and an internal frame. When you click the button, it pops up the
internal frame. You can use the button in the upper-right corner of the frame to close it (providing you're using either the
Metal or the Windows L&F). You can use the other buttons in the main frame to adjust the L&F of the internal frame:

/I SimplelnternalFrame.java

/I A quick demonstration of setting up an internal frame in an application
1

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class SimplelnternalFrame extends Frame {

JButton openButton, macButton, javaButton, motifButton, winButton;
JLayeredPane desktop;
JinternalFrame internalFrame;

public SimplelnternalFrame() {
super("Internal Frame Demao");
setSize(500,400);
openButton = new JButton("Open");
macButton = new JButton("Mac");
javaButton = new JButton("Metal");
motifButton = new JButton("Motif");
winButton = new JButton("Windows");
Panel p = new Panel();
p.add(openButton);
p.add(macButton);
p.add(javaButton);
p.add(motifButton);
p.add(winButton);
add(p, BorderLayout.SOUTH);
addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent e) {
System.exit(0);
}

i

openButton.addActionListener(new OpenListener());

|Vhis document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

LnFListener Inf = new LnFListener(this);
macButton.addActionListener(Inf);
javaButton.addActionListener(Inf);
motifButton.addActionListener(Inf);
winButton.addActionListener(Inf);

/I Set up the layered pane.

desktop = new JDesktopPane();
desktop.setOpaque(true);
add(desktop, BorderLayout. CENTER);

/I An inner class to handle presses of the Open button
class OpenListener implements ActionListener {
public void actionPerformed(ActionEvent e) {
if ((internalFrame == null) || (internalFrame.isClosed())) {
internalFrame = new JinternalFrame("Internal Frame",
true, true, true, true);
internalFrame.setBounds(50, 50, 200, 100);
desktop.add(internalFrame, new Integer(1));
internalFrame.setVisible(true);
}
}
}

public static void main(String argsl]) {
SimplelnternalFrame sif = new SimplelnternalFrame();
sif.setVisible(true);

}
}

The internal frame examples use the same L&F listener and basic window monitor as the JButton example. You'l
notice some nasty flickering when you move the internal frame around. That's because we put it inside a Frame, not a

JFrame. In our next example, the problemdisappears.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

2.6 A Bigger Application

Now that you've seen how to create internal frames and played around with them a bit, let's tackle a slightly larger
problem. We want to build an application that can pop up internal frames that you can actually use. This starter
application is a web site manager that shows us a list of HTML pages at a site and, for any of those pages, allows us
to pop up the page in a separate frame and edit it. We'll keep the main list of HTML pages in one "site" frame that

contains a simple list box.

Once you have a site built up with a couple of pages, you can click on any entry in the list, and if the file exists, we'll
create a new "page" frame and load the file into a JTextArea object for you to edit. You can modify the text and

save the file using the File menu in the page frame.

As a bonus, we'll put those cut, copy, and paste icons to use as well. You can manipulate text in any of the open
page frames. The icons work as Action objects by looking at the selected text and insertion point of the active frame.

(We alluded to the Action class after our last Toolbar example. We'll demonstrate it here and discuss it thoroughly at

the start of the next chapter.) If the active frame is a site frame, nothing happens.

You could certainly add a lot of features to this application and make it a real working program, but we don't want to

get mired down in details just yet. (If you want to get really fancy, you could look at some of the editor kits discussed
in and build yourself a real HTML editor. shows the finished application with a couple of open

frames.

Figure 2-9. The SiteManager application running on a platform where Metal is the default L&F

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

We break the code for this application into three separate classes to make discussing it more manageable. The first
class handles the real application frame. The constructor handles all of the interface setup work. It sets up the
toolbar, as well as the Cut, Copy, and Paste buttons. It uses the default L&F for the platform on which it is run. (You

could certainly attach the LnFListener, if you wanted to.) Here's the source code:

/I SiteManager.java

1

import java.awt.*;
import java.io.*;

import java.util.*;
import java.awt.event.*;
import javax.swing.*;

public class SiteManager extends JFrame {

JLayeredPane desktop;
Vector popups = new Vector();

public SiteManager() {
super("Web Site Manager");
setSize(450, 250);
setDefaultCloseOperation(EXIT_ON_CLOSE);
Container contentPane = getContentPane();

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

JToolBar jtb = new JToolBar();

jtb.add(new CutAction(this));

jtb.add(new CopyAction(this));

jtb.add(new PasteAction(this));
contentPane.add(jtb, BorderLayout.NORTH);

/I Add our LayeredPane object for the internal frames.
desktop = new JDesktopPane();
contentPane.add(desktop, BorderLayout. CENTER);
addSiteFrame("Sample");

public static void main(String argsl]) {
SiteManager mgr = new SiteManager();
mgr.setVisible(true);

}

Notice that since we're finally using Swing's JFrame rather than an AWTFrame, we can replace the cumbersome
WindowAdapter, which handles user close requests, with a single call to
setDefaultCloseOperation(EXIT_ON_CLOSE).

Now for the creation of the site and page frames. The SiteFrame class andPageFrame class, discussed later in
this chapter, extend the JInternalFrame class. These classes handle all of the hard work in getting the frenes to
look and act correctly. Here, we just need to make the internal frame visible and keep a reference to the frame. By
keeping the popups vector around, we could eventually add Save All, Close Site, and other options. For now we just

use it to help find the current frame.

/I Methods to create our internal frames
public void addSiteFrame(String name) {
SiteFrame sf = new SiteFrame(name, this);
popups.addElement(sf);
desktop.add(sf, new Integer(2)); // Keep sites on top for now.
sf.setVisible(true);

}

public void addPageFrame(String name) {
PageFrame pf = new PageFrame(name, this);
desktop.add(pf, new Integer(1));
pf.setVisible(true);
pf.setlconifiable(true);
popups.addElement(pf);

public JinternalFrame getCurrentFrame() {
for (inti=0; i< popups.size(); i++) {
JinternalFrame currentFrame = (JinternalFrame)popups.elementAt(i);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

if (currentFrame.isSelected()) {
return currentFrame;
}
}
return null;
}
}

The getCurrentFrame() method runs through a list of all the frames currently open in the site manager and returns

the active frame. (Yes, this is a bit inefficient, but we're ignoring that for right now.)

Notice that we're using a JToolBar object in our example. This is a great shortcut if you just want a few buttons
along the top (or side or bottom) of your application. A JToolBar can contain almost any kind of component, though
it's most often used for buttons. We don't add buttons directly; instead, we add Action objects, which are
automatically converted into buttons when placed in a toolbar. The Action interface encapsulates an icon and an
actionPerformed() method so that you don't have to do lengthy if/else-if testing. When you add #ction to the
toolbar, the toolbar displays the Action's icon, and when you click on the icon, thAction's actionPerformed()
method is called automatically. Here's the code for the CopyAction class:

/I CopyAction.java

/I A simple Action that copies text from a PageFrame object
1

import java.awt.event.ActionEvent;

import javax.swing.*;

public class CopyAction extends AbstractAction {
SiteManager manager;

public CopyAction(SiteManager sm) {
super(", new Imagelcon("copy.gif"));
manager = sm;

}

public void actionPerformed(ActionEvent ae) {
JinternalFrame currentFrame = manager.getCurrentFrame();
if (currentFrame == null) { return; }
/I Can't cut or paste sites
if (currentFrame instanceof SiteFrame) { return; }
((PageFrame)currentFrame).copyText();

The cut and paste action classes work in a similar fashion. (We won't show them here.) Swing provides a large

number of pre-built Actions, so you may not even need to write your own. We'll discuss several Ehapter 23.
Iists all theActions that are provided by Swing's components as well as the key bindings (if any) with

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

which they can be triggered.

Next we need a way to create the site frames. We can set up a separate class that extends théinternalFrame class
and contains the functionality appropriate for the site manager. Namely, we must be able to list available pages in the

site and open any of those pages for editing.

We can create a frame that has a listbox as its primary component. This won't be a fancy manager, but it will do what
we want. The nice thing about internal frames, from the frame's point of view, is that they look just like regular frames.
You can use the constructor to add all of the graphical interface elements and put in event listeners. The only
difference with internal frames is that they need to be added to an appropriate desktop pane, but again, that's not a
difference we can see here in the code for the individual frames. You can change existing standalone Frame classes
to JInternalFrame classes with very little effort:

/I SiteFrame.java

Il A simple extension of the JinternalFrame class that contains a list object.
/I Elements of the list represent HTML pages for a web site.

1

import java.awt.*;

import javax.swing.*;

import javax.swing.event.*;

public class SiteFrame extends JinternalFrame {

JList namelList;
SiteManager parent;
/I Hardcode the pages of our "site" to keep things simple.

non

String[] pages = {"index.html", "pagel.html", "page2.html"};

public SiteFrame(String name, SiteManager sm) {
super("Site: " + name, true, true, true);
parent = sm;
setBounds(50,50,250,100);

nameList = new JList(pages);
nameList.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);
nameList.addListSelectionListener(new ListSelectionListener() {
public void valueChanged(ListSelectionEvent Ise) {
/I We know this is the list, so pop up the page.
if (!lse.getValuelsAdjusting()) {
parent.addPageFrame((String)namelList.getSelectedValue());
}
}
D
Container contentPane = getContentPane();
contentPane.add(namelList, BorderLayout. CENTER);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

In the valueChanged() method for theListSelectionListener, we handle the basic functions of the page list.
Single-clicking on an entry in the list creates a new PageFrame object for that file. If the file doesn't exist, you get a
blank text area for creating the page from scratch. Note that very little error checking is going on here. But you

probably have already discovered that robust error checking just gets in the way of having fun, and that's all we're
really trying to accomplish with this application.

Now you have the site frame going. The new page frame needs to be able to open the file (if it exists) and display the
file for editing. The Cut, Copy, and Paste buttons from our earlier example allow you to move text around in a file and
between open files in the application.

Like the site frame, we'll create a subclass of JInternalFrame for our page frame. We can use the constructor for

the interface work again, and then allow the text area to manage all of the text display and editing work:

/I PageFrame.java

/I A simple extension of the JinternalFrame class that contains a list object.
/I Elements of the list represent HTML pages for a web site.

1

import java.awt.*;

import java.io.*;

import java.awt.event.*;

import javax.swing.*;

public class PageFrame extends JinternalFrame {

SiteManager parent;
String filename;
JTextArea ta;

public PageFrame(String name, SiteManager sm) {
super("Page: " + name, true, true, true, true);
parent = sm;
setBounds(50,50,300,150);

/I Use the JFrame's content pane to store our desktop.
Container contentPane = getContentPane();

/I Create a text area to display the contents of our file and putitin a
// scrollable pane so we can get to all of it.

ta = new JTextArea();

JScrollPane jsp = new JScrollPane(ta);

contentPane.add(jsp, BorderLayout. CENTER);

/l Add a "File->Save" option to the menu bar for this frame.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

JMenuBar jmb = new JMenuBar();
JMenu fileMenu = new JMenu("File");
JMenultem saveltem = new JMenultem("Save");
saveltem.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent ae) { saveContent(); }
D;
fileMenu.add(saveltem);
jmb.add(fileMenu);
setJMenuBar(jmb);

/ Now get the content, based on the filename that was passed in.
filename = name;
loadContent();
}
}

Here, we need to add some load and save routines to the PageFrame class for the text areas. You'll learn more
about the read() andwrite() methods in , but for now, we'll just use them since they provide such a
convenient way to read and write text files:

public void loadContent() {
try {
FileReader fr = new FileReader(filename);
ta.read(fr, null);

fr.close();
}
catch (Exception e) { System.err.printin("Could not load page: "+filename); }
}
public void saveContent() {
try {
FileWriter fw = new FileWriter(filename);
ta.write(fw);
fw.close();
}
catch(Exception e) { System.err.printin("Could not save page: "+filename); }
}

To make the cut and paste operations simpler, we'll put in some public access methods to manipulate the text. All
three of these routines are built to function regardless of the clipboard implementation you use. We'll use the system
clipboard (via some convenience methods found in JTextComponent) for this example, but you could just as easily

use your own clipboard, or eventually, Drag and Drop text.

public void cutText() { ta.cut(); }
public void copyText() { ta.copy(); }
public void pasteText() { ta.paste(); }

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Now you can start the program and bring up the individual HTML files by selecting them from the list. Each file has its
own internal frame that you can move around, resize, iconify, maximize, and close. You can cut, copy, and paste text
between files. You can save edits using menus attached to each pop-up frame. You can even detach the toolbar and

let it "float." All this for about 250 lines of code!

Well, now that we've had a bit of fun, it's time to move on to the details. The next chapter plunges into the world of
Swing with the JComponent class. Good luck, and have fun!

file:///C:/DOCUME~1/SIMULA~1/LOCALS~1/Temp/OReilly.Java.Swing.2nd.2002.chm/0596004087_

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Chapter 3. Swing Component Basics

The previous chapter showed how easy it is to create some impressive programs with Swing components. Now it's
time to dig in a little deeper. We begin this chapter by presenting an overview of a few key (but lower-level) helper
classes such as Action, GraphicsContext, ChangeEvent, andPropertyChangeEvent, as well as the
HeadlessException exception. We spend the remainder of the chapter introducing thd Component class, the
heart and soul of all Swing components.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

3.1 Understanding Actions

Actions are a popular addition to Swing. An action allows a programmer to bundle a commonly useprocedure and its
bound properties (such as its name and an image to represent it) into a single class. This construct comes in handy if
an application needs to call upon a particular function from multiple sources. For example, let's say that a Swing
programmer creates an action that saves data to disk. The application could then invoke this action from both the
Save menu item on the File menu and the Save button on a toolbar. Both components reference the same action
object, which saves the data. If the Save function is disabled for some reason, this property can be set in the action
as well. The menu and toolbar objects are automatically notified that they can no longer save any data, and they can
relay that information to the user.

3.1.1 Actions and Containers

Swing containers, such as JMenu, JPopupMenu, andJToolBar, can each accept action objects with the@dd()

methods. When an action is added, these containers automatically create a GUI component, which the add()

method then returns to you for customization. For example, a JMenu or aJPopupMenu creates and returns a

JMenultem from anAction while aJToolBar creates and returns aJButton. The action is then paired with the

newly created GUI component in two ways: the GUI component registers as a PropertyChangeListener for any

property changes that might occur in the action object, while the action object registers as an ActionListener on
shows the interactions between a menu item or toolbar and afction.

the GUI component.

Figure 3-1. An action in conjunction with a Swing item and toolbar

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Essentially, this means that if the menu item or button is selected by the user, the functionality inside the action is
invoked. On the other hand, if the action is disabled, it sends a PropertyChangeEvent to both the menu item and
the toolbar, causing them to disable and turn gray. Similarly, if the action's icon or name is changed, the menu and

toolbar are automatically updated.

3.1.2 The Action Interface

An action is defined by the interface it implements, in this casgavax.swing.Action. Action extends the
ActionListener interface from AWT; this forces concrete classes that implemerAction to provide an
actionPerformed() method. The programmer uses theactionPerformed() method to implement whatever
behavior is desired. For example, if you are creating a Save action, you should put the code that saves the data
inside of your actionPerformed() method.

When the action is added to an accepting container such as JMenu, JPopupMenu, orJToolBar, the container
automatically registers the action as an ActionListener of the GUI component it creates. Consequently, if the GUI

component is selected by the user, it simply invokes the actionPerformed() method of the action to do its job.

The Action interface defines five constants (shown i, which serve as keys for storing standardizedAction
properties. The method of storage varies from implementer to implementer, but a Hashtable is common. These
properties store information such as the name of the action, its description, and a representative icon. Also, the
Action interface defines aboolean property that indicates whether the action is enabled or disabled. Recall that the
GUI component created for the action registers itself as a PropertyChangeListener. Hence, if any of these

properties are modified, the GUI component is notified and can react accordingly.

Table 3-1. String-based key constants for the Action interface

Constant Meaning
DEFAULT Default setting
NAME Name of the action
SHORT_DESCRIPTION Short text description of what the action does
LONG_DESCRIPTION Long text description of what the action does
SMALL_ICON Represents a small icon; typically used in a toolbar

3.1.2.1 Property

The Action interface defines the property shown i .

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Table 3-2. Action property

Property Data type get |is | set Default value

enabled boolean

See also java.awt.ActionListener.

The enabled property defines whether anyone can invoke the action. When this property changes, the action should
fire a PropertyChangeEvent describing the change.

Note that the properties whose keys appear in are not also shown here. Theseare really properties because
changing one should fire a PropertyChangeEvent. However, because they do not use standard accessors, they

do not fit the true JavaBeans property model, so we have omitted them from .

3.1.2.2 Methods

public abstract Object getValue(String key)
public abstract void putValue(String key, Object value)

Store various keyed properties for the action. A string-based key is used to index the values. Several string
constants representing the keys are shown in . WhenputValue() is called with any property, and
the value passed in is different than what was there previously, the implementing object must fire a
PropertyChangeEvent describing the change to all registered listeners.

public abstract void actionPerformed(ActionEvent e)

This method is required by the ActionListener interface (it does not actually exist in theAction interface).
Any concrete class that implements the Action interface must provide anactionPerformed() method that
performs whatever task the action is supposed to accomplish.

3.1.2.3 Events

Objects implementing the Action interface must fire aPropertyChangeEvent when any keyed property is
changed, or when the action is enabled or disabled. Containers that accept actions typically listen for these
PropertyChangeEvent notifications so they can update their own properties or appearances.

public abstract void addPropertyChangeListener(PropertyChangelListener listener)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

public abstract void removePropertyChangeListener(PropertyChangeListener listener)

Add or remove the specified PropertyChangeListener from the event listener list.

3.1.3 The AbstractAction Class

The AbstractAction class is an abstract implementation of théAction interface. AbstractAction provides the
default functionality for almost all methods in the Action interface. You can extend this class to create your own
specific actions. If you do so, the only method for which you must provide an implementation is the
actionPerformed() method, which provides the functionality for the action. Here is a simple example:

class MyAction extends AbstractAction {

public MyAction(String text, Icon icon) {
super(text,icon);

}

public void actionPerformed(ActionEvent e) {
System.out.printin("Action [" + e.getActionCommand() + "'");

Here, we simply print the action command sent with the ActionEvent. You can add more features based on the
contents of the ActionEvent.

3.1.3.1 Properties

The AbstractAction class stores its keyed properties in &dashtable object. Beyond that, theAbstractAction object
contains a few properties, as shown in . Theenabled property defines whether the application can invoke
the action. When this property changes, AbstractAction fires aPropertyChangeEvent. The mutator for this
property, setEnabled(), is synchronized. If you want a list of the current property listeners, use the

propertyChangeListeners property.

Table 3-3. AbstractAction properties

Property Data type get | is | set | Default value
enabled” boolean | ltrue
keys? 13 Object[] : null
propertyChangeListeners®* PropertyChangeListener[] : Empty array
1‘3since 1.3,1'4since 1.4,bbound

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

3.1.3.2 Events

The AbstractAction class fires aPropertyChangeEvent when any property in the hashtable is changed or when

the action is enabled or disabled.

public void addPropertyChangeListener(PropertyChangeListener listener)
public void removePropertyChangeListener(PropertyChangelListener listener)

Add or remove the specified PropertyChangeListener from the event listener list.

3.1.3.3 Constructors

public AbstractAction()
public AbstractAction(String name)
public AbstractAction(String name, Icon icon)

The constructors for the AbstractAction object can be used to set the name and icon hashtable properties
of the action under the NAME or SMALL_ICON keys, respectively.

3.1.3.4 Methods

public Object getValue(String key)
public void putValue(String key, Object value)

These methods store or retrieve various elements in a private Hashtable. A string-based key is used to
index the Hashtable values. See theAction interface earlier in the chapter for an enumeration of common

string-based keys.

3.1.3.5 Using an Action

This example creates anAction for both a menu item and a toolbar, displaying both components and allowing the
user to click on either one. When the components are clicked, the actionPerformed() method of the action is

called. Don't worry if you don't understand all the methods behind the toolbar or the menu; these classes are
discussed later. For now, it is important to see that selecting either one performs the action.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

/I ActionExample.java

1

import java.awt.*;

import java.awt.event.*;
import javax.swing.*;

import javax.swing.border.*;

public class ActionExample extends JPanel {

public JMenuBar menuBar;
public JToolBar toolBar;

public ActionExample() {
super(true);

/I Create a menu bar and give it a bevel border.
menuBar = new JMenuBar();
menuBar.setBorder(new BevelBorder(BevelBorder.RAISED));

/I Create a menu and add it to the menu bar.
JMenu menu = new JMenu("Menu");
menuBar.add(menu);

/I Create a toolbar and give it an etched border.
toolBar = new JToolBar();
toolBar.setBorder(new EtchedBorder());

/I Instantiate a sample action with the NAME property of "Download" and the
/I appropriate SMALL_ICON property.
SampleAction exampleAction = new SampleAction("Download",

new Imagelcon("action.gif"));

/I Finally, add the sample action to the menu and the toolbar. These methods
/[are no longer preferred:

/I menu.add(exampleAction);

/I toolBar.add(exampleAction);

/I Instead, you should create actual menu items and buttons:

JMenultem exampleltem = new JMenultem(exampleAction);

JButton exampleButton = new JButton(exampleAction);
menu.add(exampleltem);

toolBar.add(exampleButton);

class SampleAction extends AbstractAction {

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

/I This is our sample action. It must have an actionPerformed() method, which
/'is called when the action should be invoked.
public SampleAction(String text, Icon icon) {

super(text,icon);

public void actionPerformed(ActionEvent e) {
System.out.printin("Action [" + e.getActionCommand() + "] performed!");

}

public static void main(String s[]) {
ActionExample example = new ActionExample();
JFrame frame = new JFrame("Action Example");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setJMenuBar(example.menuBar);
frame.getContentPane().add(example.toolBar, BorderLayout. NORTH);
frame.setSize(200,200);
frame.setVisible(true);

The preceding example creates a toolbar with a single button and a menu with a single menu item. Both are
generated from the SampleAction class and are shown i.

Figure 3-2. An action in a menu and in a toolbar

Selecting the menu item or clicking on the toolbar button a few times both yield the same results on the console:

Action [Download] performed!
Action [Download] performed!
Action [Download] performed!

Now for something interesting. You can add the following line to the constructor to disable the action:

exampleAction.setEnabled(false);

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

With this line, the PropertyChangeEvent propagates to listeners in the menu item and in the toolbar button,

causing both components to turn gray and become disabled. shows what happens when an action is
disabled.

Figure 3-3. A disabled action in a menu and in a toolbar

Of course, you can enable the menu item and toolbar button again at any time with the following line of code:
exampleAction.setEnabled(true);

Upon execution, the property change again propagates, re-enabling both components simultaneously.

Actions also play a critical role in supporting key bindings within components (sggection 3.5.14later in this chapter).

file:///C:/DOCUME~1/SIMULA~1/LOCALS~1/Temp/OReilly.Java.Swing.2nd.2002.chm/0596004087_

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

3.2 Graphical Interface Events

Whenever you interact with your application's user interface, the application receives an event from the windowing
system to let it know that something happened. Some events come from the mouse, such as mouse clicks, mouse
movements, and mouse drags. Other events come from the keyboard, such as key presses and key releases. Every
component generates events. Different components generate different events as dictated by their purpose (and their
L&F). For example, pressing a JButton generates anActionEvent (which is really just a converted mouse event).
The ActionEvent class bundles up interesting stuff like which button the event came from, when the button was

pressed, whether any modifier keys (such as Shift or Ctrl) were pressed at the time of the event, and so on.

While the event-dispatching and -handling mechanism is grounded in the world of AWT (and beyond the scope of this
book), we do want you to know what events the various Swing components generate—and when. The what of the
events is discussed in conjunction with each of the components. As we introduce components like JTextField,
JButton, andJTable, we show the events that they fire and the methods you use to attach listeners and catch the

events.

The when of the events is a bit more difficult to describe. Rather than attempt to list every possible scenario for every
component, we've built a small utility: EEL, the Every Event Listener. The EEL class implements every listener
interface from the java.awt.event andjavax.swing.event packages. It has a variety of logging mechanisms to
show you the events coming from your components. You attach an EEL instance to a component (or to multiple
components) using the component's add . . Listener() method(s). You can choose to have the events sent to a file,

to your console, or to an onscreen text area.

This discussion really is beyond the scope of the book. So we're posting this utility and its documentation on the web

site for this book (ttp://www.oreilIv.com/cataloq/iswinqﬁ). Feel free to download it and use it to play with individual

components or to debug an entire application. That's one of the beauties of delegation event handling: you can attach
EEL to an existing component without breaking its normal interactions with the application.

http://www.oreilly.com/catalog/jswing2

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

3.3 Graphics Environments

SDK 1.4 recognizes a great deal of information about its environment. You can retrieve that information for your own
code through the GraphicsEnvironment, GraphicsDevice , andGraphicsConfiguration classes from the
java.awt package. While they aren't part of Swing proper, these classes are definitely useful for Swing applications,

especially those that take full advantage of their environment.

To sum up these classes, a system keeps a local GraphicsEnvironment object that describes the devices on the
system with an array of GraphicsDevice objects. EachGraphicsDevice contains (or at least may contain) multiple
configurations of device capabilities (such as pixel formats or which visual screen you're on) bundled up in an array of
GraphicsConfiguration objects.

- . The GraphicsConfiguration class should not be confused with théisplayMode

e class (although it's easy to do so). The display mode is something with which most

o,
w, savvy computer users will be familiar. On a system that supports multisync monitors,

the DisplayMode class encapsulates the width, height, color-depth, and refresh

a"r.j..

rate information for a given mode. The GraphicsConfiguration class stores things
like square versus rectangular pixels. GraphicsConfiguration could even be used
for devices such as printers. The configuration information is highly dependent on the
native platform and thus varies widely from system to system. In any given system,
both configurations and modes can be found through the available

GraphicsDevice objects.

If you're curious about the various graphics configurations on your system, try out this little program, GuiScreens.java.
It prints information on all devices and configurations. For each configuration, it also pops up a JFrame using that

configuration.

/I GuiScreens.java
1

import java.awt.*;
import javax.swing.*;

public class GuiScreens {
public static void main(String[] args) {
Rectangle virtualBounds = new Rectangle();
GraphicsEnvironment ge = GraphicsEnvironment.getLocalGraphicsEnvironment();
GraphicsDevice[] gs = ge.getScreenDevices();
JFrame frame[][] = new JFrame[gs.length][];
for (intj = 0; j < gs.length; j++) {
GraphicsDevice gd = gs[j];

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

System.out.printin("Device " +j+ " " + gd);
GraphicsConfiguration[] gc = gd.getConfigurations();
frame[j] = new JFrame[gc.length];

for (int i=0; i < gc.length; i++) {
System.out.printin(* Configuration " + i+ ": " + gcf[i]);
System.out.printin(* Bounds: " + gc[i].getBounds());
virtualBounds = virtualBounds.union(gcJi].getBounds());
framelj][i] = new JFrame("Config: " + i, gcfi]);
framelj][i].setBounds(50, 50, 400, 100);
framel[j][i].setLocation(
(int)gcli].getBounds().getX() + 50,
(int)gcli].getBounds().getY() + 50);
frame[j][i].getContentPane().add(new JTextArea("Config:\n" + gcli]));
framelj][i].setVisible(true);
}
System.out.printin("Overall bounds: " + virtualBounds);
}
}
}

Here's the text output from a Solaris system running CDE with one monitor:

Device 0: X11GraphicsDevice[screen=0]
Configuration 0: X11GraphicsConfig[dev=X11GraphicsDevice[screen=0],vis=0x22]
Bounds: java.awt.Rectangle[x=0,y=0,width=1152,height=900]
Configuration 1: X11GraphicsConfig[dev=X11GraphicsDevice[screen=0],vis=0x26]
Bounds: java.awt.Rectangle[x=0,y=0,width=1152,height=900]
Configuration 2: X11GraphicsConfig[dev=X11GraphicsDevice[screen=0],vis=0x25]
Bounds: java.awt.Rectangle[x=0,y=0,width=1152,height=900]
Configuration 3: X11GraphicsConfig[dev=X11GraphicsDevice[screen=0],vis=0x24]
Bounds: java.awt.Rectangle[x=0,y=0,width=1152,height=900]
Configuration 4: X11GraphicsConfig[dev=X11GraphicsDevice[screen=0],vis=0x27]
Bounds: java.awt.Rectangle[x=0,y=0,width=1152,height=900]
Overall bounds: java.awt.Rectangle[x=0,y=0,width=1152,height=900]

And here's the output from an OS X system with two monitors:

Device 0: sun.awt.MacGraphicsDevice@4dd8d9
Configuration 0: com.apple.mrj.internal.awt.graphics.MacGraphicsConfig@303297
Bounds: java.awt.Rectangle[x=0,y=0,width=1280,height=1024]
Device 1: sun.awt.MacGraphicsDevice@5c08c3
Configuration 0: com.apple.mrj.internal.awt.graphics.MacGraphicsConfig@435a72
Bounds: java.awt.Rectangle[x=1280,y=-52,width=1152,height=870]
Overall bounds: java.awt.Rectangle[x=0,y=-52,width=2432,height=1076]

|Vhis document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

3.3.1 Headless Modes

One other variation on the graphics environment is "headless" operation. This mode of running without any monitor
shows up quite often on back-end systems. Java servlets trying to use the AWT, 2D, and Swing classes to draw
dynamic graphs for a web page are a classic example of applications that need a graphics environment on a
machine that might not have any graphics displays. You can detect such a case with the
GraphicsEnvironment.isHeadless() call.

If an environment is headless, there are certain calls that cannot be made. These calls tend to create onscreen
components such as frames or dialogs—no good without a head—or otherwise attempt to interact with the
(nonexistent) local user. [Table 3-2 shows the documented Swing components that generate &#leadlessException
when called. Since HeadlessException is an unchecked exception (i.e., a descendant oRuntimeException), it is

not always documented in the Javadoc for a method or in its throws clause (in the source code). The best practice
that has evolved for writing Javadoc for such exceptions requires that the Javadoc mention the exception (with an
@throws entry), but that thethrows clause in the actual method signatureomit it. This leads to a visual indication that
it is an unchecked exception. Not all code has adopted this best practice, of course.

Table 3-4. Swing components that throw HeadlessException

Component Method(s)

JApplet Constructors

JColorChooser|showDialog(); setDragEnabled(); createDialog(); constructors

JDialog Constructors

JFileChooser createDialog(); showDialog(); showOpenDialog(); showSaveDialog();

setDragenabled()

JFrame Constructors

JList setDragEnabled()

JOptionPane All sh(?W dialog methods; createDialog(); getFrameForComponent();
getWindowForComponent(); getRootFrame()

JTable setDragEnabled()

JTree setDragEnabled()

JWindow Constructors

SwingUtilities |getSharedOwnerFrame()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

3.4 Sending Change Events in Swing

Swing uses two different change event classes. The first is the standardava.beans.PropertyChangeEvent
class. This class passes a reference to the object, sending the change notification as well as the property name, its
old value, and its new value. The second, javax. swing.event.ChangeEvent, is a lighter version that passes only
a reference to the sending object—in other words, the name of the property that changed, as well as the old and new
values, are omitted.

Since the ChangeEvent class is not part of the JavaBeans specifications,
properties that use this event are not "bound" according to the JavaBeans standard.
In order to prevent confusion, properties that use a ChangeEvent to notify listeners

of property changes have not been marked as bound in our property tables.

Because the ChangeEvent includes only a reference to the event originator, which never changes, you can always

define a single ChangeEvent and reuse it over and over when firing events from your component.

3.4.1 The ChangeEvent Class

The ChangeEvent is a stripped-down version of thejava.beans.PropertyChangeEvent class. This class has no
methods or properties, only a constructor. This simplicity makes it a popular class for developers wanting to fire off
their own events. Recipients get a reference to the source of the event but then must query the source directly to find
out what just happened. It's great for quick notifications or instances in which the state of the source component is so
complex it's hard to predict which pieces of information the recipient will need, but it shouldn't be used simply to save
the component author a little time at the expense of runtime inefficiency if the recipient always needs to look up
information that could have been part of a PropertyChangeEvent.

3.4.1.1 Constructor

public ChangeEvent(Object source)

The constructor for the ChangeEvent class. It takes only a single object, which represents the entity
sending the event.

3.4.2 The ChangelListener Interface

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Objects that intend to receive change events must implement thecom.sun.java.swing.event.ChangeListener
interface. They can then register to receive ChangeEvent objects from a publisher class. TheChangeListener
interface consists of only one method.

3.4.2.1 Method

public abstract void stateChanged(ChangeEvent €)

Implemented in a listener object to receiveChangeEvent notifications.

file:///C:/DOCUME~1/SIMULA~1/LOCALS~1/Temp/OReilly.Java.Swing.2nd.2002.chm/0596004087_

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

3.5 The JComponent Class

JComponent is an abstract class that almost all Swing components extend; it provides much of the underlying
functionality common throughout the Swing component library. Just as the java.awt.Component class serves as
the guiding framework for most of the AWT components, the javax.swing.JComponent class serves an identical
role for the Swing components. We should note that the JComponent class extendsjava.awt.Container (which in
turn extends java.awt.Component), so it is accurate to say that Swing components carry with them a great deal of

AWT functionality as well.

Because JComponent extends Container, many Swing components can serve as containers for other AWT and
Swing components. These components may be added using the traditional add() method of Container. In addition,
they can be positioned with any Java layout manager while inside the container. The terminology remains the same
as well: components that are added to a container are said to be its children; the container is theparent of those
components. Following the analogy, any component that is higher in the tree is said to be itsancestor , while any
component that is lower is said to be its descendant.

Recall that Swing components are considered "lightweight." In other words, they do not rely on corresponding peer
objects within the operating system to render themselves. As we mentioned in , lightweight components
draw themselves using the standard features of the abstract Graphics object, which not only decreases the amount
of memory each component uses but allows components to have transparent portions and take on nonrectangular
shapes. And, of course, lightweight components are free of a dedicated L&F.

It's not out of the question to say that a potential benefit of using lightweight components is a decrease in testing time.
This is because the functionality necessary to implement lightweight components in the Java virtual machine is
significantly less than that of heavyweight components. Heavyweight components must be individually mapped to
their own native peers. On the other hand, one needs to implement only a single lightweight peer on each operating
system for all the Swing components to work correctly. Hence, there is a far greater chance that lightweight
components will execute as expected on any operating system and not require rounds of testing for each platform.

Because all Swing components extend Container, you should be careful that you

don'tadd() to Swing components that aren'truly containers. The results range from

amusing to destructive.

In JDK 1.2, JComponent reuses some of the functionality of thgava.awt.Graphics2D class. This consists

primarily of responsibilities for component painting and debugging.

3.5.1 Inherited Properties

Swing components carry with them several properties that can be accessed throughComponent but otherwise

originate with AWT. Before we go any further, we should review those properties of java.awt.Container and

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

java.awt.Component that can be used to configure all Swing components. This discussion is relatively brief; if you
need a more thorough explanation of these AWT classes, see _Java AWT Reference by John Zukowski (O'Reilly),
which can be downloaded from this book's web site, http://www.oreilly.com/catalog/ijswing2}. ‘ lists the
properties that JComponent inherits from its AWT superclasses.

Table 3-5. Properties inherited from the AWT Component and Container classes

Property Data type get |is | set Default value (if applicable)
background Color
colorModel ColorModel
component' Component
componentCount int
components Component][]
cursor Cursor Cursor.DEFAULT _CURSOR
enabled boolean true
font Font
foreground Color
insets Insets Insets(0,0,0,0)
layout LayoutManager BorderLayout()
locale Locale
location Point
locationOnScreen Point
name String
parent Container null
size Dimension
showing boolean true
valid boolean
visible boolean true
indexed

Let's discuss these properties briefly. The background andforeground properties indicate which colors the

component uses to paint itself. We should mention that with Swing the background property is disabled if the

component is transparent (not opaque). The read-only colorModel property returns the current model used to

translate colors to pixel values; generally, the user does not need to access this property. The font property lets you

get or set the font used for displaying text in the component.

The indexed component property maintains a list of all the components inside the container. You can tell how many

http://www.oreilly.com/catalog/jswing2/default.htm

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

there are with the integer componentCount property. If you want to access all of them through £omponent array,
retrieve the components property. Theinsets property specifies the current insets of the container, while thiyout
property indicates which layout manager is managing the components of the container. Technically, this means that
you can use any component as a container. Don't be misled; if a component doesn't seem like a reasonable
container, it probably can't be used as one. (Don't, for example, try to add a JButton to aJScrollBar.) A number of
components use these properties for internal, specialized layout managers and components.

The locale property specifies the internationalization locale for the application. Théocation property indicates the
X,y coordinates of the component's upper-left corner in the container's coordinate space. If you want to see the
location of the component's upper-left corner in screen coordinates, use the read-only locationOnScreen property.

The name property gives this component a string-based name that components can display if they choose. The
parent property references the container that is acting as this component's parent, arull if there is none. Thesize

property specifies the component's current height and width in pixels.

The showing property indicates whether the component is currently showing on the screen, while theisible
property tells if the component is marked to be drawn on the screen. There's an odd, nonintuitive relationship
between Vvisible andshowing. A component that is visible isn't necessarily showing. "Visible" means that a
component is capable of being displayed; "showing" means that the component is actually displayed (though it may
be obscured by something else). Most containers (JPanel, JFrame, etc.) are invisible by default; most other
components (JButton, etc.) are visible by default. So if you add dButton to an invisibleJFrame, for example, the

button is visible but not showing. It can be displayed but happens to be in a container that isn't currently displayed.

Finally, if the valid property isfalse, the component needs to be resized or moved by the component's layout

manager. If it is true, the component is ready to be displayed.

3.5.2 Common Methods

Here are some other frequently called methods for working with Swing components:

public Component add(Component comp)

public Component add(Component comp, int index)

public void add(Component comp, Object constraints)

public void add(Component comp, Object constraints, int index)

Add a component to the container, given the optional constraints and the current index.

public void remove(int index)
public void remove(Component comp)
public void removeAll()

Remove the appropriate component from the container. The final method empties the entire container.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

public void pack()

This method of java.awt.Window resizes the window to encompass the preferred size of all the contained
components, as placed by the current layout manager. It's a good idea to call pack() after you've added
components to a top-level container with a layout manager, such as JFrame, JApplet, JDialog, and
Jwindow.

public void validate()

public void invalidate()

The invalidate() method is typically called on &Container to indicate that its children need to be laid out,
or on a Component to indicate that it needs to be re-rendered. This method is often called automatically.
However, certain changes to a Component (such as changing the size of a button by changing its label or
font) do not cause it to be invalidated. In such cases, invalidate() must be called on theComponent to
mark it as invalid, and validate() must be called on it<Container. Thevalidate() method is typically
called to validate, lay out, and repaint a Container. Calling this method is especially important when you
add or remove Components in aContainer that is already displayed.

Swing improves the validate()/invalidate() situation a bit by callinginvalidate() in response to many

property changes, saving you from having to make the call. Unfortunately, there are still situations (such as
changing a JButton's font) that do not trigger an automatitnvalidate() call, so you'll still have to explicitly
callinvalidate() in these cases.

The key things to take away from these methods are:

® You may need to call invalidate() if you make changes to the appearance of a displayed

component.

® You must call validate() onContainers that have been invalidated (typically by the addition or
invalidation of a child).

As a result of deprecation and the movement toward JavaBeans accessors, AWT has some methods with multiple
names. For example, show() andsetVisible(true) are essentially the same. It is always better to use the
JavaBeans-style name—setVisible() in this case—when working with Swing; the newer name is less confusing for

people familiar with the JavaBeans conventions.

3.5.3 JComponent Properties

Now to the heart of the matter. JComponent has many properties of its own and overrides (or otherwise modifies)
the behavior of many of its inherited properties. This is where the new and interesting stuff happens. shows
a summary of JComponent's properties.

Table 3-6. JComponent properties

Property Data type get|is |set| Default value

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

uie-p ComponentUl

UIClassID String "ComponentUl"
accessibleContext AccessibleContext null
actionMap™> ActionMap

alignmentX° float

alignmentY® float

ancestorListeners’# AncestorListener([]

autoscrolls boolean false

border Border null

bounds° Rectangle

debugGraphicsOptions int DebugGraphics.NONE_OPTION
defaultLocales* Locale

doubleBuffered boolean false
enabled®® boolean true
focusCycleRoot boolean false
focusTraversable ¢ boolean true

graphics °® Graphics

height int bounds.height
inputMap” 3 also indexedget | InputMap

inputVerifier® 3 InputVerifier

insets © Insets

location ° Point Point(bounds.x, bounds.y)
managingFocus ¢ boolean false
maximumSize > ° Dimension

minimumSize ® ° Dimension

nextFocusabIeComponentOI Component

opaque” boolean false
optimizedDrawingEnabled boolean true
paintingTile boolean

preferredSize P °© Dimension

propertyChangeListeners (also

string indexed version)

PropertyChangelListener][] |-

registeredKeyStrokes

KeyStrokel[]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

requestFocusEnabled boolean . 1. true
rootPane JRootPane
o . . Dimension (bounds.height,
size Dimension i
bounds.width)
toolTipText String . . null
topLevelAncestor Container
transferHandler®t4 TransferHandler : . |null
validateRoot boolean . false
verifylnputWhenFocusTargetb' boolean
1.3
vetoableChangeListeners’# |VetoableChangeListener(]
visible @ boolean .. |true
visibleRect Rectangle
width ° int . bounds.width
% © int . bounds.x
y° int . bounds.y
1'3since 1.3,1'4since 1.4, bbound,
OIdeprecated, ffinal, iindexed,
ooverridden, IOprotected, Sstatic
See also java.awt.Container and
@/a.awt.Component
).

3.5.3.1 New properties in the 1.3 and 1.4 SDKs

The properties added in 1.3 and 1.4 focus on three areas. ThdnputMap and ActionMap classes were added in 1.3
to improve the handling of keyboard events. (These classes are discussed in later in this chapter.)
SDK 1.4 added some convenience support for accessing event handlers such as property and vetoable property

change listeners. The transferHandler property was also added in 1.4—a big step up in the usability of Drag and
Drop (DnD). You can learn more about that property in , which is devoted to DnD functionality.

Finally, the inputVerifier andverifylnputWhenFocusTarget properties were added in 1.3 to offer applications an
easy and reliable way to check a user's text input for validity. Text components with attached InputVerifiers will call
the verifier's shouldYieldFocus() method when they're about to lose input focus, providing an opportunity to give
the user feedback and keep focus if the input isn't valid. Any Components, such as Cancel buttons, that should
remain usable even when there is invalid input in some text field, can be configured to work properly by setting their
verifylnputWhenFocusTarget property tofalse. These capabilities are discussed in greater depth éhaéter 2d.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

3.5.4 Ul Delegates and UlClassIDs

As we mentioned i, all Swing components use a modified MVC architecture. Each Swing component is
responsible for maintaining two unique objects: a model and a Ul delegate. The object representing the model
handles the state information specific to the component while the Ul delegate determines how the component paints
itself based on the model's state information.

Note that there is no property for a model in JComponent. You typically access themodel property at the level of a
JComponent subclass. This is because each Swing component defines its own data model, which is unique from
that of all other components. The Ul delegate property, on the other hand, can be handled at the JComponent level
because the methods for rendering lightweight components are always the same. These methods (e.g., installUl(),
uninstallUl(), setUI(), paint()) can be traced back to the abstract clasgavax.swing.plaf.ComponentUl, which

serves as the superclass for all Ul delegates.

JComponent contains a reference to the current Ul delegate for the objecdComponent allows a subclass to alter
the component's Ul delegate with the protected setUI() method; this method effectively resets the L&F of the
component. The Ul therefore acts like a write-only property, but we hesitate to call it a property because its mutator
isn't public. Invoking setUI(') by itself, however, does not change the display. A call taipdateUl() is also required,
which forces the component to redraw itself. If you are looking to change the entire L&F of the application, it is better
to change it universally with the setLookAndFeel() method of UIManager than to change it one component at a
time. See for a simple example of how to work with various L&Fs.

Each Swing component maintains a read-only string constant, UIClassID , that identifies the type of Ul delegate that
it uses. Most Swing components override the accessor getUIClassID() and return a string constant, typically the
letters "UI" appended to the name of the component (without the "J"). This string is then used by Swing's Ul manager
to match the component with a Ul delegate for the current L&F. For example, a JButton object has aUlClassID
string of ButtonUI. If the current L&F is Metal, thdJIManager can figure out that thdVietalButtonUlI is the correct
Ul-delegate class to use. See for more information about theUlManager and how to change L&Fs.

3.5.5 Invalidating and Repainting

Sometimes entire components need to be drawn to the screen. At other times, only parts of components can (or
should) be drawn. For example, if an internal frame is dragged across the container, the entire internal frame is
redrawn along the way until it reaches its destination. However, only the parts of the container uncovered by the
internal frame need to be repainted. We typically do not repaint the entire component, as this would be an

_iure 3-4

unnecessary waste of processing time. (See

N

Figure 3-4. Performing repaints for components in Java

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Swing uses a repaint manager to repaint lightweight components. The repaint manager maintains a queue of
rectangular areas that need to be repainted; it calls these areas " dirty regions." Sometimes the rectangles are the
size of entire components; at other times they are smaller. The repaint manager processes repaint requests as they
are added to the queue, updating dirty regions as quickly as possible while preserving the visual order of the
components. In AWT, the Component class contains an overloadedrepaint() method that allows you to repaint
only a subrectangle of the component. The same is true with JComponent. If only part of a component needs to be
repainted, the repaint manager invokes an overloaded version of the repaint() method that takes aRectangle
parameter.

JComponent contains tworepaint() methods that add specified rectangles directly to the dirty region. Like AWT,

you should call these methods instead of invoking the paint() method directly, which biiasses the

RepaintManager. TheRepaintManager class is discussed in more detail ifChapter 2§.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

3.5.5.1 The paint() method and opaqueness

Because JComponent is the direct subclass of the AWTContainer class, it is the official recipient of repaint
requests through its paint() method. As you might guess JComponent must delegate this request by passing it to
the paint() method of the Ul-delegate object. The responsibility, however, does not end therdComponentis
actually responsible for painting three items: the component itself, any borders associated with the component, and
any children that it contains.

The order is intentional. Components drawn last are always on top; hence, child components always paint over their
parents. JComponent contains three protected methods that it uses to complete this functionality:

® protected void paintComponent(Graphics g)
® protected void paintBorder(Graphics g)

® protected void paintChildren(Graphics g)

Because of the complexity involved in painting and repainting Swing components, you should always try to override
these three methods while creating your own components. Also, do not try to override paint() unless you call
super.paint().

SDK 1.4 introduced a series of methods relating to printing rather than painting. Calling therint() orprintAll()
methods (both public and available since 1.2) now results in calls to printComponent(), printBorder(), and
printChildren() in that order.

When painting or printing JComponent subclasses, the Graphics object passed to these methods is actually a
Graphics2D object. You can cast it as such if you want to take advantage of the increased functionality available in

the 2D packages. Check out Jonathan Knudsen's Java 2D Graphics (O'Reilly) for more detailed information.

The boolean property opaque dictates the transparency of each Swing objec If this property is set tdalse, the
component's background color is transparent. This means that any areas left untouched by the component's
rendering allow graphics in the background to show through. If the property is set to true, the rectangular painting
region is completely filled with the component's background color before it is rendered. Incidentally, transparency was
not possible before lightweight components. Native peer objects in Java 1.0 always drew their component on a solid
rectangle; anything that was behind the component was erased. shows the difference between an opaque
and a transparent (nonopaque) label, both with a dark background color. The label on the left is transparent, so its
background color is ignored; the label's text appears on top of the container's relatively light background.

h gDk 1.2, theisOpaque() method is defined injava.awt.Component.

Figure 3-5. Transparency and opaqueness

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks
B AE

-
Press Me! Press Me!

Transparer! Qe

JComponent can optimize its repainting time if none of its children overlap; this is because the repaint manager
does not have to compute the hidden and visible areas for each child component before rendering them. Some
containers, such as JSplitPane, are designed so that overlap between child components is impossible, so this
optimization works nicely. Other containers, such as JLayeredPane, have support for child components that can
overlap. JComponent contains a property that Swing frequently calls upon to see if it can optimize component
drawing: optimizedDrawingEnabled . InJComponent, this property is set tdrue by default. If overlap occurs in a
subclass of JComponent, the subclass should override thdsOptimizedDrawingEnabled() accessor and return
false. This prevents the repaint manager from using the optimized drawing process when rendering the container's

children.

JComponent contains a boolean read-only property paintingTile) that indicates whether the component is
currently in the process of painting atile , which is a child component that does not overlap any other children. The
isPaintingTile() method returnstrue until all tiles have been painted.

The visibleRect property is aRectangle that indicates the intersection of the component's visible rectangles with
the visible rectangles of all of its ancestors. Why the intersection? Remember that you can have a contained object
that is clipped by its parent. For example, you can move an internal frame so that a portion of it falls outside the
parent window's clipping region. Therefore, the visible portion (the portion that is actually drawn to the screen)
consists only of the intersection of the parent's visible portion and the child's visible portion. You typically do not need
to access this property.

The validateRoot property isfalse by default. If it is set tatrue, it designates this component as the root component
in a validation tree. Recall that each time a component in a container is invalidated, its container is invalidated as
well, along with all of its children. This causes an invalidation to move all the way up the component hierarchy,
stopping only when it reaches a component for which isValidateRoot() returnstrue. Currently, the only
components that set this property to true are JRootPane (which is used by all the Swing top-level components),
JScrollPane, andJTextField.

The topLevelAncestor property contains a reference to the top-level window that contains this component, usually a
JWindow orJApplet. TherootPane property contains the low-levelJRootPane for this component,JRootPane is

covered in more detail in [Chapter §.

Finally, JComponent contains a property calledautoscrolls , which indicates whether a component is capable of
supporting autoscrolling. This property is false by default. If the property istrue, anAutoscroller object has been set
over this component. The Autoscroller object monitors mouse events on the target component. If the mouse is
dragged outside the component, the autoscroller forces the target component to scroll itself. Autoscrolling is typically
used in containers such as JViewport.

3.5.6 Position, Size, and Alignment

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

You can set and retrieve a Swing component's currenposition and size on the screen through thddounds
property, or more precisely, through the location andsize properties ofJComponent. Thelocation property is
defined as a Point in the parent's coordinate space where the upper-left corner of the component's bounding box
resides. The size property is aDimension that specifies the current width and height of the component. Thbounds
property is a Rectangle object that gives the same information: it bundles both thdocation and thesize properties.

Fi;ure 3-a shows how Swing measures the size and location of a component.

Figure 3-6. Working with the bounds, size, and location properties

Unlike the AWT Component class, thegetBounds() accessor inJComponent can take a preinstantiated
Rectangle object:

Rectangle myRect = new Rectangle();
myRect = component.getBounds(myRect);

If a Rectangle is supplied, thegetBounds() method alters each of the fields in the passed-iiRectangle to reflect
the component's current size and position, returning a copy of it. If the reference passed in is a null, the method
instantiates a new Rectangle object, sets its values, and returns it. You can use the former approach to reduce the
number of garbage rectangles created and discarded over multiple calls to getBounds(), which increases the

efficiency of your application.

The setBounds() method alters the component's size and position. This method also takes Rectangle object. If
the new settings are different from the previous settings, the component is moved, typically resized, and invalidated. If
the component has a parent, it is invalidated as well. Be warned that various layout managers may override any
changes you attempt to make to the bounds property. Invalidating a component with a call tsetBounds() may
force the layout manager to recompute and reset the bounds of the component in relation to the other components,

resolving it to the same size as before.

Here is a short example that shows how to retrieve the current position and size of any Swing component:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

JFrame frame = new JFrame("Test Frame");
frame.setBounds(20,20,200,200);
frame.setVisible(true);

Rectangle r = new Rectangle();

r = frame.getBounds(r);
System.out.printin(*X ="+ r.x());
System.out.printin("yY =" +r.y());
System.out.printin("Width =" + r.width());
System.out.printin("Height =" + r.height());

There is a shorthand approach for retrieving each of the bounds properties. JComponent contains four methods
that directly access them: getX(), getY(), getWidth(), andgetHeight(). You can use these accessors directly
instead of instantiating a Rectangle object on the heap with a call tgetBounds(). Consequently, you can replace

the last six lines with the following four:

System.out.printin("X =" + frame.getX());
System.out.printin("Y ="+ frame.getY());
System.out.printin("Width =" + frame.getWidth());
System.out.printin("Height =" + frame.getHeight());

In addition, if it is just the size or location you are concerned with, you can use the getSize() andgetLocation()
accessors to set or retrieve the size or location. Size is specified as a Dimension while location is given as a&Point.
Like getBounds(), thegetLocation() accessor also allows the programmer to pass in a preinstantiate®oint

object. If one is passed in, the method alters the coordinates of the Point instead of instantiating a new object.

Point myPoint = new Point();
myPoint = component.getLocation(myPoint);

You can still use the setSize() andsetLocation() methods of java.awt.Component if you prefer to code with
those as well. Again, note that when altering the size of the component, the layout manager may override the new
value and reset it to its previous value, thus ignoring your new size values.

The three well-known AWT sizing properties, minimumsSize , preferredSize , andmaximumsSize , are accessible
through JComponent. minimumsSize indicates the smallest size for the component when it is in a container.
preferredSize contains the size at which the container's layout manager should strive to draw the component.
maximumsSize indicates the largest size the component should be when displayed in a container. If none of these
properties are set by the user, they are always calculated by the component's Ul delegate or directly by the layout
manager of the container, in that order. The methods setMinimumsSize(), setPreferredSize, and
setMaximumSize() allow you to change these properties without subclassing.

Finally, JComponent contains two read/write properties that help interested layout managers align the component in
a container: alignmentX andalignmentY. Both of these properties contain floating-point values between 0.0 and
1.0; the numbers determine the position of the component relative to any siblings. A number closer to 0 indicates that
the component should be positioned closer to the left or top side, respectively. A perfect 0.5 indicates that the
component should be placed at the center, while a number nearing 1 indicates that the component should be
positioned closer to the right or bottom. Currently, the only layout managers that use these properties are the

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

BoxLayout and OverlayLayout managers; all AWT 1.1 layout managers ignore these properties and position their
children by other means. We discuss these managers further in .

3.5.7 Adding Borders

It's easy to add borders to Swing components, a feature AWT lacks. ThdComponent border property accepts
objects that implement the javax.swing.border.Border interface. shows a component with a border.

Figure 3-7. Simple borders in Swing

Borter Test) [=][=][x]

A Simple Lakel

Swing currently provides several styles of borders, including an empty border. Each one extends the
javax.swing.border.Border interface. In addition, you can surround a Swing component with multiple borders
through the use of the CompoundBorder class. This class allows you to combine any two borders into a single
border by specifying an outer and inner border. Because CompoundBorder accepts other compound borders, you

can recursively layer as many borders as you like into a single border.

Using borders is extremely easy. For exarrl?lef one of Swing's border styles is an etched border. Here is how you

might create a border similar to the one in figure 3-1:

JLabel label = new JLabel("A Simple Label");
label.setBorder(BorderFactory.createEtchedBorder());

One important characteristic of Swing is that if a border property is set on a component, the border overrides the
component's insets property. Swing allows the programmer to specify an empty border, so you can still pad the

component with extra space as well as provide a border if you use a CompoundBorder. If theborder property is
null, the default insets are used for the component instead. Borders are covered in more detai

3.5.8 Working with Tooltips

JComponent also provides Swing components with support fortooltips. Tooltips are small windows of text that pop
up when the user rests the mouse over the target component. They typically supplement the meaning of an icon or
button, but they can also provide the user with instructions or important information about the underlying component.
The tooltip usually disappears after a designated amount of time (four seconds by default) or if the mouse is moved

outside of the component's bounds.

Simple string-based tooltips can be automatically set or retrieved using the toolTipText property of JComponent,

as shown here:

JButton button = new JButton("Press Me!"); // JButton extends JComponent.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

button.setToolTipText("Go Ahead!);
System.out.printin(button.getTool TipText());

shows what a tooltip looks like on the screen.

Figure 3-8. A tooltip for a component

B AEE

| Press Me!

JComponent does not manage tooltips by itself; it gets help from theloolTipManager class. The
ToolTipManager continually scans for mouse events on components that have tooltips. When the mouse passes
into a component with a tooltip set, the ToolTipManager begins a timer. If the mouse has not left the component's
region in 0.75 seconds, a tooltip is drawn at a preset location near the component. If the mouse has moved out of a
region for longer than 0.5 seconds, the tooltip is removed from the screen.

With the default setToolTipText() andgetToolTipText() methods, JComponent handles the creation of an
appropriate tooltip. If you want to get more creative, however, Swing provides a separate object for tooltips:
JToolTip. With it, you can completely redefine the characteristics of a tooltip by declaring your owdiT00ITip object
and overriding the createToolTip() method ofJComponent to return it to theToolTipManager on demand.

We cover the JToolTip object and theToolTipManager in more detail i.

3.5.9 Client Properties

Swing components can maintain a special table of properties called " client properties." This provides specialized
properties that can be meaningful in components only in certain instances. For example, let's assume that a specific
L&F uses a client property to store information about how a component should display itself when that L&F is
activated. As you might guess, this client property would be meaningless when another L&F is activated. Using the
client properties approach allows various L&Fs to expand their component properties without deluging the Swing

source base with L&F-specific data.

The name "client properties" is somewhat confusing because client properties are distinct from JavaBeans-style
properties. Obviously, there's a big difference: unlike JavaBeans properties, you can create new client properties
without subclassing; you can even create new client properties at runtime. These two methods inJComponent store
and retrieve client properties:

myComponent.putClientProperty("aClientProperty”, Boolean. TRUE);
Boolean result = (Boolean)getClientProperty("aClientProperty™);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Because we are using a hashtable, the properties must be objects and not primitive data types; we must use the
Boolean object instead of simply settingrue orfalse.

3.5.10 Double Buffering

The JComponent class allows all Swing components to take advantage of double buffering. The idea behind
double buffering is that it takes longer for a component to render its individual parts on screen than it does for a
rectangular-area copy to take place. If the former occurs over multiple screen refreshes, the human eye is likely to
catch the component in the process of being drawn, and it may appear to flicker. With the latter, the screen is usually

updated as fast as the monitor can refresh itself. 2

2 Area copies are always faster because they are performed by the operating system or even the
graphics card of the computer. At this level, they are commonly referred to as "bit-block transfers,"
or BitBLTs.

When double buffering is activated in Swing, all component rendering performed by the repaint manager is done in
an offscreen buffer. Upon completion, the contents of the offscreen buffer are quickly copied (not redrawn) on the
screen at the component's position. You can request double buffering for a particular component by accessing the
boolean doubleBuffered property of JComponent. Passing intrue to the setDoubleBuffered() method enables
double buffering; false shuts it off:

JButton button = new JButton("Test Button");
button.setDoubleBuffered(true); // Turns on double buffering

You can use the isDoubleBuffered() method to check if double buffering is currently enabled on a Swing
component. The component level setting is only a request, and Swing double buffering may be completely disabled
at the level of the repaint manager (for example, when running under an operating system like Mac OS X, double

buffering is always performed by the window manager, so doing it again in Swing would simply throw away processor
cycles for no benefit). See [Section 28.4.2 for more details and for information about how you can use

graphics-accelerated "volatile images" in SDK 1.4 to further speed up Swing double buffering.

With double buffering, transparency is maintained in nonopagque components because the graphics underneath the
component are copied into the buffer before any offscreen rendering takes place. However, there is a slight penalty
for double buffering nonopagque components because Swing performs two area copies instead of one: one to copy
the context in which the component is drawn to the offscreen buffer before drawing, and one to copy this context plus
the rendered component back to the screen.

Buffers also chew up a great deal of memory, so the repaint manager tries to avoid using more than one offscreen
buffer at a time. For example, if an offscreen buffer has been set for both a container and one of its children, the
buffer for the parent container is used for both components.

3.5.11 Serialization

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Objects that extendJComponent are serializable; that is, the object's data at an\goint can be written out, or

serialized, onto an output stream, which might send it over a network or save it in a fifél The serialized output can later
be deserialized back into memory, where the object continues to operate from its original state. Object serialization
gives Java programmers a powerful and convenient way to store and retrieve object data, as opposed to saving or
transmitting state data in custom-made storage files. Serialization also provides the ability to transfer active
components quickly from one virtual machine to another, which can be useful in remote method invocation (RMI) and

other forms of distributed computing.
Bl The only exceptions to this are fields marked with thtransient keyword.

You can serialize components in Swing as you normally would in Java by passing a reference to the object into the
writeObject() method of anObjectOutputStream object. In the event that the serialized object contains a
reference to another object, the serialization algorithm recursively calls writeObject() on that object as well,
continuing until all objects in the class hierarchy are serialized. The resulting object graph is then written out to the
output stream. Conversely, you can deserialize a component back in by using the readObject() method of an
ObjectinputStream , which reverses the entire process.

Serialization in its current form is suited primarily for short-term uses such as RMI
and interprocess communication. The binary file produced by serialization is
guaranteed to be readable only by another virtual machine of the same revision. If

- g

. you want to store components for long-term (archival) use, you can use the
XMLEnNcoder to dump the public properties (as defined by the JavaBeans spec) to
an XML file. See the java.beans.XMLEncoder class for more details.

3.5.12 The DebugGraphics Class

Lightweight components are rendered entirely in Java, as opposed to offloading their work to a native heavyweight
peer. The abstract Graphics class outlines platform-independent implementations for line-drawing, image-painting,
and area-copying and filling that a lightweight peer can call upon to draw itself. If you create your own component, or
extend an existing one, a Graphics object is often passed to the Ul delegate'aint() method to help with the

drawing.

Sometimes the way you intend a component to be painted, however, isn't how it appears on the screen. Debugging
painting problems can prove to be troublesome, especially when dealing with transparency, opaqueness, and double
buffering. JComponent, however, can generate a special version of thésraphics object, calledDebugGraphics,
which it can pass to a Ul delegate's paint() method. This object can take a set of user-configurable debugging

options that modify how a component is drawn to the screen.

If you wish to activate debugging for the component's graphics, you can pass one or more debugging flags (see
) intoJComponents setDebugGraphicsOptions() method.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Table 3-7. Constants for DebugGraphics options

DebugGraphics constant Description

DebugGraphics.FLASH_OPTION Causes each graphics primitive to flash a configurable number of

times as it is being rendered.

DebugGraphics.LOG_OPTION Prints a text message to the screen as each graphics primitive is drawn.

Raises a window that shows the drawing that is taking place in the
DebugGraphics.BUFFERED_OPTION| offscreen buffer. This is useful in the event that the double-buffered
feature has been activated.

DebugGraphics.NONE_OPTION Disables all debug graphics options.

The debug options outlined in are bits in a binary mask; you can set more than one at the same time by
using the bitwise OR (|) operator, as shown here:

JButton myButton = new JButton("Hello"); // JButton extends JComponent.
myButton.setDebugGraphicsOptions(DebugGraphics.FLASH_OPTION
| DebugGraphics.LOG_OPTION);

When any of the debug graphics options are set, the getComponentGraphics() method of JComponent returns
a DebugGraphics object instead of a normalGraphics object. As we mentioned earlier, the same type of object is
passed to the Ul delegate of the component. When a component draws itself, it calls upon the functionality of the
DebugGraphics object to perform the task, just as it would with a typic&raphics object. The drawing primitives are
then slowed or logged so that the user can help identify any problems.

3.5.13 Focus and Focus Cycle Methods

The term focus refers to the active component on the screen. We typically think of the active component as the
frame or window that is the current recipient of mouse and keyboard events. Other components, such as buttons and
text fields, can have the focus as well. Visual cues, like a colored title bar or a dashed outline, often help us determine
where the current focus resides.

When we click on another component with the mouse, the focus is typically shifted, and that component is now
responsible for consuming mouse and keyboard events. You can also traverse the focus by pressing the Tab key to
move forward or the Tab and the Shift key together to move backward. This causes the focus to cycle from one
component to the next, eventually completing a loop and returning to its original position. This loop is called thefocus
cycle.

A group of components within a single container can define a focus cycle of its own. If the container has its own
focus cycle, the focus repeatedly traverses through all of its children that accept the focus. The focus cycle is typically
determined by the location of components in the container, although you can create your own focus traversal policy if
you require different behavior. With the default focus policy, the component closest to the top-left corner of the
container_always receives focus first. The focus then moves from left to right across the components, and from top to
bottom. shows how the default focus cycle shifts focus between components in a container.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Figure 3-9. The default container focus traversal policy

L- Button - Button Button —W
[—~ Text Field

:

If a container has a focus cycle of its own, it should override the Container methodisFocusCycleRoot() and

return true. If the method returnstrue, then the container is known as theoot container of the focus cycle.

With SDK 1.2 or 1.3, you can explicitly name the component that should receive the focus after a given
JComponent by setting itsnextFocusableComponent property. In addition, focus can be programmatically
requested through the JComponent method requestFocus() , which the focus manager can call to shift the focus
to this component. This is often done when the user selects the object (i.e., presses a JButton). If you don't want
your component to be able to respond to requestFocus() calls, you can set therequestFocusEnabled property
of JComponent to false.

With SDK 1.4, this method of managing focus was replaced by the more flexible FocusTraversalPolicy class as
part of a major overhaul of the whole focus system. This class allows you to define a focus policy to manage a

container. (In this case, "focus policy" simply means an algorithm to figure out which component follows, and which
one precedes, the current component in the focus cycle.) One advantage of moving to policy-based management is

that generic policies can be developed for containers—no more need to hook up individual components.

There is an important distinction here: setting the requestFocusEnabled property tofalse does not mean that the

focus cannot be traversed onto your component; it sim means that it cannot be programmatically requested.

JComponent provides a similar property, focusable, 4 that you can enable or disable to specify whether a

component ever receives focus at all.

(] prior to SDK 1.4, thefocusTraversable property (now depricated) was used instead; setting
this property to false allowed the component to receive focus programmatically but not through

traversal.

We discuss the concept of focus in detail in .

3.5.14 Keyboard Events

Swing components can be programmed to trigger various actions when certain keystrokes occur. For example,
components automatically handle focus-related keyboard events. The default focus mechanism watches for Tab and
Shift-Tab keystrokes, adjusting the focus and consuming the keystrokes. If the focus mechanism does not know how
to handle a keystroke, and no registered low-level KeyListeners have consumed it,l JComponent checks to see

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

whether the processComponentKeyEvent() method consumes it. The default implementation does nothing, the
idea being that you can override it in a subclass if you want to react to a keystroke in your own way. You're not likely
to want to use that approach, though, because it's much less flexible than what happens next: if nothing has

consumed the key event, JComponent checks to see if akeyboard action has been registered for that keystroke. A

set of maps provide a convenient way to translate key events to appropriate component-related actions.

Translation to an action starts by converting the key event to the KeyStroke that represents it. This is used as a key
to check the component's InputMap for a corresponding action name (thdnputMap could return any kind of object,
but convention dictates that it be a String corresponding to a logical action name). The result of this lookup, if natull,

is used in turn as a key to look in the component's ActionMap for anAction to perform. Assuming that a nonaull
Action was found, itsactionPerformed method is invoked (as described i earlier in this chapter).

It might seem like overkill to use a two-map lookup like this. Wouldn't it be simpler to just put the Actions directly in
the InputMap? It turns out there are a couple of good reasons for the second layer. Although a given type of
component generally supports a well-defined set of logical operations, the specific Action classes that implement
them often vary depending on the L&F in use. Similarly, the keys that are used to invoke the actions vary between
L&Fs, which leads to a complex coupling between the component and the L&F-specific Ul delegate. Separating the
two concepts into two maps provides an easy-to-understand translation between KeyStrokes and logical event
names, and from event names to specific Action implementations. It also means thatnputMaps are nicely

self-documenting; it's easy to turn them into a human-readable table that shows the functions assigned to various

keys. 2

5] For more details about the design goals of thikey-binding mechanism, which was introduced in
SDK 1.3, see http://java.sun.com/products/jfc/tsc/special report/kestrel/keybindings.htm|, which
also describes the limitations of the previous mechanism. If you are still working with a pre-1.3
version of Swing, you can find the first edition's version of this section, which discusses how to

| -bindi i this book's web site,
http://www.oreilly.com/catalog/jswing2J.

InputMaps and ActionMaps are also designed to be easy to share between components (or even similar
component types). They have a parent property that is checked if a binding isn't found, so common functionality
can be placed in a shared parent map, and component-specific definitions added to a local map on an as-needed
basis; the text components make extensive use of this capability. JComponent makes this easy by providing newly
initialized components with empty InputMaps and ActionMaps whose parents are the (likely shared) map provided
by the Ul. So, as a developer, you never need to worry about the possible existence of shared maps; you can just
start adding your custom mappings and rely on Swing to provide the rest.

Before showing you the details of how to register keyboard actions, there is one more complication to clarify. The
process outlined here described a single InputMap used to translate keystrokes to action names. In fact,
components have three separate InputMaps to address the fact that there are different situations under which a
component might be asked to respond to a keyboard event. The most obvious case, which probably sprang to mind,
is when the component itself is the owner of the keyboard focus. Components can also have a chance to respond to
key events if they don't have focus in two other cases. First, a component may respond if it is an ancestor of
(contains) the focused component. Think of a ScrollPane, in which the Page Up and Page Down keys remain
functional even though you're working with the contents of the pane rather than the pane itself. Second, a component
may respond if it is simply inside a window that is focused (this is how button mnemonics work). In order to create the
roper InputMap, the methods to manipulate them offer acondition parameter whose legal values are shown in
Table 3-9.

http://java.sun.com/products/jfc/tsc/special_report/kestrel/keybindings.html
http://www.oreilly.com/catalog/jswing2/default.htm

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Table 3-8. Constants for InputMap selection

Constant Description

WHEN_FOCUSED The InputMap used when the component has the

focus

WHEN_IN_FOCUSED_WINDOW The InputMap used when the component resides in

a container that has the focus

The InputMap used when the component is the
WHEN_ANCESTOR_OF_FOCUSED_COMPONENT | ancestor of (contains) the component that currently

has the focus

You obtain a component's input map through one of the following two methods (these were mentioned in ,
but bear repeating in this context):

public InputMap getinputMap(int condition)
Return the input map to be used under the specified condition.
public InputMap getinputMap()

A convenience method that calls getinputMap(WHEN_FOCUSED), which is the most commonly used

condition.

Looking up the action map is simpler since there's only one method:

public ActionMap getActionMap()

Return the action map associated with the component.

A brief example illustrates how to perform the common task of assigning an event to a component using this binding
mechanism. Suppose we wanted to extend the example program in [Section 3.1.3.5 to perform a download whenever

the F8 key is pressed. One way we could do this is by adding the following lines to the end of the ActionExample

constructor:

exampleButon.getActionMap().put("download", exampleAction);
exampleButton.getinputMap(WHEN_IN_FOCUSED_WINDOW).put(
KeyStroke.getKeyStroke("F8"), "download");

The first line binds the logical action name download to our sample download action within the button's action map.
The second line causes the F8 key to trigger this logical action whenever the button's window has the focus, even if
the button itself does not. This two-step registration process in which both an InputMap and theActionMap are
retrieved and modified is very common when working with custom actions because of the two-stage, key-mapping

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

process. If you're simply changing or adding bindings for a standard keystroke or action, you need to work with only
one of the maps.

To remove a binding you've set, both types of maps provide a remove method that takes aKeyStroke object that will
be removed from the mapping. The clear method removes all mappings. Neither of these methods affect inherited
mappings. In fact, if you added a keystroke that overrode an inherited mapping, removing that keystroke restores the
inherited mapping. If you actually want to block an inherited mapping without providing a new action, register a
mapping to the action "none", which convention mandates never has arAction bound to it.

There are corresponding methods for setting the map properties themselves, of course. These are used far less
commonly, but do provide a way to eliminate the inherited parent maps provided by the L&F's Ul delegate:

public void setinputMap(int condition)
public void setActionMap(ActionMap actionMap)

Replace the corresponding map completely, eliminating any inherited mappings. Passing a null argument

causes the component to have no bindings at all.

Note that if you replace the mappings this way, there's no way to get back the previously inherited mappings unless
you keep a reference to the original maps yourself. (See for a list of default bindings.)

3.5.15 Accessibility

As we mentioned i , Swing components support accessibility options. Accessibility options are constructed
for users who have trouble with traditional user interfaces and include support for alternative input and output devices
and actions. There are several parts to accessibility (covered in detail in . JComponent implements the

methods required by the Accessible interface, though it does not implement the interface itself.

The accessibleContext property holds anAccessibleContext object that is the focal point of communication
between the component and auxiliary accessibility tools. There's a different default context for each kind of
JComponent. For more information, se.

3.5.16 Events

shows the events fired byJComponent (not counting the many events it inherits from the AWT classes).

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Table 3-9. JComponent events

Event Description

PropertyChangeEvent A change has occurred inJComponent.

VetoablePropertyChangeEvent A change has occurred in JComponent that can be vetoed by interested

listeners.

AncestorEvent An ancestor of aJComponent has moved or changed its visible state.

3.5.16.1 Event methods

The 1.3 SDK added an access method for general event listeners:
public EventListener[] getListeners(Class listenerType)

This method pulls listeners from a protected listListener field based on the specified type. All the various
addListener() methods forJComponent add their listeners to this list. Subclasses can add their own
listeners to the listListener field. See for more information on event listener lists.

The following methods may move tojava.awt.Component in the future:

public void firePropertyChange(String propertyName, byte oldValue, byte newValue)
public void firePropertyChange(String propertyName, char oldValue, char newValue)
public void firePropertyChange(String propertyName, short oldValue, short newValue)
public void firePropertyChange(String propertyName, int oldValue, int newValue)

public void firePropertyChange(String propertyName, long oldValue, long newValue)
public void firePropertyChange(String propertyName, float oldValue, float newValue)
public void firePropertyChange(String propertyName, double oldValue, double newValue)

public void firePropertyChange(String propertyName, boolean oldValue, boolean newValue)

Fire a PropertyChangeEvent to all registered listeners inewValue differs fromoldValue. There are

overloaded versions of this method for each primitive data type.

public void addPropertyChangeListener(PropertyChangeListener listener)
public void removePropertyChangeListener(PropertyChangelListener listener)

Add or remove a PropertyChangelistener to the event registration list.

public void addVetoableChangeListener(VetoableChangeListener listener)
public void removeVetoableChangeListener(VetoableChangeListener listener)

Add or remove a VetoableChangelListener to the event registration list. AVetoableChangeListener

is allowed to veto any property changes that occur inside a component. If only one veto occurs, the property

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

is not changed.

public void addAncestorListener(AncestorListener listener)

public void removeAncestorListener(AncestorListener listener)

Add or remove an AncestorListener to the event registration list. All registered objects are notified if any

of the components' ancestors change position or are made visible or invisible.

JComponent also inherits all the event listener registration methods from its AWT superclasse€zontainer and
Component. FromComponent, it inherits the methods to add or remove £omponentListener, FocusListener,
KeyListener, MouseListener, orMouseMotionListener. FromContainer, it inherits the methods to add or
remove a ContainerListener. We won't describe all the listener interfaces here; for more information, sedava AWT

Reference by John Zukowski (O'Reilly). However, you should note that Swing supports only the event model
established in JDK 1.1. To receive an event, you must always register as a listener with the JComponent that

generates the event—events are never propagated through the containment hierarchy, as they were in JDK 1.0.

3.5.17 Constructor

public JComponent()

Initialize a simple JComponent and set the layout manager tanull.

3.5.18 Graphics Methods

protected Graphics getComponentGraphics(Graphics g)

Accept a graphics context and modify its foreground color and font to match the current defaults. If the
debug graphics option has been activated, the method returns a special graphics object that the
programmer can configure for debugging component drawing with the color and font modifications.

public void update(Graphics g)

Equivalent to paint(g). This is significantly different from theupdate() method of Component, which first
cleared the component's background. In Swing, clearing the component is handled by ComponentUI,

based on whether the component is opaque.

public boolean contains(int x, int y)

Return true if the coordinates passed in are inside the bounding box of the componerfialse otherwise. The
method always asks the Ul delegate first, giving it an opportunity to define the bounding box as it sees fit. If

the Ul delegate does not exist for this component, or cannot define the bounding box, the standard

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

component contains() method is invoked.
public Insets getinsets (Insets insets)

Copy the JComponent's insets into the giveninsets object and return a reference to this object.

public void paint(Graphics g)

The primary method that the AWT subsystem calls upon for components to draw themselves if they are not
obscured. This method delegates most of its work to the protected methods paintComponent(),
paintBorder(), andpaintChildren(), which it calls in that order. Because this method performs its own

internal calculations, it is generally not a good idea to override it in a subclass; if you want to redefine how a
component draws itself, override paintComponent() instead.

public void reshape(int x, int y, int w, int h)

Reset the bounds property of the component.

protected void paintComponent(Graphics g)

Draw the component using the graphics context provided. Unless overridden, it simply turns around and
calls the paint() method of the delegate. If there is no delegate, the method does nothing.

protected void paintChildren(Graphics g)

Cycle through each of the component's children, invoking the paint() method on each one.

protected void paintBorder(Graphics g)

Paint the border (or borders) outlined by the border property of JComponent. Note that if a border is

defined, JComponentignores its own insets and uses the border instead.

public void repaint(long tm, int X, int y, int width, int height)
public void repaint(Rectangle r)

Place a request to repaint the specified region on the repaint manager's update queue. The initial variable
tm of the firstrepaint() method is no longer used and can be ignored. Because the redrawing queue
knows the correct order to draw various component layers, it is widely preferred that you call these
methods, instead of directly invoking paint().

public void paintimmediately(int X, int y, int w, int h)
public void paintimmediately(Rectangle r)

Force an immediate repaint of the specified region in the component. This method is invoked by the repaint
manager when it is time for the component to draw itself; the programmer should not call this method. This

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

method may move to java.awt.Component in the future.

public void revalidate()
Add the current component to the repaint manager's revalidation queue, which is located on the system
event queue.

public void computeVisibleRect(Rectangle visibleRect)

Calculate a Rectangle that represents the intersection of the component's own visible rectangle and each
of its ancestors. The result is placed in the visibleRect property and is used to determine how much of a
component is drawn on the screen.

3.5.19 Focus Methods

public void requestFocus()

Shift the focus to this component if the requestFocusEnabled property istrue.

public boolean requestDefaultFocus()

Shift the focus to a default component, typically the first focus-traversable component in the current
container. If the method is unable to find such a component, it returns false. This method was deprecated
in SDK 1.4. (You should generally move your focus-related code to FocusTraversalPolicy

implementations.)

public void grabFocus()

Used by focus managers to shift the focus to this component, regardless of the state of the
requestFocusEnabled property. Because of this, it is generally better to useequestFocus() instead of
this method.

public boolean hasFocus()

Return true if this component currently has the focus. This method is defined ifava.awt.Component in
JDK 1.2.

3.5.20 Tooltip Methods

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

public String getToolTipText(MouseEvent event)

Retrieve the text used for the component's tooltip, given the appropriate mouse eventJComponent
always returns the current toolTipText property. However, you can override this method in your own

component if you want to return different strings based on various mouse events.
public Point getToolTipLocation(MouseEvent event)

This method currently returns null. You can override it in your own component to specify the local
component coordinates where its tooltip should be displayed. If the method returns null, Swing chooses a

location for you.

public JToolTip createToolTip()

Return a new instance of JTooITip by default. If you want to extend theJTooITip class with a tooltip of
your own, you can override this method in your components, forcing it to return the new class to the tooltip
manager.

3.5.21 Client Properties Methods

public final Object getClientProperty(Object key)

Search the client property list for theObject specified under the appropriate key. It returnull if no object is

found.

public final void putClientProperty(Object key, Object value)

Insert the specified client property value under the appropriate key. If the value passed in iswull, the

property is cleared from the list.

3.5.22 Miscellaneous Methods

protected void setUl(ComponentUl u)

Install U as the Ul delegate for the component, effectively changing the component's L&F. This change

doesn't appear onscreen until updateUl() is called.

|Vhis document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

public void updateUl()

Called by the current UIManager to notify the component that its L&F has changed, and that the Ul
delegate should repaint itself.

public void scrollRectToVisible(Rectangle aRect)

Call similar methods up the component hierarchy. You can override this method at any level if you want to
explicitly handle scrolling updates.

public static boolean isLightweightComponent(Component c)

A convenience method that returns a boolean indicating whether the component passed is a lightweight
component. If it is, the method returns true. Otherwise, it returnsfalse. This method may move to
java.awt.Component in the future.

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

3.6 Responding to Keyboard Input

Swing provides a flexible framework for keyboard-based control, which can be used by any component. The rest of
the chapter explains this mechanism.

3.6.1 The InputMap Class

InputMap maps keystrokes to logical action names. When the user types a key combination, it's looked up in the
input map of the focused component (and perhaps other components in the active window, as described earlier). If a
match is found, the resulting object is used as a key in the corresponding component's ActionMap to look up the
concrete Action class to be invoked. The platform-specific L&F implementations providénputMaps consistent with

the key-binding conventions for their platforms.

When looking for values in an InputMap, ajava.awt.KeyStroke is always used as the keyKeyStroke is a simple,
immutable class that represents a particular keyboard action (including any modifier keys). KeyStrokes are intended
to be unique (that is, if two KeyStroke variables represent the same action, they should reference the same
KeyStroke instance). To ensure uniqueness, you can't creatéeyStrokes directly; you must obtain them through the
static getKeyStroke() factory methods in theKeyStroke class.

Although the result of looking up a KeyStroke in anlnputMap is an arbitrary object, and any object can be used as
a key for looking up an action in an ActionMap, in practice the values areStrings. By convention, their content is a
descriptive name for the action to be performed (such as copy, print, save, or the like). This allowslnputMaps to be
largely self-documenting (it's easy to print their contents as a "cheat sheet" showing the keys that invoke particular
commands) and also improves the readability of code that requests actions programmatically. The most common way
this string is obtained is by calling getName() on the Action to be added to the map.

InputMaps can be chained together so that common functionality can be shared in a basinputMap; specialized
components can add custom keystrokes to their own InputMap and delegate the common cases to the shared map
via the parent property.

3.6.1.1 Property

The single property defined by InputMap is shown in[Table 3-10. The parent property establishes a fallback
InputMap that is consulted if a key mapping is not found in the current map, much as the inheritance chain is

followed when looking up the members of Java classes. If you create a cycle in the parent chain (for example, by
setting two InputMaps to beparents of each other), many of the method calls crash with StackOverflowError.

Table 3-10. InputMap property

Property Data type | get is set | Default value

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

parent

InputMap

null

3.6.1.2 Constructor

public InputMap()

The default constructor is the only constructor available. It creates an empty InputMap with noparent.

3.6.1.3 Methods

public KeyStroke[] allKeys()

Return an array of all KeyStrokes defined in thelnputMap, either directly or anywhere along th@arent

chain. If there are no mappings, this method returns either an empty array or null, depending on the history

of the InputMap(s). Each key appears only once even if it overrides another on the parent chain.

public void clear()

public Object get(KeyStroke keyStroke)

Remove all keystroke mappings from this InputMap (does not affect any mappings in thgparent chain).

Look up the specified keyStroke in thelnputMap (and the parent chain), returning a value that represents

the logical action that should be taken in response. If no match is found, returns null. The result is generally
used immediately to look up an Action in the ActionMap of the component that owns thidnputMap.

Convention dictates that the values returned are Strings describing the nature of the action to perform.

public KeyStroke[] keys

public void put(KeyStroke keyStroke, Object actionMapKey)

Return an array of KeyStrokes locally defined in thislnputMap. That is to say, it doesnot follow the parent

chain. If there are no mappings, this returns either an empty array or null, depending on the history of the

InputMap.

Define a new mapping for the specified keyStroke. Future calls to theget() method returnactionMapKey

as the logical action associated with keyStroke. As suggested by the parameter nameactionMapKey is

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

intended to be used to look up an Action in anActionMap. By convention, it should be &tring whose

value is descriptive of the action. lists the standardActionMap keys supported by Swing
components; your own classes can use these or define their own as appropriate.) Passing a null

actionMapKey has the same effect as callingrlemove(keyStroke).

public void remove(KeyStroke keyStroke)

Remove the mapping defined for the specified keyStroke from thislnputMap. Looking up thatkkeyStroke
in the future returns a value that is determined by the parent chain (which isnot affected by this method). If
you want to "block" a mapping in a shared InputMap that is part of youparent chain, define a mapping for
that KeyStroke to the stringnone. By convention, there is never anAction associated withnone in any
ActionMap, so its presence in youtnputMap causes theparent check to be skipped without allowing any
action to take place.

public int size()

Return the number of mappings defined in this InputMap (not counting any that might be defined in the
parent chain). For a new or newly clearednputMap, this returns0.

3.6.2 The ActionMap Class

ActionMap is responsible for mapping logical action names to concretéAction instances that carry them out. When
the user types a key combination, it's looked up in the InputMap of a component, and the result is looked up as a

key in the corresponding ActionMap.

Although any object can be used as a key in an ActionMap, in practice they areStrings. By convention, their
content is a descriptive name for the action to be performed (such as copy, print, save, or the like), often obtained

by calling getName() on the correspondingAction.

ActionMaps can be chained together so that common functionality can be shared in a basictionMap; specialized
components can add unique actions to their own ActionMap and delegate the common cases to the shared map

through the parent property.

A component's ActionMap can also be used to configure auditory cues to be played at appropriate points by the
component, as described in .

3.6.2.1 Property

The single property defined by ActionMap is shown in. The parent property establishes a fallback
ActionMap that is consulted if an action name is not found in the current map, much as the inheritance chain is
followed when looking up the members of Java classes. If you create a cycle in the parent chain (for example, by
setting two ActionMaps to beparents of each other), many of the method calls crash with StackOverflowError.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Table 3-11. ActionMap property

Property Data type get is set Default value

parent ActionMap . . null

3.6.2.2 Constructor

public ActionMap()

The default constructor is the only constructor available. It creates an empty ActionMap with noparent.

3.6.2.3 Methods

public Object[] allKeys()

Return an array of all logical action names defined in the ActionMap, either directly or anywhere along the
parent chain. If there are no mappings, this method returns either an empty array ull, depending on the

history of the ActionMap(s). Each key appears only once even if it overrides another on the parent chain.

public void clear()
Remove all action mappings from the local ActionMap (does not affect any in theparent chain).
public Action get(Object key)

Look up the specified action name in the ActionMap (and the parent chain), returning the corresponding
Action to be executed. If no match is found, returngaull. The keys are often obtained by looking up a
KeyStroke in anlnputMap.

public Object[] keys

Return an array of the logical action names locally defined in this ActionMap. That is to say, it doesnot
follow the parent chain. If there are no mappings, this returns either an empty array oull, depending on the
history of the ActionMap.

public void put(Object key, Action action)

|Vhis document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Define a new mapping for the specified action. Future calls to theget() method return it as theAction
associated with the logical name key. By convention,key should be aString whose value is descriptive of
the action. E;éendix B lists the standardActionMap keys supported by Swing components; your own
classes can use these as well, or define their own, as appropriate. Passing a hullkey has the same effect

as calling remove(action).

public void remove(Object Key)

Remove the mapping defined for the specified key from thisActionMap. Looking up that logical action

name in the future returns a value determined by the parent chain (which isnot affected by this method).

public int size()

Return the number of mappings defined in this ActionMap (not counting any that might be defined in the
parent chain). For a new or newly clearedActionMap, this method returns0.

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Chapter 4. Labels and Icons

We'll begin our look at the Swing components with the JLabel class. In addition, we'll look at Swing'dcon interface
and an implementation of this interface called Imagelcon. With just these few constructs, you'll begin to see how

Swing aids in the sophisticated Ul development in Java.

file:///C:/DOCUME~1/SIMULA~1/LOCALS~1/Temp/OReilly.Java.Swing.2nd.2002.chm/0596004087_

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

4.1 Labels

Swing allows you to create labels that can contain text, images, or both. We'll begin this chapter with a look at tdéabel class.

The JLabel class allows you to add basic, noninteractive labels to a user interface. Because of its inherent simplicity, there is
no model class for JLabel. shows a class diagram forJLabel. We'll get into the two relationships tdcon a little later.

Figure 4-1. JLabel class diagram

JLabel objects may consist of both text and graphics (icons), but for simple text-only labels, the interface with_abel is very
similar to that of java.awt.Label. The code to create and display a very simple text label looks like this:

/I SimpleJLabelExample.java
1
import javax.swing.*;

public class SimpleJLabelExample {
public static void main(String[] args) {
JLabel label = new JLabel("A Very Simple Text Label");

JFrame frame = new JFrame();
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.getContentPane().add(label); // Adds to CENTER
frame.pack();
frame.setVisible(true);
}
}

Running this simple program produces the display shown in .

Figure 4-2. A simple JLabel

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=8| x|
A Very Simple Text Label

4.1.1 Properties

The JLabel class contains the properties shown i. Theicon anddisabledlcon properties specify the icon to be
displayed by default and when the label is disabled, respectively. If an icon is specified without adisabledlcon, a
disabledlcon is automatically created by converting the defaulicon to grayscale. Thefont property is shown in this table only
because the setFont() method is overridden to callrepaint() after callingsuper.setFont().

Table 4-1. JLabel properties

Property Data type get|is|set Default value
Ul LabelUl . - |From L&F
UlClassID® String “LabelU!"
accessibleContext® AccessibleContext|- JLabel.AccessibleJLabel
disabledicon® Icon . - Inull
displayedMnemonicb int : - |KeyEvent.VK_UNDEFINED
displayedMnemonicindex4 P int -1
font® Font : - |From L&F
horizontalAlignment® int : - |LEADING!?
horizontalTextPosition” int : - |TRAILING'?
icon® Icon . - |null
iconTextGapb int : .4
labelFor® Component : - Inull
text” String . - Inull
verticaIAIignmentb int : - |CENTER
vertical TextPosition® int : - |CENTER
l'33ince 1.3,1'4since 1.4,bbound, Ooverridden
See also properties from the JComponent class

displayedMnemonic indicates the character to be used as an accelerator key, which typically means that an occurrence of
this character is decorated with an underline in the label text. displayedMnemoniclindex is the index of the character that
receives the decoration; it is set automatically to the first occurrence of the displayedMnemonic character in the label text.
You can override this behavior by setting displayedMnemoniclindex to another index, or to-1 to force no decoration. (L&Fs
are not technically required to honor the displayedMnemoniclndex property, but most of them do.)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

The displayedMnemonic property isint because its value is intended to be one of the/K_
"virtual keycode" constants defined in java.awt.KeyEvent (see). However, a
setDisplayedMnemonic() method, which takes achar is also defined. It's usually easier
to call setDisplayedMnemonic('a’) than it is to call
setDisplayedMnemonic(KeyEvent.VK_A). If you use thechar version, it doesn't matter

if you specify an uppercase or lowercase character.

If the labelFor operty has been set, the referenced component gains focus when the mnemonic is pressed in conjunction

with the Alt key.L:
fields to gain focus when the shortcut key is pressed. We'll see an example of this strategy later in this section.

One common use of this feature is to apply mnemonics to labels appearing next to text fields, allowing the

(1]

Swing L&Fs change this behavior. On the Macintosh, the Option key is used for Alt; newer
keyboards have both labels.

This is actually up to the L&F, but the Basic L&F implements it this way, and none of the other

The horizontalAlignment andverticalAlignment properties are used to specify the alignment of the label's content (text
and icon) within its interior. If a label is sized to be just large enough for its content (asFlowLayout does), setting these
properties makes no difference. The values for these properties are defined in SwingConstants and must be LEADING,
TRAILING, LEFT, RIGHT, or CENTER for horizontalAlignment, and TOP, BOTTOM, or CENTER for
verticalAlignment. The LEADING and TRAILING constants were introduced in SDK 1.3 to accommodate locales in which
text does not flow left-to-right. In the default locale, LEADING acts the same asLEFT, and TRAILING acts the same as
RIGHT. In right-to-left locales, they are reversed. Prior to the introduction of these valueborizontalAlignment defaulted to
LEFT, andhorizontalTextPosition defaulted to RIGHT.

horizontalTextPosition , verticalTextPosition, andiconTextGap are meaningful only if bothicon andtext are defined.
They designate the position of the label's text relative to its icon. Like the alignment properties, the valid values for the text
position properties are LEFT, RIGHT, TOP,BOTTOM, andCENTER. (We'll cover these properties in more detail in the
sections that follow.) The iconTextGap property reflects the space (in pixels) between the label's icon and text. Note that
JLabel implements SwingConstants, so you can refer to the constant values listed in this paragraph as either
SwingConstants.XYZ or JLabel.XYZ—whichever you prefer.

The Ul property holds a reference to theLabelUIl object used to render the label.

4.1.1.1 displayedMnemonic and labelFor properties

The following example shows how the displayedMnemonic andlabelFor properties can be used to direct focus to a

component based on the mnemonic assigned to a label. All we do here is create three labels and three text fields, assigning
one field to each label:

/I MnemonicLabels.java
1

import javax.swing.*;
import java.awt.*;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

/I Shows how displayedMnemonic and labelFor properties work together
public class MnemonicLabels {
public static void main(String[] args) {

JTextField firstField = new JTextField(10);
JTextField middleField = new JTextField(10);
JTextField lastField = new JTextField(10);

/I Create labels and mnemonics.

JLabel firstLabel = new JLabel("First Name", JLabel.RIGHT);
firstLabel.setDisplayedMnemonic('F');
firstLabel.setLabelFor(firstField);

JLabel middleLabel = new JLabel("Middle Initial", JLabel.RIGHT);
middleLabel.setDisplayedMnemonic('l");
middleLabel.setDisplayedMnemonicindex(7); // Requires 1.4
middleLabel.setLabelFor(middleField);

JLabel lastLabel = new JLabel("Last Name", JLabel.RIGHT);
lastLabel.setDisplayedMnemonic('L");
lastLabel.setLabelFor(lastField);

/[Layout and display

JPanel p = new JPanel();
p.setLayout(new GridLayout(3, 2, 5, 5));
p.add(firstLabel);

p.add(firstField);

p.add(middleLabel);
p.add(middleField);

p.add(lastLabel);

p.add(lastField);

JFrame f = new JFrame("MnemonicLabels");
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.setContentPane(p);
f.pack();
f.setVisible(true);
}
}

When executed, this example produces the display shown in . The first letter in each label is underlined, based on the

assigned mnemonic. Pressing Alt-F, Alt-1, or Alt-L causes focus to shift to the corresponding text field.

Figure 4-3. JLabels with mnemonics

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Note that calling middleLabel.setDisplayedMnemonicindex(7) is incompatible with SDKs prior to 1.4, so remove that line
of code if you want the program to run on older SDKs without throwing a NoSuchMethodError. Doing so will decorate the
lowercase "i" in "Middle" instead of the uppercase "I" in "Initial," though.

4.1.2 Alignment

The following example shows the effects of JLabel horizontal and vertical alignment:

/I AlignmentExample.
java

1

import javax.swing.*;
import java.awt.*;

public class AlignmentExample {
public static void main(String[] args) {

/I Create the labels and set alignment.

JLabel labell = new JLabel("BottomRight", SwingConstants.RIGHT);
JLabel label2 = new JLabel("CenterLeft", SwingConstants.LEFT);
JLabel label3 = new JLabel("TopCenter", SwingConstants.CENTER);
labell.setVerticalAlignment(SwingConstants.BOTTOM);
label2.setVerticalAlignment(SwingConstants.CENTER);
label3.setVerticalAlignment(SwingConstants. TOP);

/I Add borders to the labels (more on Borders later in the book).
labell.setBorder(BorderFactory.createLineBorder(Color.black));
label2.setBorder(BorderFactory.createLineBorder(Color.black));
label3.setBorder(BorderFactory.createLineBorder(Color.black));

/[Put it all together.

JFrame frame = new JFrame("AlignmentExample");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
JPanel p = new JPanel(new GridLayout(3, 1, 8, 8));
p.add(labell);

p.add(label2);

p.add(label3);
p.setBorder(BorderFactory.createEmptyBorder(8, 8, 8, 8));
frame.setContentPane(p);

frame.setSize(200,200);

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

frame.setVisible(true);
}
}

shows the result of running this program.

Figure 4-4. JLabel alignment

If you're familiar with pre-Swing java.awt.Labels, you'll appreciate the ability to specify a vertical alignment; the
java.awt.Label class sets only horizontal alignment. (Ajava.awt.Label's horizontal alignment can be set via an argument to
its constructors. Because the JLabel constructors are modeled after those ofava.awt.Label, the JLabel class provides the

same type of flexibility and has constructors that support specifying the horizontal position of the label. In contrast, the vertical
position of a JLabel can be set only through thesetVerticalAlignment() method.)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

4.2 Working with Images

JLabels make it very simple to add graphics to your user interface. Images used illLabels (and also in other
Swing components, such as buttons) are of type javax.swing.lcon, an interface described in detail in the next

section.
These two lines of code show how simple it is to create a label containing an image:

Imagelcon icon = new Imagelcon("images/smile.qgif");
JLabel label = new JLabel(icon);

For labels that contain both graphics and text, Swing provides considerable flexibility with respect to the relative
location of the text and image. The text for the label may be displayed at any one of nine locations relative to the
image. These locations are specified via the setVerticalTextPosition() andsetHorizontalTextPosition()
methods, which take values from the SwingConstants class discussed earlier. Note the distinction between the
label's text position and its alignment; text position reflects the position of the text relative to the image while
alignment specifies the location of the label's contents (image and text) relative to the borders of the label.

Another useful feature of the JLabel class is the ability to enable and disable the label by "graying out" the label and
text. By default, a call to JLabel.setEnabled(false) switches the image to an automatically generated grayscale
version of the original image and alters the text rendering in some (L&F-specific) way. However, the grayscale image
is used only if no disabled icon has been set. The setDisabledIcon() method can be used to set an alternate image
for the disabled label.

Additionally, the spacing between the image and the text can be specified by a call to setlconTextGap(), which
takes a single parameter specifying the number of pixels between the image and the icon. This setting has no effect if
both the horizontal and vertical text positions are set to SwingConstants.CENTER since, in this case, the text is

placed directly over the image.

shows a group of labels with text and images, with the text at each of the nine locations relative to the
image. Labels 0 and 1 are disabled, the first one using the default disabled image and the second one using an
explicitly specified alternate image. Labels 2 and 3 show nondefault text gap settings. Here's the source code that

produces these labels:

Figure 4-5. JLabel text position and properties

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

/I ImageLabelExample.java
1

import javax.swing.*;
import java.awt.*;

public class ImageLabelExample {

private static Icon icon = new Imagelcon("images/smile.qgif");

public static void main(String[] args) {
JLabel[] labels= new JLabel[9];

labels[0] = makeLabel(JLabel. TOP, JLabel.LEFT);
labels[1] = makeLabel(JLabel. TOP, JLabel. CENTER);
labels[2] = makeLabel(JLabel. TOP, JLabel.RIGHT);
labels[3] = makeLabel(JLabel. CENTER, JLabel.LEFT);
labels[4] = makeLabel(JLabel. CENTER, JLabel. CENTER);
labels[5] = makeLabel(JLabel. CENTER, JLabel.RIGHT);
labels[6] = makeLabel(JLabel.BOTTOM, JLabel.LEFT);
labels[7] = makeLabel(JLabel.BOTTOM, JLabel. CENTER);
labels[8] = makeLabel(JLabel.BOTTOM, JLabel.RIGHT);

// Disable label 0.
labels[0].setEnabled(false);

/I Disable label 1 with a disabled icon.
labels[1].setDisabledlcon(new Imagelcon(“images/no.gif"));
labels[1].setEnabled(false);

/I Change text gap on labels 2 and 3.
labels[2].setlconTextGap(15);
labels[3].setlconTextGap(0);

// Add the labels to a frame and display it.
JFrame frame = new JFrame();

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
Container ¢ = frame.getContentPane();
c.setLayout(new FlowLayout(FlowLayout. CENTER, 3, 3));
for (int i=0;i<9;i++)

c.add(labels[i]);
frame.setSize(350,150);
frame.setVisible(true);

}

protected static JLabel makeLabel(int vert, int horiz) {
JLabel I = new JLabel("Smile", icon, SwingConstants.CENTER);
l.setVerticalTextPosition(vert);
l.setHorizontalTextPosition(horiz);
l.setBorder(BorderFactory.createLineBorder(Color.black));
return [;

Don't worry if you don't understand everything we did in this example. We'll explain icons in more detail in this chapter
and will get to borders and frames later in the book. For now, just concentrate on the various properties we set on the
different labels and compare the code to the display it produced in .

4.2.1 Events

The only events explicitly fired by JLabel are PropertyChangeEvents.

4.2.2 Constant

JLabel defines a single constant, shown i. A client property set with this constant as a key is used by
JComponentAccessibleJComponent to derive a name for components that haven't explicitly set one. If the
component has a defined LABELED_BY_PROPERTY, the text from theJLabel referenced by the property value
is used as the accessible name of the component.

Table 4-2. JLabel constant

Constant Type Description

LABELED_BY_PROPERTY |String |Client property key used as a back-pointer by théabelFor property

4.2.3 Constructors

|Vhis document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

JLabel()
Create a label with no text or icon.

JLabel(lcon image)
JLabel(Icon image, int horizontalAlignment)

Create labels displaying the given icon. The horizontal alignment defaults to CENTER. If specified, it must
be one of the following values taken from SwingConstants: LEADING, TRAILING, LEFT, RIGHT, or
CENTER.

JLabel(String text)
JLabel(String text, int horizontalAlignment)

Create labels displaying the supplied text. If specified, the horizontal alignment must be one of the following
values taken from SwingConstants: LEADING, TRAILING, LEFT, RIGHT, or CENTER.

JLabel(String text, Icon image, int horizontalAlignment)

Create a label with an image, text, and specified horizontal alignment. The horizontal alignment must be
one of the following values taken from SwingConstants: LEADING, TRAILING, LEFT, RIGHT, or
CENTER.

4.2.4 Public Method

public void setDisplayedMnemonic(char mnemonic)

A convenient way to set the mnemaonic property by passing in achar (instead of the property's actual type,
int). The character is converted to the equivalent integer "virtual keycode" (defined in the
java.awt.KeyEvent class) and passed to the othesetDisplayedMnemonic() method.

file:///C:/DOCUME~1/SIMULA~1/LOCALS~1/Temp/OReilly.Java.Swing.2nd.2002.chm/0596004087_

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

4.3 Support for HTML

The use of HTML is supported by most Swing components. For example, it is possible to use HTML markup to
create multiline and multifont labels:

JLabel label = new JLabel("<html>line 1<p>"
+ "big blue line 2<p>line 3</html>");

There are a number of things to watch out for when taking advantage of Swing's HTML support:

® The text is interpreted as HTML only if the first six characters are <html> (case doesn't matter).
® The font of components using HTML may not match that of components that don't.

® Bad HTML may throw RuntimeExceptions, so test your code thoroughly. (OlderSDKs are especially

fragile in this respect. SDK 1.2 can't even handle an unknown tag.)
® There is no good way to determine if a particular component supports HTML programmatically.

® XHTML-style self-closing tags (such as
) insert a spurious> character into the output, at least as of
SDK 1.4.1.

® SDKs prior to 1.3 are unable to size properly in the presence of
 tags, so for maximum compatibility

use <p>tags instead. Newer SDKs treat the two tags identically.

HTML support keeps improving with each release of Swing, but serious bugs remain. Slightly older releases are
riddled with bugs in their HTML implementations. (Versions 1.1 and earlier don't support HTML at all. The JLabel
would be displayed as 77 characters of verbatim text, just like the java.awt.Label in .)

Figure 4-6. A JLabel and a java.awt.Label displaying the same text

As of SDK 1.4.1 the following components support HTML text:JLabeI, JButton, JToggleButton, JCheckBox,
JRadioButton, JMenu, JMenultem, JCheckBoxMenultem, JRadioButtonMenultem, JComboBox, JList, the

tabs of JTabbedPane, JTabIe, JTree, andJToolTip. (And, of course,JEditorPane was designed to support
HTML from day one.)

2] The list for 1.3 is the same, but with several more sizing problems. 1.2 does not support HTML

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

with JToggleButton, JCheckBox, orJRadioButton.

(3l HTML works in table rows and in the table header, but as of SDK 1.4.1, neither is automatically
resized if the HTML needs more vertical space than a single line of plain text. You might have to
manually resize them.

|Vhis document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

4.4 Icons

Swing introduces the concept of an icon for use in a variety of components. THeon interface andlmagelcon class

make dealing with simple images extremely easy.

The Icon interface is very simple, specifying just three methods used to determine the size of theon and display it.
Implementations of this interface are free to store and display the image in any way, providing a great deal of
flexibility. In other words, icons don't have to be bitmaps or GIF images, but are free to render themselves any way
they choose. As we'll see later, an icon can simply draw on the component if that's more efficient. The examples at
the end of this section show a couple of different ways the interface might be implemented.

4.4.1 Properties

The Icon interface defines the properties listed i . TheiconHeight andiconWidth properties specify the
size of the Icon in pixels.

Table 4-3. Icon properties

Property Data type get is set Default value
iconHeight int
iconWidth int
4.4.2 Method

public void paintlcon(Component ¢, Graphics g, int x, int y)

Paint the Icon at the specified location on the giverSraphics. For efficiency reasons, theGraphics object
will (probably) not be clipped, so be sure not to draw "outside the lines." You must make sure to keep your
horizontal position between X andX + getlconWidth() - 1, and your vertical position betweery andy +
getlconHeight() - 1 while painting. TheComponent is provided to allow its properties (such as
foreground or background color) to be used when painting or so it can be used as an image observer (see
Section 4. ﬂ later in this chapter).

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

4.5 Implementing Your Own Icons

Here's a class that implements the Icon interface and uses ovals as simple icons:

I/l Ovallcon.java

1

import javax.swing.*;
import java.awt.*;

/I A simple icon implementation that draws ovals
public class Ovallcon implements Icon {

private int width, height;

public Ovallcon(int w, int h) {
width = w;
height = h;

}

public void painticon(Component ¢, Graphics g, int x, int y) {
g.drawOval(x, y, width-1, height-1);
}

public int getlconWidth(') { return width; }
public int getlconHeight() { return height; }
}

A simple class that creates a few labels shows how it works:

/I TestOval.java

1

import javax.swing.*;
import java.awt.*;

public class TestOval {
public static void main(String[] args) {
JFrame f = new JFrame();
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

|Vhis document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

JLabel labell = new JLabel(new Ovallcon(20,50));

JLabel label2 = new JLabel(new Ovallcon(50,20));

JLabel label3 = new JLabel("Round!", new Ovallcon(60,60), SwingConstants. CENTER);
label3.setHorizontal TextPosition(SwingConstants.CENTER);

Container ¢ = f.getContentPane();
c.setLayout(new FlowLayout());
c.add(labell);
c.add(label2);
c.add(label3);
f.pack();
f.setVisible(true);
}
}

Running this test program produces the display shown i

Figure 4-7. Ovallcon labels

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

4.6 Dynamic Icons

Icons are under no obligation to paint themselves the same way every time they are displayed. It's perfectly
reasonable (and often quite useful) to have an icon that uses some sort of state information to determine how to
display itself. In the next example, we create two sliders (JSlider is explained in detail iA that can be used
to change the width and height of a dynamic icon:

/I DynamiclconExample.java
1

import javax.swing.*;

import javax.swing.event.*;
import java.awt.*;

/I Example of an icon that changes form.
public class DynamiclconExample {
public static void main(String[] args) {

/I Create a couple of sliders to control the icon size.
final JSlider width = new JSlider(JSlider. HORIZONTAL, 1, 150, 75);
final JSlider height = new JSlider(JSlider.VERTICAL, 1, 150, 75);

/I A'little icon class that uses the current slider values
class Dynamiclcon implements Icon {
public int getlconWidth(') { return width.getValue(); }
public int getlconHeight() { return height.getValue(); }

public void painticon(Component ¢, Graphics g, int x, inty) {
g.fill3DRect(x, y, geticonWidth(), geticonHeight(), true);
}
h
Icon icon = new Dynamiclcon();
final JLabel dynamicLabel = new JLabel(icon);

/I A listener to repaint the icon when sliders are adjusted
class Updater implements ChangelListener {
public void stateChanged(ChangeEvent ev) {
dynamicLabel.repaint();
}
h
Updater updater = new Updater();

width.addChangeListener(updater);

|Vhis document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

height.addChangeListener(updater);

/l Lay it all out.
JFrame f = new JFrame();
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

Container c = f.getContentPane();
c.setLayout(new BorderLayout());
c.add(width, BorderLayout. NORTH);
c.add(height, BorderLayout. WEST);
c.add(dynamicLabel, BorderLayout. CENTER);
f.setSize(210,210);
f.setVisible(true);
}
}

shows the dynamic icon in its initial state, and then after we've moved the sliders around a bit.

Figure 4-8. A dynamic icon's size is controlled by the sliders

= I (u] F3 [P[] 5
. . . | O

The important thing to notice is that the Dynamiclcon class does not actually store any information. In this case, we
made the Icon class an inner class, giving it direct access to the sliders. Whenever the icon is told to paint itself, it
gets its width and height from the values of the sliders. You could also choose to make your Icon class an event

listener and have it update itself according to changes in certain events. The options here are wide open.

No matter how your icon gets its data, you need to make sure that any time you want to change the way it looks, you
trigger a repaint of the icon. In this example, we've done this by listening to change events from the sliders and calling
repaint() on the label that's holding the icon whenever one of the sliders changes.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

4.7 The Imagelcon Class

Swing provides a concrete implementation of thelcon interface that is considerably more useful than ouOvallcon class.
Imagelcon uses ajava.awt.Image object to store and display any graphic and provides synchronous image loading (i.e., the
Image is loaded completely before returning), makingmagelcons very powerful and easy to use. You can even use an

Imagelcon to display an animated GIF89a, making the ubiquitous "animation applet" as simple as this:

/I AnimationApplet.java
I
import javax.swing.*;

/I A simple animation applet
public class AnimationApplet extends JApplet {
public void init() {
Imagelcon icon = new Imagelcon("images/rolling.gif'); // Animated gif
getContentPane().add(new JLabel(icon));
}
}

All we did here was load an animated GIF in the init() method and then add it to the applet. For more information odApplet,

see Chapter §.

Imagelcon currently supports the JPEG, GIF (including animation and transparency), PNG, and XBM image formats. TIFF
support should be coming soon. SVG might be supported eventually.

4.7.1 Properties

The Imagelcon class defines the properties listed i . The description property allows an arbitrary description of the
image to be specified. One possible use of this property might be to give a blind user an audio description of the image.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Table 4-4. Imagelcon properties
Property Data type get is set Default value

description String : : null

iconHeight® int : -1

iconWidth® int - -1

image Image : : null
imageLoadStatus int : 0

imageObserver ImageObserver - . null

Coverridden

The iconHeight andiconWidth properties default to-1 if no image is loaded by the constructor, while theimage property
simply contains the Image object rendered by the icon.ImagelLoadStatus indicates the success or failure of the image load
process using the constants defined in java.awt.MediaTracker ABORTED, ERRORED, or COMPLETE). The default for
this property is 0, which does not map to any of these constants.

The imageObserver property contains thelmageObserver that should receive notifications of changes to the image. If this
property is null (as it is by default), the component containing the icon will be treated as the image observer when the image is
painted.

shows a class diagram forlmagelcon and the classes related to it.

Figure 4-9. Imagelcon class diagram

4.7.2 Serialization

Like most Swing classes, Imagelcon implements Serializable. The keen observer may see a problem with this: the
java.awt.Image class used by Imagelcon is not serializable. By default, this would keeplmagelcon objects from serializing

properly. The good news is that Imagelcon implements its ownreadObject() andwriteObject() methods so that the pixel
representation of the image is stored and retrieved correctly.

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

4.7.3 Constructors

Imagelcon()
Create an uninitialized Imagelcon.

Imagelcon(Image image)
Imagelcon(Image image, String description)

Create Imagelcon objects from an existing image. A textual description of the image may be provided. If no
description is provided, an attempt is made to retrieve the "comment" property from the input Image. If this is a

non-null string, it is used as the description.

Imagelcon(String filename)

Imagelcon(String filename, String description)

Create Imagelcon objects from the contents of the specified JPEG, PNG, GIF, or XBM file. The image is guaranteed
to be completely loaded (unless an error occurs) when the constructor returns.

Imagelcon(URL location)
Imagelcon(URL location, String description)

Create Imagelcon objects from the contents of the specifiedava.net.URL. The image is guaranteed to be

completely loaded (unless an error occurs) when the constructor returns.

public Imagelcon(byte imageDatal])
public Imagelcon(byte imageDatal], String description)

Create Imagelcon objects from an array of bytes containing image data in a supported format, such as JPEG, PNG,
GIF, or XBM.

4.7.4 User Interface Method

public void paintlcon(Component c, Graphics g, int x, int y)

Paint the Image at the specified location on the suppliedGraphics. The given Component is passed to the
Graphics's drawlmage() method as thelmageObserver (recall thatjava.awt. Component implements
ImageObserver) if no image observer has been explicitly set.

file:///C:/DOCUME~1/SIMULA~1/LOCALS~1/Temp/OReilly.Java.Swing.2nd.2002.chm/0596004087_

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Chapter 5. Buttons

Buttons are simple Ul components used to generate events when the user presses them. Swing buttons can displayicons,

text, or both. In this section, we'll introduce theButtonModel interface and DefaultButtonModel class (which define the state
of the button). Next, we'll look at the AbstractButton class (which defines much of the functionality for all button types). Finally,
we'll look at four concrete subclasses of AbstractButton and see how they can be grouped together using aButtonGroup.

shows the class hierarchy, with significant relationships between the button-related Swing classes. As we discussed
in the introductory chapters, each button (AbstractButton) keeps a reference to aButtonModel, which represents its state.

Figure 5-1. Button class diagram

The JMenultem class shown here (and its subclasses, not shown) is not covered in this chapter; s for details.

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

5.1 The ButtonModel Interface

The state of any Swing button is maintained by 8uttonModel object. This interface defines methods for reading

and writing a model's properties and for adding and removing various types of event listeners.

5.1.1 Properties
The properties for the ButtonModel interface are listed i . TheactionCommand property specifies the

name of the command to be sent as part of the ActionEvent that is fired when the button is pressed. This can be

used by event handlers that are listening to multiple buttons to determine which button is pressed.

Table 5-1. ButtonModel properties

Property Data type get |is | set Default value
actionCommand String
armed boolean
enabled boolean
group ButtonGroup
mnemonic int
pressed boolean
rollover boolean
selected boolean
See also java.awt.ltemSelectable.

If no actionCommand is specified, anActionEvent takes the button's text for its command string, so it is usually
not necessary to specify an explicit actionCommand . You may find it useful to do so for buttons that have icons
but no text or for multiple buttons with the same text. actionCommand properties can also be handy for
internationalization. For example, if you need to change a button's text from "Hot" to "Caliente", you won't have to
change any event-handling code if you set the actionCommand to "Hot".

The group property refers to theButtonGroup that contains the button (if any)mnemonic contains the key that

can be pressed in conjunction with a L&F-specific modifiery in order to produce the same effect as clicking the

button with the mouse. The modifier key is currently the Al 1 key for all SwingL&Fs.

[on the Macintosh, the Option key is used for Alt. Newer Mac keyboards have both labels.

- The type of the mnemonic property isint because its value is intended to be one of

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

-
4"

. However, asetMnemonic() method that takes achar is defined in
AbstractButton. It's usually easier to calsetMnemonic('a’) than it is to call
setMnemonic(KeyEvent.VK_A) unless you are working with the model directly. If

| '.:,t‘ J ﬂ the VK_ "virtual keycode" constants defined injava.awt.KeyEvent (see

you use the char version, it doesn't matter if you specify an uppercase or lowercase

character.

The other properties are boolean flags that reflect certain aspects of the button's state. The properties are:

armed

Indicates whether releasing the button causes an action to be performed. This becomefalse if the cursor is

moved away from the button while the mouse button is still being held down.
enabled

Indicates whether the button is currently enabled. A button must be enabled to be pressed.
pressed

Indicates whether the button is currently being pressed (meaning that the button is being held down).
rollover

Indicates whether the mouse cursor is currently over the button. This allows an alternate image to be
displayed.

selected

Indicates whether the button is currently selected. This is used only byToggleButton and its subclasses.
This property toggles between true andfalse each time the button is clicked.

5.1.2 Events

Objects implementing the ButtonModel interface fire action events, change events, and item events, as shown in
_.

|Vhis document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Table 5-2. ButtonModel events

Event Description
ActionEvent The button is pressed.
ChangeEvent A change has occurred in one or more properties of the button model.
ItemEvent The button is toggled on or off.

The ButtonModel interface contains the following standard methods for maintaining event subscribers:

public void addActionListener(ActionListener I)

public void removeActionListener(ActionListener I)
public void additemListener(ltemListener I)

public void removeltemListener(ltemListener I)

public void addChangeListener(ChangelListener I)
public void removeChangelListener(ChangeListener [)

file:///C:/DOCUME~1/SIMULA~1/LOCALS~1/Temp/OReilly.Java.Swing.2nd.2002.chm/0596004087_

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

| |l@ve RuBoard

5.2 The DefaultButtonModel Class

Swing provides an implementation of theButtonModel interface called DefaultButtonModel. This class is used

directly by the AbstractButton class and indirectly by the other button classesJToggleButton defines an inner

class extending DefaultButtonModel that it and its descendants use to manage their state data.

5.2.1 Properties

The DefaultButtonModel class gets most of its properties fronButtonModel. The default values set by this class

are shown in[Table 5-3.

Table 5-3. DefaultButtonModel properties

Property Datatype |get|is|set Default value
actionCommand® String null
armed® boolean false
enabled® boolean true
group®, * ButtonGroup null
mnemonic® int KeyEvent.VK_UNDEFINED
pressed® boolean false
rollover® boolean false
selected’ boolean false
selectedObjects Object[] null
ooverridden, *getter was introduced in SDK 1.3

The only property here that does not come from the ButtonModel interface is theselectedObjects property.
DefaultButtonModel provides agetSelectedObjects() method because it is mandated by thdtemSelectable

interface, but it always returns null. SDK 1.3 added thegetGroup() method.

5.2.2 Events

The events fired byDefaultButtonModel are those required byButtonModel and listed i . An
ActionEvent is fired when the button is pressed, arltemEvent is fired when the button's state is changed, and a

|Vhis document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

ChangeEvent is fired when a change has occurred to the button's properties.
This class implements the following standard methods:

public void addActionListener(ActionListener I)

public void removeActionListener(ActionListener I)

public ActionListener[] getActionListeners() (added in SDK 1.3)
public void addItemListener(ltemListener I)

public void removeltemListener(ltemListener I)

public ItemListener[] getltemListeners() (added in SDK 1.3)

public void addChangeListener(ChangeListener I)

public void removeChangeListener(ChangelListener |)

public ChangeListener[] getChangeListeners() (added in SDK 1.3)

public EventListener[] getListeners(Class listenerType) (added in SDK 1.4)

Note that the ButtonModel properties are not technically "bound properties” as defined by the JavaBeans

specification because the lighter-weight ChangeEvent is sent when they change, rather than the standard

PropertyChangeEvent.

5.2.3 Constants

DefaultButtonModel uses the constants shown i to store internal state.

Table 5-4. DefaultButtonModel constants

Constant Type
ARMED int
ENABLED int
PRESSED int
ROLLOVER int
SELECTED int

5.2.4 Constructor

public DefaultButtonModel()

Instantiates a new model. The model's properties are shown i

| |l@ve RuBoard

file:///C:/DOCUME~1/SIMULA~1/LOCALS~1/Temp/OReilly.Java.Swing.2nd.2002.chm/0596004087_

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

5.3 The AbstractButton Class

AbstractButton is an abstract base class for all button componentsJButton, JToggleButton, JCheckBox,
JRadioButton, andJMenultem and its subclasses). Since it provides functionality common to all types of buttons,

we'll cover it here before getting to the concrete button classes.

AbstractButton provides much of the functionality associated with the interaction between the various concrete
button classes and their ButtonModel objects. As we mentioned earlier, buttons in Swing can be made up of an
image (Icon), text, or both. The relative positions of the text and icon are specified exactly as they are with the
JLabel class.

Image buttons may specify as many as seven different images, allowing the button to be displayed differently
depending on its current state. The seven icons are described i , with the other properties defined by

AbstractButton.

5.3.1 Properties

The AbstractButton class defines the properties shown i .

Table 5-5. AbstractButton properties

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Property Data type |get|is|set Default value
action™ Action null
actionCommand String null
borderPainted” boolean true
contentAreaFilled® boolean true
disabledicon® Icon null
disabledSelectedicon® Icon null
displayedMnemonicIndexl'4 int -1
enabled® boolean true
focusPainted” boolean true
horizontaIAIignmentb int CENTER
horizontalTextPosition” int TRAILINGY
icon” Icon null
iconTextGapl'4 int 4
labeld String Same astext
marginb Insets null
mnemonic® int KeyEvent.VK_UNDEFINED
model” ButtonModel | - null
multiClickThreshhold long 0
pressedlconb Icon null
rolloverEnabled” boolean false
rolloverlcon Icon null
rolloverSelectedicon” Icon null
selected boolean false
selectedicon” Icon null
selectedObjects Object]] null
text” String
uP ButtonUl From L&F
verticaIAIignmentb int CENTER
verticalTextPosition” int CENTER

l'3since 1.3, 1'45ince 1.4, |Obound, ddeprecated, Coverridden

See also properties from theJComponent class .

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

There are seven different icons available for a button. Each is shown when the button is in a certain state

[prior to SDK 1.4 disabledSelectedicon androlloverSelectedicon were ignored by the
Swing L&Fs.

icon
The default icon for the button, onull for no icon.
disabledlcon

The icon shown when the button is disabled. If none is specified, a grayscale version of the default icon is
generated automatically.

selectedlcon
The icon shown when the button is selected.
disabledSelectedlcon

The icon shown when the button is selected and also disabled. If none is specified, a grayscale version of
the selected icon is generated. If no selected icon is set, it uses the value returned by getDisabledIcon().

pressedicon

The icon shown while the button is being pressed.
rollovericon

The icon shown (ifrolloverEnabled is true) when the cursor is moved over the unselected button.
rolloverSelectedicon

The icon shown (ifrolloverEnabled is true) when the cursor is moved over the selected button.

The text property contains the text, if any, displayed on the button (note that this property replaces the deprecated
label property). Themodel property is theButtonModel containing the state information for the button.

Setting the action property does a lot of work in one step. The newly attacheAction receives any ActionEvents

fired by the button, and the previous Action (if any) is deregistered. The button almost completely resets its
properties based on the Action (see theconfigurePropertiesFromAction() method and . Furthermore,

the button registers a PropertyChangeListener on theAction so it can automatically update itself when changes
are made to the Action in the future.

The horizontalAlignment andverticalAlignment properties specify where the button's content (text, icon, or
both) should be drawn within the button's borders. These properties are significant only when the button is larger than
the default size. horizontalTextPosition andverticalTextPosition specify the location of the text relative to the
icon, and iconTextGap specifies the amount of space (in pixels) separating théext and theicon. These are

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

meaningful only if both an icon and text have been specified.

Bl see Eection 4.;| inl:,_‘hapter 4 for an example of the alignment and text position properties.

The multiClickThreshhold property is the length of time (in milliseconds) during which multiplenouse clicks are
coalesced into a single ActionEvent. A value of0 (the default) indicates that each click generates ad\ctionEvent no

matter how quickly it follows its predecessor.

The margin property specifies the distance between the button'sborders and its contents (text, icon, or both).
However, it's up to the border implementation to take advantage of the value of this property. The Swing L&Fs define
borders that take the value of margin into account, but if you replace a button's border with one of your own, be

aware that the margin space is not used unless you access it explicitly in your border code. borderPainted
i

indicates whether a border (recall from] thatborder is inherited fromJComponent) should be painted

around the button. This property is meaningful only if the button actually has a border (it does by default).

The contentAreaFilled property indicates whether the rectangular content area of the button should be filled. This
should be set to false if you want to define an image-only button. Note that this is preferable to calling
setOpaque(false) because the value of the opaque property for buttons is set by the L&FocusPainted indicates
whether something special (such as a dashed line inside the button's border) should be painted to show that the

button has focus.

Finally, the rolloverEnabled property indicates whether moving the cursor over the button should cause the
rolloverlcon orrolloverSelectedlcon to be displayed. CallingsetRolloverlcon() causes this property to be set to
true.

The actionCommand , mnemonic, andselected properties are taken directly from théAbstractButton's
ButtonModel object. ThedisplayedMnemoniclndex property behaves the same way it does idLabel (see
Eection 4.;bection 4.1}). AbstractButton adds its own implementation osetEnabled(), inherited from
java.awt.Component, which updates theenabled property of itsButtonModel.

Ul holds theButtonUl used to render the button.

5.3.2 Events
AbstractButton fires the events required by theButtonModel interface (see). AnActionEvent is fired

when the button is pressed, an IltemEvent is fired when the button's state is changed, and €hangeEvent is fired

when a change has occurred to the button's properties.

Table 5-6. AbstractButton events

Event Description
ActionEvent The button is pressed.
ChangeEvent A change has occurred in one or more properties of the button's model.
ltemEvent The button is toggled on or off.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

All of these events are generated by the button's model. AbstractButton registers with the model as a listener for
each type of event and refires any events fired by the model to any registered listeners. The following standard
listener management methods are implemented in this class:

public void addActionListener(ActionListener [)

public void removeActionListener(ActionListener [)

public ActionListener[] getActionListeners() (Added in SDK 1.4)
public void addItemListener(ltemListener |)

public void removeltemListener(ltemListener I)

public ItemListener[] getltemListeners() (Added in SDK 1.4)

public void addChangeListener(ChangelListener I)

public void removeChangeListener(ChangeListener [)

public ChangelListener[] getChangeListeners() (Added in SDK 1.4)

5.3.3 Constants

The constants shown in are defined byAbstractButton for use inPropertyChangeEvents. Some
PropertyChangeEvents generated by AbstractButton use strings other than these. There's no constant defined
to indicate that the action property has changed, so thesetAction() method fires aPropertyChangeEvent with
the string "action". Accessibility-related change events use strings defined in thédccessibleContext class.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Table 5-7. AbstractButton constants

Constant Type Description
BORDER_PAINTED_CHANGED_PROPERTY String| borderPainted property has changed
CONTENT_AREA FILLED CHANGED PROPERTY String| contentAreaFilled property has changed
DISABLED_ICON_CHANGED_PROPERTY String| disabledlcon property has changed

DISABLED SELECTED_ICON_CHANGED_PROPERTY |String|disabledSelectedlcon property has changed

FOCUS_PAINTED_CHANGED_PROPERTY String| focusPainted property has changed

HORIZONTAL_ALIGNMENT_CHANGED PROPERTY String|horizontalAlignment property has changed

HORIZONTAL_TEXT_POSITION_CHANGED_PROPERTY |String| horizontal TextPosition property has changed

ICON_CHANGED_PROPERTY String|icon property has changed
MARGIN_CHANGED_PROPERTY String| margin property has changed
MNEMONIC_CHANGED_PROPERTY String/ mnemonic property has changed
MODEL_CHANGED_PROPERTY String/model property has changed
PRESSED_ICON_CHANGED_PROPERTY String|pressedlicon property has changed
ROLLOVER_ENABLED_CHANGED_PROPERTY String| rolloverEnabled property has changed
ROLLOVER_ICON_CHANGED_PROPERTY String| rolloverlcon property has changed

ROLLOVER_SELECTED_ICON_CHANGED_PROPERTY |String|rolloverSelectedicon property has changed

SELECTED_ICON_CHANGED_PROPERTY String| selectedlcon property has changed
TEXT_CHANGED_PROPERTY String|text property has changed
VERTICAL_ALIGNMENT_CHANGED_ PROPERTY String|verticalAlignment property has changed

VERTICAL_TEXT_POSITION_CHANGED_PROPERTY String| verticalTextPosition property has changed

5.3.4 Public Methods

public void doClick(int pressTime)

Programmatically simulate a user pressing the button for a specified number of milliseconds. Calling this
method has the same effect as pressing the button—the button even appears to be pressed.

public void doClick()
This version of doClick() calls the first version with a value of 68 milliseconds.

public void setMnemonic(char mnemonic)

|Vhis document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

This method provides a convenient way to set the mnemonic property by passing in achar (as opposed to

the property's actual type, int). The character is converted to the equivalent integer "virtual keycode"
(defined in the java.awt.KeyEvent class) and passed to the othesetMnemonic() method.

5.3.5 Action Configuration Methods

These protected methods do most of the work to support Actions. Subclasses that wish to alter the way they behave

with Actions should override these methods. (These methods were added infSDK 1.3.)

protected PropertyChangeListener createActionPropertyChangeListener(Action a)

Return a PropertyChangeListener that will be responsible for reconfiguring the button in response to

changes in the button's action.

protected void configurePropertiesFromAction(Action a)

The values of several proierties are pulled from the given Action and applied to this button. The specific

properties are listed in

remove from this list.

able 5-§, though the concrete subclasses ofAbstractButton can and do add and

Table 5-8. Properties set by configurePropertiesFromAction()

Button property

Value taken from Action

Value if Action is null

text a.getValue(NAME) null
icon a.getValue(SMALL_ICON) null
mnemonic a.getValue(MNEMONIC_KEY) KeyEvent.VK_UNDEFINED
toolTipText a.getValue(SHORT_DESCRIPTION) null
actionCommand a.getValue(ACTION_COMMAND_KEY) null
enabled a.isEnabled() true

| |l@ve RuBoard

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

5.4 The JButton Class

JButton is the simplest of the button types, adding very little to what is provided by thAbstractButton class.
JButtons are buttons that are not toggled on and off but instead act agush buttons, which invoke some action when

clicked. shows what these buttons look like in four of the Swind &Fs.

Figure 5-2. JButtons in four L&Fs

5.4.1 Properties

The JButton class inherits most of its properties and default values from its superclasses. The exceptions to this are
shown in . Themodel property is set to a new instance oDefaultButtonModel when aJButton is created.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Table 5-9. JButton properties

Property Data type get|is|set Default value
accessibleContext® AccessibleContext | - JButton.AccessibleJButton()
defaultButton boolean . false
defaultCapable boolean - |- true
model° ButtonModel : . | DefaultButtonModel()
UlClassID® String : "ButtonUI"

Coverridden
See also properties fromAbstractButton .

The defaultButton property indicates whether the button is activated by default when some event occurs within the
JRootPane containing the button. Typically, the event that would trigger the button would be an Enter key press, but
this is actually up to the L&F implementation.

The defaultButton property cannot be set directly. Instead, it is set by telling théRootPane which button should be
the default. (We'll cover JRootPane inat this point, it's enough to know that the Swing containers
JApplet, JDialog, JFrame, andJWindow all use aJRootPane as their primary content container.) If the button is

inside one of these Swing containers, this property may be true.

The other new property, defaultCapable , indicates whether the button may be set as a root pane's default button.
A button may be treated only as the default button if this property is set to true.

5.4.2 Using the Default Button

Here's a quick example showing how the default button property can be used:

/I DefaultButtonExample.java
1

import javax.swing.*;

import java.awt.*;

/I Example using defaultButton and JRootPane.setDefaultButton()
public class DefaultButtonExample {
public static void main(String[] args) {

/I Create some buttons.

JButton ok = new JButton("OK");
JButton cancel = new JButton("Cancel");
JPanel buttonPanel = new JPanel();

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

buttonPanel.add(ok);
buttonPanel.add(cancel);

JLabel msg = new JLabel("Is this OK?", JLabel. CENTER);

/I Create a frame, get its root pane, and set the OK button as the default. This
/I button is pressed if we press the Enter key while the frame has focus.
JFrame f = new JFrame();
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

JRootPane root = f.getRootPane();

root.setDefaultButton(ok);

/I Layout and display

Container content = f.getContentPane();
content.add(msg, BorderLayout. CENTER);
content.add(buttonPanel, BorderLayout.SOUTH);
f.setSize(200,100);

f.setVisible(true);

The first thing we do here is create two buttons and a label. We then create a JFrame and get its "root pane."” Next,
we call this pane's setDefaultButton() method, passing in a reference to the OK button. When this program runs,
the OK button is drawn with a different border around it, as shown with the Metal L&F in. More importantly,

when we press Enter while the frame has focus, the OK button is pressed automatically.

Figure 5-3. Default button

5.4.3 Events

JButton does not define any new events, but it's important to understand which of the events defined by its
superclasses are fired when the button is pressed. The most important thing to know about JButton events is that
JButtons fire ActionEvents when they are clicked. This type of event is sent after the button is released, and only if
the button is still armed (meaning that the cursor is still over the button). The following example creates event
listeners for action, change, and item events to show which events are fired when we press the button:

// JButtonEvents.java

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

1

import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;

import java.awt.event.*;

public class JButtonEvents {
public static void main(String[] args) {
JButton jb = new JButton("Press Me");

jb.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent ev) {
System.out.printin("ActionEvent!");
}
Dk
jb.addltemListener(new ItemListener() {
public void itemStateChanged(ltemEvent ev) {
System.out.printin("ltemEvent!");
}
Dk
jb.addChangeListener(new ChangeListener() {
public void stateChanged(ChangeEvent ev) {
System.out.printin("ChangeEvent!");
}
D
JFrame f = new JFrame();
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.getContentPane().add(jb);
f.pack();
f.setVisible(true);

Running this program and pressing the button produces the following output:

ChangeEvent!
ChangeEvent!

When the button is released, the following additional output is produced:

ActionEvent!
ChangeEvent!

The initial change events are fired, indicating that the button is armed andpressed. When the button is released, the
action event is fired, along with another change event to indicate that the button is no longer pressed.

Pressing the button a second time results in only a single change event, followed by the action event and change
event when the button is released. This is because the button's armed property is still set tatrue after the button is

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

clicked. This property is set to false again only if you hold the mouse button down and then move the cursor away

from the button. If the button is released while the pointer is no longer over the button, no ActionEvent is fired.

In practice, you are typically interested only in the ActionEvents fired by aJButton.

5.4.4 Constructors

public JButton()
Create a button with no image or text.
public JButton(Action a)

Create a button with property values taken from the specified Action (see, register the Action to
receive ActionEvents fired by the button, and register the button as €hangeListener of the Action. The
button adapts to any future changes made to the Action. This is equivalent to instantiating alButton with
the default constructor and then calling its setAction() method. (This constructor was introduced with SDK
1.3)

public JButton(lcon icon)

Create a button displaying the specified icon.
public JButton(String text)
Create a button displaying the specified text.

public JButton(String text, Icon icon)

Create a button displaying the specified text andicon.

5.4.5 Using Actions

The following example creates four Action objects and uses them to createbuttons (and to create menu items, just to
show how easy it is). Each button (and menu) takes its text, icon, mnemonic, toolTip, andenabled status from the
Action. If anAction changes one or more of these, the button (and menu) reflects the change automatical

shows an example of this: both the button and the menu item change from "Go to channel 9" in their enabled state to

"Go to channel 2" in their disabled state when the user clicks on (or invokes via the mnemonic with Alt-S 4 the Set
"Go to' channel button.

[l As we noted earlier, the use of the Alt key is actually up to the L&F, but currently, the Swing
L&Fs that support button mnemonics use Alt. The Mac L&F does not, so if you run this program
on a Mac, the buttons do not display any underlines, and pressing the key combinations has no
effect.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Figure 5-4. ActionExample before and after clicking on the Set "Go to' channel button

/I ActionExample.java
1

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class ActionExample extends JFrame {

public static final int MIN_CHANNEL = 2;
public static final int MAX_CHANNEL = 13;

private int currentChannel = MIN_CHANNEL;
private int favoriteChannel = 9;
private JLabel channelLabel = new JLabel();

private Action upAction = new UpAction();

private Action downAction = new DownAction();

private GotoFavoriteAction gotoFavoriteAction = new GotoFavoriteAction();
private Action setFavoriteAction = new SetFavoriteAction();

public class UpAction extends AbstractAction {
public UpAction() {

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

putValue(NAME, "Channel Up");
putValue(SMALL_ICON, new Imagelcon("images/up.gif"));
putValue(SHORT_DESCRIPTION, "Increment the channel number");
putValue(MNEMONIC_KEY, new Integer(KeyEvent.VK_U));

}

public void actionPerformed(ActionEvent ae) {
setChannel(currentChannel+1);

}

}

public class DownAction extends AbstractAction {
public DownAction() {
putValue(NAME, "Channel Down");
putValue(SMALL_ICON, new Imagelcon("images/down.gif"));
putValue(SHORT_DESCRIPTION, "Decrement the channel number");
putValue(MNEMONIC_KEY, new Integer(KeyEvent.VK_D));
}
public void actionPerformed(ActionEvent ae) {
setChannel(currentChannel-1);
}
}

public class GotoFavoriteAction extends AbstractAction {
public GotoFavoriteAction() {
putValue(SMALL_ICON, new Imagelcon("images/fav.gif"));
putValue(MNEMONIC_KEY, new Integer(KeyEvent.VK_G));
updateProperties();
}
public void updateProperties() {
putValue(NAME, "Go to channel "+favoriteChannel);
putValue(SHORT_DESCRIPTION, "Change the channel to "+favoriteChannel);
}
public void actionPerformed(ActionEvent ae) {
setChannel(favoriteChannel);
}
}

public class SetFavoriteAction extends AbstractAction {

public SetFavoriteAction() {
putValue(NAME, "Set 'Go to' channel™);
putValue(SMALL_ICON, new Imagelcon("images/set.gif"));
putValue(SHORT_DESCRIPTION, "Make current channel the Favorite channel™);
putValue(MNEMONIC_KEY, new Integer(KeyEvent.VK_S));

}

public void actionPerformed(ActionEvent ae) {
favoriteChannel = currentChannel;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

gotoFavoriteAction.updateProperties();
setEnabled(false);
gotoFavoriteAction.setEnabled(false);
}
}

public ActionExample() {
super("ActionExample");

setChannel(currentChannel); // Enable/disable the Actions as appropriate.

channelLabel.setHorizontalAlignment(JLabel. CENTER);
channelLabel.setFont(hew Font("Serif", Font.PLAIN, 32));

getContentPane().add(channelLabel, BorderLayout. NORTH);

JPanel buttonPanel = new JPanel(new GridLayout(2, 2, 16, 6));
buttonPanel.setBorder(BorderFactory.createEmptyBorder(6, 16, 16, 16));
getContentPane().add(buttonPanel, BorderLayout. CENTER);
buttonPanel.add(new JButton(upAction));

buttonPanel.add(new JButton(gotoFavoriteAction));
buttonPanel.add(new JButton(downAction));

buttonPanel.add(new JButton(setFavoriteAction));

JMenuBar mb = new JMenuBar();

JMenu menu = new JMenu("Channel");
menu.add(new JMenultem(upAction));
menu.add(new JMenultem(downAction));
menu.addSeparator();

menu.add(new JMenultem(gotoFavoriteAction));
menu.add(new JMenultem(setFavoriteAction));
mb.add(menu);

setJMenuBar(mb);

public void setChannel(int chan) {
currentChannel = chan;
channelLabel.setText("Now tuned to channel: "+currentChannel);
/I Enable/disable the Actions as appropriate.
downAction.setEnabled(currentChannel > MIN_CHANNEL);
upAction.setEnabled(currentChannel < MAX_CHANNEL);
gotoFavoriteAction.setEnabled(currentChannel != favoriteChannel);
setFavoriteAction.setEnabled(currentChannel != favoriteChannel);

public static void main(String argv[]) {

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

JFrame f = new ActionExample();

f.setSize(400, 180);
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.setVisible(true);

5.4.6 Fancy Buttons

While looking at AbstractButton, we learned that quite a few things can be done with Swing buttons to make them
more visually interesting. In this example, we'll see how we can spice up a user interface by adding rollover and
selected icons to our buttons. We'll also take away the buttonborders, focus painting, and fill content area to give our
display a nice clean look.

/I FancyButton.java
1

import javax.swing.*;
import java.awt.*;

public class FancyButton extends JButton {
/I Create a JButton that does not show focus, does not paint a border, and displays
/I different icons when rolled over and pressed.
public FancyButton(lcon icon, Icon pressed, Icon rollover) {
super(icon);
setFocusPainted(false);
setRolloverEnabled(true);
setRolloverlcon(rollover);
setPressedlcon(pressed);
setBorderPainted(false);
setContentAreaFilled(false);

/I A simple test program
public static void main(String[] args) {

FancyButton b1 = new FancyButton(
new Imagelcon("images/redcube.gif"),
new Imagelcon("images/redpaw.gif"),
new Imagelcon("images/reddiamond.gif"));
FancyButton b2 = new FancyButton(
new Imagelcon("images/bluecube.gif"),

|Vhis document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

new Imagelcon("images/bluepaw.gif"),
new Imagelcon("images/bluediamond.gif"));
JFrame f = new JFrame();
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
Container ¢ = f.getContentPane();
c.setLayout(new FlowLayout());
c.add(bl);
c.add(b2);
f.pack();
f.setVisible(true);
}
}

shows our new button class with the different states of the buttons. Of course, this is just one fancy button
implementation. You can create your own special button classes using some or all of the features shown in
FancyButton, as well as other features, such as adding icons for other buttorstates.

Figure 5-5. Buttons using "rollover" and "pressed" icons

file:///C:/DOCUME~1/SIMULA~1/LOCALS~1/Temp/OReilly.Java.Swing.2nd.2002.chm/0596004087_

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

5.5 The JToggleButton Class

JToggleButton is an extension ofAbstractButton and is used to represent buttons that can be toggled on and off
(as opposed to buttons like JButton which, when pushed, "pop back up"). It should be noted that while the
subclasses of JToggleButton (JCheckBox and JRadioButton) are the kinds ofJToggleButtons most commonly

used, JToggleButton is not an abstract class. When used directly, it typically (though this is ultimately up to the
L&F) has the appearance of a JButton that does not pop back up when pressed (s).

Figure 5-6. JToggleButtons in four L&Fs

5.5.1 Properties

The JToggleButton class inherits all of its properties and most of its default values from its superclass. The
exceptions are shown in . Themodel property is set to a new instance off oggleButtonModel when a
JToggleButton is created. ToggleButtonModel (described in the next section) is a public inner class that extends
DefaultButtonModel.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Table 5-10. JToggleButton properties

Property Data type get|is|set Default value
) o i JToggleButton.AccessibleJToggleButton(
accessibleContext AccessibleContext| -)
model° ButtonModel : . |ToggleButtonModel()
UlIClassID® String . "ToggleButtonUl"

0 .
overridden

See also properties from

AbstractButton .

5.5.2 Events

Like JButton, JToggleButton defines no new events. However, the events fired byToggleButtons are slightly
different than those fired by JButton. Let's look at these events by running a simple program like the one used in the
JButton event section. This time, we'll create aJToggleButton instead of aJButton:

/I JToggleButtonEvents.java
1

import javax.swing.*;

import javax.swing.event.*;
import java.awt.*;

import java.awt.event.*;

public class JToggleButtonEvents {
public static void main(String[] args) {
JToggleButton jtb = new JToggleButton("Press Me");

jtb.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent ev) {
System.out.printin("ActionEvent!");
}
D
jtb.addItemListener(new ItemListener() {
public void itemStateChanged(ltemEvent ev) {
System.out.printin("ltemEvent!");
}
D
jtb.addChangeListener(new ChangelListener() {

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

public void stateChanged(ChangeEvent ev) {
System.out.printin("ChangeEvent!");

}
D
JFrame f = new JFrame();
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
Container c = f.getContentPane();
c.setLayout(new FlowLayout());
c.add(jtb);
f.pack();
f.setVisible(true);

When we run this program and press the button, we get the following output:

ChangeEvent!
ChangeEvent!

After releasing the button, we see:

ChangeEvent!
ItemEvent!
ChangeEvent!
ActionEvent!

As in our JButton example, the first two events are fired to indicate that the button &med andpressed. When the
button is released, we get another change event indicating that the button has now been selected. Additionally, toggle
buttons fire an ItemEvent to indicate button selection. The final two events match those dfButton, indicating that the
button is no longer being pressed and that an action (button press) has occurred.

Subsequent button presses result in one less ChangeEvent (just like we saw with]JButton) because the button
remains armed after it is pressed. (Depending on the L&F, there may also be additional ChangeEvents.)

5.5.3 Constructors

public JToggleButton()
Create a button that has no text or icon and is not selected.
public JToggleButton(Action a)

Create a button with property values taken from the specified Action (see , register the Action to
receive ActionEvents fired by the button, and register the button as €hangeListener of the Action. The
button adapts to any future changes made to the Action. This is equivalent to instantiating a

|Vhis document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

JToggleButton with the default constructor and then calling itsetAction() method. (This constructor was
introduced with SDK 1.3.)

public JToggleButton(lcon icon)

public JToggleButton(lcon icon, boolean selected)

Create a button that displays the specified icon. If included, theboolean parameter determines the initial

selection state of the button.

public JToggleButton(String text)
public JToggleButton(String text, boolean selected)

Create a button that displays the specified text. If included, theboolean parameter determines the initial

selection state of the button.

public JToggleButton(String text, Icon icon)
public JToggleButton(String test, Icon icon, boolean selected)

Create a button that displays the specified text andicon. If included, theboolean parameter determines the
initial selection state of the button.

file:///C:/DOCUME~1/SIMULA~1/LOCALS~1/Temp/OReilly.Java.Swing.2nd.2002.chm/0596004087_

|Vhis document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

5.6 The JToggleButton.ToggleButtonModel Class

As we mentioned earlier, JToggleButton does not use theDefaultButtonModel class as its model.
ToggleButtonModel, a public static inner class that extend®efaultButtonModel, is used instead.

5.6.1 Properties

ToggleButtonModel modifies the methods for working with the properties listed i. New implementations
of isSelected() andsetSelected() use the button'sButtonGroup (if defined) to keep track of which button is
selected, ensuring that even if multiple selected buttons are added to a group, only the first one is considered
selected (since the group keeps track of the "officially" selected button). In addition, thesetPressed() method is
redefined to call setSelected() when the button is released (if it is armed)

Table 5-11. JToggleButton.ToggleButtonModel properties

Property Data type | get |is | set| Default value
pressed” boolean .. |false
selected® boolean . |. |false

0 .
overridden

See also properties fromDefaultButtonModel 1»

file:///C:/DOCUME~1/SIMULA~1/LOCALS~1/Temp/OReilly.Java.Swing.2nd.2002.chm/0596004087_

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

5.7 The JCheckBox Class

The JCheckBOX class is shown in variousL&Fs in . JCheckBox is a subclass ofJToggleButton and
is typically used to allow the user to turn a given feature on or off or to make multiple selections from a set of choices.
A JCheckBox is usually rendered by showing a small box into which a "check" is placed when selected (as shown in
. If you specify anicon for the checkbox, this icon replaces the default box. Therefore, if you specify an
icon, you should always also supply a selected icon—otherwise, there is no way to tell if a checkbox is selected.

BI Note that thejava.awt.Checkbox class differs in capitalization from
javax.swing.JCheckBox.

Figure 5-7. JCheckBoxes in four L&Fs

5.7.1 Properties

The JCheckBox class inherits most of its properties from its superclasses. The exceptions are shown [ifable 5-12.
By default, no border is painted on JCheckBoxes, and theirhorizontalAlignment is to the leading edge (which

means to the left in the default locale, in which text reads left to right) = Setting the borderPaintedFlat property to
true is a hint to the L&F that the checkbox should be drawn more plainly than usual. (This is used primarily by cell
renderers for tables and trees.)

6] This locale sensitivity was introduced in SDK 1.4; previously, checkboxes were always aligned

to the left.
Table 5-12. JCheckBox properties
Property Data type get |is |set Default value
accessibleContext® AccessibleContext |- AccessibleJCheckBox
borderPainted® boolean |- |false
borderPaintedFlat™> P boolean - |- |false
horizontalAlignment® int : - |LEADINGY*

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

UlClassID°

String

1.3

since 1.3,1'4since 1.4,b’ Coverridden

See also properties fromJToggleButton (Table 5-10).

l- l l l"CheCkBOXUI"

5.7.2 Events

See the discussion of JToggleButton (JCheckBox's superclass) events.

5.7.3 Constant

JToggleButton adds one constant for use ifPropertyChangeEvents to the list defined byAbstractButton (see
ﬁ)

ble 5-13).

Table 5-13. JToggleButton constant

Constant

Type

Description

BORDER_PAINTED_FLAT _CHANGED_PROPERTY String

See also the constants defined byAbstractButton inl able 5-2[

borderPaintedFlat property has changed

5.7.4 Constructors

public JCheckBox()

Create a checkbox that has no text or icon and is not selected.

public JCheckBox(Action a)

Create a checkbox with property values taken from the specified Action, register theAction to receive
ActionEvents fired by the checkbox, and register the checkbox as &£hangeListener of the Action. The

checkbox adapts to any future changes made to the Action. The properties set are the ones listed i
Q, except that theSMALL_ICON is not honored sinceJCheckBox uses itsicon property to show its
state. (This constructor was introduced with SDK 1.3.)

public JCheckBox(Icon icon)

public JCheckBox(Icon icon, boolean selected)

|Vhis document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Create a checkbox that displays the specified icon. If included, theselected parameter determines the

initial selection state of the button.

public JCheckBox(String text)
public JCheckBox(String text, boolean selected)

Create a checkbox that displays the specified text. If included, theselected parameter determines the

initial selection state of the button.

public JCheckBox(String text, Icon icon)
public JCheckBox(String text, Icon icon, boolean selected)

Create a checkbox that displays the specified text andicon. If included, theselected parameter determines

the initial selection state of the button.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

5.8 The JRadioButton Class
JRadioButton is a subclass ofJToggleButton, typically used with otheddRadioButtons, that allows users to make
a single selection from a set of options . Because radio buttons form a set of choices,JRadioButtons are

usually used in groups, managed by a ButtonGroup (described in the next section). If you specify aricon for the radio

button, you should also specify a selected icon so it will be visually apparent if a button is selected.

Figure 5-8. JRadioButtons in four L&Fs

5.8.1 Properties

The JRadioButton class inherits all its properties and most of its default values from its superclass. The only
exceptions are shown in [Table 5-14|. By default, no border is painted onJRadioButtons, and their

horizontalAlignment is set to the leading edge (to the left in the default locale, in which text reads left to rig@.

"] This locale sensitivity was introduced in SDK 1.4; previously, radio buttons were always aligned

to the left.
Table 5-14. JRadioButton properties
Property Data type get|is|set Default value
) o , JRadioButton.AccessibleJRadioButton(
accessibleContext AccessibleContext| - |
borderPainted”® boolean |- |false
horizontalAlignment® int : - |LEADINGY*
UlClassID° String . "RadioButtonUl"
1""since 1.4,°0verridden
See also properties from JToggleButton
(Table 5-10).

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

5.8.1.1 Events

See the discussion of JToggleButton (JRadioButton's superclass) events.

5.8.2 Constructors

public JRadioButton()
Create a button that has no text or icon and is not selected.
public JRadioButton(Action a)

Create a button with property values taken from the specified Action, register theAction to receive
ActionEvents fired by the button, and register the button as &hangeListener of the Action. The button
adapts to any future changes made to the Action. The properties set are the ones listed i, except
that the SMALL_ICON is not honored sinceJRadioButton uses itsicon property to show its state. (This
constructor was introduced with SDK 1.3.)

public JRadioButton(Icon icon)
public JRadioButton(Icon icon, boolean selected)

Create a button that displays the specified icon. If included, theboolean parameter determines the initial
selection state of the button.

public JRadioButton(String text)
public JRadioButton(String text, boolean selected)

Create a button that displays the specified text. If included, theboolean parameter determines the initial

selection state of the button.

public JRadioButton(String text, Icon icon)
public JRadioButton(String text, Icon icon, boolean selected)

Create a button that displays the specified text andicon. If included, theboolean parameter determines the

initial selection state of the button.

5.8.3 Opaque JRadioButtons and JCheckBoxes

Typically, JRadioButtons and JCheckBoxes should be left transparent (notopague) with their
contentAreaFilled property set tofalse. These components usually fill only some of their allocated space, and
making them opaque or filled causes an awkward-looking rectangle to be painted behind them, as shown in

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Figure 5-9. Opaque JCheckBox and JRadioButton

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

5.9 The ButtonGroup Class

The ButtonGroup class allows buttons to be logically grouped, guaranteeing that no more than one button in the
group is selected at any given time. In fact, once one of the buttons is selected, the ButtonGroup ensures that
exactly one button remains selected at all times. Note that this allows for an initial state (in which no button is
selected) that can never be reached again once a selection is made, except programmatically.

As mentioned earlier, ButtonGroups typically hold JRadioButtons (or JRadioButtonMenultems, discussed in
), but this is purely a convention and is not enforced buttonGroup. ButtonGroup'sadd() method
takes objects of type AbstractButton, so any button type may be added—even a mix of types. Of course, adding a
JButton to aButtonGroup would not be very useful sinceJButtons do not have selected and deselected states. In
fact, JButtons added to ButtonGroups have no effect on the state of the other buttons if they are pressed.

ButtonGroup objects do not have any visual appearance; they simply provide a logical grouping of a set of buttons.
You must add buttons in a ButtonGroup to aContainer and lay them out as though ndButtonGroup were being
used.

It's worth noting that some methods in the ButtonGroup class deal withAbstractButton objects and some deal with
ButtonModel objects. Theadd(), remove() , andgetElements() methods all useAbstractButton, while the
getSelection(), isSelected(), andsetSelected() methods use ButtonModel objects.

5.9.1 Properties
ButtonGroup defines the properties listed irfTable 5-15. ThebuttonCount property is the number of buttons in the

group. The elements property is anEnumeration of the AbstractButton objects contained by the group. The
selection property contains theButtonModel of the currently selected button.

Table 5-15. ButtonGroup properties

Property Data type get is set Default value
buttonCount int . 0
elements Enumeration . Empty
selection ButtonModel : null

5.9.2 Voting with a Button Group

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

The following example demonstrates the use of a ButtonGroup to ensure that only a single selection is made from a

list of choices. Listeners are added to the buttons to show which events are fired each time a new button is selected.

/I SimpleButtonGroupExample.java
1

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

/I A ButtonGroup voting booth
public class SimpleButtonGroupExample {

public static void main(String[] args) {
/l Some choices
JRadioButton choicel, choice2, choice3;
choicel = new JRadioButton("Bach: Well Tempered Clavier, Book 1");
choicel.setActionCommand("bachl");
choice2 = new JRadioButton("Bach: Well Tempered Clavier, Book II");
choice2.setActionCommand("bach2");
choice3 = new JRadioButton("Shostakovich: 24 Preludes and Fugues");
choice3.setActionCommand("shostakovich");

/I A group that ensures we vote for only one
final ButtonGroup group = new ButtonGroup();
group.add(choicel);

group.add(choice?2);

group.add(choice3);

/I A simple ActionListener, showing each selection using the ButtonModel
class VoteActionListener implements ActionListener {
public void actionPerformed(ActionEvent ev) {
String choice = group.getSelection().getActionCommand();
System.out.printin("ACTION Choice Selected: " + choice);

}
}

/I A simple ItemListener, showing each selection and deselection
class VoteltemListener implements ItemListener {
public void itemStateChanged(ltemEvent ev) {
boolean selected = (ev.getStateChange() == ItemEvent.SELECTED));
AbstractButton button = (AbstractButton)ev.getltemSelectable();
System.out.printin("ITEM Choice Selected: " + selected +
", Selection: " + button.getActionCommand());

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

/I Add listeners to each button.

ActionListener alisten = new VoteActionListener();
choicel.addActionListener(alisten);
choice2.addActionListener(alisten);
choice3.addActionListener(alisten);

ItemListener ilisten = new VoteltemListener();
choicel.addltemListener(ilisten);
choice2.addltemListener(ilisten);
choice3.addltemListener(ilisten);

/I Throw everything together.

JFrame frame = new JFrame();
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
Container ¢ = frame.getContentPane();

c.setLayout(new GridLayout(0, 1));

c.add(new JLabel("Vote for your favorite prelude & fugue cycle™);
c.add(choicel);

c.add(choice?);

c.add(choice3);

frame.pack();

frame.setVisible(true);

We first create three radio buttons and add them to a button group. Then, we define anActionListener and an
ItemListener to print out some information each time a selection is made. We add both listeners to each button. The
rest of the code is just layout.

When executed, the initial selection of a radio button produces the following output:

ITEM Choice Selected: true, Selection: shostakovich
ACTION Choice Selected: shostakovich

Changing the selection causes two item events to be fired, showing which button was toggled off and which was
toggled on:

ITEM Choice Selected: false, Selection: shostakovich
ITEM Choice Selected: true, Selection: bachl
ACTION Choice Selected: bachl

5.9.3 Constructor

|Vhis document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

public ButtonGroup()

Create an empty group.

5.9.4 Methods

public void add(AbstractButton b)

Add a button to the group. If there is no selected button in the group, and the supplied button is selected, it
becomes the group's selection. (Conversely, if there is already a selected button, adding a selected button
does not change the selection; Swing adds the button to the group but if necessary deselects it first.)

public void remove(AbstractButton b)

Remove a button from the group. If the removed button was the currently selected button, the group's

selection is set to null.
public void setSelected(ButtonModel m, boolean b)

Select the given button if the boolean parameter is true. If there was a previously selected button in the

group, it is deselected. Calling this method with a false argument has no effect.

public boolean isSelected(ButtonModel m)

This method indicates whether the given button is the group's currently selected button.

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Chapter 6. Bounded-Range Components

This chapter groups several Swing components together by the model that drives them: tH@unded-range model.
Bounded-range components in Swing include JSlider, JProgressBar , andJScrollBar. In addition, we discuss two
classes that use progress bars: ProgressMonitor and ProgressMonitorinputStream. These classes display
status dialogs using a JOptionPane that you can assign to a variety of tasks.

file:///C:/DOCUME~1/SIMULA~1/LOCALS~1/Temp/OReilly.Java.Swing.2nd.2002.chm/0596004087_

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

6.1 The Bounded-Range Model

Components that use the bounded-range model typically consist of an integer value that is constrained within two
integer boundaries. The lower boundary, the minimum , should always be less than or equal to the model's current
value. In addition, the model's value should always be less than the upper boundary, theaximum. The model's value
can cover more than one unit; this size is referred to as its extent. With bounded range, the user is allowed to adjust
the value of the model according to the rules of the component. If the value violates any of the rules, the model can
adjust the values accordingly.

The javax.swing.BoundedRangeModel interface outlines the data model for such an object. Objects
implementing the BoundedRangeModel interface must contain an adjustable integer value, an extent, a minimum,
and a maximum. Swing contains three bounded-range components: JScrollBar, JSlider, andJProgressBar. These

components are shown in figure 6-1.

Figure 6-1. Bounded-range components in Swing

[
||||||||||||||||||||||||||||||||||‘f|||||||||||||||||||||

Slider

L LR LR .
FProgress Bar

.| n g

Scrodihar

6.1.1 Properties

shows the properties of theBoundedRangeModel interface.

Table 6-1. BoundedRangeModel properties

Property Data type get is set Default value
extent int
maximum int
minimum int
value int
valuelsAdjusting boolean

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

The minimum , maximum, andvalue properties form the actual bounded range. The&extent property can give the
value its own subrange. Extents can be used in situations where the model's value exceeds a single unit; they can
also be changed dynamically. For example, the sliding "thumbs" of many scrollbars resize themselves based on the
percentage of total information displayed in the window. If you wish to emulate this behavior with Swing, you could
declare a bounded-range scrollbar and set theextent property to grow or shrink as necessary.

illustrates a bounded range with the following properties:

minimum = 1; maximum = 24; value = 9; extent = 3

Figure 6-2. Properties of the BoundedRangeModel interface

felinimam Extant Moeumiiu

I

Lalie

1 3 3 4 5 & 7 &8 % WMol 1415 w0 8 19N N ko M

Extents always define a range greater than the model's value, never less. If you do not want the value to have a
subrange, you can set the extent to 0.

Here are some rules to remember when working with bounded ranges:

® |f the user sets a new value that is outside the bounded range, thevalue is set to the closest boundary
(minimum ormaximum).

® |f the user sets a new value so thatextent exceeds the maximum, the model resets thevalue to the
amount of the maximum minus the extent — thus preserving the width of theextent.

® |f the user sets extent to a negative number, it is reset td.

® |f the user sets extent large enough to exceed themaximum, the model resetsextent to be the remaining
width, if any, between the model's current value and itsmaximum.

® |f the user resets the minimum ormaximum so that the model's value now falls outside the bounded

range, the value is adjusted to become the boundary closest to its originalalue.

® |f 5 user resets a miNiMumM so that it exceeds themaximum, themaximum and thevalue are reset to the
new mMinimum. Conversely, if a newmaximum is less than the currentminimum, theminimum andvalue
are adjusted to be the new maximum. In both cases,extent is reset to 0.

® |f the user resets a MiNimum ormaximum so thatextent goes beyond themaximum, extent is

decreased so it does not exceed the maximum.

Finally, the valuelsAdjusting property is aboolean that indicates that the model is undergoing changesJSlider, for
example, toggles this property to true while the user is dragging the thumb. This alerts anChangeEvent listeners on

the component that this event is probably one in a series, and they may choose not to react immediately.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

6.1.2 Events

Objects implementing the BoundedRangeModel interface must fire aChangeEvent when the model modifies its
minimum, maximum, value, orextent properties. TheBoundedRangeModel interface contains the standard
methods for maintaining a list of ChangeEvent subscribers.

public abstract void addChangeListener(ChangeListener 1)
public abstract void removeChangeListener(ChangeListener 1)

Add or remove a ChangelListener for receiving events when a property changes.

6.1.3 Method

public abstract void setRangeProperties(int value, int extent, int min, int max,boolean adjusting)

Typically, one event is generated per property change. However, if you wish to make multiple changes
without triggering events, you can call the setRangeProperties() method to change all five properties at

once. This method generates a single ChangeEvent per call. For example:

setRangeProperties(40, 4, 32, 212, false); // Generates a single change event

6.1.4 The DefaultBoundedRangeModel Class

Swing provides a standard implementation of thaBoundedRangeModel interface with the
DefaultBoundedRangeModel class. This class provides the minimum functionality necessary to correctly

implement the bounded-range model. Programmers are free to use and extend this class as they see fit.

6.1.4.1 Properties

The properties of the DefaultBoundedRangeModel class are identical to the properties of the interface it
implements; it provides default values but doesn't otherwise add or change properties, as shown in . See the
BoundedRangeModel interface earlier in this chapter for a description of the rules this component follows when the

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

values of its properties are changed.

Table 6-2. DefaultBoundedRangeModel properties

Property Data type get | is | set Default value
changeListenerslA ChangelListener[] : Empty array
extent’ int : . 0
maximum’ int : : 100
minimum® int : . 0
value® int : . 0
valuelsAdjusting® boolean : - false
l'4since 1.4,°0verridden

6.1.4.2 Events

As specified by the bounded-range interface, the DefaultBoundedRangeModel fires aChangeEvent when the
model modifies its minimum, maximum, value, orextent properties.

public void addChangeListener(ChangeListener [)
public void removeChangeListener(ChangeListener I)

Add or remove a change listener from the list of objects that receive a ChangeEvent when a property

changes.
public EventListener[] getListeners(Class listenerType)

This method was introduced in SDK 1.3 as a way of learning about the registered listeners. The
changelListeners property added in 1.4 is a more convenient way to get the same information.

6.1.4.3 Constructors

public DefaultBoundedRangeModel()

The default constructor for this class. It initializes a bounded-range model with a minimum of 0, a
maximum of 100, and avalue andextent of 0.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

public DefaultBoundedRangeModel(int value, int extent, int minimum, int maximum)

Initialize the bounded-range model with the specified values.

6.1.4.4 Working with the bounded-range model

Here is a program that helps to demonstrate some of the features of the DefaultBoundedRangeModel class and
the bounded-range interface. We intentionally try to confuse the model to show how it reacts to inappropriate property
values.

/I Bounded.java

1

import java.awt.*;

import java.awt.event.*;
import java.util.*;

import javax.swing.*;
import javax.swing.event.*;

public class Bounded {
public Bounded() {
try {
DefaultBoundedRangeModel model = new DefaultBoundedRangeModel();
ChangelListener myListener = new MyChangelListener();
model.addChangeListener(myListener);

System.out.printin(model.toString());
System.out.printin("Now setting minimum to 50 ...");
model.setMinimum(50);
System.out.printin(model.toString());
System.out.printin("Now setting maximum to 40 ... ");
model.setMaximum(40);
System.out.printin(model.toString());
System.out.printin("Now setting maximum to 50 ... ");
model.setMaximum(50);
System.out.printin(model.toString());
System.out.printin("Now setting extentto 30 ... ");
model.setExtent(30);
System.out.printin(model.toString());

System.out.printin("Now setting several properties ... ");
if (!'model.getValuelsAdjusting()) {
model.setValuelsAdjusting(true);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

System.out.printin(model.toString());
model.setMinimum(0);
model.setMaximum(100);
model.setExtent(20);
model.setValuelsAdjusting(false);

}

System.out.printin(model.toString());

} catch (Exception e) { e.printStackTrace(); }

}

class MyChangeListener implements ChangeListener {
public void stateChanged(ChangeEvent e) {
System.out.printin("A ChangeEvent has been fired!");

public static void main(String args[]) { new Bounded(); }

Let's go through the output step by step. The first step is to define a DefaultBoundedRangeModel and attach a
ChangelListener to it. After doing so, we print the default values of the model:

DefaultBoundedRangeModel[value=0, extent=0, min=0, max=100, adj=false]

Here, we set the minimum to 50 and the maximum to a value smaller than the minimun#lO. Looks like trouble ahead...

Now setting minimum to 50 . . .

A ChangeEvent has been fired!

DefaultBoundedRangeModel[value=50, extent=0, min=50, max=100, adj=false]
Now setting maximum to 40 (smaller than min) . . .

A ChangeEvent has been fired!

DefaultBoundedRangeModel[value=40, extent=0, min=40, max=40, adj=false]

There are two things to note here. First, by resetting the minimum to 50, we let the value property fall outside the
bounded range. The model compensated by raising the value to match the new minimum. Second, we threw a
monkey wrench into the model by setting the maximum less than the minimum. However, the bounded-range model
adjusted the minimum and the value accordingly to match the newly specified maximum.

Now let's try a different tactic:

Now setting maximum to 50 . . .

A ChangeEvent has been fired!

DefaultBoundedRangeModel[value=40, extent=0, min=40, max=50, adj=false]
Now setting extent to 30 (greater than max) . . .

A ChangeEvent has been fired!

DefaultBoundedRangeModel[value=40, extent=10, min=40, max=50, adj=false]

Here, we see what happens when we try to set an extent with a subrange greater than the current maximum — the

|Vhis document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

model shortens the extent so that it falls within the bounded range. The same thing occurs if we reset the value of the
extent's subrange so that it violates the maximum.

Finally, we activate the valuelsAdjusting property to notify any listeners that this is one in a series of changes, and

the listener does not need to react immediately:

Now setting several properties . . .

A ChangeEvent has been fired!

DefaultBoundedRangeModel[value=40, extent=10, min=40, max=50, adj=true]
A ChangeEvent has been fired!

A ChangeEvent has been fired!

A ChangeEvent has been fired!

A ChangeEvent has been fired!

DefaultBoundedRangeModel[value=40, extent=20, min=0, max=100, adj=false]

file:///C:/DOCUME~1/SIMULA~1/LOCALS~1/Temp/OReilly.Java.Swing.2nd.2002.chm/0596004087_

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

6.2 The JScrollBar Class

JScrollBar is the Swing implementation of a scrollbar. TheJScrollBar class is shown in various L&Fs in .

Figure 6-3. Scrollbars in several L&Fs

To program with a scrollbar, it is important to understand its anatomy. Scrollbars are composed of a rectangular tab, called a
slider orthumb, located between two arrow buttons. The arrow buttons on either end increment or decrement the slider's
position by an adjustable number of units, generally one. In addition, clicking in the area between the thumb and the end
buttons (often called the paging area) moves the slider oneblock, or 10 units by default. The user can modify the value of the
scrollbar in one of three ways: by dragging the thumb in either direction, by pushing on either of the arrow buttons, or by clicking

in the paging area.

Scrollbars can have one of two orientations: horizontal or vertica provides an illustration of a horizontal scrollbar.
JScrollBar uses the bounded-range model to represent the scrollbar's data. The assignment of each bounded-range property

is also shown in figure 6-§. The minimum and maximum of the scrollbar fall on the interior edges of the arrow buttons. The
scrollbar's value is defined as the left (or top) edge of the slider. Finally, the extent of the scrollbar defines the width of the thumb
in relation to the total range. (The older Adjustable interface from thejava.awt package referred to the extent as the "visible
amount."”) Note that horizontal scrollbars increment to the right and vertical scrollbars increment downward.

Figure 6-4. Anatomy of a horizontal scrollbar

Figure 6-5. JScrollBar class diagram

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

6.2.1 Properties

shows the properties of theJScrollBar component. Most of these properties come from thgava.awt.Adjustable
interface. The orientation property gives the direction of the scrollbar, eitherdJScrollBar.HORIZONTAL or
JScrollBar.VERTICAL. The unitincrement property represents the integer amount by which the bounded-range value

changes when the user clicks on either of the arrow buttons. The blockincrement property represents the integer amount by

which the scrollbar value changes when the user clicks in either of the paging areas. The enabled property indicates whether

the scrollbar can generate or respond to events. The minimum

,maximum, value, andvaluelsAdjusting properties

match the equivalent properties in the BoundedRangeModel of the scrollbar. ThevisibleAmount property matches the

extent property in the model; it indicates the thickness of thethumb. The minimumsSize and maximumsSize properties allow

the scrollbar to behave appropriately when it is resized.

Table 6-3. JScrollBar properties

Data type get|is|set Default value
accessibleContext® AccessibleContext ;]ScrollBarAccessibIeJ—ScroIIBar(
adjustment-Listeners™ Adjustment-Listener][] | - Empty array
blocklncrementb’ o* int 10
enabled® boolean true
maximum’ int 100
maximumsSize® Dimension
minimum® int 0
minimumSize® Dimension
modelb BoundedRangeModel| - DefaultBoundedRangeModel()
orientation™ ° int JScrollBar.VERTICAL
Ulb’ ° ScrollBarUl From L&F
UlClassID® String "ScrollBarUl"
unitlncrementb‘ 0" int 1
value® int 0

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

valuelsAdjusting boolean . - |false
visibleAmount® int : - |10
1.4

. b o) . . .
since 1.4, "bound, ~overridden, *indexed version
(on direction) also available

See also the properties of the JComponent class
(rable 3.6,

6.2.2 Events

JScrollBar objects triggerjava.awt.event.AdjustmentEvents whenever the component undergoes a change. Recall,
however, that the bounded-range model generates a ChangeEvent when one of its properties changes. It becomes the

responsibility of the JScrollBar class to convert change events to adjustment events and pass them on to registered listeners.
Fiéure G-a shows the sequence of events between the component, model, and delegate when the user drags the scrollbar.

JScrollBar also generates aPropertyChangeEvent when any of its bound properties change.

Figure 6-6. Chain of events after the user drags the scrollbar

T 4} AdustmentEvent
J5crollBar
1) Chargetvent 1) Changeteent
2\ et property
{rarg
Ls ScrollBarll BoundedRangeModel
Delagate Mogel

Because JScrollBar was meant as a drop-in replacement for the AWT scrollbar, the older event system has been preserved to
maintain consistency with the AWT 1.1 Adjustable interface. However, with Swing, the majority of cases in which you would
have used a scrollbar have been taken care of with the JScrollPane class. You rarely need a standaloneJScrollBar. (See
Chapter 11| for more information onJScrollPane.)

The following methods are defined in the JScrollBar class:

public void addAdjustmentListener(AdjustmentListener [)

public void removeAdjustmentListener(AdjustmentListener [)

Add or remove a specific listener for AdjustmentEvents from the scrollbar.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

6.2.3 Constructors

public JScrollBar()
public JScrollBar(int orientation)
public JScrollBar(int orientation, int value, int extent, int minimum, int maximum)

Set the initial values of the scrollbar. If either of the first two constructors is invoked, the scrollbar initializes itself using
the default values shown in . The orientation must be eitherJScrollBar.HORIZONTAL or
JScrollBar.VERTICAL, or else the constructor throws a runtimelllegalArgumentException. If desired, the last
four parameters in the third constructor can be used to initialize the scrollbar's bounded-range model to new values.

6.2.4 Miscellaneous

public int getUnitincrement(int direction)

public int getBlocklncrement(int direction)

Convenience methods that return the scrollbar unit and block increments for a particular direction. The direction is-1
for down and left, and 1 for up and right. These methods are typically invoked by the Ul delegate to determine how far
to increment in a particular direction. Subclasses can override these methods to specify the units to increment in
either direction, based on the content represented. For example, if a scrollbar was attached to a word-processing
document, the variable-sized text in the document could result in different unit increments at any particular time for a
vertical scrollbar.

public void setValues(int newValue, int newExtent, int newMinimum, int newMaximum)

This method maps to the setRangeValues() method in the BoundedRangeModel interface.

6.2.5 Handling Events from a Scrollbar

The following program demonstrates how to monitor events generated by a pair of scrollbars:

/I ScrollBarExample.java
1

import java.awt.*;

import java.awt.event.*;
import javax.swing.*;

public class ScrollBarExample extends JPanel {
JLabel label;

public ScrollBarExample() {
super(true);

|Vhis document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

label=new JLabel();
setLayout(new BorderLayout());

JScrollBar hbar=new JScrollBar(JScrollBar.HORIZONTAL, 30, 20, 0, 300);
JScrollBar vbar=new JScrollBar(JScrollBar.VERTICAL, 30, 40, 0, 300);

hbar.setUnitincrement(2);
hbar.setBlockincrement(1);

hbar.addAdjustmentListener(new MyAdjustmentListener());
vbar.addAdjustmentListener(new MyAdjustmentListener());

add(hbar, BorderLayout.SOUTH);
add(vbar, BorderLayout.EAST);
add(label, BorderLayout. CENTER);

class MyAdjustmentListener implements AdjustmentListener {
public void adjustmentValueChanged(AdjustmentEvent e) {
label.setText(" New Valueis" + e.getValue()+" ");
repaint();
}

public static void main(String s[]) {
JFrame frame = new JFrame("Scroll Bar Example");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setContentPane(new ScrollBarExample());
frame.setSize(200,200);
frame.setVisible(true);

The code is relatively easy to follow. The application creates a single panel and adds two scrollbars, one on the right side and

one on the bottom. It then listens for any adjustments in either scrollbar and paints the scrollbar's new value in the middle of the

panel. shows the result.

Figure 6-7. A simple scrollbar example

file:///C:/DOCUME~1/SIMULA~1/LOCALS~1/Temp/OReilly.Java.Swing.2nd.2002.chm/0596004087_
file:///C:/DOCUME~1/SIMULA~1/LOCALS~1/Temp/OReilly.Java.Swing.2nd.2002.chm/0596004087_

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

6.3 The JSlider Class

The JSlider class represents a graphical slider. Like scrollbars, sliders can have either a horizontal or vertical orientation.
With sliders, however, you can enhance their appearance with tick marks and labels. The class hierarchy is illustrated in

. In most instances, a slider is preferable to a standalone scrollbar. Sliders represent a selection of one value from a
bounded range. Scrollbars represent a range of values within a bounded range and are best used in things like the
JScrollPane.

Figure 6-8. JSlider class diagram

The JSlider class allows you to set the spacing of two types of tick marks: major and minor. Major tick marks are longer than

minor tick marks and are generally used at wider intervals. shows various sliders that can be composed in Swing.

Figure 6-9. Various sliders in Swing

5 Multiple Sliders —o]|

{J

The setPaintTicks() method sets aboolean, which is used to activate or deactivate the slider's tick marks. In some_&Fs, the
slider changes from a rectangular shape to a pointer when tick marks are activated. This is often done to give the user a more

accurate representation of where the slider falls.

You can create a Dictionary of Component objects to annotate the slider. Each entry in theDictionary consists of two fields:
an Integer key, which supplies the index to draw the various components, followed by the component itself. If you do not wish
to create your own label components, you can use the createStandardLabels() method to create a series ofJLabel objects
for you. In addition, if you set the paintLabels property totrue and give a positive value to themajorTickSpacing property, a
set of labels that matches the major tick marks is automatically created. shows what aJSlider looks like in four

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

L&Fs.

6.3.1 Properties

Figure 6-10. Sliders in several L&Fs

shows the properties of theJSlider component. The slider object has several properties in addition to those of its data
model. The orientation property determines which way the slider moves. It can be one of two valuesJSlider. HORIZONTAL

or JSlider.VERTICAL.

Table 6-4. JSlider properties

Property Data type get|is|set Default value
accessibleContext’ AccessibleContext JSlider.AccessibleJSlider()
changeListener51'4 ChangeListener(] Empty array
extent int 0
inverted® boolean false
IabeITabIeb Dictionary null
majorTickSpacingb int 10
maximum® int 100
minimumb int 0
minorTickSpacingb int 2
model® BoundedRangeModel | - DefaultBoundedRangeModel|
orientation” int JSlider.HORIZONTAL
paintLabeIsb boolean false
paintTicksb boolean false
paintTrackb boolean true
snapToTicksb boolean true

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

ulP SlideruUl : . |From L&F
UlClassID® String : "Sliderul"
value int : - |50
valuelsAdjusting boolean : - |false
LMsince 1.4, bbound, Coverridden

See also properties from the JComponent class

The labelTable is aDictionary of slider values andJLabel objects. The labels in this dictionary are used tolabel the slider;
they can be explicitly set by the user or generated automatically by calling createStandardLabels(), which we'll discuss
later. The paintLabels property is aboolean that determines whether to paint the textual labels associated with the slider. If
paintLabels is set totrue, the JLabel objects in thelabelTable are painted at the appropriate locations in the slider.

The paintTicks property is a boolean; it decides if the major and minortick marks are drawn. If it ifrue, both types of tick
marks are drawn (unless their spacing is set to O—see the last paragraph in this section). ThesnapToTicks property indicates
whether the slider adjusts its value to the nearest tick. The paintTrack property controls whether the "track” on the slider is
painted. If the inverted property isfalse, then the table increments from left to right or from bottom to top; if the propertytisue,
the table increments from right to left or from top to bottom. All tick marks and labels are shifted accordingly.

The minimum , maximum, value, andvaluelsAdjusting properties match the equivalent properties in the
BoundedRangeModel of the slider. Theextent property is slightly different from the model; it tells how much the slider
increments up or down when L&F-specific keys are pressed (generally, PageUp and PageDown).

The majorTickSpacing andminorTickSpacing properties decide the repetition rate of the tick marks. In the event that both
a major and minor tick mark occupy the same position, the major wins out. Neither property should ever be less than zero. If
you want to prevent either type of tick mark from being drawn, give it a spacing value of O.

6.3.1.1 Client properties

The JSlider object contains one client property that works only with the Metal L&F: JSlider.isFilled . When this client property
is set to true, as shown in , the result is a slider component that fills itself only on its descending half:

JSlider slider = new JSlider();
slider.putClientProperty("JSlider.isFilled", Boolean. TRUE);

Figure 6-11. JSlider with the isFilled client property set (Metal L&F)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

6.3.2 Events

JSlider triggers a ChangeEvent whenever the user modifies any of its properties. It also generates &ropertyChangeEvent
whenever any of its properties change.

public void addChangeListener(ChangeListener I)

public void removeChangeListener(ChangeListener)

Add or remove a specific listener from receiving property change events generated by the JSlider object.

6.3.3 Constructors

public JSlider()

public JSlider(int orientation)

public JSlider(int min, int max)

public JSlider(int min, int max, int value)

public JSlider(int orientation, int minimum, int maximum, int value)
public JSlider(BoundedRangeModel brm)

Set the initial values of the slider. The orientation must be either JSlider. HORIZONTAL or JSlider.VERTICAL. If
anything else is passed in, the JSlider object throws a runtimelllegalArgumentException. The remaining
parameters are used to initialize the slider's bounded-range model. If the parameters are not given, they are initialized
to the default values in . The final constructor accepts a bounded-range model object to initialize the slider.

6.3.4 Labels

public Hashtable createStandardLabels(int increment)
public Hashtable createStandardLabels(int increment, int start)

Utility functions that create a hashtable of numeric labels, starting at the value specified by start (or the minimum if
omitted), and incrementing by the value specified by increment. The resulting Hashtable can be placed in the
labelTable property, and its labels are drawn on the slider if thedrawLabels property is set totrue.

6.3.5 Miscellaneous

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

public void updateUl()

Signal that a new L&F has been set using the setUI() accessor. Invoking this method forces the slider component to
reset its view using the new Ul delegate.

6.3.6 Creating a Slider

The following program shows how to create a full-featured slider:

/I SliderExample.java

I

import java.awt.*;

import java.awt.event.*;
import javax.swing.*;

import javax.swing.border.*;

public class SliderExample extends JPanel {

public SliderExample() {

super(true);
this.setLayout(new BorderLayout());
JSlider slider = new JSlider(JSlider.HORIZONTAL, 0, 50, 25);

slider.setMinorTickSpacing(2);
slider.setMajorTickSpacing(10);
slider.setPaintTicks(true);
slider.setPaintLabels(true);

/I We'll use just the standard numeric labels for now.
slider.setLabelTable(slider.createStandardLabels(10));

add(slider, BorderLayout. CENTER);

public static void main(String s[]) {
JFrame frame = new JFrame("Slider Example");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setContentPane(new SliderExample());
frame.pack();
frame.setVisible(true);

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

This code yields the slider shown in .

Figure 6-12. Swing slider

file:///C:/DOCUME~1/SIMULA~1/LOCALS~1/Temp/OReilly.Java.Swing.2nd.2002.chm/0596004087_

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

6.4 The JProgressBar Class

Swing makes it easy to create progress bars. Applications typically use progress bars to report the status of time-consuming
jobs, such as software installation or large amounts of copying. The bars themselves are simply rectangles of an arbitrary
length, a percentage of which is filled based on the model's value. Swing progress bars come in two flavors: horizontal and
vertical. If the orientation is horizontal, the bar fills from left to right. If the bar is vertical, it fills from bottom to top. SDK 1.4

added the ability to show indeterminate progress (progress when you don't know the total). The class hierarchy is illustrated in

Fiaure 61

Figure 6-13. JProgressBar class diagram

Different L&Fs can contain different filling styles. Metal, for example, uses a solid fill, while the Windows L&F uses an LCD
style, which means that the bar indicates progress by filling itself with dark, adjacent rectangles instead of with a fluid line (at the
opposite extreme, the Mac's is so fluid that it even contains moving ripples). The JProgressBar class also contains aboolean

prop erty that specifies whether the progress bar draws a dark border around itself. You can override this default border by
setting the border property of the JComponent. shows a Swing progress bar with the different L&Fs.

Figure 6-14. Progress bars in various L&Fs

6.4.1 Properties

The basic properties of the JProgressBar object are listed in. The orientation property determines which way the
progress bar lies; it must be either JProgressBar.HORIZONTAL or JProgressBar.VERTICAL. Theminimum
maximum, andvalue properties mirror those in the bounded-range model. If you don't really know the maximum, you can set

the indeterminate value totrue. That setting causes the progress bar to show an animation indicating that you don't know

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

when the operation completes. (Some L&Fs might not support this feature.) The boolean borderPainted indicates whether
the component's border should appear around the progress bar. Borders are routinely combined with progress bars—they not
only tell the user where its boundaries lie, but also help to set off the progress bar from other components. An important note
about the JProgressBar class: there are no methods to access theextent variable of its bounded-range model. This property
is irrelevant in the progress bar component.

Table 6-5. JProgressBar properties

Property Data type get|is|set Default value
accessibleContext AccessibleContext ;]ProgressBarAccessibIeJProgressBar(
borderPainted” boolean true
changeListenersl'4 ChangeListener(] Empty array
indeterminate® >4 boolean false
maximum int 100
minimum int 0
model BoundedRangeModel | - DefaultBoundedRangeModel()
orientationb int JProgressBar.HORIZONTAL
percentComplete double
stringb String null
stringPaintedb boolean false
UIb progressBarUl From L&F
UIClassID® String "ProgressBarUl"
valueb int 0
1'4since 14, bbound, Coverridden
See also properties from the JComponent class
frabie 3.9

Three properties control whether a = string is painted onto the progress bar.stringPainted is true if the string should appear.
The string property is the actual string that will be painted. If it isull, the progress bar displays the value of
percentComplete, converted to a percentage between 0 and 100 (e.g., "35%"). Regardless of thetring property setting,
percentComplete holds the completion value as a number between 0.0 and 1.0.

6.4.2 Events

JProgressBar triggers a ChangeEvent whenever the user modifies any of its properties and #ropertyChangeEvent

when a bound property changes.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

public void addChangeListener(ChangeListener I)
public void removeChangeListener(ChangeListener)

Add or remove a specific listener for ChangeEvent notifications from the component.

6.4.3 Constructors

public JProgressBar()

Create a horizontal progress bar with a lowered border. The DefaultBoundedRangeModel is used as the data
model for the progress bar.

public JProgressBar(BoundedRangeModel model)
public JProgressBar(int orient, int min, int max)
public JProgressBar(int min, int max)

public JProgressBar(int orient)

These constructors create progress bars with initial values specified by their arguments. In the first of these

constructors, model supplies the initial values and serves as the data model of the progress bar.

6.4.4 Working with Progress Bars

Like the other bounded-range components, progress bars are easy to work with. This example displays a simple progress bar

that fills from left to right by updating itself every 0.1 seconds:

/I ProgressBarExample.java
I

import java.awt.*;

import java.awt.event.*;
import javax.swing.*;

public class ProgressBarExample extends JPanel {

JProgressBar pbar;
static final int MY_MINIMUM=0;
static final int MY_MAXIMUM=100;

public ProgressBarExample() {
pbar = new JProgressBar();
pbar.setMinimum(MY_MINIMUM);
pbar.setMaximum(MY_MAXIMUM);

|Vhis document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

}

add(pbar);
}

public void updateBar(int newValue) {
pbar.setValue(newValue);

}

public static void main(String args|]) {

final ProgressBarExample it = new ProgressBarExample();

JFrame frame = new JFrame("Progress Bar Example");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setContentPane(it);

frame.pack();

frame.setVisible(true);

for (inti = MY_MINIMUM; i <= MY_MAXIMUM,; i++) {
final int percent=i;
try {
SwingUltilities.invokeLater(new Runnable() {
public void run() {
it.updateBar(percent);
}
»;
java.lang.Thread.sleep(100);
} catch (InterruptedException e) {;}
}
}

We used SwingUtilities.invokeLater() here because we are updating the user interface from within our own thread (rather

than from the event-handling thread). For more information on working with multiple threads in Swing, see .

| |l@ve RuBoard

file:///C:/DOCUME~1/SIMULA~1/LOCALS~1/Temp/OReilly.Java.Swing.2nd.2002.chm/0596004087_

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

6.5 Monitoring Progress

By themselves, progress bars are pretty boring. Swing, however, combines progress bars with the dialog capabilities of
JOptionPane to create theProgressMonitor and ProgressMonitorinputStream classes. You can useProgressMonitor
to report on the current progress of a potentially long task. You can use ProgressMonitorinputStream to automatically
monitor the amount of data that has been read in with an InputStream. With both, you can define various strings to be posted

in the progress monitor dialogs to offer a better explanation of the task at hand.

6.5.1 The ProgressMonitor Class

The ProgressMonitor class is a generic progress dialog box that can be used for practically anything. There are two string
descriptions that can be set on a ProgressMonitor dialog box. The first is a static component that can never change; it
appears on the top of the dialog and is set in the constructor. The second is a variable string-based property that can be reset at
any time. It appears below the static string, slightly above the progress bar. shows the structure for this class.

Figure 6-15. ProgressMonitor class diagram

Once instantiated, the ProgressMonitor dialog (shown in) does not pop up immediately. The dialog waits a
configurable amount of time before deciding whether the task at hand is long enough to warrant the dialog. If it is, the dialog is
displayed. When the current value of the progress bar is greater than or equal to the maximum, as specified in the constructor,
the progress monitor dialog closes. If you need to close the progress monitor early, you can call theclose() method. The user
can close this dialog as well by pressing OK or Cancel; you can test the canceled property to see if the user wanted to cancel

the operation or simply did not care to watch the progress.

Figure 6-16. The ProgressMonitor dialog

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

The ProgressMonitor class does not fire any events indicating that it is complete or that the
operation was canceled. You should test the isCancelled() method each time you call
setProgress() to see if the user has canceled the dialog.

6.5.1.1 Properties

shows the properties for theProgressMonitor class. Thecanceled property is a boolean that indicates whether the
progress monitor has been canceled. This is useful if you need to determine whether the user dismissed the dialog halfway
through. The minimum and maximum properties define the range of the progress bar; thgprogress property is analogous
to the progress bar's current value. The note property is a string that can be updated as the progress monitor works; it serves
to indicate what the progress monitor is currently doing.

Table 6-6. ProgressMonitor properties

Property Data type get is set Default value
canceled boolean : false
maximum int . . 100
millisToDecideToPopup int - - 500
millisToPopup int . : 2000
minimum int . . 0
note String
progress int . : 0

As we said, the progress monitor dialog does not pop up immediately. Instead, it waits millisToDecideToPopup milliseconds
before estimating how long the current progress might take. If it appears that it will take longer than millisToPopup

milliseconds, a progress monitor dialog pops up.

6.5.1.1.1 UIManager properties

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Two values used in the ProgressMonitor are extracted from theUIManager settings. ProgressMonitor.progressText
(introduced in SDK 1.3) controls the text of the dialog's title bar while OptionPane.cancelButtonText controls the text on the
Cancel button. See ProgressMonitorExample below for an example of how to set these properties.

6.5.1.2 Constructor

public ProgressMonitor(Component parentComponent, Object message, String note, int min, int max)

Create a ProgressMonitor dialog box, placed above the component specified agparentComponent. The dialog
contains a static message that is constant throughout the life of the dialog (sedOptionPane in for a
discussion of valid values) and a note that changes during the life of the dialog. If thé1rote value is initially null, the
note cannot be updated throughout the life of the dialog. Thénin and max values specify the minimum and maximum

of the progress bar.

6.5.1.3 Miscellaneous

public void close()

Force the ProgressMonitor to shut down, even if it did not complete all of its tasks.

6.5.1.4 Using a progress monitor

The following example shows a ProgressMonitor in action. With it, we simulate updating the dialog with a timer that fires off
events every 0.5 seconds. We use the invokeLater() method to place the update on the system event queue. Theun()
method of the Update inner class simply increments the progress bar'{rogress property, updates the text on the progress
bar, and updates the counter. The result is shown in .

/I ProgressMonitorExample.java
I

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class ProgressMonitorExample extends JFrame implements ActionListener {

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

static ProgressMonitor pbar;
static int counter = 0;

public ProgressMonitorExample() {
super("Progress Monitor Demo");
setSize(250,100);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

pbar = new ProgressMonitor(null, "Monitoring Progress",
“Initializing . . .", 0, 100);

Il Fire a timer every once in a while to update the progress.
Timer timer = new Timer(500, this);

timer.start();

setVisible(true);

public static void main(String args]]) {
UlManager.put("ProgressMonitor.progressText", "This is progress?");
UlManager.put("OptionPane.cancelButtonText", "Go Away");
new ProgressMonitorExample();

}

public void actionPerformed(ActionEvent e) {
/I Invoked by the timer every 0.5 seconds. Simply place
/l the progress monitor update on the event queue.
SwingUltilities.invokeLater(new Update());

}

class Update implements Runnable {
public void run() {
if (pbar.isCanceled()) {
pbar.close();
System.exit(1);
}
pbar.setProgress(counter);
pbar.setNote("Operation is "+counter+"% complete");
counter += 2;

}

6.5.2 The ProgressMonitorinputStream

The ProgressMonitorinputStream is a stream filter that allows the programmer to monitor the amount of data read from an

input stream. It contains aProgressMonitor object that the user can access to see how the reading of the input stream is

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

progressing. shows the class diagram for this filter.

Figure 6-17. JProgressMonitorinputStream class diagram

For the most part, the ProgressMonitorInputStream class contains many of the methods found ijava.io.InputStream.
Like all FilterlnputStream objects, you can tie this class together with other filters for better control over the inpu
shows the progress monitor dialog associated with a typical ProgressMonitorinputStream.

Figure 6-18. The ProgressMonitorinputStream dialog

6.5.2.1 Property

shows the only property of theProgressMonitorinputStream. progressMonitor contains the progress monitor
defined inside this object. The read-only accessor allows you to change the progress or the note string, as well as close the

dialog.
Table 6-7. ProgressMonitorinputStream property
Property Data type get is set Default value
progressMonitor ProgressMonitor . ProgressMonitor()

When it's created, the ProgressMonitorinputStream attempts to read the amount of data available and updates the
progress monitor's progress property as bytes are read from the stream. This can lead to strange results if you wrap a
ProgressMonitorinputStream around some other input stream for which the amount of data waiting to be read isn't
well-defined — for example, a PipedInputStream. It's a good idea to read small amounts of data from a
ProgressMonitorinputStream at a time. This way, the dialog has a chance to update its progress frequently. Finally, as with
any blocking request, try not to perform a read() while on the event dispatching queue. That way, if the call blocks for an
inordinate amount of time, you won't drag down any repainting requests and give the illusion that your application has crashed.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

6.5.2.2 Constructor

public ProgressMonitorinputStream(Component parentComponent, Object message, InputStream in)

Create a ProgressMonitorinputStream dialog box, placed above theparentComponent. The dialog contains a
static message that is constant throughout the life of the dialog (sedOptionPane in for a discussion of
valid values). The constructor also takes a reference to the target input stream.

6.5.2.3 InputStream methods

public int read() throws IOException
Read a single byte and update the progress monitor.

public int read(byte b[]) throws IOException
public int read(byte b[], int off, int len) throws IOException

Read an array of bytes and update the progress monitor.

public long skip(long n) throws IOException

Skip a series of bytes and update the progress monitor.

public void close() throws IOException

Close the input stream and the progress monitor.

public void reset() throws IOException

Reset the current reading position back to the beginning and update the progress monitor.

6.5.2.4 Using a ProgressMonitorinputStream

Here is a simple example that demonstrates using a ProgressMonitorinputStream class to monitor the progress of loading
a file. You can specify the name of the file on the command line as follows:

% java ProgressMonitorinputExample myfile

|Vhis document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

This program reads in the file a little at a time, dumping the results to the screen. If the file is not found, an error dialog is
displayed. Note that we specifically don't try to buffer the input—we want "bad" performance to make sure the monitor dialog
has time to pop up. (Still, you may need to load a fairly large file.) If you run the program, be sure to load a text file (not a binary
file). Here is the source code:

/I ProgressMonitorinputExample.java
1

import java.io.*;

import java.awt.*;

import javax.swing.*;

public class ProgressMonitorinputExample {

public ProgressMonitorinputExample(String filename) {
ProgressMonitorinputStream monitor;
try {
monitor = new ProgressMonitorinputStream(
null, "Loading "+filename, new FilelnputStream(filename));
while (monitor.available() > 0) {
byte[] data = new byte[38];
monitor.read(data);
System.out.write(data);
}
} catch (FileNotFoundException e) {
JOptionPane.showMessageDialog(null, "Unable to find file: "
+ filename, "Error", JOptionPane.ERROR_MESSAGE);
} catch (IOException €e) {;}

public static void main(String args|]) {
new ProgressMonitorinputExample(args[0]);

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Chapter 7. Lists, Combo Boxes, and Spinners

This chapter deals with three similar components: lists, combo boxes, and spinners. All three present a catalog of
choices to the user. A list allows the user to make single or multiple selections. A combo box permits only a single
selection but can be combined with a text field that allows the user to type in a value as well. From a design

standpoint, both lists and combo boxes share similar characteristics, and both can be extended in ways that many

Swing components cannot. SDK 1.4 introduced spinners, which are compact components that allow you to click or
"spin” through a set of choices one at a time.

file:///C:/DOCUME~1/SIMULA~1/LOCALS~1/Temp/OReilly.Java.Swing.2nd.2002.chm/0596004087_

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

7.1 Lists

Alistis a graphical component that presents the user with choices. Lists typically display several items at a time, allowing the
user to make either a single selection or multiple selections. In the event that the inventory of the list exceeds the space

available to the component, the list is often coupled with a scrollpane to allow navigation through the entire set of choices.

The Swing JList component allows elements to be any Java class capable of being rendered—which is to say anything at all
because you can supply your own renderer. This offers a wide range of flexibility; list components can be as simple or as
complex as the programmer's needs dictate.

Let's get our feet wet with a simple list. The following example uses the Swing list class, JList, to create a single-selection list

composed only of strings. shows the result.

Figure 7-1. A simple Swing list

/I SimpleList.java

1

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class SimpleList extends JPanel {
String label[] = { "Zero","One","Two","Three","Four","Five","Six",
"Seven","Eight","Nine","Ten","Eleven" }
JList list;

public SimpleList() {
this.setLayout(new BorderLayout());
list = new JList(label);
JScrollPane pane = new JScrollPane(list);
JButton button = new JButton("Print");
button.addActionListener(new PrintListener());

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

add(pane, BorderLayout. CENTER);
add(button, BorderLayout. SOUTH);

public static void main(String s[]) {
JFrame frame = new JFrame("Simple List Example");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setContentPane(new SimpleList());
frame.setSize(250, 200);
frame.setVisible(true);

/I An inner class to respond to clicks of the Print button
class PrintListener implements ActionListener {
public void actionPerformed(ActionEvent e) {
int selected[] = list.getSelectedIndices();
System.out.printin("Selected Elements: ");

for (int i=0; i < selected.length; i++) {
String element =
(String)list.getModel().getElementAt(selected]i]);
System.out.printin(" " + element);

Take a close look at the source. The first thing you might notice is that we embedded the Swing list inside the viewport of a
scrollpane object. The Swing JList class itself does not support scrolling through its data. Instead, it hands off the responsibility
to the JScrollPane class. This is a significant design change from its predecessojava.awt.List, which automatically managed
a scrollbar for you. However, making a list the view of a scrollpane object fits better into the overall modular philosophy of
Swing. The clear separation of function allows developers to reuse a customized scrollbar (or scrollpane) with their own lists
instead of simply accepting a default provided with the list component. It also enables autoscrolling support, so you can drag the
mouse above or below the list, and its contents scroll automatically.

Try selecting multiple numbers (you can do this in most L&Fs by holding down the Shift key while clicking). Note that by using
Shift you can select only one range, or continuous set of numbers, at a time. If you select a number beyond the currenselection
range, the range is extended to cover everything in between. The first number selected (i.e., the one you didn't have to hold

Shift down for) becomes the initial endpoint for the range. This endpoint is called the anchor. The most recent selection (which

is outlined) forms the second endpoint. This element is called the lead . Together, the anchor and the lead form a range of

selections in the list, as shown in Eigure 7-4.

Figure 7-2. The anchor and lead positions in a list selection

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

When the user presses the button, an actionPerformed() method is called. This method reports all the items that are
currently selected in the list:

Selected Elements:
Four
Five
Six
Seven
Eight

There is also a way to make discontiguous selections (so you could select Four, Six, and Eight through Ten, for example). This
is done by holding down a different modifier key: on Unix and Windows this is typically theControl key while on the Macintosh
the Command (Apple) key is used. As usual, these differences are managed by the L&F. Since 1.3, the default behavior for a
list is to support both ranges and discontiguous selections. Prior versions allowed only a single range. All versions let you
override the default.

If you are using SDK 1.4 or later, you can also select elements in the list by typing the first characters in their label.

7.1.1 Anatomy of a Swing List

Now that we've seen the basics, let's take a closer look at JList. shows a high-level class diagram for Swing's list
classes. In particular, note the three interfaces in the middle.

Figure 7-3. Swing list class diagram

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Each list component consists of three parts, as shown in . The first of the three parts is the elements that comprise the
list, called the list data . As you might guess, the list data is assigned to a model — an object implementing theistModel
interface represents the list data. By default, JList uses the DefaultListModel class, an implementation ofListModel that
stores a collection of data objects in a Vector. If you want a model more specific to your needs, the most convenient way to do
it is to extend the AbstractListModel class and add your specific functionality to the basic housekeeping it provides.

Figure 7-4. The three parts of a Swing list

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

The second element is a model as well; however, this one represents the user's selections. The model interface for selection
data is the ListSelectionModel . Like the list data model, it also has a standard implementationDefaultListSelectionModel

. With the defaultJList, for example, you can select several ranges simultaneously. However, you can also program the
DefaultListSelectionModel to allow only one element to be selected at a given time.

The final piece is called a cell renderer . A cell renderer defines how each cell displays its data in the list, including when the
cell is selected. Why an entire class for rendering list elements? As we mentioned previously, list data is not constrained to
strings. Icons and animations can be displayed in place of or next to descriptive text. In many Swing components, a cell
renderer is a common way to render complex data, or any data in a way that's specific to your application. If you write one
carefully, it can be reused in several locations.

7.1.2 Where to Go from Here?

The following sections outline the various models and support classes that make up a Swing list. If you simply want to get to

know the Swing JList class, you can skip ahead t, where we create a graphical list of some O'Reilly Java books. On
the other hand, if you want to learn more about the data and selection models of the JList, then read on!

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

7.2 Representing List Data

Swing uses one interface and two classes to maintain a model of the list elements. When programming with lists,
you often find that you can reuse these classes without modification. Occasionally, you may find it necessary to
extend or even rewrite these classes to provide special functionality. In either case, it's important to examine all three
in detail. Let's start with the easiest: ListModel.

7.2.1 The ListModel Interface

ListModel is a simple interface for accessing the data of the list. It has four methods: one method to retrieve data in
the list, one method to obtain the total size of the list, and two methods to register and unregister change listeners on
the list data. Note that the ListModel interface itself contains a method only for retrieving the list elements — not for

setting them. Methods that set list values are defined in classes that implement this interface.

7.2.1.1 Properties

The ListModel interface defines two properties, shown i . elementAt is an indexed property that lets you

retrieve individual objects from the list; Size tells you the total number of elements.

Table 7-1. ListModel properties

Property Data type get is set Default value

elementAt' Object

size int

Hndexed

7.2.1.2 Events

The ListModel interface also contains the standardaddListDataListener() andremoveListDataListener()
event subscription methods. These methods accept listeners that notify when the contents of the list have changed. A
ListDataEvent should be generated when elements in the list are added, removed, or modifiedistDataEvent and
the ListDataListener interface are discussed later in this chapter.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

public abstract void addListDataListener(ListDataListener I)
public abstract void removelListDataListener(ListDataListener I)

Add or remove a specific listener for ListDataEvent notifications.

7.2.2 The AbstractListModel Class

The AbstractListModel class is a skeletal framework to simplify the life of programmers who want to implement the
ListModel interface. It provides the requirecaddListDatalistener() andremovelListDatalListener() event
registration methods. It also provides three protected methods that subclasses can use to fire ListDataEvent
objects. These methods are triggered when an addition, subtraction, or modification to the list data has taken place.
Note that a ListDataEvent is not the same as aPropertyChangeEvent, which is more general in nature.
(ListDataEvent is covered later in this chapter.)

7.2.2.1 Methods

protected void fireContentsChanged(Object source, int index1, int index2)

Called by subclasses to trigger a ListDataEvent, which indicates that a modification has occurred in the
list elements between index1 andindex2.index2 can be less thanindex1. Thesource parameter
provides a reference to the ListModel that signaled the change.

protected void firelntervalAdded(Object source, int index1, int index2)

Called by subclasses to trigger a ListDataEvent, which indicates that the list elements betweeindexl1 and
index2 (inclusive) have been added to the list. Assuming thaindex2 is the greater index, the element
previously at index1 in the list is now elemenindex2+1. All subsequent elements are shifted as well.
index2 can be less thanindex1. Thesource parameter provides a reference to theListModel that signaled

the change.

protected void firelntervalRemoved(Object source, int index1, int index2)

Called by subclasses to trigger a ListDataEvent, which indicates to a listener that the list elements from
index1 to index2 have been removed from the list. Assuming thaindex2 is the larger index, the element
previously at index2+1 now becomesindexl, and all greater elements are shifted down accordingly.
index2 can be less thanindex1. Thesource parameter provides a reference to theListModel that signaled

the change.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Although the AbstractListModel class completes the event framework defined by the list model interface, it does
not implement the remaining two methods of the ListModel interface: getSize() andgetElementAt(). Instead, it
defines these as abstract (making the entire class abstract), leaving the actual implementation choices of the list
storage to a subclass, such as DefaultListModel. Providing an abstract class that takes care of the mundane tasks

required by an interface is racteristic of the useful Skeletal Implementation design pattern found throughout
1

Java's Collections classes.

[For a detailed discussion of this approach and its benefits, see "ltem 16: Prefer interfaces to
abstract classes" in Joshua Bloch's Effective Java Programming Language Guide
(Addison-Wesley).

SDK 1.3 introduced a method to get the list of registered event listeners:
public EventListener[] getListeners(Class listenerType)

You need to pass in the type of listener you're interested in, which is generally the
ListDataListener.class, and you need to cast the result to that specific type.

SDK 1.4 introduced a simpler way to do the same thing:

public ListDatalListener[] getListDataListeners()

Return an array of all the list data listeners that have been registered.

7.2.3 The DefaultListModel Class

Swing provides a default implementation of the ListModel interface called DefaultListModel . This class is based
on the java.util.Vector class, a resizable array of objects that has been around since the early days of Java (the
comments keep saying that there are plans to replace this with a more modern Collection-based implementation, but
it hasn't happened yet). A majority of the methods of the DefaultListModel class are identical to those oV ector,
with the added (and necessary) feature that those methods fire a ListDataEvent each time the vector changes.
DefaultListModel extends AbstractListModel to take advantage of its listener-list management features.

7.2.3.1 Properties

The DefaultListModel class has three properties, shown i. Thesize property indicates how many
elements are currently stored in the list. You can use thesetSize() method to alter the size of the list. If the new size
is larger than the previous size, the additional elements are populated with null references, and the method fires a
ListDataEvent describing the range that was added. If the new size is smaller, the list is truncated, and the method

fires a ListDataEvent describing the range that was removed.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Table 7-2. DefaultListModel properties

Property Data type get is set Default value
elementAt Object
empty boolean . true
size int : . 0
indexed

The empty property is aboolean that indicates whether the list has no elementselementAt is an indexed property
that you can use to access the list elements. If you set a new element using the setElementAt() method, the
method fires a ListDataEvent describing the element that was changed.

7.2.3.2 Constructor

public DefaultListModel()

Create an empty vector to be used as the list model.

7.2.3.3 Methods

public void copylnto(Object anArray[])

Copy all of the objects in the list into the array anArray, which must be large enough to hold the contents of
the model.

public void trimToSize()

Collapse the capacity of the list to match its current size, removing any empty storage.

public void ensureCapacity(int minCapacity)

Tell the list to make sure that its capacity is at least minCapacity.

public int capacity()

Return the current capacity of the list. The capacity is the number of objects the list can hold without

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

reallocating for more space.

public int size()

Return the number of elements currently contained in the list. It is equivalent togetSize().

public Enumeration elements()

Return an Enumeration that iterates over each of the elements in the list.

public boolean contains(Object elem)

Return an indication of whether the object elem is currently contained in the list.

public int indexOf(Object elem)

Return the first index at which the object elem can be found in the list, ofl if the object is not contained in
the list.

public int indexOf(Object elem, int index)

Return the first index at which the object elem can be found in the list, beginning its search at the element
specified by index and moving forward through the list. The method returnsl if the object is not contained in
the list at or beyond index.

public int lastindexOf(Object elem)

Return the last index at which the object elem can be found in the list. The method returnsl if the object is

not contained in the list.
public int lastindexOf(Object elem, int index)

Return the last index at which the object elem can be found in the list, searching backwards from the
element specified by index to the front of the list. The method returns1 if the object is not contained in the

list at or before index.

public Object elementAt(int index)

Return a reference to the object at the specified index. It is equivalent to getElementAt(index).

public Object firstElement()
Return a reference to the first object in the list.

public Object lastElement()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Return a reference to the last object in the list.

public void removeElementAt(int index)

Remove the element at the specified index. The method then fires off a ListDataEvent to all registered
listeners, describing the element that was removed.

public void insertElementAt(Object obj, int index)

Insert the object obj into the list at the giverindeX, incrementing the index of the element previously at that
index and any elements above it. (That is, it adds 0bj before the element atindex .) The total size of the list
is increased by one. The method then fires off a ListDataEvent to all registered listeners, describing the
element that was inserted.

public void addElement(Object obj)

Add the object 0bj to the end of the list and fire off kistDataEvent to all registered listeners, describing the
element that was appended.

public boolean removeElement(Object obj)

Attempt to remove the first occurrence of the object obj from the list, returningtrue if successful andfalse if
no such object existed in the list. If the method is successful, the indices of all later elements are
decremented, and the size of the list is reduced by one. The method then fires off a ListDataEvent to all

registered listeners, describing the element that was removed.

public void removeAllElements()

Remove all the elements from the list. It then fires off a ListDataEvent, indicating that the entire range was

removed.
public String toString()

Provide a comma-separated list of each element currently in the list.

public Object[] toArray()

Return the contents of the list as an array of type Object. It is functionally equivalent to thecopylnto()
method, except that it allocates an array of the appropriate size and returns it.

public Object get(int index)
Equivalent to getElementAt(index).
public Object set(int index, Object element)

Equivalent to setElementAt(element, index).

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

public void add(int index, Object element)

Equivalent to insertElementAt(element, index).

public Object remove(int index)

Equivalent to removeElementAt(index).

public void clear()

Equivalent to removeAllElements().

public void removeRange(int fromindex;, int tolndex)

Remove all elements between the first and second index (including the boundary elements) from the list.
The method fires a ListDataEvent describing the interval that was removed.

7.2.3.4 A JList with changing contents

Here's a simple program that dynamically adds and removes elements from dList. To do so, we work with the
DefaultListModel that keeps track of the list's contents.

/I ListModelExample.java
1

import java.awt.*;

import java.awt.event.*;
import javax.swing.*;

public class ListModelExample extends JPanel {

JList list;
DefaultListModel model;
int counter = 15;

public ListModelExample() {
setLayout(new BorderLayout());
model = new DefaultListModel();
list = new JList(model);
JScrollPane pane = new JScrollPane(list);
JButton addButton = new JButton("Add Element");

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

JButton removeButton = new JButton("Remove Element");
for (inti=0;i<15; i++)
model.addElement("Element " + i);

addButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
model.addElement("Element " + counter);
counter++;

}
D
removeButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
if (model.getSize() > 0)
model.removeElementAt(0);
}
D

add(pane, BorderLayout.NORTH);
add(addButton, BorderLayout. WEST));
add(removeButton, BorderLayout.EAST);

public static void main(String s[]) {
JFrame frame = new JFrame("List Model Example");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setContentPane(new ListModelExample());
frame.setSize(260, 200);
frame.setVisible(true);

}
The result is shown in .

Figure 7-5. Dynamically adding and removing elements from a list

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

This example demonstrates a few important concepts. First, we instantiated our own DefaultListModel instead of
using the default provided with the JList. If we hadn't done this, we wouldn't have been able to add anything to the list
since the ListModel interface doesn't provide any methods to add or remove items. Working with your own
instantiation is generally easier when you need to make runtime changes to any model — again, assigning new

models is a benefit of the MVC architecture in Swing.

We've provided two ways for changing the list's contents: the Add Element button and the Remove Element button at
the bottom. Clicking on Add Element calls our actionPerformed() method and appends an element to the end of
the list. Clicking on Remove Element calls the same method and deletes an element from the front of the list. After
either button is pressed, the JList is notified of the change in the model and updates itself automatically. If you watch

carefully, you can see the scrollbar thumb grow or shrink as the list size changes.

Try selecting some elements, then click on the Remove Element button a couple of times. Note that the list model and
selection models communicate: as the top element is removed and the others move up, the selection moves too, in
order to keep the same elements selected even though their indices have changed. This is an example of objects
collaborating through event listeners, which you'll find throughout Swing.

There is one little bug, though. The selection model's lead and anchor positions are not updated when elements
are moved around. Although there's no visible evidence of this, you can prove it by running the program, clicking on
Element 3, clicking Remove Element twice, then Shift-clicking on Element 7. You'd expect to see the range from
Element 3 (which you last selected, and which was selected before your Shift-click) to Element 7 become highlighted.
Instead, you end up with just the range from Element 5 (which is now positioned where you clicked before removing
any elements) through Element 7 as the new selection.

2l Perhaps by the time you read this, the bug will have been fixed, but it was reported against
version 1.2.2 and was still present in 1.4.1 as this book went to press.

7.2.4 ListDataEvent

ListDataEvent is an extension ofjava.util. EventObject that holds information about a change in the list data
model. The event describes the nature of the change as well as the bounding indices of the elements involved.
However, it does not send the actual elements. Listeners must query the source of the event if they're interested in
the new contents of the affected elements.

There are three types of changes that can occur to the list data: elements can be altered, inserted, or removed from
the list. Note that the indices passed in form a closed interval (i.e., both indices are included in the affected range). If a
ListDataEvent claiming that list elements have been altered is received, the bounding indices typically describe the
smallest range of data elements that have changed. If elements have been removed, the indices describe the range

of elements that have been deleted. If elements have been added, the indices describe the new elements that have
been inserted into the list.

7.2.4.1 Properties

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

The ListDataEvent contains four properties, each with its own accessor, as shown . Thesource
property indicates the object that is firing the event. The t%pe property represents the type of change that has

occurred, represented by one of the constants in [Table 7-4. Theindex0 andindex1 properties outline the range of

affected elements. index0 does not need to be less tharin

Table 7-3. ListDat

dex1 for the ListDataEvent to be valid.

aEvent properties

Property Data type get is set Default value
index0 int
index1 int
source’ Object
type int
Coverridden

7.2.4.2 Constants

lists the event type constants used by theListDataEvent.

Table 7-4. Constant

s for ListDataEvent

into the list.

Data —
Constant Description
type
CONTENTS_CHANGED/int The elements between the two indices (inclusive) have been altered.
. The elements now between the two indices (inclusive) have just been inserted
INTERVAL_ADDED int

. The elements previou
INTERVAL_REMOVED |int

removed from the list.

sly between the two indices (inclusive) have now been

7.2.4.3 Constructor

public ListDataEvent(Object source, int type, int index0, int index1)

Take a reference to the object that is firing this event, as well as the event type and bounding indices.

|Vhis document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

7.2.4.4 Method

public String toString()

SDK 1.4 added a toString method that provides useful debugging information about the contents of the
event, which is suitable for logging. The String returned includes the values of all the event's properties

other than source.

7.2.5 The ListDataListener Interface

The ListDatalListener interface, which is the conduit for receiving thd_istDataEvent objects, contains three
methods. Each method receives a different ListDataEvent type that can be generated. This interface must be

implemented by any listener object that wishes to be notified of changes to the list model.

7.2.5.1 Methods

public abstract void intervalAdded(ListDataEvent e)

Called after the range of elements specified in the ListDataEvent has been added to the list. The specified
interval includes both endpoints. Listeners may want to query the source of the event for the contents of the
new interval.

public abstract void intervalRemoved(ListDataEvent e)

Called after the range of elements specified in the ListDataEvent has been deleted. The specified interval

includes both endpoints.

public abstract void contentsChanged(ListDataEvent e)

Called when the range of elements specified in the ListDataEvent has been altered. The specified interval
includes both endpoints, although not all elements are guaranteed to have changed. Listeners may want to
guery the source of the event for the contents of the range.

file:///C:/DOCUME~1/SIMULA~1/LOCALS~1/Temp/OReilly.Java.Swing.2nd.2002.chm/0596004087_

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

7.3 Handling Selections

The JList class in Swing depends on a second model, this one to monitor the elements that have been selected by
the user. As with the list data model, the programmer is given many places in which standard behavior can be altered
or replaced when dealing with selections. Swing uses a simple interface for models that handle list selections
(ListSelectionModel) and provides a default implementation DefaultList-SelectionModel).

7.3.1 The ListSelectionModel Interface

The ListSelectionModel interface outlines the methods necessary for managing list selections. Selections are
represented by a series of ranges, where each range is defined by its endpoints. For example, if the elements One,
Two, Three, Six, Seven, and Nine were selected in the opening example of the chapter, the list selection model would
contain three entries that specified the ranges {1,3}, {6,7}, and {9,9}. All selection indices are zero-based, and the
ranges are closed, meaning both endpoint indices are included within the selection. If only one element is present in a
range, such as with Nine, both endpoints are identical.

7.3.1.1 Properties

shows the properties of theListSelectionModel interface. The first four properties of the list selection
model can be used to retrieve various indices that are currently selected in the list. The anchorSelectionindex

and leadSelectionIndex properties represent the anchor and lead indices of the most recent range of selections, as
illustrated in . ThemaxSelectionindex andminSelectionIndex properties return the largest and

smallest selected index in the entire list, respectively.

Table 7-5. ListSelectionModel properties

Property Data type get is set Default value
anchorSelectionindex int
leadSelectionindex int
maxSelectionindex int
minSelectionindex int
selectionEmpty boolean
selectionMode int
valuelsAdjusting boolean

The selectionMode property defines the type of selections that the user may make in the list. This property can

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

take one of three constants representing a single selection, a single range of selections, or multiple ranges of
selections. The default (since SDK 1.3) is multiple ranges of selections. (The selectionMode constants are outlined
in greater detail in .) The selectionEmpty property is aboolean indicating whether there are any

selections. If there are no selections anywhere in the list, the property is set to true.

Setting the valuelsAdjusting property totrue indicates that the object is sending a series of selection change
events. For example, when the user is dragging the mouse across the list, the object can set this property to true,
which indicates that the selection change events are part of a series. When the series has been completed, the
property should be set to false. The receiver may wish to delay action until all events have been received.

In versions prior to 1.4, discontiguous selection events generated by clicking while
holding down Ctrl (or Command, depending on the L&F) set the valuelsAdjusting
property to true, without ever sending a closing event with the property equal tfalse.

Unless you're using SDK 1.4 or later, it is safest to pay attention to this property only
for lists that support a single selection.

7.3.1.2 Constants

The constants shown in are used in conjunction with theselectionMode property of the
ListSelectionModel interface.

Table 7-6. Constants for the ListSelectionModel interface

Constant Data type Description
MULTIPLE_INTERVAL_SELECTION int The user can make selections of several ranges at a time.
SINGLE_INTERVAL_SELECTION int The user can select only one range of items at a time.
SINGLE_SELECTION int The user can select only one item at a time.

7.3.1.3 Methods

public abstract void addSelectioninterval(int index1, int index2)

Add a group of list elements, ranging from index1 to index2 (including both endpoints), to the selection list.
If the current selection mode supports only single selections, the method selects only the element at
index2. This method must trigger dListSelectionEvent describing the resulting change.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

public abstract void removeSelectioninterval(int index1, int index2)

Remove the group of list elements from index1 to index2 (including both endpoints) from the selection list,
whether the elements are selected or not. This method must trigger a ListSelectionEvent describing any

changes it makes.

public abstract void clearSelection()

Clear all selections from the data model. This method must trigger a ListSelectionEvent, indicating that

the entire selection has been cleared.

public abstract void insertindexiInterval(int index, int length, boolean before)

Synchronize the selection list after an addition to the list data. If before is true, this method insertdength
elements into the selection list starting before index. Ifbefore is false, the method insertslength elements
after index. All added elements are unselected. The indices of any selected elements following them will be
updated. If the changes do affect the selection, the method must trigger a ListSelectionEvent reflecting

the changes to the selection list.

public abstract void removelndexInterval(int index1, int index2)

Synchronize the selection list after a deletion in the list data. This method removes the indices between
index1 andindex2 from the selection model and renumbers entries that come later in the list. If the
changes do affect the selection, the method must trigger a ListSelectionEvent reflecting the changes to

the selection list.

public abstract boolean isSelectedIndex(int index)
Is true if the specified index is currently selected.
public abstract void setSelectionInterval(int index1, int index2)

Clear all selections and reset the selection to cover the range between index1 andindex2. If the selection
mode allows only a single selection, the element referenced by index2 is selected. This method must
trigger a ListSelectionEvent describing the change, if there is one.

While reading through the above interface, you may have been puzzled to find no way to get a list of all selected
items. Even though you'd expect this to be a responsibility of the selection model, you must instead get this
information from the JList itself.

7.3.1.4 Events

The ListSelectionModel interface declares theaddListSelectionListener() andremoveListSelectionListener(

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

) event subscription methods for notifying other objects of selection changes. These selection changes come in the
form of ListSelec-tionEvent objects.

public void addListSelectionListener(ListSelectionListener I)
public void removeListSelectionListener(ListSelectionListener)

Add or remove a listener interested in receiving list selection events. The listener objects are notified each
time a change to the list selection occurs.

7.3.2 The DefaultListSelectionModel Class

Swing provides a default implementation of the list selection interface calle@DefaultListSelectionModel. This
class implements accessors for each of the ListSelectionModel properties and maintains anEventListenerList of
change listeners. If you thought about how to implement all the behavior specified by the ListSelectionModel
interface while reading about it on the last few pages, you probably realized that the code for all this is quite complex
and tedious. We're glad Sun provides a default implementation!

The DefaultListSelectionModel can chainListSelectionEvent objects in a series to notify listeners of a change in
the selection list. This is common, for example, when the user is dragging the mouse across the list. In this case, a
series of selection change events can be fired off with a valuelsAdjusting property set totrue, which indicates that
this event is only one of many. The listener may wish to delay any activity until all the events are received. When the
chain of selections is complete, an event is sent with the valuelsAdjusting property set tofalse, which tells the
listener that the series has completed. (Relying on this final event prior to SDK 1.4 is safe only for lists that don't
support selection ranges.)

7.3.2.1 Properties

lists the properties of theDefaultListSelectionModel. Almost all the properties are implementations of the
properties defined by the ListSelectionModel interface. The only new propertyJeadAnchorNotificationEnabled ,
designates whether the class fires change events over leadSelectionindex andanchorSelectionlndex each
time it fires a series of notification events. (Recall that the anchor selection is at the beginning of the selection range
while the lead selection is the most recent addition to the selection range.) If the property isfalse, only the elements

selected or deselected since the last change are included in the series.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Table 7-7. DefaultListSelectionModel properties

Property Data type | get |is | set Default value
anchorSelectionindex int . . -1
leadAnchorNotificationEnabled boolean - true
leadSelectionindex int : : -1
maxSelectionindex int . -1
minSelectionindex int . Integer.MAX_VALUE
selectionEmpty boolean . true
selectionMode int . . MULTIPLE_INTERVAL_SELECTION
valuelsAdjusting boolean . . false

7.3.2.2 Events

The DefaultListSelectionModel uses the ListSelectionEvent to signal that the list selection has changed. The

event notifies interested listeners of a modification to the selection data and tells which elements were affected.

public void addListSelectionListener(listSelectionListener 1)

public void removeListSelectionListener(listSelectionListener 1)
Add or remove a listener from the list of objects interested in receiving ListSelectionEvents.
public EventListener[] getListeners(Class listenerType)

You need to pass in the type of listener you're interested in (generally ListSelectionListener.class) and
cast the result to that specific type (available since SDK 1.3).

public ListSelectionListener[] getListSelectionListeners()

Return an array of all the list selection listeners that have been registered (available since SDK 1.4).

7.3.2.3 Constructor

public DefaultListSelectionModel()

The default constructor. It initializes a list selection model that can be used by a JList orJComboBox

component.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

7.3.2.4 Method

public Object clone() throws CloneNotSupportedException

Return a clone of the current selection model. You should be aware that the event listener list is not cloned.

This sort of problem is a small part of why the entire clone mechanism has fallen out of favor in Java.

7.3.2.5 Working with the ListSelectionModel

The following example is a modified version of our earlier list example. This one has its own ListSelectionListener

that reports each list selection event as it occurs.

/I SimpleList2.java

1

import java.awt.*;

import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;

public class SimpleList2 extends JPanel {

String label[] = { "Zero","One","Two","Three","Four","Five","Six",
"Seven","Eight","Nine","Ten","Eleven" };
JList list,

public SimpleList2() {
setLayout(new BorderLayout());

list = new JList(label);
JButton button = new JButton("Print");
JScrollPane pane = new JScrollPane(list);

DefaultListSelectionModel m = new DefaultListSelectionModel();
m.setSelectionMode(ListSelectionModel. SINGLE_SELECTION);
m.setLeadAnchorNotificationEnabled(false);
list.setSelectionModel(m);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

list.addListSelectionListener(new ListSelectionListener() {
public void valueChanged(ListSelectionEvent e) {
System.out.printin(e.toString());
}
D;

button.addActionListener(new PrintListener());

add(pane, BorderLayout. NORTH);
add(button, BorderLayout.SOUTH);

public static void main(String s[]) {
JFrame frame = new JFrame("List Example");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setContentPane(new SimpleList2());
frame.pack();
frame.setVisible(true);

/I An inner class to respond to clicks of the Print button
class PrintListener implements ActionListener {
public void actionPerformed(ActionEvent e) {
int selected[] = list.getSelectedIndices();
System.out.printin("Selected Elements: ");

for (int i=0; i < selected.length; i++) {
String element =
(String)list.getModel().getElementAt(selected]i]);
System.out.printin(" " + element);

Try running this code and selecting a couple of items in the list. If you drag the mouse from item O to item 5, you get
the following output (the detailed contents of the JList have been omitted for readability since they don't change from

line to line):

javax.swing.event.ListSelectionEvent[source=javax.swing.JList[...] firstindex= 0
lastindex= 1 isAdjusting= true]
javax.swing.event.ListSelectionEvent[source=javax.swing.JList[...] firstindex= 1
lastindex= 2 isAdjusting= true]
javax.swing.event.ListSelectionEvent[source=javax.swing.JList[...] firstindex= 2
lastindex= 3 isAdjusting= true]
javax.swing.event.ListSelectionEvent[source=javax.swing.JList[...] firstindex= 3
lastindex= 4 isAdjusting= true]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

javax.swing.event.ListSelectionEvent| source=javax.swing.JList][...] firstindex= 4
lastindex= 5 isAdjusting= true]
javax.swing.event.ListSelectionEvent[source=javax.swing.JList[...] firstindex= 0
lastindex= 5 isAdjusting= false]

Each entry describes a change in selection. The first five entries recognize that a change of selection has occurred
between one element and the next as the mouse was dragged. In this case, the former was deselected, and the latter
was selected. However, note that the iSAdjusting property wastrue, indicating that this is potentially one in a series
of changes. When the mouse button is released, the list knows that the drag has stopped and fires a
ListSelectionEvent with theisAdjusting property set tofalse, repeating the last changed index.

7.3.3 ListSelectionEvent

Much like the ListDataEvent, the ListSelectionEvent specifies a change by highlighting those elements in the
selection list that have altered. Note that a ListSelectionEvent does not indicate the new selection state of the list

element, only that some change has occurred. You should not assume that the new state is the opposite of the
previous state; always check with the event source to see what the current selection state really is.

7.3.3.1 Properties

There are four properties in the ListSelectionEvent, as shown in.

Table 7-8. ListSelectionEvent properties

Property Data type get is set Default value
firstindex int
lastindex int
source’ Object
valuelsAdjusting boolean
Coverridden

7.3.3.2 Constructor

public ListSelectionEvent(Object source, int firstindex, int lastindex, boolean isAdjusting)

This constructor takes a reference to the object that is firing the event, as well as the bounding indices and

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

a boolean indicating whether the event is expected to be followed by another. Note théirstindex should
always be less than or equal to lastindex.

7.3.3.3 Methods

public String toString()

Provide human-readable string output of the event properties for debugging.

7.3.4 ListSelectionListener
The ListSelectionListener interface, as the means of receivingListSelectionEvents, consists of only one

method: valueChanged(). This method must be implemented by any listener object interested in changes to the list

selection model.

public abstract void valueChanged(ListSelectionEvent e)

Notify the listener that one or more selection elements have changed.

7.3.4.1 Listening for ListSelectionEvents

Here is a brief example that demonstrates how to use ListSelectionListener and the ListSelectionEvent. The

example creates a series of checkboxes that accurately mirror the current selections in the list by listening for

selection events. Some results from playing with the program are shown in Eigure 7-6.

Figure 7-6. Monitoring list selection events

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

/I SelectionMonitor.java
1

import java.awt.*;

import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;

public class SelectionMonitor extends JPanel {

String label[] = { "Zero","One","Two","Three","Four","Five","Six",
"Seven","Eight","Nine","Ten","Eleven","Twelve" };

JCheckBox checks[] = new JCheckBox[label.length];

JList list;

public SelectionMonitor() {
setLayout(new BorderLayout());

list = new JList(label);
JScrollPane pane = new JScrollPane(list);

/I Format the list and the buttons in a vertical box.
Box rightBox = new Box(BoxLayout.Y_AXIS);
Box leftBox = new Box(BoxLayout.Y_AXIS);

/I Monitor all list selections.
list.addListSelectionListener(new RadioUpdater());

for(int i=0; i < label.length; i++) {
checks][i] = new JCheckBox("Selection " + i);

|Vhis document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

checksJi].setEnabled(false);
rightBox.add(checks]i]);
}
leftBox.add(pane);
add(rightBox, BorderLayout.EAST);
add(leftBox, BorderLayout. WEST);

public static void main(String s[]) {
JFrame frame = new JFrame("Selection Monitor");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setContentPane(new SelectionMonitor());
frame.pack();
frame.setVisible(true);

/I Inner class that responds to selection events to update the buttons
class RadioUpdater implements ListSelectionListener {
public void valueChanged(ListSelectionEvent e) {
/I If either of these are true, the event can be ignored.
if (('e.getValuelsAdjusting()) || (e.getFirstindex() == -1))
return;

/I Change the radio button to match the current selection state for each

/I list item that reported a change.

for (int i = e.getFirstindex(); i <= e.getLastIndex(); i++) {
checksJi].setSelected(((JList)e.getSource()).isSelectedindex(i));

If you're running this example under SDK 1.4 or later, experiment with Swing's new support for keyboard-driven
selection. Try typing the first letter, or few letters, of some of the list elements, and watch the selection jump around.
Notice that if you type te, the selection starts by selecting Two and then jumps to Ten, but neither event reports an
isAdjusting value oftrue. This feature is examined in more depth in the discussion of thgetNextMatch() method.

Remember that a ListSelectionEvent does not inform you of the new selection state of an element that has
changed. You might be tempted to conclude that if you receive a ListSelectionEvent, the selection state for the

target element would simply be the opposite of what it was before. This is not true. The selection state cannot be
determined from the ListSelectionEvent; it must be determined by querying the event source.

file:///C:/DOCUME~1/SIMULA~1/LOCALS~1/Temp/OReilly.Java.Swing.2nd.2002.chm/0596004087_

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

7.4 Displaying Cell Elements

Swing gives the programmer the option to specify how each element in the list (calledcll) should be displayed on
the screen. The list itself maintains a reference to a cell renderer. Cell renderers are common in Swing components,
including lists and combo boxes. Essentially, a cell renderer is a component whose paint() method is called each
time the component needs to draw or redraw an element. To create a cell renderer, you need only to register a class
that implements the ListCellRenderer interface. This registration can be done with thsetCellRenderer() method

of JList orJComboBox:

JList list = new JList();
list.setCellRenderer(new myCellRenderer());

7.4.1 The ListCellRenderer Interface

The ListCellRenderer interface must be implemented by cell renderers for lists and combo boxes. It has only one

method.

public abstract Component getListCellRendererComponent(JList list, Object value, int index, boolean isSelected,
boolean cellHasFocus)

This method must return a Component that can be used to draw the cell given the five variables passed in.
The JList argument is a reference to the list itselfvalue is the object within the list data that will be drawn in
this cell. The index of the cell in the list is given by the argument index. isSelected tells the renderer if the

cell is currently selected, and cellHasFocus tells the renderer if the cell currently has the input focus.

Occasionally, Swing calls this method with an index of -1, which is, of course, not a
valid list index, and implementations must be able to return a valid renderer anyway.
Situations in which you'd encounter this include combo boxes that are drawing

user-entered custom values (since they're not present in the associated list, they
have no index) and during Ul layout, when the size of a typical list element is needed
even if the list doesn't contain any values.

It may be necessary to set the preferred size of the component returned by the cell renderer before returning it so that
the requesting list knows how large to paint the component. This can be done by calling the setPreferredSize()
method on the component.

7.4.2 Implementing a Cell Renderer

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Here are some classes we'll use with the Java Books example later in this chapter, including a BOOKENtry class that
contains composite information stored in a book list and a custom renderer that draws each cell in a list of O'Reilly
books by placing its title side-by-side with a small icon of its cover:

/I BookEntry.java
import javax.swing.Imagelcon;

public class BookEntry {
private final String title;
private final String imagePath;
private Imagelcon image;

public BookEntry(String title, String imagePath) {
this.title = title;
this.imagePath = imagePath;

public String getTitle() { return title; }

public Imagelcon getimage() {
if (image == null) {
image = new Imagelcon(imagePath);
}

return image;

/I Override standard toString method to give a useful result.
public String toString() { return title; }

// BookCellRenderer.java
import javax.swing.*;
import java.awt.*;

public class BookCellRenderer extends JLabel implements ListCellRenderer {
private static final Color HIGHLIGHT_COLOR = new Color(0, 0, 128);

public BookCellRenderer() {
setOpaque(true);
setlconTextGap(12);

public Component getListCellRendererComponent(
JList list,

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Object value,

int index,

boolean isSelected,
boolean cellHasFocus)

BookEntry entry = (BookEntry)value;

setText(entry.getTitle());

setlcon(entry.getimage());

if(isSelected) {
setBackground(HIGHLIGHT _COLOR);
setForeground(Color.white);

}else {
setBackground(Color.white);
setForeground(Color.black);

}

return this;

Notice that each call to getListCellRendererComponent() returns the same instance. This is very important for
performance. Creating a new instance each time the method is called would place needless strain on the system.

Even if you need to return slightly different renderers under different circumstances, maintain a static pool of these
distinct instances and reuse them.

Our custom cell renderer displays images similar to those in . Before we put the O'Reilly books example
together, however, we need to discuss the central list class in Swing: JList. We'll do that after a brief detour for
DefaultListCellRenderer.

Figure 7-7. The ListCellRenderer results

_ b,
ﬂ Jawa Threads

ot Setected Seleted

7.4.3 The DefaultListCellRenderer Class

Swing contains a default list cell renderer class used by JList whenever the programmer does not explicitly set a cell
renderer. This class, DefaultListCellRenderer, implements theListCellRenderer interface.

public Component getListCellRendererComponent(JList list, Object value, int index, boolean isSelected, boolean
cellHasFocus)

This method returns a Component used to draw a default listcell. IfisSelected is true, then the cell is

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

drawn with the selectedBackground andselectedForeground properties defined in thelist variable. If
the cell is not selected, it uses the standard background and foreground colors of the list component. If the
cell has focus, a Ul-specific border (typically a 1-pixel LineBorder) is placed around the component. The

cell renderer can handle both text and icons. If the value is text, the default font of the list isused.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

7.5 The JList Class

The JList class is the generic Swing implementation of a list component. In the default selection mode, you can
make multiple selections by clicking with the mouse while holding down the modifier key defined by the current L&F
(generally Shift for a single, contiguous range andCtrl or Command for noncontiguous selections). TheJList class
does not provide scrolling capabilities, but it can be set as the viewport of a JScrollPane to support scrolling.

shows theJList component in four different L&Fs.

Figure 7-8. The JList component in four L&Fs

7.5.1 Properties

The JList class essentially combines the features of the data model, the selection model, and the cell renderer into a
single Swing component. The properties of the JList class are shown i .

Table 7-9. JList properties

Property Data type get|is|set Default value
accessibleContext® AccessibleContext | - JList.AccessibleJList
anchorSelectionindex int

cellRenderer? ListCellRenderer |- - |From L&F

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

dragEnabIedl'4 boolean : - |false
firstVisibleIndex int

fixedCellHeight” int : R
fixedCellWidth" int : SR
lastVisibleIndex int

IayoutOrientation1'4’ b int . - |VERTICAL
leadSelectionindex int

maxSelectionindex int

minSelectionindex int

model” ListModel

opaque® boolean - |- true
preferredScrollableViewportSize® Dimension

prototypeCeIIVaIueb Object : - |null
scrollableTracksViewportHeight® boolean

scrolIableTracksViewportWidth° boolean

selectedIndex int : -1
selectedindex boolean

selectedIndices int[]

selectedValue Object

selectedValues Object]]

seIectionBackgroundb Color : - |null
selectionEmpty boolean - true
seIectionForegroundb Color . - |null
selectionMode int . - |MULTIPLE_INTERVAL_SELECTION|
selectionModel” ListSelectionModel| - - |DefaultListSelec-tionModel
uP ListUl : - |From L&F
UlClassID® String : "ListUl”
valuelsAdjusting boolean - - |false
visibleRowCount int . - 18

Msince 14, bbound, iindexed, Coverridden

See also properties from JComponent

fanesd

The model property contains an object that implements theListModel interface; this object holds the element data of

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

the list. If you don't supply a model (or the data from which to build a model) when you construct the JList, a useless
default is created that contains zero entries (and cannot be added to). The selectionModel property contains an
object that implements the ListSelectionModel interface; this object manages the current selections in the list. Both

interfaces were covered earlier in the chapter.

The selectionMode mirrors theselectionMode property of theListSelectionModel. This property indicates how
many ranges can be selected at a time. The selectionForeground andselectionBackground properties set the
foreground and background colors of the selected cells. The opaque property is always set tdrue to indicate that the

JList is opaque.

The firstVisibleIndex property represents the topmost, leftmost (assuming a WesterrcomponentOrientation)
element that is at least partially visible in the list's "window," while the lastVisibleIndex property represents the
bottommost, rightmost (again, depending on the componentOrientation andlayoutOrientation properties)
element that is at least partially visible. visibleRowCount indicates the number of elements currently visible in the

list. You can set this property to ensure that the list shows no more than a certain number of elements at a time.

The next series of properties mirrors those in the ListSelectionModel. TheanchorSelectionindex and
leadSelectionindex give the anchor and lead positions for the most recent selection. TheinSelectionindex and
maxSelectionindex give the smallest and largest indices of all selected componentselectedindex gives the first
selected index in the list (or -1 if there is none) whileselectedIndices holds an ordered integer array of all current
selections. There is also an indexed selectedIndex property that indicates whether a specific index is selected. The
selectedValue property lets you retrieve the first selected object, angelectedValues lets you retrieve an array that
contains all the selected objects. Finally, the selectionEmpty property is aboolean that tells whether there are any
elements currently selected.

The fixedCellHeight andfixedCellWidth properties allow the user to explicitly set a fixed height in pixels for the
cells in the list. The prototypeCellValue is a reference to an object that the list can use to calculate the minimum
width of every cell in the list; you can use this property to define the size needed for each cell. This keeps the list from
having to compute the size by checking each item in the list and can greatly speed up drawing. For example, you
might set this property to the string "mmmmm" to ensure that each cell could contain five characters. The
preferredScrollableViewportSize property indicates theDimension necessary to support thevisibleRowCount
property. The valuelsAdjusting property is used to indicate that a series dfistSelectionEvent objects is being

generated by the selection model, such as when a drag is occurring.

The scrollableTracksViewportWidth andscrollableTracksViewportHeight properties report whether theJList
is resized to match the size of the viewport containing it. They are true if the preferred size of theJList is smaller than
the viewport (in the appropriate direction), allowing a JList to stretch. They arefalse if the JList is larger than the
viewport. The standard JScrollPane's scrollbars become active when these properties becoméalse.

SDK 1.4 introduced two new properties: dragEnabled andlayoutOrientation.drag-Enabled can be set totrue to

turn on the new automatic Drag and Drop support. For this to work, the L&F must support Drag and Drop, and you
need to set the component's transferHandler, as discussed i ,. (Note that even though you'd expect to
use "isDragEnabled" to retrieve the value of dboolean property, JList defines getDragEnabled instead.) Lists can

now have more than one column. The layoutOrientation property controls this and determines in what order the

cells should "flow" when there is more than one column. Its value must be one of the constants defined in[Table 7-10.
To support internationalization, layoutOrientation interacts withJComponent's componentOrientation property

to determine cell layout.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

7.5.2 Constants

able 7-10 shows constants for thelayoutOrientation property. These constants determine the layout of list

elements.
Table 7-10. JList layoutOrientation constants
Constant Data type Description
VERTICAL int Indicates the default layout, a single column of cells
VERTICAL_WRAP int Indicates a multi-column layout with cells flowing vertically, then horizontally
HORIZONTAL_WRAP |int Indicates a multi-column layout with cells flowing horizontally, then vertically

7.5.3 Constructors

public JList()

Create an empty JList. Nothing can be added to this list without changing the model.
public JList(ListModel model)

Create a JList using the specified data model.
public JList(Object[] objects)

Create a JList using the array of objects passed in to populate a default data model.
public JList(Vector vector)

Create a JList using aVector of objects passed in to populate a default data model.

7.5.4 Miscellaneous

public void ensurelndexlIsVisible(int index)
Automatically scroll the viewport associated with the list until the element specified by index is visible.

public Rectangle getCellBounds(int index1, int index2)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Return a Rectangle object that outlines the area covered by the range of list elements. In the event that the

range is invalid, the method returns null.
public int getNextMatch(String prefix, int startindex, javax.swing.text.Position.Bias bias)

Starting with SDK 1.4, users can select items within lists by typing the first letter (or letters) of the contents
of the cell that they'd like to select. This method was introduced to support that capability, but it can also be
used from code. The arguments specify the textual prefix to be searched for, the index from which
searching should begin (when the method is invoked in response to a user keypress, this will be the index
selected last), and the direction in which searching should occur, which must be one of
Position.Bias.Forward or Position.Bias.Backward. (Despite the unconventional capitalization, these

are constants. In fact, they form a type-safe enumeration.) S

B3l ¢ you're not familiar with this extremely useful Java pattern, learning about it is worth

the price of Joshua Bloch's outstanding Effective Java Programming Language Guide
(Addison-Wesley).

public String getToolTipText(MouseEvent event)

Since SDK 1.4, JList overrides this method to allow the tooltips of the underlying cells' renderers to appear
when the mouse is held over a list cell. Note that if you call setToolTipText(null) on the list itself, you
disable this feature from that point on.

public Point indexToLocation(int index)

Return a point representing the upper-left corner of the list element in local coordinates. In the event that
the element is not currently displayed on the screen, or does not exist, the method returns null.

public int locationTolndex(Point p)

Return the index of the list element that contains the graphical point p.

7.5.5 Selection Model

public void setSelectioninterval(int indexO0, int index1)
Reset the selection interval to the inclusive range specified by the two indices passed in.
public void setSelectedValue(Object obj, boolean shouldScroll)

Set the list element that matches the reference 0bj as the only selection in the list. IShouldScroll is true,

the list automatically scrolls to ensure that the element is visible.

public void addSelectioninterval(int index0, int index1)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Add the interval specified by the two indices passed in to the current selection.

public void removeSelectioninterval(int index0, int index1)

Remove the interval specified by the two indices passed in from the current selection.

public void clearSelection()

Clear the entire selection.

7.5.6 Scrolling

The following methods are used for internal configuration purposes. Along with the
getPreferredScrollableViewportSize(), getScrollableTracksViewportHeight(), and
getScrollableTracksViewportWidth() methods (accessors for three of the properties listed i, these
methods implement the Scrollable interface. Scrollable allows aJScrollPane to be more intelligent about
scrolling. You would rarely call these methods.

public int getScrollableBlockincrement(Rectangle visibleRect, int orientation, int direction)

If the orientation is vertical, this method returns the height of the visibleRect rectangle. If the orientation is

horizontal, this method returns the width. The direction variable is not used.

public int getScrollableUnitincrement(Rectangle visibleRect, int orientation, int direction)

Return the number of pixels it takes to expose the next element in the list. If direction is positive, it is
assumed that the user is scrolling downwards, and the method returns the height of the first element that is
visible or partially visible on the list. If the direction is negative, it is assumed that the user is scrolling
upwards, and the method returns the height of the last element that is visible or partially visible on the list.

7.5.7 Data Model

public void setListData(Object[] objects)

Create a ListDataModel from the array of objects passed in and resets the current data model of tldist to

reference it.
public void setListData(Vector vector)

Create a ListDataModel from the vector of objects passed in and resets the current data model of tidéist

to reference it.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

7.5.8 User Interface

public void updateUl()

A new L&F has been selected by the user. Invoking this method forces the component to reset its Ul
delegate.

7.5.9 Events

The JList component fires aListSelectionEvent when any of its selections change. These methods mirror the
ListSelectionEvents that are fired directly from the selection model and are used to notify any selection listeners
that have registered directly with the JList itself. The source of the event is always thelList object.

public void addListSelectionListener(ListSelectionListener)
public void removeListSelectionListener(ListSelectionListener)

Add or remove a selection listener from the event registration list.
public ListSelectionListener[] getListSelectionListeners()

Available since SDK 1.4, this method returns the list of registered listeners.

7.5.10 The Java Books Example

Here is the code for the list displaying some O'Reilly Java books. It uses the BookEntry andBookCellRenderer

classes.

/I ListExample.java

1

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class ListExample extends JPanel {

private BookEntry books[] = {

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

new BookEntry("Ant: The Definitive Guide", "covers/ant.gif"),

new BookEntry("Database Programming with JDBC and Java",
"covers/jdbc.gif"),

new BookEntry("Developing Java Beans", "covers/beans.gif"),

new BookEntry("Developing JSP Custom Tag Libraries", "covers/jsptl.gif"),

new BookEntry("Java 2D Graphics", "covers/java2d.qgif"),

new BookEntry("Java and XML", "covers/jxml.gif"),

new BookEntry("Java and XSLT", "covers/jxslt.gif"),

new BookEntry("Java and SOAP", "covers/jsoap.gif"),

new BookEntry("Java and XML Data Binding", "covers/jxmldb.gif"),
new BookEntry("Java Cookbook", "covers/jcook.gif"),

new BookEntry("Java Cryptography", "covers/jcrypto.gif"),

new BookEntry("Java Distributed Computing"”, "covers/jdist.gif"),
new BookEntry("Java I/Q", "covers/javaio.gif"),

new BookEntry("Java in a Nutshell", "covers/javanut.gif"),

new BookEntry("Java Management Extensions”, "covers/jmx.gif"),
new BookEntry("Java Message Service", "covers/jms.gif"),

new BookEntry("Java Network Programming", "covers/jnetp.gif"),
new BookEntry("Java Performance Tuning", "covers/jperf.gif*),
new BookEntry("Java RMI", "covers/jrmi.qgif"),

new BookEntry("Java Security", "covers/jsec.gif"),

new BookEntry("JavaServer Pages"”, "covers/jsp.gif*),

new BookEntry("Java Servlet Programming", "covers/servlet.gif"),
new BookEntry("Java Swing", "covers/swing.gif"),

new BookEntry("Java Threads", "covers/jthread.gif"),

new BookEntry("Java Web Services", "covers/jws.gif"),
new BookEntry("Learning Java", "covers/learnj.gif")

private JList booklist = new JList(books);

public ListExample() {
setLayout(new BorderLayout());
JButton button = new JButton("Print");
button.addActionListener(new PrintListener());

booklist = new JList(books);
booklist.setCellRenderer(new BookCellRenderer());
booklist.setVisibleRowCount(4);

JScrollPane pane = new JScrollPane(booklist);

add(pane, BorderLayout. NORTH);
add(button, BorderLayout.SOUTH);

public static void main(String s[]) {

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

JFrame frame = new JFrame("List Example");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setContentPane(new ListExample());

frame.pack();

frame.setVisible(true);

/I An inner class to respond to clicks of the Print button
class PrintListener implements ActionListener {
public void actionPerformed(ActionEvent e) {
int selected[] = booklist.getSelectedIndices();
System.out.printin("Selected Elements: ");

for (int i=0; i < selected.length; i++) {
BookEntry element =
(BookEntry)booklist.getModel().getElementAt(selected]i]);
System.out.printin(" " + element.getTitle());

The code to create the list is relatively short. The list is instantiated with an array of entries that encapsulate the titles
and images. In our constructor, we inform the JList to use our example cell renderer to display each of the books in

the list. Finally, we add the list to a JScrollPane object to allow support for scrolling. The result appears i.

Figure 7-9. A complete JList with a custom cell renderer

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

We added a Print button that extracts and prints the titles of all selected books. Using custom classes to encapsulate
multi-part information is a major benefit of object-oriented code, and, as this example illustrates, JList makes it pretty
easy to work with and display such composite building blocks.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

7.6 Combo Boxes

A combo box component is actually a combination of a Swing list (embedded in apop-up window) and a text field. Because
combo boxes contain a list, many of the classes discussed in the first part of this chapter are used here as well. Unlike lists, a

combo box allows the user only one selection at a time, which is usually copied into an editable component at the top, such as a
Eiéure 7-1d shows a high-level

text field. The user can also manually enter a selection (which does not need to be on the list).

class diagram for Swing's combo box classes.

Figure 7-10. Swing combo box class diagram

Like lists, the combo box component uses a data model to track its list data; the model is called ComboBoxModel.

7.6.1 The ComboBoxModel Interface

The ComboBoxModel interface extends theListModel interface and is used as the primary model for combo box data. It
adds two methods to the interface, setSelectedltem() and getSelectedltem(), thus eliminating the need for a separate
selection model. Since a JComboBoX allows only one selected item at a time, the selection "model" is trivial and is collapsed

into these two methods.

Because the data of the ComboBoxModel is stored in an internal list, theComboBoxModel also reuses the
ListDataEvent to report changes in the model state. However, with the addition of methods to monitor the current selection,
the model is now obligated to report changes in the selection as well, which it does by firing a modification ListDataEvent with
both endpoints as -1. Again, you should always query the event source to determine the resulting change in the elements.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

You can create your own ComboBoxModel or use the default provided with theJComboBoX class. The default model is an
inner class of JComboBoOX. If you need to create your own, it is (as before) a good idea to extend t#&bstractListModel class

and go from there.

7.6.1.1 Property

able 7-11 shows the property defined by theComboBoxModel interface. The selected -ltem property lets you set or retrieve
the currently selected object.

Table 7-11. ComboBoxModel property

Property Datatype | get |is| set| Defaultvalue

selectedltem Object

See also properties of theListModel interface (]! able 7-1}).

7.6.1.2 Events

The ComboBoxModel interface reuses theListDataEvent to indicate that the selection or the contents of the list has
changed. No new event-related methods are added to the ComboBoxModel interface.

7.6.2 The MutableComboBoxModel Interface

In addition to the ComboBoxModel, which supports unchanging lists of choices, Swing definesMutableComboBoxModel .
This model, which extends the ComboBoxModel interface, adds four new methods to support changes to the list:

public abstract void addElement(Object obj)

Add a specific element to the data model.

public abstract void removeElement(Object obj)

Remove a specific element from the data model.

public abstract void insertElementAt(Object obj, int index)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Insert a specific element at the given index.

public abstract void removeElementAt(int index)
Delete a specific element from the list.

A data model that implements the MutableComboBoxModel interface also implementsComboBoxModel and ListModel,
which gives the model the ability to add, remove, and retrieve elements; set a selection; and support change listeners.

7.6.3 The DefaultComboBoxModel Class

If you're getting lost with all these interfaces, don't despair: Swing provides a DefaultComboBoxModel that implements each

of these interfaces. This probably works in almost any situation where you'd want to use a combo box.

shows the properties of theDefaultComboBoxModel class. The indexedelementAt property allows you to
retrieve any particular element in the list. Theselectedltem property points to the currently selected item in the model. Note
that the setSelectedltem() method fires a modificationListDataEvent, specifying both endpoints of the "change” as1 to
indicate that the selection has changed. Finally, the read-only Size property lets you find out the number of elements in the

vector.
Table 7-12. DefaultComboBoxModel properties
Property Data type get is set Default value
elementAt Object . null
selectedltem® Object : : null
size int . 0
Ooverridden

7.6.3.1 Constructors

public DefaultComboBoxModel()
public DefaultComboBoxModel(Object items]])
public DefaultComboBoxModel(Vector v)

Create a default combo box model, perhaps using an array or vector to initialize the data model. In the first case, an
empty model is created. In the second, the objects in the items variable are copied into a new model. In the third

case, an existing vector is installed into the model.

7.6.3.2 Methods

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

public void addElement(Object obj)

Add a specific element to the data model, firing a ListDataEvent that describes the addition.

public void removeElement(Object obj)

Remove a specific element from the data model, firing a ListDataEvent that describes the removal.

public void removeAllElements()

Remove all elements from the data model, firing a ListDataEvent that describes the removal.

public void insertElementAt(Object obj, int index)

Insert an element at the specified index, firing a ListDataEvent that describes the insertion.

public void removeElementAt(int index)
Delete a specific element from the list, firing a ListDataEvent that describes the removal.
public int getindexOf(Object obyj)

Return the index of the object referenced by the variable obj, or -1 if it's not found.

7.6.3.3 Event

The DefaultComboBoxModel interface reuses thelListDataEvent to indicate that the contents of the model or its selection

have changed. See [Table 7-13.

Table 7-13. DefaultComboBoxModel event

Event Description

) Indicates that a change in the contents of the combo box model has occurred (which includes the current
ListDataEvent)
selection)

Because it extends AbstractListModel, DefaultComboBoxModel provides all the listener-registration methods described
earlier in this chapter: addListDatalListener(), removeListDataListener(), getListeners() (since SDK 1.3), and
getListDataListeners() (since SDK 1.4).

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

7.6.4 ComboBoxEditor

ComboBoxEditor is an interface that defines a component used for editing in the combo box. By defaullComboBox uses
a text field for its editor. However, you can create your own combo box editor by implementing the methods of this interface.

Creating your own combo box editor takes a bit of imagination. You might notice that the methods are heavily biased toward text
editing. This is not a coincidence since most of the editable components in Swing deal with text. However, there is nothing to
prevent you from mixing various components together, including some of your own invention, and using the editor interface to
specify how they react.

7.6.4.1 Properties

The ComboBoxEditor interface defines the two properties shown irffable 7-14. The editorComponent can be used to edit
the contents of a field in the combo box. The getEditorComponent() accessor is typically called once, when the combo box
is first displayed. You would implement this method to return the component you want to use for editing.

Table 7-14. ComboBoxEditor properties

Property Data type get is set Default value

editorComponent Component

item Object

The item property is the object being edited. Thesetltem() mutator lets the editor know which item is being edited,; it is called

after the user selects an item from the list or completes an edit (e.g., by pressing Enter in a text field). The getltem() accessor
returns the item currently being edited.

7.6.4.2 Events

The ComboBoxEditor interface uses anActionListener to indicate that the user has finished modifying the item in the
ComboBoxEditor. For example, the default text editor of the combo box component fires this event after the user finishes
typing in the text box and presses Enter. After the editing has been completed, the combo box generally calls setltem() to

ensure that the results are set correctly in the editor.

public abstract void addActionListener(ActionListener I)
public abstract void removeActionListener(ActionListener [)

Add or remove a specific listener interested in receiving ActionEvents concerning the item currently being edited.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

7.6.4.3 Method

public abstract void selectAll()

Select all content within the editable region.

7.6.5 Implementing a Custom Editor

The following example shows a simple custom editor for a combo box:

/I ComboBoxEditorExample.java
Il

import java.awt.*;

import java.awt.event.*;

import java.util.*;

import javax.swing.*;

import javax.swing.border.*;

public class ComboBoxEditorExample implements ComboBoxEditor
{

Map map;

ImagePanel panel;

Imagelcon questionicon;

public ComboBoxEditorExample(Map m, BookEntry defaultChoice) {
map = m;
panel = new ImagePanel(defaultChoice);
guestionlcon = new Imagelcon("question.gif");

public void setltem(Object anObject)
{
if (anObject != null) {
panel.setText(anObject.toString());
BookEntry entry = (BookEntry)map.get(anObject.toString());
if (entry = null)
panel.setlcon(entry.getimage());
else
panel.setlcon(questionlcon);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

public Component getEditorComponent() { return panel; }
public Object getltem() { return panel.getText(); }
public void selectAll() { panel.selectAll(); }

public void addActionListener(ActionListener I) {
panel.addActionListener(l);

public void removeActionListener(ActionListener 1) {
panel.removeActionListener(l);

/' We create our own inner class to set and repaint the image and text.
class ImagePanel extends JPanel {

JLabel imagelconLabel;
JTextField textField;

public ImagePanel(BookEntry initialEntry) {
setLayout(new BorderLayout());

imagelconLabel = new JLabel(initialEntry.getimage());
imagelconlLabel.setBorder(new BevelBorder(BevelBorder.RAISED));

textField = new JTextField(initialEntry.getTitle());
textField.setColumns(45);
textField.setBorder(new BevelBorder(BevelBorder. LOWERED));

add(imagelconLabel, BorderLayout. WEST);
add(textField, BorderLayout.EAST);

public void setText(String s) { textField.setText(s); }
public String getText() { return (textField.getText()); }

public void setlcon(lcon i) {
imagelconLabel.setlcon(i);
repaint();

public void selectAll() { textField.selectAll(); }

public void addActionListener(ActionListener I) {
textField.addActionListener(l);

}

public void removeActionListener(ActionListener I) {

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

textField.removeActionListener(l);

This example is tightly coupled with the example for the JComboBoX class (later in the chapter). However, the source is not
hard to understand. When the combo box is initialized, Swing calls getEditorComponent() to position and paint the combo
box editor at the top of the JComboBoXx component. This is our inner class, and essentially consists of dPanel with both the
name of a book and its cover image.

The user is allowed to interact freely with the text field. Whenever the user selects a list element or completes an edit in the text
field, the setltem() method is called to update the book icon. If an icon cannot be found for the text, a question mark is
displayed. Whenever the editor needs to retrieve the currently edited object, it makes a call to getltem(). Note that our
addActionListener() andremoveActionListener() methods pass the listener to theJTextField defined in the editor.

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

| |l@ve RuBoard

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

7.7 The JComboBox Class

JComboBOX combines a button or editable field and a drop-down list. It is very similar to the AWChoice component and
even implements the ItemSelectable interface for backward compatibility. By default, the] ComboBox component
provides a single text edit field adjacent to a small button with a downward arrow. When the button is pressed, a pop-up list of
choices is displayed, one of which can be selected by the user. If a selection is made, the choice is copied into the edit field,
and the pop up disappears. If there was a previous selection, it is erased. You can also remove the pop up by pressing Tab (or
Esc, depending on the L&F) while the combo box has the focus. shows combo boxes as they appear in four
different L&Fs.

Figure 7-11. The JComboBox component in four L&Fs

The text field in the JComboBOX component can be either editable or not editable. This state is controlled by theditable
property. If the text field is editable, the user is allowed to type information into the text box (which may not correspond to
anything in the list), as well as make selections from the list. If the component is not editable, the user can only make

selections from the list.

Unless you specify a set of objects in the constructor, the combo box comes up empty. You can use theaddltem()
method to add objects to the combo box list. Conversely, the removeltem() andremoveltemAt() methods remove a
specified object from the list. You also have the ability to insert objects at specific locations in the combo box list with the
insertitemAt() method. If you wish to retrieve the current number of objects in the list, use thgetltemCount() method,
and if you wish to retrieve an object at a specific index, use the getltemAt() method.

Note that the list component inside the JCOmbOBOX is not part of the component itself but rather part of its Ul delegate.
Hence, there is no property to access the list component directly. However, you should be able to get any information you need
through the component properties or the ComboBoxModel.

As with regular pop-up menus, you have the ability to specify whether the pop up in the JComboBo0OX component should be

drawn as a lightweight or a heavyweight component. Lightweight components require less memory and computing resources.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

However, if you are using any heavyweight components, you should consider forcing the combo box to use a heavyweight pop
up, or else the pop up could be obscured behind your heavyweight components. This can be done by setting the
lightWeightPopupEnabled property tofalse. If the property is set tdrue, the combo box uses a lightweight pop up when
appropriate.

Combo boxes use the same ListCellRenderer as the JLiSt component (discussed earlier in this chapter) to paint selected

and nonselected items in its list.

7.7.1 The Key Selection Manager

With combo boxes, you have the ability to map keystrokes to item selections in the list. In order to do this, you can create an
object that implements the interface JComboBox.KeySelectionManager. This interface contains only one method:

public int selectionForKey(char aKey, ComboBoxModel model)

Invoked by the JComboBOX component after receiving a keyboard event while the list pop up is shown. The most

recent character pressed, as well as the model for the combo box, is provided. The method must return the index of

the list element that should be highlighted in the combo box, or -1 if a selection cannot be determined. Note that this
method is equivalent to moving the mouse across the list; hence, if the mouse pointer is anywhere inside the list, this
method does not work.

Here is a short code excerpt that uses a key selection manager to map the numerals 0-9 on the keyboard to the first 10
elements in the combo box list:

class myKeySelectionManager implements JComboBox.KeySelectionManager
{
public int selectionForKey(char aKey, ComboBoxModel aModel) {
if ((aKey >="'0") && (aKey <="9")
return (aKey - '0;
else
return -1;

You can install the key selection manager using the SetKeySelectionManager() method of JComboBox:
myComboBox.setKeySelectionManager(new myKeySelectionManager());

If you do not install your own, a default key selection manager selects items in the list whose first character matches what
you've typed on the keyboard. (This is not as sophisticated as what JLiSt now supports, in that only the first character is ever

considered, but the interface was defined prior to JLiSt's keyboard navigation capability.)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

7.7.1.1 Properties

shows the properties that can be found in the]JComboBo0X component. As we mentioned earlier, theeditable
property defines whether the text field of the combo box allows text to be entered manually. The
lightWeightPopupEnabled property allows you to specify whetherJComboBOX should use a lightweight component to
draw the list pop up. The popupVisible property controls whether the pop up associated with the combo box is visible. The
maximumRowCount property represents the total number of list elements that can be displayed in the pop up. If the list

contains more than maximumRowCount, a scrollbar provides access to the rest of the items.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Table 7-15. JComboBox properties

Property

Data type

get

is

set

Default value

accessibleContext

AccessibleContext

JComboBox.AccessibleJComboBox()

actionl'3, b Action null

actionCommand String "comboBoxChanged"
editableb boolean false

editor” ComboBoxEditor ComboBoxEditor()
enabled © boolean true

itemAt Object null

itemCount int 0

keySelectionManager

JComboBox.KeySelectionManager| -

JComboBox.DefaultKeySelectionMana-ger(

)

since 1.3,1‘4since 1.4,

bbound, iindexed, Ooverridden

See also properties from the

JComponent class

lightWeightPopupEnabled® |boolean true
maximumRowCount” int 8

modelb ComboBoxModel JComboBox.DefaultComboBoxModel()
opaque0 boolean true
popupVisible boolean

prototypeDispIayVaIue1'4’ b Object null

rendererb ListCellRenderer

selectedIndex int -1
selectedltem Object null
selectedObjects Object]] null

U|b ComboBoxUlI From L&F
UiClassID® String "ComboBoxUl"
1.3

Some properties mimic those in JLiSt. The selectedltem property represents the object currently selected in thecombo

box. If you call the setSelectedltem() method with an object that does not exist, the first object in the list is selected
instead. The selectedindex property gives the index of the selected item, o1 if there is none. TheselectedObjects
property holds an array of size 1 — the object currently selected. The getSelectedObjects() method is present to provide

backward compatibility with the AWT Choice component. The read-onlyitemCount property tells how many elements are

currently in the combo box's list.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

The enabled property overrides that of thejava.awt.Component class. If the property is set tdalse, the method prevents
the user from selecting items from the list and typing text into the text field or editor. The Opaque property is alwaystrue to

indicate that the component uses all of its drawing region.

The actionCommand property is coupled to anActionEvent that is fired when the user makes a selection inside the list.
The actionCommand typically contains a string-based representation of the selected item. SDK 1.3 introduced the more
powerful action property, which allows you to tie the combo box to ai\CtiONn object so that its enabled state and tooltip text
are automatically updated if the Action is changed.

Finally, the prototypeDisplayValue property, added in SDK 1.4, allows you to greatly speed up the display of the combo
box. If you set this property, the combo box uses the prototype object you supply when trying to calculate its size in the layout.
If you don't set this, it has no choice but to iterate over all the contents of its data model and find the biggest size among them,
which takes much longer. (Of course, if you're supplying a prototype, it's your responsibility to make sure it's the right size for

the entire list.)

7.7.1.2 Events

Combo boxes fire both anltemEvent and an ActionEvent when the selection in the list has changed. ThdtemEvent is
fired when there is a change in the current selection of the list, from any source. The ActionEvent is fired when the user
explicitly makes a selection; it is coupled with the actionCommand property. (Note that theactionCommand does not by
default tell you the item that was selected.) The ltemEvent and its listener list maintain backward compatibility with the
ItemSelectable interface of AWT 1.1.

public void addltemListener(ltemListener aListener)
public void removeltemListener(ltemListener aListener)

Add or remove an ItemListener from the list. These methods maintain backward compatibility with the
ItemSelectable interface of AWT 1.1.

public ItemListener[] getltemListeners()

Return the currently registered item listeners (introduced in SDK 1.4).

public void addActionListener(ActionListener I)

public void removeActionListener(ActionListener I)

Add or remove an ActionListener for ActionEvents sent when the user makes a selection.
public ActionListener[] getActionListeners()

Return the currently registered action listeners (added in SDK 1.4).

In developing real applications, many developers wanted to have the contents of a combo box react to the current state of the
application (items might be added or removed depending on the modes or documents that the user had active). The most

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

convenient way to achieve such context-sensitivity is to update the content of the combo box right before it is displayed.
Unfortunately, there was no public API for doing this, so some developers chose to dive into the details of the actual
L&F-specific Ul delegate implementations and hook their applications into the "guts" of Swing. Starting with SDK 1.4, the
Swing API provides an official, public way to update your combo box before its list pops up for the user. You can now express
interest in being notified before the combo box shows a pop-up menu by registering a PopupMenuListener . (Note that if
the L&F does not use a pop-up menu to implement the list portion of the combo box, you may not receive any notifications. So

far, all standard L&Fs do use pop-up menus and do fire these events).

public void addPopupMenuListener(PopupMenulListener aListener)
public void removePopupMenuListener(PopupMenulListener aListener)
public PopupMenulListener[] getPopupMenuListeners()

These methods provide the familiar set of event-notification support for learning about the imminent display of the

pop-up menu associated with a combo box, starting with SDK 1.4. See Eection 14.5.l;| andbection 14.5.ld for

details about the events you can receive.

7.7.1.3 Constructors

public JComboBox(ComboBoxModel aModel)

This constructor initializes its items from an existing ComboBoxModel.
public JComboBox(Object items[])

Create a JComboBOX using the items specified in the array.
public JComboBox(Vector items)

Create a JComboBOX using the items specified in theVector passed in.
public JComboBox()

Create an empty JComboBoOX using the DefaultComboBoxModel as its data model.

7.7.1.4 Methods

public void updateUl()

Called by the UIManager when the L&F of the component has changed.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

public void showPopup()
Raise the popup that contains the combo box list.
public void hidePopup()

Close the popup that contains the combo box list.

public void configureEditor(ComboBoxEditor anEditor, Object anltem)

Initialize the specified ComboBoOXEditor with the object passed in.

7.7.1.5 List methods

These methods require that the combo box use aMutableComboBoxModel; otherwise, an exception is thrown:

public void addltem(Object anObject)

Add a specific object to the end of the list.

public void insertltemAt(Object anObject, int index)

Insert an object into the list after the specified index.

public void removeltem(Object anObject)

Remove the specified object from the list after the specified index.

public void removeltemAt(int anindex)

Remove an object from the list at the specified index.

public void removeAllltems()

Remove all items from the list.

7.7.1.6 Key selection

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

protected JComboBox.KeySelectionManager createDefaultKeySelectionManager()

Return a new instance of the default key selection manager. This selection manager matches keystrokes against
the first character of each item in the list starting with the first item below the selected item (if there is one).

public boolean selectWithKeyChar(char keyChar)

Attempt to select a list item that corresponds to the character passed in. If the method is successful, it returnstrue.

If there is no list item that corresponds to that character, the method returns false.

7.7.1.7 Internal methods

Because the JCOmMbOBOX uses a number of other components to build its interface (often a text field, a pop-up menu, and
a list), it implements several methods needed to interact with these constituent components. These methods must be public so
the components can call them, but they are not intended to be invoked by you or me. But if you are tempted to use one of
these anyway, be aware that since the previous publication of this book, a number of such methods have been removed, and

your code would have broken had you relied on them.

public void processKeyEvent(KeyEvent e)

Override processKeyEvent() in JComponent. This method callshidePopup() if the user presses the Tab
key. It should not be invoked by the programmer.

public void actionPerformed(ActionEvent e)

Monitor internal action events from the embedded list component. Although it is public, you should not invoke or
overridde this method.

public void contentsChanged(ListDataEvent e)

Monitor model events from the list component. Although it is public, you should not invoke or overridde this method.

public void firePopupMenuWillBecomeVisible()
public void firePopupMenuWillBecomelnvisible()

public void firePopupMenuCanceled()

These methods help the combo box track the state of its pop-up menu. They should not be called by the

programmer.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

7.7.2 Java Books Revisited

Here is the list of some O'Reilly Java books implemented as a combo box. We use our new combo box editor to allow the user
to see which book is selected.

/I EditableComboBox.java
1

import java.awt.*;

import java.awt.event.*;
import java.util.*;

import javax.swing.*;

public class EditableComboBox extends JPanel {

private BookEntry books[] = {
/I Include same book information as in ListExample above.

h
Map bookMap = new HashMap();

public EditableComboBox() {
// Build a mapping from book titles to their entries.
for (inti=0 ;i< books.length; i++) {
bookMap.put(books]i].getTitle(), booksJi]);
}

setLayout(new BorderLayout());

JComboBox bookCombo = new JComboBox(books);
bookCombo.setEditable(true);
bookCombo.setEditor(
new ComboBoxEditorExample(bookMap, books[0]));

bookCombo.setMaximumRowCount(4);
bookCombo.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

System.out.printin("You chose " + ((JComboBox)e.getSource()).
getSelecteditem() +"I");

}
D
bookCombo.setActionCommand('Hello");
add(bookCombo, BorderLayout. CENTER);

}

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

public static void main(String s[]) {
JFrame frame = new JFrame("Combo Box Example");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setContentPane(new EditableComboBox());
frame.pack();
frame.setVisible(true);

The code to initialize the combo box is relatively simple. After the combo box is instantiated, we set the editable property to
true and inform the combo box of our custom editor. Finally, we set themaximumRowCount property to4, ensuring that the
user cannot see more than four books in the list at a time. If the user types in a book that cannot be found in our list, the

example displays a question mark instead of a cover. Whenever a selection is made, the results are printed on the screen.

shows the result.

Figure 7-12. A custom JComboBox component

file:///C:/DOCUME~1/SIMULA~1/LOCALS~1/Temp/OReilly.Java.Swing.2nd.2002.chm/0596004087_

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

7.8 Spinners

You might be wondering just what a spinner is. It's a newl.4 component similar to theJComboBO0X, but it shows only one item.
It includes up and down arrows to " scroll" through its set of values. AJFormattedTextField is used to edit and render those

values. Spinners are quite flexible. They work nicely with a set of choices (such as the months of the year) as well as with
unbounded ranges such as a set of integers. Ei;ure 7-13 shows several examples of spinners in differentL&Fs. The Mac L&F is

missing from this figure because the SDK 1.4 was not available on OS X at the time we went to press.

Figure 7-13. Various JSpinner instances in three L&Fs

The classes involved in spinners are shown in figure 7-14.

Figure 7-14. JSpinner class diagram

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

7.8.1 Properties

JSpinner has several properties related to the values it displays (seffable 7-16). Most of the properties are easy to
understand from their names alone. The currently selected value is available through the read/write value property.

Table 7-16. JSpinner properties

Property Data type get | is | set Default value
changelListeners ChangelListener]] . Empty array
editorb JComponent : : JPspinner.NumberEditor()
modelb SpinnerModel . . SpinnerNumberModel()
nextValue Object
previousValue Object
Ul SpinnerUl . L&F-dependent
UlClassID String . "SpinneruUl"
value Object
bbound

7.8.2 Events

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

public void addChangeListener(ChangeListener I)
public void removeChangeListener(ChangeListener)

Add or remove a specific listener for ChangeEvent notifications from the component.

7.8.3 Constructors

public JSpinner()

Create a spinner for numeric values that has no bounds, an initial value of O, and an increment ofl. (This constructor
uses an instance of the SpinnerNumberModel that we'll see later in this section.)

public JSpinner(SpinnerModel model)

Create a spinner with the specified model. An editor for the model is installed using the protecteccreateEditor()

method, which is discussed later in this chapter.

7.8.4 Editing Methods

The following methods may be of use to developers:

public void commitEdit()

Commit the current value to the spinner model. With a JFormattedTextField as your editor, you can commit the
value you typed by pressing the Enter key. The model then stores the value internally. If you type in an invalid value
(bad date, not a number, etc.), the editor does not accept the change, and you have to continue editing. You can also

cancel the edit using the Esc key.

Your model might also reject the value you tried to commit. For example, you might type in a perfectly valid date, but
that date is outside the range of dates the model expects. In this case, JFormattedTextField does not complain,
but the value is still unacceptable.

protected JComponent createEditor(SpinnerModel model)

Create an editor appropriate for the specified model. "Appropriate” currently means a JFormattedTextField with a
format designed for dates, numbers, or String representations of elements in a list. Ifmodel is not an instance of one
of the known models, a default editor (which uses a String representation of the value) is used. To install your own
editor based on a model, you'll have to subclass JSpinner and override this method. (You could always call

setEditor() for one of the editors.)

|Vhis document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

7.8.5 Simple Spinners

The code for the spinner examples in is shown below. Notice that we use various model constructors to build the
different spinners. The spinner models are discussed in the next section.

/I SpinnerTest.java

I

import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;

public class SpinnerTest extends JFrame {

public SpinnerTest() {
super("JSpinner Test");
setSize(300,180);
setDefaultCloseOperation(EXIT_ON_CLOSE);

Container ¢ = getContentPane();
c.setLayout(new GridLayout(0,2));

c.add(new JLabel(" Basic Spinner"));
c.add(new JSpinner());

c.add(new JLabel(" Date Spinner"));
c.add(new JSpinner(new SpinnerDateModel()));

String weekdays|[] = new String[] { "Sunday”, "Monday", "Tuesday",
"Wednesday", "Thursday", "Friday", "Saturday" };

c.add(new JLabel(" List Spinner"));

c.add(new JSpinner(new SpinnerListModel(weekdays)));

c.add(new JLabel(" Number Spinner"));
c.add(new JSpinner(new SpinnerNumberModel(0, 0, 100, 5)));

c.add(new JLabel(" Rollover List Spinner"));
c.add(new JSpinner(new RolloverSpinnerListModel(weekdays)));

setVisible(true);

}

public static void main(String args]]) {
new SpinnerTest();

}
}

| |l@ve RuBoard m

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

7.9 Spinner Models

The javax.swing package includes several pre-built models for many common data types suited to spinner shows
the hierarchy of these models.

Figure 7-15. SpinnerModel class diagram

7.9.1 The SpinnerModel Interface

The SpinnerModel interface includes methods required to successfully store and retrieve spinner data. It includes a

read/write value and next and previous properties, and it forces implementing models (such asAbstractSpinnerModel) to
support a ChangelListener.

7.9.1.1 Properties

Not surprisingly, the properties for SpinnerModel are centered on the value being shown in the spinner. Notice iffable 7-1
that the model stores only the current value and the next/previous values. The actual list (or other object) behind these values is
not part of the model.

Table 7-17. SpinnerModel properties

Property Data type get is set Default value

nextValue Object

previousValue Object

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

value Object

7.9.1.2 Events

Any changes to the selected value should be reported through ChangeEvent objects.

public void addChangeListener(ChangeListener I)

public void removeChangeListener(ChangeListener)

Add or remove a specific listener for ChangeEvent notifications from the component.

7.9.2 The AbstractSpinnerModel Class

The AbstractSpinnerModel class implements the event parts of theSpinnerModel. Implementations of
addChangeListener(), removeChangelListener(), andgetChange-Listeners() are all present. Two expected methods,

fireStateChange() andget-Listeners(), have been added. All the other models subclassAbstractSpinnerModel, as
shown in

7.9.3 The SpinnerDateModel

If you're retrieving dates from users, a date spinner can make the input process much simpler. You can supply minimum and

maximum dates along with an increment value (to increment by day, week, month, year, etc.).

7.9.3.1 Properties

shows the properties forSpinnerDateModel. Apart from the properties inherited fromAbstractSpinnerModel,
start andend properties have been added to make it possible to work within a bounded range of dates. Either of these
properties can be set to null to indicate that you do not want a minimum or maximum. TheealendarField property determines
the increment/decrement step size and uses constants defined in the java.util.Calendar class. The valid step sizes are shown
in . Thedate property is a convenience property that allows you to retrieve the current value of the spinner as Bate
object.

Table 7-18. SpinnerDateModel properties

Property Data type I get Iis I set I Default value

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

calendarField int Calendar.DAY_OF_MONTH
date java.util.Date Current date
end Comparable null (no end)
nextValue® Object
previousValue® Object
start Comparable null (no start)
value® Object
Coverridden

Table 7-19. Calendar constants for SpinnerDateModel
Calendar.AM_PM Calendar.MILLISECOND
Calendar.DAY_OF_MONTH Calendar.MINUTE
Calendar.DAY_OF WEEK Calendar.MONTH
Calendar.DAY_OF WEEK IN_MONTH Calendar.SECOND

Calendar.DAY_OF_YEAR Calendar. WEEK_OF_MONTH

Calendar.ERA Calendar. WEEK_OF_YEAR

Calendar.HOUR Calendar.YEAR

Calendar.HOUR_OF_DAY

7.9.3.2 Constructors

public SpinnerDateModel()

This constructor creates a date model with no start or end point that uses the current date for the current value. The
spin increment/decrement value is one day.

public SpinnerDateModel(Date value, Comparable start, Comparable end, int calendarField)

This constructor builds a model with the specified current value, start, andend points, and an increment of
calendarField. Note thatstart andend can be null to indicate that no minimum or maximum dates are applicable.

7.9.4 The SpinnerListModel Class

This model allows you to spin through the §tring representation of) items in aList (or an array—which gets turned into d.ist).
When you hit the start or the end, trying to go past them results in a null next or previous value that effectively stops the spinner

from spinning; in other words, you can't go past the bounds of the array.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

The Javadoc makes a point worth repeating here: the model stores only a reference to the list of items, not a copy. If the list
changes, it's up to the programmer to deal with the consequences. The benefit, of course, is that the items shown by the spinner
stay in near-perfect sync with the list. We say near-perfect because if you're sitting on the item that changed, it won't show up

until you spin away and spin back.

7.9.4.1 Properties

The only new property added to SpinnerListModel is, not surprisingly, thelist itself. See[Table 7-2d.

Table 7-20. SpinnerListModel properties

Property Data type get is set Default value
list java.util.List . . List with one entry:"empty"
nextvalue’ Object
previousValue® Object
value® Object
Coverridden

7.9.4.2 Constructors

Three constructors exist for creating new SpinnerListModel objects:
public SpinnerListModel()

This constructor creates a spinner with an effectively empty list. (The list is built by calling the Object array version of
the constructor with a one-element String array containing the wordempty.)

public SpinnerListModel(List values)
public SpinnerListModel(Object[] values)

These constructors build SpinnerListModel objects associated with the specifiedvalues. Note that only a reference
to values is kept in the model, so you can update the content somewhat dynamically. In the case of the Object array
version, the list returned from the list property is a private inner class from thejava.util. Arrays class that does not
override the default add() behavior (which simply throws anUnsupportedOperationException). To be honest,
you really should rethink using a JSpinner on dynamic lists—or at least make your own model that pays proper
attention to changing contents.

7.9.5 The SpinnerNumberModel Class

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

The number model allows you to spin numbers (both integers and decimals). The range can be bounded, or you can
selectively leave off the minimum, maximum, or both. While you normally use Number objects to fill the model, special case
constructors exist for the very common int and double types. For those types, you specify the starting position, the minimum
and maximum, and the step size. (Note that for doubles, the step size is also adouble, so you can increment by 0.1, 0.05, 2.5,
etc.)

7.9.5.1 Properties

able 7-21| shows the properties for the number model. Beyond the standard propertiesninimum and maximum properties
are added to provide a range for the spinner. As with the SpinnerDateModel, either of these values can benull to indicate
that no limit exists. The stepSize property allows you to specify the increment/decrement value for the spinner. Thexumber

property is a convenience property that allows you to retrieve the current value as a Number object.

Table 7-21. SpinnerNumberModel properties

Property Data type get is set Default value
maximum Comparable . . null (no max)
minimum Comparable . . null (no min)
nextvalue’ Object
number Number . Integer(0)
previousVaIue0 Object
stepSize Number . : Integer(1)
value® Object . : Integer(0)

Ooverridden

7.9.5.2 Constructors

public SpinnerNumberModel()

Construct a SpinnerNumberModel with no minimum or maximum value, a stepSize equal to one, and an initial
value of 0.

public SpinnerNumberModel(int value, int minimum, int maximum, int stepSize)
public SpinnerNumberModel(double value, double minimum, double maximum, double stepSize)
public SpinnerNumberModel(Number value, Comparable minimum, Comparable maximum, Number stepSize)

Build number models with a starting point of value, the specifiedminimum and maximum points, and the given
stepSize. Theint anddouble constructors are for convenience only. If you need an operminimum or maximum,

|Vhis document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

you'll have to use the Number/Comparable version.

7.9.6 A Custom Model: Rollover Lists

As an example of how simple it can be to extend the functionality of these spinner models, here's a RolloverListModel that
you can use. Like the SpinnerListModel, it takes a list, but rather than returnnull if you try to go past the end (or the beginning,
for that matter), it "rolls over" to the beginning (or the end). Here's the source code for this model:

/I RolloverSpinnerListModel.java
I

import javax.swing.*;
import java.util.List;

public class RolloverSpinnerListModel extends SpinnerListModel {

public RolloverSpinnerListModel(Object[] items) { super(items); }
public RolloverSpinnerListModel(List items) { super(items); }

public Object getNextValue() {
Object nv = super.getNextValue();
if (nv !=null) {
return nv,
}
return getList().get(0);
}

public Object getPreviousValue() {
Object pv = super.getPreviousValue();
if (pv !=null) {

return pv;

}
List | = getList();
return lL.get(l.size() - 1);

}

}

This model is used for the last spinner shown in . In that example, we use theweekdays array for both a standard
list model and this rollover list model. You'll have to play with the spinner to get the effect—static screen shots just don't do it

justice.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

7.10 Spinner Editors

You probably noticed that theJSpinner class also includes several inner classes. These inner classes provide basic
editors (and renderers) for spinners for each of the major model types. While you'll typically rely on the editor picked
by your spinner when you create it, you can override that decision if you like. Here's a simile example of a modified

DateEditor. This spinner displays anmm/yy date, and the step size is one monttEigure 7-1¢ shows such a spinner.

Figure 7-16. A customized DateEditor used in a JSpinner

Here's the source code that built this editor:

/ MonthSpinner.java

1

import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;

import java.util.*;

public class MonthSpinner extends JFrame {

public MonthSpinner() {
super("Month Spinner");
setSize(200,100);
setDefaultCloseOperation(EXIT_ON_CLOSE);

Container ¢ = getContentPane();
c.setLayout(new FlowLayout(FlowLayout.LEFT, 4,4));

c.add(new JLabel("Expiration Date:"));
Date today = new Date();
/I Start the spinner today, but don't set a min or max date.
/I The increment should be a month.
JSpinner s = new JSpinner(new SpinnerDateModel(today,
null, null, Calendar.MONTH));
JSpinner.DateEditor de = new JSpinner.DateEditor(s, "MM/yy");

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

s.setEditor(de);
c.add(s);

setVisible(true);

}

public static void main(String args[]) {
new MonthSpinner();

}
}

7.10.1 DefaultEditor

All of the other inner class editors descend from the DefaultEditor class, as shown in. That's exactly
why you would use this class: it's a starting point for creating other simple editors. It's based on a single
JFormattedTextField.

7.10.1.1 Constructors

This editor takes a single constructor:
public JSpinner.DefaultEditor(JSpinner spinner)

Build an editor for the given spinner. This constructor registers itself as a listener tspinner's change

events and displays the current value of spinner's model.

7.10.1.2 Properties

The DefaultEditor has two read-only properties, which are shown i .

Table 7-22. JSpinner.DefaultEditor properties

Property Data type get is set Default value

spinner JSpinner

textField JFormattedTextField

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

7.10.1.3 Editing methods

public void commitEdit() throws ParseException

Send the current value in the editor to the model for the spinner.

public void dismiss(JSpinner spinner)

Disconnect the editor from the specified spinner. (This should be the same spinner as the one passed to
the constructor.) By default, this simply detaches the editor from spinner's ChangeListener list. For

example, if you want to cancel your edits, you dismiss() the spinner.

7.10.2 DateEditor

As you can see in the previous example, the DateEditor inner class provides simple display and edit functionality for

dates. The supported formats follow those in the java.text.SimpleDateFormat class.

Note that the editor is just looking for valid date formats. You can set up a SpinnerDateModel that increments

dates on a week-by-week basis, e.g., every Sunday. If you type in a date that should be a Monday, the DateEditor
allows it, and the default model sets the new date. Now when you use the spinner's up/down buttons, you'll bounce
forward and backward on Mondays—not Sundays. Check out the ListEditor discussion for an example of stopping

the user from editing spinner values by hand.

7.10.2.1 Constructors

public JSpinner.DateEditor(JSpinner spinner)

Create a standard editor (a formatted text field) for dates using the model from the given spinner. The
format of the date (in the U.S. English locale) is M/d/yy h:mm a (for example, 4/13/07 3:14 PM).

public JSpinner.DateEditor(JSpinner spinner, String dateFormatPattern)

Create a standard editor for dates using the model from the specified spinner. ThedateFormatPattern
determines how dates are shown as well as how they can be entered by a user. The pattern must match
the specifications of the java.text.SimpleDateFormat class. [Table 7-23 shows some of the more

common elements you might use in such a pattern.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Table 7-23. SimpleDateFormat common formats

Code Description Example usage

d Day in month d->"7","17"; dd ->"07", "17"

E Day in week E -> "Monday"; EEE -> "Mon"

M Month in year M ->"4", "12"; MM ->"04", "12";MMM -> "Apr", "Dec"; MMMM -> "April", "December"
y Year yy ->"02", "99"; yyyy -> "2002", "1999"

h Hours (1-12) h ->"5","10"; hh ->"05", "10"

m Minutes (0-59) mm -> "15", "32"

a A.M./P.M. marker |a->"AM", "PM"

7.10.2.2 Properties

Two read-only properties exist for the DateEditor. These are shown irTable 7-24.

Table 7-24. JSpinner.DateEditor properties

Property Data type get is set Default value
format SimpleDateFormat . "M/d/yy h:mm a"
model SpinnerDateModel

7.10.3 ListEditor

This simple editor works on spinners with &SpinnerListModel installed. Its primary function is to make sure typed
values match up with values in the actual model. If you start typing in a list spinner, the text field tries to
auto-complete. If you type a value that does not exist in the model, the typed value is discarded when you press
Enter.

This editor works only on strings. If your list is numeric (like denominations of paper money) or composed of arbitrary
objects, they will be represented and edited as strings. For non-String objects, then, typing values into the spinner is
a futile exercise. Even if you type the representation of a valid object, the List underneath it will not recognize the
value. (The editor handed over a String, but theList is composed of Number objects, so how can they be
equivalent?) In cases such as this, you should either build your own editor or, more simply, disable the editing
features of the spinner to restrict the user to the up/down buttons:

Integer[] bills = new Integer[] { new Integer(1), new Integer(2), new Integer(5),
new Integer(10), new Integer(20) };
JSpinner spinner = new JSpinner(new SpinnerListModel(bills));

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks
((JSpinner.DefaultEditor)spinner.getEditor()).getTextField().setEditable(false);

For the record, this code snippet happily removes the editing capacity from any spinner—not just those built on the
ListSpinnerModel.

7.10.3.1 Constructor

public JSpinner.ListEditor(JSpinner spinner)

Create an editor for spinner and register for change events coming from the spinner.

7.10.3.2 Property

As you can see in [Table 7-25, the spinner'smodel is the only property for theListEditor inner class.

Table 7-25. JSpinner.ListEditor property

Property Data type get is set Default value

model SpinnerListModel

7.10.4 NumberEditor

The NumberEditor closely resembles theDateEditor. It creates a formatted text field for the display and input of

numeric data and can use a custom formatter to alter the syntax of acceptable information.

7.10.4.1 Constructors

public JSpinner.NumberEditor(JSpinner spinner)

Create a standard editor (a formatted text field) for decimal numbers using the model from the given
spinner. The format of the number (in the U.S. English locale) #,##0.### (for example, 6,789.125).

public JSpinner.NumberEditor(JSpinner spinner, String decimalFormatPattern)

Create a standard editor for numbers using the model from the specified spinner. The

decimalFormatPattern determines how numbers are shown as well as how they can be entered by a

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

user. The pattern must match the specifications of the java.text.DecimalFormat class. shows
some of the more common elements you might use in such a pattern. Note that the pattern is localized. If
your locale uses "," for the decimal separator, that's precisely what appears on the screen. The code you
enter should follow the (nonlocalized!) syntax in the DecimalFormat class.

Table 7-26. DecimalFormat common formats

Code Description Example usage
Digit, zeros don't show #->"4" "123456"
0 Digit, zeros show as zeros 0.00 ->"3.14", "250.00"
, Grouping separator #,##0 -> "25", "1,250", "3,141,593"
Decimal separator 0.# ->"25" "3.1"
- A (required) minus sign -#.0## -> "-25.0", "-1.414"
; Positive and negative pattern separator #:(#) -> "25", "(32)"

7.10.4.2 Properties

The NumberEditor has two read-only properties (sedqlable 7-27)). Note that these are the same properties the

DateEditor has.
Table 7-27. JSpinner.NumberEditor properties
Property Data type get is set Default value
format DecimalFormat . "# #HO HHA"
model SpinnerNumberModel

7.10.5 A Custom Editor

"Custom editor" is a bit of a misnomer in this case. While we will install our own editor for a JSpinner, it doesn't allow
editing. What we're really after is the rendering facilities that are provided by the editor component. This example

does lay out the pieces of the custom editor that make it interesting if you need to build an editor that is not based on
JFormattedTextField.

One of the most obvious things missing from JFormattedTextField is the ability to display graphics. We'll build a
simple " editor" that displayslcon objects. is a quick look at the spinner in action.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Figure 7-17. Our IconEditor used in a JSpinner (before and after pressing the up arrow)

=101 x| =10 |
I:on Spinner H — lean Spinnee ﬂ —

w

The code to build a custom editor is not too difficult if you can base your editor on existing components. Our
IconEditor class is based onJLabel. The most important step in making the editor render the proper image is
registering a ChangeListener with the spinner. (Recall that the spinner fires £hangeEvent any time the user

alters the current value.) Here's the code for IconEditor:

/I lconEditor.java

1

import javax.swing.*;
import javax.swing.event.*;

public class IconEditor extends JLabel implements ChangeListener {

JSpinner spinner;
Icon icon;

public IconEditor(JSpinner s) {
super((lcon)s.getValue(), CENTER);
icon = (Icon)s.getValue();
spinner = s;
spinner.addChangeListener(this);

}

public void stateChanged(ChangeEvent ce) {
icon = (Icon)spinner.getValue();
setlcon(icon);

}

public JSpinner getSpinner() { return spinner; }
public Icon geticon() { return icon; }

}

Of course, actual editors that let you modify the value of the spinner without using the up/down buttons require quite a
bit more code. But you do have a reference to the spinner for this editor. Once you have a valid value in your custom
editor, you just call spinner.setValue() to pass the value back to the spinner's model. (TheommitEdit() method
of JSpinner works only on subclasses ofJSpinner.DefaultEditor.)

To put your editor into play with a particular spinner, you just call setEditor() for the spinner. Here's the code that
sets up the simple example shown in .

|Vhis document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

/I lconSpinner.java
1

import javax.swing.*;
import java.awt.*;

public class IconSpinner extends JFrame {

public IconSpinner() {
super("JSpinner Icon Test");
setSize(300,80);
setDefaultCloseOperation(EXIT_ON_CLOSE);

Container ¢ = getContentPane();
c.setLayout(new GridLayout(0,2));

Icon nums[] = new Icon[] {

new Imagelcon("1.gif"),

new Imagelcon("2.gif"),

new Imagelcon("3.gif"),

new Imagelcon("4.gif"),

new Imagelcon("5.gif"),

new Imagelcon("6.gif")
K
JSpinner s1 = new JSpinner(new SpinnerListModel(nums));
sl.setEditor(new IconEditor(sl));
c.add(new JLabel(" Icon Spinner"));
c.add(sl);

setVisible(true);

}

public static void main(String args[]) {
new lconSpinner();
}
}

Notice we didn't have to build a new model for our icons. We certainly could, but the SpinnerListModel does exactly
what we need—except for rendering the icons. (Try it once without the setEditor() line. You should get a standard
text field with the name of the image file displayed.) We just set the editor to a new instance of our IconEditor class
and we're off and rolling.

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Chapter 8. Swing Containers

In this chapter, we'll take a look at a number of components Swing provides for grouping other components together.
In AWT, such components extended java.awt.Container and includedPanel, Window, Frame, andDialog. With

Swing, you get a whole new set of options, providing greater flexibility and power.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

8.1 A Simple Container

Not everything in this chapter is more complex than its AWT counterpart. As proof of this claim, we'll start the chapter
with a look at the JPanel class, a very simple Swing container.

8.1.1 The JPanel Class

JPanel is an extension ofJComponent (which, remember, extendsjava.awt.Container) used for grouping
together other components. It gets most of its implementation from its superclasses. Typically, using JPanel
amounts to instantiating it, setting a layout manager (this can be set in the constructor and defaults to a
FlowLayout), and adding components to it using theadd() methods inherited from Container.

8.1.1.1 Properties

JPanel does not define any new properties shows the default values that differ from those provided by

JComponent.
Table 8-1. JPanel properties
Property Data type getlis|set Default value
accessibleContext® AccessibleContext|- JPanel.AccessibleJPanel()
doubleBuffered® boolean -1 Jtrue
layout® LayoutManager |- - |FlowLayout()
opaqueo’ b boolean - true
urt4 PaneUl : . |From L&F
UlClassID String . "PanelUl"
l'4s.ince 1.4, bbound, %verridden
?Eie also properties from the JComponent class
).

The doubleBuffered andopaque properties default totrue, while thelayoutManager defaults to a new
FlowLayout.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

8.1.1.2 Constructors

public JPanel()
Create a new panel with a FlowLayout and double buffering.
public JPanel(boolean isDoubleBuffered)
Create a new panel with a FlowLayout. Double buffering is enabled iisDoubleBuffered is true.
public JPanel(LayoutManager layout)
Create a new panel with the specified layout manager and double buffering.
public JPanel(LayoutManager layout, boolean isDoubleBuffered)

This constructor (called by all the others) creates a new panel with the specified layout manager and
double-buffering policy.

8.1.1.3 Opacity

Here's a simple program showing what it means for aJlPanel to be opaque. All we do is create a fewPanels. Inside
the first JPanel, we place anotherJPanel, which is opaque. In the second, we place a transparent (nonopaque)
JPanel. In both cases, we set the background of the outer panel to white and the background of the inner panel to
black. We'll place a JButton inside each inner panel to give it some siz shows the result.

Figure 8-1. Opaque and nonopaque JPanels (in Metal and Mac L&Fs)

On the left, we see the black panel inside the white one. But on the right, since the inner panel is not opaque, its
black background is never painted, and the background of the outer panel shows through. Here's the code:

/l OpaqueExample.java
1
import javax.swing.*;

|Vhis document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

import java.awt.*;

public class OpaqueExample extends JFrame {

}

public OpaqueExample() {
super("Opaque JPanel Demo");
setSize(400, 200);
setDefaultCloseOperation(EXIT_ON_CLOSE);

/I Create two JPanels (opaque), one containing another opaque JPanel and the
/l other containing a nonopaque JPanel.

JPanel opaque = createNested(true);

JPanel notOpaque = createNested(false);

/I Throw it all together.

getContentPane().setLayout(new FlowLayout());
getContentPane().add(opaque);
getContentPane().add(notOpaque);

}

public static void main(String[] args) {

OpaqueExample oe = new OpaqueExample();
oe.setVisible(true);

}

/I Create a JPanel containing another JPanel. The inner JPanel's opacity is set
/[according to the parameter. A JButton is placed inside the inner JPanel to give
/[it some content.

public JPanel createNested(boolean opaque) {

JPanel outer = new JPanel(new FlowLayout());
JPanel inner = new JPanel(new FlowLayout());
outer.setBackground(Color.white);
inner.setBackground(Color.black);

inner.setOpaque(opaque);
inner.setBorder(BorderFactory.createLineBorder(Color.gray));

inner.add(new JButton("Button"));
outer.add(inner);

return outer;

}

| |@ve RuBoard

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

| MEx

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

8.2 The Root Pane

Now that we've seen the simplest example of a Swing container, we'll move on to something a bit more powerful. Most of
the other Swing containers (JFrame, JApplet, JWindow, JDialog, and evenJinternalFrame) contain an instance of another
class, JRootPane, as their only component, and implement a common interfaceRootPaneContainer . In this section, we'll
look at JRootPane and RootPaneContainer, as well as another classJRootPane uses, JLayeredPane.

Before jumping into the descriptions of these classes, let's take a look at how the classes and interfaces that make up the Swing
root containers fit together. shows thatJApplet, JFrame, JDialog, and JWindow do not extend JComponent as
the other Swing components do. Instead, they extend their AWT counterparts, serving as top-level user interface windows. This

implies that these components (unlike the lightweight Swing components) have native AWT peer objects.

Figure 8-2. Swing "root" container class diagram

Notice that these Swing containers (as well as JInternalFrame) implement a common interface, RootPaneContainer . This
interface gives access to the JRootPane's properties. Furthermore, each of the five containers uses aJRootPane as the

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

"true” container of child components managed by the container. This class is discussed later in this chapter.

8.2.1 The JRootPane Class

JRootPane is a special container that extendsJComponent and is used by many of the other Swing containers. It's quite
different from most containers you're probably used to using. The first thing to understand about JROOtPane is that it contains
a fixed set of components: a Component called the glass pane and aJLayeredPane called, logically enough, the layered
pane. Furthermore, the layered pane contains two more components: a JMenuBar and aContainer called the content

pane. shows a schematic view of the makeup of aJRootPane.

N general, JLayeredPanes can contain any components they wish. This is Wh does
not show JLayeredPane containing the menu bar and content pane. In the case of the
JRootPane, aJLayeredPane is used to hold these two specific components.

Figure 8-3. JRootPane breakout

Attempts to add additional components to a JRootPane are ignored by its custom layout manager (a protected inner class

called RootLayout). 2
2t is possible to change the layout manager fodRootPane to one of your own choosing, but it

would be responsible for handling all details of laying out the pane. Using any of the other AWT or
Swing layouts will not work properly.

Instead, children of the root pane should be added to its content pane. In fact, for most uses of JRootPane, all you need to do
is get the content pane and add your components to it. Here's a simple example (using a JFrame) that adds a single button to
the content pane.

/I RootExample.java
1

import javax.swing.*;
import java.awt.*;

public class RootExample {
public static void main(String[] args) {
JFrame f = new JFrame();

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

JRootPane root = f.getRootPane(); Il XXX Pay attention to these
Container content = root.getContentPane(); // XXX lines. They are
content.add(new JButton("Hello")); Il XXX explained below.
f.pack();
f.setVisible(true);

}

This may seem like a lot of complexity just to add something to a frame. Thankfully, (as we'll see in the next section) each of the
containers that use JRootPane implement the RootPaneContainer interface, which provides direct access to each of the

root's subcomponents. This allows the three lines marked with "XXX" to be replaced with:
f.getContentPane().add(new JButton("Hello"));

In the next example, we'll see how to add a menu to a root pane, producing a display like the one in.

Figure 8-4. JRootPane with a JMenuBar

As with RootExample.java, we can get at these pieces using the root component:

/I Snippet from RootExample2.java
JRootPane root = getRootPane();

/I Create a menu bar.

JMenuBar bar = new JMenuBar();
JMenu menu = new JMenu("File");
bar.add(menu);
menu.add("Open™);
menu.add("Close");
root.setJMenuBar(bar);

/l Add a button to the content pane.
root.getContentPane().add(new JButton("Hello World"));

In this case, the getRootPane() and setJMenuBar() calls could have been replaced with a singlesetJMenuBar(bar) call.
Note that the menu bar property on the Swing containers is called JMenuBar.

The previous two root pane examples were intended to give you an understanding of how the JRootPane really works.
Typically, however, your code does not work with JRootPane directly. We'll get a better understanding of why when we get to
the discussion of RootPaneContainer. For now, here's a version of the last example that shows how you'd really write that
code:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

/I RootExample3.java
1

import javax.swing.*;
import java.awt.*;

public class RootExample3 extends JFrame {
public RootExample3() {
super("RootPane Menu Demo");
setSize(220,100);
setDefaultCloseOperation(EXIT_ON_CLOSE);

/I Create a menu bar.

JMenuBar bar = new JMenuBar();
JMenu menu = new JMenu("File");
bar.add(menu);
menu.add("Open");
menu.add("Close");
setJMenuBar(bar);

/I Add a button to the content pane.
getContentPane().add(new JButton("Hello World"));

}

public static void main(String[] args) {
RootExample3 re3 = new RootExample3();
re3.setVisible(true);
}
}

8.2.2 The Glass Pane

JRootPane may seem a bit confusing at first glance. The important thing to remember is that in most cases, all you need to
worry about is adding your component to the content pane and possibly setting a menu bar. As we noted earlier, the menu bar
and content pane are part of the layered pane, which we'll look at in detail in the next section. In this section, we'll explain the

other component contained by JRootPane: the "glass pane."

The glass pane is a component that is laid out to fill the entire pane. By default, it is an instance of JPanel, but it can be
replaced with any Component. JRootPane's implementation of theaddImpl() method ensures that the glass pane is the
first component in the container, meaning that it will be painted last. In other words, the glass pane allows you to place
components "above" any other components in the pane. Because of this, it generally makes sense for the glass pane to be
nonopaque; otherwise, it will cover everything in the layered pane. It's important to remember that when the layout of the
JRootPane is performed, the placement of the contents of the glass pane will have no effect on the placement of the contents
of the layered pane (and its content pane). Both sets of components are placed within the same component space, overlapping
each other as necessary. It's also important to realize that the components in the various panes are all equal when it comes to
receiving input: mouse events are sent to any component in the JRootPane, whatever part of the pane it happens to be in.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

This last note brings us a common use of the glass pane: blocking mouse events from the other components. As a rule, mouse
events are sent to the "top" component if components are positioned on top of each other. If the top component has registered
mouse listeners, the events are not sent to the covered components. We'll create a new JPanel to use as the glass pane. The
panel will listen for all mouse events (and do nothing with them). Once the Start button is clicked, the glass pane is made
visible—and none of the buttons in the main application work. The main application is not technically disabled, but the mouse
events are going only to the glass pane and its components. After a few seconds, the glass pane will be hidden, allowing the
underlying components to be used again. ,Fi;ure 8-j shows the application with the glass pane activated.

Figure 8-5. JRootPane with an active glass pane (which contains the progress bar)

This demo simulates situations in which your application starts an action that takes a long time to complete, and you don't want
the user clicking on everything in sight if he gets impatient. Database queries and network resource lookups are great examples

of tasks that can require a lot of time. You can adapt the glass pane for any similar scenario in your own programs. You should
also remember that it is a regular JPanel component. As you can see i Fiéure 8-5, we show a Please wait . . . message and a

progress bar to keep the user informed about what's going on. You could add other components, or even a Cancel button that

the user can press to halt the operation if he gets tired of waiting.

Here's the code for this example. Of course, this one is more fun to run.

Il GlassExample.java
Il

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

/I Show how a glass pane can be used to block mouse events.
public class GlassExample extends JFrame {
JPanel glass = new JPanel(new GridLayout(0, 1));
JProgressBar waiter = new JProgressBar(0, 100);
Timer timer;

public GlassExample() {
super("GlassPane Demo");

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

setSize(500, 300);
setDefaultCloseOperation(EXIT_ON_CLOSE);

/I Set up the glass pane with a little message and a progress bar.
JPanel controlPane = new JPanel(new GridLayout(2,1));
controlPane.setOpaque(false);

controlPane.add(new JLabel("Please wait..."));
controlPane.add(waiter);

glass.setOpaque(false);

glass.add(new JLabel()); // Padding...

glass.add(new JLabel());

glass.add(controlPane);

glass.add(new JLabel());

glass.add(new JLabel());

glass.addMouselListener(new MouseAdapter() {});
glass.addMouseMotionListener(new MouseMotionAdapter() {});
setGlassPane(glass);

/l Now set up a few buttons and images for the main application.
JPanel mainPane = new JPanel();
mainPane.setBackground(Color.white);

JButton redB = new JButton("Red");

JButton blueB = new JButton("Blue");

JButton greenB = new JButton("Green");

mainPane.add(redB);

mainPane.add(greenB);

mainPane.add(blueB);

mainPane.add(new JLabel(new Imagelcon("oreilly.gif")));

/I Attach the pop-up debugger to the main app buttons so you
Il see the effect of making a glass pane visible.
PopupDebugger pd = new PopupDebugger(this);
redB.addActionListener(pd);

greenB.addActionListener(pd);

blueB.addActionListener(pd);

/I And last but not least, our button to launch the glass pane
JButton startB = new JButton("Start the big operation!");
startB.addActionListener(new ActionListener() {
public void actionPerformed(java.awt.event.ActionEvent A) {
glass.setVisible(true);
startTimer();

}
s

Container contentPane = getContentPane();
contentPane.add(mainPane, BorderLayout. CENTER);
contentPane.add(startB, BorderLayout. SOUTH);

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

/I A quick method to start up a 10-second timer and update the progress bar
public void startTimer() {
if (timer == null) {
timer = new Timer(1000, new ActionListener() {
int progress = 0;
public void actionPerformed(ActionEvent A) {
progress += 10;
waiter.setValue(progress);

/I Once we hit 100%, remove the glass pane and reset the progress bar

/I stuff.
if (progress >=100) {
progress = 0;

timer.stop();
glass.setVisible(false);
waiter.setValue(0);
}
}
D

}
if (timer.isRunning()) {

timer.stop();

}

timer.start();

}

/I A graphical debugger that pops up whenever a button is pressed
public class PopupDebugger implements ActionListener {
private JFrame parent;
public PopupDebugger(JFrame f) {
parent = f;
}
public void actionPerformed(ActionEvent ae) {
JOptionPane.showMessageDialog(parent, ae.getActionCommand());

}
}

public static void main(String[] args) {
GlassExample ge = new GlassExample();
ge.setVisible(true);

}
}

Note that the lines:

glass.addMouselListener(new MouseAdapter() {});
glass.addMouseMotionListener(new MouseMotionAdapter() {});

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

block mouse events from reaching the hidden components (remember, the glass pane fills the entire frame) because the events
are sent to the first component (starting at the top) with registered listeners. Any time a mouse event method is called, it will do
nothing since we just extended the empty-implementation adapter classes. However, forgetting these lines allows the events to
pass through to our application.

8.2.3 Avoiding Unnecessary Layers

The following code fragment shows a common mistake:

JPanel panel = new JPanel();
panel.add(someStuff);

JFrame f = new JFrame();
f.getContentPane().add(panel);

There's nothing fundamentally wrong with this code. It will work just fine. However, there's an extra layer that's just not
necessary. Recall from the beginning of this section that the content pane is initialized to an instance of JPanel. There's

nothing special about that panel, and you should feel free to use it. A better implementation of the code fragment would be:

JFrame f = new JFrame();
Container panel = f.getContentPane(); // Cast to JPanel if you want to.
panel.add(someStuff);

It's also important to keep in mind that the content pane can be any arbitrary container—it doesn't have to be a JPanel. If you
want to fill the content pane with a scrollable region, or perhaps with a tabbed pane, you can replace the content pane with a
JScrollPane or JTabbedPane. For example:

JScrollPane scroll = new JScrollPane(new JTextPane());
JFrame f = new JFrame();
f.setContentPane(scroll); // Not f.getContentPane().add(scroll);

A reasonable rule of thumb is that if you are only going to add a single component to the content pane and you want it to fill the
entire pane, don't add to the content pane—replace it. Of course, replacing the content pane does leave you in charge of the
background color and opacity as well. Sometimes the defaults for these properties are not what you want, so you should be
aware you may need to tweak the pane before final production.

8.2.3.1 Properties

shows the properties and default values defined byyRootPane. The background property is set to the default
"control" (component) color defined in the UIManager.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Table 8-2. JRootPane properties

Property Data type get|is|set Default value
accessibleContext® AccessibleContext| - JRootPaneAccessibleJRoot-Pane()
backgroundo Color . - |UIManager.getColor("control")
contentPane Container - - |JPanel()
defaultButton® JButton : - |null
doubleBuffered boolean . - |true
glassPane Component - - |JPanel()

JMenuBar* JMenuBar . - |null

layeredPane JLayeredPane . - |JLayeredPane()
Iayouto LayoutManager |- - |RootLayout()
optimizedDrawingEnabled boolean . false
validateRoot” boolean : true
windowDecorationStyle™* int ' - |JRootPane.NONE
l'4since 1.4, bbound, 0overridden

*This property replaces the deprecated menuBar

property.

See also properties from the JComponent class

The contentPane is initially set to aJPanel with aBorderLayout, while glassPane is set to a nonopaque, invisibleJPanel
with a default (FlowLayout) layout manager. A new instance ofJLayeredPane is the default value forlayeredPane, and by
default the JIMenuBar property is set tonull. The contentPane is contained by the layered pane's

FRAME_CONTENT_LAYER (see for further explanation).

Note that the set() methods for theJMenuBar and contentPane properties take care of placing these components within the
JLayeredPane, so you typically don't have to worry about the layered pane at all.

The inherited doubleBuffered property (see) is true by default, and you'll usually leave it that way unless you
do some fancy background painting. The layout property defaults to a new instance of the protected inner clasfRootLayout.
Since the glass pane and the content pane occupy the same bounds, no optimization is needed, so
optimizedDrawingEnabled returns false.

The defaultButton property was introduced in. This property allows aJButton to be specified as the default for the
container. The default button is pressed if the user presses Enter (or some other Ul-defined key) while the pane has focus
(unless some other focused component, like a JTextField, handles the key). This is a very convenient feature when presenting
a user with information to be viewed and acknowledged because it keeps the user from having to use the mouse.

Introduced in SDK 1.4, the windowDecorationStyle property allows you to set the border and window controls shown from
the root pane. Classes like JOptionPane and JFileChooser set this property for you. If you start with a generidWindow or
JDialog though, you can now control the look of the window. The decoration style options are shown .

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Table 8-3. JRootPane constants

Constant Type Description
COLOR_CHOOSER_DIALOG int Color chooser decoration type
ERROR_DIALOG int Error dialog decoration type
FILE_CHOOSER_DIALOG int File chooser decoration type
INFORMATION_DIALOG int Error dialog decoration type
NONE int Type indicating no decorations
PLAIN_DIALOG int Plain dialog decoration type
QUESTION_DIALOG int Question dialog decoration type
WARNING_DIALOG int Warning dialog decoration type

8.2.4 Revalidate

The remaining property listed in is thevalidateRoot property. JRootPane overrides isValidateRoot() to return
true. This causes the container to be validated (meaning that its contents will be redisplayed) as a result of any call to

revalidate() on one of its children or their descendants. This simplifies the process of dealing with components that change

dynamically.

In older versions (prior to 1.2), if the font size of a component changed (for example), you needed to call invalidate() on the

component and then validate() on its container to ensure that the component would be resized appropriately. Wittievalidate(

), only one call is necessary. Furthermore, the wayevalidate() is implemented allows multiplerevalidate() calls to be

handled at once, much like multiple repaint() calls are handled at the same time by the AWT.

Here's a simple example using revalidate():

/I RevalidateExample.java
1

import javax.swing.*;
import java.awt.*;

import java.awt.event.*;

public class RevalidateExample extends JFrame {

public RevalidateExample() {
super("Revalidation Demo");
setSize(300,150);
setDefaultCloseOperation(EXIT_ON_CLOSE);

/I Create a single button.
Font font = new Font("Dialog", Font.PLAIN, 10);
final JButton b = new JButton("Add");

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks
b.setFont(font);

Container ¢ = getContentPane();
c.setLayout(new FlowLayout());
c.add(b);

/I Increase the size of the button's font each time it's clicked.
b.addActionListener(new ActionListener() {
int size = 10;

public void actionPerformed(ActionEvent ev) {
b.setFont(new Font("Dialog"”, Font.PLAIN, ++size));
b.revalidate(); // Invalidates the button and validates its root pane
}
»;
}

public static void main(String[] args) {
RevalidateExample re = new RevalidateExample();
re.setVisible(true);
}
}

In this example, we create a single button and add it to the content pane of a JFrame (which uses aJRootPane). Each time
the button is clicked, we increase the size of the button's font. As a result, the button needs to be resized to accommodate the
larger label. To make this happen, we simply call revalidate() on the button. Note that the button could have been nested
inside any number of other containers below the root pane, and this would still work properly. As long as there is an ancestor of
the revalidated component that returns true toisValidateRoot(), the container is validated. It would require a very specific
effort on your part (maybe because you want complete control over component painting) to ignore a call for revalidation. You
would have to be sure to unset the validateRoot property (by subclassing) on all of your component's parents.

8.2.4.1 Constructor

Only one constructor is available for the JRootPane class:
public JRootPane()

Create a new pane with the default property values specified in .

8.2.5 The RootPaneContainer Interface

As we've said, the top-level Swing containers all use theJRootPane class as their single child component. In order to make it
easier to work with these containers, Swing provides a common interface that each of them implement. This interface,
RootPaneContainer, defines methods for accessing the common properties available idR0ootPane, as well as for the root
pane itself. This is what allows for the shortcuts we described in the previous section.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks
The classes that implement this interface typically delegate the methods to their contained JRootPane. For example,
getContentPane() would be implemented like this:

public Container getContentPane() {
return getRootPane().getContentPane();

8.2.5.1 Properties

This interface is made up entirely of accessors for the JRoOtPane and its properties, shown in. Notice that the root
pane's JMenuBar is not available in this interface. This is because certain containersYWindow, specifically) don't typically
contain menus. This is not to say that you couldn't use one if you really wanted to (accessing it from the JRootPane), but
access to the menu bar is not directly supported by the interface.

Table 8-4. RootPaneContainer properties

Property Data type get is set Default value
contentPane Container
glassPane Component
layeredPane JLayeredPane
rootPane JRootPane

8.2.6 The JLayeredPane Class

We have already seen some of the panes (the glass and content panes, for example) accessible through th#RootPane
class. Though it doesn't make much use of it directly, JRootPane introduces a class called JLayeredPane. JLayeredPane
is a container that manages its components via layers so that components in the upper layers are painted on top of components

in the lower layers. This gives you something that was difficult to get with AWT: complete control over which components are
painted on top and which are hidden.

The easiest way to understand how this works is to look at a very simple example.

/I SimpleLayers.java
1

import javax.swing.*;
import java.awt.Color;

public class SimpleLayers extends JFrame {
public SimpleLayers() {

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

super("LayeredPane Demonstration™);
setSize(200, 150);
setDefaultCloseOperation(EXIT_ON_CLOSE);

JLayeredPane Ip = getLayeredPane();

/I Create three buttons.

JButton top = new JButton();
top.setBackground(Color.white);
top.setBounds(20, 20, 50, 50);
JButton middle = new JButton();
middle.setBackground(Color.gray);
middle.setBounds(40, 40, 50, 50);
JButton bottom = new JButton();
bottom.setBackground(Color.black);
bottom.setBounds(60, 60, 50, 50);

/I Place the buttons in different layers.
Ip.add(middle, new Integer(2));
Ip.add(top, new Integer(3));
Ip.add(bottom, new Integer(1));

public static void main(String[] args) {
SimpleLayers sl = new SimpleLayers();
sl.setVisible(true);
}
}

In this example, we add three colored buttons to aJLayeredPane. The top button is placed in layer 3, the middle in layer 2,
and the bottom in layer 1. Recall that the Component.add() method takes an Object as a second parameter, so we must
create Integer objects to identify the layers, rather than just passing ifnts. When we run this example, we see (i) that
the white (if your L&F allows custom button colors) button (the one with the highest layer, 3) is drawn above the gray button (in
layer 2), which is drawn above the black button (layer 1). The order in which the buttons were added has no significance.

Figure 8-6. JLayeredFrame example with three buttons, each in their own layer

The actual values used for the layers are not important, only their relative ordering. We could just as easily have used 10, 20,

and 30 as the layer values.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

8.2.6.1 Properties

JLayeredPane defines default values for the properties listed i. The layout property is set tonull by default. This
works fine when the pane's layers are containers themselves, each managing the layout of a particular layer, or when only a
single component is added to each layer. If multiple components are added to a single layer, however, they will be laid out with
no layout manager. This is why the RootLayout class described earlier explicitly lays out the components it adds to a single
layer of its layered pane.

Table 8-5. JLayeredPane properties

Property Data type get lis |set Default value
accessibleContext® AccessibleContext |- AccessibleJLayeredPane()
layout® LayoutManager . - null
optimizedDrawingEnabled® boolean : true

(o] .
overridden

See also properties from theJComponent class 1|

The optimizedDrawingEnabled property is defined inJComponent and allows a component's children to be drawn more
efficiently if they can be guaranteed not to overlap. In JComponent, this property is alwaystrue. InJLayeredPane, it istrue
only if the components in the pane do not overlap.

8.2.6.2 Constants

JLayeredPane defines several constants. The six shown i (and listed in) areInteger objects, used to
define specific layers available to users of the class.

Figure 8-7. Predefined layers

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

DRAG_LAYER
POPUP_LAYER
MODAL_LAYER
PALETTE LAYER
DEFAULT LAYEE
FRAME CONTENT _LAYER

Table 8-6. JLayeredPane constants

Constant Type Description

DEFAULT_LAYER Integer|Used for most components (0)

Used when dragging objects on the screen to ensure that they appear on top of
DRAG_LAYER Integer]]
everything else as they are being dragged (400)

FRAME_CONTENT_LAYER|Integer|Used only for the content pane and menu bar (-30,000)

LAYER_PROPERTY String | The name of the layer client property

MODAL_LAYER Integer|Used to display modal pop-up windows above other components (200)

PALETTE_LAYER Integer| Used to display floating toolbars or palettes (100)

Used to ensure that pop ups (including tooltips) are displayed above the components

POPUP_LAYER Integer
that generate them (300)

Remember, any number can be used as a layer number; these are provided as useful defaults. However, it's generally not a
good idea to mix your own values with these constants, since there's no guarantee they won't change (this would be very
unlikely, but it's definitely poor coding practice to assume the exact values of symbolic constants). Instead, you should choose to

use either these constants or define your own layer values.

LAYER_PROPERTY is used as a client property name on anyJComponents added to the pane. The client property value

is an Integer representing the component's layer. (The constant is itself just &5tring.)

8.2.6.3 Constructor

public JLayeredPane()

This constructor creates a new pane with a null layout manager.

8.2.7 Adding Components to Layers

The add() methods described below (implemented injava.awt.Container) are not actually reimplemented in this class, but

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

it's important to understand how they can be used with JLayeredPane. In order to gain this understanding, we'll first explain

the use of the term position with respect to this class.

A component's position in a layer determines the order in which it will be drawn. This is no different from a component's position
in a simple container. Components with the lowest position numbers are drawn last (on top). Components with a position of -1
are added with the next highest position number, so they will drawn first (on bottom). This is best understood by looking at a

quick example. Assume we have three components in a layer at positions 0, 1, and 2. We have:
ABC
Now, if we add D to position 1, it shoves B and C down:
ADBC
Adding E to position -1 sticks E at the end (currently position 4) and yields:
ADBCE
Adding F to position 5 gives us:
ADBCEF

F occupies the lowest screen position, and A occupies the highest. If we paint these components, they will be painted in the
following order:

FECBDA
That is, F will be drawn first (on bottom) and A will be drawn last.

When working with multiple layers, nothing changes. The only difference is that all components in a given layer are painted
before any components in the next layer, regardless of their positions within a layer. Note that the ordering of layers places the

components in the highest numbered layer on top, while the ordering of positions places the component with théowest
numbered position on top. So, if we have:

Layer 1: A B (A is at position 0; B is at position 1)
Layer2: CD
Layer3: EF

The components (shown with "layer,position" subscripts) will be painted in this order:
B1,1A1,002,1C20F3,1E30

The component (E) with the highest layer (3) and lowest position (0) is painted last (on top), as shown in .

Figure 8-8. Paint order of layered components

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Here's how the various versions of Component.add() work withJLayeredPane. Rather than supply things likeNORTH as a
constraint on where to add things, we pass an Integer representing the layer we want to use. Again, thes@dd() methods are
not reimplemented inJLayeredPane; they're covered here only for the purpose of explaining how they work in this context.
Each version of add() is explained in terms of how it will caladdImpl(), a protected method thatis implemented in this class

and is also described below.

public Component add(Component comp)

Results in a call to addImpl(comp, null, -1).
public Component add(Component comp, int index)

Results in a call to addimpl(comp, null, index).
public void add(Component comp, Object constraints)

Results in a call to addImpl(comp, constraints, -1). The constraints argument should be an integer specifying
which layer to add comp to.

public void add(Component comp, Object constraints, int index)

Results in a call to addimpl(comp, constraints, index). The input object should be an integer specifying the layer
to add the component to.

public Component add(String name, Component comp)

Should not be used with JLayeredPane. If it is, it results in a call teddImpl(comp, name, -1). Since name is not
an integer, it is ignored.

protected void addIimpl(Component comp, Object constraints, int index)

This implementation of addImpl checks to see if the given constraint object is an integer, and if so, uses it as the
component's layer. If the constraint object is null (or anything other than an integer), the component's layer is set by
calling getLayer() (described later in this chapter).

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

8.2.7.1 Layer management methods

JLayeredPane makes it easy to manipulate layers and the components within them by providing the following methods:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

public int getComponentCountinLayer(int layer)

Return the number of components currently in the specified layer.
public Component[] getComponentsinLayer(int layer)

Return an array containing the Components currently in the specified layer.
public int getindexOf(Component c)

Return the absolute index of the given component. This ignores the pane's layers completely. The component with the
highest index is the first component painted, meaning that it appears under all other components (which are painted in
decreasing order). Since this method ignores the abstractions, it can be useful in conjunction with methods such as
remove() (mentioned below).

public int getLayer(Component c)

Return the layer in which the given component has been placed. If the given component is aJComponent, the layer
is determined by getting its LAYER_PROPERTY. If it is not aJComponent, it is looked up in an internal hashtable
used for mapping non-JComponents to layers. In either case, if the layer cannot be determined as described, the
DEFAULT_LAYER is returned.

public int getPosition(Component c)

Return a component's position within its layer.

public int highestLayer()

Return the highest numbered layer in which a child is contained. If there are no children, O is returned.

public int lowestLayer()

Return the lowest numbered layer in which a child is contained. If there are no children, O is returned.

public void moveToBack(Component c)
Move the specified component to the "back" of its layer.
public void moveToFront(Component c)

Move the specified component to the "front" of its layer (position 0).

public void remove(int index)
Remove the specified component (the index is an absolute index, not layer-based) from the pane.

public void setLayer(Component c, int layer)

public void setLayer(Component c, int layer, int position)

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Set the layer and position (which defaults to -1 in the first case) for the given component and repaint the component.

Note that these methods do not add the component to the pane; add() must still be called. Alternatively, a single call
to add(c, new Integer(layer)) or add(c, new Integer(layer), position) could be made. If the given component is
aJComponent, its layer is stored by setting thdlAYER_PROPERTY on the component itself. If not, the

component's layer is stored in an internal hash table that maps from non- JComponents to layers.
public void setPosition(Component c, int position)

Set a component's position within its layer (determined by callinggetLayer(c)).

8.2.7.2 Static methods

public static int getLayer(JComponent c)

Use the LAYER_PROPERTY to get the layer for a given Swing component. Normally, thegetLayer() instance

method should be used.
public static JLayeredPane getLayeredPaneAbove(Component c)

Search the component hierarchy from the given component upward, returning the first JLayeredPane it finds. This

allows you to find the layered pane in which a component has been placed. If none is found, it returnsnull.

public static void putLayer(JComponent c, int layer)

Set a component's layer by assigning a value to its LAYER_PROPERTY. It does not cause a repaint as the
setLayer() instance method does. Normally,setLayer() should be used.

|Vhis document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

| |l@ve RuBoard

8.3 Basic RootPaneContainers

For the rest of this chapter, we'll look at some basic containers)Frame, JWindow, andJApplet) that implement

RootPaneContainer and useJRootPane. First, we'll take a quick look at a simple interface called

WindowConstants.

8.3.1 The WindowConstants Interface

WindowConstants is a simple interface containing only constants. It is implemented byFrame, JDialog, and

JIinternalFrame.

8.3.1.1 Constants

The constants defined in WindowConstants specify possible behaviors in response to a window being closed.

These values are shown in [Table 8-1.

Table 8-7. JWindowConstants constants

Constant

Type

Description

DISPOSE_ON_CLOSE

int

Disposes window when closed

*This constant was added in 1.4, although a matching constant was defined in
the 1.3 JFrame class.

DO_NOTHING_ON_CLOSE int |Does nothing when closed
1.4 _ Exits the virtual machine
EXIT_ON_CLOSE™", * int
- = when closed
HIDE_ON_CLOSE int |Hides window when closed
L gince 1.4

In the next section, we'll look at a strategy for exiting the application in response to a frame being closed .

| |l@ve RuBoard

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

8.4 The JFrame Class

The most common Swing container for Java applications is thdFrame class. Likejava.awt.Frame, JFrame
provides a top-level window with a title, border, and other platform-specific adornments (e.g., minimize, maximize, and
close buttons). Because it uses a JRootPane as its only child, working with @lFrame is slightly different than
working with an AWT Frame. An emptyJFrame is shown in.

Figure 8-9. Empty JFrame instances on Unix, Mac, and Windows platforms

The primary difference is that calls to add() must be replaced with calls tagetContentPane().add(). In fact, the
addimpl() method is implemented so that a call made directly tadd() throws anError. (The error message tells you
not to call add() directly.)

8.4.1 Properties

JFrame defines the properties shown i . TheaccessibleContext property is as expected.ContentPane
,glassPane, layeredPane, andJMenuBar are really properties ofJRootPane (described earlier in the chapter).
JFrame provides direct access to these panes, as required by thdRootPaneContainer interface.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Table 8-8. JFrame properties

Property Data type get|is |set Default value
accessibleContext® AccessibleContext |- JFrame.Accessible-JFrame()
background® Color : . |UIManager.getColor ("control")
contentPane® Container : - |From rootPane
defaultCloseOperation int . . |HIDE_ON_CLOSE
glassPane® Component . - |From rootPane
JMenuBar® JMenuBar : - |From rootPane
layeredPane® JLayeredPane : . |From rootPane
layout® LayoutManager : . |BorderLayout()
rootPane® JRootPane : . |JRootPane()
rootPaneCheckingEnabled® boolean |- |true
title® String
Coverridden, Pprotected
*The setRootPane() method is protected.

See also thejava.awt.Frame class.

The defaultCloseOperation is set toHIDE_ON_CLOSE, a value taken fromWindowConstants. This indicates
that closing a JFrame window results in a call tsetVisible(false).

The layout property is listed here becauseJFrame overrides setLayout() to throw anError if an attempt is made to
change the layout manager, rather than set the layout manager of the frame's content pane.

The rootPane property is set to a new instance oJRootPane when the frame is created and cannot be changed
(via public methods). The rootPaneCheckingEnabled property determines whether you get those error messages
when trying to add components directly to the root pane.

The accessors for the title property are inherited fromFrame. This property can also be set in thdFrame constructor.

8.4.2 Constructors

All constructors can now (since 1.4) potentially throw HeadlessException if the graphics environment is operating in
a "headless" mode, meaning that there is no display, keyboard, or mouse. This would be true, for example, in a servlet
environment that used Swing to generate graphics to be sent to a web browser as downloaded image files.

The versions that specify a GraphicsConfiguration (introduced in 1.3 forJFrame) allow you to select the display

device on which the dialog should appear if your application is running in a multi-screen environment.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

public JFrame()
public JFrame(GraphicsConfiguration gc)

Create a new unnamed, invisible frame. Nothing appears in the title bar of the frame.

public JFrame(String title)
public JFrame(GraphicsConfiguration gc, String title)

Create an invisible frame with the specified title.

8.4.3 Protected Methods

JFrame has a few protected methods that you should know about. If you extentf-rame, you can override them to
alter the default behavior. In particular, if you don't want the frame responding to windowClosing() events at all,
you can provide an empty implementation of the processWindowEvent() method. This will leave you with the
responsibility of closing the frame programmatically. The next section has an example of extending
processWindowEvent() to confirm that the user really wants to close the frame.

protected void framelnit()

Called by the constructor to enable key and window events, set the root pane, and set the background color.
The last thing this method does is set the rootPaneCheckingEnabled field totrue.

protected void processWindowEvent(WindowEvent e)

Allow the superclass implementation to process the event. The superclass then handles window-closing
events based on the current default close operation for the frame. For HIDE_ON_CLOSE, the frame is

made invisible; for DISPOSE_ON_CLOSE, the frame is made invisible and disposed of; and for
DO_NOTHING_ON_CLOSE, predictably, nothing is done.

8.4.4 Exiting Frames

In many applications, closing the main application frame should cause the program to exit (shutting down the virtual
machine). The default implementation, however, is only to hide the frame when it is closed, leaving the virtual
machine running with no visible frame. We'll briefly look at two simple ways to get the program to exit when the frame

is closed.

The simplest thing to do is to set the close operation to exit:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

/I FrameClosel.java
1
import javax.swing.JFrame;

public class FrameClosel {
public static void main(String[] args) {
JFrame mainFrame = new JFrame();

/I Exit app when frame is closed.
mainFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
mainFrame.setSize(320, 240);

mainFrame.setVisible(true);

Another alternative that works with SDKs prior to 1.3 is to add a WindowListener to the frame, callingSystem.exit(
) in thewindowClosing() method. Here's a simple example:

/I FrameClose2.java

1

import javax.swing.JFrame;
import java.awt.event.*;

public class FrameClose2 {
public static void main(String[] args) {
JFrame mainFrame = new JFrame();

/I Exit app when frame is closed.
mainFrame.addWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent ev) {
System.exit(0);
}
D;

mainFrame.setSize(320, 240);
mainFrame.setVisible(true);
}
}

If you get tired of writing this same block of code in every frame that needs to close properly, you might want to use an
extension of JFrame that supports this feature. Here's one possible implementation of such a class:

|Vhis document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

/I ExitFrame.java

1

import javax.swing.JFrame;

import java.awt.event.WindowEvent;

/I A very simple extension of JFrame that defaults to EXIT_
/I its close operation. Relies on the 1.3 or higher SDK.
public class ExitFrame extends JFrame {

public ExitFrame() {
super();
setDefaultCloseOperation(EXIT_ON_CLOSE);
}

public ExitFrame(String title) {
super(title);
setDefaultCloseOperation(EXIT_ON_CLOSE);
}
}

ON_CLOSE for

You can use this class just like you'd use a JFrame. If you don't want the program to exit when the user closes the

frame, just change the default close action to one of the values defined in WindowConstants.

A more common strategy is to display a dialog box asking somethin

g like, "Are you sure?" when the user tries to close

the frame. JOptionPane (which we'll discuss in detail inChapter 10

) makes this very easy to do. All you need to do is

reimplement your processWindowEvent() method like this:

protected void processWindowEvent(WindowEvent e) {
if (e.getlD() == WindowEvent. WINDOW _CLOSING) {
int exit = JOptionPane.showConfirmDialog(this, "Are you
if (exit == JOptionPane.YES_OPTION) {
System.exit(0);
}
}

sure?");

/I If you don't want listeners processing the WINDOW _CLOSING events, you could put
/I this next call in an else block for the if (e.getID()...) statement. That way,
/I only the other types of Window events (iconification, activation, etc.) would be

/[sent out.
super.processWindowEvent(e);

| |l@ve RuBoard

file:///C:/DOCUME~1/SIMULA~1/LOCALS~1/Temp/OReilly.Java.Swing.2nd.2002.chm/0596004087_

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

8.5 The JWindow Class

JWindow is an extension ofjava.awt.Window that uses aJRootPane as its single component. Other than this
core distinction, JWindow does not change anything defined by theWWindow class.

In AWT, one common reason for using the Window class was to create a pop-up menu. Since Swing explicitly
provides a JPopupMenu class (see), there is no need to extendJWindow for this purpose. The only

time you'll use JWindow is if you have something that needs to be displayed in its own window without the
adornments added by JFrame. Remember, this means that the window can only be moved or closed

programmatically (or via the user's platform-specific window manager controls, if available).

One possible use forJWindow would be to display a splash screen when an application is starting up. Many

programs display screens like this, containing copyright information, resource loading status, etc. Here's such a
program:

/I SplashScreen.java
1

import java.awt.*;
import javax.swing.*;

public class SplashScreen extends JWindow {
private int duration;
public SplashScreen(int d) {
duration = d;

}

/I A simple little method to show a title screen in the center of the screen for
/I the amount of time given in the constructor
public void showSplash() {
JPanel content = (JPanel)getContentPane();
content.setBackground(Color.white);

/I Set the window's bounds, centering the window.

int width = 450;

int height =115;

Dimension screen = Toolkit.getDefaultToolkit().getScreenSize();
int x = (screen.width-width)/2;

int y = (screen.height-height)/2;

setBounds(x,y,width,height);

// Build the splash screen.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

JLabel label = new JLabel(new Imagelcon(“oreilly.gif"));
JLabel copyrt = new JLabel

("Copyright 2002, O'Reilly & Associates”, JLabel. CENTER);
copyrt.setFont(new Font("Sans-Serif*, Font.BOLD, 12));
content.add(label, BorderLayout. CENTER);
content.add(copyrt, BorderLayout.SOUTH);
Color oraRed = new Color(156, 20, 20, 255);
content.setBorder(BorderFactory.createLineBorder(oraRed, 10));

/I Display it.
setVisible(true);

/I Wait a little while, maybe while loading resources.
try { Thread.sleep(duration); } catch (Exception e) {}

setVisible(false);

}

public void showSplashAndEXxit() {
showSplash();
System.exit(0);

}

public static void main(String[] args) {
/I Throw a nice little title page up on the screen first.
SplashScreen splash = new SplashScreen(10000);
/I Normally, we'd call splash.showSplash() and get on with the program.
[/l But, since this is only a test...
splash.showSplashAndEXxit();

Al this program does is create a JWindow containing a pair of labels and display it in the center of the screen. Ina
real application, the title screen might be displayed while various system resources are being loaded (consider using

a ProgressMonitor in this case). When run, this example displays a simple window in the center of the screen, as

shown in .

Figure 8-10. JWindow used as a splash screen

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

8.5.1 Properties

JWindow defines the properties shown i. ThecontentPane ,glassPane, andlayeredPane are really

properties of JRootPane (described earlier in the chapter). Direct access is provided for convenience. UnlikdFrame
(and JApplet, described below),JWindow does not provide direct access to the root pane's menu bar. This is just an
indication of JWindow's intended usage. If you have some compelling reason to display a menu bar onJVindow,

you can always access it through the root pane or just add it as a component.

Table 8-9. JWindow properties

Property Data type get|is |set Default value
accessibleContext® AccessibleContext |- Jwindow.AccessibleJWindow()
contentPane® Container : . |From rootPane
glassPane® Component : - |From rootPane
layeredPane® JLayeredPane : - |From rootPane
layout® LayoutManager . . |BorderLayout()
rootPane® " JRootPane : . |JRootPane()
rootPaneCheckingEnabled® boolean - |- |true
ooverridden, IOprotected
*The setRootPane() method is protected.
See also the java.awt.Window class.

The layout property is listed here becauseJWindow overrides setLayout() to throw anError if an attempt is made

to change the layout manager, rather than set the layout manager of the window's content pane.

The rootPane property is set to a new instance oJRootPane when the frame is created and cannot be changed

using public methods.

8.5.2 Constructors

public JWindow()

Create a new, invisible window associated with no particular owner. This uses a package-private method in
SwingUtilities to make a "fake" frame that serves as the owner. This makes this window a top-level
window with no focus dependencies.

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

public IWindow(JFrame frame)
public IWindow(Window window)

Create a new, invisible window associated with the given frame or window. A window created with a valid

(i.e., non-null) association is focusable only when the associated frame or window is visible on the screen.

public JWindow(GraphicsConfiguration gc)
public IWindow(Window window, GraphicsConfiguration gc)

Create a new, invisible window (possibly associated with the given window) using the given graphics
configuration. The GraphicsConfiguration object lets you create windows on things such as virtual

screens.

file:///C:/DOCUME~1/SIMULA~1/LOCALS~1/Temp/OReilly.Java.Swing.2nd.2002.chm/0596004087_

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

8.6 The JApplet Class

JApplet is a simple extension ofjava.applet.Applet to use when creating Swing programs designed to be used
in a web browser (or appletviewer). As a direct subclass ofApplet, JAppletis used in much the same way, with the
init(), start(), andstop() methods still playing critical roles. The primary thing Applet provides thatApplet does not
is the use of a JRootPane as its single display component. The properties and methods described below should

look a lot like those described in the previous sections on JFrame andJWindOW. shows aJApplet
running in appletviewer.

Figure 8-11. A JApplet running in the SDK appletviewer

Here's the code for this simple applet:

/I SimpleApplet.java

1

import javax.swing.*;

import javax.swing.border.*;
import java.awt.*;

public class SimpleApplet extends JApplet {
public void init() {

JPanel p = new JPanel();
p.setLayout(new GridLayout(2, 2, 2, 2));
p.add(new JLabel("Username"));
p.add(new JTextField());
p.add(new JLabel("Password"));
p.add(new JPasswordField());
Container content = getContentPane();

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

content.setLayout(new GridBagLayout()); // Used to center the panel
content.add(p);

}
}

Using JAppletin browsers is a bit trickier. You should have a browser that supports at least the 1.2 release of the
JRE. You typically end up using the Java Plug-in. The Plug-in allows you to specify which version of the JRE you
want to use. The applet code itself doesn't change, but your HTML page is quite a bit different. For example, here's
the simple HTML page with the <applet> tag to use with theappletviewer:

<HTML>

<HEAD><TITLE>JApplet Demo Page</TITLE></HEAD>

<BODY BGCOLOR="#FFFFFF">

<H1>JApplet Demo Page</H1>

If you see the login applet in this window, your plug-in has

been successfully installed and configured. Congratulations!

<hr>

<applet code=SimpleApplet width=300 height=200>
<param name="bogus" value="just testing">

</applet>

<hr>

</BODY>

</HTML>

Pretty straightforward. Now here's the converted code that should replace the <applet> tag from the example above.
We used the SDK's HtmIConverter application to produce this page that brings up the applet fro ina
browser with the Java Plug-in:

<I--"CONVERTED_APPLET"-->

<l-- HTML CONVERTER -->

<OBJECT
classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"
WIDTH = 300 HEIGHT = 200
codebase="http://java.sun.