
Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Introduction
Object-Oriented Programming (OOP) is the most dramatic innovation in software development in
the last decade. It ranks in importance with the development of the first higher-level languages at
the dawn of the computer age. Sooner or later, every programmer will be affected by the object-
oriented approach to program design.

Advantages of OOP

Why is everyone so excited about OOP? The chief problem with computer programs is complexity.
Large programs are probably the most complicated entities ever created by humans. Because of this
complexity, programs are prone to error, and software errors can be expensive and even life
threatening (in air-traffic control, for example). Object-Oriented Programming offers a new and
powerful way to cope with this complexity. Its goal is clearer, more reliable, more easily
maintained programs.

Languages and Development Platforms

Of the Object-Oriented Programming languages, C++ is by far the most widely used. (Java, a recent
addition to the field of OO languages, lacks certain features, such as pointers, that make it less
powerful and versatile than C++.)

In past years the standards for C++ have been in a state of evolution. This meant that each compiler
vendor handled certain details differently. However, in November 1997, the ANSI/ISO C++
standards committee approved the final draft of what is now known as Standard C++. (ANSI stands
for American National Standards Institute, and ISO stands for International Standards Institute.)
Standard C++ adds many new features to the language, such as the Standard Template Library
(STL). In this book we follow Standard C++ (except for a few places which we’ll note as we go
along).

The most popular development environments for C++ are manufactured by Microsoft and Borland
and run on the various flavors of Microsoft Windows. In this book we’ve attempted in ensure that
all example programs run on the current versions of both Borland and Microsoft compilers. (See
Appendixes C and D for more on these compilers.)

What this Book Does

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This book teaches Object-Oriented Programming with the C++ programming language, using either
Microsoft or Borland compilers. It is suitable for professional programmers, students, and kitchen-
table enthusiasts.

New Concepts

OOP involves concepts that are new to programmers of traditional languages such as Pascal, Basic,
and C. These ideas, such as classes, inheritance, and polymorphism, lie at the heart of Object-
Oriented Programming. But it’s easy to lose sight of these concepts when discussing the specifics
of an object-oriented language. Many books overwhelm the reader with the details of language
features, while ignoring the reason these features exist. This book attempts to keep an eye on the
big picture and relate the details to the larger concepts.

The Gradual Approach

We take a gradual approach in this book, starting with very simple programming examples and
working up to full-fledged object-oriented applications. We introduce new concepts slowly so that
you will have time to digest one idea before going on to the next. We use figures whenever possible
to help clarify new ideas. There are questions and programming exercises at the end of most
chapters to enhance the book’s usefulness in the classroom. Answers to the questions and to the
first few (starred) exercises can be found in Appendix D. The exercises vary in difficulty to pose a
variety of challenges for the student.

What You Need to Know to Use this Book

You can use this book even if you have no previous programming experience. However, such
experience, in BASIC or Pascal, for example, certainly won’t hurt.

You do not need to know the C language to use this book. Many books on C++ assume that you
already know C, but this one does not. It teaches C++ from the ground up. If you do know C, it
won’t hurt, but you may be surprised at how little overlap there is between C and C++.

You should be familiar with the basic operations of Microsoft Windows, such as starting
applications and copying files.

Software and Hardware

You should have the latest version of either the Microsoft or the Borland C++ compiler. Both
products come in low-priced “Learning Editions” suitable for students.

Appendix C provides detailed information on operating the Microsoft compiler, while Appendix D
does the same for the Inprise (Borland) product. Other compilers will probably handle most of the
programs in this book as written, if they adhere to Standard C++.

Your computer should have enough processor speed, memory, and hard disk space to run the
compiler you’ve chosen. You can check the manufacturer’s specifications to determine these
requirements.

Console-Mode Programs

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The example programs in this book are console-mode programs. They run in a character-mode
window within the compiler environment, or directly within an MS-DOS box. This avoids the
complexity of full-scale graphics-oriented Windows programs. Go for It!

You may have heard that C++ is difficult to learn. It’s true that it might be a little more challenging
than BASIC, but it’s really quite similar to other languages, with two or three “grand ideas” thrown
in. These new ideas are fascinating in themselves, and we think you’ll have fun learning about
them. They are also becoming part of the programming culture; they’re something everyone should
know a little bit about, like evolution and psychoanalysis. We hope this book will help you enjoy
learning about these new ideas, at the same time that it teaches you the details of programming in
C++.

A Note to Teachers

Teachers, and others who already know C, may be interested in some details of the approach we
use in this book and how it’s organized.

Standard C++

We’ve revised all the programs in this book to make them compatible with Standard C++. This
involved, at a minimum, changes to header files, the addition of namespace designation, and
making return type . Many programs received more extensive modifications, including the
substitution in many places of the new class for the old C-style strings.

We devote a new chapter to the STL (Standard Template Library), which is now included in
Standard C++.

Object-Oriented Design

Students are frequently mystified by the process of breaking a programming project into
appropriate classes. For this reason we’ve added a chapter on object-oriented design. This chapter is
placed near the end of the book, but we encourage students to skim it earlier to get the flavor of
OOD. Of course, small programs don’t require such a formal design approach, but it’s helpful to
know what’s involved even when designing programs in your head. C++ is not the same as C.

Some institutions want their students to learn C before learning C++. In our view this is a mistake.
C and C++ are entirely separate languages. It’s true that their syntax is similar, and C is actually a
subset of C++. But the similarity is largely a historical accident. In fact, the basic approach in a C
program is radically different from that in a C program.

C++ has overtaken C as the preferred language for serious software development. Thus we don’t
believe it is necessary or advantageous to teach C before teaching C++. Students who don’t know C
are saved the time and trouble of learning C and then learning C++, an inefficient approach.
Students who already know C may be able to skim parts of some chapters, but they will find that a
remarkable percentage of the material is new.

Optimize Organization for OOP

We could have begun the book by teaching the procedural concepts common to C and C++, and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We could have begun the book by teaching the procedural concepts common to C and C++, and
moved on to the new OOP concepts once the procedural approach had been digested. That seemed
counterproductive, however, because one of our goals is to begin true Object-Oriented
Programming as quickly as possible. Accordingly, we provide a minimum of procedural
groundwork before getting to objects in Chapter 7. Even the initial chapters are heavily steeped in
C++, as opposed to C, usage.

We introduce some concepts earlier than is traditional in books on C. For example, structures are a
key feature for understanding C++ because classes are syntactically an extension of structures. For
this reason, we introduce structures in Chapter 5 so that they will be familiar when we discuss
classes.

Some concepts, such as pointers, are introduced later than in traditional C books. It’s not necessary
to understand pointers to follow the essentials of OOP, and pointers are usually a stumbling block
for C and C++ students. Therefore, we defer a discussion of pointers until the main concepts of
OOP have been thoroughly digested.

Substitute Superior C++ Features

Some features of C have been superseded by new approaches in C++. For instance, the and
functions, input/output workhorses in C, are seldom used in C++ because and do a better job.
Consequently, we leave out descriptions of these functions. Similarly, constants and macros in C
have been largely superseded by the qualifier and inline functions in C++, and need be mentioned
only briefly.

Minimize Irrelevant Capabilities

Because the focus in this book is on Object-Oriented Programming, we can leave out some features
of C that are seldom used and are not particularly relevant to OOP. For instance, it isn’t necessary
to understand the C bit-wise operators (used to operate on individual bits) to learn Object-Oriented
Programming. These and a few other features can be dropped from our discussion, or mentioned
only briefly, with no loss in understanding of the major features of C++.

The result is a book that focuses on the fundamentals of OOP, moving the reader gently but briskly
toward an understanding of new concepts and their application to real programming problems.

Programming Examples

There are numerous listings of code scattered throughout the book that you will want to try out for
yourself. The program examples are available for download by going to Macmillan Computer
Publishing’s web site, http://www.mcp.com/product_support, and go to this book’s page by
entering the ISBN and clicking Search. To download the programming examples, just click the
appropriate link on the page.

Programming Exercises

One of the major changes in the second edition was the addition of numerous exercises. Each of
these involves the creation of a complete C++ program. There are roughly 12 exercises per chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

these involves the creation of a complete C++ program. There are roughly 12 exercises per chapter.
Solutions to the first three or four exercises in each chapter are provided in Appendix D. For the
remainder of the exercises, readers are on their own, although qualified instructors can suggested
solutions. Please visit Macmillan Computer Publishing’s Web site,
http://www.mcp.com/product_support, and go to this book’s page by entering the ISBN and
clicking Search. Click on the appropriate link to receive instructions on downloading the encrypted
files and decoding them.

The exercises vary considerably in their degree of difficulty. In each chapter the early exercises are
fairly easy, while later ones are more challenging. Instructors will probably want to assign only
those exercises suited to the level of a particular class.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Preface
The major changes to this Third Edition are concerned with Standard C++ and object-oriented
design. In addition, the book is no longer geared exclusively to Borland C++ compilers.

Standard C++, finalized in the fall of 1997, introduced many new features to C++. Some of these
features, such as templates and exceptions, had already been adopted by compiler manufacturers.
However, the Standard Template Library (STL) has only recently been included in compilers. This
book adds a chapter on the STL.

We’ve also introduced other features from Standard C++, including new header files, the string class,
new-style casts, namespaces, and so on.

The design of object-oriented programs has received increasing emphasis in recent years, so we’ve
added a chapter on object-oriented design.

The advent of Standard C++ means that, at least to a greater extent than before, all compilers should
treat source code in the same way. Accordingly, we’ve modified our emphasis on Borland
compilers, and now focus on code that should work with any Standard C++ compiler. Of course, the
reality seldom matches the ideal, so so the programs in this book have been tested with both
Microsoft and Borland compilers, and modified when necessary to work with both of them.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

About the Author
Robert Lafore has been writing books about computer programming since 1982. His best-selling
titles include Assembly Language Programming for the IBM PC, C Programming Using Turbo
C++, C++ Interactive Course, and Data Structures and Algorithms in Java. Mr. Lafore holds
degrees in mathematics and electrical engineering, and has been active in programming since the
days of the PDP-5, when 4K of main memory was considered luxurious. His interests include
hiking, windsurfing, and recreational mathematics.

Acknowledgments to the Third Edition

I’d like to thank the entire team at Macmillan Computer Publishing. In particular, Tracy
Dunkelberger ably spearheaded the entire project and exhibited great patience with what turned out
to be a lengthy schedule. Jeff Durham handled the myriad details involved in interfacing between
me and the editors with skill and good humor. Andrei Kossorouko lent his expertise in C++ to
ensure that I didn’t make this edition worse instead of better.

Acknowledgments to the Second Edition

My thanks to the following professor—susers of this book as a text at their respective colleges and
universities—for their help in planning the second edition: Dave Bridges, Frank Cioch, Jack
Davidson, Terrence Fries, Jimmie Hattemer, Jack Van Luik, Kieran Mathieson, Bill McCarty,
Anita Millspaugh, Ian Moraes, Jorge Prendes, Steve Silva, and Edward Wright.

I would like to thank the many readers of the first edition who wrote in with corrections and
suggestions, many of which were invaluable.

At Waite Group Press, Joanne Miller has ably ridden herd on my errant scheduling and filled in as
academic liaison, and Scott Calamar, as always, has made sure that everyone knew what they were
doing. Deirdre Greene provided an uncannily sharp eye as copy editor.

Thanks, too, to Mike Radtke and Harry Henderson for their expert technical reviews.

Special thanks to Edward Wright, of Western Oregon State College, for reviewing and
experimenting with the new exercises.

Acknowledgments to the First Edition

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

My primary thanks go to Mitch Waite, who poured over every inch of the manuscript with
painstaking attention to detail and made a semi-infinite number of helpful suggestions.

Bill McCarty of Azusa Pacific University reviewed the content of the manuscript and its suitability
for classroom use, suggested many excellent improvements, and attempted to correct my dyslexic
spelling.

George Leach ran all the programs, and, to our horror, found several that didn’t perform correctly in
certain circumstances. I trust these problems have all been fixed; if not, the fault is entirely mine.

Scott Calamar of The Waite Group dealt with the myriad organizational aspects of writing and
producing this book. His competence and unfailing good humor were an important ingredient in its
completion.

I would also like to thank Nan Borreson of Borland for supplying the latest releases of the software
(among other useful tidbits), Harry Henderson for reviewing the exercises, Louise Orlando of The
Waite Group for ably shepherding the book through production, Merrill Peterson of Matrix
Productions for coordinating the most trouble-free production run I’ve ever been involved with,
Juan Vargas for the innovative design, and Frances Hasegawa for her uncanny ability to decipher
my sketches and produce beautiful and effective art.

Dedication

This book is dedicated to GGL another inodomitable spirit.222

Tell Us What You Think!

As the reader of this book, you are our most important critic and commentator. We value your
opinion and want to know what we’re doing right, what we could do better, what areas you’d like
to see us publish in, and any other words of wisdom you’re willing to pass our way.

As the Executive Editor for the Advanced Programming and Distributed Architectures team at
Macmillan Computer Publishing, I welcome your comments. You can fax, email, or write me
directly to let me know what you did or didn’t like about this book—as well as what we can do to
make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and
that due to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book’s title and author as well as your name and
phone or fax number. I will carefully review your comments and share them with the author and
editors who worked on the book.

Fax: 317-817-7070
Email: programming@mcp.com

Mail: Tracy Dunkelberger
Executive Editor
Advanced Programming and Distributed Architectures
Macmillan Computer Publishing

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

201 West 103rd Street
Indianapolis, IN 46290 USA

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

APPENDIX A
ASCII Chart

Table A.1 IBM Character Codes
DEC HEX Symbol Key Use in C
0 00 (NULL) Ctrl 2
1 01 A Ctr A
2 02 B Ctrl B
3 03 C Ctrl C
4 04 D Ctrl B
5 05 E Ctrl E
6 06 F Ctrl F
7 07 G Ctrl G Beep
8 08 H Backspace Backspace
9 09 I Tab Tab
10 0A J Ctrl J Linefeed (new line)
11 0B K Ctrl K Vertical Tab
12 0C L Ctrl L Form Feed
13 0D M Enter Carriage Return
14 0E N Ctrl N
15 0F O Ctrl O
16 10 P Ctrl P
17 11 Q Ctrl Q
18 12 R Ctrl R
19 13 S Ctrl S
20 14 T Ctrl T
21 15 U Ctrl U
22 16 _ Ctrl V
23 17 W Ctrl W
24 18 X Ctrl X
25 19 Y Ctrl Y
26 1A Z Ctrl Z
27 1B a Escape
28 1C b Ctrl \

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

29 1D c Ctrl]
30 1E d Ctrl 6
31 1F e Ctrl –
32 20 SPACE BAR
33 21 ! !
34 22 “ “
35 23 # #
36 24 $ $
37 25 % %
38 26 & &
39 27 ‘ ‘
40 28 ((
41 29))
42 2A * *
43 2B + +
44 2C , ,
45 2D – –
46 2E . .
47 2F / /
48 30 0 0
49 31 1 1
50 32 2 2
51 33 3 3
52 34 4 4
53 35 5 5
54 36 6 6
55 37 7 7
56 38 8 8
57 39 9 9
58 3A : :
59 3B ; ;
60 3C < <
61 3D = =
62 3E > >
63 3F ? ?
64 40 @ @
65 41 A A
66 42 B B
67 43 C C
68 44 D D
69 45 E E
70 46 F F
71 47 G G
72 48 H H
73 49 I I

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

74 4A J J
75 4B K K
76 4C L L
77 4D M M
78 4E N N
79 4F O O
80 50 P P
81 51 Q Q
82 52 R R
83 53 S S
84 54 T T
85 55 U U
86 56 V V
87 57 W W
88 58 X X
89 59 Y Y
90 5A Z Z
91 5B [[
92 5C \ \
93 5D]]
94 5E ^ ^
95 5F _ _
96 60 ' '
97 61 a a
98 62 b b
99 63 c c
100 64 d d
101 65 e e
102 66 f f
103 67 g g
104 68 h h
105 69 i i
106 6A j j
107 6B k k
108 6C l l
109 6D m m
110 6E n n
111 6F o o
112 70 p p
113 71 q q
114 72 r r
115 73 s s
116 74 t t
117 75 u u
118 76 v v

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

119 77 w w
120 78 x x
121 79 y y
122 7A z z
123 7B { {
124 7C | |
125 7D } }
126 7E ~ ~
127 7F f Ctrl ←
128 80 Ä Alt 128
129 81 ü Alt 129
130 82 é Alt 130
131 83 É Alt 131
132 84 ä Alt 132
133 85 à Alt 133
134 86 å Alt 134
135 87 Ç Alt 135
136 88 ê Alt 136
137 89 ë Alt 137
138 8A è Alt 138
139 8B ï Alt 139
140 8C î Alt 140
141 8D ì Alt 141
142 8E Ä Alt 142
143 8F Å Alt 143
144 90 É Alt 144
145 91 æ Alt 145
146 92 Æ Alt 146
147 93 ô Alt 147
148 94 ö Alt 148
149 95 ò Alt 149
150 96 ù Alt 150
151 97 ù Alt 151
152 98 ÿ Alt 152
153 99 Ö Alt 153
154 9A Ü Alt 154
155 9B õ Alt 155
156 9C £ Alt156
157 9D ¥ Alt157
158 9E û Alt158
159 9F ü Alt159
160 A0 á Alt160
161 A1 í Alt161
162 A2 ó Alt162
163 A3 ú Alt163

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

164 A4 ñ Alt164
165 A5 Ñ Alt165
166 A6 a Alt166
167 A7 o Alt167
168 A8 ® Alt168
169 A9 © Alt169
170 AA ™ Alt170
171 AB ' Alt 171
172 AC .. Alt 172
173 AD ¡ Alt 173
174 AE « Alt 174
175 AF » Alt 175
176 B0 ¤ Alt 176
177 B1 ¤ Alt 177
178 B2 ¤ Alt 178
179 B3 ≥ Alt 179
180 B4 ¥ Alt 180
181 B5 µ Alt 181
182 B6 ð Alt 182
183 B7 ς Alt 183
184 B8 Π Alt 184
185 B9 π Alt 185
186 BA ∫ Alt 186
187 BB a Alt 187
188 BC o Alt 188
189 BD Ω Alt 189
190 BE æ Alt 190
191 BF ™ Alt 191
192 C0 ¿ Alt 192
193 C1 ¡ Alt 193
194 C2 ¬ Alt 194
195 C3 √ Alt 195
196 C4 ∫ Alt 196
197 C5 ≈ Alt 197
198 C6 Δ Alt 198
199 C7 « Alt 199
200 C8 » Alt 200
201 C9 ... Alt 201
202 CA g Alt 202
203 CB À Alt 203
204 CC Ã Alt 204
205 CD Õ Alt 205
206 CE Œ Alt 206
207 CF œ Alt 207
208 D0 – Alt 208

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

209 D1 — Alt 209
210 D2 " Alt 210
211 D3 " Alt 211
212 D4 Ô Alt 212
213 D5 " Alt 213
214 D6 ÷ Alt 214
215 D7 ◊ Alt 215
216 D8 ÿ Alt 216
217 D9 Ÿ Alt 217
218 DA / Alt 218
219 DB ¤ Alt 219
220 DC < Alt 220
221 DD > Alt 221
222 DE fi Alt 222
223 DF fl Alt 223
224 E0 α Alt 224
225 E1 β Alt 225
226 E2 Γ Alt 226
227 E3 π Alt 227
228 E4 ς Alt 228
229 E5 Â Alt 229
230 E6 µ Alt 230
231 E7 τ Alt 231
232 E8 Ë Alt 232
233 E9 Θ Alt 233
234 EA Ω Alt 234
235 EB Î Alt 235
236 EC Ï Alt 236
237 ED ψ Alt 237
238 EE ∈ Alt 238
239 EF Ô Alt 239
240 F0 ≡ Alt 240
241 F1 + Alt 241
242 F2 ≥ Alt 242
243 F3 ≤ Alt 243
244 F4 Ù Alt 244
245 F5 1 Alt 245
246 F6 ÷ Alt 246
247 F7 ∼ Alt 247
248 F8 ° Alt 248
249 F9 • Alt 249
250 FA . Alt 250
251 FB √ Alt 251
252 FC η Alt 252
253 FD ² Alt 253

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

254 FE < Alt 254
255 FF (blank) Alt 255

Those key sequences consisting of “Ctrl” are typed by pressing the CTRL key, and while it is being
held down, pressing the key indicated. These sequences are based on those defined for PC Personal
Computer series keyboards. The key sequences may be defined differently on other keyboards.

IBM Extended ASCII characters can be displayed by pressing the Alt key and then typing the
decimal code of the character on the keypad.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

APPENDIX B
STANDARD C++ KEYWORDS
Keywords implement specific C++ language features. They cannot be used as names for variables
or other user-defined program elements. Many of the keywords are common to both C and C++,
while others are specific to C++. Some compilers may support additional keywords, which usually
begin with one or two underscores, as in _cdecl or __int16.

A

asm
auto

B

bool
break

C

case
catch
char
class
const
const_cast
continue

D

default
delete
do
double
dynamic_cast

E

else

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

enum
explicit
export
extern

F

false
float
for
friend

G

goto

I

if
inline
int

L

long

M

main
mutable

N

namespace
new

O

operator

P

private
protected
public

R

register
reinterpret_cast
return

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

S

short
signed
sizeof
static
static_cast
struct
switch

T

template
this
throw
true
try
typedef
typeid
typename

U

union
unsigned
using

V

virtual
void
volatile

W

wchar_t
while

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

APPENDIX C
MICROSOFT VISUAL C++
This appendix tells you how to use Microsoft Visual C++ to create console-mode applications,
which are the kind of applications used in this book. This discussion is based on Visual C++ version
5.0.

The present version of Visual C++ has good (although not perfect) adherence to Standard C++. It
comes in various versions, including a student version for under $100.

We’ll assume that Visual C++ is installed in your system, and that you know how to start it by using
the Windows Start button and navigating to the appropriate menu item: Microsoft Visual C++.

You’ll want to make sure you can see file extensions (like .CPP) when operating MVC++. In
Windows Explorer, make sure that the option Hide MS-DOS File Extensions for File Types That
are Registered is not checked.

Screen Elements

When you start Microsoft Visual C++ you’ll see that the resulting application is actually called
Microsoft Developer Studio. The studio can work with other languages besides C++, but we won’t
worry about that here.

The Developer Studio window is initially divided into three parts. On the left is the View Pane.
This has three tabs, for ClassView, FileView, and InfoView. Once you have a project going, the
ClassView tab will show you the class hierarchy of your program, and FileView will show you the
files used in the project. InfoView allows you to navigate through the documentation and help file
structure. Click the plus signs to expand the hierarchies, then double-click the document you want
to read.

The largest part of the screen usually holds a document window. It can be used for various
purposes, including displaying your source files. It can also display the contents of help files. At the
bottom of the screen is a long window with more tabs: Build, Debug, and so on. This will display
messages when you perform operations such as compiling your program.

Single-File Programs

It’s easy to build and execute a single-file console program using Microsoft Visual C++. There are

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

It’s easy to build and execute a single-file console program using Microsoft Visual C++. There are
two possibilities: the file already exists or the file needs to be written.

In either case you should begin by making sure that no project is currently open. (We’ll discuss
projects in a moment.) Click the File menu. If the Close Workspace item is active (not grayed) click
it to close the current workspace.

Building an Existing File

If the .CPP source file already exists, as it does for the example programs in this book, select Open
from the File menu. (Note that this is not the same as Open Workspace.) Use the Open dialog box
to navigate to the appropriate file, select it, and click the Open button. The file will appear in the
document window. (If you’re compiling an example program that uses Console Graphics Lite, such
as the CIRCSTRC program in Chapter 5, “Functions,” or the CIRCLES program in Chapter 6, “Objects
and Classes,” turn to the section “Building Console Graphics Lite Programs.”)

To compile and link this file, select Build from the Build menu. A dialog box will appear asking if
you want to create a Default Project Workspace. Click Yes. The file will be compiled and linked
with any necessary library files.

To run the program, select Execute from the Project menu. If all goes well, a console window will
appear with the program’s output displayed in it.

When the program terminates, you’ll see the phrase Press any key to continue. The compiler
arranges for this to be inserted following the termination of any program. It keeps the console
display on the screen long enough to see the program’s output.

You can also run programs directly from MS-DOS. In Windows 95 and 98, you can obtain a box
for MS-DOS by clicking the Start button, selecting Programs and then the MS-DOS Prompt item.
In the resulting window you’ll see what’s called the C-prompt: the letter C, usually followed by the
name of the current directory. You can navigate from one directory to another by typing cd (for
Change Directory) and the name of the new directory. To execute a program, including any of the
examples from this book, make sure you’re in the same directory as the appropriate .EXE file, and
type the name of the program (with no extension). You can find out more about MS-DOS using the
Windows help system.

Writing a New File

To start writing your own .CPP file, select New from the File menu and click the Files tab. Select
C++ Source File, and click OK. A blank document window will appear. Type in your program.
Save the new file by selecting Save As from the File menu, navigating to the correct directory, and
typing the file name with the .CPP extension (such as myProg.cpp). As before, select Build from the
Build menu and click Yes to the default workspace question. Your program will be compiled and
linked.

If there are errors, they will appear in the Build window at the bottom of the screen. (You may need
to click the Build tab to make this window appear.) If you double-click the error line, an arrow will
appear next to the line containing the error in the source file. Also, if you position the cursor on the
error number in the Build window (such as C2143) and press the F1 key, an explanation of the error
will appear in the document window. You can correct the errors and repeat the build process until
the message reads “0 error(s), 0 warning(s).” To execute the program, select Execute from the
Build menu.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Before working on a new program, don’t forget to select Close Workspace from the File menu.
This ensures that you begin with a clean workspace. To open a program you’ve already built, select
Open Workspace from File menu, navigate to the right directory, and double-click the file with the
appropriate name and the .DSW extension.

Run-Time Type Information (RTTI)

A few programs, such as EMPL_IO.CPP in Chapter 12, “Streams and Files,” use RTTI. With
Microsoft Visual C++ you need to enable a compiler option to make this feature work. Select
Settings from the Project menu and click the C/C++ tab. From the Category list box, select C++
Language. Click the checkbox named Enable Run-Time Type Information. This will avoid various
compiler and linker errors, some of which are misleading.

Multifile Programs

We’ve shown the quick and dirty approach to building programs. This approach works with one-
file programs. When projects have more than one file things become slightly more complicated.
We’ll start by reviewing what’s meant by the terms workspace and project.

Projects and Workspaces

Visual C++ uses a concept called a workspace, which is one level of abstraction higher than a
project. A workspace can contain many projects. It consists of a directory and several configuration
files. Within it, each project can have its own directory, or the files for all the projects can simply
reside in the workspace directory.

Conceptually it’s probably easiest, at least for the small programs in this book, to assume that every
project has its own separate workspace. That’s what we’ll assume in this discussion.

A project corresponds to an application (program) that you’re developing. It consists of all the files
needed to create that application as well as information about how these files are to be combined.
The result of building a project is usually a single .EXE file that a user can execute. (Other results
are possible, such as .DLL files.)

Source Files Already Exist

Let’s assume that the files you want to include in a new project already exist, and that they are in a
particular directory. Select New from the File menu, and click the Projects tab in the New dialog
box. Select Win32 Console Application from the list. First, in the Location box, type the path to the
directory, but do not include the directory name itself. Next, type the name of the directory
containing the files in the Project Name box. (By clicking the button to the right of the Location
field you can navigate to the appropriate directory, but make sure to delete the directory name itself
from the location field.) Make sure the Create New Workspace box is checked, and click OK.

For example, if the files are in C:\Book\Ch13\Elev, then you would first type C:\Book\Ch13\ in the
Location field and then Elev in the Project Name field. When you type the project name, it’s
automatically added to the location. (If it was there already it would be added again, resulting in a
location of C:\Book\Ch13\Elev\Elev, which is not what you want.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

At this point various project-oriented files, with extension .DSP, .DSW, and so forth, have been
added to the directory.

Now you need to add your source files to the project. This includes both .CPP and .H files. Select
Add To Project from the Project menu, click Files, select the files you want to add, and click OK.
You can review the files you’ve selected by clicking the FileView tab and then the plus sign for the
project. You can also see the class structure, complete with member functions, by clicking the
ClassView tab.

To open a file so you can see it and modify it, select Open from the File menu and select the file.

Sometimes a file (such as the msoftCon.h file necessary for console graphics programs) is not in the
same directory as the other source files for your program. You can nevertheless add it to your
project in the same way that you add other files. Select Add To Project from the Project menu,
select Files, and then navigate to the file you want (or type in the complete pathname).

Saving, Closing, and Opening Projects

To save the project, select Save Workspace. To close the project, select Close Workspace. (Answer
Yes to the query Close All Document Windows.) To open an existing project, select Open
Workspace from the file menu, navigate to the proper directory, select the .DSW file, and click
Open.

Compiling and Linking

As with one-file programs, the easiest way to compile, link, and run a multifile program is to select
Execute from the Build menu. You can compile and link your project without running it by
selecting Build from the Build menu.

Building Console Graphics Lite Programs

Building programs that use the Console Graphics Lite functions (described in Appendix E,
“Console Graphics Lite”) requires some steps in addition to those needed for ordinary example
programs. Programs that use these functions should include the line #include “msoftcon.h”.

• Open the source file for the program as described earlier.
• Select Build from the Build menu. Answer Yes when asked if you want to create a default
project workspace. A project will be created, but the compiler will complain it can’t find
MSOFTCON.H.
• To tell it where to find this file, select Options from the Tools menu. Click on the
Directories tab. Select Include Files from the Show Directories For list. On the bottom line of
the Directories list, type the complete pathname of the directory where MSOFTCON.H is
stored. (This directory should be called MSOFTCON.) Click on OK.
• Now try building your file again. Now the compiler can find the header file, but there will
be numerous linker errors because the linker doesn’t know where to find the code for the
graphics functions. This code is in MSOFTCON.CPP.
• Select Add To Project from the Project menu; then select Files. In the resulting dialog box
(called Insert Files into Project), navigate to the MSOFTCON directory. Select the
MSOFTCON.CPP file. Click OK.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now your program should compile and link correctly. Select Execute from the Build menu to see it
run.

Debugging

In Chapter 3, “Loops and Decisions,” we suggest using the debugger to provide an insight into how
loops work. Here’s how to do that with Microsoft Visual C++. These same steps can help you
debug your program if it behaves incorrectly. We’ll be discussing one–file programs here, but the
same approach applies, with appropriate variations, to larger multifile programs.

Start by building your program as you normally would. Fix any compiler and linker errors. Make
sure your program listing is displayed in the Edit window.

Single Stepping

To start the debugger, simply press the F10 key. You’ll see a yellow arrow appear in the margin of
the listing, pointing to the opening brace following main.

If you want to start somewhere other than the beginning of the program, position the cursor on the
line where you want to start debugging. Then, from the Build menu, select Start Debug, and then
Run to Cursor. The yellow arrow will appear next to the statement selected.

Now press the F10 key. This causes the debugger to step to the next executable statement. The
yellow arrow will show where you are. Each press of F10 moves it to the next statement. If you’re
in a loop, you’ll see the yellow arrow move down through the statements in the loop and then jump
back to the top of the loop.

Watching Variables

You’ll see a Watch window in the bottom right corner of your screen. To observe the values of
variables change as you step through the program, you’ll need to place these variable’s names in
this Watch window. To do this, right–click a variable name in the source code. A pop–up menu will
appear. Select QuickWatch from this menu. In the resulting QuickWatch dialog box, click Add
Watch. The variable and its current value will appear in the Watch window. If a variable is out of
scope, such as before it’s been defined, the Watch window will show an error message instead of a
value next to the variable name.

Stepping Into Functions

If your program uses functions, you can step into them (single–step through the statements within
the function) by using the F11 key. By contrast, the F10 key steps over function calls (treats them
as a single statement). If you use F11 to trace into library routines like cout <<, you can trace
through the source code of the library routine. This can be a lengthy process, so avoid it unless
you’re really interested. You need to switch judiciously between F11 and F10, depending on
whether you want to explore a particular function’s inner workings or not.

Breakpoints

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Breakpoints allow you to stop the program at any arbitrary location. Why are they useful? We’ve
already shown that you can execute the program up to the cursor location by selecting Run to
Cursor. However, there are times when you want to be able to stop the program in multiple
locations. For example, you might want to stop it after an if and also after the corresponding else.
Breakpoints solve this problem because you can insert as many as you need. (They also have
advanced features we won’t describe here.)

Here’s how to insert a breakpoint in your listing. First, position the cursor on the line where you
want the breakpoint. Then click the right mouse button, and from the resulting menu select
Insert/Remove Breakpoint. You’ll see a red circle appear in the left margin. Now whenever you run
your program at full speed (by selecting Build/Start Debug/Go, for example) it will stop at the
breakpoint. You can then examine variables, single–step through the code, or run to another
breakpoint.

To remove a breakpoint, right–click it and select Remove Breakpoint from the menu.

There are many other features of the Debugger, but what we’ve discussed here will get you started.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

APPENDIX D
BORLAND C++BUILDER
This appendix tells you how to use Borland C++Builder to create console-mode applications, which
are the kind of applications used in this book.

C++Builder is Borland’s most advanced development product, and, as of this writing, the C++
product that adheres most closely to Standard C++. It’s available in a student version for under
$100. This discussion is based on C++Builder 3.0.

We’ll assume that C++Builder is installed on your system, and that you can start it by using the
Windows Start button and navigating to the appropriate menu item: C++Builder.

You’ll want to make sure you can see file extensions (like .CPP) when operating C++Builder. In
Windows Explorer, make sure that the option Hide MS-DOS File Extensions for File Types That
are Registered is not checked.

Running the Example Programs in C++Builder

The programs in this book require minor modifications to run under C++Builder. Here’s a quick
summary.

You can compile most of the example programs and run them without modification in Window’s
MS-DOS window (Start/Programs/MS-DOS Prompt). However, if you want to run them from
within C++Builder, using the Run command from the Run menu, then you’ll need to install a
statement at the end of the program to keep the console window on the screen long enough to see.
You can do this in two steps:

• Insert the statement getch(); just before the final return statement in main(). This enables you
to see the program’s output.
• Insert the statement #include <conio.h> at the beginning of main(). This is necessary for getch()

If you’re creating a multifile program, (as in Chapters 13, “Multifile Programs,” and 16, “Object-
Oriented Design”), insert the statement #include <condefs.h> at the beginning of main().

If the program you’re building uses Console Graphics Lite functions (described in Appendix E,
“Console Graphics Lite”), you’ll need to take some additional steps. These are summarized later in
this appendix.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In the balance of this appendix we’ll cover these points in more detail and describe how to use
C++Builder to edit, compile, link and execute console-mode programs.

Cleaning up the Screen

When it’s first started, C++Builder shows you some screen objects you won’t need for console-
mode programs. You’ll see a window on the right called Form1. Click on its close button (the X in
the upper-right corner) to make it go away. Likewise, you won’t need the Object Inspector, so click
its close button too. You’ll need to get rid of these two items every time you start C++Builder.

You may see a window titled Unit1.CPP. with a source file in it. This means C++Builder has started a
skeleton project for you. However, it’s not the kind of project you want, so click Close All on the
File menu to get rid of it.

You won’t need the Component Palette. This is a toolbar with tabs labeled Standard, Additional,
Win32, and so on. To get rid of it, click the Component Palette item near the bottom of the View
menu. This unchecks the item, so the palette will no longer be displayed. (If you want it back, you
can check this item again.)

If you need additional screen space, you can also turn off the standard toolbar. This toolbar contains
buttons for opening, saving, and other common tasks. All these tasks can also be accessed from the
menu bar, so if you don’t mind doing without the marginal convenience of the buttons, you can
remove the toolbar by clicking the Toolbar item near the bottom of the View menu.

Creating a New Project

C++Builder (as do other modern compilers) thinks in terms of projects when creating programs. A
project consists of one or more source files. It can also contain many other kinds of files which we
don’t need to be concerned with here, such as resource files and definition files. The result of a
project is usually a single .EXE file that a user can execute.

To begin a new project, select New... from the File menu. You’ll see a dialog box called New
Items. Click the New tab (if necessary). Then double-click the Console Wizard icon. In the
resulting dialog box, make sure that the Window Type is Console and the Execution Type is .EXE
Click Finish and you’ll see the following source file appear in the Project Source window:

#pragma hdrstop
#include <condefs.h>

//--
#pragma argsused
int main(int argc, char **argv)
{
 return 0;
}

This is a skeleton version of a console-mode program. You don’t need some of the lines in this
program, and you will need to add some others. We’ll make these changes, and add a statement to
print some text so you can see if the program works. Here’s the result:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

//test1.cpp
//#include <condefs.h> //not needed for one-file programs
#include <iostream>
#include <conio.h>
//#pragma hdrstop //not needed

//---
//#pragma argsused //not needed
//int main(int argc, char **argv) //arguments not needed
int main()
 {
 cout << “Happy are they whose programs ”
 << “compile the first time.”;
 getch();
 return 0;
 }

The CONDEFS.H file doesn’t need to be included (unless your program has more than one file), and
the two programs aren’t necessary. Also you don’t need the arguments to main().

If you run the original skeleton program you’ll find that the console window doesn’t remain visible
long enough to see. As we noted, this can be fixed by inserting the statement

getch();

at the end of the program, just before return. This causes the program to wait for a keystroke, so the
console window remains in view until you press any key. The getch() function requires the CONIO.H
header file, so you’ll need to include it at the beginning of your program.

If you’re creating your own program, you can start with the skeleton program and type in your own
lines. If your starting with an existing file, read the section “Starting with Existing Files.”

Saving A Project

The text you see in the Project Source window is a source file, which has the extension .CPP.
C++Builder (as do other modern compilers) thinks in terms of a project, which can consist of
(potentially) many such source files. Information about a project is recorded in a file with the
extension .BPR. Thus when you save a project, you’re actually saving both the .CPP file (or files)
and the .BPR file. When you first create it, the project is called Project1 (or a higher number).

To save the project and change its name, select Save Project As from the File menu, navigate to the
directory where you want to store the file, type the name you want to give the project, followed by
the .BPR extension, and click OK.

Starting with Existing Files

You may be starting a project with files that already exist, such as the ones in this book. If so,
you’ll need a little trick. You want the main file in your project, that is, the one containing main()
have the same name as the project. However, C++Builder will automatically create a file with this
name, the skeleton file. It will then try to override your file with the skeleton file when you try to
save the project.

Here’s how to avoid the problem. Suppose your project is called myProj, and your main file is
myProj.cpp. Implement the following steps:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

• Temporarily rename your main file (myProj.cpp) to a name other than the project name, say
XmyProj.cpp.
• Use Save Project As to save your project. Give the project the same name as the original
file, but with the .BPR extension: myProj.BPR. Click Save. The skeleton file that was created,
myProj.cpp, will be saved as well.
• Close the project with Close All.
• Delete the skeleton file (myProj.cpp).
• Rename your source file (XmyProj.cpp) to the same name as the project (myProj.cpp).

Now when you open the project again (using Open Project from the File menu), your source file
will be the project’s source file as well. You can then modify it or compile it.

Compiling, Linking, and Executing

To build an executable program, select Make or Build from the Project menu. This causes your .
file to be compiled into an .OBJ file, and the .OBJ file to be linked (with various library files) into an
.EXE file. For example, if you’re compiling MYPROG.CPP, the result will be MYPROG.EXE. If there
are compiler or linker errors, they will be displayed. Edit your program until you’ve eliminated
them.

Executing from C++Builder

If you’ve modified your program by inserting getch() as described earlier, then you can compile,
link, and run your program directly in C++Builder by simply selecting Run from the Run menu. If
there are no errors, the console window will appear, along with the output of the program.

Executing from MS-DOS

You can also run programs directly from MS-DOS. In Windows 95 and Windows 98, you can
obtain a box for MS-DOS by clicking the Start button, selecting Programs and then the MS-DOS
Prompt item. In the resulting window you’ll see what’s called the C-prompt: the letter C, usually
followed by the name of the current directory. You can navigate from one directory to another by
typing cd (for Change Directory) and the name of the new directory. To execute a program,
including any of the examples from this book, make sure you’re in the same directory as the
appropriate .EXE file, and type the name of the program (with no extension). You can find out more
about MS-DOS using the Windows help system.

Precompiled Header Files

You can speed up compilation times dramatically by selecting Options from the Project menu,
selecting the Compiler tab, and clicking on Use Precompiled Headers. In a short program most of
the compile time is spent compiling the C++ header files such as iostream. Using the Precompiled
Headers option causes these header files to be compiled only once, instead of each time you
compile your program.

Closing and Opening Projects

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When you’re done with a project, you can close it by selecting Close All from the File menu. To
open a previously-saved project, select Open Project from the File menu, navigate to the
appropriate .BPR file, and double-click it.

Adding a Header File to Your Project

Most C++ programs employ one more user-written header file (in addition to many library header
files, like IOSTREAM and CONIO.H). Here’s how to create a header file.

Creating a New Header File

Select New... from the File menu, make sure the New tab is selected, and double-click the Text
icon. You’ll see a source window titled FILE1.TXT. Type in the text of your file and save it using
Save As on the File menu, with an appropriate name, followed by the .H file extension. Save it in
the same file as your source (.CPP) files. The new filename will appear on a tab next to the other
files in the project. You can switch from file to file by clicking the tabs.

Editing an Existing Header File

To open an existing header file, select Open from the File menu, and select Any File (*.*) from the
Files Of Type list. You can then select the header file from the list.

When you write the include statement for the header file in your .CPP file, make sure you enclose
the filename in quotes:

#include “myHeader.h”

The quotes tell the compiler to look for the header file in the same directory as your source files.

Telling C++Builder the Header File’s Location

If you add a .H file, the compiler must know where to find it. If it’s in the same directory as your
other files, then you don’t need to do anything.

However, if your .H file is in a different directory, you’ll need to tell C++Builder where to find it.
(This is true of the borlaCon.h file necessary for console-mode graphics.) Go to Options on the
Project menu and select the Directories/Conditionals tab. In the Directories section, click the button
with the three dots on the right of the Include Path list. A Directories dialog box will appear.

In the bottom field of the Directories dialog box, type the complete pathname of the directory where
the .H file is located. Click the Add button to place the path in the list of include paths. Then click
OK twice more to close the dialog boxes.

Don’t try to add header files to the project with the Add To Project option in the Project menu.

Projects with Multiple Source Files

Real applications, and some of the example programs in this book, require multiple source (.CPP)
files. Incidentally, in C++Builder, source files are often called units, a term specific to this product.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

files. Incidentally, in C++Builder, source files are often called units, a term specific to this product.
In most C++ development environments, files are called files or modules.

If you use more than one source file in your project, you’ll need to include the file CONDEFS.H:

#include <condefs.h> //necessary for multifile programs

in the main source file; that is, the one containing main(). This is not necessary for one-file
programs, as we mentioned earlier, but is essential for multifile programs.

Creating Additional Source Files

You make additional .CPP files the same way you make header files: Select File/New, and double-
click the Text Icon in the New dialog box. Type in the source code, and use Save As to save the
file. When using Save As, make sure to select C++Builder Unit (.CPP) from the Save File As Type
list. This will automatically supply the .CPP extension, so all you need to type is the name. If you
fail to do this, and simply type the .CPP after the name, the file won’t be recognized as a C++Builder
unit.

Adding Additional Source Files to your Project

You may have created a new additional source file as just described, or one may already exist, such
as BORLACON.CPP, which is used for Console Graphics Lite programs. To add a source file to the
project, select Add To Project from the Project menu, navigate to the appropriate directory, and
select the filename from the list. Then click Open. That tells C++Builder it’s part of the project.

Multiple source files are displayed with tabs in the edit window (if they’re in full-size windows), so
you can quickly switch from one file to another. You can open and close these files individually so
they don’t all need to be on the screen at the same time.

The Project Manager

You can see what source files are part of the project by selecting Project Manager from the View
menu. You’ll see a diagram of file relationships, similar to that shown in the Windows Explorer.
Clicking the plus sign next to the project icon will display all the project’s source files. The file you
just added to the project should be among them.

If you right-click a file in the Project Manager the context menu will show you choices that include
Open, Save, Save As, and Compile. This is a handy way to perform these tasks on individual source
files.

In a multifile program you can compile individual files separately by selecting Compile Unit from
the Project menu. You can compile and link all the source files by selecting Make from the Project
menu. This will cause only those source files that have been changed since the previous compile to
be recompiled.

Weird New Lines in Your Program

When you compile a multifile program, C++Builder automatically inserts lines into the source code
of your primary source file. These lines specify what the other source files are. For example, if you
had a two-file program consisting of FILE1.CPP and FILE2.CPP, you might see the following in

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

had a two-file program consisting of FILE1.CPP and FILE2.CPP, you might see the following in
FILE1.CPP:

//---
USEUNIT(“file2.cpp”);
//---

This is a permanent change to your source file. It’s not a very elegant approach to compiling
multifile programs, but at least you don’t have to add these lines yourself.

Console Graphics Lite Programs

Here’s how to build programs that use the Console Graphics Lite package. This includes such
programs as CIRCSTRC from Chapter 5, “Functions,” and CIRCLES in Chapter 6, “Objects and
Classes.”

• Create a new project as described earlier, using the program name as the project name, but
with the .BPR extension.
• In the source file, change #include<msoftcon.h> to #include<borlacon.h>
• Tell the compiler where this MSOFTCON.H header file is by following the instructions in the
section earlier in this Appendix titled “Telling C++Builder the Header File’s Location.” (The
header should be in a directory called BORLACON.)
• Add the source file BORLACON.CPP to your project by following the instructions in the
section earlier in this Appendix titled “Adding Additional Source Files to your Project.”
• Insert the line #include <condefs.h> at the beginning of your program. This is necessary for
multifile programs.
• To keep the display on the screen, insert the line getch(); just before the return statement at
the end of main().
• To support getch(), insert the line #include <conio.h> at the beginning of your program.

Debugging

In Chapter 3, “Loops and Decisions,” we suggest using a debugger to provide an insight into how
loops work. Here’s how to do that with Visual C++. These same steps can help you debug your
program if it behaves incorrectly. We’ll be discussing one-file programs here, but the same
approach applies, with appropriate variations, to large multifile programs.

Start by building your program as you normally would. Fix any compiler and linker errors. Make
sure your program listing is displayed in the Edit window.

Single Stepping

To start the debugger, just press the F8 key. The program will be recompiled, and the first line in
the program, usually the main() declarator, will be highlighted. Repeated presses of F8 will cause
control to move to each statement of the program in turn. When you enter a loop, you’ll see
highlight move down through the loop, then return to the top of the loop for the next cycle.

Watching Variables

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To see how the values of variables change as you single step through the program, select Add
Watch from the Run menu. The Watch Properties dialog box will appear. Type the name of the
variable you want to watch into the Expression field of this dialog box, and click OK. A window
called Watch List will appear. By repeatedly using the Add Watch dialog box you can add as many
variables as you want to the Watch List.

If you position the Edit Window and the Watch List so you can see them both at the same time, you
can watch the value of the variables change as you single step through the program. If a variable is
out of scope, such as before it’s been defined, the Watch List will show an error message instead of
a value next to the variable name.

In the particular case of the CUBELIST program, the watch mechanism doesn’t recognize the validity
of the cube variable when it’s defined within the loop. Rewrite the program so it’s defined before the
loop; then its value will be displayed properly on the Watch List.

Tracing Into Functions

If your program uses functions, you can trace into them (single-step through the statements within
the function) by using the F7 key. The F8 key steps over function calls (treats them as a single
statement). If you use F7 to trace into library routines like cout <<, you can trace through the source
code of the library routine. This can be a lengthy process, so avoid it unless you’re really interested.
You will need to switch judiciously between F7 and F8, depending on whether or not you want to
explore a particular function’s inner workings.

Breakpoints

Breakpoints allow you to stop the program at any arbitrary location. Why are they useful? We’ve
already shown that you can execute the program up to the cursor location by selecting Run to
Cursor from the Run menu. However, there are times when you want to be able to stop the program
in multiple locations. For example, you might want to stop it after an if and also after the
corresponding else. Breakpoints solve this problem because you can insert as many as you need.
(They also have advanced features we won’t describe here.)

Inserting a breakpoint in your listing is easy. Look at your program listing in the edit window.
You’ll see a dot in the left margin opposite each executable program line. Simply left-click the dot
where you want to insert the breakpoint. You’ll see a red circle appear in the left margin, and the
program line will be highlighted. Now whenever you run your program at full speed (by selecting
Run from the Run menu, for example) it will stop at the breakpoint. You can then examine
variables, single-step through the code, or run to another breakpoint.

To remove the breakpoint, left-click it again. It will vanish.

There are many other features of the Debugger, but what we’ve described here will get you started.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

APPENDIX E
CONSOLE GRAPHICS LITE
It’s nice to be able to enliven example programs with graphics, so we’ve included many graphics-
based examples. ANSI Standard C++ does not include graphics specifications, but it certainly
doesn’t prohibit graphics, and Windows supports various kinds of graphics.

Previous editions of this book were based on Borland C++, and used Borland graphics functions in
many examples. In this edition, in keeping with making the book compliant with ANSI C++, we’ve
attempted to make the examples less compiler-specific. However, every compiler handles graphics
differently, so we’ve used two approaches to graphics, one for Microsoft Visual C++ and one for
Borland C++. (It’s possible the approach used for the Microsoft compiler will work with other
compilers as well.)

In this edition we use console graphics. The console is a character-mode screen, typically arranged
with 80 columns and 25 rows. Most of the non-graphics example programs in this book write text
to the console window. A console program can run in its own window within Windows, or as a
standalone MS-DOS program.

In console graphics, rectangles, circles, and so forth are made up of characters (such as the letter
‘X’ or a small character-size block) rather than pixels. The results are crude but work fine as
demonstration programs.

The example programs use calls to a set of “generic” console functions created specifically for this
book, which we call Console Graphics Lite. These functions translate function calls in the example
programs into different actual functions, depending on which of two files is compiled and linked to
your project. These files are MSOFTCON.CPP for Microsoft compilers, and BORLACON.CPP for
Borland compilers.

In previous editions, some programs used pixel graphics (“real” graphics, in which individual
screen pixels are manipulated) rather than character graphics. Unfortunately, it’s no longer practical
to accommodate pixel graphics. Microsoft’s compilers have eliminated their support for pixel
graphics, unless you want to write a full-scale Windows program, with all the complexity that that
involves. So all the graphics examples in this edition use console-mode graphics.

Using the Console Graphics Routines

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To build an example program that uses graphics, you must add several steps to the normal build
procedure. These are as follows:

• Include the appropriate header file (MSOFTCON.H or BORLACON.H) in your source code and
add it to your project if necessary.
• Add the appropriate source file (MSOFTCON.CPP or BORLACON.CPP) to your project.
• Make sure the compiler can find the appropriate header file and source file.

The header files contain declarations for the Console Graphics Lite functions. The source files
contain the definitions (source code) for these functions. You need to compile the appropriate
source file and link the resulting .OBJ file with the rest of your program. This happens automatically
during the build process if you add the source file to your project.

To learn how to add a file to your project, read either Appendix C, “Microsoft Visual C++,” or
Appendix D, “Borland C++Builder.” Then apply this process to the appropriate source file.
MSOFTCON.CPP is located in the MSOFTCON directory, and BORLACON.CPP is in the BORLACON
directory on the CD that accompanies this book.

To make sure your compiler can find the header file, you may need to add the pathname where it’s
located to the Directories option for your compiler. Again, refer to the appropriate appendix to see
how this is done.

The Console Graphics Functions

The Console Graphics Lite functions assume a console screen with 80 columns and 25 rows. The
upper-left corner is defined as the point (1,1) and the lower-right corner is the point (80,25).

These functions were designed specifically for the example programs in this book and are not
particularly robust or sophisticated. If you use them in your own programs you should be careful to
draw all shapes entirely within the confines of the 80-by-25 character screen. If you use invalid
coordinates, their behavior is undefined. Table E.1 lists these functions.

Table E.1 Functions for Console Graphics Lite
Function Name Purpose
init_graphics() Initializes graphics system
set_color() Sets background and foreground colors
set_cursor_pos() Puts cursor at specific row and column
clear_screen() Clears entire console screen
wait(n) Pauses program for n milliseconds
clear_line() Clears entire line
draw_rectangle() Specify top, left, bottom, right
draw_circle() Specify center (x, y) and radius
draw_line() Specify end points (x1, y1) and (x2, y2)
draw_pyramid() Specify top (x, y) and height
set_fill_style() Specifies fill character

You must call init_graphics() before you use any other graphics functions. This function sets the fill
character, and in the Microsoft version it also initializes other essential parts of the console graphics
system.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The set_color() function can use either one or two arguments. The first sets the foreground color of
characters displayed subsequently, and the second (if present) sets the background color of the
character. Usually you want to keep the background black.

set_color(cRED); //sets foreground to red
set_color(cWHITE, cBLUE); //foreground white, background blue

Table E.2 shows the color constants that can be used for either foreground or background.

Table E.2 Color Constants for set_color()
cBLACK
cDARK_BLUE
cDARK_GREEN
cDARK_CYAN
cDARK_RED
cDARK_MAGENTA
cBROWN
cLIGHT_GRAY
cDARK_GRAY
cBLUE
cGREEN
cCYAN
cRED
cMAGENTA
cYELLOW
cWHITE

The functions beginning with draw_ create shapes or lines using a special character called the fill
character. This character is set to a solid block by default, but can be modified using the
set_fill_style() function. Besides the solid block, you can use uppercase ‘X’ or ‘O’ characters, or one
of three shaded block characters. Table E.3 lists the fill constants:

Table E.3 Fill Constants for set_fill_style()
SOLID_FILL
X_FILL
O_FILL
LIGHT_FILL
MEDIUM_FILL
DARK_FILL

The wait() function takes an argument in milliseconds, and pauses for that amount of time.

wait(3000); //pauses for 3 seconds

The other functions are largely self-explanatory. Their operation can be seen in those examples that
use graphics.

Implementations of the Console Graphics Lite functions

These routines used for Console Graphics Lite aren’t object-oriented, and could have been written
in C instead of C++. Thus there’s no real reason to study them, unless you’re interested in a quick-

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

in C instead of C++. Thus there’s no real reason to study them, unless you’re interested in a quick-
and-dirty approach to graphics operations like drawing lines and circles. The idea was to create the
minimum routines that would do the job. You can examine the source files if you’re curious.

Microsoft Compilers

The Microsoft compilers no longer include their own console graphics routines as they did several
years ago. However, Windows itself provides a set of routines for simple console graphics
operations, such as positioning the cursor and changing the text color. For the Microsoft compilers,
the Console Graphics Lite functions access these built-in Windows console functions. (Thanks to
André LaMothe for suggesting this solution. His excellent game book is listed in Appendix H,
“Bibliography.”)

To use the console graphics functions you should use a project of type “Win32 Console
Application,” as described in Appendix C, “Microsoft Visual C++.”

The Windows console functions won’t work unless you initialize the console graphics system, so
calling the init_graphics() function is essential if you’re using the Microsoft compiler.

Borland Compilers

Borland C++ still has built-in graphics function, both for console-mode graphics and for pixel
graphics. If you use the BORLACON.CPP file, the Console Graphics Lite functions are translated into
Borland console functions, which they closely resemble.

You might wonder why you can’t use the Borland compiler to access the console functions built
into Windows. The problem is that to create a console-mode program in Borland C++, you must use
either an EasyWin or a DOS target, both of which are 16-bit systems. The Windows console
functions are 32-bit functions, and so can’t be used in Borland’s console mode.

When you use Borland C++, the iostream approach to I/O (cout <<) doesn’t produce different colors.
Thus some of the example programs, like HORSE.CPP, won’t show up in color in the Borland
version. If you want different colors, you’ll need to revert to console-mode functions like cputs() and
putch(), found in the CONIO.H file.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table F.1 Algorithms
Name Purpose Arguments
 Non-mutating Sequence Operations
for_each Applies ‘function’ to each

object.
first, last, function

find Returns iterator to first
object equal to ‘value’.

first, last, value

find_if Returns iterator to first
object for which ‘predicate’
is true.

first, last, predicate

adjacent_find Returns iterator to first
adjacent pair of objects
that are equal.

first, last

adjacent_find Returns iterator to first
adjacent pair of objects
that satisfy ‘predicate’.

first, last, predicate

count Adds to ‘n’ the number of
objects equal to ‘value’.

first, last, value, n

count_if Adds to ‘n’ the number of
objects satisfying
‘predicate’.

first, last, predicate, n

mismatch Returns first non-equal
pair of corresponding
objects intwo ranges.

first1, last1, first2

mismatch Returns first pair of
corresponding objects in
two ranges that don’t
satisfy ‘predicate’.

first1, last1, first2,
predicate

equal Returns true if
corresponding objects in
two ranges are all equal.

first1, last1, first2

equal Returns true if
corresponding objects in
two ranges all satisfy
‘predicate’.

first1, last1, first2,
predicate

search Checks if second range is
contained within the first.
Returns start of match, or
last1 if no match.

first1, last1, first2, last2

search Checks if second range is
contained within the first,
where equality is
determined by ‘predicate’.
Returns startof match, or
last1 if no match.

first1, last1, first2, last2,
predicate

 Mutating Sequence Operations
copy Copies objects from range

1 to range 2.
first1, last1, first2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

copy_backward Copies objects from range
1 to range 2, inserting
them backwards, from
last2 to first2.

first1, last1, first2

swap Interchanges two objects. a, b
iter_swap Interchanges objects

pointed to by two
iterators.

iter1, iter2

swap_ranges Interchanges
corresponding elements in
two ranges.

first1, last1, first2

transform Transforms objects in
range 1 into new objects
in range 2 by applying
‘operator’.

first1, last1, first2,
operator

transform Combines objects in range
1 and range 2 into new
objects in range 3 by
applying ‘operator’.

first1, last1, first2, first3,
operator

replace Replaces all objects equal
to ‘old’ with objects equal
to ‘new’.

first, last, old, new

replace_if Replaces all objects that
satisfy ‘predicate’ with
objects equal to ‘new’

first, last, predicate, new

replace_copy Copies from range 1 to
range 2, replacing all
objects equal to ‘old’ with
objects equal to ‘new’.

first1, last1, first2, old,
new

replace_copy_if Copies from range 1 to
range 2, replacing all
objects that satisfy
‘predicate’ with objects
equal to ‘new’.

first1, last1, first2,
predicate, new

fill Assigns ‘value’ to all
objects in range.

first, last, value

fill_n Assigns ‘value’ to all
objects from first to first+n

first,n, value

generate Fills range with values
generated by successive
calls to function ‘gen’.

first, last, gen

generate_n Fills from first to first+n
with values generated by
successive calls to
function ‘gen’.

first, n, gen

remove Removes from range any
objects equal to ‘value’.

first, last, value

remove_if Removes from range any first, last, predicate

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

remove_if Removes from range any
objects that satisfy
‘predicate’.

first, last, predicate

remove_copy Copies objects, excepting
those equal to ‘value’, from
range 1 to range 2.

first1, last1, first2, value

remove_copy_if Copies objects, excepting
those satisfying ‘pred’,
from range 1 to range 2.

first1, last1, first2, pred

unique Eliminates all but the first
object from any
consecutive sequence of
equal objects.

first, last

unique Eliminates all but the first
object from any
consecutive sequence of
objects satisfying
‘predicate’.

first, last, predicate

unique_copy Copies objects from range
1 to range 2, except only
the first object from any
consecutive sequence of
equal objects is copied.

first1, last1, first2

unique_copy Copies objects from range
1 to range 2, except only
the first object from any
consecutive sequence of
objects satisfying
‘predicate’ is copied.

first1, last1, first2,
predicate

reverse Reverses the sequence of
objects in range.

first, last

reverse_copy Copies range 1 to range 2,
reversing the sequence of
objects.

first1, last1, first2

rotate Rotates sequence of
objects around iterator
‘middle’.

first, last, middle

rotate_copy Copies objects from range
1 to range 2, rotating the
sequence around iterator
‘middle’.

first1, middle1, last1,
first2

random_shuffle Randomly shuffles objects
in range.

first, last

random_shuffle Randomly shuffles objects
in range, using random-
number function ‘rand’.

first, last, rand

partition Moves all objects that
satisfy ‘predicate’ so they
precede those that do not
satisfy it.

first, last, predicate

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

stable_partition Moves all objects that
satisfy ‘predicate’ so they
precede those that do not,
and also preserves relative
ordering in thetwo groups.

first, last, predicate

 Sorting and Related Operations
sort Sorts objects in range. first, last
sort Sorts elements in range,

using ‘comp’ as
comparison function

first, last, comp

stable_sort Sorts objects in range,
maintains order of equal
elements.

first, last

stable_sort Sorts elements in range,
using ‘comp’ as
comparison function,
maintains order of equal
elements.

first, last, comp

partial_sort Sorts all objects in range,
places as many sorted
values as will fit between
first and middle. Order of
objects between middle
and last is undefined.

first, middle, last

partial_sort Sorts all objects in range,
places as many sorted
values as will fit between
first and middle. Order of
objects between middle
and last is undefined.
Uses ‘predicate’ to define
ordering.

first, middle, last,
predicate

partial_sort_copy Same as partial_sort(first,
middle, last), but places
resulting sequence in
range 2.

first1, last1, first2, last2

partial_sort_copy Same as partial_sort(first,
middle, last, predicate),
but places resulting
sequence in range 2.

first1, last1, first2, last2,
comp

nth_element Places the nth object in
the position it would
occupy if the whole range
were sorted.

first, nth, last

nth_element Places the nth object in
the position it would
occupy if the whole range
were sorted using ‘comp’
for comparisons.

first, nth, last, comp

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

lower_bound Returns iterator to first
position into which ‘value’
could be inserted without
violating the ordering.

first, last, value

lower_bound Returns iterator to first
position into which ‘value’
could be inserted without
violating an ordering
based on ‘comp’.

first, last, value, comp

upper_bound Returns iterator to last
position into which
‘value’could be inserted
without violating the
ordering.

first, last, value

upper_bound Returns iterator to last
position into which ‘value’
could be inserted without
violating an ordering
based on ‘comp’.

first, last, value, comp

equal_range Returns a pair containing
the lower bound and
upper bound between
which ‘value’ could be
inserted without violating
the ordering.

first, last, value

equal_range Returns a pair containing
the lower bound and
upper bound between
which ‘value’could be
inserted without violating
an ordering based on
‘comp’.

first, last, value, comp

binary_search Returns true if ‘value’ is in
the range.

first, last, value

binary_search Returns true if ‘value’ is in
the range, where the
ordering is determined
by‘comp’.

first, last, value, comp

merge Merges sorted ranges 1
and 2 into sorted range 3.

first1, last1, first2, last2,
first3

merge Merges sorted ranges 1
and 2 into sorted range 3,
where the ordering is
determined by ‘comp’.

first1, last1, first2, last2,
first3, comp

inplace_merge Merges two consecutive
sorted ranges, first, middle
and middle, last into first,
last.

first, middle, last

inplace_merge Merges two consecutive first, middle, last, comp

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

inplace_merge Merges two consecutive
sorted ranges, first, middle
and middle, last into first-
last, where the ordering is
based on ‘comp’.

first, middle, last, comp

includes Returns true if every
object in the range first2,
last2 is also in the range
first1, last. (Sets and
multisets only.)

first1, last1, first2, last2

includes Returns true if every
object in the range
first2-last2 is also in the
range first1-last1, where
ordering is based on
‘comp’. (Sets and multisets
only.)

first1, last1, first2, last2,
comp

set_union Constructs sorted union of
elements of ranges 1 and
2. (Sets and multisets
only.)

first1, last1, first2, last2,
first3

set_union Constructs sorted union of
elements of ranges 1 and
2, where the ordering is
based on ‘comp’. (Sets and
multisets only.)

first1, last1, first2, last2,
first3, comp

set_intersection Constructs sorted
intersection of elements of
ranges 1 and 2. (Sets and
multisets only.)

first1, last1, first2, last2,
first3

set_intersection Constructs sorted
intersection of elements of
ranges 1 and 2, where the
ordering is based on
‘comp’. (Sets and multisets
only.)

first1, last1, first2, last2,
first3, comp

set_difference Constructs sorted
difference of elements of
ranges 1 and 2. (Sets and
multisets only.)

first1, last1, first2, last2,
first3

set_difference Constructs sorted
difference of elements of
ranges 1 and 2, where the
ordering is based on
‘comp’. (Sets and multisets
only.)

first1, last1, first2, last2,
first3, comp

set_symmetric_ difference Constructs sorted
symmetric difference of

first1, last1, first2, last2,
first3

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

symmetric difference of
elements of ranges 1 and
2. (Sets and multisets
only.)

first3

set_ symmetric_
difference

Constructs sorted
difference of elements of
ranges 1 and where the
ordering is based on
‘comp’. (Sets and multisets
only.)

first1, last1, first2, last2,
first3, comp2,

push_heap Places value from last-1
into resulting heap in
range first, last.

first, last

push_heap Places value from last-1
into resulting heap in
range first, last, based on
ordering determined by
‘comp’.

first, last, comp

pop_heap Swaps the values in first
and last-1; makes range
first, last-1 into a heap.

first, last

pop_heap Swaps the values in first
and last-1; makes range
first, last-1 into a heap,
based on ordering
determined by ‘comp’.

first, last, comp

make_heap Constructs a heap out of
the range first, last.

first, last

make_heap Constructs a heap out of
the range first, last, based
on the ordering
determined by ‘comp’.

first, last, comp

sort_heap Sorts the elements in the
heap first, last.

first, last

sort_heap Sorts the elements in the
heap first, last, based on the
ordering determined by
‘comp’.

first, last, comp

min Returns the smaller of two
objects.

a, b

min Returns the smaller of two
objects, where the
ordering is determined by
‘comp’.

a, b, comp

max Returns the larger of two
objects.

a, b

max Returns the larger of two
objects, where the
ordering is determined by
‘comp’.

a, b, comp

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

max_element Returns an iterator to the
largest object in the range.

first, last

max_element Returns an iterator to the
largest object in the range,
with an ordering
determined by ‘comp’.

first, last, comp

min_element Returns an iterator to the
smallest object in the
range.

first, last

min_element Returns an iterator to the
smallest object in the
range, with an ordering
determined by ‘comp’.

first, last, comp

lexicographical_ compare Returns true of the
sequence in range 1
comes before the
sequence in range 2
alphabetically.

first1, last1, first2, last2

lexicographical_ compare Returns true of the
sequence in range 1
comes before the
sequence in range 2
alphabetically, based on
ordering determined by
‘comp’.

first1, last1, first2, last2,
comp

next_permutation Performs one permutation
on the sequence in the
range.

first, last

next_permutation Performs one permutation
on the sequence in the
range, where the ordering
is determined by ‘comp’.

first, last, comp

prev_permutation Performs one reverse
permutation on the
sequence in the range.

first, last

prev_permutation Performs one reverse
permutation on the
sequence in the range,
where the ordering is
determined by ‘comp’.

first, last, comp

 Generalized Numeric Operations
accumulate Sequentially applies init =

init + *iter to each object in
the range

first, last, init

accumulate Sequentially applies init =
op(init, *iter) to each object
in the range.

first, last, init, op

inner_product Sequentially applies
init=init+(*iter1)*(*iter2) to

first1, last1, first2, init

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

init=init+(*iter1)*(*iter2) to
corresponding values
from ranges 1 and 2.

inner_product Sequentially applies
init=op1 (init,op2
(*iter1,*iter2)) to
corresponding values
from ranges 1 and 2.

first1, last1, first2, init,
op1, op2

partial_sum Adds values from start of
range 1 to current iterator,
and places the sums in
corresponding iterator in
range 2. *iter2 = sum(*first1,
*(first1+1), *(first1+2),
..*iter1)

first1, last1, first2

partial_sum Sequentially applies ‘op’
to objects between ‘first1’
and current iterator in
range 1,and places results
incorresponding iterator in
range 2. answer = *first;
for(iter=first+1; iter != iter1;
iter++) op (answer, *iter);
*iter2 = answer;

first1, last1, first2, op

adjacent_ difference Subtracts adjacent objects
in range 1 and places
differences in range 2.
*iter2 = * (iter1+1) - *iter1;

first1, last1, first2

adjacent_ difference Sequentially applies ‘op’
to adjacent objects in
range 1 and places results
in range 2. *iter2 = op(*
(iter1+1),*iter1);

first1, last1, first2, op

Member Functions

The same names are used for member functions that have similar purposes in the different
containers. However, no container class includes all the available member functions. Table F.2 is
intended to show which member functions are available for each container. Explanations of the
functions are not given, either because they are more-or-less self evident, or because they are

explained in the text.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

APPENDIX F
DEBUGGING
This appendix contains charts showing the algorithms and container member functions available in
the Standard Template Library (STL). This information is based on The Standard Template Library
by Alexander Stepanov and Ming Lee (1995), but we have extensively condensed and revised it,
taking many liberties with their original formulation in the interest of quick understanding.

Algorithms

Table F.1 shows the algorithms available in the STL. The descriptions in this table offer a quick and
condensed explanation of what the algorithms do; they are not intended to be serious mathematical
definitions. For more information, including the exact data types to use for arguments and return
values, consult one of the books listed in Appendix H, “Bibliography.”

The first column gives the function name, the second explains the purpose of the algorithm, and the
third specifies the arguments. Return values are not systematically specified. Some are mentioned
in the Purpose column and many are either obvious or not vital to using the algorithm.

In the arguments column, the names first, last, first1, last1, first2, last2, first3, and middle represent
iterators to specific places in a container. Names with numbers (like first1) are used to distinguish
multiple containers. The names first1, last1 delimits range 1, and first2, last2 delimits range 2. The
arguments function, predicate, op, and comp are function objects. The arguments value, old, new, a, b, and
init are values of the objects stored in a container. These values are ordered or compared based on
the < or == operators or the comp function object. The argument n is an integer.

In the Purpose column, moveable iterators are indicated by iter, iter1, and iter2. When iter1 and iter2
are used together, they are assumed to move together step-by-step through their respective
containers (or possibly two different ranges in the same container).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

APPENDIX G
ANSWERS TO QUESTIONS AND EXERCISES

Chapter 1

Answers to Questions

 1. procedural, object-oriented
 2. b
 3. data, act on that data
 4. a
 5. data hiding
 6. a, d
 7. objects
 8. False; the organizational principles are different.
 9. encapsulation
 10. d
 11. False; most lines of code are the same in C and C++.
 12. polymorphism
 13. d
 14. b

Chapter 2

Answers to Questions

 1. b, c
 2. parentheses
 3. braces { }
 4. It’s the first function executed when the program starts
 5. statement
 6.

 // this is a comment
 /* this is a comment */

 7. a, d

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 8. a. 4
 b. 10
 c. 4
 d. 4
 9. False
 10. a. integer constant
 b. character constant
 c. floating-point constant
 d. variable name or identifier
 e. function name
 11. a. cout << ‘x’;
 b. cout << “Jim”;
 c. cout << 509;
 12. False; they’re not equal until the statement is executed.
 13. cout << setw(10) << george;
 14. IOSTREAM
 15. cin >> temp;
 16. IOMANIP
 17. string constants, preprocessor directives
 18. true
 19. 2
 20. assignment (=) and arithmetic (like + and *)
 21.

 temp += 23;
 temp = temp + 23;

 22. 1
 23. 2020
 24. to provide declarations and other data for library functions, overloaded operators, and
objects
 25. library

Solutions to Exercises

 1.

 // ex2_1.cpp
 // converts gallons to cubic feet
 #include <iostream>
 using namespace std;

 int main()
 {
 float gallons, cufeet;

 cout << “\nEnter quantity in gallons: “;
 cin >> gallons;
 cufeet = gallons / 7.481;
 cout << “Equivalent in cublic feet is “ << cufeet << endl;
 return 0;
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 2.

 // ex2_2.cpp
 // generates table
 #include <iostream>
 #include <iomanip>
 using namespace std;

 int main()
 {
 cout << 1990 << setw(8) << 135 << endl
 << 1991 << setw(8) << 7290 << endl
 << 1992 << setw(8) << 11300 << endl
 << 1993 << setw(8) << 16200 << endl;
 return 0;
 }

 3.

 // ex2_3.cpp
 // exercises arithmetic assignment and decrement
 #include <iostream>
 using namespace std;

 int main()
 {
 int var = 10;

 cout << var << endl; // var is 10
 var *= 2; // var becomes 20
 cout << var-- << endl; // displays var, then decrements it
 cout << var << endl; // var is 19
 return 0;
 }

Chapter 3

Answers to Questions

 1. b, c
 2. george != sally
 3. –1 is true; only 0 is false.
 4. The initialize expression initializes the loop variable, the test expression tests the loop
variable, and the increment expression changes the loop variable.
 5. c, d
 6. True
 7.

 for(int j=100; j<=110; j++)
 cout << endl << j;

 8. braces (curly brackets)
 9. c
 10.

 int j = 100;
 while(j <= 110)
 cout << endl << j++;

 11. False

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 12. At least once.
 13.

 int j = 100;
 do
 cout << endl << j++;
 while(j <= 110);

 14.

 if(age > 21)
 cout << “Yes”;

 15. d
 16.

 if(age > 21)
 cout << “Yes”;
 else
 cout << “No”;

 17. a, c
 18. ‘\r’
 19. preceding, surrounded by braces
 20. reformatting
 21.

 switch(ch)
 {
 case ‘y’:
 cout << “Yes”;
 break;
 case ‘n’:
 cout << “No”;
 break;
 default:
 cout << “Unknown response”;
 }

 22. ticket = (speed > 55) ? 1 : 0;
 23. d
 24. limit == 55 && speed > 55
 25. unary, arithmetic, relational, logical, conditional, assignment
 26. d
 27. the top of the loop
 28. b

Solutions to Exercises

 1.

 // ex3_1.cpp
 // displays multiples of a number
 #include <iostream>
 #include <iomanip> //for setw()
 using namespace std;

 int main()
 {
 unsigned long n; //number

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 unsigned long n; //number

 cout << “\nEnter a number: “;
 cin >> n; //get number
 for(int j=1; j<=200; j++) //loop from 1 to 200
 {
 cout << setw(5) << j*n << “ “; //print multiple of n
 if(j%10 == 0) //every 10 numbers,
 cout << endl; //start new line
 }
 return 0;
 }

 2.

 // ex3_2.cpp
 // converts fahrenheit to centigrad, or
 // centigrad to fahrenheit
 #include <iostream>
 using namespace std;

 int main()
 {
 int response;
 double temper;

 cout << “\nType 1 to convert fahrenheit to celsius,”
 << “\n 2 to convert celsius to fahrenheit: “;
 cin >> response;
 if(response == 1)
 {
 cout << “Enter temperature in fahrenheit: “;
 cin >> temper;
 cout << “In celsius that’s “ << 5.0/9.0*(temper-32.0);
 }
 else
 {
 cout << “Enter temperature in celsius: “;
 cin >> temper;
 cout << “In fahrenheit that’s “ << 9.0/5.0*temper + 32.0;
 }
 cout << endl;
 return 0;
 }

 3.

 // ex3_3.cpp
 // makes a number out of digits
 #include <iostream>
 using namespace std;
 #include <conio.h> //for getche()

 int main()
 {
 char ch;
 unsigned long total = 0; //this holds the number

 cout << “\nEnter a number: “;
 while((ch=getche()) != ‘\r’) //quit on Enter
 total = total*10 + ch-’0’; //add digit to total*10
 cout << “\nNumber is: “ << total << endl;
 return 0;
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 4.

 // ex3_4.cpp
 // models four-function calculator
 #include <iostream>
 using namespace std;

 int main()
 {
 double n1, n2, ans;
 char oper, ch;

 do {
 cout << “\nEnter first number, operator, second number: “;
 cin >> n1 >> oper >> n2;
 switch(oper)
 {
 case ‘+’: ans = n1 + n2; break;
 case ‘-’: ans = n1 - n2; break;
 case ‘*’: ans = n1 * n2; break;
 case ‘/’: ans = n1 / n2; break;
 default: ans = 0;
 }
 cout << “Answer = “ << ans;
 cout << “\nDo another (Enter ‘y’ or ‘n’)? “;
 cin >> ch;
 } while(ch != ‘n’);
 return 0;
 }

Chapter 4

Answers to Questions

 1. b, d
 2. True
 3. semicolon
 4.

 struct time
 {
 int hrs;
 int mins;
 int secs;
 };

 5. False; only a variable definition creates space in memory.
 6. c
 7. time2.hrs = 11;
 8. 18 in 16-bit systems (3 structures times 3 integers times 2 bytes), or 36 in 32-bit systems
 9. time time1 = { 11, 10, 59 };
 10. True
 11. temp = fido.dogs.paw;
 12. c
 13. enum players { B1, B2, SS, B3, RF, CF, LF, P, C };
 14.

 players joe, tom;
 joe = LF;
 tom = P;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 tom = P;

 15. a. No
 b. Yes
 c. No
 d. Yes
 16. 0, 1, 2
 17. enum speeds { obsolete=78, single=45, album=33 };
 18. Because false should be represented by 0.

Solutions to Exercises

 1.

 // ex4_1.cpp
 // uses structure to store phone number
 #include <iostream>
 using namespace std;
 //
 struct phone
 {
 int area; //area code (3 digits)
 int exchange; //exchange (3 digits)
 int number; //number (4 digits)
 };
 //
 int main()
 {
 phone ph1 = { 212, 767, 8900 }; //initialize phone number
 phone ph2; //define phone number
 // get phone no from user
 cout << “\nEnter your area code, exchange, and number”;
 cout << “\n(Don’t use leading zeros): “;
 cin >> ph2.area >> ph2.exchange >> ph2.number;

 cout << “\nMy number is “ //display numbers
 << ‘(‘ << ph1.area << “) “
 << ph1.exchange << ‘-’ << ph1.number;

 cout << “\nYour number is “
 << ‘(‘ << ph2.area << “) “
 << ph2.exchange << ‘-’ << ph2.number << endl;
 return 0;
 }

 2.

 // ex4_2.cpp
 // structure models point on the plane
 #include <iostream>
 using namespace std;
 //
 struct point
 {
 int xCo; //X coordinate
 int yCo; //Y coordinate
 };
 //
 int main()
 {
 point p1, p2, p3; //define 3 points

 cout << “\nEnter coordinates for p1: “; //get 2 points
 cin >> p1.xCo >> p1.yCo; //from user

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 cin >> p1.xCo >> p1.yCo; //from user
 cout << “Enter coordinates for p2: “;
 cin >> p2.xCo >> p2.yCo;

 p3.xCo = p1.xCo + p2.xCo; //find sum of
 p3.yCo = p1.yCo + p2.yCo; //p1 and p2

 cout << “Coordinates of p1+p2 are: “ //display the sum
 << p3.xCo << “, “ << p3.yCo << endl;
 return 0;
 }

 3.

 // ex4_3.cpp
 // uses structure to model volume of room
 #include <iostream>
 using namespace std;
 //
 struct Distance
 {
 int feet;
 float inches;
 };
 //
 struct Volume
 {
 Distance length;
 Distance width;
 Distance height;
 };
 //
 int main()
 {
 float l, w, h;
 Volume room1 = { { 16, 3.5 }, { 12, 6.25 }, { 8, 1.75 } };

 l = room1.length.feet + room1.length.inches/12.0;
 w = room1.width.feet + room1.width.inches /12.0;
 h = room1.height.feet + room1.height.inches/12.0;

 cout << “Volume = “ << l*w*h << “ cubic feet\n”;
 return 0;
 }

Chapter 5

Answers to Questions

 1. d (half credit for b)
 2. definition
 3.

 void foo()
 {
 cout << “foo”;
 }

 4. declaration, prototype
 5. body
 6. call
 7. declarator
 8. c

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 9. False
 10. To clarify the purpose of the arguments.
 11. a, b, c
 12. Empty parentheses mean the function takes no arguments.
 13. one
 14. True
 15. At the beginning of the declaration and declarator.
 16. void
 17.

 main()
 {
 int times2(int); // prototype
 int alpha = times2(37); // function call
 }

 18. d
 19. To modify the original argument (or to avoid copying a large argument).
 20. a, c
 21.

 int bar(char);
 int bar(char, char);

 22. faster, more
 23. inline float foobar(float fvar)
 24. a, b
 25. char blyth(int, float=3.14159);
 26. visibility, lifetime
 27. Those functions defined following the variable definition.
 28. The function in which it is defined.
 29. b, d
 30. On the left side of the equal sign.

Solutions to Exercises

 1.

 // ex5_1.cpp
 // function finds area of circle
 #include <iostream>
 using namespace std;
 float circarea(float radius);

 int main()
 {
 double rad;
 cout << “\nEnter radius of circle: “;
 cin >> rad;
 cout << “Area is “ << circarea(rad) << endl;
 return 0;
 }
 //--
 float circarea(float r)
 {
 const float PI = 3.14159F;
 return r * r * PI;
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 2.

 // ex5_2.cpp
 // function raises number to a power
 #include <iostream>
 using namespace std;
 double power(double n, int p=2); //p has default value 2

 int main()
 {
 double number, answer;
 int pow;
 char yeserno;

 cout << “\nEnter number: “; //get number
 cin >> number;
 cout << “Want to enter a power (y/n)? “;
 cin >> yeserno;
 if(yeserno == ‘y’) //user wants a non-2 power?
 {
 cout << “Enter power: “;
 cin >> pow;
 answer = power(number, pow); //raise number to pow
 }
 else
 answer = power(number); //square the number
 cout << “Answer is “ << answer << endl;
 return 0;
 }
 //--
 // power()
 // returns number n raised to a power p
 double power(double n, int p)
 {
 double result = 1.0; //start with 1
 for(int j=0; j<p; j++) //multiply by n
 result *= n; //p times
 return result;
 }

 3.

 // ex5_3.cpp
 // function sets smaller of two numbers to 0
 #include <iostream>
 using namespace std;

 int main()
 {
 void zeroSmaller(int&, int&);
 int a=4, b=7, c=11, d=9;

 zeroSmaller(a, b);
 zeroSmaller(c, d);
 cout << “\na=” << a << “ b=” << b
 << “ c=” << c << “ d=” << d;
 return 0;
 }
 //--
 // zeroSmaller()
 // sets the smaller of two numbers to 0
 void zeroSmaller(int& first, int& second)
 {
 if(first < second)
 first = 0;
 else
 second = 0;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 second = 0;
 }

 4.

 // ex5_4.cpp
 // function returns larger of two distances
 #include <iostream>
 using namespace std;
 //
 struct Distance // English distance
 {
 int feet;
 float inches;
 };
 //
 Distance bigengl(Distance, Distance); //declarations
 void engldisp(Distance);

 int main()
 {
 Distance d1, d2, d3; //define three lengths
 //get length d1 from user
 cout << “\nEnter feet: “; cin >> d1.feet;
 cout << “Enter inches: “; cin >> d1.inches;
 //get length d2 from user
 cout << “\nEnter feet: “; cin >> d2.feet;
 cout << “Enter inches: “; cin >> d2.inches;

 d3 = bigengl(d1, d2); //d3 is larger of d1 and d2
 //display all lengths
 cout << “\nd1=”; engldisp(d1);
 cout << “\nd2=”; engldisp(d2);
 cout << “\nlargest is “; engldisp(d3); cout << endl;
 return 0;
 }
 //--
 // bigengl()
 // compares two structures of type Distance, returns the larger
 Distance bigengl(Distance dd1, Distance dd2)
 {
 if(dd1.feet > dd2.feet) //if feet are different, return
 return dd1; //the one with the largest feet
 if(dd1.feet < dd2.feet)
 return dd2;
 if(dd1.inches > dd2.inches) //if inches are different,
 return dd1; //return one with largest
 else //inches, or dd2 if equal
 return dd2;
 }
 //--
 // engldisp()
 // display structure of type Distance in feet and inches
 void engldisp(Distance dd)
 {
 cout << dd.feet << “\’-” << dd.inches << “\””;
 }

Chapter 6

Answers to Questions

 1. A class declaration describes how objects of a class will look when they are created.
 2. class, object
 3. c

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 4.

 class leverage
 {
 private:
 int crowbar;
 public:
 void pry();
 };

 5. False; both data and functions can be private or public.
 6. leverage lever1;
 7. d
 8. lever1.pry();
 9. inline (also private)
 10.

 int getcrow()
 { return crowbar; }

 11. created (defined)
 12. the class of which it is a member
 13.

 leverage()
 { crowbar = 0; }

 14. True
 15. a
 16. int getcrow();
 17.

 int leverage::getcrow()
 { return crowbar; }

 18. member functions and data are, by default, public in structures but private in classes
 19. three, one
 20. calling one of its member functions
 21. b, c, d
 22. False; trial and error may be necessary.
 23. d
 24. True
 25. void aFunc(const float jerry) const;

Solutions to Exercises

 1.

 // ex6_1.cpp
 // uses a class to model an integer data type
 #include <iostream>
 using namespace std;
 //
 class Int //(not the same as int)
 {
 private:
 int i;
 public:
 Int() //create an Int

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Int() //create an Int
 { i = 0; }
 Int(int ii) //create and initialize an Int
 { i = ii; }
 void add(Int i2, Int i3) //add two Ints
 { i = i2.i + i3.i; }
 void display() //display an Int
 { cout << i; }
 };
 //
 int main()
 {
 Int Int1(7); //create and initialize an Int
 Int Int2(11); //create and initialize an Int
 Int Int3; //create an Int

 Int3.add(Int1, Int2); //add two Ints
 cout << “\nInt3 = “; Int3.display(); //display result
 cout << endl;
 return 0;
 }

 2.

 // ex6_2.cpp
 // uses class to model toll booth
 #include <iostream>
 using namespace std;
 #include <conio.h>

 const char ESC = 27; //escape key ASCII code
 const double TOLL = 0.5; //toll is 50 cents
 //
 class tollBooth
 {
 private:
 unsigned int totalCars; //total cars passed today
 double totalCash; //total money collected today
 public: //constructor
 tollBooth() : totalCars(0), totalCash(0.0)
 { }
 void payingCar() //a car paid
 { totalCars++; totalCash += TOLL; }
 void nopayCar() //a car didn’t pay
 { totalCars++; }
 void display() const //display totals
 { cout << “\nCars=” << totalCars
 << “, cash=” << totalCash
 << endl; }
 };
 //
 int main()
 {
 tollBooth booth1; //create a toll booth
 char ch;

 cout << “\nPress 0 for each non-paying car,”
 << “\n 1 for each paying car,”
 << “\n Esc to exit the program.\n”;
 do {
 ch = getche(); //get character
 if(ch == ‘0’) //if it’s 0, car didn’t pay
 booth1.nopayCar();
 if(ch == ‘1’) //if it’s 1, car paid
 booth1.payingCar();
 } while(ch != ESC); //exit loop on Esc key
 booth1.display(); //display totals

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 booth1.display(); //display totals
 return 0;
 }

 3.

 // ex6_3.cpp
 // uses class to model a time data type
 #include <iostream>
 using namespace std;
 //
 class time
 {
 private:
 int hrs, mins, secs;
 public:
 time() : hrs(0), mins(0), secs(0) //no-arg constructor
 { }
 //3-arg constructor
 time(int h, int m, int s) : hrs(h), mins(m), secs(s)
 { }

 void display() const //format 11:59:59
 { cout << hrs << “:” << mins << “:” << secs; }

 void add_time(time t1, time t2) //add two times
 {
 secs = t1.secs + t2.secs; //add seconds
 if(secs > 59) //if overflow,
 { secs -= 60; mins++; } // carry a minute
 mins += t1.mins + t2.mins; //add minutes
 if(mins > 59) //if overflow,
 { mins -= 60; hrs++; } // carry an hour
 hrs += t1.hrs + t2.hrs; //add hours
 }
 };
 //
 int main()
 {
 const time time1(5, 59, 59); //creates and initialze
 const time time2(4, 30, 30); // two times
 time time3; //create another time

 time3.add_time(time1, time2); //add two times
 cout << “time3 = “; time3.display(); //display result
 cout << endl;
 return 0;
 }

Chapter 7

Answers to Questions

 1. d
 2. same
 3. double doubleArray[100];
 4. 0, 9
 5. cout << doubleArray[j];
 6. c
 7. int coins[] = { 1, 5, 10, 25, 50, 100 };
 8. d
 9. twoD[2][4]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 10. True
 11. float flarr[3][3] = { {52,27,83}, {94,73,49}, {3,6,1} };
 12. memory address
 13. a, d
 14. an array with 1000 elements of structure or class employee
 15. emplist[16].salary
 16. d
 17. bird manybirds[50];
 18. False
 19. manybirds[26].cheep();
 20. array, char
 21. char city[21] (An extra byte is needed for the null character.)
 22. char dextrose[] = “C6H12O6-H2O”;
 23. True
 24. d
 25. strcpy(blank, name);
 26.

 class dog
 {
 private:
 char breed[80];
 int age;
 };

 27. False
 28. b, c
 29. int n = s1.find(“cat”);
 30. s1.insert(12, “cat”);

Solutions to Exercises

 1.

 // ex7_1.cpp
 // reverses a C-string
 #include <iostream>
 #include <cstring> //for strlen()
 using namespace std;

 int main()
 {
 void reversit(char[]); //prototype
 const int MAX = 80; //array size
 char str[MAX]; //string

 cout << “\nEnter a string: “; //get string from user
 cin.get(str, MAX);

 reversit(str); //reverse the string

 cout << “Reversed string is: “; //display it
 cout << str << endl;
 return 0;
 }
 //--
 //reversit()
 //function to reverse a string passed to it as an argument

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 //function to reverse a string passed to it as an argument
 void reversit(char s[])
 {
 int len = strlen(s); //find length of string
 for(int j = 0; j < len/2; j++) //swap each character
 { // in first half
 char temp = s[j]; // with character
 s[j] = s[len-j-1]; // in second half
 s[len-j-1] = temp;
 }
 }

 // reversit()
 // function to reverse a string passed to it as an argument
 void reversit(char s[])
 {
 int len = strlen(s); // find length of string
 for(int j = 0; j < len/2; j++) // swap each character
 { // in first half
 char temp = s[j]; // with character
 s[j] = s[len-j-1]; // in second half
 s[len-j-1] = temp;
 }
 }

 2.

 // ex7_2.cpp
 // employee object uses a string as data
 #include <iostream>
 #include <string>
 using namespace std;
 //
 class employee
 {
 private:
 string name;
 long number;
 public:
 void getdata() //get data from user
 {
 cout << “\nEnter name: “; cin >> name;
 cout << “Enter number: “; cin >> number;
 }
 void putdata() //display data
 {
 cout << “\n Name: “ << name;
 cout << “\n Number: “ << number;
 }
 };
 //
 int main()
 {
 employee emparr[100]; //an array of employees
 int n = 0; //how many employees
 char ch; //user response

 do { //get data from user
 cout << “\nEnter data for employee number “ << n+1;
 emparr[n++].getdata();
 cout << “Enter another (y/n)? “; cin >> ch;
 } while(ch != ‘n’);

 for(int j=0; j<n; j++) //display data in array
 {
 cout << “\nEmployee number “ << j+1;
 emparr[j].putdata();
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
 cout << endl;
 return 0;
 }

 3.

 // ex7_3.cpp
 // averages an array of Distance objects input by user
 #include <iostream>
 using namespace std;
 //
 class Distance // English Distance class
 {
 private:
 int feet;
 float inches;
 public:
 Distance() //constructor (no args)
 { feet = 0; inches = 0; }
 Distance(int ft, float in) //constructor (two args)
 { feet = ft; inches = in; }

 void getdist() //get length from user
 {
 cout << “\nEnter feet: “; cin >> feet;
 cout << “Enter inches: “; cin >> inches;
 }

 void showdist() //display distance
 { cout << feet << “\’-” << inches << ‘\”’; }

 void add_dist(Distance, Distance); //declarations
 void div_dist(Distance, int);
 };
 //--
 //add Distances d2 and d3
 void Distance::add_dist(Distance d2, Distance d3)
 {
 inches = d2.inches + d3.inches; //add the inches
 feet = 0; //(for possible carry)
 if(inches >= 12.0) //if total exceeds 12.0,
 { //then decrease inches
 inches -= 12.0; //by 12.0 and
 feet++; //increase feet
 } //by 1
 feet += d2.feet + d3.feet; //add the feet
 }
 //--
 //divide Distance by int
 void Distance::div_dist(Distance d2, int divisor)
 {
 float fltfeet = d2.feet + d2.inches/12.0; //convert to float
 fltfeet /= divisor; //do division
 feet = int(fltfeet); //get feet part
 inches = (fltfeet-feet) * 12.0; //get inches part
 }
 //
 int main()
 {
 Distance distarr[100]; //array of 100 Distances
 Distance total(0, 0.0), average; //other Distances
 int count = 0; //counts Distances input
 char ch; //user response character

 do {
 cout << “\nEnter a Distance”; //get Distances
 distarr[count++].getdist(); //from user, put

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 distarr[count++].getdist(); //from user, put
 cout << “\nDo another (y/n)? “; //in array
 cin >> ch;
 }while(ch != ‘n’);

 for(int j=0; j<count; j++) //add all Distances
 total.add_dist(total, distarr[j]); //to total
 average.div_dist(total, count); //divide by number

 cout << “\nThe average is: “; //display average
 average.showdist();
 cout << endl;
 return 0;
 }

Chapter 8

Answers to Questions

 1. a, c
 2. x3.subtract(x2, x1);
 3. x3 = x2 - x1;
 4. True
 5. void operator -- () { count--; }
 6. None.
 7. b, d
 8.

 void Distance::operator ++ ()
 {
 ++feet;
 }

 9.

 Distance Distance::operator ++ ()
 {
 int f = ++feet;
 float i = inches;
 return Distance(f, i);
 }

 10. It increments the variable prior to use, the same as a non-overloaded ++operator.
 11. c, e, b, a, d
 12. True
 13. b, c
 14.

 String String::operator ++ ()
 {
 int len = strlen(str);
 for(int j=0; j<len; j++)
 str[j] = toupper(str[j])
 return String(str);
 }

 15. d
 16. False if there is a conversion routine; true otherwise.
 17. b
 18. True

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 19. constructor
 20. True, but it will be hard for humans to understand.

Solutions to Exercises

 1.

 // ex8_1.cpp
 // overloaded ‘-’ operator subtracts two Distances
 #include <iostream>
 using namespace std;
 //
 class Distance //English Distance class
 {
 private:
 int feet;
 float inches;
 public: //constructor (no args)
 Distance() : feet(0), inches(0.0)
 { } //constructor (two args)
 Distance(int ft, float in) : feet(ft), inches(in)
 { }
 void getdist() //get length from user
 {
 cout << “\nEnter feet: “; cin >> feet;
 cout << “Enter inches: “; cin >> inches;
 }
 void showdist() //display distance
 { cout << feet << “\’-” << inches << ‘\”’; }

 Distance operator + (Distance); //add two distances
 Distance operator - (Distance); //subtract two distances
 };
 //--
 //add d2 to this distance
 Distance Distance::operator + (Distance d2) //return the sum
 {
 int f = feet + d2.feet; //add the feet
 float i = inches + d2.inches; //add the inches
 if(i >= 12.0) //if total exceeds 12.0,
 { //then decrease inches
 i -= 12.0; //by 12.0 and
 f++; //increase feet by 1
 } //return a temporary Distance
 return Distance(f,i); //initialized to sum
 }
 //--
 //subtract d2 from this dist
 Distance Distance::operator - (Distance d2) //return the diff
 {
 int f = feet - d2.feet; //subtract the feet
 float i = inches - d2.inches; //subtract the inches
 if(i < 0) //if inches less than 0,
 { //then increase inches
 i += 12.0; //by 12.0 and
 f--; //decrease feet by 1
 } //return a temporary Distance
 return Distance(f,i); //initialized to difference
 }
 //
 int main()
 {
 Distance dist1, dist3; //define distances
 dist1.getdist(); //get dist1 from user

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 dist1.getdist(); //get dist1 from user

 Distance dist2(3, 6.25); //define, initialize dist2

 dist3 = dist1 - dist2; //subtract

 //display all lengths
 cout << “\ndist1 = “; dist1.showdist();
 cout << “\ndist2 = “; dist2.showdist();
 cout << “\ndist3 = “; dist3.showdist();
 cout << endl;
 return 0;
 }

 2.

 // ex8_2.cpp
 // overloaded ‘+=’ operator concatenates strings
 #include <iostream>
 #include <cstring> //for strcpy(), strlen()
 using namespace std;
 #include <process.h> //for exit()
 //
 class String //user-defined string type
 {
 private:
 enum { SZ = 80 }; //size of String objects
 char str[SZ]; //holds a C-string
 public:
 String() //no-arg constructor
 { strcpy(str, “”); }
 String(char s[]) //1-arg constructor
 { strcpy(str, s); }
 void display() //display the String
 { cout << str; }
 String operator += (String ss) //add a String to this one
 { //result stays in this one
 if(strlen(str) + strlen(ss.str) >= SZ)
 { cout << “\nString overflow”; exit(1); }
 strcat(str, ss.str); //add the argument string
 return String(str); //return temp String
 }
 };
 //
 int main()
 {
 String s1 = “Merry Christmas! “; //uses 1-arg ctor
 String s2 = “Happy new year!”; //uses 1-arg ctor
 String s3; //uses no-arg ctor

 s3 = s1 += s2; //add s2 to s1, assign to s3

 cout << “\ns1=”; s1.display(); //display s1
 cout << “\ns2=”; s2.display(); //display s2
 cout << “\ns3=”; s3.display(); //display s3
 cout << endl;
 return 0;
 }

 3.

 // ex8_3.cpp
 // overloaded ‘+’ operator adds two times
 #include <iostream>
 using namespace std;
 //
 class time
 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {
 private:
 int hrs, mins, secs;
 public:
 time() : hrs(0), mins(0), secs(0) //no-arg constructor
 { } //3-arg constructor
 time(int h, int m, int s) : hrs(h), mins(m), secs(s)
 { }
 void display() //format 11:59:59
 { cout << hrs << “:” << mins << “:” << secs; }

 time operator + (time t2) //add two times
 {
 int s = secs + t2.secs; //add seconds
 int m = mins + t2.mins; //add minutes
 int h = hrs + t2.hrs; //add hours
 if(s > 59) //if secs overflow,
 { s -= 60; m++; } // carry a minute
 if(m > 59) //if mins overflow,
 { m -= 60; h++; } // carry an hour
 return time(h, m, s); //return temp value
 }
 };
 //
 int main()
 {
 time time1(5, 59, 59); //create and initialze
 time time2(4, 30, 30); // two times
 time time3; //create another time

 time3 = time1 + time2; //add two times
 cout << “\ntime3 = “; time3.display(); //display result
 cout << endl;
 return 0;
 }

 4.

 // ex8_4.cpp
 // overloaded arithmetic operators work with type Int
 #include <iostream>
 using namespace std;
 #include <process.h> //for exit()
 //
 class Int
 {
 private:
 int i;
 public:
 Int() : i(0) //no-arg constructor
 { }
 Int(int ii) : i(ii) //1-arg constructor
 { } // (int to Int)
 void putInt() //display Int
 { cout << i; }
 void getInt() //read Int from kbd
 { cin >> i; }
 operator int() //conversion operator
 { return i; } // (Int to int)
 Int operator + (Int i2) //addition
 { return checkit(long double(i)+long double(i2)); }
 Int operator - (Int i2) //subtraction
 { return checkit(long double(i)-long double(i2)); }
 Int operator * (Int i2) //multiplication
 { return checkit(long double(i)*long double(i2)); }
 Int operator / (Int i2) //division
 { return checkit(long double(i)/long double(i2)); }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 { return checkit(long double(i)/long double(i2)); }

 Int checkit(long double answer) //check results
 {
 if(answer > 2147483647.0L || answer < -2147483647.0L)
 { cout << “\nOverflow Error\n”; exit(1); }
 return Int(int(answer));
 }
 };
 //
 int main()
 {
 Int alpha = 20;
 Int beta = 7;
 Int delta, gamma;

 gamma = alpha + beta; //27
 cout << “\ngamma=”; gamma.putInt();
 gamma = alpha - beta; //13
 cout << “\ngamma=”; gamma.putInt();
 gamma = alpha * beta; //140
 cout << “\ngamma=”; gamma.putInt();
 gamma = alpha / beta; //2
 cout << “\ngamma=”; gamma.putInt();

 delta = 2147483647;
 gamma = delta + alpha; //overflow error
 delta = -2147483647;
 gamma = delta - alpha; //overflow error

 cout << endl;
 return 0;
 }

Chapter 9

 1. a, c
 2. derived
 3. b, c, d
 4. class Bosworth : public Alphonso
 5. False
 6. protected
 7. yes (assuming basefunc is not private)
 8. BosworthObj.alfunc();
 9. True
 10. the one in the derived class
 11. Bosworth() : Alphonso() { }
 12. c, d
 13. True
 14. Derv(int arg) : Base(arg)
 15. a
 16. True
 17. c
 18. class Tire : public Wheel, public Rubber
 19. Base::func();
 20. False

Solutions to Exercises

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 1.

 // ex9_1.cpp
 // publication class and derived classes
 #include <iostream>
 #include <string>
 using namespace std;
 //
 class publication // base class
 {
 private:
 string title;
 float price;
 public:
 void getdata()
 {
 cout << “\nEnter title: “; cin >> title;
 cout << “Enter price: “; cin >> price;
 }
 void putdata() const
 {
 cout << “\nTitle: “ << title;
 cout << “\nPrice: “ << price;
 }
 };
 //
 class book : private publication // derived class
 {
 private:
 int pages;
 public:
 void getdata()
 {
 publication::getdata();
 cout << “Enter number of pages: “; cin >> pages;
 }
 void putdata() const
 {
 publication::putdata();
 cout << “\nPages: “ << pages;
 }
 };
 //
 class tape : private publication // derived class
 {
 private:
 float time;
 public:
 void getdata()
 {
 publication::getdata();
 cout << “Enter playing time: “; cin >> time;
 }
 void putdata() const
 {
 publication::putdata();
 cout << “\nPlaying time: “ << time;
 }
 };
 //
 int main()
 {
 book book1; // define publications
 tape tape1;

 book1.getdata(); // get data for them
 tape1.getdata();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 tape1.getdata();

 book1.putdata(); // display their data
 tape1.putdata();
 cout << endl;
 return 0;
 }

 2.

 // ex9_2.cpp
 //inheritance from String class
 #include <iostream>
 #include <cstring> //for strcpy(), etc.
 using namespace std;
 //
 class String //base class
 {
 protected: //Note: can’t be private
 enum { SZ = 80 }; //size of all String objects
 char str[SZ]; //holds a C-string
 public:
 String() //constructor 0, no args
 { str[0] = ‘\0’; }
 String(char s[]) //constructor 1, one arg
 { strcpy(str, s); } // convert string to String
 void display() const //display the String
 { cout << str; }
 operator char*() //conversion function
 { return str; } //convert String to C-string
 };
 //
 class Pstring : public String //derived class
 {
 public:
 Pstring(char s[]); //constructor
 };
 //--
 Pstring::Pstring(char s[]) //constructor for Pstring
 {
 if(strlen(s) > SZ-1) //if too long,
 {
 for(int j=0; j<SZ-1; j++) //copy the first SZ-1
 str[j] = s[j]; //characters “by hand”
 str[j] = ‘\0’; //add the null character
 }
 else //not too long,
 String(s); //so construct normally
 }
 //
 int main()
 { //define String
 Pstring s1 = “This is a very long string which is probably “
 “no, certainly--going to exceed the limit set by SZ.”;
 cout << “\ns1=”; s1.display(); //display String

 Pstring s2 = “This is a short string.”; //define String
 cout << “\ns2=”; s2.display(); //display String
 cout << endl;
 return 0;
 }

 3.

 // ex9_3.cpp
 // multiple inheritance with publication class
 #include <iostream>
 #include <string>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 #include <string>
 using namespace std;
 //
 class publication
 {
 private:
 string title;
 float price;
 public:
 void getdata()
 {
 cout << “\nEnter title: “; cin >> title;
 cout << “ Enter price: “; cin >> price;
 }
 void putdata() const
 {
 cout << “\nTitle: “ << title;
 cout << “\n Price: “ << price;
 }
 };
 //
 class sales
 {
 private:
 enum { MONTHS = 3 };
 float salesArr[MONTHS];
 public:
 void getdata();
 void putdata() const;
 };
 //--
 void sales::getdata()
 {
 cout << “ Enter sales for 3 months\n”;
 for(int j=0; j<MONTHS; j++)
 {
 cout << “ Month “ << j+1 << “: “;
 cin >> salesArr[j];
 }
 }
 //--
 void sales::putdata() const
 {
 for(int j=0; j<MONTHS; j++)
 {
 cout << “\n Sales for month “ << j+1 << “: “;
 cout << salesArr[j];
 }
 }
 //
 class book : private publication, private sales
 {
 private:
 int pages;
 public:
 void getdata()
 {
 publication::getdata();
 cout << “ Enter number of pages: “; cin >> pages;
 sales::getdata();
 }
 void putdata() const
 {
 publication::putdata();
 cout << “\n Pages: “ << pages;
 sales::putdata();
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
 };
 //
 class tape : private publication, private sales
 {
 private:
 float time;
 public:
 void getdata()
 {
 publication::getdata();
 cout << “ Enter playing time: “; cin >> time;
 sales::getdata();
 }
 void putdata() const
 {
 publication::putdata();
 cout << “\n Playing time: “ << time;
 sales::putdata();
 }
 };
 //
 int main()
 {
 book book1; // define publications
 tape tape1;

 book1.getdata(); // get data for publications
 tape1.getdata();

 book1.putdata(); // display data for publications
 tape1.putdata();
 cout << endl;
 return 0;
 }

Chapter 10

Answers to Questions

 1. cout << &testvar;
 2. 4 bytes
 3. c
 4. &var, *var, var&, char*
 5. constant; variable
 6. float* ptrtofloat;
 7. name
 8. *testptr
 9. pointer to; contents of the variable pointed to by
 10. b, c, d
 11. No. The address &intvar must be placed in the pointer intptr before it can be accessed.
 12. any data type
 13. They both do the same thing.
 14.

 for(int j=0; j<77; j++)
 cout << endl << *(intarr+j);

 15. Because array names represent the address of the array, which is a constant and can’t be
changed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 16. reference; pointer
 17. a, d
 18. void func(char*);
 19.

 for(int j=0; j<80; j++)
 *s2++ = *s1++;

 20. b
 21. char* revstr(char*);
 22. char* numptrs[] = { “One”, “Two”, “Three” };
 23. a, c
 24. wasted
 25. memory that is no longer needed
 26. p->exclu();
 27. objarr[7].exclu();
 28. a, c
 29. float* arr[8];
 30. b

Solutions to Exercises

 1.

 // ex10_1.cpp
 // finds average of numbers typed by user
 #include <iostream>
 using namespace std;

 int main()
 {
 float flarr[100]; //array for numbers
 char ch; //user decision
 int num = 0; //counts numbers input
 do
 {
 cout << “Enter number: “; //get numbers from user
 cin >> *(flarr+num++); //until user answers ‘n’
 cout << “ Enter another (y/n)? “;
 cin >> ch;
 }
 while(ch != ‘n’);

 float total = 0.0; //total starts at 0
 for(int k=0; k<num; k++) //add numbers to total
 total += *(flarr+k);
 float average = total / num; //find and display average
 cout << “Average is “ << average << endl;
 return 0;
 }

 2.

 // ex10_2.cpp
 // member function converts String objects to upper case
 #include <iostream>
 #include <cstring> //for strcpy(), etc
 #include <cctype> //for toupper()
 using namespace std;
 //
 class String //user-defined string type

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 class String //user-defined string type
 {
 private:
 char* str; //pointer to string
 public:
 String(char* s) //constructor, one arg
 {
 int length = strlen(s); //length of string argument
 str = new char[length+1]; //get memory
 strcpy(str, s); //copy argument to it
 }
 ~String() //destructor
 { delete str; }
 void display() //display the String
 { cout << str; }
 void upit(); //uppercase the String
 };
 //--
 void String::upit() //uppercase each character
 {
 char* ptrch = str; //pointer to this string
 while(*ptrch) //until null,
 {
 *ptrch = toupper(*ptrch); //uppercase each character
 ptrch++; //move to next character
 }
 }
 //
 int main()
 {
 String s1 = “He who laughs last laughs best.”;

 cout << “\ns1=”; //display string
 s1.display();
 s1.upit(); //uppercase string
 cout << “\ns1=”; //display string
 s1.display();
 cout << endl;
 return 0;
 }

 3.

 // ex10_3.cpp
 // sort an array of pointers to strings
 #include <iostream>
 #include <cstring> //for strcmp(), etc.
 using namespace std;
 const int DAYS = 7; //number of pointers in array

 int main()
 {
 void bsort(char**, int); //prototype
 //array of pointers to char
 char* arrptrs[DAYS] = { “Sunday”, “Monday”, “Tuesday”,
 “Wednesday”, “Thursday”,
 “Friday”, “Saturday” };

 cout << “\nUnsorted:\n”;
 for(int j=0; j<DAYS; j++) //display unsorted strings
 cout << *(arrptrs+j) << endl;

 bsort(arrptrs, DAYS); //sort the strings

 cout << “\nSorted:\n”;
 for(j=0; j<DAYS; j++) //display sorted strings
 cout << *(arrptrs+j) << endl;
 return 0;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return 0;
 }
 //--
 void bsort(char** pp, int n) //sort pointers to strings
 {
 void order(char**, char**); //prototype
 int j, k; //indexes to array

 for(j=0; j<n-1; j++) //outer loop
 for(k=j+1; k<n; k++) //inner loop starts at outer
 order(pp+j, pp+k); //order the pointer contents
 }
 //--
 void order(char** pp1, char** pp2) //orders two pointers
 { //if string in 1st is
 if(strcmp(*pp1, *pp2) > 0) //larger than in 2nd,
 {
 char* tempptr = *pp1; //swap the pointers
 *pp1 = *pp2;
 *pp2 = tempptr;
 }
 }

 4.

 // ex10_4.cpp
 // linked list includes destructor
 #include <iostream>
 using namespace std;
 //
 struct link //one element of list
 {
 int data; //data item
 link* next; //pointer to next link
 };
 //
 class linklist //a list of links
 {
 private:
 link* first; //pointer to first link
 public:
 linklist() //no-argument constructor
 { first = NULL; } //no first link
 ~linklist(); //destructor
 void additem(int d); //add data item (one link)
 void display(); //display all links
 };
 //--
 void linklist::additem(int d) //add data item
 {
 link* newlink = new link; //make a new link
 newlink->data = d; //give it data
 newlink->next = first; //it points to next link
 first = newlink; //now first points to this
 }
 //--
 void linklist::display() //display all links
 {
 link* current = first; //set ptr to first link
 while(current != NULL) //quit on last link
 {
 cout << endl << current->data; //print data
 current = current->next; //move to next link
 }
 }
 //--
 linklist::~linklist() //destructor
 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {
 link* current = first; //set ptr to first link
 while(current != NULL) //quit on last link
 {
 link* temp = current; //save ptr to this link
 current = current->next; //get ptr to next link
 delete temp; //delete this link
 }
 }
 //
 int main()
 {
 linklist li; //make linked list

 li.additem(25); //add four items to list
 li.additem(36);
 li.additem(49);
 li.additem(64);

 li.display(); //display entire list
 cout << endl;
 return 0;
 }

Chapter 11

Answers to Questions

 1. d
 2. True
 3. base
 4. virtual void dang(int); or void virtual dang(int);
 5. late binding or dynamic binding
 6. derived
 7. virtual void aragorn()=0; or void virtual aragorn()=0;
 8. a, c
 9. dong* parr[10];
 10. c
 11. True
 12. c, d
 13. friend void harry(george);
 14. a, c, d
 15. friend class harry; or friend harry;
 16. c
 17. It performs a member-by-member copy.
 18. zeta& operator = (zeta&);
 19. a, b, d
 20. False; the compiler provides a default copy constructor.
 21. a, d
 22. Bertha(Bertha&);
 23. True, if there was a reason to do so.
 24. a, c
 25. True; trouble occurs if it’s returned by reference.
 26. They operate identically.
 27. a, b
 28. The object of which the function using it is a member.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 29. No; since this is a pointer, use this->da=37;.
 30. return *this;

Solutions to Exercises

 1.

 // ex11_1.cpp
 // publication class and derived classes
 #include <iostream>
 #include <string>
 using namespace std;
 //
 class publication
 {
 private:
 string title;
 float price;
 public:
 virtual void getdata()
 {
 cout << “\nEnter title: “; cin >> title;
 cout << “Enter price: “; cin >> price;
 }
 virtual void putdata()
 {
 cout << “\n\nTitle: “ << title;
 cout << “\nPrice: “ << price;
 }
 };
 //
 class book : public publication
 {
 private:
 int pages;
 public:
 void getdata()
 {
 publication::getdata();
 cout << “Enter number of pages: “; cin >> pages;
 }
 void putdata()
 {
 publication::putdata();
 cout << “\nPages: “ << pages;
 }
 };
 //
 class tape : public publication
 {
 private:
 float time;
 public:
 void getdata()
 {
 publication::getdata();
 cout << “Enter playing time: “; cin >> time;
 }
 void putdata()
 {
 publication::putdata();
 cout << “\nPlaying time: “ << time;
 }
 };

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 };
 //
 int main()
 {
 publication* pubarr[100]; //array of ptrs to pubs
 int n = 0; //number of pubs in array
 char choice; //user’s choice

 do {
 cout << “\nEnter data for book or tape (b/t)? “;
 cin >> choice;
 if(choice==’b’) //make book object
 pubarr[n] = new book; // put in array
 else //make tape object
 pubarr[n] = new tape; // put in array
 pubarr[n++]->getdata(); //get data for object
 cout << “ Enter another (y/n)? “; //another pub?
 cin >> choice;
 }
 while(choice ==’y’); //cycle until not ‘y’

 for(int j=0; j<n; j++) //cycle thru all pubs
 pubarr[j]->putdata(); //print data for pub
 cout << endl;
 return 0;
 }

 2.

 // ex11_2.cpp
 // friend square() function for Distance
 #include <iostream>
 using namespace std;
 //
 class Distance //English Distance class
 {
 private:
 int feet;
 float inches;
 public:
 Distance() //constructor (no args)
 { feet = 0; inches = 0.0; }
 Distance(float fltfeet) //constructor (one arg)
 { //feet is integer part
 feet = static_cast<int>(fltfeet);
 inches = 12*(fltfeet-feet); //inches is what’s left
 } //constructor (two args)
 Distance(int ft, float in) : feet(ft), inches(in)
 { }
 void showdist() //display distance
 { cout << feet << “\’-” << inches << ‘\”’; }
 friend Distance operator * (Distance, Distance); //friend
 };
 //--
 //multiply d1 by d2
 Distance operator * (Distance d1, Distance d2)
 {
 float fltfeet1 = d1.feet + d1.inches/12; //convert to float
 float fltfeet2 = d2.feet + d2.inches/12;
 float multfeet = fltfeet1 * fltfeet2; //find the product
 return Distance(multfeet); //return temp Distance
 }
 //
 int main()
 {
 Distance dist1(3, 6.0); //make some distances
 Distance dist2(2, 3.0);
 Distance dist3;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Distance dist3;

 dist3 = dist1 * dist2; //multiplication

 dist3 = 10.0 * dist3; //mult and conversion
 //display all distances
 cout << “\ndist1 = “; dist1.showdist();
 cout << “\ndist2 = “; dist2.showdist();
 cout << “\ndist3 = “; dist3.showdist();
 cout << endl;
 return 0;
 }

 3.

 // ex11_3.cpp
 // creates array class
 // overloads assignment operator and copy constructor
 #include <iostream>
 using namespace std;
 //
 class Array
 {
 private:
 int* ptr; //pointer to “array” contents
 int size; //size of array
 public:
 Array() : ptr(0), size(0) //no-argument constructor
 { }
 Array(int s) : size(s) //one-argument constructor
 { ptr = new int[s]; }
 Array(Array&); //copy constructor
 ~Array() //destructor
 { delete[] ptr; }
 int& operator [] (int j) //overloaded subscript op
 { return *(ptr+j); }
 Array& operator = (Array&); //overloaded = operator
 };
 //--
 Array::Array(Array& a) //copy constructor
 {
 size = a.size; //new one is same size
 ptr = new int[size]; //get space for contents
 for(int j=0; j<size; j++) //copy contents to new one
 *(ptr+j) = *(a.ptr+j);
 }
 //--
 Array& Array::operator = (Array& a) //overloaded = operator
 {
 delete[] ptr; //delete old contents (if any)
 size = a.size; //make this object same size
 ptr = new int[a.size]; //get space for new contents
 for(int j=0; j<a.size; j++) //copy contents to this object
 *(ptr+j) = *(a.ptr+j);
 return *this; //return this object
 }
 //
 int main()
 {
 const int ASIZE = 10; //size of array
 Array arr1(ASIZE); //make an array

 for(int j=0; j<ASIZE; j++) //fill it with squares
 arr1[j] = j*j;

 Array arr2(arr1); //use the copy constructor
 cout << “\narr2: “;
 for(j=0; j<ASIZE; j++) //check that it worked

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 for(j=0; j<ASIZE; j++) //check that it worked
 cout << arr2[j] << “ “;

 Array arr3, arr4; //make two empty Array objects
 arr4 = arr3 = arr1; //use the assignment operator
 cout << “\narr3: “;
 for(j=0; j<ASIZE; j++) //check that it worked on arr3
 cout << arr3[j] << “ “;
 cout << “\narr4: “;
 for(j=0; j<ASIZE; j++) //check that it worked on arr4
 cout << arr4[j] << “ “;
 cout << endl;
 return 0;
 }

Chapter 12

Answers to Questions

 1. b, c
 2. ios
 3. ifstream, ofstream, and fstream
 4. ofstream salefile (“SALES.JUN”);
 5. True
 6. if(foobar)
 7. d
 8. fileOut.put(ch); (where ch is the character)
 9. c
 10. ifile.read((char*)buff, sizeof(buff));
 11. a, b, d
 12. the byte location at which the next read or write operation will take place
 13. False; file pointer can be a synonym for current position.
 14. f1.seekg(-13, ios::cur);
 15. b
 16. b, c
 17. skipws causes whitespace characters to be ignored on input so that cin will not assume the
input has terminated.
 18. int main(int argc, char *argv[])
 19. PRN, LPT1.
 20. istream& operator >> (istream&, Sample&)

Solutions to Exercises

 1.

 // ex12_1.cpp
 // write array
 #include <iostream>
 #include <fstream> // for file streams
 using namespace std;
 //
 class Distance // English Distance class
 {
 private:
 int feet;
 float inches;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 float inches;
 public:
 Distance() : feet(0), inches(0.0) // constructor (no args)
 { } // constructor (two args)
 Distance(int ft, float in) : feet(ft), inches(in)
 { }
 void getdist() // get length from user
 {
 cout << “\n Enter feet: “; cin >> feet;
 cout << “ Enter inches: “; cin >> inches;
 }
 void showdist() // display distance
 { cout << feet << “\’-” << inches << ‘\”’; }
 };
 //
 int main()
 {
 char ch;
 Distance dist; // create a Distance object
 fstream file; // create input/output file
 // open it for append
 file.open(“DIST.DAT”, ios::binary | ios::app |
 ios::out | ios::in);

 do // data from user to file
 {
 cout << “\nDistance”;
 dist.getdist(); // get a distance
 // write to file
 file.write((char*)&dist, sizeof(dist));
 cout << “Enter another distance (y/n)? “;
 cin >> ch;
 }
 while(ch==’y’); // quit on ‘n’

 file.seekg(0); // reset to start of file
 // read first distance
 file.read((char*)&dist, sizeof(dist));
 int count = 0;
 while(!file.eof()) // quit on EOF
 {
 cout << “\nDistance “ << ++count << “: “; // display dist
 dist.showdist();
 file.read((char*)&dist, sizeof(dist)); // read another
 } // distance
 cout << endl;
 return 0;
 }

 2.

 // ex12_2.cpp
 // imitates COPY command
 #include <fstream> //for file functions
 #include <iostream>
 using namespace std;
 #include <process.h> //for exit()

 int main(int argc, char* argv[])
 {
 if(argc != 3)
 { cerr << “\nFormat: ocopy srcfile destfile”; exit(-1); }
 char ch; //character to read

 ifstream infile; //create file for input
 infile.open(argv[1]); //open file
 if(!infile) //check for errors
 { cerr << “\nCan’t open “ << argv[1]; exit(-1); }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 { cerr << “\nCan’t open “ << argv[1]; exit(-1); }

 ofstream outfile; //create file for output
 outfile.open(argv[2]); //open file
 if(!outfile) //check for errors
 { cerr << “\nCan’t open “ << argv[2]; exit(-1); }

 while(infile) //until EOF
 {
 infile.get(ch); //read a character
 outfile.put(ch); //write the character
 }
 return 0;
 }

 3.

 // ex12_3.cpp
 // displays size of file
 #include <fstream> //for file functions
 #include <iostream>
 using namespace std;
 #include <process.h> //for exit()

 int main(int argc, char* argv[])
 {
 if(argc != 2)
 { cerr << “\nFormat: filename\n”; exit(-1); }
 ifstream infile; //create file for input
 infile.open(argv[1]); //open file
 if(!infile) //check for errors
 { cerr << “\nCan’t open “ << argv[1]; exit(-1); }
 infile.seekg(0, ios::end); //go to end of file
 // report byte number
 cout << “Size of “ << argv[1] << “ is “ << infile.tellg();
 cout << endl;
 return 0;
 }

Chapter 13

Answers to Questions

 1. a, b, c, d
 2. #include directive
 3. the compiler to compile the .CPP file and the linker to link the resulting .OBJ files
 4. a, b
 5. class library
 6. True
 7. c, d
 8. True
 9. False
 10. a, c, d

Chapter 14

Answers to Questions

 1. b and c

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 2. class
 3. False. Different functions are created at compile time.
 4.

 template<class T>
 T times2(T arg)
 {
 return arg*2;
 }

 5. b
 6. True
 7. instantiating
 8. c
 9. fixed data type, any data type
 10. store data
 11. c
 12. try, catch, and throw
 13. throw BoundsError();
 14. False. They must be part of a try block.
 15. d
 16.

 class X
 {
 public:
 int xnumber;
 char xname[MAX];
 X(int xd, char* xs)
 {
 xnumber = xd;
 strcpy(xname, xs);
 }
 };

 17. False
 18. a and d
 19. d
 20. True

Solutions to Exercises

 1.

 // ex14_1.cpp
 // template used for function that averages array
 #include <iostream>
 using namespace std;
 //
 template <class atype> //function template
 atype avg(atype* array, int size)
 {
 atype total = 0;
 for(int j=0; j<size; j++) //average the array
 total += array[j];
 return (atype)total/size;
 }
 //
 int intArray[] = {1, 3, 5, 9, 11, 13};
 long longArray[] = {1, 3, 5, 9, 11, 13};

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 long longArray[] = {1, 3, 5, 9, 11, 13};
 double doubleArray[] = {1.0, 3.0, 5.0, 9.0, 11.0, 13.0};
 char charArray[] = {1, 3, 5, 9, 11, 13};

 int main()
 {
 cout << “\navg(intArray)=” << avg(intArray, 6);
 cout << “\navg(longArray)=” << avg(longArray, 6);
 cout << “\navg(doubleArray)=” << avg(doubleArray, 6);
 cout << “\navg(charArray)=” << (int)avg(charArray, 6) << endl;
 return 0;
 }

 2.

 // ex14_2.cpp
 // implements queue class as a template
 #include <iostream>
 using namespace std;
 const int MAX = 3;
 //
 template <class Type>
 class Queue
 {
 private:
 Type qu[MAX]; //array of any type
 int head; //index of start of queue (remove item here)
 int tail; //index of end of queue (insert item here)
 public:
 Queue() //constructor
 { head = -1; tail = -1; }
 void put(Type var) //insert item at queue tail
 {
 qu[++tail] = var;
 if(tail >=MAX-1) //wrap around if past array end
 tail = -1;
 }
 Type get() //remove item from queue head
 {
 Type temp = qu[++head]; //store item
 if(head >= MAX-1) //wrap around if past array end
 head = -1;
 return temp; //return item
 }
 };
 //
 int main()
 {
 Queue<float> q1; //q1 is object of class Queue<float>

 q1.put(1111.1F); //put 3
 q1.put(2222.2F);
 q1.put(3333.3F);
 cout << “1: “ << q1.get() << endl; //get 2
 cout << “2: “ << q1.get() << endl;
 q1.put(4444.4F); //put 2
 q1.put(5555.5F);
 cout << “3: “ << q1.get() << endl; //get 1
 q1.put(6666.6F); //put 1
 cout << “4: “ << q1.get() << endl; //get 3
 cout << “5: “ << q1.get() << endl;
 cout << “6: “ << q1.get() << endl;

 Queue<long> q2; //q2 is object of class Queue<long>

 q2.put(123123123L); //put 3 longs, get 3 longs
 q2.put(234234234L);
 q2.put(345345345L);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 q2.put(345345345L);
 cout << “1: “ << q2.get() << endl;
 cout << “2: “ << q2.get() << endl;
 cout << “3: “ << q2.get() << endl;
 return 0;
 }

 3.

 // ex14_3.cpp
 // implements queue class as a template
 // uses exceptions to handle errors in queue
 #include <iostream>
 using namespace std;
 const int MAX = 3;
 //
 template <class Type>
 class Queue
 {
 private:
 Type qu[MAX]; //array of any type
 int head; //index of front of queue (remove old item)
 int tail; //index of back of queue (insert new item)
 int count; //number of items in queue
 public:
 class full { }; //exception classes
 class empty { };
 //--
 Queue() //constructor
 { head = -1; tail = -1; count = 0; }

 void put(Type var) //insert item at queue tail
 {
 if(count >= MAX) //if queue already full,
 throw full(); // throw exception
 qu[++tail] = var; //store item
 ++count;
 if(tail >=MAX-1) //wrap around if past array end
 tail = -1;
 }
 //--
 Type get() //remove item from queue head
 {
 if(count <= 0) //if queue empty,
 throw empty(); // throw exception
 Type temp = qu[++head]; //get item
 --count;
 if(head >= MAX-1) //wrap around if past array end
 head = -1;
 return temp; //return item
 }
 };
 //
 int main()
 {
 Queue<float> q1; //q1 is object of class Queue<float>
 float data; //data item obtained from user
 char choice = ‘p’; //’x’, ‘p’ or ‘g’

 do //do loop (enter ‘x’ to quit)
 {
 try //try block
 {
 cout << “\nEnter ‘x’ to exit, ‘p’ for put, ‘g’ for get: “;
 cin >> choice;
 if(choice==’p’)
 {
 cout << “Enter data value: “;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 cout << “Enter data value: “;
 cin >> data;
 q1.put(data);
 }
 if(choice==’g’)
 cout << “Data=” << q1.get() << endl;
 } //end try
 catch(Queue<float>::full)
 {
 cout << “Error: queue is full.” << endl;
 }
 catch(Queue<float>::empty)
 {
 cout << “Error: queue is empty.” << endl;
 }
 } while(choice != ‘x’);
 return 0;
 } //end main()

Chapter 15

Answers to Questions

 1. a, b, d
 2. vector, list, deque
 3. set, map
 4. a
 5. True
 6. c
 7. False
 8. iterator
 9. a function object
 10. c
 11. False (it simply returns its value)
 12. 3, 11
 13. duplicate
 14. b, c
 15. points to
 16. False
 17. bidirectional
 18. *iter++
 19. d
 20. c
 21. True
 22. iterators
 23. It’s a string used to separate the printed values.
 24. b
 25. the elements will be ordered
 26. True
 27. pairs (or associations)
 28. False
 29. a, d
 30. constructor

Solutions to Exercises

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 1.

 // ex15_1.cpp
 // type float stored in array, sorted by sort()
 #include <iostream>
 #include <algorithm>
 using namespace std;

 int main()
 {
 int j=0, k;
 char ch;
 float fpn, farr[100];

 do {
 cout << “Enter a floating point number: “;
 cin >> fpn;
 farr[j++] = fpn;
 cout << “Enter another (‘y’ or ‘n’): “;
 cin >> ch;
 } while(ch == ‘y’);
 sort(farr, farr+j);
 for(k=0; k<j; k++)
 cout << farr[k] << “, “;
 cout << endl;
 return 0;
 }

 2.

 // ex15_2.cpp
 // vector used with string objects, push_back(), and []
 #include <iostream>
 #include <string>
 #pragma warning (disable:4786) //Microsoft only
 #include <vector>
 #include <algorithm>
 using namespace std;

 int main()
 {
 vector<string> vectStrings;
 string word;
 char ch;

 do {
 cout << “Enter a word: “;
 cin >> word;
 vectStrings.push_back(word);
 cout << “Enter another (‘y’ or ‘n’): “;
 cin >> ch;
 } while(ch == ‘y’);
 sort(vectStrings.begin(), vectStrings.end());
 for(int k=0; k<vectStrings.size(); k++)
 cout << vectStrings[k] << endl;
 return 0;
 }

 3.

 // ex15_3.cpp
 // home-made reverse() algorithm reverses a list
 #include <iostream>
 #include <list>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 #include <list>
 using namespace std;

 int main()
 {
 int j;

 list<int> theList;
 list<int>::iterator iter1;
 list<int>::iterator iter2;

 for(j=2; j<16; j+=2) //fill list with 2, 4, 6, ...
 theList.push_back(j);

 cout << “Before reversal: “; //display list
 for(iter1=theList.begin(); iter1 != theList.end(); iter1++)
 cout << *iter1 << “ “;

 iter1 = theList.begin(); //set to first element
 iter2 = theList.end(); //set to one-past-last
 --iter2; //move to last

 while(iter1 != iter2)
 {
 swap(*iter1, *iter2); //swap front and back
 ++iter1; //increment front
 if(iter1==iter2) //if even number of elements
 break;
 --iter2; //decrement back
 }

 cout << “\nAfter reversal: “; //display list
 for(iter1=theList.begin(); iter1 != theList.end(); iter1++)
 cout << *iter1 << “ “;
 cout << endl;
 return 0;
 }

 4.

 // ex15_4.cpp
 // a multiset automatically sorts person objects stored by pointer
 #include <iostream>
 #include <set>
 #pragma warning (disable:4786)
 #include <string>
 using namespace std;

 class person
 {
 private:
 string lastName;
 string firstName;
 long phoneNumber;
 public:
 person() : // default constructor
 lastName(“blank”), firstName(“blank”), phoneNumber(0L)
 { }
 // 3-arg constructor
 person(string lana, string fina, long pho) :
 lastName(lana), firstName(fina), phoneNumber(pho)
 { }
 friend bool operator<(const person&, const person&);

 void display() const // display person’s data
 {
 cout << endl << lastName << “,\t” << firstName

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 cout << endl << lastName << “,\t” << firstName
 << “\t\tPhone: “ << phoneNumber;
 }
 long get_phone() const // return phone number
 { return phoneNumber; }
 }; //end class person
 //--
 // overloaded < for person class
 bool operator<(const person& p1, const person& p2)
 {
 if(p1.lastName == p2.lastName)
 return (p1.firstName < p2.firstName) ? true : false;
 return (p1.lastName < p2.lastName) ? true : false;
 }
 //--
 // function object to compare persons using pointers
 class comparePersons
 {
 public:
 bool operator() (const person* ptrP1,
 const person* ptrP2) const
 { return *ptrP1 < *ptrP2; }
 };
 //
 int main()
 { // a multiset of ptrs to persons
 multiset<person*, comparePersons> setPtrsPers;
 multiset<person*, comparePersons>::iterator iter;

 //make persons
 person* ptrP1 = new person(“KuangThu”, “Bruce”, 4157300);
 person* ptrP2 = new person(“McDonald”, “Stacey”, 3327563);
 person* ptrP3 = new person(“Deauville”, “William”, 8435150);
 person* ptrP4 = new person(“Wellington”, “John”, 9207404);
 person* ptrP5 = new person(“Bartoski”, “Peter”, 6946473);
 person* ptrP6 = new person(“McDonald”, “Amanda”, 8435150);
 person* ptrP7 = new person(“Fredericks”, “Roger”, 7049982);
 person* ptrP8 = new person(“McDonald”, “Stacey”, 7764987);

 setPtrsPers.insert(ptrP1); //put persons in multiset
 setPtrsPers.insert(ptrP2);
 setPtrsPers.insert(ptrP3);
 setPtrsPers.insert(ptrP4);
 setPtrsPers.insert(ptrP5);
 setPtrsPers.insert(ptrP6);
 setPtrsPers.insert(ptrP7);
 setPtrsPers.insert(ptrP8);
 //display multiset
 cout << “\n\nSet sorted when created:”;
 for(iter=setPtrsPers.begin(); iter != setPtrsPers.end(); iter++)
 (**iter).display();

 iter = setPtrsPers.begin(); //delete all persons
 while(iter != setPtrsPers.end())
 {
 delete *iter; //delete person
 setPtrsPers.erase(iter++); //remove pointer
 }
 cout << endl;
 return 0;
 } // end main()

Chapter 16

Answers to Questions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 1. False
 2. d
 3. class, responsibilities, collaborators
 4. True
 5. know, do
 6. b
 7. collaborator
 8. a, d
 9. False
 10. b, c
 11. True
 12. Usually false
 13. a, b, c, d
 14. human beings, program
 15. d
 16. a, b, c, d
 17. False
 18. a, d
 19. association
 20. True
 21. b
 22. strong, aggregation
 23. True
 24. a
 25. navigability
 26. objects, object
 27. rectangles
 28. c
 29. interfaces, implementations
 30. loosely, tight

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

APPENDIX H
BIBLIOGRAPHY
This appendix lists some books that might prove useful or interesting to students of C++.

Books on Advanced C++

After you’ve mastered the fundamentals of C++, the next books you should probably buy are
Effective C++, by Scott Meyers (Addison Wesley, 1997), and More Effective C++, also by Scott
Meyers (Addison Wesley, 1996). These books contain, respectively, “50 specific ways to improve
your programs and designs” and “35 new ways to improve your programs and designs.” Each of the
topics in these books is short but clearly presented. These books are a fund of important ideas and
are widely read by C++ programmers.

Thinking in C++ by Bruce Eckel (Prentice Hall, 1995) is probably a little too fast for beginners, but
it covers the fundamentals of the language and is excellent at explaining why things work the way
they do.

C++ FAQs (Frequently Asked Questions) by Marshall Cline and Greg Lomow (Addison Wesley,
1995) contains hundreds of topics about C++ in short question-and-answer format. It’s easy reading
and will contribute to your understanding of C++.

Defining Documents

Because the author is the language’s creator, the most definitive text on C++ is The C++
Programming Language, Third Edition, by Bjarne Stroustrup (Addison Wesley, 1997). Every
serious C++ programmer should have a copy of this book. It assumes a certain level of
sophistication, so it’s not for beginners. However, it’s clearly written, and once you’ve mastered the
fundamentals it’s an invaluable aid to the finer points of C++ usage.

You probably won’t need the actual defining document for Standard C++ until you’ve progressed
quite far in your study of C++. The Final Draft Information Standard (FDIS) for the C++
Programming Language, X3J16/97-14882, is available from the Information Technology Council
(NSTIC), Washington, DC.

The previous defining document on C++ was The Annotated C++ Reference Manual by Margaret

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The previous defining document on C++ was The Annotated C++ Reference Manual by Margaret
Ellis and Bjarne Stroustrup (Addison Wesley, 1990). This is fairly heavy going and filled with
arcane explanations. It’s also out of date.

Books on Specific Topics

C++ IOStreams Handbook, by Steve Teale (Addison Wesley, 1993) is a good explanation of the
details of streams and files in C++. There’s material here you won’t find anywhere else.

The Standard Template Library, by Alexander Stepanov and Meng Lee, (Hewlett-Packard, 1994) is
the defining document on the STL. You can learn all about the STL from it, but it doesn’t have
many examples, and there are books that are easier to read. One is STL Tutorial and Reference
Guide, by David R Musser and Atul Saini (Addison Wesley, 1996).

Although it’s nominally based on Java, Object-Oriented Design in Java by Stephen Gilbert and Bill
McCarty (Waite Group Press, 1998) is a comprehensive, easy-to-read introduction to program
design in any language.

C++ Distilled, by Ira Pohl (Addison Wesley, 1997) is a short summary of the important features of
C++. It’s great if you’ve forgotten a particular syntax and want to look it up in a hurry.

Books on the History of C++

The Design and Evolution of C++ by Bjarne Stroustrup (Addison Wesley, 1994) is a description by
its creator of how C++ came to be the way it is. It’s interesting in its own right, and knowing the
history can even help you understand the language.

Ruminations on C++, by Andrew Koenig (Addison Wesley, 1997) is a rather informal discussion of
various topics by one of the pioneers in C and C++. It’s easy to read and will give you fresh
insights.

Books on Other Topics

Windows Game Programming for Dummies” by AndrÈ LaMothe (IDG Books, 1998) is a
fascinating look at the details of game programming. AndrÈ’s book explains (among many other
things) how to use the Windows console graphics routines, which form the basis of Console
Graphics Lite routines discussed in Appendix E, “Console Graphics Lite,” of this book. If you have
any interest in writing game programs, buy this book.

The C Programming Language, by Brian Kernighan and Dennis Ritchie (Addison Wesley, 1978) is
the definitive book about C, the language on which C++ was based. It’s not a primer, but once you
know some C it’s the reference you’ll want.

Learning C++ Online

Finally, if you want to learn C++ in an interactive Web-based environment where your exams are
graded online and you can ask questions of online “mentors,” try C++ Interactive Course, by Robert
Lafore (Macmillan Computer Publishing, 1996).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

INDEX

Symbols
& address-of operator, 391-392
&& AND logical operator, 103-104
+ arithmetic operator, 52
= assignment operators, 478-479

arithmetic assignment operators, 53-54
chaining, 481
inheritance, 481
overloading, 479-481, 484-491
prohibiting copying, 485
self-assignment, 497-498

? conditional operator, 100-103, 107, 326
. dot operator, 326
>> extraction operator, 39-40, 515, 529-530

cascading, 39-40
overloading, 557-561

-- decrement operator, 56, 292
/ division operator, 52
== equal to relational operator, 69
++ increment operator, 54-56, 292-293

overloading, 292-293
postfix, 55-56
prefix, 55-56

<< insertion operator, 27, 46, 515

cascading, 46
overloading, 557-561

<= less than or equal to relational operator, 69
< less than relational operator, 69
* multiplication operator, 52

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

!= not equal to relational operator, 69
! NOT logical operator, 104, 106
|| OR logical operator, 104-105
% remainder operator, 52-53
:: scope resolution operator, 326, 349
[] subscript operator, 309-312
- subtraction operator, 52

A
abstract base classes, 356
abstract classes, 459
access specifiers

default, 361
private access specifier, 342-343, 361-362
protected access specifier, 342-344
public access specifier, 342-343, 362
tips for selecting, 362

access violation error message, 443
accessibility and inheritance, 341-345
accessing

array elements, 244

structures, 254
with pointers, 399-401

base class members, 341-345
characters in string objects, 281-282
data with iterators, 683-684
elements of arrays

structures, 254
with pointers, 399-401

member function data with this pointer, 493-494
members

of static functions, 477-478
of structures, 123-124

accumulate algorithm, 659, 824
adapters

containers, 658-659
iterators, 687

insert iterator, 687-690
raw storage iterator, 687
reverse iterator, 687-688

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

addition (+) operator, 52
address-of (&) operator, 391-392
addresses (memory), pointers to, 390

accessing variable pointed to, 395-397
address-of & operator, 391-392
constants, 394-395
variables, 392-393

adjacent difference algorithm, 824-825
adjacent find algorithm, 814
aggregates, declaring, 758-759
aggregation (classes), 744, 746-747
algorithms, 653

accumulate algorithm, 659, 824
adjacent difference algorithm, 824-825
adjacent find algorithm, 814
binary search algorithm, 820
containers, 680, 682-683
copy algorithm, 659, 815
copy backward algorithm, 815
count algorithm, 659, 662-663, 814
count if algorithm, 814
equal algorithm, 659, 814
equal range algorithm, 819
fill algorithm, 659, 816
fill n algorithm, 816
find algorithm, 659, 661-662, 814

header files, 662
ranges, 662

find if algorithm, 814
for each algorithm, 659, 667-668, 814
function objects, 665
generate algorithm, 816
generate n algorithm, 816
if algorithm, 666-667
includes algorithm, 820
inner product algorithm, 824
inplace merge algorithm, 820
iter swap algorithm, 659, 815
iterators, 681-682, 685-686, 827-829
lexicographical compare algorithm, 823
lower bound algorithm, 819
make heap algorithm, 822
max algorithm, 822
max element algorithm, 822-823
merge algorithm, 659, 664-665, 820

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

min algorithm, 822
min element algorithm, 823
mismatch algorithm, 814
next permutation algorithm, 823
nth element algorithm, 819
partial sort algorithm, 818
partial sort copy algorithm, 818
partial sum algorithm, 824
partition algorithm, 817
pop heap algorithm, 822
prev permutation algorithm, 823
push heap algorithm, 821-822
random shuffle algorithm, 817
remove algorithm, 816
remove copy algorithm, 816
remove copy if algorithm, 816
remove if algorithm, 816
replace algorithm, 815
replace copy algorithm, 815
replace copy if algorithm, 816
replace if algorithm, 815
reverse algorithm, 817
reverse copy algorithm, 817
rotate algorithm, 817
rotate copy algorithm, 817
search algorithm, 659, 663-664, 814-815
set difference algorithm, 821
set intersection algorithm, 821
set symmetric difference algorithm, 821
set union algorithm, 820-821
sort algorithm, 659, 663, 818
sort heap algorithm, 822
stable partition algorithm, 818
stable sort algorithm, 818
STL, 653-654, 659-669, 813-825
swap algorithm, 659, 815
swap ranges algorithm, 815
transform algorithm, 668-669, 815
unique algorithm, 816
unique copy algorithm, 817
upper bound algorithm, 819
user-written functions, 665-666

AND logical operator, 103-105
animation loops, 75
The Annotated C++ Reference Manual, 889
answers to questions

chapter 1, 831
chapter 2, 832-833
chapter 3, 834-836

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

chapter 4, 838-839
chapter 5, 841-842
chapter 6, 845-846
chapter 7, 849-850
chapter 8, 853-854
chapter 9, 859
chapter 10, 864-865
chapter 11, 869-870
chapter 12, 874-875
chapter 13, 877
chapter 14, 878-879
chapter 15, 882-883
chapter 16, 887-888

append() member function, 280
applications (console-mode)

Borland C++Builder, 797-805
Microsoft Visual C++, 791-796

arguments

exceptions, 642-645
functions, 24, 57

arrays, 251-253, 404-406
C-strings, 411-412
constants, 153-154, 187-188, 230
defaults, 178-179
function templates, 619-621
naming, 160
objects, 214-215
overloaded functions, 172-176
parameters, 154
passing, 152-160
passing by pointers, 403-406
passing by reference, 402
references, 166-172
structures, 155-160
values, 155-156
variables, 154-155

manipulators, 517-518
overloaded operators, 294

arithmetic assignment operators, 53-54, 307-308
arithmetic expressions, parsing, 434-438
arithmetic operators, 52

addition (+) operator, 52
division (/) operator, 52
multiplication (×) operator, 52

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

overloading, 299-303
precedence, 107
remainder (%) operator, 52-53
subtraction (-) operator, 52

arrays, 241, 655

bounds, 260
buffers, 265-266
C-strings, 270-272
class members, 255-258
data types, 241, 264-265
defining, 242-243, 248-249
elements, 243-244

accessing, 244, 249, 399-401
averaging, 244-245
sorting, 406-410

examples, 242, 261-264
functions

arguments, passing by pointers, 404-406
calling, 252
declarations, 252
definitions, 252-253
passing, 251

in other computer languages, 241
index, 244
index numbers, 241
initializing, 245-246, 250
memory management, 416
multidimensional arrays, 246-248

accessing elements, 249
defining, 248-249
formatting numbers, 249
initializing, 250

objects, 258-260

accessing, 260-261
bounds, 260
examples, 261-264

passing to functions, 251
pointers, 399-402

sorting array elements, 406-410
to objects, 423-425
to strings, 414-415

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

size, 242
structures, 253-255

accessing elements, 254
defining, 254
similarities, 241

ASCII character set, 35, 109-110
asm keyword, 787
assigning string objects, 276-277
Assignment operator invoked message, 480
assignment operators, 478-479

arithmetic assignment operators, 53-54
chaining, 481
inheritance, 481
overloading, 479-481, 484-491
prohibiting copying, 485
self-assignment, 497-498

assignment statements

integer variables, 33-34
structures, 126

associations of classes, 744-746
associative containers, 655-656, 693-694

keys, 656-657, 694
maps, 656-657, 694, 697-700
multimaps, 657, 694, 697-700
multisets, 657, 694-697
sets, 656-657, 694-697

associativity of operators, 406
at() member function, 281-282
atoi() library function, 525
attributes

classes, 744-745, 758
objects, 10-11

auto keyword, 180, 787
automatic variables, 180

initialization, 181
lifetime, 180
scope, 181
storage, 185
visibility, 181

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

averaging array elements, 244-245

B
back() member function, 671
bad alloc class, 646
badbit flag, 523
base classes, 17-18, 337-341

abstract base classes, 356
accessing members, 341-345
destructors, 465-466
instantiating objects of, 459
pure virtual functions, 459-460
virtual base classes, 466-468

BDEs (business domain experts), 722
begin() member function, 658
behavior of objects, 11
bidirectional iterators, 660, 678-680
binary I/O, 533-534
binary operators, 106

arithmetic assignment operators, 307-308
arithmetic operators, 299-303
comparison operators, 304-306
overloading, 299

arithmetic assignment operators, 307-308
arithmetic operators, 299-303
comparison operators, 304-306

binary search algorithm, 820
binding

dynamic binding, 458
early binding, 458
late binding, 458
static binding, 458

blanks in C-strings, 267-268
books about C++, 889-890
bool keyword, 787
bool variables, 43-44, 103
boolalpha flag, 516
Boole, George, 44
BORLACON.CPP, 807
Borland C++Builder, 797

building existing files, 800
closing projects, 801
Console Graphics Lite, 804

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

creating projects, 798-799
debugging programs, 804

breakpoints, 805
single stepping, 804
tracing into functions, 805
watching variables, 805

file extensions, 797
header files, 801

creating, 801
editing, 802
telling location of, 802

multiple source file projects, 802-803
opening projects, 801
precompiled header files, 801
running programs, 797-798, 800-801
saving projects, 799
screen elements, 798

Borland compilers, 23-24, 811
bounds of arrays, 260
braces in functions, 25
break keyword, 98, 787
break statement, 98, 107-109
bsort() function, 408-410
bubble sorts, 408-410
buffers

arrays, 265-266
C-strings, 265-266

bugs in pointers, 443
build process for multifile programs, 577
business domain experts, 722

C
C, 8

C++, 19-20
keywords, 787

The C Programming Language, 890
C++ and C, 19-20
C++ Distilled, 890
C++ FAQs, 889
C++ Interactive Course, 890
C++ IOStreams Handbook, 890
The C++ Programming Language, Third Edition, 889
C++Builder (Borland), 797

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C++Builder (Borland), 797

building existing files, 800
closing projects, 801
Console Graphics Lite, 804
creating projects, 798-799
debugging programs, 804

breakpoints, 805
single stepping, 804
tracing into functions, 805
watching variables, 805

file extensions, 797
header files, 801

creating, 801
editing, 802
telling location of, 802

multiple source file projects, 802-803
opening projects, 801
precompiled header files, 801
running programs, 797-798, 800-801
saving projects, 799
screen elements, 798

C-strings, 264-265

arrays, 270-272
blanks, 267-268
buffers, 265-266
class members, 272-273
comparing, 306
concatenating, 302
constants, 267
converting to string objects, 316-318
copying, 269-270
function arguments, 411-412
multiple lines, 268-269
pointers, 410-412

copying, 412-413
library functions, 413

user-defined strings, 273-275
variables, 265-266

calling functions, 148-150

member functions, 200-202
with array arguments, 252

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

capacity() member function

deques, 675
string class, 282

cascading operators

extraction (>>) operator, 39-40
insertion (<<) operator, 46

case keyword, 787
cast operators

dynamic cast operator, 498-501
reinterpret cast operator, 399, 535, 789
typeid operator, 498, 501-502

casts, 50-52
catch blocks, 634, 638, 640
catch keyword, 634, 638, 787
cerr, 522
ch = fill() member function, 518
chaining assignment operators, 481
char character variable, 35-36
char data type, 264-265
char keyword, 787
char strings, 530-532
character constants, 36-37
character I/O, 532-533
character variables

char character variable, 35-36
character constants, 36-37
switch statement, 99
wchar t character variable, 35-36

checking for errors in streams, 525-527
child, see derived classes
cin, 38-39, 522

get() member function, 267-268
overloaded extraction and insertion operators, 557-559

class diagrams, 721-722, 750-753
class keyword, 197, 475, 787
class libraries

exceptions, 647
implementations, 574-575
interfaces, 574
multifile programs, 573-575

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Class-Requirements-Collaborators (CRC) cards, 721-722

classes section, 728-730
collaborators section, 731
creating, 727-728
examples, 731-736, 739-741
notes, 736
responsibilities section, 729-731

Class-Requirements-Collaborators (CRC) modeling team, 725-727
classes, 15-16, 195

abstract classes, 459
arrays as class members, 255-258
attributes, 758
base classes, 17-18, 337-341

abstract base classes, 356
accessing members, 341-345
destructors, 465-466
instantiating objects of, 459
pure virtual functions, 459-460
virtual base classes, 466-468

benefits of, 231-232
C-strings as class members, 272-273
container class libraries, 653
containers, 376-380
data hiding, 197-198
data members, 198

initialization, 208
private, 197-198
public, 197-198
public versus private, 199-200
static, 224-228

declaring, 197, 199, 758
derived classes, 17-18, 337-341, 345-347, 351-352
dynamic type information, 498

dynamic cast operator, 498-501
typeid operator, 501-502

exception classes

bad alloc class, 646
xalloc class, 646

features of, 195-196
friend classes, 475

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

friend functions, 468-474
hierarchies, 352-357
inheritance, 16-18, 337-341

code reusability, 337
examples, 349-352
graphic shapes, 357-359
hierarchies, 352-357
kind of relationship, 376
levels of, 362-365
multiple inheritance, 365-376
private inheritance, 359-362
program development, 380-381
public inheritance, 359-362

istream iterator class, 692-693
key abstraction, 750
member functions, 198-199

calling, 200-202
const, 228-230
constructors, 206-210, 212-213
defining outside the classes, 213-214
destructors, 210-211
messages, 202
public versus private, 199-200
within class declarations, 199

members

arrays, 255-258
C-strings, 272-273

objects, 197

as function arguments, 214-215
benefits of, 231-232
const, 230-231
data types, 205-206
defining, 200
examples, 219-223
examples of, 202-204
initializing, 208, 216-217
memory, 224-225

OOD, 721

class diagrams, 721-722, 750-753
CRC cards, 721-722, 727-736, 739-741
CRC modeling team, 725-727
example program, 722-725
problem summary statements, 726-727

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

use cases, 721-722, 737-740, 742-743

ostream iterator class, 690-691
relationships, 744

aggregation, 744, 746-747
association, 744-746
attributes, 744-745
cohesion, 750
composition, 746-747
coupling, 750
generalization, 744, 749-750
has a relationships, 744
instance relationships, 744
multiplicity, 748
uses relationships, 744-746

reusability, 18
self-containing classes, 429
specifiers, 197
storage classes (variables), 179

automatic variables, 180-181
external variables, 182-183
static variables, 183-185
summary, 185

stream classes, 513

advantages, 513-514
copying, 521-522
fstream class, 528, 539
hierarchy, 514-515
ifstream class, 513, 528
ios class, 515-519
iostream class, 515
iostream withassign class, 515, 521-522
istream class, 515, 519, 521
istream withassign class, 515, 521-522
istrstream class, 561
ofstream class, 528
ostream class, 515, 521
ostream withassign class, 515, 521-522
ostrstream class, 561-562
predefined stream objects, 522
strstream class, 561

string class, 275, 282

accessing characters in string objects, 281-282
append() member function, 280
assigning objects, 276-277

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

at() member function, 281-282
capacity() member function, 282
compare() member function, 280-281
comparing objects, 280-281
concatenation, 302-303
converting to C-strings, 316-318
copy() member function, 282
defining objects, 276-277
editing objects, 279-280
erase() member function, 279-280
find() member function, 278
find first not of() member function, 279
find first of() member function, 278
find last not of() member function, 279
find last of() member function, 279
finding objects, 278-279
getline() member function, 277-278
input/output, 277-278
insert() member function, 280
length() member function, 282
max size() member function, 282
new operator, 419-420
replace() member function, 279-280
rfind() member function, 279
size() member function, 282
substr() member function, 281
swap() member function, 276

structures, 134
subclasses, see derived classes
superclasses, see base classes
syntax, 195-196
templates, 622-625

determining storage parameters, 633
example, 628-630
syntax, 625-628
user-defined data types, 630-632

clear line() function, 809
clear screen() function, 809
clear() function, 523
Cline, Marshall, 889
clog, 522
close() member function, 535
closing

files, 535
streams, 535

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

code

catch blocks, 634, 638, 640
reusability, 337
try blocks, 634, 638

cohesion of classes, 750
command-line arguments, 562-564
comments, 29

syntax, 30-31
uses of, 30

compare() member function, 280-281
comparing

string objects, 280-281
strings, 305-306, 433-434

comparison operators, overloading, 304-306
compilers, 23

assignment operators, 478-481
Borland compilers, 23-24, 811
Console Graphics Lite, 807
copy constructors, 479, 484
function templates, 618-619
graphics, 807

console graphics, 807, 811
pixel graphics, 807

Inprise compilers, 23-24
keywords, 787
Microsoft compilers, 23-24, 811
whitespace, 26-27

composition of classes, 746-747
concatenating strings

C-strings, 302
string class , 302-303

conditional operator, 100-103, 107, 326
console functions, 807-811
console graphics, 807

compilers, 807

Borland compilers, 811
Microsoft compilers, 811

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

inheritance, 357-359
routines, 808

Console Graphics Lite

C++Builder (Borland), 804
compilers, 807
functions, 807-811
inheritance, 357-359
passing structures to functions, 158-160
routines, 808
Visual C++, 794-795

console-mode applications

Borland C++Builder, 797

building existing files, 800
closing projects, 801
Console Graphics Lite, 804
creating projects, 798-799
debugging, 804-805
file extensions, 797
header files, 801-802
multiple source file projects, 802-803
opening projects, 801
precompiled header files, 801
running example programs in, 797-798
running programs, 800-801
saving projects, 799
screen elements, 798

Microsoft Visual C++, 791

building existing files, 792
Console Graphics Lite, 794-795
debugging, 795-796
multifile programs, 793-794
RTTI, 793
screen elements, 791
single-file programs, 792
writing files, 792-793

const, 228

arguments of member functions, 230
function arguments, 187-188
member functions, 228-230
objects, 230-231

const keyword, 43, 228, 787

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

const cast keyword, 787
const modifier, 413-414
const objects, 328-329
constants

#define directive, 43
C-strings, 267
character constants, 36-37
const keyword, 43, 228, 787
floating point constants, 42-43
integer constants, 34
passing to functions, 153-154
pointers, 394-395, 401-402
set color() function, 809-810
set fill style() function, 810
strings, 28

constructors, 206-207, 209

automatic initialization, 207
classes, 345-347, 351-352
conversion constructors, 315
copy constructors, 216-217, 479, 482

default, 216-217
invoking, 483
out of memory message, 484
overloading, 482-490, 492
prohibiting copying, 485
temporary objects, 484

examples, 209-210
initialization list, 208
multiple inheritance, 371-373

multi-argument constructors, 374
no-argument constructors, 373-374

names, 207-208
overloading, 212-213
syntax, 208-209

container class libraries, 653
containers, 376-380

adapters, 658-659
algorithms, 680, 682-683
associative containers, 655-656, 693-694

keys, 656-657, 694
maps, 656-657, 694, 697-700
multimaps, 657, 694, 697-700

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

multisets, 657, 694-697
sets, 656-657, 694-697

function objects, 714
iterators, 680-681
member functions, 657-658
priority queues, 658
queues, 658
sequence containers, 655-656

arrays, 655
deques, 655-656
lists, 655-656
vectors, 655-656

sequential containers, 669, 676

deques, 675
lists, 672-675
vectors, 669-672

stacks, 658
STL, 653-659, 669-676, 693-700

contents of operator, 396
continue keyword, 787
continue statement, 110-111
control statements, 67

decisions, 84

break statement, 98, 107-109
continue statement, 110-111
goto statement, 111
if statement, 84-87
if...else statement, 88-96, 100
switch statement, 96-100

loops, 70, 90-91

do loop, 81-83
for loop, 70-77
if statements, 87
selecting which loop to use, 84
while loop, 77-81

conversion constructors, 315
conversion operator, 315-316
conversions, 292, 312-313

C-strings and string objects, 316-318
data types, 48-49, 313-316

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

explicit keyword, 326-328
guidelines for using, 326
limitations, 325
objects of different classes, 318-324
preventing, 326-328
selecting best method of, 324
variables, 48-49

copy algorithm, 659, 815
copy backward algorithm, 815
copy constructors, 216-217, 479, 482

invoking, 483
out of memory message, 484
overloading, 482-490, 492
prohibiting copying, 485
temporary objects, 484

copy() member function, 282
copying

C-strings, 269-270, 412-413
prohibiting, 485
stream classes, 521-522

count = gcount() member function, 520
count algorithm, 659, 662-663, 814
count if algorithm, 814
coupling classes, 750
courses on C++, 890
cout, 27, 522, 557-559
.cpp filename extension, 23
.CPP files, 23, 759-768
CRC cards, 721-722

classes section, 728-730
collaborators section, 731
creating, 727-728
examples, 731-736, 739-741
notes, 736
responsibilities section, 729-731

CRC modeling team, 725-727
ctor, see constructors
curly brackets in functions, 25

D
DAGs (directed acyclic graphs), 340
data

access with iterators, 683-684

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

conversions, 292, 312-313

C-strings and string objects, 316-318
data types, 313-316
explicit keyword, 326-328
guidelines for using, 326
limitations, 325
objects of different classes, 318-324
preventing, 326-328
selecting best method of, 324

encapsulation, 11
flow, see streams
global data, 9-10
hiding, 11, 197-198

friend functions, 469
problems with, 468

local data, 9
streams, 27

data members (classes), 198

initialization, 208
member functions, 198-199
public versus private, 199-200
static, 224-227

declaration, 227-228
definition, 227-228

data structures, 653
data types

arrays, 241, 264-265
char data type, 264-265
conversions

basic types, 313
user-defined types and basic types, 313-316

creating, 18
enumerations, 135-141

integer values, 141
limitations, 141

extensibility, 11
objects, 205-206
structured programming languages, 11
unsigned long data type, 577

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

user-defined data types

class templates, 630-632
converting to basic types, 313-316

variables, 46

casts, 50-52
conversions, 48-49
type safety, 52
unsigned data types, 47-48

debugging

animation loops, 75
C++Builder programs, 804

breakpoints, 805
single stepping, 804
tracing into functions, 805
watching variables, 805

pointers, 443
Visual C++ programs, 795

breakpoints, 796
single stepping, 795-796
stepping into functions, 796
watching variables, 796

dec flag, 516
dec manipulator, 517
decision trees, 94
decisions, 84

break statement, 98, 107-109
continue statement, 110-111
goto statement, 111
if statement, 84-86

loops, 87
multiple statements, 86

if...else statement, 88-89

assignment expressions, 91-92
construction, 95-96
loops, 90-91
matching the else, 94-95
nesting, 92-94
versus switch statement, 100

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

switch statement, 96-98

character variables, 99
default keyword, 99-100
versus if...else statement, 100

declarator (functions), 150
declaring

aggregates, 758-759
attributes (classes), 758
classes, 197, 758

member functions, 199

functions, 149-150

library functions, 151
using definition in place of, 152
with array arguments, 252

methods, 759
static class data, 227-228
structures, 120-121

combining declaration and definition, 124-125
syntax, 121
use of, 121-122

variables, 33

decrement (--) operator, 56, 292
default copy constructor, 216-217
default keyword, 99-100, 787
defaults

access specifiers, 361
arguments (functions), 178-179

defining

arrays, 242-243

multidimensional arrays, 248-249
structures, 254

functions, 150

array arguments, 252-253
body, 150
declarator, 150
library functions, 151

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

using in place of declaration, 152

member functions outside classes, 213-214
objects, 200
pointers, 394
static class data, 227-228
string objects, 276-277
structures, 122-125
variables, 33

at point of use, 39
in for statements, 76
integer variables, 31-33
multiple definitions, 46

#define preprocessor directive, 43
delete keyword, 787
delete operator, 418-419
deques, 655-656, 675
dereferencing pointers, 397, 421
derived classes, 17-18, 337-341, 345-347, 351-352
design (OOD), 721

class diagrams, 721-722, 750-753
CRC cards, 721-722, 727-736, 739-741
CRC modeling team, 725-727
example program, 722-725
problem summary statements, 726-727
use cases, 721-722, 737-740, 742-743

The Design and Evolution of C++, 890
destructors, 210-211, 476-478

base classes, 465-466
exceptions, 647
virtual destructors, 465-466
warnings about, 484

Developer Studio (Microsoft), 791
development of programs, 380-381
diagrams of classes, 721-722, 750-753
directed acyclic graphs, 340
directives, 28

#define preprocessor directive, 43
#include preprocessor directive, 28, 59-60
preprocessor directives, 28, 43, 59-60
using directive, 29

directories for multifile programs, 576

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

disk file I/O

binary I/O, 533-534
char strings with embedded blanks, 530-532
character I/O, 532-533
error handling, 544

analyzing errors, 545-546
reacting to errors, 544-545

formatted file I/O, 528-530
member functions, 546-557
object I/O, 535-539
overloaded extraction and insertion operators, 559-561
streams, 528

diskCount() member function, 547
diskIn() member function, 546-549
diskOut() member function, 546-549
display() function, 252, 428-429
displaying linked list contents, 428-429
Divide Error message, 110
division (/) operator, 52
do keyword, 787
do loop, 81-83

test expression, 81
uses, 84

documentation, 889

books, 889-890
online course, 890

dot (.) operator

accesssing structure members, 123-124
overloading, 326

double floating point variable, 42
double keyword, 787
draw circle() function, 809
draw line() function, 809
draw pyramid() function, 809
draw rectangle() function, 809
dynamic binding, 458
dynamic cast operator, 498-501
dynamic keyword, 787
dynamic type information (classes), 498

dynamic cast operator, 498-501
typeid operator, 501-502

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

E
early binding, 458
Eckel, Bruce, 889
editing

data

const objects, 328-329
global data, 9-10

string objects, 279-280

educational resources, 890
Effective C++, 889
elements (arrays), 243-244

accessing, 244, 399-401
averaging, 244-245
multidimensional arrays, 249
pointers, 399-401
sorting, 406-410
structures, 254

Ellis, Margaret, 889
else keyword, 788
empty() member function, 658
encapsulation, 11, 468
end() member function, 658
endl manipulator, 34, 517
ends manipulator, 517
enum keyword, 137, 788
enumerations, 135-141

integer values, 141
limitations, 141

eofbit flag, 523, 532
equal algorithm, 659, 814
equal range algorithm, 819
equal to (==) relational operator, 69
erase() member function

lists, 673
string class, 279-280
vectors, 671-672

error flag functions

clear(), 523
int = bad(), 523
int = eof(), 523

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

int = fail(), 523
int = good(), 523

error handling

disk file I/O, 544

analyzing errors, 545-546
reacting to errors, 544-545

exceptions, 615, 633

arguments, 642-645
catch blocks, 634, 638
class libraries, 647
destructors, 647
examples, 636-638, 641-642
extracting data from exception objects, 645
function nesting, 646
handling, 647-648
multiple exceptions, 639-641
purpose of, 633-634
sequence of events, 638-639
syntax, 634-635
throwing, 634, 637
try blocks, 634, 638
when not to use, 647

functions

longjmp() function, 634
setjmp() function, 634

error messages

access violation error message, 443
Divide Error message, 110
null pointer assignment error message, 443
page fault error message, 443
stack is empty error message, 349
unidentifed identifier error message, 58
unknown variable error message, 181

error-status flags, 522-523, 531-532
errors

cerr, 522
streams, 522

checking, 525-527
error-status flags, 522-523, 531-532
inputting numbers, 523-524

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

inputting strings and characters, 525
no-input, 524-525
too many characters, 524

escape sequences, 28, 37-38
exception classes

bad alloc class, 646
xalloc class, 646

exceptions, 615, 633

arguments, 642-645
catch blocks, 634, 638, 640
class libraries, 647
destructors, 647
examples, 636-638, 641-642
extracting data from exception objects, 645
function nesting, 646
handling, 647-648
multiple exceptions, 639-641
purpose of, 633-634
sequence of events, 638-639
syntax, 634-635
throwing, 634, 637
tips for when not to use, 647
try blocks, 634, 638

.exe filename extension, 23
executable files, 23
exercise solutions

chapter 2, 833-834
chapter 3, 836-838
chapter 4, 839-841
chapter 5, 842-845
chapter 6, 846-848
chapter 7, 850-853
chapter 8, 854-858
chapter 9, 859-864
chapter 10, 865-869
chapter 11, 870-874
chapter 12, 875-877
chapter 14, 879-882
chapter 15, 883-887

exit() library function, 88
explicit keyword, 326-328, 788
exponential notation, 42-43
export keyword, 788
expressions, 40

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

extensibility, 11
extensions (filenames)

C++Builder, 797
.cpp, 23
.exe, 23
.H, 29
Visual C++, 791

extern keyword, 788
external variables, 182-183

initialization, 183
lifetime, 183
purpose of, 183
scope, 183
storage, 185
visibility, 183

extraction (>>) operator, 39-40, 515, 529-530

cascading, 39-40
overloading, 557-561

F
failbit flag, 523
false keyword, 788
Fibonacci series, 80-81
file pointers, 540-541

specifying the offset, 542
specifying the position, 541

files, 513

closing, 535
disk file I/O

binary I/O , 533-534
char strings with embedded blanks, 530-532
character I/O , 532-533
error handling, 544-546
formatted file I/O, 528-530
member functions, 546-557
object I/O, 535-539
overloaded extraction and insertion operators, 559-561
streams, 528

executable files, 23
extensions (filenames)

C++Builder, 797

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

.cpp, 23

.exe, 23

.H, 29
Visual C++, 791

formatted file I/O, 528
header files, 28-29

library functions, 58
manipulators, 46

library files, 58
opening, 539-540
source files, 23

fill algorithm, 659, 816
fill() member function, 518
fill n algorithm, 816
The Final Draft Information Standard (FDIS) for the C++ Programming Language, 889
find algorithm, 659, 661-662, 814

header files, 662
ranges, 662

find() member function, 278
find first not of() member function, 279
find first of() member function, 278
find if algorithm, 814
find last not of() member function, 279
find last of() member function, 279
finding string objects, 278-279
fixed flag, 516
flags

error-status flags, 522-523, 531-532
formatting flags, 516-518
ios flags, 249

fixed flag, 249
showpoint flag, 249

float floating point variable, 41-42
float keyword, 788
floating point constants, 42-43
floating point variables, 40

constants, 42-43
double, 42
float, 41-42
long double, 42

flow of data, see streams

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

flush manipulator, 517
flush() member function, 521
for each algorithm, 659, 667-668, 814
for keyword, 788
for loop, 70-71

animation, 75
blocks, 74
defining variables in for statement, 76
increment expression, 72
indentation, 74-75
initialization expressions, 71, 77
iterations, 73
multiple statements in body, 73-74
style, 74-75
test expressions, 72, 77
uses, 84
variations, 76
visibility of variables, 74

foreign languages and wchar t character variable, 35-36
formatted file I/O, 528-530
formatting numbers in arrays, 249
formatting flags, 516-518
FORTRAN, 8
forward iterators, 660, 678-680
fread() member function, 528
friend classes, 475
friend functions, 468-469

controversies surrounding, 469
examples, 469-472
functional notation, 472-474

friend keyword, 469, 472, 788
front() member function, 673, 675
fstream class, 528, 539
function libraries, 574
function objects, 665, 707

modifying container behavior, 714
predefined function objects, 707-710
writing, 710-714

functions

arguments, 24, 57

arrays, 251-253, 404-406
C-strings, 411-412
constants, 153-154, 187-188, 230
default arguments, 178-179

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

naming, 160
objects, 214-215
overloaded functions, 172-176
parameters, 154
passing, 152-160
passing by pointers, 403-406
passing by reference, 402
references, 166-172
structures, 155-160
values, 155-156
variables, 154-155

braces, 25
bsort() function, 408-410
calling, 148-150, 252
console functions, 807-811
curly brackets, 25
declaring, 149-150

library functions, 151
using definition in place of, 152
with array arguments, 252

defining, 150

array arguments, 252-253
body, 150
declarator, 150
library functions, 151
using in place of declaration, 152

definition of, 24, 147
display() function, 252, 428-429
error flag functions

clear(), 523
int = bad(), 523
int = eof(), 523
int = fail(), 523
int = good(), 523

examples, 148-149
friend functions, 468-469

controversies surrounding, 469
examples, 469-472
functional notation, 472-474

history of, 8
illustration, 151
inline functions, 176-178, 188
invoking, 147-150

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ios functions, 518-519
library functions, 56-57, 151

atoi(), 525
exit(), 88
getche(), 90-91
header files, 58
library files, 58
malloc(), 417
pointers, 413
rand(), 264
sqrt(), 56-57
srand(), 264
strcat(), 275
strcmp(), 306, 433-434
strcpy(), 270, 413
strlen(), 269-270

longjmp() function, 634
macros, 622
main() function, 25, 152
member functions, 24, 198-199, 352

append(), 280
at(), 281-282
back(), 671
begin(), 658
calling, 200-202
capacity(), 282, 675
ch = fill(), 518
class declarations, 199
close(), 535
compare(), 280-281
const, 228-230
constructors, 206-210, 212-213
containers, 657-658
copy(), 282
count = gcount(), 520
defining outside the classes, 213-214
definition of, 11
destructors, 210-211
disk file I/O, 546-557
diskCount(), 547
diskIn(), 546-549
diskOut(), 546-549
empty(), 658
end(), 658
erase(), 279-280, 671-673
fill(), 518
find(), 278

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

find first not of(), 279

find first of(), 278
find last not of(), 279
find last of(), 279
flush(), 521
fread(), 528
front(), 673, 675
fwrite(), 528
get(), 267-268, 519-520, 532-533
getline(), 277-278, 520, 530
ignore(), 520
insert(), 280, 671-673
length(), 282
lower bound(), 696-697
max size(), 282, 658, 670
merge(), 674
messages, 202
multiple inheritance, 366-370
open(), 539-540
overriding, 347-348
p = precision(), 518
parse(), 435
peek(), 520
pop(), 257, 348-349
pop back(), 671
pop front(), 673, 675
pos = tellg(), 520
pos = tellp(), 521
precision(), 518
public versus private, 199-200
push(), 257-258, 348-349
push back(), 670
push front(), 673
put(), 521, 532
putback(), 520
rbegin(), 658
rdbuf(), 533
read(), 520, 536
rend(), 658
replace(), 279-280
reverse(), 674
rfind(), 279
seekg(), 520, 541-543
seekp(), 521, 541
setdata(), 199
setf(), 516, 518-519
setjmp(), 634
showdata(), 199
size(), 282, 658, 670

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

solve(), 435
STL, 825-827
substr(), 281
swap(), 276, 671
tellg(), 541, 543-544
tellp(), 541
this pointer, 492-497
typeid(), 550-555
unique(), 674
unsetf(), 516, 518
upper bound(), 696-697
w = width(), 518
width(), 518
write(), 521, 536

names, 24
nesting exceptions, 646
operator=() function, 480

passing arguments by reference, 480-481
returning values, 481

order() function, 407-408
overloaded functions, 172-176, 188
passing arrays to, 251
pointers, 402

normal functions, 454-456
passing arguments with, 403-406
virtual functions, 456-458

prototypes, 149
purpose of, 147
returning objects, 217-220
static functions, 476-477

accessing members, 477-478
numbering members, 478

structures

passing by reference, 170-171
returning, 164-166

templates, 615-618

arguments, 619-621
blueprints, 619
compilers, 618-619
determining what works, 622
syntax, 618, 621
tips for simplifying, 619

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

values, 161-164, 185-187
virtual functions, 453-454

examples, 460-465
pointers, 456-458
pure virtual functions, 459-460

fwrite() member function, 528

G
game for horse-racing, 438-443
generalization (classes), 744, 749-750
generate algorithm, 816
generate n algorithm, 816
get from (>>) operator, 39-40, 515, 529-530

cascading, 39-40
overloading, 557-561

get pointer, 540-541

specifying the offset, 541-543
specifying the position, 541

get() member function, 267-268, 519-520, 532-533
getche() library function, 90-91
getline() member function, 277-278, 520, 530
Gilbert, Stephen, 890
global data, 9-10
global variables, see external variables
golden ratio, 80
goodbit flag, 523
goto keyword, 788
goto statement, 111
graphic shapes and inheritance, 357-359
graphics, 807

compilers, 807
console graphics, 807

compilers, 807, 811
inheritance, 357-359
routines, 808

Console Graphics Lite, 158-160
pixel graphics, 807

greater than (>) relational operator, 69
greater than or equal to (>=) relational operator, 69

H

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

H file, 29, 753-758
.H filename extension, 29
handling exceptions, 647-648
hardfail flag, 523
has a relationships, 376-380, 744
header files, 28-29, 753-758

C++Builder projects, 801

creating, 801
editing, 802
telling location of, 802

library functions, 58
manipulators, 46
multifile programs, 576

hex flag, 516
hex manipulator, 517
hiding data, 11, 197-198
hierarchies of classes, 352-357, 514-515
horse-racing game, 438-443

I
I/O, see input/ouput
identifiers, 33
if algorithms, 666-667
if keyword, 85, 788
if statement, 84-86

loops, 87
multiple statements, 86

if...else statement, 88-89

assignment expressions, 91-92
construction, 95-96
loops, 90-91
matching the else, 94-95
nesting, 92-94
versus switch statement, 100

ifstream class, 513, 528
ignore() member function, 520
implementations of class libraries, 574-575
include files, see header files
#include preprocessor directive, 28, 59-60
includes algorithm, 820
increment ++ operator, 54-56

overloading, 292-293
postfix, 55-56

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

prefix, 55-56

indentation in for loops, 74-75
indexes (arrays), 241, 244
indirect addressing pointers, 397
indirection operator, 396-397
inheritance, 16-18, 337-341

accessibility, 341-345
assignment operators, 481
code reusability, 337
examples, 349-352
graphic shapes, 357-359
hierarchies, 352-357
kind of relationship, 376
levels of, 362-365
multiple inheritance, 365-366

ambiguity, 374-376
constructors, 371-374
disambiguation, 375
member functions, 366-370
private derivation, 371
virtual base classes, 466-468

private inheritance, 359-362
program development, 380-381
public inheritance, 359-362

inheritance trees, 340
init graphics() function, 808-809, 811
initializing

arrays, 245-246

multidimensional arrays, 250

members of structures, 125-126
nested structures, 131-132
objects, 208, 216-217
variables, 37

automatic variables, 181
external variables, 183
static variables, 185

inline functions, 176-178, 188
inline keyword, 178, 788
inner product algorithm, 824
inplace merge algorithm, 820
Inprise compilers, 23-24
input iterators, 660, 678-679

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

input/output

cin, 38-39
disk file I/O

binary I/O, 533-534
char strings with embedded blanks, 530-532
character I/O, 532-533
error handling, 544-546
formatted file I/O, 528-530
member functions, 546-557
object I/O, 535-539
overloaded extraction and insertion operators, 559-561
streams, 528

streams, 513-514
string objects, 277-278

insert iterators, 687-690
insert() member function

lists, 673
string class, 280
vectors, 671-672

inserting

data with iterators, 684
items in linked lists, 427-428

insertion (<<) operator, 27, 46, 515

cascading, 46
overloading, 557-561

instance relationships of classes, 744
instance variables, see objects
instantiating

objects, 200
objects of a base class, 459

int = bad() function, 523
int = eof() function, 523
int = fail() function, 523
int = good() function, 523
int integer variable, 31-33
int keyword, 788
integer constants, 34
integer variables, 31

assignment statements, 33-34

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

defining, 31-33
int integer variable, 31-33
integer constants, 34
long integer variables, 35
output variations, 34
short integer variables, 35
true/false values, 106

interacting with programs, 768-770
interfaces

class libraries, 574
iterators, 678-680

internal flag, 516
invoking

copy constructors, 483
functions, 147-150

ios class, 515

formatting flags, 516-517
functions, 518-519
manipulators, 517-518

ios flags, 249
iostream class, 515
iostream withassign class, 515, 521-522
istream class, 515, 519, 521
istream iterator class, 692-693
istream withassign class, 515, 521-522
istrstream class, 561
iter swap algorithm, 659, 815
iterators

adapters, 687

insert iterator, 687-690
raw storage iterator, 687
reverse iterator, 687-688

algorithms, 681-682, 685-686, 827-829
bidirectional iterators, 660, 678-680
containers, 680-681
data access, 683-684
data insertion, 684
forward iterators, 660, 678-680
input iterators, 660, 678-679
interfaces, 678-680
output iterators, 660, 678-680
random access iterators, 660, 678-679

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

smart pointers, 677-678
STL, 654, 660, 676-693
stream iterators, 690

istream iterator class, 692-693
ostream iterator class, 690-691

J-K
Kernighan, Brian, 890
key

to exercises

chapter 2, 833-834
chapter 3, 836-838
chapter 4, 839-841
chapter 5, 842-845
chapter 6, 846-848
chapter 7, 850-853
chapter 8, 854-858
chapter 9, 859-864
chapter 10, 865-869
chapter 11, 870-874
chapter 12, 875-877
chapter 14, 879-882
chapter 15, 883-887

to questions

chapter 1, 831
chapter 2, 832-833
chapter 3, 834-836
chapter 4, 838-839
chapter 5, 841-842
chapter 6, 845-846
chapter 7, 849-850
chapter 8, 853-854
chapter 9, 859
chapter 10, 864-865
chapter 11, 869-870
chapter 12, 874-875
chapter 13, 877
chapter 14, 878-879
chapter 15, 882-883
chapter 16, 887-888

key abstraction of classes, 750
keys of associative containers, 656-657, 694
keywords

asm, 787

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

auto, 180, 787
bool, 787
break, 98, 787
C, 787
C++, 787
case, 787
catch, 634, 638, 787
char, 787
class, 197, 475, 787
compilers, 787
const, 43, 228, 787
const cast, 787
continue, 787
default, 99-100, 787
definition of, 33
delete, 787
do, 787
double, 787
dynamic, 787
else, 788
enum, 137, 788
explicit, 326-328, 788
export, 788
extern, 788
false, 788
float, 788
for, 788
friend, 469, 472, 788
goto, 788
if, 85, 788
inline, 178, 788
int, 788
long, 788
main, 788
mutable, 326, 328-329, 788
namespace, 788
new, 788
operator, 293, 789
private, 197-198, 360, 789
protected, 789
public, 197-198, 360, 789
purpose of, 787
register, 789
reinterpret cast, 789
return, 789
short, 789
signed, 789
sizeof, 789
static, 789
static cast, 789

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

struct, 121, 789
switch, 96, 789
template, 618, 621, 624, 789
this, 789
throw, 634, 789
true, 789
try, 634, 638, 789
typedef, 789
typeid, 789
typename, 789
union, 789
unsigned, 789
using, 789
variable names, 33
virtual, 456, 468, 790
void, 149, 163, 790
volatile, 790
wchar t, 790

kind of relationships, 376
Koenig, Andrew, 890

L
Lafore, Robert, 890
LaMothe, AndrŽ, 890
late binding, 458
Lee, Meng, 653, 890
left flag, 516
length() member function, 282
less than (<:) relational operator, 69
less than or equal to (<=) relational operator, 69
lexicographical compare algorithm, 823
libraries

class libraries

exceptions, 647
implementations, 574-575
interfaces, 574
multifile programs, 573-575

container classes, 653
function libraries, 574
Standard Template Library (STL), 653

algorithms, 653-654, 659-669, 680-683, 685-686, 813-825, 827-829
containers, 653-659, 669-676, 680-683, 693-700
function objects, 707-714
iterators, 654, 660, 676-693
member functions, 825-827
problems with, 661

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

storing user-defined objects, 700-706

library files, 58
library functions, 56-57, 151

atoi(), 525
exit(), 88
getche(), 90-91
header files, 58
library files, 58
malloc(), 417
pointers, 413
rand(), 264
sqrt(), 56-57
srand(), 264
strcat(), 275
strcmp(), 306, 433-434
strcpy(), 270, 413
strlen(), 269-270

linked lists

displaying contents, 428-429
inserting items, 427-428
pointers, 425-429

lists, 655-656, 672-675

erase(), 673
front(), 673, 675
insert(), 673
merge(), 674
pop front(), 673, 675
push front(), 673
reverse(), 674
unique(), 674

local data, 9
local variables, see automatic variables
lock manipulator, 517
logical operators, 103

AND, 103-105
NOT, 104, 106
OR, 104-105
precedence, 107
XOR, 105

Lomow, Greg, 889
long double floating point variable, 42
long integer variables, 35
long keyword, 788

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

longjmp() function, 634
loops, 70

do loop, 81-83
for loop, 70-71

animation, 75
blocks, 74
defining variables in for statement, 76
increment expressions, 72
indentation, 74-75
initialization expression, 71, 77
iterations, 73
multiple statements in body, 73-74
style, 74-75
test expressions, 72, 77
variations, 76
visibility of variables, 74

if statements, 87
if...else statements, 90-91
selecting which loop to use, 84
while loop, 77-79

multiple statements, 79-80
precedence of operators, 80-81
test expressions, 78

lower bound algorithm, 819
lower bound() member function, 696-697

M
macros, 622
main keyword, 788
main() function, 25, 152
make heap algorithm, 822
malloc() libary function, 417
manipulators, 34, 517

arguments, 517-518
dec manipulator, 517
endl manipulator, 34, 517
ends manipulator, 517
flush manipulator, 517
header files, 46
hex manipulator, 517
lock manipulator, 517
oct manipulator, 517
resetiosflags manipulator, 249, 518
setfill manipulator, 518
setiosflags manipulator, 249, 517-518

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

setprecision manipulator, 249, 518
setw manipulator, 44-45, 266, 518
unlock manipulator, 517
ws manipulator, 517

maps, 656-657, 694, 697-700
max algorithm, 822
max element algorithm, 822-823
max size() member function, 658

string class, 282
vectors, 670

McCarty, Bill, 890
member access operator, 123
member functions, 24, 198-199, 352

>>, 519
<<, 521
append(), 280
arguments, 230
at(), 281-282
back(), 671
begin(), 658
calling, 200-202
capacity(), 282, 675
ch = fill(), 518
class declarations, 199
close(), 535
compare(), 280-281
const, 228-230
constructors, 206-207, 209

automatic initialization, 207
copy constructor, 216-217
default copy constructor, 216-217
example, 209-210
initialization list, 208
names, 207-208
overloading, 212-213
syntax, 208-209

containers, 657-658
copy(), 282
count = gcount(), 520
defining outside classes, 213-214
definition of, 11
destructors, 210-211
disk file I/O, 546-557
diskCount(), 547
diskIn(), 546-549

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

diskOut(), 546-549
empty(), 658
end(), 658
erase()

lists, 673
vectors, 671-672
string class, 279-280

fill(), 518
find(), 278
find first not of(), 279
find first of(), 278
find last not of(), 279
find last of(), 279
flush(), 521
fread(), 528
front(), 673, 675
fwrite(), 528
get(), 267-268, 519-520, 532-533
getline(), 277-278, 520, 530
ignore(), 520
insert()

lists, 673
vectors, 671-672
string class, 280

length(), 282
lower bound(), 696-697
max size(), 658

string class, 282
vectors, 670

merge(), 674
messages, 202
multiple inheritance, 366-370
open(), 539-540
overriding, 347-348
p = precision(), 518
parse(), 435
peek(), 520
pop(), 257
pop back(), 671
pop front(), 673, 675
pos = tellg(), 520
pos = tellp(), 521
precision(), 518
public versus private, 199-200
push(), 257-258

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

push back(), 670
push front(), 673
put(), 521, 532
putback(), 520
rbegin(), 658
rdbuf(), 533
read(), 520, 536
rend(), 658
replace(), 279-280
reverse(), 674
rfind(), 279
seekg(), 520, 541-543
seekp(), 521, 541
setdata(), 199
setf(), 516, 518-519
showdata(), 199
size(), 658

string class, 282
vectors, 670

solve(), 435
STL, 825-827
substr(), 281
swap()

string class, 276
vectors, 671

tellg(), 541, 543-544
tellp(), 541
this pointer, 492-493

accessing member function data, 493-494
returning values, 494-497

typeid(), 550-555
unique(), 674
unsetf(), 516, 518
upper bound(), 696-697
w = width(), 518
width(), 518
write(), 521, 536

members of classes

arrays, 255-258
C-strings, 272-273

memory

addresses, pointers to, 390-397

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

considerations when programming, 224-225
management

arrays, 416
delete operator, 418-419
new operator, 416-420, 422-423

streams, 561-562

merge algorithm, 659, 664-665, 820
merge() member function, 674
messages

Assignment operator invoked message, 480
error messages

access violation, 443
Divide Error, 110
null pointer assignment, 443
page fault, 443
stack is empty, 349
unidentifed identifier, 58
unknown variable, 181

member functions, 202

methods, 11, 759
Meyers, Scott, 889
Microsoft compilers, 23-24, 811
Microsoft Developer Studio, 791
Microsoft Visual C++, 791

building existing files, 792
Console Graphics Lite, 794-795
debugging programs, 795

breakpoints, 796
single stepping, 795-796
stepping into functions, 796
watching variables, 796

file extensions, 791
multifile programs, 793-794

closing, 794
compiling, 794
linking, 794
opening, 794
saving, 794

projects, 793
RTTI, 793

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

screen elements, 791
single-file programs, 792
source files, 793-794
workspaces, 793
writing files, 792-793

min algorithm, 822
min element algorithm, 823
mismatch algorithm, 814
modifier const, 413-414
modules, history of, 8
More Effective C++, 889
MS-DOS

C++Builder programs, 801
Visual C++ programs, 792

MSOFTCON.CPP, 807
multidimensional arrays, 246-248

accessing elements, 249
defining, 248-249
formatting numbers, 249
initializing, 250

multifile programs, 573

build process, 577
class libraries, 573-574

implementations, 574-575
interfaces, 574

conceptualization, 576
creating, 576-577
directories, 576
examples

high-rise elevator simulation example, 583-598
very long number class example, 577-582
water-distribution system example, 598-611

header files, 576
organization, 576
projects, 576-577

multimaps, 657, 694, 697-700
multiple exceptions, 639-641
multiple inheritance, 365-366

ambiguity, 374-376

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

constructors, 371-373

multi-argument constructors, 374
no-argument constructors, 373-374

disambiguation, 375
member functions, 366-370
private derivation, 371
virtual base classes, 466-468

multiple lines in C-strings, 268-269
multiplication (*) operator, 52
multisets, 657, 694-697
Musser, David R, 890
mutable keyword, 326, 328-329, 788
The Mythical Man-Month, 8

N
names

constructors, 207-208
functions, 24
structures, 121
variables, 33

conventions, 33
keywords, 33

namespace keyword, 788
namespaces, 29
naming arguments (functions), 160
nesting

functions, 646
if statements in loops, 87
if...else statements, 92-94
structures, 129

accessing members, 130-131
depth of, 132
initialization, 131-132
user-defined type conversions, 131

new keyword, 788
new operator and memory management, 416-420, 422-423
next permutation algorithm, 823
not equal to (!=) relational operator, 69
NOT logical operator, 104, 106
nth element algorithm, 819
null pointer assignment error message, 443
numbering members of static functions, 478

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

numbers

arrays, formatting, 249
random numbers, generating, 264

O
object I/O, 535-539
object-oriented design (OOD), 721

class diagrams, 721-722, 750-753
CRC cards, 721-722

classes section, 728-730
collaborators section, 731
creating, 727-728
examples, 731-736, 739-741
notes, 736
responsibilities section, 729-731

CRC modeling team, 725-727
example program, 722-725
problem summary statements, 726-727
use cases, 721-722, 737-740, 742-743

Object-Oriented Design in Java, 890
Object-Oriented Programming, 7

analogy, 12-13
basics of, 11
classes, 15-16
data types, 18
inheritance, 16-18
need for, 7
objects, 14-15
organization, 13
overloading, 19
polymorphism, 19
reusability, 18

objects, 14-15, 195, 197

arguments (functions), 214-215
arrays, 258-260

accessing, 260-261
bounds, 260
examples, 261-264

attributes, 10
base classes, 459
behavior, 11
benefits of, 231-232

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

const, 230-231, 328-329
cout, 27
data types, 18, 205-206
defining, 200
examples, 202-204. 219-223
initializing, 208, 216-217
memory, 224-225
persistence, 744
pointers, 420-421

arrays of pointers, 423-425
new operator, 422-423
referring to member functions, 421-422

predefined stream objects, 522
returning from functions, 217-220
user-defined objects, 700-706

oct flag, 516
oct manipulator, 517
ofstream class, 528
OOD (object-oriented design), 721

class diagrams, 721-722, 750-753
CRC cards, 721-722

classes section, 728-730
collaborators section, 731
creating, 727-728
examples, 731-736, 739-741
notes, 736
responsibilities section, 729-731

CRC modeling team, 725-727
example program, 722-725
problem summary statements, 726-727
use cases, 721-722, 737-740, 742-743

OOP (Object-Oriented Programming), 7

analogy, 12-13
basics of, 11
classes, 15-16
data types, 18
inheritance, 16-18
need for, 7
objects, 14-15
organization, 13
overloading, 19
polymorphism, 19
reusability, 18

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

open() member function, 539-540
opening files, 539-540
operator keyword, 293, 789
operator=() function, 480

passing arguments by reference, 480-481
returning values, 481

operators

address-of & operator, 391-392
arithmetic operators, 52

addition (+) operator, 52
division (/) operator, 52
multiplication (*) operator, 52
precedence, 107
remainder (%) operator, 52-53
subtraction (-) operator, 52

assignment operators, 478-479

arithmetic assignment operators, 53-54
chaining, 481
inheritance, 481
overloading, 479-481, 484-491
prohibiting copying, 485
self-assignment, 497-498

associativity, 406
binary operators, 106, 299-308
cast operators

dynamic cast operator, 498-501
reinterpret cast operator, 399, 535, 789
typeid operator, 498, 501-502

conditional operator, 100-103, 107, 326
contents of operator, 396
conversion operator, 315-316
decrement operator, 56
delete operator, 418-419
dot operator, 123-124
dynamic cast operator, 498-501
extraction (>>) operator, 39, 515, 529-530

cascading, 39-40
overloading, 557-561

get from (>>) operator, see extraction (>>) operator

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

increment (++) operator, 54

postfix, 55-56
prefix, 55-56

indirection operator, 396-397
insertion (<<) operator, 27, 515

cascading, 46
overloading, 557-561

logical operators, 103

AND, 103-105
NOT, 104, 106
OR, 104-105
precedence, 107
XOR, 105

manipulators

endl manipulator, 34
header files, 46
setw manipulator, 44-45

member access operator, 123
new operator, 416-420, 422-423
overloading, 19, 291-292

arguments, 294
assignment operators, 479-481, 484-491, 497-498
binary operators, 299-308
conditional (?) operator, 326
dot (.) operator, 326
extraction operator, 557-561
guidelines for using, 325-326
insertion operator, 557-561
limitations, 325
multiple overloading, 304
operator keyword, 293
pointer-to-member operator, 326
return values, 294-295
scope resolution (::) operator, 326
subscript [] operator, 309-312
temporary objects, 296-297
unary operators, 292-298

parsing, 435
polymorphism, 19
precedence, 40, 80-81, 107
put to (<<) operator, see insertion (<<) operator
reinterpret cast operator, 399, 535, 789

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

relational operators, 67-69

equal to (==) relational operator, 69
greater than (>) relational operator, 69
greater than or equal to (=) relational operator, 69
less than (<:) relational operator, 69
less than or equal to (<=) relational operator, 69
not equal to (!=) relational operator, 69
precedence, 107

scope resolution (::) operator, 326, 349
subscript [] operator, 309-312
typeid operator, 498, 501-502
unary operators, 106

overloading, 292-298
precedence, 107

OR logical operator, 104-105
order() function, 407-408
ostream class, 515, 521, 690-691
ostream withassign class, 515, 521-522
ostrstream class, 561-562
output, 27
output iterators, 660, 678-680
overloaded functions, 172-176, 188
overloading, 19

constructors, 212-213, 482-490, 492
operators, 291-292

arguments, 294
assignment operators, 479-481, 484-491, 497-498
binary operators, 299-308
conditional (?) operator, 326
dot (.) operator, 326
extraction operator, 557-561
guidelines for using, 325-326
insertion operator, 557-561
limitations, 325
multiple overloading, 304
operator keyword, 293
return values, 294-295
scope resolution (::) operator, 326
subscript [] operator, 309-312
temporary objects, 296-297
unary operators, 292-298

overriding member functions, 347-348

P

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

p = precision() member function, 518
page fault error message, 443
parameters of functions, 154
parent, see base classes
parse() member function, 435
parsing, 434

arithmetic expressions, 434-438
operators, 435

partial sort algorithm, 818
partial sort copy algorithm, 818
partial sum algorithm, 824
partition algorithm, 817
Pascal, 8
passing

arguments to functions, 152

by pointers, 403-406
by reference, 166-172, 402
by value, 155-156
constants, 153-154
structures, 155-160
variables, 154-155

arrays to functions, 251

peek() member function, 520
persistence, 744
pixel graphics, 807
Pohl, Ira, 890
pointers, 389

addresses in memory, 390

accessing variable pointed to, 395-397
address-of & operator, 391-392
constants, 394-395
variables, 392-393

arrays, 399-402

sorting array elements, 406-410
to objects, 423-425
to strings, 414-415

C-strings, 410-412

copying, 412-413
library functions, 413

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

changing types with dynamic cast operator, 499-501
const modifier, 413-414
constants, 401-402
debugging, 443
defining, 394
dereferencing, 397, 421
examples

horse-racing game, 438-443
parsing, 434-438

file pointers, 540-541

specifying the offset, 542
specifying the position, 541

functions, 402

normal functions, 454-456
passing arguments with, 403-406
virtual functions, 456-458

indirect addressing, 397
iterators as smart pointers, 677-678
linked lists, 425-429
objects, 420-421

arrays of pointers, 423-425
new operator, 422-423
referring to member functions, 421-422

pointers, 429-434
reinterpret cast, 399
smart pointers, 677-678
sorting, 431-432
syntax, 394
this pointer, 492-493

accessing member function data, 493-494
returning values, 494-497

to void, 398
uses of, 389-390
variables, 401-402

polymorphism, 19, 454
pop() member function, 257. 348-349
pop back() member function, 671
pop front() member function, 673, 675
pop heap algorithm, 822
popping items in stacks, 257-258

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pos = tellg() member function, 520
pos = tellp() member function, 521
precedence of operators, 40, 80-81, 107
precision() member function, 518
predefined stream objects, 522
preprocessor directives, 28

#define, 43
#include, 28, 59-60

prev permutation algorithm, 823
preventing conversions, 326-328
printer output, 565-566
priority queues, 658
private access specifier, 342-343, 361-362
private inheritance, 359-362
private keyword, 197-198, 360, 789
problem summary statements, 726-727
procedural languages, 8

data types, 11
lack of real-world modeling, 10-11
unrestricted access, 9-10

program development and inheritance, 380-381
programming

Object-Oriented Programming, 7

analogy, 12-13
basics of, 11
classes, 15-16
data types, 18
inheritance, 16-18
need for, 7
objects, 14-15
organization, 13
overloading, 19
polymorphism, 19
reusability, 18

structured programming, 8-11

programs

construction of, 24

comments, 29-31
directives, 28-29
expressions, 40
functions, 24-25
header files, 29

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

input, 38-39
namespaces, 29
output, 27-28
statements, 26
variables, 31-37, 40-44
whitespace, 26-27

interacting, 768-770
multifile programs, 573

build process, 577
class libraries, 573-575
conceptualization, 576
creating, 576-577
directories, 576
header files, 576
high-rise elevator simulation example, 583-598
organization, 576
projects, 576-577
very long number class example, 577-582
water-distribution system example, 598-611

prototyping, 770-771
writing, 753

aggregate declarations, 758-759
attribute declarations, 758
class declarations, 758
CPP files, 759-768
header file, 753-758
method declarations, 759

prohibiting copying, 485
projects

C++Builder

closing, 801
creating, 798-799
opening, 801
saving, 799

multifile programs, 576-577
Visual C++, 793

protected access specifier, 342-344
protected keyword, 789
prototypes, 149
prototyping, 770-771
public access specifier, 342-343, 362
public inheritance, 359-362
public keyword, 197-198, 360, 789

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pure virtual functions, 459-460
push back() member function, 670
push front() member function, 673
push heap algorithm, 821-822
push() member function, 257-258, 348-349
pushing items in stacks, 257-258
put pointer, 540-541
put to (<<) operator, 27, 46, 515

cascading, 46
overloading, 557-561

put() member function, 521, 532
putback() member function, 520

Q
questions, answers to

chapter 1, 831
chapter 2, 832-833
chapter 3, 834-836
chapter 4, 838-839
chapter 5, 841-842
chapter 6, 845-846
chapter 7, 849-850
chapter 8, 853-854
chapter 9, 859
chapter 10, 864-865
chapter 11, 869-870
chapter 12, 874-875
chapter 13, 877
chapter 14, 878-879
chapter 15, 882-883
chapter 16, 887-888

queues, 658

R
rand() library function, 264
random access iterators, 660, 678-679
random numbers, generating, 264
random shuffle algorithm, 817
raw storage iterators, 687
rbegin() member function, 658
rdbuf() member function, 533
read() member function, 520, 536
reading

C-strings

embedded blanks, 267-268

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

multiple lines, 268-269

data in formatted files, 529-530
objects from a disk, 536-537

reference sources of C++ information, 889

books, 889-890
online course, 890

references to arguments (functions), 166-172
register keyword, 789
reinterpret cast keyword, 789
reinterpret cast operator, 399, 535, 789
reinterpret cast pointers, 399
relational operators, 67-69

equal to (==) relational operator, 69
greater than (>) relational operator, 69
greater than or equal to (=) relational operator, 69
less than (<:) relational operator, 69
less than or equal to (<=) relational operator, 69
not equal to (!=) relational operator, 69
precedence, 107

relationships of classes, 744

aggregation, 744, 746-747
associations, 744-746
attributes, 744-745
cohesion, 750
composition, 746-747
coupling, 750
generalization, 744, 749-750
has a relationships, 376, 744
instance relationships, 744
kind of relationships, 376
multiplicity, 748
uses relationships, 744-746

remainder (%) operator, 52-53
remove algorithm, 816
remove copy algorithm, 816
remove copy if algorithm, 816
remove if algorithm, 816
rend() member function, 658
replace algorithm, 815
replace copy algorithm, 815
replace copy if algorithm, 816
replace if algorithm, 815
replace() member function, 279-280
resetiosflags manipulator, 249, 518

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

return keyword, 789
returning

structure variables from functions, 164-166
values

by reference, 185-187
from functions, 161-164
overloaded operators, 294-295

reusability, 18, 337
reverse algorithm, 817
reverse copy algorithm, 817
reverse iterators, 687-688
reverse() member function, 674
rfind() member function, 279
right flag, 516
Ritchie, Dennis, 890
rotate algorithm, 817
rotate copy algorithm, 817
routines (console graphics), 808
RTTI (Run-Time Type Information) and Visual C++, 793
Ruminations on C++, 890
Run-Time Type Information (RTTI) and Visual C++, 793

S
Saini, Atul, 890
scientific flag, 516
scope of variables

automatic variables, 181
external variables, 183

scope resolution (::) operator, 326, 349
search algorithm, 659, 663-664, 814-815
seekg() member function, 520, 541-543
seekp() member function, 521, 541
self-assignment, 497-498
self-containing classes, 429
sequence containers, 655-656, 669, 676

arrays, 655
deques, 655-656, 675
lists, 655-656, 672-675
vectors, 655-656, 669-672

sequences for escape, 28, 37-38
set color() function, 808-810
set cursor pos() function, 809
set difference algorithm, 821
set fill style() function, 809-810

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

set intersection algorithm, 821
set symmetric difference algorithm, 821
set union algorithm, 820-821
setdata() member function, 199
setf() member function, 516, 518-519
setfill manipulator, 518
setiosflags manipulator, 249, 517-518
setjmp() function, 634
setprecision manipulator, 249, 518
sets, 656-657, 694-697
setw manipulator, 44-45, 266, 518
short integer variables, 35
short keyword, 789
showbase flag, 516
showdata() member function, 199
showpoint flag, 516
showpos flag, 516
signed keyword, 789
single-stepping for loops, 75
size of arrays, 242
size() member function, 658

string class, 282
vectors, 670

sizeof keyword, 789
skipws flag, 516, 525
Smalltalk, 11, 198
smart pointers, 677-678
solutions to exercises

chapter 2, 833-834
chapter 3, 836-838
chapter 4, 839-841
chapter 5, 842-845
chapter 6, 846-848
chapter 7, 850-853
chapter 8, 854-858
chapter 9, 859-864
chapter 10, 865-869
chapter 11, 870-874
chapter 12, 875-877
chapter 14, 879-882
chapter 15, 883-887

solve() member function, 435
sort algorithm, 659, 663, 818
sort heap algorithm, 822
sorting

array elements, 406-410

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

elements of arrays, 406-410
pointers, 431-432

source files, 23
specifiers (classes), 197
sqrt() library function, 56-57
srand() library function, 264
stable partition algorithm, 818
stable sort algorithm, 818
stack is empty error message, 349
stacks, 255-257, 658

popping items, 257-258
pushing items, 257-258

Standard Template Library (STL), 653

algorithms, 653-654, 659-661, 813-825

containers, 680, 682-683
count, 662-663
find, 661-662
for each, 667-668
function objects, 665
if, 666-667
iterators, 681-682, 685-686, 827-829
merge, 664-665
search, 663-664
sort, 663
transform, 668-669
user-written functions, 665-666

containers, 653-655

adapters, 658-659
algorithms, 680, 682-683
associative containers, 656-657, 693-700
iterators, 680-681
member functions, 657-658
sequence containers, 655-656, 669-676

function objects, 707

modifying container behavior, 714
predefined function objects, 707-710
writing, 710-714

iterators, 654, 660, 676, 683

adapters, 687-690
algorithms, 681-682, 685-686
containers, 680-681

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

data access, 683-684
data insertion, 684
interfaces, 678-680
smart pointers, 677-678
stream iterators, 690-693

member functions, 825-827
problems with, 661
storing user-defined objects, 700-706

The Standard Template Library, 890
statements, 26

assignment statements

integer variables, 33-34
structures, 126

control statements, 67

decisions, 84-100, 107-111
loops, 70-84, 87, 90-91

decision statements

break statement, 98, 107-109
continue statement, 110-111
goto statement, 111
if statement, 84-87
if...else statement, 88-96, 100
switch statement, 96-100

syntax, 26

static binding, 458
static cast keyword, 789
static class data, 224-227

declaration, 227-228
definition, 227-228

static functions, 476-477

accessing members, 477-478
numbering members, 478

static keyword, 789
static variables, 183-184

initialization, 185
storage, 185

stdio flag, 516

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Stepanov, Alexander, 653, 890
STL (Standard Template Library), 653

algorithms, 653-654, 659-661, 813-825

containers, 680, 682-683
count, 662-663
find, 661-662
for each, 667-668
function objects, 665
if, 666-667
iterators, 681-682, 685-686, 827-829
merge, 664-665
search, 663-664
sort, 663
transform, 668-669
user-written functions, 665-666

containers, 653-655

adapters, 658-659
algorithms, 680, 682-683
associative containers, 656-657, 693-700
iterators, 680-681
member functions, 657-658
sequence containers, 655-656, 669-676

function objects, 707

modifying container behavior, 714
predefined function objects, 707-710
writing, 710-714

iterators, 654, 660, 676, 683

adapters, 687-690
algorithms, 681-682, 685-686
containers, 680-681
data access, 683-684
data insertion, 684
interfaces, 678-680
smart pointers, 677-678
stream iterators, 690-693

member functions, 825-827
problems with, 661
storing user-defined objects, 700-706

STL Tutorial and Reference Guide, 890
storage classes (variables), 179

automatic variables, 180-181

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

external variables, 182-183
static variables, 183-185
summary, 185

storing user-defined objects, 700-706
strcat() library function, 275
strcmp() library function, 306, 433-434
strcpy() library function, 270, 413
stream classes, 513

advantages, 513-514
copying, 521-522
fstream class, 528, 539
hierarchy, 514-515
ifstream class, 513, 528
ios class, 515

formatting flags, 516-517
functions, 518-519
manipulators, 517-518

iostream class, 515
iostream withassign class, 515, 521-522
istream class, 515, 519, 521
istream withassign class, 515, 521-522
istrstream class, 561
ofstream class, 528
ostream class, 515, 521
ostream withassign class, 515, 521-522
ostrstream class, 561-562
predefined stream objects, 522
strstream class, 561

stream iterators, 690

istream iterator class, 692-693
ostream iterator class, 690-691

streams, 27, 513

advantages, 513-514
closing, 535
command-line arguments, 562-564
definition of, 513
disk file I/O, 528

binary I/O, 533-534
char strings with embedded blanks, 530-532
character I/O, 532-533
formatted file I/O, 528-530
object I/O, 535-539

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

errors, 522

checking, 525-527
error-status flags, 522-523, 531-532
inputting numbers, 523-524
inputting strings and characters, 525
no-input, 524-525
too many characters, 524

input/output, 513-514
memory, 561-562
overloaded extraction and insertion operators, 557-561
printer output, 565-566

string class, 275, 282

accessing characters in string objects, 281-282
assigning objects, 276-277
comparing objects, 280-281
concatenation, 302-303
converting to C-strings, 316-318
defining objects, 276-277
editing objects, 279-280
finding objects, 278-279
input/output, 277-278
member functions

append(), 280
at(), 281-282
capacity(), 282
compare(), 280-281
copy(), 282
erase(), 279-280
find(), 278
find first not of(), 279
find first of(), 278
find last not of(), 279
find last of(), 279
getline(), 277-278
insert(), 280
length(), 282
max size(), 282
replace(), 279-280
rfind(), 279
size(), 282
substr(), 281
swap(), 276

new operator, 419-420

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

strings, 28, 241

arrays of pointers, 414-415
C-strings, 264-265

arrays, 270-272
blanks, 267-268
buffers, 265-266
class members, 272-273
concatenating, 302
constants, 267
converting to string objects, 316-318
copying, 269-270
multiple lines, 268-269
pointers, 410-413
user-defined strings, 273-275
variables, 265-266

comparing, 305-306, 433-434
disk file I/O, 530-532
string class, 275, 282

accessing characters in string objects, 281-282
assigning objects, 276-277
comparing objects, 280-281
concatenation, 302-303
converting to C-strings, 316-318
defining objects, 276-277
editing objects, 279-280
finding objects, 278-279
input/output, 277-278
new operator, 419-420

strlen() library function, 269-270
Stroustrup, Bjarne, 889-890
strstream class, 561
struct keyword, 121, 789
structured programming, 8

problems with, 8

data types, 11
lack of real-world modeling, 10-11
unrestricted access, 9-10

structures, 119, 223-224, 653

arrays, 253-255

accessing elements, 254
defining, 254

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

similarities to, 241

assignment statements, 126
classes, 134
combining declaration and definition, 124-125
declaration, 120-121

syntax, 121
use of, 121-122

defining, 122-123
definition of, 119
examples

card game, 132-134
measurements, 127-128

members, 119-120

accessing, 123-124
accessing in nested structures, 130-131
initializing, 125-126

names, 121
nesting, 129

accessing members, 130-131
depth of, 132
initialization, 131-132
user-defined type conversions, 131

passing to functions, 155-160, 170-171
returning structure variables from functions, 164-166
syntax, 119-120
tags, 121

style of loops, 74-75
subclasses, see derived classes
subscript [] operator, overloading, 309-312
substr() member function, 281
subtraction (-) operator, 52
superclasses, see base classes
swap algorithm, 659, 815
swap() member function

string class, 276
vectors, 671

swap ranges algorithm, 815
switch keyword, 96, 789

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

switch statement, 96-98

character variables, 99
default keyword, 99-100
versus if...else statement, 100

syntax

class templates, 625-628
classes, 195-196
comments, 30-31
constructors, 208-209
exceptions, 634-635
function templates, 618, 621
pointers, 394
statements, 26
structures, 119-121

T
tags (structures), 121
Teale, Steve, 890
tellg() member function, 541, 543-544
tellp() member function, 541
template keyword, 618, 621, 624, 789
templates, 615

classes, 622-625

determining storage parameters, 633
example, 628-630
syntax, 625-628
user-defined data types, 630-632

functions, 615-618

arguments, 619-621
blueprints, 619
compilers, 618-619
determining what works, 622
syntax, 618, 621
tips for simplifying, 619

text in strings, 241
Thinking in C++, 889
this keyword, 789
this pointer, 492-493

accessing member function data, 493-494
returning values, 494-497

throw keyword, 634, 789
throwing exceptions, 634, 637

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

to void pointers, 398
transform algorithm, 668-669, 815
trees, 656

decision trees, 94
inheritance trees, 340

true keyword, 789
try blocks, 634, 638
try keyword, 634, 638, 789
type casts, 50-52
type information (classes), 498

dynamic cast operator, 498-501
typeid operator, 501-502

type safety, 52
typedef keyword, 789
typeid keyword, 789
typeid operator, 498, 501-502
typeid() member function, 550-557
typename keyword, 789
types

data types

unsigned long data type, 577
user-defined data types, 630-632

enumerations, 135-141

integer values, 141
limitations, 141

U
UML (Universal Modeling Language)

class diagrams, 722

aggregation, 746-747
associations, 745
composition, 747
creating, 750-753
generalization, 749-750
multiplicity, 748-749
navigability of associations, 746

multiplicity symbols, 748

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

unary operators, 106

overloading, 292-295

arguments, 294
postfix notation, 297-298
prefix notation, 298
temporary objects, 296-297

precedence, 107

unidentifed identifier error message, 58
union keyword, 789
unique algorithm, 816
unique copy algorithm, 817
unique() member function, 674
unitbuf flag, 516
Universal Modeling Language (UML)

class diagrams, 722

aggregation, 746-747
associations, 745
composition, 747
creating, 750-753
generalization, 749-750
multiplicity, 748-749
navigability of associations, 746

multiplicity symbols, 748

unknown variable error message, 181
unlock manipulator, 517
unsetf() member function, 516, 518
unsigned data types, 47-48
unsigned keyword, 789
unsigned long data type, 577
upper bound algorithm, 819
upper bound() member function, 696-697
uppercase flag, 516
use cases, 721-722, 737-740, 742-743
user interface screens, 770-771
user-defined data types

class templates, 630-632
converting

from basic type to user-defined type, 315
to basic types, 313-316

user-defined objects, storing, 700-706

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

uses relationships (classes), 744-746
using directive, 29
using keyword, 789

V
values

passing to functions, 155-156
returning

by reference, 185-187
from functions, 161-164

variables

automatic variables, 180

initialization, 181
lifetime, 180
scope, 181
storage, 185
visibility, 181

bool variables, 43-44, 103
C-strings, 265-266
character variables

char character variable, 35-36
character constants, 36-37
switch statement, 99
wchar t character variable, 35-36

data types, 46

casts, 50-52
conversions, 48-49
type safety, 52
unsigned data types, 47-48

declarations, 33
defining, 33

at point of use, 39
in for statements, 76
multiple definitions, 46

external variables, 182-183

initialization, 183
lifetime, 183
purpose of, 183
scope, 183

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

storage, 185
visibility, 183

floating point variables, 40

constants, 42-43
double, 42
float, 41-42
long double, 42

global variables, see external variables
identifiers, 33
initialization, 37
instance variables, 11
integer variables, 31

assignment statements, 33-34
defining, 31-33
int integer variable, 31-33
integer constants, 34
long integer variables, 35
output variations, 34
short integer variables, 35
true/false values, 106

local variables, see automatic variables
names, 33

conventions, 33
keywords, 33

passing to functions, 154-155
pointers, 392-393, 395-397, 401-402
static variables, 183-184

initialization, 185
storage, 185

storage classes, 179

automatic variables, 180-181
external variables, 182-183
static variables, 183-185
summary, 185

structures, 119

accessing members, 123-124, 130-131
assignment statements, 126
classes, 134
combining declaration and definition, 124-125
declaration, 120-122

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

defining, 122-123
definition of, 119
examples, 127-128, 132-134
initializing members, 125-126
members, 119-120, 123
names, 121
nesting, 129-132
syntax, 119-120
tags, 121

vectors, 655-656, 669-672

back(), 671
erase(), 671-672
insert(), 671-672
max size(), 670
pop back(), 671
push back(), 670
size(), 670
swap(), 671

virtual base classes, 466-468
virtual destructors, 465-466
virtual functions, 453-454

examples, 460-465
pointers, 456-458
pure virtual functions, 459-460

virtual keyword, 456, 468, 790
visibility of variables

automatic variables, 181
external variables, 183

Visual C++, 791

building existing files, 792
Console Graphics Lite, 794-795
debugging programs, 795

breakpoints, 796
single stepping, 795-796
stepping into functions, 796
watching variables, 796

file extensions, 791
multifile programs, 793-794

closing, 794
compiling, 794
linking, 794

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

opening, 794
saving, 794

projects, 793
RTTI, 793
screen elements, 791
single-file programs, 792
source files, 793-794
workspaces, 793
writing files, 792-793

void keyword, 149, 163, 790
void pointers, 398
volatile keyword, 790

W-Z
w = width() member function, 518
wait() function, 809-810
wchar t character variable, 35-36
wchar t keyword, 790
while loop, 77-79

multiple statements, 79-80
precedence of operators, 80-81
test expressions, 78
uses, 84

whitespace, 26-27
width() member function, 518
Windows Game Programming for Dummies, 890
workspaces (Visual C++), 793
write() member function, 521, 536
writing

data to formatted files, 528-529
function objects, 710-714
objects to a disk, 535-536
programs, 753

aggregates declarations, 758-759
attribute declarations, 758
class declarations, 758
CPP files, 759-768
header file, 753-758
method declarations, 759

ws manipulator, 517
xalloc class, 646
XOR logical operator, 105

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

CHAPTER 1
THE BIG PICTURE

You will learn about the following in this chapter:
• Procedural versus object-
oriented languages

• Brief introduction to inheritance

• Features of object-oriented
languages

• C++ and C

• Brief introduction to classes and
objects

This book teaches you how to program in C++, a computer language that supports Object-Oriented
Programming (OOP). Why do we need OOP? What does it do that traditional languages like C,
Pascal, and BASIC don’t? What are the principles behind OOP? Two key concepts in OOP are
objects and classes. What do these terms mean? What is the relationship between C++ and the older
C language?

This chapter explores these questions and provides an overview of the features to be discussed in
the balance of the book. What we say here will necessarily be rather general (although mercifully
brief). If you find the discussion somewhat abstract, don’t worry. The concepts we mention here
will come into focus as we demonstrate them in detail in subsequent chapters.

Why Do We Need Object-Oriented Programming?

Object-Oriented Programming was developed because limitations were discovered in earlier
approaches to programming. To appreciate what OOP does, we need to understand what these
limitations are and how they arose from traditional programming languages.

Procedural Languages

C, Pascal, FORTRAN, and similar languages are procedural languages. That is, each statement in
the language tells the computer to do something: Get some input, add these numbers, divide by 6,
display that output. A program in a procedural language is a list of instructions.

For very small programs, no other organizing principle (often called a paradigm) is needed. The
programmer creates the list of instructions, and the computer carries them out.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Division into Functions

When programs become larger, a single list of instructions becomes unwieldy. Few programmers
can comprehend a program of more than a few hundred statements unless it is broken down into
smaller units. For this reason the function was adopted as a way to make programs more
comprehensible to their human creators. (The term function is used in C++ and C. In other
languages the same concept may be referred to as a subroutine, a subprogram, or a procedure.) A
procedural program is divided into functions, and (ideally, at least) each function has a clearly
defined purpose and a clearly defined interface to the other functions in the program.

The idea of breaking a program into functions can be further extended by grouping a number of
functions together into a larger entity called a module (which is often a file), but the principle is
similar: a grouping of components that carries out specific tasks.

Dividing a program into functions and modules is one of the cornerstones of structured
programming, the somewhat loosely defined discipline that influenced programming organization
for several decades before the advent of Object-Oriented Programming.

Problems with Structured Programming

As programs grow ever larger and more complex, even the structured programming approach
begins to show signs of strain. You may have heard about, or been involved in, horror stories of
program development. The project is too complex, the schedule slips, more programmers are added,
complexity increases, costs skyrocket, the schedule slips further, and disaster ensues. (See The
Mythical Man-Month, by Frederick P. Brooks, Jr., Addison-Wesley, 1982, for a vivid description of
this process.)

Analyzing the reasons for these failures reveals that there are weaknesses in the procedural
paradigm itself. No matter how well the structured programming approach is implemented, large
programs become excessively complex.

What are the reasons for these problems with procedural languages? There are two related
problems. First, functions have unrestricted access to global data. Second, unrelated functions and
data, the basis of the procedural paradigm, provide a poor model of the real world.

Let’s examine these problems in the context of an inventory program. One important global data
item in such a program is the collection of items in the inventory. Various functions access this data
to input a new item, display an item, modify an item, and so on.

Unrestricted Access

In a procedural program, one written in C for example, there are two kinds of data. Local data is
hidden inside a function, and is used exclusively by the function. In the inventory program a
display function might use local data to remember which item it was displaying. Local data is
closely related to its function and is safe from modification by other functions.

However, when two or more functions must access the same data—and this is true of the most
important data in a program—then the data must be made global, as our collection of inventory
items is. Global data can be accessed by any function in the program. (We ignore the issue of
grouping functions into modules, which doesn’t materially affect our argument.) The arrangement
of local and global variables in a procedural program is shown in Figure 1.1.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1.1 Global and local variables.

In a large program, there are many functions and many global data items. The problem with the
procedural paradigm is that this leads to an even larger number of potential connections between
functions and data, as shown in Figure 1.2.

This large number of connections causes problems in several ways. First, it makes a program’s
structure difficult to conceptualize. Second, it makes the program difficult to modify. A change
made in a global data item may result in rewriting all the functions that access that item.

For example, in our inventory program, someone may decide that the product codes for the
inventory items should be changed from five digits to 12 digits. This may necessitate a change from
a short to a long data type.

Figure 1.2 The procedural paradigm.

Now all the functions that operate on the data must be modified to deal with a long instead of a short.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now all the functions that operate on the data must be modified to deal with a long instead of a short.
It’s similar to what happens when your local supermarket moves the bread from aisle 4 to aisle 7.
Everyone who patronizes the supermarket must then figure out where the bread has gone, and
adjust their shopping habits accordingly.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

When data items are modified in a large program it may not be easy to tell which functions access
the data, and even when you figure this out, modifications to the functions may cause them to work
incorrectly with other global data items. Everything is related to everything else, so a modification
anywhere has far-reaching, and often unintended, consequences.

Real-World Modeling

The second—and more important—problem with the procedural paradigm is that its arrangement of
separate data and functions does a poor job of modeling things in the real world. In the physical
world we deal with objects such as people and cars. Such objects aren’t like data and they aren’t
like functions. Complex real-world objects have both attributes and behavior.

Attributes

Examples of attributes (sometimes called characteristics) are, for people, eye color and job titles;
and, for cars, horsepower and number of doors. As it turns out, attributes in the real world are
equivalent to data in a program: they have a certain specific values, such as blue (for eye color) or
four (for the number of doors).

Behavior

Behavior is something a real-world object does in response to some stimulus. If you ask your boss
for a raise, she will generally say yes or no. If you apply the brakes in a car, it will generally stop.
Saying something and stopping are examples of behavior. Behavior is like a function: you call a
function to do something, like display the inventory, and it does it.

So neither data nor functions, by themselves, model real world objects effectively.

New Data Types

There are other problems with procedural languages. One is the difficulty of creating new data
types. Computer languages typically have several built-in data types: integers, floating-point
numbers, characters, and so on. What if you want to invent your own data type? Perhaps you want
to work with complex numbers, or two-dimensional coordinates, or dates—quantities the built-in
data types don’t handle easily. Being able to create your own types is called extensibility; you can
extend the capabilities of the language. Traditional languages are not usually extensible. Without
unnatural convolutions, you can’t bundle both x and y coordinates together into a single variable
called Point, and then add and subtract values of this type. The result is that traditional programs
are more complex to write and maintain.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Object-Oriented Approach

The fundamental idea behind object-oriented languages is to combine into a single unit both data
and the functions that operate on that data. Such a unit is called an object.

An object’s functions, called member functions in C++, typically provide the only way to access its
data. If you want to read a data item in an object, you call a member function in the object. It will
access the data and return the value to you. You can’t access the data directly. The data is hidden
so it is safe from accidental alteration. Data and its functions are said to be encapsulated into a
single entity. Data encapsulation and data hiding are key terms in the description of object-oriented
languages.

If you want to modify the data in an object, you know exactly what functions interact with it: the
member functions in the object. No other functions can access the data. This simplifies writing,
debugging, and maintaining the program.

A C++ program typically consists of a number of objects, which communicate with each other by
calling one another’s member functions. The organization of a C++ program is shown in Figure 1.3.

We should mention that what are called member functions in C++ are called methods in some other
object-oriented (OO) languages (such as Smalltalk, one of the first OO languages). Also, data items
are referred to as attributes or instance variables. Calling an object’s member function is referred to
as sending a message to the object. These terms are not official C++ terminology, but they are used
with increasing frequency, especially in object-oriented design.

Figure 1.3 The object-oriented paradigm.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An Analogy

You might want to think of objects as departments—such as sales, accounting, personnel, and so on
—in a company. Departments provide an important approach to corporate organization. In most
companies (except very small ones), people don’t work on personnel problems one day, the payroll
the next, and then go out in the field as salespeople the week after. Each department has its own
personnel, with clearly assigned duties. It also has its own data: the accounting department has
payroll figures, the sales department has sales figures, the personnel department keeps records of
each employee, and so on.

The people in each department control and operate on that department’s data. Dividing the
company into departments makes it easier to comprehend and control the company’s activities, and
helps maintain the integrity of the information used by the company. The accounting department,
for instance, is responsible for the payroll data. If you’re a sales manager, and you need to know the
total of all the salaries paid in the southern region in July, you don’t just walk into the accounting
department and start rummaging through file cabinets. You send a memo to the appropriate person
in the department, then wait for that person to access the data and send you a reply with the
information you want. This ensures that the data is accessed accurately and that it is not corrupted
by inept outsiders. This view of corporate organization is shown in Figure 1.4. In the same way,
objects provide an approach to program organization while helping to maintain the integrity of the
program’s data.

Figure 1.4 The corporate paradigm.

OOP: An Approach to Organization

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Keep in mind that Object-Oriented Programming is not primarily concerned with the details of
program operation. Instead, it deals with the overall organization of the program. Most individual
program statements in C++ are similar to statements in procedural languages, and many are
identical to statements in C. Indeed, an entire member function in a C++ program may be very
similar to a procedural function in C. It is only when you look at the larger context that you can
determine whether a statement or a function is part of a procedural C program or an object-oriented
C++ program.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Characteristics of Object-Oriented Languages

Let’s briefly examine a few of the major elements of object-oriented languages in general, and C
in particular.

Objects

When you approach a programming problem in an object-oriented language, you no longer ask how
the problem will be divided into functions, but how it will be divided into objects. Thinking in
terms of objects, rather than functions, has a surprisingly helpful effect on how easily programs can
be designed. This results from the close match between objects in the programming sense and
objects in the real world. This process is described in detail in Chapter 16, “Object-Oriented
Design.”

What kinds of things become objects in object-oriented programs? The answer to this is limited
only by your imagination, but here are some typical categories to start you thinking:

• Physical objects

Automobiles in a traffic-flow simulation
Electrical components in a circuit-design program
Countries in an economics model
Aircraft in an air-traffic-control system

• Elements of the computer-user environment

Windows
Menus
Graphics objects (lines, rectangles, circles)
The mouse, keyboard, disk drives, printer

• Data-storage constructs

Customized arrays
Stacks
Linked lists
Binary trees

• Human entities

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

• Human entities

Employees
Students
Customers
Salespeople

• Collections of data

An inventory
A personnel file
A dictionary
A table of the latitudes and longitudes of world cities

• User-defined data types

Time
Angles
Complex numbers
Points on the plane

• Components in computer games

Cars in an auto race
Positions in a board game (chess, checkers)
Animals in an ecological simulation
Opponents and friends in adventure games

The match between programming objects and real-world objects is the happy result of combining
data and functions: The resulting objects offer a revolution in program design. No such close match
between programming constructs and the items being modeled exists in a procedural language.

Classes

In OOP we say that objects are members of classes. What does this mean? Let’s look at an analogy.
Almost all computer languages have built-in data types. For instance, a data type int, meaning
integer, is predefined in C++ (as we’ll see in Chapter 3, “Loops and Decisions”). You can declare as
many variables of type int as you need in your program:

int day;
int count;
int divisor;
int answer;

In a similar way, you can define many objects of the same class, as shown in Figure 1.5. A class
serves as a plan, or template. It specifies what data and what functions will be included in objects of
that class. Defining the class doesn’t create any objects, just as the mere existence of data type int
doesn’t create any variables.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1.5 A class and its objects.

A class is thus a description of a number of similar objects. This fits our non-technical
understanding of the word class. Prince, Sting, and Madonna are members of the class of rock
musicians. There is no one person called “rock musician,” but specific people with specific names
are members of this class if they possess certain characteristics.

Inheritance

The idea of classes leads to the idea of inheritance. In our daily lives, we use the concept of classes
as divided into subclasses. We know that the class of animals is divided into mammals, amphibians,
insects, birds, and so on. The class of vehicles is divided into cars, trucks, buses, and motorcycles.

The principle in this sort of division is that each subclass shares common characteristics with the
class from which it’s derived. Cars, trucks, buses, and motorcycles all have wheels and a motor;
these are the defining characteristics of vehicles. In addition to the characteristics shared with other
members of the class, each subclass also has its own particular characteristics: Buses, for instance,
have seats for many people, while trucks have space for hauling heavy loads.

This idea is shown in Figure 1.6. Notice in the figure that features A and B, which are part of the
base class, are common to all the derived classes, but that each derived class also has features of its
own.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1.6 Inheritance.

In a similar way, an OOP class can be divided into subclasses. In C++ the original class is called the
base class; other classes can be defined that share its characteristics, but add their own as well.
These are called derived classes.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Don’t confuse the relation of objects to classes, on the one hand, with the relation of a base class to
derived classes, on the other. Objects, which exist in the computer’s memory, each embody the
exact characteristics of their class, which serves as a template. Derived classes inherit some
characteristics from their base class, but add new ones of their own.

Inheritance is somewhat analogous to using functions to simplify a traditional procedural program.
If we find that three different sections of a procedural program do almost exactly the same thing,
we recognize an opportunity to extract the common elements of these three sections and put them
into a single function. The three sections of the program can call the function to execute the
common actions, and they can perform their own individual processing as well. Similarly, a base
class contains elements common to a group of derived classes. As functions do in a procedural
program, inheritance shortens an object-oriented program and clarifies the relationship among
program elements.

Reusability

Once a class has been written, created, and debugged, it can be distributed to other programmers for
use in their own programs. This is called reusability. It is similar to the way a library of functions in
a procedural language can be incorporated into different programs.

However, in OOP, the concept of inheritance provides an important extension to the idea of
reusability. A programmer can take an existing class and, without modifying it, add additional
features and capabilities to it. This is done by deriving a new class from the existing one. The new
class will inherit the capabilities of the old one, but is free to add new features of its own.

For example, you might have written (or purchased from someone else) a class that creates a menu
system, such as that used in Windows or other Graphic User Interfaces (GUIs). This class works
fine, and you don’t want to change it, but you want to add the capability to make some menu entries
flash on and off. To do this, you simply create a new class that inherits all the capabilities of the
existing one but adds flashing menu entries.

The ease with which existing software can be reused is an important benefit of OOP. Many
companies find that being able to reuse classes on a second project provides an increased return on
their original programming investment. We’ll have more to say about this in later chapters.

Creating New Data Types

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

One of the benefits of objects is that they give the programmer a convenient way to construct new
data types. Suppose you work with two-dimensional positions (such as x and y coordinates, or
latitude and longitude) in your program. You would like to express operations on these positional
values with normal arithmetic operations, such as

position1 = position2 + origin

where the variables position1, position2, and origin each represent a pair of independent numerical
quantities. By creating a class that incorporates these two values, and declaring position1, position2
and origin to be objects of this class, we can, in effect, create a new data type. Many features of C
are intended to facilitate the creation of new data types in this manner.

Polymorphism and Overloading

Note that the = (equal) and + (plus) operators, used in the position arithmetic shown above, don’t
act the same way they do in operations on built-in types like int. The objects position1 and so on are
not predefined in C++, but are programmer-defined objects of class Position. How do the = and +
operators know how to operate on objects? The answer is that we can define new operations for
these operators. These operations will be member functions of the Position class.

Using operators or functions in different ways, depending on what they are operating on, is called
polymorphism (one thing with several distinct forms). When an existing operator, such as + or =, is
given the capability to operate on a new data type, it is said to be overloaded. Overloading is a kind
of polymorphism; it is also an important feature of OOP.

C++ and C

C++ is derived from the C language. Strictly speaking, it is a superset of C: Almost every correct
statement in C is also a correct statement in C++, although the reverse is not true. The most
important elements added to C to create C++ are concerned with classes, objects, and Object-
Oriented Programming. (C++ was originally called “C with classes.”) However, C++ has many
other new features as well, including an improved approach to input/output (I/O) and a new way to
write comments. Figure 1.7 shows the relationship of C and C++.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1.7 The relationship between C and C++.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

In fact, the practical differences between C and C++ are larger than you might think. Although you
can write a program in C++ that looks like a program in C, hardly anyone does. C++ programmers
not only make use of the new features of C++, they also emphasize the traditional C features in
different proportions than do C programmers.

If you already know C, you will have a head start in learning C++ (although you may also have
some bad habits to unlearn), but much of the material will be new.

Laying the Groundwork

Our goal is to help you begin writing OOP programs as soon as possible. However, as we noted,
much of C++ is inherited from C, so while the overall structure of a C++ program may be OOP,
down in the trenches you need to know some old-fashioned procedural fundamentals. Chapters 2
through 5 therefore deal with the “traditional” aspects of C++, many of which are also found in C.
You will learn about variables and I/O, about control structures like loops and decisions, and about
functions themselves. You will also learn about structures, since the same syntax that’s used for
structures is used for classes.

If you already know C, you might be tempted to skip these chapters. However, you will find that
there are many differences, some obvious and some rather subtle, between C and C++. Our advice
is to read these chapters, skimming what you know, and concentrating on the ways C++ differs from
C.

The specific discussion of OOP starts in Chapter 6, “Objects and Classes,” when we begin to
explore objects and classes. From then on the examples will be object oriented.

Summary

OOP is a way of organizing programs. The emphasis is on the way programs are designed, not on
coding details. In particular, OOP programs are organized around objects, which contain both data
and functions that act on that data. A class is a template for a number of objects.

Inheritance allows a class to be derived from an existing class without modifying it. The derived
class has all the data and functions of the parent class, but adds new ones of its own. Inheritance
makes possible reuseability, or using a class over and over in different programs.

C++ is a superset of C. It adds to the C language the capability to implement OOP. It also adds a
variety of other features. In addition, the emphasis is changed in C++, so that some features
common to C, although still available in C++, are seldom used, while others are used far more

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

common to C, although still available in C++, are seldom used, while others are used far more
frequently. The result is a surprisingly different language.

The general concepts discussed in this chapter will become more concrete as you learn more about
the details of C++. You may want to refer back to this chapter as you progress further into this
book.

Questions

Answers to questions can be found in Appendix G, “Answers to Questions and Exercises.” Note
that throughout this book, multiple-choice questions can have more than one correct answer.

1. Pascal, BASIC, and C are p___ languages, while C++ is an o ____.language.
2. A widget is to the blueprint for a widget as an object is to

a. a member function.
b. a class.
c. an operator.
d. a data item.

3. The two major components of an object are ___ and functions that _____.
4. In C++, a function contained within a class is called

a. a member function.
b. an operator.
c. a class function.
d. a method.

5. Protecting data from access by unauthorized functions is called ____.
6. Which of the following are good reasons to use an object-oriented language?

a. You can define your own data types.
b. Program statements are simpler than in procedural languages.
c. An OO program can be taught to correct its own errors.
d. It’s easier to conceptualize an OO program.

7. _____ model entities in the real world more closely than do functions.
8. True or false: A C++ program is similar to a C program except for the details of coding.
9. Bundling data and functions together is called ____.
10. When a language has the capability to produce new data types, it is said to be

a. reprehensible.
b. encapsulated.
c. overloaded.
d. extensible.

11. True or false: You can easily tell, from any two lines of code, whether a program is
written in C or C++.
12. The ability of a function or operator to act in different ways on different data types is
called __________.
13. A normal C++ operator that acts in special ways on newly defined data types is said to be

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13. A normal C++ operator that acts in special ways on newly defined data types is said to be

a. glorified.
b. encapsulated.
c. classified.
d. overloaded.

14. Memorizing the new terms used in C++ is

a. critically important.
b. something you can return to later.
c. the key to wealth and success.
d. completely irrelevant.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

CHAPTER 2
C++ PROGRAMMING BASICS

You will learn about the following in this chapter:
• C++ program structure • Arithmetic operators
• Variables • Assignment and increment

operators
• Input/output with cout and cin

In any language there are some fundamentals you need to know before you can write even the most
elementary programs. This chapter introduces three such fundamentals: basic program construction,
variables, and input/output (I/O). It also touches on a variety of other language features, including
comments, arithmetic operators, the increment operator, data conversion, and library functions.

These topics are not conceptually difficult, but you may find that the style in C++ is a little austere
compared with, say, BASIC or Pascal. Before you learn what it’s all about, a C++ program may
remind you more of a mathematics formula than a computer program. Don’t worry about this.
You’ll find that as you gain familiarity with C++, it starts to look less forbidding, while other
languages begin to seem unnecessarily fancy and verbose.

Getting Started

As we noted in the introduction, you can use either a Microsoft or an Inprise (formerly Borland)
compiler with this book. Appendixes C and D provide details about their operation. The compilers
take source code and transform it into executable files, which your computer can run as it does
other programs. Source files are text files (extension .CPP) that correspond with the listings printed
in this book. Executable files have the .EXE extension, and can be executed either from within your
compiler, or, if you’re familiar with MS-DOS, directly from a DOS window.

The programs run without modification on the Microsoft compiler or in an MS-DOS window. If
you’re using the Borland compiler, you’ll need to modify the programs slightly before running
them; otherwise the output won’t remain on the screen long enough to see. Make sure to read
Appendix D, “Borland C++,” to see how this is done.

Basic Program Construction

Let’s look at a very simple C++ program. This program is called FIRST, so its source file is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Let’s look at a very simple C++ program. This program is called FIRST, so its source file is
FIRST.CPP. It simply prints a sentence on the screen. Here it is:

#include <iostream>
using namespace std;

int main()
 {
 cout << “Every age has a language of its own\n”;
 return 0;
 }

Despite its small size, this program demonstrates a great deal about the construction of C++
programs. Let’s examine it in detail.

Functions

Functions are one of the fundamental building blocks of C++. The FIRST program consists almost
entirely of a single function called main(). The only parts of this program that are not part of the
function are the first two lines—the ones that start with #include and using. (We’ll see what these
lines do in a moment.)

We noted in Chapter 1, “The Big Picture,” that a function can be part of a class, in which case it is
called a member function. However, functions can also exist independently of classes. We are not
yet ready to talk about classes, so we will show functions that are separate standalone entities, as
main() is here.

Function Name

The parentheses following the word main are the distinguishing feature of a function. Without the
parentheses the compiler would think that main refers to a variable or to some other program
element. When we discuss functions in the text, we’ll follow the same convention that C++ uses:
We’ll put parentheses following the function name. Later on we’ll see that the parentheses aren’t
always empty. They’re used to hold function arguments: values passed from the calling program to
the function.

The word int preceding the function name indicates that this particular function has a return value of
type int. Don’t worry about this now; we’ll learn about data types later in this chapter and return
values in Chapter 5, “Functions.”

Braces and the Function Body

The body of a function is surrounded by braces (sometimes called curly brackets). These braces
play the same role as the BEGIN and END keywords in some other languages: They surround or
delimit a block of program statements. Every function must use this pair of braces around the
function body. In this example there are only two statements in the function body: the line starting
with cout, and the line starting with return. However, a function body can consist of many statements.

Always Start with main()

When you run a C++ program, the first statement executed will be at the beginning of a function
called main(). The program may consist of many functions, classes, and other program elements, but
on startup, control always goes to main(). If there is no function called main() in your program, an
error will be signaled.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In most C++ programs, as we’ll see later, main() calls member functions in various objects to carry
out the program’s real work. The main() function may also contain calls to other standalone
functions. This is shown in Figure 2.1.

Figure 2.1 Objects, functions and main().

Program Statements

The program statement is the fundamental unit of C++ programming. There are two statements in
the FIRST program: the line

cout << “Every age has a language of its own\n”;

and the return statement

return 0;

The first statement tells the computer to display the quoted phrase. Most statements tell the
computer to do something. In this respect, statements in C++ are similar to statements in other
languages. In fact, as we’ve noted, the majority of statements in C++ are identical to statements in
C.

A semicolon signals the end of the statement. This is a crucial part of the syntax but easy to forget.
In some languages (like BASIC), the end of a statement is signaled by the end of the line, but that’s
not true in C++. If you leave out the semicolon, the compiler will often (although not always) signal
an error.

The last statement in the function body is return 0;. This tells main() to return the value 0 to whoever

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The last statement in the function body is return 0;. This tells main() to return the value 0 to whoever
called it, in this case the operating system or compiler. In older versions of C++ you could give
main() the return type of void and dispense with the return statement, but this is not considered
correct in Standard C++. We’ll learn more about return in Chapter 5.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Whitespace

We mentioned that the end of a line isn’t important to a C++ compiler. Actually, the compiler
ignores whitespace almost completely. Whitespace is defined as spaces, carriage returns, linefeeds,
tabs, vertical tabs, and formfeeds. These characters are invisible to the compiler. You can put
several statements on one line, separated by any number of spaces or tabs, or you can run a
statement over two or more lines. It’s all the same to the compiler. Thus the FIRST program could be
written this way:

#include <iostream>
using
namespace std;

int main () { cout
<<
“Every age has a language of its own\n”
; return
0;}

We don’t recommend this syntax—it’s nonstandard and hard to read—but it does compile
correctly.

There are several exceptions to the rule that whitespace is invisible to the compiler. The first line of
the program, starting with #include, is a preprocessor directive, which must be written on one line.
Also, string constants, such as “Every age has a language of its own”, cannot be broken into separate
lines. (If you need a long string constant, you can insert a backslash (\) at the line break, or divide
the string into two separate strings, each surrounded by quotes.)

Output Using cout

As you have seen, the statement

cout << “Every age has a language of its own\n”;

causes the phrase in quotation marks to be displayed on the screen. How does this work? A
complete description of this statement requires an understanding of objects, operator overloading,
and other topics we won’t discuss until later in the book, but here’s a brief preview.

The identifier cout (pronounced “C out”) is actually an object. It is predefined in C++ to correspond
to the standard output stream. A stream is an abstraction that refers to a flow of data. The standard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

to the standard output stream. A stream is an abstraction that refers to a flow of data. The standard
output stream normally flows to the screen display—although it can be redirected to other output
devices. We’ll discuss streams (and redirection) in Chapter 12, “Streams and Files”

The operator << is called the insertion or put to operator. It directs the contents of the variable on its
right to the object on its left. In FIRST it directs the string constant “Every age has a language of its own\n
to cout, which sends it to the display.

(If you know C, you’ll recognize << as the left-shift bit-wise operator and wonder how it can also be
used to direct output. In C++, operators can be overloaded. That is, they can perform different
activities, depending on the context. We’ll learn about overloading in Chapter 8, “Operator
Overloading.”)

Although the concepts behind the use of cout and << may be obscure at this point, using them is
easy. They’ll appear in almost every example program. Figure 2.2 shows the result of using cout and
the insertion operator <<.

Figure 2.2 Output with cout.

String Constants

The phrase in quotation marks, “Every age has a language of its own\n”, is an example of a string
constant. As you probably know, a constant, unlike a variable, cannot be given a new value as the
program runs. Its value is set when the program is written, and it retains this value throughout the
program’s existence.

As we’ll see later, the situation regarding strings is rather complicated in C++. Two ways of
handling strings are commonly used. A string can be represented by an array of characters, or it can
be represented as an object of a class. We’ll learn more about both kinds of strings in Chapter 7,
“Arrays and Strings.”

The ‘\n’ character at the end of string constant is an example of an escape sequence. It causes the
next text output to be displayed on a new line. We use it here so that the phrases such as “Press any
key to continue,” inserted by some compilers for display after the program terminates, will appear
on a new line. We’ll discuss escape sequences later in this chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Directives

The two lines that begin the FIRST program are directives. The first is a preprocessor directive, and
the second is a using directive. They occupy a sort of gray area: They’re not part of the basic C++
language, but they’re necessary anyway.

Preprocessor Directives

The first line of the FIRST program,

#include <iostream>

might look like a program statement, but it’s not. It isn’t part of a function body and doesn’t end
with a semicolon, as program statements must. Instead, it starts with a number sign (#). It’s called a
preprocessor directive. Recall that program statements are instructions to the computer to do
something, like adding two numbers or printing a sentence. A preprocessor directive, on the other
hand, is an instruction to the compiler. A part of the compiler called the preprocessor deals with
these directives before it begins the real compilation process.

The preprocessor directive #include tells the compiler to insert another file into your source file. In
effect, the #include directive is replaced by the contents of the file indicated. Using an #include
directive to insert another file into your source file is similar to pasting a block of text into a
document with your word processor.

#include is only one of many preprocessor directives, all of which can be identified by the initial #
sign. The use of preprocessor directives is not as common in C++ as it is in C, but we’ll look at a
few additional examples as we go along. The type file usually included by #include is called a
header file.

Header Files

In the FIRST example, the preprocessor directive #include tells the compiler to add the source file
IOSTREAM to the FIRST.CPP source file before compiling. Why do this? IOSTREAM is an example of
a header file (sometimes called an include file). It’s concerned with basic input/output operations,
and contains declarations that are needed by the cout identifier and the << operator. Without these
declarations, the compiler won’t recognize cout and will think << is being used incorrectly. There
are many such include files. The newer Standard C++ header files don’t have a file extension, but
some older header files, left over from the days of the C language, have the extension .H.

If you want to see what’s in IOSTREAM, you can use your compiler to find the include directory for
your compiler and display it as a source file in the edit window. Or you can look at it with the
Wordpad or Notepad utilities. The contents won’t make much sense at this point, but you will at
least prove to yourself that IOSTREAM is a source file, written in normal ASCII characters.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

We’ll return to the topic of header files at the end of this chapter, when we introduce library
functions.

The using Directive

A C++ program can be divided into different namespaces. A namespace is a part of the program in
which certain names are recognized; outside of the namespace they’re unknown. The directive

using namespace std;

says that all the program statements that follow are within the std namespace. Various program
components such as cout are declared within this namespace. If we didn’t use the using directive, we
would need to append the std name to many program elements. For example, in the FIRST program
we’d need to say

std::cout << “Every age has a language of its own.”;

To avoid adding std:: dozens of times in programs we use the using directive instead. We’ll discuss
namespaces further in Chapter 13, “Multifile Programs.”

Comments

Comments are an important part of any program. They help the person writing a program, and
anyone else who must read the source file, understand what’s going on. The compiler ignores
comments, so they do not add to the file size or execution time of the executable program.

Comment Syntax

Let’s rewrite our FIRST program, incorporating comments into our source file. We’ll call the new
program COMMENTS:

// comments.cpp
// demonstrates comments
#include <iostream> //preprocessor directive
using namespace std; //”using” directive

int main() //function name “main”
 { //start function body
 cout << “Every age has a language of its own\n”; //statement
 return 0; //statement
 } //end function body

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 } //end function body

Comments start with a double slash symbol (//) and terminate at the end of the line. (This is one of
the exceptions to the rule that the compiler ignores whitespace.) A comment can start at the
beginning of the line or on the same line following a program statement. Both possibilities are
shown in the COMMENTS example.

When to Use Comments

Comments are almost always a good thing. Most programmers don’t use enough of them. If you’re
tempted to leave out comments, remember that not everyone is as smart as you; they may need
more explanation than you do about what your program is doing. Also, you may not be as smart
next month, when you’ve forgotten key details of your program’s operation, as you are today.

Use comments to explain to the person looking at the listing what you’re trying to do. The details
are in the program statements themselves, so the comments should concentrate on the big picture,
clarifying your reasons for using a certain statement or group of statements.

Alternative Comment Syntax

There’s a second comment style available in C++:

/* this is an old-style comment */

This type of comment (the only comment originally available in C) begins with the /* character pair
and ends with */ (not with the end of the line). These symbols are harder to type (since / is
lowercase while * is uppercase) and take up more space on the line, so this style is not generally
used in C++. However, it has advantages in special situations. You can write a multiline comment
with only two comment symbols:

/* this
is a
potentially
very long
multiline
comment
*/

This is a good approach to making a comment out of a large text passage, since it saves inserting
the // symbol on every line.

You can also insert a /* */ comment anywhere within the text of a program line:

func1()
 { /* empty function body */ }

If you attempt to use the // style comment in this case, the closing brace won’t be visible to the
compiler—since a // style comment runs to the end of the line—and the code won’t compile
correctly.

Integer Variables

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Variables are the most fundamental part of any language. A variable has a symbolic name and can
be given a variety of values. Variables are located in particular places in the computer’s memory.
When a variable is given a value, that value is actually placed in the memory space assigned to the
variable. Most popular languages use the same general variable types, such as integers, floating-
point numbers, and characters, so you are probably already familiar with the ideas behind them.

Integer variables represent integer numbers like 1, 30,000, and –27. Such numbers are used for
counting discrete numbers of objects, like 11 pencils or 99 bottles of beer. Unlike floating-point
numbers, integers have no fractional part; you can express the idea of four using integers, but not
four and one-half.

Defining Integer Variables

Integer variables exist in several sizes, but the most commonly used is type int. The amount of
memory occupied by the integer types is system dependent. On a 32-bit system like Windows 98,
an int occupies 4 bytes (which is 32 bits) of memory. This allows an int to hold numbers in the range
from –2,147,483,648 to 2,147,483,647. Figure 2.3 shows an integer variable in memory.

While type int occupies 4 bytes on current Windows computers, it occupied only 2 bytes in MS-
DOS and earlier versions of Windows. The ranges occupied by the various types are listed in the
header file LIMITS; you can also look them up using your compiler’s help system.

Figure 2.3 Variable of type int in memory.

Here’s a program that defines and uses several variables of type int:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// intvars.cpp
// demonstrates integer variables
#include <iostream>
using namespace std;

int main()
 {
 int var1; //define var1
 int var2; //define var2

 var1 = 20; //assign value to var1
 var2 = var1 + 10; //assign value to var2
 cout << “var1+10 is “; //output text
 cout << var2 << endl; //output value of var2
 return 0;
 }

Type this program into your compiler’s edit screen (or load it from the Web site), compile and link
it, and then run it. Examine the output window. The statements

int var1;
int var2;

define two integer variables, var1 and var2. The keyword int signals the type of variable. These
statements, which are called declarations, must terminate with a semicolon, like other program
statements.

You must declare a variable before using it. However, you can place variable declarations
anywhere in a program. It’s not necessary to declare variables before the first executable statement
(as was necessary in C). However, it’s probably more readable if commonly used variables are
located at the beginning of the program.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Declarations and Definitions

Let’s digress for a moment to note a subtle distinction between the terms definition and declaration
as applied to variables.

A declaration introduces a variable’s name (such as var1) into a program and specifies its type (such
as int). However, if a declaration also sets aside memory for the variable, it is also called a
definition. The statements

int var1;
int var2;

in the INTVARS program are definitions because they set aside memory for var1 and var2. We’ll be
concerned mostly with declarations that are also definitions; but later on we’ll see various kinds of
declarations that are not definitions.

Variable Names

The program INTVARS uses variables named var1 and var2. The names given to variables (and other
program features) are called identifiers. What are the rules for writing identifiers? You can use
upper- and lowercase letters, and the digits from 1 to 9. You can also use the underscore (_). The
first character must be a letter or underscore. Identifiers can be as long as you like, but only the first
247 characters (in Visual C++) or 250 characters (in C++ Builder) will be recognized. The compiler
distinguishes between upper- and lowercase letters, so Var is not the same as var or VAR.

You can’t use a C++ keyword as a variable name e. A keyword is a predefined word with a special
meaning, like int, class, if, while, and so on. A complete list of keywords can be found in Appendix B,
“C++ Keywords,” and in your compiler’s documentation.

Many C++ programmers follow the convention of using all lowercase letters for variable names.
Other programmers use a mixture of upper- and lowercase, as in IntVar or dataCount. Still others
make liberal use of underscores. Whichever approach you use, it’s good to be consistent throughout
a program. Names in all uppercase are sometimes reserved for constants (see the discussion of const
that follows). These same conventions apply to naming other program elements such as classes and
functions.

Assignment Statements

The statements

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

var1 = 20;
var2 = var1 + 10;

assign values to the two variables. The equal sign =, as you might guess, causes the value on the
right to be assigned to the variable on the left. The = in C++ is equivalent to the := in Pascal or the
in BASIC. In the first line shown here, var1, which previously had no value, is given the value 20.

Integer Constants

The number 20 is an integer constant. Constants don’t change during the course of the program. An
integer constant consists of numerical digits. There must be no decimal point in an integer constant,
and it must lie within the range of integers.

In the second program line shown here, the plus sign (+) adds the value of var1 and 10, in which 10
is another constant. The result of this addition is then assigned to var2.

Output Variations

The statement

cout << “var1+10 is “;

displays a string constant, as we’ve seen before. The next statement,

cout << var2 << endl;

displays the value of the variable var2. As you can see in your console output window, the output of
the program is

var1+10 is 30

Note that cout and the << operator know how to treat an integer and a string differently. If we send
them a string, they print it as text. If we send them an integer, they print it as a number. This may
seem obvious, but it is another example of operator overloading, a key feature of C++. (C
programmers will remember that such functions as printf() need to be told not only the variable to be
displayed, but the type of the variable as well, which makes the syntax far less intuitive.)

As you can see, the output of the two cout statements appears on the same line on the output screen.
No linefeed is inserted automatically. If you want to start on a new line, you must do it yourself.
We’ve seen how to do this with the ‘\n’ escape sequence; now we’ll see another way: using
something called a manipulator.

The endl Manipulator

The last cout statement in the INTVARS program ends with an unfamiliar word: endl. This causes a
linefeed to be inserted into the stream, so that subsequent text is displayed on the next line. It has
the same effect as sending the ‘\n’ character, but is somewhat clearer. It’s an example of a
manipulator. Manipulators are instructions to the output stream that modify the output in various
ways; we’ll see more of them as we go along. Strictly speaking, endl (unlike ‘\n’) also causes the
output buffer to be flushed, but this happens invisibly so for most purposes the two are equivalent.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Other Integer Types

There are several numerical integer types besides type int. These are types long and short. (Strictly
speaking type char is an integer type as well, but we’ll cover it separately.) We noted that the size of
type int is system dependent. In contrast, types long and short have fixed sizes no matter what system
is used.

Type long always occupies four bytes, which is the same as type int on 32-bit Windows systems.
Thus it has the same range, from –2,147,483,648 to 2,147,483,647. It can also be written as long
this means the same as long. There’s little point in using type long on 32-bit systems, since it’s the
same as int. However, if your program may need to run on a 16-bit system such as MS-DOS, or on
older versions of Windows, then specifying type long will guarantee a four-bit integer type. In 16-
bit systems, type int has the same range as type short.

On all systems type short occupies two bytes, giving it a range of –32,768 to 32,767. There’s
probably not much point using type short on modern Windows systems unless it’s important to save
memory. Type int, although twice as large, is accessed faster than type short.

If you want to create a constant of type long, use the letter L following the numerical value, as in

longvar = 7678L; // assigns long constant 7678 to longvar

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Many compilers offer integer types that explicitly specify the number of bits used. (Remember
there are 8 bits to a byte.) These type names are preceded by two underscores. They are __int8,
__int16, __int32, and __int64. The __int8 type corresponds to char, and (at least in 32-bit systems like
the current version of Windows) The type name __int16 corresponds to short and __int32 corresponds
to both int and long. The __int64 type holds huge integers with up to 19 decimal digits. Using these

Table 2.1 Common Escape Sequences
Escape Sequence Character
\a Bell (beep)
\b Backspace
\f Formfeed
\n Newline
\r Return
\t Tab
\\ Backslash
\‘ Single quotation mark
\“ Double quotation marks
\xdd Hexadecimal notation

Since the backslash, the single quotation marks, and the double quotation marks all have
specialized meanings when used in constants, they must be represented by escape sequences when
we want to display them as characters. Here’s an example of a quoted phrase in a string constant:

cout << “\”Run, Spot, run,\” she said.”;

This translates to

“Run, Spot, run,” she said.

Sometimes you need to represent a character constant that doesn’t appear on the keyboard, such as
the graphics characters above ASCII code 127. To do this, you can use the ‘\xdd’ representation,
where each d stands for a hexadecimal digit. If you want to print a solid rectangle, for example,

you’ll find such a character listed as decimal number 178, which is hexadecimal number B2 in the
ASCII table. This character would be represented by the character constant ‘\xB2’. We’ll see some

examples of this later.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

to both int and long. The __int64 type holds huge integers with up to 19 decimal digits. Using these
type names has the advantage that the number of bytes used for a variable is not implementation
dependent. However, this is not usually an issue, and these types are seldom used.

Character Variables

Type char stores integers that range in value from –128 to 127. Variables of this type occupy only 1
byte (eight bits) of memory. Character variables are sometimes used to store numbers that confine
themselves to this limited range, but they are much more commonly used to store ASCII characters.

As you may already know, the ASCII character set is a way of representing characters such as ‘a’
‘B’, ‘$’, ‘3’, and so on, as numbers. These numbers range from 0 to 127. Most Windows systems
extend this range to 255 to accommodate various foreign-language and graphics characters.
Appendix A, “ASCII Table,” shows the ASCII character set.

Complexities arise when foreign languages are used, and even when programs are transferred
between computer systems in the same language. This is because the characters in the range 128 to
255 aren’t standardized and because the one-byte size of type char is too small to accommodate the
number of characters in many languages, such as Japanese. Standard C++ provides a larger
character type called wchar_t to handle foreign languages. This is important if you’re writing
programs for international distribution. However, in this book we’ll ignore type wchar_t and assume
that we’re dealing with the ASCII character set found in current versions of Windows.

Character Constants

Character constants use single quotation marks around a character, like ‘a’ and ‘b’. (Note that this
differs from string constants, which use double quotation marks.) When the C++ compiler
encounters such a character constant, it translates it into the corresponding ASCII code. The
constant ‘a’ appearing in a program, for example, will be translated into 97, as shown in Figure 2.4.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2.4 Variable of type char in memory.

Character variables can be assigned character constants as values. The following program shows
some examples of character constants and variables.

// charvars.cpp
// demonstrates character variables
#include <iostream> //for cout, etc.
using namespace std;

int main()
 {
 char charvar1 = ‘A’; //define char variable as character
 char charvar2 = ‘\t’; //define char variable as tab

 cout << charvar1; //display character
 cout << charvar2; //display character
 charvar1 = ‘B’; //set char variable to char constant
 cout << charvar1; //display character
 cout << ‘\n’; //display newline character
 return 0;
 }

Initialization

Variables can be initialized at the same time they are defined. In this program two variables of type
char—charvar1 and charvar2—are initialized to the character constants ‘A’ and ‘\t’.

Escape Sequences

This second character constant, ‘\t’, is an odd one. Like ‘\n’ which we encountered earlier, it’s an
example of an escape sequence. The name reflects the fact that the backslash causes an “escape”
from the normal way characters are interpreted. In this case the t is interpreted not as the character
‘t’ but as the tab character. A tab causes printing to continue at the next tab stop. In console-mode
programs, tab stops are positioned every eight spaces. Another character constant, ‘\n’, is sent
directly to cout in the last line of the program.

Escape sequences can be used both as separate characters and also embedded in string constants.
Table 2.1 shows a list of common escape sequences.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

The CHARVARS program prints the value of charvar1 (‘A’) and the value of charvar2 (a tab). It then
sets charvar1 to a new value (‘B’), prints that, and finally prints the newline. The output looks like
this:

A B

Input with cin

Now that we’ve seen some variable types in use, let’s see how a program accomplishes input. The
next example program asks the user for a temperature in degrees Fahrenheit, converts it to Celsius,
and displays the result. It uses integer variables.

// fahren.cpp
// demonstrates cin, newline
#include <iostream>
using namespace std;

int main()
 {
 int ftemp; //for temperature in fahrenheit

 cout << “Enter temperature in fahrenheit: “;
 cin >> ftemp;
 int ctemp = (ftemp-32) * 5 / 9;
 cout << “Equivalent in Celsius is: “ << ctemp << ‘\n’;
 return 0;
 }

The statement

cin >> ftemp;

causes the program to wait for the user to type in a number. The resulting number is placed in the
variable ftemp. The keyword cin (pronounced “C in”) is an object, predefined in C++ to correspond
to the standard input stream. This stream represents data coming from the keyboard (unless it has
been redirected). The >> is the extraction or get from operator. It takes the value from the stream
object on its left and places it in the variable on its right.

Here’s some sample interaction with the program:

Enter temperature in fahrenheit: 212
Equivalent in Celsius is: 100

Figure 2.5 shows input using cin and the extraction operator >>.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2.5 Input with cin.

Variables Defined at Point of Use

The FAHREN program has several new wrinkles besides its input capability. Look closely at the
listing. Where is the variable ctemp defined? Not at the beginning of the program, but in the next-to-
the-last line, where it’s used to store the result of the arithmetic operation. As we noted earlier, you
can define variables throughout a program, not just at the beginning. (Many languages, including C,
require all variables to be defined before the first executable statement.)

Defining variables where they are used can make the listing easier to understand, since you don’t
need to refer repeatedly to the start of the listing to find the variable definitions. However, the
practice should be used with discretion. Variables that are used in many places in a function are
better defined at the start of the function.

Cascading <<

The insertion operator << is used repeatedly in the second cout statement in FAHREN. This is
perfectly legal. The program first sends the phrase Equivalent in celsius is: to cout, then it sends the
value of ctemp, and finally the newline character ‘\n’.

The extraction operator >> can be cascaded with cin in the same way, allowing the user to enter a
series of values. However, this capability is not used so often, since it eliminates the opportunity to
prompt the user between inputs.

Expressions

Any arrangement of variables, constants, and operators that specifies a computation is called an
expression. Thus, alpha+12 and (alpha-37)*beta/2 are expressions. When the computations specified in
the expression are performed, the result is usually a value. Thus if alpha is 7, the first expression
shown has the value 19.

Parts of expressions may also be expressions. In the second example, alpha-37 and beta/2 are
expressions. Even single variables and constants, like alpha and 37, are considered to be expressions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note that expressions aren’t the same as statements. Statements tell the compiler to do something
and terminate with a semicolon, while expressions specify a computation. There can be several
expressions in a statement.

Precedence

Note the parentheses in the expression

(ftemp-32) * 5 / 9

Without the parentheses, the multiplication would be carried out first, since * has higher priority
than -. With the parentheses, the subtraction is done first, then the multiplication, since all
operations inside parentheses are carried out first. What about the precedence of the * and / signs?
When two arithmetic operators have the same precedence, the one on the left is executed first, so
the multiplication will be carried out next; then the division. Precedence and parentheses are
normally applied this same way in algebra and in other computer languages, so their use probably
seems quite natural. However, precedence is an important topic in C++. We’ll return to it later when
we introduce different kinds of operators.

Floating Point Types

We’ve talked about type int and type char, both of which represent numbers as integers—that is,
numbers without a fractional part. Now let’s examine a different way of storing numbers—as
floating-point variables.

Floating-point variables represent numbers with a decimal place—like 3.1415927, 0.0000625, and
–10.2. They have both an integer part, to the left of the decimal point, and a fractional part, to the
right. Floating-point variables represent what mathematicians call real numbers, which are used for
measurable quantities like distance, area, and temperature and typically have a fractional part.

There are three kinds of floating-point variables in C++: type float, type double, and type long double
Let’s start with the smallest of these, type float.

Type float

Type float stores numbers in the range of about 3.4×10–38 to 3.4×1038, with a precision of seven
digits. It occupies 4 bytes (32 bits) in memory, as shown in Figure 2.6. The following example
program prompts the user to type in a floating-point number representing the radius of a circle. It
then calculates and displays the circle’s area.

// circarea.cpp

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2.6 Variable of type float in memory.

// demonstrates floating point variables
#include <iostream> //for cout, etc.
using namespace std;

int main()
 {
 float rad; //variable of type float
 const float PI = 3.14159F; //type const float

 cout << “Enter radius of circle: “; //prompt
 cin >> rad; //get radius
 float area = PI * rad * rad; //find area
 cout << “Area is “ << area << endl; //display answer
 return 0;
 }

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Here’s a sample interaction with the program:

Enter radius of circle: 0.5
Area is 0.785398

This is the area in square feet of a 12-inch LP record (which has a radius of 0.5 feet). At one time
this was an important quantity for manufacturers of vinyl.

Type double and long double

The larger floating point types, double and long double, are similar to float except that they require
more memory space and provide a wider range of values and more precision. Type double requires 8
bytes of storage and handles numbers in the range from 1.7×10–308 to 1.7×10308 with a precision of
15 digits. Type long double takes 16 bytes and stores numbers in the range of approximately 1.2x10
4932 to 1.2×104932 with a precision of 19 digits. These types are shown in Figure 2.7.

Figure 2.7 Variable of type double and long double.

Floating-Point Constants

The number 3.14159F in CIRCAREA is an example of a floating-point constant. The decimal point

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The number 3.14159F in CIRCAREA is an example of a floating-point constant. The decimal point
signals that it is a floating-point constant, and not an integer, and the F specifies that’s it’s type float
rather than double or long double. The number is written in normal decimal notation. You don’t need a
suffix letter with constants of type double; it’s the default. With type long double, use the letter L.

You can also write floating-point constants using exponential notation. Exponential notation is a
way of writing large numbers without having to write out a lot of zeros. For example,
1,000,000,000 can be written as 1.0E9 in exponential notation. Similarly, 1234.56 would be written
1.23456E3. (This is the same as 1.23456 times 103.) The number following the E is called the
exponent. It indicates how many places the decimal point must be moved to change the number to
ordinary decimal notation.

The exponent can be positive or negative. The exponential number 6.35239E–5 is equivalent to
0.0000635239 in decimal notation. This is the same as 6.35239 times 10–5.

The const Qualifier

Besides demonstrating variables of type float, the CIRCAREA example also introduces the qualifier
const. It’s used in the statement

const float PI = 3.14159F; //type const float

The keyword const (for constant) precedes the data type of a variable. It specifies that the value of a
variable will not change throughout the program. Any attempt to alter the value of a variable
defined with this qualifier will elicit an error message from the compiler.

The qualifier const ensures that your program does not inadvertently alter a variable that you
intended to be a constant, such as the value of PI in CIRCAREA. It also reminds anyone reading the
listing that the variable is not intended to change. The const modifier can apply to other entities
besides simple variables. We’ll learn more about this as we go along.

The #define Directive

Although the construction is not recommended in C++, constants can also be specified using the
preprocessor directive #define. This directive sets up an equivalence between an identifier and a text
phrase. For example, the line

#define PI 3.14159

appearing at the beginning of your program specifies that the identifier PI will be replaced by the
text 3.14159 throughout the program. This construction has long been popular in C. However, you
can’t specify the data type of the constant using #define, which can lead to program bugs; so even in
C #define has been superseded by const used with normal variables. However, you may encounter
this construction in older programs.

Type bool

For completeness we should mention type bool here, although it won’t be important until we discuss
relational operators in the next chapter.

We’ve seen that variables of type int can have billions of possible values, and those of type char can
have 256. Variables of type bool can have only two possible values: true and false. In theory a bool

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

have 256. Variables of type bool can have only two possible values: true and false. In theory a bool
type requires only one bit (not byte) of storage, but in practice compilers often store them as
integers because an integer can be quickly accessed, while an individual bit must be extracted from
an integer, which requires additional time.

As we’ll see, type bool is most commonly used to hold the results of comparisons. Is alpha less than
beta? If so, a bool value is given the value true; if not, it’s given the value false.

Type bool gets its name from George Boole, a 19th century English mathematician who invented
the concept of using logical operators with true-or-false values. Thus such true/false values are
often called Boolean values.

The setw Manipulator

We’ve mentioned that manipulators are operators used with the insertion operator << to modify—or
manipulate—the way data is displayed. We’ve already seen the endl manipulator; now we’ll look at
another one: setw, which changes the field width of output.

You can think of each value displayed by cout as occupying a field: an imaginary box with a certain
width. The default field is just wide enough to hold the value. That is, the integer 567 will occupy a
field three characters wide, and the string “pajamas” will occupy a field seven characters wide.
However, in certain situations this may not lead to optimal results. Here’s an example. The WIDTH
program prints the names of three cities in one column, and their populations in another.

// width1.cpp
// demonstrates need for setw manipulator
#include <iostream>
using namespace std;

int main()
 {
 long pop1=2425785, pop2=47, pop3=9761;

 cout << “LOCATION “ << “POP.” << endl
 << “Portcity “ << pop1 << endl
 << “Hightown “ << pop2 << endl
 << “Lowville “ << pop3 << endl;
 return 0;
 }

Here’s the output from this program:

LOCATION POP.
Portcity 2425785
Hightown 47
Lowville 9761

Unfortunately, this format makes it hard to compare the numbers; it would be better if they lined up
to the right. Also, we had to insert spaces into the names of the cities to separate them from the
numbers. This is an inconvenience.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Here’s a variation of this program, WIDTH2, that uses the setw manipulator to eliminate these
problems by specifying field widths for the names and the numbers:

// width2.cpp
// demonstrates setw manipulator
#include <iostream>
#include <iomanip> // for setw
using namespace std;

int main()
 {
 long pop1=2425785, pop2=47, pop3=9761;

Table 2.2 Basic C++ Variable Types

 Numerical Range Digits of Bytes of
Keyword Low High Precision Memory

char –128 127 n/a 1

short –32,768 32,767 n/a 2

int –2,147,483,648 2,147,483,647 n/a 4

long –2,147,483,648 2,147,483,647 n/a 4

float 3.4 x 10–38 3.4 x 1038 7 4

double 1.7 x 10–308 1.7 x 10308 15 8

long double 3.4 x 10–4932 1.1 x 104932 19 10

unsigned Data Types

By eliminating the sign of the character and integer types, you can change their range to start at 0
and include only positive numbers. This allows them to represent numbers twice as big as the

signed type. Table 2.3 shows the unsigned versions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 long pop1=2425785, pop2=47, pop3=9761;

 cout << setw(8) << “LOCATION” << setw(12)
 << “POPULATION” << endl
 << setw(8) << “Portcity” << setw(12) << pop1 << endl
 << setw(8) << “Hightown” << setw(12) << pop2 << endl
 << setw(8) << “Lowville” << setw(12) << pop3 << endl;
 return 0;
 }

The setw manipulator causes the number (or string) that follows it in the stream to be printed within
a field n characters wide, where n is the argument to setw(n). The value is right-justified within the
field. Figure 2.8 shows how this looks. Type long is used for the population figures, which prevents
a potential overflow problem on systems that use 2-byte integer types, in which the largest integer
value is 32,767.

Figure 2.8 Field widths and setw.

Here’s the output of WIDTH2:

LOCATION POPULATION
Portcity 2425785
Hightown 47
Lowville 9761

Cascading the Insertion Operator

Note that there’s only one cout statement in WIDTH1 and WIDTH2, although it’s written on multiple
lines. In doing this, we take advantage of the fact that the compiler ignores whitespace, and that the
insertion operator can be cascaded. The effect is the same as using four separate statements, each
beginning with cout.

Multiple Definitions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We initialized the variables pop1, pop2, and pop3 to specific values at the same time we defined them.
This is similar to the way we initialized char variables in the CHARVARS example. Here, however,
we’ve defined and initialized all three variables on one line, using the same long keyword and
separating the variable names with commas. This saves space where a number of variables are all
the same type.

The IOMANIP Header File

The declarations for the manipulators (except endl) are not in the usual IOSTREAM header file, but in
a separate header file called IOMANIP. When you use these manipulators you must #include this
header file in your program, as we do in the WIDTH2 example.

Variable Type Summary

Our program examples so far have used four data types—int, char, float, and long. In addition we’ve
mentioned types short, double, and long double. Let’s pause now to summarize these data types. Table
2.2 shows the keyword used to define the type, the numerical range the type can accommodate, the
digits of precision (in the case of floating-point numbers), and the bytes of memory occupied in a
32-bit environment.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 2.4 Order of Data Types
Data Type Order
long double Highest
double
float
long
int
short
char Lowest

The arithmetic operators like + and * like to operate on two operands of the same type. When two
operands of different types are encountered in the same expression, the lower-type variable is

converted to the type of the higher-type variable. Thus in MIXED, the int value of count is converted
to type float and stored in a temporary variable before being multiplied by the float variable

avgWeight. The result (still of type float) is then converted to double so that it can be assigned to the
double variable totalWeight. This process is shown in Figure 2.9.

These conversions take place invisibly, and ordinarily you don’t need to think too much about
them; C++ automatically does what you want. However, sometimes the compiler isn’t so happy

about conversions, as we’ll see in a moment. Also, when we start to use objects, we will in effect be
defining our own data types. We may want to use these new data types in mixed expressions, just

as we use normal variables in mixed expressions. When this is the case, we must be careful to
create our own conversion routines to change objects of one type into objects of another. The

compiler won’t do it for us, as it does here with the built-in data types.

Figure 2.9 Data conversion.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

// signtest.cpp
// tests signed and unsigned integers
#include <iostream>
using namespace std;

int main()
 {
 int signedVar = 1500000000; //signed
 unsigned int unsignVar = 1500000000; //unsigned

 signedVar = (signedVar * 2) / 3; //calculation exceeds range
 unsignVar = (unsignVar * 2) / 3; //calculation within range

Casts

Casts sounds like something to do with social classes in India, but in C++ the term applies to data
conversions specified by the programmer, as opposed to the automatic data conversions we just

described. Casts are also called type casts. What are casts for? Sometimes a programmer needs to
convert a value from one type to another in a situation where the compiler will not do it

automatically or without complaining.

There are several kinds of casts in Standard C++: static casts, dynamic casts, reinterpret casts, and
const casts. Here we’ll be concerned only with static casts; we’ll learn about the others, which are

used in more specialized situations, in later chapters.

C++ casts have a rather forbidding appearance. Here’s a statement that uses a C++ cast to change a
variable of type int into a variable of type char:

aCharVar = static_cast<char>(anIntVar);

Here the variable to be cast (anIntVar) is placed in parentheses and the type it’s to be changed to
(char) is placed in angle brackets. The result is that anIntVar is changed to type char before it’s

assigned to aCharVar. In this case the assignment statement would have carried out the cast itself, but
there are situations where the cast is essential.

Recall that in the SIGNTEST example an intermediate result exceeded the capacity of the variable
type, resulting in an erroneous result. We fixed the problem by using unsigned int instead of int. This

worked because the intermediate result—3,000,000,000—would fit in the range of the unsigned
variable.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 unsignVar = (unsignVar * 2) / 3; //calculation within range

 cout << “signedVar = “ << signedVar << endl; //wrong
 cout << “unsignVar = “ << unsignVar << endl; //OK
 return 0;
 }

The program multiplies both variables by 2, then divides them by 3. Although the result is smaller
than the original number, the intermediate calculation is larger than the original number. This is a
common situation, but it can lead to trouble. In SIGNTEST we expect that two-thirds the original
value, or 1,000,000,000, will be restored to both variables. Unfortunately, in signedVar the
multiplication created a result—3,000,000,000,000—that exceeded the range of the int variable (–
2,147,483,648 to 2,147,483,647). Here’s the output:

signedVar = -431,655,765
unsignVar = 1,000,000,000

The signed variable now displays an incorrect answer, while the unsigned variable, which is large
enough to hold the intermediate result of the multiplication, records the result correctly. The moral
is this: Be careful that all values generated in your program are within the range of the variables
that hold them. (The results will be different on 16-bit or 64-bit computers, which use different
numbers of bytes for type int.)

Type Conversion

C++, like C, is more forgiving than some languages in the way it treats expressions involving
several different data types. As an example, consider the MIXED program:

// mixed.cpp
// shows mixed expressions
#include <iostream>
using namespace std;

int main()
 {
 int count = 7;
 float avgWeight = 155.5F;

 double totalWeight = count * avgWeight;
 cout << “totalWeight=” << totalWeight << endl;
 return 0;
 }

Here a variable of type int is multiplied by a variable of type float to yield a result of type double.
This program compiles without error; the compiler considers it normal that you want to multiply (or
perform any other arithmetic operation on) numbers of different types.

Not all languages are this relaxed. Some don’t permit MIXED expressions, and would flag the line
that performs the arithmetic in mixed as an error. Such languages assume that when you mix types
you’re making a mistake, and they try to save you from yourself. C++ and C, however, assume that
you must have a good reason for doing what you’re doing, and they help carry out your intentions.
This is one reason for the popularity of C++ and C. They give you more freedom. Of course, with
more freedom, there’s also more opportunity for you to make a mistake.

Automatic Conversions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Let’s consider what happens when the compiler confronts such mixed-type expressions as that in
MIXED. Types are considered “higher” or “lower,” based roughly on the order shown in Table 2.4.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

But suppose an intermediate result won’t fit the unsigned type either. In such a case we might be
able to solve the problem by using a cast. Here’s an example:

// cast.cpp
// tests signed and unsigned integers
#include <iostream>
using namespace std;

int main()
 {
 int intVar = 1500000000; //1,500,000,000
 intVar = (intVar * 10) / 10; //result too large
 cout << “intVar = “ << intVar << endl; //wrong answer

 intVar = 1500000000; //cast to double
 intVar = (static_cast<double>(intVar) * 10) / 10;
 cout << “intVar = “ << intVar << endl; //right answer
 return 0;
 }

When we multiply the variable intVar by 10, the result—15,000,000,000—is far too large to fit in a
variable of type int or unsigned int. This leads to the wrong answer, as shown by the output of the first
part of the program.

We could redefine the data type of the variables to be double; this provides plenty of room, since this
type holds numbers with up to 15 digits. But suppose that for some reason, such as keeping the
program small, we don’t want to change the variables to type double. In this case there’s another
solution: We can cast intVar to type double before multiplying. This is sometimes called coercion;
the data is coerced into becoming another type. The expression

static_cast<double>(intVar)

casts intVar to type double. It generates a temporary variable of type double with the same value as
intVar. It is this temporary variable that is multiplied by 10. Since it is type double, the result fits.
This result is then divided by 10 and assigned to the normal int variable intVar. Here’s the program’s
output:

intVar = 211509811
intVar = 1500000000

The first answer, without the cast, is wrong; but in the second answer, the cast produces the correct
result.

Before Standard C++, casts were handled using quite a different format. Instead of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

aCharVar = static_cast<char>(anIntVar);

you could say

aCharVar = (char)anIntVar;

or alternatively

aCharVar = char(anIntVar);

One trouble with these approaches is that they are hard to see; the syntax blends into the rest of the
listing. They are also hard to search for using a Find operation with your source code editor. The
new format solves this problem: static_cast is easy to see and easy to search for. These old casts still
work, but their use is discouraged (or depricated, to use the technical term).

Casts should be used only when absolutely necessary. They are a controlled way of evading type
safety (which means making sure that variables don’t change types by mistake) and can lead to
trouble because they make it impossible for the compiler to spot potential problems. However,
sometimes casts can’t be avoided. We’ll see some examples as we go along of situations where
casts are necessary.

Arithmetic Operators

As you have probably gathered by this time, C++ uses the four normal arithmetic operators +, -, *
and / for addition, subtraction, multiplication, and division. These operators work on all the data
types, both integer and floating-point. They are used in much the same way that they are used in
other languages, and are closely analogous to their use in algebra. However, there are some other
arithmetic operators whose use is not so obvious.

The Remainder Operator

There is a fifth arithmetic operator that works only with integer variables (types char, short, int, and
long). It’s called the remainder operator, and is represented by %, the percent symbol. This operator
(also called the modulus operator) finds the remainder when one number is divided by another. The
REMAIND program demonstrates the effect.

// remaind.cpp
// demonstrates remainder operator
#include <iostream>
using namespace std;

int main()
 {
 cout << 6 % 8 << endl // 6
 << 7 % 8 << endl // 7
 << 8 % 8 << endl // 0
 << 9 % 8 << endl // 1
 << 10 % 8 << endl; // 2
 return 0;
 }

Here the numbers 6 through 10 are divided by 8, using the remainder operator. The answers are 6,
7, 0, 1, and 2—the remainders of these divisions. The remainder operator is used in a wide variety
of situations. We’ll show examples as we go along.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A note about precedence: In the expression

cout << 6 % 8

the remainder operator is evaluated first because it has higher precedence than the << operator. If it
did not, we would need to put parentheses around 6 % 8 to ensure it was evaluated before being
acted on by <<.

Arithmetic Assignment Operators

C++ offers several ways to shorten and clarify your code. One of these is the arithmetic assignment
operator. This operator helps to give C++ listings their distinctive appearance.

The following kind of statement is common in most languages.

total = total + item; // adds “item” to “total”

In this situation you add something to an existing value (or you perform some other arithmetic
operation on it). But the syntax of this statement offends those for whom brevity is important,
because the name total appears twice. So C++ offers a condensed approach: the arithmetic
assignment operator, which combines an arithmetic operator and an assignment operator and
eliminates the repeated operand. Here’s a statement that has exactly the same effect as the one
above:

total += item; // adds “item” to “total”

Figure 2.10 emphasizes the equivalence of the two forms.

Figure 2.10 Arithmetic assignment operator.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There are arithmetic assignment operators corresponding to all the arithmetic operations: +=, -=, *=
/=, and %= (and some other operators as well). The following example shows the arithmetic
assignment operators in use:

// assign.cpp
// demonstrates arithmetic assignment operators
#include <iostream>
using namespace std;

int main()
 {
 int ans = 27;

 ans += 10; //same as: ans = ans + 10;
 cout << ans << “, “;
 ans -= 7; //same as: ans = ans - 7;
 cout << ans << “, “;
 ans *= 2; //same as: ans = ans * 2;
 cout << ans << “, “;
 ans /= 3; //same as: ans = ans / 3;
 cout << ans << “, “;
 ans %= 3; //same as: ans = ans % 3;
 cout << ans << endl;
 return 0;
 }

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents

Here’s the output from this program:

37, 30, 60, 20, 2

You don’t need to use arithmetic assignment operators in your code, but they are a common feature of the language; they’ll appear in numerous examples in this book.

Increment Operators

Here’s an even more specialized operator. You often need to add 1 to the value of an existing variable. You can do this the “normal” way:

count = count + 1; // adds 1 to “count”

Or you can use an arithmetic assignment operator:

count += 1; // adds 1 to “count”

But there’s an even more condensed approach:

++count; // adds 1 to “count”

The ++ operator increments (adds 1 to) its argument.

Prefix and Postfix

As if this weren’t weird enough, the increment operator can be used in two ways: as a prefix, meaning that the operator precedes the variable; and as a
the variable. What’s the difference? Often a variable is incremented within a statement that performs some other operation on it. For example,

totalWeight = avgWeight * ++count;

The question here is this: Is the multiplication performed before or after count is incremented? In this case
++count. If we had used postfix notation, count++, the multiplication would have been performed first, then

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2.11 The increment operator.

Here’s an example that shows both the prefix and postfix versions of the increment operator:

// increm.cpp
// demonstrates the increment operator
#include <iostream>
using namespace std;

int main()
 {
 int count = 10;

 cout << “count=” << count << endl; //displays 10
 cout << “count=” << ++count << endl; //displays 11 (prefix)
 cout << “count=” << count << endl; //displays 11
 cout << “count=” << count++ << endl; //displays 11 (postfix)
 cout << “count=” << count << endl; //displays 12
 return 0;
 }

Here’s the program’s output:

count=10
count=11
count=11
count=11
count=12

The first time count is incremented, the prefix ++ operator is used. This causes the increment to happen at the beginning of the statement evaluation, before the output operation has been carried
out. When the value of the expression ++count is displayed, it has already been incremented, and
the expression count++ is displayed, it retains its unincremented value of 11. Following the completion of this statement, the increment takes effect, so that in the last statement of the program we
see that count has acquired the value 12.

The Decrement (--) Operator

The decrement operator, --, behaves very much like the increment operator, except that it subtracts 1 from its operand. It too can be used in both prefix and postfix forms.

Library Functions

Many activities in C++ are carried out by library functions. These functions perform file access, mathematical computations, and data conversion, among other things. We don’t want to dig too
deeply into library functions before we explain how functions work (see Chapter 5), but you can use simple library functions without a thorough understanding of their operation.

The next example, SQRT, uses the library function sqrt() to calculate the square root of a number entered by the user.

// sqrt.cpp
// demonstrates sqrt() library function
#include <iostream> //for cout, etc.
#include <cmath> //for sqrt()
using namespace std;

int main()
 {
 double number, answer; //sqrt() requires type double

 cout << “Enter a number: “;
 cin >> number; //get the number
 answer = sqrt(number); //find square root

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 answer = sqrt(number); //find square root
 cout << “Square root is “
 << answer << endl; //display it
 return 0;
 }

The program first obtains a number from the user. This number is then used as an argument to the

answer = sqrt(number);

An argument is the input to the function; it is placed inside the parentheses following the function name. The function then processes the argument and returns a value; this is the output from
the function. In this case the return value is the square root of the original number. Returning a value means that the function expression takes on this value, which can then be assigned to
another variable—in this case answer. The program then displays this value. Here’s some output from the program:

Enter a number: 1000
Square root is 31.622777

Multiplying 31.622777 by itself on your pocket calculator will verify that this answer is pretty close.

The arguments to a function, and their return values, must be the correct data type. You can find what these data types are by looking at the description of the library function in your compiler’s
help file, which describes each of the hundreds of library functions. For sqrt(), the description specifies both an argument and a return value of type
program.

Header Files

As with cout and other such objects, you must #include a header file that contains the declaration of any library functions you use. In the documentation for the
specified header file is CMATH. In SQRT the preprocessor directive

#include <cmath>

takes care of incorporating this header file into our source file.

If you don’t include the appropriate header file when you use a library function, you’ll get an error message like this from the compiler:

Library Files

We mentioned earlier that various files containing library functions and objects will be linked to your program to create an executable file. These files contain the actual machine-executable
code for the functions. Such library files often have the extension .LIB. . The sqrt() function is found in such a file. It is automatically extracted from the file by the linker, and the proper
connections are made so that it can be called (that is, invoked or accessed) from the SQRT program. Your compiler takes care of all these details for you, so ordinarily you don’t need to worry
about the process. However, you should understand what these files are for.

Previous Table of Contents

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Header Files and Library Files

The relationship between library files and header files can be confusing, so let’s review it. To use a
library function like sqrt(), you must link the library file that contains it to your program. The
appropriate functions from the library file are then connected to your program by the linker.

However, that’s not the end of the story. The functions in your source file need to know the names
and types of the functions and other elements in the library file. They are given this information in a
header file. Each header file contains information for a particular group of functions. The functions
themselves are grouped together in a library file, but the information about them is scattered
throughout a number of header files. The IOSTREAM header file contains information for various
I/O functions and objects, including cout, while the CMATH header file contains information for
mathematics functions like sqrt(). If you were using string functions like strcpy(), you would include
STRING.H, and so on.

Figure 2.12 shows the relationship of header files and library files to the other files used in program
development.

The use of header files is common in C++. Whenever you use a library function or a predefined
object or operator, you will need to use a header file that contains appropriate declarations.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 2.12 Header and library files.

Two Ways to Use #include

You can use #include in two ways. The angle brackets < and > surrounding the filenames IOSTREAM
and CMATH in the SQRT example indicate that the compiler should begin searching for these files in
the standard INCLUDE directory. This directory, which is traditionally called INCLUDE, holds the
header files supplied by the compiler manufacturer for the system.

Instead of angle brackets around the filename, you can also use quotation marks, as in

#include “myheader.h”

Quotation marks instruct the compiler to begin its search for the header file in the current directory;
this is usually the directory that contains the source file. You normally use quotation marks for
header files you write yourself (a situation we’ll explore in Chapter 13, “Multifile Programs”).
Quotation marks or angle brackets work in any case, but making the appropriate choice speeds up
the compilation process slightly by giving the compiler a hint about where to find the file.

Summary

In this chapter we’ve learned that a major building block of C++ programs is the function. A
function named main() is always the first one executed when a program is executed.

A function is composed of statements, which tell the computer to do something. Each statement
ends with a semicolon. A statement may contain one or more expressions, which are sequences of
variables and operators that usually evaluate to a specific value.

Output is most commonly handled in C++ with the cout object and << insertion operator, which
together cause variables or constants to be sent to the standard output device—usually the screen.
Input is handled with cin and the extraction operator >>, which cause values to be received from the
standard input device—usually the keyboard.

Various data types are built into C++: char, int, and long and short are the integer types; and float,
double, and long double are the floating-point types. All of these types are signed. Unsigned versions
of the integer types, signaled by the keyword unsigned, don’t hold negative numbers but hold
positive ones twice as large. Type bool is used for Boolean variables and can hold only the constants
true or false.

The const keyword stipulates that a variable’s value will not change in the course of a program.

A variable is automatically converted from one type to another in mixed expressions (those
involving different data types) and by casting, which allows the programmer to specify a
conversion.

C++ employs the usual arithmetic operators +, -, *, and /. In addition, the remainder operator, %,
returns the remainder of integer division.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The arithmetic assignment operators +=, +-, and so on perform an arithmetic operation and an
assignment simultaneously. The increment and decrement operators ++ and -- increase or decrease a
variable by 1.

Preprocessor directives consist of instructions to the compiler, rather than to the computer. The
#include directive tells the compiler to insert another file into the present source file, and the #define
directive tells it to substitute one thing for another. The using directive tells the compiler to
recognize names in a certain namespace.

If you use a library function in your program, the code for the function is in a library file, which is
automatically linked to your program. A header file containing the function’s declaration must be
inserted into your source file with an #include statement.

Questions

Answers to questions can be found in Appendix G, “Answers to Questions and Exercises.”

1. Dividing a program into functions

a. is the key to Object-Oriented Programming.
b. makes the program easier to conceptualize.
c. may reduce the size of the program.
d. makes the program run faster.

2. A function name must be followed by ________.
3. A function body is delimited by ________.
4. Why is the main() function special?
5. A C++ instruction that tells the computer to do something is called a ________.
6. Write an example of a normal C++ comment and an example of an old-fashioned /*
comment.
7. An expression

a. usually evaluates to a numerical value.
b. indicates the emotional state of the program.
c. always occurs outside a function.
d. may be part of a statement.

8. Specify how many bytes are occupied by the following data types in a 32-bit system:

a. Type int
b. Type long double
c. Type float
d. Type long

9. True or false: A variable of type char can hold the value 301.
10. What kind of program elements are the following?

a. 12
b. ‘a’
c. 4.28915

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

d. JungleJim
e. JungleJim()

11. Write statements that display on the screen

a. the character ‘x’.
b. the name Jim.
c. the number 509.

12. True or false: In an assignment statement, the value on the left of the equal sign is always
equal to the value on the right.
13. Write a statement that displays the variable george in a field 10 characters wide.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

14. What header file must you #include with your source file to use cout and cin?
15. Write a statement that gets a numerical value from the keyboard and places it in the
variable temp.
16. What header file must you perform #include with your program to use setw?
17. Two exceptions to the rule that the compiler ignores whitespace are ________ and
________.
18. True or false: It’s perfectly all right to use variables of different data types in the same
arithmetic expression.
19. The expression 11%3 evaluates to ________.
20. An arithmetic assignment operator combines the effect of what two operators?
21. Write a statement that uses an arithmetic assignment operator to increase the value of the
variable temp by 23. Write the same statement without the arithmetic assignment operator.
22. The increment operator increases the value of a variable by how much?
23. Assuming var1 starts with the value 20, what will the following code fragment print out?

cout << var1--;
cout << ++var1;

24. In the examples we’ve seen so far, header files have been used for what purpose?
25. The actual code for library functions is contained in a ________ file.

Exercises

Answers to the starred exercises can be found in Appendix G.

*1. Assuming there are 7.481 gallons in a cubic foot, write a program that asks the user to
enter a number of gallons, and then displays the equivalent in cubic feet.
*2. Write a program that generates the following table:

 1990 135
 1991 7290
 1992 11300
 1993 16200

Use a single cout statement for all output.
*3. Write a program that generates the following output:

 10
 20
 19

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 19

Use an integer constant for the 10, an arithmetic assignment operator to generate the 20, and
a decrement operator to generate the 19.
4. Write a program that displays your favorite poem. Use an appropriate escape sequence for
the line breaks. If you don’t have a favorite poem, you can borrow this one by Ogden Nash:

 Candy is dandy,
 But liquor is quicker.

5. A library function, islower(), takes a single character (a letter) as an argument and returns a
nonzero integer if the letter is lowercase, or zero if it is uppercase. This function requires the
header file CTYPE.H. Write a program that allows the user to enter a letter, and then displays
either zero or nonzero, depending on whether a lowercase or uppercase letter was entered.
(See the SQRT program for clues.)
6. On a certain day the British pound was equivalent to $1.487 U.S., the French franc was
$0.172, the German deutschemark was $0.584, and the Japanese yen was $0.00955. Write a
program that allows the user to enter an amount in dollars, and then displays this value
converted to these four other monetary units.
7. You can convert temperature from degrees Celsius to degrees Fahrenheit by multiplying
by 9/5 and adding 32. Write a program that allows the user to enter a floating-point number
representing degrees Celsius, and then displays the corresponding degrees Fahrenheit.
8. When a value is smaller than a field specified with setw(), the unused locations are, by
default, filled in with spaces. The manipulator setfill() takes a single character as an argument
and causes this character to be substituted for spaces in the empty parts of a field. Rewrite the
WIDTH program so that the characters on each line between the location name and the
population number are filled in with periods instead of spaces, as in

 Portcity.....2425785

9. If you have two fractions, a/b and c/d, their sum can be obtained from the formula

 a c a*d + b*c
--- + --- = -----------
 b d b*d

For example, 1/4 plus 2/3 is

 1 2 1*3 + 4*2 3 + 8 11
--- + --- = ----------- = ------- = ----
 4 3 4*3 12 12

Write a program that encourages the user to enter two fractions, and then displays their sum
in fractional form. (You don’t need to reduce it to lowest terms.) The interaction with the user
might look like this:

Enter first fraction: 1/2
 Enter second fraction: 2/5
 Sum = 9/10

You can take advantage of the fact that the extraction operator (>>) can be chained to read in
more than one quantity at once:

cin >> a >> dummychar >> b;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

cin >> a >> dummychar >> b;

10. In the heyday of the British empire, Great Britain used a monetary system based on
pounds, shillings, and pence. There were 20 shillings to a pound, and 12 pence to a shilling.
The notation for this old system used the pound sign, £, and two decimal points, so that, for
example, £5.2.8 meant 5 pounds, 2 shillings, and 8 pence. (Pence is the plural of penny.) The
new monetary system, introduced in the 1950s, consists of only pounds and pence, with 100
pence to a pound (like U.S. dollars and cents). We’ll call this new system decimal pounds.
Thus £5.2.8 in the old notation is £5.13 in decimal pounds (actually £5.1333333). Write a
program to convert the old pounds-shillings-pence format to decimal pounds. An example of
the user’s interaction with the program would be

 Enter pounds: 7
 Enter shillings: 17
 Enter pence: 9
 Decimal pounds = £7.89

In both Borland C++ and Turbo C++, you can use the hex character constant ‘\x9c’ to represent
the pound sign (£). In Borland C++, you can put the pound sign into your program directly by
pasting it from the Windows Character Map accessory.
11. By default, output is right-justified in its field. You can left-justify text output using the
manipulator setiosflags(ios::left). (For now, don’t worry about what this new notation means.)
Use this manipulator, along with setw(), to help generate the following output:

Last name First name Street address Town State

 Jones Bernard 109 Pine Lane Littletown MI
 O’Brian Coleen 42 E. 99th Ave. Bigcity NY
 Wong Harry 121-A Alabama St. Lakeville IL

12. Write the inverse of Exercise 10, so that the user enters an amount in Great Britain’s new
decimal-pounds notation (pounds and pence), and the program converts it to the old pounds-
shillings-pence notation. An example of interaction with the program might be

 Enter decimal pounds: 3.51
 Equivalent in old notation = £3.10.2.

Make use of the fact that if you assign a floating-point value (say 12.34) to an integer
variable, the decimal fraction (0.34) is lost; the integer value is simply 12. Use a cast to avoid
a compiler warning. You can use statements like

 float decpounds; // input from user (new-style pounds)
 int pounds; // old-style (integer) pounds
 float decfrac; // decimal fraction (smaller than 1.0)

pounds = static_cast<int>(decpounds); // remove decimal fraction
 decfrac = decpounds - pounds; // regain decimal fraction

You can then multiply decfrac by 20 to find shillings. A similar operation obtains pence.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

CHAPTER 3
LOOPS AND DECISIONS

You will learn about the following in this chapter:
• Relational operators • The SWITCH statement
• FOR, WHILE, and DO LOOPS • The conditional operator
• IF and IF...ELSE statements • Logical operators

Not many programs execute all their statements in strict order from beginning to end. Most
programs (like many humans) decide what to do in response to changing circumstances. The flow
of control jumps from one part of the program to another, depending on calculations performed in
the program. Program statements that cause such jumps are called control statements. There are two
major categories: loops and decisions.

How many times a loop is executed, or whether a decision results in the execution of a section of
code, depends on whether certain expressions are true or false. These expressions typically involve
a kind of operator called a relational operator, which compares two values. Since the operation of
loops and decisions is so closely involved with these operators, we’ll examine them first.

Relational Operators

A relational operator compares two values. The values can be any built-in C++ data type, such as
char, int, and float, or—as we’ll see later—they can be user-defined classes. The comparison involves
such relationships as equal to, less than, and greater than. The result of the comparison is true or
false; for example, either two values are equal (true), or they’re not (false).

Our first program, RELAT, demonstrates relational operators in a comparison of integer variables
and constants.

// relat.cpp
// demonstrates relational operators
#include <iostream>
using namespace std;

int main()
 {
 int numb;

 cout << “Enter a number: ”;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 cout << “Enter a number: ”;
 cin >> numb;
 cout << “numb<10 is ” << (numb < 10) << endl;
 cout << “numb>10 is ” << (numb > 10) << endl;
 cout << “numb==10 is ” << (numb == 10) << endl;
 return 0;
 }

This program performs three kinds of comparisons between 10 and a number entered by the user.
Here’s the output when the user enters 20:

Enter a number: 20
numb<10 is 0
numb>10 is 1
numb==10 is 0

The first expression is true if numb is less than 10. The second expression is true if numb is greater
than 10, and the third is true if numb is equal to 10. As you can see from the output, the C++
compiler considers that a true expression has the value 1, while a false expression has the value 0.

As we mentioned in the last chapter, Standard C++ includes a type bool, which can hold one of two
constant values, true or false. You might think that results of relational expressions like numb<10
would be of type bool, and that the program would print false instead of 0 and true instead of 1. In
fact C++ is rather schizophrenic on this point. Displaying the results of relational operations, or
even the values of type bool variables, with cout<< yields 0 or 1, not false and true. Historically this is
because C++ started out with no bool type. Before the advent of Standard C++, the only way to
express false and true was with 0 and 1. Now false can be represented by either a bool value of false
or by an integer value of 0; and true can be represented by either a bool value of true or an integer
value of 1.

In most simple situations the difference isn’t apparent because we don’t need to display true/false
values; we just use them in loops and decisions to influence what the program will do next.

Here’s the complete list of C++ relational operators:

Operator Meaning
> Greater than
< Less than
== Equal to
!= Not equal to
>= Greater than or equal to
<= Less than or equal to

Now let’s look at some expressions that use relational operators, and also look at the value of each
expression. The first two lines are assignment statements that set the values of the variables harry
and jane. You might want to hide the comments with your old Jose Canseco baseball card and see if
you can predict which expressions evaluate to true and which to false.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

jane = 44; //assignment statement
harry = 12; //assignment statement
(jane == harry) //false
(harry <= 12) //true
(jane > harry) //true
(jane >= 44) //true
(harry != 12) //false
(7 < harry) //true
(0) //false (by definition)
(44) //true (since it’s not 0)

Note that the equal operator, ==, uses two equal signs. A common mistake is to use a single equal
sign—the assignment operator—as a relational operator. This is a nasty bug, since the compiler
may not notice anything wrong. However, your program won’t do what you want (unless you’re
very lucky).

Although C++ generates a 1 to indicate true, it assumes that any value other than 0 (such as –7 or
44) is true; only 0 is false. Thus, the last expression in the list is true.

Now let’s see how these operators are used in typical situations. We’ll examine loops first, then
decisions.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Loops

Loops cause a section of your program to be repeated a certain number of times. The repetition
continues while a condition is true. When the condition becomes false, the loop ends and control
passes to the statements following the loop.

There are three kinds of loops in C++: the for loop, the while loop, and the do loop.

The for Loop

The for loop is (for many people, anyway) the easiest C++ loops to understand. All its loop-control
elements are gathered in one place, while in the other loop constructions they are scattered about
the program, which can make it harder to unravel how these loops work.

The for loop executes a section of code a fixed number of times. It’s usually (although not always)
used when you know, before entering the loop, how many times you want to execute the code.

Here’s an example, FORDEMO, that displays the squares of the numbers from 0 to 14:

// fordemo.cpp
// demonstrates simple FOR loop
#include <iostream>
using namespace std;

int main()
 {
 int j; //define a loop variable

 for(j=0; j<15; j++) //loop from 0 to 14,
 cout << j * j << “ ”; //displaying the square of j
 cout << endl;
 return 0;
 }

Here’s the output:

0 1 4 9 16 25 36 49 64 81 100 121 144 169 196

How does this work? The for statement controls the loop. It consists of the keyword for, followed by
parentheses that contain three expressions separated by semicolons:

for(j=0; j<15; j++)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

for(j=0; j<15; j++)

These three expressions are the initialization expression, the test expression, and the increment
expression, as shown in Figure 3.1.

These three expressions usually (but not always) involve the same variable, which we call the loop
variable. In the FORDEMO example the loop variable is j. It’s defined before the statements within
the loop body start to execute.

Figure 3.1 Syntax of the for loop.

The body of the loop is the code to be executed each time through the loop. Repeating this code is
the raison d’être for the loop. In this example the loop body consists of a single statement:

cout << j * j << “ ”;

This statement prints out the square of j, followed by two spaces. The square is found by
multiplying j by itself. As the loop executes, j goes through the sequence 0, 1, 2, 3, and so on up to
14; so the squares of these numbers are displayed—0, 1, 4, 9, up to 196.

Note that the for statement is not followed by a semicolon. That’s because the for statement and the
loop body are together considered to be a program statement. This is an important detail. If you put
a semicolon after the for statement, the compiler will think there is no loop body, and the program
will do things you probably don’t expect.

Let’s see how the three expressions in the for statement control the loop.

The Initialization Expression

The initialization expression is executed only once, when the loop first starts. It gives the loop
variable an initial value. In the FORDEMO example it sets j to 0.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Test Expression

The test expression usually involves a relational operator. It is evaluated each time through the
loop, just before the body of the loop is executed. It determines whether the loop will be executed
again. If the test expression is true, the loop is executed one more time. If it’s false, the loop ends,
and control passes to the statements following the loop. In the FORDEMO example the statement

cout << endl;

is executed following the completion of the loop.

The Increment Expression

The increment expression changes the value of the loop variable, often by incrementing it. It is
always executed at the end of the loop, after the loop body has been executed. Here the increment
operator ++ adds 1 to j each time through the loop. Figure 3.2 shows a flowchart of a for loop’s
operation.

Figure 3.2 Operation of the for loop.

How Many Times?

The loop in the FORDEMO example executes exactly 15 times. The first time, j is 0. This is ensured
in the initialization expression. The last time through the loop, j is 14. This is determined by the test
expression j<15. When j becomes 15, the loop terminates; the loop body is not executed when j has
this value. The arrangement shown is commonly used to do something a fixed number of times:
start at 0, use a test expression with the less-than operator and a value equal to the desired number
of iterations, and increment the loop variable after each iteration.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here’s another for loop example:

for(count=0; count<100; count++)
 // loop body

How many times will the loop body be repeated here? Exactly 100 times, with count going from 0 to
99.

Multiple Statements in Loop Body

Of course you may want to execute more than one statement in the loop body. Multiple statements
are delimited by braces, just as functions are. Note that there is no semicolon following the final
brace of the loop body, although there are semicolons following the individual statements in the
loop body.

The next example, CUBELIST, uses three statements in the loop body. It prints out the cubes of the
numbers from 1 to 10, using a two-column format.

// cubelist.cpp
// lists cubes from 1 to 10
#include <iostream>
#include <iomanip> //for setw
using namespace std;

int main()
 {
 int numb; //define loop variable

 for(numb=1; numb<=10; numb++) //loop from 1 to 10
 {
 cout << setw(4) << numb; //display 1st column
 int cube = numb*numb*numb; //calculate cube
 cout << setw(6) << cube << endl; //display 2nd column
 }
 return 0;
 }

Here’s the output from the program:

 1 1
 2 8
 3 27
 4 64
 5 125
 6 216
 7 343
 8 512
 9 729
 10 1000

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

We’ve made another change in the program to show there’s nothing immutable about the format
used in the last example. The loop variable is initialized to 1, not to 0, and it ends at 10, not at 9, by
virtue of <=, the less-than-or-equal-to operator. The effect is that the loop body is executed 10
times, with the loop variable running from 1 to 10 (not from 0 to 9).

Blocks and Variable Visibility

The loop body, which consists of braces delimiting several statements, is called a block of code.
One important aspect of a block is that a variable defined inside the block is not visible outside it.
Visible means that program statements can access or “see” the variable. (We’ll discuss visibility
further in Chapter 5, “Functions.”) In CUBELIST we define the variable cube inside the block, in the
statement

int cube = numb*numb*numb;

You can’t access this variable outside the block; it’s only visible within the braces. Thus if you
placed the statement

cube = 10;

after the loop body, the compiler would signal an error because the variable cube would be
undefined outside the loop.

One advantage of restricting the visibility of variables is that the same variable name can be used
within different blocks in the same program. (Defining variables inside a block, as we did in
CUBELIST, is common in C++ but is not popular in C.)

Indentation and Loop Style

Good programming style dictates that the loop body be indented—that is, shifted right, relative to
the loop statement (and to the rest of the program). In the FORDEMO example one line is indented,
and in CUBELIST the entire block, including the braces, is indented. This indentation is an important
visual aid to the programmer: It makes it easy to see where the loop body begins and ends. The
compiler doesn’t care whether you indent or not (at least there’s no way to tell if it cares).

There is a common variation on the style we use for loops in this book. We show the braces aligned
vertically, but some programmers prefer to place the opening brace just after the loop statement,
like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

for(numb=1; numb<=10; numb++) {
 cout << setw(4) << numb;
 int cube = numb*numb*numb;
 cout << setw(6) << cube << endl;
 }

This saves a line in the listing but makes it more difficult to read, since the opening brace is harder
to see and harder to match with the corresponding closing brace. Another style is to indent the body
but not the braces:

for(numb=1; numb<=10; numb++)
{
 cout << setw(4) << numb;
 int cube = numb*numb*numb;
 cout << setw(6) << cube << endl;
}

This is a common approach, but at least for some people it makes it harder for the eye to connect
the braces to the loop body. However, you can get used to almost anything. Whatever style you
choose, use it consistently.

Debugging Animation

You can use the debugging features built into your compiler to create a dramatic animated display
of loop operation. The key feature is single-stepping. Your compiler makes this easy. Start by
opening a project for the program to be debugged, and an Edit window containing the source file.
The exact instructions necessary to launch the debugger vary with different compilers, so consult
Appendix C, “Microsoft Visual C++,” or Appendix D, “Borland C++,” as appropriate. By pressing a
certain function key you can cause one line of your program to be executed at a time. This will
show you the sequence of statements executed as the program proceeds. In a loop you’ll see the
statements within the loop executed; then control will jump back to the start of the loop and the
cycle will be repeated.

You can also use the debugger to watch what happens to the values of different variables as you
single step through the program. This is a powerful tool when you’re debugging your program. You
can experiment with this technique with the CUBELIST program by putting the numb and cube
variables in a Watch window in your debugger and seeing how they change as the program
proceeds. Again, consult the appropriate appendix for instructions on how to use Watch windows.

Single-stepping and the Watch window are powerful debugging tools. If your program doesn’t
behave as you think it should, you can use these features to monitor the values of key variables as
you step through the program. Usually the source of the problem will become clear.

for Loop Variations

The increment expression doesn’t need to increment the loop variable; it can perform any operation
it likes. In the next example it decrements the loop variable. This program, FACTOR, asks the user to
type in a number, and then calculates the factorial of this number. (The factorial is calculated by
multiplying the original number by all the positive integers smaller than itself. Thus the factorial of
5 is 5*4*3*2*1, or 120.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// factor.cpp
// calculates factorials, demonstrates FOR loop
#include <iostream>
using namespace std;

int main()
 {
 unsigned int numb;
 unsigned long fact=1; //long for larger numbers

 cout << “Enter a number: ”;
 cin >> numb; //get number

 for(int j=numb; j>0; j--) //multiply 1 by
 fact *= j; //numb, numb-1, ..., 2, 1
 cout << “Factorial is ” << fact << endl;
 return 0;
 }

In this example the initialization expression sets j to the value entered by the user. The test
expression causes the loop to execute as long as j is greater than 0. The increment expression
decrements j after each iteration.

We’ve used type unsigned long for the factorial, since the factorials of even small numbers are very
large. On 32-bit systems like Windows int is the same as long, but long gives added capacity on 16-
bit systems. The following output shows how large factorials can be, even for small input numbers:

Enter a number: 10
Factorial is 3628800

The largest number you can use for input is 12. You won’t get an error message for larger inputs,
but the results will be wrong, as the capacity of type long will be exceeded.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Variables Defined in for Statements

There’s another wrinkle in this program: The loop variable j is defined inside the for statement:

for(int j=numb; j>0; j--)

This is a common construction in C++. It defines the variable as closely as possible to its point of
use in the listing. Variables defined in the loop statement this way are visible from the point of
definition onward in the listing (unlike variables defined within a block, which are visible only
within the block). It’s best not to use this style if the variable will be used outside the loop.

Multiple Initialization and Test Expressions

You can put more than one expression in the initialization part of the for statement, separating the
different expressions by commas. You can also have more than one increment expression. You can
have only one test expression. Here’s an example:

for(j=0, alpha=100; j<50; j++, beta--)
 {
 // body of loop
 }

This example has a normal loop variable j, but it also initializes another variable, alpha, and
decrements a third, beta. The variables alpha and beta don’t need to have anything to do with each
other, or with j. Multiple initialization expressions and multiple increment expressions are separated
by commas.

Actually, you can leave out some or all of the expressions if you want to. The expression

for(;;)

is the same as a while loop with a test expression of true. We’ll look at while loops next.

We’ll avoid using such multiple or missing expressions. While these approaches can make the
listing more concise, they also tend to decrease its readability. It’s always possible to use
standalone statements or a different form of loop to achieve the same effect.

The while Loop

The for loop does something a fixed number of times. What happens if you don’t know how many

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The for loop does something a fixed number of times. What happens if you don’t know how many
times you want to do something before you start the loop? In this case a different kind of loop may
be used: the while loop.

The next example, ENDON0, asks the user to enter a series of numbers. When the number entered is
0, the loop terminates. Notice that there’s no way for the program to know in advance how many
numbers will be typed before the 0 appears; that’s up to the user.

‘
// endon0.cpp
// demonstrates WHILE loop
#include <iostream>
using namespace std;

int main()
 {
 int n = 99; // make sure n isn’t initialized to 0

 while(n != 0) // loop until n is 0
 cin >> n; // read a number into n
 cout << endl;
 return 0;
 }

Here’s some sample output. The user enters numbers, and the loop continues until 0 is entered, at
which point the loop and the program terminate.

1
27
33
144
9
0

The while loop looks like a simplified version of the for loop. It contains a test expression but no
initialization or increment expressions. Figure 3.3 shows the syntax of the while loop.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 3.3 Syntax of the while loop.

As long as the test expression is true, the loop continues to be executed. In ENDON0, the text
expression

n != 0

(n not equal to 0) is true until the user enters 0.

Figure 3.4 shows the operation of a while loop. The simplicity of the while loop is a bit illusory.
Although there is no initialization expression, the loop variable (n in ENDON0) must be initialized
before the loop begins. The loop body must also contain some statement that changes the value of
the loop variable; otherwise the loop would never end. In ENDON0 it’s cin>>n;.

Figure 3.4 Operation of the while loop.

Multiple Statements in while Loop

The next example, WHILE4, uses multiple statements in a while loop. It’s a variation of the cubelist
program shown earlier with a for loop, but it calculates the fourth power, instead of the cube, of a
series of integers. Let’s assume that in this program it’s important to put the results in a column four
digits wide. To ensure that the results fit this column width, we must stop the loop before the results
become larger than 9999. Without prior calculation we don’t know what number will generate a
result of this size, so we let the program figure it out. The test expression in the while statement
terminates the program before the powers become too large.

// while4.cpp
// prints numbers raised to fourth power
#include <iostream>
#include <iomanip> //for setw
using namespace std;

int main()
 {
 int pow=1; //power initially 1
 int numb=1; //numb goes from 1 to ???

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 int numb=1; //numb goes from 1 to ???

 while(pow<9999) //loop while power <= 4 digits
 {
 cout << setw(2) << numb; //display number
 cout << setw(5) << pow << endl; //display fourth power
 ++numb; //get ready for next power
 pow = numb*numb*numb*numb; //calculate fourth power
 }
 cout << endl;
 return 0;
 }

To find the fourth power of numb, we simply multiply it by itself four times. Each time through the
loop we increment numb. But we don’t use numb in the test expression in while; instead, the resulting
value of pow determines when to terminate the loop. Here’s the output:

 1 1
 2 16
 3 81
 4 256
 5 625
 6 1296
 7 2401
 8 4096
 9 6561

The next number would be 10,000–too wide for our four-digit column; but by this time the loop has
terminated.

Precedence: Arithmetic and Relational Operators

The next program touches on the question of operator precedence. It generates the famous sequence
of numbers called the Fibonacci series. Here are the first few terms of the series:

1 1 2 3 5 8 13 21 34 55

Each term is found by adding the two previous ones: 1+1 is 2, 1+2 is 3, 2+3 is 5, 3+5 is 8, and so
on. The Fibonacci series has applications in amazingly diverse fields, from sorting methods in
computer science to the number of spirals in sunflowers.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

One of the most interesting aspects of the Fibonacci series is its relation to the golden ratio. The
golden ratio is supposed to be the ideal proportion in architecture and art, and was used in the
design of ancient Greek temples. As the Fibonacci series is carried out further and further, the ratio
of the last two terms approaches closer and closer to the golden ratio. Here’s the listing for
FIBO.CPP:

‘
// fibo.cpp
// demonstrates WHILE loops using fibonacci series
#include <iostream>
using namespace std;

int main()
 { //largest unsigned long
 const unsigned long limit = 4294967295;
 unsigned long next=0; //next-to-last term
 unsigned long last=1; //last term

 while(next < limit / 2) //don’t let results get too big
 {
 cout << last << “ ”; //display last term
 long sum = next + last; //add last two terms
 next = last; //variables move forward
 last = sum; // in the series
 }
 cout << endl;
 return 0;
 }

Here’s the output:

1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987
1597 2584 4181 6765 10946 17711 28657 46368 75025 121393
196418 317811 514229 832040 1346269 2178309 3524578
5702887 9227465 14930352 24157817 39088169 63245986
102334155 165580141 267914296 433494437 701408733 1134903170
1836311903 2971215073

For you temple builders, the ratio of the last two terms gives an approximation of the golden ratio
as 0.618033988—close enough for government work.

The FIBO program uses type unsigned long, the type that holds the largest positive integers. The test
expression in the while statement terminates the loop before the numbers exceed the limit of this
type. We define this limit as a const type, since it doesn’t change. We must stop when next becomes
larger than half the limit, otherwise sum would exceed the limit.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The test expression uses two operators:

(next < limit / 2)

Our intention is to compare next with the result of limit/2. That is, we want the division to be
performed before the comparison. We could put parentheses around the division, to ensure that it’s
performed first.

(next < (limit/2))

But we don’t need the parentheses. Why not? Because arithmetic operators have a higher
precedence than relational operators. This guarantees that limit/2 will be evaluated before the
comparison is made, even without the parentheses. We’ll summarize the precedence situation later
in this chapter, when we look at logical operators.

The do Loop

In a while loop, the test expression is evaluated at the beginning of the loop. If the test expression is
false when the loop is entered, the loop body won’t be executed at all. In some situations this is
what you want. But sometimes you want to guarantee that the loop body is executed at least once,
no matter what the initial state of the test expression. When this is the case you should use the do
loop, which places the test expression at the end of the loop.

Our example, DIVDO, invites the user to enter two numbers: a dividend (the top number in a
division) and a divisor (the bottom number). It then calculates the quotient (the answer) and the
remainder, using the / and % operators, and prints out the result.

‘’
// divdo.cpp
// demonstrates DO loop
#include <iostream>
using namespace std;

int main()
 {
 long dividend, divisor;
 char ch;

 do //start of do loop
 { //do some processing
 cout << “Enter dividend: ”; cin >> dividend;
 cout << “Enter divisor: ”; cin >> divisor;
 cout << “Quotient is ” << dividend / divisor;
 cout << “, remainder is ” << dividend % divisor;

 cout << “\nDo another? (y/n): ”; //do it again?
 cin >> ch;
 }
 while(ch != ‘n’); //loop condition
 return 0;
 }

Most of this program resides within the do loop. First, the keyword do marks the beginning of the
loop. Then, as with the other loops, braces delimit the body of the loop. Finally a while statement
provides the test expression and terminates the loop. This while statement looks much like the one in
a while loop, except for its position at the end of the loop and the fact that it ends with a semicolon
(which is easy to forget!). The syntax of the do loop is shown in Figure 3.5.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Following each computation, DIVDO asks if the user wants to do another. If so, the user enters a ‘y’
character, and the test expression

ch != ‘n’

remains true. If the user enters ‘n’, the test expression becomes false and the loop terminates. Figure
3.6 charts the operation of the do loop. Here’s an example of DIVDO’s output:

Enter dividend: 11
Enter divisor: 3
Quotient is 3, remainder is 2
Do another? (y/n): y
Enter dividend: 222
Enter divisor: 17
Quotient is 13, remainder is 1
Do another? (y/n): n

Figure 3.5 Syntax of the do loop.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 3.6 Operation of the do loop.

When to Use Which Loop

We’ve made some general statements about how loops are used. The for loop is appropriate when
you know in advance how many times the loop will be executed. The while and do loops are used
when you don’t know in advance when the loop will terminate; the while loop when you may not
want to execute the loop body even once, and the do loop when you’re sure you want to execute the
loop body at least once.

These criteria are somewhat arbitrary. Which loop type to use is more a matter of style than of
hard-and-fast rules. You can actually make any of the loop types work in almost any situation. You
should choose the type that makes your program the clearest and easiest to follow.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Decisions

The decisions in a loop always relate to the same question: Should we do this (the loop body)
again? As humans we would find it boring to be so limited in our decision-making processes. We
need to decide, not only whether to go to work again today (continuing the loop), but also whether
to buy a red shirt or a green one (or no shirt at all), whether to take a vacation, and if so, in the
mountains or by the sea.

Programs also need to make these one-time decisions. In a program a decision causes a one-time
jump to a different part of the program, depending on the value of an expression. Decisions can be
made in C++ in several ways. The most important is with the if...else statement, which chooses
between two alternatives. This statement can be used without the else, as a simple if statement.
Another decision statement, switch, creates branches for multiple alternative sections of code,
depending on the value of a single variable. Finally the conditional operator is used in specialized
situations. We’ll examine each of these constructions.

The if Statement

The if statement is the simplest of the decision statements. Our next program, IFDEMO, provides an
example.

// ifdemo.cpp
// demonstrates IF statement
#include <iostream>
using namespace std;

int main()
 {
 int x;

 cout << “Enter a number: ”;
 cin >> x;
 if(x > 100)
 cout << “That number is greater than 100\n”;
 return 0;
 }

The if keyword is followed by a test expression in parentheses. The syntax of the if statement is
shown in Figure 3.7. As you can see, the syntax of if is very much like that of while. The difference
is that the statements following the if are executed only once if the test expression is true; the
statements following while are executed repeatedly until the test expression becomes false. Figure
3.8 shows the operation of the if statement.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 3.7 Syntax of the if statement.

Here’s an example of the IFDEMO program’s output when the number entered by the user is greater
than 100:

Enter a number: 2000
That number is greater than 100

If the number entered is not greater than 100, the program will terminate without printing the
second line.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 3.8 Operation of the if statement.

Multiple Statements in the if Body

As in loops, the code in an if body can consist of a single statement—as shown in the IFDEMO
example—or a block of statements delimited by braces. This variation on IFDEMO, called IF2,
shows how that looks.

// if2.cpp
// demonstrates IF with multiline body
#include <iostream>
using namespace std;

int main()
 {
 int x;

 cout << “Enter a number: ”;
 cin >> x;
 if(x > 100)
 {
 cout << “The number ” << x;
 cout << “ is greater than 100\n”;
 }
 return 0;
 }

Here’s some output from IF2:

Enter a number: 12345
The number 12345 is greater than 100

Nesting ifs Inside Loops

The loop and decision structures we’ve seen so far can be nested inside one another. You can nest
ifs inside loops, loops inside ifs, ifs inside ifs, and so on. Here’s an example, prime, that nests an if
within a for loop. This example tells you if a number you enter is a prime number. (Prime numbers
are integers divisible only by themselves and 1. The first few primes are 1, 2, 3, 5, 7, 11, 13, 17.)

’’’
// prime.cpp
// demonstrates IF statement with prime numbers
#include <iostream>
using namespace std;
#include <process.h> //for exit()

int main()
 {
 unsigned long n, j;

 cout << “Enter a number: ”;
 cin >> n; //get number to test
 for(j=2; j <= n/2; j++) //divide by every integer from
 if(n%j == 0) //2 on up; if remainder is 0,
 { //it’s divisible by j
 cout << “It’s not prime; divisible by ” << j << endl;
 exit(0); //exit from the program

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 exit(0); //exit from the program
 }
 cout << “It’s prime\n”;
 return 0;
 }

In this example the user enters a number that is assigned to n. The program then uses a for loop to
divide n by all the numbers from 2 up to n/2. The divisor is j, the loop variable. If any value of j
divides evenly into n, then n is not prime. When a number divides evenly into another, the
remainder is 0; we use the remainder operator % in the if statement to test for this condition with
each value of j. If the number is not prime, we tell the user and we exit from the program.

Here’s output from three separate invocations of the program:

Enter a number: 13
It’s prime
Enter a number: 22229
It’s prime
Enter a number: 22231
It’s not prime; divisible by 11

Notice that there are no braces around the loop body. This is because the if statement, and the
statements in its body, are considered to be a single statement. If you like you can insert braces for
readability, even though the compiler doesn’t need them.

Library Function exit()

When PRIME discovers that a number is not prime, it exits immediately, since there’s no use
proving more than once that a number isn’t prime. This is accomplished with the library function
exit(). This function causes the program to terminate, no matter where it is in the listing. It has no
return value. Its single argument, 0 in our example, is returned to the operating system when the
program exits. (This value is useful in batch files, where you can use the ERRORLEVEL value to
query the return value provided by exit(). The value 0 is normally used for a successful termination;
other numbers indicate errors.)

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

The if...else Statement

The if statement lets you do something if a condition is true. If it isn’t true, nothing happens. But
suppose we want to do one thing if a condition is true, and do something else if it’s false. That’s
where the if...else statement comes in. It consists of an if statement, followed by a statement or block
of statements, followed by the keyword else, followed by another statement or block of statements.
The syntax is shown in Figure 3.9.

Figure 3.9 Syntax of the if...else statement

Here’s a variation of our IF example, with an else added to the if:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// ifelse.cpp
// demonstrates IF...ELSE statememt
#include <iostream>
using namespace std;

int main()
 {
 int x;

 cout << “\nEnter a number: ”;
 cin >> x;
 if(x > 100)
 cout << “That number is greater than 100\n”;
 else
 cout << “That number is not greater than 100\n”;
 return 0;
 }

If the test expression in the if statement is true, the program prints one message; if it isn’t, it prints
the other.

Here’s output from two different invocations of the program:

Enter a number: 300
That number is greater than 100
Enter a number: 3
That number is not greater than 100

The operation of the if...else statement is shown in Figure 3.10.

Figure 3.10 Operation of the if...else statement.

The getche() Library Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Our next example shows an if...else statement embedded in a while loop. It also introduces a new
library function: getche(). This program, CHCOUNT, counts the number of words and the number of
characters in a phrase typed in by the user.

‘’’’’’’’’’
// chcount.cpp
// counts characters and words typed in
#include <iostream>
using namespace std;
#include <conio.h> //for getche()

int main()
 {
 int chcount=0; //counts non-space characters
 int wdcount=1; //counts spaces between words
 char ch = ‘a’; //ensure it isn’t ‘\r’

 cout << “Enter a phrase: ”;
 while(ch != ‘\r’) //loop until Enter typed
 {
 ch = getche(); //read one character
 if(ch==’ ‘) //if it’s a space
 wdcount++; //count a word
 else //otherwise,
 chcount++; //count a character
 } //display results
 cout << “\nWords=” << wdcount << endl
 << “Letters=” << (chcount-1) << endl;
 return 0;
 }

So far we’ve used only cin and >> for input. That approach requires that the user always press the
[Enter] key to inform the program that the input is complete. This is true even for single characters:
The user must type the character, then press [Enter]. However, as in the present example, a program
often needs to process each character typed by the user without waiting for an [Enter]. The getche()
library function performs this service. It returns each character typed, as soon as it’s typed. It takes
no arguments, and requires the CONIO.H header file. In CHCOUNT the value of the character returned
from getche() is assigned to ch. (The getche() function echoes the character to the screen. That’s why
there’s an e at the end of getche. Another function, getch(), is similar to getche() but doesn’t echo the
character to the screen.)

The if...else statement causes the word count wdcount to be incremented if the character is a space,
and the character count chcount to be incremented if the character is anything but a space. Thus
anything that isn’t a space is assumed to count as a character. (Note that this program is fairly
na•ve; it will be fooled by multiple spaces between words.)

Here’s some sample interaction with CHCOUNT:

For while and do

Words=4
Letters=13

The test expression in the while statement checks to see if ch is the ‘\r’ character, which is the
character received from the keyboard when the [Enter] key is pressed. If so, the loop and the
program terminate.

Assignment Expressions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The CHCOUNT program can be rewritten to save a line of code and demonstrate some important
points about assignment expressions and precedence. The result is a construction that looks rather
peculiar but is commonly used in C++ (and in C).

Here’s the rewritten version, called CHCNT2:

‘’’’’
// chcnt2.cpp
// counts characters and words typed in
#include <iostream>
using namespace std;
#include <conio.h> // for getche()

int main()
 {
 int chcount=0;
 int wdcount=1; // space between two words
 char ch;

 while((ch=getche()) != ‘\r’) // loop until Enter typed
 {
 if(ch==’ ‘) // if it’s a space
 wdcount++; // count a word
 else // otherwise,
 chcount++; // count a character
 } // display results
 cout << “\nWords=” << wdcount << endl
 << “Letters=” << chcount << endl;
 return 0;
 }

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

The value returned by getche() is assigned to ch as before, but this entire assignment expression has
been moved inside the test expression for while. The assignment expression is compared with ‘\r’ to
see if the loop should terminate. This works because the entire assignment expression takes on the
value used in the assignment. That is, if getche() returns ‘a’, then not only does ch take on the value
‘a’, but the expression

(ch=getche())

also takes on the value ‘a’. This is then compared with ‘\r’.

The fact that assignment expressions have a value is also used in statements such as

x = y = z = 0;

This is perfectly legal in C++. First, z takes on the value 0, then z = 0 takes on the value 0, which is
assigned to y. Then the expression y = z = 0 likewise takes on the value 0, which is assigned to x.

The parentheses around the assignment expression in

(ch=getche())

are necessary because the assignment operator = has a lower precedence than the relational operator
!=. Without the parentheses the expression would be evaluated as

while(ch = (getche() != ‘\r’)) // not what we want

which would assign a true or false value to ch; not what we want.

The while statement in CHCNT2 provides a lot of power in a small space. It is not only a test
expression (checking ch to see if it’s ‘\r’); it also gets a character from the keyboard and assigns it to
ch. It’s also not easy to unravel the first time you see it.

Nested if...else Statements

You’re probably too young to remember adventure games on early character-mode MS-DOS
systems, but let’s resurrect the concept here. You moved your “character” around an imaginary
landscape, and discovered castles, sorcerers, treasure, and so on, using text—not pictures—for input
and output. The next program, ADIFELSE, models a small part of such an adventure game.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

’’’’’’’’’’’’
// adifelse.cpp
// demonstrates IF...ELSE with adventure program
#include <iostream>
using namespace std;
#include <conio.h> //for getche()

int main()
 {
 char dir=‘a’;
 int x=10, y=10;

 cout << “Type Enter to quit\n”;
 while(dir != ‘\r’) //until Enter is typed
 {
 cout << “\nYour location is ” << x << “, ” << y;
 cout << “\nPress direction key (n, s, e, w): ”;
 dir = getche(); //get character
 if(dir==‘n’) //go north
 y--;
 else
 if(dir==‘s’) //go south
 y++;
 else
 if(dir==‘e’) //go east
 x++;
 else
 if(dir==‘w’) //go west
 x--;
 } //end while
 return 0;
 } //end main

When the game starts, you find yourself on a barren moor. You can go one “unit” north, south, east,
or west, while the program keeps track of where you are and reports your position, which starts at
coordinates 10,10. Unfortunately, nothing exciting happens to your character, no matter where you
go; the moor stretches almost limitlessly in all directions, as shown in Figure 3.11. We’ll try to
provide a little more excitement to this game later on.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 3.11 The barren moor.

Here’s some sample interaction with ADIFELSE:

Your location is 10, 10
Press direction key (n, s, e, w): n
Your location is 10, 9
Press direction key (n, s, e, w): e
Your location is 11, 9
Press direction key (n, s, e, w):

You can press the [Enter] key to exit from the program.

This program may not cause a sensation in the video arcades, but it does demonstrate one way to
handle multiple branches. It uses an if statement nested inside an if...else statement, which is nested
inside another if...else statement, which is nested inside yet another if...else statement. If the first test
condition is false, the second one is examined, and so on until all four have been checked. If any
one proves true, the appropriate action is taken—changing the x or y coordinate—and the program
exits from all the nested decisions. Such a nested group of if...else statements is called a decision
tree.

Matching the else

There’s a potential problem in nested if...else statements: You can inadvertently match an else with
the wrong if. BADELSE provides an example:

// badelse.cpp
// demonstrates ELSE matched with wrong IF
#include <iostream>
using namespace std;

int main()
 {
 int a, b, c;
 cout << “Enter three numbers, a, b, and c:\n”;
 cin >> a >> b >> c;

 if(a==b)
 if(b==c)
 cout << “a, b, and c are the same\n”;
 else
 cout << “a and b are different\n”;
 return 0;
 }

We’ve used multiple values with a single cin. Press [Enter] following each value you type in; the
three values will be assigned to a, b, and c.

What happens if you enter 2, then 3, and then 3? Variable a is 2, and b is 3. They’re different, so the
first test expression is false, and you would expect the else to be invoked, printing a and b are
different. But in fact nothing is printed. Why not? Because the else is matched with the wrong if.
The indentation would lead you to believe that the else is matched with the first if, but in fact it goes
with the second if. Here’s the rule: An else is matched with the last if that doesn’t have its own else

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here’s a corrected version:

if(a==b)
 if(b==c)
 cout << “a, b, and c are the same\n”;
 else
 cout << “b and c are different\n”;

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

We changed the indentation and also the phrase printed by the else body. Now if you enter 2, 3, 3
nothing will be printed. But entering 2, 2, 3 will cause the output

b and c are different

If you really want to pair an else with an earlier if, you can use braces around the inner

if:

if(a==b)
 {
 if(b==c)
 cout << “a, b, and c are the same”;
 }
else
 cout << “a and b are different”;

Here the else is paired with the first if, as the indentation indicates. The braces make the if within
them invisible to the following else.

The else...if Construction

The nested if...else statements in the ADIFELSE program look clumsy and can be hard—for humans—
to interpret, especially if they are nested more deeply than shown. However there’s another
approach to writing the same statements. We need only reformat the program, obtaining the next
example, ADELSEIF.

’’’’’’’’’’’’
// adelseif.cpp
// demonstrates ELSE...IF with adventure program
#include <iostream>
using namespace std;
#include <conio.h> //for getche()

int main()
 {
 char dir=’a’;
 int x=10, y=10;

 cout << “Type Enter to quit\n”;
 while(dir != ‘\r’) //until Enter is typed
 {
 cout << “\nYour location is ” << x << “, ” << y;
 cout << “\nPress direction key (n, s, e, w): ”;
 dir = getche(); //get character
 if(dir==‘n’) //go north

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if(dir==‘n’) //go north
 y--;
 else if(dir==‘s’) //go south
 y++;
 else if(dir==‘e’) //go east
 x++;
 else if(dir==‘w’) //go west
 x--;
 } //end while
 return 0;
 } //end main

The compiler sees this as identical to ADIFELSE, but we’ve rearranged the ifs so they directly follow
the elses. The result looks almost like a new keyword: else if. The program goes down the ladder of
else...ifs until one of the test expressions is true. It then executes the following statement and exits
from the ladder. This format is clearer and easier to follow than the if...else approach.

The switch Statement

If you have a large decision tree, and all the decisions depend on the value of the same variable,
you will probably want to consider a switch statement instead of a ladder of if...else or else...if
constructions. Here’s a simple example called PLATTERS that will appeal to nostalgia buffs:

// platters.cpp
// demonstrates SWITCH statement
#include <iostream>
using namespace std;

int main()
 {
 int speed; //turntable speed

 cout << “\nEnter 33, 45, or 78: ”;
 cin >> speed; //user enters speed
 switch(speed) //selection based on speed
 {
 case 33: //user entered 33
 cout << “LP album\n”;
 break;
 case 45: //user entered 45
 cout << “Single selection\n”;
 break;
 case 78: //user entered 78
 cout << “Obsolete format\n”;
 break;
 }
 return 0;
 }

This program prints one of three possible messages, depending on whether the user inputs the
number 33, 45, or 78. As you may recall, long-playing records (LPs) contained many songs and
turned at 33 rpm, the smaller 45s held only a single song, and 78s were the format that preceded
LPs and 45s.

The keyword switch is followed by a switch variable in parentheses.

switch(speed)

Braces then delimit a number of case statements. Each case keyword is followed by a constant,
which is not in parentheses but is followed by a colon.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

case 33:

The data type of the case constants should match that of the switch variable. Figure 3.12 shows the
syntax of the switch statement.

Figure 3.12 Syntax of the switch statement.

Before entering the switch, the program should assign a value to the switch variable. This value will
usually match a constant in one of the case statements. When this is the case (pun intended!), the
statements immediately following the keyword case will be executed, until a break is reached.

Here’s an example of PLATTER’s output:

Enter 33, 45, or 78: 45
Single selection

The break Statement

PLATTERS has a break statement at the end of each case section. The break keyword causes the entire
switch statement to exit. Control goes to the first statement following the end of the switch
construction, which in PLATTERS is the end of the program. Don’t forget the break; without it,
control passes down (or “falls through”) to the statements for the next case, which is usually not
what you want (although sometimes it’s useful).

If the value of the switch variable doesn’t match any of the case constants, then control passes to the
end of the switch without doing anything. The operation of the switch statement is shown in Figure
3.13.The break keyword is also used to escape from loops; we’ll discuss this soon.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 3.13 Operation of the switch statement.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

switch Statement with Character Variables

The PLATTERS example shows a switch statement based on a variable of type int. You can also use
type char. Here’s our ADELSEIF program rewritten as ADSWITCH:

’’’’’’’’’’’’’’
// adswitch.cpp
// demonstrates SWITCH with adventure program
#include <iostream>
using namespace std;
#include <conio.h> //for getche()

int main()
 {
 char dir=’a’;
 int x=10, y=10;

 while(dir != ‘\r’)
 {
 cout << “\nYour location is ” << x << “, ” << y;
 cout << “\nEnter direction (n, s, e, w): ”;
 dir = getche(); //get character
 switch(dir) //switch on it
 {
 case ‘n’: y--; break; //go north
 case ‘s’: y++; break; //go south
 case ‘e’: x++; break; //go east
 case ‘w’: x--; break; //go west
 case ‘\r’: cout << “Exiting\n”; break; //Enter key
 default: cout << “Try again\n”; //unknown char
 } //end switch
 } //end while
 return 0;
 } //end main

A character variable dir is used as the switch variable, and character constants ‘n’, ‘s’, and so on are
used as the case constants. (Note that you can use integers and characters as switch variables, as
shown in the last two examples, but you can’t use floating-point numbers.)

Since they are so short, the statements following each case keyword have been written on one line,
which makes for a more compact listing. We’ve also added a case to print an exit message when
[Enter] is pressed.

The default Keyword

In the ADSWITCH program, where you expect to see the last case at the bottom of the switch

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In the ADSWITCH program, where you expect to see the last case at the bottom of the switch
construction, you instead see the keyword default. This keyword gives the switch construction a way
to take an action if the value of the loop variable doesn’t match any of the case constants. Here we
use it to print Try again if the user types an unknown character. No break is necessary after default,
since we’re at the end of the switch anyway.

A switch statement is a common approach to analyzing input entered by the user. Each of the
possible characters is represented by a case.

It’s a good idea to use a default statement in all switch statements, even if you don’t think you need it.
A construction such as

default:

 cout << “Error: incorrect input to switch”; break;

alerts the programmer (or the user) that something has gone wrong in the operation of the program.
In the interest of brevity we don’t always include such a default statement, but you should,
especially in serious programs.

switch Versus if...else

When do you use a series of if...else (or else...if) statements, and when do you use a switch statement?
In an if...else construction you can use a series of expressions that involve unrelated variables and
are as complex as you like. For example:

if(SteamPressure*Factor > 56)
 // statements
else if(VoltageIn + VoltageOut < 23000)
 // statements
else if(day==Thursday)
 // statements
else
 // statements

In a switch statement, however, all the branches are selected by the same variable; the only thing
distinguishing one branch from another is the value of this variable. You can’t say

case a<3:
 // do something
 break;

The case constant must be an integer or character constant, like 3 or ‘a’, or an expression that
evaluates to a constant, like ‘a’+32.

When these conditions are met, the switch statement is very clean—easy to write and to understand.
It should be used whenever possible, especially when the decision tree has more than a few
possibilities.

The Conditional Operator

Here’s a strange sort of decision operator. It exists because of a common programming situation: A
variable is given one value if something is true and another value if it’s false. For example, here’s
an if...else statement that gives the variable min the value of alpha or the value of beta, depending on
which is smaller:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

if(alpha < beta)
 min = alpha;
else
 min = beta;

This sort of construction is so common that the designers of C++ (actually the designers of C, long
ago) invented a compressed way to express it: the conditional operator. This operator consists of
two symbols, which operate on three operands. It’s the only such operator in C++; other operators
operate on one or two operands. Here’s the equivalent of the same program fragment, using a
conditional operator:

min = (alpha<beta) ? alpha : beta;

The part of this statement to the right of the equal sign is called the conditional expression:

(alpha<beta) ? alpha : beta // conditional expression

The question mark and the colon make up the conditional operator. The expression before the
question mark,

(alpha<beta)

is the test expression. It and alpha and beta are the three operands.

If the test expression is true, then the entire conditional expression takes on the value of the operand
following the question mark: alpha in this example. If the test expression is false, the conditional
expression takes on the value of the operand following the colon: beta. The parentheses around the
test expression aren’t needed for the compiler, but they’re customary; they make the statement
easier to read (and it needs all the help it can get). Figure 3.14 shows the syntax of the conditional
statement, and Figure 3.15 shows its operation.

Figure 3.14 Syntax of the conditional operator.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

The conditional expression can be assigned to another variable, or used anywhere a value can be. In
this example it’s assigned to the variable min.

Here’s another example: a statement that uses a conditional operator to find the absolute value of a
variable n. (The absolute value of a number is the number with any negative sign removed, so it’s
always positive.)

absvalue = n<0 ? -n : n;

Figure 3.15 Operation of the conditional operator.

If n is less than 0, the expression becomes -n, a positive number. If n is not less than 0, the
expression remains n. The result is the absolute value of n, which is assigned to absvalue.

Here’s a program, CONDI.CPP, that uses the conditional operator to print an x every eight spaces in a
line of text. You might use this to see where the tab stops are on your screen.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

’’’’’’’’’’
// condi.cpp
// prints ‘x’ every 8 columns
// demonstrates conditional operator
#include <iostream>
using namespace std;

int main()
 {
 for(int j=0; j<80; j++) //for every column,
 { //ch is ‘x’ if column is
 char ch = (j%8) ? ‘ ‘ : ‘x’; //multiple of 8, and
 cout << ch; //‘ ’ (space) otherwise
 }
 return 0;
 }

Some of the right side of the output is lost because of the page width, but you can probably imagine
it:

x x x x x x x x x

As j cycles through the numbers from 0 to 79, the remainder operator causes the expression (j % 8)
to become false—that is, 0—only when j is a multiple of 8. So the conditional expression

(j%8) ? ‘ ’ : ‘x’

has the value ‘ ‘ (the space character) when j is not a multiple of 8, and the value ‘x’ when it is.

You may think this is terse, but we could have combined the two statements in the loop body into
one, eliminating the ch variable:

cout << ((j%8) ? ‘ ’ : ‘x’);

Hotshot C++ (and C) programmers love this sort of thing—getting a lot of bang from very little
code. But you don’t need to strive for concise code if you don’t want to. Sometimes it becomes so
obscure it’s not worth the effort. Even using the conditional operator is optional: An if...else
statement and a few extra program lines will accomplish the same thing.

Logical Operators

So far we’ve seen two families of operators (besides the oddball conditional operator). First are the
arithmetic operators +, -, *, /, and %. Second are the relational operators <, >, <=, >=, ==, and !=.

Let’s examine a third family of operators, called logical operators. These operators allow you to
logically combine Boolean variables (that is, variables of type bool, with true or false values). For
example, today is a weekday has a Boolean value, since it’s either true or false. Another Boolean
expression is Maria took the car. We can connect these expressions logically: If today is a
weekday, and Maria took the car, then I’ll have to take the bus. The logical connection here is the
word and, which provides a true or false value to the combination of the two phrases. Only if they
are both true will I have to take the bus.

Logical and Operator

Let’s see how logical operators combine Boolean expressions in C++. Here’s an example,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Let’s see how logical operators combine Boolean expressions in C++. Here’s an example,
ADVENAND, that uses a logical operator to spruce up the adventure game from the ADSWITCH
example. We’ll bury some treasure at coordinates (7,11) and see if the player can find it.

’’’’’’’’’’’’
// advenand.cpp
// demonstrates AND logical operator
#include <iostream>
using namespace std;
#include <process.h> //for exit()
#include <conio.h> //for getche()

int main()
 {
 char dir=’a’;
 int x=10, y=10;

 while(dir != ‘\r’)
 {
 cout << “\nYour location is ” << x << “, ” << y;
 cout << “\nEnter direction (n, s, e, w): ”;
 dir = getche(); //get direction
 switch(dir)
 {
 case ‘n’: y--; break; //update coordinates
 case ‘s’: y++; break;
 case ‘e’: x++; break;
 case ‘w’: x--; break;
 }
 if(x==7 && y==11) //if x is 7 and y is 11
 {
 cout << “\nYou found the treasure!\n”;
 exit(0); //exit from program
 }
 } //end switch
 return 0;
 } //end main

The key to this program is the if statement

if(x==7 && y==11)

The test expression will be true only if both x is 7 and y is 11. The logical AND operator && joins
the two relational expressions to achieve this result. (A relational expression is one that uses a
relational operator.)

Notice that parentheses are not necessary around the relational expressions.

((x==7) && (y==11)) // inner parentheses not necessary

This is because the relational operators have higher precedence than the logical operators.

Here’s some interaction as the user arrives at these coordinates:

Your location is 7, 10
Enter direction (n, s, e, w): s
You found the treasure!

There are three logical operators in C++:

Operator Effect
&& Logical AND

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

|| Logical OR
! Logical NOT

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

There is no logical XOR (exclusive OR) operator in C++.

Let’s look at examples of the || and ! operators.

Logical OR Operator

Suppose in the adventure game you decide there will be dragons if the user goes too far east or too
far west. Here’s an example, ADVENOR, that uses the logical OR operator to implement this
frightening impediment to free adventuring. It’s a variation on the ADVENAND program.

’’’’’’’’’’’’
// advenor.cpp
// demonstrates OR logical operator
#include <iostream>
using namespace std;
#include <process.h> //for exit()
#include <conio.h> //for getche()

int main()
 {
 char dir=’a’;
 int x=10, y=10;

 while(dir != ‘\r’) //quit on Enter key
 {
 cout << “\n\nYour location is ” << x << “, ” << y;

 if(x<5 || x>15) //if x west of 5 OR east of 15
 cout << “\nBeware: dragons lurk here”;

 cout << “\nEnter direction (n, s, e, w): ”;
 dir = getche(); //get direction
 switch(dir)
 {
 case ‘n’: y--; break; //update coordinates
 case ‘s’: y++; break;
 case ‘e’: x++; break;
 case ‘w’: x--; break;
 } //end switch
 } //end while
 return 0;
 } //end main()

The expression

x<5 || x>15

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

x<5 || x>15

is true whenever either x is less than 5 (the player is too far west), or x is greater than 15 (the player
is too far east). Again, the || operator has lower precedence than the relational operators < and >, so
no parentheses are needed in this expression.

Logical NOT Operator

The logical NOT operator ! is a unary operator—that is, it takes only one operand. (Almost all the
operators we’ve seen thus far are binary operators; they take two operands. The conditional
operator is the only ternary operator in C++.) The effect of the ! is that the logical value of its
operand is reversed: If something is true, ! makes it false; if it is false, ! makes it true. (It would be
nice if life were so easily manipulated.)

For example, (x==7) is true if x is equal to 7, but !(x==7) is true if x is not equal to 7. (In this situation
you could use the relational not equals operator, x != 7, to achieve the same effect.)

A True/False Value for Every Integer Variable

We may have given you the impression that for an expression to have a true/false value, it must
involve a relational operator. But in fact, every integer expression has a true/false value, even if it is
only a single variable. The expression x is true whenever x is not 0, and false when x is 0. Applying
the ! operator to this situation, we can see that the !x is true whenever x is 0, since it reverses the
truth value of x.

Let’s put these ideas to work. Imagine in your adventure game that you want to place a mushroom
on all the locations where both x and y are a multiple of 7. (As you probably know, mushrooms,
when consumed by the player, confer magical powers.) The remainder when x is divided by 7,
which can be calculated by x%7, is 0 only when x is a multiple of 7. So to specify the mushroom
locations, we can write

if(x%7==0 && y%7==0)
 cout << “There’s a mushroom here.\n”;

However, remembering that expressions are true or false even if they don’t involve relational
operators, you can use the ! operator to provide a more concise format.

if(!(x%7) && !(y%7)) // if not x%7 and not y%7

This has exactly the same effect.

We’ve said that the logical operators && and || have lower precedence than the relational operators.
Why then do we need parentheses around x%7 and y%7? Because, even though it is a logical
operator, ! is a unary operator, which has higher precedence than relational operators.

Precedence Summary

Let’s summarize the precedence situation for the operators we’ve seen so far. The operators higher
on the list have higher precedence than those lower down. Operators with higher precedence are
evaluated before those with lower precedence. Operators on the same row have equal precedence.
You can force an expression to be evaluated first by placing parentheses around it.

Operator type Operators

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Unary !, ++, --, --
Arithmetic Multiplicative *, /, %

Additive +, --
Relational inequality <, >, <=, >=

equality ==, !=
Logical and &&

or ||
Conditional ?:

Assignment =, +=, ñ, *=, /=, %=

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Other Control Statements

There are several other control statements in C++. We’ve already seen one, break, used in switch
statements, but it can be used other places as well. Another statement, continue, is used only in loops,
and a third, goto, should be avoided. Let’s look at these statements in turn.

The break Statement

The break statement causes an exit from a loop, just as it does from a switch statement. The next
statement after the break is executed is the statement following the loop. Figure 3.16 shows the
operation of the break statement.

Figure 3.16 Operation of the break statement.

To demonstrate break, here’s a program, SHOWPRIM, that displays the distribution of prime numbers
in graphical form:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

‘’
// showprim.cpp
// displays prime number distribution
#include <iostream>
using namespace std;
#include <conio.h> //for getche()

int main()
 {
 const unsigned char WHITE = 219; //solid color (primes)
 const unsigned char GRAY = 176; //gray (non primes)
 unsigned char ch;
 //for each screen position
 for(int count=0; count<80*25-1; count++)
 {
 ch = WHITE; //assume it’s prime
 for(int j=2; j<count; j++) //divide by every integer from
 if(count%j == 0) //2 on up; if remainder is 0,
 {
 ch = GRAY; //it’s not prime
 break; //break out of inner loop
 }
 cout << ch; //display the character
 }
 getch(); //freeze screen until keypress
 return 0;
 }

In effect every position on an 80-column by 25-line console screen is numbered, from 0 to 1999
(which is 80*25–1). If the number at a particular position is prime, the position is colored white; if
it’s not prime, it’s colored gray.

Figure 3.17 shows the display. Strictly speaking, 0 is not considered a prime, but it’s shown as
white to avoid complicating the program. Think of the columns across the top as being numbered
from 0 to 79. Notice that no primes (except 2) appear in even-numbered columns, since they’re all
divisible by 2. Is there a pattern to the other numbers? The world of mathematics will be very
excited if you find a pattern that allows you to predict whether any given number is prime.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 3.17 Output of SHOWPRIM program.

When the inner for loop determines that a number is not prime, it sets the character ch to GRAY,
and then executes break to escape from the inner loop. (We don’t want to exit from the entire
program, as in the PRIME example, since we have a whole series of numbers to work on.)

Notice that break only takes you out of the innermost loop. This is true no matter what constructions
are nested inside each other: break only takes you out of the construction in which it’s embedded. If
there were a switch within a loop, a break in the switch would only take you out of the switch, not out
of the loop.

The last cout statement prints the graphics character, and then the loop continues, testing the next
number for primeness.

ASCII Extended Character Set

This program uses two characters from the extended ASCII character set, the characters represented
by the numbers from 128 to 255, as shown in Appendix A, “ASCII Table.” The value 219
represents a solid-colored block (white on a black-and-white monitor), while 176 represents a gray
block.

The SHOWPRIM example uses getch() in the last line, to keep the DOS prompt from scrolling the
screen up when the program terminates. It freezes the screen until you press a key.

We use type unsigned char for the character variables in SHOWPRIM, since it goes up to 255. Type
only goes up to 127.

The continue Statement

The break statement takes you out of the bottom of a loop. Sometimes, however, you want to go
back to the top of the loop when something unexpected happens. Executing continue has this effect.
(Strictly speaking, the continue takes you to the closing brace of the loop body, from which you may
jump back to the top.) Figure 3.18 shows the operation of continue.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 3.18 Operation of the continue statement.

Here’s a variation on the DIVDO example. This program, which we saw earlier in this chapter, does
division, but it has a fatal flaw: If the user inputs 0 as the divisor, the program undergoes
catastrophic failure and terminates with the runtime error message Divide Error. The revised
version of the program, DIVDO2, deals with this situation more gracefully.

‘’
// divdo2.cpp
// demonstrates CONTINUE statement
#include <iostream>
using namespace std;

int main()
 {
 long dividend, divisor;
 char ch;

 do {
 cout << “Enter dividend: ”; cin >> dividend;
 cout << “Enter divisor: ”; cin >> divisor;
 if(divisor == 0) //if attempt to
 { //divide by 0,
 cout << “Illegal divisor\n”; //display message
 continue; //go to top of loop
 }
 cout << “Quotient is ” << dividend / divisor;
 cout << “, remainder is ” << dividend % divisor;

 cout << “\nDo another? (y/n): ”;
 cin >> ch;
 } while(ch != ‘n’);
 return 0;
 }

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

If the user inputs 0 for the divisor, the program prints an error message and, using continue, returns to
the top of the loop to issue the prompts again. Here’s some sample output:

Enter dividend: 10
Enter divisor: 0
Illegal divisor
Enter dividend:

A break statement in this situation would cause an exit from the do loop and the program, an
unnecessarily harsh response.

Notice that we’ve made the format of the do loop a little more compact. The do is on the same line
as the opening brace, and the while is on the same line as the closing brace.

The goto Statement

We’ll mention the goto statement here for the sake of completeness—not because it’s a good idea to
use it. If you’ve had any exposure to structured programming principles, you know that gotos can
quickly lead to “spaghetti” code that is difficult to understand and debug. There is almost never any
need to use goto, as is demonstrated by its absence in the program examples in this book.

With that lecture out of the way, here’s the syntax. You insert a label in your code at the desired
destination for the goto. The label is always terminated by a colon. The keyword goto, followed by
this label name, then takes you to the label. The following code fragment demonstrates this
approach.

goto SystemCrash;
// other statements
SystemCrash:
// control will begin here following goto

Summary

Relational operators compare two values to see if they’re equal, if one is larger than the other, and
so on. The result is a logical or Boolean (type bool) value, which is true or false. False is indicated
by 0, and true by 1 or any other non-zero number.

There are three kinds of loops in C++. The for loop is most often used when you know in advance
how many times you want to execute the loop. The while loop and do loops are used when the
condition causing the loop to terminate arises within the loop, with the while loop not necessarily
executing at all, and the do loop always executing at least once.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A loop body can be a single statement or a block of multiple statements delimited by braces. A
variable defined within a block is visible only within that block.

There are four kinds of decision-making statements. The if statement does something if a test
expression is true. The if...else statement does one thing if the test expression is true, and another
thing if it isn’t. The else...if construction is a way of rewriting a ladder of nested if...else statements to
make it more readable. The switch statement branches to multiple sections of code, depending on the
value of a single variable. The conditional operator simplifies returning one value if a test
expression is true, and another if it’s false.

The logical AND and OR operators combine two Boolean expressions to yield another one, and the
logical NOT operator changes a Boolean value from true to false, or from false to true.

The break statement sends control to the end of the innermost loop or switch in which it occurs. The
continue statement sends control to the top of the loop in which it occurs. The goto statement sends
control to a label.

Precedence specifies which kinds of operations will be carried out first. The order is unary,
arithmetic, relational, logical, conditional, assignment.

Questions

Answers to questions can be found in Appendix G, “Answers to Questions and Exercises.”

1. A relational operator

a. assigns one operand to another.
b. yields a Boolean result.
c. compares two operands.
d. logically combines two operands.

2. Write an expression that uses a relational operator to return true if the variable george is not
equal to sally.
3. Is –1 true or false?
4. Name and describe the usual purpose of three expressions in a for statement.
5. In a for loop with a multistatement loop body, semicolons should appear following

a. the for statement itself.
b. the closing brace in a multistatement loop body.
c. each statement within the loop body.
d. the test expression.

6. True or false: The increment expression in a for loop can decrement the loop variable.
7. Write a for loop that displays the numbers from 100 to 110.
8. A block of code is delimited by _________.
9. A variable defined within a block is visible

a. from the point of definition onward in the program.
b. from the point of definition onward in the function.
c. from the point of definition onward in the block.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

d. throughout the function.

10. Write a while loop that displays the numbers from 100 to 110.
11. True or false: Relational operators have a higher precedence than arithmetic operators.
12. How many times is the loop body executed in a do loop?
13. Write a do loop that displays the numbers from 100 to 110.
14. Write an if statement that prints Yes if a variable age is greater than 21.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

15. The library function exit() causes an exit from

a. the loop in which it occurs.
b. the block in which it occurs.
c. the function in which it occurs.
d. the program in which it occurs.

16. Write an if...else statement that displays Yes if a variable age is greater than 21, and
displays No otherwise.
17. The getche() library function

a. returns a character when any key is pressed.
b. returns a character when [Enter] is pressed.
c. displays a character on the screen when any key is pressed.
d. does not display a character on the screen.

18. What is the character obtained from cin when the user presses the [Enter] key?
19. An else always matches the _________ if, unless the if is _________.
20. The else...if construction is obtained from a nested if...else by ________________.
21. Write a switch statement that prints Yes if a variable ch is ‘y’, prints No if ch is ‘n’, and
prints Unknown response otherwise.
22. Write a statement that uses a conditional operator to set ticket to 1 if speed is greater than
55, and to 0 otherwise.
23. The && and || operators

a. compare two numeric values.
b. combine two numeric values.
c. compare two Boolean values.
d. combine two Boolean values.

24. Write an expression involving a logical operator that is true if limit is 55 and speed is
greater than 55.
25. Arrange in order of precedence (highest first) the following kinds of operators: logical,
unary, arithmetic, assignment, relational, conditional.
26. The break statement causes an exit

a. only from the innermost loop.
b. only from the innermost switch.
c. from all loops and switches.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

d. from the innermost loop or switch.

27. Executing the continue operator from within a loop causes control to go to ________.
28. The goto statement causes control to go to

a. an operator.
b. a label.
c. a variable.
d. a function.

Exercises

Answers to the starred exercises can be found in Appendix G.

*1. Assume you want to generate a table of multiples of any given number. Write a program
that allows the user to enter the number, and then generates the table, formatting it into 10
columns and 20 lines. Interaction with the program should look like this (only the first three
lines are shown):

Enter a number: 7
 7 14 21 28 35 42 49 56 63 70
 77 84 91 98 105 112 119 126 133 140
 147 154 161 168 175 182 189 196 203 210

*2. Write a temperature-conversion program that gives the user the option of converting
Fahrenheit to Celsius or Celsius to Fahrenheit. Then carry out the conversion. Use floating-
point numbers. Interaction with the program might look like this:

Type 1 to convert Fahrenheit to Celsius,
 2 to convert Celsius to Fahrenheit: 1
Enter temperature in Fahrenheit: 70
In Celsius that’s 21.111111

*3. Operators such as >>, which read input from the keyboard, must be able to convert a
series of digits into a number. Write a program that does the same thing. It should allow the
user to type up to six digits, and then display the resulting number as a type long integer. The
digits should be read individually, as characters, using getche(). Constructing the number
involves multiplying the existing value by 10 and then adding the new digit. (Hint: Subtract
48 or ‘0’ to go from ASCII to a numerical digit.)
Here’s some sample interaction:

Enter a number: 123456
Number is: 123456

*4. Create the equivalent of a four-function calculator. The program should request the user
to enter a number, an operator, and another number. (Use floating point.) It should then carry
out the specified arithmetical operation: adding, subtracting, multiplying, or dividing the two
numbers. Use a switch statement to select the operation. Finally, display the result.
When it finishes the calculation, the program should ask if the user wants to do another
calculation. The response can be ‘y’ or ‘n’. Some sample interaction with the program might

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

calculation. The response can be ‘y’ or ‘n’. Some sample interaction with the program might
look like this:

Enter first number, operator, second number: 10 / 3
Answer = 3.333333
Do another (y/n)? y
Enter first number, operator, second number: 12 + 100
Answer = 112
Do another (y/n)? n

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

5. Use for loops to construct a program that displays a pyramid of Xs on the screen. The
pyramid should look like this

 X
 XXX
 XXXXX
 XXXXXXX
XXXXXXXXX

except that it should be 20 lines high, instead of the 5 lines shown here. One way to do this is
to nest two inner loops, one to print spaces and one to print Xs, inside an outer loop that steps
down the screen from line to line.
6. Modify the FACTOR program in this chapter so that it repeatedly asks for a number and
calculates its factorial, until the user enters 0, at which point it terminates. You can enclose
the relevant statements in FACTOR in a while loop or a do loop to achieve this effect.
7. Write a program that calculates how much money you’ll end up with if you invest an
amount of money at a fixed interest rate, compounded yearly. Have the user furnish the initial
amount, the number of years, and the yearly interest rate in percent. Some interaction with
the program might look like this:

Enter initial amount: 3000
Enter number of years: 10
Enter interest rate (percent per year): 5.5
At the end of 10 years, you will have 5124.43 dollars.

At the end of the first year you have 3000 + (3000 * 0.055), which is 3165. At the end of the
second year you have 3165 + (3165 * 0.055), which is 3339.08. Do this as many times as
there are years. A for loop makes the calculation easy.
8. Write a program that repeatedly asks the user to enter two money amounts expressed in
old-style British currency: pounds, shillings, and pence. (See Exercises 10 and 12 in Chapter
2, “++ Programming Basics.”) The program should then add the two amounts and display the
answer, again in pounds, shillings, and pence. Use a do loop that asks the user if the program
should be terminated. Typical interaction might be

Enter first amount: £5.10.6
Enter second amount: £3.2.6
Total is £8.13.0
Do you wish to continue (y/n)?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To add the two amounts, you’ll need to carry 1 shilling when the pence value is greater than
11, and carry 1 pound when there are more than 19 shillings.
9. Suppose you give a dinner party for six guests, but your table seats only four. In how
many ways can four of the six guests arrange themselves at the table? Any of the six guests
can sit in the first chair. Any of the remaining five can sit in the second chair. Any of the
remaining four can sit in the third chair, and any of the remaining three can sit in the fourth
chair. (The last two will have to stand.) So the number of possible arrangements of six guests
in four chairs is 6*5*4*3, which is 360. Write a program that calculates the number of
possible arrangements for any number of guests and any number of chairs. (Assume there
will never be fewer guests than chairs.) Don’t let this get too complicated. A simple for loop
should do it.
10. Write another version of the program from Exercise 7 so that, instead of finding the final
amount of your investment, you tell the program the final amount and it figures out how
many years it will take, at a fixed rate of interest compounded yearly, to reach this amount.
What sort of loop is appropriate for this problem? (Don’t worry about fractional years; use an
integer value for the year.)
11. Create a three-function calculator for old-style English currency, where money amounts
are specified in pounds, shillings, and pence. (See Exercises 10 and 12 in Chapter 2.) The
calculator should allow the user to add or subtract two money amounts, or to multiply a
money amount by a floating-point number. (It doesn’t make sense to multiply two money
amounts; there is no such thing as square money. We’ll ignore division. Use the general style
of the ordinary four-function calculator in Exercise 4 in this chapter.)
12. Create a four-function calculator for fractions. (See Exercise 9 in Chapter 2, and Exercise
4 in this chapter.) Here are the formulas for the four arithmetic operations applied to
fractions:
Addition: a/b + c/d = (a*d + b*c) / (b*d)

Subtraction: a/b - c/d = (a*d - b*c) / (b*d)

Multiplication: a/b * c/d = (a*c) / (b*d)

Division: a/b / c/d = (a*d) / (b*c)

The user should type the first fraction, an operator, and a second fraction. The program should then
display the result and ask if the user wants to continue.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

CHAPTER 4
STRUCTURES

You will learn about the following in this chapter:
• Structure declarations and
definitions

• Structures as objects and data
types

• Accessing structure members • Enumerations
• Nested structures

We’ve seen variables of simple data types, such as float, char, and int. Variables of such types
represent one item of information: a height, an amount, a count, and so on. But just as groceries are
organized into bags, employees into departments, and words into sentences, it’s often convenient to
organize simple variables into more complex entities. The C++ construction called the structure is
one way to do this.

The first part of this chapter is devoted to structures. In the second part we’ll look at a related topic:
the enumerations.

Structures

A structure is a collection of simple variables. The variables in a structure can be of different types:
Some can be int, some can be float, and so on. (This is unlike the array, which we’ll meet later, in
which all the variables must be the same type.) The data items in a structure are called the members
of the structure.

In books on C programming, structures are often considered an advanced feature and are introduced
toward the end of the book. However, for C++ programmers, structures are one of the two important
building blocks in the understanding of objects and classes. In fact, the syntax of a structure is
almost identical to that of a class. A structure (as typically used) is a collection of data, while a class
is a collection of both data and functions. So by learning about structures we’ll be paving the way
for an understanding of classes and objects. Structures in C++ (and C) serve a similar purpose to
records in some other languages such as Pascal.

A Simple Structure

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Let’s start off with a structure that contains three variables: two integers and a floating-point
number. This structure represents an item in a widget company’s parts inventory. (We assume that a
widget is composed of several parts.) The structure is a kind of blueprint specifying what
information is necessary for a single part. The company makes several kinds of widgets, so the
widget model number is the first member of the structure. The number of the part itself is the next
member, and the final member is the part’s cost. (Those of you who consider part numbers
unexciting need to open your eyes to the romance of commerce.)

The program PARTS declares the structure part, defines a structure variable of that type called part1
assigns values to its members, and then displays these values.

// parts.cpp
// uses parts inventory to demonstrate structures
#include <iostream>
using namespace std;
//
struct part //declare a structure
 {
 int modelnumber; //ID number of widget
 int partnumber; //ID number of widget part
 float cost; //cost of part
 };
//
int main()
 {
 part part1; //define a structure variable

 part1.modelnumber = 6244; //give values to structure members
 part1.partnumber = 373;
 part1.cost = 217.55F;
 //display structure members
 cout << “Model ” << part1.modelnumber;
 cout << “, part ” << part1.partnumber;
 cout << “, costs $” << part1.cost << endl;
 return 0;
 }

The program’s output looks like this:

Model 6244, part 373, costs $217.55

The PARTS program has three main aspects: declaring the structure, defining a structure variable,
and accessing the members of the structure. Let’s look at each of these.

Declaring the Structure

The structure declaration tells how the structure is organized: It specifies what members the
structure will have. Here it is:

struct part
 {
 int modelnumber;
 int partnumber;
 float cost;
 };

Syntax of the Structure Declaration

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The keyword struct introduces the structure declaration. Next comes the structure name or tag,
which is part. The declarations of the structure members—modelnumber, partnumber, and cost—are
enclosed in braces. A semicolon follows the closing brace, terminating the entire structure. Note
that this use of the semicolon for structures is unlike the usage for a block of code. As we’ve seen,
blocks of code, which are used in loops, decisions, and functions, are also delimited by braces.
However, they don’t use a semicolon following the final brace. Figure 4.1 shows the syntax of the
structure declaration.

Figure 4.1 Syntax of the structure specifier.

Use of the Structure Declaration

The structure declaration serves only as a blueprint for the creation of variables of type part. The
declaration does not itself define any variables; that is, it does not set aside any space in memory or
even name any variables. It’s merely a specification for how such structure variables will look
when they are defined. This is shown in Figure 4.2.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4.2 Structures and structure variables.

It’s not accidental that this description sounds like the distinction we noted between classes and
objects in Chapter 1, “The Big Picture.” As we’ll see, an object has the same relationship to its
class that a variable of a structure type has to the structure declaration.

Defining a Structure Variable

The first statement in main(),

part part1;

defines a variable, called part1, of type structure part. This definition reserves space in memory for
part1. How much space? Enough to hold all the members of part1—namely modelnumber, partnumber
and cost. In this case there will be 4 bytes for each of the two ints (assuming a 32-bit system), and 4
bytes for the float. Figure 4.3 shows how part1 looks in memory. (The figure shows 2-byte integers.)

In some ways we can think of the part structure as the specification for a new data type. This will
become more clear as we go along, but notice that the format for defining a structure variable is the
same as that for defining a basic built-in data type such as int:

part part1;
int var1;

This similarity is not accidental. One of the aims of C++ is to make the syntax and the operation of
user-defined data types as similar as possible to that of built-in data types. (In C you need to include
the keyword struct in structure definitions, as in struct part part1;. In C++ the keyword is not
necessary.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4.3 Structure members in memory.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Accessing Structure Members

Once a structure variable has been defined, its members can be accessed using something called the
dot operator. Here’s how the first member is given a value:

part1.modelnumber = 6244;

The structure member is written in three parts: the name of the structure variable (part1); the dot
operator, which consists of a period (.); and the member name (modelnumber). This means “the
modelnumber member of part1.” The real name of the dot operator is member access operator, but of
course no one wants to use such a lengthy term.

Remember that the first component of an expression involving the dot operator is the name of the
specific structure variable (part1 in this case), not the name of the structure declaration (part). The
variable name must be used to distinguish one variable from another when there is more than one,
such as part1, part2, and so on, as shown in Figure 4.4.

Structure members are treated just like other variables. In the statement part1.modelnumber = 6244;, the
member is given the value 6244 using a normal assignment operator. The program also shows
members used in cout statements such as:

cout << “\nModel ” << part1.modelnumber;

These statements output the values of the structure members.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4.4 The dot operator.

Other Structure Features

Structures are surprisingly versatile. Let’s look at some additional features of structure syntax and
usage.

Combining Declaration and Definition

In the PARTS example we showed the structure declaration and the definition as two separate
statements. These two statements can also be combined into a single statement, as shown in the next
example, PARTSCOM.

// partscom.cpp
// uses parts inventory to demonstrate structures
#include <iostream>
using namespace std;
//
struct //no tag needed
 {
 int modelnumber; //ID number of widget
 int partnumber; //ID number of widget part
 float cost; //cost of part
 } part1; //definition goes here
//
int main()
 {
 part1.modelnumber = 6244; //give values to structure members
 part1.partnumber = 373;
 part1.cost = 217.55F;
 //display structure members
 cout << “Model ” << part1.modelnumber;
 cout << “, part ” << part1.partnumber;
 cout << “, costs $” << part1.cost << endl;
 return 0;
 }

In this program there is no separate statement for the structure definition:

part part1;

Instead, the variable name part1 is placed at the end of the declaration:

struct
 {
 int modelnumber;
 int partnumber;
 float cost;
 } part1;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 } part1;

Notice that the tag name in the structure declaration can be removed, as we show here, if no more
variables of this structure type will be defined later in the listing.

Merging the structure declaration and definition this way is a shorthand approach that can save a
few program lines. Generally it is less clear and less flexible than using separate declarations and
definitions.

Initializing Structure Members

The next example shows how structure members can be initialized when the structure variable is
defined. It also demonstrates that you can have more than one variable of a given structure type (we
hope you suspected this all along).

Here’s the listing for PARTINIT:

// partinit.cpp
// shows initialization of structure variables
#include <iostream>
using namespace std;
//
struct part //specify a structure
 {
 int modelnumber; //ID number of widget
 int partnumber; //ID number of widget part
 float cost; //cost of part
 };
//
int main()
 { //initialize variable
 part part1 = { 6244, 373, 217.55F };
 part part2; //define variable
 //display first variable
 cout << “Model ” << part1.modelnumber;
 cout << “, part ” << part1.partnumber;
 cout << “, costs $” << part1.cost << endl;

 part2 = part1; //assign first variable to second
 //display second variable
 cout << “Model “ << part2.modelnumber;
 cout << “, part “ << part2.partnumber;
 cout << “, costs $” << part2.cost << endl;
 return 0;
 }

This program defines two variables of type part: part1 and part2. It initializes part1, prints out the
values of its members, assigns part1 to part2, and prints out its members.

Here’s the output:

Model 6244, part 373, costs $217.55
Model 6244, part 373, costs $217.55

Not surprisingly the same output is repeated, since one variable is made equal to the other.

Initializing Structure Variables

The part1 structure variable’s members are initialized when the variable is defined:

part part1 = { 6244, 373, 217.55 };

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

part part1 = { 6244, 373, 217.55 };

The values to be assigned to the structure members are surrounded by braces and separated by
commas. The first value in the list is assigned to the first member, the second to the second
member, and so on.

Structure Variables in Assignment Statements

As can be seen in PARTINIT, one structure variable can be assigned to another:

part2 = part1;

The value of each member of part1 is assigned to the corresponding member of part1. Since a large
structure can have dozens of members, such an assignment statement can require the computer to
do a considerable amount of work.

Note that one structure variable can be assigned to another only when they are of the same structure
type. If you try to assign a variable of one structure type to a variable of another type, the compiler
will complain.

A Measurement Example

Let’s see how a structure can be used to group a different kind of information. If you’ve ever
looked at an architectural drawing, you know that (at least in the United States) distances are
measured in feet and inches. (As you probably know, there are 12 inches in a foot.) The length of a
living room, for example, might be given as 15’–8’, meaning 15 feet plus 8 inches. The hyphen
isn’t a negative sign; it merely separates the feet from the inches. This is part of the English system
of measurement. (We’ll make no judgment here on the merits of English versus metric.) Figure 4.5
shows typical length measurements in the English system.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4.5 Measurements in the English system.

Suppose you want to create a drawing or architectural program that uses the English system. It will
be convenient to store distances as two numbers, representing feet and inches. The next example,
ENGLSTRC, gives an idea of how this could be done using a structure. This program will show how
two measurements of type Distance can be added together.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

// englstrc.cpp
// demonstrates structures using English measurements
#include <iostream>
using namespace std;
//
struct Distance //English distance
 {
 int feet;
 float inches;
 };
//
int main()
 {
 Distance d1, d3; //define two lengths
 Distance d2 = { 11, 6.25 }; //define & initialize one length

 //get length d1 from user
 cout << “\nEnter feet: ”; cin >> d1.feet;
 cout << “Enter inches: ”; cin >> d1.inches;

 //add lengths d1 and d2 to get d3
 d3.inches = d1.inches + d2.inches; //add the inches
 d3.feet = 0; //(for possible carry)
 if(d3.inches >= 12.0) //if total exceeds 12.0,
 { //then decrease inches by 12.0
 d3.inches -= 12.0; //and
 d3.feet++; //increase feet by 1
 }
 d3.feet += d1.feet + d2.feet; //add the feet

 //display all lengths
 cout << d1.feet << “\’-” << d1.inches << “\” + ”;
 cout << d2.feet << “\’-” << d2.inches << “\” = ”;
 cout << d3.feet << “\’-” << d3.inches << “\”\n”;
 return 0;
 }

Here the structure Distance has two members: feet and inches. The inches variable may have a
fractional part, so we’ll use type float for it. Feet are always integers, so we’ll use type int for them.

We define two such distances, d1 and d3, without initializing them, while we initialize another, d2
to 11 ’–6.25”. The program asks the user to enter a distance in feet and inches, and assigns this
distance to d1. (The inches value should be smaller than 12.0.) It then adds the distance d1 to d2,
obtaining the total distance d3. Finally the program displays the two initial distances and the newly
calculated total distance. Here’s some output:

Enter feet: 10
Enter inches: 6.75
10’-6.75” + 11’-6.25” = 22’-1”

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10’-6.75” + 11’-6.25” = 22’-1”

Notice that we can’t add the two distances with a program statement like

d3 = d1 + d2; // can’t do this in ENGLSTRC

Why not? Because there is no routine built into C++ that knows how to add variables of type
Distance. The + operator works with built-in types like float, but not with types we define ourselves,
like Distance. (However, one of the benefits of using classes, as we’ll see later, is the ability to add
and perform other operations on user-defined data types.)

Structures Within Structures

You can nest structures within other structures. Here’s a variation on the ENGLSTRC program that
shows how this looks. In this program we want to create a data structure that stores the dimensions
of a typical room: its length and width. Since we’re working with English distances, we’ll use two
variables of type Distance as the length and width variables.

struct Room

 {
 Distance length;
 Distance width;
 }

Here’s a program, ENGLAREA, that uses the Room structure to represent a room.

// englarea.cpp
// demonstrates nested structures
#include <iostream>
using namespace std;
//
struct Distance //English distance
 {
 int feet;
 float inches;
 };
//
struct Room //rectangular area
 {
 Distance length; //length of rectangle
 Distance width; //width of rectangle
 };
//
int main()
 {
 Room dining; //define a room

 dining.length.feet = 13; //assign values to room
 dining.length.inches = 6.5;
 dining.width.feet = 10;
 dining.width.inches = 0.0;
 //convert length & width
 float l = dining.length.feet + dining.length.inches/12;
 float w = dining.width.feet + dining.width.inches/12;
 //find area and display it
 cout << “Dining room area is ” << l * w
 << “ square feet\n” ;
 return 0;
 }

This program defines a single variable—dining—of type Room, in the line

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Room dining; // variable dining of type Room

It then assigns values to the various members of this structure.

Accessing Nested Structure Members

Because one structure is nested inside another, we must apply the dot operator twice to access the
structure members.

dining.length.feet = 13;

In this statement, dining is the name of the structure variable, as before; length is the name of a
member in the outer structure (Room); and feet is the name of a member of the inner structure
(Distance). The statement means “take the feet member of the length member of the variable dining and
assign it the value 13.” Figure 4.6 shows how this works.

Figure 4.6 Dot operator and nested structures.

Once values have been assigned to members of dining, the program calculates the floor area of the
room, as shown in Figure 4.7.

To find the area, the program converts the length and width from variables of type Distance to
variables of type float, l, and w, representing distances in feet. The values of l and w are found by
adding the feet member of Distance to the inches member divided by 12. The feet member is converted
to type float automatically before the addition is performed, and the result is type float. The l and w
variables are then multiplied together to obtain the area.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4.7 Area in feet and inches.

User-Defined Type Conversions

Note that the program converts two distances of type Distance to two distances of type float: the
variables l and w. In effect it also converts the room’s area, which is stored as a structure of type
Room (which is defined as two structures of type Distance), to a single floating-point number
representing the area in square feet. Here’s the output:

Dining room area is 135.416672 square feet

Converting a value of one type to a value of another is an important aspect of programs that employ
user-defined data types.

Initializing Nested Structures

How do you initialize a structure variable that itself contains structures? The following statement
initializes the variable dining to the same values it is given in the ENGLAREA program:

Room dining = { {13, 6.5}, {10, 0.0} };

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Each structure of type Distance, which is embedded in Room, is initialized separately. Remember that
this involves surrounding the values with braces and separating them with commas. The first
Distance is initialized to

{13, 6.5}

and the second to

{10, 0.0}

These two Distance values are then used to initialize the Room variable, again surrounding them with
braces and separating them by commas.

Depth of Nesting

In theory, structures can be nested to any depth. In a program that designs apartment buildings, you
might find yourself with statements like this one:

apartment1.laundry_room.washing_machine.width.feet

A Card Game Example

Let’s examine a different kind of example. This one uses a structure to model a playing card. The
program imitates a game played by cardsharps (professional gamblers) at carnivals. The cardsharp
shows you three cards, then places them face down on the table and interchanges their positions
several times. If you can guess correctly where a particular card is, you win. Everything is in plain
sight, yet the cardsharp switches the cards so rapidly and confusingly that the player (the mark)
almost always loses track of the card and loses the game which is, of course, played for money.

Here’s the structure the program uses to represent a playing card:

struct card
 {
 int number;
 int suit;
 };

This structure uses separate members to hold the number of the card and the suit. The number runs
from 2 to 14, where 11, 12, 13, and 14 represent the jack, queen, king, and ace, respectively (this is
the order used in poker). The suit runs from 0 to 3, where these four numbers represent clubs,
diamonds, hearts, and spades.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here’s the listing for CARDS:

// cards.cpp
// demonstrates structures using playing cards
#include <iostream>
using namespace std;

const int clubs = 0; //suits
const int diamonds = 1;
const int hearts = 2;
const int spades = 3;

const int jack = 11; //face cards
const int queen = 12;
const int king = 13;
const int ace = 14;
//
struct card
 {
 int number; //2 to 10, jack, queen, king, ace
 int suit; //clubs, diamonds, hearts, spades
 };
//
int main()
 {
 card temp, chosen, prize; //define cards
 int position;

 card card1 = { 7, clubs }; //initialize card1
 cout << “Card 1 is the 7 of clubs\n”;

 card card2 = { jack, hearts }; //initialize card2
 cout << “Card 2 is the jack of hearts\n”;

 card card3 = { ace, spades }; //initialize card3
 cout << “Card 3 is the ace of spades\n”;

 prize = card3; //copy this card, to remember it

 cout << “I’m swapping card 1 and card 3\n”;
 temp = card3; card3 = card1; card1 = temp;

 cout << “I’m swapping card 2 and card 3\n”;
 temp = card3; card3 = card2; card2 = temp;

 cout << “I’m swapping card 1 and card 2\n”;
 temp = card2; card2 = card1; card1 = temp;

 cout << “Now, where (1, 2, or 3) is the ace of spades? “;
 cin >> position;

 switch (position)
 {
 case 1: chosen = card1; break;
 case 2: chosen = card2; break;
 case 3: chosen = card3; break;
 }
 if(chosen.number == prize.number && // compare cards
 chosen.suit == prize.suit)
 cout << “That’s right! You win!\n”;
 else
 cout << “Sorry. You lose.\n”;
 return 0;
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

Here’s some sample interaction with the program:

Card 1 is the 7 of clubs
Card 2 is the jack of hearts
Card 3 is the ace of spades
I’m swapping card 1 and card 3
I’m swapping card 2 and card 3
I’m swapping card 1 and card 2
Now, where (1, 2, or 3) is the ace of spades? 3
Sorry. You lose.

In this case, the hapless mark chose the wrong card (the right answer is 2).

The program begins by defining a number of variables of type const int for the face card and suit
values. (Not all these variables are used in the program; they’re included for completeness.) Next
the card structure is specified. The program then defines three uninitialized variables of type card:
temp, chosen, and prize. It also defines three cards—card1, card2, and card3—which it initializes to three
arbitrary card values. It prints out the values of these cards for the user’s information. It then sets a
card variable, prize, to one of these card values as a way of remembering it. This card is the one
whose location the player will be asked to guess at the end of the game.

Next the program rearranges the cards. It swaps the first and third cards, the second and third cards,
and the first and second cards. Each time it tells the user what it’s doing. (If you find the program
too easy, you can add more such statements to further shuffle the cards. Flashing the statements on
the screen for a limited time would also increase the challenge.)

Finally, the program asks the player what position a particular card is in. It sets a card variable,
chosen, to the card in this position, and then compares chosen with the prize card. If they match, it’s a
win for the player; if not, it’s a loss.

Notice how easy swapping cards is.

temp = card3; card3 = card1; card1 = temp;

Although the cards represent structures, they can be moved around very naturally, thanks to the
ability of the assignment operator = to work with structures.

Unfortunately, just as structures can’t be added, they also can’t be compared. You can’t say

if(chosen == prize) //not legal yet

because there’s no routine built into the == operator that knows about the card structure. But, as with
addition, this problem can be solved with operator overloading, as we’ll see later.

Structures and Classes

We must confess to having misled you slightly on the capabilities of structures. It’s true that
structures are usually used to hold data only, and classes are used to hold both data and functions.
However, in C++, structures can in fact hold both data and functions. (In C they can hold only data.)
The syntactical distinction between structures and classes in C++ is minimal, so they can in theory
be used almost interchangeably. But most C++ programmers use structures as we have in this
chapter, exclusively for data. Classes are usually used to hold both data and functions, as we’ll see
in Chapter 6, “Objects and Classes.”

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Enumerations

As we’ve seen, structures can be looked at as a way to provide user-defined data types. A different
approach to defining your own data type is the enumeration. This feature of C++ is less crucial than
structures. You can write perfectly good object-oriented programs in C++ without knowing
anything about enumerations. However, they are very much in the spirit of C++, in that, by allowing
you to define your own data types, they can simplify and clarify your programming.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Days of the Week

Enumerated types work when you know in advance a finite (usually short) list of values that a data
type can take on. Here’s an example program, DAYENUM, that uses an enumeration for the days of
the week:

// dayenum.cpp
// demonstrates enum types
#include <iostream>
using namespace std;
 //specify enum type
enum days_of_week { Sun, Mon, Tue, Wed, Thu, Fri, Sat };

int main()
 {
 days_of_week day1, day2; //define variables
 //of type days_of_week
 day1 = Mon; //give values to
 day2 = Thu; //variables

 int diff = day2 - day1; //can do integer arithmetic
 cout << “Days between = “ << diff << endl;

 if(day1 < day2) //can do comparisons
 cout << “day1 comes before day2\n”;
 return 0;
 }

An enum declaration defines the set of all names that will be permissible values of the type. These
permissible values are called enumerators. The enum type days_of_week has seven enumerators: Sun
Mon, Tue, and so on, up to Sat. Figure 4.8 shows the syntax of an enum declaration.

An enumeration is a list of all possible values. This is unlike the specification of an int, for example,
which is given in terms of a range of values. In an enum you must give a specific name to every
possible value. Figure 4.9 shows the difference between an int and an enum.

Once you’ve declared the enum type days_of_week as shown, you can define variables of this type.
DAYENUM has two such variables, day1 and day2, defined in the statement

days_of_week day1, day2;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4.8 Syntax of enum specifier.

Figure 4.9 Usage of ints and enums.

(In C you must use the keyword enum before the type name.

enum days_of_week day1, day2;

In C++ this isn’t necessary.)

Variables of an enumerated type, like day1 and day2, can be given any of the values listed in the enum
declaration. In the example we give them the values Mon and Thu. You can’t use values that weren’t
listed in the declaration. Such statements as

day1 = halloween;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

day1 = halloween;

are illegal.

You can use the standard arithmetic operators on enum types. In the program we subtract two
values. You can also use the comparison operators, as we show. Here’s the program’s output:

Days between = 3
day1 comes before day2

The use of arithmetic and relational operators doesn’t make much sense with some enum types. For
example, if you have the declaration

enum pets { cat, dog, hamster, canary, ocelot };

then it may not be clear what expressions like dog + canary or (cat < hamster) mean.

Enumerations are treated internally as integers. This explains why you can perform arithmetic and
relational operations on them. Ordinarily the first name in the list is given the value 0, the next
name is given the value 1, and so on. In the DAYENUM example, the values Sun through Sat are
stored as the integer values 0 through 6.

Arithmetic operations on enum types take place on the integer values. However, although the
compiler knows that your enum variables are really integers, you must be careful of trying to take
advantage of this fact. If you say

day1 = 5;

the compiler will issue a warning (although it will compile). It’s better to forget—whenever
possible—that enums are really integers.

One Thing or Another

Our next example counts the words in a phrase typed in by the user. Unlike the earlier CHCOUNT
example, however, it doesn’t simply count spaces to determine the number of words. Instead it
counts the places where a string of nonspace characters changes to a space, as shown in Figure
4.10.

This way you don’t get a false count if you type multiple spaces between words. (It still doesn’t
handle tabs and other whitespace characters.) Here’s the listing for WDCOUNT: This example shows
an enumeration with only two enumerators.

// wdcount.cpp
// demonstrates enums, counts words in phrase
#include <iostream>
using namespace std;
#include <conio.h> //for getche()

enum itsaWord { NO, YES }; //NO=0, YES=1

int main()
 {
 itsaWord isWord = NO; //YES when in a word,
 //NO when in whitespace
 char ch = ‘a’; //character read from keyboard
 int wordcount = 0; //number of words read

 cout << “Enter a phrase:\n”;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 cout << “Enter a phrase:\n”;
 do {
 ch = getche(); //get character
 if(ch==’ ‘ || ch==’\r’) //if white space,
 {
 if(isWord == YES) //and doing a word,
 { //then it’s end of word
 wordcount++; //count the word
 isWord = NO; //reset flag
 }
 } //otherwise, it’s
 else //normal character
 if(isWord == NO) //if start of word,
 isWord = YES; //then set flag
 } while(ch != ‘\r’); //quit on Enter key
 cout << “\n---Word count is ” << wordcount << “---\n”;
 return 0;
 }

Figure 4.10 Operation of the WDCOUNT program.

The program cycles in a do loop, reading characters from the keyboard. It passes over (nonspace)
characters until it finds a space. At this point it counts a word. Then it passes over spaces until it
finds a character, and again counts characters until it finds a space. Doing this requires the program
to remember whether it’s in the middle of a word, or in the middle of a string of spaces. It
remembers this with the enum variable isWord. This variable is defined to be of type itsaWord. This
type is specified in the statement

 enum itsaWord { NO, YES };

Variables of type itsaWord have only two possible values: NO and YES. Notice that the list starts with
NO, so this value will be given the value 0—the value that indicates false. (We could also use a
variable of type bool for this purpose.)

The isWord variable is set to NO when the program starts. When the program encounters the first
nonspace character, it sets isWord to YES to indicate that it’s in the middle of a word. It keeps this
value until the next space is found, at which point it’s set back to NO. Behind the scenes, NO has the
value 0 and YES has the value 1, but we avoid making use of this fact. We could have used if(isWord)
instead of if(isWord == YES), and if(!isWord) instead of if(isWord==NO), but this is not good style.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Note also that we need an extra set of braces around the second if statement in the program, so that
the else will match with the first if.

Organizing the Cards

Here’s our final example of enum types. Remember that in the CARDS program earlier in this chapter
we defined a group of constants of type const int to represent a card’s suits.

const int clubs = 0;
const int diamonds = 1;
const int hearts = 2;
const int spades = 3;

This sort of list is somewhat clumsy. Let’s revise the CARDS program to use enumerations instead.
Here’s the listing for CARDENUM:

// cardenum.cpp
// demonstrates enumerations
#include <iostream>
using namespace std;

const int jack = 11; //2 through 10 are unnamed integers
const int queen = 12;
const int king = 13;
const int ace = 14;

enum Suit { clubs, diamonds, hearts, spades };
//
struct card
 {
 int number; //2 to 10, jack, queen, king, ace
 Suit suit; //clubs, diamonds, hearts, spades
 };
//
int main()
 {
 card temp, chosen, prize; //define cards
 int position;

 card card1 = { 7, clubs }; //initialize card1
 cout << “Card 1 is the seven of clubs\n”;

 card card2 = { jack, hearts }; //initialize card2
 cout << “Card 2 is the jack of hearts\n”;

 card card3 = { ace, spades }; //initialize card3
 cout << “Card 3 is the ace of spades\n”;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 cout << “Card 3 is the ace of spades\n”;

 prize = card3; //copy this card, to remember it

 cout << “I’m swapping card 1 and card 3\n”;
 temp = card3; card3 = card1; card1 = temp;

 cout << “I’m swapping card 2 and card 3\n”;
 temp = card3; card3 = card2; card2 = temp;

 cout << “I’m swapping card 1 and card 2\n”;
 temp = card2; card2 = card1; card1 = temp;

 cout << “Now, where (1, 2, or 3) is the ace of spades? ”;
 cin >> position;

 switch (position)
 {
 case 1: chosen = card1; break;
 case 2: chosen = card2; break;
 case 3: chosen = card3; break;
 }
 if(chosen.number == prize.number && //compare cards
 chosen.suit == prize.suit)
 cout << “That’s right! You win!\n”;
 else
 cout << “Sorry. You lose.\n”;
 return 0;
 }

Here the set of definitions for suits used in the CARDS program has been replaced by an enum
declaration:

enum Suit { clubs, diamonds, hearts, spades };

This is a cleaner approach than using const variables. We know exactly what the possible values of
the suit are; attempts to use other values, as in

card1.suit = 5;

result in warnings from the compiler.

Specifying Integer Values

We said that in an enum declaration the first enumerator was given the integer value 0, the second
the value 1, and so on. This ordering can be altered by using an equal sign to specify a starting
point other than 0. For example, if you want the suits to start with 1 instead of 0, you can say

enum Suit { clubs=1, diamonds, hearts, spades };

Subsequent names are given values starting at this point, so diamonds is 2, hearts is 3, and spades is 4.
Actually you can use an equal sign to give a specified value to any enumerator.

Not Perfect

One annoying aspect of enum types is that they are not recognized by C++ input/output (I/O)
statements. As an example, what do you think the following code fragment will cause to be
displayed?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

enum direction { north, south, east, west };
direction dir1 = south;
cout << dir1;

Did you guess the output would be south? That would be nice, but C++ I/O treats variables of enum
types as integers, so the output would be 1.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Other Examples

Here are some other examples of enumerated data declarations, to give you a feeling for possible
uses of this feature:

enum months { Jan, Feb, Mar, Apr, May, Jun,
 Jul, Aug, Sep, Oct, Nov, Dec };

enum switch { off, on };

enum meridian { am, pm };

enum chess { pawn, knight, bishop, rook, queen, king };

enum coins { penny, nickel, dime, quarter, half-dollar, dollar };

We’ll see other examples in future programs.

Summary

We’ve covered two topics in this chapter: structures and enumerations. Structures are an important
component of C++, since their syntax is the same as that of classes. In fact, classes are
(syntactically, at least) nothing more than structures that include functions. Structures are typically
used to group several data items together to form a single entity. A structure declaration lists the
variables that make up the structure. Definitions then set aside memory for structure variables.
Structure variables are treated as indivisible units in some situations (such as setting one structure
variable equal to another), but in other situations their members are accessed individually (often
using the dot operator).

An enumeration is a programmer-defined type that is limited to a fixed list of values. A declaration
gives the type a name and specifies the permissible values, which are called enumerators.
Definitions can then create variables of this type. Internally the compiler treats enumeration
variables as integers.

Structures should not be confused with enumerations. Structures are a powerful and flexible way of
grouping a diverse collection of data into a single entity. An enumeration allows the definition of
variables that can take on a fixed set of values that are listed (enumerated) in the type’s declaration.

Questions

Answers to questions can be found in Appendix G, “Answers to Questions and Exercises.”

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1. A structure brings together a group of

a. items of the same data type.
b. related data items.
c. integers with user-defined names.
d. variables.

2. True or false: A structure and a class use similar syntax.
3. The closing brace of a structure is followed by a __________.
4. Write a structure specification that includes three variables—all of type int—called hrs,
mins, and secs. Call this structure time.
5. True or false: A structure declaration creates space in memory for a variable.
6. When accessing a structure member, the identifier to the left of the dot operator is the
name of

a. a structure member.
b. a structure tag.
c. a structure variable.
d. the keyword struct.

7. Write a statement that sets the hrs member of the time2 structure variable equal to 11.
8. If you have three variables defined to be of type struct time, and this structure contains three
int members, how many bytes of memory do the variables use together?
9. Write a definition that initializes the members of time1—which is a variable of type struct
time, as defined in Question 4—to hrs = 11, mins = 10, secs = 59.
10. True or false: You can assign one structure variable to another, provided they are of the
same type.
11. Write a statement that sets the variable temp equal to the paw member of the dogs member
of the fido variable.
12. An enumeration brings together a group of

a. items of different data types.
b. related data variables.
c. integers with user-defined names.
d. constant values.

13. Write a statement that declares an enumeration called players with the values B1, B2, SS,
B3, RF, CF, LF, P, and C.
14. Assuming the enum type players as declared in Question 13, define two variables joe and
tom, and assign them the values LF and P, respectively.
15. Assuming the statements of Questions 13 and 14, state whether each of the following
statements is legal.

a. joe = QB;
b. tom = SS;
c. LF = tom;
d. difference = joe - tom;

16. The first three enumerators of an enum type are normally represented by the values
_________, _________, and _________.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17. Write a statement that declares an enumeration called speeds with the enumerators
obsolete, single, and album. Give these three names the integer values 78, 45, and 33.
18. State the reason why

enum isWord{ NO, YES };
is better than
enum isWord{ YES, NO };

Exercises

Answers to the starred exercises can be found in Appendix G.

*1. A phone number, such as (212) 767-8900, can be thought of as having three parts: the
area code (212), the exchange (767), and the number (8900). Write a program that uses a
structure to store these three parts of a phone number separately. Call the structure phone.
Create two structure variables of type phone. Initialize one, and have the user input a number
for the other one. Then display both numbers. The interchange might look like this:

Enter your area code, exchange, and number: 415 555 1212
My number is (212) 767-8900
Your number is (415) 555-1212

*2. A point on the two-dimensional plane can be represented by two numbers: an x
coordinate and a y coordinate. For example, (4,5) represents a point 4 units to the right of the
vertical axis, and 5 units up the horizontal axis. The sum of two points can be defined as a
new point whose x coordinate is the sum of the x coordinates of the two points, and whose
coordinate is the sum of the y coordinates.
Write a program that uses a structure called point to model a point. Define three points, and
have the user input values to two of them. Then set the third point equal to the sum of the
other two, and display the value of the new point. Interaction with the program might look
like this:

Enter coordinates for p1: 3 4
Enter coordinates for p2: 5 7
Coordinates of p1+p2 are: 8, 11

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

*3. Create a structure called Volume that uses three variables of type Distance (from the
ENGLSTRC example) to model the volume of a room. Initialize a variable of type Volume to
specific dimensions, then calculate the volume it represents, and print out the result. To
calculate the volume, convert each dimension from a Distance variable to a variable of type
float representing feet and fractions of a foot, and then multiply the resulting three numbers.
4. Create a structure called employee that contains two members: an employee number (type
int) and the employee’s compensation (in dollars; type float). Ask the user to fill in this data
for three employees, store it in three variables of type struct employee, and then display the
information for each employee.
5. Create a structure of type date that contains three members: the month, the day of the
month, and the year, all of type int. (Or use day-month-year order if you prefer.) Have the
user enter a date in the format 12/31/2001, store it in a variable of type struct date, then retrieve
the values from the variable and print them out in the same format.
6. We said earlier that C++ I/O statements don’t automatically understand the data types of
enumerations. Instead, the (>>) and (<<) operators think of such variables simply as integers.
You can overcome this limitation by using switch statements to translate between the user’s
way of expressing an enumerated variable and the actual values of the enumerated variable.
For example, imagine an enumerated type with values that indicate an employee type within
an organization:

enum etype { laborer, secretary, manager, accountant, executive,
researcher };

Write a program that first allows the user to specify a type by entering its first letter (‘l’, ‘s’
‘m’, and so on), then stores the type chosen as a value of a variable of type enum etype, and
finally displays the complete word for this type.

Enter employee type (first letter only)
 laborer, secretary, manager,
 accountant, executive, researcher): a
Employee type is accountant.

You’ll probably need two switch statements: one for input and one for output.
7. Add a variable of type enum etype (see Exercise 5), and another variable of type struct date
(see Exercise 3) to the employee class of Exercise 4. Organize the resulting program so that the
user enters four items of information for each of three employees: an employee number, the
employee’s compensation, the employee type, and the date of first employment. The program
should store this information in three variables of type employee, and then display their
contents.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8. Start with the fraction—adding program of Exercise 9 in Chapter 2, “C++ Programming
Basics.” This program stores the numerator and denominator of two fractions before adding
them, and may also store the answer, which is also a fraction. Modify the program so that all
fractions are stored in variables of type struct fraction, whose two members are the fraction’s
numerator and denominator (both type int). All fraction-related data should be stored in
structures of this type.
9. Create a structure called time. Its three members, all type int, should be called hours, minutes
and seconds. Write a program that prompts the user to enter a time value in hours, minutes,
and seconds. This can be in 12:59:59 format, or each number can be entered at a separate
prompt (“Enter hours:”, and so forth). The program should then store the time in a variable of
type struct time, and finally print out the total number of seconds represented by this time
value:

long totalsecs = t1.hours*3600 + t1.minutes*60 + t1.seconds

10. Create a structure called sterling that stores money amounts in the old-style British system
discussed in Exercises 8 and 11 in Chapter 3, “Loops and Decisions.” The members could be
called pounds, shillings, and pence, all of type int. The program should request the user to enter a
money amount in new-style decimal pounds (type double), convert it to the old-style system,
store it in a variable of type struct sterling, and then display this amount in pounds-shillings-
pence format.
11. Use the time structure from Exercise 9, and write a program that obtains two time values
from the user in 12:59:59 format, stores them in struct time variables, converts each one to
seconds (type int), adds these quantities, converts the result back to hours-minutes-seconds,
stores the result in a time structure, and finally displays the result in 12:59:59 format.
12. Revise the four-function fraction calculator program of Exercise 12 in Chapter 3 so that
each fraction is stored internally as a variable of type struct fraction, as discussed in Exercise 8
in this chapter.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

CHAPTER 5
FUNCTIONS

You will learn about the following in this chapter:
• Function definitions and
declarations

• Overloaded functions

• Arguments and return values • Default arguments
• Reference arguments • Storage classes

A function groups a number of program statements into a unit and gives it a name. This unit can
then be invoked from other parts of the program.

The most important reason to use functions is to aid in the conceptual organization of a program.
Dividing a program into functions is, as we discussed in Chapter 1, “The Big Picture,” one of the
major principles of structured programming. (However, Object-Oriented Programming provides
other, more powerful ways to organize programs.)

Another reason to use functions (and the reason they were invented, long ago) is to reduce program
size. Any sequence of instructions that appears in a program more than once is a candidate for
being made into a function. The function’s code is stored in only one place in memory, even though
the function is executed many times in the course of the program. Figure 5.1 shows how a function
is invoked from different sections of a program.

Functions in C++ (and C) are similar to subroutines and procedures in various other languages.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5.1 Flow of control to function.

Simple Functions

Our first example demonstrates a simple function whose purpose is to print a line of 45 asterisks.
The example program generates a table, and lines of asterisks are used to make the table more
readable. Here’s the listing for TABLE:

// table.cpp
// demonstrates simple function
#include <iostream>
using namespace std;

void starline(); //function declaration
 // (prototype)
int main()
 {
 starline(); //call to function
 cout << “Data type Range” << endl;
 starline(); //call to function
 cout << “char -128 to 127” << endl
 << “short -32,768 to 32,767” << endl
 << “int System dependent” << endl
 << “long -2,147,483,648 to 2,147,483,647” << endl;
 starline(); //call to function
 return 0;
 }
//--
// starline()
// function definition
void starline() //function declarator
 {
 for(int j=0; j<45; j++) //function body
 cout << ‘*’;
 cout << endl;
 }

The output from the program looks like this:

Data type Range

char -128 to 127
short -32,768 to 32,767
int System dependent
double -2,147,483,648 to 2,147,483,647

The program consists of two functions: main() and starline(). You’ve already seen many programs
that use main() alone. What other components are necessary to add a function to the program? There

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

that use main() alone. What other components are necessary to add a function to the program? There
are three: the function declaration, the calls to the function, and the function definition.

The Function Declaration

Just as you can’t use a variable without first telling the compiler what it is, you also can’t use a
function without telling the compiler about it. There are two ways to do this. The approach we
show here is to declare the function before it is called. (The other approach is to define it before it’s
called; we’ll examine that next.). In the TABLE program, the function starline() is declared in the line

void starline();

The declaration tells the compiler that at some later point we plan to present a function called
starline. The keyword void specifies that the function has no return value, and the empty
parentheses indicate that it takes no arguments. (You can also use the keyword void in parentheses
to indicate that the function takes no arguments, as is often done in C, but leaving them empty is the
more common practice in C++.) We’ll have more to say about arguments and return values soon.

Notice that the function declaration is terminated with a semicolon. It is a complete statement in
itself.

Function declarations are also called prototypes, since they provide a model or blueprint for the
function. They tell the compiler, “a function that looks like this is coming up later in the program,
so it’s all right if you see references to it before you see the function itself.”

Calling the Function

The function is called (or invoked, or executed) three times from main(). Each of the three calls looks
like this:

starline();

This is all we need to call the function: the function name, followed by parentheses. The syntax of
the call is very similar to that of the declaration, except that the return type is not used. The call is
terminated by a semicolon. Executing the call statement causes the function to execute; that is,
control is transferred to the function, the statements in the function definition (which we’ll examine
in a moment) are executed, and then control returns to the statement following the function call.

The Function Definition

Finally, we come to the function itself, which is referred to as the function definition. The definition
contains the actual code for the function. Here’s the definition for starline():

void starline() //declarator
 {
 for(int j=0; j<45; j++) //function body
 cout << ‘*’;
 cout << endl;
 }

The definition consists of a line called the declarator, followed by the function body. The function
body is composed of the statements that make up the function, delimited by braces.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The declarator must agree with the declaration: It must use the same function name, have the same
argument types in the same order (if there are arguments), and have the same return type.

Notice that the declarator is not terminated by a semicolon. Figure 5.2 shows the syntax of the
function declaration, function call, and function definition.

When the function is called, control is transferred to the first statement in the function body. The
other statements in the function body are then executed, and when the closing brace is encountered,
control returns to the calling program.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 5.1 Function Components
Component Purpose Example
Declaration
(prototype)

Specifies function name, argument types, and
return value. Alerts compiler (and programmer)
that function is coming up later.

void func();

Call Causes the function to be executed. func();
Definition
function.

The function itself. Contains the lines of code that
constitute the
{
// lines of code
}

void func()

Declarator First line of definition. void func()

Figure 5.2 Function syntax.

Comparison with Library Functions

We’ve already seen some library functions in use. We have embedded calls to library functions,
such as

ch = getche();

in our program code. Where are the declaration and definition for this library function? The
declaration is in the header file specified at the beginning of the program (CONIO.H, for getche()

The definition (compiled into executable code) is in a library file that’s linked automatically to your
program when you build it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When we use a library function we don’t need to write the declaration or definition. But when we
write our own functions, the declaration and definition are part of our source file, as we’ve shown

in the TABLE example. (Things get more complicated in multifile programs, as we’ll discuss in
Chapter 13, “Multifile Programs.”)

Eliminating the Declaration

The second approach to inserting a function into a program is to eliminate the function declaration
and place the function definition (the function itself) in the listing before the first call to the

function. For example, we could rewrite TABLE to produce TABLE2, in which the definition for
starline() appears first.

// table2.cpp
// demonstrates function definition preceding function calls

#include <iostream>
using namespace std; //no function declaration

//--
// starline() //function definition

void starline()
 {

 for(int j=0; j<45; j++)
 cout << ‘*’;
 cout << endl;

 }
//--
int main() //main() follows function

 {
 starline(); //call to function

 cout << “Data type Range” << endl;
 starline(); //call to function

 cout << “char -128 to 127” << endl
 << “short -32,768 to 32,767” << endl
 << “int System dependent” << endl

 << “long -2,147,483,648 to 2,147,483,647” << endl;
 starline(); //call to function

 return 0;
 }

This approach is simpler for short programs, in that it removes the declaration, but it is less flexible.
To use this technique when there are more than a few functions, the programmer must give

considerable thought to arranging the functions so that each one appears before it is called by any
other. Sometimes this is impossible. Also, many programmers prefer to place main() first in the
listing, since it is where execution begins. In general we’ll stick with the first approach, using

declarations and starting the listing with main().

Passing Arguments to Functions

An argument is a piece of data (an int value, for example) passed from a program to the function.
Arguments allow a function to operate with different values, or even to do different things,

depending on the requirements of the program calling it.

Passing Constants

As an example, let’s suppose we decide that the starline() function in the last example is too rigid.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As an example, let’s suppose we decide that the starline() function in the last example is too rigid.
Instead of a function that always prints 45 asterisks, we want a function that will print any character

any number of times.

Here’s a program, TABLEARG, that incorporates just such a function. We use arguments to pass the
character to be printed and the number of times to print it.

// tablearg.cpp
// demonstrates function arguments

#include <iostream>
using namespace std;

void repchar(char, int); //function declaration

int main()
 {

 repchar(‘-’, 43); //call to function
 cout << “Data type Range” << endl;

 repchar(‘=’, 23); //call to function
 cout << “char -128 to 127” << endl

 << “short -32,768 to 32,767” << endl
 << “int System dependent” << endl

 << “double -2,147,483,648 to 2,147,483,647” << endl;
 repchar(‘-’, 43); //call to function

 return 0;
 }

//--
// repchar()

// function definition
void repchar(char ch, int n) //function declarator

 {
 for(int j=0; j<n; j++) //function body

 cout << ch;
 cout << endl;

 }

The new function is called repchar(). Its declaration looks like this:

void repchar(char, int); // declaration specifies data types

The items in the parentheses are the data types of the arguments that will be sent to repchar(): char
and int.

In a function call, specific values—constants in this case—are inserted in the appropriate place in
the parentheses:

repchar(‘-’, 43); // function call specifies actual values

This statement instructs repchar() to print a line of 43 dashes. The values supplied in the call must be
of the types specified in the declaration: the first argument, the ‘-’ character, must be of type char;
and the second argument, the number 43, must be of type int. The types in the declaration and the

definition must also agree.

The next call to repchar(),

repchar(‘=’, 23);

tells it to print a line of 23 equal signs. The third call again prints 43 dashes. Here’s the output from
TABLEARG:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Table 5.1 summarizes the different function components.

Data type Range

=======================
char -128 to 127

short -32,768 to 32,767
int System dependent

long -2,147,483,648 to 2,147,483,647

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

The calling program supplies arguments, such as ‘-’ and 43, to the function. The variables used
within the function to hold the argument values are called parameters; in repchar() they are ch and
(We should note that many programmers use the terms argument and parameter somewhat
interchangeably.) The declarator in the function definition specifies both the data types and the
names of the parameters:

void repchar(char ch, int n) //declarator specifies parameter
 //names and data types

These parameter names, ch and n, are used in the function as if they were normal variables. Placing
them in the declarator is equivalent to defining them with statements like

char ch;
int n;

When the function is called, its parameters are automatically initialized to the values passed by the
calling program.

Passing Variables

In the TABLEARG example the arguments were constants: ‘-’, 43, and so on. Let’s look at an
example where variables, instead of constants, are passed as arguments. This program, VARARG,
incorporates the same repchar() function as did TABLEARG, but lets the user specify the character and
the number of times it should be repeated.

// vararg.cpp
// demonstrates variable arguments
#include <iostream>
using namespace std;
void repchar(char, int); //function declaration

int main()
 {
 char chin;
 int nin;

 cout << “Enter a character: ”;
 cin >> chin;
 cout << “Enter number of times to repeat it: ”;
 cin >> nin;
 repchar(chin, nin);
 return 0;
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
//--
// repchar()
// function definition
void repchar(char ch, int n) //function declarator
 {
 for(int j=0; j<n; j++) //function body
 cout << ch;
 cout << endl;
 }

Here’s some sample interaction with VARARG:

Enter a character: +
Enter number of times to repeat it: 20
++++++++++++++++++++

Here chin and nin in main() are used as arguments to repchar():

repchar(chin, nin); // function call

The data types of variables used as arguments must match those specified in the function
declaration and definition, just as they must for constants. That is, chin must be a char, and nin must
be an int.

Passing by Value

In VARARG the particular values possessed by chin and nin when the function call is executed will be
passed to the function. As it did when constants were passed to it, the function creates new
variables to hold the values of these variable arguments. The function gives these new variables the
names and data types of the parameters specified in the declarator: ch of type char and n of type int
initializes these parameters to the values passed. They are then accessed like other variables by
statements in the function body.

Passing arguments in this way, where the function creates copies of the arguments passed to it, is
called passing by value. We’ll explore another approach, passing by reference, later in this chapter.
Figure 5.3 shows how new variables are created in the function when arguments are passed by
value.

Structures as Arguments

Entire structures can be passed as arguments to functions. We’ll show two examples, one with the
Distance structure, and one with a structure representing a graphics shape.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5.3 Passing by value.

Passing a Distance Structure

This example features a function that uses an argument of type Distance, the same structure type we
saw in several programs in Chapter 4, “Structures.” Here’s the listing for ENGLDISP:

// engldisp.cpp
// demonstrates passing structure as argument
#include <iostream>
using namespace std;
//
struct Distance //English distance
 {
 int feet;
 float inches;
 };
//
void engldisp(Distance); //declaration

int main()
 {
 Distance d1, d2; //define two lengths

 //get length d1 from user
 cout << “Enter feet: ”; cin >> d1.feet;
 cout << “Enter inches: ”; cin >> d1.inches;

 //get length d2 from user
 cout << “\nEnter feet: ”; cin >> d2.feet;
 cout << “Enter inches: ”; cin >> d2.inches;

 cout << “\nd1 = ”;
 engldisp(d1); //display length 1
 cout << “\nd2 = ”;
 engldisp(d2); //display length 2
 cout << endl;
 return 0;
 }
//--
// engldisp()
// display structure of type Distance in feet and inches
void engldisp(Distance dd) //parameter dd of type Distance
 {
 cout << dd.feet << “\’-” << dd.inches << “\””;
 }

The main() part of this program accepts two distances in feet-and-inches format from the user, and
places these values in two structures, d1 and d2. It then calls a function, engldisp(), that takes a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

places these values in two structures, d1 and d2. It then calls a function, engldisp(), that takes a
Distance structure variable as an argument. The purpose of the function is to display the distance
passed to it in the standard format, such as 10’–2.25”. Here’s some sample interaction with the
program:

Enter feet: 6
Enter inches: 4

Enter feet: 5
Enter inches: 4.25

d1 = 6’-4”
d2 = 5’-4.25”

The function declaration and the function calls in main(), and the declarator in the function body,
treat the structure variables just as they would any other variable used as an argument; this one just
happens to be type Distance, rather than a basic type like char or int.

In main() there are two calls to the function engldisp(). The first passes the structure d1; the second
passes d2. The function engldisp() uses a parameter that is a structure of type Distance, which it names
dd. As with simple variables, this structure variable is automatically initialized to the value of the
structure passed from main(). Statements in engldisp() can then access the members of dd in the usual
way, with the expressions dd.feet and dd.inches. Figure 5.4 shows a structure being passed as an
argument to a function.

Figure 5.4 Structure passed as argument.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

As with simple variables, the structure parameter dd in engldisp() is not the same as the arguments
passed to it (d1 and d2). Thus, engldisp() could (although it doesn’t do so here) modify dd without
affecting d1 and d2. That is, if engldisp() contained statements like

dd.feet = 2;
dd.inches = 3.25;

this would have no effect on d1 or d2 in main().

Passing a circle Structure

The next example of passing a structure to a function makes use of our Console Graphics Lite
functions. You’ll need to include the appropriate header file (MSOFTCON.H or BORLACON.H,
depending on your compiler), and add the source file for Console Graphics (MSOFTCON.CPP or
BORLACON.CPP) to your project. The Console Graphics Lite functions are described in Appendix E,
“Console Graphics Lite,” and how to use the Microsoft and Borland compilers is described in
Appendix C, “Microsoft Visual C++,” and Appendix D, “Borland C++Builder.”

In this example a structure called circle represents a circular shape. Circles are positioned at a certain
place on the console screen, and have a certain radius (size). They also have a color and a fill
pattern. Possible values for the colors and fill patterns can be found in Appendix E. Here’s the
listing for CIRCSTRC:

// circstrc.cpp
// circles as graphics objects
#include “msoftcon.h” // for graphics functions
//
struct circle //graphics circle
 {
 int xCo, yCo; //coordinates of center
 int radius;
 color fillcolor; //color
 fstyle fillstyle; //fill pattern
 };
//
void circ_draw(circle c)
 {
 set_color(c.fillcolor); //set color
 set_fill_style(c.fillstyle); //set fill pattern
 draw_circle(c.xCo, c.yCo, c.radius); //draw solid circle
 }
//--
int main()
 {
 init_graphics(); //initialize graphics system

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 init_graphics(); //initialize graphics system
 //create circles
 circle c1 = { 15, 7, 5, cBLUE, X_FILL };
 circle c2 = { 41, 12, 7, cRED, O_FILL };
 circle c3 = { 65, 18, 4, cGREEN, MEDIUM_FILL };

 circ_draw(c1); //draw circles
 circ_draw(c2);
 circ_draw(c3);
 set_cursor_pos(1, 25); //cursor to lower left corner
 return 0;
 }

The variables of type circle, which are c1, c2, and c3, are initialized to different sets of values. Here’s
how that looks for c1:

circle c1 = { 15, 7, 5, cBLUE, X_FILL };

We assume that your console screen has 80 columns and 25 rows. The first value in this definition,
15, is the column number (the x coordinate) and the 7 is the row number (the y coordinate, starting
at the top of the screen) where the center of the circle will be located. The 5 is the radius of the
circle, the cBLUE is its color, and the X_FILL constant means it will be filled with the letter X. The
two other circles are initialized similarly.

Once all the circles are created and initialized, we draw them by calling the circ_draw() function three
times, once for each circle. Figure 5.5 shows the output of the CIRCSTRC program. Admittedly the
circles are a bit ragged; a result of the limited number of pixels in console-mode graphics.

Figure 5.5 Output of the CIRCSTRC program.

Notice how the structure holds the characteristics of the circles, while the circ_draw() function causes
them to actually do something (draw themselves). As we’ll see in Chapter 6, “Objects and Classes,”
objects are formed by combining structures and functions to create entities that both possess
characteristics and perform actions.

Names in the Declaration

Here’s a way to increase the clarity of your function declarations. The idea is to insert meaningful
names in the declaration, along with the data types. For example, suppose you were using a
function that displayed a point on the screen. You could use a declaration with only data types,

void display_point(int, int); //declaration

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void display_point(int, int); //declaration

but a better approach is

void display_point(int horiz, int vert); //declaration

These two declarations mean exactly the same thing to the compiler. However, the first approach,
with (int, int), doesn’t contain any hint about which argument is for the vertical coordinate and
which is for the horizontal coordinate. The advantage of the second approach is clarity for the
programmer: Anyone seeing this declaration is more likely to use the correct arguments when
calling the function.

Note that the names in the declaration have no effect on the names you use when calling the
function. You are perfectly free to use any argument names you want:

display_point(x, y); // function call

We’ll use this name-plus-datatype approach when it seems to make the listing clearer.

Returning Values from Functions

When a function completes its execution, it can return a single value to the calling program.
Usually this return value consists of an answer to the problem the function has solved. The next
example demonstrates a function that returns a weight in kilograms after being given a weight in
pounds. Here’s the listing for CONVERT:

// convert.cpp
// demonstrates return values, converts pounds to kg
#include <iostream>
using namespace std;
float lbstokg(float); //declaration

int main()
 {
 float lbs, kgs;

 cout << “\nEnter your weight in pounds: ”;
 cin >> lbs;
 kgs = lbstokg(lbs);
 cout << “Your weight in kilograms is ” << kgs << endl;
 return 0;
 }
//--
// lbstokg()
// converts pounds to kilograms
float lbstokg(float pounds)
 {
 float kilograms = 0.453592 * pounds;
 return kilograms;
 }

Here’s some sample interaction with this program:

Enter your weight in pounds: 182
Your weight in kilograms is 82.553741

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

When a function returns a value, the data type of this value must be specified. The function
declaration does this by placing the data type, float in this case, before the function name in the
declaration and the definition. Functions in earlier program examples returned no value, so the
return type was void. In the CONVERT program, the function lbstokg() (pounds to kilograms, where
means pounds) returns type float, so the declaration is

float lbstokg(float);

The first float specifies the return type. The float in parentheses specifies that an argument to be
passed to lbstokg() is also of type float.

When a function returns a value, the call to the function

lbstokg(lbs)

is considered to be an expression that takes on the value returned by the function. We can treat this
expression like any other variable; in this case we use it in an assignment statement:

kgs = lbstokg(lbs);

This causes the variable kgs to be assigned the value returned by lbstokg().

The return Statement

The function lbstokg() is passed an argument representing a weight in pounds, which it stores in the
parameter pounds. It calculates the corresponding weight in kilograms by multiplying this pounds
value by a constant; the result is stored in the variable kilograms. The value of this variable is then
returned to the calling program using a return statement:

return kilograms;

Notice that both main() and lbstokg() have a place to store the kilogram variable: kgs in main(), and
kilograms in lbstokg(). When the function returns, the value in kilograms is copied into kgs. The
calling program does not access the kilograms variable in the function; only the value is returned.
This process is shown in Figure 5.6.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5.6 Returning a value.

While many arguments may be sent to a function, only one argument may be returned from it. This
is a limitation when you need to return more information. However, there are other approaches to
returning multiple variables from functions. One is to pass arguments by reference, which we’ll
look at later in this chapter.

You should always include a function’s return type in the function declaration. If the function
doesn’t return anything, use the keyword void to indicate this fact. If you don’t use a return type in
the declaration, the compiler will assume that the function returns an int value. For example, the
declaration

somefunc(); // declaration -- assumes return type is int

tells the compiler that somefunc() has a return type of int.

The reason for this is historical, based on usage in early versions of C. In practice you shouldn’t
take advantage of this default type. Always specify the return type explicitly, even if it actually is
int. This keeps the listing consistent and readable.

Eliminating Unnecessary Variables

The CONVERT program contains several variables that are used in the interest of clarity but are not
really necessary. A variation of this program, CONVERT2, shows how expressions containing
functions can often be used in place of variables.

// convert2.cpp
// eliminates unnecessary variables
#include <iostream>
using namespace std;
float lbstokg(float); //declaration

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

float lbstokg(float); //declaration

int main()
 {
 float lbs;

 cout << “\nEnter your weight in pounds: ”;
 cin >> lbs;
 cout << “Your weight in kilograms is ” << lbstokg(lbs)
 << endl;
 return 0;
 }
//--
// lbstokg()
// converts pounds to kilograms
float lbstokg(float pounds)
 {
 return 0.453592 * pounds;
 }

In main() the variable kgs from the CONVERT program has been eliminated. Instead the function
lbstokg(lbs) is inserted directly into the cout statement:

cout << “Your weight in kilograms is ” << lbstokg(lbs);

Also in the lbstokg() function, the variable kilograms is no longer used. The expression 0.453592*pounds
is inserted directly into the return statement:

return 0.453592 * pounds;

The calculation is carried out and the resulting value is returned to the calling program, just as the
value of a variable would be.

For clarity, programmers often put parentheses around the expression used in a return statement:

return (0.453592 * pounds);

Even when not required by the compiler, extra parentheses in an expression don’t do any harm, and
they may help make the listing easier for us poor humans to read.

Experienced C++ (and C) programmers will probably prefer the concise form of CONVERT2 to the
more verbose CONVERT. However, CONVERT2 is not so easy to understand, especially for the non-
expert. The brevity-versus-clarity issue is a question of style, depending on your personal
preference and on the expectations of those who will be reading your listing.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Returning Structure Variables

We’ve seen that structures can be used as arguments to functions. You can also use them as return
values. Here’s a program, RETSTRC, that incorporates a function that adds variables of type Distance
and returns a value of this same type:

// retstrc.cpp
// demonstrates returning a structure
#include <iostream>
using namespace std;
//
struct Distance //English distance
 {
 int feet;
 float inches;
 };
//
Distance addengl(Distance, Distance); //declarations
void engldisp(Distance);

int main()
 {
 Distance d1, d2, d3; //define three lengths
 //get length d1 from user
 cout << “\nEnter feet: ”; cin >> d1.feet;
 cout << “Enter inches: ”; cin >> d1.inches;
 //get length d2 from user
 cout << “\nEnter feet: ”; cin >> d2.feet;
 cout << “Enter inches: ”; cin >> d2.inches;

 d3 = addengl(d1, d2); //d3 is sum of d1 and d2
 cout << endl;
 engldisp(d1); cout << “ + ”; //display all lengths
 engldisp(d2); cout << “ = ”;
 engldisp(d3); cout << endl;
 return 0;
 }
//--
// addengl()
// adds two structures of type Distance, returns sum
Distance addengl(Distance dd1, Distance dd2)
 {
 Distance dd3; //define a new structure for sum

 dd3.inches = dd1.inches + dd2.inches; //add the inches
 dd3.feet = 0; //(for possible carry)
 if(dd3.inches >= 12.0) //if inches >= 12.0,
 { //then decrease inches
 dd3.inches -= 12.0; //by 12.0 and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 dd3.inches -= 12.0; //by 12.0 and
 dd3.feet++; //increase feet
 } //by 1
 dd3.feet += dd1.feet + dd2.feet; //add the feet
 return dd3; //return structure
 }
//--
// engldisp()
// display structure of type Distance in feet and inches
void engldisp(Distance dd)
 {
 cout << dd.feet << “\’-” << dd.inches << “\””;
 }

The program asks the user for two lengths, in feet-and-inches format, adds them together by calling
the function addengl(), and displays the results using the engldisp() function introduced in the
ENGLDISP program. Here’s some output from the program:

Enter feet: 4
Enter inches: 5.5

Enter feet: 5
Enter inches: 6.5

4’-5.5” + 5’-6.5” = 10’-0”

The main() part of the program adds the two lengths, each represented by a structure of type Distance
by calling the function addengl():

d3 = addengl(d1, d2);

This function returns the sum of d1 and d2, and in main() the result is assigned to the structure d3.

Internally, the addengl() function must create a new variable of type Distance to hold the results of its
calculation. It can’t simply return an expression, as in

return dd1+dd2; // doesn’t make sense here

because the process of adding the two structures actually takes several steps. The values of the
individual members of dd3 must be calculated, and then dd3 is returned to the calling program with
the statement

return dd3;

The result is assigned to d3 in the calling program.

Besides showing how structures are used as return values, this program also shows two functions
(three if you count main()) used in the same program. You can arrange the functions in any order.
The only rule is that the function declarations must appear in the listing before any calls are made to
the functions.

Reference Arguments

A reference provides an alias—a different name—for a variable. One of the most important uses
for references is in passing arguments to functions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We’ve seen examples of function arguments passed by value. When arguments are passed by value,
the called function creates a new variable of the same type as the argument and copies the
argument’s value into it. As we noted, the function cannot access the original variable in the calling
program, only the copy it created. Passing arguments by value is useful when the function does not
need to modify the original variable in the calling program. In fact, it offers insurance that the
function cannot harm the original variable.

Passing arguments by reference uses a different mechanism. Instead of a value being passed to the
function, a reference to the original variable, in the calling program, is passed. (It’s actually the
memory address of the variable that is passed, although you don’t need to know this.)

An important advantage of passing by reference is that the function can access the actual variables
in the calling program. Among other benefits, this provides a mechanism for passing more than one
value from the function back to the calling program.

Passing Simple Data Types by Reference

The next example, REF, shows a simple variable passed by reference.

// ref.cpp
// demonstrates passing by reference
#include <iostream>
using namespace std;

int main()
 {
 void intfrac(float, float&, float&); //declaration
 float number, intpart, fracpart; //float variables

 do {
 cout << “\nEnter a real number: ”; //number from user
 cin >> number;
 intfrac(number, intpart, fracpart); //find int and frac
 cout << “Integer part is ” << intpart //print them
 << “, fraction part is ” << fracpart << endl;
 } while(number != 0.0); //exit loop on 0.0
 return 0;
 }
//--
// intfrac()
// finds integer and fractional parts of real number
void intfrac(float n, float& intp, float& fracp)
 {
 long temp = static_cast<long>(n); //convert to long,
 intp = static_cast<float>(temp); //back to float
 fracp = n - intp; //subtract integer part
 }

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

The main() part of this program asks the user to enter a number of type float. The program will
separate this number into an integer and a fractional part. That is, if the user’s number is 12.456, the
program should report that the integer part is 12.0 and the fractional part is 0.456. To find these two
values, main() calls the function intfrac(). Here’s some sample interaction:

Enter a real number: 99.44
Integer part is 99, fractional part is 0.44

Some compilers may generate spurious digits in the fractional part, such as 0.440002. This is an
error in the compiler’s conversion routine and can be ignored.

The intfrac() function finds the integer part by converting the number (which was passed to the
parameter n) into a variable of type long with a cast, using the expression

long temp = static_cast<long>(n);

This effectively chops off the fractional part of the number, since integer types (of course) store
only the integer part. The result is then converted back to type float with another cast:

intp = static_cast<float>(temp);

The fractional part is simply the original number less the integer part. (We should note that a library
function, fmod(), performs a similar task for type double.)

The intfrac() function can find the integer and fractional parts, but how does it pass them back to
main()? It could use a return statement to return one value, but not both. The problem is solved using
reference arguments. Here’s the declarator for the function:

void intfrac(float n, float& intp, float& fracp)

Reference arguments are indicated by the ampersand (&) following the data type:

float& intp

The & indicates that intp is an alias—another name—for whatever variable is passed as an
argument. In other words, when you use the name intp in the intfrac() function, you are really
referring to intpart in main(). The & can be taken to mean reference to, so

float& intp

means intp is a reference to the float variable passed to it. Similarly, fracp is an alias for—or a
reference to—fracpart.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The function declaration echoes the usage of the ampersand in the definition:

void intfrac(float, float&, float&); // ampersands

As in the definition, the ampersand follows those arguments that are passed by reference.

The ampersand is not used in the function call:

intfrac(number, intpart, fracpart); // no ampersands

From the function call alone, there’s no way to tell whether an argument will be passed by
reference or by value.

While intpart and fracpart are passed by reference, the variable number is passed by value. intp and
intpart are different names for the same place in memory, as are fracp and fracpart. On the other hand,
since it is passed by value, the parameter n in intfrac() is a separate variable into which the value of
number is copied. It can be passed by value because the intfrac() function doesn’t need to modify
number. Figure 5.7 shows how reference arguments work.

(C programmers should not confuse the ampersand that is used to mean reference to with the same
symbol used to mean address of. These are different usages. We’ll discuss the address of meaning of
& in Chapter 10, “Pointers.”)

A More Complex Pass by Reference

Here’s a somewhat more complex example of passing simple arguments by reference. Suppose you
have pairs of numbers in your program and you want to be sure that the smaller one always
precedes the larger one. To do this you call a function, order(), which checks two numbers passed to
it by reference and swaps the originals if the first is larger than the second. Here’s the listing for
REFORDER:

// reforder.cpp
// orders two arguments passed by reference
#include <iostream>
using namespace std;

int main()
 {
 void order(int&, int&); //prototype

 int n1=99, n2=11; //this pair not ordered
 int n3=22, n4=88; //this pair ordered

 order(n1, n2); //order each pair of numbers
 order(n3, n4);

 cout << “n1=” << n1 << endl; //print out all numbers
 cout << “n2=” << n2 << endl;
 cout << “n3=” << n3 << endl;
 cout << “n4=” << n4 << endl;
 return 0;
 }
//--
void order(int& numb1, int& numb2) //orders two numbers
 {
 if(numb1 > numb2) //if 1st larger than 2nd,
 {
 int temp = numb1; //swap them

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 int temp = numb1; //swap them
 numb1 = numb2;
 numb2 = temp;
 }
 }

Figure 5.7 Passing by reference.

In main() there are two pairs of numbers—the first pair is not ordered and the second pair is ordered.
The order() function is called once for each pair, and then all the numbers are printed out. The output
reveals that the first pair has been swapped while the second pair hasn’t. Here it is:

n1=11
n2=99
n3=22
n4=88

In the order() function, the first variable is called numb1 and the second is numb2. If numb1 is greater
than numb2 the function stores numb1 in temp, puts numb2 in numb1, and finally puts temp back in
numb2. Remember that numb1 and numb2 are simply different names for whatever arguments were
passed; in this case, n1 and n2 on the first call to the function, and n2 and n3 on the second call. The
effect is to check the ordering of the original arguments in the calling program and swap them if
necessary.

Using reference arguments in this way is a sort of remote-control operation. The calling program
tells the function what variables in the calling program to operate on, and the function modifies
these variables without ever knowing their real names. It’s as if you called the house painters and,
although they never left their office, you sat back and watched as your dining room walls
mysteriously changed color.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Passing Structures by Reference

You can pass structures by reference just as you can simple data types. Here’s a program, REFERST
that performs scale conversions on values of type Distance. A scale conversion involves multiplying
a group of distances by a factor. If a distance is 6’–8”, and a scale factor is 0.5, the new distance is
3’–4”. Such a conversion might be applied to all the dimensions of a building to make the building
shrink but remain in proportion.

// referst.cpp
// demonstrates passing structure by reference
#include <iostream>
using namespace std;
//
struct Distance //English distance
 {
 int feet;
 float inches;
 };
//
void scale(Distance&, float); //function
void engldisp(Distance); //declarations

int main()
 {
 Distance d1 = { 12, 6.5 }; //initialize d1 and d2
 Distance d2 = { 10, 5.5 };

 cout << “d1 = ”; engldisp(d1); //display old d1 and d2
 cout << “\nd2 = ”; engldisp(d2);

 scale(d1, 0.5); //scale d1 and d2
 scale(d2, 0.25);

 cout << “\nd1 = ”; engldisp(d1); //display new d1 and d2
 cout << “\nd2 = ”; engldisp(d2);
 cout << endl;
 return 0;
 }
//--
// scale()
// scales value of type Distance by factor
void scale(Distance& dd, float factor)
 {
 float inches = (dd.feet*12 + dd.inches) * factor;
 dd.feet = static_cast<int>(inches / 12);
 dd.inches = inches - dd.feet * 12;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 dd.inches = inches - dd.feet * 12;
 }
//--
// engldisp()
// display structure of type Distance in feet and inches
void engldisp(Distance dd) //parameter dd of type Distance
 {
 cout << dd.feet << “\’-” << dd.inches << “\””;
 }

REFERST initializes two Distance variables—d1 and d2—to specific values, and displays them. Then
it calls the scale() function to multiply d1 by 0.5 and d2 by 0.25. Finally, it displays the resulting
values of the distances. Here’s the program’s output:

d1 = 12’-6.5”
d2 = 10’-5.5”
d1 = 6’-3.25”
d2 = 2’-7.375”

Here are the two calls to the function scale():

scale(d1, 0.5);
scale(d2, 0.25);

The first call causes d1 to be multiplied by 0.5 and the second causes d2 to be multiplied by 0.25.
Notice that these changes take place directly to d1 and d2. The function doesn’t return anything; the
operation is performed directly on the Distance argument, which is passed by reference to scale().
(Since only one value is changed in the calling program, you could rewrite the function to pass the
argument by value and return the scaled value. Calling such a function would look like this:

d1 = scale(d1, 0.5);

However, this is unnecessarily verbose.)

Notes on Passing by Reference

Passing arguments by reference is also possible in Pascal and newer versions of BASIC. References
don’t exist in C, where pointers serve a somewhat similar purpose, although often less
conveniently. Reference arguments were introduced into C++ to provide flexibility in a variety of
situations involving objects as well as simple variables.

The third way to pass arguments to functions, besides by value and by reference, is to use pointers.
We’ll explore this in Chapter 10, “Pointers.”

Overloaded Functions

An overloaded function appears to perform different activities depending on the kind of data sent to
it. Overloading is like the joke about the famous scientist who insisted that the thermos bottle was
the greatest invention of all time. Why? “It’s a miracle device,” he said. “It keeps hot things hot, but
cold things it keeps cold. How does it know?”

It may seem equally mysterious how an overloaded function knows what to do. It performs one
operation on one kind of data but another operation on a different kind. Let’s clarify matters with
some examples.

Different Numbers of Arguments

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Recall the starline() function in the TABLE example and the repchar() function from the TABLEARG
example, both shown earlier in this chapter. The starline() function printed a line using 45 asterisks,
while repchar() used a character and a line length that were both specified when the function was
called. We might imagine a third function, charline(), that always prints 45 characters but that allows
the calling program to specify the character to be printed. These three functions—starline(), repchar()
and charline()—perform similar activities but have different names. For programmers using these
functions, that means three names to remember and three places to look them up if they are listed
alphabetically in an application’s Function Reference documentation.

It would be far more convenient to use the same name for all three functions, even though they each
have different arguments. Here’s a program, OVERLOAD, that makes this possible:

// overload.cpp
// demonstrates function overloading
#include <iostream>
using namespace std;

void repchar(); //declarations
void repchar(char);
void repchar(char, int);

int main()
 {
 repchar();
 repchar(‘=’);
 repchar(‘+’, 30);
 return 0;
 }
//--
// repchar()
// displays 45 asterisks
void repchar()
 {
 for(int j=0; j<45; j++) // always loops 45 times
 cout << ‘*’; // always prints asterisk
 cout << endl;
 }
//--
// repchar()
// displays 45 copies of specified character
void repchar(char ch)
 {
 for(int j=0; j<45; j++) // always loops 45 times
 cout << ch; // prints specified character
 cout << endl;
 }
//--
// repchar()
// displays specified number of copies of specified character
void repchar(char ch, int n)
 {
 for(int j=0; j<n; j++) // loops n times
 cout << ch; // prints specified character
 cout << endl;
 }

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

This program prints out three lines of characters. Here’s the output:

===
++++++++++++++++++++++++++++++

The first two lines are 45 characters long, and the third is 30.

The program contains three functions with the same name. There are three declarations, three
function calls, and three function definitions. What keeps the compiler from becoming hopelessly
confused? It uses the number of arguments, and their data types, to distinguish one function from
another. In other words, the declaration

void repchar();

which takes no arguments, describes an entirely different function than the declaration

void repchar(char);

which takes one argument of type char, or the declaration

void repchar(char, int);

which takes one argument of type char and another of type int.

The compiler, seeing several functions with the same name but different numbers of arguments,
could decide the programmer had made a mistake (which is what it would do in C). Instead, it very
tolerantly sets up a separate function for every such definition. Which one of these functions will be
called depends on the number of arguments supplied in the call. Figure 5.8 shows this process.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5.8 Overloaded functions.

Different Kinds of Arguments

In the OVERLOAD example we created several functions with the same name but different numbers
of arguments. The compiler can also distinguish between overloaded functions with the same
number of arguments, provided their type is different. Here’s a program, OVERENGL, that uses an
overloaded function to display a quantity in feet-and-inches format. The single argument to the
function can be either a structure of type Distance (as used in the ENGLDISP example) or a simple
variable of type float. Different functions are used depending on the type of argument.

// overengl.cpp
// demonstrates overloaded functions
#include <iostream>
using namespace std;
//
struct Distance //English distance
 {
 int feet;
 float inches;
 };
//
void engldisp(Distance); //declarations
void engldisp(float);

int main()
 {
 Distance d1; //distance of type Distance
 float d2; //distance of type float
 //get length d1 from user
 cout << “\nEnter feet: ”; cin >> d1.feet;
 cout << “Enter inches: ”; cin >> d1.inches;
 //get length d2 from user
 cout << “Enter entire distance in inches: ”; cin >> d2;

 cout << “\nd1 = ”;
 engldisp(d1); //display length 1
 cout << “\nd2 = ”;
 engldisp(d2); //display length 2
 cout << endl;
 return 0;
 }
//--
// engldisp()
// display structure of type Distance in feet and inches
void engldisp(Distance dd) //parameter dd of type Distance
 {
 cout << dd.feet << “\’-” << dd.inches << “\””;
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
//--
// engldisp()
// display variable of type float in feet and inches
void engldisp(float dd) //parameter dd of type float
 {
 int feet = static_cast<int>(dd / 12);
 float inches = dd - feet*12;
 cout << feet << “\’-” << inches << “\””;
 }

The user is invited to enter two distances, the first with separate feet and inches inputs, the second
with a single large number for inches (109.5 inches, for example, instead of 9’–1.5”). The program
calls the overloaded function engldisp() to display a value of type Distance for the first distance and of
type float for the second. Here’s some sample interaction with the program:

Enter feet: 5
Enter inches: 10.5
Enter entire distance in inches: 76.5
d1 = 5’-10.5”
d2 = 6’-4.5”

Notice that, while the different versions of engldisp() do similar things, the code is quite different.
The version that accepts the all-inches input has to convert to feet and inches before displaying the
result.

Overloaded functions can simplify the programmer’s life by reducing the number of function names
to be remembered. As an example of the complexity that arises when overloading is not used,
consider the C++ library routines for finding the absolute value of a number. Because these routines
must work with C (which does not allow overloading) as well as with C++, there must be separate
versions of the absolute value routine for each data type. There are four of them: abs() for type int
cabs() for complex numbers, fabs() for type double, and labs() for type long. In C++, a single name, abs()
would suffice for all these data types.

As we’ll see later, overloaded functions are also useful for handling different types of objects.

Inline Functions

We mentioned that functions save memory space because all the calls to the function cause the
same code to be executed; the function body need not be duplicated in memory. When the compiler
sees a function call, it normally generates a jump to the function. At the end of the function it jumps
back to the instruction following the call, as shown in Figure 5.1 earlier in this chapter.

While this sequence of events may save memory space, it takes some extra time. There must be an
instruction for the jump to the function (actually the assembly-language instruction CALL or
something similar), instructions for saving registers, instructions for pushing arguments onto the
stack in the calling program and removing them from the stack in the function (if there are
arguments), instructions for restoring registers, and an instruction to return to the calling program.
The return value (if any) must also be dealt with. All these instructions slow down the program.

To save execution time in short functions, you may elect to put the code in the function body
directly in line with the code in the calling program. That is, each time there’s a function call in the
source file, the actual code from the function is inserted, instead of a jump to the function. The
difference between a function and inline code is shown in Figure 5.9.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Long sections of repeated code are generally better off as normal functions: The savings in memory
space is worth the comparatively small sacrifice in execution speed. But making a short section of
code into an ordinary function may result in little savings in memory space, while imposing just as
much time penalty as a larger function. In fact, if a function is very short, the instructions necessary
to call it may take up as much space as the instructions within the function body, so that there is not
only a time penalty but a space penalty as well.

In such cases you could simply repeat the necessary code in your program, inserting the same group
of statements wherever it was needed. The trouble with repeatedly inserting the same code is that
you lose the benefits of program organization and clarity that come with using functions. The
program may run faster and take less space, but the listing is longer and more complex.

Figure 5.9 Functions versus inline code.

The solution to this quandary is the inline function. This kind of function is written like a normal

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The solution to this quandary is the inline function. This kind of function is written like a normal
function in the source file but compiles into inline code instead of into a function. The source file
remains well organized and easy to read, since the function is shown as a separate entity. However,
when the program is compiled, the function body is actually inserted into the program wherever a
function call occurs.

Functions that are very short, say one or two statements, are candidates to be inlined. Here’s
INLINE, a variation on the CONVERT2 program. It inlines the lbstokg() function.

// inliner.cpp
// demonstrates inline functions
#include <iostream>
using namespace std;

// lbstokg()
// converts pounds to kilograms
inline float lbstokg(float pounds)
 {
 return 0.453592 * pounds;
 }
//--
int main()
 {
 float lbs;

 cout << “\nEnter your weight in pounds: ”;
 cin >> lbs;
 cout << “Your weight in kilograms is ” << lbstokg(lbs)
 << endl;
 return 0;
 }

It’s easy to make a function inline: All you need is the keyword inline in the function definition:

inline float lbstokg(float pounds)

You should be aware that the inline keyword is actually just a request to the compiler. Sometimes
the compiler will ignore the request and compile the function as a normal function. It might decide
the function is too long to be inline, for instance.

(C programmers should note that inline functions largely take the place of #define macros in C. They
serve the same purpose but provide better type checking and do not need special care with
parentheses, as macros do.)

Default Arguments

Surprisingly, a function can be called without specifying all its arguments. This won’t work on just
any function: The function declaration must provide default values for those arguments that are not
specified.

Here’s an example, a variation on the OVERLOAD program that demonstrates this effect. In
OVERLOAD we used three different functions with the same name to handle different numbers of
arguments. The present example, MISSARG, achieves the same effect in a different way.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// missarg.cpp
// demonstrates missing and default arguments
#include <iostream>
using namespace std;

void repchar(char=’*’, int=45); //declaration with
 //default arguments
int main()
 {
 repchar(); //prints 45 asterisks
 repchar(‘=’); //prints 45 equal signs
 repchar(‘+’, 30); //prints 30 plus signs
 return 0;
 }
//--
// repchar()
// displays line of characters
void repchar(char ch, int n) //defaults supplied
 { // if necessary
 for(int j=0; j<n; j++) //loops n times
 cout << ch; //prints ch
 cout << endl;
 }

In this program the function repchar() takes two arguments. It’s called three times from main(). The
first time it’s called with no arguments, the second time with one, and the third time with two. Why
do the first two calls work? Because the called function provides default arguments, which will be
used if the calling program doesn’t supply them. The default arguments are specified in the
declaration for repchar():

void repchar(char=’*’, int=45); //declaration

The default argument follows an equal sign, which is placed directly after the type name. You can
also use variable names, as in

void repchar(char reptChar=’*’, int numberReps=45);

If one argument is missing when the function is called, it is assumed to be the last argument. The
repchar() function assigns the value of the single argument to the ch parameter and uses the default
value 45 for the n parameter.

If both arguments are missing, the function assigns the default value ‘*’ to ch and the default value
45 to n. Thus the three calls to the function all work, even though each has a different number of
arguments.

Remember that missing arguments must be the trailing arguments—those at the end of the
argument list. You can leave out the last three arguments, but you can’t leave out the next-to-last
and then put in the last. This is reasonable; how would the compiler know which arguments you
meant, if you left out some in the middle? (Missing arguments could have been indicated with
commas, but commas are notoriously subject to misprints, so the designers of C++ ignored this
possibility.) Not surprisingly, the compiler will flag an error if you leave out arguments for which
the function does not provide default values.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Default arguments are useful if you don’t want to go to the trouble of writing arguments that, for
example, almost always have the same value. They are also useful in cases where, after a program
is written, the programmer decides to increase the capability of a function by adding another
argument. Using default arguments means that the existing function calls can continue to use the
old number of arguments, while new function calls can use more.

Variables and Storage Classes

Now that we know about functions, we can explore a feature of C++ that’s related to the interaction
of variables and functions: the storage class. The storage class of a variable determines which parts
of the program can access it and how long it stays in existence. We’ll look at variables with three
storage classes—automatic, external, and static.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Automatic Variables

So far almost all the variables we’ve used in example programs have been defined inside the
function in which they are used. That is, the definition occurs inside the braces that delimit the
function body:

void somefunc()
 {
 int somevar; //variables defined within
 float othervar; //the function body
 // other statements
 }

Variables may be defined inside main() or inside other functions; the effect is similar, since main()
a function. Variables defined within a function body are called automatic variables. Actually, a
keyword, auto, can be used to specify an automatic variable. You would say

void somefunc()
 {
 auto int somevar; //same as int somevar
 auto float othervar; //same as float othervar
 // other statements
 }

However, since this is the default, there is seldom any need to use the auto keyword. Variables
defined within a function are automatic anyway.

Let’s look at the two important characteristics of automatic variables—lifetime and visibility.

Lifetime

An automatic variable is not created until the function in which it is defined is called. (More
accurately, we can say that variables defined within any block of code are not created until the
block is executed.) In the program fragment just given, the variables somevar and othervar don’t exist
until the somefunc() function is called. That is, there is no place in memory where their values are
stored; they are undefined. When control is transferred to somefunc(), the variables are created and
memory space is set aside for them. Later, when somefunc() returns and control is passed back to the
calling program, the variables are destroyed and their values are lost. The name automatic is used
because the variables are automatically created when a function is called and automatically
destroyed when it returns.

The time period between the creation and destruction of a variable is called its lifetime (or

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The time period between the creation and destruction of a variable is called its lifetime (or
sometimes its duration). The lifetime of an automatic variable coincides with the time when the
function in which it is defined is executing.

The idea behind limiting the lifetime of variables is to save memory space. If a function is not
executing, the variables it uses during execution are presumably not needed. Removing them frees
up memory that can then be used by other functions.

Visibility

A variable’s visibility describes the locations within a program from which it can be accessed. It can
be referred to in statements in some parts of the program; but in others, attempts to access it lead to
an unknown variable error message. The word scope is also used to describe visibility. The scope of
a variable is that part of the program where the variable is visible.

Automatic variables are only visible, meaning they can only be accessed, within the function in
which they are defined. Suppose you have two functions in a program:

void somefunc()
 {
 int somevar; //automatic variables
 float othervar;

 somevar = 10; //OK
 othervar = 11; //OK
 nextvar = 12; //illegal: not visible in somefunc()
 }

void otherfunc()
 {
 int nextvar; //automatic variable

 somevar = 20; //illegal: not visible in otherfunc()
 othervar = 21; //illegal: not visible in otherfunc()
 nextvar = 22; //OK
 }

The variable nextvar is invisible in function somefunc(), and the variables somevar and othervar are
invisible in otherfunc().

Limiting the visibility of variables helps organize and modularize the program. You can be
confident that the variables in one function are safe from accidental alteration by other functions
because the other functions can’t see them. This is an important part of structured programming,
the methodology for organizing old-fashioned procedural programs. Limiting visibility is also an
important part of Object-Oriented Programming.

In the case of automatic variables, lifetime and visibility coincide: These variables exist only while
the function in which they are defined is executing, and are only visible within that function. For
some storage classes, however, lifetime and visibility are not the same.

Initialization

When an automatic variable is created, the compiler does not try to initialize it. Thus it will start off
with an arbitrary value, which may be 0 but probably will be something else. If you want it
initialized, you must do it explicitly, as in

int n = 33;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

int n = 33;

then it will start off with this value.

Automatic variables are sometimes called local variables, since they are visible only locally, in the
function where they are defined.

External Variables

The next major storage class is external. While automatic variables are defined within functions,
external variables are defined outside of (external to) any function. An external variable is visible to
all the functions in a program. More precisely, it is visible to all those functions that follow the
variable’s definition in the listing. Usually you want external variables to be visible to all functions,
so you put their declarations at the beginning of the listing. External variables are also called global
variables, since they are known by all the functions in a program.

Here’s a program, EXTERN, in which three functions all access an external variable.

// extern.cpp
// demonstrates external variables
#include <iostream>
using namespace std;
#include <conio.h> //for getch()

char ch = ‘a’; //exteral variable ch

void getachar(); //function declarations
void putachar();

int main()
 {
 while(ch != ‘\r’) //main() accesses ch
 {
 getachar();
 putachar();
 }
 cout << endl;
 return 0;
 }
//--
void getachar() //getachar() accesses ch
 {
 ch = getch();
 }
//--
void putachar() //putachar() accesses ch
 {
 cout << ch;
 }

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

One function in EXTERN, getachar(), reads characters from the keyboard. It uses the library function
getch(), which is like getche() except that it doesn’t echo the character typed to the screen (hence the
absence of the final e in the name). A second EXTERN function, putachar(), displays each character on
the screen. The effect is that what you type is displayed in the normal way:

I’m typing in this line of text

The significant thing about this program is that the variable ch is not defined in any of the functions.
Instead it is defined at the beginning of the file, before the first function. It is an external variable.
Any function that follows the definition of ch in the listing can access it—in this case all the
functions in EXTERN: main(), getachar(), and putachar(). Thus the visibility of ch is the entire source file.

Role of External Variables

The external storage class is used when a variable must be accessible to more than one function in a
program. In procedural programs, external variables are often the most important variables in the
program. However, as we noted in Chapter 1, external variables create organizational problems for
the very reason that they can be accessed by any function. The wrong functions may access them,
or functions may access them incorrectly. In an object-oriented program, there is less necessity for
external variables.

Initialization

If an external variable is initialized, as in

Table 5.2 Storage Types
Automatic Static Auto External

Visibility function function file
Lifetime function program program
Initialized
value

not initialized 0 0

Storage stack heap heap
Purpose Variables used by

a single function.
Same as auto, but must
retain value when function
terminates.

Variables used by several
functions

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

int exvar = 199;

this initialization takes place when the file is first loaded. If an external variable is not initialized
explicitly by the program; for example, if it is defined as

int exvar;

then it is initialized automatically to 0 when it is created. (This is unlike automatic variables, which
are not initialized and probably contain random or garbage values when they are created.)

Lifetime and Visibility

External variables exist for the life of the program. That is, memory space is set aside for them
when the program begins, and continues in existence until the program ends.

As we noted, external variables are visible in the file in which they are defined, starting at the point
where they are defined. If ch were defined following main() but before getachar(), it would be visible
in getachar() and putachar(), but not in main().

Static Variables

We’ll touch on another storage class: static. Here we are concerned with static automatic variables.
There are static external variables, but they are meaningful only in multifile programs, which we
don’t examine until Chapter 13.

A static automatic variable has the visibility of a local variable (that is, inside the function
containing it). Its lifetime is similar to that of an external variable, except that it doesn’t come into
existence until the first call to the function containing it. Thereafter it remains in existence for the
life of the program.

Static automatic variables are used when it’s necessary for a function to remember a value when it
is not being executed; that is, between calls to the function. In the next example, a function, getavg()
calculates a running average. It remembers the total of the numbers it has averaged before, and how
many there were. Each time it receives a new number, sent as an argument from the calling
program, it adds this number to the total, adds 1 to a count, and returns the new average by dividing
the total by the count. Here’s the listing for STATIC:

// static.cpp
// demonstrates static variables
#include <iostream>
using namespace std;
float getavg(float); //declaration

int main()
 {
 float data=1, avg;

 while(data != 0)
 {
 cout << “Enter a number: ”;
 cin >> data;
 avg = getavg(data);
 cout << “New average is ” << avg << endl;
 }
 return 0;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return 0;
 }
//--
// getavg()
// finds average of old plus new data
float getavg(float newdata)
 {
 static float total = 0; //static variables are initialized
 static int count = 0; // only once per program

 count++; //increment count
 total += newdata; //add new data to total
 return total / count; //return the new average
 }

Here’s some sample interaction:

Enter a number: 10
New average is 10 ←total is 10, count is 1
Enter a number: 20
New average is 15 ←total is 30, count is 2
Enter a number: 30
New average is 20 ←total is 60, count is 3

The static variables total and count in getavg() retain their values after getavg() returns, so they’re
available the next time it’s called.

Initialization

When static variables are initialized, as total and count are in getavg(), the initialization takes place
only once—the first time their function is called. They are not reinitialized on subsequent calls to
the function, as ordinary automatic variables are.

Storage

If you’re familiar with operating system architecture, you might be interested to know that
automatic variables are stored on the stack, while external and static variables are stored on the
heap.

Table 5.2 summarizes the lifetime, visibility, and some other aspects of automatic, static automatic,
and external variables.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Returning by Reference

Now that we know about external variables, we can examine a rather odd-looking C++ feature.
Besides passing values by reference, you can also return a value by reference. Why you would
want to do this may seem obscure. The primary reason is to allow you to use a function call on the
left side of the equal sign. This is a somewhat bizarre concept, so let’s look at an example. The
RETREF program shows the mechanism.

// retref.cpp
// returning reference values
#include <iostream>
using namespace std;
int x; // global variable
int& setx(); // function declaration

int main()
 { // set x to a value, using
 setx() = 92; // function call on left side
 cout << “x=” << x << endl; // display new value in x
 return 0;
 }
//--
int& setx()
 {
 return x; // returns the value to be modified
 }

In this program, the function setx() is declared with a reference type, int&, as the return type:

int& setx();

This function contains the statement

return x;

where x has been defined as an external variable. Now—and this is what looks so strange—you can
put a call to this function on the left side of the equal sign:

setx() = 92;

The result is that the variable returned by the function is assigned the value on the right side of the
equal sign. That is, x is given the value 92. The output from the program,

x=92

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

x=92

verifies that this assignment has taken place.

Function Calls on the Left of the Equal Sign

Does this still sound obscure? Remember that an ordinary function—one that returns a value—can
be used as if it were a value:

y=squareroot(x);

Here whatever value squareroot(x) has (like 27.2) is assigned to y. The function is treated as if it were
a value. A function that returns a reference, on the other hand, is treated as if it were a variable. It
returns an alias to a variable, namely the variable in the function’s return statement. In RETREF.C
the function setx() returns a reference to the variable x. When this function is called, it’s treated as if
it were the variable x. Thus it can be used on the left side of an equal sign.

There are two corollaries to this. One is that you can’t return a constant from a function that returns
by reference. In setx(), you can’t say

int& setx()
 {
 return 3;

 }

If you try this the compiler will complain that you need an “lvalue,” that is, something that can go
on the left side of the equal sign: a variable and not a constant.

More subtly, you can’t return a reference to an automatic variable:

int& setx()
 {
 int x = 3;
 return x; // error
 }

What’s wrong with this? The problem is that a function’s automatic variables are (probably)
destroyed when the function returns, and it doesn’t make sense to return a reference to something
that no longer exists.

Don’t Worry Yet

Of course, the question remains why one would ever want to use a function call on the left of an
equal sign. In procedural programming there probably isn’t too much use for this technique. As in
the above example, there are easier ways to achieve the same result. However, in Chapter 8,
“Operator Overloading,” we’ll find that returning by reference is an indispensable technique. Until
then, keep it in the back of your mind.

const Function Arguments

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We’ve seen that passing an argument by reference can be used to allow a function to modify a
variable in the calling program. However, there are other reasons to pass by reference. One is
efficiency. Some variables used for function arguments can be very large; a large structure would
be an example. If an argument is large, then passing by reference is more efficient because, behind
the scenes, only an address is really passed, not the entire variable.

Suppose you want to pass an argument by reference for efficiency, but not only do you want the
function not to modify it, you want a guarantee that the function cannot modify it.

To obtain such a guarantee, you can apply the const modifier to the variable in the function
declaration. The CONSTARG program shows how this looks.

//constarg.cpp
//demonstrates constant function arguments

void aFunc(int& a, const int& b); //declaration

int main()
 {
 int alpha = 7;
 int beta = 11;
 aFunc(alpha, beta);
 return 0;
 }
//--
void aFunc(int& a, const int& b) //definition
 {
 a = 107; //OK
 b = 111; //error: can’t modify constant argument
 }

Here we want to be sure that aFunc() can’t modify the variable beta. (We don’t care if it modifies
alpha.) So we use the const modifier with beta in the function declaration (and definition):

void aFunc(int& alpha, const int& beta);

Now the attempt to modify the beta in aFunc() is flagged as an error by the compiler. One of the
design philosophies in C++ is that it’s better for the compiler to find errors than to wait for them to
surface at run time. The use of const function arguments is an example of this approach in action.

If you want to pass a const variable to a function as a reference argument, then you don’t have a
choice: It must be declared const in the function declaration. (There’s no problem passing a const
argument by value, because the function can’t modify the original variable anyway.)

Many library functions use constant arguments in a similar way. We’ll see examples as we go
along.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Summary

Functions provide a way to help organize programs, and to reduce program size, by giving a block
of code a name and allowing it to be executed from other parts of the program. Function
declarations (prototypes) specify what the function looks like, function calls transfer control to the
function, and function definitions contain the statements that make up the function. The function
declarator is the first line of the definition.

Arguments can be sent to functions either by value, where the function works with a copy of the
argument, or by reference, where the function works with the original argument in the calling
program.

Functions can return only one value. Functions ordinarily return by value, but they can also return
by reference, which allows the function call to be used on the left side of an assignment statement.
Arguments and return values can be either simple data types or structures.

An overloaded function is actually a group of functions with the same name. Which of them is
executed when the function is called depends on the type and number of arguments supplied in the
call.

An inline function looks like a normal function in the source file but inserts the function’s code
directly into the calling program. Inline functions execute faster but may require more memory than
normal functions unless they are very small.

If a function uses default arguments, calls to it need not include all the arguments shown in the
declaration. Default values supplied by the function are used for the missing arguments.

Variables possess a characteristic called the storage class. The most common storage class is
automatic. Variables of this class exist only while the function in which they are defined is
executing, and are visible only within that function. External variables exist for the life of a
program and can be visible throughout an entire file. Static automatic variables exist for the life of a
program but are visible only in their own function.

A function cannot modify any of its arguments that are given the const modifier. A variable already
defined as const in the calling program must be passed as a const argument.

In Chapter 4 we examined one of the two major parts of objects: structures, which are collections of
data. In this chapter we explored the second part: functions. Now we’re ready to put these two
components together to create objects, the subject of Chapter 6.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Questions

Answers to questions can be found in Appendix G, “Answers to Questions and Exercises.”

1. A function’s single most important role is to

a. give a name to a block of code.
b. reduce program size.
c. accept arguments and provide a return value.
d. help organize a program into conceptual units.

2. A function itself is called the function d_________.
3. Write a function called foo() that displays the word foo.
4. A one-statement description of a function is referred to as a function d_________ or a
p_________.
5. The statements that carry out the work of the function constitute the function _________.
6. A program statement that invokes a function is a function _________.
7. The first line of a function definition is referred to as the _________.
8. A function argument is

a. a variable in the function that receives a value from the calling program.
b. a way that functions resist accepting the calling program’s values.
c. a value sent to the function by the calling program.
d. a value returned by the function to the calling program.

9. True or false: When arguments are passed by value, the function works with the original
arguments in the calling program.
10. What is the purpose of using argument names in a function declaration?
11. Which of the following can legitimately be passed to a function?

a. A constant
b. A variable
c. A structure
d. A header file

12. What is the significance of empty parentheses in a function declaration?
13. How many values can be returned from a function?
14. True or false: When a function returns a value, the entire function call can appear on the
right side of the equal sign and be assigned to another variable.
15. Where is a function’s return type specified?
16. A function that doesn’t return anything has return type _________.
17. Here’s a function:

int times2(int a)
 {
 return (a*2);
 }

Write a main() program that includes everything necessary to call this function.
18. When an argument is passed by reference,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18. When an argument is passed by reference,

a. a variable is created in the function to hold the argument’s value.
b. the function cannot access the argument’s value.
c. a temporary variable is created in the calling program to hold the argument’s value.
d. the function accesses the argument’s original value in the calling program.

19. What is a principle reason for passing arguments by reference?
20. Overloaded functions

a. are a group of functions with the same name.
b. all have the same number and types of arguments.
c. make life simpler for programmers.
d. may fail unexpectedly due to stress.

21. Write declarations for two overloaded functions named bar(). They both return type int
The first takes one argument of type char, and the second takes two arguments of type char. If
this is impossible, say why.
22. In general, an inline function executes _________ than a normal function, but requires
_________ memory.
23. Write the declarator for an inline function named foobar() that takes one argument of type
float and returns type float.
24. A default argument has a value that

a. may be supplied by the calling program.
b. may be supplied by the function.
c. must have a constant value.
d. must have a variable value.

25. Write a declaration for a function called blyth() that takes two arguments and returns type
char. The first argument is type int, and the second is type float with a default value of 3.14159.
26. Storage class is concerned with the _________ and _________ of a variable.
27. What functions can access an external variable that appears in the same file with them?
28. What functions can access an automatic variable?
29. A static automatic variable is used to

a. make a variable visible to several functions.
b. make a variable visible to only one function.
c. conserve memory when a function is not executing.
d. retain a value when a function is not executing.

30. In what unusual place can you use a function call when a function returns a value by
reference?

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Exercises

Answers to the starred exercises can be found in Appendix G.

*1. Refer to the CIRCAREA program in Chapter 2, “C++ Programming Basics.” Write a
function called circarea() that finds the area of a circle in a similar way. It should take an
argument of type float and return an argument of the same type. Write a main() function that
gets a radius value from the user, calls circarea(), and displays the result.
*2. Raising a number n to a power p is the same as multiplying n by itself p times. Write a
function called power() that takes a double value for n and an int value for p, and returns the
result as a double value. Use a default argument of 2 for p, so that if this argument is omitted,
the number n will be squared. Write a main() function that gets values from the user to test this
function.
*3. Write a function called zeroSmaller() that is passed two int arguments by reference and then
sets the smaller of the two numbers to 0. Write a main() program to exercise this function.
*4. Write a function that takes two Distance values as arguments and returns the larger one.
Include a main() program that accepts two Distance values from the user, compares them, and
displays the larger. (See the retstrc program for hints.)
5. Write a function called hms_to_secs() that takes three int values—for hours, minutes, and
seconds—as arguments, and returns the equivalent time in seconds (type long). Create a
program that exercises this function by repeatedly obtaining a time value in hours, minutes,
and seconds from the user (format 12:59:59), calling the function, and displaying the value of
seconds it returns.
6. Start with the program from Exercise 11, Chapter 4, “Structures,” which adds two struct
time values. Keep the same functionality, but modify the program so that it uses two
functions. The first, time_to_secs(), takes as its only argument a structure of type time, and
returns the equivalent in seconds (type long). The second function, secs_to_time(), takes as its
only argument a time in seconds (type long), and returns a structure of type time.
7. Start with the power () function of Exercise 2, which works only with type double. Create a
series of overloaded functions with the same name that, in addition to double, also work with
types char, int, long, and float. Write a main() program that exercises these overloaded functions
with all argument types.
8. Write a function called swap() that interchanges two int values passed to it by the calling
program. (Note that this function swaps the values of the variables in the calling program, not
those in the function.) You’ll need to decide how to pass the arguments. Create a main()
program to exercise the function.
9. This exercise is similar to Exercise 8, except that instead of two int variables, have the
swap() function interchange two struct time values (see Exercise 6).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10. Write a function that, when you call it, displays a message telling how many times it has
been called: “I have been called 3 times”, or whatever. Write a main() program that calls this
function at least 10 times. Try implementing this function in two different ways. First, use an
external variable to store the count. Second, use a local static variable. Which is more
appropriate? Why can’t you use an automatic variable?
11. Write a program, based on the sterling structure of Exercise 10 in Chapter 4, “Structures,”
that obtains from the user two money amounts in old-style British format (£9:19:11), adds
them, and displays the result, again in old-style format. Use three functions. The first should
obtain a pounds-shillings-pence value from the user and return the value as a structure of type
sterling. The second should take two arguments of type sterling and return a value of the
same type, which is the sum of the arguments. The third should take a sterling structure as its
argument and display its value.
12. Revise the four-function fraction calculator from Exercise 12, Chapter 4, so that it uses
functions for each of the four arithmetic operations. They can be called fadd(), fsub(), fmul(),
and fdiv(). Each of these functions should take two arguments of type struct fraction, and return
an argument of the same type.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

CHAPTER 6
OBJECTS AND CLASSES

You will learn about the following in this chapter:
• Member functions and data • Objects in the real world
• private and public • When to use objects
• Constructors and destructors

And now, the topics you’ve all been waiting for: objects and classes. The preliminaries are out of
the way. We’ve learned about structures, which provide a way to group data elements. We’ve
examined functions, which organize program actions into named entities. In this chapter we’ll put
these ideas together. We’ll introduce several classes, starting with simple ones and working toward
more complicated examples. We’ll focus first on the details of classes and objects. At the end of the
chapter we’ll take a wider view, discussing what is to be gained by using the OOP approach.

As you read this chapter you may want to refer back to the concepts introduced in Chapter 1, “The
Big Picture.”

A Simple Class

Our first program contains a class and two objects of that class. Although it’s simple, the program
demonstrates the syntax and general features of classes in C++. Here’s the listing for the SMALLOBJ
program:

// smallobj.cpp
// demonstrates a small, simple object
#include <iostream>
using namespace std;
//
class smallobj //declare a class
 {
 private:
 int somedata; //class data
 public:
 void setdata(int d) //member function to set data
 { somedata = d; }
 void showdata() //member function to display data
 { cout << “Data is ” << somedata << endl; }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 { cout << “Data is ” << somedata << endl; }
 };
//
int main()
 {
 smallobj s1, s2; //define two objects of class smallobj

 s1.setdata(1066); //call member function to set data
 s2.setdata(1776);

 s1.showdata(); //call member function to display data
 s2.showdata();
 return 0;
 }

The class smallobj declared in this program contains one data item and two member functions. The
two member functions provide the only access to the data item from outside the class. The first
member function sets the data item to a value, and the second displays the value. (This may sound
like Greek, but we’ll see what these terms mean as we go along.)

Placing data and functions together into a single entity is the central idea of object–oriented
programming. This is shown in Figure 6.1.

Figure 6.1 Classes contain data and functions.

Classes and Objects

Recall from Chapter 1 that an object has the same relationship to a class that a variable has to a data
type. An object is said to be an instance of a class, in the same way my 1954 Chevrolet is an
instance of a vehicle. In SMALLOBJ, the class—whose name is smallobj—is declared in the first part
of the program. Later, in main(), we define two objects—s1 and s2—that are instances of that class.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Each of the two objects is given a value, and each displays its value. Here’s the output of the
program:

Data is 1066 ← object s1 displayed this
Data is 1776 ← object s2 displayed this

We’ll begin by looking in detail at the first part of the program—the declaration for the class
smallobj. Later we’ll focus on what main() does with objects of this class.

Declaring the Class

Here’s the declaration (sometimes called a specifier) for the class smallobj, copied from the
SMALLOBJ listing:

class smallobj //declare a class
 {
 private:
 int somedata; //class data
 public:
 void setdata(int d) //member function to set data
 { somedata = d; }
 void showdata() //member function to display data
 { cout << “\nData is ” << somedata; }
 };

The declaration starts with the keyword class, followed by the class name—smallobj in this example.
Like a structure, the body of the class is delimited by braces and terminated by a semicolon. (Don’t
forget the semicolon. Remember, data constructs like structures and classes end with a semicolon,
while control constructs like functions and loops do not.)

private and public

The body of the class contains two unfamiliar keywords: private and public. What is their purpose?

A key feature of object–oriented programming is data hiding. This term does not refer to the
activities of particularly paranoid programmers; rather it means that data is concealed within a
class, so that it cannot be accessed mistakenly by functions outside the class. The primary
mechanism for hiding data is to put it in a class and make it private. Private data or functions can
only be accessed from within the class. Public data or functions, on the other hand, are accessible
from outside the class. This is shown in Figure 6.2.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6.2 Private and public.

Hidden from Whom?

Don’t confuse data hiding with the security techniques used to protect computer databases. To
provide a security measure you might, for example, require a user to supply a password before
granting access to a database. The password is meant to keep unauthorized or malevolent users
from altering (or often even reading) the data.

Data hiding, on the other hand, means hiding data from parts of the program that don’t need to
access it. More specifically, one class’s data is hidden from other classes. Data hiding is designed to
protect well–intentioned programmers from honest mistakes. Programmers who really want to can
figure out a way to access private data, but they will find it hard to do so by accident.

Class Data

The smallobj class contains one data item: somedata, which is of type int. The data items within a class
are called data members (or sometimes member data). There can be any number of data members
in a class, just as there can be any number of data items in a structure. The data member somedata
follows the keyword private, so it can be accessed from within the class, but not from outside.

Member Functions

Member functions are functions that are included within a class. (In some object–oriented
languages, such as Smalltalk, member functions are called methods; some writers use this term in
C++ as well.) There are two member functions in smallobj: setdata() and showdata(). The function
bodies of these functions have been written on the same line as the braces that delimit them. You
could also use the more traditional format for these function definitions:

void setdata(int d)
 {
 somedata = d;
 }

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

and

void showdata()
 {
 cout << “\nData is ” << somedata;
 }

However, when member functions are small, it is common to compress their definitions this way to
save space.

Because setdata() and showdata() follow the keyword public, they can be accessed from outside the
class. We’ll see how this is done in a moment. Figure 6.3 shows the syntax of a class declaration.

Functions are Public, Data is Private

Usually the data within a class is private and the functions are public. This is a result of how classes
are used. The data is hidden so it will be safe from accidental manipulation, while the functions that
operate on the data are public so they can be accessed from outside the class. However, there is no
rule that data must be private and functions public; in some circumstances you may find you’ll need
to use private functions and public data.

Member Functions Within Class Declaration

The member functions in the smallobj class perform operations that are quite common in classes:
setting and retrieving the data stored in the class. The setdata() function accepts a value as a
parameter and sets the somedata variable to this value. The showdata() function displays the value
stored in somedata.

Note that the member functions setdata() and showdata() are definitions in that the actual code for the
function is contained within the class declaration. (The functions are not definitions in the sense
that memory is set aside for the function code; this doesn’t happen until an object of the class is
created.) Member functions defined inside a class this way are created as inline functions by
default. (Inline functions were discussed in Chapter 5, “Functions.”) We’ll see later that it is also
possible to declare a function within a class but to define it elsewhere. Functions defined outside
the class are not normally inline.

Using the Class

Now that the class is declared, let’s see how main() makes use of it. We’ll see how objects are
defined, and, once defined, how their member functions are accessed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6.3 Syntax of a class specifier.

Defining Objects

The first statement in main(),

smallobj s1, s2;

defines two objects, s1 and s2, of class smallobj. Remember that the declaration for the class smallobj
does not create any objects. It only describes how they will look when they are created, just as a
structure declaration describes how a structure will look but doesn’t create any structure variables.
It is the definition that actually creates objects that can be used by the program. Defining an object
is similar to defining a variable of any data type: Space is set aside for it in memory.

Defining objects in this way means creating them. This is also called instantiating them. The term
instantiating arises because an instance of the class is created. An object is an instance (that is, a
specific example) of a class. Objects are sometimes called instance variables.

Calling Member Functions

The next two statements in main() call the member function setdata():

s1.setdata(1066);
s2.setdata(1776);

These statements don’t look like normal function calls. Why are the object names s1 and s2
connected to the function names with a period? This strange syntax is used to call a member
function that is associated with a specific object. Because setdata() is a member function of the
smallobj class, it must always be called in connection with an object of this class. It doesn’t make
sense to say

setdata(1066);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

setdata(1066);

by itself, because a member function is always called to act on a specific object, not on the class in
general. Attempting to access the class this way would be like trying to drive the blueprint of a car.
Not only does this statement not make sense, but the compiler will issue an error message if you
attempt it. Member functions of a class can be accessed only by an object of that class.

To use a member function, the dot operator (the period) connects the object name and the member
function. The syntax is similar to the way we refer to structure members, but the parentheses signal
that we’re executing a member function rather than referring to a data item. (The dot operator is
also called the class member access operator.)

The first call to setdata(),

s1.setdata(1066);

executes the setdata() member function of the s1 object. This function sets the variable somedata in
object s1 to the value 1066. The second call,

s2.setdata(1776);

causes the variable somedata in s2 to be set to 1776. Now we have two objects whose somedata
variables have different values, as shown in Figure 6.4.

Figure 6.4 Two objects of class smallobj.

Similarly, the following two calls to the showdata() function will cause the two objects to display
their values:

s1.showdata();
s2.showdata();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

s2.showdata();

Messages

Some object–oriented languages refer to calls to member functions as messages. Thus the call

s1.showdata();

can be thought of as sending a message to s1 telling it to show its data. The term message is not a
formal term in C++, but it is a useful idea to keep in mind as we discuss member functions. Talking
about messages emphasizes that objects are discrete entities and that we communicate with them by
calling their member functions. Referring to the analogy with company organization in Chapter 1,
it’s like sending a message to the secretary in the sales department asking for a list of products sold
in the southwest distribution area.

C++ Objects As Physical Objects

In many programming situations, objects in programs represent physical objects: things that can be
felt or seen. These situations provide vivid examples of the correspondence between the program
and the real world. We’ll look at two such situations: widget parts and graphics circles.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Widget Parts as Objects

The smallobj class in the last example had only one data item. Let’s examine an example of a
somewhat more ambitious class. (These are not the same ambitious classes discussed in political
science courses.) We’ll create a class based on the structure for the widget parts inventory, last seen
in such examples as PARTS in Chapter 4, “Structures.” Here’s the listing for OBJPART:

// objpart.cpp
// widget part as an object
#include <iostream>
using namespace std;
//
class part //declare an object
 {
 private:
 int modelnumber; //ID number of widget
 int partnumber; //ID number of widget part
 float cost; //cost of part
 public:
 void setpart(int mn, int pn, float c) //set data
 {
 modelnumber = mn;
 partnumber = pn;
 cost = c;
 }
 void showpart() //display data
 {
 cout << “Model ” << modelnumber;
 cout << “, part ” << partnumber;
 cout << “, costs $” << cost << endl;
 }
 };
//
int main()
 {
 part part1; //define object
 // of class part
 part1.setpart(6244, 373, 217.55F); //call member function
 part1.showpart(); //call member function
 return 0;
 }

This program features the class part. Instead of one data item, as SMALLOBJ had, this class has
three: modelnumber, partnumber, and cost. A single member function, setpart(), supplies values to all
three data items at once. Another function, showpart(), displays the values stored in all three items.

In this example, only one object of type part is created: part1. The member function setpart() sets the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In this example, only one object of type part is created: part1. The member function setpart() sets the
three data items in this part to the values 6244, 373, and 217.55. The member function showpart()
then displays these values. Here’s the output:

Model 6244, part 373, costs $217.55

This is a somewhat more realistic example than SMALLOBJ. If you were designing an inventory
program you might actually want to create a class something like part. It’s an example of a C++
object representing a physical object in the real world—a widget part.

Circles as Objects

In our next example, we’ll examine an object used to represent a circle: the kind of circle displayed
on your computer screen. An image isn’t quite as physical an object as a widget part, which you
can presumably hold in your hand, but you can certainly see such a circle when your program runs.

Our example is an object–oriented version of the CIRCSTRC program from Chapter 5. (As in that
program, you’ll need to add the appropriate Console Graphics Lite files to your project. See
Appendix E, “Console Graphics Lite,” and also the appendix for your particular compiler.) The
program creates three circles with various characteristics and displays them. Here’s the listing for
CIRCLES:

// circles.cpp
// circles as graphics objects
#include “msoftcon.h” // for graphics functions
//
class circle //graphics circle
 {
 protected:
 int xCo, yCo; //coordinates of center
 int radius;
 color fillcolor; //color
 fstyle fillstyle; //fill pattern
 public: //sets circle attributes
 void set(int x, int y, int r, color fc, fstyle fs)
 {
 xCo = x;
 yCo = y;
 radius = r;
 fillcolor = fc;
 fillstyle = fs;
 }
 void draw() //draws the circle
 {
 set_color(fillcolor); //set color
 set_fill_style(fillstyle); //set fill
 draw_circle(xCo, yCo, radius); //draw solid circle
 }
 };
//
int main()
 {
 init_graphics(); //initialize graphics system

 circle c1; //create circles
 circle c2;
 circle c3;
 //set circle attributes
 c1.set(15, 7, 5, cBLUE, X_FILL);
 c2.set(41, 12, 7, cRED, O_FILL);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 c2.set(41, 12, 7, cRED, O_FILL);
 c3.set(65, 18, 4, cGREEN, MEDIUM_FILL);

 c1.draw(); //draw circles
 c2.draw();
 c3.draw();
 set_cursor_pos(1, 25); //lower left corner
 return 0;
 }

The output of this program is the same as that of the CIRCSTRC program in Chapter 5, shown in
Figure 5.5 in that chapter. You may find it interesting to compare the two programs. In CIRCLES
each circle is represented as a C++ object rather than as a combination of a structure variable and an
unrelated circ_draw() function, as it was in CIRCSTRC. Notice in CIRCLES how everything connected
with a circle—attributes, and functions—is brought together in the class declaration.

In CIRCLES, besides the draw() function, the circle class also requires the five–argument set() function
to set its attributes. We’ll see later that it’s advantageous to dispense with this function and use a
constructor instead.

C++ Objects As Data Types

Here’s another kind of entity C++ objects can represent: variables of a user–defined data type. We’ll
use objects to represent distances measured in the English system, as discussed in Chapter 4. Here’s
the listing for ENGLOBJ:

// englobj.cpp
// objects using English measurements
#include <iostream>
using namespace std;
//
class Distance //English Distance class
 {
 private:
 int feet;
 float inches;
 public:
 void setdist(int ft, float in) //set Distance to args
 { feet = ft; inches = in; }

 void getdist() //get length from user
 {
 cout << “\nEnter feet: ”; cin >> feet;
 cout << “Enter inches: ”; cin >> inches;
 }

 void showdist() //display distance
 { cout << feet << “\’–” << inches << ‘\”’; }
 };
//
int main()
 {
 Distance dist1, dist2; //define two lengths

 dist1.setdist(11, 6.25); //set dist1
 dist2.getdist(); //get dist2 from user

 //display lengths
 cout << “\ndist1 = ”; dist1.showdist();
 cout << “\ndist2 = ”; dist2.showdist();
 cout << endl;
 return 0;
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

In this program, the class Distance contains two data items, feet and inches. This is similar to the
Distance structure seen in examples in Chapter 4, but here the class Distance also has three member
functions: setdist(), which uses arguments to set feet and inches; getdist(), which gets values for feet
and inches from the user at the keyboard; and showdist(), which displays the distance in feet–and–
inches format.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

The value of an object of class Distance can thus be set in either of two ways. In main() we define two
objects of class Distance: dist1 and dist2. The first is given a value using the setdist() member function
with the arguments 11 and 6.25, and the second is given a value that is supplied by the user. Here’s
a sample interaction with the program:

Enter feet: 10
Enter inches: 4.75

dist1 = 11’–6.25” ← provided by arguments
dist2 = 10’–4.75” ← input by the user

Constructors

The ENGLOBJ example shows two ways that member functions can be used to give values to the
data items in an object. Sometimes, however, it’s convenient if an object can initialize itself when
it’s first created, without the need to make a separate call to a member function. Automatic
initialization is carried out using a special member function called a constructor. A constructor is a
member function that is executed automatically whenever an object is created. (The term
constructor is sometimes abbreviated ctor, especially in program listings.)

A Counter Example

As an example, we’ll create a class of objects that might be useful as a general–purpose
programming element. A counter is a variable that counts things. Maybe it counts file accesses, or
the number of times the user presses the [Enter] key, or the number of customers entering a bank.
Each time such an event takes place, the counter is incremented (1 is added to it). The counter can
also be accessed to find the current count.

Let’s assume that this counter is important in the program and must be accessed by many different
functions. In procedural languages such as C, a counter would probably be implemented as an
external variable. However, as we noted in Chapter 1, external variables complicate the program’s
design and may be modified accidentally. This example, COUNTER, provides a counter variable that
can be modified only through its member functions.

// counter.cpp
// object represents a counter variable
#include <iostream>
using namespace std;
//
class Counter

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

class Counter
 {
 private:
 unsigned int count; //count
 public:
 Counter() : count(0) //constructor
 { /*empty body*/ }
 void inc_count() //increment count
 { count++; }
 int get_count() //return count
 { return count; }
 };
//
int main()
 {
 Counter c1, c2; //define and initialize

 cout << “\nc1=” << c1.get_count(); //display
 cout << “\nc2=” << c2.get_count();

 c1.inc_count(); //increment c1
 c2.inc_count(); //increment c2
 c2.inc_count(); //increment c2

 cout << “\nc1=” << c1.get_count(); //display again
 cout << “\nc2=” << c2.get_count();
 cout << endl;
 return 0;
 }

The Counter class has one data member: count, of type unsigned int (since the count is always
positive). It has three member functions: the constructor Counter(), which we’ll look at in a moment;
inc_count(), which adds 1 to count; and get_count(), which returns the current value of count.

Automatic Initialization

When an object of type Counter is first created, we want its count to be initialized to 0. After all, most
counts start at 0. We could provide a set_count() function to do this and call it with an argument of 0,
or we could provide a zero_count() function, which would always set count to 0. However, such
functions would need to be executed every time we created a Counter object.

Counter c1; //every time we do this,
c1.zero_count(); //we must do this too

This is mistake prone, because the programmer may forget to initialize the object after creating it.
It’s more reliable and convenient, especially when there are a great many objects of a given class,
to cause each object to initialize itself when it’s created. In the Counter class, the constructor Counter()
does this. This function is called automatically whenever a new object of type Counter is created.
Thus in main(), the statement

Counter c1, c2;

creates two objects of type Counter. As each is created, its constructor, Counter(), is executed. This
function sets the count variable to 0. So the effect of this single statement is to not only create two
objects, but also to initialize their count variables to 0.

Same Name As the Class

There are some unusual aspects of constructor functions. First, it is no accident that they have
exactly the same name (Counter in this example) as the class of which they are members. This is one

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

exactly the same name (Counter in this example) as the class of which they are members. This is one
way the compiler knows they are constructors.

Second, no return type is used for constructors. Why not? Since the constructor is called
automatically by the system, there’s no program for it to return anything to; a return value wouldn’t
make sense. This is the second way the compiler knows they are constructors.

Initializer List

One of the most common tasks a constructor carries out is initializing data members. In the Counter
class the constructor must initialize the count member to 0. You might think that this would be done
in the constructor’s function body, like this:

count()
 { count = 0; }

However, this is not the preferred approach (although it does work). Here’s how you should
initialize a data member:

count() : count(0)
 { }

The initialization takes place following the member function declarator but before the function
body. It’s preceded by a colon. The value is placed in parentheses following the member data.

If multiple members must be initialized, they’re separated by commas. The result is the initializer
list (sometimes called by other names, such as the member–initialization list).

someClass() : m1(7), m2(33), m2(4) ← initializer list
 { }

Why not initialize members in the body of the constructor? The reasons are complex, but have to do
with the fact that members initialized in the initializer list are given a value before the constructor
even starts to execute. This is important in some situations. For example, the initializer list is the
only way to initialize const member data and references.

Actions more complicated than simple initialization must be carried out in the constructor body, as
with ordinary functions.

Messing with the Format

Note that, in writing the functions in this example, we’ve compressed them so they occupy only
two lines each:

Counter()

 { count = 0; }

This is just the same (as far as the compiler is concerned) as the normal function syntax

Counter()
 {
 count = 0;
 }

The main() part of this program exercises the Counter class by creating two counters, c1 and c2. It

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The main() part of this program exercises the Counter class by creating two counters, c1 and c2. It
causes the counters to display their initial values, which—as arranged by the constructor—are 0. It
then increments c1 once and c2 twice, and again causes the counters to display themselves (non–
criminal behavior in this context). Here’s the output:

c1=0
c2=0
c1=1
c2=2

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

If this isn’t enough proof that the constructor is operating as advertised, we can rewrite the
constructor to print a message when it executes.

Counter() : count(0)

 { cout << “I’m the constructor\n”; }

Now the program’s output looks like this:

I’m the constructor
I’m the constructor
c1=0
c2=0
c1=1
c2=2

As you can see, the constructor is executed twice—once for c1 and once for c2—when the statement

Counter c1, c2;

is executed in main().

Do–It–Yourself Data

Constructors are pretty amazing when you think about it. Whoever writes language compilers (for
C or BASIC or even for C++) must execute the equivalent of a constructor when the user defines a
variable. If you define an int, for example, somewhere there’s a constructor allocating four bytes of
memory for it. If we can write our own constructors we can start to take over some of the tasks of a
compiler writer. This is one step on the path to creating our own data types, as we’ll see later.

A Graphics Example

Let’s rewrite our earlier CIRCLES example to use a constructor instead of a set() function. To handle
the initialization of the five attributes of circles, this constructor will have five arguments and five
items in its initialization list. Here’s the listing for CIRCTOR:

// circtor.cpp
// circles use constructor for initialization
#include “msoftcon.h” // for graphics functions
//
class circle //graphics circle
 {
 protected:
 int xCo, yCo; //coordinates of center

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 int xCo, yCo; //coordinates of center
 int radius;
 color fillcolor; //color
 fstyle fillstyle; //fill pattern
 public:
 //constructor
 circle(int x, int y, int r, color fc, fstyle fs) :
 xCo(x), yCo(y), radius(r), fillcolor(fc), fillstyle(fs)
 { }

 void draw() //draws the circle
 {
 set_color(fillcolor); //set color
 set_fill_style(fillstyle); //set fill
 draw_circle(xCo, yCo, radius); //draw solid circle
 }
 };
//
int main()
 {
 init_graphics(); //initialize graphics system
 //create circles
 circle c1(15, 7, 5, cBLUE, X_FILL);
 circle c2(41, 12, 7, cRED, O_FILL);
 circle c3(65, 18, 4, cGREEN, MEDIUM_FILL);

 c1.draw(); //draw circles
 c2.draw();
 c3.draw();
 set_cursor_pos(1, 25); //lower left corner
 return 0;
 }

This program is similar to CIRCLES, except that set() has been replaced by the constructor. Note how
this simplifies main(). Instead of two separate statements for each object, one to create it and one to
set its attributes, now one statement both creates the object and sets its attributes at the same time.

Destructors

We’ve seen that a special member function—the constructor—is called automatically when an
object is first created. You might guess that another function is called automatically when an object
is destroyed. This is indeed the case. Such a function is called a destructor. A destructor has the
same name as the constructor (which is the same as the class name) but is preceded by a tilde:

class Foo
 {
 private:
 int data;
 public:
 Foo() : data(0) //constructor (same name as class)
 { }
 ~Foo() //destructor (same name with tilde)
 { }
 };

Like constructors, destructors do not have a return value. They also take no arguments (the
assumption being that there’s only one way to destroy an object).

The most common use of destructors is to deallocate memory that was allocated for the object by
the constructor. We’ll investigate these activities in Chapter 10, “Pointers.” Until then we won’t
have much use for destructors.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Objects as Function Arguments

Our next program adds some embellishments to the ENGLOBJ example. It also demonstrates some
new aspects of classes: constructor overloading, defining member functions outside the class, and—
perhaps most importantly—objects as function arguments. Here’s the listing for ENGLCON:

// englcon.cpp
// constructors, adds objects using member function
#include <iostream>
using namespace std;
//
class Distance //English Distance class
 {
 private:
 int feet;
 float inches;
 public: //constructor (no args)
 Distance() : feet(0), inches(0.0)
 { }
 //constructor (two args)
 Distance(int ft, float in) : feet(ft), inches(in)
 { }

 void getdist() //get length from user
 {
 cout << “\nEnter feet: ”; cin >> feet;
 cout << “Enter inches: ”; cin >> inches;
 }

 void showdist() //display distance
 { cout << feet << “\’–” << inches << ‘\”’; }

 void add_dist(Distance, Distance); //declaration
 };
//––
 //add lengths d2 and d3
void Distance::add_dist(Distance d2, Distance d3)
 {
 inches = d2.inches + d3.inches; //add the inches
 feet = 0; //(for possible carry)
 if(inches >= 12.0) //if total exceeds 12.0,
 { //then decrease inches
 inches –= 12.0; //by 12.0 and
 feet++; //increase feet
 } //by 1
 feet += d2.feet + d3.feet; //add the feet
 }
//
int main()
 {
 Distance dist1, dist3; //define two lengths
 Distance dist2(11, 6.25); //define and initialize dist2

 dist1.getdist(); //get dist1 from user
 dist3.add_dist(dist1, dist2); //dist3 = dist1 + dist2

 //display all lengths
 cout << “\ndist1 = ”; dist1.showdist();
 cout << “\ndist2 = ”; dist2.showdist();
 cout << “\ndist3 = ”; dist3.showdist();
 cout << endl;
 return 0;
 }

This program starts with a distance dist2 set to an initial value and adds to it a distance dist1, whose

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This program starts with a distance dist2 set to an initial value and adds to it a distance dist1, whose
value is supplied by the user, to obtain the sum of the distances. It then displays all three distances:

Enter feet: 17
Enter inches: 5.75

dist1 = 17’–5.75”
dist2 = 11’–6.25”
dist3 = 29’–0”

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Let’s see how the new features in this program are implemented.

Overloaded Constructors

It’s convenient to be able to give variables of type Distance a value when they are first created. That
is, we would like to use definitions like

Distance width(5, 6.25);

which defines an object, width, and simultaneously initializes it to a value of 5 for feet and 6.25 for
inches.

To do this we write a constructor like this:

Distance(int ft, float in) : feet(ft), inches(in)
 { }

This sets the member data feet and inches to whatever values are passed as arguments to the
constructor. So far so good.

However, we also want to define variables of type Distance without initializing them, as we did in
ENGLOBJ.

Distance dist1, dist2;

In that program there was no constructor, but our definitions worked just fine. How could they
work without a constructor? Because an implicit no–argument constructor is built into the program
automatically by the compiler, and it’s this constructor that created the objects, even though we
didn’t define it in the class. This no–argument constructor is called the default constructor. If it
weren’t created automatically by the constructor, you wouldn’t be able to create objects of a class
for which no constructor was defined.

Often we want to initialize data members in the default (no–argument) constructor as well. If we let
the default constructor do it, we don’t really know what values the data members may be given. If
we care what values they may be given, we need to explicitly define the constructor. In ENGLECON
we show how this looks:

Distance() : feet(0), inches(0.0) //default constructor
 { } //no function body, doesn’t do anything

The data members are initialized to constant values, in this case the integer value 0 and the float

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The data members are initialized to constant values, in this case the integer value 0 and the float
value 0.0, for feet and inches respectively. Now we can use objects initialized with the no–argument
constructor and be confident they represent no distance (0 feet plus 0.0 inches) rather than some
arbitrary value.

Since there are now two explicit constructors with the same name, Distance(), we say the constructor
is overloaded. Which of the two constructors is executed when an object is created depends on how
many arguments are used in the definition:

Distance length; // calls first constructor
Distance width(11, 6.0); // calls second constructor

Member Functions Defined Outside the Class

So far we’ve seen member functions that were defined inside the class declaration. This need not
always be the case. ENGLCON shows a member function, add_dist(), that is not defined within the
Distance class declaration. It is only declared inside the class, with the statement

void add_dist(Distance, Distance);

This tells the compiler that this function is a member of the class but that it will be defined outside
the class declaration, someplace else in the listing.

In ENGLCON the add_dist() function is defined following the class declaration. It is adapted from the
ENGLSTRC program in Chapter 4:

 //add lengths d2 and d3
void Distance::add_dist(Distance d2, Distance d3)
 {
 inches = d2.inches + d3.inches; //add the inches
 feet = 0; //(for possible carry)
 if(inches >= 12.0) //if total exceeds 12.0,
 { //then decrease inches
 inches –= 12.0; //by 12.0 and
 feet++; //increase feet
 } //by 1
 feet += d2.feet + d3.feet; //add the feet
 }

The declarator in this definition contains some unfamiliar syntax. The function name, add_dist(), is
preceded by the class name, Distance, and a new symbol—the double colon (::). This symbol is
called the scope resolution operator. It is a way of specifying what class something is associated
with. In this situation Distance::add_dist() means “the add_dist() member function of the Distance class.”
Figure 6.5 shows its usage.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6.5 The scope resolution operator.

Objects As Arguments

Now we can see how ENGLCON works. The distances dist1 and dist3 are created using the default
constructor (the one that takes no arguments). The distance dist2 is created with the constructor that
takes two arguments, and is initialized to the values passed in these arguments. A value is obtained
for dist1 by calling the member function getdist(), which obtains values from the user.

Now we want to add dist1 and dist2 to obtain dist3. The function call in main(),

dist3.add_dist(dist1, dist2);

does this. The two distances to be added, dist1 and dist2, are supplied as arguments to add_dist(). The
syntax for arguments that are objects is the same as that for arguments that are simple data types
like int: The object name is supplied as the argument. Since add_dist() is a member function of the
Distance class, it can access the private data in any object of class Distance supplied to it as an
argument, using names like dist1.inches and dist2.feet.

Close examination of add_dist() emphasizes some important truths about member functions. A
member function is always given access to the object for which it was called: the object connected
to it with the dot operator. But it may be able to access other objects. In the following statement in
ENGLCON, what objects can add_dist() access?

dist3.add_dist(dist1, dist2);

Besides dist3, the object for which it was called, it can also access dist1 and dist2, because they are
supplied as arguments. You might think of dist3 as a sort of phantom argument; the member
function always has access to it, even though it is not supplied as an argument. That’s what this
statement means: “Execute the add_dist() member function of dist3.” When the variables feet and
inches are referred to within this function, they refer to dist3.feet and dist3.inches

Notice that the result is not returned by the function. The return type of add_dist() is void. The result
is stored automatically in the dist3 object. Figure 6.6 shows the two distances dist1 and dist2 being
added together, with the result stored in dist3.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6.6 Result in this object.

To summarize: every call to a member function is associated with a particular object (unless it’s a
static function; we’ll get to that later). The function has direct access using the member names alone
(feet and inches) to all the members, whether private or public, of that object. It also has indirect
access, using the object name and the member name, connected with the dot operator (dist1.inches
dist2.feet) to other objects of the same class that are passed as arguments.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

The Default Copy Constructor

We’ve seen two ways to initialize objects. A no–argument constructor can initialize data members
to constant values, and a multi–argument constructor can initialize data members to values passed
as arguments. Let’s mention another way to initialize an object: you can initialize it with another
object of the same type. Surprisingly, you don’t need to create a special constructor for this; one is
already built into all classes. It’s called the default copy constructor. It’s a one–argument
constructor whose argument is an object of the same class as the constructor. The ECOPYCON
program shows how this constructor is used.

// ecopycon.cpp
// initialize objects using default copy constructor
#include <iostream>
using namespace std;
//
class Distance //English Distance class
 {
 private:
 int feet;
 float inches;
 public:
 //constructor (no args)
 Distance() : feet(0), inches(0.0)
 { }
 //Note: no one–arg constructor
 //constructor (two args)
 Distance(int ft, float in) : feet(ft), inches(in)
 { }

 void getdist() //get length from user
 {
 cout << “\nEnter feet: ”; cin >> feet;
 cout << “Enter inches: ”; cin >> inches;
 }
 void showdist() //display distance
 { cout << feet << “\’–” << inches << ‘\”’; }
 };
//
int main()
 {
 Distance dist1(11, 6.25); //two–arg constructor
 Distance dist2(dist1); //one–arg constructor
 Distance dist3 = dist1; //also one–arg constructor

 //display all lengths
 cout << “\ndist1 = ”; dist1.showdist();
 cout << “\ndist2 = ”; dist2.showdist();
 cout << “\ndist3 = ”; dist3.showdist();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 cout << “\ndist3 = ”; dist3.showdist();
 cout << endl;
 return 0;
 }

We initialize dist1 to the value of 11’–6.25” using the two–argument constructor. Then we define
two more objects of type Distance, dist2 and dist3, initializing both to the value of dist1. You might
think this would require us to define a one–argument constructor, but initializing an object with
another object of the same type is a special case. These definitions both use the default copy
constructor. The object dist2 is initialized in the statement

Distance dist2(dist1);

This causes the default copy constructor for the Distance class to perform a member–by–member
copy of dist1 into dist2. Surprisingly, a different format has exactly the same effect, causing dist1 to
be copied member–by–member into dist3:

Distance dist3 = dist1;

Although this looks like an assignment statement, it is not. Both formats invoke the default copy
constructor, and can be used interchangeably. Here’s the output from the program:

dist1 = 11’–6.25”
dist2 = 11’–6.25”
dist3 = 11’–6.25”

This shows that the dist2 and dist3 objects have been initialized to the same value as dist1. In Chapter
11, “Virtual Functions and Other Subtleties,” we discuss how to create your own custom copy
constructor by overloading the default.

Returning Objects from Functions

In the ENGLCON example, we saw objects being passed as arguments to functions. Now we’ll see
an example of a function that returns an object. We’ll modify the ENGLCON program to produce
ENGLRET:

// englret.cpp
// function returns value of type Distance
#include <iostream>
using namespace std;
//
class Distance //English Distance class
 {
 private:
 int feet;
 float inches;
 public: //constructor (no args)
 Distance() : feet(0), inches(0.0)
 { } //constructor (two args)
 Distance(int ft, float in) : feet(ft), inches(in)
 { }

 void getdist() //get length from user
 {
 cout << “\nEnter feet: ”; cin >> feet;
 cout << “Enter inches: ”; cin >> inches;
 }
 void showdist() //display distance
 { cout << feet << “\’–” << inches << ‘\”’; }

 Distance add_dist(Distance); //add

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Distance add_dist(Distance); //add
 };
//––
//add this distance to d2, return the sum
Distance Distance::add_dist(Distance d2)
 {
 Distance temp; //temporary variable
 temp.inches = inches + d2.inches; //add the inches
 if(temp.inches >= 12.0) //if total exceeds 12.0,
 { //then decrease inches
 temp.inches –= 12.0; //by 12.0 and
 temp.feet = 1; //increase feet
 } //by 1
 temp.feet += feet + d2.feet; //add the feet
 return temp;
 }
//
int main()
 {
 Distance dist1, dist3; //define two lengths
 Distance dist2(11, 6.25); //define, initialize dist2

 dist1.getdist(); //get dist1 from user
 dist3 = dist1.add_dist(dist2); //dist3 = dist1 + dist2

 //display all lengths
 cout << “\ndist1 = ”; dist1.showdist();
 cout << “\ndist2 = ”; dist2.showdist();
 cout << “\ndist3 = ”; dist3.showdist();
 cout << endl;
 return 0;
 }

The ENGLRET program is very similar to ENGLCON, but the differences reveal important aspects of
how functions work with objects.

Arguments and Objects

In ENGLCON, two distances were passed to add_dist() as arguments, and the result was stored in the
object of which add_dist() was a member, namely dist3. In ENGLRET, one distance, dist2, is passed to
add_dist() as an argument. It is added to the object, dist1, of which add_dist() is a member, and the
result is returned from the function. In main() the result is assigned to dist3, in the statement

dist3 = dist1.add_dist(dist2);

The effect is the same as the corresponding statement in ENGLCON, but it is somewhat more natural
looking, since the assignment operator, =, is used in a natural way. In Chapter 8, “Operator
Overloading,” we’ll see how to use the arithmetic + operator to achieve the even more obvious
expression

dist3 = dist1 + dist2;

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Here’s the add_dist() function from ENGLRET:

//add this distance to d2, return the sum
Distance Distance::add_dist(Distance d2)
 {
 Distance temp; //temporary variable
 temp.inches = inches + d2.inches; //add the inches
 if(temp.inches >= 12.0) //if total exceeds 12.0,
 { //then decrease inches
 temp.inches –= 12.0; //by 12.0 and
 temp.feet = 1; //increase feet
 } //by 1
 temp.feet += feet + d2.feet; //add the feet
 return temp;
 }

Compare this with the same function in ENGLCON. As you can see, there are some subtle
differences. In the ENGLRET version, a temporary object of class Distance is created. This object
holds the sum until it can be returned to the calling program. The sum is calculated by adding two
distances. The first is the object of which add_dist() is a member, dist1. Its member data is accessed in
the function as feet and inches. The second is the object passed as an argument, dist2. Its member data
is accessed as d2.feet and d2.inches. The result is stored in temp and accessed as temp.feet and
temp.inches. The temp object is then returned by the function using the statement

return temp;

and the statement in main() assigns it to dist3. Notice that dist1 is not modified; it simply supplies data
to add_dist(). Figure 6.7 shows how this looks.

A Card–Game Example

As a larger example of objects modeling the real world, let’s look at a variation of the CARDS
program from Chapter 4. This program, CARDOBJ, has been rewritten to use objects. It does not
introduce any new concepts, but it does use almost all the programming ideas we’ve discussed up to
this point.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6.7 Result returned from the temporary object.

As the CARDS example did, CARDOBJ creates three cards with fixed values and switches them
around in an attempt to confuse the user about their location. But in CARDOBJ each card is an object
of class card. Here’s the listing:

// cardobj.cpp
// cards as objects
#include <iostream>
using namespace std;

enum Suit { clubs, diamonds, hearts, spades };
const int jack = 11; //from 2 to 10 are
const int queen = 12; //integers without names
const int king = 13;
const int ace = 14;
//
class card
 {
 private:
 int number; //2 to 10, jack, queen, king, ace
 Suit suit; //clubs, diamonds, hearts, spades
 public:
 card () //constructor (no args)
 { }
 //constructor (two args)
 card (int n, Suit s) : number(n), suit(s)
 { }
 void display(); //display card
 bool isEqual(card); //same as another card?
 };
//––
void card::display() //display the card
 {
 if(number >= 2 && number <= 10)
 cout << number << “ of ”;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 cout << number << “ of ”;
 else
 switch(number)
 {
 case jack: cout << “jack of ”; break;
 case queen: cout << “queen of ”; break;
 case king: cout << “king of ”; break;
 case ace: cout << “ace of ”; break;
 }
 switch(suit)
 {
 case clubs: cout << “clubs”; break;
 case diamonds: cout << “diamonds”; break;
 case hearts: cout << “hearts”; break;
 case spades: cout << “spades”; break;
 }
 }
//––
bool card::isEqual(card c2) //return true if cards equal
 {
 return (number==c2.number && suit==c2.suit) ? true : false;
 }
//
int main()
 {
 card temp, chosen, prize; //define various cards
 int position;

 card card1(7, clubs); //define & initialize card1
 cout << “\nCard 1 is the ”;
 card1.display(); //display card1

 card card2(jack, hearts); //define & initialize card2
 cout << “\nCard 2 is the ”;
 card2.display(); //display card2

 card card3(ace, spades); //define & initialize card3
 cout << “\nCard 3 is the ”;
 card3.display(); //display card3

 prize = card3; //prize is the card to guess

 cout << “\nI’m swapping card 1 and card 3”;
 temp = card3; card3 = card1; card1 = temp;

 cout << “\nI’m swapping card 2 and card 3”;
 temp = card3; card3 = card2; card2 = temp;

 cout << “\nI’m swapping card 1 and card 2”;
 temp = card2; card2 = card1; card1 = temp;

 cout << “\nNow, where (1, 2, or 3) is the ”;
 prize.display(); //display prize card
 cout << “? ”;
 cin >> position; //get user’s guess of position

 switch (position)
 { //set chosen to user’s choice
 case 1: chosen = card1; break;
 case 2: chosen = card2; break;
 case 3: chosen = card3; break;
 }
 if(chosen.isEqual(prize)) //is chosen card the prize?
 cout << “That’s right! You win!”;
 else
 cout << “Sorry. You lose.”;
 cout << “ You chose the ”;
 chosen.display(); //display chosen card

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 chosen.display(); //display chosen card
 cout << endl;
 return 0;
 }

There are two constructors in class card. The first, which takes no arguments, is used in main() to
create the cards temp, chosen, and prize, which are not initialized. The second constructor, which
takes two arguments, is used to create card1, card2, and card3 and to initialize them to specific values.
Besides the constructors, card has two other member functions, both defined outside the class.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

The display() function takes no arguments; it simply displays the card object of which it is a member,
using the number and suit data items in the card. The statement in main()

chosen.display();

displays the card chosen by the user.

The isEqual() function checks whether the card is equal to a card supplied as an argument. It uses the
conditional operator to compare the card of which it is a member with a card supplied as an
argument. This function could also have been written with an if...else statement,

if(number==c2.number && suit==c2.suit)
 return true;
else
 return false;

but the conditional operator is more compact.

In isEqual() the argument is called c2 as a reminder that there are two cards in the comparison: The
first card is the object of which isEqual() is a member. The expression

if(chosen.isEqual(prize))

in main() compares the card chosen with the card prize.

Here’s the output when the user guesses an incorrect card:

Card 1 is the 7 of clubs
Card 2 is the jack of hearts
Card 3 is the ace of spades
I’m swapping card 1 and card 3
I’m swapping card 2 and card 3
I’m swapping card 1 and card 2
Now, where (1, 2, or 3) is the ace of spades? 1
Sorry, you lose. You chose the 7 of clubs

Structures and Classes

The examples so far in this book have portrayed structures as a way to group data and classes as a
way to group both data and functions. In fact, you can use structures in almost exactly the same
way that you use classes. The only formal difference between class and struct is that in a class the
members are private by default, while in a structure they are public by default.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here’s the format we’ve been using for classes:

class foo
 {
 private:
 int data1;
 public:
 void func();
 };

Because private is the default in classes, this keyword is unnecessary. You can just as well write

class foo
 {
 int data1;
 public:
 void func();
 };

and the data1 will still be private. Many programmers prefer this style. We like to include the private
keyword because it offers an increase in clarity.

If you want to use a structure to accomplish the same thing as this class, you can dispense with the
keyword public, provided you put the public members before the private ones:

struct foo
 {
 void func();
 private:
 int data1;
 };

since public is the default. However, in most situations programmers don’t use a struct this way.
They use structures to group only data, and classes to group both data and functions.

Classes, Objects, and Memory

We’ve probably given you the impression that each object created from a class contains separate
copies of that class’s data and member functions. This is a good first approximation, since it
emphasizes that objects are complete, self–contained entities, designed using the class declaration.
The mental image here is of cars (objects) rolling off an assembly line, each one made according to
a blueprint (the class declaration).

Things are not quite so simple. It’s true that each object has its own separate data items. On the
other hand, contrary to what you may have been led to believe, all the objects in a given class use
the same member functions. The member functions are created and placed in memory only once—
when they are defined in the class declaration. This makes sense; there’s really no point in
duplicating all the member functions in a class every time you create another object of that class,
since the functions for each object are identical. The data items, however, will hold different values,
so there must be a separate instance of each data item for each object. Data is therefore placed in
memory when each object is defined, so there is a separate set of data for each object. Figure 6.8
shows how this looks.

In the SMALLOBJ example there are two objects of type smallobj, so there are two instances of
somedata in memory. However, there is only one instance of the functions setdata() and showdata().

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

somedata in memory. However, there is only one instance of the functions setdata() and showdata().
These functions are shared by all the objects of the class. There is no conflict because (at least in a
single–threaded system) only one function is executed at a time.

In most situations you don’t need to know that there is only one member function for an entire
class. It’s simpler to visualize each object as containing both its own data and its own member
functions. But in some situations, such as in estimating the size of an executing program, it’s
helpful to know what’s happening behind the scenes.

Static Class Data

Having said that each object contains its own separate data, we must now amend that slightly. If a
data item in a class is declared as static, then only one such item is created for the entire class, no
matter how many objects there are. A static data item is useful when all objects of the same class
must share a common item of information. A member variable defined as static has characteristics
similar to a normal static variable: It is visible only within the class, but its lifetime is the entire
program. It continues to exist even if there are no items of the class. (See Chapter 5 for a discussion
of static variables.) However, while a normal static variable is used to retain information between
calls to a function, static class member data is used to share information among the objects of a
class.

Figure 6.8 Objects, data, functions, and memory.

Uses of Static Class Data

Why would you want to use static member data? As an example, suppose an object needed to know
how many other objects of its class were in the program. In a road–racing game, for example, a race
car might want to know how many other cars were still in the race. In this case a static variable
count could be included as a member of the class. All the objects would have access to this variable.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

count could be included as a member of the class. All the objects would have access to this variable.
It would be the same variable for all of them; they would all see the same count.

An Example of Static Class Data

Here’s an example, STATDATA, that demonstrates a simple static data member:

// statdata.cpp
// static class data
#include <iostream>
using namespace std;
//
class foo
 {
 private:
 static int count; //only one data item for all objects
 //note: *declaration* only!
 public:
 foo() //increments count when object created
 { count++; }
 int getcount() //returns count
 { return count; }
 };
//––
int foo::count = 0; //*definition* of count
//
int main()
 {
 foo f1, f2, f3; //create three objects

 cout << “count is ” << f1.getcount() << endl; //each object
 cout << “count is ” << f2.getcount() << endl; //sees the
 cout << “count is ” << f3.getcount() << endl; //same value
 return 0;
 }

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

The class foo in this example has one data item, count, which is type static int. The constructor for this
class causes count to be incremented. In main() we define three objects of class foo. Since the
constructor is called three times, count is incremented three times. Another member function,
getcount(), returns the value in count. We call this function from all three objects, and—as we
expected—each prints the same value. Here’s the output:

count is 3 ← static data
count is 3
count is 3

If we had used an ordinary automatic variable—as opposed to a static variable—for count, each
constructor would have incremented its own private copy of count once, and the output would have
been

count is 1 ← automatic data
count is 1
count is 1

Static class variables are not used as often as ordinary non–static variables, but they are important
in many situations. Figure 6.9 shows how static variables compare with automatic variables.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6.9 Static versus automatic member variables.

Separate Declaration and Definition

Static member data requires an unusual format. Ordinary variables are declared (the compiler is told
about their name and type) and defined (the compiler sets aside memory to hold the variable) in the
same statement. Static member data, on the other hand, requires two separate statements. The
variable’s declaration appears in the class declaration, but the variable is actually defined outside
the class, in much the same way as an external variable.

Why is this two–part approach used? If static member data were defined inside the class declaration
(as it actually was in early versions of C++), it would violate the idea that a class declaration is only
a blueprint and does not set aside any memory. Putting the definition of static member data outside
of the class also serves to emphasize that the memory space for such data is allocated only once,
before the program starts to execute, and that one static member variable is accessed by an entire
class; each object does not have its own version of the variable, as it would with ordinary member
data. In this way a static member variable is more like a global variable.

It’s easy to handle static data incorrectly, and the compiler is not helpful about such errors. If you
include the declaration of a static variable but forget its definition, there will be no warning from
the compiler. Everything looks fine until you get to the linker, which will tell you that you’re trying
to reference an undeclared external variable. This happens even if you include the definition, but
forget the class name (the foo:: in the STATDATA example).

const and Classes

We’ve seen several examples of const used on normal variables to prevent them from being
modified, and in Chapter 5 we saw that const can be used with function arguments to keep a
function from modifying a variable passed to it by reference. Now that we know about classes, we
can introduce some other uses of const: on member functions, on member function arguments, and
on objects. These concepts work together to provide some surprising benefits.

const Member Functions

A const member function guarantees that it will never modify any of its class’s member data. The
CONSTFU program shows how this works.

//constfu.cpp
//demonstrates const member functions
/
class aClass
 {
 private:
 int alpha;
 public:
 void nonFunc() //non–const member function
 { alpha = 99; } //OK

 void conFunc() const //const member function
 { alpha = 99; } //ERROR: can’t modify a member
 };

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 };

The non–const function nonFunc() can modify member data alpha, but the constant function conFunc()
can’t. If it tries to, a compiler error results.

A function is made into a constant function by placing the keyword const after the declarator but
before the function body. If there is a separate function declaration, const must be used in both
declaration and definition. Member functions that do nothing but acquire data from an object are
obvious candidates for being made const, because they don’t need to modify any data.

Making a function const helps the compiler flag errors, and tells anyone looking at the listing that
you intended the function not to modify anything in its object. It also makes possible the creation
and use of const objects, which we’ll discuss soon.

A Distance Example

To avoid raising too many subjects at once we have, up to now, avoided using const member
functions in the example programs. However, there are many places where const member functions
should be used. For example, in the Distance class, shown in several programs, the showdist() member
function could be made const because it doesn’t (or certainly shouldn’t!) modify any of the data in
the object for which it was called. It should simply display the data.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Also, in ENGLERET, the add_dist() function should not modify any of the data in the object for which
it was called. This object should simply be added to the object passed as an argument, and the
resulting sum is returned. We’ve modified the ENGLRET program to show how these two constant
functions look. Here’s the listing for ENGCONST:

// engConst.cpp
// const member functions and const arguments to member functions
#include <iostream>
using namespace std;
//
class Distance //English Distance class
 {
 private:
 int feet;
 float inches;
 public: //constructor (no args)
 Distance() : feet(0), inches(0.0)
 { } //constructor (two args)
 Distance(int ft, float in) : feet(ft), inches(in)
 { }

 void getdist() //get length from user
 {
 cout << “\nEnter feet: ”; cin >> feet;
 cout << “Enter inches: ”; cin >> inches;
 }
 void showdist() const //display distance
 { cout << feet << “\’–” << inches << ‘\”’; }

 Distance add_dist(const Distance&) const; //add
 };
//––
//add this distance to d2, return the sum
Distance Distance::add_dist(const Distance& d2) const
 {
 Distance temp; //temporary variable

// feet = 0; //ERROR: can’t modify this
// d2.feet = 0; //ERROR: can’t modify d2
 temp.inches = inches + d2.inches; //add the inches
 if(temp.inches >= 12.0) //if total exceeds 12.0,
 { //then decrease inches
 temp.inches –= 12.0; //by 12.0 and
 temp.feet = 1; //increase feet
 } //by 1
 temp.feet += feet + d2.feet; //add the feet
 return temp;
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
//
int main()
 {
 Distance dist1, dist3; //define two lengths
 Distance dist2(11, 6.25); //define, initialize dist2

 dist1.getdist(); //get dist1 from user
 dist3 = dist1.add_dist(dist2); //dist3 = dist1 + dist2

 //display all lengths
 cout << “\ndist1 = ”; dist1.showdist();
 cout << “\ndist2 = ”; dist2.showdist();
 cout << “\ndist3 = ”; dist3.showdist();
 cout << endl;
 return 0;
 }

Here showdist() and add_dist() are both constant member functions. In add_dist() we show in the first
commented statement, feet = 0, that a compiler error is generated if you attempt to modify any of the
data in the object for which this constant function was called.

const Member Function Arguments

We mentioned in Chapter 5 that if an argument is passed to an ordinary function by reference, and
you don’t want the function to modify it, then the argument should be made const in the function
declaration (and definition). This is true of member functions as well. In ENGCONST the argument
to add_dist() is passed by reference, and we want to make sure that ENGCONST won’t modify this
variable, which is dist2 in main() Therefore we make the argument d2 to add_dist() const in both
declaration and definition. The second commented statement shows that the compiler will flag as an
error any attempt by add_dist() to modify any member data of its argument dist2.

const Objects

In several example programs we’ve seen that we can apply const to variables of basic types like int
to keep them from being modified. In a similar way we can apply const to objects of classes. When
an object is declared as const, you can’t modify it. It follows that you can use only const member
functions with it, because they’re the only ones that guarantee not to modify it. The CONSTOBJ
program shows an example.

// constObj.cpp
// constant Distance objects
#include <iostream>
using namespace std;
//
class Distance //English Distance class
 {
 private:
 int feet;
 float inches;
 public: //2–arg constructor
 Distance(int ft, float in) : feet(ft), inches(in)
 { }
 void getdist() //user input; non–const func
 {
 cout << “\nEnter feet: ”; cin >> feet;
 cout << “Enter inches: ”; cin >> inches;
 }
 void showdist() const //display distance; const func
 { cout << feet << “\’–” << inches << ‘\”’; }
 };

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 };
//
int main()
 {
 const Distance football(300, 0);

// football.getdist(); //ERROR: getdist() not const
 cout << “football = ”;
 football.showdist(); //OK
 cout << endl;
 return 0;
 }

A football field (for American–style football) is exactly 300 feet long. If we were to use the length
of a football field in a program, it would make sense to make it const, because changing it would
represent the end of the world for football fans. The CONSTOBJ program makes football a const
variable. Now only const functions, such as showdist(), can be called for this object. Non–const
functions, such as getdist(), which gives the object a new value obtained from the user, are illegal. In
this way the compiler enforces the const value of football.

When you’re designing classes it’s a good idea to make const any function that does not modify any
of the data in its object. This allows the user of the class to create const objects. These objects can
use any const function, but cannot use any non–const function. Remember, using const helps the
compiler to help you.

What Does It All Mean?

Now that you’ve been introduced to classes and objects, you may wonder what benefit they really
offer. After all, as you can see by comparing several of the programs in this chapter with those in
Chapter 4, it’s possible to do the same sorts of things with a procedural approach as it is with
objects.

One benefit of OOP that you may have glimpsed already is the close correspondence between the
real–world things being modeled by the program and the C++ objects in the program. A widget part
object in a program represents a widget part in the real world, a card object represents a card, a
circle object represents a graphics circle, and so on. In C++ everything about a widget part is
included in its class description—the part number and other data items, and the functions necessary
to access and operate on this data. This makes it easy to conceptualize a programming problem.
You figure out what parts of the problem can be most usefully represented as objects, and then put
all the data and functions connected with that object into the class. If you’re using a C++ class to
represent a playing card, you put into this class the data items that represent the value of the card,
and also the functions to set value, retrieve it, display it, compare it, and so on.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

In a procedural program, by contrast, the external variables and functions connected with a real–
world object are distributed all over the listing; they don’t form a single, easily grasped unit.

In some situations it may not be obvious what parts of a real–life situation should be made into
objects. If you’re writing a program that plays chess, for instance, what are the objects? The
chessmen, the squares on the board, or possibly entire board positions?

In small programs, such as many of those in this book, you can often proceed by trial and error.
You break a problem into objects in one way and write trial class declarations for these objects. If
the classes seem to match reality in a useful way, you continue. If they don’t, you may need to start
over, selecting different entities to be classes. The more experience you have with OOP, the easier
it will be to break a programming problem into classes.

Larger programs may prove too complex for this trial and error approach. A new field, Object–
Oriented Design (OOD) is increasingly applied to analyzing a programming problem and figuring
out what classes and objects should be used to represent the real–world situation (which is often
called the problem domain). We’ll discuss this methodology in detail in Chapter 16, “Object–
Oriented Design.”

Some of the benefits of object–oriented programming are probably not apparent at this point.
Remember that OOP was devised to cope with the complexity of large programs. Smaller
programs, such as the examples in this chapter, have less need for the organizational power that
OOP provides. The larger the program, the greater the benefit. But even for small programs, once
you start thinking in object–oriented terms, the OO design approach becomes natural and
surprisingly helpful. One advantage is that in an OO program the compiler can find many more
conceptual errors than in a procedural program.

Summary

A class is a specification or blueprint for a number of objects. Objects consist of both data and
functions that operate on that data. In a class declaration, the members—whether data or functions
—can be private, meaning they can be accessed only by member functions of that class, or public,
meaning they can be accessed by any function in the program.

A member function is a function that is a member of a class. Member functions have access to an
object’s private data, while non–member functions do not.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A constructor is a member function, with the same name as its class, that is executed every time an
object of the class is created. A constructor has no return type but can take arguments. It is often
used to give initial values to object data members. Constructors can be overloaded, so an object can
be initialized in different ways.

A destructor is a member function with the same name as its class but preceded by a tilde (~). It is
called when an object is destroyed. A destructor takes no arguments and has no return value.

In the computer’s memory there is a separate copy of the data members for each object that is
created from a class, but there is only one copy of a class’s member functions. A data item can be
restricted to a single instance for all objects of a class by making it static.

One reason to use OOP is the close correspondence between real–world objects and OOP classes.
Deciding what objects and classes to use in a program can be complicated. For small programs, trial
and error may be sufficient. For large programs a more systematic approach is usually needed.

Questions

Answers to questions can be found in Appendix G, “Answers to Questions and Exercises.”

1. What is the purpose of a class declaration?
2. A ________ has the same relation to an ________ that a basic data type has to a variable
of that type.
3. In a class declaration, data or functions designated private are accessible

a. to any function in the program.
b. only if you know the password.
c. to member functions of that class.
d. only to public members of the class.

4. Write a class declaration that creates a class called leverage with one private data member,
crowbar, of type int and one public function whose declaration is void pry().
5. True or false: Data items in a class must be private.
6. Write a statement that defines an object called lever1 of the leverage class described in
Question 4.
7. The dot operator (or class member access operator) connects the following two entities
(reading from left to right):

a. A class member and a class object
b. A class object and a class
c. A class and a member of that class
d. A class object and a member of that class

8. Write a statement that executes the pry() function in the lever1 object, as described in
Questions 4 and 6.
9. Member functions defined inside a class declaration are ________ by default.
10. Write a member function called getcrow() for the leverage class described in Question 4.
This function should return the value of the crowbar data. Assume the function is defined
within the class declaration.
11. A constructor is executed automatically when an object is ________.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12. A constructor’s name is the same as _________.
13. Write a constructor that initializes to 0 the crowbar data, a member of the leverage class
described in Question 4. Assume the constructor is defined within the class declaration.
14. True or false: In a class you can have more than one constructor with the same name.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

15. A member function can always access the data

a. in the object of which it is a member.
b. in the class of which it is a member.
c. in any object of the class of which it is a member.
d. in the public part of its class.

16. Assume the member function getcrow() described in Question 10 is defined outside the
class declaration. Write the declaration that goes inside the class declaration.
17. Write a revised version of the getcrow() member function from Question 10 that is defined
outside the class declaration.
18. The only technical difference between structures and classes in C++ is that _________.
19. If three objects of a class are defined, how many copies of that class’s data items are
stored in memory? How many copies of its member functions?
20. Sending a message to an object is the same as _________.
21. Classes are useful because they

a. are removed from memory when not in use.
b. permit data to be hidden from other classes.
c. bring together all aspects of an entity in one place.
d. can closely model objects in the real world.

22. True or false: There is a simple but precise methodology for dividing a real–world
programming problem into classes.
23. For the object for which it was called, a const member function

a. can modify both const and non–const member data.
b. can modify only const member data.
c. can modify only non–const member data.
d. can modify neither const nor non–const member data.

24. True or false: If you declare a const object, it can only be used with const member
functions.
25. Write a declaration (not a definition) for a const void function called aFunc() that takes one
const argument called jerry of type float.

Exercises

Answers to the starred exercises can be found in Appendix G.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

*1. Create a class that imitates part of the functionality of the basic data type int. Call the
class Int (note different spelling). The only data in this class is an int variable. Include member
functions to initialize an Int to 0, to initialize it to an int value, to display it (it looks just like
an int), and to add two Int values.
Write a program that exercises this class by creating two initialized and one uninitialized Int
values, adding these two initialized values and placing the response in the uninitialized value,
and then displaying this result.
*2. Imagine a tollbooth at a bridge. Cars passing by the booth are expected to pay a 50 cent
toll. Mostly they do, but sometimes a car goes by without paying. The tollbooth keeps track
of the number of cars that have gone by, and of the total amount of money collected.
Model this tollbooth with a class called tollBooth. The two data items are a type unsigned int to
hold the total number of cars, and a type double to hold the total amount of money collected.
A constructor initializes both of these to 0. A member function called payingCar() increments
the car total and adds 0.50 to the cash total. Another function, called nopayCar(), increments
the car total but adds nothing to the cash total. Finally, a member function called display()
displays the two totals. Make appropriate member functions const.
Include a program to test this class. This program should allow the user to push one key to
count a paying car, and another to count a nonpaying car. Pushing the [Escape] key should
cause the program to print out the total cars and total cash and then exit.
*3. Create a class called time that has separate int member data for hours, minutes, and
seconds. One constructor should initialize this data to 0, and another should initialize it to
fixed values. Another member function should display it, in 11:59:59 format. The final
member function should add two objects of type time passed as arguments.
A main() program should create two initialized time objects (should they be const?) and one that
isn’t initialized. Then it should add the two initialized values together, leaving the result in
the third time variable. Finally it should display the value of this third variable. Make
appropriate member functions const.
4. Create an employee class, basing it on Exercise 4 of Chapter 4. The member data should
comprise an int for storing the employee number, and a float for storing the employee’s
compensation. Member functions should allow the user to enter this data and display it. Write
a main() that allows the user to enter data for three employees and display it.
5. Start with the date structure in Exercise 5 in Chapter 4 and transform it into a date class. Its
member data should consist of three ints: month, day, and year. It should also have two member
functions: getdate(), which allows the user to enter a date in 12/31/97 format, and showdate(),
which displays the date.
6. Extend the employee class of Exercise 4 to include a date class (see Exercise 5) and an etype
enum (see Exercise 6 in Chapter 4). An object of the date class should be used to hold the date
of first employment; that is, the date when the employee was hired. The etype variable should
hold the employee’s type: laborer, secretary, manager, and so on. These two items will be
private member data in the employee declaration, just like the employee number and salary.
You’ll need to extend the getemploy() and putemploy() functions to obtain this new information
from the user and display it. These functions will probably need switch statements to handle
the etype variable. Write a main() program that allows the user to enter data for three employee
variables, which then displays this data.
7. In ocean navigation, locations are measured in degrees and minutes of latitude and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7. In ocean navigation, locations are measured in degrees and minutes of latitude and
longitude. Thus if you’re lying off the mouth of Papeete Harbor in Tahiti, your location is
149 degrees 34.8 minutes west longitude, and 17 degrees 31.5 minutes south latitude. This is
written as 149834.8’W, 17831.5’S. There are 60 minutes in a degree. (An older system also
divided a minute into 60 seconds, but the modern approach is to use decimal minutes
instead.) Longitude is measured from 0 to 180 degrees, east or west from Greenwich,
England, to the international dateline in the Pacific. Latitude is measured from 0 to 90
degrees, north or south from the equator to the poles.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Create a class angle that includes three member variables: an int for degrees, a float for minutes, and a
char for the direction letter (N, S, E, or W). This class can hold either a latitude variable or a
longitude variable. Write one member function to obtain an angle value (in degrees and minutes)
and a direction from the user, and a second to display the angle value in 179859.9’E format. Also
write a three–argument constructor. Write a main() program that displays an angle initialized with
the constructor, and then, within a loop, allows the user to input any angle value, and then displays
the value. You can use the hex character constant ‘\xF8’ which usually prints a degree (°) symbol.

8. Create a class that includes a data member that holds a “serial number” for each object
created from the class. That is, the first object created will be numbered 1, the second 2, and
so on.
To do this, you’ll need another data member that records a count of how many objects have
been created so far. (This member should apply to the class as a whole; not to individual
objects. What keyword specifies this?) Then, as each object is created, its constructor can
examine this count member variable to determine the appropriate serial number for the new
object.
Add a member function that permits an object to report its own serial number. Then write a
main() program that creates three objects and queries each one about its serial number. They
should respond I am object number 2, and so on.
9. Transform the fraction structure from Exercise 8, Chapter 4 into a fraction class. Member
data is the fraction’s numerator and denominator. Member functions should accept input from
the user in the form 3/5, and output the fraction’s value in the same format. Another member
function should add two fraction values. Write a main() program that allows the user to
repeatedly input two fractions, and which then displays their sum. After each operation ask if
the user wants to continue.
10. Create a class called ship that incorporates a ship’s number and location. Use the
approach of Exercise 8 to number each ship object as it is created. Use two variables of the
angle class from Exercise 7 to represent the ship’s latitude and longitude. A member function
of the ship class should get a position from the user and store it in the object; another should
report the serial number and position. Write a main() program that creates three ships, asks the
user to input the position of each, and then displays each ship’s number and position.
11. Modify the four–function fraction calculator of Exercise 12, Chapter 5 to use a fraction
class rather than a structure. There should be member functions for input and output, as well
as for the four arithmetical operations. While you’re at it, you might as well install the
capability to reduce fractions to lowest terms. Here’s a member function that will reduce the
fraction object of which it is a member to lowest terms. It finds the greatest common divisor
(gcd) of the fraction’s numerator and denominator, and uses this gcd to divide both numbers.

void fraction::lowterms() // change ourself to lowest terms

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void fraction::lowterms() // change ourself to lowest terms
 {
 long tnum, tden, temp, gcd;

 tnum = labs(num); // use non–negative copies
 tden = labs(den); // (needs cmath)
 if(tden==0) // check for n/0
 { cout << “Illegal fraction: division by 0”; exit(1); }
 else if(tnum==0) // check for 0/n
 { num=0; den = 1; return; }

 // this ‘while’ loop finds the gcd of tnum and tden
 while(tnum != 0)
 {
 if(tnum < tden) // ensure numerator larger
 { temp=tnum; tnum=tden; tden=temp; } // swap them
 tnum = tnum – tden; // subtract them
 }
 gcd = tden; // this is greatest common divisor
 num = num / gcd; // divide both num and den by gcd
 den = den / gcd; // to reduce frac to lowest terms
 }

You can call this function at the end of each arithmetic function, or just before you perform
output. You’ll also need the usual member functions: four arithmetic operations, input, and
display. You may find a two–argument constructor useful.
12. Note that one advantage of the OOP approach is that an entire class can be used, without
modification, in a different program. Use the fraction class from Exercise 11 in a program that
generates a multiplication table for fractions. Let the user input a denominator, and then
generate all combinations of two such fractions that are between 0 and 1, and multiply them
together. Here’s an example of the output if the denominator is 6:

 1/6 1/3 1/2 2/3 5/6

–––
1/6 1/36 1/18 1/12 1/9 5/36
1/3 1/18 1/9 1/6 2/9 5/18
1/2 1/12 1/6 1/4 1/3 5/12
2/3 1/9 2/9 1/3 4/9 5/9
5/6 5/36 5/18 5/12 5/9 25/36

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

CHAPTER 7
ARRAYS AND STRINGS

You will learn about the following in this chapter:
• Array definitions • Arrays of objects
• Accessing array elements • Strings
• Arrays as class members • String input/output

In everyday life we commonly group similar objects into units. We buy peas by the can and eggs
by the carton. In computer languages we also need to group together data items of the same type.
The most basic mechanism that accomplishes this in C++ is the array. Arrays can hold a few data
items or tens of thousands. The data items grouped in an array can be simple types like int or float
or they can be user-defined types like structures and objects.

Arrays are like structures in that they both group a number of items into a larger unit. But while a
structure usually groups items of different types, an array groups items of the same type. More
importantly, the items in a structure are accessed by name, while those in an array are accessed by
an index number. Using an index number to specify an item allows easy access to a large number of
items.

Arrays exist in almost every computer language. Arrays in C++ are similar to those in other
languages, and identical to those in C.

In this chapter we’ll look first at arrays of basic data types like int and char. Then we’ll examine
arrays used as data members in classes, and arrays used to hold objects. Thus this chapter is
intended not only to introduce arrays, but to increase your understanding of Object-Oriented
Programming.

In Standard C++ the array is not the only way to group elements of the same type. A vector, which
is part of the Standard Template library, is another approach. We’ll look at vectors in Chapter 15,
“The Standard Template Library.”

In this chapter we’ll also look at two different approaches to strings, which are used to store and
manipulate text. The first kind of string is an array of type char, and the second is a member of the
Standard C++ string class.

Array Fundamentals

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A simple example program will serve to introduce arrays. This program, REPLAY, creates an array
of four integers representing the ages of four people. It then asks the user to enter four values,
which it places in the array. Finally, it displays all four values.

// replay.cpp
// gets four ages from user, displays them
#include <iostream>
using namespace std;

int main()
 {
 int age[4]; //array ‘age’ of 4 ints

 for(int j=0; j<4; j++) //get 4 ages
 {
 cout << “Enter an age: ”;
 cin >> age[j]; //access array element
 }
 for(j=0; j<4; j++) //display 4 ages
 cout << “You entered ” << age[j] << endl;
 return 0;
 }

Here’s a sample interaction with the program:

Enter an age: 44
Enter an age: 16
Enter an age: 23
Enter an age: 68

You entered 44
You entered 16
You entered 23
You entered 68

The first for loop gets the ages from the user and places them in the array, while the second reads
them from the array and displays them.

Defining Arrays

Like other variables in C++, an array must be defined before it can be used to store information.
And, like other definitions, an array definition specifies a variable type and a name. But it includes
another feature: a size. The size specifies how many data items the array will contain. It
immediately follows the name, and is surrounded by square brackets. Figure 7.1 shows the syntax
of an array definition.

In the REPLAY example, the array is type int. The name of the array comes next, followed
immediately by an opening bracket, the array size, and a closing bracket. The number in brackets
must be a constant or an expression that evaluates to a constant, and should also be an integer. In
the example we use the value 4.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 7.1 Syntax of array definition.

Array Elements

The items in an array are called elements (in contrast to the items in a structure, which are called
members). As we noted, all the elements in an array are of the same type; only the values vary.
Figure 7.2 shows the elements of the array age. (In the figure type int is assumed to occupy two
bytes, as in 16-bit systems.)

Figure 7.2 Array elements.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Following the conventional (although in some ways backward) approach, memory grows
downward in the figure. That is, the first array elements are on the top of the page; later elements
extend downward.

Since each element in age is an integer, it occupies four bytes (on 32-bit systems). As specified in
the definition, the array has exactly four elements.

Notice that the first array element is numbered 0. Thus, since there are four elements, the last one is
number 3. This is a potentially confusing situation; you might think the last element in a four-
element array would be number 4, but it’s not.

Accessing Array Elements

In the REPLAY example we access each array element twice. The first time, we insert a value into
the array, with the line

cin >> age[j];

The second time, we read it out with the line

cout << “\nYou entered ” << age[j];

In both cases, the expression for the array element is

age[j]

This consists of the name of the array, followed by brackets delimiting a variable j. Which of the
four array elements is specified by this expression depends on the value of j ; age[0] refers to the first
element, age[1] to the second, age[2] to the third, and age[3] to the fourth. The variable (or constant) in
the brackets is called the array index.

Since j is the loop variable in both for loops, it starts at 0 and is incremented until it reaches 3,
thereby accessing each of the array elements in turn.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Averaging Array Elements

Here’s another example of an array at work. This one, SALES, invites the user to enter a series of six
values representing widget sales for each day of the week (excluding Sunday), and then calculates
the average of these values. We use an array of type double so that monetary values can be entered.

// sales.cpp
// averages a weeks’s widget sales (6 days)
#include <iostream>
using namespace std;

int main()
 {
 const int SIZE = 6; //size of array
 double sales[SIZE]; //array of 6 variables

 cout << “Enter widget sales for 6 days\n”;
 for(int j=0; j<SIZE; j++) //put figures in array
 cin >> sales[j];

 double total = 0;
 for(j=0; j<SIZE; j++) //read figures from array
 total += sales[j]; //to find total
 double average = total / SIZE; // find average
 cout << “Average = ” << average << endl;
 return 0;
 }

Here’s some sample interaction with SALES:

Enter widget sales for 6 days
352.64
867.70
781.32
867.35
746.21
189.45
Average = 634.11

A new detail in this program is the use of a const variable for the array size and loop limits. This
variable is defined at the start of the listing:

const int SIZE = 6;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

const int SIZE = 6;

Using a variable (instead of a number, such as the 4 used in the last example) makes it easier to
change the array size: Only one program line needs to be changed to change the array size, loop
limits, and anywhere else the array size appears. The all-uppercase name reminds us that the
variable cannot be modified in the program.

Initializing Arrays

You can give values to each array element when the array is first defined. Here’s an example,
DAYS, that sets 12 array elements in the array days_per_month to the number of days in each month.

// days.cpp
// shows days from start of year to date specified
#include <iostream>
using namespace std;

int main()
 {
 int month, day, total_days;
 int days_per_month[12] = { 31, 28, 31, 30, 31, 30,
 31, 31, 30, 31, 30, 31 };

 cout << “\nEnter month (1 to 12): ”; //get date
 cin >> month;
 cout << “Enter day (1 to 31): ”;
 cin >> day;
 total_days = day; //separate days
 for(int j=0; j<month-1; j++) //add days each month
 total_days += days_per_month[j];
 cout << “Total days from start of year is: ” << total_days
 << endl;
 return 0;
 }

The program calculates the number of days from the beginning of the year to a date specified by the
user. (Beware: It doesn’t work for leap years.) Here’s some sample interaction:

Enter month (1 to 12): 3
Enter day (1 to 31): 11
Total days from start of year is: 70

Once it gets the month and day values, the program first assigns the day value to the total_days
variable. Then it cycles through a loop, where it adds values from the days_per_month array to
total_days. The number of such values to add is one less than the number of months. For instance, if
the user enters month 5, the values of the first four array elements (31, 28, 31, and 30) are added to
the total.

The values to which days_per_month is initialized are surrounded by braces and separated by
commas. They are connected to the array expression by an equal sign. Figure 7.3 shows the syntax.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 7.3 Syntax of array initialization.

Actually, we don’t need to use the array size when we initialize all the array elements, since the
compiler can figure it out by counting the initializing variables. Thus we can write

int days_per_month[] = { 31, 28, 31, 30, 31, 30,
 31, 31, 30, 31, 30, 31 };

What happens if you do use an explicit array size, but it doesn’t agree with the number of
initializers? If there are too few initializers, the missing elements will be set to 0. If there are too
many, an error is signaled.

Multidimensional Arrays

So far we’ve looked at arrays of one dimension: A single variable specifies each array element. But
arrays can have higher dimensions. Here’s a program, SALEMON, that uses a two-dimensional array
to store sales figures for several districts and several months:

// salemon.cpp
// displays sales chart using 2-d array
#include <iostream>
#include <iomanip> //for setprecision, etc.
using namespace std;

const int DISTRICTS = 4; //array dimensions
const int MONTHS = 3;

int main()
 {
 int d, m;
 double sales[DISTRICTS][MONTHS]; //two-dimensional array
 //definition
 cout << endl;
 for(d=0; d<DISTRICTS; d++) //get array values
 for(m=0; m<MONTHS; m++)
 {
 cout << “Enter sales for district ” << d+1;
 cout << “, month ” << m+1 << “: ”;
 cin >> sales[d][m]; //put number in array
 }

 cout << “\n\n”;
 cout << “ Month\n”;
 cout << “ 1 2 3”;
 for(d=0; d<DISTRICTS; d++)
 {
 cout <<“\nDistrict ” << d+1;
 for(m=0; m<MONTHS; m++) //display array values
 cout << setiosflags(ios::fixed) //not exponential
 << setiosflags(ios::showpoint) //always use point
 << setprecision(2) //digits to right
 << setw(10) //field width

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 << setw(10) //field width
 << sales[d][m]; //get number from array
 } //end for(d)
 cout << endl;
 return 0;
 } //end main

This program accepts the sales figures from the user and then displays them in a table.

Enter sales for district 1, month 1: 3964.23
Enter sales for district 1, month 2: 4135.87
Enter sales for district 1, month 3: 4397.98
Enter sales for district 2, month 1: 867.75
Enter sales for district 2, month 2: 923.59
Enter sales for district 2, month 3: 1037.01
Enter sales for district 3, month 1: 12.77
Enter sales for district 3, month 2: 378.32
Enter sales for district 3, month 3: 798.22
Enter sales for district 4, month 1: 2983.53
Enter sales for district 4, month 2: 3983.73
Enter sales for district 4, month 3: 9494.98

 Month
 1 2 3
District 1 3964.23 4135.87 4397.98
District 2 867.75 923.59 1037.01
District 3 12.77 378.32 798.22
District 4 2983.53 3983.73 9494.98

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Defining Multidimensional Arrays

The array is defined with two size specifiers, each enclosed in brackets:

double sales[DISTRICTS][MONTHS];

You can think about sales as a two-dimensional array, laid out like a checkerboard. Another way to
think about it is that sales is an array of arrays. It is an array of DISTRICTS elements, each of which is
an array of MONTHS elements. Figure 7.4 shows how this looks.

Figure 7.4 Two-dimensional array.

Of course there can be arrays of dimensions higher than two. A three-dimensional array is an array
of arrays of arrays. It is accessed with three indexes:

elem = dimen3[x][y][z];

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

elem = dimen3[x][y][z];

This is entirely analogous to one- and two-dimensional arrays.

Accessing Multidimensional Array Elements

Array elements in two-dimensional arrays require two indexes:

sales[d][m]

Notice that each index has its own set of brackets. Commas are not used. Don’t write sales[d,m] ; this
works in some languages, but not in C++.

Formatting Numbers

The SALEMON program displays a table of dollar values. It’s important that such values be
formatted properly, so let’s digress to see how this is done in C++. With dollar values you normally
want to have exactly two digits to the right of the decimal point, and you want the decimal points of
all the numbers in a column to line up. It’s also nice if trailing zeros are displayed; you want 79.50,
not 79.5.

Convincing the C++ I/O streams to do all this requires a little work. You’ve already seen the
manipulator setw(), used to set the output field width. Formatting decimal numbers requires several
additional manipulators.

Here’s a statement that prints a floating-point number called fpn in a field 10 characters wide, with
two digits to the right of the decimal point:

cout << setiosflags(ios::fixed) //fixed (not exponential)
 << setiosflags(ios::showpoint) //always show decimal point
 << setprecision(2) //two decimal places
 << setw(10) //field width 10
 << fpn; //finally, the number

A group of one-bit formatting flags in a long int in the ios class determines how formatting will be
carried out. At this point we don’t need to know what the ios class is, or the reasons for the exact
syntax used with this class, to make the manipulators work.

We’re concerned with two of the ios flags: fixed and showpoint. To set the flags, use the manipulator
setiosflags, with the name of the flag as an argument. The name must be preceded by the class name,
ios, and the scope resolution operator (::).

The first two lines of the cout statement set the ios flags. (If you need to unset—that is, clearthe flags
at some later point in your program, you can use the resetiosflags manipulator.) The fixed flag
prevents numbers from being printed in exponential format, such as 3.45e3. The showpoint flag
specifies that there will always be a decimal point, even if the number has no fractional part:
123.00, instead of 123.

To set the precision to two digits to the right of the decimal place, use the setprecision manipulator,
with the number of digits as an argument. We’ve already seen how to set the field width by using
the setw manipulator. Once all these manipulators have been sent to cout, you can send the number
itself; it will be displayed in the desired format.

We’ll talk more about the ios formatting flags in Chapter 12, “Streams and Files.”

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Initializing Multidimensional Arrays

As you might expect, you can initialize multidimensional arrays. The only prerequisite is a
willingness to type a lot of braces and commas. Here’s a variation of the SALEMON program that
uses an initialized array instead of asking for input from the user. This program is called SALEINIT

// saleinit.cpp
// displays sales chart, initializes 2-d array
#include <iostream>
#include <iomanip> //for setprecision, etc.
using namespace std;
const int DISTRICTS = 4; //array dimensions
const int MONTHS = 3;

int main()
 {
 int d, m;
 //initialize array elements
 double sales[DISTRICTS][MONTHS]
 = { { 1432.07, 234.50, 654.01 },
 { 322.00, 13838.32, 17589.88 },
 { 9328.34, 934.00, 4492.30 },
 { 12838.29, 2332.63, 32.93 } };
 cout << “\n\n”;
 cout << “ Month\n”;
 cout << “ 1 2 3”;
 for(d=0; d<DISTRICTS; d++)
 {
 cout <<“\nDistrict ” << d+1;
 for(m=0; m<MONTHS; m++)
 cout << setw(10) << setiosflags(ios::fixed)
 << setiosflags(ios::showpoint) << setprecision(2)
 << sales[d][m]; //access array element
 }
 cout << endl;
 return 0;
 }

Remember that a two-dimensional array is really an array of arrays. The format for initializing such
an array is based on this fact. The initializing values for each subarray are enclosed in braces and
separated by commas,

{ 1432.07, 234.50, 654.01 }

and then all four of these subarrays, each of which is an element in the main array, is likewise
enclosed by braces and separated by commas, as can be seen in the listing.

Passing Arrays to Functions

Arrays can be used as arguments to functions. Here’s an example, a variation of the SALEINIT
program, that passes the array of sales figures to a function whose purpose is to display the data as a
table. Here’s the listing for SALEFUNC:

// salefunc.cpp
// passes array as argument
#include <iostream>
#include <iomanip> //for setprecision, etc.
using namespace std;
const int DISTRICTS = 4; //array dimensions
const int MONTHS = 3;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

const int MONTHS = 3;
void display(double[DISTRICTS][MONTHS]); //declaration
//--
int main()
 { //initialize two-dimensional array
 double sales[DISTRICTS][MONTHS]
 = { { 1432.07, 234.50, 654.01 },
 { 322.00, 13838.32, 17589.88 },
 { 9328.34, 934.00, 4492.30 },
 { 12838.29, 2332.63, 32.93 } };

 display(sales); //call function; array as argument
 cout << endl;
 return 0;
 } //end main
//--
//display()
//function to display 2-d array passed as argument
void display(double funsales[DISTRICTS][MONTHS])
 {
 int d, m;

 cout << “\n\n”;
 cout << “ Month\n”;
 cout << “ 1 2 3”;

 for(d=0; d<DISTRICTS; d++)
 {
 cout <<“\nDistrict ” << d+1;
 for(m=0; m<MONTHS; m++)
 cout << setiosflags(ios::fixed) << setw(10)
 << setiosflags(ios::showpoint) << setprecision(2)
 << funsales[d][m]; //array element
 } //end for(d)
} //end display

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Function Declaration with Array Argument

In a function declaration, array arguments are represented by the data type and sizes of the array.
Here’s the declaration of the display() function:

void display(float[DISTRICTS][MONTHS]); // declaration

Actually, there is one unnecessary piece of information here. The following statement works just as
well:

void display(float[][MONTHS]); // declaration

Why doesn’t the function need the size of the first dimension? Again, remember that a two-
dimensional array is an array of arrays. The function first thinks of the argument as an array of
districts. It doesn’t need to know how many districts there are, but it does need to know how big
each district element is, so it can calculate where a particular element is (by multiplying the bytes
per element times the index). So we must tell it the size of each element, which is MONTHS, but not
how many there are, which is DISTRICTS.

It follows that if we were declaring a function that used a one-dimensional array as an argument, we
would not need to use the array size:

void somefunc(int elem[]); // declaration

Function Call with Array Argument

When the function is called, only the name of the array is used as an argument.

display(sales); // function call

This name (sales in this case) actually represents the memory address of the array. We aren’t going
to explore addresses in detail until Chapter 10, “Pointers,” but here are a few preliminary points
about them.

Using an address for an array argument is similar to using a reference argument, in that the values
of the array elements are not duplicated (copied) into the function. (See the discussion of reference
arguments in Chapter 5, “Functions.”) Instead, the function works with the original array, although
it refers to it by a different name. This system is used for arrays because they can be very large;
duplicating an entire array in every function that called it would be both time-consuming and
wasteful of memory.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

However, an address is not the same as a reference. No ampersand (&) is used with the array name
in the function declaration. Until we discuss pointers, take it on faith that arrays are passed using
their name alone, and that the function accesses the original array, not a duplicate.

Function Definition with Array Argument

In the function definition the declarator looks like this:

void display(double funsales[DISTRICTS][MONTHS])

The array argument uses the data type, a name, and the sizes of the array dimensions. The array
name used by the function (funsales in this example) can be different from the name that defines the
array (sales), but they both refer to the same array. All the array dimensions must be specified
(except in some cases the first one); the function needs them to access the array elements properly.

References to array elements in the function use the function’s name for the array:

funsales[d][m]

But in all other ways the function can access array elements as if the array had been defined in the
function.

Arrays of Structures

Arrays can contain structures as well as simple data types. Here’s an example based on the part
structure from Chapter 4, “Structures.”

// partaray.cpp
// structure variables as array elements
#include <iostream>
using namespace std;
const int SIZE = 4; //number of parts in array
//
struct part //specify a structure
 {
 int modelnumber; //ID number of widget
 int partnumber; //ID number of widget part
 float cost; //cost of part
 };
//
int main()
 {
 int n;
 part apart[SIZE]; //define array of structures

 for(n=0; n<SIZE; n++) //get values for all members
 {
 cout << endl;
 cout << “Enter model number: ”;
 cin >> apart[n].modelnumber; //get model number
 cout << “Enter part number: ”;
 cin >> apart[n].partnumber; //get part number
 cout << “Enter cost: ”;
 cin >> apart[n].cost; //get cost
 }
 cout << endl;
 for(n=0; n<SIZE; n++) //show values for all members
 {
 cout << “Model ” << apart[n].modelnumber;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 cout << “Model ” << apart[n].modelnumber;
 cout << “ Part ” << apart[n].partnumber;
 cout << “ Cost ” << apart[n].cost << endl;
 }
 return 0;
 }

The user types in the model number, part number, and cost of a part. The program records this data
in a structure. However, this structure is only one element in an array of structures. The program
asks for the data for four different parts, and stores it in the four elements of the apart array. It then
displays the information. Here’s some sample input:

Enter model number: 44
Enter part number: 4954
Enter cost: 133.45

Enter model number: 44
Enter part number: 8431
Enter cost: 97.59

Enter model number: 77
Enter part number: 9343
Enter cost: 109.99

Enter model number: 77
Enter part number: 4297
Enter cost: 3456.55

Model 44 Part 4954 Cost 133.45
Model 44 Part 8431 Cost 97.59
Model 77 Part 9343 Cost 109.99
Model 77 Part 4297 Cost 3456.55

The array of structures is defined in the statement

part apart[SIZE];

This has the same syntax as that of arrays of simple data types. Only the type name, part, shows that
this is an array of a more complex type.

Accessing a data item that is a member of a structure that is itself an element of an array involves a
new syntax. For example,

apart[n].modelnumber

refers to the modelnumber member of the structure that is element n of the apart array. Figure 7.5
shows how this looks.

Arrays of structures are a useful data type in a variety of situations. We’ve shown an array of car
parts, but we could also store an array of personnel data (name, age, salary), an array of
geographical data about cities (name, population, elevation), and many other types of data.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 7.5 Array of structures.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Arrays As Class Member Data

Arrays can be used as data items in classes. Let’s look at an example that models a common
computer data structure: the stack.

A stack works like the spring-loaded devices that hold trays in cafeterias. When you put a tray on
top, the stack sinks down a little; when you take a tray off, it pops up. The last tray placed on the
stack is always the first tray removed.

Stacks are one of the cornerstones of the architecture of the microprocessors used in most modern
computers. As we mentioned earlier, functions pass their arguments and store their return address
on the stack. This kind of stack is implemented partly in hardware and is most conveniently
accessed in assembly language. However, stacks can also be created completely in software.
Software stacks offer a useful storage device in certain programming situations, such as in parsing
(analyzing) algebraic expressions.

Our example program, STAKARAY, creates a simple stack class.

// stakaray.cpp
// a stack as a class
#include <iostream>
using namespace std;
//
class Stack
 {
 private:
 enum { MAX = 10 }; //(non-standard syntax)
 int st[MAX]; //stack: array of integers
 int top; //number of top of stack
 public:
 Stack() //constructor
 { top = 0; }
 void push(int var) //put number on stack
 { st[++top] = var; }
 int pop() //take number off stack
 { return st[top--]; }
 };
//
int main()
 {
 Stack s1;

 s1.push(11);
 s1.push(22);
 cout << “1: ” << s1.pop() << endl; //22
 cout << “2: ” << s1.pop() << endl; //11

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 cout << “2: ” << s1.pop() << endl; //11
 s1.push(33);
 s1.push(44);
 s1.push(55);
 s1.push(66);
 cout << “3: ” << s1.pop() << endl; //66
 cout << “4: ” << s1.pop() << endl; //55
 cout << “5: ” << s1.pop() << endl; //44
 cout << “6: ” << s1.pop() << endl; //33
 return 0;
 }

The important member of the stack is the array st. An int variable, top, indicates the index of the last
item placed on the stack; the location of this item is the top of the stack.

The size of the array used for the stack is specified by MAX, in the statement

enum { MAX = 10 };

This definition of MAX is unusual. In keeping with the philosophy of encapsulation, it’s preferable
to define constants that will be used entirely within a class, as MAX is here, within the class. Thus
the use of global const variables for this purpose is non-optimal. Standard C++ mandates that we
should be able to declare MAX within the class as

static const int MAX = 10;

This means that MAX is constant and applies to all objects in the class. Unfortunately, some
compilers, including the current version of Microsoft Visual C++, do not allow this newly-approved
construction.

As a workaround we can define such constants to be enumerators (described in Chapter 4). We
don’t need to name the enumeration, and we need only the one enumerator:

enum { MAX = 10 };

This defines MAX as an integer with the value 10, and the definition is contained entirely within the
class. This approach works, but it’s awkward. If your compiler supports the static const approach,
you should use it instead to define constants within the class.

Figure 7.6 shows a stack. Since memory grows downward in the figure, the top of the stack is at the
bottom in the figure. When an item is added to the stack, the address in top is incremented to point
to the new top of the stack. When an item is removed, the value in top is decremented. (We don’t
need to erase the old value left in memory when an item is removed; it just becomes irrelevant.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 7.6 A stack.

To place an item on the stack—a process called pushing the item—you call the push() member
function with the value to be stored as an argument. To retrieve (or pop) an item from the stack, you
use the pop() member function, which returns the value of the item.

The main() program in STAKARAY exercises the stack class by creating an object, s1, of the class. It
pushes two items onto the stack, and pops them off and displays them. Then it pushes four more
items onto the stack, and pops them off and displays them. Here’s the output:

1: 22
2: 11
3: 66
4: 55
5: 44
6: 33

As you can see, items are popped off the stack in reverse order; the last thing pushed is the first
thing popped.

Notice the subtle use of prefix and postfix notation in the increment and decrement operators. The
statement

st[++top] = var;

in the push() member function first increments top so that it points to the next available array element
—one past the last element. It then assigns var to this element, which becomes the new top of the
stack. The statement

return st[top--];

first returns the value it finds at the top of the stack, then decrements top so that it points to the
preceding element.

The stack class is an example of an important feature of Object-Oriented Programming: using a class
to implement a container or data-storage mechanism. In Chapter 15, we’ll see that a stack is only
one of a number of ways to store data. There are also queues, sets, linked lists, and so on. A data-
storage scheme is chosen that matches the specific requirements of the program. Using a
preexisting class to provide data storage means that the programmer does not need to waste time
duplicating the details of the data-storage mechanism.

Arrays of Objects

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We’ve seen how an object can contain an array. We can also reverse that situation and create an
array of objects. We’ll look at two situations: an array of English distances and a deck of cards.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Arrays of English Distances

In Chapter 6, “Objects and Classes,” we showed several examples of an English Distance class that
incorporated feet and inches into an object representing a new data type. The next program,
ENGLARAY, demonstrates an array of such objects.

// englaray.cpp
// objects using English measurements
#include <iostream>
using namespace std;
//
class Distance //English Distance class
 {
 private:
 int feet;
 float inches;
 public:
 void getdist() //get length from user
 {
 cout << “\n Enter feet: ”; cin >> feet;
 cout << “ Enter inches: ”; cin >> inches;
 }
 void showdist() const //display distance
 { cout << feet << “\’-” << inches << ‘\”’; }
 };
//
int main()
 {
 Distance dist[100]; //array of distances
 int n=0; //count the entries
 char ans; //user response (‘y’ or ‘n’)

 cout << endl;

 do { //get distances from user
 cout << “Enter distance number ” << n+1;
 dist[n++].getdist(); //store distance in array
 cout << “Enter another (y/n)?: ”;
 cin >> ans;
 } while(ans != ‘n’); //quit if user types ‘n’

 for(int j=0; j<n; j++) //display all distances
 {
 cout << “\nDistance number ” << j+1 << “ is ”;
 dist[j].showdist();
 }
 cout << endl;
 return 0;
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

In this program the user types in as many distances as desired. After each distance is entered, the
program asks if the user desires to enter another. If not, it terminates, and displays all the distances
entered so far. Here’s a sample interaction when the user enters three distances:

Enter distance number 1
 Enter feet: 5
 Enter inches: 4
Enter another (y/n)? y
Enter distance number 2
 Enter feet: 6
 Enter inches: 2.5
Enter another (y/n)? y
Enter distance number 3
 Enter feet: 5
 Enter inches: 10.75
Enter another (y/n)? n

Distance number 1 is 5’-4”
Distance number 2 is 6’-2.5”
Distance number 3 is 5’-10.75”

Of course, instead of simply displaying the distances already entered, the program could have
averaged them, written them to disk, or operated on them in other ways.

Array Bounds

This program uses a do loop to get input from the user. This way the user can input data for as many
structures of type part as seems desirable, up to MAX, the size of the array (which is set to 100).

Although it’s hard to imagine anyone having the patience, what would happen if the user entered
more than 100 distances? The answer is, something unpredictable but almost certainly bad. There is
no bounds checking in C++ arrays. If the program inserts something beyond the end of the array,
neither the compiler nor the runtime system will object. However, the renegade data will probably
be written on top of other data or the program code itself. This may cause bizarre effects or crash
the system completely.

The moral is that it is up to the programmer to deal with the array bounds checking. If it seems
possible that the user will insert too much data for an array to hold, then the array should be made
larger or some means of warning the user should be devised. For example, you could insert the
following code at the beginning of the do loop in ENGLARAY:

if(n >= MAX)
 {
 cout << “\nThe array is full!!!”;
 break;
 }

This causes a break out of the loop and prevents the array from overflowing.

Accessing Objects in an Array

The declaration of the Distance class in this program is similar to that used in previous programs.
However, in the main() program we define an array of such objects:

Distance dist[MAX];

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Distance dist[MAX];

Here the data type of the dist array is Distance, and it has MAX elements. Figure 7.7 shows what this
looks like.

A class member function that is an array element is accessed similarly to a structure member that is
an array element, as in the PARTARAY example. Here’s how the showdist() member function of the
th element of the array dist is invoked:

dist[j].showdist();

As you can see, a member function of an object that is an array element is accessed using the dot
operator: The array name followed by the index in brackets is joined, using the dot operator, to the
member function name followed by parentheses. This is similar to accessing a structure (or class)
data member, except that the function name and parentheses are used instead of the data name.

Notice that when we call the getdist() member function to put a distance into the array, we take the
opportunity to increment the array index n :

dist[n++].getdist();

Figure 7.7 Array of objects.

This way the next group of data obtained from the user will be placed in the structure in the next
array element in dist. The n variable must be incremented manually like this because we use a do
loop instead of a for loop. In the for loop, the loop variable—which is incremented automatically—
can serve as the array index.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Arrays of Cards

Here’s another, somewhat longer, example of an array of objects. You will no doubt remember the
CARDOBJ example from Chapter 6. We’ll borrow the card class from that example, and group an
array of 52 such objects together in an array, thus creating a deck of cards. Here’s the listing for
CARDARAY:

// cardaray.cpp
// cards as objects
#include <iostream>
#include <cstdlib> //for srand(), rand()
#include <ctime> //for time for srand()
using namespace std;

enum Suit { clubs, diamonds, hearts, spades };
//from 2 to 10 are integers without names
const int jack = 11;
const int queen = 12;
const int king = 13;
const int ace = 14;
//
class card
 {
 private:
 int number; //2 to 10, jack, queen, king, ace
 Suit suit; //clubs, diamonds, hearts, spades
 public:
 card() //constructor
 { }
 void set(int n, Suit s) //set card
 { suit = s; number = n; }
 void display(); //display card
 };
//--
void card::display() //display the card
 {
 if(number >= 2 && number <= 10)
 cout << number;
 else
 switch(number)
 {
 case jack: cout << “J”; break;
 case queen: cout << “Q”; break;
 case king: cout << “K”; break;
 case ace: cout << “A”; break;
 }
 switch(suit)
 {
 case clubs: cout << char(5); break;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 case clubs: cout << char(5); break;
 case diamonds: cout << char(4); break;
 case hearts: cout << char(3); break;
 case spades: cout << char(6); break;
 }
 }
//
int main()
 {
 card deck[52];
 int j;

 cout << endl;
 for(j=0; j<52; j++) //make an ordered deck
 {
 int num = (j % 13) + 2; //cycles through 2 to 14, 4 times
 Suit su = Suit(j / 13); //cycles through 0 to 3, 13 times
 deck[j].set(num, su); //set card
 }
 cout << “\nOrdered deck:\n”;
 for(j=0; j<52; j++) //display ordered deck
 {
 deck[j].display();
 cout << “ ”;
 if(!((j+1) % 13)) //newline every 13 cards
 cout << endl;
 }
 srand(time(NULL)); //seed random numbers with time
 for(j=0; j<52; j++) //for each card in the deck,
 {
 int k = rand() % 52; //pick another card at random
 card temp = deck[j]; //and swap them
 deck[j] = deck[k];
 deck[k] = temp;
 }
 cout << “\nShuffled deck:\n”;
 for(j=0; j<52; j++) //display shuffled deck
 {
 deck[j].display();
 cout << “, ”;
 if(!((j+1) % 13)) //newline every 13 cards
 cout << endl;
 }
 return 0;
 } //end main

Once we’ve created a deck, it’s hard to resist the temptation to shuffle it. We display the cards in
the deck, shuffle it, and then display it again. To conserve space we use graphics characters for the
club, diamond, heart, and spade. Figure 7.8 shows the output from the program. This program
incorporates several new ideas, so let’s look at them in turn.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 7.8 Output of the CARDARAY program.

Graphics Characters

There are several special graphics characters in the range below ASCII code 32. (See Appendix A,
“ASCII Table,” for a list of ASCII codes.) In the display() member function of card we use codes 5,
4, 3, and 6 to access the characters for a club, a diamond, a heart, and a spade, respectively. Casting
these numbers to type char, as in

static_cast<char>(5)

causes the << operator to print them as characters rather than as numbers.

The Card Deck

The array of structures that constitutes the deck of cards is defined in the statement

card deck[52];

which creates an array called deck, consisting of 52 objects of type card. To display the jth card in
the deck, we call the display() member function:

deck[j].display();

Random Numbers

It’s always fun and sometimes even useful to generate random numbers. In this program we use
them to shuffle the deck. Two steps are necessary to obtain random numbers. First the random-
number generator must be seeded or initialized. To do this, we call the srand() library function. This
function uses the system time as the seed, so it requires two header files, CSTDLIB and CTIME.

To actually generate a random number, we call the rand() library function. This function returns a
random integer. To get a number in the range from 0 to 51, we apply the remainder operator and 52
to the result of rand().

int k = rand() % 52;

The resulting random number k is then used as an index to swap two cards. We go through the for
loop, swapping one card, whose index points to each card in 0-to-51 order, with another card,
whose index is the random number. When all 52 cards have been exchanged with a random card,
the deck is considered to be shuffled. This program could form the basis for a card-playing
program, but we’ll leave these details for the reader.

Arrays of objects are widely used in C++ programming. We’ll see other examples as we go along.

C-Strings

We noted at the beginning of this chapter that two kinds of strings are commonly used in C++: C-
strings, and strings that are objects of the string class. In this section, we’ll describe the first kind,
which fits the theme of the chapter in that C-strings are arrays of type char. We call these strings

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

which fits the theme of the chapter in that C-strings are arrays of type char. We call these strings
strings, or C-style strings, because they were the only kind of strings available in the C language
(and in the early days of C++, for that matter). They may also be called char* strings, because they
can be represented as pointers to type char. (The * indicates a pointer, as we’ll learn in Chapter 10.)

Although strings created with the string class, which we’ll examine in the next section, have
superceded C-strings in many situations, C-strings are still important, for a variety of reasons. First,
they are used in many C library functions. Second, they will continue to appear in legacy code for
years to come. And third, for students of C++, C-strings are more primitive and therefore easier to
understand on a fundamental level.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

C-string Variables

As with other data types, strings can be variables or constants. We’ll look at these two entities
before going on to examine more complex string operations. Here’s an example that defines a
single string variable. (In the section we’ll assume the word string means a C-string.) It asks the
user to enter a string, and places this string in the string variable. Then it displays the string. Here’s
the listing for STRINGIN:

// stringin.cpp
// simple string variable
#include <iostream>
using namespace std;

int main()
 {
 const int MAX = 80; //max characters in string
 char str[MAX]; //string variable str

 cout << “Enter a string: ”;
 cin >> str; //put string in str
 //display string from str
 cout << “You entered: ” << str << endl;
 return 0;
 }

The definition of the string variable str looks like (and is) the definition of an array of type char :

char str[MAX];

We use the extraction operator >> to read a string from the keyboard and place it in the string
variable str. This operator knows how to deal with strings; it understands that they are arrays of
characters. If the user enters the string “Amanuensis” (one employed to copy manuscripts) in this
program, the array str will look something like Figure 7.9.

Each character occupies 1 byte of memory. An important aspect of C-strings is that they must
terminate with a byte containing 0. This is often represented by the character constant ‘\0’, which is
a character with an ASCII value of 0. This terminating zero is called the null character. When the
operator displays the string, it displays characters until it encounters the null character.

Avoiding Buffer Overflow

The STRINGIN program invites the user to type in a string. What happens if the user enters a string

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The STRINGIN program invites the user to type in a string. What happens if the user enters a string
that is longer than the array used to hold it? As we mentioned earlier, there is no built-in mechanism
in C++ to keep a program from inserting array elements outside an array. So an overly enthusiastic
typist could end up crashing the system.

Figure 7.9 String stored in string variable.

However, it is possible to tell the >> operator to limit the number of characters it places in an array.
The SAFETYIN program demonstrates this approach.

// safetyin.cpp
// avoids buffer overflow with cin.width
#include <iostream>
#include <iomanip> //for setw
using namespace std;

int main()
 {
 const int MAX = 20; //max characters in string
 char str[MAX]; //string variable str

 cout << “\nEnter a string: ”;
 cin >> setw(MAX) >> str; //put string in str,
 // no more than MAX chars
 cout << “You entered: ” << str << endl;
 return 0;
 }

This program uses the setw manipulator to specify the maximum number of characters the input
buffer can accept. The user may type more characters, but the >> operator won’t insert them into the
array. Actually, one character fewer than the number specified is inserted, so there is room in the
buffer for the terminating null character. Thus, in SAFETYIN, a maximum of 19 characters are
inserted.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

String Constants

You can initialize a string to a constant value when you define it. Here’s an example, STRINIT, that
does just that (with the first line of a Shakespearean sonnet):

// strinit.cpp
// initialized string
#include <iostream>
using namespace std;

int main()
 {
 char str[] = “Farewell! thou art too dear for my possessing.”;
 cout << str << endl;
 return 0;
 }

Here the string constant is written as a normal English phrase, delimited by quotes. This may seem
surprising, since a string is an array of type char. In past examples you’ve seen arrays initialized to a
series of values delimited by braces and separated by commas. Why isn’t str initialized the same
way? In fact you could use such a sequence of character constants:

char str[] = { ‘F’, ‘a’, ‘r’, ‘e’, ‘w’, ‘e’, ‘l’, ‘l’, ‘!’,’ ‘, ‘t’, ‘h’,

and so on. Fortunately, the designers of C++ (and C) took pity on us and provided the shortcut
approach shown in STRINIT. The effect is the same: The characters are placed one after the other in
the array. As with all C-strings, the last character is a null (zero).

Reading Embedded Blanks

If you tried the STRINGIN program with strings that contained more than one word, you may have
had an unpleasant surprise. Here’s an example:

Enter a string: Law is a bottomless pit.
You entered: Law

Where did the rest of the phrase (a quotation from the Scottish writer John Arbuthnot, 1667ñ1735)
go? It turns out that the extraction operator >> considers a space to be a terminating character. Thus
it will read strings consisting of a single word, but anything typed after a space is thrown away.

To read text containing blanks we use another function, cin::get(). This syntax means a member
function get() of the stream class of which cin is an object. The following example, BLANKSIN,
shows how it’s used.

// blanksin.cpp
// reads string with embedded blanks
#include <iostream>
using namespace std;

int main()
 {
 const int MAX = 80; //max characters in string
 char str[MAX]; //string variable str

 cout << “\nEnter a string: ”;
 cin.get(str, MAX); //put string in str
 cout << “You entered: ” << str << endl;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 cout << “You entered: ” << str << endl;
 return 0;
 }

The first argument to cin::get() is the array address where the string being input will be placed. The
second argument specifies the maximum size of the array, thus automatically avoiding buffer
overrun.

Using this function, the input string is now stored in its entirety.

Enter a string: Law is a bottomless pit.
You entered: Law is a bottomless pit.

There’s a potential problem when you mix cin.get() with cin and the extraction operator (>>). We’ll
discuss the use of the ignore() member function of cin to solve this problem in Chapter 12, “Streams
and Files.”

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Reading Multiple Lines

We may have solved the problem of reading strings with embedded blanks, but what about strings
with multiple lines? It turns out that the cin::get() function can take a third argument to help out in
this situation. This argument specifies the character that tells the function to stop reading. The
default value for this argument is the newline (‘\n’) character, but if you call the function with some
other character for this argument, the default will be overridden by the specified character.

In the next example, LINESIN, we call the function with a dollar sign (‘$’) as the third argument:

// linesin.cpp
// reads multiple lines, terminates on ‘$’ character
#include <iostream>
using namespace std;

const int MAX = 2000; //max characters in string
char str[MAX]; //string variable str

int main()
 {
 cout << “\nEnter a string:\n”;
 cin.get(str, MAX, ‘$’); //terminate with $
 cout << “You entered:\n” << str << endl;
 return 0;
 }

Now you can type as many lines of input as you want. The function will continue to accept
characters until you enter the terminating character (or until you exceed the size of the array).
Remember, you must still press [Enter] after typing the ‘$’ character. Here’s a sample interaction
with a poem from Thomas Carew, 1595–1639:

Enter a string:
Ask me no more where Jove bestows
When June is past, the fading rose;
For in your beauty’s orient deep
These flowers, as in their causes, sleep.
$
You entered:
Ask me no more where Jove bestows
When June is past, the fading rose;
For in your beauty’s orient deep
These flowers, as in their causes, sleep.

We terminate each line with [Enter], but the program continues to accept input until we enter ‘$’.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Copying a String the Hard Way

The best way to understand the true nature of strings is to deal with them character by character.
The following program does this.

// strcopy1.cpp
// copies a string using a for loop
#include <iostream>
#include <cstring> //for strlen()
using namespace std;

int main()
 { //initialized string
 char str1[] = “Oh, Captain, my Captain! ”
 “our fearful trip is done”;

 const int MAX = 80; //size of str2 buffer
 char str2[MAX]; //empty string

 for(int j=0; j<strlen(str1); j++) //copy strlen characters
 str2[j] = str1[j]; // from str1 to str2
 str2[j] = ‘\0’; //insert NULL at end
 cout << str2 << endl; //display str2
 return 0;
 }

This program creates a string constant, str1, and a string variable, str2. It then uses a for loop to copy
the string constant to the string variable. The copying is done one character at a time, in the
statement

str2[j] = str1[j];

Recall that the compiler concatenates two adjacent string constants into a single one, which allows
us to write the quotation on two lines.

This program also introduces C-string library functions. Because there are no string operators built
into C++, C-strings must usually be manipulated using library functions. Fortunately there are many
such functions. The one we use in this program, strlen(), finds the length of a C-string (that is, how
many characters are in it). We use this length as the limit in the for loop so that the right number of
characters will be copied. When string functions are used, the header file CSTRING (or STRING.H)
must be included (with #include) in the program.

The copied version of the string must be terminated with a null. However, the string length returned
by strlen() does not include the null. We could copy one additional character, but it’s safer to insert
the null explicitly. We do this with the line

str2[j] = ‘\0’;

If you don’t insert this character, you’ll find that the string printed by the program includes all sorts
of weird characters following the string you want. The << just keeps on printing characters,
whatever they are, until by chance it encounters a ‘\0’.

Copying a String the Easy Way

Of course you don’t need to use a for loop to copy a string. As you might have guessed, a library
function will do it for you. Here’s a revised version of the program, STRCOPY2, that uses the strcpy()
function.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// strcopy2.cpp
// copies a string using strcpy() function
#include <iostream>
#include <cstring> //for strcpy()
using namespace std;

int main()
 {
 char str1[] = “Tiger, tiger, burning bright\n”
 “In the forests of the night”;
 const int MAX = 80; //size of str2 buffer
 char str2[MAX]; //empty string

 strcpy(str2, str1); //copy str1 to str2
 cout << str2 << endl; //display str2
 return 0;
 }

Note that you call this function like this:

strcpy(destination, source)

with the destination first. The right-to-left order is reminiscent of the format of normal assignment
statements: The variable on the right is copied to the variable on the left.

Arrays of Strings

If there are arrays of arrays, of course there can be arrays of strings. This is actually quite a useful
construction. Here’s an example, STRARAY, that puts the names of the days of the week in an array:

// straray.cpp
// array of strings
#include <iostream>
using namespace std;

int main()
 {
 const int DAYS = 7; //number of strings in array
 const int MAX = 10; //maximum size of each string
 //array of strings
 char star[DAYS][MAX] = { “Sunday”, “Monday”, “Tuesday”,
 “Wednesday”, “Thursday”,
 “Friday”, “Saturday” };
 for(int j=0; j<DAYS; j++) //display every string
 cout << star[j] << endl;
 return 0;
 }

The program prints out each string from the array:

Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Since a string is an array, it must be true that star—an array of strings—is really a two-dimensional
array. The first dimension of this array, DAYS, tells how many strings are in the array. The second
dimension, MAX, specifies the maximum length of the strings (9 characters for “Wednesday” plus the
terminating null makes 10). Figure 7.10 shows how this looks.

Figure 7.10 Array of strings.

Notice that some bytes are wasted following strings that are less than the maximum length. We’ll
learn how to remove this inefficiency when we talk about pointers.

The syntax for accessing a particular string may look surprising:

star[j];

If we’re dealing with a two-dimensional array, where’s the second index? Since a two-dimensional
array is an array of arrays, we can access elements of the “outer” array, each of which is an array
(in this case a string), individually. To do this we don’t need the second index. So star[j] is string
number j in the array of strings.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Strings As Class Members

Strings frequently appear as members of classes. The next example, a variation of the OBJPART
program in Chapter 6, uses a C-string to hold the name of the widget part.

// strpart.cpp
// string used in widget part object
#include <iostream>
#include <cstring> //for strcpy()
using namespace std;
//
class part
 {
 private:
 char partname[30]; //name of widget part
 int partnumber; //ID number of widget part
 double cost; //cost of part
 public:
 void setpart(char pname[], int pn, double c)
 {
 strcpy(partname, pname);
 partnumber = pn;
 cost = c;
 }
 void showpart() //display data
 {
 cout << “\nName=” << partname;
 cout << “, number=” << partnumber;
 cout << “, cost=$” << cost;
 }
 };
//
int main()
 {
 part part1, part2;

 part1.setpart(“handle bolt”, 4473, 217.55); //set parts
 part2.setpart(“start lever”, 9924, 419.25);
 cout << “\nFirst part: ”; part1.showpart(); //show parts
 cout << “\nSecond part: ”; part2.showpart();
 cout << endl;
 return 0;
 }

This program defines two objects of class part and gives them values with the setpart() member
function. Then it displays them with the showpart() member function. Here’s the output:

First part:
Name=handle bolt, number=4473, cost=$217.55
Second part:
Name=start lever, number=9924, cost=$419.25

To reduce the size of the program, we’ve dropped the model number from the class members.

In the setpart() member function, we use the strcpy() string library function to copy the string from the
argument pname to the class data member partname. Thus this function serves the same purpose with
string variables that an assignment statement does with simple variables.

Besides those we’ve seen, there are library functions to add a string to another, compare strings,
search for specific characters in strings, and perform many other actions. Descriptions of these
functions can be found in your compiler’s documentation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A User-Defined String Type

There are some problems with C-strings as they are normally used in C++. For one thing, you can’t
use the perfectly reasonable expression

strDest = strSrc;

to set one string equal to another. (In some languages, like BASIC, this is perfectly all right.) The
Standard C++ string class we’ll examine in the next section will take care of this problem, but for the
moment let’s see if we can use object-oriented technology to solve the problem ourselves. Creating
our own string class will give us an insight into representing strings as objects of a class, which will
illuminate the operation of Standard C++ string class.

If we define our own string type, using a C++ class, we can use assignment statements. (Many other
C-string operations, such as concatenation, can be simplified this way as well, but we’ll have to
wait until Chapter 8, “Operator Overloading,” to see how this is done.)

The STROBJ program creates a class called String. (Don’t confuse this homemade class String with
the Standard C++ built-in class string, which has a lowercase ‘s’.) Here’s the listing:

// strobj.cpp
// a string as a class
#include <iostream>
#include <cstring> // for strcpy(), strcat()
using namespace std;
//
class String
 {
 private:
 enum { SZ = 80; }; //max size of Strings
 char str[SZ]; //array
 public:
 String() //constructor, no args
 { str[0] = ‘\0’; }
 String(char s[]) //constructor, one arg
 { strcpy(str, s); }
 void display() //display string
 { cout << str; }
 void concat(String s2) //add arg string to
 { //this string
 if(strlen(str)+strlen(s2.str) < SZ)
 strcat(str, s2.str);
 else
 cout << “\nString too long”;
 }
 };
//
int main()
 {
 String s1(“Merry Christmas! ”); //uses constructor 2
 String s2 = “Season’s Greetings!”; //alternate form of 2
 String s3; //uses constructor 1

 cout << “\ns1=”; s1.display(); //display them all
 cout << “\ns2=”; s2.display();
 cout << “\ns3=”; s3.display();

 s3 = s1; //assignment
 cout << “\ns3=”; s3.display(); //display s3

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 cout << “\ns3=”; s3.display(); //display s3

 s3.concat(s2); //concatenation
 cout << “\ns3=”; s3.display(); //display s3
 cout << endl;
 return 0;
 }

The String class contains an array of type char. It may seem that our newly defined class is just the
same as the original definition of a string: an array of type char. But, by wrapping the array in a
class, we have achieved some interesting benefits. Since an object can be assigned the value of
another object of the same class using the = operator, we can use statements like

s3 = s1;

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

as we do in main(), to set one String object equal to another. We can also define our own member
functions to deal with Strings (objects of class String).

In the STROBJ program, all Strings have the same length: SZ characters (which we set to 80). There
are two constructors. The first sets the first character in str to the null character, ‘\0’, so the string has
a length of 0. This constructor is called with statements like

String s3;

The second constructor sets the String object to a “normal” (that is, a C-string) string constant. It
uses the strcpy() library function to copy the string constant into the object’s data. It’s called with
statements like

String s1(“Merry Christmas! ”);

The alternative format for calling this constructor, which works with any one-argument constructor,
is

String s1 = “Merry Christmas! ”);

Whichever format is used, this constructor effectively converts a C-string to a String—that is, a
normal string constant to an object of class String. A member function, display(), displays the String

Another member function of our String class, concat(), concatenates (adds) one String to another. The
original String is the object of which concat() is a member. To this String will be added the String
passed as an argument. Thus the statement in main(),

s3.concat(s2);

causes s2 to be added to the existing s3. Since s2 has been initialized to “Season’s Greetings!” and
has been assigned the value of s1, which was “Merry Christmas!” the resulting value of s3 is “Merry
Christmas! Season’s Greetings!”

The concat() function uses the strcat() C library function to do the concatenation. This library function
adds the string specified in the second argument to the string specified in the first argument. The
output from the program is

s1=Merry Christmas!
s2=Season’s Greetings!
s3= ←nothing here yet
s3=Merry Christmas! ← set equal to s1
s3=Merry Christmas! Season’s Greetings! ← s2 concatenated

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

s3=Merry Christmas! Season’s Greetings! ← s2 concatenated

If the two Strings given to the concat() function together exceed the maximum String length, then the
concatenation is not carried out, and a message is sent to the user.

We’ve just examined a simple string class. Now we’ll see a far more sophisticated version of the
same approach.

The Standard C++ string Class

Standard C++ includes a new class called string. This class improves on the traditional C-string in
many ways. For one thing, you no longer need to worry about creating an array of the right size to
hold string variables. The string class assumes all the responsibility for memory management. Also,
the string class allows the use of overloaded operators, so you can concatenate string objects with
the + operator: s3 = s1 + s2.

There are other benefits as well. This new class is more efficient and safer to use than C-strings
were. In most situations it is the preferred approach. (However, as we noted earlier, there are still
many situations in which C-strings must be used.) In this section we’ll examine the string class and
its various member functions and operators.

Defining and Assigning string Objects

You can define a string object in several ways. You can use a constructor with no arguments,
creating an empty string. You can also use a one-argument constructor, where the argument is a C-
string constant; that is, characters delimited by double quotes. As in our home-made String class,
objects of class string can be assigned to one another with a simple assignment operator. The
SSTRASS example shows how this looks.

//sstrass.cpp
//defining and assigning string objects
#include <iostream>
#include <string>
using namespace std;

int main()
 {
 string s1(“Man”); //initialize
 string s2 = “Beast”; //initialize
 string s3;

 s3 = s1; //assign
 cout << “s3 = ” << s3 << endl;

 s3 = “Neither ” + s1 + “ nor ”; //concatenate
 s3 += s2; //concatenate
 cout << “s3 = ” << s3 << endl;

 s1.swap(s2); //swap s1 and s2
 cout << s1 << “ nor ” << s2 << endl;
 return 0;
 }

Here the first three lines of code show three ways to define string objects. The first two initialize
strings, and the second creates an empty string variable. The next line shows simple assignment with
the = operator.

The string class uses a number of overloaded operators. We won’t learn about the inner workings of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The string class uses a number of overloaded operators. We won’t learn about the inner workings of
operator overloading until the next chapter, but you can use these operators without knowing how
they’re constructed.

The overloaded + operator concatenates one string object with another. The statement

s3 = “Neither ” + s1 + “ nor ”;

places the string “Neither Man nor ” in the variable s3.

You can also use the += operator to append a string to the end of an existing string. The statement

s3 += s2;

appends s2, which is “Beast”, to the end of s3, producing the string “Neither Man nor Beast” and
assigning it to s3.

This example also introduces our first string class member function: swap(), which exchanges the
values of two string objects. It’s called for one object with the other as an argument. We apply it to
s1 (“Man”) and s2 (“Beast”), and then display their values to show that s1 is now “Beast” and s2 is now
“Man”.

Here’s the output of SSTRASS:

s3 = Man
s3 = Neither Man nor Beast
Beast nor Man

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Input/Output with string Objects

Input and output are handled in a similar way to that of C-strings. The << and >> operators are
overloaded to handle string objects, and a function getline() handles input that contains embedded
blanks or multiple lines. The SSTRIO example shows how this looks.

// sstrio.cpp
// string class input/output
#include <iostream>
#include <string> //for string class
using namespace std;

int main()
 { //objects of string class
 string full_name, nickname, address;
 string greeting(“Hello, ”);

 cout << “Enter your full name: ”;
 getline(cin, full_name); //reads embedded blanks
 cout << “Your full name is: ” << full_name << endl;

 cout << “Enter your nickname: ”;
 cin >> nickname; //input to string object

 greeting += nickname; //append name to greeting
 cout << greeting << endl; //output: “Hello, Jim”

 cout << “Enter your address on separate lines\n”;
 cout << “Terminate with ‘$’\n”;
 getline(cin, address, ‘$’); //reads multiple lines
 cout << “Your address is: ” << address << endl;
 return 0;
 }

The program reads the user’s name, which presumably contains embedded blanks, using getline().
This function is similar to the get() function used with C-strings, but is not a member function.
Instead, its first argument is the stream object from which the input will come (here it’s cin), and the
second is the string object where the text will be placed, full_name. This variable is then displayed
using the cout and <<.

The program then reads the user’s nickname, which is assumed to be one word, using cin and the
operator. Finally the program uses a variation of getline(), with three arguments, to read the user’s
address, which may require multiple lines. The third argument specifies the character to be used to
terminate the input. In the program we use the ‘$’ character, which the user must input as the last
character before pressing the [Enter] key. If no third argument is supplied to getline(), the delimiter is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

character before pressing the [Enter] key. If no third argument is supplied to getline(), the delimiter is
assumed to be ‘\n’, which represents the [Enter] key. Here’s some interaction with SSTRIO:

Enter your full name: F. Scott Fitzgerald
Your full name is: F. Scott Fitzgerald
Enter your nickname: Scotty
Hello, Scotty
Enter your address on separate lines:
Terminate with ‘$’
1922 Zelda Lane
East Egg, New York$
Your address is:
1922 Zelda Lane
East Egg, New York

Finding string Objects

The string class includes a variety of member functions for finding strings and substrings in string
objects. The SSTRFIND example shows some of them.

//sstrfind.cpp
//finding substrings in string objects
#include <iostream>
#include <string>
using namespace std;

int main()
 {
 string s1 =
 “In Xanadu did Kubla Kahn a stately pleasure dome decree”;
 int n;

 n = s1.find(“Kubla”);
 cout << “Found Kubla at ” << n << endl;

 n = s1.find_first_of(“spde”);
 cout << “First of spde at ” << n << endl;

 n = s1.find_first_not_of(“aeiouAEIOU”);
 cout << “First consonant at ” << n << endl;
 return 0;
 }

The find() function looks for the string used as its argument in the string for which it was called.
Here it finds “Kubla” in s1, which holds the first line of the poem Kubla Kahn by Samuel Taylor
Coleridge. It finds it at position 14. As with C-strings, the leftmost character position is numbered
0.

The find_first_of() function looks for any of a group of characters, and returns the position of the first
one it finds. Here it looks for any of the group ‘s’, ‘p’, ‘d’, or ‘e’. The first of these it finds is the ‘d’
Xanadu, at position 7.

A similar function fird_first_not_of() finds the first character in its string that is not one of a specified
group. Here the group consists of all the vowels, both upper- and lowercase, so the function finds
the first consonant, which is the second letter. The output of SSTRFIND is

Found Kubla at 14
First of spde at 7
First consonent at 1

There are variations on many of these functions that we don’t demonstrate here, such as rfind(),

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There are variations on many of these functions that we don’t demonstrate here, such as rfind(),
which scans its string backward; find_last_of(), which finds the last character matching one of a
group of characters, and find_last_not_of().

Modifying string Objects

There are various ways to modify string objects. Our next example shows the member functions
erase(), replace(), and insert() at work.

//sstrchng.cpp
//changing parts of string objects
#include <iostream>
#include <string>
using namespace std;

int main()
 {
 string s1(“Quick! Send for Count Graystone.”);
 string s2(“Lord”);
 string s3(“Don’t ”);

 s1.erase(0, 7); //remove “Quick! ”
 s1.replace(9, 5, s2); //replace “Count” with “Lord”
 s1.replace(0, 1, “s”); //replace ‘S’ with ‘s’
 s1.insert(0, s3); //insert “Don’t ” at beginning
 s1.erase(s1.size()-1, 1); //remove ‘.’
 s1.append(3, ‘!’); //append “!!!”

 int x = s1.find(‘ ‘); //find a space
 while(x < s1.size()) //loop while spaces remain
 {
 s1.replace(x, 1, “/”); //replace with slash
 x = s1.find(‘ ‘); //find next space
 }
 cout << “s1: ” << s1 << endl;
 return 0;
 }

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

The erase() function removes a substring from a string. Its first argument is the position of the first
character in the substring, and the second is the length of the substring. In the example it removes a
“Quick ” from the beginning of the string. The replace() function replaces part of the string with
another string. The first argument is the position where the replacement should begin, the second is
the number of characters in the original string to be replaced, and the third is the replacement string.
Here “Count” is replaced by “Lord”.

The insert() function inserts the string specified by its second argument at the location specified by
its first argument. Here it inserts “Don’t ” at the beginning of s1. The second use of erase() employs
the size() member function, which returns the number of characters in the string object. The
expression size()-1 is the position of the last character, the period, which is erased. The append()
function installs three exclamation points at the end of the sentence. In this version of the function
the first argument is the number of characters to append, and the second is the character to be
appended.

At the end of the program we show an idiom you can use to replace multiple instances of a
substring with another string. Here, in a while loop, we look for the space character ‘ ‘ using find()
and replace each one with a slash using replace().

We start with s1 containing the string “Quick! Send for Count Graystone.” After these changes, the output
of SSTRCHNG is

s1: Don’t/send/for/Lord/Graystone!!!

Comparing string Objects

You can use overloaded operators or the compare() function to compare string objects. These
discover whether strings are the same, or whether they precede or follow one another
alphabetically. The SSTRCOM program shows some of the possibilities.

//sstrcom.cpp
//comparing string objects
#include <iostream>
#include <string>
using namespace std;

int main()
 {
 string aName = “George”;
 string userName;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 cout << “Enter your first name: ”;
 cin >> userName;
 if(userName==aName) //operator ==
 cout << “Greetings, George\n”;
 else if(userName < aName) //operator <
 cout << “You come before George\n”;
 else
 cout << “You come after George\n”;
 //compare() function
 int n = userName.compare(0, 2, aName, 0, 2);
 cout << “The first two letters of your name ”;
 if(n==0)
 cout << “match ”;
 else if(n < 0)
 cout << “come before ”;
 else
 cout << “come after ”;
 cout << aName.substr(0, 2) << endl;
 return 0;
 }

In the first part of the program the == and < operators are used to determine whether a name typed
by the user is equal to, or precedes or follows alphabetically, the name George. In the second part of
the program the compare() function compares only the first two letters of “George” with the first two
letters of the name typed by the user (userName). The arguments to this version of compare() are the
starting position in userName and the number of characters to compare, the string used for
comparison (aName), and the starting position and number of characters in aName. Here’s some
interaction with SSTRCOM:

Enter your first name: Alfred
You come before George
The first two letters of your name come before Ge

The first two letters of “George” are obtained using the substr() member function. It returns a substring
of the string for which it was called. Its first argument is the position of the substring, and the
second is the number of characters.

Accessing Characters in string Objects

You can access individual characters within a string object in several ways. In our next example
we’ll show access using the at() member function. You can also use the overloaded [] operator,
which makes the string object look like an array. However, the [] operator doesn’t warn you if you
attempt to access a character that’s out of bounds (beyond the end of the string, for example). The
operator behaves this way with real arrays, and it’s more efficient. However, it can lead to hard-to-
diagnose program bugs. It’s safer to use the at() () function, which causes the program to stop if you
use an out-of-bounds index. (It actually throws an exception; we’ll discuss exceptions in Chapter
14, “Templates and Exceptions.”)

//sstrchar.cpp
//accessing characters in string objects
#include <iostream>
#include <string>
using namespace std;

int main()
 {
 char charray[80];
 string word;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 cout << “Enter a word: ”;
 cin >> word;
 int wlen = word.length(); //length of string object

 cout << “One character at a time: ”;
 for(int j=0; j<wlen; j++)
 cout << word.at(j); //exception if out-of-bounds
// cout << word[j]; //no warning if out-of-bounds

 word.copy(charray, wlen, 0); //copy string object to array
 charray[wlen] = 0; //terminate with ‘\0’
 cout << “\nArray contains: ” << charray << endl;
 return 0;
 }

In this program we use at() to () display all the characters in a string object, character by character.
The argument to at() is the location of the character in the string.

We then show how you can use the copy() member () function to copy a string object into an array of
type char, effectively transforming it into a C-string. Following the copy, a null character (‘\0’) must
be inserted after the last character in the array to complete the transformation to a C-string. The
length() member function () of string returns the same number as() size(). Here’s the output of sstrchar

Enter a word: symbiosis
One character at a time: symbiosis
Array contains: symbiosis

(You can also convert string objects to C-strings using the c_str() or data() member functions.
However, to use these functions you need to know about pointers, which we’ll examine in Chapter
10.)

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Other string Functions

We’ve seen that size() and length() both return the number of characters currently in a string object.
The amount of memory occupied by a string is usually somewhat larger than that actually needed
for the characters. (Although if it hasn’t been initialized it uses 0 bytes for characters.) The capacity()
member () function returns the actual memory occupied. You can add characters to the string
without causing it to expand its memory until this limit is reached. The max_size() member ()
function returns the maximum possible size of a string object. This amount corresponds to the size
of int variables on your system, less 3 bytes. In 32-bit Windows systems this is 4,294,967,293 bytes,
but the size of your memory will probably restrict this () amount.

Most of the string member functions we’ve discussed have numerous variations in the numbers and
types of arguments they take. Consult your compiler’s documentation for details.

You should be aware that string objects are not terminated with a null or zero as C-strings are.
Instead, the length of the string is a member of the class. So if you’re stepping along the string,
don’t rely on finding a null to tell you when you’ve reached the end.

The string class is actually only one of many possible string-like classes, all derived from the
template class basic_string. The string class is based on type char, but a common variant is to use type
wchar_t instead. This allows basic_string to be used for foreign languages with many more characters
than English. Your compiler’s help file may list the string member functions under basic_string.

Summary

Arrays contain a number of data items of the same type. This type can be a simple data type, a
structure, or a class. The items in an array are called elements. Elements are accessed by number;
this number is called an index. Elements can be initialized to specific values when the array is
defined. Arrays can have multiple dimensions. A two-dimensional array is an array of arrays. The
address of an array can be used as an argument to a function; the array itself is not copied. Arrays
can be used as member data in classes. Care must be taken to prevent data from being placed in
memory outside an array.

C-strings are arrays of type char. The last character in a C-string must be the null character, ‘\0’. C-
string constants take a special form so that they can be written conveniently: the text is surrounded
by double quotes. A variety of library functions are used to manipulate C-strings. An array of C-
strings is an array of arrays of type char. The creator of a C-string variable must ensure that the array

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

strings is an array of arrays of type char. The creator of a C-string variable must ensure that the array
is large enough to hold any text placed in it. C-strings are used as arguments to C-style library
functions and will be found in older programs. They are not normally recommended for general use
in new programs.

The preferred approach to strings is to use objects of the string class. These strings can be
manipulated with numerous overloaded operators and member functions. The user need not worry
about memory management with string objects.

Questions

Answers to questions can be found in Appendix G, “Answers to Questions and Exercises.”

1. An array element is accessed using

a. a first-in-first-out approach.
b. the dot operator.
c. a member name.
d. an index number.

2. All the elements in an array must be the _________ data type.
3. Write a statement that defines a one-dimensional array called doubleArray of type double that
holds 100 elements.
4. The elements of a 10-element array are numbered from ________ to ________.
5. Write a statement that takes element j of array doubleArray and writes it to cout with the
insertion operator.
6. Element doubleArray[7] is which element of the array?

a. The sixth
b. The seventh
c. The eighth
d. Impossible to tell

7. Write a statement that defines an array coins of type int and initializes it to the values of the
penny, nickel, dime, quarter, half-dollar, and dollar.
8. When a multidimensional array is accessed, each array index is

a. separated by commas.
b. surrounded by brackets and separated by commas.
c. separated by commas and surrounded by brackets.
d. surrounded by brackets.

9. Write an expression that accesses element 4 in subarray 2 in a two-dimensional array
called twoD.
10. True or false: In C++ there can be an array of four dimensions.
11. For a two-dimensional array of type float, called flarr, write a statement that declares the
array and initializes the first subarray to 52, 27, 83; the second to 94, 73, 49; and the third to
3, 6, 1.
12. An array name, used in the source file, represents the ________ of the array.
13. When an array name is passed to a function, the function

a. accesses exactly the same array as the calling program.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

b. accesses a copy of the array passed by the program.
c. refers to the array using the same name as that used by the calling program.
d. refers to the array using a different name than that used by the calling program.

14. Tell what this statement defines:

employee emplist[1000];

15. Write an expression that accesses a structure member called salary in a structure variable
that is the 17th element in an array called emplist.
16. In a stack, the data item placed on the stack first is

a. not given an index number.
b. given the index number 0.
c. the first data item to be removed.
d. the last data item to be removed.

17. Write a statement that defines an array called manybirds that holds 50 objects of type bird
18. True or false: The compiler will complain if you try to access array element 14 in a 10-
element array.
19. Write a statement that executes the member function cheep() in an object of class bird that
is the 27th element in the array manybirds.
20. A string in C++ is an _________ of type _________.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

21. Write a statement that defines a string variable called city that can hold a string of up to
20 characters (this is slightly tricky).
22. Write a statement that defines a string constant, called dextrose, that has the value
“C6H12O6-H2O”.
23. True or false: The extraction operator (>>) stops reading a string when it encounters a
space.
24. You can read input that consists of multiple lines of text using

a. the normal cout << combination.
b. the cin.get() function with one argument.
c. the cin.get() function with two arguments.
d. the cin.get() function with three arguments.

25. Write a statement that uses a string library function to copy the string name to the string
blank.
26. Write the declaration for a class called dog that contains two data members: a string
called breed and an int called age. (Don’t include any member functions.)
27. True or false: You should prefer C-strings to the Standard C++ string class in new
programs.
28. Objects of the string class

a. are zero-terminated.
b. can be copied with the assignment operator.
c. do not require memory management.
d. have no member functions.

29. Write a statement that finds where the string “cat” occurs in the string s1.
30. Write a statement that inserts the string “cat” into string s1 at position 12.

Exercises

Answers to the starred exercises can be found in Appendix G.

*1. Write a function called reversit() that reverses a C-string (an array of char). Use a for loop
that swaps the first and last characters, then the second and next-to-last characters, and so on.
The string should be passed to reversit() as an argument.
Write a program to exercise reversit(). The program should get a string from the user, call
reversit(), and print out the result. Use an input method that allows embedded blanks. Test the
program with Napoleon’s famous phrase, “Able was I ere I saw Elba.”

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

*2. Create a class called employee that contains a name (an object of class string) and an
employee number (type long). Include a member function called getdata() to get data from the
user for insertion into the object, and another function called putdata() to display the data.
Assume the name has no embedded blanks.
Write a main() program to exercise this class. It should create an array of type employee, and
then invite the user to input data for up to 100 employees. Finally, it should print out the data
for all the employees.
*3. Write a program that calculates the average of up to 100 English distances input by the
user. Create an array of objects of the Distance class, as in the ENGLARAY example in this
chapter. To calculate the average, you can borrow the add_dist() member function from the
ENGLCON example in Chapter 6. You’ll also need a member function that divides a Distance
value by an integer. Here’s one possibility:

void Distance::div_dist(Distance d2, int divisor)
 {
 float fltfeet = d2.feet + d2.inches/12.0;
 fltfeet /= divisor;
 feet = int(fltfeet);
 inches = (fltfeet-feet) * 12.0;
 }

4. Start with a program that allows the user to input a number of integers, and then stores
them in an int array. Write a function called maxint() that goes through the array, element by
element, looking for the largest one. The function should take as arguments the address of the
array and the number of elements in it, and return the index number of the largest element.
The program should call this function and then display the largest element and its index
number. (See the SALES program in this chapter.)
5. Start with the fraction class from Exercises 11 and 12 in Chapter 6. Write a main() program
that obtains an arbitrary number of fractions from the user, stores them in an array of type
fraction, averages them, and displays the result.
6. In the game of contract bridge, each of four players is dealt 13 cards, thus exhausting the
entire deck. Modify the CARDARAY program in this chapter so that, after shuffling the deck,
it deals four hands of 13 cards each. Each of the four players’ hands should then be
displayed.
7. One of the weaknesses of C++ for writing business programs is that it does not contain a
built-in type for monetary values such as $173,698,001.32. Such a money type should be able
to store a number with a fixed decimal point and about 17 digits of precision, which is
enough to handle the national debt in dollars and cents. Fortunately, the built-in C++ type long
double has 19 digits of precision, so we can use it as the basis of a money class, even though it
uses a floating decimal. However, we’ll need to add the capability to input and output money
amounts preceded by a dollar sign and divided by commas into groups of three digits; this
makes it much easier to read large numbers. As a first step toward developing such a class,
write a function called mstold() that takes a money string, a string representing a money
amount like

“$1,234,567,890,123.99”

as an argument, and returns the equivalent long double.
You’ll need to treat the money string as an array of characters, and go through it character by
character, copying only digits (1 to 9) and the decimal point into another string. Ignore
everything else, including the dollar sign and the commas. You can then use the _atold()
library function (note the initial underscore; header file STDLIB.H or MATH.H) to convert the
resulting pure string to a long double. Assume that money values will never be negative. Write

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

resulting pure string to a long double. Assume that money values will never be negative. Write
a main() program to test mstold() by repeatedly obtaining a money string from the user and
displaying the corresponding long double.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

8. Another weakness of C++ is that it does not automatically check array indexes to see if
they are in bounds. (This makes array operations faster but less safe.) We can use a class to
create a safe array that checks the index of all array accesses.
Write a class called safearay that uses an int array of fixed size (call it LIMIT) as its only data
member. There will be two member functions. The first, putel(), takes an index number and an
int value as arguments and inserts the int value into the array at the index. The second, getel()
takes an index number as an argument and returns the int value of the element with that index.

safearay sa1; // define a safearay object
int temp = 12345; // define an int value
sa1.putel(7, temp); // insert value of temp into array at index 7
temp = sa1.getel(7); // obtain value from array at index 7

Both functions should check the index argument to make sure it is not less than 0 or greater
than LIMIT-1. You can use this array without fear of writing over other parts of memory.
Using functions to access array elements doesn’t look as eloquent as using the [] operator. In
Chapter 8 we’ll see how to overload this operator to make our safearay class work more like
built-in arrays.
9. A queue is a data storage device much like a stack. The difference is that in a stack the last
data item stored is the first one retrieved, while in a queue the first data item stored is the first
one retrieved. That is, a stack uses a last-in-first-out (LIFO) approach, while a queue uses
first-in-first-out (FIFO). A queue is like a line of customers in a bank: The first one to join the
queue is the first one served.
Rewrite the STAKARAY program from this chapter to incorporate a class called queue instead
of a class called stack. Besides a constructor, it should have two functions: one called put() to
put a data item on the queue, and one called get() to get data from the queue. These are
equivalent to push() and pop() in the stack class.
Both a queue and a stack use an array to hold the data. However, instead of a single int
variable called top, as the stack has, you’ll need two variables for a queue: one called head, to
point to the head of the queue, and one called tail to point to the tail. Items are placed on the
queue at the tail (like the last customer getting in line at the bank) and removed from the
queue at the head. The tail will follow the head along the array as items are added and
removed from the queue. This results in an added complexity: When either the tail or the
head gets to the end of the array, it must wrap around to the beginning. Thus you’ll need a
statement like

if(tail == MAX-1)
 tail = -1;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

to wrap the tail, and a similar one for the head. The array used in the queue is sometimes
called a circular buffer, because the head and tail circle around it, with the data between
them.
10. A matrix is a two-dimensional array. Create a class matrix that provides the same safety
feature as the array class in Exercise 7; that is, it checks to be sure no array index is out of
bounds. Make the member data in the matrix class a 10-by-10 array. A constructor should
allow the programmer to specify the actual dimensions of the matrix (provided they’re less
than 10 by 10). The member functions that access data in the matrix will now need two index
numbers: one for each dimension of the array. Here’s what a fragment of a main() program
that operates on such a class might look like:

matrix m1(3, 4); // define a matrix object
int temp = 12345; // define an int value
m1.putel(7, 4, temp); // insert value of temp into matrix at 7,4
temp = m1.getel(7, 4); // obtain value from matrix at 7,4

11. Refer back to the discussion of money strings in Exercise 6. Write a function called
ldtoms() to convert a number represented as type long double to the same value represented as a
money string. First you should check that the value of the original long double is not too
large. We suggest that you don’t try to convert any number greater than
9,999,999,999,999,990.00. Then convert the long double to a pure string (no dollar sign or
commas) stored in memory, using an ostrstream object, as discussed earlier in this chapter. The
resulting formatted string can go in a buffer called ustring.
You’ll then need to start another string with a dollar sign; copy one digit from ustring at a
time, starting from the left, and inserting a comma into the new string every three digits.
Also, you’ll need to suppress leading zeros. You want to display $3,124.95, for example, not
$0,000,000,000,003,124.95. Don’t forget to terminate the string with a ‘\0’ character.
Write a main() program to exercise this function by having the user repeatedly input numbers
in type long double format, and printing out the result as a money string.
12. Create a class called bMoney. It should store money amounts as a long double. Use the
function mstold() to convert a money string entered as input into a long double, and the function
ldtoms() to convert the long double to a money string for display. (See Exercises 6 and 10.) You
can call the input and output member functions getmoney() and putmoney(). Write another
member function that adds two bMoney amounts; you can call it madd(). Adding bMoney objects
is easy: Just add the long double member data amounts in two bMoney objects. Write a main()
program that repeatedly requests the user to enter two money strings, and then displays the
sum as a money string. Here’s how the class specifier might look:

class bMoney
 {
 private:
 long double money;
 public:
 bMoney();
 bMoney(char s[]);
 void madd(bMoney m1, bMoney m2);
 void getmoney();
 void putmoney();
 };

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

CHAPTER 8
OPERATOR OVERLOADING

You will learn about the following in this chapter:
• The operator keyword • Converting between basic and

user-defined types
• Overloading unary operators • Thoughts on overloading
• Overloading binary operators
• Constructors as conversion
routines

A Operator overloading is one of the most exciting features of Object-Oriented Programming. It
can transform complex, obscure program listings into intuitively obvious ones. For example,
statements like

d3.addobjects(d1, d2);

or the similar but equally obscure

d3 = d1.addobjects(d2);

can be changed to the much more readable

d3 = d1 + d2;

The rather forbidding term operator overloading refers to giving the normal C++ operators, such as
+, *, <=, and +=, additional meanings when they are applied to user-defined data types. Normally

a = b + c;

works only with basic types like int and float, and attempting to apply it when a, b, and c are objects
of a user-defined class will cause complaints from the compiler. However, using overloading, you
can make this statement legal even when a, b, and c are user-defined types.

In effect, operator overloading gives you the opportunity to redefine the C++ language. If you find
yourself limited by the way the C++ operators work, you can change them to do whatever you want.
By using classes to create new kinds of variables, and operator overloading to create new
definitions for operators, you can extend C++ to be, in many ways, a new language of your own
design.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Another kind of operation, data type conversion, is closely connected with operator overloading.
C++ handles the conversion of simple types, like int and float, automatically; but conversions
involving user-defined types require some work on the programmer’s part. We’ll look at data
conversions in the second part of this chapter.

Overloaded operators are not all beer and skittles. We’ll discuss some of the dangers of their use at
the end of the chapter.

Overloading Unary Operators

Let’s start off by overloading a unary operator. As you may recall from Chapter 2, unary operators
act on only one operand. (An operand is simply a variable acted on by an operator.) Examples of
unary operators are the increment and decrement operators ++ and --, and the unary minus, as in -33

In the COUNTER example in Chapter 6, “Objects and Classes,” we created a class Counter to keep
track of a count. Objects of that class were incremented by calling a member function.

c1.inc_count();

That did the job, but the listing would have been more readable if we could have used the increment
operator ++ instead:

++c1;

All dyed-in-the-wool C++ (and C) programmers would guess immediately that this expression
increments c1.

Let’s rewrite COUNTER to make this possible. Here’s the listing for COUNTPP1:

// countpp1.cpp
// increment counter variable with ++ operator
#include <iostream>
using namespace std;
//
class Counter
 {
 private:
 unsigned int count; //count
 public:
 Counter() : count(0) //constructor
 { }
 unsigned int get_count() //return count
 { return count; }
 void operator ++ () //increment (prefix)
 {
 ++count;
 }
 };
//
int main()
 {
 Counter c1, c2; //define and initialize

 cout << “\nc1=” << c1.get_count(); //display
 cout << “\nc2=” << c2.get_count();

 ++c1; //increment c1
 ++c2; //increment c2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ++c2; //increment c2
 ++c2; //increment c2

 cout << “\nc1=” << c1.get_count(); //display again
 cout << “\nc2=” << c2.get_count() << endl;
 return 0;
 }

In this program we create two objects of class Counter: c1 and c2. The counts in the objects are
displayed; they are initially 0. Then, using the overloaded ++ operator, we increment c1 once and
twice, and display the resulting values. Here’s the program’s output:

c1=0 ←counts are initially 0
c2=0
c1=1 ← incremented once
c2=2 ← incremented twice

The statements responsible for these operations are

++c1;
++c2;
++c2;

The ++ operator is applied once to c1 and twice to c2. We use prefix notation in this example; we’ll
explore postfix later.

The operator Keyword

How do we teach a normal C++ operator to act on a user-defined operand? The keyword operator is
used to overload the ++ operator in this declarator:

void operator ++ ()

The return type (void in this case) comes first, followed by the keyword operator, followed by the
operator itself (++), and finally the argument list enclosed in parentheses (which are empty here).
This declarator syntax tells the compiler to call this member function whenever the ++ operator is
encountered, provided the operand (the variable operated on by the ++) is of type Counter.

We saw in Chapter 5, “Functions,” that the only way the compiler can distinguish between
overloaded functions is by looking at the data types and number of their arguments. In the same
way, the only way it can distinguish between overloaded operators is by looking at the data type of
their operands. If the operand is a basic type like an int, as in

++intvar;

then the compiler will use its built-in routine to increment an int. But if the operand is a Counter
variable, then the compiler will know to use our user-written operator++() instead.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Operator Arguments

In main() the ++ operator is applied to a specific object, as in the expression ++c1. Yet operator++()
takes no arguments. What does this operator increment? It increments the count data in the object of
which it is a member. Since member functions can always access the particular object for which
they’ve been invoked, this operator requires no arguments. This is shown in Figure 8.1.

Figure 8.1 Overloaded unary operator: no arguments.

Operator Return Values

The operator++() function in the COUNTPP1 program has a subtle defect. You will discover it if you
use a statement like this in main():

c1 = ++c2;

The compiler will complain. Why? Because we have defined the ++ operator to have a return type
of void in the operator++() function, while in the assignment statement it is being asked to return a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

of void in the operator++() function, while in the assignment statement it is being asked to return a
variable of type Counter. That is, the compiler is being asked to return whatever value c2 has after
being operated on by the ++ operator, and assign this value to c1. So as defined in COUNTPP1, we
can’t use ++ to increment Counter objects in assignments; it must always stand alone with its
operand. Of course the normal ++ operator, applied to basic data types like int, would not have this
problem.

To make it possible to use our homemade operator++() in assignment expressions, we must provide a
way for it to return a value. The next program, countpp2, does just that.

// countpp2.cpp
// increment counter variable with ++ operator, return value
#include <iostream>
using namespace std;
//
class Counter
 {
 private:
 unsigned int count; //count
 public:
 Counter() : count(0) //constructor
 { }
 unsigned int get_count() //return count
 { return count; }
 Counter operator ++ () //increment count
 {
 ++count; //increment count
 Counter temp; //make a temporary Counter
 temp.count = count; //give it same value as this obj
 return temp; //return the copy
 }
 };
//
int main()
 {
 Counter c1, c2; //c1=0, c2=0

 cout << “\nc1=” << c1.get_count(); //display
 cout << “\nc2=” << c2.get_count();

 ++c1; //c1=1
 c2 = ++c1; //c1=2, c2=2

 cout << “\nc1=” << c1.get_count(); //display again
 cout << “\nc2=” << c2.get_count() << endl;
 return 0;
 }

Here the operator++() function creates a new object of type Counter, called temp, to use as a return
value. It increments the count data in its own object as before, then creates the new temp object and
assigns count in the new object as the same value as in its own object. Finally it returns the temp
object. This has the desired effect. Expressions like

++c1

now return a value, so they can be used in other expressions, such as

c2 = ++c1;

as shown in main(), where the value returned from c1++ is assigned to c2. The output from this
program is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

c1=0
c2=0
c1=2
c2=2

Nameless Temporary Objects

In COUNTPP2 we created a temporary object of type Counter, named temp, whose sole purpose was to
provide a return value for the ++ operator. This required three statements.

Counter temp; // make a temporary Counter object
temp.count = count; // give it same value as this object
return temp; // return it

There are more convenient ways to return temporary objects from functions and overloaded
operators. Let’s examine another approach, as shown in the program COUNTPP3:

// countpp3.cpp
// increment counter variable with ++ operator
// uses unnamed temporary object
#include <iostream>
using namespace std;
//
class Counter
 {
 private:
 unsigned int count; //count
 public:
 Counter() : count(0) //constructor no args
 { }
 Counter(int c) : count(c) //constructor, one arg
 { }
 unsigned int get_count() //return count
 { return count; }
 Counter operator ++ () //increment count
 {
 ++count; // increment count, then return
 return Counter(count); // an unnamed temporary object
 } // initialized to this count
 };
//
int main()
 {
 Counter c1, c2; //c1=0, c2=0

 cout << “\nc1=” << c1.get_count(); //display
 cout << “\nc2=” << c2.get_count();

 ++c1; //c1=1
 c2 = ++c1; //c1=2, c2=2

 cout << “\nc1=” << c1.get_count(); //display again
 cout << “\nc2=” << c2.get_count() << endl;
 return 0;
 }

In this program a single statement,

return Counter(count);

does what all three statements did in COUNTPP2. This statement creates an object of type Counter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

does what all three statements did in COUNTPP2. This statement creates an object of type Counter.
This object has no name; it won’t be around long enough to need one. This unnamed object is
initialized to the value provided by the argument count.

But wait: Doesn’t this require a constructor that takes one argument? It does, and to make this
statement work we sneakily inserted just such a constructor into the member function list in
COUNTPP3.

Counter(int c) : count(c)//constructor, one arg
 { }

Once the unnamed object is initialized to the value of count, it can then be returned. The output of
this program is the same as that of COUNTPP2.

The approaches in both COUNTPP2 and COUNTPP3 involve making a copy of the original object (the
object of which the function is a member), and returning the copy. (Another approach, as we’ll see
in Chapter 11, “Virtual Functions,” is to return the value of the original object using the this
pointer.)

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Postfix Notation

So far we’ve shown the increment operator used only in its prefix form.

++c1

What about postfix, where the variable is incremented after its value is used in the expression?

c1++

To make both versions of the increment operator work, we define two overloaded ++ operators, as
shown in the POSTFIX program:

// postfix.cpp
// overloaded ++ operator in both prefix and postfix
#include <iostream>
using namespace std;
//
class Counter
 {
 private:
 unsigned int count; //count
 public:
 Counter() : count(0) //constructor no args
 { }
 Counter(int c) : count(c) //constructor, one arg
 { }
 unsigned int get_count() const //return count
 { return count; }

 Counter operator ++ () //increment count (prefix)
 { //increment count, then return
 return Counter(++count); //an unnamed temporary object
 } //initialized to this count

 Counter operator ++ (int) //increment count (postfix)
 { //return an unnamed temporary
 return Counter(count++); //object initialized to this
 } //count, then increment count
 };
//
int main()
 {
 Counter c1, c2; //c1=0, c2=0

 cout << “\nc1=” << c1.get_count(); //display
 cout << “\nc2=” << c2.get_count();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 cout << “\nc2=” << c2.get_count();

 ++c1; //c1=1
 c2 = ++c1; //c1=2, c2=2 (prefix)

 cout << “\nc1=” << c1.get_count(); //display
 cout << “\nc2=” << c2.get_count();

 c2 = c1++; //c1=3, c2=2 (postfix)

 cout << “\nc1=” << c1.get_count(); //display again
 cout << “\nc2=” << c2.get_count() << endl;
 return 0;
 }

Now there are two different declarators for overloading the ++ operator. The one we’ve seen before,
for prefix notation, is

Counter operator ++ ()

The new one, for postfix notation, is

Counter operator ++ (int)

The only difference is the int in the parentheses. This int isn’t really an argument, and it doesn’t
mean integer. It’s simply a signal to the compiler to create the postfix version of the operator. The
designers of C++ are fond of recycling existing operators and keywords to play multiple roles, and
int is the one they chose to indicate postfix. (Well, can you think of a better syntax?) Here’s the
output from the program:

c1=0
c2=0
c1=2
c2=2
c1=3
c2=2

We saw the first four of these output lines in COUNTPP2 and COUNTPP3. But in the last two lines we
see the results of the statement

c2=c1++;

Here c1 is incremented to 3, but c2 is assigned the value of c1 before it is incremented, so c2 retains
the value 2.

Of course you can use this same approach with the decrement operator, (--).

Overloading Binary Operators

Binary operators can be overloaded just as easily as unary operators. We’ll look at examples that
overload arithmetic operators, comparison operators, and arithmetic assignment operators.

Arithmetic Operators

In the ENGLCON program in Chapter 6 we showed how two English Distance objects could be added
using a member function add_dist():

dist3.add_dist(dist1, dist2);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

dist3.add_dist(dist1, dist2);

By overloading the + operator we can reduce this dense-looking expression to

dist3 = dist1 + dist2;

Here’s the listing for ENGLPLUS, which does just this:

// englplus.cpp
// overloaded ‘+’ operator adds two Distances
#include <iostream>
using namespace std;
//
class Distance //English Distance class
 {
 private:
 int feet;
 float inches;
 public: //constructor (no args)
 Distance() : feet(0), inches(0.0)
 { } //constructor (two args)
 Distance(int ft, float in) : feet(ft), inches(in)
 { }
 void getdist() //get length from user
 {
 cout << “\nEnter feet: “; cin >> feet;
 cout << “Enter inches: “; cin >> inches;
 }
 void showdist() const //display distance
 { cout << feet << “\’-” << inches << ‘\”’; }

 Distance operator + (Distance) const; //add 2 distances
 };
//--
 //add this distance to d2
Distance Distance::operator + (Distance d2) const //return sum
 {
 int f = feet + d2.feet; //add the feet
 float i = inches + d2.inches; //add the inches
 if(i >= 12.0) //if total exceeds 12.0,
 { //then decrease inches
 i -= 12.0; //by 12.0 and
 f++; //increase feet by 1
 } //return a temporary Distance
 return Distance(f,i); //initialized to sum
 }
//
int main()
 {
 Distance dist1, dist3, dist4; //define distances
 dist1.getdist(); //get dist1 from user

 Distance dist2(11, 6.25); //define, initialize dist2

 dist3 = dist1 + dist2; //single ‘+’ operator

 dist4 = dist1 + dist2 + dist3; //multiple ‘+’ operators
 //display all lengths
 cout << “dist1 = “; dist1.showdist(); cout << endl;
 cout << “dist2 = “; dist2.showdist(); cout << endl;
 cout << “dist3 = “; dist3.showdist(); cout << endl;
 cout << “dist4 = “; dist4.showdist(); cout << endl;
 return 0;
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

To show that the result of an addition can be used in another addition as well as in an assignment,
another addition is performed in main(). We add dist1, dist2, and dist3 to obtain dist4 (which should be
double the value of dist3), in the statement

dist4 = dist1 + dist2 + dist3;

Here’s the output from the program:

Enter feet: 10
Enter inches: 6.5

dist1 = 10’-6.5” ←from user
dist2 = 11’-6.25” ← initialized in program
dist3 = 22’-0.75” ← dist1+dist2
dist4 = 44’-1.5” ← dist1+dist2+dist3

In class Distance the declaration for the operator+() function looks like this:

Distance operator + (Distance);

This function has a return type of Distance, and takes one argument of type Distance.

In expressions like

dist3 = dist1 + dist2;

it’s important to understand how the return value and arguments of the operator relate to the
objects. When the compiler sees this expression it looks at the argument types, and finding only
type Distance, it realizes it must use the Distance member function operator+(). But what does this
function use as its argumentdist1 or dist2? And doesn’t it need two arguments, since there are two
numbers to be added?

Here’s the key: The argument on the left side of the operator (dist1 in this case) is the object of
which the operator is a member. The object on the right side of the operator (dist2) must be
furnished as an argument to the operator. The operator returns a value, which can be assigned or
used in other ways; in this case it is assigned to dist3. Figure 8.2 shows how this looks.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8.2 Overloaded binary operator: one argument.

In the operator+() function, the left operand is accessed directlysince this is the object of which the
operator is a memberusing feet and inches. The right operand is accessed as function’s argument, as
d2.feet and d2.inches.

We can generalize and say that an overloaded operator always requires one less argument than its
number of operands, since one operand is the object of which the operator is a member. That’s why
unary operators require no arguments. (This rule does not apply to friend functions and operators, a
C++ feature we’ll discuss in Chapter 11.)

To calculate the return value of operator+() in ENGLPLUS, we first add the feet and inches from the two
operands (adjusting for a carry if necessary). The resulting values, f and i, are then used to initialize
a nameless Distance object, which is returned in the statement

return Distance(f, i);

This is similar to the arrangement used in COUNTPP3, except that the constructor takes two
arguments instead of one. The statement

dist3 = dist1 + dist2;

in main() then assigns the value of the nameless Distance object to dist3. Compare this intuitively
obvious statement with the use of a function call to perform the same task, as in the ENGLCON
example in Chapter 6.

Similar functions could be created to overload other operators in the Distance class, so you could
subtract, multiply, and divide objects of this class in natural-looking ways.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Concatenating Strings

The + operator cannot be used to concatenate C-strings. That is, you can’t say

str3 = str1 + str2;

where str1, str2, and str3 are C-string variables (arrays of type char), as in “cat” plus “bird” equals
“catbird.” However, if we use our own String class, as shown in the STROBJ program in Chapter 6,
then we can overload the + operator to perform such concatenation. This is what the Standard C++
string class does, but it’s easier to see how it works in our less ambitious String class. Overloading
the + operator to do something that isn’t strictly addition is another example of redefining the C++
language. Here’s the listing for STRPLUS:

// strplus.cpp
// overloaded ‘+’ operator concatenates strings
#include <iostream>
using namespace std;
#include <string.h> //for strcpy(), strcat()
#include <stdlib.h> //for exit()
//
class String //user-defined string type
 {
 private:
 enum { SZ=80 }; //size of String objects
 char str[SZ]; //holds a string
 public:
 String() //constructor, no args
 { strcpy(str, “”); }
 String(char s[]) //constructor, one arg
 { strcpy(str, s); }
 void display() const //display the String
 { cout << str; }
 String operator + (String ss) const //add Strings
 {
 String temp; //make a temporary String
 if(strlen(str) + strlen(ss.str) < SZ)
 {
 strcpy(temp.str, str); //copy this string to temp
 strcat(temp.str, ss.str); //add the argument string
 }
 else
 { cout << “\nString overflow”; exit(1); }
 return temp; //return temp String
 }
 };
//
int main()
 {
 String s1 = “\nMerry Christmas! “; //uses constructor 2
 String s2 = “Happy new year!”; //uses constructor 2
 String s3; //uses constructor 1

 s1.display(); //display strings
 s2.display();
 s3.display();

 s3 = s1 + s2; //add s2 to s1,
 //assign to s3
 s3.display(); //display s3
 cout << endl;
 return 0;
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

The program first displays three strings separately. (The third is empty at this point, so nothing is
printed when it displays itself.) Then the first two strings are concatenated and placed in the third,
and the third string is displayed again. Here’s the output:

Merry Christmas! Happy new year! ←s1, s2, and s3 (empty)
Merry Christmas! Happy new year! ← s3 after concatenation

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

By now the basics of overloading the + operator should be somewhat familiar. The declarator

String operator + (String ss)

shows that the + operator takes one argument of type String and returns an object of the same type.
The concatenation process in operator+() involves creating a temporary object of type String, copying
the string from our own String object into it, concatenating the argument string using the library
function strcat(), and returning the resulting temporary string. Note that we can’t use the

return String(string);

approach, where a nameless temporary String is created, because we need access to the temporary
String not only to initialize it, but to concatenate the argument string to it.

We must be careful that we don’t overflow the fixed-length strings used in the String class. To
prevent such accidents in the operator+() function, we check that the combined length of the two
strings to be concatenated will not exceed the maximum string length. If they do, we print an error
message instead of carrying out the concatenation operation. (We could handle errors in other ways,
like returning a 0 if an error occurred, or better yet, throwing an exception, as discussed in Chapter
14, “Templates and Exceptions.”)

Remember that using an enum to set the constant value SZ is a temporary fix. When all compilers
comply with Standard C++ you can change it to:

static const int SZ = 80;

Multiple Overloading

We’ve seen several different uses of the + operator: to add English distances, and to concatenate
strings. You could put both these classes together in the same program, and C++ would still know
how to interpret the + operator: It selects the correct function to carry out the “addition” based on
the type of operand.

Comparison Operators

Let’s see how to overload a different kind of C++ operator: comparison operators.

Comparing Distances

In our first example we’ll overload the less than operator < in the Distance class, so that we can

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In our first example we’ll overload the less than operator < in the Distance class, so that we can
compare two distances. Here’s the listing for ENGLESS:

// engless.cpp
// overloaded ‘<’ operator compares two Distances
#include <iostream>
using namespace std;
//
class Distance //English Distance class
 {
 private:
 int feet;
 float inches;
 public: //constructor (no args)
 Distance() : feet(0), inches(0.0)
 { } //constructor (two args)
 Distance(int ft, float in) : feet(ft), inches(in)
 { }
 void getdist() //get length from user
 {
 cout << “\nEnter feet: “; cin >> feet;
 cout << “Enter inches: “; cin >> inches;
 }
 void showdist() const //display distance
 { cout << feet << “\’-” << inches << ‘\”’; }
 bool operator < (Distance) const; //compare distances
 };
//--
 //compare this distance with d2
bool Distance::operator < (Distance d2) const //return the sum
 {
 float bf1 = feet + inches/12;
 float bf2 = d2.feet + d2.inches/12;
 return (bf1 < bf2) ? true : false;
 }
//
int main()
 {
 Distance dist1; //define Distance dist1
 dist1.getdist(); //get dist1 from user

 Distance dist2(6, 2.5); //define and initialize dist2
 //display distances
 cout << “\ndist1 = “; dist1.showdist();
 cout << “\ndist2 = “; dist2.showdist();

 if(dist1 < dist2) //overloaded ‘<’ operator
 cout << “\ndist1 is less than dist2”;
 else
 cout << “\ndist1 is greater than (or equal to) dist2”;
 cout << endl;
 return 0;
 }

This program compares a distance entered by the user with a distance, 6'-2.5", initialized by the
program. Depending on the result, it then prints one of two possible sentences. Here’s some typical
output:

Enter feet: 5
Enter inches: 11.5
dist1 = 5’-11.5”
dist2 = 6’-2.5”
dist1 is less than dist2

The approach used in the operator<() function in ENGLESS is similar to overloading the + operator in
the ENGLPLUS program, except that here the operator<() function has a return type of bool. The return

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the ENGLPLUS program, except that here the operator<() function has a return type of bool. The return
value is false or true, depending on the comparison of the two distances. The comparison is made by
converting both distances to floating-point feet, and comparing them using the normal < operator.
Remember that the use of the conditional operator

return (bf1 < bf2) ? true : false;

is the same as

if(bf1 < bf2)
 return true;
else
 return false;

Comparing Strings

Here’s another example of overloading an operator, this time the equal (==) operator. We’ll use it to
compare two of our home-made String objects, returning true if they’re the same and false if they’re
different. Here’s the listing for STREQUAL:

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

//strequal.cpp
//overloaded ‘==’ operator compares strings
#include <iostream>
using namespace std;
#include <string.h> //for strcmp()
//
class String //user-defined string type
 {
 private:
 enum { SZ = 80 }; //size of String objects
 char str[SZ]; //holds a string
 public:
 String() //constructor, no args
 { strcpy(str, “”); }
 String(char s[]) //constructor, one arg
 { strcpy(str, s); }
 void display() const //display a String
 { cout << str; }
 void getstr() //read a string
 { cin.get(str, SZ); }
 bool operator == (String ss) const //check for equality
 {
 return (strcmp(str, ss.str)==0) ? true : false;
 }
 };
//
int main()
 {
 String s1 = “yes”;
 String s2 = “no”;
 String s3;

 cout << “\nEnter ‘yes’ or ‘no’: “;
 s3.getstr(); //get String from user

 if(s3==s1) //compare with “yes”
 cout << “You typed yes\n”;
 else if(s3==s2) //compare with “no”
 cout << “You typed no\n”;
 else
 cout << “You didn’t follow instructions\n”;
 return 0;
 }

The main() part of this program uses the == operator twice, once to see if a string input by the user is
“yes” and once to see if it’s “no.” Here’s the output when the user types “yes”:

Enter ‘yes’ or ‘no’: yes
You typed yes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You typed yes

The operator==() function uses the library function strcmp() to compare the two C-strings. This
function returns 0 if the strings are equal, a negative number if the first is less than the second, and
a positive number if the first is greater than the second. Here less than and greater than are used in
their lexicographical sense to indicate whether the first string appears before or after the second in
an alphabetized listing.

Other comparison operators, such as < and >, could also be used to compare the lexicographical
value of strings. Or, alternatively, these comparison operators could be redefined to compare string
lengths. Since you’re the one defining how the operators are used, you can use any definition that
seems appropriate to your situation.

Arithmetic Assignment Operators

Let’s finish up our exploration of overloaded binary operators with an arithmetic assignment
operator: the += operator. Recall that this operator combines assignment and addition into one step.
We’ll use this operator to add one English distance to a second, leaving the result in the first. This is
similar to the ENGLPLUS example shown earlier, but there is a subtle difference. Here’s the listing
for ENGLPLEQ:

// englpleq.cpp
// overloaded ‘+=’ assignment operator
#include <iostream>
using namespace std;
//
class Distance //English Distance class
 {
 private:
 int feet;
 float inches;
 public: //constructor (no args)
 Distance() : feet(0), inches(0.0)
 { } //constructor (two args)
 Distance(int ft, float in) : feet(ft), inches(in)
 { }
 void getdist() //get length from user
 {
 cout << “\nEnter feet: “; cin >> feet;
 cout << “Enter inches: “; cin >> inches;
 }
 void showdist() const //display distance
 { cout << feet << “\’-” << inches << ‘\”’; }
 void operator += (Distance);
 };
//--
 //add distance to this one
void Distance::operator += (Distance d2)
 {
 feet += d2.feet; //add the feet
 inches += d2.inches; //add the inches
 if(inches >= 12.0) //if total exceeds 12.0,
 { //then decrease inches
 inches -= 12.0; //by 12.0 and
 feet++; //increase feet
 } //by 1
 }
//
int main()
 {
 Distance dist1; //define dist1
 dist1.getdist(); //get dist1 from user

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 dist1.getdist(); //get dist1 from user
 cout << “\ndist1 = “; dist1.showdist();

 Distance dist2(11, 6.25); //define, initialize dist2
 cout << “\ndist2 = “; dist2.showdist();

 dist1 += dist2; //dist1 = dist1 + dist2
 cout << “\nAfter addition,”;
 cout << “\ndist1 = “; dist1.showdist();
 cout << endl;
 return 0;
 }

In this program we obtain a distance from the user and add to it a second distance, initialized to
11[sp]-6.25[dp] by the program. Here’s a sample of interaction with the program:

Enter feet: 3
Enter inches: 5.75
dist1 = 3’-5.75”
dist2 = 11’-6.25”
After addition,
dist1 = 15’-0”

In this program the addition is carried out in main() with the statement

dist1 += dist2;

This causes the sum of dist1 and dist2 to be placed in dist1.

Notice the difference between the function used here, operator+=(), and that used in ENGLPLUS,
operator+(). In the earlier operator+() function, a new object of type Distance had to be created and
returned by the function so it could be assigned to a third Distance object, as in

dist3 = dist1 + dist2;

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

In the operator+=() function in ENGLPLEQ, the object that takes on the value of the sum is the object
of which the function is a member. Thus it is feet and inches that are given values, not temporary
variables used only to return an object. The operator+=() function has no return value; it returns type
void. A return value is not necessary with arithmetic assignment operators like +=, because the result
of the assignment operator is not assigned to anything. The operator is used alone, in expressions
like the one in the program.

dist1 += dist2;

If you wanted to use this operator in more complex expressions, like

dist3 = dist1 += dist2;

then you would need to provide a return value. This can be done by ending the operator+=() function
with a statement like

return Distance(feet, inches);

in which a nameless object is initialized to the same values as this object, and returned.

The Subscript Operator []

The subscript operator, [], which is normally used to access array elements, can be overloaded. This
is useful if you want to modify the way arrays work in C++. For example, you might want to make
a “safe” array: One that automatically checks the index numbers you use to access the array, to
ensure they are not out of bounds. (You can also use the vector class, described in Chapter 15, “The
Standard Template Library.”)

To demonstrate the overloaded subscript operator, we must return to another topic, first mentioned
in Chapter 5: returning values from functions by reference. To be useful, the overloaded subscript
operator must return by reference. To see why this is true, we’ll show three example programs that
implement a safe array, each one using a different approach to inserting and reading the array
elements:

• Separate put() and get() functions
• A single access() function using return by reference
• The overloaded [] operator using return by reference

All three programs create a class called safearay, whose only member data is an array of 100 int
values, and all three check to ensure that all array accesses are within bounds. The main() program in

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

values, and all three check to ensure that all array accesses are within bounds. The main() program in
each program tests the class by filling the safe array with values (each one equal to 10 times its
array index) and then displaying them all to assure the user that everything is working as it should.

Separate get() and put() Functions

The first program provides two functions to access the array elements: putel() to insert a value into
the array, and getel() to find the value of an array element. Both functions check the value of the
index number supplied to ensure it’s not out of bounds; that is, less than 0 or larger than the array
size (minus 1). Here’s the listing for ARROVER1:

// arrover1.cpp
// creates safe array (index values are checked before access)
// uses separate put and get functions
#include <iostream>
using namespace std;
#include <process.h> // for exit()
const int LIMIT = 100;
//
class safearay
 {
 private:
 int arr[LIMIT];
 public:
 void putel(int n, int elvalue) //set value of element
 {
 if(n< 0 || n>=LIMIT)
 { cout << “\nIndex out of bounds”; exit(1); }
 arr[n] = elvalue;
 }
 int getel(int n) const //get value of element
 {
 if(n< 0 || n>=LIMIT)
 { cout << “\nIndex out of bounds”; exit(1); }
 return arr[n];
 }
 };
//
int main()
 {
 safearay sa1;

 for(int j=0; j<LIMIT; j++) // insert elements
 sa1.putel(j, j*10);

 for(j=0; j<LIMIT; j++) // display elements
 {
 int temp = sa1.getel(j);
 cout << “Element “ << j << “ is “ << temp << endl;
 }
 return 0;
 }

The data is inserted into the safe array with the putel() member function, and then displayed with
getel(). This implements a safe array; you’ll receive an error message if you attempt to use an out-of-
bounds index. However, the format is a bit crude.

Single access() Function Returning by Reference

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As it turns out, we can use the same member function both to insert data into the safe array and to
read it out. The secret is to return the value from the function by reference. This means we can
place the function on the left side of the equal sign, and the value on the right side will be assigned
to the variable returned by the function, as explained in Chapter 5. Here’s the listing for
ARROVER2:

// arrover2.cpp
// creates safe array (index values are checked before access)
// uses one access() function for both put and get
#include <iostream>
using namespace std;
#include <process.h> //for exit()
const int LIMIT = 100; //array size
//
class safearay
 {
 private:
 int arr[LIMIT];
 public:
 int& access(int n) // note: return by reference
 {
 if(n< 0 || n>=LIMIT)
 { cout << “\nIndex out of bounds”; exit(1); }
 return arr[n];
 }
 };
//
int main()
 {
 safearay sa1;

 for(int j=0; j<LIMIT; j++) //insert elements
 sa1.access(j) = j*10; //*left* side of equal sign

 for(j=0; j<LIMIT; j++) //display elements
 {
 int temp = sa1.access(j); //*right* side of equal sign
 cout << “Element “ << j << “ is “ << temp << endl;
 }
 return 0;
 }

The statement

sa1.access(j) = j*10; // *left* side of equal sign

causes the value j*10 to be placed in arr[j], the return value of the function.

It’s perhaps slightly more convenient to use the same function for input and output of the safe array
than using separate functions; there’s one less name to remember. But there’s an even better way,
with no names to remember at all.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Overloaded [] Operator Returning by Reference

To access the safe array using the same subscript ([]) operator that’s used for normal C++ arrays, we
overload the subscript operator in the safearay class. However, since this operator is commonly used
on the left side of the equal sign, this overloaded function must return by reference, as we showed
in the previous program. Here’s the listing for ARROVER3:

// arrover3.cpp
// creates safe array (index values are checked before access)
// uses overloaded [] operator for both put and get

#include <iostream>
using namespace std;
#include <process.h> //for exit()
const int LIMIT = 100; //array size
//
class safearay
 {
 private:
 int arr[LIMIT];
 public:
 int& operator [](int n) // note: return by reference
 {
 if(n< 0 || n>=LIMIT)
 { cout << “\nIndex out of bounds”; exit(1); }
 return arr[n];
 }
 };
//
int main()
 {
 safearay sa1;

 for(int j=0; j<LIMIT; j++) //insert elements
 sa1[j] = j*10; //*left* side of equal sign

 for(j=0; j<LIMIT; j++) //display elements
 {
 int temp = sa1[j]; //*right* side of equal sign
 cout << “Element “ << j << “ is “ << temp << endl;
 }
 return 0;
 }

In this program we can use the natural subscript expressions

sa1[j] = j*10;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

sa1[j] = j*10;

and

temp = sa1[j];

for input and output to the safe array.

Data Conversion

You already know that the = operator will assign a value from one variable to another, in statements
like

intvar1 = intvar2;

where intvar1 and intvar2 are integer variables. You may also have noticed that = assigns the value of
one user-defined object to another, provided they are of the same type, in statements like

dist3 = dist1 + dist2;

where the result of the addition, which is type Distance, is assigned to another object of type Distance,
dist3. Normally, when the value of one object is assigned to another of the same type, the values of
all the member data items are simply copied into the new object. The compiler doesn’t need any
special instructions to use = for the assignment of user-defined objects such as Distance objects.

Thus, assignments between types, whether they are basic types or user-defined types, are handled
by the compiler with no effort on our part, provided that the same data type is used on both sides of
the equal sign. But what happens when the variables on different sides of the = are of different
types? This is a more thorny question, to which we will devote the balance of this chapter. We’ll
first review how the compiler handles the conversion of basic types, which it does automatically.
Then we’ll explore several situations where the compiler doesn’t handle things automatically and
we need to tell it what to do. These include conversions between basic types and user-defined
types, and conversions between different user-defined types.

You might think it represents poor programming practice to convert routinely from one type to
another. After all, languages such as Pascal go to considerable trouble to keep you from doing such
conversions. However, the philosophy in C++ (and C) is that the flexibility provided by allowing
conversions outweighs the dangers. This is a controversial issue; we’ll return to it at the end of this
chapter.

Conversions Between Basic Types

When we write a statement like

intvar = floatvar;

where intvar is of type int and floatvar is of type float, we are assuming that the compiler will call a
special routine to convert the value of floatvar, which is expressed in floating-point format, to an
integer format so that it can be assigned to intvar. There are of course many such conversions: from
float to double, char to float, and so on. Each such conversion has its own routine, built into the
compiler and called up when the data types on different sides of the = sign so dictate. We say such
conversions are implicit because they aren’t apparent in the listing.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sometimes we want to force the compiler to convert one type to another. To do this we use the cast
operator. For instance, to convert float to int, we can say

intvar = static_cast<int>(floatvar);

Casting provides explicit conversion: It’s obvious in the listing that static_cast<int>() is intended to
convert from float to int. However, such explicit conversions use the same built-in routines as
implicit conversions.

Conversions Between Objects and Basic Types

When we want to convert between user-defined data types and basic types, we can’t rely on built-in
conversion routines, since the compiler doesn’t know anything about user-defined types besides
what we tell it. Instead, we must write these routines ourselves.

Our next example shows how to convert between a basic type and a user-defined type. In this
example the user-defined type is (surprise!) the English Distance class from previous examples, and
the basic type is float, which we use to represent meters, a unit of length in the metric measurement
system.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

The example shows conversion both from Distance to float, and from float to Distance. Here’s the
listing for ENGLCONV:

// englconv.cpp
// conversions: Distance to meters, meters to Distance
#include <iostream>
using namespace std;
//
class Distance //English Distance class
 {
 private:
 const float MTF; //meters to feet
 int feet;
 float inches;
 public: //constructor (no args)
 Distance() : feet(0), inches(0.0), MTF(3.280833F)
 { } //constructor (one arg)
 Distance(float meters) : MTF(3.280833F)
 { //convert meters to Distance
 float fltfeet = MTF * meters; //convert to float feet
 feet = int(fltfeet); //feet is integer part
 inches = 12*(fltfeet-feet); //inches is what’s left
 } //constructor (two args)
 Distance(int ft, float in) : feet(ft),
 inches(in), MTF(3.280833F)
 { }
 void getdist() //get length from user
 {
 cout << “\nEnter feet: “; cin >> feet;
 cout << “Enter inches: “; cin >> inches;
 }
 void showdist() const //display distance
 { cout << feet << “\’-” << inches << ‘\”’; }

 operator float() const //conversion operator
 { //converts Distance to meters
 float fracfeet = inches/12; //convert the inches
 fracfeet += static_cast<float>(feet); //add the feet
 return fracfeet/MTF; //convert to meters
 }
 };
//
int main()
 {
 float mtrs;
 Distance dist1 = 2.35F; //uses 1-arg constructor to
 //convert meters to Distance
 cout << “\ndist1 = “; dist1.showdist();

 mtrs = static_cast<float>(dist1); //uses conversion operator

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 mtrs = static_cast<float>(dist1); //uses conversion operator
 //for Distance to meters
 cout << “\ndist1 = “ << mtrs << “ meters\n”;

 Distance dist2(5, 10.25); //uses 2-arg constructor

 mtrs = dist2; //also uses conversion op
 cout << “\ndist2 = “ << mtrs << “ meters\n”;

// dist2 = mtrs; //error, = won’t convert
 return 0;
 }

In main() the program first converts a fixed float quantity—2.35, representing meters—to feet and
inches, using the one-argument constructor:

Distance dist1 = 2.35F;

Going in the other direction, it converts a Distance to meters in the statements

mtrs = static_cast<float>(dist2);

and

mtrs = dist2;

Here’s the output:

dist1 = 7’-8.51949” ←this is 2.35 meters
dist1 = 2.35 meters ← this is 3’-3.369996”
dist2 = 1.78435 meters ← this is 5’-10.25”

We’ve seen how conversions are performed using simple assignment statements in main(). Now let’s
see what goes on behind the scenes, in the Distance member functions. Converting a user-defined
type to a basic type requires a different approach than converting a basic type to a user-defined
type. We’ll see how both types of conversions are carried out in ENGLCONV.

From Basic to User-Defined

To go from a basic type—float in this caseto a user-defined type such as Distance, we use a
constructor with one argument. These are sometimes called conversion constructors. Here’s how
this constructor looks in ENGLCONV:

Distance(float meters)
 {
 float fltfeet = MTF * meters;
 feet = int(fltfeet);
 inches = 12 * (fltfeet-feet);
 }

This function is called when an object of type Distance is created with a single argument. The
function assumes this argument represents meters. It converts the argument to feet and inches, and
assigns the resulting values to the object. Thus the conversion from meters to Distance is carried out
along with the creation of an object in the statement

Distance dist1 = 2.35;

From User-Defined to Basic

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

What about going the other way, from a user-defined type to a basic type? The trick here is to
create something called a conversion operator. Here’s where we do that in ENGLCONV:

operator float()
 {
 float fracfeet = inches/12;
 fracfeet += float(feet);
 return fracfeet/MTF;
 }

This operator takes the value of the Distance object of which it is a member, converts this value to a
float value representing meters, and returns this value.

This operator can be called with an explicit cast:

mtrs = static_cast<float>(dist1);

or with a simple assignment:

mtrs = dist2;

Both forms convert the Distance object to its equivalent float value in meters.

Conversion Between C-Strings and String Objects

Here’s another example that uses a one-argument constructor and a conversion operator. It operates
on the String class that we saw in the STRPLUS example earlier in this chapter.

// strconv.cpp
// convert between ordinary strings and class String
#include <iostream>
using namespace std;
#include <string.h> //for strcpy(), etc.
//
class String //user-defined string type
 {
 private:
 enum { SZ = 80 }; //size of all String objects
 char str[SZ]; //holds a string
 public:
 String() //no-arg constructor
 { str[0] = ‘\0’; }
 String(char s[]) //1-arg constructor
 { strcpy(str, s); } // convert C-string to String
 void display() const //display the String
 { cout << str; }
 operator char*() //conversion operator
 { return str; } //convert String to C-string
 };
//
int main()
 {
 String s1; //use no-arg constructor
 //create and initialize C-string
 char xstr[] = “Joyeux Noel! “;

 s1 = xstr; //use 1-arg constructor
 // to convert C-string to String
 s1.display(); //display String

 String s2 = “Bonne Annee!”; //uses 1-arg constructor

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 String s2 = “Bonne Annee!”; //uses 1-arg constructor
 //to initialize String
 cout << static_cast<char*>(s2); //use conversion operator
 cout << endl; //to convert String to C-string
 return 0; //before sending to << op
 }

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

The one-argument constructor converts a normal string (an array of char) to an object of class String

String(char s[])
 { strcpy(str, s); }

The C-string s is passed as an argument, and copied into the str data member in a newly created
String object, using the strcpy() library function.

This conversion will be applied when a String is created, as in

String s2 = “Bonne Annee!”;

or it will be applied in assignment statements, as in

s1 = xstr;

where s1 is type String and xstr is a C-string.

A conversion operator is used to convert from a String type to a C-string:

Table 8.1 12-Hour and 24-Hour Time
12-hour Time 24-hour Time
12:00 a.m. (midnight) 00:00:00
12:01 a.m. 00:01:00
1:00 a.m. 01:00:00
6:00 a.m. 06:00:00
11:59 a.m 11:59:00
12:00 p.m. (noon) 12:00:00
12:01 p.m. 12:01:00
6:00 p.m. 18:00:00
11:59 p.m. 23:59:00

Note that 12 a.m. (midnight) in civilian time is 00 hours in military time. There is no 0 hours in
civilian time. (In written works, noon is formally designated 12:00 m. and midnight is 12:00 p.m.,

but these aren’t used in digital displays.)

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

operator char*()
 { return str; }

The use of the asterisk in this expression means pointer to. We won’t explore pointers until Chapter
10, but its use here is not hard to figure out. It means pointer to char, which is very similar to array
of type char. Thus char* is similar to char[]. It’s another way of specifying a C-string data type.

The conversion operator is used by the compiler in the statement

cout << static_cast<char*>(s2);

Here the s2 variable is an argument supplied to the overloaded operator <<. Since the << operator
doesn’t know anything about our user-defined String type, the compiler looks for a way to convert
to a type that << does know about. We specify the type we want to convert it to with the char* cast,
so it looks for a conversion from String to C-string, finds our operator char*() function, and uses it to
generate a C-string, which is then sent on to << to be displayed. (The effect is similar to calling the
String::display() function, but given the ease and intuitive clarity of displaying with <<, the display()
function is redundant and could be removed.)

Here’s the output from STRCONV:

Joyeux Noel! Bonne Annee!

The STRCONV example demonstrates that conversions take place automatically not only in
assignment statements but in other appropriate places, such as in arguments sent to operators (like
<<) or functions. If you supply an operator or a function with arguments of the wrong type, they
will be converted to arguments of an acceptable type, provided you have defined such a conversion.

Note that you can’t use an explicit assignment statement to convert a String to a C-string:

xstr = s2;

The C-string xstr is an array, and you can’t normally assign to arrays (although, as we’ll see in
Chapter 11, when you overload the assignment operator, all sorts of things are possible).

Conversions Between Objects of Different Classes

What about converting between objects of different user-defined classes? The same two methods
just shown for conversions between basic types and user-defined types also apply to conversions
between two user-defined types. That is, you can use a one-argument constructor or you can use a
conversion operator. The choice depends on whether you want to put the conversion routine in the
class declaration of the source object or of the destination object. For example, suppose you say

objecta = objectb;

where objecta is a member of class A and objectb is a member of class B. Is the conversion routine
located in class A (the destination class, since objecta receives the value) or class B (the source
class)? We’ll look at both cases.

Two Kinds of Time

Our example programs will convert between two ways of measuring time: 12-hour time and 24-
hour time. These methods of telling time are sometimes called civilian time and military time. Our

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

hour time. These methods of telling time are sometimes called civilian time and military time. Our
time12 class will represent civilian time, as used in digital clocks and airport flight departure
displays. We’ll assume that in this context there is no need for seconds, so time12 uses only hours
(from 1 to 12), minutes, and an “a.m.” or “p.m.” designation. Our time24 class, which is for more
exacting applications such as air navigation, uses hours (from 00 to 23), minutes, and seconds.
Table 8.1 shows the differences.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Routine in Source Object

The first example program shows a conversion routine located in the source class. When the
conversion routine is in the source class, it is commonly implemented as a conversion operator.
Here’s the listing for TIMES1:

//times1.cpp
//converts from time24 to time12 using operator in time24
#include <iostream>
#include <string>
using namespace std;
//
class time12
 {
 private:
 bool pm; //true = pm, false = am
 int hrs; //1 to 12
 int mins; //0 to 59
 public: //no-arg constructor
 time12() : pm(true), hrs(0), mins(0)
 { }
 //3-arg constructor
 time12(bool ap, int h, int m) : pm(ap), hrs(h), mins(m)
 { }
 void display() const //format: 11:59 p.m.
 {
 cout << hrs << ‘:’;
 if(mins < 10)
 cout << ‘0’; //extra zero for “01”
 cout << mins << ‘ ‘;
 string am_pm = pm ? “p.m.” : “a.m.”;
 cout << am_pm;
 }
 };
//
class time24
 {
 private:
 int hours; //0 to 23
 int minutes; //0 to 59
 int seconds; //0 to 59
 public: //no-arg constructor
 time24() : hours(0), minutes(0), seconds(0)
 { }
 time24(int h, int m, int s) : //3-arg constructor
 hours(h), minutes(m), seconds(s)
 { }
 void display() const //format: 23:15:01
 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {
 if(hours < 10) cout << ‘0’;
 cout << hours << ‘:’;
 if(minutes < 10) cout << ‘0’;
 cout << minutes << ‘:’;
 if(seconds < 10) cout << ‘0’;
 cout << seconds;
 }
 operator time12(); const //conversion operator
 };
//--
time24::operator time12() const //conversion operator
 {
 int hrs24 = hours;
 bool pm = hours < 12 ? false : true; //find am/pm
 //round secs
 int roundMins = seconds < 30 ? minutes : minutes+1;
 if(roundMins == 60) //carry mins?
 {
 roundMins=0;
 ++hrs24;
 if(hrs24 == 12 || hrs24 == 24) //carry hrs?
 pm = (pm==true) ? false : true; //toggle am/pm
 }
 int hrs12 = (hrs24 < 13) ? hrs24 : hrs24-12;
 if(hrs12==0) //00 is 12 a.m.
 { hrs12=12; pm=false; }
 return time12(pm, hrs12, roundMins);
 }
//
int main()
 {
 int h, m, s;

 while(true)
 { //get 24-hr time from user
 cout << “Enter 24-hour time: \n”;
 cout << “ Hours (0 to 23): “; cin >> h;
 if(h > 23) //quit if hours > 23
 return(1);
 cout << “ Minutes: “; cin >> m;
 cout << “ Seconds: “; cin >> s;

 time24 t24(h, m, s); //make a time24
 cout << “You entered: “; //display the time24
 t24.display();

 time12 t12 = t24; //convert time24 to time12

 cout << “\n12-hour time: “; //display equivalent time12
 t12.display();
 cout << “\n\n”;
 }
 return 0;
 }

In the main() part of TIMES1, we define an object of type time24, called t24, and give it values for
hours, minutes, and seconds obtained from the user. We also define an object of type time12, called
t12, and initialize it to t24 in the statement

time 12 t12 = t24;

Since these objects are from different classes, the assignment involves a conversion, and—as we
specified—in this program the conversion operator is a member of the time24 class. Here’s what it
looks like:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

time24::operator time12() const //conversion operator
 {
 int hrs24 = hours;
 bool pm = hours < 12 ? false : true; //find am/pm
 //round secs
 int roundMins = seconds < 30 ? minutes : minutes+1;
 if(roundMins == 60) //carry mins?
 {
 roundMins=0;
 ++hrs24;
 if(hrs24 == 12 || hrs24 == 24) //carry hrs?
 pm = (pm==true) ? false : true; //toggle am/pm
 }
 int hrs12 = (hrs24 < 13) ? hrs24 : hrs24-12;
 if(hrs12==0) //00 is 12 a.m.
 { hrs12=12; pm=false; }
 return time12(pm, hrs12, roundMins);
 }

This function transforms the object of which it is a member to a time12 object, and returns this
object, which main() then assigns to t12. Here’s some interaction with TIMES1:

Enter 24-hour time:
 Hours (0 to 23): 17
 Minutes: 59
 Seconds: 45
You entered: 17:59:45
12-hour time: 6:00 p.m.

The seconds value is rounded up, pushing the 12-hour time from 5:59 p.m. to 6:00 p.m. Entering an
hours value greater than 23 causes the program to exit.

Routine in Destination Object

Let’s see how the same conversion is carried out when the conversion routine is in the destination
class. In this situation it’s common to use a one-argument constructor. However, things are
complicated by the fact that the constructor in the destination class must be able to access the data
in the source class to perform the conversion. The data in time24—hours, minutes and seconds—is
private, so we must provide special member functions in time24 to allow direct access to it. These
are called getHrs(), getMins(), and getSecs().

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Here’s the listing for TIMES2:

//times2.cpp
//converts from time24 to time12 using constructor in time12
#include <iostream>
#include <string>
using namespace std;
//
class time24
 {
 private:
 int hours; //0 to 23
 int minutes; //0 to 59
 int seconds; //0 to 59
 public: //no-arg constructor
 time24() : hours(0), minutes(0), seconds(0)
 { }
 time24(int h, int m, int s) : //3-arg constructor
 hours(h), minutes(m), seconds(s)
 { }
 void display() const //format 23:15:01
 {
 if(hours < 10) cout << ‘0’;
 cout << hours << ‘:’;
 if(minutes < 10) cout << ‘0’;
 cout << minutes << ‘:’;
 if(seconds < 10) cout << ‘0’;
 cout << seconds;
 }
 int getHrs() const { return hours; }
 int getMins() const { return minutes; }
 int getSecs() const { return seconds; }
 };
//
class time12
 {
 private:
 bool pm; //true = pm, false = am
 int hrs; //1 to 12
 int mins; //0 to 59
 public: //no-arg constructor
 time12() : pm(true), hrs(0), mins(0)
 { }
 time12(time24); //1-arg constructor
 //3-arg constructor
 time12(bool ap, int h, int m) : pm(ap), hrs(h), mins(m)
 { }
 void display() const
 {
 cout << hrs << ‘:’;
 if(mins < 10) cout << ‘0’; //extra zero for “01”

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if(mins < 10) cout << ‘0’; //extra zero for “01”
 cout << mins << ‘ ‘;
 string am_pm = pm ? “p.m.” : “a.m.”;
 cout << am_pm;
 }
 };
//--
time12::time12(time24 t24) //1-arg constructor
 { //converts time24 to time12
 int hrs24 = t24.getHrs(); //get hours
 //find am/pm
 pm = t24.getHrs() < 12 ? false : true;

 mins = (t24.getSecs() < 30) ? //round secs
 t24.getMins() : t24.getMins()+1;
 if(mins == 60) //carry mins?
 {
 mins=0;
 ++hrs24;
 if(hrs24 == 12 || hrs24 == 24) //carry hrs?
 pm = (pm==true) ? false : true; //toggle am/pm
 }
 hrs = (hrs24 < 13) ? hrs24 : hrs24-12; //convert hrs
 if(hrs==0) //00 is 12 a.m.
 { hrs=12; pm=false; }
 }
//
int main()
 {
 int h, m, s;

 while(true)
 { //get 24-hour time from user
 cout << “Enter 24-hour time: \n”;
 cout << “ Hours (0 to 23): “; cin >> h;
 if(h > 23) //quit if hours > 23
 return(1);
 cout << “ Minutes: “; cin >> m;
 cout << “ Seconds: “; cin >> s;

 time24 t24(h, m, s); //make a time24
 cout << “You entered: “; //display the time24
 t24.display();

 time12 t12 = t24; //convert time24 to time12

 cout << “\n12-hour time: “; //display equivalent time12
 t12.display();
 cout << “\n\n”;
 }
 return 0;
 }

Here’s the conversion routine, a one-argument constructor from the time12 class:

time12::time12(time24 t24) //1-arg constructor
 { //converts time24 to time12
 int hrs24 = t24.getHrs(); //get hours
 //find am/pm
 pm = t24.getHrs() < 12 ? false : true;

 mins = (t24.getSecs() < 30) ? //round secs
 t24.getMins() : t24.getMins()+1;
 if(mins == 60) //carry mins?
 {
 mins=0;
 ++hrs24;
 if(hrs24 == 12 || hrs24 == 24) //carry hrs?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if(hrs24 == 12 || hrs24 == 24) //carry hrs?
 pm = (pm==true) ? false : true; //toggle am/pm
 }
 hrs = (hrs24 < 13) ? hrs24 : hrs24-12; //convert hrs
 if(hrs==0) //00 is 12 a.m.
 { hrs=12; pm=false; }
 }

This function sets the object of which it is a member to values that correspond to the time24 values
of the object received as an argument. It works in much the same way as the conversion operator in
TIMES1, except that it must work a little harder to access the data in the time24 object, using getHrs()
and similar functions.

The main() part of TIMES2 is the same as that in times1. The one-argument constructor again allows
the time24 to time12 conversion to take place in the statement

time12 t12 = t24;

The output is similar as well. The difference is behind the scenes, where the conversion is handled
by a constructor in the destination object rather than a conversion operator in the source object.

Conversions: When to Use What

When should you use the one-argument constructor in the destination class, as opposed to the
conversion operator in the source class? Mostly you can take your pick. However, sometimes the
choice is made for you. If you have purchased a library of classes, you may not have access to their
source code. If you use an object of such a class as the source in a conversion, then you’ll have
access only to the destination class, and you’ll need to use a one-argument constructor. If the library
class object is the destination, then you must use a conversion operator in the source.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Pitfalls of Operator Overloading and Conversion

Operator overloading and type conversions give you the opportunity to create what amounts to an
entirely new language. When a, b, and c are objects from user-defined classes, and + is overloaded,
the statement

a = b + c;

means something quite different than it does when a, b, and c are variables of basic data types. The
ability to redefine the building blocks of the language can be a blessing in that it can make your
listing more intuitive and readable. It can also have the opposite effect, making your listing more
obscure and hard to understand. Here are some guidelines.

Use Similar Meanings

Use overloaded operators to perform operations that are as similar as possible to those performed
on basic data types. You could overload the + sign to perform subtraction, for example, but that
would hardly make your listings more comprehensible.

Overloading an operator assumes that it makes sense to perform a particular operation on objects of
a certain class. If we’re going to overload the + operator in class X, then the result of adding two
objects of class X should have a meaning at least somewhat similar to addition. For example, in this
chapter we showed how to overload the + operator for the English Distance class. Adding two
distances is clearly meaningful. We also overloaded + for the String class. Here we interpret the
addition of two strings to mean placing one string after another to form a third. This also has an
intuitively satisfying interpretation. But for many classes it may not be reasonable to talk about
“adding” their objects. You probably wouldn’t want to add two objects of a class called employee
that held personal data, for example.

Use Similar Syntax

Use overloaded operators in the same way you use basic types. For example, if alpha and beta are
basic types, the assignment operator in the statement

alpha += beta;

sets alpha to the sum of alpha and beta. Any overloaded version of this operator should do something
analogous. It should probably do the same thing as

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

alpha = alpha + beta;

where the + is overloaded.

Some syntactical characteristics of operators can’t be changed even if you want them to. As you
may have discovered, you can’t overload a binary operator to be a unary operator, or vice versa.

Show Restraint

Remember that if you have overloaded the + operator, anyone unfamiliar with your listing will need
to do considerable research to find out what a statement like

a = b + c;

really means. If the number of overloaded operators grows too large, and if they are used in non-
intuitive ways, then the whole point of using them is lost, and the listing becomes less readable
instead of more. Use overloaded operators sparingly, and only when the usage is obvious. When in
doubt, use a function instead of an overloaded operator, since a function name can state its own
purpose. If you write a function to find the left side of a string, for example, you’re better off
calling it getleft() than trying to overload some operator like && to do the same thing.

Avoid Ambiguity

Suppose you use both a one-argument constructor and a conversion operator to perform the same
conversion (time24 to time12, for example). How will the compiler know which conversion to use? It
won’t. The compiler does not like to be placed in a situation where it doesn’t know what to do, and
it will signal an error. So avoid doing the same conversion in more than one way.

Not All Operators Can Be Overloaded

The following operators cannot be overloaded: the member access or dot operator (.), the scope
resolution operator (::), and the conditional operator (?:). Also, the pointer-to-member operator (->),
which we have not yet encountered, cannot be overloaded. In case you wondered, no, you can’t
create new operators (like *&) and try to overload them; only existing operators can be overloaded.

Keywords explicit and mutable

Let’s look at two unusual keywords: explicit and mutable. They have quite different effects, but are
grouped together here because they both modify class members. The explicit keyword relates to data
conversion, but mutable has a more subtle purpose.

Preventing Conversions with explicit

There may be some specific conversions you have decided are a good thing, and you’ve taken steps
to make them possible by installing appropriate conversion operators and one-argument
constructors, as shown in the TIME1 and TIME2 examples. However, there may be other conversions
that you don’t want to happen. You should actively discourage any conversion that you don’t want.
This prevents unpleasant surprises.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

It’s easy to prevent a conversion performed by a conversion operator: just don’t define the operator.
However, things aren’t so easy with constructors. You may want to construct objects using a single
value of another type, but you may not want the implicit conversions a one-argument constructor
makes possible in other situations. What to do?

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Standard C++ includes a keyword, explicit, to solve this problem. It’s placed just before the
declaration of a one-argument constructor. The EXPLICIT example program (based on the ENGLCON
program) shows how this looks.

//explicit.cpp
#include <iostream>
using namespace std;
//
class Distance //English Distance class
 {
 private:
 const float MTF; //meters to feet
 int feet;
 float inches;
 public: //no-args constructor
 Distance() : feet(0), inches(0.0), MTF(3.280833F)
 { }
 //EXPLICIT one-arg constructor
 explicit Distance(float meters) : MTF(3.280833F)
 {
 float fltfeet = MTF * meters;
 feet = int(fltfeet);
 inches = 12*(fltfeet-feet);
 }
 void showdist() //display distance
 { cout << feet << “\’-” << inches << ‘\”’; }
 };
//
int main()
 {
 void fancyDist(Distance); //declaration
 Distance dist1(2.35F); //uses 1-arg constructor to
 //convert meters to Distance

// Distance dist1 = 2.35F; //ERROR if ctor is explicit
 cout << “\ndist1 = “; dist1.showdist();

 float mtrs = 3.0F;
 cout << “\ndist1 “;
// fancyDist(mtrs); //ERROR if ctor is explicit

 return 0;
 }
//--
void fancyDist(Distance d)
 {
 cout << “(in feet and inches) = “;
 d.showdist();
 cout << endl;
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

This program includes a function (fancyDist()) that embellishes the output of a Distance object by
printing the phrase “(in feet and inches)” before the feet and inches figures. The argument to this
function is a Distance variable, and you can call fancyDist() with such a variable with no problem.

The tricky part is that, unless you take some action to prevent it, you can also call fancyDist() with a
variable of type float as the argument:

fancyDist(mtrs);

The compiler will realize it’s the wrong type and look for a conversion operator. Finding a Distance
constructor that takes type float as an argument, it will arrange for this constructor to convert float
Distance and pass the Distance value to the function. This is an implicit conversion, one which you
may not have intended to make possible.

However, if we make the constructor explicit, we prevent implicit conversions. You can check this
by removing the comment symbol from the call to fancyDist() in the program: the compiler will tell
you it can’t perform the conversion. Without the explicit keyword, this call is perfectly legal.

As a side effect of the explicit constructor, note that you can’t use the form of object initialization
that uses an equal sign:

Distance dist1 = 2.35F;

Whereas the form with parentheses,

Distance dist1(2.35F);

works as it always has.

Changing const Object Data Using mutable

Ordinarily, when you create a const object (as described in Chapter 6), you want a guarantee that
none of its member data can be changed. However, a situation occasionally arises where you want
to create const objects that have some specific member data item that needs to be modified despite
the object’s constness.

As an example, let’s imagine a window, such as Windows’ programs commonly draw on the
screen. It may be that some of the features of the window, such as its scrollbars and menus, are
owned by the window. Ownership is common in various programming situations, and indicates a
greater degree of independence than when one object is an attribute of another. In such a situation
an object may remain unchanged, except that its owner may change. A scrollbar retains the same
size, color, and orientation, but its ownership may be transferred from one window to another. It’s
like what happens when your bank sells your mortgage to another bank; all the terms of the
mortgage are the same, only the owner is different.

Let’s say we want to be able to create const scrollbars in which attributes remain unchanged, except
for their ownership. That’s where the mutable keyword comes in. The MUTABLE program shows
how this looks.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

//mutable.cpp
#include <iostream>
#include <string>
using namespace std;
//
class scrollbar
 {
 private:
 int size; //related to constness
 mutable string owner; //not relevant to constness
 public:
 scrollbar(int sz, string own) : size(sz), owner(own)
 { }
 void setSize(int sz) //changes size
 { size = sz; }
 void setOwner(string own) const //changes owner
 { owner = own; }
 int getSize() const //returns size
 { return size; }
 string getOwner() const //returns owner
 { return owner; }
 };
//
int main()
 {
 const scrollbar sbar(60, “Window1”);

// sbar.setSize(100); //can’t do this to const obj
 sbar.setOwner(“Window2”); //this is OK
 //these are OK too
 cout << sbar.getSize() << “, “ << sbar.getOwner() << endl;
 return 0;
 }

The size attribute represents the various scrollbar data that cannot be modified in const objects. The
owner attribute, however, can change, even if the object is const. To permit this, it’s made mutable. In
main() we create a const object sbar. Its size cannot be modified, but its owner can, using the setOwner()
function. (In a non-const object, of course, both attributes could be modified.) In this situation sbar
said to have logical constness. That means that in theory it can’t be modified, but in practice it can,
in a limited way.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 8.2 Type Conversions
Routine In Destination Routine In Source

Basic to basic (Built-In Conversion Operators)
Basic to class Constructor NA
Class to basic NA Conversion operator
Class to class Constructor Conversion operator

A constructor given the keyword explicit cannot be used in implicit data conversion situations. A
data member given the keyword mutable can be changed, even if its object is const.

Questions

Answers to questions can be found in Appendix G, “Answers to Questions and Exercises.”

1. Operator overloading is

a. making C++ operators work with objects.
b. giving C++ operators more than they can handle.
c. giving new meanings to existing C++ operators.

d. making new C++ operators.

2. Assuming that class X does not use any overloaded operators, write a statement that
subtracts an object of class X, x1, from another such object, x2, and places the result in x3

3. Assuming that class X includes a routine to overload the - operator, write a statement that
would perform the same task as that specified in Question 2.

4. True or false: The >= operator can be overloaded.
5. Write a complete definition for an overloaded operator for the Counter class of the

COUNTPP1 example that, instead of incrementing the count, decrements it.
6. How many arguments are required in the definition of an overloaded unary operator?
7. Assume a class C with objects obj1, obj2, and obj3. For the statement obj3 = obj1 - obj2 to

work correctly, the overloaded - operator must

a. take two arguments.
b. return a value.

c. create a named temporary object.
d. use the object of which it is a member as an operand.

8. Write a complete definition for an overloaded ++ operator for the Distance class from the
ENGLPLUS example. It should add 1 to the feet member data, and make possible statements

like:

dist1++;

9. Repeat Question 8, except statements like the following should be allowed:

dist2 = dist1++;

10. When used in prefix form, what does the overloaded ++ operator do differently from
what it does in postfix form?

11. Here are two declarators that describe ways to add two string objects:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11. Here are two declarators that describe ways to add two string objects:

void add(String s1, String s2)
String operator + (String s)

Match the following from the first declarator with the appropriate selection from the second:
function name (add) matches _________.

return value (type void) matches _________.
first argument (s1) matches _________.

second argument (s2) matches _________.
object of which function is a member matches _________.

a. argument (s)
b. object of which operator is a member

c. operator (+)
d. return value (type String)

e. no match for this item

12. True or false: An overloaded operator always requires one less argument than its number
of operands.

13. When you overload an arithmetic assignment operator, the result

a. goes in the object to the right of the operator.
b. goes in the object to the left of the operator.

c. goes in the object of which the operator is a member.
d. must be returned.

14. Write the complete definition of an overloaded ++ operator that works with the String
class from the STRPLUS example and has the effect of changing its operand to uppercase. You
can use the library function toupper() (header file CCTYPE), which takes as its only argument
the character to be changed and returns the changed character (or the same character if no

change is necessary).
15. To convert from a user-defined class to a basic type, you would most likely use

a. a built-in conversion operator.
b. a one-argument constructor.

c. an overloaded = operator.
d. a conversion operator that’s a member of the class.

16. True or false: The statement objA=objB; will cause a compiler error if the objects are of
different classes.

17. To convert from a basic type to a user-defined class, you would most likely use

a. a built-in conversion operator.
b. a one-argument constructor.

c. an overloaded = operator.
d. a conversion operator that’s a member of the class.

18. True or false: If you’ve defined a constructor to handle definitions like aclass obj = intvar
you can also make statements like obj = intvar;.

19. If objA is in class A, and objB is in class B, and you want to say objA = objB;, and you want
the conversion routine to go in class A, what type of conversion routine might you use?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Summary

In this chapter we’ve seen how the normal C++ operators can be given new meanings when applied
to user-defined data types. The keyword operator is used to overload an operator, and the resulting
operator will adopt the meaning supplied by the programmer.

Closely related to operator overloading is the issue of type conversion. Some conversions take place
between user-defined types and basic types. Two approaches are used in such conversions: A one-
argument constructor changes a basic type to a user-defined type, and a conversion operator
converts a user-defined type to a basic type. When one user-defined type is converted to another,
either approach can be used.

Table 8.2 summarizes these conversions.

20. True or false: The compiler won’t object if you overload the * operator to perform
division.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Exercises

Answers to starred exercises can be found in Appendix G.

*1. To the Distance class in the ENGLPLUS program in this chapter, add an overloaded -
operator that subtracts two distances. It should allow statements like dist3=dist1-dist2;. Assume
the operator will never be used to subtract a larger number from a smaller one (that is,
negative distances are not allowed).
*2. Write a program that substitutes an overloaded += operator for the overloaded + operator
in the STRPLUS program in this chapter. This operator should allow statements like

s1 += s2;

where s2 is added (concatenated) to s1 and the result is left in s1. The operator should also
permit the results of the operation to be used in other calculations, as in

s3 = s1 += s2;

*3. Modify the time class from Exercise 3 in Chapter 6 so that instead of a function add_time()
it uses the overloaded + operator to add two times. Write a program to test this class.
*4. Create a class Int based on Exercise 1 in Chapter 6. Overload four integer arithmetic
operators (+, -, *, and /) so that they operate on objects of type Int. If the result of any such
arithmetic operation exceeds the normal range of ints (in a 32-bit environment)from
2,147,483,648 to -2,147,483,647have the operator print a warning and terminate the program.
Such a data type might be useful where mistakes caused by arithmetic overflow are
unacceptable. Hint: To facilitate checking for overflow, perform the calculations using type
long double. Write a program to test this class.
5. Augment the time class referred to in Exercise 3 to include overloaded increment (++) and
decrement (--) operators that operate in both prefix and postfix notation and return values.
Add statements to main() to test these operators.
6. Add to the time class of Exercise 5 the ability to subtract two time values using the
overloaded (-) operator, and to multiply a time value by a number of type float, using the
overloaded (*) operator.
7. Modify the fraction class in the four-function fraction calculator from Exercise 11 in
Chapter 6 so that it uses overloaded operators for addition, subtraction, multiplication, and
division. (Remember the rules for fraction arithmetic in Exercise 12 in Chapter 3, “Loops and
Decisions.”) Also overload the == and != comparison operators, and use them to exit from the
loop if the user enters 0/1, 0/1 for the values of the two input fractions. You may want to
modify the lowterms() function so that it returns the value of its argument reduced to lowest

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

modify the lowterms() function so that it returns the value of its argument reduced to lowest
terms. This makes it more useful in the arithmetic functions, where it can be applied just
before the answer is returned.
8. Modify the bMoney class from Exercise 12 in Chapter 7, “Arrays and Strings,” to include
the following arithmetic operations, performed with overloaded operators:

bMoney = bMoney + bMoney
bMoney = bMoney - bMoney
bMoney = bMoney * long double (price per widget times number of widgets)
long double = bMoney / bMoney (total price divided by price per widget)
bMoney = bMoney / long double (total price divided by number of widgets)

Notice that the / operator is overloaded twice. The compiler can distinguish between the two
usages because the arguments are different. Remember that it’s easy to perform arithmetic
operations on bMoney objects by performing the same operation on their long double data.
Make sure the main() program asks the user to enter two money strings and a floating-point
number. It should then carry out all five operations and display the results. This should
happen in a loop, so the user can enter more numbers if desired.
Some money operations don’t make sense: bMoney * bMoney doesn’t represent anything real,
since there is no such thing as square money; and you can’t add bMoney to long double (what’s
dollars plus widgets?). To make it impossible to compile such illegal operations, don’t
include conversion operators for bMoney to long double or long double to bMoney. If you do, and
you write an expression like

bmon2 = bmon1 + widgets; // doesn’t make sense

then the compiler will automatically convert widgets to bMoney and carry out the addition.
Without them, the compiler will flag such conversions as an error, making it easier to catch
conceptual mistakes. Also, make any conversion constructors explicit.
There are some other plausible money operations that we don’t yet know how to perform
with overloaded operators, since they require an object on the right side of the operator but
not the left:

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

long double * bMoney // can’t do this yet: bMoney only on right
long double / bMoney // can’t do this yet: bMoney only on right

We’ll learn how to handle this situation when we discuss friend functions in Chapter 11.
9. Augment the safearay class in the ARROVER3 program in this chapter so that the user can
specify both the upper and lower bound of the array (indexes running from 100 to 200, for
example). Have the overloaded subscript operator check the index each time the array is
accessed to ensure it is not out of bounds. You’ll need to add a two-argument constructor that
specifies the upper and lower bounds. Since we have not yet learned how to allocate memory
dynamically, the member data will still be an array that starts at 0 and runs up to 99, but
perhaps you can map the indexes for the safearay into different indexes in the real int array. For
example, if the client selects a range from 100 to 175, you could map this into the range from
arr[0] to arr[75].
10. For math buffs only: Create a class Polar that represents the points on the plain as polar
coordinates (radius and angle). Create an overloaded +operator for addition of two Polar
quantities. “Adding” two points on the plain can be accomplished by adding their X
coordinates and then adding their Y coordinates. This gives the X and Y coordinates of the
“answer.” Thus you’ll need to convert two sets of polar coordinates to rectangular
coordinates, add them, then convert the resulting rectangular representation back to polar.
11. Remember the sterling structure? We saw it in Exercise 10 in Chapter 2, “C++
Programming Basics,” and in Exercise 11 in Chapter 5, among other places. Turn it into a
class, with pounds (type long), shillings (type int), and pence (type int) data items. Create the
following member functions:

• no-argument constructor
• one-argument constructor, taking type double (for converting from decimal pounds)
• three-argument constructor, taking pounds, shillings, and pence
• getSterling() to get an amount in pounds, shillings, and pence from the user, format
£9.19.11
• putSterling() to display an amount in pounds, shillings, and pence, format £9.19.11
• addition (sterling + sterling) using overloaded + operator
• subtraction (sterling - sterling) using overloaded - operator
• multiplication (sterling * double) using overloaded * operator
• division (sterling / sterling) using overloaded / operator
• division (sterling / double) using overloaded / operator
• operator double (to convert to double)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To perform arithmetic, you could (for example) add each object’s data separately: Add the
pence, carry, add the shillings, carry, and so on. However, it’s easier to use the conversion
operator to convert both sterling objects to type double, perform the arithmetic on the doubles,
and convert back to sterling. Thus the overloaded + operator looks like this:

sterling sterling::operator + (sterling s2)
 {
 return sterling(double(sterling(pounds, shillings, pence))
 + double(s2));
 }

This creates two temporary double variables, one derived from the object of which the
function is a member, and one derived from the argument s2. These double variables are then
added, and the result is converted back to sterling and returned.
Notice that we use a different philosophy with the sterling class than with the bMoney class.
With sterling we use conversion operators, thus giving up the ability to catch illegal math
operations but gaining simplicity in writing the overloaded math operators.
12. Write a program that incorporates both the bMoney class from Exercise 8 and the sterling
class from Exercise 11. Write conversion operators to convert between bMoney and sterling,
assuming that one pound (£1.0.0) equals fifty dollars ($50.00). This was the approximate
exchange rate in the 19th century when the British Empire was at its height and the pounds-
shillings-pence format was in use. Write a main() program that allows the user to enter an
amount in either currency, and that then converts it to the other currency and displays the
result. Minimize any modifications to the existing bMoney and sterling classes.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

CHAPTER 9
INHERITANCE

You will learn about the following in this chapter:
• Reasons for inheritance • Multiple inheritance
• Base and derived classes • Inheritance and program

development
• Access control
• Class hierarchies

Inheritance is probably the most powerful feature of Object-Oriented Programming, after classes
themselves. Inheritance is the process of creating new classes, called derived classes, from existing
or base classes. The derived class inherits all the capabilities of the base class but can add
embellishments and refinements of its own. The base class is unchanged by this process. The
inheritance relationship is shown in Figure 9.1.

The arrow in Figure 9.1 goes in the opposite direction of what you might expect. If it pointed down
we would label it inheritance. However, the more common approach is to point the arrow up, from
the derived class to the base class, and to think of it as a “derived from” arrow.

Inheritance is an essential part of OOP. Its big payoff is that it permits code reusability. Once a base
class is written and debugged, it need not be touched again, but, using inheritance, can nevertheless
be adapted to work in different situations. Reusing existing code saves time and money and
increases a program’s reliability. Inheritance can also help in the original conceptualization of a
programming problem, and in the overall design of the program.

An important result of reusability is the ease of distributing class libraries. A programmer can use a
class created by another person or company, and, without modifying it, derive other classes from it
that are suited to particular situations.

We’ll examine these features of inheritance in more detail after we’ve seen some specific instances
of inheritance at work.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9.1 Inheritance.

Derived Class and Base Class

Remember the COUNTPP3 example from Chaptery 8, “Operator Overloading?” This program used a
class Counter as a general-purpose counter variable. A count could be initialized to 0 or to a
specified number with constructors, incremented with the ++ operator, and read with the get_count()
operator.

Let’s suppose that we have worked long and hard to make the Counter class operate just the way we
want, and we’re pleased with the results, except for one thing. We really need a way to decrement
the count. Perhaps we’re counting people entering a bank, and we want to increment the count
when they come in and decrement it when they go out, so that the count represents the number of
people in the bank at any moment.

We could insert a decrement routine directly into the source code of the Counter class. However,
there are several reasons why we might not want to do this. First, the Counter class works very well
and has undergone many hours of testing and debugging. (Of course that’s an exaggeration in this
case, but it would be true in a larger and more complex class.) If we start fooling around with the
source code for Counter, the testing process will need to be carried out again, and of course we may
foul something up and spend hours debugging code that worked fine before we modified it.

In some situations there might be another reason for not modifying the Counter class: We might not
have access to its source code, especially if it had been distributed as part of a class library. (We’ll
discuss this issue further in Chapter 13, “Multifile Programs.”)

To avoid these problems we can use inheritance to create a new class based on Counter, without
modifying Counter itself. Here’s the listing for COUNTEN, which includes a new class, CountDn, that

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

modifying Counter itself. Here’s the listing for COUNTEN, which includes a new class, CountDn, that
adds a decrement operator to the Counter class:

// counten.cpp
// inheritance with Counter class
#include <iostream>
using namespace std;
//
class Counter //base class
 {
 protected: //NOTE: not private
 unsigned int count; //count
 public:
 Counter() : count(0) //no-arg constructor
 { }
 Counter(int c) : count(c) //1-arg constructor
 { }
 unsigned int get_count() const //return count
 { return count; }
 Counter operator ++ () //incr count (prefix)
 { return Counter(++count); }
 };
//
class CountDn : public Counter //derived class
 {
 public:
 Counter operator -- () //decr count (prefix)
 { return Counter(--count); }
 };
//
int main()
 {
 CountDn c1; //c1 of class CountDn

 cout << “\nc1=” << c1.get_count(); //display c1

 ++c1; ++c1; ++c1; //increment c1, 3 times
 cout << “\nc1=” << c1.get_count(); //display it

 --c1; --c1; //decrement c1, twice
 cout << “\nc1=” << c1.get_count(); //display it
 cout << endl;
 return 0;
 }

The listing starts off with the Counter class, which (with one small exception, which we’ll look at
later) has not changed since its appearance in COUNTPP3. Notice that, for simplicity we haven’t
modeled this program on the POSTFIX program, which incorporated the second overloaded ++
operator to provide postfix notation.

Specifying the Derived Class

Following the Counter class in the listing is the specification for a new class, CountDn. This class
incorporates a new function, operator--(), which decrements the count. However—and here’s the key
point—the new CountDn class inherits all the features of the Counter class. CountDn doesn’t need a
constructor or the get_count() or operator++() functions, because these already exist in Counter.

The first line of CountDn specifies that it is derived from Counter:

class CountDn : public Counter

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

class CountDn : public Counter

Here we use a single colon (not the double colon used for the scope resolution operator), followed
by the keyword public and the name of the base class Counter. This sets up the relationship between
the classes. This line says CountDn is derived from the base class Counter. (We’ll explore the effect of
the keyword public later.) The relationship is shown in Figure 9.2.

Remember that the arrow in diagrams like this means derived from. The arrows point this way to
emphasize that the derived class refers to functions and data in the base class, while the base class
has no access to the derived class. Mathematicians call this kind of diagram a directed acyclic
graph, or DAG (as in “DAGonnit, I drew the arrow the wrong way”). They are also called
inheritance trees.

Figure 9.2 Class hierarchy in COUNTEN.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 9.1 Inheritance and Accessibility
Access
Specifier

Accessible from
Own Class

Accessible from
Derived Class

Accessible from
Objects Outside Class

public yes yes yes
protected yes yes no
private yes no no

Figure 9.4 Access specifiers with inheritance.

The moral is that if you are writing a class that you suspect might be used, at any point in the
future, as a base class for other classes, then any member data that the derived classes might need to
access should be made protected rather than private. This ensures that the class is “inheritance ready.”

Dangers of protected

You should know that there’s a disadvantage to making class members protected. Say you’ve written
a class library, which you’re distributing to the public. Any programmer who buys this library can
access protected members of your classes simply by deriving other classes from them. This makes
protected members considerably less secure than private members. To avoid corrupted data, it’s

often safer to force derived classes to access data in the base class using only public functions in the
base class, just as ordinary main() programs must do. Using the protected specifier leads to simpler

programming, so we rely on it—perhaps a bit too much—in the examples in this book. You’ll need
to weigh the advantages of protected against its disadvantages in your own programs.

Base Class Unchanged

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Accessing Base Class Members

An important topic in inheritance is knowing when a member function in the base class can be used
by objects of the derived class. This is called accessibility. Let’s see how the compiler handles the
accessibility issue in the COUNTEN example.

Substituting Base Class Constructors

In the main() part of COUNTEN we create an object of class CountDn:

CountDn c1;

This causes c1 to be created as an object of class CountDn and initialized to 0. But wait—how is this
possible? There is no constructor in the CountDn class specifier, so what entity carries out the
initialization? It turns out that—at least under certain circumstances—if you don’t specify a
constructor, the derived class will use an appropriate constructor from the base class. In COUNTEN
there’s no constructor in CountDn, so the compiler uses the no-argument constructor from Count.

This flexibility on the part of the compiler—using one function because another isn’t available—
appears regularly in inheritance situations. Generally, the substitution is what you want, but
sometimes it can be unnerving.

Substituting Base Class Member Functions

The object c1 of the CountDn class also uses the operator++() and get_count() functions from the Counter
class. The first is used to increment c1:

++c1;

and the second is used to display the count in c1:

cout << “\nc1=” << c1.get_count();

Remember that, even if other classes have been derived from it, the base class remains unchanged.
In the main() part of COUNTEN, we could define objects of type Counter:

Counter c2; ???? object of base class

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

cout << “\nc1=” << c1.get_count();

Again the compiler, not finding these functions in the class of which c1 is a member, uses member
functions from the base class.

Output of COUNTEN

In main() we increment c1 three times, print out the resulting value, decrement c1 twice, and finally
print out its value again. Here’s the output:

c1=0 ???? after initialization
c1=3 ???? after ++c1, ++c1, ++c1
c1=1 ???? after --c1, --c1

The ++ operator, the constructors, the get_count() function in the Counter class, and the -- operator in
the CountDn class all work with objects of type CountDn.

The protected Access Specifier

We have increased the functionality of a class without modifying it. Well, almost without
modifying it. Let’s look at the single change we made to the Counter class.

The data in the classes we’ve looked at so far, including count in the Counter class in the earlier
COUNTPP3 program, have used the private access specifier.

In the Counter class in COUNTEN, count is given a new specifier: protected. What does this do?

Let’s first review what we know about the access specifiers private and public. Class members (which
can be data or functions) can always be accessed by functions within their own class, whether the
members are private or public. But objects of a class defined outside the class can access class
members only if the members are public. For instance, suppose an object objA is an instance of class
A, and function funcA() is a member function of A. Then in main() (or any other function that is not a
member of A) the statement

objA.funcA();

will not be legal unless func() is public. The object objA cannot access private members of class A
Private members are, well, private. This is shown in Figure 9.3.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9.3 Access specifiers without inheritance.

This is all we need to know if we don’t use inheritance. With inheritance, however, there is a whole
raft of additional possibilities. The question that concerns us at the moment is, can member
functions of the derived class access members of the base class? In other words, can operator--() in
CountDn access count in Counter? The answer is that member functions can access members of the
base class if the members are public, or if they are protected. They can’t access private members.

We don’t want to make count public, since that would allow it to be accessed by any function
anywhere in the program and eliminate the advantages of data hiding. A protected member, on the
other hand, can be accessed by member functions in its own class or—and here’s the key—in any
class derived from its own class. It can’t be accessed from functions outside these classes, such as
main(). This is just what we want. The situation is shown in Figure 9.4.

Table 9.1 summarizes the situation in a different way.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Such objects would behave just as they would if CountDn didn’t exist.

Note also that inheritance doesn’t work in reverse. The base class and its objects don’t know
anything about any classes derived from the base class. In this example that means that objects of
class Counter, such as c2 defined here, can’t use the operator--() function in CountDn. If you want a
counter that you can decrement, it must be of class CountDn, not Counter.

Other Terms

In some languages the base class is called the superclass and the derived class is called the
subclass. Some writers also refer to the base class as the parent and the derived class as the child

Derived Class Constructors

There’s a potential glitch in the COUNTEN program. What happens if we want to initialize a CountDn
object to a value? Can the one-argument constructor in Counter be used? The answer is no. As we
saw in COUNTEN, the compiler will substitute a no-argument constructor from the base class, but it
draws the line at more complex constructors. To make such a definition work we must write a new
set of constructors for the derived class. This is shown in the COUNTEN2 program.

// counten2.cpp
// constructors in derived class
#include <iostream>
using namespace std;
//
class Counter
 {
 protected: //NOTE: not private
 unsigned int count; //count
 public:
 Counter() : count() //constructor, no args
 { }
 Counter(int c) : count(c) //constructor, one arg
 { }
 unsigned int get_count() const //return count
 { return count; }
 Counter operator ++ () //incr count (prefix)
 { return Counter(++count); }
 };
//
class CountDn : public Counter
 {
 public:
 CountDn() : Counter() //constructor, no args
 { }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 { }
 CountDn(int c) : Counter(c) //constructor, 1 arg
 { }
 CountDn operator -- () //decr count (prefix)
 { return CountDn(--count); }
 };
//
int main()
 {
 CountDn c1; //class CountDn
 CountDn c2(100);

 cout << “\nc1=” << c1.get_count(); //display
 cout << “\nc2=” << c2.get_count(); //display

 ++c1; ++c1; ++c1; //increment c1
 cout << “\nc1=” << c1.get_count(); //display it

 --c2; --c2; //decrement c2
 cout << “\nc2=” << c2.get_count(); //display it

 CountDn c3 = --c2; //create c3 from c2
 cout << “\nc3=” << c3.get_count(); //display c3
 cout << endl;
 return 0;
 }

This program uses two new constructors in the CountDn class. Here is the one-argument constructor:

CountDn() : Counter()
 { }

This constructor has an unfamiliar feature: the function name following the colon. This construction
causes the CountDn() constructor to call the Counter() constructor in the base class. In main(), when we
say

CountDn c1;

the compiler will create an object of type CountDn and then call the CountDn constructor to initialize
it. This constructor will in turn call the Counter constructor, which carries out the work. The
CountDn() constructor could add additional statements of its own, but in this case it doesn’t need to,
so the function body between the braces is empty.

Calling a constructor from the initialization list may seem odd, but it makes sense. You want to
initialize any variables, whether they’re in the derived class or the base class, before any statements
in either the derived or base-class constructors are executed. By calling the base-class constructor
before the derived-class constructor starts to execute, we accomplish this.

The statement

CountDn c2(100);

in main() uses the one-argument constructor in CountDn. This constructor also calls the corresponding
one-argument constructor in the base class:

CountDn(int c) : Counter(c) ???? argument c is passed to Counter
 { }

This construction causes the argument c to be passed from CountDn() to Counter(), where it is used to
initialize the object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In main(), after initializing the c1 and c2 objects, we increment one and decrement the other and then
print the results. The one-argument constructor is also used in an assignment statement.

CountDn c3 = --c2;

Overriding Member Functions

You can use member functions in a derived class that override—that is, have the same name as—
those in the base class. You might want to do this so that calls in your program work the same way
for objects of both base and derived classes.

Here’s an example based on the STAKARAY program from Chapter 7, “Arrays and Strings.” That
program modeled a stack, a simple data storage device. It allowed you to push integers onto the
stack and pop them off. However, STAKARAY had a potential flaw. If you tried to push too many
items onto the stack, the program might bomb, since data would be placed in memory beyond the
end of the st[] array. Or if you tried to pop too many items, the results would be meaningless, since
you would be reading data from memory locations outside the array.

To cure these defects we’ve created a new class, Stack2, derived from Stack. Objects of Stack2 behave
in exactly the same way as those of Stack, except that you will be warned if you attempt to push too
many items on the stack, or if you try to pop an item from an empty stack. Here’s the listing for
STAKEN:

// staken.cpp
// overloading functions in base and derived classes
#include <iostream>
using namespace std;
#include <process.h> //for exit()
//
class Stack
 {
 protected: //NOTE: can’t be private
 enum { MAX = 3 }; //size of stack array
 int st[MAX]; //stack: array of integers
 int top; //index to top of stack
 public:
 Stack() //constructor
 { top = -1; }
 void push(int var) //put number on stack
 { st[++top] = var; }
 int pop() //take number off stack
 { return st[top--]; }
 };
//
class Stack2 : public Stack
 {
 public:
 void push(int var) //put number on stack
 {
 if(top >= MAX-1) //error if stack full
 { cout << “\nError: stack is full”; exit(1); }
 Stack::push(var); //call push() in Stack class
 }
 int pop() //take number off stack
 {
 if(top < 0) //error if stack empty
 { cout << “\nError: stack is empty\n”; exit(1); }
 return Stack::pop(); //call pop() in Stack class
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
 };
//
int main()
 {
 Stack2 s1;

 s1.push(11); //push some values onto stack
 s1.push(22);
 s1.push(33);

 cout << endl << s1.pop(); //pop some values from stack
 cout << endl << s1.pop();
 cout << endl << s1.pop();
 cout << endl << s1.pop(); //oops, popped one too many...
 cout << endl;
 return 0;
 }

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

In this program the Stack class is just the same as it was in the STAKARAY program, except that the
data members have been made protected.

Which Function Is Used?

The Stack2 class contains two functions, push() and pop(). These functions have the same names, and
the same argument and return types, as the functions in Stack. When we call these functions from
main(), in statements like

s1.push(11);

how does the compiler know which of the two push() functions to use? Here’s the rule: When the
same function exists in both the base class and the derived class, the function in the derived class
will be executed. (This is true of objects of the derived class. Objects of the base class don’t know
anything about the derived class and will always use the base class functions.) We say that the
derived class function overrides the base class function. So in the statement above, since s1 is an
object of class Stack2, the push() function in Stack2 will be executed, not the one in Stack.

The push() function in Stack2 checks to see if the stack is full. If it is, it displays an error message and
causes the program to exit. If it isn’t, it calls the push() function in Stack. Similarly, the pop() function
in Stack2 checks to see if the stack is empty. If it is, it prints an error message and exits; otherwise, it
calls the pop() function in Stack.

In main() we push three items onto the stack, but we pop four. The last pop elicits an error message:

33
22
11
Error: stack is empty

and terminates the program.

Scope Resolution with Overridden Functions

How do push() and pop() in Stack2 access push() and pop() in Stack? They use the scope resolution
operator, ::, in the statements.

Stack::push(var);

and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

return Stack::pop();

These statements specify that the push() and pop() functions in Stack are to be called. Without the
scope resolution operator, the compiler would think the push() and pop() functions in Stack2 were
calling themselves, which—in this case—would lead to program failure. Using the scope resolution
operator allows you to specify exactly what class the function is a member of.

Inheritance in the English Distance Class

Here’s a somewhat more complex example of inheritance. So far in this book the various programs
that used the English Distance class assumed that the distances to be represented would always be
positive. This is usually the case in architectural drawings. However, if we were measuring, say, the
water level of the Pacific Ocean as the tides varied, we might want to be able to represent negative
feet-and-inches quantities. (Tide levels below mean-lower-low-water are called minus tides; they
prompt clam diggers to take advantage of the larger area of exposed beach.)

Let’s derive a new class from Distance. This class will add a single data item to our feet-and-inches
measurements: a sign, which can be positive or negative. When we add the sign, we’ll also need to
modify the member functions so they can work with signed distances. Here’s the listing for
ENGLEN:

// englen.cpp
// inheritance using English Distances
#include <iostream>
using namespace std;
enum posneg { pos, neg }; //for sign in DistSign
//
class Distance //English Distance class
 {
 protected: //NOTE: can’t be private
 int feet;
 float inches;
 public: //no-arg constructor
 Distance() : feet(0), inches(0.0)
 { } //2-arg constructor)
 Distance(int ft, float in) : feet(ft), inches(in)
 { }
 void getdist() //get length from user
 {
 cout << “\nEnter feet: “; cin >> feet;
 cout << “Enter inches: “; cin >> inches;
 }
 void showdist() const //display distance
 { cout << feet << “\’-” << inches << ‘\”’; }
 };
//
class DistSign : public Distance //adds sign to Distance
 {
 private:
 posneg sign; //sign is pos or neg
 public:
 //no-arg constructor
 DistSign() : Distance() //call base constructor
 { sign = pos; } //set the sign to +

 //2- or 3-arg constructor
 DistSign(int ft, float in, posneg sg=pos) :
 Distance(ft, in) //call base constructor
 { sign = sg; } //set the sign

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 { sign = sg; } //set the sign

 void getdist() //get length from user
 {
 Distance::getdist(); //call base getdist()
 char ch; //get sign from user
 cout << “Enter sign (+ or -): “; cin >> ch;
 sign = (ch==’+’) ? pos : neg;
 }
 void showdist() const //display distance
 {
 cout << ((sign==pos) ? “(+)” : “(-)”); //show sign
 Distance::showdist(); //ft and in
 }
 };
//
int main()
 {
 DistSign alpha; //no-arg constructor
 alpha.getdist(); //get alpha from user

 DistSign beta(11, 6.25); //2-arg constructor

 DistSign gamma(100, 5.5, neg); //3-arg constructor

 //display all distances
 cout << “\nalpha = “; alpha.showdist();
 cout << “\nbeta = “; beta.showdist();
 cout << “\ngamma = “; gamma.showdist();
 cout << endl;
 return 0;
 }

Here the DistSign class adds the functionality to deal with signed numbers. The Distance class in this
program is just the same as in previous programs, except that the data is protected. Actually in this
case it could be private, because none of the derived-class functions accesses it. However, it’s safer
to make it protected so that a derived-class function could access it if necessary.

Operation of ENGLEN

The main() program declares three different signed distances. It gets a value for alpha from the user
and initializes beta to (+)11’-6.25” and gamma to (–)100’-5.5”. In the output we use parentheses
around the sign to avoid confusion with the hyphen separating feet and inches. Here’s some sample
output:

Enter feet: 6
Enter inches: 2.5
Enter sign (+ or -): -

alpha = (-)6’-2.5”
beta = (+)11’-6.25”
gamma = (-)100’-5.5”

The DistSign class is derived from Distance. It adds a single variable, sign, which is of type posneg. The
sign variable will hold the sign of the distance. The posneg type is defined in an enum statement to
have two possible values: pos and neg.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Constructors in DistSign

DistSign has two constructors, mirroring those in Distance. The first takes no arguments, the second
takes either two or three arguments. The third, optional, argument in the second constructor is a
sign, either pos or neg. Its default value is pos. These constructors allow us to define variables
(objects) of type DistSign in several ways.

Both constructors in DistSign call the corresponding constructors in Distance to set the feet-and-inches
values. They then set the sign variable. The no-argument constructor always sets it to pos. The
second constructor sets it to pos if no third-argument value has been provided, or to a value (pos or
neg) if the argument is specified.

The arguments ft and in, passed from main() to the second constructor in DistSign, are simply
forwarded to the constructor in Distance.

Member Functions in DistSign

Adding a sign to Distance has consequences for both its member functions. The getdist() function in
the DistSign class must ask the user for the sign as well as for feet-and-inches values, and the
showdist() function must display the sign along with the feet and inches. These functions call the
corresponding functions in Distance, in the lines

Distance::getdist();

and

Distance::showdist();

These calls get and display the feet and inches values. The body of getdist() and showdist() in DistSign
then go on to deal with the sign.

Abetting Inheritance

C++ is designed to make it efficient to create a derived class. Where we want to use parts of the
base class, it’s easy to do so, whether these parts are data, constructors, or member functions. Then
we add the functionality we need to create the new improved class. Notice that in ENGLEN we
didn’t need to duplicate any code; instead we made use of the appropriate functions in the base
class.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Class Hierarchies

In the examples so far in this chapter, inheritance has been used to add functionality to an existing
class. Now let’s look at an example where inheritance is used for a different purpose: as part of the
original design of a program.

Our example models a database of employees of a widget company. We’ve simplified the situation
so that only three kinds of employees are represented. Managers manage, scientists perform
research to develop better widgets, and laborers operate the dangerous widget-stamping presses.

The database stores a name and an employee identification number for all employees, no matter
what category they are. However, for managers, it also stores their titles and golf club dues. For
scientists it stores the number of scholarly articles they have published. Laborers need no additional
data beyond their names and numbers.

Our example program starts with a base class employee. This class handles the employee’s last name
and employee number. From this class three other classes are derived: manager, scientist, and laborer
The manager and scientist classes contain additional information about these categories of employee,
and member functions to handle this information, as shown in Figure 9.5.

Figure 9.5 Class Hierarchy in EMPLOY.

Here’s the listing for employ:

// employ.cpp
// models employee database using inheritance
#include <iostream>
using namespace std;
const int LEN = 80; //maximum length of names

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

const int LEN = 80; //maximum length of names
//
class employee //employee class
 {
 private:
 char name[LEN]; //employee name
 unsigned long number; //employee number
 public:
 void getdata()
 {
 cout << “\n Enter last name: “; cin >> name;
 cout << “ Enter number: “; cin >> number;
 }
 void putdata() const
 {
 cout << “\n Name: “ << name;
 cout << “\n Number: “ << number;
 }
 };
//
class manager : public employee //management class
 {
 private:
 char title[LEN]; //”vice-president” etc.
 double dues; //golf club dues
 public:
 void getdata()
 {
 employee::getdata();
 cout << “ Enter title: “; cin >> title;
 cout << “ Enter golf club dues: “; cin >> dues;
 }
 void putdata() const
 {
 employee::putdata();
 cout << “\n Title: “ << title;
 cout << “\n Golf club dues: “ << dues;
 }
 };
//
class scientist : public employee //scientist class
 {
 private:
 int pubs; //number of publications
 public:
 void getdata()
 {
 employee::getdata();
 cout << “ Enter number of pubs: “; cin >> pubs;
 }
 void putdata() const
 {
 employee::putdata();
 cout << “\n Number of publications: “ << pubs;
 }
 };
//
class laborer : public employee //laborer class
 {
 };
//
int main()
 {
 manager m1, m2;
 scientist s1;
 laborer l1;

 cout << endl; //get data for several employees

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 cout << endl; //get data for several employees
 cout << “\nEnter data for manager 1”;
 m1.getdata();

 cout << “\nEnter data for manager 2”;
 m2.getdata();

 cout << “\nEnter data for scientist 1”;
 s1.getdata();

 cout << “\nEnter data for laborer 1”;
 l1.getdata();
 //display data for several employees
 cout << “\nData on manager 1”;
 m1.putdata();

 cout << “\nData on manager 2”;
 m2.putdata();

 cout << “\nData on scientist 1”;
 s1.putdata();

 cout << “\nData on laborer 1”;
 l1.putdata();
 cout << endl;
 return 0;
 }

The main() part of the program declares four objects of different classes: two managers, a scientist,
and a laborer. (Of course many more employees of each type could be defined, but the output
would become rather large.) It then calls the getdata() member functions to obtain information about
each employee, and the putdata() function to display this information. Here’s a sample interaction
with EMPLOY. First the user supplies the data.

Enter data for manager 1
 Enter last name: Wainsworth
 Enter number: 10
 Enter title: President
 Enter golf club dues: 1000000
Enter data on manager 2
 Enter last name: Bradley
 Enter number: 124
 Enter title: Vice-President
 Enter golf club dues: 500000
Enter data for scientist 1
 Enter last name: Hauptman-Frenglish
 Enter number: 234234
 Enter number of pubs: 999
Enter data for laborer 1
 Enter last name: Jones
 Enter number: 6546544

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

The program then plays it back.

Data on manager 1
 Name: Wainsworth
 Number: 10
 Title: President
 Golf club dues: 1000000
Data on manager 2
 Name: Bradley
 Number: 124
 Title: Vice-President
 Golf club dues: 500000
Data on scientist 1
 Name: Hauptman-Frenglish
 Number: 234234
 Number of publications: 999
Data on laborer 1
 Name: Jones
 Number: 6546544

A more sophisticated program would use an array or some other container to arrange the data so
that a large number of employee objects could be accommodated.

“Abstract” Base Class

Notice that we don’t define any objects of the base class employee. We use this as a general class
whose sole purpose is to act as a base from which other classes are derived.

The laborer class operates identically to the employee class, since it contains no additional data or
functions. It may seem that the laborer class is unnecessary, but by making it a separate class we
emphasize that all classes are descended from the same source, employee. Also, if in the future we
decided to modify the laborer class, we would not need to change the declaration for employee.

Classes used only for deriving other classes, as employee is in EMPLOY, are sometimes loosely called
abstract classes, meaning that no actual instances (objects) of this class are created. However, the
term abstract has a more precise definition that we’ll look at in Chapter 11, “Virtual Functions.”

Constructors and Member Functions

There are no constructors in either the base or derived classes, so the compiler creates objects of the
various classes automatically when it encounters definitions like

manager m1, m2;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

manager m1, m2;

using the default constructor for manager calling the default constructor for employee.

The getdata() and putdata() functions in employee accept a name and number from the user and display
a name and number. Functions also called getdata() and putdata() in the manager and scientist classes use
the functions in employee, and also do their own work. In manager the getdata() function asks the user
for a title and the amount of golf club dues, and putdata() displays these values. In scientist these
functions handle the number of publications.

Inheritance and Graphics Shapes

In the CIRCLES program in Chapter 6, “Objects and Classes,” we saw a program in which a class
represented graphics circles that could be displayed on the screen. Of course, there are other kinds
of shapes besides circles, such as squares, triangles, and so on. The very phrase “kinds of shapes”
implies an inheritance relationship between something called a “shape” and specific kinds of shapes
like circles and squares. We can use this relationship to make a program that is more robust and
easier to understand than a program that treats different shapes as being unrelated.

In particular, we’ll make a shape class that’s a base class (parent) of three derived classes: a circle
class, a rect (for rectangle) class, and a tria (for triangle) class. As with other programs that use the
Console Graphics Lite functions, you may need to read Appendix E, “Console Graphics Lite,” and
either Appendix C, “Microsoft Visual C++,” or Appendix D, “Borland C++” for your specific
compiler to learn how to build the graphics files into your program. Here’s the listing for
MULTSHAP:

// multshap.cpp
// balls, rects, and polygons
#include “msoftcon.h” //for graphics functions
//
class shape //base class
 {
 protected:
 int xCo, yCo; //coordinates of shape
 color fillcolor; //color
 fstyle fillstyle; //fill pattern
 public: //no-arg constructor
 shape() : xCo(0), yCo(0), fillcolor(cWHITE),
 fillstyle(SOLID_FILL)
 { } //4-arg constructor
 shape(int x, int y, color fc, fstyle fs) :
 xCo(x), yCo(y), fillcolor(fc), fillstyle(fs)
 { }
 void draw() const //set color and fill style
 {
 set_color(fillcolor);
 set_fill_style(fillstyle);
 }
 };
//
class circle : public shape
 {
 private:
 int radius; //(xCo, yCo) is center
 public:
 circle() : shape() //no-arg constr
 { }
 //5-arg constructor
 circle(int x, int y, int r, color fc, fstyle fs)
 : shape(x, y, fc, fs), radius(r)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 : shape(x, y, fc, fs), radius(r)
 { }
 void draw() const //draw the circle
 {
 shape::draw();
 draw_circle(xCo, yCo, radius);
 }
 };
//
class rect : public shape
 {
 private:
 int width, height; //(xCo, yCo) is upper-left corner
 public:
 rect() : shape(), height(0), width(0) //no-arg ctor
 { } //6-arg ctor
 rect(int x, int y, int h, int w, color fc, fstyle fs) :
 shape(x, y, fc, fs), height(h), width(w)
 { }
 void draw() const //draw the rectangle
 {
 shape::draw();
 draw_rectangle(xCo, yCo, xCo+width, yCo+height);
 set_color(cWHITE); //draw diagonal
 draw_line(xCo, yCo, xCo+width, yCo+height);
 }
 };
//
class tria : public shape
 {
 private:
 int height; //(xCo, yCo) is tip of pyramid
 public:
 tria() : shape(), height(0) //no-arg constructor
 { } //5-arg constructor
 tria(int x, int y, int h, color fc, fstyle fs) :
 shape(x, y, fc, fs), height(h)
 { }
 void draw() const //draw the triangle
 {
 shape::draw();
 draw_pyramid(xCo, yCo, height);
 }
 };
//
int main()
 {
 init_graphics(); //initialize graphics system

 circle cir(40, 12, 5, cBLUE, X_FILL); //create circle
 rect rec(12, 7, 10, 15, cRED, SOLID_FILL); //create rectangle
 tria tri(60, 7, 11, cGREEN, MEDIUM_FILL); //create triangle

 cir.draw(); //draw all shapes
 rec.draw();
 tri.draw();
 set_cursor_pos(1, 25); //lower-left corner
 return 0;
 }

When executed, this program produces three different shapes: a blue circle, a red rectangle, and a
green triangle. Figure 9.6 shows the output of MULTSHAP.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9.6 Output of the MULTSHAP program.

The characteristics that are common to all shapes, such as their location, color, and fill pattern, are
placed in the shape class. Individual shapes have more specific attributes. A circle has a radius, for
example, while a rectangle has a height and width. A draw() routine in shape handles the tasks
specific to all shapes: setting their color and fill pattern. Overloaded draw() functions in the circle,
rect, and tria classes take care of drawing their specific shapes once the color and pattern are
determined.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

As in the last example, the base class shape is an example of an “abstract” class, in that there is no
meaning to instantiating an object of this class. What shape does a shape object display? The
question doesn’t make sense. Only a specific shape can display itself. The shape class exists only as
a repository of attributes and actions that are common to all shapes.

Public and Private Inheritance

C++ provides a wealth of ways to fine-tune access to class members. One such access-control
mechanism is the way derived classes are declared. Our examples so far have used publicly derived
classes, with declarations like

class manager : public employee

which appeared in the EMPLOY example.

What is the effect of the public keyword in this statement, and what are the alternatives? Listen up:
The keyword public specifies that objects of the derived class are able to access public member
functions of the base class. The alternative is the keyword private. When this keyword is used,
objects of the derived class cannot access public member functions of the base class. Since objects
can never access private or protected members of a class, the result is that no member of the base class
is accessible to objects of the derived class.

Access Combinations

There are so many possibilities for access that it’s instructive to look at an example program that
shows what works and what doesn’t. Here’s the listing for PUBPRIV:

// pubpriv.cpp
// tests publicly- and privately-derived classes
#include <iostream>
using namespace std;
//
class A //base class
 {
 private:
 int privdataA; //(functions have the same access
 protected: //rules as the data shown here)
 int protdataA;
 public:
 int pubdataA;
 };
//
class B : public A //publicly-derived class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

class B : public A //publicly-derived class
 {
 public:
 void funct()
 {
 int a;
 a = privdataA; //error: not accessible
 a = protdataA; //OK
 a = pubdataA; //OK
 }
 };
//
class C : private A //privately-derived class
 {
 public:
 void funct()
 {
 int a;
 a = privdataA; //error: not accessible
 a = protdataA; //OK
 a = pubdataA; //OK
 }
 };
//
int main()
 {
 int a;

 B objB;
 a = objB.privdataA; //error: not accessible
 a = objB.protdataA; //error: not accessible
 a = objB.pubdataA; //OK (A public to B)

 C objC;
 a = objC.privdataA; //error: not accessible
 a = objC.protdataA; //error: not accessible
 a = objC.pubdataA; //error: not accessible (A private to C)
 return 0;
 }

The program specifies a base class, A, with private, protected, and public data items. Two classes,
and C, are derived from A. B is publicly derived and C is privately derived.

As we’ve seen before, functions in the derived classes can access protected and public data in the
base class. Objects of the derived classes cannot access private or protected members of the base
class.

What’s new is the difference between publicly derived and privately derived classes. Objects of the
publicly derived class B can access public members of the base class A, while objects of the
privately derived class C cannot; they can only access the public members of their own derived
class. This is shown in Figure 9.7.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9.7 Public and private derivation.

If you don’t supply any access specifier when creating a class, private is assumed.

Access Specifiers: When to Use What

How do you decide when to use private as opposed to public inheritance? In most cases a derived
class exists to offer an improved?md?or a more specialized?md]version of the base class. We’ve
seen examples of such derived classes; for instance the CountDn class that adds the decrement
operator to the Counter class and the manager class that is a more specialized version of the employee
class. In such cases it makes sense for objects of the derived class to access the public functions of
the base class if they want to perform a basic operation, and to access functions in the derived class
to perform the more specialized operations that the derived class provides. In such cases public
derivation is appropriate.

In some situations, however, the derived class is created as a way of completely modifying the
operation of the base class, hiding or disguising its original interface. For example, imagine that
you have already created a really nice Array class that acts like an array but provides protection
against out-of-bounds array indexes. Then suppose you want to use this Array class as the basis for a
Stack class, instead of using a basic array. You might derive Stack from Array, but you wouldn’t want
the users of Stack objects to treat them as if they were arrays, using the [] operator to access data
items, for example. Objects of Stack should always be treated as if they were stacks, using push() and
pop(). That is, you want to disguise the Array class as a Stack class. In this situation, private derivation
would allow you to conceal all the Array class functions from objects of the derived Stack class.

Levels of Inheritance

Classes can be derived from classes that are themselves derived. Here’s a miniprogram that shows
the idea:

class A
 { };
class B : public A
 { };
class C : public B
 { };

Here B is derived from A, and C is derived from B. The process can be extended to an arbitrary
number of levels—D could be derived from C, and so on.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As a more concrete example, suppose that we decided to add a special kind of laborer called a
foreman to the EMPLOY program. We’ll create a new program, EMPLOY2, that incorporates objects
of class foreman.

Since foremen are a kind of laborer, the foreman class is derived from the laborer class, as shown in
Figure 9.8.

Figure 9.8 Class hierarchy in EMPLOY2.

Foremen oversee the widget-stamping operation, supervising groups of laborers. They are
responsible for the widget production quota for their group. A foreman’s ability is measured by the
percentage of production quotas successfully met. The quotas data item in the foreman class
represents this percentage. Here’s the listing for EMPLOY2:

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

// employ2.cpp
// multiple levels of inheritance
#include <iostream>
using namespace std;
const int LEN = 80; //maximum length of names
//
class employee
 {
 private:
 char name[LEN]; //employee name
 unsigned long number; //employee number
 public:
 void getdata()
 {
 cout << “\n Enter last name: “; cin >> name;
 cout << “ Enter number: “; cin >> number;
 }
 void putdata() const
 {
 cout << “\n Name: “ << name;
 cout << “\n Number: “ << number;
 }
 };
//
class manager : public employee //manager class
 {
 private:
 char title[LEN]; //”vice-president” etc.
 double dues; //golf club dues
 public:
 void getdata()
 {
 employee::getdata();
 cout << “ Enter title: “; cin >> title;
 cout << “ Enter golf club dues: “; cin >> dues;
 }
 void putdata() const
 {
 employee::putdata();
 cout << “\n Title: “ << title;
 cout << “\n Golf club dues: “ << dues;
 }
 };
//
class scientist : public employee //scientist class
 {
 private:
 int pubs; //number of publications
 public:
 void getdata()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 void getdata()
 {
 employee::getdata();
 cout << “ Enter number of pubs: “; cin >> pubs;
 }
 void putdata() const
 {
 employee::putdata();
 cout << “\n Number of publications: “ << pubs;
 }
 };
//
class laborer : public employee //laborer class
 {
 };
//
class foreman : public laborer //foreman class
 {
 private:
 float quotas; //percent of quotas met successfully
 public:
 void getdata()
 {
 laborer::getdata();
 cout << “ Enter quotas: “; cin >> quotas;
 }
 void putdata() const
 {
 laborer::putdata();
 cout << “\n Quotas: “ << quotas;
 }
 };
//
int main()
 {
 laborer l1;
 foreman f1;

 cout << endl;
 cout << “\nEnter data for laborer 1”;
 l1.getdata();
 cout << “\nEnter data for foreman 1”;
 f1.getdata();

 cout << endl;
 cout << “\nData on laborer 1”;
 l1.putdata();
 cout << “\nData on foreman 1”;
 f1.putdata();
 cout << endl;
 return 0;
 }

Notice that a class hierarchy is not the same as an organization chart. An organization chart shows
lines of command. A class hierarchy results from generalizing common characteristics. The more
general the class, the higher it is on the chart. Thus a laborer is more general than a foreman, who is
a specialized kind of laborer, so laborer is shown above foreman in the class hierarchy, although a
foreman is probably paid more than a laborer.

Multiple Inheritance

A class can be derived from more than one base class. This is called multiple inheritance. Figure 9.9
shows how this looks when a class C is derived from base classes A and B.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9.9 Multiple inheritance.

The syntax for multiple inheritance is similar to that for single inheritance. In the situation shown in
Figure 9.9, the relationship is expressed like this:

class A // base class A
 {
 };
class B // base class B
 {
 };
class C : public A, public B // C is derived from A and B
 {
 };

The base classes from which C is derived are listed following the colon in C’s specification; they are
separated by commas.

Member Functions in Multiple Inheritance

As an example of multiple inheritance, suppose that we needed to record the educational experience
of some of the employees in the EMPLOY program. Let’s also suppose that, perhaps in a different
project, we had already developed a class called student that models students with different
educational backgrounds. We decide that instead of modifying the employee class to incorporate
educational data, we will add this data by multiple inheritance from the student class.

The student class stores the name of the school or university last attended and the highest degree
received. Both these data items are stored as strings. Two member functions, getedu() and putedu(),
ask the user for this information and display it.

Educational information is not relevant to every class of employee. Let’s suppose, somewhat
undemocratically, that we don’t need to record the educational experience of laborers; it’s only
relevant for managers and scientists. We therefore modify manager and scientist so that they inherit
from both the employee and student classes, as shown in Figure 9.10.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9.10 Class hierarchy in EMPMULT.

Here’s a miniprogram that shows these relationships (but leaves out everything else):

class student
 { };
class employee
 { };
class manager : private employee, private student
 { };
class scientist : private employee, private student
 { };
class laborer : public employee
 { };

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

And here, featuring considerably more detail, is the listing for EMPMULT:

//empmult.cpp
//multiple inheritance with employees and degrees
#include <iostream>
using namespace std;
const int LEN = 80; //maximum length of names
//
class student //educational background
 {
 private:
 char school[LEN]; //name of school or university
 char degree[LEN]; //highest degree earned
 public:
 void getedu()
 {
 cout << “ Enter name of school or university: “;
 cin >> school;
 cout << “ Enter highest degree earned \n”;
 cout << “ (Highschool, Bachelor’s, Master’s, PhD): “;
 cin >> degree;
 }
 void putedu() const
 {
 cout << “\n School or university: “ << school;
 cout << “\n Highest degree earned: “ << degree;
 }
 };
//
class employee
 {
 private:
 char name[LEN]; //employee name
 unsigned long number; //employee number
 public:
 void getdata()
 {
 cout << “\n Enter last name: “; cin >> name;
 cout << “ Enter number: “; cin >> number;
 }
 void putdata() const
 {
 cout << “\n Name: “ << name;
 cout << “\n Number: “ << number;
 }
 };
//
class manager : private employee, private student //management
 {
 private:
 char title[LEN]; //”vice-president” etc.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 char title[LEN]; //”vice-president” etc.
 double dues; //golf club dues
 public:
 void getdata()
 {
 employee::getdata();
 cout << “ Enter title: “; cin >> title;
 cout << “ Enter golf club dues: “; cin >> dues;
 student::getedu();
 }
 void putdata() const
 {
 employee::putdata();
 cout << “\n Title: “ << title;
 cout << “\n Golf club dues: “ << dues;
 student::putedu();
 }
 };
//
class scientist : private employee, private student //scientist
 {
 private:
 int pubs; //number of publications
 public:
 void getdata()
 {
 employee::getdata();
 cout << “ Enter number of pubs: “; cin >> pubs;
 student::getedu();
 }
 void putdata() const
 {
 employee::putdata();
 cout << “\n Number of publications: “ << pubs;
 student::putedu();
 }
 };
//
class laborer : public employee //laborer
 {
 };
//
int main()
 {
 manager m1;
 scientist s1, s2;
 laborer l1;

 cout << endl;
 cout << “\nEnter data for manager 1”; //get data for
 m1.getdata(); //several employees

 cout << “\nEnter data for scientist 1”;
 s1.getdata();

 cout << “\nEnter data for scientist 2”;
 s2.getdata();

 cout << “\nEnter data for laborer 1”;
 l1.getdata();

 cout << “\nData on manager 1”; //display data for
 m1.putdata(); //several employees

 cout << “\nData on scientist 1”;
 s1.putdata();

 cout << “\nData on scientist 2”;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 cout << “\nData on scientist 2”;
 s2.putdata();

 cout << “\nData on laborer 1”;
 l1.putdata();
 cout << endl;
 return 0;
 }

The getdata() and putdata() functions in the manager and scientist classes incorporate calls to functions in
the student class, such as

student::getedu();

and

student::putedu();

These routines are accessible in manager and scientist because these classes are descended from
student.

Here’s some sample interaction with EMPMULT:

Enter data for manager 1
 Enter last name: Bradley
 Enter number: 12
 Enter title: Vice-President
 Enter golf club dues: 100000
 Enter name of school or university: Yale
 Enter highest degree earned
 (Highschool, Bachelor’s, Master’s, PhD): Bachelor’s

Enter data for scientist 1
 Enter last name: Twilling
 Enter number: 764
 Enter number of pubs: 99
 Enter name of school or university: MIT
 Enter highest degree earned
 (Highschool, Bachelor’s, Master’s, PhD): PhD

Enter data for scientist 2
 Enter last name: Yang
 Enter number: 845
 Enter number of pubs: 101
 Enter name of school or university: Stanford
 Enter highest degree earned
 (Highschool, Bachelor’s, Master’s, PhD): Master’s

Enter data for laborer 1
 Enter last name: Jones
 Enter number: 48323

As we saw in the EMPLOY and EMPLOY2 examples, the program then displays this information in
roughly the same form.

private Derivation in EMPMULT

The manager and scientist classes in EMPMULT are privately derived from the employee and student
classes. There is no need to use public derivation because objects of manager and scientist never call
routines in the employee and student base classes. However, the laborer class must be publicly derived
from employer, since it has no member functions of its own and relies on those in employee.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Constructors in Multiple Inheritance

EMPMULT has no constructors. Let’s look at an example that does use constructors, and see how
they’re handled in multiple inheritance.

Imagine that we’re writing a program for building contractors, and that this program models
lumber-supply items. It uses a class that represents a quantity of lumber of a certain type: 100 8-
foot-long construction grade 2×4s, for example.

The class should store various kinds of data about each such lumber item. We need to know the
length (3’-6” or whatever) and we need to store the number of such pieces of lumber and their unit
cost.

We also need to store a description of the lumber we’re talking about. This has two parts. The first
is the nominal dimensions of the cross-section of the lumber. This is given in inches. For instance,
lumber 2 inches by 4 inches (for you metric folks, about 5 cm by 10 cm) is called a two-by-four.
This is usually written 2×4. We also need to know the grade of lumber—rough-cut, construction
grade, surfaced-four-sides, and so on. We find it convenient to create a Type class to hold this data.
This class incorporates member data for the nominal dimensions and the grade of the lumber, both
expressed as strings, such as 2×6 and construction. Member functions get this information from the
user and display it.

We’ll use the Distance class from previous examples to store the length. Finally we create a Lumber
class that inherits both the Type and Distance classes. Here’s the listing for ENGLMULT:

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

// englmult.cpp
// multiple inheritance with English Distances
#include <iostream>
#include <string>
using namespace std;
//
class Type //type of lumber
 {
 private:
 string dimensions;
 string grade;
 public: //no-arg constructor
 Type() : dimensions(“N/A”), grade(“N/A”)
 { }
 //2-arg constructor
 Type(string di, string gr) : dimensions(di), grade(gr)
 { }
 void gettype() //get type from user
 {
 cout << “ Enter nominal dimensions (2x4 etc.): “;
 cin >> dimensions;
 cout << “ Enter grade (rough, const, etc.): “;
 cin >> grade;
 }
 void showtype() const //display type
 {
 cout << “\n Dimensions: “ << dimensions;
 cout << “\n Grade: “ << grade;
 }
 };
//
class Distance //English Distance class
 {
 private:
 int feet;
 float inches;
 public: //no-arg constructor
 Distance() : feet(0), inches(0.0)
 { } //constructor (two args)
 Distance(int ft, float in) : feet(ft), inches(in)
 { }
 void getdist() //get length from user
 {
 cout << “ Enter feet: “; cin >> feet;
 cout << “ Enter inches: “; cin >> inches;
 }
 void showdist() const //display distance
 { cout << feet << “\’-” << inches << ‘\”’; }
 };
//
class Lumber : public Type, public Distance

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

class Lumber : public Type, public Distance
 {
 private:
 int quantity; //number of pieces
 double price; //price of each piece
 public: //constructor (no args)
 Lumber() : Type(), Distance(), quantity(0), price(0.0)
 { }
 //constructor (6 args)
 Lumber(string di, string gr, //args for Type
 int ft, float in, //args for Distance
 int qu, float prc) : //args for our data
 Type(di, gr), //call Type ctor
 Distance(ft, in), //call Distance ctor
 quantity(qu), price(prc) //initialize our data
 { }
 void getlumber()
 {
 Type::gettype();
 Distance::getdist();
 cout << “ Enter quantity: “; cin >> quantity;
 cout << “ Enter price per piece: “; cin >> price;
 }
 void showlumber() const
 {
 Type::showtype();
 cout << “\n Length: “;
 Distance::showdist();
 cout << “\n Price for “ << quantity
 << “ pieces: $” << price * quantity;
 }
 };
//
int main()
 {
 Lumber siding; //constructor (no args)

 cout << “\nSiding data:\n”;
 siding.getlumber(); //get siding from user

 //constructor (6 args)
 Lumber studs(“2x4”, “const”, 8, 0.0, 200, 4.45F);

 //display lumber data
 cout << “\nSiding”; siding.showlumber();
 cout << “\nStuds”; studs.showlumber();
 cout << endl;
 return 0;
 }

The major new feature in this program is the use of constructors in the derived class Lumber. These
constructors call the appropriate constructors in Type and Distance.

No-Argument Constructor

The no-argument constructor in Type looks like this:

Type()
 { strcpy(dimensions, “N/A”); strcpy(grade, “N/A”); }

This constructor fills in “N/A” (not available) for the dimensions and grade variables so the user will
be made aware if an attempt is made to display data for an uninitialized lumber object.

You’re already familiar with the no-argument constructor in the Distance class:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Distance() : feet(0), inches(0.0)
 { }

The no-argument constructor in Lumber calls both these constructors.

Lumber() : Type(), Distance(), quantity(0), price(0.0)
 { }

The names of the base-class constructors follow the colon and are separated by commas. When the
Lumber() constructor is invoked, these base-class constructors—Type() and Distance()—will be
executed. The quantity and price attributes are also initialized.

Multi-Argument Constructors

Here is the two-argument constructor for Type:

Type(string di, string gr) : dimensions(di), grade(gr)
 { }

This constructor copies string arguments to the dimensions and grade member data items.

Here’s the constructor for Distance, which is again familiar from previous programs:

Distance(int ft, float in) : feet(ft), inches(in)
 { }

The constructor for Lumber calls both these constructors, so it must supply values for their
arguments. In addition it has two arguments of its own: the quantity of lumber and the unit price.
Thus this constructor has six arguments. It makes two calls to the two constructors, each of which
takes two arguments, and then initializes its own two data items. Here’s what it looks like:

Lumber(string di, string gr, //args for Type
 int ft, float in, //args for Distance
 int qu, float prc) : //args for our data
 Type(di, gr), //call Type ctor
 Distance(ft, in), //call Distance ctor
 quantity(qu), price(prc) //initialize our data
 { }

Ambiguity in Multiple Inheritance

Odd sorts of problems may surface in certain situations involving multiple inheritance. Here’s a
common one. Two base classes have functions with the same name, while a class derived from both
base classes has no function with this name. How do objects of the derived class access the correct
base class function? The name of the function alone is insufficient, since the compiler can’t figure
out which of the two functions is meant.

Here’s an example, AMBIGU, that demonstrates the situation:

// ambigu.cpp
// demonstrates ambiguity in multiple inheritance
#include <iostream>
using namespace std;
//
class A

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

class A
 {
 public:
 void show() { cout << “Class A\n”; }
 };
class B
 {
 public:
 void show() { cout << “Class B\n”; }
 };
class C : public A, public B
 {
 };
//
int main()
 {
 C objC; //object of class C
// objC.show(); //ambiguous--will not compile
 objC.A::show(); //OK
 objC.B::show(); //OK
 return 0;
 }

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

The problem is resolved using the scope-resolution operator to specify the class in which the
function lies. Thus

objC.A::show();

refers to the version of show() that’s in the A class, while

objC.B::show();

refers to the function in the B class. Stroustrup (See Appendix H, “Bibliography,”) calls this
disambiguation.

Another kind of ambiguity arises if you derive a class from two classes that are each derived from
the same class. This creates a diamond-shaped inheritance tree. The DIAMOND program shows how
this looks.

//diamond.cpp
//investigates diamond-shaped multiple inheritance
#include <iostream>
using namespace std;
//
class A
 {
 public:
 void func();
 };
class B : public A
 { };
class C : public A
 { };
class D : public B, public C
 { };
//
int main()
 {
 D objD;
 objD.func(); //ambiguous: won’t compile
 return 0;
 }

Classes B and C are both derived from class A, and class D is derived by multiple inheritance from
both B and C. Trouble starts if you try to access a member function in class A from an object of
class D. In this example objD tries to access func(). However, both B and C contain a copy of func()
inherited from A. The compiler can’t decide which copy to use, and signals an error.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There are various advanced ways of coping with this problem, but the fact that such ambiguities
can arise causes many experts to recommend avoiding multiple inheritance altogether. You should
certainly not use it in serious programs unless you have considerable experience.

Containership: Classes Within Classes

In inheritance, if a class B is derived from a class A, we can say that “B is a kind of A.” This is
because B has all the characteristics of A, and in addition some of its own. It’s like saying that a
starling is a kind of bird: A starling has the characteristics shared by all birds (wings, feathers, and
so on) but has some distinctive characteristics of its own (such as dark iridescent plumage). For this
reason inheritance is often called a “kind of” relationship.

There’s another type of relationship, called a “has a” relationship, or containership. We say that a
starling has a tail, meaning that each starling includes an instance of a tail. In Object-Oriented
Programming the “has a” relationship occurs when one object is contained in another. Here’s a case
where an object of class A is contained in a class B:

class A
 {
 };
class B
 {
 A objA; // define objA as an object of class A
 };

In some situations inheritance and containership relationships can serve similar purposes. For
example, we can rewrite the EMPMULT program to use containership instead of inheritance. In
EMPMULT the manager and scientist classes are derived from the employee and student classes using the
inheritance relationship. In our new program, EMPCONT, the manager and scientist classes contain
instances of the employee and student classes, as shown in Figure 9.11.

Figure 9.11 Class hierarchy in EMPCONT.

The following miniprogram shows these relationships in a different way:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

class student
 {};
class employee
 {};
class manager
 {
 student stu; // stu is an object of class student
 employee emp; // emp is an object of class employee
 };
class scientist
 {
 student stu; // stu is an object of class student
 employee emp; // emp is an object of class employee
 };
class laborer
 {
 employee emp; // emp is an object of class employee
 };

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Here’s the full-scale listing for EMPCONT:

// empcont.cpp
// containership with employees and degrees
#include <iostream>
#include <string>
using namespace std;
//
class student //educational background
 {
 private:
 string school; //name of school or university
 string degree; //highest degree earned
 public:
 void getedu()
 {
 cout << “ Enter name of school or university: “;
 cin >> school;
 cout << “ Enter highest degree earned \n”;
 cout << “ (Highschool, Bachelor’s, Master’s, PhD): “;
 cin >> degree;
 }
 void putedu() const
 {
 cout << “\n School or university: “ << school;
 cout << “\n Highest degree earned: “ << degree;
 }
 };
//
class employee
 {
 private:
 string name; //employee name
 unsigned long number; //employee number
 public:
 void getdata()
 {
 cout << “\n Enter last name: “; cin >> name;
 cout << “ Enter number: “; cin >> number;
 }
 void putdata() const
 {
 cout << “\n Name: “ << name;
 cout << “\n Number: “ << number;
 }
 };
//
class manager //management
 {
 private:
 string title; //”vice-president” etc.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 string title; //”vice-president” etc.
 double dues; //golf club dues
 employee emp; //object of class employee
 student stu; //object of class student
 public:
 void getdata()
 {
 emp.getdata();
 cout << “ Enter title: “; cin >> title;
 cout << “ Enter golf club dues: “; cin >> dues;
 stu.getedu();
 }
 void putdata() const
 {
 emp.putdata();
 cout << “\n Title: “ << title;
 cout << “\n Golf club dues: “ << dues;
 stu.putedu();
 }
 };
//
class scientist //scientist
 {
 private:
 int pubs; //number of publications
 employee emp; //object of class employee
 student stu; //object of class student
 public:
 void getdata()
 {
 emp.getdata();
 cout << “ Enter number of pubs: “; cin >> pubs;
 stu.getedu();
 }
 void putdata() const
 {
 emp.putdata();
 cout << “\n Number of publications: “ << pubs;
 stu.putedu();
 }
 };
//
class laborer //laborer
 {
 private:
 employee emp; //object of class employee
 public:
 void getdata()
 { emp.getdata(); }
 void putdata() const
 { emp.putdata(); }
 };
//
int main()
 {
 manager m1;
 scientist s1, s2;
 laborer l1;

 cout << endl;
 cout << “\nEnter data for manager 1”; //get data for
 m1.getdata(); //several employees

 cout << “\nEnter data for scientist 1”;
 s1.getdata();

 cout << “\nEnter data for scientist 2”;
 s2.getdata();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 s2.getdata();

 cout << “\nEnter data for laborer 1”;
 l1.getdata();

 cout << “\nData on manager 1”; //display data for
 m1.putdata(); //several employees

 cout << “\nData on scientist 1”;
 s1.putdata();

 cout << “\nData on scientist 2”;
 s2.putdata();

 cout << “\nData on laborer 1”;
 l1.putdata();
 cout << endl;
 return 0;
 }

The student and employee classes are the same in EMPCONT as they were in EMPMULT, but they are
used in a different way by the manager and scientist classes.

Containership is clearly useful with classes that act like a data type, as does the Distance class, for
example. Then an object of that type can be used in a class in almost the same way a basic type like
int would be. In other situations you will need to examine the problem carefully and perhaps try
different approaches to see what makes sense. Often the inheritance relationship is simpler to
implement and offers a clearer conceptual framework.

Inheritance and Program Development

The program-development process, as practiced for decades by programmers everywhere, is being
fundamentally altered by Object-Oriented Programming. This is due not only to the use of classes
in OOP but to inheritance as well. Let’s see how this comes about.

Programmer A creates a class. Perhaps it’s something like the Distance class, with a complete set of
member functions for arithmetic operations on a user-defined data type.

Programmer B likes the Distance class but thinks it could be improved by using signed distances.
The solution is to create a new class, like DistSign in the ENGLEN example, that is derived from
Distance but incorporates the extensions necessary to implement signed distances.

Programmers C and D then write applications that use the DistSign class.

Programmer B may not have access to the source code for the Distance member functions, and
programmers C and D may not have access to the source code for DistSign. Yet, because of the
software reusability feature of C++, B can modify and extend the work of A, and C and D can make
use of the work of B (and A).

Notice that the distinction between software tool developers and application writers is becoming
blurred. Programmer A creates a general-purpose programming tool, the Distance class. Programmer
B creates a specialized version of this class, the DistSign class. Programmers C and D create
applications. A is a tool developer, and C and D are applications developers. B is somewhere in
between. In any case OOP is making the programming scene more flexible and at the same time
more complex.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In Chapter 13 we’ll see how a class can be divided into a client-accessible part and a part that is
distributed only in object form, so it can be used by other programmers without the distribution of
source code.

Summary

A class, called the derived class, can inherit the features of another class, called the base class. The
derived class can add other features of its own, so it becomes a specialized version of the base class.
Inheritance provides a powerful way to extend the capabilities of existing classes, and to design
programs using hierarchical relationships.

Accessibility of base class members from derived classes and from objects of derived classes is an
important issue. Data or functions in the base class that are prefaced by the keyword protected can
be accessed from derived classes but not by any other objects, including objects of derived classes.
Classes may be publicly or privately derived from base classes. Objects of a publicly derived class
can access public members of the base class, while objects of a privately derived class cannot.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

A class can be derived from more than one base class. This is called multiple inheritance. A class
can also be contained within another class.

Inheritance permits the reusability of software: Derived classes can extend the capabilities of base
classes with no need to modify—or even access the source code of—the base class. This leads to
new flexibility in the software development process, and to a wider range of roles for software
developers.

Questions

Answers to questions can be found in Appendix G, “Answers to Questions and Exercises.”

1. Inheritance is a way to

a. make general classes into more specific classes.
b. pass arguments to objects of classes.
c. add features to existing classes without rewriting them.
d. improve data hiding and encapsulation.

2. A “child” class is said to be _________ from a base class.
3. Advantages of inheritance include

a. providing class growth through natural selection.
b. facilitating class libraries.
c. avoiding the rewriting of code.
d. providing a useful conceptual framework.

4. Write the first line of the specifier for a class Bosworth that is publicly derived from a class
Alphonso.
5. True or false: Adding a derived class to a base class requires fundamental changes to the
base class.
6. To be accessed from a member function of the derived class, data or functions in the base
class must be public or _________.
7. If a base class contains a member function basefunc(), and a derived class does not contain a
function with this name, can an object of the derived class access basefunc()?
8. Assume that the classes mentioned in Question 4 and the class Alphonso contain a member
function called alfunc(). Write a statement that allows object BosworthObj of class Bosworth to
access alfunc().
9. True or false: If no constructors are specified for a derived class, objects of the derived

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9. True or false: If no constructors are specified for a derived class, objects of the derived
class will use the constructors in the base class.
10. If a base class and a derived class each include a member function with the same name,
which member function will be called by an object of the derived class, assuming the scope-
resolution operator is not used?
11. Write a declarator for a no-argument constructor of the derived class Bosworth of
Question 4 that calls a no-argument constructor in the base class Alphonso.
12. The scope-resolution operator usually

a. limits the visibility of variables to a certain function.
b. tells what base class a class is derived from.
c. specifies a particular class.
d. resolves ambiguities.

13. True or false: It is sometimes useful to specify a class from which no objects will ever be
created.
14. Assume there is a class Derv that is derived from a base class Base. Write the declarator
for a derived-class constructor that takes one argument and passes this argument along to the
constructor in the base class.
15. Assume a class Derv that is privately derived from class Base. An object of class Derv
located in main() can access

a. public members of Derv.
b. protected members of Derv.
c. private members of Derv.
d. public members of Base.
e. protected members of Base.
f. private members of Base.

16. True or false: A class D can be derived from a class C, which is derived from a class B
which is derived from a class A.
17. A class hierarchy

a. shows the same relationships as an organization chart.
b. describes “has a” relationships.
c. describes “is a kind of” relationships.
d. shows the same relationships as a family tree.

18. Write the first line of a specifier for a class Tire that is derived from class Wheel and from
class Rubber.
19. Assume a class Derv derived from a base class Base. Both classes contain a member
function func() that takes no arguments. Write a statement to go in a member function of Derv
that calls func() in the base class.
20. True or false: It is illegal to make objects of one class members of another class.

Exercises

Answers to starred exercises can be found in Appendix G.

*1. Imagine a publishing company that markets both book and audiocassette versions of its
works. Create a class publication that stores the title (a string) and price (type float) of a
publication. From this class derive two classes: book, which adds a page count (type int); and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

publication. From this class derive two classes: book, which adds a page count (type int); and
tape, which adds a playing time in minutes (type float). Each of these three classes should have
a getdata() function to get its data from the user at the keyboard, and a putdata() function to
display its data.
Write a main() program to test the book and tape classes by creating instances of them, asking
the user to fill in data with getdata(), and then displaying the data with putdata().
*2. Recall the STRCONV example from Chapter 8. The String class in this example has a flaw:
It does not protect itself if its objects are initialized to have too many characters. (The SZ
constant has the value 80.) For example, the definition

String s = “This string will surely exceed the width of the “
 “screen, which is what the SZ constant represents.”;

will cause the str array in s to overflow, with unpredictable consequences, such as crashing
the system.
With String as a base class, derive a class Pstring (for “protected string”) that prevents buffer
overflow when too long a string constant is used in a definition. A new constructor in the
derived class should copy only SZÒ1 characters into str if the string constant is longer, but
copy the entire constant if it’s shorter. Write a main() program to test different lengths of
strings.
*3. Start with the publication, book, and tape classes of Exercise 1. Add a base class sales that
holds an array of three floats so that it can record the dollar sales of a particular publication for
the last three months. Include a getdata() function to get three sales amounts from the user, and
a putdata() function to display the sales figures. Alter the book and tape classes so they are
derived from both publication and sales. An object of class book or tape should input and output
sales data along with its other data. Write a main() function to create a book object and a tape
object and exercise their input/output capabilities.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

4. Assume that the publisher in Exercises 1 and 3 decides to add a third way to distribute
books: on computer disk, for those who like to do their reading on their laptop. Add a disk
class that, like book and tape, is derived from publication. The disk class should incorporate the
same member functions as the other classes. The data item unique to this class is the disk
size: either 31/2 inches or 51/4 inches. You can use an enum Boolean type to store this item,
but the complete size should be displayed. The user could select the appropriate size by
typing 3 or 5.
5. Derive a class called employee2 from the employee class in the EMPLOY program in this
chapter. This new class should add a type double data item called compensation, and also an
enum type called period to indicate whether the employee is paid hourly, weekly, or monthly.
For simplicity you can change the manager, scientist, and laborer classes so they are derived from
employee2 instead of employee. However, note that in many circumstances it might be more in
the spirit of OOP to create a separate base class called compensation and three new classes
manager2, scientist2, and laborer2, and use multiple inheritance to derive these three classes from
the original manager, scientist, and laborer classes and from compensation. This way none of the
original classes needs to be modified.
6. Start with the ARROVER3 program in Chapter 8. Keep the safearay class the same as in that
program, and, using inheritance, derive the capability for the user to specify both the upper
and lower bounds of the array in a constructor. This is similar to Exercise 9 in Chapter 8,
except that inheritance is used to derive a new class (you can call it safehilo) instead of
modifying the original class.
7. Start with the COUNTEN2 program in this chapter. It can increment or decrement a
counter, but only using prefix notation. Using inheritance, add the ability to use postfix
notation for both incrementing and decrementing. (See Chapter 8 for a description of postfix
notation.)
8. Operators in some computer languages, such as BASIC, allow you to select parts of an
existing string and assign them to other strings. (The Standard C++ string class offers a
different approach.) Using inheritance, add this capability to the Pstring class of Exercise 2. In
the derived class, Pstring2, incorporate three new functions: left(), mid(), and right().

s2.left(s1, n) // s2 is assigned the leftmost n characters
 // from s1
s2.mid(s1, s, n) // s2 is assigned the middle n characters
 // from s1, starting at character number s
 // (leftmost character is 0)
s2.right(s1, n) // s2 is assigned the rightmost n characters
 // from s1

You can use for loops to copy the appropriate parts of s1, character by character, to a
temporary Pstring2 object, which is then returned. For extra credit, have these functions return

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

temporary Pstring2 object, which is then returned. For extra credit, have these functions return
by reference, so they can be used on the left side of the equal sign to change parts of an
existing string.
9. Start with the publication, book, and tape classes of Exercise 1. Suppose you want to add the
date of publication for both books and tapes. From the publication class, derive a new class
called publication2 that includes this member data. Then change book and tape so they are
derived from publication2 instead of publication. Make all the necessary changes in member
functions so the user can input and output dates along with the other data. For the dates, you
can use the date class from Exercise 5 in Chapter 6, which stores a date as three ints, for
month, day, and year.
10. There is only one kind of manager in the EMPMULT program in this chapter. Any serious
company has executives as well as managers. From the manager class derive a class called
executive. (We’ll assume an executive is a high-end kind of manager.) The additional data in
the executive class will be the size of the employee’s yearly bonus and the number of shares of
company stock held in his or her stock-option plan. Add the appropriate member functions so
these data items can be input and displayed along with the other manager data.
11. Various situations require that pairs of numbers be treated as a unit. For example, each
screen coordinate has an x (horizontal) component and a y (vertical) component. Represent
such a pair of numbers as a structure called pair that comprises two int member variables.
Now, assume you want to be able to store pair variables on a stack. That is, you want to be
able to place a pair (which contains two integers) onto a stack using a single call to a push()
function, with a structure of type pair as an argument; and retrieve a pair using a single call to
a pop() function, which will return a structure of type pair. Start with the Stack2 class in the
STAKEN program in this chapter, and from it derive a new class called pairStack. This new
class need contain only two members: the overloaded push() and pop() functions. The
pairStack::push() function will need to make two calls to Stack2::push() to store the two integers
in its pair, and the pairStack::pop() function will need to make two calls to Stack2::pop() (although
not necessarily in the same order).
12. Amazing as it may seem, the old British pounds-shillings-pence money notation
(£9.19.11, see Exercise 10 in Chapter 4, “Structures”) isn’t the whole story. A penny was
further divided into halfpennies and farthings, with a farthing being worth 1/4 of a penny.
There was a halfpenny coin, a farthing coin, and a halffarthing coin. Fortunately all this can
be expressed numerically in eighths of a penny:

1/8 penny is a halffarthing

1/4 penny is a farthing

3/8 penny is a farthing and a half

1/2 penny is a halfpenny (pronounced ha’penny)

5/8 penny is a halfpenny plus a halffarthing

3/4 penny is a halfpenny plus a farthing

7/8 penny is a halfpenny plus a farthing and a half

Let’s assume we want to add to the sterling class the ability to handle such fractional pennies.
The I/O format can be something like £1.1.1-1/4 or £9.19.11-7/8, where the hyphen separates the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The I/O format can be something like £1.1.1-1/4 or £9.19.11-7/8, where the hyphen separates the
fraction from the pennies.
Derive a new class called sterfrac from sterling. It should be able to perform the four arithmetic
operations on sterling quantities that include eighths of a penny. Its only member data is an
indicating the number of eighths; you can call it eighths. You’ll need to overload many of the
functions in sterling to handle the eighths. The user should be able to type any fraction in
lowest terms, and the display should also show fractions in lowest terms. It’s not necessary to
use the full-scale fraction class (see Exercise 11 in Chapter 6) but you could try that for extra
credit.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

CHAPTER 10
POINTERS

You will learn about the following in this chapter:
• Address constants and variables • Memory management with NEW

and DELETE
• Pointers and arrays • Pointers and objects
• Pointers and function arguments • Linked list
• Pointers and strings

Pointers are the hobgoblin of C++ (and C) programming; seldom has such a simple idea inspired so
much perplexity for so many. But fear not. In this chapter we will try to demystify pointers and
show practical uses for them in C++ programming.

What are pointers for? Here are some common uses:

• Accessing array elements
• Passing arguments to a function when the function needs to modify the original argument
• Passing arrays and strings to functions
• Obtaining memory from the system
• Creating data structures such as linked lists

Pointers are much more commonly used in C++ (and C) than in many other languages (such as
BASIC, Pascal, and certainly Java, which has no pointers). Is this emphasis on pointers really
necessary? You can do a lot without them, as their absence from the preceding chapters
demonstrates. Some operations that use pointers in C++ can be carried out in other ways. For
example, array elements can be accessed with array notation rather than pointer notation (we’ll see
the difference soon), and a function can modify arguments passed by reference, as well as those
passed by pointers.

However, in some situations pointers provide an essential tool for increasing the power of C++. A
notable example is the creation of data structures such as linked lists and binary trees. In fact,
several key features of C++, such as virtual functions, the new operator, and the this pointer
(discussed in Chapter 11, “Virtual Functions”), require the use of pointers. So, although you can do
a lot of programming in C++ without using pointers, you will find them essential to obtaining the
most from the language.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In this chapter we’ll introduce pointers gradually, starting with fundamental concepts and working
up to complex pointer applications.

If you already know C, you can probably skim over the first half of the chapter. However, you
should read the sections in the second half on the new and delete operators, accessing member
functions using pointers, arrays of pointers to objects, and linked-list objects.

Addresses and Pointers

The ideas behind pointers are not complicated. Here’s the first key concept: Every byte in the
computer’s memory has an address. Addresses are numbers, just as they are for houses on a street.
The numbers start at 0 and go up from there—1, 2, 3, and so on. If you have 1MB of memory, the
highest address is 1,048,575. (Of course you probably have much more.)

Your program, when it is loaded into memory, occupies a certain range of these addresses. That
means that every variable and every function in your program starts at a particular address. Figure
10.1 shows how this looks.

Figure 10.1 Memory addresses.

The Address-of Operator &

You can find the address occupied by a variable by using the address-of operator &. Here’s a short
program, VARADDR, that demonstrates how to do this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// varaddr.cpp
// addresses of variables
#include <iostream>
using namespace std;

int main()
 {
 int var1 = 11; //define and initialize
 int var2 = 22; //three variables
 int var3 = 33;

 cout << &var1 << endl //print the addresses
 << &var2 << endl //of these variables
 << &var3 << endl;
 return 0;
 }

This simple program defines three integer variables and initializes them to the values 11, 22, and
33. It then prints out the addresses of these variables.

The actual addresses occupied by the variables in a program depend on many factors, such as the
computer the program is running on, the size of the operating system, and whether any other
programs are currently in memory. For these reasons you probably won’t get the same addresses
we did when you run this program. Here’s the output on our machine:

0x8f4ffff4 ← address of var1
0x8f4ffff2 ← address of var2
0x8f4ffff0 ← address of var3

Remember that the address of a variable is not at all the same as its contents. The contents of the
three variables are 11, 22, and 33. Figure 10.2 shows the three variables in memory.

The << insertion operator interprets the addresses in hexadecimal arithmetic, as indicated by the
prefix 0x before each number. This is the usual way to show memory addresses. If you aren’t
familiar with the hexadecimal number system, don’t worry. All you really need to know is that each
variable starts at a unique address. However, you might note in the output above that each address
differs from the next by exactly 2 bytes. That’s because integers occupy 2 bytes of memory
(assuming it’s a 16-bit system). If we had used variables of type char, they would have adjacent
addresses, since a char occupies 1 byte; and if we had used type double, the addresses would have
differed by 8 bytes.

The addresses appear in descending order because automatic variables are stored on the stack,
which grows downward in memory. If we had used external variables, they would have ascending
addresses, since external variables are stored on the heap, which grows upward. Again, you don’t
need to worry too much about these considerations, since the compiler keeps track of the details for
you.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 10.2 Addresses and contents of variables.

Don’t confuse the address-of operator &, which precedes a variable name in a variable declaration,
with the reference operator &, which follows the type name in a function prototype or definition.
(References were discussed in Chapter 5, “Functions.”)

Pointer Variables

Addresses by themselves are rather limited. It’s nice to know that we can find out where things are
in memory, as we did in VARADDR, but printing out address valuesy is not all that useful. The
potential for increasing our programming power requires an additional idea: variables that hold
address values. We’ve seen variable types that store characters, integers, floating-point numbers,
and so on. Addresses are stored similarly. A variable that holds an address value is called a pointer
variable, or simply a pointer.

What is the data type of pointer variables? It’s not the same as the variable whose address is being
stored; a pointer to int is not type int. You might think a pointer data type would be called something
like pointer or ptr. However, things are slightly more complicated. The next program, PTRVAR,
shows the syntax for pointer variables.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

// ptrvar.cpp
// pointers (address variables)
#include <iostream>
using namespace std;

int main()
 {
 int var1 = 11; //two integer variables
 int var2 = 22;

 cout << &var1 << endl //print addresses of variables
 << &var2 << endl << endl;

 int* ptr; //pointer to integers

 ptr = &var1; //pointer points to var1
 cout << ptr << endl; //print pointer value

 ptr = &var2; //pointer points to var2
 cout << ptr << endl; //print pointer value
 return 0;
 }

This program defines two integer variables, var1 and var2, and initializes them to the values 11 and
22. It then prints out their addresses.

The program next defines a pointer variable in the line

int* ptr;

To the uninitiated this is a rather bizarre syntax. The asterisk means pointer to. Thus the statement
defines the variable ptr as a pointer to int. This is another way of saying that this variable can hold
the addresses of integer variables.

What’s wrong with the idea of a general-purpose pointer type that holds pointers to any data type?
If we called it type pointer we could write declarations like

pointer ptr;

The problem is that the compiler needs to know what kind of variable the pointer points to. (We’ll
see why when we talk about pointers and arrays.) The syntax used in C++ allows pointers to any
type to be declared.

char* cptr; // pointer to char
int* iptr; // pointer to int
float* fptr; // pointer to float
Distance* distptr; // pointer to user-defined Distance class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Distance* distptr; // pointer to user-defined Distance class

and so on.

Syntax Quibbles

We should note that it is common to write pointer definitions with the asterisk closer to the variable
name than to the type.

char *charptr;

It doesn’t matter to the compiler, but placing the asterisk next to the type helps emphasize that the
asterisk is part of the variable type (pointer to char), not part of the name itself.

If you define more than one pointer of the same type on one line, you need only insert the type-
pointed-to once, but you need to place an asterisk before each variable name.

char* ptr1, * ptr2, * ptr3; // three variables of type char*

Or you can use the asterisk-next-to-the-name approach.

char *ptr1, *ptr2, *ptr3; // three variables of type char*

Pointers Must Have a Value

An address like 0x8f4ffff4 can be thought of as a pointer constant. A pointer like ptr can be thought
of as a pointer variable. Just as the integer variable var1 can be assigned the constant value 11, so
can the pointer variable ptr be assigned the constant value 0x8f4ffff4.

When we first define a variable, it holds no value (unless we initialize it at the same time). It may
hold a garbage value, but this has no meaning. In the case of pointers, a garbage value is the address
of something in memory, but probably not of something that we want. So before a pointer is used, a
specific address must be placed in it. In the PTRVAR program, ptr is first assigned the address of var1
in the line

ptr = &var1; ←put address of var1 in ptr

Following this the program prints out the value contained in ptr, which should be the same address
printed for &var1. The same pointer variable ptr is then assigned the address of var2, and this value is
printed out. Figure 10.3 shows the operation of the PTRVAR program. Here’s the output of PTRVAR

0x8f51fff4 ← address of var1
0x8f51fff2 ← address of var2

0x8f51fff4 ← ptr set to address of var1
0x8f51fff2 ← ptr set to address of var2

To summarize: A pointer can hold the address of any variable of the correct type; it’s a receptacle
awaiting an address. However, it must be given some value, otherwise it will point to an address we
don’t want it to point to, such as into our program code or the operating system. Rogue pointer
values can result in system crashes and are difficult to debug, since the compiler gives no warning.
The moral: Make sure you give every pointer variable a valid address value before using it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 10.3 Changing values in ptr.

Accessing the Variable Pointed To

Suppose that we don’t know the name of a variable but we do know its address. Can we access the
contents of the variable? (It may seem like mismanagement to lose track of variable names, but
we’ll soon see that there are many variables whose names we don’t know.)

There is a special syntax to access the value of a variable using its address instead of its name.
Here’s an example program, PTRACC, that shows how it’s done:

// ptracc.cpp
// accessing the variable pointed to
#include <iostream>
using namespace std;

int main()
 {
 int var1 = 11; //two integer variables
 int var2 = 22;

 int* ptr; //pointer to integers

 ptr = &var1; //pointer points to var1
 cout << *ptr << endl; //print contents of pointer (11)

 ptr = &var2; //pointer points to var2
 cout << *ptr << endl; //print contents of pointer (22)
 return 0;
 }

This program is very similar to PTRVAR, except that instead of printing the address values in ptr, we
print the integer value stored at the address that’s stored in ptr. Here’s the output:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11
22

The expression that accesses the variables var1 and var2 is *ptr, which occurs in each of the two cout
statements.

When an asterisk is used in front of a variable name, as it is in the *ptr expression, it is called the
indirection operator. It means the value of the variable pointed to by. Thus the expression *ptr
represents the value of the variable pointed to by ptr. When ptr is set to the address of var1, the
expression *ptr has the value 11, since var1 is 11. When ptr is changed to the address of var2, the
expression *ptr acquires the value 22, since var2 is 22. The indirection operator is sometimes called
the contents of operator, which is another way to say the same thing. Figure 10.4 shows how this
looks.

You can use a pointer not only to display a variable’s value, but also to perform any operation you
would perform on the variable directly. Here’s a program, PTRTO, that uses a pointer to assign a
value to a variable, and then to assign that value to another variable:

// ptrto.cpp
// other access using pointers
#include <iostream>
using namespace std;

int main()
 {
 int var1, var2; //two integer variables
 int* ptr; //pointer to integers

 ptr = &var1; //set pointer to address of var1
 *ptr = 37; //same as var1=37
 var2 = *ptr; //same as var2=var1

 cout << var2 << endl; //verify var2 is 37
 return 0;
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 10.4 Access via pointer.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Remember that the asterisk used as the indirection operator has a different meaning than the
asterisk used to declare pointer variables. The indirection operator precedes the variable and means
value of the variable pointed to by. The asterisk used in a declaration means pointer to.

int* ptr; //declaration: pointer to int
*ptr = 37; //indirection: value of variable pointed to by ptr

Using the indirection operator to access the value stored in an address is called indirect addressing
or sometimes dereferencing, the pointer.

Here’s a capsule summary of what we’ve learned so far:

int v; //defines variable v of type int
int* p; //defines p as a pointer to int
p = &v; //assigns address of variable v to pointer p
v = 3; //assigns 3 to v
*p = 3; //also assigns 3 to v

The last two statements show the difference between normal or direct addressing, where we refer to
a variable by name, and pointer or indirect addressing, where we refer to the same variable using its
address.

In the example programs we’ve shown so far in this chapter, there’s really no advantage to using
the pointer expression to access variables, since we can access them directly. Pointers come into
their own when you can’t access a variable directly, as we’ll see later.

Pointer to void

Before we go on to see pointers at work, we should note one peculiarity of pointer data types.
Ordinarily, the address that you put in a pointer must be the same type as the pointer. You can’t
assign the address of a float variable to a pointer to int, for example:

float flovar = 98.6;
int* ptrint = &flovar; //ERROR: can’t assign float* to int*

However, there is an exception to this. There is a sort of general-purpose pointer that can point to
any data type. This is called a pointer to void, and is defined like this:

void* ptr; //ptr can point to any data type

Such pointers have certain specialized uses, such as passing pointers to functions that operate
independently of the data type pointed to.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The next example uses a pointer to void and also shows that, if you don’t use void, you must be
careful to assign pointers an address of the same type as the pointer. Here’s the listing for PTRVOID

// ptrvoid.cpp
// pointers to type void
#include <iostream>
using namespace std;

int main()
 {
 int intvar; //integer variable
 float flovar; //float variable

 int* ptrint; //define pointer to int
 float* ptrflo; //define pointer to float
 void* ptrvoid; //define pointer to void

 ptrint = &intvar; //ok, int* to int*
// ptrint = &flovar; //error, float* to int*
// ptrflo = &intvar; //error, int* to float*
 ptrflo = &flovar; //ok, float* to float*

 ptrvoid = &intvar; //ok, int* to void*
 ptrvoid = &flovar; //ok, float* to void*
 return 0;
 }

You can assign the address of intvar to ptrint because they are both type int*, but you can’t assign the
address of flovar to ptrint because the first is type float* and the second is type int*. However, ptrvoid
can be given any pointer value, such as int*, because it is a pointer to void.

If for some unusual reason you really need to assign one kind of pointer type to another, you can
use the reinterpret_cast. For the lines commented out in PTRVOID, that would look like this:

ptrint = reinterpret_cast<int*>(flovar);
ptrflo = reinterpret_cast<float*>(intvar);

The use of reinterpret_cast in this way is not recommended, but occasionally it’s the only way out of a
difficult situation. Static casts won’t work with pointers. Old-style C casts can be used, but are
always a bad idea in C++. We’ll see examples of reinterpret_cast in Chapter 12, “Streams and Files,”
where it’s used to alter the way a data buffer is interpreted.

Pointers and Arrays

There is a close association between pointers and arrays. We saw in Chapter 7, “Arrays and
Strings,” how array elements are accessed. The following program, ARRNOTE, provides a review.

// arrnote.cpp
// array accessed with array notation
#include <iostream>
using namespace std;

int main()
 { //array
 int intarray[5] = { 31, 54, 77, 52, 93 };

 for(int j=0; j<5; j++) //for each element,
 cout << intarray[j] << endl; //print value
 return 0;
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

The cout statement prints each array element in turn. For instance, when j is 3, the expression
intarray[j] takes on the value intarray[3] and accesses the fourth array element, the integer 52. Here’s
the output of ARRNOTE:

31
54
77
52
93

Surprisingly, array elements can be accessed using pointer notation as well as array notation. The
next example, PTRNOTE, is similar to ARRNOTE except that it uses pointer notation.

// ptrnote.cpp
// array accessed with pointer notation
#include <iostream>
using namespace std;

int main()
 { //array
 int intarray[5] = { 31, 54, 77, 52, 93 };

 for(int j=0; j<5; j++) //for each element,
 cout << *(intarray+j) << endl; //print value
 return 0;
 }

The expression *(intarray+j) in PTRNOTE has exactly the same effect as intarray[j] in ARRNOTE, and the
output of the programs is identical. But how do we interpret the expression *(intarray+j)? Suppose
3, so the expression is equivalent to *(intarray+3). We want this to represent the contents of the fourth
element of the array (52). Remember that the name of an array is its address. The expression
intarray+j is thus an address with something added to it. You might expect that intarray+3 would cause
3 bytes to be added to intarray. But that doesn’t produce the result we want: intarray is an array of
integers, and 3 bytes into this array is the middle of the second element, which is not very useful.
We want to obtain the fourth integer in the array, not the fourth byte, as shown in Figure 10.5. (This
figure assumes 2-byte integers.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 10.5 Counting by integers.

The C++ compiler is smart enough to take the size of the data into account when it performs
arithmetic on data addresses. It knows that intarray is an array of type int because it was declared that
way. So when it sees the expression intarray+3, it interprets it as the address of the fourth integer in
intarray, not the fourth byte.

But we want the value of this fourth array element, not the address. To take the value, we use the
indirection operator *. The resulting expression, when j is 3, is *(intarray+3), which is the content of
the fourth array element, or 52.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Now we see why a pointer declaration must include the type of the variable pointed to. The
compiler needs to know whether a pointer is a pointer to int or a pointer to double so that it can
perform the correct arithmetic to access elements of the array. It multiplies the index value by 2 in
the case of type int, but by 8 in the case of double.

Pointer Constants and Pointer Variables

Suppose that, instead of adding j to intarray to step through the array addresses, you wanted to use
the increment operator. Could you write *(intarray++)?

The answer is no, and the reason is that you can’t increment a constant (or indeed change it in any
way). The expression intarray is the address where the system has chosen to place your array, and it
will stay at this address until the program terminates. intarray is a pointer constant. You can’t say
intarray++ any more than you can say 7++. (In a multitasking system, variable addresses may change
during program execution. An active program may be swapped out to disk and then reloaded at a
different memory location. However, this process is invisible to your program.)

But while you can’t increment an address, you can increment a pointer that holds an address. The
next example, PTRINC, shows how:

// ptrinc.cpp
// array accessed with pointer
#include <iostream>
using namespace std;

int main()
 {
 int intarray[] = { 31, 54, 77, 52, 93 }; //array
 int* ptrint; //pointer to int
 ptrint = intarray; //points to intarray

 for(int j=0; j<5; j++) //for each element,
 cout << *(ptrint++) << endl; //print value
 return 0;
 }

Here we define a pointer to int—ptrint—and give it the value intarray, the address of the array. Now
we can access the contents of the array elements with the expression

*(ptrint++)

The variable ptrint starts off with the same address value as intarray, thus allowing the first array
element, intarray[0], which has the value 31, to be accessed as before. But, because ptrint is a variable

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

element, intarray[0], which has the value 31, to be accessed as before. But, because ptrint is a variable
and not a constant, it can be incremented. After it is incremented, it points to the second array
element, intarray[1]. The expression *(ptrint++) then represents the contents of the second array
element, or 54. The loop causes the expression to access each array element in turn. The output of
PTRINC is the same as that for PTRNOTE.

Pointers and Functions

In Chapter 5 we noted that there are three ways to pass arguments to a function: by value, by
reference, and by pointer. If the function is intended to modify variables in the calling program,
then these variables cannot be passed by value, since the function obtains only a copy of the
variable. However, either a reference argument or a pointer can be used in this situation.

Passing Simple Variables

We’ll first review how arguments are passed by reference, and then compare this to passing pointer
arguments. The PASSREF program shows passing by reference.

// passref.cpp
// arguments passed by reference
#include <iostream>
using namespace std;

int main()
 {
 void centimize(double&); //prototype

 double var = 10.0; //var has value of 10 inches
 cout << “var = ” << var << “ inches” << endl;

 centimize(var); //change var to centimeters
 cout << “var = ” << var << “ centimeters” << endl;
 return 0;
 }
//--
void centimize(double& v)
 {
 v *= 2.54; //v is the same as var
 }

Here we want to convert a variable var in main() from inches to centimeters. We pass the variable by
reference to the function centimize(). (Remember that the & following the data type double in the
prototype for this function indicates that the argument is passed by reference.) The centimize()
function multiplies the original variable by 2.54. Notice how the function refers to the variable. It
simply uses the argument name v; v and var are different names for the same thing.

Once it has converted var to centimeters, main() displays the result. Here’s the output of PASSREF:

var = 10 inches
var = 25.4 centimeters

The next example, PASSPTR, shows an equivalent situation when pointers are used:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// passptr.cpp
// arguments passed by pointer
#include <iostream>
using namespace std;

int main()
 {
 void centimize(double*); //prototype

 double var = 10.0; //var has value of 10 inches
 cout << “var = ” << var << “ inches” << endl;

 centimize(&var); //change var to centimeters
 cout << “var = ” << var << “ centimeters” << endl;
 return 0;
 }
//--
void centimize(double* ptrd)
 {
 *ptrd *= 2.54; //*ptrd is the same as var
 }

The output of PASSPTR is the same as that of PASSREF.

The function centimize() is declared as taking an argument that is a pointer to double:

void centimize(double*) // argument is pointer to double

When main() calls the function it supplies the address of the variable as the argument:

centimize(&var);

Remember that this is not the variable itself, as it is in passing by reference, but the variable’s
address.

Because the centimize() function is passed an address, it must use the indirection operator, *ptrd, to
access the value stored at this address:

*ptrd *= 2.54; // multiply the contents of ptrd by 2.54

Of course this is the same as

*ptrd = *ptrd * 2.54; // multiply the contents of ptrd by 2.54

where the standalone asterisk means multiplication. (This operator really gets around.)

Since ptrd contains the address of var, anything done to *ptrd is actually done to var. Figure 10.6
shows how changing *ptrd in the function changes var in the calling program.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 10.6 Pointer passed to function.

Passing a pointer as an argument to a function is in some ways similar to passing a reference. They
both permit the variable in the calling program to be modified by the function. However, the
mechanism is different. A reference is an alias for the original variable, while a pointer is the
address of the variable.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Passing Arrays

We’ve seen numerous examples, starting in Chapter 7, of arrays passed as arguments to functions,
and their elements being accessed by the function. Until this chapter, since we had not yet learned
about pointers, this was done using array notation. However, it’s more common to use pointer
notation instead of array notation when arrays are passed to functions. The PASSARR program
shows how this looks:

// passarr.cpp
// array passed by pointer
#include <iostream>
using namespace std;
const int MAX = 5; //number of array elements

int main()
 {
 void centimize(double*); //prototype

 double varray[MAX] = { 10.0, 43.1, 95.9, 59.7, 87.3 };

 centimize(varray); //change elements of varray to cm

 for(int j=0; j<MAX; j++) //display new array values
 cout << “varray[” << j << “]=”
 << varray[j] << “ centimeters” << endl;
 return 0;
 }
//--
void centimize(double* ptrd)
 {
 for(int j=0; j<MAX; j++)
 *ptrd++ *= 2.54; //ptrd points to elements of varray
 }

The prototype for the function is the same as in PASSPTR; the function’s single argument is a
pointer to double. In array notation this is written as

void centimize(double[]);

That is, double* is equivalent here to double[], although the pointer syntax is more commonly used.

Since the name of an array is the array’s address, there is no need for the address operator & when
the function is called:

centimize(varray); // pass array address

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

centimize(varray); // pass array address

In centimize() this array address is placed in the variable ptrd. To point to each element of the array in
turn, we need only increment ptrd:

*ptrd++ *= 2.54;

Figure 10.7 shows how the array is accessed. Here’s the output of PASSARR:

varray[0]=25.4 centimeters
varray[1]=109.474 centimeters
varray[2]=243.586 centimeters
varray[3]=151.638 centimeters
varray[4]=221.742 centimeters

Figure 10.7 Accessing an array from function.

Here’s a syntax question: How do we know that the expression *ptrd++ increments the pointer and
not the pointer contents? In other words, does the compiler interpret it as *(ptrd++), which is what we
want, or as (*ptrd)++? It turns out that * (when used as the indirection operator) and ++ have the
same precedence. However, operators of the same precedence are distinguished in a second way:
by associativity. Associativity is concerned with whether the compiler performs operations starting
with an operator on the right or an operator on the left. If a group of operators has right
associativity, the compiler performs the operation on the right side of the expression first, then
works its way to the left. The unary operators like * and ++ have right associativity, so the
expression is interpreted as *(ptrd++), which increments the pointer, not what it points to. That is, the
pointer is incremented first and the indirection operator is applied to the resulting address.

Sorting Array Elements

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As a further example of using pointers to access array elements, let’s see how to sort the contents of
an array. We’ll use two program examples—the first to lay the groundwork, and the second, an
expansion of the first, to demonstrate the sorting process.

Ordering with Pointers

The first program is similar to the REFORDER program in Chapter 6, “Objects and Classes,” except
that it uses pointers instead of references. It orders two numbers passed to it as arguments,
exchanging them if the second is smaller than the first. Here’s the listing for PTRORDER:

// ptrorder.cpp
// orders two arguments using pointers
#include <iostream>
using namespace std;

int main()
 {
 void order(int*, int*); //prototype

 int n1=99, n2=11; //one pair ordered, one not
 int n3=22, n4=88;

 order(&n1, &n2); //order each pair of numbers
 order(&n3, &n4);

 cout << “n1=” << n1 << endl; //print out all numbers
 cout << “n2=” << n2 << endl;
 cout << “n3=” << n3 << endl;
 cout << “n4=” << n4 << endl;
 return 0;
 }
//--
void order(int* numb1, int* numb2) //orders two numbers
 {
 if(*numb1 > *numb2) //if 1st larger than 2nd,
 {
 int temp = *numb1; //swap them
 *numb1 = *numb2;
 *numb2 = temp;
 }
 }

The function order() works the same as it did in REFORDER, except that it is passed the addresses of
the numbers to be ordered, and it accesses the numbers using pointers. That is, *numb1 accesses the
number in main() passed as the first argument, and *numb2 accesses the second.

Here’s the output from PTRORDER:

n1=11 ← this and
n2=99 ← this are swapped, since they weren’t in order
n3=22 ← this
n4=88 ← and this are not swapped, since they were in order

We’ll use the order() function from PTRORDER in our next example program, PTRSORT, which sorts
an array of integers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// ptrsort.cpp
// sorts an array using pointers
#include <iostream>
using namespace std;

int main()
 {
 void bsort(int*, int); //prototype
 const int N = 10; //array size
 //test array
 int arr[N] = { 37, 84, 62, 91, 11, 65, 57, 28, 19, 49 };

 bsort(arr, N); //sort the array

 for(int j=0; j<N; j++) //print out sorted array
 cout << arr[j] << “ ”;
 cout << endl;
 return 0;
 }
//--
void bsort(int* ptr, int n)
 {
 void order(int*, int*); //prototype
 int j, k; //indexes to array

 for(j=0; j<n-1; j++) //outer loop
 for(k=j+1; k<n; k++) //inner loop starts at outer
 order(ptr+j, ptr+k); //order the pointer contents
 }
//--
void order(int* numb1, int* numb2) //orders two numbers
 {
 if(*numb1 > *numb2) //if 1st larger than 2nd,
 {
 int temp = *numb1; //swap them
 *numb1 = *numb2;
 *numb2 = temp;
 }
 }

The array arr of integers in main() is initialized to unsorted values. The address of the array, and the
number of elements, are passed to the bsort() function. This sorts the array, and the sorted values are
then printed. Here’s the output of the PTRSORT:

11 19 28 37 49 57 62 65 84 91

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

The Bubble Sort

The bsort() function sorts the array using a variation of the bubble sort. This is a simple (although
notoriously slow) approach to sorting. Here’s how it works, assuming we want to arrange the
numbers in the array in ascending order. First the first element of the array (arr[0]) is compared in
turn with each of the other elements (starting with the second). If it’s greater than any of them, the
two are swapped. When this is done we know that at least the first element is in order; it’s now the
smallest element. Next the second element is compared in turn with all the other elements, starting
with the third, and again swapped if it’s bigger. When we’re done we know that the second element
has the second-smallest value. This process is continued for all the elements until the next-to-the-
last, at which time the array is assumed to be ordered. Figure 10.8 shows the bubble sort in action
(with fewer items than in PTRSORT).

In PTRSORT, the number in the first position, 37, is compared with each element in turn, and
swapped with 11. The number in the second position, which starts off as 84, is compared with each
element. It’s swapped with 62; then 62 (which is now in the second position) is swapped with 37,
37 is swapped with 28, and 28 is swapped with 19. The number in the third position, which is 84
again, is swapped with 62, 62 is swapped with 57, 57 with 37, and 37 with 28. The process
continues until the array is sorted.

The bsort() function in PTRSORT consists of two nested loops, each of which controls a pointer. The
outer loop uses the loop variable j, and the inner one uses k. The expressions ptr+j and ptr+k point to
various elements of the array, as determined by the loop variables. The expression ptr+j moves
down the array, starting at the first element (the top) and stepping down integer by integer until one
short of the last element (the bottom). For each position taken by ptr+j in the outer loop, the
expression ptr+k in the inner loop starts pointing one below ptr+j and moves down to the bottom of
the array. Each time through the inner loop, the elements pointed to by ptr+j and ptr+k are compared,
using the order() function, and if the first is greater than the second, they’re swapped. Figure 10.9
shows this process.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 10.8 Operation of the bubble sort.

Figure 10.9 Operation of PTRSORT.

The PTRSORT example begins to reveal the power of pointers. They provide a consistent and
efficient way to operate on array elements and other variables whose names aren’t known to a
particular function.

Pointers and C-type Strings

As we noted in Chapter 7, C-type strings are simply arrays of type char. Thus pointer notation can
be applied to the characters in strings, just as it can to the elements of any array.

Pointers to String Constants

Here’s an example, TWOSTR, in which two strings are defined, one using array notation as we’ve
seen in previous examples, and one using pointer notation:

// twostr.cpp
// strings defined using array and pointer notation
#include <iostream>
using namespace std;

int main()
 {
 char str1[] = “Defined as an array”;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 char str1[] = “Defined as an array”;
 char* str2 = “Defined as a pointer”;

 cout << str1 << endl; // display both strings
 cout << str2 << endl;

// str1++; // can’t do this; str1 is a constant
 str2++; // this is OK, str2 is a pointer

 cout << str2 << endl; // now str2 starts “Defined...”
 return 0;
 }

In many ways these two types of definition are equivalent. You can print out both strings as the
example shows, use them as function arguments, and so on. But there is a subtle difference: str1 is
an address—that is, a pointer constant—while str2 is a pointer variable. So str2 can be changed,
while str1 cannot, as shown in the program. Figure 10.10 shows how these two kinds of strings look
in memory.

We can increment str2, since it is a pointer, but once we do, it no longer points to the first character
in the string. Here’s the output of TWOSTR:

Defined as an array
Defined as a pointer
Defined as a pointer ← following str2++

A string defined as a pointer is considerably more flexible than one defined as an array. The
following examples will make use of this flexibility.

Figure 10.10 Strings as arrays and pointers.

Strings As Function Arguments

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here’s an example that shows a string used as a function argument. The function simply prints the
string, by accessing each character in turn. Here’s the listing for PTRSTR:

// ptrstr.cpp
// displays a string with pointer notation
#include <iostream>
using namespace std;

int main()
 {
 void dispstr(char*); //prototype
 char str[] = “Idle people have the least leisure.”;

 dispstr(str); //display the string
 return 0;
 }
//--
void dispstr(char* ps)
 {
 while(*ps) //until null character,
 cout << *ps++; //print characters
 cout << endl;
 }

The array address str is used as the argument in the call to function dispstr(). This address is a
constant, but since it is passed by value, a copy of it is created in dispstr(). This copy is a pointer,
A pointer can be changed, so the function increments ps to display the string. The expression *ps++
returns the successive characters of the string. The loop cycles until it finds the null character (‘\0’
at the end of the string. Since this has the value 0, which represents false, the while loop terminates
at this point.

Copying a String Using Pointers

We’ve seen examples of pointers used to obtain values from an array. Pointers can also be used to
insert values into an array. The next example, COPYSTR, demonstrates a function that copies one
string to another:

// copystr.cpp
// copies one string to another with pointers
#include <iostream>
using namespace std;

int main()
 {
 void copystr(char*, const char*); //prototype
 char* str1 = “Self-conquest is the greatest victory.”;
 char str2[80]; //empty string

 copystr(str2, str1); //copy str1 to str2
 cout << str2 << endl; //display str2
 return 0;
 }
//--
void copystr(char* dest, const char* src)
 {
 while(*src) //until null character,
 *dest++ = *src++; //copy chars from src to dest
 *dest = ‘\0’; //terminate dest
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Here the main() part of the program calls the function copystr() to copy str1 to str2. In this function the
expression

*dest++ = *src++;

takes the value at the address pointed to by src and places it in the address pointed to by dest. Both
pointers are then incremented, so the next time through the loop the next character will be
transferred. The loop terminates when a null character is found in src; at this point a null is inserted
in dest and the function returns. Figure 10.11 shows how the pointers move through the strings.

Figure 10.11 Operation of COPYSTR.

Library String Functions

Many of the library functions we have already used for strings have string arguments that are
specified using pointer notation. As an example you can look at the description of strcpy() in your

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

specified using pointer notation. As an example you can look at the description of strcpy() in your
compiler’s documentation (or in the STRING.H header file). This function copies one string to
another; we can compare it with our homemade copystr() function in the COPYSTR example. Here’s
the syntax for the strcpy() library function:

char* strcpy(char* dest, const char* src);

This function takes two arguments of type char*. (The next section, “The const Modifier and
Pointers,” explains the meaning of const in this context.) The strcpy() function also returns a pointer
to char; this is the address of the dest string. In other respects this function works very much like our
homemade copystr() function.

The const Modifier and Pointers

The use of the const modifier with pointer declarations can be confusing, because it can mean one of
two things, depending on where it’s placed. The following statements show the two possibilities:

const int* cptrInt; //cptrInt is a pointer to constant int
int* const ptrcInt; //ptrcInt is a constant pointer to int

Following the first declaration, you cannot change the value of whatever cptrInt points to, although
you can change cptrInt itself. Following the second declaration, you can change what ptrcInt points
to, but you cannot change the value of ptrcInt itself. You can remember the difference by reading
from right to left, as indicated in the comments. You can use const in both positions to make the
pointer and what it points to constant.

In the declaration of strcpy() just shown, the argument const char* src specifies that the characters
pointed to by src cannot be changed by strcpy(). It does not imply that the src pointer itself cannot be
modified. To do that the argument declaration would need to be char* const src.

Arrays of Pointers to Strings

Just as there are arrays of variables of type int or type float, there can also be arrays of pointers. A
common use for this construction is an array of pointers to strings.

In Chapter 7 the STRARAY program demonstrated an array of char* strings. As we noted, there is a
disadvantage to using an array of strings, in that the subarrays that hold the strings must all be the
same length, so space is wasted when strings are shorter than the length of the subarrays (see Figure
7.10 in Chapter 7).

Let’s see how to use pointers to solve this problem. We will modify STRARAY to create an array of
pointers to strings, rather than an array of strings. Here’s the listing for PTRTOSTR:

// ptrtostr.cpp
// an array of pointers to strings
#include <iostream>
using namespace std;
const int DAYS = 7; //number of pointers in array

int main()
 { //array of pointers to char
 char* arrptrs[DAYS] = { “Sunday”, “Monday”, “Tuesday”,
 “Wednesday”, “Thursday”,
 “Friday”, “Saturday” };

 for(int j=0; j<DAYS; j++) //display every string

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 for(int j=0; j<DAYS; j++) //display every string
 cout << arrptrs[j] << endl;
 return 0;
 }

The output of this program is the same as that for STRARAY:

Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday

When strings are not part of an array, C++ places them contiguously in memory, so there is no
wasted space. However, to find the strings, there must be an array that holds pointers to them. A
string is itself an array of type char, so an array of pointers to strings is an array of pointers to char
That is the meaning of the definition of arrptrs in PTRTOSTR. Now recall that a string is always
represented by a single address: the address of the first character in the string. It is these addresses
that are stored in the array. Figure 10.12 shows how this looks.

Figure 10.12 Array of pointers and strings.

Memory Management: new and delete

We’ve seen many examples where arrays are used to set aside memory. The statement

int arr1[100];

reserves memory for 100 integers. Arrays are a useful approach to data storage, but they have a
serious drawback: We must know at the time we write the program how big the array will be. We
can’t wait until the program is running to specify the array size. The following approach won’t
work:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

cin >> size; // get size from user
int arr[size]; // error; array size must be a constant

The compiler requires the array size to be a constant.

But in many situations we don’t know how much memory we need until runtime. We might want to
store a string that was typed in by the user, for example. In this situation we can define an array
sized to hold the largest string we expect, but this wastes memory. (As we’ll learn in Chapter 15,
“The Standard Template Library,” you can also use a vector, which is a sort of expandable array.)

The new Operator

C++ provides a different approach to obtaining blocks of memory: the new operator. This versatile
operator obtains memory from the operating system and returns a pointer to its starting point. The
NEWINTRO example shows how new is used:

// newintro.cpp
// introduces operator new
#include <iostream>
#include <cstring> //for strlen
using namespace std;

int main()
 {
 char* str = “Idle hands are the devil’s workshop.”;
 int len = strlen(str); //get length of str

 char* ptr; //make a pointer to char
 ptr = new char[len+1]; //set aside memory: string + ‘\0’

 strcpy(ptr, str); //copy str to new memory area ptr

 cout << “ptr=” << ptr << endl; //show that ptr is now in str

 delete[] ptr; //release ptr’s memory
 return 0;
 }

The expression

ptr = new char[len+1];

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

returns a pointer to a section of memory just large enough to hold the string str, whose length len we
found with the strlen() library function, plus an extra byte for the null character ‘\0’ at the end of the
string. Figure 10.13 shows the syntax of a statement using the new operator. Remember to use
brackets around the size; the compiler won’t object if you mistakenly use parentheses, but the
results will be incorrect.

Figure 10.13 Syntax of new operator.

Figure 10.14 shows the memory obtained by new and the pointer to it.

In NEWINTRO we use strcpy() to copy string str to the newly created memory area pointed to by ptr
Since we made this area equal in size to the length of str, the string fits exactly. The output of
NEWINTRO is:

ptr=Idle hands are the devil’s workshop.

C programmers will recognize that new plays a role similar to the malloc() family of library
functions. The new approach is superior in that it returns a pointer to the appropriate data type,
while malloc()’s pointer must be cast to the appropriate type. There are other advantages as well.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C programmers may wonder if there is a C++ equivalent to realloc() for changing the size of memory
that has already been reallocated. Sorry, there’s no renew in C++. You’ll need to fall back on the
ploy of creating a larger (or smaller) space with new, and copying your data from the old area to the
new one.

Figure 10.14 Memory obtained by new operator

The delete Operator

If your program reserves many chunks of memory using new, eventually all the available memory
will be reserved and the system will crash. To ensure safe and efficient use of memory, the new
operator is matched by a corresponding delete operator that returns memory to the operating system.
In NEWINTRO the statement

delete[] ptr;

returns to the system whatever memory was pointed to by ptr.

Actually, there is no need for this operator in NEWINTRO, since memory is automatically returned
when the program terminates. However, suppose you use new in a function. If the function uses a
local variable as a pointer to this memory, then when the function terminates, the pointer will be
destroyed but the memory will be left as an orphan, taking up space that is inaccessible to the rest
of the program. Thus it is always good practice, and often essential, to delete memory when you’re
through with it.

Deleting the memory doesn’t delete the pointer that points to it (str in NEWINTRO), and doesn’t

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Deleting the memory doesn’t delete the pointer that points to it (str in NEWINTRO), and doesn’t
change the address value in the pointer. However, this address is no longer valid; the memory it
points to may be changed to something entirely different. Be careful that you don’t use pointers to
memory that has been deleted.

The brackets following delete indicate that we’re deleting an array. If you create a single object with
new, you don’t need the brackets when you delete it.

ptr = new SomeClass; // allocate a single object
. . .
delete ptr; // no brackets following delete

However, don’t forget the brackets when deleting arrays of objects. Using them ensures that all the
members of the array are deleted, and that the destructor is called for each one.

A String Class Using new

The new operator often appears in constructors. As an example, we’ll modify the String class, last
seen in examples such as STRPLUS in Chapter 8, “Operator Overloading.” You may recall that a
potential defect of that class was that all String objects occupied the same fixed amount of memory.
A string shorter than this fixed length wasted memory, and a longer string—if one were mistakenly
generated—could crash the system by extending beyond the end of the array. Our next example
uses new to obtain exactly the right amount of memory. Here’s the listing for NEWSTR:

// newstr.cpp
// using new to get memory for strings
#include <iostream>
#include <cstring> //for strcpy(), etc
using namespace std;
//
class String //user-defined string type
 {
 private:
 char* str; //pointer to string
 public:
 String(char* s) //constructor, one arg
 {
 int length = strlen(s); //length of string argument
 str = new char[length+1]; //get memory
 strcpy(str, s); //copy argument to it
 }
 ~String() //destructor
 {
 delete[] str; //release memory
 }
 void display() //display the String
 {
 cout << str << endl;
 }
 };
//
int main()
 { //uses 1-arg constructor
 String s1 = “Who knows nothing doubts nothing.”;

 cout << “s1=”; //display string
 s1.display();
 return 0;
 }

The String class has only one data item: a pointer to char, called str. This pointer will point to the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The String class has only one data item: a pointer to char, called str. This pointer will point to the
string held by the String object. There is no array within the object to hold the string. The string is
stored elsewhere; only the pointer to it is a member of String.

Constructor in NEWSTR

The constructor in this example takes a normal char* string as its argument. It obtains space in
memory for this string with new; str points to the newly obtained memory. The constructor then uses
strcpy() to copy the string into this new space.

Destructor in NEWSTR

We haven’t seen many destructors in our examples so far, but now that we’re allocating memory
with new, destructors become important. If we allocate memory when we create an object, it’s
reasonable to deallocate the memory when the object is no longer needed. As you may recall from
Chapter 7, a destructor is a routine that is called automatically when an object is destroyed. The
destructor in NEWSTR looks like this:

~String()
 {
 delete[] str;
 }

This destructor gives back to the system the memory obtained when the object was created. Objects
(like other variables) are typically destroyed when the function in which they were defined
terminates. This destructor ensures that memory obtained by the String object will be returned to the
system, and not left in limbo, when the object is destroyed.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

We should note a potential glitch in using destructors as shown in NEWSTR. If you copy one String
object to another, say with a statement like s2 = s1, you’re really only copying the pointer to the
actual (char*) string. Both objects now point to the same string in memory. But if you now delete
one string, the destructor will delete the char* string, leaving the other object with an invalid pointer.
This can be subtle, because objects can be deleted in non-obvious ways, such as when a function, in
which a local object has been created, returns. In Chapter 11 we’ll see how to make a smarter
destructor that counts how many String objects are pointing to a string.

Pointers to Objects

Pointers can point to objects as well as to simple data types and arrays. We’ve seen many examples
of objects defined and given a name, in statements like

Distance dist;

where an object called dist is defined to be of the Distance class.

Sometimes, however, we don’t know, at the time that we write the program, how many objects we
want to create. When this is the case we can use new to create objects while the program is running.
As we’ve seen, new returns a pointer to an unnamed object. Let’s look at a short example program,
ENGLPTR, that compares the two approaches to creating objects.

// englptr.cpp
// accessing member functions by pointer
#include <iostream>
using namespace std;
//
class Distance //English Distance class
 {
 private:
 int feet;
 float inches;
 public:
 void getdist() //get length from user
 {
 cout << “\nEnter feet: ”; cin >> feet;
 cout << “Enter inches: ”; cin >> inches;
 }
 void showdist() //display distance
 { cout << feet << “\’-” << inches << ‘\”’; }
 };
//
int main()
 {
 Distance dist; //define a named Distance object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Distance dist; //define a named Distance object
 dist.getdist(); //access object members
 dist.showdist(); // with dot operator

 Distance* distptr; //pointer to Distance
 distptr = new Distance; //points to new Distance object
 distptr->getdist(); //access object members
 distptr->showdist(); // with -> operator
 cout << endl;
 return 0;
 }

This program uses a variation of the English Distance class seen in previous chapters. The main()
function defines dist, uses the Distance member function getdist() to get a distance from the user, and
then uses showdist() to display it.

Referring to Members

ENGLPTR then creates another object of type Distance using the new operator, and returns a pointer to
it called distptr.

The question is, how do we refer to the member functions in the object pointed to by distptr? You
might guess that we would use the dot (.) membership-access operator, as in

distptr.getdist(); // won’t work; distptr is not a variable

but this won’t work. The dot operator requires the identifier on its left to be a variable. Since distptr
is a pointer to a variable, we need another syntax. One approach is to dereference (get the contents
of the variable pointed to by) the pointer:

(*distptr).getdist(); // ok but inelegant

However, this is slightly cumbersome because of the parentheses. (The parentheses are necessary
because the dot operator (.) has higher precedence than the indirection operator (*). An equivalent
but more concise approach is furnished by the membership-access operator ->, which consists of a
hyphen and a greater-than sign:

distptr->getdist(); // better approach

As you can see in ENGLPTR, the -> operator works with pointers to objects in just the same way that
the . operator works with objects. Here’s the output of the program:

Enter feet: 10 ← this object uses the dot operator

Enter inches: 6.25
10’-6.25”

Enter feet: 6 ← this object uses the -> operator
Enter inches: 4.75
6’-4.75”

Another Approach to new

You may come across another—less common—approach to using new to obtain memory for
objects.

Since new can return a pointer to an area of memory that holds an object, we should be able to refer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Since new can return a pointer to an area of memory that holds an object, we should be able to refer
to the original object by dereferencing the pointer. The ENGLREF example shows how this is done.

// englref.cpp
// dereferencing the pointer returned by new
#include <iostream>
using namespace std;
//
class Distance // English Distance class
 {
 private:
 int feet;
 float inches;
 public:
 void getdist() // get length from user
 {
 cout << “\nEnter feet: ”; cin >> feet;
 cout << “Enter inches: ”; cin >> inches;
 }
 void showdist() // display distance
 { cout << feet << “\’-” << inches << ‘\”’; }
 };
//
int main()
 {
 Distance& dist = *(new Distance); // create Distance object
 // alias is “dist”
 dist.getdist(); // access object members
 dist.showdist(); // with dot operator
 cout << endl;
 return 0;
 }

The expression

new Distance

returns a pointer to a memory area large enough for a Distance object, so we can refer to the original
object as

*(new Distance)

This is the object pointed to by the pointer. Using a reference, we define dist to be an object of type
Distance, and we set it equal to *(new Distance). Now we can refer to members of dist using the dot
membership operator, rather than ->.

This approach is less common than using pointers to objects obtained with new, or simply declaring
an object, but it works in a similar way.

An Array of Pointers to Objects

A common programming construction is an array of pointers to objects. This arrangement allows
easy access to a group of objects, and is more flexible than placing the objects themselves in an
array. (For instance, in the PERSORT example in this chapter we’ll see how a group of objects can
be sorted by sorting an array of pointers to them, rather than sorting the objects themselves.)

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Our next example, PTROBJS, creates an array of pointers to the person class. Here’s the listing:

// ptrobjs.cpp
// array of pointers to objects
#include <iostream>
using namespace std;
//
class person //class of persons
 {
 protected:
 char name[40]; //person’s name
 public:
 void setName() //set the name
 {
 cout << “Enter name: ”;
 cin >> name;
 }
 void printName() //get the name
 {
 cout << “\n Name is: ” << name;
 }
 };
//
int main()
 {
 person* persPtr[100]; //array of pointers to persons
 int n = 0; //number of persons in array
 char choice;

 do //put persons in array
 {
 persPtr[n] = new person; //make new object
 persPtr[n]->setName(); //set person’s name
 n++; //count new person
 cout << “Enter another (y/n)? ”; //enter another
 cin >> choice; //person?
 }
 while(choice==’y’); //quit on ‘n’

 for(int j=0; j<n; j++) //print names of
 { //all persons
 cout << “\nPerson number ” << j+1;
 persPtr[j]->printName();
 }
 cout << endl;
 return 0;
 } //end main()

The class person has a single data item, name, which holds a string representing a person’s name.
Two member functions, setName() and printName(), allow the name to be set and displayed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Program Operation

The main() function defines an array, persPtr, of 100 pointers to type person. In a do loop it then asks
the user to enter a name. With this name it creates a person object using new, and stores a pointer to
this object in the array persPtr. To demonstrate how easy it is to access the objects using the pointers,
it then prints out the name data for each person object.

Here’s a sample interaction with the program:

Enter name: Stroustrup ← user enters names
Enter another (y/n)? y
Enter name: Ritchie
Enter another (y/n)? y
Enter name: Kernighan
Enter another (y/n)? n
Person number 1 ← program displays all names stored
 Name is: Stroustrup
Person number 2
 Name is: Ritchie
Person number 3
 Name is: Kernighan

Accessing Member Functions

We need to access the member functions setName() and printName() in the person objects pointed to by
the pointers in the array persPtr. Each of the elements of the array persPtr is specified in array
notation to be persPtr[j] (or equivalently by pointer notation to be *(persPtr+j)). The elements are
pointers to objects of type person. To access a member of an object using a pointer, we use the ->
operator. Putting this all together, we have the following syntax for getname():

persPtr[j]->getName()

This executes the getname() function in the person object pointed to by element j of the persPtr array.
(It’s a good thing we don’t have to program using English syntax.)

A Linked List Example

Our next example shows a simple linked list. What is a linked list? It’s another way to store data.
You’ve seen numerous examples of data stored in arrays. Another data structure is an array of
pointers to data members, as in the PTRTOSTRS and PTROBJS examples. Both the array and the array
of pointers suffer from the necessity to declare a fixed-size array before running the program.

A Chain of Pointers

The linked list provides a more flexible storage system in that it doesn’t use arrays at all. Instead,
space for each data item is obtained as needed with new, and each item is connected, or linked, to
the next data item using a pointer. The individual items don’t need to be located contiguously in
memory the way array elements are; they can be scattered anywhere.

In our example the entire linked list is an object of class linklist. The individual data items, or links,
are represented by structures of type link. Each such structure contains an integer—representing the
object’s single data item—and a pointer to the next link. The list itself stores a pointer to the link at
the head of the list. This arrangement is shown in Figure 10.15.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 10.15 A linked list.

Here’s the listing for LINKLIST:

// linklist.cpp
// linked list
#include <iostream>
using namespace std;
//
struct link //one element of list
 {
 int data; //data item
 link* next; //pointer to next link
 };
//
class linklist //a list of links
 {
 private:
 link* first; //pointer to first link
 public:
 linklist() //no-argument constructor
 { first = NULL; } //no first link
 void additem(int d); //add data item (one link)
 void display(); //display all links
 };
//--
void linklist::additem(int d) //add data item
 {
 link* newlink = new link; //make a new link
 newlink->data = d; //give it data
 newlink->next = first; //it points to next link
 first = newlink; //now first points to this
 }
//--
void linklist::display() //display all links
 {
 link* current = first; //set ptr to first link
 while(current != NULL) //quit on last link
 {
 cout << current->data << endl; //print data

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 cout << current->data << endl; //print data
 current = current->next; //move to next link
 }
 }
//
int main()
 {
 linklist li; //make linked list

 li.additem(25); //add four items to list
 li.additem(36);
 li.additem(49);
 li.additem(64);

 li.display(); //display entire list
 return 0;
 }

The linklist class has only one member data item: the pointer to the start of the list. When the list is
first created, the constructor initializes this pointer, which is called first, to NULL. The NULL
constant is defined to be 0. This value serves as a signal that a pointer does not hold a valid address.
In our program a link whose next member has a value of NULL is assumed to be at the end of the
list.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Adding an Item to the List

The additem() member function adds an item to the linked list. A new link is inserted at the beginning of the list. (We could write the
to insert items at the end of the list, but that is a little more complex to program.) Let’s look at the steps involved in inserting a new link.

First, a new structure of type link is created by the line

link* newlink = new link;

This creates memory for the new link structure with new and saves the pointer to it in the newlink variable.

Next we want to set the members of the newly created structure to appropriate values. A structure is similar to a class in that, when it is referred to by
pointer rather than by name, its members are accessed using the -> member-access operator. The following two lines set the
passed as an argument to additem(), and the next pointer to point to whatever address was in first, which holds the pointer to the start of the list.

newlink->data = d;
newlink->next = first;

Finally, we want the first variable to point to the new link:

first = newlink;

The effect is to uncouple the connection between first and the old first link, insert the new link, and move the old first link into the second position.
Figure 10.16 shows this process.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 10.16 Adding to a linked list.

Displaying the List Contents

Once the list is created it’s easy to step through all the members, displaying them (or performing other operations). All we need to do is follow from
one next pointer to another until we find a next that is NULL, signaling the end of the list. In the function

cout << endl << current->data;

prints the value of the data, and

current = current->next;

moves us along from one link to another, until

current != NULL

in the while expression becomes false. Here’s the output of LINKLIST:

64
49
36
25

Linked lists are perhaps the most commonly used data storage arrangements after arrays. As we noted, they avoid the wasting of memory space
engendered by arrays. The disadvantage is that finding a particular item on a linked list requires following the chain of links from the head of the list
until the desired link is reached. This can be time consuming. An array element, on the other hand, can be accessed quickly, provided its index is
known in advance. We’ll have more to say about linked lists and other data-storage techniques in Chapter 15, “The Standard Template Library.”

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Self-Containing Classes

We should note a possible pitfall in the use of self-referential classes and structures. The link structure in
of structure. You can do the same with classes:

class sampleclass
 {
 sampleclass* ptr; // this is fine
 };

However, while a class can contain a pointer to an object of its own type, it cannot contain an object

class sampleclass
 {
 sampleclass obj; // can’t do this
 };

This is true of structures as well as classes.

Augmenting linklist

The general organization of LINKLIST can serve for a more complex situation than that shown. There could be more data in each link. Instead of an
integer, a link could hold a number of data items or it could hold a pointer to a structure or object.

Additional member functions could perform such activities as adding and removing links from an arbitrary part of the chain. Another important
member function is a destructor. As we mentioned, it’s important to delete blocks of memory that are no longer in use. A destructor that performs this
task would be a highly desirable addition to the linklist class. It could go through the list using delete

Pointers to Pointers

Our next example demonstrates an array of pointers to objects, and shows how to sort these pointers based on data in the object. This involves the idea
of pointers to pointers, and may help demonstrate why people lose sleep over pointers.

The idea in the next program is to create an array of pointers to objects of the person class. This is similar to the
and add variations of the order() and bsort() functions from the PTRSORT example so that we can sort a group of
order of their names. Here’s the listing for PERSORT:

// persort.cpp
// sorts person objects using array of pointers
#include <iostream>
#include <string> //for string class
using namespace std;
//
class person //class of persons
 {
 protected:
 string name; //person’s name
 public:
 void setName() //set the name
 { cout << “Enter name: ”; cin >> name; }
 void printName() //display the name
 { cout << endl << name; }
 string getName() //return the name
 { return name; }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 { return name; }
 };
//
int main()
 {
 void bsort(person**, int); //prototype
 person* persPtr[100]; //array of pointers to persons
 int n = 0; //number of persons in array
 char choice; //input char

 do { //put persons in array
 persPtr[n] = new person; //make new object
 persPtr[n]->setName(); //set person’s name
 n++; //count new person
 cout << “Enter another (y/n)? ”; //enter another
 cin >> choice; // person?
 }
 while(choice==’y’); //quit on ‘n’

 cout << “\nUnsorted list:”;
 for(int j=0; j<n; j++) //print unsorted list
 { persPtr[j]->printName(); }

 bsort(persPtr, n); //sort pointers

 cout << “\nSorted list:”;
 for(j=0; j<n; j++) //print sorted list
 { persPtr[j]->printName(); }
 cout << endl;
 return 0;
 } //end main()
//--
void bsort(person** pp, int n) //sort pointers to persons
 {
 void order(person**, person**); //prototype
 int j, k; //indexes to array

 for(j=0; j<n-1; j++) //outer loop
 for(k=j+1; k<n; k++) //inner loop starts at outer
 order(pp+j, pp+k); //order the pointer contents
 }
//--
void order(person** pp1, person** pp2) //orders two pointers
 { //if 1st larger than 2nd,
 if((*pp1)->getName() > (*pp2)->getName())
 {
 person* tempptr = *pp1; //swap the pointers
 *pp1 = *pp2;
 *pp2 = tempptr;
 }
 }

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

When the program is first executed it asks for a name. When the user gives it one, it creates an
object of type person and sets the name data in this object to the name entered by the user. The
program also stores a pointer to the object in the persPtr array.

When the user types n to indicate that no more names will be entered, the program calls the bsort()
function to sort the person objects based on their name member variables. Here’s some sample
interaction with the program:

Enter name: Washington
Enter another (y/n)? y
Enter name: Adams
Enter another (y/n)? y
Enter name: Jefferson
Enter another (y/n)? y
Enter name: Madison
Enter another (y/n)? n
(continued on next page)
(continued from previous page)
Unsorted list:
Washington
Adams
Jefferson
Madison

Sorted list:
Adams
Jefferson
Madison
Washington

Sorting Pointers

Actually, when we sort person objects, we don’t move the objects themselves; we move the pointers
to the objects. This eliminates the need to shuffle the objects around in memory, which can be very
time consuming if the objects are large. The process is shown in Figure 10.17.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 10.17 Sorting an array of pointers.

To facilitate the sorting activity we’ve added a getName() member function to the person class, so we
can access the names from order() to decide when to swap pointers.

The person** Data Type

You will notice that the first argument to the bsort() function, and both arguments to order(), have the
type person**. What do the two asterisks mean? These arguments are used to pass the address of the
array persPtr, or—in the case of order()—the addresses of elements of the array. If this were an array
of type person, then the address of the array would be type person*. However, the array is of type
pointers to person, or person*, so its address is type person**. The address of a pointer is a pointer to a
pointer. Figure 10.18 shows how this looks.

Figure 10.18 Pointer to an array of pointers.

Compare this program with PTRSORT which sorted an array of type int. You’ll find that the data

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Compare this program with PTRSORT which sorted an array of type int. You’ll find that the data
types passed to functions in PERSORT all have one more asterisk than they did in PTRSORT, because
the array is an array of pointers.

Since the persPtr array contains pointers, the construction

persPtr[j]->printName()

executes the printName() function in the object pointed to by element j of persPtr.

Comparing Strings

The order() function in PERSORT has been modified to order two strings lexigraphically—that is, by
putting them in alphabetical order. To do this it compares the strings using the C++ library function
strcmp(). This function takes the two strings s1 and s2 as arguments, as in strcmp(s1, s2), and returns
one of the following values.

Value Condition
<0 s1 comes before s2
0 s1 is the same as s2
>0 s1 comes after s2

The strings are accessed using the syntax

 (*pp1)->getname()

The argument pp1 is a pointer to a pointer, and we want the name pointed to by the pointer it points
to. The member-access operator -> dereferences one level, but we need to dereference another level,
hence the asterisk preceding pp1.

Just as there can be pointers to pointers, there can be pointers to pointers to pointers, and so on.
Fortunately such complexities are seldom encountered.

A Parsing Example

Programmers are frequently faced with the problem of unravelling or parsing a string of symbols.
Examples are commands typed by a user at the keyboard, sentences in natural languages (like
English), statements in a programming language, and algebraic expressions. Now that we’ve
learned about pointers and strings, we can handle this sort of problem.

Our next (somewhat longer) example in this chapter will show how to PARSE arithmetic expressions
like

6/3+2*3-1

The user enters the expression, the program works its way through it, character by character, figures
out what it means in arithmetic terms, and displays the resulting value (7 in the example). Our
expressions will use the four arithmetic operators: +, -, *, and /. We’ll simplify the numbers we use
to make the programming easier by restricting them to a single digit. Also, we won’t allow
parentheses.

This program makes use of our old friend the Stack class (see the STAKARAY program in Chapter 7).
We’ve modified this class so it stores data of type char. We use the stack to store both numbers and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We’ve modified this class so it stores data of type char. We use the stack to store both numbers and
operators (both as characters). The stack is a useful storage mechanism because, when parsing
expressions, we frequently need to access the last item stored, and a stack is a last-in-first-out
(LIFO) container.

Besides the Stack class, we’ll use a class called express (short for expression), representing an entire
arithmetic expression. Member functions for this class allow us to initialize an object with an
expression in the form of a string (entered by the user), PARSE the expression, and return the
resulting arithmetic value.

Parsing Arithmetic Expressions

Here’s how we parse an arithmetic expression. We start at the left, and look at each character in
turn. It can be either a number (always a single digit; a character between ‘0’ and ‘9’), or an operator
(the characters ‘+’, ‘-’, ‘*’, and ‘/’).

If the character is a number, we always push it onto the stack. We also push the first operator we
encounter. The trick is how we handle subsequent operators. Note that we can’t execute the current
operator, because we haven’t yet read the number that follows it. Finding an operator is merely the
signal that we can execute the previous operator, which is stored on the stack. That is, if the
sequence 2+3 is on the stack, then we wait until we find another operator before carrying out the
addition.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Thus whenever we find that the current character is an operator (except the first), we pop the
previous number (3 in the preceding example) and the previous operator (+) off the stack, placing
them in the variables lastval and lastop. Finally we pop the first number (2) and carry out the

Table 10.1. Operators and Parsing Actions
Previous
Operator

Current
Operator Example Action

+ or - * or / 3+4/ Push previous operator and previous number
(+, 4)

* or / * or / 9/3* Execute previous operator, push result (3)
+ or - + or - 6+3+ Execute previous operator, push result (9)
* or / + or - 8/2- Execute previous operator, push result (4)

The parse() member function carries out this process of going through the input expression and
performing those operations it can. However, there is more work to do. The stack still contains

either a single number or several sequences of number-operator-number. Working down through
the stack, we can execute these sequences. Finally, a single number is left on the stack; this is the
value of the original expression. The solve() member function carries out this task, working its way

down through the stack until only a single number is left. In general, parse() puts things on the stack,
and solve() takes them off.

The PARSE Program

Some typical interaction with PARSE might look like this:

Enter an arithmetic expression
of the form 2+3*4/3-2.

No number may have more than one digit.
Don’t use any spaces or parentheses.

Expression: 9+6/3

The numerical value is: 11
Do another (Enter y or n)?

Note that it’s all right if the results of arithmetic operations contain more than one digit. They are
limited only by the numerical size of type char, from ñ128 to +127. Only the input string is limited

to numbers from 0 to 9.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

them in the variables lastval and lastop. Finally we pop the first number (2) and carry out the
arithmetic operation on the two numbers (obtaining 5). Can we always execute the previous
operator? No. Remember that * and / have a higher precedence than + and -. In the expression 3+4/2
we can’t execute the + until we’ve done the division. So when we get to the / in this expression, we
must put the 2 and the + back on the stack until we’ve carried out the division.

On the other hand, if the current operator is a + or -, we know we can always execute the previous
operator. That is, when we see the + in the expression 4-5+6, we know it’s all right to execute the
and when we see the - in 6/2-3 , we know it’s OK to do the division. Table 10.1 shows the four
possibilities.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Here’s the listing for the program:

// parse.cpp
// evaluates arithmetic expressions composed of 1-digit numbers
#include <iostream>
#include <cstring> //for strlen(), etc
using namespace std;
const int LEN = 80; //length of expressions, in characters
const int MAX = 40; //size of stack
//
class Stack
 {
 private:
 char st[MAX]; //stack: array of chars
 int top; //number of top of stack
 public:
 Stack() //constructor
 { top = 0; }
 void push(char var) //put char on stack
 { st[++top] = var; }
 char pop() //take char off stack
 { return st[top--]; }
 int gettop() //get top of stack
 { return top; }
 };
//
class express //expression class
 {
 private:
 Stack s; //stack for analysis
 char* pStr; //pointer to input string
 int len; //length of input string
 public:
 express(char* ptr) //constructor
 {
 pStr = ptr; //set pointer to string
 len = strlen(pStr); //set length
 }
 void parse(); //parse the input string
 int solve(); //evaluate the stack
 };
//--
void express::parse() //add items to stack
 {
 char ch; //char from input string
 char lastval; //last value
 char lastop; //last operator

 for(int j=0; j<len; j++) //for each input character
 {
 ch = pStr[j]; //get next character

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ch = pStr[j]; //get next character

 if(ch>=’0’ && ch<=’9’) //if it’s a digit,
 s.push(ch-’0’); //save numerical value
 //if it’s operator
 else if(ch==’+’ || ch==’-’ || ch==’*’ || ch==’/’)
 {
 if(s.gettop()==1) //if it’s first operator
 s.push(ch); //put on stack
 else //not first operator
 {
 lastval = s.pop(); //get previous digit
 lastop = s.pop(); //get previous operator
 //if this is * or / AND last operator was + or -
 if((ch==’*’ || ch==’/’) &&
 (lastop==’+’ || lastop==’-’))
 {
 s.push(lastop); //restore last two pops
 s.push(lastval);
 }
 else //in all other cases
 {
 switch(lastop) //do last operation
 { //push result on stack
 case ‘+’: s.push(s.pop() + lastval); break;
 case ‘-’: s.push(s.pop() - lastval); break;
 case ‘*’: s.push(s.pop() * lastval); break;
 case ‘/’: s.push(s.pop() / lastval); break;
 default: cout << “\nUnknown oper”; exit(1);
 } //end switch
 } //end else, in all other cases
 s.push(ch); //put current op on stack
 } //end else, not first operator
 } //end else if, it’s an operator
 else //not a known character
 { cout << “\nUnknown input character”; exit(1); }
 } //end for
 } //end parse()
//--
int express::solve() //remove items from stack
 {
 char lastval; //previous value

 while(s.gettop() > 1)
 {
 lastval = s.pop(); //get previous value
 switch(s.pop()) //get previous operator
 { //do operation, push answer
 case ‘+’: s.push(s.pop() + lastval); break;
 case ‘-’: s.push(s.pop() - lastval); break;
 case ‘*’: s.push(s.pop() * lastval); break;
 case ‘/’: s.push(s.pop() / lastval); break;
 default: cout << “\nUnknown operator”; exit(1);
 } //end switch
 } //end while
 return int(s.pop()); //last item on stack is ans
 } //end solve()
//
int main()
 {
 char ans; //’y’ or ‘n’
 char string[LEN]; //input string from user

 cout << “\nEnter an arithmetic expression”
 “\nof the form 2+3*4/3-2.”
 “\nNo number may have more than one digit.”
 “\nDon’t use any spaces or parentheses.”;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 “\nDon’t use any spaces or parentheses.”;
 do {
 cout << “\nEnter expresssion: ”;
 cin >> string; //input from user
 express* eptr = new express(string); //make expression
 eptr->parse(); //parse it
 cout << “\nThe numerical value is: ”
 << eptr->solve(); //solve it
 delete eptr; //delete expression
 cout << “\nDo another (Enter y or n)? ”;
 cin >> ans;
 } while(ans == ‘y’);
 return 0;
 }

This is a longish program, but it shows how a previously designed class, Stack, can come in handy
in a new situation; it demonstrates the use of pointers in a variety of ways; and it shows how useful
it can be to treat a string as an array of characters.

Simulation: A HORSE Race

As our final example in this chapter we’ll show a horse-racing game. In this game a number of
horses appear on the screen, and, starting from the left, race to a finish line on the right. This
program will demonstrate pointers in a new situation, and also a little bit about object-oriented
design.

Each horse’s speed is determined randomly, so there is no way to figure out in advance which one
will win. The program uses console graphics, so the horses are easily, although somewhat crudely,
displayed. You’ll need to compile the program with the MSOFTCON.H or BORLACON.H header file
(depending on your compiler), and the MSOFTCON.CPP or BORLACON.CPP source file. (See
Appendix E, “Console Graphics Lite,” for more information.)

When our program, HORSE is started, it asks the user to supply the race’s distance and the number
of horses that will run in it. The classic unit of distance for horse racing (at least in English-
speaking countries) is the furlong, which is 1/8 of a mile. Typical races are 6, 8, 10, or 12 furlongs.
You can enter from 1 to 7 horses. The program draws vertical lines corresponding to each furlong,
along with start and finish lines. Each horse is represented by a rectangle with a number in the
middle. Figure 10.19 shows the screen with a race in progress.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 10.19 Output of the HORSE program.

Designing the HORSE Race

How do we approach an OOP design for our horse race? Our first question might be, is there a
group of similar entities that we’re trying to model? The answer is yes, the horses. So it seems
reasonable to make each horse an object. There will be a class called horse, which will contain data
specific to each horse, such as its number and the distance it has run so far (which is used to display
the horse in the correct screen position).

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

However, there is also data that applies to the entire race track, rather than to individual horses.
This includes the track length, the elapsed time in minutes and seconds (0:00 at the start of the
race), and the total number of horses. It makes sense then to have a track object, which will be a
single member of the track class. You can think of other real-world objects associated with horse
racing, such as riders and saddles, but they aren’t relevant to the program.

Are there other ways to design the program? For example, what about using inheritance to make the
horses descendants of the track? This doesn’t make much sense, because the horses aren’t a “kind
of” race track; they’re a completely different thing. Another option is to make the track data into
static data of the horse class. However, it’s generally better to make each different kind of thing in
the problem domain (the real world) a separate object in the program.

How will the horse objects and the track object communicate? An array of pointers to horse objects
can be a member of the track class, so the track can access the horses through these pointers. The
track will create the horses when it’s created. As it does so, it will pass a pointer to itself to each
horse, so the horse can access the track.

Here’s the listing for HORSE:

// horse.cpp
// models a HORSE race
#include “msoftcon.h” //for console graphics
#include <iostream> //for I/O
#include <cstdlib> //for random()
#include <ctime> //for time()
using namespace std;
const int CPF = 5; //columns per furlong
const int maxhorses = 7; //maximum number of horses
class track; //for forward references
//
class horse
 {
 private:
 const track* ptrTrack; //pointer to track
 const int horse_number; //this horse’s number
 float finish_time; //this horse’s finish time
 float distance_run; //distance run so far
 public: //create the horse
 horse(const int n, const track* ptrT) :
 horse_number(n), ptrTrack(ptrT),
 distance_run(0.0) //haven’t moved yet
 { }
 ~horse() //destroy the horse
 { /*empty*/ } //display the horse
 void display_horse(const float elapsed_time);
 }; //end class horse
//

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

//
class track
 {
 private:
 horse* harray[maxhorses]; //array of ptrs-to-horses
 int total_horses; //total number of horses
 int horse_count; //horses created so far
 const float track_length; //track length in furlongs
 float elapsed_time; //time since start of race

 public:
 track(float lenT, int nH); //2-arg constructor
 ~track(); //destructor
 void display_track(); //display track
 void run(); //run the race
 float get_track_len() const; //return total track length
 }; //end class track
//---
void horse::display_horse(float elapsed_time) //for each horse
 { //display horse & number
 set_cursor_pos(1 + int(distance_run * CPF),
 2 + horse_number*2);
 //horse 0 is blue
 set_color(static_cast<color>(cblue+horse_number));
 cout << “ \xDB” << horse_number << “\xDB”;
 //until finish,
 if(distance_run < ptrTrack->get_track_len() + 1.0 / CPF)
 {
 if(rand() % 3) //skip about 1 of 3 ticks
 distance_run += 0.2F; //advance 0.2 furlongs
 finish_time = elapsed_time; //update finish time
 }
 else
 { //display finish time
 int mins = int(finish_time)/60;
 int secs = int(finish_time) - mins*60;
 cout << “ Time=” << mins << “:” << secs;
 }
 } //end display_horse()
//---
track::track(float lenT, int nH) : //track constructor
 track_length(lenT), total_horses(nh),
 horse_count(0), elapsed_time(0.0)
 {
 init_graphics(); //start graphics
 total_horses = //not more than 7 horses
 (total_horses > maxhorses) ? maxhorses : total_horses;
 for(int j=0; j<total_horses; j++) //make each horse
 hArray[j] = new horse(horse_count++, this);

 time_t aTime; //initialize random numbers
 srand(static_cast<unsigned>(time(&aTime)));
 display_track();
 } //end track constructor
//---
track::~track() //track destructor
 {
 for(int j=0; j<total_horses; j++) //delete each horse
 delete hArray[j];
 }
//---
void track::display_track()
 {
 clear_screen(); //clear screen
 //display track
 for(int f=0; f<=track_length; f++) //for each furlong
 for(int r=1; r<=total_horses*2 + 1; r++) //and screen row
 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {
 set_cursor_pos(f*CPF + 5, r);
 if(f==0 || f==track_length)
 cout << ‘\xDE’; //draw start or finish line
 else
 cout << ‘\xB3’; //draw furlong marker
 }
 } //end display_track()
//---
void track::run()
 {
 while(!kbhit())
 {
 elapsed_time += 1.75; //update time
 //update each horse
 for(int j=0; j<total_horses; j++)
 harray[j]->display_horse(elapsed_time);
 wait(500);
 }
 getch(); //eat the keystroke
 cout << endl;
 }
//---
float track::get_track_len() const
 { return track_length; }
///
int main()
 {
 float length;
 int total;
 //get data from user
 cout << “\nEnter track length (furlongs): ”;
 cin >> length;
 cout << “\nEnter number of horses (1 to 7): ”;
 cin >> total;
 track theTrack(length, total); //create the track
 theTrack.run(); //run the race
 return 0;
 } //end main()

Keeping Time

Simulation programs usually involve an activity taking place over a period of time. To model the
passage of time, such programs typically energize themselves at fixed intervals. In the HORSE
program, the main() program calls the track’s run() function. This function makes a series of calls
within a while loop, one for each horse, to a function display_horse(). This function redraws each horse
in its new position. The while loop then pauses 500 milliseconds, using the console graphics wait()
function. Then it does the same thing again, until the race is over or the user presses a key.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Deleting an Array of Pointers to Objects

At the end of the program the destructor for the track must delete the horse objects, which it
obtained with new in its constructor. Notice that we can’t just say

delete[] hArray; //deletes pointers, but not horses

This deletes the array of pointers, but not what the pointers point to. Instead we must go through the
array element by element, and delete each horse individually:

for(int j=0; j<total_horses; j++) //deletes horses
 delete hArray[j];

Debugging Pointers

Pointers can be the source of mysterious and catastrophic program bugs. The most common
problem is that the programmer has failed to place a valid address in a pointer variable. When this
happens the pointer can end up pointing anywhere in memory. It could be pointing to the program
code, or to the operating system. If the programmer then inserts a value into memory using the
pointer, the value will write over the program or operating instructions, and the computer will crash
or evince other uncharming behavior.

A particular version of this scenario takes place when the pointer points to address 0, which is
called NULL. This happens, for example, if the pointer variable is defined as an external variable,
since external variables are automatically initialized to 0. Instance variables in classes are also
initialized to 0. Here’s a miniprogram that demonstrates the situation:

int* intptr; //external variable, initialized to 0
void main()
 { //failure to put valid address in intptr
 *intptr = 37; //attempts to put 37 in address at 0
 } //result iserror

When intptr is defined, it is given the value 0, since it is external. The single program statement will
attempt to insert the value 37 into the address at 0.

Fortunately, however, the runtime error-checking unit built into the program by the compiler is
waiting for attempts to access address 0, and will display an error message (perhaps an access
violation, null pointer assignment, or page fault) and terminate the program. If you see such a
message, one possibility is that you have failed to properly initialize a pointer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Summary

This has been a whirlwind tour through the land of pointers. There is far more to learn, but the
topics we’ve covered here will provide a basis for the examples in the balance of the book and for
further study of pointers.

We’ve learned that everything in the computer’s memory has an address, and that addresses are
pointer constants. We can find the addresses of variables using the address-of operator &.

Pointers are variables that hold address values. Pointers are defined using an asterisk (*) to mean
pointer to. A data type is always included in pointer definitions (except void*), since the compiler
must know what is being pointed to, so that it can perform arithmetic correctly on the pointer. We
access the thing pointed to using the asterisk in a different way, as the indirection operator,
meaning contents of the variable pointed to by.

The special type void* means a pointer to any type. It’s used in certain difficult situations where the
same pointer must hold addresses of different types.

Array elements can be accessed using array notation with brackets or pointer notation with an
asterisk. Like other addresses, the address of an array is a constant, but it can be assigned to a
variable, which can be incremented and changed in other ways.

When the address of a variable is passed to a function, the function can work with the original
variable. (This is not true when arguments are passed by value.) In this respect passing by pointer
offers the same benefits as passing by reference, although pointer arguments must be dereferenced
or accessed using the indirection operator. However, pointers offer more flexibility in some cases.

A string constant can be defined as an array or as a pointer. The pointer approach may be more
flexible, but there is a danger that the pointer value will be corrupted. Strings, being arrays of type
char, are commonly passed to functions and accessed using pointers.

The new operator obtains a specified amount of memory from the system and returns a pointer to the
memory. This operator is used to create variables and data structures during program execution.
The delete operator releases memory obtained with new.

When a pointer points to an object, members of the object’s class can be accessed using the access
operator ->. The same syntax is used to access structure members.

Classes and structures may contain data members that are pointers to their own type. This permits
the creation of complex data structures like linked lists.

There can be pointers to pointers. These variables are defined using the double asterisk; for
example, int** pptr.

Questions

Answers to questions can be found in Appendix G, “Answers to Questions and Exercises.”

1. Write a statement that displays the address of the variable testvar.
2. The contents of two pointers that point to adjacent variables of type float differ by
_____________.
3. A pointer is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. A pointer is

a. the address of a variable.
b. an indication of the variable to be accessed next.
c. a variable for storing addresses.
d. the data type of an address variable.

4. Write expressions for the following:

a. The address of var
b. The contents of the variable pointed to by var
c. The variable var used as a reference argument
d. The data type pointer-to-char

5. An address is a _____________, while a pointer is a ____________.
6. Write a definition for a variable of type pointer to float.
7. One way pointers are useful is to refer to a memory address that has no
_______________.
8. If a pointer testptr points to a variable testvar, write a statement that represents the contents
of testvar but does not use its name.
9. An asterisk placed after a data type means _________. An asterisk placed in front of a
variable name means __________.
10. The expression *test can be said to

a. be a pointer to test.
b. refer to the contents of test.
c. dereference test.
d. refer to the value of the variable pointed to by test.

11. Is the following code correct?

int intvar = 333;
int* intptr;
cout << *intptr;

12. A pointer to void can hold pointers to _________.
13. What is the difference between intarr[3] and *(intarr+3)?

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

14. Write some code that uses pointer notation to display every value in the array intarr,
which has 77 elements.
15. If intarr is an array of integers, why is the expression intarr++ not legal?
16. Of the three ways to pass arguments to functions, only passing by __________ and
passing by __________ allow the function to modify the argument in the calling program.
17. The type of variable a pointer points to must be part of the pointer’s definition so that

a. data types don’t get mixed up when arithmetic is performed on them.
b. pointers can be added to one another to access structure members.
c. no one’s religious conviction will be offended.
d. the compiler can perform arithmetic correctly to access array elements.

18. Using pointer notation, write a prototype (declaration) for a function called func() that
returns type void and takes a single argument that is an array of type char.
19. Using pointer notation, write some code that will transfer 80 characters from the string
to the string s2.
20. The first element in a string is

a. the name of the string.
b. the first character in the string.
c. the length of the string.
d. the name of the array holding the string.

21. Using pointer notation, write the prototype for a function called revstr() that returns a
string value and takes one argument that represents a string.
22. Write a definition for an array numptrs of pointers to the strings One, Two, and Three.
23. The new operator

a. returns a pointer to a variable.
b. creates a variable called new.
c. obtains memory for a new variable.
d. tells how much memory is available.

24. Using new may result in less __________ memory than using an array.
25. The delete operator returns ____________ to the operating system.
26. Given a pointer p that points to an object of type upperclass, write an expression that
executes the exclu() member function in this object.
27. Given an object with index number 7 in array objarr, write an expression that executes the
exclu() member function in this object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

28. In a linked list

a. each link contains a pointer to the next link.
b. an array of pointers point to the links.
c. each link contains data or a pointer to data.
d. the links are stored in an array.

29. Write a definition for an array arr of 8 pointers that point to variables of type float.
30. If you wanted to sort many large objects or structures, it would be most efficient to

a. place them in an array and sort the array.
b. place pointers to them in an array and sort the array.
c. place them in a linked list and sort the linked list.
d. place references to them in an array and sort the array.

Exercises

Answers to starred exercises can be found in Appendix G.

*1. Write a program that reads a group of numbers from the user and places them in an array
of type float. Once the numbers are stored in the array, the program should average them and
print the result. Use pointer notation wherever possible.
*2. Start with the String class from the NEWSTR example in this chapter. Add a member
function called upit() that converts the string to all uppercase. You can use the toupper() library
function, which takes a single character as an argument and returns a character that has been
converted (if necessary) to uppercase. This function uses the CCtype header file. Write some
code in main() to test upit().
*3. Start with an array of pointers to strings representing the days of the week, as found in
the PTRTOSTR program in this chapter. Provide functions to sort the strings into alphabetical
order, using variations of the bsort() and order() functions from the PTRSORT program in this
chapter. Sort the pointers to the strings, not the actual strings.
*4. Add a destructor to the LINKLIST program. It should delete all the links when a linklist
object is destroyed. It can do this by following along the chain, deleting each link as it goes.
You can test the destructor by having it display a message each time it deletes a link; it
should delete the same number of links that were added to the list. (A destructor is called
automatically by the system for any existing objects when the program exits.)
5. Suppose you have a main() with three local arrays, all the same size and type (say float).
The first two are already initialized to values. Write a function called addarrays() that accepts
the addresses of the three arrays as arguments; adds the contents of the first two arrays
together, element by element; and places the results in the third array before returning. A
fourth argument to this function can carry the size of the arrays. Use pointer notation
throughout; the only place you need brackets is in defining the arrays.
6. Make your own version of the library function strcmp(s1, s2), which compares two strings
and returns ñ1 if s1 comes first alphabetically, 0 if s1 and s2 are the same, and 1 if s2 comes
first alphabetically. Call your function compstr(). It should take two char* strings as arguments,
compare them character by character, and return an int. Write a main() program to test the
function with different combinations of strings. Use pointer notation throughout.
7. Modify the person class in the PERSORT program in this chapter so that it includes not only
a name, but also a salary item of type float representing the person’s salary. You’ll need to
change the setName() and printName() member functions to setData() and printData(), and include

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

change the setName() and printName() member functions to setData() and printData(), and include
in them the ability to set and display the salary as well as the name. You’ll also need a
getSalary() function. Using pointer notation, write a salsort() function that sorts the pointers in
the persPtr array by salary rather than by name. Try doing all the sorting in salsort(), rather than
calling another function as PERSORT does. If you do this, don’t forget that -> takes precedence
over *, so you’ll need to say

if((*(pp+j))->getSalary() > (*(pp+k))->getSalary())
 { // swap the pointers }

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

8. Revise the additem() member function from the LINKLIST program so that it adds the item at
the end of the list, rather than the beginning. This will cause the first item inserted to be the
first item displayed, so the output of the program will be

25
36
49
64

To add the item you’ll need to follow the chain of pointers to the end of the list, then change
the last link to point to the new link.
9. Let’s say that you need to store 100 integers so that they’re easily accessible. However,
let’s further assume that there’s a problem: The memory in your computer is so fragmented
that the largest array that you can use holds only 10 integers. (Such problems actually arise,
although usually with larger memory objects.) You can solve this problem by defining 10
separate int arrays of 10 integers each, and an array of 10 pointers to these arrays. The int
arrays can have names like a0, a1, a2, and so on. The address of each of these arrays can be
stored in the pointer array of type int*, which can have a name like ap (for array of pointers).
You can then access individual integers using expressions like ap[j][k], where j steps through
the pointers in ap and k steps through individual integers in each array. This looks like you’re
accessing a two-dimensional array, but it’s really a group of one-dimensional arrays.
Fill such a group of arrays with test data (say the numbers 0, 10, 20, and so on up to 990).
Then display the data to make sure it’s correct.
10. As presented, Exercise 9 is rather inelegant because each of the 10 int arrays is declared
in a different program statement, using a different name. Each of their addresses must also be
obtained using a separate statement. You can simplify things by using new, which allows you
to allocate the arrays in a loop and assign pointers to them at the same time:

for(j=0; j<NUMARRAYS; j++) // allocate NUMARRAYS arrays
 *(ap+j) = new int[MAXSIZE]; // each MAXSIZE ints long

Rewrite the program in Exercise 9 to use this approach. You can access the elements of the
individual arrays using the same expression mentioned in Exercise 9, or you can use pointer
notation: *(*(ap+j)+k). The two notations are equivalent.
11. Create a class that allows you to treat the 10 separate arrays in Exercise 10 as a single
one-dimensional array, using array notation with a single index. That is, statements in main()
can access their elements using expressions like a[j], even though the class member functions
must access the data using the two-step approach. Overload the subscript operator [] (see

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

must access the data using the two-step approach. Overload the subscript operator [] (see
Chapter 9, “Inheritance”) to achieve this result. Fill the arrays with test data and then display
it. Although array notation is used in the class interface in main() to access “array” elements,
you should use only pointer notation for all the operations in the implementation (within the
class member functions).
12. Pointers are complicated, so let’s see if we can make their operation more understandable
(or possibly more impenetrable) by simulating their operation with a class.
To clarify the operation of our homemade pointers, we’ll model the computer’s memory
using arrays. This way, since array access is well understood, you can see what’s really going
on when we access memory with pointers.
We’d like to use a single array of type char to store all types of variables. This is what a
computer memory really is: an array of bytes (which are the same size as type char), each of
which has an address (or, in array-talk, an index). However, C++ won’t ordinarily let us store
a float or an int in an array of type char. (We could use unions, but that’s another story.) So
we’ll simulate memory by using a separate array for each data type we want to store. In this
exercise we’ll confine ourselves to one numerical type, float, so we’ll need an array of this
type; call it fmemory. However, pointer values (addresses) are also stored in memory, so we’ll
need another array to store them. Since we’re using array indexes to model addresses, and
indexes for all but the largest arrays can be stored in type int, we’ll create an array of this
type, call it pmemory, to hold these “pointers.”
An index to fmemory, call it fmem_top, points to the next available place where a float value can
be stored. There’s a similar index to pmemory, call it pmem_top. Don’t worry about running out
of “memory.” We’ll assume these arrays are big enough so that each time we store something
we can simply insert it at the next index number in the array. Other than this, we won’t worry
about memory management.
Create a class called Float. We’ll use it to model numbers of type float that are stored in
fmemory instead of real memory. The only instance data in Float is its own “address”; that is,
the index where its float value is stored in fmemory. Call this instance variable addr. Class Float
also needs two member functions. The first is a one-argument constructor to initialize the
Float with a float value. This constructor stores the float value in the element of fmemory pointed
to by fmem_top, and stores the value of fmem_top in addr. This is similar to how the compiler
and linker arrange to store an ordinary variable in real memory. The second member function
is the overloaded & operator. It simply returns the pointer (really the index, type int) value in
addr.
Create a second class called ptrFloat. The instance data in this class holds the address (index)
in pmemory where some other address (index) is stored. A member function initializes this
“pointer” with an int index value. The second member function is the overloaded *
(indirection, or “contents of”) operator. Its operation is a tad more complicated. It obtains the
address from pmemory, where its data, which is also an address, is stored. It then uses this new
address as an index into fmemory to obtain the float value pointed to by its address data.

float& ptrFloat::operator*()
 {
 return fmemory[pmemory[addr]];
 }

In this way it models the operation of the indirection operator (*). Notice that you need to
return by reference from this function so that you can use * on the left side of the equal sign.
The two classes Float and ptrFloat are similar, but Float stores floats in an array representing
memory, and ptrFloat stores ints (representing memory pointers, but really array index values)
in a different array that also represents memory.
Here’s a typical use of these classes, from a sample main():

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here’s a typical use of these classes, from a sample main():

Float var1 = 1.234; // define and initialize two Floats
Float var2 = 5.678;

ptrFloat ptr1 = &var1; // define two pointers-to-Floats,
ptrFloat ptr2 = &var2; // initialize to addresses of Floats

cout << “ *ptr1=” << *ptr1; // get values of Floats indirectly
cout << “ *ptr2=” << *ptr2; // and display them

*ptr1 = 7.123; // assign new values to variables
*ptr2 = 8.456; // pointed to by ptr1 and ptr2

cout << “ *ptr1=” << *ptr1; // get new values indirectly
cout << “ *ptr2=” << *ptr2; // and display them

Notice that, aside from the different names for the variable types, this looks just the same as
operations on real variables. Here’s the output from the program:

*ptr1=1.234
*ptr2=2.678

*ptr1=7.123
*ptr2=8.456

This may seem like a roundabout way to implement pointers, but by revealing the inner
workings of the pointer and address operator, we have provided a different perspective on
their true nature.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

CHAPTER 11
VIRTUAL FUNCTIONS

You will learn about the following in this chapter:
• Virtual functions • Overloaded assignment operator
• Friend functions • Overloaded copy constructor
• Static functions • The THIS pointer

Finding An object’s class with TYPEID()11

Now that we understand something about pointers, we can delve into more advanced C++ topics.
This chapter covers a rather loosely related collection of such subjects: virtual functions, friend
functions, static functions, the overloaded = operator, the overloaded copy constructor, and the this
pointer. These are advanced features; they are not necessary for every C++ program, especially very
short ones. However, they are widely used, and are essential for most full-size programs. Virtual
functions in particular are essential for polymorphism, one of the cornerstones of Object-Oriented
Programming.

Virtual Functions

Virtual means existing in appearance but not in reality. When virtual functions are used, a program
that appears to be calling a function of one class may in reality be calling a function of a different
class. Why are virtual functions needed? Suppose you have a number of objects of different classes
but you want to put them all in an array and perform a particular operation on them using the same
function call. For example, suppose a graphics program includes several different shapes: a triangle,
a ball, a square, and so on, as in the MULTSHAP program in Chapter 9, “Inheritance.” Each of these
classes has a member function draw() that causes the object to be drawn on the screen.

Now suppose you plan to make a picture by grouping a number of these elements together, and you
want to draw the picture in a convenient way. One approach is to create an array that holds pointers
to all the different objects in the picture. The array might be defined like this:

shape* ptrarr[100]; // array of 100 pointers to shapes

If you insert pointers to all the shapes into this array, you can then draw an entire picture using a
simple loop:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

for(int j=0; j<N; j++)
 ptrarr[j]->draw();

This is an amazing capability: Completely different functions are executed by the same function
call. If the pointer in ptrarr points to a ball, the function that draws a ball is called; if it points to a
triangle, the triangle-drawing function is called. This is called polymorphism, which means different
forms. The functions have the same appearance, the draw() expression, but different actual functions
are called, depending on the contents of ptrarr[j]. Polymorphism is one of the key features of Object-
Oriented Programming, after classes and inheritance.

For the polymorphic approach to work, several conditions must be met. First, all the different
classes of shapes, such as balls and triangles, must be derived from a single base class (called shape
in MULTSHAP). Second, the draw() function must be declared to be virtual in the base class.

This is all rather abstract, so let’s start with some short programs that show parts of the situation,
and put everything together later.

Normal Member Functions Accessed with Pointers

Our first example shows what happens when a base class and derived classes all have functions
with the same name, and you access these functions using pointers but without using virtual
functions. Here’s the listing for NOTVIRT:

// notvirt.cpp
// normal functions accessed from pointer
#include <iostream>
using namespace std;
//
class Base //base class
 {
 public:
 void show() //normal function
 { cout << “Base\n”; }
 };
//
class Derv1 : public Base //derived class 1
 {
 public:
 void show()
 { cout << “Derv1\n”; }
 };
//
class Derv2 : public Base //derived class 2
 {
 public:
 void show()
 { cout << “Derv2\n”; }
 };
//
int main()
 {
 Derv1 dv1; //object of derived class 1
 Derv2 dv2; //object of derived class 2
 Base* ptr; //pointer to base class

 ptr = &dv1; //put address of dv1 in pointer
 ptr->show(); //execute show()

 ptr = &dv2; //put address of dv2 in pointer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ptr = &dv2; //put address of dv2 in pointer
 ptr->show(); //execute show()
 return 0;
 }

The Derv1 and Derv2 classes are derived from class Base. Each of these three classes has a member
function show(). In main() we create objects of class Derv1 and Derv2, and a pointer to class Base. Then
we put the address of a derived class object in the base class pointer in the line

ptr = &dv1; // derived class address in base class pointer

But wait—how can we get away with this? Doesn’t the compiler complain that we’re assigning an
address of one type (Derv1) to a pointer of another (Base)? On the contrary, the compiler is perfectly
happy, because type checking has been relaxed in this situation, for reasons that will become
apparent soon. The rule is that pointers to objects of a derived class are type-compatible with
pointers to objects of the base class.

Now the question is, when you execute the line

ptr->show();

what function is called? Is it Base::show() or Derv1::show()? Again, in the last two lines of NOTVIRT
put the address of an object of class Derv2 in the pointer, and again execute

ptr->show();

Which of the show() functions is called here? The output from the program answers these questions:

Base
Base

As you can see, the function in the base class is always executed. The compiler ignores the contents
of the pointer ptr and chooses the member function that matches the type of the pointer, as shown in
Figure 11.1.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 11.1 Nonvirtual pointer access.

Sometimes this is what we want, but it doesn’t solve the problem posed at the beginning of this
section: accessing objects of different classes using the same statement.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Virtual Member Functions Accessed with Pointers

Let’s make a single change in our program: We’ll place the keyword virtual in front of the
declarator for the show() function in the base class. Here’s the listing for the resulting program,
VIRT:

// virt.cpp
// virtual functions accessed from pointer
#include <iostream>
using namespace std;
//
class Base //base class
 {
 public:
 virtual void show() //virtual function
 { cout << “Base\n”; }
 };
//
class Derv1 : public Base //derived class 1
 {
 public:
 void show()
 { cout << “Derv1\n”; }
 };
//
class Derv2 : public Base //derived class 2
 {
 public:
 void show()
 { cout << “Derv2\n”; }
 };
//
int main()
 {
 Derv1 dv1; //object of derived class 1
 Derv2 dv2; //object of derived class 2
 Base* ptr; //pointer to base class

 ptr = &dv1; //put address of dv1 in pointer
 ptr->show(); //execute show()

 ptr = &dv2; //put address of dv2 in pointer
 ptr->show(); //execute show()
 return 0;
 }

The output of this program is:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Derv1
Derv2

Now, as you can see, the member functions of the derived classes, not the base class, are executed.
We change the contents of ptr from the address of Derv1 to that of Derv2, and the particular instance
of show() that is executed also changes. So the same function call,

ptr->show();

executes different functions, depending on the contents of ptr. The rule is that the compiler selects
the function according to the contents of the pointer ptr, not on the type of the pointer, as in
NOTVIRT. This is shown in Figure 11.2.

Figure 11.2 Virtual pointer access.

Late Binding

The astute reader may wonder how the compiler knows what function to compile. In NOTVIRT the
compiler has no problem with the expression

ptr->show();

It always compiles a call to the show() function in the base class. But in VIRT the compiler doesn’t
know what class the contents of ptr may contain. It could be the address of an object of the Derv1
class or of the Derv2 class. Which version of draw() does the compiler call? In fact the compiler

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

class or of the Derv2 class. Which version of draw() does the compiler call? In fact the compiler
doesn’t know what to do, so it arranges for the decision to be deferred until the program is running.
At runtime, when it is known what class is pointed to by ptr, the appropriate version of draw will be
called. This is called late binding or dynamic binding. (Choosing functions in the normal way,
during compilation, is called early binding, or static binding.) Late binding requires some overhead
but provides increased power and flexibility.

We’ll put these ideas to use in a moment, but first let’s consider a refinement to the idea of virtual
functions.

Abstract Classes and Pure Virtual Functions

Think of the shape class in the multshap program in Chapter 9. We’ll never make an object of the
shape class; we’ll only make specific shapes such as circles and triangles. When we will never want
to instantiate objects of a base class, we call it an abstract class. Such a class exists only to act as a
parent of derived classes that will be used to instantiate objects. It may also provide an interface for
the class hierarchy.

How can we make it clear to someone using our family of classes that we don’t want anyone to
instantiate objects of the base class? We could just say this in the documentation, and count on the
users of the class to remember it, but of course it’s much better to write our classes so that such
instantiation is impossible. How can we can do that? By placing at least one pure virtual function
the base class. A pure virtual function is one with the expression =0 added to the declaration. This is
shown in the VIRTPURE example.

// virtpure.cpp
// pure virtual function
#include <iostream>
using namespace std;
//
class Base //base class
 {
 public:
 virtual void show() = 0; //pure virtual function
 };
//
class Derv1 : public Base //derived class 1
 {
 public:
 void show()
 { cout << “Derv1\n”; }
 };
//
class Derv2 : public Base //derived class 2
 {
 public:
 void show()
 { cout << “Derv2\n”; }
 };
//
int main()
 {
// Base bad; //can’t make object from abstract class
 Base* arr[2]; //array of pointers to base class
 Derv1 dv1; //object of derived class 1
 Derv2 dv2; //object of derived class 2

 arr[0] = &dv1; //put address of dv1 in array
 arr[1] = &dv2; //put address of dv2 in array

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 arr[1] = &dv2; //put address of dv2 in array

 arr[0]->show(); //execute show() in both objects
 arr[1]->show();
 return 0;
 }

Here the virtual function show() is declared as

virtual void show() = 0; // pure virtual function

The equal sign here has nothing to do with assignment; the value 0 is not assigned to anything. The
=0 syntax is simply how we tell the compiler that a function will be pure. Now if in main() you
attempt to create objects of class Base, the compiler will complain that you’re trying to instantiate an
object of an abstract class. It will also tell you the name of the pure virtual function that makes it an
abstract class. Notice that, although this is only a declaration, you never need to write a definition
of the base class show(), although you can if you need to.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Once you’ve placed a pure virtual function in the base class, then you must override it in all the
derived classes from which you want to instantiate objects. If a class doesn’t override the pure
virtual function, then it becomes an abstract class itself, and you can’t instantiate objects from it
(although you might from classes derived from it). For consistency, you may want to make all the
virtual functions in the base class pure.

As you can see, we’ve made another, unrelated, change in VIRTPURE: The addresses of the member
functions are stored in an array of pointers, and accessed using array elements. This works in just
the same way as using a single pointer. The output of VIRTPURE is the same as VIRT:

Derv1
Derv2

Virtual Functions and the person Class

Now that we understand some of the mechanics of virtual functions, let’s look at a situation where
it makes sense to use them. Our example is an extension of the PTROBJ and PERSORT examples
from Chapter 10, “Pointers.” It uses the same person class, but adds two derived classes, student and
professor. These derived classes each contain a function called isOutstanding(). This function makes it
easy for the school administrators to create a list of outstanding students and professors for the
venerable Awards Day ceremony. Here’s the listing for VIRTPERS:

// virtpers.cpp
// virtual functions with person class
#include <iostream>
using namespace std;
//
class person //person class
 {
 protected:
 char name[40];
 public:
 void getName()
 { cout << “ Enter name: “; cin >> name; }
 void putName()
 { cout << “Name is: “ << name << endl; }
 virtual void getData() = 0; //pure virtual func
 virtual bool isOutstanding() = 0; //pure virtual func
 };
//
class student : public person //student class
 {
 private:
 float gpa; //grade point average
 public:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public:
 void getData() //get student data from user
 {
 person::getName();
 cout << “ Enter student’s GPA: “; cin >> gpa;
 }
 bool isOutstanding()
 { return (gpa > 3.5) ? true : false; }
 };
//
class professor : public person //professor class
 {
 private:
 int numPubs; //number of papers published
 public:
 void getData() //get professor data from user
 {
 person::getName();
 cout << “ Enter number of professor’s publications: “;
 cin >> numPubs;
 }
 bool isOutstanding()
 { return (numPubs > 100) ? true : false; }
 };
//
int main()
 {
 person* persPtr[100]; //array of pointers to persons
 int n = 0; //number of persons on list
 char choice;

 do {
 cout << “Enter student or professor (s/p): “;
 cin >> choice;
 if(choice==’s’) //put new student
 persPtr[n] = new student; // in array
 else //put new professor
 persPtr[n] = new professor; // in array
 persPtr[n++]->getData(); //get data for person
 cout << “ Enter another (y/n)? “;//do another person?
 cin >> choice;
 } while(choice==’y’); //cycle until not ‘y’

 for(int j=0; j<n; j++) //print names of all
 { //persons, and
 persPtr[j]->putName(); //say if outstanding
 if(persPtr[j]->isOutstanding())
 cout << “ This person is outstanding\n”;
 }
 return 0;
 } //end main()

The Classes

The person class is an abstract class because it contains the pure virtual functions getData() and
isOutstanding(). No person objects can ever be created. This class exists only to be the base class for
the student and professor classes. The student and professor classes add new data items to the base class.
The student class contains a variable gpa of type float, which represents the student’s grade point
average (GPA). The professor class contains a variable numPubs, of type int, which represents the
number of scholarly publications the professor has published. A student with a GPA of over 3.5,
and a professor who has published more than 100 publications, are considered outstanding. (We’ll
refrain from comment on the desirability of these criteria for judging educational excellence.)

The isOutstanding() Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The isOutstanding() function is declared as a pure virtual function in person. In the student class this
function returns a bool true if the student’s GPA is greater than 3.5, and false otherwise. In professor
returns true if the professor’s numPubs variable is greater than 100. The getData() function asks the
user for the GPA for a student, but for the number of publications for a professor.

The main() Program

In main() we first let the user enter a number of student and teacher names. For students, the program
also asks for the GPA, and for professors it asks for the number of publications. When the user is
finished, the program prints out the names of all the students and professors, noting those that are
outstanding. Here’s some sample interaction:

Enter student or professor (s/p): s
 Enter name: Timmy
 Enter student’s GPA: 1.2
 Enter another (y/n)? y
Enter student or professor (s/p): s
 Enter name: Brenda
 Enter student’s GPA: 3.9
 Enter another (y/n)? y
Enter student or professor (s/p): s
 Enter name: Sandy
 Enter student’s GPA: 2.4
 Enter another (y/n)? y
Enter student or professor (s/p): p
 Enter name: Shipley
 Enter number of professor’s publications: 714
 Enter another (y/n)? y
Enter student or professor (s/p): p
 Enter name: Wainright
 Enter number of professor’s publications: 13
 Enter another (y/n)? n

Name is: Timmy
Name is: Brenda
 This person is outstanding
Name is: Sandy
Name is: Shipley
 This person is outstanding
Name is: Wainright

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Virtual Functions in a Graphics Example

Let’s try another example of virtual functions, this one is a graphics example derived from the
MULTSHAP program in Chapter 11, “Inheritance.” As we noted at the beginning of this section, you
may want to draw a number of shapes using the same statement. The VIRTSHAP program does this.
Remember that you must build this program with the appropriate console graphics file, as described
in Appendix E, “Console Graphics Lite.”

// virtshap.cpp
// virtual functions with shapes
#include <iostream>
using namespace std;
#include “msoftcon.h” //for graphics functions
//
class shape //base class
 {
 protected:
 int xCo, yCo; //coordinates of center
 color fillcolor; //color
 fstyle fillstyle; //fill pattern
 public: //no-arg constructor
 shape() : xCo(0), yCo(0), fillcolor(cWHITE),
 fillstyle(SOLID_FILL)
 { } //4-arg constructor
 shape(int x, int y, color fc, fstyle fs) :
 xCo(x), yCo(y), fillcolor(fc), fillstyle(fs)
 { }
 virtual void draw() //virtual draw function
 {
 set_color(fillcolor);
 set_fill_style(fillstyle);
 }
 };
//
class ball : public shape
 {
 private:
 int radius; //(xCo, yCo) is center
 public:
 ball() : shape() //no-arg constr
 { }
 //5-arg constructor
 ball(int x, int y, int r, color fc, fstyle fs)
 : shape(x, y, fc, fs), radius(r)
 { }
 void draw() //draw the ball
 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {
 shape::draw();
 draw_circle(xCo, yCo, radius);
 }
 };
//
class rect : public shape
 {
 private:
 int width, height; //(xCo, yCo) is upper left corner
 public:
 rect() : shape(), height(0), width(0) //no-arg ctor
 { } //6-arg ctor
 rect(int x, int y, int h, int w, color fc, fstyle fs) :
 shape(x, y, fc, fs), height(h), width(w)
 { }
 void draw() //draw the rectangle
 {
 shape::draw();
 draw_rectangle(xCo, yCo, xCo+width, yCo+height);
 set_color(cWHITE); //draw diagonal
 draw_line(xCo, yCo, xCo+width, yCo+height);
 }
 };
//
class tria : public shape
 {
 private:
 int height; //(xCo, yCo) is tip of pyramid
 public:
 tria() : shape(), height(0) //no-arg constructor
 { } //5-arg constructor
 tria(int x, int y, int h, color fc, fstyle fs) :
 shape(x, y, fc, fs), height(h)
 { }
 void draw() //draw the triangle
 {
 shape::draw();
 draw_pyramid(xCo, yCo, height);
 }
 };
//
int main()
 {
 int j;
 init_graphics(); //initialize graphics system

 shape* pShapes[3]; //array of pointers to shapes
 //define three shapes
 pShapes[0] = new ball(40, 12, 5, cBLUE, X_FILL);
 pShapes[1] = new rect(12, 7, 10, 15, cRED, SOLID_FILL);
 pShapes[2] = new tria(60, 7, 11, cGREEN, MEDIUM_FILL);

 for(j=0; j<3; j++) //draw all shapes
 pShapes[j]->draw();

 for(j=0; j<3; j++) //delete all shapes
 delete pShapes[j];
 set_cursor_pos(1, 25);
 return 0;
 }

The class specifiers in VIRTSHAP are similar to those in MULTSHAP, except that the draw() function
in the shape class has been made into a pure virtual function.

In main(), we set up an array, ptrarr, of pointers to shapes. Next we create three objects, one of each
class, and place their addresses in an array. Now it’s easy to draw all three shapes. The statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ptrarr[j]->draw();

does this as the loop variable j changes.

This is a powerful approach to combining graphics elements, especially when a large number of
objects need to be grouped together and drawn as a unit.

Virtual Destructors

Base class destructors should always be virtual. Suppose you use delete with a base class pointer to a
derived class object to destroy the derived-class object. If the base-class destructor is not virtual,
then delete, like a normal member function, calls the destructor for the base class, not the destructor
for the derived class. This will cause only the base part of the object to be destroyed. The VIRTDEST
program shows how this looks.

//vertdest.cpp
//tests non-virtual and virtual destructors
#include <iostream>
using namespace std;
//
class Base
 {
 public:
 ~Base() //non-virtual destructor
// virtual ~Base() //virtual destructor
 { cout << “Base destroyed\n”; }
 };
//
class Derv : public Base
 {
 public:
 ~Derv()
 { cout << “Derv destroyed\n”; }
 };
//
int main()
 {
 Base* pBase = new Derv;
 delete pBase;
 return 0;
 }

The output for this program as written is

Base destroyed

This shows that the destructor for the Derv part of the object isn’t called. In the listing the base class
destructor is not virtual, but you can make it so by commenting out the first definition for the
destructor and substituting the second. Now the output is

Derv destroyed
Base destroyed

Now both parts of the derived class object are destroyed properly. Of course, if none of the
destructors has anything important to do (like deleting memory obtained with new) then virtual
destructors aren’t important. But in general, to ensure that derived-class objects are destroyed
properly, you should make destructors in all base classes virtual.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Virtual Base Classes

Before leaving the subject of virtual programming elements, we should mention virtual base classes
as they relate to multiple inheritance.

Consider the situation shown in Figure 11.3, with a base class, Parent; two derived classes, Child1
and Child2; and a fourth class, Grandchild, derived from both Child1 and Child2.

In this arrangement, a problem can arise if a member function in the Grandchild class wants to access
data or functions in the Parent class. The NORMBASE program shows what happens.

// normbase.cpp
// ambiguous reference to base class

class Parent
 {
 protected:
 int basedata;
 };
class Child1 : public Parent
 { };
class Child2 : public Parent
 { };
class Grandchild : public Child1, public Child2
 {
 public:
 int getdata()
 { return basedata; } // ERROR: ambiguous
 };

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 11.3 Virtual base classes.

A compiler error occurs when the getdata() member function in Grandchild attempts to access basedata
in Parent. Why? When the Child1 and Child2 classes are derived from Parent, each inherits a copy of
Parent; this copy is called a subobject. Each of the two subobjects contains its own copy of Parent’s
data, including basedata. Now, when Grandchild refers to basedata, which of the two copies will it
access? The situation is ambiguous, and that’s what the compiler reports.

To eliminate the ambiguity, we make Child1 and Child2 into virtual base classes, as shown by the
example VIRTBASE.

// virtbase.cpp
// virtual base classes

class Parent
 {
 protected:
 int basedata;
 };
class Child1 : virtual public Parent // shares copy of Parent
 { };
class Child2 : virtual public Parent // shares copy of Parent
 { };
class Grandchild : public Child1, public Child2
 {
 public:
 int getdata()
 { return basedata; } // OK: only one copy of Parent
 };

The use of the keyword virtual in these two classes causes them to share a single common subobject
of their base class Parent. Since there is only one copy of basedata, there is no ambiguity when it is
referred to in Grandchild.

Friend Functions

The concepts of encapsulation and data hiding dictate that nonmember functions should not be able
to access an object’s private or protected data. The policy is, if you’re not a member, you can’t get
in. However, there are situations where such rigid discrimination leads to considerable
inconvenience.

Friends As Bridges

Imagine that you want a function to operate on objects of two different classes. Perhaps the
function will take objects of the two classes as arguments, and operate on their private data. In this
situation there’s nothing like a friend function. Here’s a simple example, FRIEND, that shows how
friend functions can act as a bridge between two classes:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// friend.cpp
// friend functions
#include <iostream>
using namespace std;
//
class beta; //needed for frifunc declaration

class alpha
 {
 private:
 int data;
 public:
 alpha() : data(3) { } //no-arg constructor
 friend int frifunc(alpha, beta); //friend function
 };
//
class beta
 {
 private:
 int data;
 public:
 beta() : data(7) { } //no-arg constructor
 friend int frifunc(alpha, beta); //friend function
 };
//
int frifunc(alpha a, beta b) //function definition
 {
 return(a.data + b.data);
 }
//--
int main()
 {
 alpha aa;
 beta bb;

 cout << frifunc(aa, bb) << endl; //call the function
 return 0;
 }

In this program, the two classes are alpha and beta. The constructors in these classes initialize their
single data items to fixed values (3 in alpha and 7 in beta).

We want the function frifunc() to have access to both these private data members, so we make it a
friend function. It’s declared with the friend keyword in both classes:

friend int frifunc(alpha, beta);

This declaration can be placed anywhere in the class; it doesn’t matter if it goes in the public or the
private section.

An object of each class is passed as an argument to the function frifunc(), and it accesses the private
data member of both classes through these arguments. The function doesn’t do much: It adds the
data items and returns the sum. The main() program calls this function and prints the result.

A minor point: Remember that a class can’t be referred to until it has been declared. Class beta is
referred to in the declaration of the function frifunc() in class alpha, so beta must be declared before
alpha. Hence the declaration

class beta;

at the beginning of the program.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Breaching the Walls

We should note that friend functions are controversial. During the development of C++, arguments
raged over the desirability of including this feature. On the one hand, it adds flexibility to the
language; on the other, it is not in keeping with data hiding, the philosophy that only member
functions can access a class’s private data.

How serious is the breach of data integrity when friend functions are used? A friend function must be
declared as such within the class whose data it will access. Thus a programmer who does not have
access to the source code for the class cannot make a function into a friend. In this respect the
integrity of the class is still protected. Even so, friend functions are conceptually messy, and
potentially lead to a spaghetti-code situation if numerous friends muddy the clear boundaries
between classes. For this reason friend functions should be used sparingly. If you find yourself using
many friends, you may need to rethink the design of the program.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

English Distance Example

However, sometimes friend functions are too convenient to avoid. Perhaps the most common
example is when friends are used to increase the versatility of overloaded operators. The following
program shows a limitation in the use of such operators when friends are not used. This example is
a variation on the ENGLPLUS and ENGLCONV programs in Chapter 8, “Operator Overloading.” It’s
called NOFRI.

// nofri.cpp
// limitation to overloaded + operator
#include <iostream>
using namespace std;
//
class Distance //English Distance class
 {
 private:
 int feet;
 float inches;
 public:
 Distance() : feet(0), inches(0.0) //constructor (no args)
 { } //constructor (one arg)
 Distance(float fltfeet) //convert float to Distance
 { //feet is integer part
 feet = static_cast<int>(fltfeet);
 inches = 12*(fltfeet-feet); //inches is what’s left
 }
 Distance(int ft, float in) //constructor (two args)
 { feet = ft; inches = in; }
 void showdist() //display distance
 { cout << feet << “\’-” << inches << ‘\”’; }
 Distance operator + (Distance);
 };
//--
 //add this distance to d2
Distance Distance::operator + (Distance d2) //return the sum
 {
 int f = feet + d2.feet; //add the feet
 float i = inches + d2.inches; //add the inches
 if(i >= 12.0) //if total exceeds 12.0,
 { i -= 12.0; f++; } //less 12 inches, plus 1 foot
 return Distance(f,i); //return new Distance with sum
 }
//
int main()
 {
 Distance d1 = 2.5; //constructor converts
 Distance d2 = 1.25; //float feet to Distance

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Distance d2 = 1.25; //float feet to Distance
 Distance d3;
 cout << “\nd1 = “; d1.showdist();
 cout << “\nd2 = “; d2.showdist();

 d3 = d1 + 10.0; //distance + float: OK
 cout << “\nd3 = “; d3.showdist();
// d3 = 10.0 + d1; //float + Distance: ERROR
// cout << “\nd3 = “; d3.showdist();
 cout << endl;
 return 0;
 }

In this program, the + operator is overloaded to add two objects of type Distance. Also, there is a
one-argument constructor that converts a value of type float, representing feet and decimal fractions
of feet, into a Distance value. (That is, it converts 10.25` into 10-3”.)

When such a constructor exists, you can make statements like this in main():

d3 = d1 + 10.0;

The overloaded + is looking for objects of type Distance both on its left and on its right, but if the
argument on the right is type float, the compiler will use the one-argument constructor to convert
this float to a Distance value, and then carry out the addition.

Here is what appears to be a subtle variation on this statement:

d3 = 10.0 + d1;

Does this work? No, because the object of which the overloaded + operator is a member must be the
variable to the left of the operator. When we place a variable of a different type there, or a constant,
then the compiler uses the + operator that adds that type (float in this case), not the one that adds
Distance objects. Unfortunately, this operator does not know how to convert float to Distance, so it
can’t handle this situation. Here’s the output from NOFRI:

d1 = 2'-6"
d2 = 1'-3"
d3 = 12'-6"

The second addition won’t compile, so these statements are commented out. We could get around
this problem by creating a new object of type Distance:

d3 = Distance(10, 0) + d1;

but this is non-intuitive and inelegant. How can we write natural-looking statements that have
nonmember data types to the left of the operator? As you may have guessed, a friend can help you
out of this dilemma. The FRENGL program shows how.

// frengl.cpp
// friend overloaded + operator
#include <iostream>
using namespace std;
//
class Distance //English Distance class
 {
 private:
 int feet;
 float inches;
 public:
 Distance() //constructor (no args)
 { feet = 0; inches = 0.0; }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 { feet = 0; inches = 0.0; }
 Distance(float fltfeet) //constructor (one arg)
 { //convert float to Distance
 feet = int(fltfeet); //feet is integer part
 inches = 12*(fltfeet-feet); //inches is what’s left
 }
 Distance(int ft, float in) //constructor (two args)
 { feet = ft; inches = in; }
 void showdist() //display distance
 { cout << feet << “\’-” << inches << ‘\”’; }
 friend Distance operator + (Distance, Distance); //friend
 };
//
Distance operator + (Distance d1, Distance d2) //add D1 to d2
 {
 int f = d1.feet + d2.feet; //add the feet
 float i = d1.inches + d2.inches; //add the inches
 if(i >= 12.0) //if inches exceeds 12.0,
 { i -= 12.0; f++; } //less 12 inches, plus 1 foot
 return Distance(f,i); //return new Distance with sum
 }
//--
int main()
 {
 Distance d1 = 2.5; //constructor converts
 Distance d2 = 1.25; //float-feet to Distance
 Distance d3;
 cout << “\nd1 = “; d1.showdist();
 cout << “\nd2 = “; d2.showdist();

 d3 = d1 + 10.0; //distance + float: OK
 cout << “\nd3 = “; d3.showdist();
 d3 = 10.0 + d1; //float + Distance: OK
 cout << “\nd3 = “; d3.showdist();
 cout << endl;
 return 0;
 }

The overloaded + operator is made into a friend:

friend Distance operator + (Distance, Distance);

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Notice that, while the overloaded + operator took one argument as a member function, it takes two
as a friend function. In a member function, one of the objects on which the + operates is the object of
which it was a member, and the second is an argument. In a friend, both objects must be arguments.

The only change to the body of the overloaded + function is that the variables feet and inches, used in
NOFRI for direct access to the object’s data, have been replaced in FRENGL by d1.feet and d1.inches
since this object is supplied as an argument.

Remember that, to make a function a friend, only the function declaration within the class is
preceded by the keyword friend. The class definition is written normally, as are calls to the function.

friends for Functional Notation

Sometimes a friend allows a more obvious syntax for calling a function than does a member
function. For example, suppose we want a function that will square (multiply by itself) an object of
the English Distance class and return the result in square feet, as a type float. The misq example
shows how this might be done with a member function.

// misq.cpp
// member square() function for Distance
#include <iostream>
using namespace std;
//
class Distance //English Distance class
 {
 private:
 int feet;
 float inches;
 public: //constructor (no args)
 Distance() : feet(0), inches(0.0)
 { } //constructor (two args)
 Distance(int ft, float in) : feet(ft), inches(in)
 { }
 void showdist() //display distance
 { cout << feet << “\’-” << inches << ‘\”’; }
 float square(); //member function
 };
//--
float Distance::square() //return square of
 { //this Distance
 float fltfeet = feet + inches/12; //convert to float
 float feetsqrd = fltfeet * fltfeet; //find the square
 return feetsqrd; //return square feet
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
//
int main()
 {
 Distance dist(3, 6.0); //two-arg constructor (3’-6”)
 float sqft;

 sqft = dist.square(); //return square of dist
 //display distance and square
 cout << “\nDistance = “; dist.showdist();
 cout << “\nSquare = “ << sqft << “ square feet\n”;
 return 0;

 }

The main() part of the program creates a Distance value, squares it, and prints out the result. The
output shows the original distance and the square:

Distance = 3’-6”
Square = 12.25 square feet

In main() we use the statement

sqft = dist.square();

to find the square of dist and assign it to sqft. This works all right, but if we want to work with
Distance objects using the same syntax that we use with ordinary numbers, we would probably prefer
a functional notation:

sqft = square(dist);

We can achieve this effect by making square() a friend of the Distance class, as shown in FRISQ:

// frisq.cpp
// friend square() function for Distance
#include <iostream>
using namespace std;
//
class Distance //English Distance class
 {
 private:
 int feet;
 float inches;
 public:
 Distance() : feet(0), inches(0.0) //constructor (no args)
 { }
 //constructor (two args)
 Distance(int ft, float in) : feet(ft), inches(in)
 { }
 void showdist() //display distance
 { cout << feet << “\’-” << inches << ‘\”’; }
 friend float square(Distance); //friend function
 };
//--
float square(Distance d) //return square of
 { //this Distance
 float fltfeet = d.feet + d.inches/12; //convert to float
 float feetsqrd = fltfeet * fltfeet; //find the square
 return feetsqrd; //return square feet
 }
//
int main()
 {
 Distance dist(3, 6.0); //two-arg constructor (3’-6”)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Distance dist(3, 6.0); //two-arg constructor (3’-6”)
 float sqft;

 sqft = square(dist); //return square of dist
 //display distance and square
 cout << “\nDistance = “; dist.showdist();
 cout << “\nSquare = “ << sqft << “ square feet\n”;
 return 0;
 }

Where square(), as a member function in MISQ, takes no arguments, it takes one as a friend in FRISQ
In general, the friend version of a function requires one more argument than when the function is a
member. The square() function in FRISQ is similar to that in MISQ, but it refers to the data in the
source Distance object as d.feet and d.inches, instead of as feet and inches.

friend Classes

The member functions of a class can all be made friends at the same time when you make the entire
class a friend. The program FRICLASS shows how this looks.

// friclass.cpp
// friend classes
#include <iostream>
using namespace std;
//
class alpha
 {
 private:
 int data1;
 public:
 alpha() : data1(99) { } //constructor
 friend class beta; //beta is a friend class
 };
//
class beta
 { //all member functions can
 public: //access private alpha data
 void func1(alpha a) { cout << “\ndata1=” << a.data1; }
 void func2(alpha a) { cout << “\ndata1=” << a.data1; }
 };
//
int main()
 {
 alpha a;
 beta b;

 b.func1(a);
 b.func2(a);
 cout << endl;
 return 0;
}

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

In class alpha the entire class beta is proclaimed a friend. Now all the member functions of beta can
access the private data of alpha (in this program the single data item data1).

Note that in the friend declaration we specify that beta is a class using the class keyword:

friend class beta;

We could also have declared beta to be a class before the alpha class specifier, as in previous
examples.

class beta;

and then, within alpha, referred to beta without the class keyword:

friend beta;

Static Functions

In the STATIC example in Chapter 6, “Objects and Classes,” we introduced static data members. As
you may recall, a static data member is not duplicated for each object; rather a single data item is
shared by all objects of a class. The STATIC example showed a class that kept track of how many
objects of itself there were. Let’s extend this concept by showing how functions as well as data may
be static. Besides showing static functions, our example will model a class that provides an ID
number for each of its objects. This allows you to query an object to find out which object it is—a
capability that is sometimes useful in debugging a program, among other situations. The program
also casts some light on the operation of destructors. Here’s the listing for STATFUNC:

// statfunc.cpp
// static functions and ID numbers for objects
#include <iostream>
using namespace std;
//
class gamma
 {
 private:
 static int total; //total objects of this class
 // (declaration only)
 int id; //ID number of this object
 public:
 gamma() //no-argument constructor
 {
 total++; //add another object
 id = total; //id equals current total
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
 ~gamma() //destructor
 {
 total--;
 cout << “Destroying ID number “ << id << endl;
 }
 static void showtotal() //static function
 {
 cout << “Total is “ << total << endl;
 }
 void showid() //non-static function
 {
 cout << “ID number is “ << id << endl;
 }
 };
//--
int gamma::total = 0; //definition of total
//
int main()
 {
 gamma g1;
 gamma::showtotal();

 gamma g2, g3;
 gamma::showtotal();

 g1.showid();
 g2.showid();
 g3.showid();
 cout << “----------end of program----------\n”;
 return 0;
 }

Accessing static Functions

In this program there is a static data member, total, in the class gamma. This data keeps track of how
many objects of the class there are. It is incremented by the constructor and decremented by the
destructor.

Suppose we want to access total from outside the class. We construct a function, showtotal(), that
prints the total’s value. But how do we access this function?

When a data member is declared static, there is only one such data value for the entire class, no
matter how many objects of the class are created. In fact, there may be no such objects at all, but we
still want to be able to learn this fact. We could create a dummy object to use in calling a member
function, as in

gamma dummyObj; // make an object so we can call function
dummyObj.showtotal(); // call function

But this is rather inelegant. We shouldn’t need to refer to a specific object when we’re doing
something that relates to the entire class. It’s more reasonable to use the name of the class itself
with the scope-resolution operator.

gamma::showtotal(); // more reasonable

However, this won’t work if showtotal() is a normal member function; an object and the dot member-
access operator are required in such cases. To access showtotal() using only the class name, we must
declare it to be a static member function. This is what we do in STATFUNC. Now the function can be
accessed using only the class name. Here’s the output:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Total is 1
Total is 3
ID number is 1
ID number is 2
ID number is 3
----------end of program--------
Destroying ID number 3
Destroying ID number 2
Destroying ID number 1

We define one object, g1, and then print out the value of total, which is 1. Then we define two more
objects, g2 and g3, and again print out the total, which is now 3.

Numbering the Objects

We’ve placed another function in gamma() to print out the ID number of individual members. This
ID number is set equal to total when an object is created, so each object has a unique number. The
showid() function prints out the ID of its object. We call it three times in main(), in the statements

g1.showid();
g2.showid();
g3.showid();

As the output shows, each object has a unique number. The g1 object is numbered 1, g2 is 2, and
is 3.

Investigating Destructors

Now that we know how to number objects, we can investigate an interesting fact about destructors.
STATFUNC prints an end of program message in its last statement, but it’s not done yet, as the
output shows. The three objects created in the program must be destroyed before the program
terminates, so that memory is not left in an inaccessible state. The compiler takes care of this by
invoking the destructor.

We can see that this happens by inserting a statement in the destructor that prints a message. Since
we’ve numbered the objects, we can also find out the order in which the objects are destroyed. As
the output shows, the last object created, g3, is destroyed first. One can infer from this last-in-first-
out approach that local objects are stored on the stack.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Assignment and Copy Initialization

The C++ compiler is always busy on your behalf, doing things you can’t be bothered to do. If you
take charge, it will defer to your judgment; otherwise it will do things its own way. Two important
examples of this process are the assignment operator and the copy constructor.

You’ve used the assignment operator many times, probably without thinking too much about it.
Suppose a1 and a2 are objects. Unless you tell the compiler otherwise, the statement

a2 = a1; // set a2 to the value of a1

will cause the compiler to copy the data from a1, member by member, into a2. This is the default
action of the assignment operator, =.

You’re also familiar with initializing variables. Initializing an object with another object, as in

alpha a2(a1); // initialize a2 to the value of a1

causes a similar action. The compiler creates a new object, a2, and copies the data from a1, member
by member, into a2. This is the default action of the copy constructor.

Both these default activities are provided, free of charge, by the compiler. If member-by-member
copying is what you want, you need take no further action. However, if you want assignment or
initialization to do something more complex, then you can override the default functions. We’ll
discuss the techniques for overloading the assignment operator and the copy constructor separately,
and then put them together in an example that gives a String class a more efficient way to manage
memory.

Overloading the Assignment Operator

Let’s look at a short example that demonstrates the technique of overloading the assignment
operator. Here’s the listing for assign:

// assign.cpp
// overloads assignment operator (=)
#include <iostream>
using namespace std;
//
class alpha
 {
 private:
 int data;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 int data;
 public:
 alpha() //no-arg constructor
 { }
 alpha(int d) //one-arg constructor
 { data = d; }
 void display() //display data
 { cout << data; }
 alpha operator = (alpha& a) //overloaded = operator
 {
 data = a.data; //not done automatically
 cout << “\nAssignment operator invoked”;
 return alpha(data); //return copy of this alpha
 }
 };
//
int main()
 {
 alpha a1(37);
 alpha a2;

 a2 = a1; //invoke overloaded =
 cout << “\na2=”; a2.display(); //display a2

 alpha a3 = a2; //does NOT invoke =
 cout << “\na3=”; a3.display(); //display a3
 cout << endl;
 return 0;
 }

The alpha class is very simple; it contains only one data member. Constructors initialize the data,
and a member function can print out its value. The new aspect of ASSIGN is the function operator=()
which overloads the = operator.

In main(), we define a1 and give it the value 37, and define a2 but give it no value. Then we use the
assignment operator to set a2 to the value of a1:

a2 = a1; // assignment statement

This causes our overloaded operator=() function to be invoked. Here’s the output from ASSIGN:

Assignment operator invoked
a2=37
a3=37

Initialization Is Not Assignment

In the last two lines of ASSIGN we initialize the object a3 to the value a2, and display it. Don’t be
confused by the syntax here. The equal sign in

alpha a3 = a2; // copy initialization, not an assignment

is not an assignment but an initialization, with the same effect as

alpha a3(a2); // alternative form of copy initialization

This is why the assignment operator is executed only once, as shown by the single invocation of the
line

Assignment operator invoked

in the output of ASSIGN.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Taking Responsibility

When you overload the = operator you assume responsibility for doing whatever the default
assignment operator did. Often this involves copying data members from one object to another. The
alpha class in ASSIGN has only one data item, data, so the operator=() function copies its value with the
statement

data = a.data;

The function also prints the Assignment operator invoked message so that we can tell when it executes.

Passing by Reference

Notice that the argument to operator=() is passed by reference. It is not absolutely necessary to do
this, but it’s usually a good idea. Why? As you know, an argument passed by value generates a
copy of itself in the function to which it is passed. The argument passed to the operator=() function is
no exception. If such objects are large, the copies can waste a lot of memory. Values passed by
reference don’t generate copies, and thus help to conserve memory.

Also, there are certain situations in which you want to keep track of the number of objects (as in the
STATFUNC example, where we assigned numbers to the objects). If the compiler is generating extra
objects every time you use the assignment operator, you may wind up with more objects than you
expected. Passing by reference helps avoid such spurious object creation.

Returning a Value

As we’ve seen, a function can return information to the calling program by value or by reference.
When an object is returned by value, a new object is created and returned to the calling program. In
the calling program the value of this object can be assigned to a new object, or it can be used in
other ways. When an object is returned by reference, no new object is created. A reference to the
original object in the function is all that’s returned to the calling program.

The operator=() function in assign returns a value by creating a temporary alpha object and initializing
it using the one-argument constructor in the statement

return alpha(data);

The value returned is a copy of, but not the same object as, the object of which the overloaded =
operator is a member. Returning a value makes it possible to chain = operators:

a3 = a2 = a1;

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

However, returning by value has the same disadvantages as passing an argument by value: It
creates an extra copy that wastes memory and can cause confusion. Can we return this value with a
reference, using the declarator shown here for the overloaded = operator?

alpha & operator = (alpha& a) // bad idea in this case

Unfortunately, we can’t use reference returns on variables that are local to a function. Remember
that local (automatic) variables—that is, those created within a function (and not designated static)—
are destroyed when the function returns. A return by reference returns only the address of the data
being returned, and, for local data, this address points to data within the function. When the
function is terminated and this data is destroyed, the pointer is left with a meaningless value. Your
compiler may flag this usage with a warning. (We’ll see one way to solve this problem in the
section “The this Pointer” later in this chapter.)

Not Inherited

The assignment operator is unique among operators in that it is not inherited. If you overload the
assignment operator in a base class, you can’t use this same function in any derived classes.

The Copy Constructor

As we discussed, you can define and at the same time initialize an object to the value of another
object with two kinds of statements:

alpha a3(a2); // copy initialization
alpha a3 = a2; // copy initialization, alternate syntax

Both styles of definition invoke a copy constructor: a constructor that creates a new object and
copies its argument into it. The default copy constructor, which is provided automatically by the
compiler for every object, performs a member-by-member copy. This is similar to what the
assignment operator does; the difference is that the copy constructor also creates a new object.

Like the assignment operator, the copy constructor can be overloaded by the user. The XOFXREF
example shows how it’s done.

// xofxref.cpp
// copy constructor: X(X&)
#include <iostream>
using namespace std;
//
class alpha
 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {
 private:
 int data;
 public:
 alpha() //no-arg constructor
 { }
 alpha(int d) //one-arg constructor
 { data = d; }
 alpha(alpha& a) //copy constructor
 {
 data = a.data;
 cout << “\nCopy constructor invoked”;
 }
 void display() //display
 { cout << data; }
 void operator = (alpha& a) //overloaded = operator
 {
 data = a.data;
 cout << “\nAssignment operator invoked”;
 }
 };
//
int main()
 {
 alpha a1(37);
 alpha a2;

 a2 = a1; //invoke overloaded =
 cout << “\na2=”; a2.display(); //display a2

 alpha a3(a1); //invoke copy constructor
// alpha a3 = a1; //equivalent definition of a3
 cout << “\na3=”; a3.display(); //display a3
 cout << endl;
 return 0;
 }

This program overloads both the assignment operator and the copy constructor. The overloaded
assignment operator is similar to that in the ASSIGN example. The copy constructor takes one
argument: an object of type alpha, passed by reference. Here’s its declarator:

alpha(alpha&)

This declarator has the form X(X&) (pronounced “X of X ref”). Here’s the output of XOFXREF:

Assignment operator invoked
a2=37
Copy constructor invoked
a3=37

The statement

a2 = a1;

invokes the assignment operator, while

alpha a3(a1);

invokes the copy constructor. The equivalent statement

alpha a3 = a1;

could also be used to invoke the copy constructor.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We’ve seen that the copy constructor may be invoked when an object is defined. It is also invoked
when arguments are passed by value to functions and when values are returned from functions.
Let’s mention these situations briefly.

Function Arguments

The copy constructor is invoked when an object is passed by value to a function. It creates the copy
that the function operates on. Thus if the function

void func(alpha);

were declared in XOFXREF, and this function were called by the statement

func(a1);

then the copy constructor would be invoked to create a copy of the a1 object for use by func(). (Of
course, the copy constructor is not invoked if the argument is passed by reference or if a pointer to
it is passed. In these cases no copy is created; the function operates on the original variable.)

Function Return Values

The copy constructor also creates a temporary object when a value is returned from a function.
Suppose there were a function like this in XOFXREF:

alpha func();

and this function was called by the statement

a2 = func();

then the copy constructor would be invoked to create a copy of the value returned by func(), and this
value would be assigned (invoking the assignment operator) to a2.

Why Not an X(X) Constructor?

Do we need to use a reference in the argument to the copy constructor? Could we pass by value
instead? No, the compiler complains that it is out of memory if we try to compile

alpha(alpha a)

Why? Because when an argument is passed by value, a copy of it is constructed. What makes the
copy? The copy constructor. But this is the copy constructor, so it calls itself. In fact it calls itself
over and over until the compiler runs out of memory. So, in the copy constructor, the argument
must be passed by reference, which creates no copies.

Watch Out for Destructors

In the sections “Passing by Reference” and “Returning a Value,” we discussed passing arguments
to a function by value and returning by value. These situations cause the destructor to be called as
well, when the temporary objects created by the function are destroyed when the function returns.
This can cause considerable consternation if you’re not expecting it. The moral is, when working
with objects that require more than member-by-member copying, pass and return by reference—not
by value—whenever possible.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Define Both Copy Constructor and Assignment Operator

When you overload the assignment operator, you almost always want to overload the copy
constructor as well (and vice versa). You don’t want your custom copying routine used in some
situations, and the default member-by-member scheme used in others. Even if you don’t think
you’ll use one or the other, you may find the compiler using them in non-obvious situations, such
as passing an argument to a function by value, and returning from a function by value.

In fact, if the constructor to a class involves the use of system resources such as memory or disk
files, you should almost always overload both the assignment operator and the copy constructor,
and make sure they do what you want.

How to Prohibit Copying

We’ve discussed how to customize the copying of objects using the assignment operator and the
copy constructor. Sometimes, however, you may want to prohibit the copying of an object using
these operations. For example, it might be essential that each member of a class be created with a
unique value for some member, which is provided as an argument to the constructor. If an object is
copied, the copy would be given the same value. To avoid copying, overload the assignment
operator and the copy constructor as private members.

class alpha
 {
 private:
 alpha& operator = (alpha&); // private assignment operator
 alpha(alpha&); // private copy constructor
 };

As soon as you attempt a copying operation, such as

alpha a1, a2;
a1 = a2; // assignment
alpha a3(a1); // copy constructor

the compiler will tell you that the function is not accessible. You don’t need to define the functions,
since they will never be called.

A Memory-Efficient String Class

The ASSIGN and XOFXREF examples don’t really need to have overloaded assignment operators and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The ASSIGN and XOFXREF examples don’t really need to have overloaded assignment operators and
copy constructors. They use straightforward classes with only one data item, so the default
assignment operator and copy constructor would work just as well. Let’s look at an example where
it is essential for the user to overload these operators.

Defects with the String Class

We’ve seen various versions of our homemade String class in previous chapters. However, these
versions are not very sophisticated. It would be nice to overload the = operator so that we could
assign the value of one String object to another with the statement

s2 = s1;

If we overload the = operator, the question arises of how we will handle the actual string (the array
of type char), which is the principal data item in the String class.

One possibility is for each String object to have a place to store a string. If we assign one String
object to another (from s1 into s2 in the previous statement), we simply copy the string from the
source into the destination object. If you’re concerned with conserving memory, the problem with
this is that the same string now exists in two (or more) places in memory. This is not very efficient,
especially if the strings are long. Figure 11.4 shows how this looks.

Figure 11.4 Replicating strings.

Instead of having each String object contain its own char* string, we could arrange for it to contain
only a pointer to a string. Now, if we assign one String object to another, we need only copy the
pointer from one object to another; both pointers will point to the same string. This is efficient,
since only a single copy of the string itself needs to be stored in memory. Figure 11.5 shows how
this looks.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 11.5 Replicating pointers to strings.

However, if we use this system we need to be careful when we destroy a String object. If a String’s
destructor uses delete to free the memory occupied by the string, and if there are several objects with
pointers pointing to the string, then these other objects will be left with pointers pointing to memory
that may no longer hold the string they think it does; they become dangling pointers.

To use pointers to strings in String objects, we need a way to keep track of how many String objects
point to a particular string, so that we can avoid using delete on the string until the last String that
points to it is itself deleted. Our next example, STRIMEM, does just this.

A String-Counter Class

Suppose we have several String objects pointing to the same string and we want to keep a count of
how many Strings point to the string. Where will we store this count?

It would be cumbersome for every String object to maintain a count of how many of its fellow String
were pointing to a particular string, so we don’t want to use a member variable in String for the
count. Could we use a static variable? This is a possibility; we could create a static array and use it
to store a list of string addresses and counts. However, this requires considerable overhead. It’s
more efficient to create a new class to store the count. Each object of this class, which we call
strCount, contains a count and also a pointer to the string itself. Each String object contains a pointer
to the appropriate strCount object. Figure 11.6 shows how this looks.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 11.6 String and strCount classes.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

To ensure that String objects have access to strCount objects, we make String a friend of strCount. Also,
we want to ensure that the strCount class is used only by the String class. To prevent access to any of
its functions, we make all member functions of strCount private. Because String is a friend, it can
nevertheless access any part of strCount. Here’s the listing for STRIMEM:

// strimem.cpp
// memory-saving String class
// overloaded assignment and copy constructor
#include <iostream>
#include <cstring> //for strcpy(), etc.
using namespace std;
//
class strCount //keep track of number
 { //of unique strings
 private:
 int count; //number of instances
 char* str; //pointer to string
 friend class String; //make ourselves available
 //member functions are private
//--
 strCount(char* s) //one-arg constructor
 {
 int length = strlen(s); //length of string argument
 str = new char[length+1]; //get memory for string
 strcpy(str, s); //copy argument to it
 count=1; //start count at 1
 }
//--
 ~strCount() //destructor
 { delete[] str; } //delete the string
 };
//
class String //String class
 {
 private:
 strCount* psc; //pointer to strCount
 public:
 String() //no-arg constructor
 { psc = new strCount(“NULL”); }
//--
 String(char* s) //1-arg constructor
 { psc = new strCount(s); }
//--
 String(String& S) //copy constructor
 {
 psc = S.psc;
 (psc->count)++;
 }
//--
 ~String() //destructor

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ~String() //destructor
 {
 if(psc->count==1) //if we are its last user,
 delete psc; // delete our strCount
 else // otherwise,
 (psc->count)--; // decrement its count
 }
//--
 void display() //display the String
 {
 cout << psc->str; //print string
 cout << “ (addr=” << psc << “)”; //print address
 }
//--
 void operator = (String& S) //assign the string
 {
 if(psc->count==1) //if we are its last user,
 delete psc; // delete our strCount
 else // otherwise,
 (psc->count)--; // decrement its count
 psc = S.psc; //use argument’s strCount
 (psc->count)++; //increment its count
 }
 };
//
int main()
 {
 String s3 = “When the fox preaches, look to your geese.”;
 cout << “\ns3=”; s3.display(); //display s3

 String s1; //define String
 s1 = s3; //assign it another String
 cout << “\ns1=”; s1.display(); //display it

 String s2(s3); //initialize with String
 cout << “\ns2=”; s2.display(); //display it
 cout << endl;
 return 0;
 }

In the main() part of STRIMEM we define a String object, s3, to contain the proverb “When the fox
preaches, look to your geese.” We define another String s1 and set it equal to s3; then we define s2
and initialize it to s3. Setting s1 equal to s3 invokes the overloaded assignment operator; initializing
s2 to s3 invokes the overloaded copy constructor. We print out all three strings, and also the address
of the strCount object pointed to by each object’s psc pointer, to show that these objects are all the
same. Here’s the output from STRIMEM:

s3=When the fox preaches, look to your geese. (addr=0x8f510e00)
s1=When the fox preaches, look to your geese. (addr=0x8f510e00)
s2=When the fox preaches, look to your geese. (addr=0x8f510e00)

The other duties of the String class are divided between the String and strCount classes. Let’s see what
they do.

The strCount Class

The strCount class contains the pointer to the actual string and the count of how many String class
objects point to this string. Its single constructor takes a pointer to a string as an argument and
creates a new memory area for the string. It copies the string into this area and sets the count to 1,
since just one String points to it when it is created. The destructor in strCount frees the memory used
by the string. (We use delete[] with brackets because a string is an array.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The String Class

The String class uses three constructors. If a new string is being created, as in the zero- and one-
argument constructors, a new strCount object is created to hold the string, and the psc pointer is set to
point to this object. If an existing String object is being copied, as in the copy constructor and the
overloaded assignment operator, then the pointer psc is set to point to the old strCount object, and the
count in this object is incremented.

The overloaded assignment operator, as well as the destructor, must also delete the old strCount
object pointed to by psc if the count is 1. (We don’t need brackets on delete because we’re deleting
only a single strCountobject.) Why must the assignment operator worry about deletion? Remember
that the String object on the left of the equal sign (call it s1) was pointing at some strCount object (call
it oldStrCnt) before the assignment. After the assignment s1 will be pointing to the object on the right
of the equal sign. If there are now no String objects pointing to oldStrCnt, it should be deleted. If there
are other objects pointing to it, its count must be decremented. Figure 11.7 shows the action of the
overloaded assignment operator, and Figure 11.8 shows the copy constructor.

Figure 11.7 Assignment operator in STRIMEM.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 11.8 Copy Constructor in STRIMEM.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

The this Pointer

The member functions of every object have access to a sort of magic pointer named this, which
points to the object itself. Thus any member function can find out the address of the object of which
it is a member. Here’s a short example, WHERE, that shows the mechanism:

// where.cpp
// the this pointer
#include <iostream>
using namespace std;
//
class where
 {
 private:
 char charray[10]; //occupies 10 bytes
 public:
 void reveal()
 { cout << “\nMy object’s address is “ << this; }
 };
//
int main()
 {
 where w1, w2, w3; //make three objects
 w1.reveal(); //see where they are
 w2.reveal();
 w3.reveal();
 cout << endl;
 return 0;
 }

The main() program in this example creates three objects of type where. It then asks each object to
print its address, using the reveal() member function. This function prints out the value of the this
pointer. Here’s the output:

My object’s address is 0x8f4effec
My object’s address is 0x8f4effe2
My object’s address is 0x8f4effd8

Since the data in each object consists of an array of 10 bytes, the objects are spaced 10 bytes apart
in memory. (EC minus E2 is 10 decimal, as is E2 minus D8.) Some compilers may place extra
bytes in objects, making them slightly larger than 10 bytes.

Accessing Member Data with this

When you call a member function, it comes into existence with the value of this set to the address of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When you call a member function, it comes into existence with the value of this set to the address of
the object for which it was called. The this pointer can be treated like any other pointer to an object,
and can thus be used to access the data in the object it points to, as shown in the DOTHIS program:

// dothis.cpp
// the this pointer referring to data
#include <iostream>
using namespace std;
//
class what
 {
 private:
 int alpha;
 public:
 void tester()
 {
 this->alpha = 11; //same as alpha = 11;
 cout << this->alpha; //same as cout << alpha;
 }
 };
//
int main()
 {
 what w;
 w.tester();
 cout << endl;
 return 0;
 }

This program simply prints out the value 11. Notice that the tester() member function accesses the
variable alpha as

this->alpha

This is exactly the same as referring to alpha directly. This syntax works, but there is no reason for it
except to show that this does indeed point to the object.

Using this for Returning Values

A more practical use for this is in returning values from member functions and overloaded
operators.

Recall that in the assign program we could not return an object by reference, because the object was
local to the function returning it and thus was destroyed when the function returned. We need a
more permanent object if we’re going to return it by reference. The object of which a function is a
member is more permanent than its individual member functions. An object’s member functions are
created and destroyed every time they’re called, but the object itself endures until it is destroyed by
some outside agency (for example, when it is deleted). Thus returning by reference the object of
which a function is a member is a better bet than returning a temporary object created in a member
function. The this pointer makes this easy.

Here’s the listing for ASSIGN2, in which the operator=() function returns by reference the object that
invoked it:

//assign2.cpp
// returns contents of the this pointer
#include <iostream>
using namespace std;
//
class alpha

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

class alpha
 {
 private:
 int data;
 public:
 alpha() //no-arg constructor
 { }
 alpha(int d) //one-arg constructor
 { data = d; }
 void display() //display data
 { cout << data; }
 alpha& operator = (alpha& a) //overloaded = operator
 {
 data = a.data; //not done automatically
 cout << “\nAssignment operator invoked”;
 return *this; //return copy of this alpha
 }
 };
//
int main()
 {
 alpha a1(37);
 alpha a2, a3;

 a3 = a2 = a1; //invoke overloaded =, twice
 cout << “\na2=”; a2.display(); //display a2
 cout << “\na3=”; a3.display(); //display a3
 cout << endl;
 return 0;
 }

In this program we can use the declaration

alpha& operator = (alpha& a)

which returns by reference, instead of

alpha operator = (alpha& a)

which returns by value. The last statement in this function is

return *this;

Since this is a pointer to the object of which the function is a member, *this is that object itself, and
the statement returns it by reference. Here’s the output of ASSIGN2:

Assignment operator invoked
Assignment operator invoked
a2=37
a3=37

Each time the equal sign is encountered in

a3 = a2 = a1;

the overloaded operator=() function is called, which prints the messages. The three objects all end up
with the same value.

You usually want to return by reference from overloaded assignment operators, using *this, to avoid
the creation of extra objects.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Revised strimem Program

Using the this pointer we can revise the operator=() function in STRIMEM to return a value by
reference, thus making possible multiple assignment operators for String objects, such as

s1 = s2 = s3;

At the same time, we can avoid the creation of spurious objects, such as those that are created when
objects are returned by value. Here’s the listing for STRIMEM2:

// strimem2.cpp
// memory-saving String class
// the this pointer in overloaded assignment
#include <iostream>
#include <cstring> //for strcpy(), etc
using namespace std;
//
class strCount //keep track of number
 { //of unique strings
 private:
 int count; //number of instances
 char* str; //pointer to string
 friend class String; //make ourselves available
 //member functions are private
 strCount(char* s) //one-arg constructor
 {
 int length = strlen(s); //length of string argument
 str = new char[length+1]; //get memory for string
 strcpy(str, s); //copy argument to it
 count=1; //start count at 1
 }
//--
 ~strCount() //destructor
 { delete[] str; } //delete the string
 };
//
class String //String class
 {
 private:
 strCount* psc; //pointer to strCount
 public:
 String() //no-arg constructor
 { psc = new strCount(“NULL”); }
//--
 String(char* s) //1-arg constructor
 { psc = new strCount(s); }
//--
 String(String& S) //copy constructor

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 String(String& S) //copy constructor
 {
 cout << “\nCOPY CONSTRUCTOR”;
 psc = S.psc;
 (psc->count)++;
 }
//--
 ~String() //destructor
 {
 if(psc->count==1) //if we are its last user,
 delete psc; // delete our strCount
 else // otherwise,
 (psc->count)--; // decrement its count
 }
//--
 void display() //display the String
 {
 cout << psc->str; //print string
 cout << “ (addr=” << psc << “)”; //print address
 }
//--
 String& operator = (String& S) //assign the string
 {
 cout << “\nASSIGNMENT”;
 if(psc->count==1) //if we are its last user,
 delete psc; //delete our strCount
 else // otherwise,
 (psc->count)--; // decrement its count
 psc = S.psc; //use argument’s strCount
 (psc->count)++; //increment count
 return *this; //return this object
 }
 };

int main()
 {
 String s3 = “When the fox preaches, look to your geese.”;
 cout << “\ns3=”; s3.display(); //display s3

 String s1, s2; //define Strings
 s1 = s2 = s3; //assign them
 cout << “\ns1=”; s1.display(); //display it
 cout << “\ns2=”; s2.display(); //display it
 cout << endl; //wait for keypress
 return 0;
 }

Now the declarator for the = operator is

String & operator = (String& S) // return by reference

And, as in ASSIGN2, this function returns a pointer to this. Here’s the output:

s3=When the fox preaches, look to your geese. (addr=0x8f640d3a)
ASSIGNMENT
ASSIGNMENT
s1=When the fox preaches, look to your geese. (addr=0x8f640d3a)
s2=When the fox preaches, look to your geese. (addr=0x8f640d3a)

The output shows that, following the assignment statement, all three String objects point to the same
strCount object.

We should note that the this pointer is not available in static member functions, since they are not
associated with a particular object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Beware of Self-Assignment

A corollary of Murphy’s Law states that whatever is possible, someone will eventually do. This is
certainly true in programming, so you can expect that if you have overloaded the = operator,
someone will use it to set an object equal to itself:

alpha = alpha;

Your overloaded assignment operator should be prepared to handle such self-assignment.
Otherwise, bad things may happen. For example, in the main() part of the STRIMEM2 program, if you
set a String object equal to itself, the program will crash (unless there are other String objects using
the same strCount object). The problem is that the code for the assignment operator deletes the
strCount object if it thinks the object that called it is the only object using the strCount. Self
assignment will cause it to believe this, even though nothing should be deleted.

To fix this, you should check for self-assignment at the start of any overloaded assignment
operator. You can do this in most cases by comparing the address of the object for which the
operator was called with the address of its argument. If the addresses are the same, the objects are
identical and you should return immediately. (You don’t need to assign one to the other; they’re
already the same.) For example, in STRIMEM2, you can insert the lines

if(this == &S)
 return *this;

at the start of operator=(). That should solve the problem.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Dynamic Type Information

It’s possible to find out information about an object’s class and even change the class of an object at
runtime. We’ll look briefly at two mechanisms: the dynamic_cast operator, and the typeid operator.
These are advanced capabilities, but you may find them useful someday.

These capabilities are usually used in situations where a variety of classes are descended
(sometimes in complicated ways) from a base class. For dynamic casts to work, the base class must
be polymorphic; that is, it must have at least one virtual function.

For both dynamic_cast and typeid to work, your compiler must enable Run-Time Type Information
(RTTI). Borland C++ Builder has this capability enabled by default, but in Microsoft Visual C++
you’ll need to turn it on overtly. See Appendix C, “Microsoft Visual C++,” for details on how this is
done. You’ll also need to include the header file TYPEINFO.

Checking the Type of a Class with dynamic_cast

Suppose some other program sends your program an object (as the operating system might do with
a call-back function). It’s supposed to be a certain type of object, but you want to check it to be
sure. How can you tell if an object is a certain type? The dynamic_cast operator provides a way,
assuming that the classes whose objects you want to check are all descended from a common
ancestor. The DYNCAST1 program shows how this looks.

//dyncast1.cpp
//dynamic cast used to test type of object
//RTTI must be enabled in compiler
#include <iostream>
#include <typeinfo> //for dynamic_cast
using namespace std;
//
class Base
 {
 virtual void vertFunc() //needed for dynamic cast
 { }
 };
class Derv1 : public Base
 { };
class Derv2 : public Base
 { };
//
//checks if pUnknown points to a Derv1
bool isDerv1(Base* pUnknown) //unknown subclass of Base

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

bool isDerv1(Base* pUnknown) //unknown subclass of Base
 {
 Derv1* pDerv1;
 if(pDerv1 = dynamic_cast<Derv1*>(pUnknown))
 return true;
 else
 return false;
 }
//--
int main()
 {
 Derv1* d1 = new Derv1;
 Derv2* d2 = new Derv2;

 if(isDerv1(d1))
 cout << “d1 is a member of the Derv1 class\n”;
 else
 cout << “d1 is not a member of the Derv1 class\n”;

 if(isDerv1(d2))
 cout << “d2 is a member of the Derv1 class\n”;
 else
 cout << “d2 is not a member of the Derv1 class\n”;
 return 0;
 }

Here we have a base class Base and two derived classes Derv1 and Derv2. There’s also a function,
isDerv1(), which returns true if the pointer it received as an argument points to an object of class
Derv1. This argument is of class Base, so the object passed can be either Derv1 or Derv2. The
dynamic_cast operator attempts to convert this unknown pointer pUnknown to type Derv1. If the result
is not zero, then pUnknown did point to a Derv1 object. If the result is zero, it pointed to something
else.

Changing Pointer Types with dynamic_cast

The dynamic cast operator allows you to cast upward and downward in the inheritance tree.
However, it allows such casting only in a limited ways. The DYNCAST2 program shows examples
of such casts.

//dyncast2.cpp
//tests dynamic casts
//RTTI must be enabled in compiler
#include <iostream>
#include <typeinfo> //for dynamic_cast
using namespace std;
//
class Base
 {
 protected:
 int ba;
 public:
 Base() : ba(0)
 { }
 Base(int b) : ba(b)
 { }
 virtual void vertFunc() //needed for dynamic_cast
 { }
 void show()
 { cout << “Base: ba=” << ba << endl; }
 };
//
class Derv : public Base
 {
 private:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 private:
 int da;
 public:
 Derv(int b, int d) : da(d)
 { ba = b; }
 void show()
 { cout << “Derv: ba=” << ba << “, da=” << da << endl; }
 };
//
int main()
 {
 Base* pBase = new Base(10); //pointer to Base
 Derv* pDerv = new Derv(21, 22); //pointer to Derv

 //derived-to-base: upcast -- points to Base subobject of Derv
 pBase = dynamic_cast<Base*>(pDerv);
 pBase->show(); //”Base: ba=21”

 pBase = new Derv(31, 32); //normal
 //base-to-derived: downcast -- (pBase must point to a Derv)
 pDerv = dynamic_cast<Derv*>(pBase);
 pDerv->show(); //”Derv: ba=31, da=32”
 return 0;
 }

Here we have a base and a derived class. We’ve given each of these classes a data item to better
demonstrate the effects of dynamic casts.

In an upcast, you attempt to change a derived-class object into a base-class object. What you get is
the base part of the derived class object. In the example we make an object of class Derv. The base
class part of this object holds member data ba, which has a value of 21, and the derived part holds
data member da, which has the value 22. After the cast, pBase points to the base-class part of this
Derv class object, so when called upon to display itself, it prints Base: ba=21. Upcasts are fine if all
you want is the base part of the object.

In a downcast, we put a derived class object, which is pointed to by a base-class pointer, into a
derived-class pointer.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

The typeid Operator

Sometimes you want more information about an object than simply verifying that it’s of a certain
class. You can obtain information about the types of unknown objects, such as its class name, using
the typeid operator. The TYPEID program demonstrates how it works.

// typeid.cpp
// demonstrates typeid() function
// RTTI must be enabled in compiler
#include <iostream>
#include <typeinfo> //for typeid()
using namespace std;
//
class Base
 {
 virtual void virtFunc() //needed for typeid
 { }
 };
class Derv1 : public Base
 { };
class Derv2 : public Base
 { };
//
void displayName(Base* pB)
 {
 cout << “pointer to an object of “; //display name of class
 cout << typeid(*pB).name() << endl; //pointed to by pB
 }
//--
int main()
 {
 Base* pBase = new Derv1;
 displayName(pBase); //”pointer to an object of class Derv1”

 pBase = new Derv2;
 displayName(pBase); //”pointer to an object of class Derv2”
 return 0;
 }

In this example the displayName() function displays the name of the class of the object passed to it.
To do this, it uses the name member of the type_info class, along with the typeid operator. In main() we
pass this function two objects of class Derv1 and Derv2 respectively, and the program’s output is:

pointer to an object of class Derv1
pointer to an object of class Derv2

Besides its name, other information about a class is available using typeid. For example, you can

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Besides its name, other information about a class is available using typeid. For example, you can
check for equality of classes using an overloaded == operator. We’ll show an example of this in the
EMPL_IO program in Chapter 12, “Streams and Files.” Although the examples in this section have
used pointers, dynamic_cast and typeid work equally well with references.

Summary

Virtual functions provide a way for a program to decide, when it is running, what function to call.
Ordinarily such decisions are made at compile time. Virtual functions make possible greater
flexibility in performing the same kind of action on different kinds of objects. In particular, they
allow the use of functions called from an array of type pointer-to-base that actually holds pointers
(or references) to a variety of derived types. This is an example of polymorphism. Typically a
function is declared virtual in the base class, and other functions with the same name are declared in
derived classes.

The use of one or more pure virtual functions in a class makes the class abstract, which means that
no objects can be instantiated from it.

A friend function can access a class’s private data, even though it is not a member function of the
class. This is useful when one function must have access to two or more unrelated classes and when
an overloaded operator must use, on its left side, a value of a class other than the one of which it is
a member. friends are also used to facilitate functional notation.

A static function is one that operates on the class in general, rather than on objects of the class. In
particular it can operate on static variables. It can be called with the class name and scope-
resolution operator.

The assignment operator = can be overloaded. This is necessary when it must do more than merely
copy one object’s contents into another. The copy constructor, which creates copies during
initialization, and also when arguments are passed and returned by value, can also be overloaded.
This is necessary when the copy constructor must do more than simply copy an object.

The this pointer is predefined in member functions to point to the object of which the function is a
member. The this pointer is useful in returning the object of which the function is a member.

The dynamic_cast operator plays several roles. It can be used to determine what type of object a
pointer points to, and, in certain situations, it can change the type of a pointer. The typeid operator
can discover certain information about an object’s class, such as its name.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Questions

Answers to questions can be found in Appendix G, “Answers to Questions and Exercises.”

1. Virtual functions allow you to

a. create an array of type pointer-to-base class that can hold pointers to derived
classes.
b. create functions that can never be accessed.
c. group objects of different classes so they can all be accessed by the same function
code.
d. use the same function call to execute member functions of objects from different
classes.

2. True or false: A pointer to a base class can point to objects of a derived class.
3. If there is a pointer p to objects of a base class, and it contains the address of an object of a
derived class, and both classes contain a nonvirtual member function, ding(), then the
statement p->ding(); will cause the version of ding() in the _____ class to be executed.
4. Write a declarator for a virtual function called dang() that returns type void and takes one
argument of type int.
5. Deciding—after a program starts to execute—what function will be executed by a
particular function call statement is called _____.
6. If there is a pointer, p, to objects of a base class, and it contains the address of an object of
a derived class, and both classes contain a virtual member function, ding(), then the statement
p->ding(); will cause the version of ding() in the _____ class to be executed.
7. Write the declaration for a pure virtual function called aragorn that returns no value and
takes no arguments.
8. A pure virtual function is a virtual function that

a. causes its class to be abstract.
b. returns nothing.
c. is used in a base class.
d. takes no arguments.

9. Write the definition of an array called parr of 10 pointers to objects of class dong.
10. An abstract class is useful when

a. no classes should be derived from it.
b. there are multiple paths from one derived class to another.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

c. no objects should be instantiated from its.
d. you want to defer the declaration of the class.

11. True or false: A friend function can access a class’s private data without being a member
of the class.
12. A friend function can be used to

a. mediate arguments between classes.
b. allow access to classes whose source code is unavailable.
c. allow access to an unrelated class.
d. increase the versatility of an overloaded operator.

13. Write the declaration for a friend function called harry() that returns type void and takes
one argument of class george.
14. The keyword friend appears in

a. the class allowing access to another class.
b. the class desiring access to another class.
c. the private section of a class.
d. the public section of a class.

15. Write a declaration that, in the class in which it appears, will make every member of the
class harry a friend function.
16. A static function

a. should be called when an object is destroyed.
b. is closely connected to an individual object of a class.
c. can be called using the class name and function name.
d. is used when a dummy object must be created.

17. Explain what the default assignment operator = does when applied to objects.
18. Write a declaration for an overloaded assignment operator in class zeta.
19. An assignment operator might be overloaded to

a. help keep track of the number of identical objects.
b. assign a separate ID number to each object.
c. ensure that all member data is copied exactly.
d. signal when assignment takes place.

20. True or false: The user must always define the operation of the copy constructor.
21. The operation of the assignment operator and that of the copy constructor are

a. similar, except that the copy constructor creates a new object.
b. similar, except that the assignment operator copies member data.
c. different, except that they both create a new object.
d. different, except that they both copy member data.

22. Write the declaration of a copy constructor for a class called Bertha.
23. True or false: A copy constructor could be defined to copy only part of an object’s data.
24. The lifetime of a variable that is defined as

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

24. The lifetime of a variable that is defined as

a. automatic if a member function coincides with the lifetime of the function.
b. external coincides with the lifetime of a class.
c. nonstatic member data of an object coincides with the lifetime of the object.
d. static in a member function coincides with the lifetime of the function.

25. True or false: There is no problem with returning the value of a variable defined as
automatic within a member function so long as it is returned by value.
26. Explain the difference in operation between these two statements.

person p1(p0);
person p1 = p0;

27. A copy constructor is invoked when

a. a function returns by value.
b. an argument is passed by value.
c. a function returns by reference.
d. an argument is passed by reference.

28. What does the this pointer point to?
29. If, within a class, da is a member variable, will the statement this.da=37; assign 37 to da?
30. Write a statement that a member function can use to return the entire object of which it is
a member, without creating any temporary objects.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Exercises

Answers to starred exercises can be found in Appendix G.

*1. Imagine the same publishing company described in Exercise 1 in Chapter 9 that markets
both book and audiocassette versions of its works. As in that exercise, create a class called
publication that stores the title (a string) and price (type float) of a publication. From this class
derive two classes: book, which adds a page count (type int); and tape, which adds a playing
time in minutes (type float). Each of the three classes should have a getdata() function to get its
data from the user at the keyboard, and a putdata() function to display the data.
Write a main() program that creates an array of pointers to publication. This is similar to the
VIRTPERS example in this chapter. In a loop, ask the user for data about a particular book or
tape, and use new to create an object of type book or tape to hold the data. Put the pointer to the
object in the array. When the user has finished entering the data for all books and tapes,
display the resulting data for all the books and tapes entered, using a for loop and a single
statement such as

pubarr[j]->putdata();

to display the data from each object in the array.
*2. In the Distance class, as shown in the FRENGL and FRISQ examples in this chapter, create
an overloaded * operator so that two distances can be multiplied together. Make it a friend
function so that you can use such expressions as

Wdist1 = 7.5 * dist2;

You’ll need a one-argument constructor to convert floating-point values into Distance values.
Write a main() program to test this operator in several ways.
*3. As we saw earlier, it’s possible to make a class that acts like an array. The CLARRAY
example shown here is a complete program that shows one way to create your own array
class:

// clarray.cpp
// creates array class
#include <iostream>
using namespace std;
//
class Array //models a normal C++ array

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

class Array //models a normal C++ array
 {
 private:
 int* ptr; //pointer to Array contents
 int size; //size of Array
 public:
 Array(int s) //one-argument constructor
 {
 size = s; //argument is size of Array
 ptr = new int[s]; //make space for Array
 }
 ~Array() //destructor
 { delete[] ptr; }
 int& operator [] (int j) //overloaded subscript operator
 { return *(ptr+j); }
 };
//
int main()
 {
 const int ASIZE = 10; //size of array
 Array arr(ASIZE); //make an array

 for(int j=0; j<ASIZE; j++) //fill it with squares
 arr[j] = j*j;

 for(j=0; j<ASIZE; j++) //display its contents
 cout << arr[j] << ‘ ‘;
 cout << endl;
 return 0;
 }

The output of this program is

0 1 4 9 16 25 36 49 64 81

Starting with CLARRAY, add an overloaded assignment operator and an overloaded copy
constructor to the Array class. Then add statements such as

Array arr2(arr1);

and

arr3 = arr1;

to the main() program to test whether these overloaded operators work. The copy constructor
should create an entirely new Array object with its own memory for storing array elements.
Both the copy constructor and the assignment operator should copy the contents of the old
Array object to the new one. What happens if you assign an Array of one size to an Array of a
different size?
4. Start with the program of Exercise 1 in this chapter, and add a member function of type
bool called isOversize() to the book and tape classes. Let’s say that a book with more than 800
pages, or a tape with a playing time longer than 90 minutes (which would require two
cassettes), is considered oversize. You can access these function from main() and display the
string “Oversize” for oversize books and tapes when you display their other data. If book and
tape objects are to be accessed using pointers to them that are stored in an array of type
publication, what do you need to add to the publication base class? Can you instantiate members
of this base class?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5. Start with the program of Exercise 8 in Chapter 8, which overloaded five arithmetic
operators for money strings. Add the two operators that couldn’t be overloaded in that
exercise. These operations,

long double * bMoney // number times money
long double / bMoney // number divided by money

require friend functions, since an object appears on the right side of the operator while a
numerical constant appears on the left. Make sure that the main() program allows the user to
enter two money strings and a floating-point value, and then carries out all seven arithmetic
operations on appropriate pairs of these values.
6. As in the previous exercise, start with the program of Exercise 8 in Chapter 9. This time,
add a function that rounds a bMoney value to the nearest dollar. It should be used like this:

mo2 = round(mo1);

As you know, amounts of $0.49 and less are rounded down, while those $0.50 and above are
rounded up. A library function called modfl() is useful here. It separates a type long double
variable into a fractional part and an integer part. If the fractional part is less than 0.50, return
the integer part as is; otherwise add 1.0. In main(), test the function by sending it a sequence of
bMoney amounts that go from less than 49 cents to more than 50 cents.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

7. Remember the PARSE program from Chapter 12? It would be nice to improve this program
so it could evaluate expressions with real numbers, say type float, instead of single-digit
numbers. For example,

3.14159 / 2.0 + 75.25 * 3.333 + 6.02

As a first step toward this goal, you need to develop a stack that can hold both operators (type
char) and numbers (type float). But how can you store two different types on a stack, which is
basically an array? After all, type char and type float aren’t even the same size. Could you
store pointers to different types? They’re the same size, but the compiler still won’t allow you
to store type char* and type float* in the same array. The only way two different types of
pointers can be stored in the same array is if they are derived from the same base class. So we
can encapsulate a char in one class and a float in another, and arrange for both classes to be
derived from a base class. Then we can store both kinds of pointers in an array of pointers to
the base class. The base class doesn’t need to have any data of its own; it can be an abstract
class from which no objects will be instantiated.
Constructors can store the values into the derived classes in the usual way, but you’ll need to
use pure virtual functions to get the values back out again. Here’s a possible scenario:

class Token // abstract base class
 {
 public:
 virtual float getNumber()=0; // pure virtual functions
 virtual char getOperator()=0;
 };
class Operator : public Token
 {
 private:
 char oper; // operators +, -, *, /
 public:
 Operator(char); // constructor sets value
 char getOperator(); // gets value
 float getNumber(); // dummy function
 };
class Number : public Token
 {
 private:
 float fnum; // the number
 public:
 Number(float); // constructor sets value
 float getNumber(); // gets value
 char getOperator(); // dummy function
 };

Token* atoken[100]; // holds types Operator* and Number*

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Token* atoken[100]; // holds types Operator* and Number*

Base-class virtual functions need to be instantiated in all derived classes, or the classes
themselves become abstract. Thus the Operand class needs a getNumber() function, even though
it doesn’t store a number, and the Number class needs getOperand(), even though it doesn’t store
an operand.
Expand this framework into a working program by adding a Stack class that holds Token
objects, and a main() that pushes and pops various operators (such as + and *) and floating-
point numbers (1.123) on and off the stack.
8. Let’s put a little twist into the HORSE example of Chapter 10 by making a class of extra-
competitive horses. We’ll assume that any horse that’s ahead by the halfway point in the race
starts to feel its oats and becomes almost unbeatable. From the horse class, derive a class
called comhorse (for competitive horse). Overload the horse_tick() function in this class so that
each horse can check if it’s the front-runner and if there’s another horse close behind it (say
0.1 furlong). If there is, it should speed up a bit. Perhaps not enough to win every time, but
enough to give it a decided advantage.
How does each horse know where the other horses are? It must access the memory that holds
them, which in the horse program is hArray. Be careful, however. You want to create
comhorses, not horses. So the comhorse class will need to overload hArray. You may need to
derive a new track class, comtrack, to create the comhorses.
You can continuously check if your horse is ahead of the (otherwise) leading horse, and if it’s
by a small margin, accelerate your horse a bit.
9. Exercise 4 in Chapter 10 involved adding an overloaded destructor to the linklist class.
Suppose we fill an object of such a destructor-enhanced class with data, and then assign the
entire class with a statement such as

list2 = list1;

using the default assignment operator. Now, suppose we later delete the list1 object. Can we
still use list2 to access the same data? No, because when list1 was deleted, its destructor
deleted all its links. The only data actually contained in a linklist object is a pointer to the first
link. Once the links are gone, the pointer in list2 becomes invalid, and attempts to access the
list lead to meaningless values or a program crash.
One way to fix this is to overload the assignment operator so that it copies all the data links,
as well as the linklist object itself. You’ll need to follow along the chain, copying each link in
turn. As we noted earlier, you should overload the copy constructor as well. To make it
possible to delete linklist objects in main(), you may want to create them using pointers and
new. That makes it easier to test the new routines. Don’t worry if the copy process reverses
the order of the data.
Notice that copying all the data is not very efficient in terms of memory usage. Contrast this
approach with that used in the strimem example in Chapter 10, which used only one set of
data for all objects, and kept track of how many objects pointed to this data.
10. Carry out the modification, discussed in Exercise 7, to the PARSE program of Chapter 10.
That is, make it possible to parse expressions containing floating-point numbers. Combine
the classes from Exercise 7 with the algorithms from PARSE. You’ll need to operate on
pointers to tokens instead of characters. This involves statements of the kind

Number* ptrN = new Number(ans);
s.push(ptrN);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and

Operator* ptrO = new Operator(ch);
s.push(ptrO);

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

CHAPTER 12
STREAMS AND FILES

You will learn about the following in this chapter:
• The stream class hierarchy • Overloading << and >>
• IOS and error-handling • Command-line arguments
• Objects and disk files • Printer output

This chapter focuses on the C++ stream classes. We’ll start off with a look at the hierarchy in which
these classes are arranged, and we’ll summarize their important features. The largest part of this
chapter is devoted to showing how to perform file-related activities using C++ streams. We’ll show
how to read and write data to files in a variety of ways, how to handle errors, and how files and
OOP are related. Later in the chapter we’ll examine several other features of C++ that are related to
files, including in-memory text formatting, command-line arguments, overloading the insertion and
extraction operators, and sending data to the printer.

Stream Classes

A stream is a general name given to a flow of data. In C++ a stream is represented by an object of a
particular class. So far we’ve used the cin and cout stream objects. Different streams are used to
represent different kinds of data flow. For example, the ifstream class represents data flow from input
disk files.

Advantages of Streams

C programmers may wonder what advantages there are to using the stream classes for I/O, instead
of traditional C functions such as printf() and scanf(), and—for files—fprintf(), fscanf(), and so on.

One reason is simplicity. If you’ve ever used a %d formatting character when you should have used
a %f in printf(), you’ll appreciate this. There are no such formatting characters in streams, since each
object already knows how to display itself. This removes a major source of errors.

Another reason is that you can overload existing operators and functions, such as the insertion (<<
and extraction (>>) operators, to work with classes that you create. This makes your own classes
work in the same way as the built-in types, which again makes programming easier and more error
free (not to mention more aesthetically satisfying).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You may wonder if stream I/O is important if you plan to program in an environment with a
Graphics User Interface such as Windows, where direct text output to the screen is not used. Do
you still need to know about C++ streams? Yes, because they are the best way to write data to files,
and also to format data in memory for later use in text input/output windows and other GUI
elements.

The Stream Class Hierarchy

The stream classes are arranged in a rather complex hierarchy. Figure 12.1 shows the arrangement
of the most important of these classes.

Figure 12.1 Stream class hierarchy.

We’ve already made extensive use of some stream classes. The extraction operator >> is a member
of the istream class, and the insertion operator << is a member of the ostream class. Both of these
classes are derived from the ios class. The cout object, representing the standard output stream,
which is usually directed to the video display, is a predefined object of the ostream_withassign class,
which is derived from the ostream class. Similarly cin is an object of the istream_withassign class, which
is derived from istream.

The classes used for input and output to the video display and keyboard are declared in the header
file IOSTREAM, which we routinely included in our examples in previous chapters. The classes used
specifically for disk file I/O are declared in the file FSTREAM. Figure 12.1 shows which classes are
in which two header files. (Also, some manipulators are declared in IOMANIP, and in-memory
classes are declared in STRSTREAM.) You may find it educational to print out these header files and
trace the relationships among the various classes. They’re in your compiler’s INCLUDE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

trace the relationships among the various classes. They’re in your compiler’s INCLUDE
subdirectory. Many questions about streams can be answered by studying their class and constant
declarations.

As you can see from Figure 12.1, the ios class is the base class for the hierarchy. It contains many
constants and member functions common to input and output operations of all kinds. Some of these,
such as the showpoint and fixed formatting flags, we’ve seen already. The ios class also contains a
pointer to the streambuf class, which contains the actual memory buffer into which data is read or
written, and the low-level routines for handling this data. Ordinarily you don’t need to worry about
the streambuf class, which is referenced automatically by other classes.

The istream and ostream classes are derived from ios and are dedicated to input and output,
respectively. The istream class contains such functions as get(), getline(), read(), and the overloaded
extraction (>>) operators, while ostream contains put() and write(), and the overloaded insertion
(<<)operators.

The iostream class is derived from both istream and ostream by multiple inheritance. Classes derived
from it can be used with devices, such as disk files, that may be opened for both input and output at
the same time. Three classes—istream_withassign, ostream_withassign, and iostream_withassign—are
inherited from istream, ostream, and iostream, respectively. They add assignment operators to these
classes.

The following summary of stream classes may seem rather abstract. You may want to skim it now,
and return to it later when you need to know how to perform a particular stream-related activity.

The ios Class

The ios class is the granddaddy of all the stream classes, and contains the majority of the features
you need to operate C++ streams. The three most important features are the formatting flags, the
error-status flags, and the file operation mode. We’ll look at formatting flags and error-status flags
next. We’ll save the file operations mode for later, when we talk about disk files.

Formatting Flags

Formatting flags are a set of enum definitions in ios. They act as on/off switches that specify choices
for various aspects of input and output format and operation. We won’t provide a detailed
discussion of each flag, since we’ve already seen some of them in use, and others are more or less
self-explanatory. Some we’ll discuss later in this chapter. Table 12.1 is a complete list of the
formatting flags.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x

Table 12.1 ios Formatting Flags
Flag Meaning
skipws Skip (ignore) whitespace on input
left Left adjust output [12.34]
right Right adjust output [12.34]
internal Use padding between sign or base indicator and number [+ 12.34]
dec Convert to decimal
oct Convert to octal
hex Convert to hexadecimal
boolalpha Convert bool to “true” or “false” strings
showbase Use base indicator on output (0 for octal, 0x for hex)
showpoint Show decimal point on output
uppercase Use uppercase X, E, and hex output letters (ABCDEF)—the default is

lowercase
showpos Display + before positive integers
scientific Use exponential format on floating-point output [9.1234E2]
fixed Use fixed format on floating-point output [912.34]
unitbuf Flush all streams after insertion
stdio Flush stdout, stderror after insertion

There are several ways to set the formatting flags, and different ones can be set in different ways.
Since they are members of the ios class, you must usually precede them with the name ios and the

scope-resolution operator (for example, ios::skipws). All the flags can be set using the setf() and
unsetf() ios member functions. Look at the following example:

cout.setf(ios::left); // left justify output text
cout >> “This text is left-justified”;

cout.unsetf(ios::left); // return to default (right justified)

Many formatting flags can be set using manipulators, so let’s look at them now.

Manipulators

Manipulators are formatting instructions inserted directly into a stream. We’ve seen examples
before, such as the manipulator endl, which sends a newline to the stream and flushes it:

cout << “To each his own.” << endl;

We’ve also used the setiosflags() manipulator (see the SALEMON program in Chapter 7, “Arrays and
Strings”):

cout << setiosflags(ios::fixed) // use fixed decimal point
 << setiosflags(ios::showpoint) // always show decimal point

 << var;

As these examples demonstrate, manipulators come in two flavors: those that take an argument and
those that don’t. Table 12.2 summarizes the important no-argument manipulators.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Publication Date: 11/25/98

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Table 12.4 ios Functions
Function Purpose
ch = fill(); Return the fill character (fills unused part of field; default is space)
fill(ch); Set the fill character
p = precision(); Get the precision (number of digits displayed for floating-point)
precision(p); Set the precision
w = width(); Get the current field width (in characters)
width(w); Set the current field width
setf(flags); Set specified formatting flags (for example, ios::left)
unsetf(flags); Unset specified formatting flags
setf(flags, field); First clear field, then set flags

These functions are called for specific stream objects using the normal dot operator. For example,
to set the field width to 12, you can say

cout.width(14);

The following statement sets the fill character to an asterisk (as for check printing):

cout.fill(‘*’);

You can use several functions to manipulate the ios formatting flags directly. For example, to set
left justification, use

cout.setf(ios::left);

To restore right justification, use

cout.unsetf(ios::left);

A two-argument version of setf() uses the second argument to reset all the flags of a particular type
or field. Then the flag specified in the first argument is set. This makes it easier to reset the relevant

flags before setting a new one. Table 12.5 shows the arrangement.

For example,

cout.setf(ios::left, ios::adjustfield);

clears all the flags dealing with text justification and then sets the left flag for left-justified output.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 12.7 ostream Functions
Function Purpose
<< Formatted insertion for all basic (and overloaded) types.
put(ch) Insert character ch into stream.
flush() Flush buffer contents and insert newline.
write(str, SIZE) Insert SIZE characters from array str into file
seekp(position) Set distance in bytes of file pointer from start of file.
seekp(position, seek_dir) Set distance in bytes of file pointer, from specified place in

file. seek_dir can be ios::beg, ios::cur, or ios::end.
pos = tellp() Return position of file pointer, in bytes.

The iostream and the _withassign Classes

The iostream class, which is derived from both istream and ostream, acts only as a base class from
which other classes, specifically iostream_withassign, can be derived. It has no functions of its own
(except constructors and destructors). Classes derived from iostream can perform both input and

output.

There are three _withassign classes:

• istream_withassign, derived from istream
• ostream_withassign, derived from ostream
• iostream_withassign, derived from iostream

These _withassign classes are much like those they’re derived from except that they include
overloaded assignment operators so their objects can be copied.

Why do we need separate copyable and uncopyable stream classes? In general, it’s not a good idea
to copy stream class objects. The reason is that each such object is associated with a particular

streambuf object, which includes an area in memory to hold the object’s actual data. If you copy the
stream object, it causes confusion if you also copy the streambuf object. However, in a few cases it’s

important to be able to copy a stream.

Accordingly, the istream, ostream, and iostream classes are made uncopyable (by making their
overloaded copy constructors and assignment operators private), while the _withassign classes

derived from them can be copied.

Predefined Stream Objects

We’ve already made extensive use of two predefined stream objects that are derived from the
_withassign classes: cin and cout. These are normally connected to the keyboard and display,

respectively. The two other predefined objects are cerr and clog.

• cin, an object of istream_withassign, normally used for keyboard input
• cout, an object of ostream_withassign, normally used for screen display

• cerr, an object of ostream_withassign, for error messages
• clog, an object of ostream_withassign, for log messages

The cerr object is often used for error messages and program diagnostics. Output sent to cerr is
displayed immediately, rather than being buffered, as cout is. Also, it cannot be redirected (more on

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

The ostream Class

The ostream class handles output or insertion activities. Table 12.7 shows the most commonly used
member functions of this class. The last four functions in this table deal specifically with disk files.

displayed immediately, rather than being buffered, as cout is. Also, it cannot be redirected (more on
this later). For these reasons you have a better chance of seeing a final output message from cerr

your program dies prematurely. Another object, clog, is similar to cerr in that it is not redirected, but
its output is buffered, while cerr’s output is not.

Stream Errors

So far in this book we’ve mostly used a rather straightforward approach to input and output, using
statements of the form

cout << “Good morning”;

and

cin >> var;

However, as you may have discovered, this approach assumes that nothing will go wrong during
the I/O process. This isn’t always the case, especially on input. What happens if a user enters the

string “nine” instead of the integer 9, or pushes the [Enter] key without entering anything? Or what
happens if there’s a hardware failure? In this section we’ll explore such problems. Many of the

techniques we’ll see here are applicable to file I/O as well.

Error-Status Bits

The stream error-status flags are an ios enum member that reports errors that occurred in an input or
output operation. They’re summarized in Table 12.8. Figure 12.3 shows how these flags look.

Various ios functions can be used to read (and even set) these error flags, as shown in Table 12.9.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Inputting Numbers

Let’s see how to handle errors when inputting numbers. This approach applies to both numbers read
from the keyboard and from disk, as we’ll see later. The idea is to check the value of goodbit, signal
an error if it’s not true, and give the user another chance to enter the correct input.

while(true) // cycle until input OK
 {
 cout << “\nEnter an integer: “;
 cin >> i;
 if(cin.good()) // if no errors
 {
 cin.ignore(10, ‘\n’); // remove newline
 break; // exit loop
 }
 cin.clear(); // clear the error bits
 cout << “Incorrect input”;
 cin.ignore(10, ‘\n’); // remove newline
 }
cout << “integer is “ << i; // error-free integer

The most common error this scheme detects when reading keyboard input is the user typing
nondigits (like “nine” instead of 9). This causes the failbit to be set. However, it also detects system-
related failures that are more common with disk files.

Floating-point numbers (float, double, and long double) can be analyzed for errors in the same way as
integers.

Too Many Characters

Too many characters sounds like a difficulty experienced by movie directors, but extra characters
can also present a problem when reading from input streams. This is especially true when there are
errors. Typically, extra characters are left in the input stream after the input is supposedly
completed. They are then passed along to the next input operation, even though they are not
intended for it. Often it’s a new line that remains behind, but sometimes other characters are left
over as well. To get rid of these extraneous characters the ignore(MAX, DELIM) member function of
istream is used. It reads and throws away up to MAX characters, including the specified delimiter
character. In our example, the line

cin.ignore(10, ‘\n’);

causes cin to read up to 10 characters, including the ‘\n’, and remove them from the input.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

No-Input Input

Whitespace characters, such as tab space and ‘\n’, are normally ignored (skipped) when inputting
numbers. This can have some undesirable side effects. For example, users, prompted to enter a
number, may simply press the [Enter] key without typing any digits. (Perhaps they think that this
will enter 0, or perhaps they are simply confused.) In the code shown above, as well as the simple
statement

cin >> i;

pressing [Enter] causes the cursor to drop down to the next line, while the stream continues to wait
for the number. What’s wrong with the cursor dropping to the next line? First, inexperienced users,
seeing no acknowledgment when they press [Enter], may assume the computer is broken. Second,
pressing [Enter] repeatedly normally causes the cursor to drop lower and lower until the entire screen
begins to scroll upward. This is all right in teletype-style interaction, where the program and the
user simply type at each other. However, in text-based graphics programs (such as the ELEV
program in Chapter 13, “Multifile Programs”), scrolling the screen disarranges and eventually
obliterates the display.

Thus it’s important to be able to tell the input stream not to ignore whitespace. This is handled by
clearing the skipws flag:

cout << “\nEnter an integer: “;
cin.unsetf(ios::skipws); // don’t ignore whitespace
cin >> i;
if(cin.good())
 {
 // no error
 }
// error

Now if the user types [Enter] without any digits, the failbit will be set and an error generated. The
program can then tell the user what to do, or reposition the cursor so the screen does not scroll.

Inputting Strings and Characters

The user can’t really make any serious errors inputting strings and characters, since all input, even
numbers, can be interpreted as a string. However, if coming from a disk file, characters and strings
should still be checked for errors, in case an EOF or something worse is encountered. Unlike the
situation with numbers, you often do want to ignore whitespace when inputting strings and
characters.

Error-Free Distances

Let’s look at a program in which user input to the English Distance class is checked for errors. This
program simply accepts Distance values in feet and inches from the user and displays them.
However, if the user commits an entry error, the program rejects the input with an appropriate
explanation to the user, and prompts for new input.

The program is very simple except that the member function getdist() has been expanded to handle

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The program is very simple except that the member function getdist() has been expanded to handle
errors. Parts of this new code follow the approach of the fragment shown above. However, we’ve
also added some statements to ensure that the user does not enter a floating-point number for feet.
This is important because, while the feet value is an integer, the inches value is floating-point, and
the user could easily become confused.

Ordinarily, if it’s expecting an integer, the extraction operator simply terminates when it sees a
decimal point, without signaling an error. We want to know about such an error, so we read the feet
value as a string instead of an int. We then examine the string with a homemade function isFeet(),
which returns true if the string proves to be a correct value for feet. To pass the feet test, it must
contain only digits, and they must evaluate to a number between –999 and 999. (We assume the
Distance class will never be used for measuring larger feet values.) If the string passes the feet test,
we convert it to an actual int with the library function atoi().

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

The inches value is a floating-point number. We want to check its range, which should be 0 or
greater but less than 12.0. We also check it for ios error flags. Most commonly, the failbit will be set
because the user typed non digits instead of a number. Here’s the listing for ENGLERR:

// englerr.cpp
// input checking with English Distance class
#include <iostream>
#include <string>
#include <cstdlib> //for atoi(), atof()
using namespace std;
int isFeet(string); //declaration
//
class Distance //English Distance class
 {
 private:
 int feet;
 float inches;
 public:
 Distance() //constructor (no args)
 { feet = 0; inches = 0.0; }
 Distance(int ft, float in) //constructor (two args)
 { feet = ft; inches = in; }
 void showdist() //display distance
 { cout << feet << “\’-” << inches << ‘\”’; }
 void getdist(); //get length from user
 };
//--
void Distance::getdist() //get length from user
 {
 string instr; //for input string

 while(true) //cycle until feet are right
 {
 cout << “\n\nEnter feet: “;
 cin.unsetf(ios::skipws); //do not skip white space
 cin >> instr; //get feet as a string
 if(isFeet(instr)) //is it a correct feet value?
 { //yes
 cin.ignore(10, ‘\n’); //eat chars, including newline
 feet = atoi(instr.c_str()); //convert to integer
 break; //break out of ‘while’
 } //no, not an integer
 cin.ignore(10, ‘\n’); //eat chars, including newline
 cout << “Feet must be an integer less than 1000\n”;
 } //end while feet

 while(true) //cycle until inches are right
 {
 cout << “Enter inches: “;
 cin.unsetf(ios::skipws); //do not skip white space

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 cin.unsetf(ios::skipws); //do not skip white space
 cin >> inches; //get inches (type float)
 if(inches>=12.0 || inches<0.0)
 {
 cout << “Inches must be between 0.0 and 11.99\n”;
 cin.clear(ios::failbit); //”artificially” set fail bit
 }
 if(cin.good()) //check for cin failure
 { //(most commonly a non-digit)
 cin.ignore(10, ‘\n’); //eat the newline
 break; //input is OK, exit ‘while’
 }
 cin.clear(); //error; clear the error state
 cin.ignore(10, ‘\n’); //eat chars, including newline
 cout << “Incorrect inches input\n”; //start again
 } //end while inches
 }
//--
int isFeet(string str) //return true if the string
 { // is a correct feet value
 int slen = str.size(); //get length
 if(slen==0 || slen > 5) //if no input, or too long
 return 0; //not an int
 for(int j=0; j<slen; j++) //check each character
 //if not digit or minus
 if((str[j] < ‘0’ || str[j] > ‘9’) && str[j] != ‘-’)
 return 0; //string is not correct feet
 double n = atof(str.c_str()); //convert to double
 if(n<-999.0 || n>999.0) //is it out of range?
 return 0; //if so, not correct feet
 return 1; //it is correct feet
 }
//
int main()
 {
 Distance d; //make a Distance object
 char ans;
 do
 {
 d.getdist(); //get its value from user
 cout << “\nDistance = “;
 d.showdist(); //display it
 cout << “\nDo another (y/n)? “;
 cin >> ans;
 cin.ignore(10, ‘\n’); //eat chars, including newline
 } while(ans != ‘n’); //cycle until ‘n’
 return 0;
 }

We’ve used another dodge here: setting an error-state flag manually. We do this because we want
to ensure that the inches value is greater than 0 but less than 12.0. If it isn’t, we turn on the failbit
with the statement

cin.clear(ios::failbit); // set failbit

When the program checks for errors with cin.good(), it will find the failbit set and signal that the input
is incorrect.

Disk File I/O with Streams

Most programs need to save data to disk files and read it back in. Working with disk files requires
another set of classes: ifstream for input, fstream for both input and output, and ofstream for output.
Objects of these classes can be associated with disk files, and we can use their member functions to
read and write to the files.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Referring back to Figure 12.1, you can see that ifstream is derived from istream, fstream is derived
from iostream, and ofstream is derived from ostream. These ancestor classes are in turn derived from
ios. Thus the file-oriented classes derive many of their member functions from more general classes.
The file-oriented classes are also derived, by multiple inheritance, from the fstreambase class. This
class contains an object of class filebuf, which is a file-oriented buffer; and its associated member
functions, derived from the more general streambuf class. You don’t usually need to worry about
these buffer classes.

The ifstream, ofstream, and fstream classes are declared in the FSTREAM file.

C programmers will note that the approach to disk I/O used in C++ is quite different from that in C.
The old C functions, such as fread() and fwrite(),will still work in C++, but they are not so well suited
to the object-oriented environment. The new C++ approach is considerably cleaner and easier to
implement. (Incidentally, be careful about mixing the old C functions with C++ streams. They don’t
always work together gracefully, although there are ways to make them cooperate.)

Formatted File I/O

In formatted I/O, numbers are stored on disk as a series of characters. Thus 6.02, rather than being
stored as a 4-byte type float or an 8-byte type double, is stored as the characters ‘6’, ‘.’, ‘0’, and ‘2’.
This can be inefficient for numbers with many digits, but it’s appropriate in many situations and
easy to implement. Characters and strings are stored more or less normally.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Writing Data

The following program writes a character, an integer, a type double, and two string objects to a disk
file. There is no output to the screen. Here’s the listing for FORMATO:

// formato.cpp
// writes formatted output to a file, using <<
#include <fstream> //for file I/O
#include <iostream>
#include <string>
using namespace std;

int main()
 {
 char ch = ‘x’;
 int j = 77;
 double d = 6.02;
 string str1 = “Kafka”; //strings without
 string str2 = “Proust”; // embedded spaces

 ofstream outfile(“fdata.txt”); //create ofstream object

 outfile << ch //insert (write) data
 << j
 << ‘ ‘ //needs space between numbers
 << d
 << str1
 << ‘ ‘ //needs spaces between strings
 << str2;
 cout << “File written\n”;
 return 0;
 }

Here we define an object called outfile to be a member of the ofstream class. At the same time, we
initialize it to the file FDATA.TXT. This initialization sets aside various resources for the file, and
accesses or opens the file of that name on the disk. If the file doesn’t exist, it is created. If it does
exist, it is truncated and the new data replaces the old. The outfile object acts much as cout did in
previous programs, so we can use the insertion operator (<<) to output variables of any basic type to
the file. This works because the insertion operator is appropriately overloaded in ostream, from
which ofstream is derived.

When the program terminates, the outfile object goes out of scope. This calls its destructor, which
closes the file, so we don’t need to close the file explicitly.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There are several potential formatting glitches. First, you must separate numbers (such as 77 and
6.02) with nonnumeric characters. Since numbers are stored as a sequence of characters, rather than
as a fixed-length field, this is the only way the extraction operator will know, when the data is read
back from the file, where one number stops and the next one begins. Second, strings must be
separated with whitespace for the same reason. This implies that strings cannot contain imbedded
blanks. In this example we use the space character (‘ ‘) for both kinds of delimiters. Characters need
no delimiters, since they have a fixed length.

You can verify that FORMATO has indeed written the data by examining the FDATA.TXT file with
the Windows WORDPAD accessory or the DOS command TYPE.

Reading Data

We can read the file generated by FERMATO by using an ifstream object, initialized to the name of
the file. The file is automatically opened when the object is created. We can then read from it using
the extraction (>>) operator.

Here’s the listing for the FORMATI program, which reads the data back in from the fdata.txt file:

// formati.cpp
// reads formatted output from a file, using >>
#include <fstream> //for file I/O
#include <iostream>
#include <string>
using namespace std;

int main()
 {
 char ch;
 int j;
 double d;
 string str1;
 string str2;
>) operator>>) operator>> (extraction) operator>
 ifstream infile(“fdata.txt”); //create ifstream object
 //extract (read) data from it
 infile >> ch >> j >> d >> str1 >> str2;

 cout << ch << endl //display the data
 << j << endl
 << d << endl
 << str1 << endl
 << str2 << endl;
 return 0;
 }

Here the ifstream object, which we name infile, acts much the way cin did in previous programs.
Provided that we have formatted the data correctly when inserting it into the file, there’s no trouble
extracting it, storing it in the appropriate variables, and displaying its contents. The program’s
output looks like this:

x
77
6.02
Kafka
Proust

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Proust

Of course the numbers are converted back to their binary representations for storage in the program.
That is, the 77 is stored in the variable j as a type int, not as two characters; and the 6.02 is stored as
a double.

Strings with Embedded Blanks

The technique of our last examples won’t work with char* strings containing embedded blanks. To
handle such strings, you need to write a specific delimiter character after each string, and use the
getline() function, rather than the extraction operator, to read them in. Our next program, oline,
outputs some strings with blanks embedded in them.

// oline.cpp
// file output with strings
#include <fstream> //for file I/O
using namespace std;

int main()
 {
 ofstream outfile(“TEST.TXT”); //create file for output
 //send text to file
 outfile << “I fear thee, ancient Mariner!\n”;
 outfile << “I fear thy skinny hand\n”;
 outfile << “And thou art long, and lank, and brown,\n”;
 outfile << “As is the ribbed sea sand.\n”;
 return 0;
 }

When you run the program, the lines of text (from Samuel Taylor Coleridge’s The Rime of the
Ancient Mariner) are written to a file. Each one is specifically terminated with a newline (‘\n’)
character. Note that these are char* strings, not objects of the string class. Many stream operations
work more easily with char* strings.

To extract the strings from the file, we create an ifstream and read from it one line at a time using the
getline() function, which is a member of istream. This function reads characters, including whitespace,
until it encounters the ‘\n’ character, and places the resulting string in the buffer supplied as an
argument. The maximum size of the buffer is given as the second argument. The contents of the
buffer is displayed after each line.

// iline.cpp
// file input with strings
#include <fstream> //for file functions
#include <iostream>
using namespace std;

int main()
 {
 const int MAX = 80; //size of buffer
 char buffer[MAX]; //character buffer
 ifstream infile(“TEST.TXT”); //create file for input
 while(!infile.eof()) //until end-of-file
 {
 infile.getline(buffer, MAX); //read a line of text
 cout << buffer << endl; //display it
 }
 return 0;
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

The output of ILINE to the screen is the same as the data written to the TEST.TXT file by OLINE: the
four-line Coleridge stanza. The program has no way of knowing in advance how many strings are
in the file, so it continues to read one string at a time until it encounters an end-of-file. Incidentally,
don’t use this program to read random text files. It requires all the text lines to terminate with the
‘\n’ character, and if you encounter a file in which this is not the case, the program will hang.

Detecting End-of-File

As we have seen, objects derived from ios contain error-status flags that can be checked to
determine the results of operations. When we read a file little by little, as we do here, we will
eventually encounter an end-of-file (EOF) condition. The EOF is a signal sent to the program from
the operating system when there is no more data to read. In ILINE we could have checked for this in
the line

while(!infile.eof()) // until eof encountered

However, checking specifically for an eofbit means that we won’t detect the other error flags, such
as the failbit and badbit, which may also occur, although more rarely. To do this, we can change our
loop condition:

while(infile.good()) // until any error encountered

You can also test the stream directly. Any stream object, such as infile, has a value that can be tested
for the usual error conditions, including EOF. If any such condition is true, the object returns a zero
value. If everything is going well, the object returns a nonzero value. This value is actually a
pointer, but the “address” returned has no significance except to be tested for a zero or nonzero
value. Thus we can rewrite our while loop again:

while(infile) // until any error encountered

This is certainly simple, but it may not be quite so clear to the uninitiated what it does.

Character I/O

The put() and get() functions, which are members of ostream and istream, respectively, can be used to
output and input single characters. Here’s a program, OCHAR, that outputs a string, one character at
a time:

// ochar.cpp
// file output with characters
#include <fstream> //for file functions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#include <fstream> //for file functions
#include <iostream>
#include <string>
using namespace std;

int main()
 {
 string str = “Time is a great teacher, but unfortunately “
 “it kills all its pupils. Berlioz”;

 ofstream outfile(“TEST.TXT”); //create file for output
 for(int j=0; j<str.size(); j++) //for each character,
 outfile.put(str[j]); //write it to file
 cout << “File written\n”;
 return 0;
 }

In this program an ofstream object is created as it was in OLINE. The length of the string object str is
found using the size() member function, and the characters are output using put() in a for loop. The
aphorism by Hector Berlioz (a 19th-century composer of operas and program music) is written to
the file TEST.TXT. We can read this file back in and display it using the ICHAR program.

// ichar.cpp
// file input with characters
#include <fstream> //for file functions
#include <iostream>
using namespace std;

int main()
 {
 char ch; //character to read
 ifstream infile(“TEST.TXT”); //create file for input
 while(infile) //read until EOF or error
 {
 infile.get(ch); //read character
 cout << ch; //display it
 }
 cout << endl;
 return 0;
 }

This program uses the get() function and continues reading until the EOF is reached (or an error
occurs). Each character read from the file is displayed using cout, so the entire aphorism appears on
the screen.

Another approach to reading characters from a file is the rdbuf() function, a member of the ios class.
This function returns a pointer to the streambuf (or filebuf) object associated with the stream object.
This object contains a buffer that holds the characters read from the stream, so you can use the
pointer to it as a data object in its own right. Here’s the listing for ICHAR2:

// ichar2.cpp
// file input with characters
#include <fstream> //for file functions
#include <iostream>
using namespace std;

int main()
 {
 ifstream infile(“TEST.TXT”); //create file for input

 cout << infile.rdbuf(); //send its buffer to cout
 cout << endl;
 return 0;
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

This program has the same effect as ICHAR. It also takes the prize for the shortest file-oriented
program. Note that rdbuf() knows that it should return when it encounters an EOF.

Binary I/O

You can write a few numbers to disk using formatted I/O, but if you’re storing a large amount of
numerical data it’s more efficient to use binary I/O, in which numbers are stored as they are in the
computer’s RAM memory, rather than as strings of characters. In binary I/O an int is always stored
in 2 bytes, whereas its text version might be “12345”, requiring 5 bytes. Similarly, a float is always
stored in 4 bytes, while its formatted version might be “6.02314e13”, requiring 10 bytes.

Our next example shows how an array of integers is written to disk and then read back into
memory, using binary format. We use two new functions: write(), a member of ofstream; and read()
member of ifstream. These functions think about data in terms of bytes (type char). They don’t care
how the data is formatted, they simply transfer a buffer full of bytes from and to a disk file. The
parameters to write() and read() are the address of the data buffer and its length. The address must be
cast, using reinterpret_cast, to type char*, and the length is the length in bytes (characters), not the
number of data items in the buffer. Here’s the listing for BINIO:

// binio.cpp
// binary input and output with integers
#include <fstream> //for file streams
#include <iostream>
using namespace std;
const int MAX = 100; //size of buffer
int buff[MAX]; //buffer for integers

int main()
 {
 for(int j=0; j<MAX; j++) //fill buffer with data
 buff[j] = j; //(0, 1, 2, ...)
 //create output stream
 ofstream os(“edata.dat”, ios::binary);
 //write to it
 os.write(reinterpret_cast<char*>(buff), MAX*sizeof(int));
 os.close(); //must close it

 for(j=0; j<MAX; j++) //erase buffer
 buff[j] = 0;
 //create input stream
 ifstream is(“edata.dat”, ios::binary);
 //read from it
 is.read(reinterpret_cast<char*>(buff), MAX*sizeof(int));

 for(j=0; j<MAX; j++) //check data
 if(buff[j] != j)
 { cerr << “Data is incorrect\n”; return 1; }
 cout << “Data is correct\n”;
 return 0;
 }

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

You must use the ios::binary argument in the second parameter to write() and read() when working
with binary data. This is because the default, text mode, takes some liberties with the data. For
example, in text mode the ‘\n’ character is expanded into two bytes—a carriage-return and a
linefeed—before being stored to disk. This makes a formatted text file more readable by DOS-
based utilities like TYPE, but it causes confusion when it is applied to binary data, since every byte
that happens to have the ASCII value 10 is translated into 2 bytes. The ios::binary argument is an
example of a mode bit. We’ll say more about this when we discuss the open() function later in this
chapter.

The reinterpret_cast Operator

In the BINIO program (and many others to follow) we use the reinterpret_cast operator to make it
possible for a buffer of type int to look to the read() and write() functions like a buffer of type char.

is.read(reinterpret_cast<char*>(buff), MAX*sizeof(int));

The reinterpret_cast operator is how you tell the compiler, “I know you won’t like this, but I want to
do it anyway.” It changes the type of a section of memory without caring if it makes sense, so it’s
up to you to use it judiciously.

You can also use reinterpret_cast to change pointer values into integers and vice versa. This is a
dangerous practice, but one which is sometimes necessary.

Closing Files

So far in our example programs there has been no need to close streams explicitly because they are
closed automatically when they go out of scope; this invokes their destructors and closes the
associated file. However, in BINIO, since both the output stream os and the input stream is are
associated with the same file, EDATA.DAT, the first stream must be closed before the second is
opened. We use the close() member function for this.

You may want to use an explicit close() every time you close a file, without relying on the stream’s
destructor. This is potentially more reliable, and certainly makes the listing more readable.

Object I/O

Since C++ is an object-oriented language, it’s reasonable to wonder how objects can be written to
and read from disk. The next examples show the process. The person class, used in several previous

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and read from disk. The next examples show the process. The person class, used in several previous
examples (for example, the VIRTPERS program in Chapter 11, “Virtual Functions”), supplies the
objects.

Writing an Object to Disk

When writing an object we generally want to use binary mode. This writes the same bit
configuration to disk that was stored in memory, and ensures that numerical data contained in
objects is handled properly. Here’s the listing for OPERS, which asks the user for information about
an object of class person, and then writes this object to the disk file PERSON.DAT:

// opers.cpp
// saves person object to disk
#include <fstream> //for file streams
#include <iostream>
using namespace std;
//
class person //class of persons
 {
 protected:
 char name[80]; //person’s name
 short age; //person’s age
 public:
 void getData() //get person’s data
 {
 cout << “Enter name: “; cin >> name;
 cout << “Enter age: “; cin >> age;
 }
 };
//
int main()
 {
 person pers; //create a person
 pers.getData(); //get data for person
 //create ofstream object
 ofstream outfile(“PERSON.DAT”, ios::binary);
 //write to it
 outfile.write(reinterpret_cast<char*>(&pers), sizeof(pers));
 return 0;
 }

The getData() member function of person is called to prompt the user for information, which it places
in the pers object. Here’s some sample interaction:

Enter name: Coleridge
Enter age: 62

The contents of the pers object are then written to disk, using the write() function. We use the sizeof
operator to find the length of the pers object.

Reading an Object from Disk

Reading an object back from the PERSON.DAT file requires the read() member function. Here’s the
listing for IPERS:

// ipers.cpp
// reads person object from disk
#include <fstream> //for file streams
#include <iostream>
using namespace std;
//
class person //class of persons

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

class person //class of persons
 {
 protected:
 char name[80]; //person’s name
 short age; //person’s age
 public:
 void showData() //display person’s data
 {
 cout << “Name: “ << name << endl;
 cout << “Age: “ << age << endl;
 }
 };
//
int main()
 {
 person pers; //create person variable
 ifstream infile(“PERSON.DAT”, ios::binary); //create stream
 //read stream
 infile.read(reinterpret_cast<char*>(&pers), sizeof(pers));
 pers.showData(); //display person
 return 0;
 }

The output from IPERS reflects whatever data the OPERS program placed in the PERSON.DAT file:

Name: Coleridge
Age: 62

Compatible Data Structures

To work correctly, programs that read and write objects to files, as do OPERS and IPERS, must be
talking about the same class of objects. Objects of class person in these programs are exactly 42
bytes long, with the first 40 being occupied with a string representing the person’s name, and the
last 2 containing an integer of type short, representing the person’s age. If two programs thought the
name field was a different length, for example, neither could accurately read a file generated by the
other.

Notice, however, that while the person classes in OPERS and IPERS have the same data, they may
have different member functions. The first includes the single function getData(), while the second
has only showData(). It doesn’t matter what member functions you use, since they are not written to
disk along with the object’s data. The data must have the same format, but inconsistencies in the
member functions have no effect. However, this is true only in simple classes that don’t use virtual
functions.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

If you read and write objects of derived classes to a file, you must be even more careful. Objects of
derived classes include a mysterious number placed just before the object’s data in memory. This
number helps identify the object’s class when virtual functions are used. When you write an object
to disk, this number is written along with the object’s other data. If you change a class’s member
functions, this number changes as well. If you write an object of one class to a file, and then read it
back into an object of a class that has identical data but a different member function, you’ll
encounter big trouble if you try to use virtual functions on the object. The moral: Make sure a class
that reads an object is identical to the class that wrote it.

I/O with Multiple Objects

Table 12.10 Mode Bits for open() Function
Mode Bit Result
in Open for reading (default for ifstream)
out Open for writing (default for ofstream)
ate Start reading or writing at end of file (AT End)
app Start writing at end of file (APPend)
trunc Truncate file to zero length if it exists (TRUNCate)
nocreate Error when opening if file does not already exist
noreplace Error when opening for output if file already exists, unless ate or app is set
binary Open file in binary (not text) mode

In DISKFUN we use ios::app because we want to preserve whatever was in the file before. That is, we
can write to the file, terminate the program, and start up the program again, and whatever we write

to the file will be added following the existing contents. We use in and out because we want to
perform both input and output on the file, and we use binary because we’re writing binary objects.
The vertical bars between the flags cause the bits representing these flags to be logically combined

into a single integer, so that several flags can apply simultaneously.

We write one person object at a time to the file, using the write() function. When we’ve finished
writing, we want to read the entire file. Before doing this we must reset the file’s current position.
We do this with the seekg() function, which we’ll examine in the next section. It ensures we’ll start
reading at the beginning of the file. Then, in a while loop, we repeatedly read a person object from

the file and display it on the screen.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The OPERS and IPERS programs wrote and read only one object at a time. Our next example opens a
file and writes as many objects as the user wants. Then it reads and displays the entire contents of
the file. Here’s the listing for DISKFUN:

// diskfun.cpp
// reads and writes several objects to disk
#include <fstream> //for file streams
#include <iostream>
using namespace std;
//
class person //class of persons
 {
 protected:
 char name[80]; //person’s name
 int age; //person’s age
 public:
 void getData() //get person’s data
 {
 cout << “\n Enter name: “; cin >> name;
 cout << “ Enter age: “; cin >> age;
 }
 void showData() //display person’s data
 {
 cout << “\n Name: “ << name;
 cout << “\n Age: “ << age;
 }
 };
//
int main()
 {
 char ch;
 person pers; //create person object
 fstream file; //create input/output file
 //open for append
 file.open(“GROUP.DAT”, ios::app | ios::out |
 ios::in | ios::binary);
 do //data from user to file
 {
 cout << “\nEnter person’s data:”;
 pers.getData(); //get one person’s data
 //write to file
 file.write(reinterpret_cast<char*>(&pers), sizeof(pers));
 cout << “Enter another person (y/n)? “;
 cin >> ch;
 }
 while(ch==’y’); //quit on ‘n’
 file.seekg(0); //reset to start of file
 //read first person
 file.read(reinterpret_cast<char*>(&pers), sizeof(pers));
 while(!file.eof()) //quit on EOF
 {
 cout << “\nPerson:”; //display person
 pers.showData(); //read another person
 file.read(reinterpret_cast<char*>(&pers), sizeof(pers));
 }
 cout << endl;
 return 0;
 }

Here’s some sample interaction with DISKFUN. The output shown assumes that the program has
been run before and that two person objects have already been written to the file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Enter person’s data:
 Enter name: McKinley
 Enter age: 22
Enter another person (y/n)? n

Person:
 Name: Whitney
 Age: 20
Person:
 Name: Rainier
 Age: 21
Person:
 Name: McKinley
 Age: 22

Here one additional object is added to the file, and the entire contents, consisting of three objects, is
then displayed.

The fstream Class

So far in this chapter the file objects we created were for either input or output. In DISKFUN we
want to create a file that can be used for both input and output. This requires an object of the fstream
class, which is derived from iostream, which is derived from both istream and ostream so it can handle
both input and output.

The open() Function

In previous examples we created a file object and initialized it in the same statement:

ofstream outfile(“TEST.TXT”);

In DISKFUN we use a different approach: We create the file in one statement and open it in another,
using the open() function, which is a member of the fstream class. This is a useful approach in
situations where the open may fail. You can create a stream object once, and then try repeatedly to
open it, without the overhead of creating a new stream object each time.

The Mode Bits

We’ve seen the mode bit ios::binary before. In the open() function we include several new mode bits.
The mode bits, defined in ios, specify various aspects of how a stream object will be opened. Table
12.10 shows the possibilities.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

This continues until we’ve read all the person objects—a state that we discover using the eof()
function, which returns the state of the ios::eofbit.

File Pointers

Each file object has associated with it two integer values called the get pointer and the put pointer
These are also called the current get position and the current put position, or—if it’s clear which
one is meant—simply the current position. These values specify the byte number in the file where
writing or reading will take place. (The term pointer in this context should not be confused with
normal C++ pointers used as address variables.)

Often you want to start reading an existing file at the beginning and continue until the end. When
writing, you may want to start at the beginning, deleting any existing contents, or at the end, in
which case you can open the file with the ios::app mode specifier. These are the default actions, so
no manipulation of the file pointers is necessary. However, there are times when you must take
control of the file pointers yourself so that you can read from and write to an arbitrary location in
the file. The seekg() and tellg() functions allow you to set and examine the get pointer, and the seekp()
and tellp()functions perform these same actions on the put pointer.

Specifying the Position

We saw an example of positioning the get pointer in the DISKFUN program, where the seekg()
function set it to the beginning of the file so that reading would start there. This form of seekg() takes
one argument, which represents the absolute position in the file. The start of the file is byte 0, so
that’s what we used in DISKFUN. Figure 12.4 shows how this looks.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 12.4 The seekg() function with one argument.

Specifying the Offset

The seekg() function can be used in two ways. We’ve seen the first, where the single argument
represents the position from the start of the file. You can also use it with two arguments, where the
first argument represents an offset from a particular location in the file, and the second specifies the
location from which the offset is measured. There are three possibilities for the second argument:
beg is the beginning of the file, cur is the current pointer position, and end is the end of the file. The
statement

seekp(-10, ios::end);

for example, will set the put pointer to 10 bytes before the end of the file. Figure 12.5 shows how
this looks.

Figure 12.5 The seekg() function with two arguments.

Here’s an example that uses the two-argument version of seekg() to find a particular person object in
the GROUP.DAT file, and to display the data for that particular person. Here’s the listing for SEEKG

// seekg.cpp
// seeks particular person in file
#include <fstream> //for file streams
#include <iostream>
using namespace std;
//
class person //class of persons

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

class person //class of persons
 {
 protected:
 char name[80]; //person’s name
 int age; //person’s age
 public:
 void getData() //get person’s data
 {
 cout << “\n Enter name: ”; cin >> name;
 cout << “ Enter age: ”; cin >> age;
 }
 void showData(void) //display person’s data
 {
 cout << “\n Name: ” << name;
 cout << “\n Age: ” << age;
 }
 };
//
int main()
 {
 person pers; //create person object
 ifstream infile; //create input file
 infile.open(“GROUP.DAT”, ios::in | ios::binary); //open file

 infile.seekg(0, ios::end); //go to 0 bytes from end
 int endposition = infile.tellg(); //find where we are
 int n = endposition / sizeof(person); //number of persons
 cout << “\nThere are “ << n << “ persons in file”;

 cout << “\nEnter person number: “;
 cin >> n;
 int position = (n-1) * sizeof(person); //number times size
 infile.seekg(position); //bytes from start
 //read one person
 infile.read(reinterpret_cast<char*>(&pers), sizeof(pers));
 pers.showData(); //display the person
 cout << endl;
 return 0;
 }

Here’s the output from the program, assuming that the GROUP.DAT file is the same as that just
accessed in the DISKFUN example:

There are 3 persons in file
Enter person number: 2

 Name: Rainier
 Age: 21

For the user, we number the items starting at 1, although the program starts numbering at 0; so
person 2 is the second person of the three in the file.

The tellg() Function

The first thing the program does is figure out how many persons are in the file. It does this by
positioning the get pointer at the end of the file with the statement

infile.seekg(0, ios::end);

The tellg() function returns the current position of the get pointer. The program uses this function to
return the pointer position at the end of the file; this is the length of the file in bytes. Next, the
program calculates how many person objects there are in the file by dividing by the size of a person;
it then displays the result.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In the output shown, the user specifies the second object in the file, and the program calculates how
many bytes into the file this is, using seekg(). It then uses read() to read one person’s worth of data
starting from that point. Finally, it displays the data with showData().

Error Handling in File I/O

In the file-related examples so far we have not concerned ourselves with error situations. In
particular, we have assumed that the files we opened for reading already existed, and that those
opened for writing could be created or appended to. We’ve also assumed that there were no failures
during reading or writing. In a real program it is important to verify such assumptions and take
appropriate action if they turn out to be incorrect. A file that you think exists may not, or a filename
that you assume you can use for a new file may already apply to an existing file. Or, there may be
no more room on the disk, or no disk in the drive, and so on.

Reacting to Errors

Our next program shows how such errors are most conveniently handled. All disk operations are
checked after they are performed. If an error has occurred, a message is printed and the program
terminates. We’ve used the technique, discussed earlier, of checking the return value from the
object itself to determine its error status. The program opens an output stream object, writes an
entire array of integers to it with a single call to write(), and closes the object. Then it opens an input
stream object and reads the array of integers with a call to read().

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

// rewerr.cpp
// handles errors during input and output
#include <fstream> //for file streams
#include <iostream>
using namespace std;
#include <process.h> //for exit()

const int MAX = 1000;
int buff[MAX];

int main()
 {
 for(int j=0; j<MAX; j++) //fill buffer with data
 buff[j] = j;
 ofstream os; //create output stream
 //open it
 os.open(“a:edata.dat”, ios::trunc | ios::binary);
 if(!os)
 { cerr << “Could not open output file\n”; exit(1); }

 cout << “Writing...\n”; //write buffer to it
 os.write(reinterpret_cast<char*>(buff), MAX*sizeof(int));
 if(!os)
 { cerr << “Could not write to file\n”; exit(1); }
 os.close(); //must close it

 for(j=0; j<MAX; j++) //clear buffer
 buff[j] = 0;

 ifstream is; //create input stream
 is.open(“a:edata.dat”, ios::binary);
 if(!is)
 { cerr << “Could not open input file\n”; exit(1); }

 cout << “Reading...\n”; //read file
 is.read(reinterpret_cast<char*>(buff), MAX*sizeof(int));
 if(!is)
 { cerr << “Could not read from file\n”; exit(1); }

 for(j=0; j<MAX; j++) //check data
 if(buff[j] != j)
 { cerr << “\nData is incorrect\n”; exit(1); }
 cout << “Data is correct\n”;
 return 0;
 }

Analyzing Errors

In the REWERR example we determined whether an error occurred in an I/O operation by examining

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In the REWERR example we determined whether an error occurred in an I/O operation by examining
the return value of the entire stream object.

if(!is)
 // error occurred

Here is returns a pointer value if everything went well, but 0 if it didn’t. This is the shotgun
approach to errors: No matter what the error is, it’s detected in the same way and the same action is
taken. However, it’s also possible, using the ios error-status flags, to find out more specific
information about a file I/O error. We’ve already seen some of these status flags at work in screen
and keyboard I/O. Our next example, FERRORS, shows how they can be used in file I/O.

// ferrors.cpp
// checks for errors opening file
#include <fstream> // for file functions
#include <iostream>
using namespace std;

int main()
 {
 ifstream file;
 file.open(“a:test.dat”);

 if(!file)
 cout << “\nCan’t open GROUP.DAT”;
 else
 cout << “\nFile opened successfully.”;
 cout << “\nfile = “ << file;
 cout << “\nError state = “ << file.rdstate();
 cout << “\ngood() = “ << file.good();
 cout << “\neof() = “ << file.eof();
 cout << “\nfail() = “ << file.fail();
 cout << “\nbad() = “ << file.bad() << endl;
 file.close();
 return 0;
 }

This program first checks the value of the object file. If its value is zero, then probably the file
could not be opened because it didn’t exist. Here’s the output from FERRORS when that’s the case:

Can’t open GROUP.DAT
file = 0x1c730000
Error state = 4
good() = 0
eof() = 0
fail() = 4
bad() = 4

The error state returned by rdstate() is 4. This is the bit that indicates that the file doesn’t exist; it’s
set to 1. The other bits are all set to 0. The good() function returns 1 (true) only when no bits are set,
so it returns 0 (false). We’re not at EOF, so eof() returns 0. The fail() and bad() functions return
nonzero, since an error occurred.

In a serious program some or all of these functions should be used after every I/O operation to
ensure that things went as expected.

File I/O with Member Functions

So far we’ve let the main() function handle the details of file I/O. When you use more sophisticated

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

So far we’ve let the main() function handle the details of file I/O. When you use more sophisticated
classes it’s natural to include file I/O operations as member functions of the class. In this section
we’ll show two programs that do this. The first uses ordinary member functions in which each
object is responsible for reading and writing itself to a file. The second shows how static member
functions can read and write all the objects of a class at once.

Objects That Read and Write Themselves

Sometimes it makes sense to let each member of a class read and write itself to a file. This is a
simple approach, and works well if there aren’t many objects to be read or written at once. In this
example we add member functions—diskOut() and diskIn()—to the person class. These functions allow
a person object to write itself to disk and read itself back in.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

We’ve made some simplifying assumptions. First, all objects of the class will be stored in the same
file, called PERSFILE.DAT. Second, new objects are always appended to the end of the file. An
argument to the diskIn() function allows us to read the data for any person in the file. To prevent an
attempt to read data beyond the end of the file, we include a static member function, diskCount(), that
returns the number of persons stored in the file. Here’s the listing for REWOBJ:

// rewobj.cpp
// person objects do disk I/O
#include <fstream> //for file streams
#include <iostream>
using namespace std;
//
class person //class of persons
 {
 protected:
 char name[40]; //person’s name
 int age; //person’s age
 public:
 void getData(void) //get person’s data
 {
 cout << “\n Enter name: “; cin >> name;
 cout << “ Enter age: “; cin >> age;
 }
 void showData(void) //display person’s data
 {
 cout << “\n Name: “ << name;
 cout << “\n Age: “ << age;
 }
 void diskIn(int); //read from file
 void diskOut(); //write to file
 static int diskCount(); //return number of
 // persons in file
 };
//--
void person::diskIn(int pn) //read person number pn
 { //from file
 ifstream infile; //make stream
 infile.open(“PERSFILE.DAT”, ios::binary); //open it
 infile.seekg(pn*sizeof(person)); //move file ptr
 infile.read((char*)this, sizeof(*this)); //read one person
 }
//--
void person::diskOut() //write person to end of file
 {
 ofstream outfile; //make stream
 //open it
 outfile.open(“PERSFILE.DAT”, ios::app | ios::binary);
 outfile.write((char*)this, sizeof(*this)); //write to it

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 outfile.write((char*)this, sizeof(*this)); //write to it
 }
//--
int person::diskCount() //return number of persons
 { //in file
 ifstream infile;
 infile.open(“PERSFILE.DAT”, ios::binary);
 infile.seekg(0, ios::end); //go to 0 bytes from end
 //calculate number of persons
 return (int)infile.tellg() / sizeof(person);
 }
//
int main()
 {
 person p; //make an empty person
 char ch;

 do { //save persons to disk
 cout << “Enter data for person:”;
 p.getData(); //get data
 p.diskOut(); //write to disk
 cout << “Do another (y/n)? “;
 cin >> ch;
 } while(ch==’y’); //until user enters ‘n’

 int n = person::diskCount(); //how many persons in file?
 cout << “There are “ << n << “ persons in file\n”;
 for(int j=0; j<n; j++) //for each one,
 {
 cout << “\nPerson “ << j;
 p.diskIn(j); //read person from disk
 p.showData(); //display person
 }
 cout << endl;
 return 0;
 }

There shouldn’t be too many surprises here; you’ve seen most of the elements of this program
before. It operates in the same way as the DISKFUN program. Notice, however, that all the details of
disk operation are invisible to main(), having been hidden away in the person class.

We don’t know in advance where the data is that we’re going to read and write, since each object is
in a different place in memory. However, the this pointer always tells us where we are when we’re
in a member function. In the read() and write() stream functions, the address of the object to be read
or written is this and its size is sizeof(*this).

Here’s some output, assuming there were already two persons in the file when the program was
started:

Enter data for person:
 Enter name: Acheson
 Enter age: 63
Enter another (y/n)? y

Enter data for person:
 Enter name: Dulles
 Enter age: 72
Enter another (y/n)? n

Person #1
 Name: Stimson
 Age: 45

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Age: 45
Person #2
 Name: Hull
 Age: 58
Person #3
 Name: Acheson
 Age: 63
Person #4
 Name: Dulles
 Age: 72

If you want the user to be able to specify the filename used by the class, instead of hardwiring it
into the member functions as we do here, you could create a static member variable (say char
fileName[]) and a static function to set it. Or, you might want to give each object the name of the file
it was associated with, using a nonstatic function.

Classes That Read and Write Themselves

Let’s assume you have many objects in memory, and you want to write them all to a file. It’s not
efficient to have a member function for each object open the file, write one object to it, and then
close it, as in the REWOBJ example. It’s much faster—and the more objects there are the truer this is
—to open the file once, write all the objects to it, and then close it.

Static Functions

One way to write many objects at once is to use a static member function, which applies to the class
as a whole rather than to each object. This function can write all the objects at once. How will such
a function know where all the objects are? It can access an array of pointers to the objects, which
can be stored as static data. As each object is created, a pointer to it is stored in this array. A static
data member also keeps track of how many objects have been created. The static write function can
open the file; then in a loop go through the array, writing each object in turn; and finally close the
file.

Size of Derived Objects

To make things really interesting, let’s make a further assumption: that the objects stored in
memory are different sizes. Why would this be true? This situation typically arises when several
classes are derived from a base class. For example, consider the EMPLOY program in Chapter 9,
“Inheritance.” Here we have an employee class that acts as a base class for the manager, scientist, and
laborer classes. Objects of these three derived classes are different sizes, since they contain different
amounts of data. Specifically, in addition to the name and employee number, which apply to all
employees, there are a title and golf-club dues for the manager and the number of publications for
the scientist.

We would like to write the data from a list containing all three types of derived objects (manager,
scientist, and laborer) using a simple loop and the write() member function of ofstream. But to use this
function we need to know how large the object is, since that’s its second argument.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Suppose we have an array of pointers (call it arrap[]) to objects of type employee. These pointers can
point to objects of the three derived classes. (See the VIRTPERS program in Chapter 11 for an
example of an array of pointers to objects of derived classes.) We know that if we’re using virtual
functions we can make statements like

arrap[j]->putdata();

The version of the putdata() function that matches the object pointed to by the pointer will be used,
rather than the function in the base class. But can we also use the sizeof() function to return the size
of a pointer argument? That is, can we say

ouf.write((char*)arrap[j], sizeof(*arrap[j])); // no good

No, because sizeof() isn’t a virtual function. It doesn’t know that it needs to consider the type of
object pointed to, rather than the type of the pointer. It will always return the size of the base class
object.

Using the typeid() Function

How can we find the size of an object, if all we have is a pointer to it? One answer to this is the
typeid() function, introduced in Chapter 11. We can use this function to find the class of an object,
and use this class name in sizeof(). To use typeid() you may need to enable a compiler option called
Run-Time Type Information (RTTI). At least this is true in the current Microsoft compiler, as
described in Appendix C, “Microsoft Visual C++.”

Our next example shows how this works. Once we know the size of the object, we can use it in the
write() function to write the object to disk.

We’ve added a simple user interface to the EMPLOY program, and made the member-specific
functions virtual so we can use an array of pointers to objects. We’ve also incorporated some of the
error-detection techniques discussed in the last section.

This is a rather ambitious program, but it demonstrates many of the techniques that could be used in
a full-scale database application. It also shows the real power of OOP. How else could you use a
single statement to write objects of different sizes to a file? Here’s the listing for EMPL_IO:

// empl_io.cpp
// performs file I/O on employee objects
// handles different sized objects
#include <fstream> //for file-stream functions
#include <iostream>
#include <typeinfo> //for typeid()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#include <typeinfo> //for typeid()
using namespace std;
#include <process.h> //for exit()

const int LEN = 32; //maximum length of last names
const int MAXEM = 100; //maximum number of employees

enum employee_type {tmanager, tscientist, tlaborer};
//
class employee //employee class
 {
 private:
 char name[LEN]; //employee name
 unsigned long number; //employee number
 static int n; //current number of employees
 static employee* arrap[]; //array of ptrs to emps
 public:
 virtual void getdata()
 {
 cin.ignore(10, ‘\n’);
 cout << “ Enter last name: “; cin >> name;
 cout << “ Enter number: “; cin >> number;
 }
 virtual void putdata()
 {
 cout << “\n Name: “ << name;
 cout << “\n Number: “ << number;
 }
 virtual employee_type get_type(); //get type
 static void add(); //add an employee
 static void display(); //display all employees
 static void read(); //read from disk file
 static void write(); //write to disk file
 };
//--
//static variables
int employee::n; //current number of employees
employee* employee::arrap[MAXEM]; //array of ptrs to emps
//
//manager class
class manager : public employee
 {
 private:
 char title[LEN]; //”vice-president” etc.
 double dues; //golf club dues
 public:
 void getdata()
 {
 employee::getdata();
 cout << “ Enter title: “; cin >> title;
 cout << “ Enter golf club dues: “; cin >> dues;
 }
 void putdata()
 {
 employee::putdata();
 cout << “\n Title: “ << title;
 cout << “\n Golf club dues: “ << dues;
 }
 };
//
//scientist class
class scientist : public employee
 {
 private:
 int pubs; //number of publications
 public:
 void getdata()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 void getdata()
 {
 employee::getdata();
 cout << “ Enter number of pubs: “; cin >> pubs;
 }
 void putdata()
 {
 employee::putdata();
 cout << “\n Number of publications: “ << pubs;
 }
 };
//
//laborer class
class laborer : public employee
 {
 };
//
//add employee to list in memory
void employee::add()
 {
 char ch;
 cout << “‘m’ to add a manager”
 “\n’s’ to add a scientist”
 “\n’l’ to add a laborer”
 “\nEnter selection: “;
 cin >> ch;
 switch(ch)
 { //create specified employee type
 case ‘m’: arrap[n] = new manager; break;
 case ‘s’: arrap[n] = new scientist; break;
 case ‘l’: arrap[n] = new laborer; break;
 default: cout << “\nUnknown employee type\n”; return;
 }
 arrap[n++]->getdata(); //get employee data from user
 }
//--
//display all employees
void employee::display()
 {
 for(int j=0; j<n; j++)
 {
 cout << (j+1); //display number
 switch(arrap[j]->get_type()) //display type
 {
 case tmanager: cout << “. Type: Manager”; break;
 case tscientist: cout << “. Type: Scientist”; break;
 case tlaborer: cout << “. Type: Laborer”; break;
 default: cout << “. Unknown type”;
 }
 arrap[j]->putdata(); //display employee data
 cout << endl;
 }
 }
//--
//return the type of this object
employee_type employee::get_type()
 {
 if(typeid(*this) == typeid(manager))
 return tmanager;
 else if(typeid(*this)==typeid(scientist))
 return tscientist;
 else if(typeid(*this)==typeid(laborer))
 return tlaborer;
 else
 { cerr << “\nBad employee type”; exit(1); }
 return tmanager;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return tmanager;
 }
//--
//write all current memory objects to file
void employee::write()
 {
 int size;
 cout << “Writing “ << n << “ employees.\n”;
 ofstream ouf; //open ofstream in binary
 employee_type etype; //type of each employee object

 ouf.open(“EMPLOY.DAT”, ios::trunc | ios::binary);
 if(!ouf)
 { cout << “\nCan’t open file\n”; return; }
 for(int j=0; j<n; j++) //for every employee object
 { //get it’s type
 etype = arrap[j]->get_type();
 //write type to file
 ouf.write((char*)&etype, sizeof(etype));
 switch(etype) //find its size
 {
 case tmanager: size=sizeof(manager); break;
 case tscientist: size=sizeof(scientist); break;
 case tlaborer: size=sizeof(laborer); break;
 } //write employee object to file
 ouf.write((char*)(arrap[j]), size);
 if(!ouf)
 { cout << “\nCan’t write to file\n”; return; }
 }
 }
//--
//read data for all employees from file into memory
void employee::read()
 {
 int size; //size of employee object
 employee_type etype; //type of employee
 ifstream inf; //open ifstream in binary
 inf.open(“EMPLOY.DAT”, ios::binary);
 if(!inf)
 { cout << “\nCan’t open file\n”; return; }
 n = 0; //no employees in memory yet
 while(true)
 { //read type of next employee
 inf.read((char*)&etype, sizeof(etype));
 if(inf.eof()) //quit loop on eof
 break;
 if(!inf) //error reading type
 { cout << “\nCan’t read type from file\n”; return; }
 switch(etype)
 { //make new employee
 case tmanager: //of correct type
 arrap[n] = new manager;
 size=sizeof(manager);
 break;
 case tscientist:
 arrap[n] = new scientist;
 size=sizeof(scientist);
 break;
 case tlaborer:
 arrap[n] = new laborer;
 size=sizeof(laborer);
 break;
 default: cout << “\nUnknown type in file\n”; return;
 } //read data from file into it
 inf.read((char*)arrap[n], size);
 if(!inf) //error but not eof
 { cout << “\nCan’t read data from file\n”; return; }
 n++; //count employee

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 n++; //count employee
 } //end while
 cout << “Reading “ << n << “ employees\n”;
 }
//
int main()
 {
 char ch;
 while(true)
 {
 cout << “‘a’ -- add data for an employee”
 “\n’d’ -- display data for all employees”
 “\n’w’ -- write all employee data to file”
 “\n’r’ -- read all employee data from file”
 “\n’x’ -- exit”
 “\nEnter selection: “;
 cin >> ch;
 switch(ch)
 {
 case ‘a’: //add an employee to list
 employee::add(); break;
 case ‘d’: //display all employees
 employee::display(); break;
 case ‘w’: //write employees to file
 employee::write(); break;
 case ‘r’: //read all employees from file
 employee::read(); break;
 case ‘x’: exit(0); //exit program
 default: cout << “\nUnknown command”;
 } //end switch
 } //end while
 return 0;
 } //end main()

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Code Number for Object Type

We know how to find the class of an object that’s in memory, but how do we know the class of the
object whose data we’re about to read from the disk? There’s no magic function to help us with this
one. When we write an object’s data to disk, we need to write a code number (the enum variable
employee_type) directly to the disk just before the object’s data. Then when we are about to read an
object back from the file to memory, we read this value and create a new object of the type
indicated. Finally we copy the data from the file into this new object.

No Homemade Objects, Please

Incidentally, you might be tempted to read an object’s data into just anyplace, say into an array of
type char, and then set a pointer-to-object to point to this area, perhaps with a cast to make it kosher.

char someArray[MAX];
aClass* aPtr_to_Obj;
aPtr_to_Obj = reinterpret_cast<aClass*>(someArray); // don’t do this

However, this does not create an object, and attempts to use the pointer as if it pointed to an object
will lead to trouble. There are only two legitimate ways to create an object. You can define it
explicitly at compile time:

aClass anObj;

or you can create it with new at runtime, and assign its location to a pointer:

aPtr_to_Obj = new aClass;

When you create an object properly its constructor is invoked. This is necessary even if you have
not defined a constructor and are using the default constructor. An object is more than an area of
memory with data in it; it is also a set of member functions, some of which you don’t even see.

Interaction with empl_io

Here’s some sample interaction with the program, in which we create a manager, a scientist, and a
laborer in memory, write them to disk, read them back in, and display them. (For simplicity, multi-
word names and titles are not allowed; say VicePresident, not Vice President.)

‘a’ -- add data for an employee
‘d’ -- display data for all employees
‘w’ -- write all employee data to file
‘r’ -- read all employee data from file

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

‘r’ -- read all employee data from file
‘x’ -- exit
Type selection: a
‘m’ to add a manager
‘s’ to add a scientist
‘l’ to add a laborer
Type selection: m
 Enter last name: Johnson
 Enter number: 1111
 Enter title: President
 Enter golf club dues: 20000

‘a’ -- add data for an employee
‘d’ -- display data for all employees
‘w’ -- write all employee data to file
‘r’ -- read all employee data from file
‘x’ -- exit
Type selection: a
‘m’ to add a manager
‘s’ to add a scientist
‘l’ to add a laborer
Type selection: s
 Enter last name: Faraday
 Enter number: 2222
 Enter number of pubs: 99

‘a’ -- add data for an employee
‘d’ -- display data for all employees
‘w’ -- write all employee data to file
‘r’ -- read all employee data from file
‘x’ -- exit
Type selection: a
‘m’ to add a manager
‘s’ to add a scientist
‘l’ to add a laborer
Type selection: l
 Enter last name: Smith
 Enter number: 3333

‘a’ -- add data for an employee
‘d’ -- display data for all employees
‘w’ -- write all employee data to file
‘r’ -- read all employee data from file
‘x’ -- exit
Type selection: w
Writing 3 employees

‘a’ -- add data for an employee
‘d’ -- display data for all employees
‘w’ -- write all employee data to file
‘r’ -- read all employee data from file
‘x’ -- exit
Type selection: r
Reading 3 employees

‘a’ -- add data for an employee
‘d’ -- display data for all employees
‘w’ -- write all employee data to file
‘r’ -- read all employee data from file
(continued on next page)
(continued from previous page)
‘x’ -- exit
Type selection: d
1. Type: Manager
 Name: Johnson
 Title: President
 Golf club dues: 20000
2. Type: Scientist

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Type: Scientist
 Name: Faraday
 Number: 2222
 Number of publications: 99
3. Type: Laborer
 Name: Smith
 Number: 3333

Of course you can also exit the program after writing the data to disk. When you start it up again,
you can read the file back in and all the data will reappear.

It would be easy to add functions to this program to delete an employee, retrieve data for a single
employee from the file, search the file for employees with particular characteristics, and so forth.

Overloading the Extraction and Insertion Operators

Let’s move on to another stream-related topic: overloading the extraction and insertion operators.
This is a powerful feature of C++. It lets you treat I/O for user-defined data types in the same way
as basic types like int and double. For example, if you have an object of class crawdad called cd1, you
can display it with the statement

cout << “\ncd1=” << cd1;

just as if it were a basic data type.

We can overload the extraction and insertion operators so they work with the display and keyboard
(cout and cin) alone. With a little more care, we can also overload them so they work with disk files
as well. We’ll look at examples of both these situations.

Overloading for cout and cin

Here’s an example, ENGLIO, that overloads the insertion and extraction operators for the Distance
class so they work with cout and cin.

// englio.cpp
// overloaded << and >> operators
#include <iostream>
using namespace std;
//
class Distance //English Distance class
 {
 private:
 int feet;
 float inches;
 public:
 Distance() : feet(0), inches(0.0) //constructor (no args)
 { }
 //constructor (two args)
 Distance(int ft, float in) : feet(ft), inches(in)
 { }
 friend istream& operator >> (istream& s, Distance& d);
 friend ostream& operator << (ostream& s, Distance& d);
 };
//--
istream& operator >> (istream& s, Distance& d) //get Distance
 { //from user
 cout << “\nEnter feet: “; s >> d.feet; //using
 cout << “Enter inches: “; s >> d.inches; //overloaded
 return s; //>> operator

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return s; //>> operator
 }
//--
ostream& operator << (ostream& s, Distance& d) //display
 { //Distance
 s << d.feet << “\’-” << d.inches << ‘\”’; //using
 return s; //overloaded
 } //<< operator
//
int main()
 {
 Distance dist1, dist2; //define Distances
 Distance dist3(11, 6.25); //define, initialize dist3

 cout << “\nEnter two Distance values:”;
 cin >> dist1 >> dist2; //get values from user
 //display distances
 cout << “\ndist1 = “ << dist1 << “\ndist2 = “ << dist2;
 cout << “\ndist3 = “ << dist3 << endl;
 return 0;
 }

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

This program asks for two Distance values from the user, and then prints out these values and
another value that was initialized in the program. Here’s a sample interaction:

Enter feet: 10
Enter inches: 3.5

Enter feet: 12
Enter inches: 6

dist1 = 10’-3.5”
dist2 = 12’-6”
dist3 = 11’-6.25”

Notice how convenient and natural it is to treat Distance objects like any other data type, using
statements like

cin >> dist1 >> dist2;

and

cout << “\ndist1=” << dist1 << “\ndist2=” << dist2;

The << and >> operators are overloaded in similar ways. They return, by reference, an object of
istream (for >>) or ostream (for <<). These return values permit chaining. The operators take two
arguments, both passed by reference. The first argument for >> is an object of istream (such as cin).
For << it’s an object of ostream (such as cout). The second argument is an object of the class to be
displayed, Distance in this example. The >> operator takes input from the stream specified in the first
argument and puts it in the member data of the object specified by the second argument. The <<
operator removes the data from the object specified by the second argument and sends it into the
stream specified by the first argument.

The operator<<() and operator>>() functions must be friends of the Distance class, since the istream and
ostream objects appear on the left side of the operator. (See the discussion of friend functions in
Chapter 11.)

You can overload the insertion and extraction operators for other classes by following these same
steps.

Overloading for Files

Our next example shows how we might overload the << and >> operators in the Distance class so
they work with file I/O as well as with cout and cin.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// englio2.cpp
// overloaded << and >> operators can work with files
#include <fstream>
#include <iostream>
using namespace std;
//
class Distance //English Distance class
 {
 private:
 int feet;
 float inches;
 public:
 Distance() : feet(0), inches(0.0) //constructor (no args)
 { } //constructor (two args)
 Distance(int ft, float in) : feet(ft), inches(in)
 { }
 friend istream& operator >> (istream& s, Distance& d);
 friend ostream& operator << (ostream& s, Distance& d);
 };
//--
istream& operator >> (istream& s, Distance& d) //get Distance
 { //from file or
 char dummy; //for (‘), (-), and (“) //keyboard
 //with
 s >> d.feet >> dummy >> dummy >> d.inches >> dummy;
 return s; //overloaded
 } //>> operator
//--
ostream& operator << (ostream& s, Distance& d) //send Distance
 { //to file or
 s << d.feet << “\’-” << d.inches << ‘\”’; //screen with
 return s; //overloaded
 } //<< operator
//
int main()
 {
 char ch;
 Distance dist1;
 ofstream ofile; //create and open
 ofile.open(“DIST.DAT”); //output stream

 do {
 cout << “\nEnter Distance: “;
 cin >> dist1; //get distance from user
 ofile << dist1; //write it to output str
 cout << “Do another (y/n)? “;
 cin >> ch;
 } while(ch != ‘n’);
 ofile.close(); //close output stream

 ifstream ifile; //create and open
 ifile.open(“DIST.DAT”); //input stream

 cout << “\nContents of disk file is:\n”;
 while(true)
 {
 ifile >> dist1; //read dist from stream
 if(ifile.eof()) //quit on EOF
 break;
 cout << “Distance = “ << dist1 <<endl; //display distance
 }
 return 0;
 }

We’ve made minimal changes to the overloaded operators themselves. The >> operator no longer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We’ve made minimal changes to the overloaded operators themselves. The >> operator no longer
prompts for input, since it doesn’t make sense to prompt a file. We assume the user knows exactly
how to enter a feet-and-inches value, including the various punctuation marks. The << operator is
unchanged. The program asks for input from the user, writing each Distance value to the file as it’s
obtained. When the user is finished with input, the program then reads and displays all the values
from the file. Here’s some sample interaction:

Enter Distance: 3’-4.5”
Do another (y/n)? yes

Enter Distance: 7’-11.25”
Do another (y/n)? yes

Enter Distance: 11’-6”
Do another (y/n)? no

Contents of disk file is:
Distance = 3’-4.5”
Distance = 7’-11.25”
Distance = 11’-6”

The distances are stored character by character to the file. In this example the contents of the file
would be as follows:

3’-4.5”7’-11.25”11’-6

If the user fails to enter the distances with the correct punctuation, they won’t be written to the file
correctly and the file won’t be readable for the << operator. In a real program error checking the
input is essential.

Memory As a Stream Object

You can treat a section of memory as a stream object, inserting data into it just as you would a file.
This is useful when you need to format your output in a particular way (such as displaying exactly
two digits to the right of the decimal point), but you also need to use a text-output function that
requires a string as input. This is common when calling output functions in a GUI environment such
as Windows, since these functions often require a string as an argument. (C programmers will
remember using the sprintf() function for this purpose.)

A family of stream classes implements such in-memory formatting. For output to memory there is
ostrstream, which is derived from (among other classes) ostream. For input from memory there is
istrstream, derived from istream; and for memory objects that do both input and output there is
strstream, derived from iostream.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Most commonly you will want to use ostrstream. Our next example shows how this works. You start
with a data buffer in memory. Then you create an ostrstream object, using the memory buffer and its
size as arguments to the stream’s constructor. Now you can output formatted text to the memory
buffer as if it were a stream object. Here’s the listing for OSTRSTR:

// ostrstr.cpp
// writes formatted data into memory
#include <strstream>
#include <iostream>
#include <iomanip> //for setiosflags()
using namespace std;
const int SIZE = 80; //size of memory buffer

int main()
 {
 char ch = ‘x’; //test data
 int j = 77;
 double d = 67890.12345;
 char str1[] = “Kafka”;
 char str2[] = “Freud”;

 char membuff[SIZE]; //buffer in memory
 ostrstream omem(membuff, SIZE); //create stream object

 omem << “ch=” << ch << endl //insert formatted data
 << “j=” << j << endl //into object
 << setiosflags(ios::fixed) //format with decimal point
 << setprecision(2) //two digits to right of dec
 << “d=” << d << endl
 << “str1=” << str1 << endl
 << “str2=” << str2 << endl
 << ends; //end the buffer with ‘\0’
 cout << membuff; //display the memory buffer
 return 0;
 }

When you run the program, membuff will be filled with the formatted text:

ch=x\nj=77\nd=67890.12\nstr1=Kafka\nstr2=Freud\n\0

We can format floating-point numbers using the usual methods. Here we specify a fixed decimal
format (rather than exponential) with ios::fixed, and two digits to the right of the decimal point. The
manipulator ends inserts a ‘\0’ character at the end of the string to provide an EOF. Displaying this
buffer in the usual way with cout produces the program’s output:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ch=x
j=77
d=67890.12
str1=Kafka
str2=Freud

In this example the program displays the contents of the buffer only to show what it looks like.
Ordinarily you would have a more sophisticated use for this formatted data.

Command-Line Arguments

If you’ve ever used MS-DOS, you are probably familiar with command-line arguments, used when
invoking a program. They are typically used to pass the name of a data file to an application. For
example, you can invoke a word processor application and the document it will work on at the same
time:

C>wordproc afile.doc

Here afile.doc is a command-line argument. How can we get a C++ program to read the command-
line arguments? Here’s an example, COMLINE, that reads and displays as many command-line
arguments as you care to type (they’re separated by spaces):

// comline.cpp
// demonstrates command-line arguments
#include <iostream>
using namespace std;

int main(int argc, char* argv[])
 {
 cout << “\nargc = “ << argc << endl; //number of arguments

 for(int j=0; j<argc; j++) //display arguments
 cout << “Argument “ << j << “ = “ << argv[j] << endl;
 return 0;
 }

And here’s a sample interaction with the program:

C:\C++BOOK\Chap12>comline uno dos tres

argc = 4
Argument 0 = C:\CPP\CHAP12\COMLINE.EXE
Argument 1 = uno
Argument 2 = dos
Argument 3 = tres

To read command-line arguments, the main() function (don’t forget it’s a function!) must itself be
given two arguments. The first, argc (for argument count), represents the total number of command-
line arguments. The first command-line argument is always the pathname of the current program.
The remaining command-line arguments are those typed by the user; they are delimited by the
space character. In the preceding example they are uno, dos, and tres.

The system stores the command-line arguments as strings in memory, and creates an array of
pointers to these strings. In the example the array is called argv (for argument values). Individual
strings are accessed through the appropriate pointer, so the first string (the pathname) is argv[0], the
second (uno in this example) is argv[1], and so on. COMLINE accesses the arguments in turn and
prints them out in a for loop that uses argc, the number of command-line arguments, as its upper

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

prints them out in a for loop that uses argc, the number of command-line arguments, as its upper
limit.

You don’t need to use the particular names argc and argv as arguments to main(), but they are so
common that any other names would cause consternation to everyone but the compiler.

Here’s a program that uses a command-line argument for something useful. It displays the contents
of a text file whose name is supplied by the user on the command line. Thus it imitates the DOS
command TYPE. Here’s the listing for OTYPE:

// otype.cpp
// imitates TYPE command
#include <fstream> //for file functions
#include <iostream>
using namespace std;
#include <process.h> //for exit()

int main(int argc, char* argv[])
 {
 if(argc != 2)
 {
 cerr << “\nFormat: otype filename”;
 exit(-1);
 }
 char ch; //character to read
 ifstream infile; //create file for input
 infile.open(argv[1]); //open file
 if(!infile) //check for errors
 {
 cerr << “\nCan’t open “ << argv[1];
 exit(-1);
 }
 while(infile.get(ch) != 0) //read a character
 cout << ch; //display the character
 return 0;
 }

This program first checks to see if the user has entered the correct number of command-line
arguments. Remember that the pathname of OTYPE.E XE itself is always the first command-line
argument. The second argument is the name of the file to be displayed, which the user should have
entered when invoking the program:

C>otype ichar.cpp

Thus the total number of command-line arguments should equal 2. If it doesn’t, the user probably
doesn’t understand how to use the program, and the program sends an error message via cerr to
clarify matters.

If the number of arguments is correct, the program tries to open the file whose name is the second
command-line argument (argv[1]). Again, if the file can’t be opened, the program signals an error.
Finally, in a while loop, the program reads the file character by character and writes it to the screen.

A value of 0 for the character signals an EOF. This is another way to check for EOF. You can also
use the value of the file object itself, as we’ve done before:

while(infile)
 {
 infile.get(ch);
 cout << ch;
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 12.11 Hardware Device Names
Name Device
con Console (keyboard and screen)
aux or com1 First serial port
com2 Second serial port
prn or lpt1 First parallel printer
lpt2 Second parallel printer
lpt3 Third parallel printer
nul Dummy (nonexistent) device

In most systems the printer is connected to the first parallel port, so the filename for the printer
should be prn or lpt1. (You can substitute the appropriate name if your system is configured

differently.)

The following program, EZPRINT, sends a string and a number to the printer, using formatted output
with the insertion operator.

// ezprint.cpp
// demonstrates simple output to printer

#include <fstream> //for file streams
using namespace std;

int main()
 {

 char* s1 = “\nToday’s winning number is “;
 int n1 = 17982;

 ofstream outfile; //make a file
 outfile.open(“PRN”); //open it for printer
 outfile << s1 << n1 << endl; //send data to printer

 outfile << ‘\x0C’; //formfeed to eject page
 return 0;

 }

You can send any amount of formatted output to the printer this way. The ‘\x0C’ character causes
the page to eject from the printer.

The next example, OPRINT, prints the contents of a disk file, specified on the command line, to the
printer. It uses the character-by-character approach to this data transfer.

// oprint.cpp
// imitates print command

#include <fstream> //for file functions
#include <iostream>
using namespace std;

#include <process.h> //for exit()

int main(int argc, char* argv[])
 {

 if(argc != 2)
 {

 cerr << “\nFormat: oprint filename”;
 exit(-1);

 }
 char ch; //character to read

 ifstream infile; //create file for input
 infile.open(argv[1]); //open file

 if(!infile) //check for errors

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

You could also replace this entire while loop with the statement

cout << infile.rdbuf();

as we saw earlier in the ICHAR2 program.

Printer Output

 if(!infile) //check for errors
 {

 cerr << “\nCan’t open “ << argv[1];
 exit(-1);

 }
 ofstream outfile; //make file

 outfile.open(“PRN”); //open it for printer
 while(infile.get(ch) != 0) //read a character

 outfile.put(ch); //write character to printer
 outfile.put(‘\x0C’); //formfeed to eject page

 return 0;
 }

You can use this program to print any text file, such as any of your .CPP source files. It acts much
the same as the DOS PRINT command. Like the OTYPE example, this program checks for the
correct number of command-line arguments, and for a successful opening of the specified file.

Summary

In this chapter we briefly examined the hierarchy of stream classes and showed how to handle
various kinds of I/O errors. Then we saw how to perform file I/O in a variety of ways. Files in C

are associated with objects of various classes, typically ofstream for output, ifstream for input, and
fstream for both input and output. Member functions of these or base classes are used to perform I/O
operations. Such operators and functions as <<, put(), and write() are used for output, while >>, get()

and read() are used for input.

The read() and write() functions work in binary mode, so that entire objects can be saved to disk no
matter what sort of data they contain. Single objects can be stored, as can arrays or other data

structures of many objects. File I/O can be handled by member functions. This can be the
responsibility of individual objects, or the class itself can handle I/O using static member functions.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

It’s fairly easy to use console-mode programs to send data to the printer. A number of special
filenames for hardware devices are defined by the operating system. These make it possible to treat
the devices as if they were files. Table 12.11 shows these predefined names.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

A check for error conditions should be made after each file operation. The file object itself takes on
a value of 0 if an error occurred. Also, several member functions can be used to determine specific
kinds of errors. The extraction operator >> and the insertion operator << can be overloaded so that
they work with programmer-defined data types. Memory can be considered a stream, and data sent
to it as if it were a file.

Questions

Answers to questions can be found in Appendix G, “Answers to Questions and Exercises.”

1. A C++ stream is

a. the flow of control through a function.
b. a flow of data from one place to another.
c. associated with a particular class.
d. a file.

2. The base class for most stream classes is the ________ class.
3. Name three stream classes commonly used for disk I/O.
4. Write a statement that will create an object called salefile of the ofstream class and associate
it with a file called SALES.JUN.
5. True or false: Some streams work with input, and some with output.
6. Write an if statement that checks if an ifstream object called foobar has reached the end of
file or has encountered an error.
7. We can output text to an object of class ofstream using the insertion operator << because

a. the ofstream class is a stream.
b. the insertion operator works with all classes.
c. we are actually outputting to cout.
d. the insertion operator is overloaded in ofstream.

8. Write a statement that writes a single character to an object called fileOut, which is of class
ofstream.
9. To write data that contains variables of type float to an object of type ofstream, you should
use

a. the insertion operator.
b. seekg().
c. write().

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

d. put().

10. Write a statement that will read the contents of an ifstream object called ifile into an array
called buff.
11. Mode bits such as app and ate

a. are defined in the ios class.
b. can specify if a file is open for reading or writing.
c. work with the put() and get() functions.
d. specify ways of opening a file.

12. Define what current position means when applied to files.
13. True or false: A file pointer always contains the address of the file.
14. Write a statement that moves the current position 13 bytes backward in a stream object
called f1.
15. The statement

f1.write((char*)&obj1, sizeof(obj1));

a. writes the member functions of obj1 to f1.
b. writes the data in obj1 to f1.
c. writes the member functions and the data of obj1 to f1.
d. writes the address of obj1 to f1.

16. Command-line arguments are

a. disagreements in the military.
b. typed following a program name at the command prompt.
c. accessed through arguments to main().
d. accessible only from disk files.

17. Used with cin, what does the skipws flag accomplish?
18. Write a declarator for main() that will enable command-line arguments.
19. In console mode programs, the printer can be accessed using the predefined filename
________.
20. Write the declarator for the overloaded >> operator that takes output from an object of
class istream and displays it as the contents of an object of class Sample.

Exercises

Answers to starred exercises can be found in Appendix G.

 *1. Start with the Distance class from the ENGLCON example in Chapter 6, “Objects and
Classes.” Using a loop similar to that in the DISKFUN example in this chapter, get a number of
Distance values from the user, and write them to a disk file. Append them to existing values in
the file, if any. When the user signals that no more values will be input, read the file and
display all the values.
 *2. Write a program that emulates the DOS COPY command. That is, it should copy the
contents of a text file (such as any .CPP file) to another file. Invoke the program with two
command-line arguments—the source file and the destination file—like this:

C>ocopy srcfile.cpp destfile.cpp

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C>ocopy srcfile.cpp destfile.cpp

In the program, check that the user has typed the correct number of command-line arguments,
and that the files specified can be opened.
 *3. Write a program that returns the size in bytes of a program entered on the command
line:

C>filesize program.ext

 4. In a loop, prompt the user to enter name data consisting of a first name, middle initial,
last name, and employee number (type unsigned long). Then, using formatted I/O with the
insertion (<<) operator, write these four data items to an ofstream object. Don’t forget that
strings must be terminated with a space or other whitespace character. When the user
indicates that no more name data will be entered, close the ofstream object, open an ifstream
object, read and display all the data in the file, and terminate the program.
 5. Create a time class that includes integer member values for hours, minutes, and seconds.
Make a member function get_time() that gets a time value from the user, and a function
put_time() that displays a time in 12:59:59 format. Add error checking to the get_time() function
to minimize user mistakes. This function should request hours, minutes, and seconds
separately, and check each one for ios error status flags and the correct range. Hours should
be between 0 and 23, and minutes and seconds between 0 and 59. Don’t input these values as
strings and then convert them; read them directly as integers. This implies that you won’t be
able to screen out entries with superfluous decimal points, as does the ENGL_IO program in
this chapter, but we’ll assume that’s not important.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

In main(), use a loop to repeatedly get a time value from the user with get_time() and then display it
with put_time(), like this:

Enter hours: 11
Enter minutes: 59
Enter seconds: 59
time = 11:59:59

Do another (y/n)? y
Enter hours: 25
Hours must be between 0 and 23
Enter hours: 1
Enter minutes: 10
Enter seconds: five
Incorrect seconds input
Enter seconds: 5
time = 1:10:05

 6. Make a class called name from the data in Exercise 4 (first name, middle initial, last name,
employee number). Create member functions for this class that read and write an object’s
data to a disk file, using ofstream, and read it back using ifstream. Use formatted data with the
<< and >> operators. The read and write member functions should be self-contained: they
should include statements to open the appropriate stream and read or write a record.
The write function can simply append its data to the end of the file. The read function will
need a way to select which record it’s going to read. One way to do this is to call it with a
parameter representing the record number. Once it knows which record it should read, how
does the read function find the record? You might think you could use the seekg() function,
but that isn’t much help because in formatted I/O the records are all different lengths
(depending on the number of characters in the strings and the number of digits in the integer).
So you’ll need to actually read records until you’ve skipped forward to the one you want.
In main(), call these member functions to allow the user to enter data for a number of objects
that are written to a file as they are entered. The program then displays all this data by
reading it from the file.
 7. Another approach to adding file stream I/O to an object is to make the file stream itself a
static member of the object. Why do that? Well, it’s often conceptually easier to think of the
stream as being related to the class as a whole than to the individual objects of the class.
Also, it’s more efficient to open a stream only once, then read and write objects to it as
needed. For example, once the file is opened, each time the read function is called it can
return the data for the next object in the file. The file pointer will progress automatically
through the file because the file is not closed between reads.
Rewrite the program in Exercises 4 and 6 to use an fstream object as a static data item of the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Rewrite the program in Exercises 4 and 6 to use an fstream object as a static data item of the
name class. Keep the same functionality that is in those exercises. Write a static function to
open this stream, and another static function to reset the file pointer to the beginning of the
file. You can use this reset function when you’re done writing and want to read all the
records back from the file.
 8. Starting with the LINKLIST program in Chapter 10, “Pointers,” create a program that gives
the user four options, which can be selected by pressing a key.

 • Add a link to the list in memory (the user supplies the data, which is one integer)
 • Display the data from all the links in memory
 • Write the data for all the links to a disk file (creating or truncating the file as
necessary)
 • Read all the data back from the file, and construct a new linked list in which to store
it

The first two options can use the member functions already implemented in LINKLIST. You’ll
need to write functions to read to, and write from, the disk file. You can use the same file for
all reads and writes. The file should store only the data; there’s no sense in its storing the
contents of pointers, which will probably not be relevant when the list is read back in.
 9. Start with Exercise 7 in Chapter 8,”Operator Overloading,” and overload the insertion
(<<) and extraction (>>) operators for the frac class in the four-function calculator. Note that
you can chain the operators, so asking for a fraction, an operator, and a fraction should
require only one statement:

cin >> frac1 >> op >> frac2;

 10. Add error checking to the extraction (>>) operator of the frac class in Exercise 9 in this
chapter. With error checking it’s probably better to prompt for the first fraction, then for the
operator, and then for the second fraction, rather than using a single statement as shown in
Exercise 9. This makes the format more comprehensible when it is interspersed with error
messages.

Enter first fraction: 5/0
Denominator cannot be 0
 Enter fraction again: 5/1
Enter operator (+, -, *, /): +
Enter second fraction: one third
Input error
 Enter fraction again: 1/3
Answer is --------------------- 16/3
Do another (y/n)?

As implied in this sample interaction, you should check for ios error flags and also for a
denominator of 0. If there’s an error, prompt the user to enter the fraction again.
 11. Start with the bMoney class, last seen in Exercise 5 in Chapter 11. Overload the insertion
(<<) and extraction (>>) operators to perform I/O on bMoney quantities. Perform some sample
I/O in main().
 12. To the EMPL_IO program in this chapter add the ability to search through all the
employee objects in a disk file, looking for one with a specified employee number. If it finds
a match, it should display the data for the employee. The user can invoke this find() function
by typing the f character. The function should then prompt for the employee number. Ask
yourself if the function should be static, virtual, or something else. This search and display
operation should not interfere with the data in memory.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note:

Note: Don’t try to read a file generated with the EMPL_IO program. The classes are not the same because of
the find() member function in the new program, and disaster will result if their data is mixed, as discussed
in this chapter. You may need to turn on an “Enable RTTI” option in your compiler. Consult Appendix C,
“Microsoft Visual C++,” or Appendix D, “Borland C++,” as appropriate.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

CHAPTER 13
MULTIFILE PROGRAMS

You will learn about the following in this chapter:
• Reasons for multifile programs • Program: simulating high-rise

elevators
• Public and private components
• Creating multifile programs • Program: modeling a water

system
• Program: a class of very large
numbers

In previous chapters we’ve seen how the various parts of a C++ program—such as class
declarations, member functions, and a main() function—are combined. However, the programs in
those chapters all consisted of a single file. Now let’s look at program organization from a more
global perspective, involving multiple files.

Besides demonstrating multifile programs, this chapter will introduce some longer and more
ambitious applications. Our aim in these programs is not that you necessarily understand every
detail of their operation, but that you acquire a general understanding of how the elements of larger
programs relate to one another. These programs also show how classes can be used in more realistic
applications than the short examples we’ve seen so far. On the other hand, they are not so long that
it takes all spring to wade through them.

Reasons for Multifile Programs

There are several reasons for using multifile programs. These include the use of class libraries, the
organization of programmers working on a project, and the conceptual design of a program. Let’s
reflect briefly on these issues.

Class Libraries

In traditional procedure-oriented languages it has long been customary for software vendors to
furnish libraries of functions. Other programmers then combine these libraries with their own
custom-written routines to create an application for the end-user.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Libraries provide ready-made functions for a wide variety of fields. For instance, a vendor might
supply a library of functions for handling statistics calculations, or one for advanced memory
management.

Since C++ is organized around classes rather than functions, it’s not surprising that libraries for C
programs consist of classes. What may be surprising is how superior a class library is to an old-
fashioned function library. Because classes encapsulate both data and functions, and because they
more closely model objects in real life, the interface between a class library and the application that
makes use of it can be much cleaner than that provided by a function library.

For these reasons class libraries assume a more important role in C++ programming than function
libraries do in traditional programming. A class library can take over a greater portion of the
programming burden. An applications programmer, if the right class library is available, may find
that only a minimal amount of programming is necessary to create a final product. Also, as more
and more class libraries are created, the chances of finding one that solves your particular
programming problem continues to increase.

We’ll see an important example of a class library in Chapter 15, “The Standard Template Library.”

A class library usually includes two components: the interface and the implementation. Let’s see
what the difference is.

Interface

Let’s say that the person who wrote a class library is called the class developer, and the person who
uses the library is called the programmer.

To use a class library, the programmer needs to access various declarations, including class
declarations. These declarations can be thought of as the public part of the library and are usually
furnished in source-code form as a header file, with the .H extension. This file is typically combined
with the client’s source code using an #include statement.

The declarations in such a header file need to be public for several reasons. First, it’s a convenience
to the client to see the actual class definitions rather than to have to read a description of them.
More importantly, the programmer will need to declare objects based on these classes and call on
member functions from these objects. Only by declaring the classes in the source file is this
possible.

These declarations are called the interface because that’s what a user of the class (the programmer)
sees and interacts with. The programmer need not be concerned with the other part of the library,
the implementation.

Implementation

On the other hand, the inner workings of the member functions of the various classes don’t need to
be known by the programmer. The class developers, like any other software developers, don’t want
to release source code if they can help it, since it might be illegally modified or pirated. Member
functions—except for short inline functions—are therefore often distributed in object form, as .OBJ
files or as library (.LIB) files. (Various other extensions may be used for Windows-specific classes
such as ActiveX and COM and for various other specialized situations.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 13.1 shows how the various files are related in a multifile system.

Figure 13.1 Files in a multifile application.

In this chapter we’ll show several larger programs organized according to these principles. The first
program introduces a class of very large numbers. By “very large,” we mean numbers with an
almost unlimited number of digits. Such numbers are important in various kinds of mathematics,
such as calculating pi to thousands of digits. The second example simulates an elevator system in
high-rise building, using classes for the elevators and the building. The final program provides
classes that allow you to create your own water-distribution system. You can connect valves, tanks,
pipes, and similar components to model water systems such as the cooling system in a nuclear
reactor.

Organization and Conceptualization

Programs may be broken down into multiple files for reasons other than the accommodation of
class libraries. As in other programming languages, such as C, a common situation involves a
project with several programmers (or teams of programmers). Confining each programmer’s
responsibility to a separate file helps organize the project and define more cleanly the interface
among different parts of the program.

It is also often the case that a program is divided into separate files according to functionality: One
file can handle the code involved in a graphics display, for example, while another file handles
mathematical analysis, and a third handles disk I/O. In large programs, a single file may simply
become too large to handle conveniently.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

The techniques used for working with multifile programs are similar, whatever the reasons for
dividing the program.

Creating a Multifile Program

Suppose that you have purchased a prewritten class file called THEIRS.OBJ. (A library file with the
.LIB extension is dealt with in much the same way.) It probably comes with a header file, say
THEIRS.H. You have also written your own program to use the classes in the library; your source
file is called MINE.CPP. Now you want to combine these component files—THEIRS.OBJ, THEIRS.H
and MINE.CPP—into a single executable program.

Header Files

The header file THEIRS.H is easily incorporated into your own source file, MINE.CPP, with an #include
statement:

#include “THEIRS.H”

Quotes rather than angle brackets around the filename tell the compiler to look first for the file in
the current directory, rather than in the default include directory.

Directory

Make sure all the component files, THEIRS.OBJ, THEIRS.H, and MINE.CPP, are in the same directory.
In fact, you will probably want to create a separate directory for the project, to avoid confusion.
(This isn’t strictly necessary, but it’s the simplest approach.)

Projects

Most compilers manage multiple files using a project metaphor. A project contains all the files
necessary for the application. It also contains instructions for combining these files, often in a
special file called a project file. The extension for this file varies with the compiler vendor. It’s .BPR
for Borland, and .DSP for Microsoft. Modern compilers construct and maintain this file
automatically, so you don’t need to worry about it. In general you must tell the compiler about all
the source (.CPP) files you plan to use so they can be added to the project. You can add .OBJ and
.LIB files in a similar way. Header files are dealt with differently by different compilers. Some
compilers require them to be added to the project, while others will go out and look for them
automatically when they see the #include directive in a source file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendices C and D provide details on creating multifile programs for specific compilers.

Only a single command needs to be given to the compiler for it to compile all the source (.CPP and
.H) files and link the resulting .OBJ files (and any other .OBJ or .LIB files) into a final .EXE file. This
is called the build process. Often the .EXE file can be executed as well. (In Windows and other
advanced programming there are many more types of files.)

One of the nice things about a project is that it keeps track of the dates when you compiled each
source file. Only those source files that have been modified since the last build are recompiled; this
can save considerable time, especially on large projects. Some compilers distinguish between a
Make command and a Build command. Make compiles only those source files that have changed
since the last build, whereas Build compiles all files regardless of date.

A Very Long Number Class

Sometimes even the basic data type unsigned long does not provide enough precision for certain
integer arithmetic operations. unsigned long is the largest integer type in Standard C++, holding
integers up to 4,294,967,295, or about ten digits. This is about the same number of digits a pocket
calculator can handle. But if you need to work with integers containing more significant digits than
this, you have a problem.

Our next example offers a solution. It provides a class that holds integers up to 1,000 digits long. If
you want to make even longer numbers (or shorter ones), you can change a single constant in the
program.

Numbers As Strings

The verylong class stores numbers as strings of digits. These are old-fashioned char* C-strings, which
are easier to work with in this context than the string class. The use of C-strings explains the large
digit capacity: C++ can handle long C-strings, since they are simply arrays. By representing
numbers as C-strings we can make them as long as we want. There are two data members in
verylong: a char array to hold the string of digits, and an int to tell how long the string is. (This length
of data isn’t strictly necessary, but it saves using strlen() repeatedly to find the string length.) The
digits in the string are stored in reverse order, with the least significant digit stored first, at vlstr[0]
This simplifies various operations on the string. Figure 13.2 shows a number stored as a string.

We’ve provided user-accessible routines for addition and multiplication of verylong numbers. (We
leave it as an exercise for the reader to write subtraction and division routines.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 13.2 A VERYLONG number.

The Class Specifier

Here’s the header file for VERYLONG. It shows the specifiers for the verylong class.

// verylong.h
// class specifier for very long integer type
#include <iostream>
#include <string.h> //for strlen(), etc.
#include <stdlib.h> //for ltoa()
using namespace std;

const int SZ = 1000;
 //maximum digits in verylongs

class verylong
 {
 private:
 char vlstr[SZ]; //verylong number, as a string
 int vlen; //length of verylong string
 verylong multdigit(const int) const; //prototypes for
 verylong mult10(const verylong) const; //private functions
 public:
 verylong() : vlen(0) //no-arg constructor
 { vlstr[0]=’\0’; }
 verylong(const char s[SZ]) //one-arg constructor
 { strcpy(vlstr, s); vlen=strlen(s); } //for string
 verylong(const unsigned long n) //one-arg constructor
 { //for long int
 ltoa(n, vlstr, 10); //convert to string
 strrev(vlstr); //reverse it
 vlen=strlen(vlstr); //find length
 }
 void putvl() const; //display verylong
 void getvl(); //get verylong from user
 verylong operator + (const verylong); //add verylongs
 verylong operator * (const verylong); //multiply verylongs
 };

In addition to the data members, there are two private-member functions in class verylong. One
multiplies a verylong number by a single digit, and the other multiplies a verylong number by 10.
These routines are used internally by the multiplication routine.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

There are three constructors. One sets the verylong to 0 by inserting a terminating null at the
beginning of the array and setting the length to 0. The second initializes it to a string (which is in
reverse order), and the third initializes it to a long int value.

The putvl() member function displays a verylong, and getvl() gets a verylong value from the user. You
can type as many digits as you like, up to 1000. Note that there is no error checking in this routine;
if you type a non-digit the results will be inaccurate.

Two overloaded operators, + and *, perform addition and multiplication. You can use expressions
like

alpha = beta * gamma + delta;

to do verylong arithmetic.

The Member Functions

Here’s VERYLONG.CPP, the file that holds the member function definitions:

// verylong.cpp
// implements very long integer type
#include “verylong.h” //header file for verylong
//--
void verylong::putvl() const //display verylong
 {
 char temp[SZ];
 strcpy(temp,vlstr); //make copy
 cout << strrev(temp); //reverse the copy
 } //and display it
//--
void verylong::getvl() //get verylong from user
 {
 cin >> vlstr; //get string from user
 vlen = strlen(vlstr); //find its length
 strrev(vlstr); //reverse it
 }
//--
verylong verylong::operator + (const verylong v) //add verylongs
 {
 char temp[SZ];
 int j;
 //find longest number
 int maxlen = (vlen > v.vlen) ? vlen : v.vlen;
 int carry = 0; //set to 1 if sum >= 10
 for(j = 0; j<maxlen; j++) //for each position
 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {
 int d1 = (j > vlen-1) ? 0 : vlstr[j]-’0’; //get digit
 int d2 = (j > v.vlen-1) ? 0 : v.vlstr[j]-’0’; //get digit
 int digitsum = d1 + d2 + carry; //add digits
 if(digitsum >= 10) //if there’s a carry,
 { digitsum -= 10; carry=1; } //decrease sum by 10,
 else //set carry to 1
 carry = 0; //otherwise carry is 0
 temp[j] = digitsum+’0’; //insert char in string
 }
 if(carry==1) //if carry at end,
 temp[j++] = ‘1’; //last digit is 1
 temp[j] = ‘\0’; //terminate string
 return verylong(temp); //return temp verylong
 }
//--
verylong verylong::operator * (const verylong v) //multiply
 { //verylongs
 verylong pprod; //product of one digit
 verylong tempsum; //running total
 for(int j=0; j<v.vlen; j++) //for each digit in arg
 {
 int digit = v.vlstr[j]-’0’; //get the digit
 pprod = multdigit(digit); //multiply this by digit
 for(int k=0; k<j; k++) //multiply result by
 pprod = mult10(pprod); // power of 10
 tempsum = tempsum + pprod; //add product to total
 }
 return tempsum; //return total of prods
 }
//--
verylong verylong::mult10(const verylong v) const //multiply
 { //arg by 10
 char temp[SZ];
 for(int j=v.vlen-1; j>=0; j--) //move digits one
 temp[j+1] = v.vlstr[j]; // position higher
 temp[0] = ‘0’; //put zero on low end
 temp[v.vlen+1] = ‘\0’; //terminate string
 return verylong(temp); //return result
 }
//--
verylong verylong::multdigit(const int d2) const
 { //multiply this verylong
 char temp[SZ]; //by digit in argument
 int j, carry = 0;
 for(j = 0; j<vlen; j++) //for each position
 { // in this verylong
 int d1 = vlstr[j]-’0’; //get digit from this
 int digitprod = d1 * d2; //multiply by that digit
 digitprod += carry; //add old carry
 if(digitprod >= 10) //if there’s a new carry,
 {
 carry = digitprod/10; //carry is high digit
 digitprod -= carry*10; //result is low digit
 }
 else
 carry = 0; //otherwise carry is 0
 temp[j] = digitprod+’0’; //insert char in string
 }
 if(carry != 0) //if carry at end,
 temp[j++] = carry+’0’; //it’s last digit
 temp[j] = ‘\0’; //terminate string
 return verylong(temp); //return verylong
 }

The putvl() and getvl() functions are fairly straightforward. They use the strrev() C library function to
reverse the C-string, so it is stored in reverse order but input is displayed normally.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The operator+() function adds two verylongs and leaves the result in a third verylong. It does this by
considering their digits one at a time. It adds digit 0 from both numbers, storing a carry if necessary.
Then it adds the digits in position 1, adding the carry if necessary. It continues until it has added all
the digits in the larger of the two numbers. If the numbers are different lengths, the nonexistent
digits in the shorter number are set to 0 before being added. Figure 13.3 shows the process.

Figure 13.3 Adding verylong numbers.

Multiplication uses the operator*() function. This function performs multiplication by multiplying the
multiplicand (the top number when you write it by hand) by each separate digit in the multiplier
(the bottom number). It calls the multdigit() routine to this. The results are then multiplied by 10 an
appropriate number of times to shift the result to match the position of the digit, using the mult10()
function. The results of these separate calculations are then added together using the operator+()
function.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

The Application Program

To test the verylong class we use a variation of the FACTOR program from Chapter 3, “Loops and
Decisions,” to calculate the factorial of a number entered by the user. Here’s the listing for
VL_APP.CPP:

// vl_app.cpp
// calculates factorials of larger numbers using verylong class
#include “verylong.h” //verylong header file

int main()
 {
 unsigned long numb, j;
 verylong fact=1; //initialize verylong

 cout << “\n\nEnter number: “;
 cin >> numb; //input a long int

 for(j=numb; j>0; j--) //factorial is numb *
 fact = fact * j; // numb-1 * numb-2 *
 cout << “Factorial is “; // numb-3 and so on
 fact.putvl(); //display factorial
 cout << endl;
 return 0;
 }

In this program fact is a verylong variable. The other variables, numb and j, don’t need to be verylong
because they don’t get so big. To calculate the factorial of 100, for example, numb and j require only
three digits, while fact requires 158.

Notice how, in the expression

fact = fact * j;

the long variable j is automatically converted to verylong, using the one-argument constructor, before
the multiplication is carried out.

Here’s the output when we ask the program to find the factorial of 100:

Enter number: 100
Factorial is 9332621544394415268169923885626670049071596826438162
1468592963895217599993229915608941463976156518286253697920827223
758251185210916864000000000000000000000000

Try that using type long variables! Surprisingly, the routines are fairly fast; this program executes in

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Try that using type long variables! Surprisingly, the routines are fairly fast; this program executes in
a fraction of a second. You can calculate the factorial of numbers up to about 400 before you
exceed the 1000 digit capacity of the program.

A High-Rise elevator Simulation

The next time you’re waiting for an elevator in a high-rise office building, ask yourself how the
elevators figure out where to go. In the old days, of course, there was a human elevator operator on
each car. (“Good morning, Mr. Burberry,” “Good morning, Carl.”) Riders needed to tell the
operator their destination floor when getting on (“Seventeen, please.”). A panel of signal lights lit
up inside the car to show which floors were requesting service up or down. Operators decided
which way to go and where to stop on the basis of these verbal requests and their observation of the
signal lights.

Nowadays enough intelligence is built into elevator systems to permit the cars to operate on their
own. In our next example we use C++ classes to model an elevator system.

What are the components of such a system? In a typical building there are a number of similar
elevators. On each floor there are up and down buttons. Note that there is usually only one such
pair of buttons per floor; when you push a button you don’t know which elevator will stop for you.
Within the elevator there is a larger number of buttons: one for each floor. After entering the
elevator, riders push a button to indicate their destination. Our simulation program will model all
these components.

Running the ELEV Program

When you start up the ELEV program you’ll see four elevators sitting at the bottom of the screen,
and a list of numbers on the left, starting at 1 on the bottom of the screen and continuing up to 20 at
the top. The elevators are initially on the ground (first) floor. This is shown in Figure 13.4.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 13.4 The ELEV program initial screen.

Making a Floor Request

If you press [Enter], text at the bottom of the screen prompts

Enter the floor you’re on:

You can enter any floor number from 1 to 20. If you’ve just arrived for work on the ground floor,
you’ll enter 1. If you’re leaving a higher floor to go out to lunch, you’ll enter your floor’s number.
The next prompt is

Enter direction you want to go (u or d):

If you’re on the first floor you must go up, and if you’re on the 20th floor you must go down. For
intermediate floors you can go either way. When you’ve completed your floor request, a triangle
will appear next to the appropriate floor number on the left. It will point either up or down,
depending on the direction you requested. As more requests are made, triangles will appear beside
additional floor numbers.

If there is an elevator car already at a floor where a request has been made, the door will open
immediately. You’ll see a happy-face character materialize outside the car, then move into the open
door. If there is no car on the floor making the request, one will move up or down toward the floor
and open its door once it reaches the floor.

Entering Destinations

Once a car arrives at a floor and the happy-face passenger is inside, a prompt appears on the bottom
of the screen:

Car 1 has stopped at floor 1
Enter destination floors (0 when finished)
Destination 1: 13

Here the passenger has entered 13. However, the happy face can represent more than one passenger
getting on at once. Each passenger may request a different destination, so the program allows
multiple destinations to be entered. Enter as many numbers as you want (at least 1, but no more
than 20) and enter 0 when you’re done.

The destinations requested by passengers within a particular car are indicated by small rectangles
displayed outside the car, just to its left, opposite the floor number requested. Each car has its own
set of destinations (unlike floor requests, which are shared by all the cars).

You can make as many floor requests as you like. The system will remember the requests, along
with the destinations selected from within each car, and attempt to service them all. All four cars
may be in motion at the same time. Figure 13.5 shows a situation with multiple floor requests and
multiple destinations.

Designing the System

The elevator cars are all roughly the same, so it seems reasonable to make them objects of a single
class, called elevator. This class will contain data specific to each car: its present location, the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

class, called elevator. This class will contain data specific to each car: its present location, the
direction it’s going, the destination floor numbers requested by its occupants, and so on.

Figure 13.5 elevators in action.

However, there is also data that applies to the building as a whole. This data will be part of the
building class. First there is an array of floor requests. This is a list of floors where people, waiting
for the elevator, have pushed the up or down button to request that an elevator stop at their floor.
Any elevator may respond to such a floor request, so each one needs to know about them. We use
an N-by-2 array of type bool, where N is the number of floors and the 2 allows separate array
elements for up and down for each floor. All the elevators can look at this array when they’re trying
to figure out where to go next.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Besides knowing about the floor requests, each elevator car must also be aware of where the other
elevators are. If we’re on the first floor, there’s no point in rushing up to the 15th floor to answer a
request if there’s already another car available on the 10th floor. The closest car should head toward
the request. To make it easy for each car to find out about the others, the second data item in building
is an array of pointers to elevators. Each elevator car stores its memory address on this list when it’s
first created, so the other cars can find it.

The third data item in the building class is the number of cars created so far. This allows each car to
number itself sequentially when it’s created.

Managing Time

The main() program calls a member function of building at fixed intervals to put things into motion.
This function is called master_tick(). It in turn calls a function for each elevator car, called car_tick1()
This function, among other things, displays each car on the screen and calls another function to
decide what the car should do next. The choices are to go up, to go down, to stop, to load a
passenger, or to unload a passenger.

Each car must then be moved to its new position. However, things get slightly complicated here.
Because each car must figure out where the other ones are before it can decide what to do, all the
cars must go through the decision process before any of them moves. To make sure this happens,
we use two time ticks for each car. Thus after car_tick1() has been called to decide where each car
will go, another function, car_tick2(), is called to actually move each car. It causes the cars to move
by changing the variable current_floor.

The process of loading passengers follows a fixed sequence of steps, during which the car is
stopped at the desired floor. The program draws, in order

1. Car with closed door, no happy face.
2. Car with open door, happy face on left.
3. Car with happy face in open door, get destinations from user.
4. Car with closed door, no happy face.

The reverse sequence applies to unloading. These sequences are carried out by starting a timer (an
integer variable) and letting it count down from 3 to 0, decrementing it with each time tick. A case
statement in the car_display() function then draws the appropriate version of the car for each stage of
the process.

Because the ELEV program uses various console graphics functions, it requires a header file; either

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Because the ELEV program uses various console graphics functions, it requires a header file; either
msoftCon.h for Microsoft compilers or borlaCon.h for Borland compilers. (See Appendix E, “Console
Graphics Lite.”)

Listings for ELEV

We’ve divided the program into four files. Two of these files, ELEV.H and ELEV.CPP, might be
created by a vendor supplying elevator-design software. This software would then be purchased by
an engineering company interested in designing an elevator system for a particular building. (This
program is not certified by the National elevator Board, so don’t try it with real elevators.) The
engineering company would then write another pair of files, ELEV_APP.H and ELEV_APP.CPP. The
ELEV_APP.H file specifies the characteristics of the high-rise building. It needs to be a separate file
because these characteristics must be known by the elevator class member functions, and the easiest
way to do this is to include ELEV_APP.H in the ELEV.H file. The ELEV_APP.CPP file initializes the
elevators and then calls elevator functions at fixed intervals to simulate the passage of time.

Class Specifier

The ELEV.H file contains the specification for the elevator class. The array of pointers to elevators,
car_list[], allows each elevator to query all the others about their location and direction. Here’s the
listing:

// elev.h
// header file for elevators -- contains class declarations

#include “elev_app.h” //provided by client
#include <msoftcon.h> //for console graphics
#include <iostream>
#include <iomanip> //for setw()
#include <conio.h> //for screen output
#include <stdlib.h> //for itoa()
#include <process.h> //for exit()
using namespace std;

enum direction { UP, DN, STOP };
const int LOAD_TIME = 3; //loading/unloading time (ticks)
const int SPACING = 7; //visual spacing between cars
const int BUF_LENGTH = 80; //length of utility string buffer

class building;
//
class elevator
 {
 private:
 building* ptrBuilding; //ptr to parent building
 const int car_number; //our number (0 to nc-1)
 int current_floor; //where are we? (0 to nf-1)
 int old_floor; //where were we? (0 to nf-1)
 direction current_dir; //which way are we going?
 bool destination[NUM_FLOORS]; //selected by occupants
 int loading_timer; //non-zero if loading
 int unloading_timer; //non-zero if unloading

 public:
 elevator(building*, int); //constructor
 void car_tick1(); //time tick 1 for each car
 void car_tick2(); //time tick 2 for each car
 void car_display(); //display elevator
 void dests_display() const; //display elevator requests
 void decide(); //decide what to do
 void move(); //move the car

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 void move(); //move the car
 void get_destinations(); //get destinations
 int get_floor() const; //get current floor
 direction get_direction() const; //get current direction
 };
//
class building
 {
 private:
 elevator* car_list[NUM_CARS]; //ptrs to cars
 int num_cars; //cars created so far
 //array of up/down buttons
 bool floor_request[2][NUM_FLOORS]; //false=UP, true=DN

 public:
 building(); //constructor
 ~building(); //destructor
 void master_tick(); //send ticks to all cars
 int get_cars_floor(const int) const; //find where a car is
 //find which way car is going
 direction get_cars_dir(const int) const;
 //check specific floor req
 bool get_floor_req(const int, const int) const;
 //set specific floor req
 void set_floor_req(const int, const int, const bool);
 void record_floor_reqs(); //get floor requests
 void show_floor_reqs() const; //show floor requests
 };

Member Functions

The ELEV.CPP file contains the definitions of the elevator class and building class member functions
and data. Functions in building initialize the system, provide a master time tick, display the floor
requests, and get floor requests from the user. Functions in elevator initialize individual cars (with
the constructor), provide two time ticks for each car, display it, display its destinations, decide what
to do, move the car to a new floor, and get destinations from the user. Here’s the listing:

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

// elev.cpp
// contains class data and member function definitions

#include “elev.h” //include class declarations
//
// function definitions for class building
//
building::building() //constructor
 {
 char ustring[BUF_LENGTH]; //string for floor numbers

 init_graphics(); //initialize graphics
 clear_screen(); //clear screen
 num_cars = 0;
 for(int k=0; k<NUM_CARS; k++) //make elevators
 {
 car_list[k] = new elevator(this, num_cars);
 num_cars++;
 }
 for(int j=0; j<NUM_FLOORS; j++) //for each floor
 {
 set_cursor_pos(3, NUM_FLOORS-j); //put floor number
 itoa(j+1, ustring, 10); //on screen
 cout << setw(3) << ustring;
 floor_request[UP][j] = false; //no floor requests yet
 floor_request[DN][j] = false;
 }
 } //end constructor
//--
building::~building() //destructor
 {
 for(int k=0 k<NUM_CARS; k++)
 delete car_list[k];
 }
//--
void building::master_tick() //master time tick
 {
 int j;
 show_floor_reqs(); //display floor requests
 for(j=0; j<NUM_CARS; j++) //for each elevator
 car_list[j]->car_tick1(); //send it time tick 1
 for(j=0; j<NUM_CARS; j++) //for each elevator
 car_list[j]->car_tick2(); //send it time tick 2
 } //end master_tick()
//--
void building::show_floor_reqs() const //display floor requests
 {
 for(int j=0; j<NUM_FLOORS; j++)
 {
 set_cursor_pos(SPACING, NUM_FLOORS-j);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 set_cursor_pos(SPACING, NUM_FLOORS-j);
 if(floor_request[UP][j]==true)
 cout << ‘\x1E’; //up arrow
 else
 cout << ‘ ‘;
 set_cursor_pos(SPACING+3, NUM_FLOORS-j);
 if(floor_request[DN][j]==true)
 cout << ‘\x1F’; //down arrow
 else
 cout << ‘ ‘;
 }
 } //end show_floor_reqs()
//--
//record_floor_reqs() -- get requests from riders outside car
void building::record_floor_reqs()
 {
 char ch = ‘x’; //utility char for input
 char ustring[BUF_LENGTH]; //utility string for input
 int iFloor; //floor from which request made
 char chDirection; //’u’ or ‘d’ for up or down

 set_cursor_pos(1,22); //bottom of screen
 cout << “Press [Enter] to call an elevator: “;
 if(!kbhit()) //wait for keypress (must be CR)
 return;
 cin.ignore(10, ‘\n’);
 if(ch==’\x1B’) //if escape key, end program
 exit(0);
 set_cursor_pos(1,22); clear_line(); //clear old text
 set_cursor_pos(1,22); //bottom of screen
 cout << “Enter the floor you’re on: “;
 cin.get(ustring, BUF_LENGTH); //get floor
 cin.ignore(10, ‘\n’); //eat chars, including newline
 iFloor = atoi(ustring); //convert to integer

 cout << “Enter direction you want to go (u or d): “;
 cin.get(chDirection); //(avoid multiple linefeeds)
 cin.ignore(10, ‘\n’); //eat chars, including newline

 if(chDirection==’u’ || chDirection==’U’)
 floor_request[UP][iFloor-1] = true; //up floor request
 if(chDirection==’d’ || chDirection==’D’)
 floor_request[DN][iFloor-1] = true; //down floor request
 set_cursor_pos(1,22); clear_line(); //clear old text
 set_cursor_pos(1,23); clear_line();
 set_cursor_pos(1,24); clear_line();
 } //end record_floor_reqs()
//--
//get_floor_req() -- see if there’s a specific request
bool building::get_floor_req(const int dir,
 const int floor) const
 {
 return floor_request[dir][floor];
 }
//--
//set_floor_req() -- set specific floor request
void building::set_floor_req(const int dir, const int floor,
 const bool updown)
 {
 floor_request[dir][floor] = updown;
 }
//--
//get_cars_floor() -- find where a car is
int building::get_cars_floor(const int carNo) const
 {
 return car_list[carNo]->get_floor();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return car_list[carNo]->get_floor();
 }
//--
//get_cars_dir() -- find which way car is going
direction building::get_cars_dir(const int carNo) const
 {
 return car_list[carNo]->get_direction();
 }
//--

///
// function definitions for class elevator
///
 //constructor
elevator::elevator(building* ptrB, int nc) :
 ptrBuilding(ptrB), car_number(nc)
 {
 current_floor = 0; //start at 0 (user’s 1)
 old_floor = 0; //remember previous floor
 current_dir = STOP; //stationary at start
 for(int j=0; j<NUM_FLOORS; j++) //occupants have not pushed
 destination[j] = false; // any buttons yet
 loading_timer = 0; //not loading yet
 unloading_timer = 0; //not unloading yet
 } //end constructor
//--
int elevator::get_floor() const //get current floor
 {
 return current_floor;
 }
//--
direction elevator::get_direction() const //get current
 { // direction
 return current_dir;
 }
//--
void elevator::car_tick1() //tick 1 for each car
 {
 car_display(); //display elevator box
 dests_display(); //display destinations
 if(loading_timer) //count down load time
 --loading_timer;
 if(unloading_timer) //count down unload time
 --unloading_timer;
 decide(); //decide what to do
 } //end car_tick()
//--
//all cars must decide before any of them move
void elevator::car_tick2() //tick 2 for each car
 {
 move(); //move car if appropriate
 }
//--
void elevator::car_display() //display elevator image
 {
 set_cursor_pos(SPACING+(car_number+1)*SPACING, NUM_FLOORS-old_floor);
 cout << “ “; //erase old position
 set_cursor_pos(SPACING-1+(car_number+1)*SPACING,
 NUM_FLOORS-current_floor);
 switch(loading_timer)
 {
 case 3:
 cout << “\x01\xDB \xDB “; //draw car with open door
 break; //happy face on left
 case 2:
 cout << “ \xDB\x01\xDB “; //happy face in open door
 get_destinations(); //get destinations
 break;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 break;
 case 1:
 cout << “ \xDB\xDB\xDB “; //draw with closed door
 break; //no happy face
 case 0:
 cout << “ \xDB\xDB\xDB “; //closed door, no
 break; //happy face (default)
 }
 set_cursor_pos(SPACING+(car_number+1)*SPACING,
 NUM_FLOORS-current_floor);
 switch(unloading_timer)
 {
 case 3:
 cout << “\xDB\x01\xDB “; //draw car with open door
 break; //happy face in car
 case 2:
 cout << “\xDB \xDB\x01”; //draw car with open door
 break; //happy face on right
 case 1:
 cout << “\xDB\xDB\xDB “; //draw with closed door
 break; //no happy face
 case 0:
 cout << “\xDB\xDB\xDB “; //closed door, no
 break; //happy face (default)
 }
 old_floor = current_floor; //remember old floor
 } //end car_display()
//--
void elevator::dests_display() const //display destinations
 { // selected by buttons
 for(int j=0; j<NUM_FLOORS; j++) // inside the car
 {
 set_cursor_pos(SPACING-2+(car_number+1)*SPACING, NUM_FLOORS-j);
 if(destination[j] == true)
 cout << ‘\xFE’; //small box
 else
 cout << ‘ ‘; //blank
 }
 } //end dests_display()
//--
void elevator::decide() //decide what to do
 {
 int j;
 //flags indicate if destinations or requests above/below us
 bool destins_above, destins_below; //destinations
 bool requests_above, requests_below; //requests
 //floor number of closest request above us and below us
 int nearest_higher_req = 0;
 int nearest_lower_req = 0;
 //flags indicate if there is another car, going in the same
 //direction, between us and the nearest floor request (FR)
 bool car_between_up, car_between_dn;
 //flags indicate if there is another car, going in the
 //opposite direction, on the opposite side of the nearest FR
 bool car_opposite_up, car_opposite_dn;
 //floor and direction of other car (not us)
 int ofloor; //floor
 direction odir; //direction

 //ensure we don’t go too high or too low
 if((current_floor==NUM_FLOORS-1 && current_dir==UP)
 || (current_floor==0 && current_dir==DN))
 current_dir = STOP;

 //if there’s a destination on this floor, unload passengers
 if(destination[current_floor]==true)
 {
 destination[current_floor] = false; //erase destination

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 destination[current_floor] = false; //erase destination
 if(!unloading_timer) //unload
 unloading_timer = LOAD_TIME;
 return;
 }
 //if there’s an UP floor request on this floor,
 //and if we’re going up or stopped, load passengers
 if((ptrBuilding->get_floor_req(UP, current_floor) &&
 current_dir != DN))
 {
 current_dir = UP; //(in case it was STOP)
 //remove floor request for direction we’re going
 ptrBuilding->set_floor_req(current_dir,
 current_floor, false);
 if(!loading_timer) //load
 loading_timer = LOAD_TIME;
 return;
 }
 //if there’s a down floor request on this floor,
 //and if we’re going down or stopped, load passengers
 if((ptrBuilding->get_floor_req(DN, current_floor) &&
 current_dir != UP))
 {
 current_dir = DN; //(in case it was STOP)
 //remove floor request for direction we’re going
 ptrBuilding->set_floor_req(current_dir,
 current_floor, false);
 if(!loading_timer) //load passengers
 loading_timer = LOAD_TIME;
 return;
 }
 //check if there are other destinations or requests
 //record distance to nearest request
 destins_above = destins_below = false;
 requests_above = requests_below = false;
 for(j=current_floor+1; j<NUM_FLOORS; j++)
 { //check floors above
 if(destination[j]) //if destinations
 destins_above = true; //set flag
 if(ptrBuilding->get_floor_req(UP, j) ||
 ptrBuilding->get_floor_req(DN, j))
 { //if requests
 requests_above = true; //set flag
 if(!nearest_higher_req) //if not set before
 nearest_higher_req = j; // set nearest req
 }
 }
 for(j=current_floor-1; j>=0; j--) //check floors below
 {
 if(destination[j]) //if destinations
 destins_below = true; //set flag
 if(ptrBuilding->get_floor_req(UP, j) ||
 ptrBuilding->get_floor_req(DN, j))
 { //if requests
 requests_below = true; //set flag
 if(!nearest_lower_req) //if not set before
 nearest_lower_req = j; // set nearest req
 }
 }
 //if no requests or destinations above or below, stop
 if(!destins_above && !requests_above &&
 !destins_below && !requests_below)
 {
 current_dir = STOP;
 return;
 }
 //if destinations and we’re stopped, or already going the
 //right way, go toward destinations

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 //right way, go toward destinations
 if(destins_above && (current_dir==STOP || current_dir==UP))
 {
 current_dir = UP;
 return;
 }
 if(destins_below && (current_dir==STOP || current_dir==DN))
 {
 current_dir = DN;
 return;
 }
 //find out if there are other cars, (a) going in the same
 //direction, between us and the nearest floor request;
 //or (b) going in the opposite direction, on the other
 //side of the floor request
 car_between_up = car_between_dn = false;
 car_opposite_up = car_opposite_dn = false;

 for(j=0; j<NUM_CARS; j++) //check each car
 {
 if(j != car_number) //if it’s not us
 { //get its floor
 ofloor = ptrBuilding->get_cars_floor(j); //and
 odir = ptrBuilding->get_cars_dir(j); //direction

 //if it’s going up and there are requests above us
 if((odir==UP || odir==STOP) && requests_above)
 //if it’s above us and below the nearest request
 if((ofloor > current_floor
 && ofloor <= nearest_higher_req)
 //or on same floor as us but is lower car number
 || (ofloor==current_floor && j < car_number))
 car_between_up = true;
 //if it’s going down and there are requests below us
 if((odir==DN || odir==STOP) && requests_below)
 //if it’s below us and above the nearest request
 if((ofloor < current_floor
 && ofloor >= nearest_lower_req)
 //or on same floor as us but is lower car number
 || (ofloor==current_floor && j < car_number))
 car_between_dn = true;
 //if it’s going up and there are requests below us
 if((odir==UP || odir==STOP) && requests_below)
 //it’s below request and closer to it than we are
 if(nearest_lower_req >= ofloor
 && nearest_lower_req - ofloor
 < current_floor - nearest_lower_req)
 car_opposite_up = true;
 //if it’s going down and there are requests above us
 if((odir==DN || odir==STOP) && requests_above)
 //it’s above request and closer to it than we are
 if(ofloor >= nearest_higher_req
 && ofloor - nearest_higher_req
 < nearest_higher_req - current_floor)
 car_opposite_dn = true;
 } //end if(not us)
 } //end for(each car)

 //if we’re going up or stopped, and there is an FR above us,
 //and there are no other cars going up between us and the FR,
 //or above the FR going down and closer than we are,
 //then go up
 if((current_dir==UP || current_dir==STOP)
 && requests_above && !car_between_up && !car_opposite_dn)
 {
 current_dir = UP;
 return;
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

 //if we’re going down or stopped, and there is an FR below
 //us, and there are no other cars going down between us and
 //the FR, or below the FR going up and closer than we are,
 //then go down
 if((current_dir==DN || current_dir==STOP)
 && requests_below && !car_between_dn && !car_opposite_up)
 {
 current_dir = DN;
 return;
 }
 //if nothing else happening, stop
 current_dir = STOP;
 } //end decide(), finally
//--
void elevator::move()
 { //if loading or unloading,
 if(loading_timer || unloading_timer) //don’t move
 return;
 if(current_dir==UP) //if going up, go up
 current_floor++;
 else if(current_dir==DN) //if going down, go down
 current_floor--;
 } //end move()
//--
void elevator::get_destinations() //stop, get destinations
 {
 char ustring[BUF_LENGTH]; //utility buffer for input
 int dest_floor; //destination floor

 set_cursor_pos(1,22); clear_line(); //clear top line
 set_cursor_pos(1, 22);
 cout << “Car “ << (car_number+1)
 << “ has stopped at floor “ << (current_floor+1)
 << “\nEnter destination floors (0 when finished)”;
 for(int j=1; j<NUM_FLOORS; j++) //get floor requests
 { //maximum; usually fewer
 set_cursor_pos(1, 24);
 cout << “Destination “ << j << “: “;

 cin.get(ustring, BUF_LENGTH); //(avoid multiple LFs)
 cin.ignore(10, ‘\n’); //eat chars, including newline
 dest_floor = atoi(ustring);
 set_cursor_pos(1,24); clear_line(); //clear old input line
 if(dest_floor==0) //if no more requests,
 { //clear bottom three lines
 set_cursor_pos(1,22); clear_line();
 set_cursor_pos(1,23); clear_line();
 set_cursor_pos(1,24); clear_line();
 return;
 }
 --dest_floor; //start at 0, not 1
 if(dest_floor==current_floor) //chose this very floor
 { --j; continue; } // so forget it
 //if we’re stopped, first choice made sets direction
 if(j==1 && current_dir==STOP)
 current_dir = (dest_floor < current_floor) ? DN : UP;
 destination[dest_floor] = true; //record selection
 dests_display(); //display destinations
 }
 } //end get_destinations()

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Application

The next two files, ELEV_APP.H and ELEV_APP.CPP, are created by someone with a particular
building in mind. They want to customize the software for their building. ELEV_APP.H does this by
defining two constants that specify the number of floors and the number of elevators the building
will have. Here’s its listing:

// elev_app.h
// provides constants to specify building characteristics

const int NUM_FLOORS = 20; //number of floors
const int NUM_CARS = 4; //number of elevator cars

ELEV_APP.CPP initializes the data in the building class and creates a number of elevator objects, using
new. (An array could also be used.) Then, in a loop, it calls the building functions master_tick() and
get_floor_requests() over and over. The wait() function (declared in msoftCon.h or borlaCon.h slows things
down to a human-oriented speed. When the user is answering a prompt, time (the program’s time,
as opposed to the user’s time) stops. Here’s the listing for ELEV_APP.CPP:

// elev_app.cpp
// client-supplied file

#include “elev.h” //for class declarations

void main(void)
 {
 building theBuilding;
 while(true)
 {
 theBuilding.master_tick(); //send time tick to all cars
 wait(1000); //pause
 //get floor requests from user
 theBuilding.record_floor_reqs();
 }
 }

Elevator Strategy

Building the necessary intelligence into the elevator cars is not trivial. It’s handled in the decide()
function, which consists of a series of rules. These rules are arranged in order of priority. If any one
applies, then the appropriate action is carried out; the following rules are not queried. Here is a
slightly simplified version:

1. If the elevator is about to crash into the bottom of the shaft, or through the roof, then stop.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. If this is a destination floor, then unload the passengers.
3. If there is an up floor request on this floor, and we are going up, then load the passengers.
4. Is there is a down floor request on this floor, and we are going down, then load the
passengers.
5. If there are no destinations or requests above or below, then stop.
6. If there are destinations above us, then go up.
7. If there are destinations below us, then go down.
8. If we’re stopped or going up, and there is a floor request above us, and there are no other
cars going up between us and the request, or above it and going down and closer than we are,
then go up.
9. If we’re stopped or going down, and there is a floor request below us, and there are no
other cars going down between us and the request, or below it and going up and closer than
we are, then go down.
10. If no other rules apply, stop.

Rules 8 and 9 are rather complicated. They attempt to keep two or more cars from rushing to
answer the same floor request. However, the results are not perfect. In some situations cars are slow
to answer requests because they are afraid another car is on its way, when in fact the other car is
answering a different floor request. The program’s strategy could be improved by allowing the
decide() function to distinguish between up and down requests when it checks whether there are
requests above or below the current car. However, this would further complicate decide(), which is
already long enough. We’ll leave such refinements to the reader.

A Water-Distribution System

Have you ever wondered how your house is supplied with water? Or how the cooling system in a
nuclear reactor operates? The next application can help you answer these questions. It models a
liquid-distribution system consisting of pipes, valves, tanks, and other components. This example
shows how easy it is to create a set of classes for a specialized situation. A similar approach could
be used in other process-control applications, such as the hydraulic systems used to operate aircraft.
The general approach is even applicable to electrical distribution systems, or economic systems that
track the flow of money.

Figure 13.6 shows a water-distribution system for a small community built on a hillside. This water
system is modeled in the PIPES program.

As in the previous program, we break this program into three files. PIPES.H contains the class
declarations, and PIPES.CPP contains the definitions of the member functions. These files can be
assumed to be provided by a vendor of class libraries. The PIPE_APP.CPP file is the one we write
ourselves to specify a water system with a particular arrangement of tanks, valves, and pipes.

Components of a Water System

In this application we find that physical objects in the real world—objects we can see and touch—
correspond closely with objects in the program. Let’s see what these objects are.

• A source supplies water to the system. In the real world it might correspond to a spring,
well, or reservoir. The water from the source is assumed to be always available but cannot be
supplied faster than a certain fixed rate.
• A sink is a user of water. It represents a house, factory, or farm, or a group of such water

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

• A sink is a user of water. It represents a house, factory, or farm, or a group of such water
consumers. A sink absorbs water from the system at a fixed rate.
• A pipe carries water over a distance. A pipe has a characteristic resistance that limits the
amount of water that can flow through it. The water flowing into a pipe equals the water
flowing out.
• A tank stores water. It also decouples the input/output flows: The rate at which water flows
into the tank can be different from the rate at which it flows out. For example, if the input
flow is greater than the output, the contents of the tank increase. A tank has a characteristic
maximum output flow rate, determined (in this model, at least) by the size of the outlet in the
tank.
• To keep a tank from overflowing, and to make sure it doesn’t run out of water, we can
associate switches with the tank. A switch turns on when the amount of water in the tank
reaches a certain quantity. Switches are usually used to actuate a valve, which in turn controls
the level of water in the tank.
• A valve regulates the flow of water. It can be on, causing no resistance to the flow, or off,
which stops the flow entirely. A valve is assumed to be operated by some sort of servo-
mechanism, and is typically controlled by switches associated with a tank.

Figure 13.6 A typical water system.

Flow, Pressure, and Back Pressure

Every component in the system has three important aspects: flow, pressure, and back pressure.
When we connect one component to another, we’re connecting these three aspects.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Flow

The bottom-line characteristic of components in the water system is flow. This is the amount of
water passing through the component per unit time. It’s usually what we’re interested in measuring
when we model a system.

Often the flow into a component is the same as the flow out. This is true of pipes and of valves.
However, as noted above, it is not true of tanks.

Pressure

Flow isn’t the whole story. For example, when a valve is turned off, the flow both into it and out of
it stops, but water may still be trying to flow through the valve. This potential for flow is pressure
A source or a tank provides water at a certain pressure. If the rest of the system permits, this
pressure will cause a proportional flow: The greater the pressure, the greater the flow. But if a valve
is turned off, the flow will stop, regardless of what the pressure is. Pressure, like flow, is
transmitted downstream from one component to another.

A tank decouples pressure as well as flow. The pressure downstream from a tank is determined by
the tank, not by the upstream pressure.

Back Pressure

In opposition to pressure is back pressure. This is caused by the resistance to flow of some
components. A small-diameter pipe, for instance, will slow the flow of water, so that no matter how
much pressure is supplied, the flow will still be small. This back pressure will slow the flow not
only into the component causing the back pressure, but into all components upstream.

Back pressure goes the opposite way from flow and pressure. It’s transmitted from the downstream
component to the upstream component. Tanks decouple back pressure as they do pressure and flow.

Component Input and Output

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sometimes the flow, pressure, or back pressure are the same on both ends of a component. The
flow into one end of a pipe, for example, is the same as the flow out the other end (we assume no
leaks). However, these characteristics can also be different on the upstream and downstream sides.
When a valve is turned off, the pressure on its downstream side becomes zero, no matter what the
pressure on the upstream side is. The flow into a tank may be different from the flow out; the
difference between input and output flow is reflected in changes to the contents of the tank. The
output pressure of a pipe may be less than the input pressure because of the pipe’s resistance.

Thus each component, at any given instant, can be characterized by six values. There are three
inputs: pressure (from the upstream component), back pressure (from downstream), and flow (from
upstream). There are also three outputs: pressure (on the downstream component), back pressure
(on the upstream component), and flow (to the downstream component). This situation is shown in
Figure 13.7.

Figure 13.7 A component’s characteristics.

The outputs of a component are calculated from its inputs, and also from the internal characteristics
and state of the component, such as the resistance of a pipe or whether a valve is open or closed. A
member function of each component, called Tick() because it occurs at fixed time intervals, is used
to calculate the components’ output based on their input and internal characteristics. If the input
pressure to a pipe is increased, for example, the flow will increase correspondingly (unless the back
pressure caused by the pipe’s resistance and other components beyond it in the line is too high).

Making Connections

To create a water system we need to connect the various components together. It should be possible
to connect any component to any other component so that water flows from one to another.
(Switches are not connected in this way, since they don’t carry water.) Besides flow, both pressure
and back pressure must be connected, since they are also transmitted from component to
component.

Thus, making a connection means setting the output pressure and output flow from the upstream
object to the input pressure and input flow of the downstream object, and setting the output back
pressure from the downstream object to the input back pressure of the upstream object. This is
shown in Figure 13.8.

Simplifying Assumptions

To avoid complex mathematics we’ve made some simplifying assumptions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

What we call back pressure in the program should probably be called something like ease of flow
The values we use for this characteristic are proportional to the resulting flow, being small if only a
small amount can flow, and large when the flow can be large. Real back pressure would be the
reciprocal of the resulting flow, but this would unduly complicate the program.

Both pressure and back pressure are assumed to be measured in the same units as flow. To calculate
the flow, we examine the pressure pushing water into the system, and the back pressure resisting its
flow. The resulting flow is the smallest of these two numbers. Thus if a source provides 100
gallons/minute, and a pipe has a resistance of 60 gallons/minute, which causes a back pressure of
60 gallons/minute, the flow will be 60 gallons/minute.

Figure 13.8 Connections between components.

These assumptions don’t model exactly the real world of hydraulic flow, in which flow is
determined by complex formulas relating pressure and back pressure, but they do provide a good
first approximation.

We assume the output pressure of a tank is a constant. In reality it would depend on the contents of
the tank. However, for tanks considerably higher in ELEVation than the sink, this is a reasonable
approximation.

There is also an unavoidable built-in kind of imperfection in our approach to this problem. The
physical system we are modeling is an analog system that changes continuously with time. But our
model is “digital”: It samples the state of the components at discrete “ticks,” or time intervals. Thus
when something changes, like a valve opening, it may take several loop cycles for the resulting
pressure and flow changes to propagate throughout the system. These transients can be ignored in
analyzing the system’s behavior.

Program Design

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Our goal in this program is to create a family of classes that make it easy to model different water-
distribution systems. In this application it’s easy to see what the classes should represent. We create
a class for each kind of component—a valve class, a tank class, a pipe class, and so on. Once these
classes are established, the programmer can then connect components as necessary to model a
specific system.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Here is the listing for the PIPES.H file. We assume this file is supplied by a class software vendor.

// pipes.h
// header file for pipes
#include <iostream> //for cout, etc.
#include <iomanip> //for setw
#include <conio.h> //for getch()
using namespace std;

const int infinity = 32767; //infinite back pressure
enum offon { off, on }; //status of valves and switches
class Tank; //for using Tank in Switch
//
class Component //components (Pipe, Valve, etc.)
 {
 protected:
 int inpress, outpress; //pressures in and out
 int inbackp, outbackp; //back pressures in and out
 int inflow, outflow; //flow in and out
 public:
 Component() : inpress(0), outpress(0), inbackp(0),
 outbackp(0), inflow(0), outflow(0)
 { }
 virtual ~Component() //virtual destructor
 { }
 int Flow() const
 { return inflow; }
 friend void operator >= (Component&, Component&);
 friend void Tee(Component&, Component&, Component&);
 };
//
class Source : public Component //flow begins here
 {
 public:
 Source(int outp)
 { outpress = inpress = outp; }
 void Tick(); //update
 };
//
class Sink : public Component //flow ends here
 {
 public:
 Sink(const int obp) //initialize backpressure
 { outbackp = inbackp = obp; }
 void Tick(); //update
 };
//
class Pipe : public Component //connects other components,
 { //has resistance to flow
 private:
 int resist;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 int resist;
 public:
 Pipe(const int r) //initialize
 { inbackp = resist = r; }
 void Tick(); //update
 };
//
class Valve : public Component //turns flow on or off
 {
 private:
 offon status; //on (open) or off (closed)
 public:
 Valve(const offon s) //initialize status
 { status = s; }
 offon& Status() //get and set status
 { return status; }
 void Tick(); //update
 };
//
class Tank : public Component //stores water
 {
 private:
 int contents; //water in tank (gals)
 int maxoutpress; //max output pressure
 public:
 Tank(const int mop) //initialize to empty tank
 { maxoutpress = mop; contents = 0; }
 int Contents() const //get contents
 { return(contents); }
 void Tick();
 };
//
class Switch //activated by tank level
 { //can operate valves
 private:
 offon status; //’on’ if contents > triggercap
 int cap; //capacity where switch turns on
 Tank* tankptr; //pointer to owner tank
 public:
 Switch(Tank *tptr, const int tcap) //initialize
 { tankptr = tptr; cap = tcap; status = off; }
 int Status() const //get status
 { return(status); }
 void Tick() //update status
 { status = (tankptr->Contents() > cap) ? on : off; }
 };

Here’s the listing for the PIPES.CPP file, which contains the definitions of the class member
functions. Like PIPES.H, it’s supplied by the class vendor.

// pipes.cpp
// function definitions for pipes

#include “pipes.h” //class declarations
//--
 //”flows into” operator: c1 >= c2
void operator >= (Component& c1, Component& c2)
 {
 c2.inpress = c1.outpress;
 c1.inbackp = c2.outbackp;
 c2.inflow = c1.outflow;
 }
//--
 //”tee” divides flow into two
void Tee(Component& src, Component& c1, Component& c2)
 {
 //avoid division by 0

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 //avoid division by 0
 if((c1.outbackp==0 && c2.outbackp==0) ||
 (c1.outbackp==0 && c2.outbackp==0))
 {
 c1.inpress = c2.inpress = 0;
 src.inbackp = 0;
 c1.inflow = c2.inflow = 0;
 return;
 } //proportion for each output
 float f1 = (float)c1.outbackp / (c1.outbackp + c2.outbackp);
 float f2 = (float)c2.outbackp / (c1.outbackp + c2.outbackp);
 //pressures for two outputs
 c1.inpress = src.outpress * f1;
 c2.inpress = src.outpress * f2;
 //back pressure for single input
 src.inbackp = c1.outbackp + c2.outbackp;
 //flow for two outputs
 c1.inflow = src.outflow * f1;
 c2.inflow = src.outflow * f2;
 }
//--
void Source::Tick() //update source
 { //output pressure fixed
 outbackp = inbackp;
 outflow = (outpress < outbackp) ? outpress : outbackp;
 inflow = outflow;
 }
//--
void Sink::Tick() //update sink
 { //output back pressure fixed
 outpress = inpress;
 outflow = (outbackp < outpress) ? outbackp : outpress;
 inflow = outflow;
 }
//--
void Pipe::Tick(void) //update pipes
 {
 outpress = (inpress < resist) ? inpress : resist;
 outbackp = (inbackp < resist) ? inbackp : resist;

 //outflow is the lesser of outpress, outbackp, and resist
 if(outpress < outbackp && outpress < resist)
 outflow = outpress;
 else if(outbackp < outpress && outbackp < resist)
 outflow = outbackp;
 else
 outflow = resist;
 }
//--
void Valve::Tick(void) //update valves
 {
 if(status==on) //if valve open
 {
 outpress = inpress;
 outbackp = inbackp;
 outflow = (outpress < outbackp) ? outpress : outbackp;
 }
 else //if valve closed
 {
 outpress = 0;
 outbackp = 0;
 outflow = 0;
 }
 }
//--
void Tank::Tick(void) //update tanks
 {
 outbackp = infinity; //will take all the flow

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 outbackp = infinity; //will take all the flow
 // you can give it
 if(contents > 0) //if not empty
 {
 outpress = (maxoutpress<inbackp) ? maxoutpress : inbackp;
 outflow = outpress;
 }
 else //if empty
 {
 outpress = 0; //no out pressure,
 outflow = 0; //no flow
 }
 contents += inflow - outflow; //always true
 }

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Programming the Connections

A key part of program usability is a simple, intuitive way of describing connections in the program.
We could use a function, such as

Connect(valve1, tank1);

However, this can be confusing: Is the upstream component the right argument or the left?

A better approach is to overload an operator to represent connections between components. We’ll
choose the greater-than-or-equal-to operator, >=, which provides a visual indication of flow
direction from left to right. We can call it the flows-into operator. A program statement establishing
a connection would look like this:

valve1 >= tank1;

meaning that water from valve1 flows into tank1.

Base and Derived Classes

When designing our program we look first for similarities among the various objects. The common
attributes can be placed in a base class, while the individual features that distinguish the
components can be placed in derived classes.

The Component Base Class

In this application we note that all the objects (except switches) have water flowing through them
and can be connected to each other. We will therefore create a base class that permits connections.
We’ll call it Component.

class Component // components (Pipe, Valve, etc.)
 {
 protected:
 int inpress, outpress; // pressures in and out
 int inbackp, outbackp; // back pressures in and out
 int inflow, outflow; // flow in and out
 public:
 Component(void) : inpress(0), outpress(0), inbackp(0),
 outbackp(0), inflow(0), outflow(0)
 { }
 int Flow(void)
 { return inflow; }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 { return inflow; }
 friend void operator >= (Component&, Component&);
 friend void Tee(Component&, Component&, Component&);
 };

A component has pressure, back pressure, and flow. These all have two values: input to the
component, and output from it. For input we have the flow into the object from upstream, the
pressure exerted by objects on its upstream side, and the back pressure exerted by objects on the
downstream side. For output there is the flow out of the object, the pressure it transmits to the
downstream object, and the back pressure it transmits to the upstream object. These values are all
stored in objects of the Component class. A constructor for this class initializes all the data items to 0,
and another member function returns the flow, which is, for most components, what we want to
measure to see how the system is working.

The Flows-Into Operator

The flows-into operator, >=, connects an upstream component with a downstream component. Three
inputs (the downstream object’s pressure and flow and the upstream object’s back pressure) are set
equal to three outputs (the upstream object’s pressure and flow and the downstream object’s back
pressure).

// “flows into” operator: c1 >= c2
void operator >= (Component& c1, Component& c2)
 {
 c2.inpress = c1.outpress;
 c1.inbackp = c2.outbackp;
 c2.inflow = c1.outflow;
 }

The >= operator is defined as a friend of the Component class. It could also be defined as a member
function, but another kind of connection, the Tee() function, must be a friend, so we’ll make >= a
friend for consistency. Both arguments to >= are passed by reference, since the original arguments
must both be modified.

Since the >= operator applies to objects of the base class Component, it works on objects of the
derived classes, such as tanks, valves, and pipes. This saves you from having to write a separate
function to handle each kind of connection, such as

friend void operator >= (Pipe&, Valve&);
friend void operator >= (Valve&, Tank&);
friend void operator >= (Tank&, Sink&);

and so on ad infinitum.

Derived Classes

The classes that model the physical objects in the system are derived from the base class Component
These are Source, Sink, Pipe, Valve, and Tank. Each has specific characteristics. A Source has a fixed
input pressure. A Sink has a fixed back pressure. A Pipe has a fixed internal resistance; its output
back pressure can never be greater than a fixed value. A Valve has a status of type offon, off, or on
(defined in an enum statement). A Tank has contents—how full it is. A valve’s status and a tank’s
contents change as the program runs.

Variables that will be constant throughout the program, such as the resistance of a pipe or the
output pressure of a tank, are initialized when the object is first created.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As we noted, all these derived classes, and the Switch class as well, include member functions called
Tick(). This function is called for each object in the system—once each time period—to update the
internal state of the object and to calculate the three outputs (pressure, back pressure, and flow)
from the three inputs.

The Tee() Function

The Tee() function divides a single input flow into two output flows. The proportion of flow going
into each downstream component is proportional to the back pressure of each component. A pipe
with a lot of resistance will get a smaller proportion of the flow than one with low resistance. (See
the listing for this function.)

Tee() is called with three arguments: the source component and the two downstream components, in
order:

Tee(input, output1, output2);

It would be nice to use a more intuitive operator than a function with three parameters to connect
three components. For instance,

input >= output1 + output2;

Unfortunately there is no ternary operator (one that takes three arguments) that can be overloaded
in C++.

The Switch Class

The Switch class has a special relationship to the Tank class. Each tank is typically associated with
two switches. One switch is set to turn on when the tank level is a certain minimum value (when the
tank is almost empty). The other turns on when the level is above a certain maximum value (when
the tank is full). This maximum determines the capacity of the tank.

Let’s define the relationship between switches and tanks by saying that a switch is “owned” by a
tank. When a switch is defined, it’s given two values. One is the address of the tank that owns it.
The other is the contents level at which it will turn on. The Tick() member function in switch uses the
address of its owner tank to access the tank contents directly. This is how it figures out whether to
turn itself on or off.

Switches are typically used to control a valve that regulates the flow of water into a tank. When the
tank is full, the valve turns off; when it’s nearing empty, the valve turns on again.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

The PIPE_APP.CPP File

The main() part of the program would be written by an application programmer to model a specific
water system. Here’s the listing for PIPE_APP.CPP. This file contains only one function: main().

// pipe_app.cpp
// models a water supply system

#include “pipes.h” //pipes header file

int main()
 {
 char ch = ‘a’;
 Source src(100); //source(maximum capacity)
 Pipe pipe1(80); //pipe(resistance)
 Valve valve1(on); //valve(initially on)

 Tank tank1(60); //tank1(maximum outflow)
 Switch switch1(&tank1, 300); //tank1 high switch
 Switch switch2(&tank1, 50); //tank1 low switch

 Pipe pipe2(80); //pipe
 Sink sink1(30); //sink(maximum capacity)
 Pipe pipe3(40); //pipe
 Valve valve2(on); //valve

 Tank tank2(80); //tank2
 Switch switch3(&tank2, 250); //tank2 high switch
 Switch switch4(&tank2, 50); //tank2 low switch

 Sink sink2(20); //sink

 cout << “Press Enter for new time tick, ‘x’ to exit\n”;
 while(ch != ‘x’) //quit on ‘x’ key
 { //make connections
 src >= pipe1; // source flows into pipe1
 pipe1 >= valve1; // pipe1 flows into valve1
 valve1 >= tank1; // valve1 flows into tank1
 Tee(tank1, pipe2, pipe3); // output of tank1 splits
 pipe2 >= sink1; // pipe2 flows into sink1
 pipe3 >= valve2; // pipe3 flows into valve2
 valve2 >= tank2; // valve2 flows into tank2
 tank2 >= sink2; // tank2 flows into sink2

 src.Tick(); //update all components
 pipe1.Tick(); // and switches
 valve1.Tick();
 tank1.Tick();
 switch1.Tick();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 switch1.Tick();
 switch2.Tick();
 pipe2.Tick();
 sink1.Tick();
 pipe3.Tick();
 valve2.Tick();
 tank2.Tick();
 switch3.Tick();
 switch4.Tick();
 sink2.Tick();
 //if tank1 gets too high
 if(valve1.Status()==on && switch1.Status()==on)
 valve1.Status() = off;
 //if tank1 gets too low
 if(valve1.Status()==off && switch2.Status()==off)
 valve1.Status() = on;
 //if tank2 gets too high
 if(valve2.Status()==on && switch3.Status()==on)
 valve2.Status() = off;
 //if tank2 gets too low
 if(valve2.Status()==off && switch4.Status()==off)
 valve2.Status() = on;
 //output
 cout << “Src=” << setw(2) << src.Flow();
 cout << “ P1=” << setw(2) << pipe1.Flow();
 if(valve1.Status()==off)
 cout << “ V1=off”;
 else
 cout << “ V1=on “;
 cout << “ T1=” << setw(3) << tank1.Contents();
 cout << “ P2=” << setw(2) << pipe2.Flow();
 cout << “ Snk1=” << setw(2) << sink1.Flow();
 cout << “ P3=” << setw(2) << pipe3.Flow();
 if(valve2.Status()==off)
 cout << “ V2=off”;
 else
 cout << “ V2=on “;
 cout << “ T2=” << setw(3) << tank2.Contents();
 cout << “ Snk2=” << setw(2) << sink2.Flow();
 ch = getch();
 cout << ‘\n’;
 } //end while
 return 0;
 } //end main()

Declaring the Components

In main() the various components—pipes, valves, tanks, and so on—are first declared. At this time
their fixed characteristics are initialized: A pipe is given a fixed resistance, and a tank’s contents are
initialized to empty.

Connecting and Updating

The bulk of the work in main() is carried out in a loop. Each time through the loop represents one
time period, or tick of the clock. Pressing the [Enter] key causes a new tick; thus the program’s user
acts as the system’s clock. To exit from the loop and terminate the program, press the X key.

The first business in the loop is to connect the various components. The source src is connected to
pipe1, pipe1 is connected to valve1, and so on. The resulting system was shown earlier in Figure 13.6.

Once the connections are made, the internal states of all the components are updated by calling their
Tick() functions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Valves are opened and closed in if statements, based on the previous state of the valves and on
switches. The goal is to keep the contents of the tank between the upper switch and the lower
switch by opening and closing the valve as appropriate. When the tank contents reach the high
switch, this switch is turned on, and the if statement causes the valve to close. When the contents
drop below the bottom switch, turning it off, the valve is opened.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Output

To see what’s happening in the system, we use cout statements to print out the flow of various
components, the capacity of the tanks, and the status of the valves as they change with time. Figure
13.9 shows some sample output.

Notice in this figure that some values occasionally fall below zero. This is due to the digital nature
of the simulation, mentioned earlier. Such transients can be ignored.

The goal of most water systems is to supply a continuous flow of water to the various sources. The
output of PIPES shows that there are some problems in the system modeled. The flow to sink1
alternates between 25 and 30 gallons/minute, depending on whether tank2 is filling or not. The
water-system client would probably prefer that the supply was constant. Even worse, sink2
experiences periods of no flow at all. It would seem that some components of the system need to be
resized to eliminate these defects.

Of course, cout provides a very unsophisticated output system. It would be easy to provide a graphic
output, where pictures of the components appear on the screen. A Display() function built into each
component would draw a picture of that component. Pictures would be connected as they are in the
program—valve to tank, tank to pipe, and so on. The user could watch tanks fill and empty and
valves open and close. Numbers beside pipes could display the flow within. This would make it
easier to interpret the system’s operation. It would also make the program larger and more
complicated, which is why it is not implemented here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 13.9 Output of the PIPES program.

Summary

Vendor-provided object libraries are often distributed as a public component (the interface)
containing class declarations in an .H header file, and a private component (the implementation)
containing member function definitions in an .OBJ object file or .LIB library file.

C++ compilers allow you to combine several source or object files into a single executable file. This
permits files provided by one vendor to be combined with files from another, to create a final
application. The project feature simplifies keeping track of what files need to be compiled. It
compiles any source file that has been modified since the last linking, and links the resulting object
files.

Questions

Answers to questions can be found in Appendix G, “Answers to Questions and Exercises.”

1. Breaking a program into several files is desirable because

a. some files don’t need to be recompiled each time.
b. a program can be divided functionally.
c. files can be marketed in object form.
d. different programmers can work on a different files.

2. An .H file is associated with a .CPP file using the ________.
3. An .OBJ file is attached to a .CPP file using ________.
4. A project file contains

a. the contents of the files in the project.
b. the dates of the files in the project.
c. instructions for compiling and linking.
d. definitions for C++ variables.

5. A group of related classes, supplied as a separate product, is often called a ________.
6. True or false: A header file may need to be accessed by more than one source file in a
project.
7. The so-called private files of a class library

a. require a password.
b. can be accessed by friend functions.
c. help prevent code from being pirated.
d. may consist only of object code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8. True or false: Class libraries can be more powerful than function libraries.
9. True or false: the interface is private and the implementation is public.
10. The public part of a class library usually contains

a. member function declarations.
b. member function definitions.
c. class declarations.
d. definitions of inline functions.

Projects

Unfortunately, we don’t have room in this book for exercises that involve the kind of larger
programs discussed in this chapter. However, here are some suggestions for projects you may wish
to pursue on your own.

1. Create member functions to perform subtraction and division for the verylong class in the
VERYLONG example. These should overload the - and / operators. Warning: There’s some
work involved here. When you include subtraction, you must assume that any verylong can be
negative as well as positive. This complicates the addition and multiplication routines, which
must do different things depending on the signs of the numbers.
To see one way to perform division, do a long-division example by hand and write down
every step. Then incorporate these steps into a division member function. You’ll find that you
need some comparisons, so you’ll need to write a comparison routine, among other things.
2. Modify the ELEV program to be more efficient in the way it handles requests. As an
example of its current non-optimal behavior, start the program and make a down request on
floor 20. Then make a down request on floor 10. Car 1 will immediately head up to 20, but
car 2, which should head up to 10, waits until car 1 has passed 10 before starting. Modify
decide() so this doesn’t happen.
3. Add a Pump class to the PIPES example, so you can model water systems that don’t rely on
gravity. Create a water system that incorporates such a class. (Hint: A pump should derive its
input from a tank.)
4. Create a class library that models something you’re interested in. Create a main() or
“client” program to test it. Market your class library and become rich and famous.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

CHAPTER 14
TEMPLATES AND EXCEPTIONS

You will learn about the following in this chapter:
• Function templates • Multiple exceptions
• Class templates • Exceptions with arguments
• Exceptions • Built-in exceptions

This chapter introduces two advanced C++ features: templates and exceptions. Templates make it
possible to use one function or class to handle many different data types. Exceptions provide a
convenient, uniform way to handle errors that occur within classes. These features are combined in
a single chapter largely for historical reasons, becoming part of C++ at the same time. They were
not part of the original specification for C++, but were introduced as “Experimental” topics in Ellis
and Stroustrup (1990, see Appendix H, “Bibliography”). Subsequently they were incorporated into
Standard C++.

The template concept can be used in two different ways: with functions and with classes. We’ll
look at function templates first, then go on to class templates, and finally to exceptions.

Function Templates

Suppose you want to write a function that returns the absolute value of two numbers. As you no
doubt remember from high school algebra, the absolute value of a number is its value without
regard to its sign: The absolute value of 3 is 3, and the absolute value of –3 is also 3. Ordinarily this
function would be written for a particular data type:

int abs(int n) //absolute value of ints
 {
 return (n<0) ? -n : n; //if n is negative, return -n
 }

Here the function is defined to take an argument of type int and to return a value of this same type.
But now suppose you want to find the absolute value of a type long. You will need to write a
completely new function:

long abs(long n) //absolute value of longs
 {
 return (n<0) ? -n : n;
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

And again, for type float:

float abs(float n) //absolute value of floats
 {
 return (n<0) ? -n : n;
 }

The body of the function is written the same way in each case, but they are completely different
functions because they handle arguments and return values of different types. It’s true that in C++
these functions can all be overloaded to have the same name, but you must nevertheless write a
separate definition for each one. (In the C language, which does not support overloading, functions
for different types can’t even have the same name. In the C function library this leads to families of
similarly named functions, such as abs(), fabs(), fabsl(), labs(), cabs(), and so on.)

Rewriting the same function body over and over for different types is time consuming and wastes
space in the listing. Also, if you find you’ve made an error in one such function, you’ll need to
remember to correct it in each function body. Failing to do this correctly is a good way to introduce
inconsistencies into your program.

It would be nice if there were a way to write such a function just once, and have it work for many
different data types. This is exactly what function templates do for you. The idea is shown
schematically in Figure 14.1.

A Simple Function Template

Our first example shows how to write our absolute-value function as a template, so that it will work
with any basic numerical type. This program defines a template version of abs() and then, in main()
invokes this function with different data types to prove that it works. Here’s the listing for
TEMPABS:

// tempabs.cpp
// template used for absolute value function
#include <iostream>
using namespace std;
//--
template <class T> //function template
T abs(T n)
 {
 return (n < 0) ? -n : n;
 }
//--
int main()
 {
 int int1 = 5;
 int int2 = -6;
 long lon1 = 70000L;
 long lon2 = -80000L;
 double dub1 = 9.95;
 double dub2 = -10.15;
 //calls instantiate functions
 cout << “\nabs(“ << int1 << ”)=” << abs(int1); //abs(int)
 cout << “\nabs(“ << int2 << ”)=” << abs(int2); //abs(int)
 cout << “\nabs(“ << lon1 << ”)=” << abs(lon1); //abs(long)
 cout << “\nabs(“ << lon2 << ”)=” << abs(lon2); //abs(long)
 cout << “\nabs(“ << dub1 << ”)=” << abs(dub1); //abs(double)
 cout << “\nabs(“ << dub2 << ”)=” << abs(dub2); //abs(double)
 cout << endl;
 return 0;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return 0;
 }

Figure 14.1 A function template.

Here’s the output of the program:

abs(5)=5
abs(-6)=6
abs(70000)=70000
abs(-80000)=80000
abs(9.95)=9.95
abs(-10.15)=10.15

As you can see, the abs() function now works with all three of the data types (int, long, and double)
that we use as arguments. It will work on other basic numerical types as well, and it will even work
on user-defined data types, provided that the less-than operator (<) and the unary minus operator (-)
are appropriately overloaded.

Here’s how we specify the abs() function to work with multiple data types:

template <class T> //function template
T abs(T n)
 {
 return (n<0) ? -n : n;
 }

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

This entire syntax, with a first line starting with the keyword template and the function definition
following, is called a function template. How does this new way of writing abs() give it such
amazing flexibility?

Function Template Syntax

The key innovation in function templates is to represent the data type used by the function not as a
specific type such as int, but by a name that can stand for any type. In the preceding function
template, this name is T. (There’s nothing magic about this name; it can be anything you want, like
Type, or anyType, or FooBar.) The template keyword signals the compiler that we’re about to define a
function template. The keyword class, within the angle brackets, might just as well be called type. As
we’ve seen, you can define your own data types using classes, so there’s really no distinction
between types and classes. The variable following the keyword class (T in this example) is called
the template argument.

Throughout the definition of the function, whenever a specific data type like int would ordinarily be
written, we substitute the template argument, T. In the abs() function this name appears only twice,
both in the first line (the function declarator), as the argument type and return type. In more
complex functions it may appear numerous times throughout the function body as well (in variable
definitions, for example).

What the Compiler Does

What does the compiler do when it sees the template keyword and the function definition that
follows it? Well, nothing right away. The function template itself doesn’t cause the compiler to
generate any code. It can’t generate code because it doesn’t know yet what data type the function
will be working with. It simply remembers the template for possible future use.

Code generation doesn’t take place until the function is actually called (invoked) by a statement
within the program. In tempabs this happens in expressions like abs(int1) in the statement

cout << “\nabs(“ << int << ”)=” << abs(int1);

When the compiler sees such a function call, it knows that the type to use is int, because that’s the
type of the argument int1. So it generates a specific version of the abs() function for type int,
substituting int wherever it sees the name T in the function template. This is called instantiating the
function template, and each instantiated version of the function is called a template function. (That
is, a template function is a specific instance of a function template. Isn’t English fun?)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The compiler also generates a call to the newly instantiated function, and inserts it into the code
where abs(int1) is. Similarly, the expression abs(lon1) causes the compiler to generate a version of
abs() that operates on type long and a call to this function; while the abs(dub1) call generates a
function that works on type double. Of course, the compiler is smart enough to generate only one
version of abs() for each data type. Thus, even though there are two calls to the int version of the
function, the code for this version appears only once in the executable code.

Simplifies the Listing

Notice that the amount of RAM used by the program is the same whether we use the template
approach or actually write three separate functions. What we’ve saved is having to type three
separate functions into the source file. This makes the listing shorter and easier to understand. Also,
if we want to change the way the function works, we need to make the change in only one place in
the listing instead of three places.

The Deciding Argument

The compiler decides how to compile the function based entirely on the data type used in the
function call’s argument (or arguments). The function’s return type doesn’t enter into this decision.
This is similar to the way the compiler decides which of several overloaded functions to call.

Another Kind of Blueprint

We’ve seen that a function template isn’t really a function, since it does not actually cause program
code to be placed in memory. Instead it is a pattern, or blueprint, for making many functions. This
fits right into the philosophy of OOP. It’s similar to the way a class isn’t anything concrete (such as
program code in memory), but a blueprint for making many similar objects.

Function Templates with Multiple Arguments

Let’s look at another example of a function template. This one takes three arguments: two that are
template arguments and one of a basic type. The purpose of this function is to search an array for a
specific value. The function returns the array index for that value if it finds it, or ñ1 if it can’t find
it. The arguments are a pointer to the array, the value to search for, and the size of the array. In
main() we define four different arrays of different types, and four values to search for. We treat type
char as a number. Then we call the template function once for each array. Here’s the listing for
TEMPFIND:

// tempfind.cpp
// template used for function that finds number in array
#include <iostream>
using namespace std;
//--
//function returns index number of item, or -1 if not found
template <class atype>
int find(atype* array, atype value, int size)
 {
 for(int j=0; j<size; j++)
 if(array[j]==value)
 return j;
 return -1;
 }
//--
char chrArr[] = {1, 3, 5, 9, 11, 13}; //array

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

char chrArr[] = {1, 3, 5, 9, 11, 13}; //array
char ch = 5; //value to find
int intArr[] = {1, 3, 5, 9, 11, 13};
int in = 6;
long lonArr[] = {1L, 3L, 5L, 9L, 11L, 13L};
long lo = 11L;
double dubArr[] = {1.0, 3.0, 5.0, 9.0, 11.0, 13.0};
double db = 4.0;

int main()
 {
 cout << “\n 5 in chrArray: index=” << find(chrArr, ch, 6);
 cout << “\n 6 in intArray: index=” << find(intArr, in, 6);
 cout << “\n11 in lonArray: index=” << find(lonArr, lo, 6);
 cout << “\n 4 in dubArray: index=” << find(dubArr, db, 6);
 cout << endl;
 return 0;
 }

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Here we name the template argument atype. It appears in two of the function’s arguments: as the
type of a pointer to the array, and as the type of the item to be matched. The third function
argument, the array size, is always type int; it’s not a template argument. Here’s the output of the
program:

 5 in chrArray: index=2
 6 in intArray: index=-1
11 in lonArray: index=4
 4 in dubArray: index=-1

The compiler generates four different versions of the function, one for each type used to call it. It
finds a 3 at index 2 in the character array, does not find a 4 in the integer array, and so on.

Template Arguments Must Match

When a template function is invoked, all instances of the same template argument must be of the
same type. For example, in find(), if the array name is of type int, the value to search for must also be
of type int. You can’t say

int intarray[] = {1, 3, 5, 7}; //int array
float f1 = 5.0; //float value
int value = find(intarray, f1, 4); //uh, oh

because the compiler expects all instances of atype to be the same type. It can generate a function

find(int*, int, int);

but it can’t generate

find(int*, float, int);

because the first and second arguments must be the same type.

Syntax Variation

Some programmers put the template keyword and the function declarator on the same line:

template<class atype> int find(atype* array, atype value, int size)
 {
 //function body
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

Of course the compiler is happy enough with this format, but we find it more forbidding and less
clear than the multiline approach.

More Than One Template Argument

You can use more than one template argument in a function template. For example, suppose you
like the idea of the find() function template, but you aren’t sure how large an array it might be
applied to. If the array is too large, then type long would be necessary for the array size, instead of
type int. On the other hand, you don’t want to use type long if you don’t need to. You want to select
the type of the array size, as well as the type of data stored, when you call the function. To make
this possible, you could make the array size into a template argument as well. We’ll call it btype:

template <class atype, class btype>
btype find(atype* array, atype value, btype size)
 {
 for(btype j=0; j<size; j++) //note use of btype
 if(array[j]==value)
 return j;
 return static_cast<btype>(-1);
 }

Now you can use either type int or type long (or even a user-defined type) for the size, whichever is
appropriate. The compiler will generate different functions based not only on the type of the array
and the value to be searched for, but also on the type of the array size.

Note that multiple template arguments can lead to many functions being instantiated from a single
template. Two such arguments, if there were six basic types that could reasonably be used for each
one, would allow the creation of 36 functions. This can take up a lot of memory if the functions are
large. On the other hand, you don’t instantiate a version of the function unless you actually call it.

Why Not Macros?

Old-time C programmers may wonder why we don’t use macros to create different versions of a
function for different data types. For example, the abs() function could be defined as

#define abs(n) ((n<0) ? (-n) : (n))

This has a similar effect to the class template in TEMPABS, because it performs a simple text
substitution and can thus work with any type. However, as we’ve noted before, macros aren’t much
used in C++. There are several problems with them. One is that macros don’t perform any type
checking. There may be several arguments to the macro that should be of the same type, but the
compiler won’t check whether or not they are. Also, the type of the value returned isn’t specified,
so the compiler can’t tell if you’re assigning it to an incompatible variable. In any case, macros are
confined to functions that can be expressed in a single statement. There are also other, more subtle,
problems with macros. On the whole it’s best to avoid them.

What Works?

How do you know whether you can instantiate a template function for a particular data type? For
example, could you use the find() function from TEMPFIND to find a C-string (type char*) in an array
of C-strings? To see if this is possible, check the operators used in the function. If they all work on
the data type, then you can probably use it. In find(), however, we compare two variables using the
equal-to (==) operator. You can’t use this operator with C-strings; you must use the strcmp() library

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

equal-to (==) operator. You can’t use this operator with C-strings; you must use the strcmp() library
function. Thus find() won’t work on C-strings. However, it would work on the string class because
that class overloads the == operator.

Start with a Normal Function

When you write a template function you’re probably better off starting with a normal function that
works on a fixed type; int or whatever. You can design and debug it without having to worry about
template syntax and multiple types. Then, when everything works properly, you can turn the
function definition into a template and check that it works for additional types.

Class Templates

The template concept can be extended to classes. Class templates are generally used for data
storage (container) classes. (We’ll see a major example of this in the next chapter, “The Standard
Template Library.”) Stacks and linked lists, which we encountered in previous chapters, are
examples of data storage classes. However, the examples of these classes that we presented could
store data of only a single basic type. The Stack class in the STAKARAY program in Chapter 7,
“Arrays and Strings,” for example, could store data only of type int. Here’s a condensed version of
that class.

class Stack
 {
 private:
 int st[MAX]; //array of ints
 int top; //index number of top of stack
 public:
 Stack(); //constructor
 void push(int var); //takes int as argument
 int pop(); //returns int value
 };

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

If we wanted to store data of type long in a stack we would need to define a completely new class:

class LongStack
 {
 private:
 long st[MAX]; //array of longs
 int top; //index number of top of stack
 public:
 LongStack(); //constructor
 void push(long var); //takes long as argument
 long pop(); //returns long value
 };

Similarly, we would need to create a new stack class for every data type we wanted to store. It
would be nice to be able to write a single class specification that would work for variables of all
types, instead of a single basic type. As you may have guessed, class templates allow us to do this.
We’ll create a variation of STAKARAY that uses a class template. Here’s the listing for TEMPSTAK

// tempstak.cpp
// implements stack class as a template
#include <iostream.h>
using namespace std;
const int MAX = 100; //size of array
//
template <class Type>
class Stack
 {
 private:
 Type st[MAX]; //stack: array of any type
 int top; //number of top of stack
 public:
 Stack() //constructor
 { top = -1; }
 void push(Type var) //put number on stack
 { st[++top] = var; }
 Type pop() //take number off stack
 { return st[top--]; }
 };
//
int main()
 {
 Stack<float> s1; //s1 is object of class Stack<float>

 s1.push(1111.1F); //push 3 floats, pop 3 floats
 s1.push(2222.2F);
 s1.push(3333.3F);
 cout << “1: ” << s1.pop() << endl;
 cout << “2: ” << s1.pop() << endl;
 cout << “3: ” << s1.pop() << endl;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 cout << “3: ” << s1.pop() << endl;

 Stack<long> s2; //s2 is object of class Stack<long>

 s2.push(123123123L); //push 3 longs, pop 3 longs
 s2.push(234234234L);
 s2.push(345345345L);
 cout << “1: ” << s2.pop() << endl;
 cout << “2: ” << s2.pop() << endl;
 cout << “3: ” << s2.pop() << endl;
 return 0;
 }

Here the class Stack is presented as a template class. The approach is similar to that used in function
templates. The template keyword and class Stack signal that the entire class will be a template.

template <class Type>
class Stack
 {
 //data and member functions using template argument Type
 };

A template argument, named Type in this example, is then used (instead of a fixed data type like
every place in the class specification where there is a reference to the type of the array st. There are
three such places: the definition of st, the argument type of the push() function, and the return type of
the pop() function.

Class templates differ from function templates in the way they are instantiated. To create an actual
function from a function template, you call it using arguments of a specific type. Classes, however,
are instantiated by defining an object using the template argument.

Stack<float> s1;

This creates an object, s1, a stack that stores numbers of type float. The compiler provides space in
memory for this object’s data, using type float wherever the template argument Type appears in the
class specification. It also provides space for the member functions (if these have not already been
placed in memory by another object of type Stack<float>). These member functions also operate
exclusively on type float. Figure 14.2 shows how a class template and definitions of specific objects
cause these objects to be placed in memory.

Creating a Stack object that stores objects of a different type, as in

Stack<long> s2;

creates not only a different space for data, but also a new set of member functions that operate on
type long.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 14.2 A class template.

Note that the name of the type of s1 consists of the class name Stack plus the template argument:
Stack<float>. This distinguishes it from other classes that might be created from the same template,
such as Stack<int> or Stack<long>.

In TEMPSTAK we exercise the s1 and s2 stacks by pushing and popping three values on each one and
displaying each popped value. Here’s the output:

1: 3333.3 //float stack
2: 2222.2
3: 1111.1
1: 345345345 //long stack
2: 234234234
3: 123123123

In this example, the template approach gives us two classes for the price of one, and we could
instantiate class objects for other numerical types with just a single line of code.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Class Name Depends on Context

In the TEMPSTAK example, the member functions of the class template were all defined within the
class. If the member functions are defined externally (outside of the class specification), we need a
new syntax. The next program shows how this works. Here’s the listing for TEMPSTAK2:

// temstak2.cpp
// implements stack class as a template
// member functions are defined outside the class
#include <iostream>
using namespace std;
const int MAX = 100;
//
template <class Type>
class Stack
 {
 private:
 Type st[MAX]; //stack: array of any type
 int top; //number of top of stack
 public:
 Stack(); //constructor
 void push(Type var); //put number on stack
 Type pop(); //take number off stack
 };
//
template<class Type>
Stack<Type>::Stack() //constructor
 {
 top = -1;
 }
//--
template<class Type>
void Stack<Type>::push(Type var) //put number on stack
 {
 st[++top] = var;
 }
//--
template<class Type>
Type Stack<Type>::pop() //take number off stack
 {
 return st[top--];
 }
//--
int main()
 {
 Stack<float> s1; //s1 is object of class Stack<float>

 s1.push(1111.1F); //push 3 floats, pop 3 floats

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 s1.push(1111.1F); //push 3 floats, pop 3 floats
 s1.push(2222.2F);
 s1.push(3333.3F);
 cout << “1: ” << s1.pop() << endl;
 cout << “2: ” << s1.pop() << endl;
 cout << “3: ” << s1.pop() << endl;

 Stack<long> s2; //s2 is object of class Stack<long>

 s2.push(123123123L); //push 3 longs, pop 3 longs
 s2.push(234234234L);
 s2.push(345345345L);
 cout << “1: ” << s2.pop() << endl;
 cout << “2: ” << s2.pop() << endl;
 cout << “3: ” << s2.pop() << endl;
 return 0;
 }

The expression template<class Type> must precede not only the class definition, but each externally
defined member function as well. Here’s how the push() function looks:

template<class Type>
void Stack<Type>::push(Type var)
 {
 st[++top] = var;
 }

The name Stack<Type> is used to identify the class of which push() is a member. In a normal non-
template member function the name Stack alone would suffice:

void Stack::push(int var) //Stack() as a non-template function
 {
 st[++top] = var;
 }

but for a function template we need the template argument as well: Stack<Type>.

Thus we see that the name of the template class is expressed differently in different contexts.
Within the class specification, it’s simply the name itself: Stack. For externally defined member
functions, it’s the class name plus the template argument name: Stack<Type>. When you define
actual objects for storing a specific data type, it’s the class name plus this specific type: Stack<float>
(or whatever).

class Stack //Stack class specifier
 { };

void Stack<Type>::push(Type var) //push() definition
 { }

Stack<float> s1; //object of type Stack<float>

You must exercise considerable care to use the correct name in the correct context. It’s easy to
forget to add the <Type> or <float> to the Stack. The compiler hates it when you get it wrong.

Although it’s not demonstrated in this example, you must also be careful of the syntax when a
member function returns a value of its own class. Suppose we define a class Int that provided safety
features for integers, as discussed in Exercise 4 in Chapter 8, “Operator Overloading.” If you used
an external definition for a member function xfunc() of this class that returned type Int, you would
need to use Int<Type> for the return type as well as preceding the scope resolution operator:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Int<Type> Int<Type>::xfunc(Int arg)
 { }

The class name used as a type of a function argument, on the other hand, doesn’t need to include
the <Type> designation.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

A Linked List Class Using Templates

Let’s look at another example where templates are used for a data storage class. This is a
modification of our LINKLIST program from Chapter 10, “Pointers,” which you are encouraged to
reexamine. It requires not only that the linklist class itself be made into a template, but that the link
structure, which actually stores each data item, be made into a template as well. Here’s the listing
for TEMPLIST:

// templist.cpp
// implements linked list as a template
#include <iostream>
using namespace std;
//
template<class TYPE> //struct link<TYPE>
struct link //one element of list
//within this struct definition ‘link’ means link<TYPE>
 {
 TYPE data; //data item
 link* next; //pointer to next link
 };
//
template<class TYPE> //class linklist<TYPE>
class linklist //a list of links
//within this class definition ‘linklist’ means linklist<TYPE>
 {
 private:
 link<TYPE>* first; //pointer to first link
 public:
 linklist() //no-argument constructor
 { first = NULL; } //no first link
 //note: destructor would be nice; not shown for simplicity
 void additem(TYPE d); //add data item (one link)
 void display(); //display all links
 };
//
template<class TYPE>
void linklist<TYPE>::additem(TYPE d) //add data item
(continued on next page)
(continued from previous page)
 {
 link<TYPE>* newlink = new link<TYPE>; //make a new link
 newlink->data = d; //give it data
 newlink->next = first; //it points to next link
 first = newlink; //now first points to this
 }
//--
template<class TYPE>
void linklist<TYPE>::display() //display all links

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void linklist<TYPE>::display() //display all links
 {
 link<TYPE>* current = first; //set ptr to first link
 while(current != NULL) //quit on last link
 {
 cout << endl << current->data; //print data
 current = current->next; //move to next link
 }
 }
//--
int main()
 {
 linklist<double> ld; //ld is object of class linklist<double>

 ld.additem(151.5); //add three doubles to list ld
 ld.additem(262.6);
 ld.additem(373.7);
 ld.display(); //display entire list ld

 linklist<char> lch; //lch is object of class linklist<char>

 lch.additem(‘a’); //add three chars to list lch
 lch.additem(‘b’);
 lch.additem(‘c’);
 lch.display(); //display entire list lch
 cout << endl;
 return 0;
 }

In main() we define two linked lists: one to hold numbers of type double, and one to hold characters
of type char. We then exercise the lists by placing three items on each one with the additem() member
function, and displaying all the items with the display() member function. Here’s the output of
TEMPLIST:

373.7
262.6
151.5
c
b
a

Both the linklist class and the link structure make use of the template argument TYPE to stand for any
type. (Well, not really any type; we’ll discuss later what types can actually be stored.) Thus not
only linklist but also link must be templates, preceded by the line

template<class TYPE>

Notice that it’s not just a class that’s turned into a template. Any other programming constructs that
use a variable data type must also be turned into templates, as the link structure is here.

As before, we must pay attention to how the class (and in this program, a structure as well) are
named in different parts of the program. Within its own specification we can use the name of the
class or structure alone: linklist and link. In external member functions, we must use the class or
structure name and the template argument: linklist<TYPE>. When we actually define objects of type
linklist, we must use the specific data type that the list is to store:

linklist<double> ld; //defines object ld of class linklist<double>

Storing User-Defined Data Types

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In our programs so far, we’ve used template classes to store basic data types. For example, in the
TEMPLIST program we stored numbers of type double and type char in a linked list. Is it possible to
store objects of user-defined types (classes) in these same template classes? The answer is yes, but
with a caveat.

Employees in a Linked List

Examine the employee class in the EMPLOY program in Chapter 9, “Inheritance.” (Don’t worry about
the derived classes.) Could we store objects of type employee on the linked list of the TEMPLIST
example? As with template functions, we can find out if a template class can operate on objects of a
particular class by checking the operations the template class performs on those objects. The linklist
class uses the overloaded insertion (<<) operator to display the objects it stores:

void linklist<TYPE>::display()
 {
 ...
 cout << endl << current->data; //uses insertion operator (<<)
 ...
 };

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

This is not a problem with basic types, for which the insertion operator is already defined.
Unfortunately, however, the employee class in the EMPLOY program does not overload this operator.
Thus we’ll need to modify the employee class to include it. Also, to simplify getting employee data
from the user, we overload the extraction (>>) operator as well. Data from this operator is placed in
a temporary object emptemp before being added to the linked list. Here’s the listing for TEMPLIST2:

// temlist2.cpp
// implements linked list as a template
// demonstrates list used with employee class

#include <iostream>
using namespace std;
const int LEN = 80; //maximum length of
names//
////class employee //employee class
 {
 private:
 char name[LEN]; //employee name
 unsigned long number; //employee number
 public:
 friend istream& operator >> (istream& s, employee& e);
 friend ostream& operator << (ostream& s, employee& e);
 };
//--
istream& operator >> (istream& s, employee& e)
 {
 cout << “\n Enter last name: ”; cin >> e.name;
 cout << “ Enter number: ”; cin >> e.number;
 return s;
 }
//--
ostream& operator << (ostream& s, employee& e)
 {
 cout << “\n Name: ” << e.name;
 cout << “\n Number: ” << e.number;
 return s;
 }
//
template<class TYPE> //struct “link<TYPE>”
struct link //one element of list
 {
 TYPE data; //data item
 link* next; //pointer to next link
 };
//
template<class TYPE> //class “linklist<TYPE>”
class linklist //a list of links
 {
 private:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 private:
 link<TYPE>* first; //pointer to first link
 public:
 linklist() //no-argument constructor
 { first = NULL; } //no first link
 void additem(TYPE d); //add data item (one link)
 void display(); //display all links
 };
//--
template<class TYPE>
void linklist<TYPE>::additem(TYPE d) //add data item
 {
 link<TYPE>* newlink = new link<TYPE>; //make a new link
 newlink->data = d; //give it data
 newlink->next = first; //it points to next link
 first = newlink; //now first points to this
 }
//--
template<class TYPE>
void linklist<TYPE>::display() //display all links
 {
 link<TYPE>* current = first; //set ptr to first link
 while(current != NULL) //quit on last link
 {
 cout << endl << current->data; //display data
 current = current->next; //move to next link
 }
 }
//
int main()
 { //lemp is object of
 linklist<employee> lemp; //class “linklist<employee>”
 employee emptemp; //temporary employee storage
 char ans; //user’s response (‘y’ or ‘n’)

 do
 {
 cin >> emptemp; //get employee data from user
 lemp.additem(emptemp); //add it to linked list ‘lemp’
 cout << “\nAdd another (y/n)? ”;
 cin >> ans;
 } while(ans != ‘n’); //when user is done,
 lemp.display(); //display entire linked list
 cout << endl;
 return 0;
 }

In main() we instantiate a linked list called lemp. Then, in a loop, we ask the user to input data for an
employee, and we add that employee object to the list. When the user terminates the loop, we
display all the employee data. Here’s some sample interaction:

 Enter last name: Mendez
 Enter number: 1233
Add another(y/n)? y

 Enter last name: Smith
 Enter number: 2344
Add another(y/n)? y

 Enter last name: Chang
 Enter number: 3455
Add another(y/n)? n

 Name: Chang
 Number: 3455

 Name: Smith

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Name: Smith
 Number: 2344

 Name: Mendez
 Number: 1233

Notice that the linklist class does not need to be modified in any way to store objects of type
employee. This is the beauty of template classes: They will work not only with basic types, but with
user-defined types as well.

What Can You Store?

We noted that you can tell whether you can store variables of a particular type in a data-storage
template class by checking the operators in the member functions of that class. Is it possible to store
a string (class string) in the linklist class in the TEMPLIST2 program? Member functions in this class
use the insertion (<<) and extraction (>>) operators. These operators work perfectly well with
strings, so there’s no reason we can’t use this class to store strings, as you can verify yourself. But
if any operators exist in a storage class member function that don’t operate on a particular data type,
then you can’t use the class to store that type.

Exceptions

Exceptions, the second major topic in this chapter, provide a systematic, object-oriented approach
to handling run-time errors generated by C++ classes. Exceptions are errors that occur at run time.
They are caused by a wide variety exceptional circumstance, such as running out of memory, not
being able to open a file, trying to initialize an object to an impossible value, or using an out-of-
bounds index to a vector.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Why Do We Need Exceptions?

Why do we need a new mechanism to handle errors? Let’s look at how the process was handled in
the past. In C-language programs, an error is often signaled by returning a particular value from the
function in which it occurred. For example, disk-file functions often return NULL or 0 to signal an
error. Each time you call one of these functions you check the return value:

if(somefunc() == ERROR_RETURN_VALUE)
 //handle the error or call error-handler function
else
 //proceed normally
if(anotherfunc() == NULL)
 //handle the error or call error-handler function
else
 //proceed normally
if(thirdfunc() == 0)
 //handle the error or call error-handler function
else
 //proceed normally

One problem with this approach is that every single call to such a function must be examined by the
program. Surrounding each function call with an if...else statement, and adding statements to handle
the error (or call an error-handler routine), requires a lot of code and makes the listing convoluted
and hard to read.

The problem becomes more complex when classes are used, since errors may take place without a
function being explicitly called. For example, suppose an application defines objects of a class:

SomeClass obj1, obj2, obj3;

How will the application find out if an error occurred in the class constructor? The constructor is
called implicitly, so there’s no return value to be checked.

Things are complicated even further when an application uses class libraries. A class library and the
application that makes use of it are often created by separate people: the class library by a vendor
and the application by a programmer who buys the class library. This makes it even harder to
arrange for error values to be communicated from a class member function to the program that’s
calling the function. The problem of communicating errors from deep within class libraries is
probably the most important problem solved by exceptions. We’ll return to this topic at the end of
this section.

Old-time C programmers may remember another approach to catching errors: the setjmp() and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Old-time C programmers may remember another approach to catching errors: the setjmp() and
longjmp() combination of functions. However, this approach is not appropriate for an object-oriented
environment because it does not properly handle the destruction of objects.

Exception Syntax

Imagine an application that creates and interacts with objects of a certain class. Ordinarily the
application’s calls to the class member functions cause no problems. Sometimes, however, the
application makes a mistake, causing an error to be detected in a member function. This member
function then informs the application that an error has occurred. When exceptions are used, this is
called throwing an exception. In the application we install a separate section of code to handle the
error. This code is called an exception handler or catch block; it catches the exceptions thrown by
the member function. Any code in the application that uses objects of the class is enclosed in a try
block. Errors generated in the try block will be caught in the catch block. Code that doesn’t interact
with the class need not be in a try block. Figure 14.3 shows the arrangement.

The exception mechanism uses three new C++ keywords: throw, catch, and try. Also, we need to
create a new kind of entity called an exception class. XSYNTAX is not a working program, but a
skeleton program to show the syntax.

// xsyntax.cpp
// not a working program
//
class AClass //a class
 {
 public:
 class AnError //exception class
 {
 };
 void Func() //a member function
 {
 if(/* error condition */)
 throw AnError(); //throw exception
 }
 };
//
int main() //application
 {
 try //try block
 {
 AClass obj1; //interact with AClass objects
 obj1.Func(); //may cause error
 }
 catch(AClass::AnError) //exception handler
 { //(catch block)
 //tell user about error, etc.
 }
 return 0;
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 14.3 The exception mechanism.

We start with a class called AClass, which represents any class in which errors might occur. An
exception class, AnError, is specified in the public part of AClass. In AClass’s member functions we
check for errors. If we find one, we throw an exception, using the keyword throw followed by the
constructor for the error class:

throw AnError(); //’throw’ followed by constructor for AnError class

In the main() part of the program we enclose any statements that interact with AClass in a try block. If
any of these statements causes an error to be detected in an AClass member function, an exception
will be thrown and control will go to the catch block that immediately follows the try block.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

A Simple Exception Example

Let’s look at a working program example that uses exceptions. This example is derived from the
STAKARAY program in Chapter 7, which created a stack data structure in which integer data values
could be stored. Unfortunately, this earlier example could not detect two common errors. The
application program might attempt to push too many objects onto the stack, thus exceeding the
capacity of the array, or it might try to pop too many objects off the stack, thus obtaining invalid
data. In the XSTAK program we use an exception to handle these two errors.

// xstak.cpp
// demonstrates exceptions
#include <iostream>
using namespace std;
const int MAX = 3; //stack holds 3 integerss
//
class Stack
 {
 private:
 int st[MAX]; //array of integers
 int top; //index of top of stack
 public:
 class Range //exception class for Stack
 { //note: empty class body
 };

 Stack() //constructor
 { top = -1; }

 void push(int var)
 {
 if(top >= MAX-1) //if stack full,
 throw Range(); //throw exception
 st[++top] = var; //put number on stack
 }
 int pop()
 {
 if(top < 0) //if stack empty,
 throw Range(); //throw exception
 return st[top--]; //take number off stack
 }
 };
//
int main()
 {
 Stack s1;
 {
 try
 s1.push(11);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 s1.push(11);
 s1.push(22);
 s1.push(33);
// s1.push(44); //oops: stack full
 cout << “1: ” << s1.pop() << endl;
 cout << “2: ” << s1.pop() << endl;
 cout << “3: ” << s1.pop() << endl;
 cout << “4: ” << s1.pop() << endl; //oops: stack empty
 }
 catch(Stack::Range) //exception handler
 {
 cout << “Exception: Stack Full or Empty” << endl;
 }

 cout << “Arrive here after catch (or normal exit)” << endl;
 return 0;
 }

Note that we’ve made the stack small so that it’s easier to trigger an exception by pushing too many
items.

Let’s examine the features of this program that deal with exceptions. There are four of them. In the
class specification there is an exception class. There are also statements that throw exceptions. In
the main() part of the program there is a block of code that may cause exceptions (the try block), and
a block of code that handles the exception (the catch block).

Specifying the Exception Class

The program first specifies an exception class within the Stack class:

class Range
 { //note: empty class body
 };

Here the body of the class is empty, so objects of this class have no data and no member functions.
All we really need in this simple example is the class name, Range. This name is used to connect a
throw statement with a catch block. (The class body need not always be empty, as we’ll see later.)

Throwing an Exception

In the Stack class an exception occurs if the application tries to pop a value when the stack is empty
or tries to push a value when the stack is full. To let the application know that it has made such a
mistake when manipulating a Stack object, the member functions of the Stack class check for these
conditions using if statements, and throw an exception if they occur. In XSTAK the exception is
thrown in two places, both using the statement

throw Range();

The Range() part of this statement invokes the (implicit) constructor for the Range class, which
creates an object of this class. The throw part of the statement transfers program control to the
exception handler (which we’ll examine in a moment).

The try Block

All the statements in main() that might cause this exception—that is, statements that manipulate Stack
objects—are enclosed in braces and preceded by the try keyword:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

try
 {
 //code that operates on objects that might cause an exception
 }

This is simply part of the application’s normal code; it’s what you would need to write even if you
weren’t using exceptions. Not all the code in the program needs to be in a try block; just the code
that interacts with the Stack class. Also, there can be many try blocks in your program, so you can
access Stack objects from different places.

The Exception Handler (Catch Block)

The code that handles the exception is enclosed in braces, preceded by the catch keyword, with the
exception class name in parentheses. The exception class name must include the class in which it is
located. Here it’s Stack::Range.

catch(Stack::Range)
 {
 //code that handles the exception
 }

This construction is called the exception handler. It must immediately follow the try block. In xstak
the exception handler simply prints an error message to let the user know why the program failed.

Control “falls through” the bottom of the exception handler, so you can continue processing at that
point. Or the exception handler may transfer control elsewhere, or (often) terminate the program.

Sequence of Events

Let’s summarize the sequence of events when an exception occurs.

1. Code is executing normally outside a try block.
2. Control enters the try block.
3. A statement in the try block causes an error in a member function.
4. The member function throws an exception.
5. Control transfers to the exception handler (catch block) following the try block.

That’s all there is to it. Notice how clean the resulting code is. Any of the statements in the try
block could cause an exception, but we don’t need to worry about checking a return value for each
one, because the try-throw-catch arrangement handles them all automatically. In this particular
example we’ve deliberately created two statements that cause exceptions. The first,

s1.push(44); //pushes too many items

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

causes an exception if you remove the comment symbol preceding it, and the second,

cout << “4: ” << s1.pop() << endl; //pops item from empty stack

causes an exception if the first statement is commented out. Try it each way. In both cases the same
error message will be displayed:

Stack Full or Empty

Multiple Exceptions

You can design a class to throw as many exceptions as you want. To show how this works, we’ll
modify the XSTAK program to throw separate exceptions for attempting to push data on a full stack
and attempting to pop data from an empty stack. Here’s the listing for XSTAK2:

// xstak2.cpp
// demonstrates two exception handlers
#include <iostream>
using namespace std;
const int MAX = 3; //stack holds 3 integerss
//
class Stack
 {
 private:
 int st[MAX]; //stack: array of integers
 int top; //index of top of stack
 public:
 class Full { }; //exception class
 class Empty { }; //exception class
//--
 Stack() //constructor
 { top = -1; }
//--
 void push(int var) //put number on stack
 {
 if(top >= MAX-1) //if stack full,
 throw Full(); //throw Full exception
 st[++top] = var;
 }
//--
 int pop() //take number off stack
 {
 if(top < 0) //if stack empty,
 throw Empty(); //throw Empty exception

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 throw Empty(); //throw Empty exception
 return st[top-];
 }
 };
//
int main()
 {
 Stack s1;

 try
 {
 s1.push(11);
 s1.push(22);
 s1.push(33);
// s1.push(44); //oops: stack full
 cout << “1: ” << s1.pop() << endl;
 cout << “2: ” << s1.pop() << endl;
 cout << “3: ” << s1.pop() << endl;
 cout << “4: ” << s1.pop() << endl; //oops: stack empty
 }
 catch(Stack::Full)
 {
 cout << “Exception: Stack Full” << endl;
 }
 catch(Stack::Empty)
 {
 cout << “Exception: Stack Empty” << endl;
 }
 return 0;
 }

In XSTAK2 we specify two exception classes:

class Full { };
class Empty { };

The statement

throw Full();

is executed if the application calls push() when the stack is already full, and

throw Empty();

is executed if pop() is called when the stack is empty.

A separate catch block is used for each exception:

try
 {
 //code that operates on Stack objects
 }
catch(Stack::Full)
 {
 //code to handle Full exception
 }
catch(Stack::Empty)
 {
 //code to handle Empty exception
 }

All the catch blocks used with a particular try block must immediately follow the try block. In this
case each catch block simply prints a message: “Stack Full” or “Stack Empty”. Only one catch
block is activated for a given exception. A group of catch blocks, or a catch ladder, operates a little

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

block is activated for a given exception. A group of catch blocks, or a catch ladder, operates a little
like a switch statement, with only the appropriate section of code being executed. When an
exception has been handled, control passes to the statement following all the catch blocks. (Unlike a
switch statement, you don’t need to end each catch block with a break. In this way catch blocks act
more like functions.)

Exceptions with the Distance Class

Let’s look at another example of exceptions, this one applied to the infamous Distance class from
previous chapters. A Distance object has an integer value of feet and a floating-point value for
inches. The inches value should always be less than 12.0. A problem with this class in previous
examples has been that it couldn’t protect itself if the user initialized an object with an inches value
of 12.0 or greater. This could lead to trouble when the class tried to perform arithmetic, since the
arithmetic routines (such as operator +()) assumed inches would be less than 12.0. Such impossible
values could also be displayed, thus confounding the user with dimensions like 7’-15”.

Let’s rewrite the Distance class to use an exception to handle this error, as shown in XDIST:

// xdist.cpp
// exceptions with Distance class
#include <iostream>
using namespace std;
//
class Distance //English Distance class
 {
 private:
 int feet;
 float inches;
 public:
 class InchesEx { }; //exception class
//--
 Distance() //constructor (no args)
 { feet = 0; inches = 0.0; }
//--
 Distance(int ft, float in) //constructor (two args)
 {
 if(in >= 12.0) //if inches too big,
 throw InchesEx(); //throw exception
 feet = ft;
 inches = in;
 }
//--
 void getdist() //get length from user
 {
 cout << “\nEnter feet: ”; cin >> feet;
 cout << “Enter inches: ”; cin >> inches;
 if(inches >= 12.0) //if inches too big,
 throw InchesEx(); //throw exception
 }
//--
 void showdist() //display distance
 { cout << feet << “\’-” << inches << ‘\”’; }
 };
//
int main()
 {
 try
 {
 Distance dist1(17, 3.5); //2-arg constructor
 Distance dist2; //no-arg constructor
 dist2.getdist(); //get distance from user
 //display distances
 cout << “\ndist1 = ”; dist1.showdist();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 cout << “\ndist1 = ”; dist1.showdist();
 cout << “\ndist2 = ”; dist2.showdist();
 }
 catch(Distance::InchesEx) //catch exceptions
 {
 cout << “\nInitialization error: ”
 “inches value is too large.”;
 }
 cout << endl;
 return 0;
 }

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

We install an exception class called InchesEx in the Distance class. Then, whenever the user attempts
to initialize the inches data to a value greater than or equal to 12.0, we throw the exception. This
happens in two places: in the two-argument constructor, where the programmer may make an error
supplying initial values, and in the getdist() function, where the user may enter an incorrect value at
the Enter inches prompt. We could also check for negative values and other input mistakes.

In main() all interaction with Distance objects is enclosed in a try block, and the catch block displays
an error message.

In a more sophisticated program, of course, you might want to handle a user error (as opposed to a
programmer error) differently. It would be more user friendly to go back to the beginning of the try
block and give the user a chance to enter a another distance value.

Exceptions with Arguments

What happens if the application needs more information about what caused an exception? For
instance, in the XDIST example, it might help the programmer to know what the bad inches value
actually was. Also, if the same exception is thrown by different member functions, as it is in XDIST
it would be nice to know which of the functions was the culprit. Is there a way to pass such
information from the member function, where the exception is thrown, to the application that
catches it?

This question can be answered by remembering that throwing an exception involves not only
transferring control to the handler, but also creating an object of the exception class by calling its
constructor. In XDIST, for example, we create an object of type InchesEx when we throw the
exception with the statement

throw InchesEx();

If we add data members to the exception class, we can initialize them when we create the object.
The exception handler can then retrieve the data from the object when it catches the exception. It’s
like writing a message on a baseball and throwing it over the fence to your neighbor. We’ll modify
the XDIST program to do this. Here’s the listing for XDIST2:

// xdist2.cpp
// exceptions with arguments
#include <iostream>
#include <string>
using namespace std;
//
class Distance //English Distance class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

class Distance //English Distance class
 {
 private:
 int feet;
 float inches;
 public:
//--
 class InchesEx //exception class
 {
 public:
 string origin; //for name of routine
 float iValue; //for faulty inches value

 InchesEx(string or, float in) //2-arg constructor
 {
 origin = or; //store string
 iValue = in; //store inches
 }
 }; //end of exception class
//--
 Distance() //constructor (no args)
 { feet = 0; inches = 0.0; }
//--
 Distance(int ft, float in) //constructor (two args)
 {
 if(in >= 12.0)
 throw InchesEx(“2-arg constructor”, in);
 feet = ft;
 inches = in;
 }
//--
 void getdist() //get length from user
 {
 cout << “\nEnter feet: ”; cin >> feet;
 cout << “Enter inches: ”; cin >> inches;
 if(inches >= 12.0)
 throw InchesEx(“getdist() function”, inches);
 }
//--
 void showdist() //display distance
 { cout << feet << “\’-” << inches << ‘\”’; }
 };
//
int main()
 {
 try
 {
 Distance dist1(17, 3.5); //2-arg constructor
 Distance dist2; //no-arg constructor
 dist2.getdist(); //get value
 //display distances
 cout << “\ndist1 = ”; dist1.showdist();
 cout << “\ndist2 = ”; dist2.showdist();
 }
 catch(Distance::InchesEx ix) //exception handler
 {
 cout << “\nInitialization error in ” << ix.origin
 << “.\n Inches value of ” << ix.iValue
 << “ is too large.”;
 }
 cout << endl;
 return 0;
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

There are three parts to the operation of passing data when throwing an exception: specifying the
data members and a constructor for the exception class, initializing this constructor when we throw
an exception, and accessing the object’s data when we catch the exception. Let’s look at these in
turn.

Specifying Data in an Exception Class

It’s convenient to make the data in an exception class public so it can be accessed directly by the
exception handler. Here’s the specification for the new InchesEx exception class in XDIST2:

class InchesEx //exception class
 {
 public:
 string origin; //for name of routine
 float iValue; //for faulty inches value

 InchesEx(string or, float in) //2-arg constructor
 {
 origin = or; //put string in object
 iValue = in; //put inches value in object
 }
 };

There are public variables for a string object, which will hold the name of the member function
being called, and a type float, for the faulty inches value.

Initializing an Exception Object

How do we initialize the data when we throw an exception? In the two-argument constructor for the
Stack class we say

throw InchesEx(“2-arg constructor”, in);

and in the getdist() nmember function for Stack it’s

throw InchesEx(“getdist() function”, inches);

When the exception is thrown, the handler will display the string and inches values. The string will
tell us which member function is throwing the exception, and the value of inches will report the
faulty inches value detected by the member function. This additional data will make it easier for the
programmer or user to figure out what caused the error.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Extracting Data from the Exception Object

How do we extract this data when we catch the exception? The simplest way is to make the data a
public part of the exception class, as we’ve done here. Then in the catch block we can declare ix as
the name of the exception object we’re catching. Using this name we can refer to its data in the
usual way, using the dot operator:

catch(Distance::InchesEx ix)
 {
 //access ‘ix.origin’ and ‘ix.iValue’ directly
 }

We can then display the value of ix.origin and ix.iValue. Here’s some interaction with XDIST2, when
the user enters too large a value for inches:

Enter feet: 7
Enter inches: 13.5

Initialization error in getdist() function.
 Inches value of 13.5 is too large.

Similarly, if the programmer changes the definition of dist1 in main() to

Distance dist1(17, 22.25);

the resulting exception will cause this error message:

Initialization error in 2-arg constructor.
 Inches value of 22.25 is too large.

Of course we can make whatever use of the exception arguments we want, but they generally carry
information that helps us diagnose the error that triggered the exception.

The bad_alloc Class

Standard C++ contains several built-in exception classes. The most commonly used is probably
bad_alloc, which is thrown if an error occurs when attempting to allocate memory with new. (This
exception was called xalloc in earlier versions of C++. At this writing this older approach is still used
in Microsoft Visual C++.) If you set up the appropriate try and catch blocks, you can make use of
bad_alloc with very little effort. Here’s a short example, BADALLOC, that shows how it’s used:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// badalloc.cpp
// demonstrates bad_alloc exception
#include <iostream>
using namespace std;

int main()
 {
 const unsigned long SIZE = 10000; //memory size
 char* ptr; //pointer to memory

 try
 {
 ptr = new char[SIZE]; //allocate SIZE bytes
 }
 catch(bad_alloc) //exception handler
 {
 cout << “\nbad_alloc exception: can’t allocate memory.\n”;
 return(1);
 }
 delete[] ptr; //deallocate memory
 cout << “\nMemory use is successful.\n”;
 return 0;
 }

Put all the statements that use new in a try block. The catch block that follows handles the
exception; often by displaying an error message and terminating the program.

Exception Notes

We’ve shown only the simplest and most common approach to using exceptions. We won’t go into
further detail, but we’ll conclude with a few thoughts about exception usage.

Function Nesting

The statement that causes an exception need not be located directly in the try block; it can also be in
a function that is called by a statement in the try block. (Or in a function called by a function that is
called by a statement in the try block, and so on.) So you only need to install a try block on the
program’s upper level. Lower-level functions need not be so encumbered, provided they are called
directly or indirectly by functions in the try block.

Exceptions and Class Libraries

An important problem solved by exceptions is that of errors in class libraries. A library routine may
discover an error, but typically it doesn’t know what to do about it. After all, the library routine was
written by a different person at a different time than was the program that called it. What the library
routine needs to do is pass the error along to whatever program called it, saying in effect “There’s
been an error, I don’t know what you want to do about it, but here it is.” The calling program can
thus handle the error as it sees fit.

The exception mechanism provides this capability because exceptions are transmitted up through
nested functions until a catch block is encountered. The throw statement may be in a library routine,
but the catch block can be in the program that knows how to deal with the error.

If you’re writing a class library, you should cause it to throw exceptions for anything that could
cause problems to the program using it. If you’re writing a program that uses a class library, you
should provide try and catch blocks for any exceptions that it throws.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Not for Every Situation

Exceptions should not be used for every kind of error. They impose a certain overhead in terms of
program size and (when an exception occurs) in time. For example, exceptions should probably not
be used for user input errors (such as inserting letters into numerical input) that are easily detectable
by the program. Instead the program should use normal decisions and loops to check the user’s
input and request the user to try again if necessary.

Destructors Called Automatically

The exception mechanism is surprisingly sophisticated. When an exception is thrown, a destructor
is called automatically for any object that was created by the code up to that point in the try block.
This is necessary because the application won’t know which statement caused the exception, and if
it wants to recover from the error, it will (at the very least) need to start over at the top of the try
block. The exception mechanism guarantees that the code in the try block will have been “reset,” at
least as far as the existence of objects is concerned.

Handling Exceptions

After you catch an exception, you will sometimes want to terminate your application. The
exception mechanism gives you a chance to indicate the source of the error to the user, and to
perform any necessary clean-up chores before terminating. It also makes clean-up easier by
executing the destructors for objects created in the try block. This allows you to release system
resources, such as memory, that such objects may be using.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

In other cases you will not want to terminate your program. Perhaps your program can figure out
what caused the error and correct it, or the user can be asked to input different data. When this is
the case, the try and catch blocks are typically embedded in a loop, so control can be returned to the
beginning of the try block (which the exception mechanism has attempted to restore to its initial
state).

If there is no exception handler that matches the exception thrown, the program is unceremoniously
terminated by the operating system.

Summary

Templates allow you to generate a family of functions, or a family of classes, to handle different
data types. Whenever you find yourself writing several identical functions that perform the same
operation on different data types, you should consider using a function template instead. Similarly,
whenever you find yourself writing several different class specifications that differ only in the type
of data acted on, you should consider using a class template. You’ll save yourself time and the
result will be a more robust and more easily maintained program that is also (once you understand
templates) easier to understand.

Exceptions are a mechanism for handling C++ errors in a systematic, OOP-oriented way. An
exception is typically caused by a faulty statement in a try block that operates on objects of a class.
The class member function discovers the error and throws an exception, which is caught by the
program using the class, in exception-handler code following the try block.

Questions

Answers to questions can be found in Appendix G, “Answers to Questions and Exercises.”

1. A template provides a convenient way to make a family of

a. variables.
b. functions.
c. classes.
d. programs.

2. A template argument is preceded by the keyword ________.
3. True or false: Templates automatically create different versions of a function, depending
on user input.
4. Write a template for a function that always returns its argument times 2.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5. A template class

a. is designed to be stored in different containers.
b. works with different data types.
c. generates objects which must all be identical.
d. generates classes with different numbers of member functions.

6. True or false: There can be more than one template argument.
7. Creating an actual function from a template is called ________ the function.
8. Actual code for a template function is generated when

a. the function declaration appears in the source code.
b. the function definition appears in the source code.
c. a call to the function appears in the source code.
d. the function is executed at run time.

9. The key concept in the template concept is replacing a ________ with a name that stands
for ________.
10. Templates are often used for classes that ________ ________.
11. An exception is typically caused by

a. the programmer who writes an application’s code.
b. the creator of a class who writes the class member functions.
c. a run-time error.
d. an operating system malfunction that terminates the program.

12. The C++ keywords used with exceptions are ________, ________, and ________.
13. Write a statement that throws an exception using the class BoundsError, which has an
empty body.
14. True or false: Statements that might cause an exception must be part of a catch block.
15. Exceptions are thrown

a. from the catch block to the try block.
b. from a throw statement to the try block.
c. from the point of the error to a catch block.
d. from a throw statement to a catch block.

16. Write the specification for an exception class that stores an error number and an error
name. Include a constructor.
17. True or false: A statement that throws an exception does not need to be located in a try
block.
18. The following are errors for which an exception would typically be thrown.

a. An excessive amount of data threatens to overflow an array
b. The user presses the [Control]-[C] key combination to terminate the program
c. A power failure shuts down the system.
d. new cannot obtain the requested memory

19. Additional information sent when an exception is thrown may be placed in

a. the throw keyword.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

b. the function that caused the error.
c. the catch block.
d. an object of the exception class.

20. True or false: A program can continue to operate after an exception has occurred.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Exercises

Answers to starred exercises can be found in Appendix G.

*1. Write a template function that returns the average of all the elements of an array. The
arguments to the function should be the array name and the size of the array (type int). In
main(), exercise the function with arrays of type int, long, double, and char.
*2. A queue is a data-storage device. It’s like a stack, except that, instead of being last-in-
first-out, it’s first-in-first-out, like the line at a bank teller’s window. If you put in 1, 2, 3, you
get back 1, 2, 3 in that order.
A stack needs only one index to an array (top in the STAKARAY program in Chapter 7). A
queue, on the other hand, must keep track of two indexes to an array: one to the tail, where
new items are added, and one to the head, where old items are removed. The tail follows the
head through the array as items are added and removed. If either the tail or the head reaches
the end of the array, it is reset back to the beginning.
Write a class template for a queue class. Assume the programmer using the queue won’t
make any mistakes, like exceeding the capacity of the queue, or trying to remove an item
when the queue is empty. Define several queues of different data types and insert and remove
data from them.
*3. Add exceptions to the queue template in Exercise 2. Throw two exceptions: one if the
capacity of the queue is exceeded, the other if the program tries to remove an item from an
empty queue. One way to handle this is to add a new data member to the queue: a count of
the number of items currently in the queue. Increment the count when you insert an item, and
decrement it when you remove an item. Throw an exception if this count exceeds the
capacity of the queue, or if it becomes less than 0.
You might try making the main() part of this exercise interactive, so the user can put values on
a queue and take them off. This makes it easier to exercise the queue. Following an
exception, the program should allow the user to recover from a mistake without corrupting
the contents of the queue.
4. Create a function called swaps() that interchanges the values of the two arguments sent to
it. (You will probably want to pass these arguments by reference.) Make the function into a
template, so it can be used with all numerical data types (char, int, float, and so on). Write a
main() program to exercise the function with several types.
5. Create a function called amax() that returns the value of the largest element in an array. The
arguments to the function should be the address of the array and its size. Make this function
into a template so it will work with an array of any numerical type. Write a main() program
that applies this function to arrays of various types.
6. Start with the safearay class from the arrover3 program in Chapter 8. Make this class into a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6. Start with the safearay class from the arrover3 program in Chapter 8. Make this class into a
template, so the safe array can store any kind of data. In main(), create safe arrays of at least
two different types, and store some data in them.
7. Start with the frac class and the four-function fraction calculator of Exercise 7 in Chapter
8. Make the frac class into a template so it can be instantiated using different data types for
the numerator and denominator. These must be integer types, which pretty much restricts you
to char, short, int, and long (unless you develop an integer type of your own). In main(),
instantiate a class frac<char> and use it for the four-function calculator. Class frac<char> will
take less memory than frac<int>, but won’t be able to handle large fractions.
8. Add an exception class to the ARROVER3 program in Chapter 8 so that an out-of-bounds
index will trigger the exception. The catch block can print an error message for the user.
9. Modify the exception class in Exercise 8 (adapted from ARROVER3) so that the error
message in the catch block reports the value of the index that caused the exception.
10. There are various philosophies about when to use exceptions. Refer to the ENGLERR
program from Chapter 12, “Streams and Files.” Should user-input errors be exceptions? For
this exercise, let’s assume so. Add an exception class to the Distance class in that program.
(See also the XDIST and XDIST2 examples in this chapter.) Throw an exception in all the
places where ENGLERR displayed an error message. Use an argument to the exception
constructor to report where the error occurred and the specific cause of the error (inches not a
number, inches out of range, and so on). Also, throw an exception when an error is found
within the isint() function (nothing entered, too many digits, nondigit character, integer out of
range). Question: If it throws exceptions, can isint() remain an independent function?
You can insert both the try block and the catch block within the do loop so that after an
exception you go back to the top of the loop, ready to ask the user for more input.
You might also want to throw an exception in the two-argument constructor, in case the
programmer initializes a Distance value with its inches member out of range.
11. Start with the STRPLUS program in Chapter 8. Add an exception class, and throw an
exception in the one-argument constructor if the initialization string is too long. Throw
another in the overloaded + operator if the result will be too long when two strings are
concatenated. Report which of these errors has occurred.
12. Sometimes the easiest way to use exceptions is to create a new class of which an
exception class is a member. Try this with a class that uses exceptions to handle file errors.
Make a class dofile that includes an exception class and member functions to read and write
files. A constructor to this class can take the filename as an argument and open a file with
that name. You may also want a member function to reset the file pointer to the beginning of
the file. Use the REWERR program in Chapter 12 as a model, and write a main() program that
provides the same functionality, but does so by calling on members of the dofile class.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

CHAPTER 15
THE STANDARD TEMPLATE LIBRARY

Most computer programs exist to process data. The data may represent a wide variety of real-world
information: personnel records, inventories, text documents, the results of scientific experiments,
and so on. Whatever it represents, data is stored in memory and manipulated in similar ways.
University computer science programs typically include a course called “Data structures and
Algorithms.” Data structures refers to the ways data is stored in memory, and algorithms refers to
how it is manipulated.

C++ classes provide an excellent mechanism for creating a library of data structures. In the past,
compiler vendors and many third-party developers offered libraries of container classes to handle
the storage and processing of data. Now, however, Standard C++ includes its own built-in container
class library. It’s called the Standard Template Library (STL), and was developed by Alexander
Stepanov and Meng Lee of Hewlett Packard. The STL is part of the Standard C++ class library, and
can be used as a standard approach to storing and processing data.

This chapter describes the STL and how to use it. The STL is large and complex, so we won’t by
any means describe everything about it; that would require a large book. (Many books are available
on the STL; see Appendix H, “Bibliography.”) We will introduce the STL and give examples of the
more common algorithms and containers.

Introduction to the STL

The STL contains several kinds of entities. The three most important are containers, algorithms, and
iterators.

A container is a way that stored data is organized in memory. In earlier chapters we’ve explored
two kinds of containers: stacks and linked lists. Another container, the array, is so common that it’s
built into C++ (and most other computer languages). However, there are many other kinds of
containers, and the STL includes the most useful. The STL containers are implemented by template
classes, so they can be easily customized to hold different kinds of data.

Algorithms in the STL are procedures that are applied to containers to process their data in various

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Algorithms in the STL are procedures that are applied to containers to process their data in various
ways. For example, there are algorithms to sort, copy, search, and merge data. Algorithms are
represented by template functions. These functions are not member functions of the container
classes. Rather they are standalone functions. Indeed, one of the striking characteristics of the STL
is that its algorithms are so general. You can use them not only on STL containers, but on ordinary
C++ arrays and on containers you create yourself. (Containers also include member functions for
more specific tasks.)

Iterators are a generalization of the concept of pointers: they point to elements in a container. You
can increment an iterator, as you can a pointer, so it points in turn to each element in a container.
Iterators are a key part of the STL because they connect algorithms with containers. Think of them
as a software version of cables, like the cables that connect stereo components together or a
computer to its peripherals.

Figure 15.1 shows these three main components of the STL. In this section we’ll discuss containers,
algorithms, and iterators in slightly more detail. In subsequent sections we’ll explore these concepts
further with program examples.

Figure 15.1 Containers, algorithms, and iterators.

Containers

A container is a way to store data, whether the data consists of built-in types like int and float, or of
class objects. The STL makes seven basic kinds of containers available, as well as three more that
are derived from the basic kinds. In addition, you can create your own containers based on the basic
kinds. You may wonder why we need so many kinds of containers. Why not use C++ arrays in all
data storage situations? The answer is efficiency. An array is awkward or slow in many situations.

Containers in the STL fall into two main categories: sequence and associative. The sequence

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Containers in the STL fall into two main categories: sequence and associative. The sequence
containers are vector, list, and deque. The associative containers are set, multiset, map, and
multimap. In addition, several specialized containers are derived from the sequence containers.
These are stack, queue, and priority_queue. We’ll look at these categories in turn.

Sequence Containers

A sequence container stores a set of elements in what you can visualize as a line, like houses on a
street. Each element is related to the other elements by its position along the line. Each element
(except at the ends) is preceded by one specific element and followed by another. An ordinary C
array is an example of a sequence container.

One problem with a C++ array is that you must specify its size at compile time; that is, in the source
code. Unfortunately, you usually don’t know, when you write the program, how much data will be
stored in the array. So you must specify an array large enough to hold what you guess is the
maximum amount of data. When the program runs, you will either waste space in memory by not
filling the array, or elicit an error message (or even blow up the program) by running out of space.
The STL provides the vector container to avoid these difficulties.

Here’s another problem with arrays. Say you’re storing employee records, and you’ve arranged
them in alphabetical order by the employee’s last name. If you now want to insert a new employee
whose name starts with L, you must move all the employees from M to Z to make room. This can
be very time consuming. The STL provides the list container, which is based on the idea of a linked
list, to solve this problem. Recall from the LINKLIST example in Chapter 10, “Pointers,” that it’s
easy to insert a new itemin a linked list by rearranging several pointers.

The third sequence container is the deque, which can be thought of as a combination of a stack and
a queue. A stack, as you may recall from previous examples, works on a last-in-first-out principle.
Both input and output take place on the top of the stack. A queue, on the other hand, uses a first-in-
first-out arrangement: data goes in at the front and comes out at the back, like a line of customers in
a bank. A deque combines these approaches so you can insert or delete data from either end. The
word deque is derived from Double-Ended QUEue. It’s a versatile mechanism that’s not only
useful in its own right, but can be used as the basis for stacks and queues, as you’ll see later.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Table 15.1 summarizes the characteristics of the STL sequence containers. It includes the ordinary
C++ array for comparison.

Table 15.1 Basic Sequence Containers
Characteristic Advantages and Disadvantages

ordinary C++ array Fixed size Quick random access (by index number)
Slow to insert or erase in the middle Size
cannot be changed at run time

vector Relocating, expandable array Quick random access (by index number)
Slow to insert or erase in the middle
Quick to insert or erase at end

list Doubly linked list Quick to insert or delete at any location
Quick access to both ends
Slow random access

deque Like vector, but can be
accessed at either end

Quick random access (using index number)

Slow to insert or erase in the middle
Quick insert or erase (push and pop) at
either the beginning or the end

Instantiating an STL container object is easy. First you must include an appropriate header file.
Then you use the template format with the kind of objects to be stored as the parameter. Examples
might be

vector<int> aVect; //create a vector of ints

or

list<airtime> departure_list; //create a list of airtimes

Notice that there’s no need to specify the size of STL containers. The containers themselves take
care of all memory allocation.

Associative Containers

An associative container is not sequential; instead it uses keys to access data. The keys, typically

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An associative container is not sequential; instead it uses keys to access data. The keys, typically
numbers or stings, are used automatically by the container to arrange the stored elements in a
specific order. It’s like an ordinary English dictionary, in which you access data by looking up
words arranged in alphabetical order. You start with a key value (say the word “aardvark,” to use
the dictionary example), and the container converts this key to the element’s location in memory. If
you know the key, you can access the associated value swiftly.

There are two kinds of associative containers in the STL: sets and maps. These both store data in a
structure called a tree, which offers fast searching, insertion, and deletion. Sets and maps are thus
very versatile general data structures suitable for a wide variety of applications. However, it is
inefficient to sort them and perform other operations that require random access.

Sets are simpler and more commonly used than maps. A set stores a number of items which contain
keys. The keys are the attributes used to order the items. For example, a set might store objects of
the person class, which are ordered alphabetically using their name attributes as keys. In this
situation, you can quickly locate a desired person object by searching for the object with a specified
name. If a set stores values of a basic type like int, then the key is the entire item stored. Some
writers refer to an entire object stored in a set as a key, but we’ll call it the key object to emphasize
that the the attribute used to order it (the key) isn’t the entire item.

A map stores pairs of objects: a key object and a value object. A map is often used as a container
that’s somewhat like an array, except instead of accessing its elements with index numbers, you
access them with indices that can be of an arbitrary type. That is, the key object serves as the index,
and the value object is the value at that index.

The map and set containers allow only one key of a given value to be stored. This makes sense in,
say, a list of employees arranged by unique employee numbers. On the other hand, the multimap
and multiset containers allow multiple keys. In an English dictionary there might be several entries
for the word “set,” for example.

Table 15.2 summarizes the associative containers available in the STL.

Table 15.2 Basic Associative Containers
Characteristics

set Stores only the key objects Only
one key of each value allowed

multiset Stores only the key objects
Multiple key values allowed

map Associates key object with value
object Only one key of each value
allowed

multimap Associates key object with value
object Multiple key values
allowed

Creating associative containers is just like creating sequential ones:

set<int> intSet; //create a set of ints

or

multiset<employee> machinists; //create a multiset of employees

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

multiset<employee> machinists; //create a multiset of employees

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Member Functions

Algorithms are the heavy hitters of the STL, carrying out complex operations like sorting and
searching. However, containers also need member functions to perform simpler tasks that are
specific to a particular type of container.

Table 15.3 shows some frequently-used member functions whose name and purpose (not the actual
implementation) are common to most container classes.

Table 15.3 Some MemberFunctions Common to All Containers
Name Purpose
size() Returns the number of items in the container
empty() Returns true if container is empty
max_size() Returns size of the largest possible container
begin() Returns an iterator to the start of the container, for iterating forwards through

the container
end() Returns an iterator to the past-the-end location in the container, used to end

forward iteration
rbegin() Returns a reverse iterator to the end of the container, for iterating backward

through the container
rend() Returns a reverse iterator to the beginning of the container; used to end

backward iteration

Many other member functions appear only in certain containers, or certain categories of containers.
You’ll learn more about these as we go along. Appendix F, “Debugging,” includes a table showing
the STL member functions and which ones exist for which containers.

Container Adapters

It’s possible to create special-purpose containers from the normal containers mentioned above using
a construct called container adapters. These special-purpose containers have simpler interfaces
than the more general containers. The specialized containers implemented with container adapters
in the STL are stacks, queues, and priority queues. As we noted, a stack restricts access to pushing
and popping a data item on and off the top of the stack. In a queue you push items at one end and
pop them off the other. In a priority queue you push data in the front in random order, but when you
pop the data off the other end, you always pop the largest item stored: the priority queue
automatically sorts the data for you.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Stacks, queues, and priority queues can be created from different sequence containers, although the
deque is often used. Table 15.4 shows the abstract data types and the sequence containers that can
be used in their implementation.

Table 15.4 Adapter-Based Containers
Container Implementation Characteristics
stack Can be implemented as

vector, list, or deque
Insert (push) and remove
(pop) at one end only

queue Can be implemented as list
or deque

Insert (push) at one end,
remove (pop) at other

priority_queue Can be implemented as
vector or deque

Insert(push) in random order
at one end, remove (pop) in
sorted order from other end

You use a template within a template to instantiate these classes. For example, here’s a stack object
that holds type int, instantiated from the deque class:

stack< deque<int> > aStak;

A detail to note about this format is that you must insert a space between the two closing angle
brackets. You can’t write

stack<deque<int>> astak; //syntax error

because the compiler will interpret the >> as an operator.

Algorithms

An algorithm is a function that does something to the items in a container (or containers). As we
noted, algorithms in the STL are not member functions or even friends of container classes, as they
are in earlier container libraries, but are standalone template functions. You can use them with
built-in C++ arrays, or with container classes you create yourself (provided the class includes
certain basic functions).

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Table 15.5 shows a few representative algorithms. We’ll examine others as we go along. Appendix
F contains a table listing most of the STL algorithms.

Table 15.5 Some Typical STL Algorithms
Algorithm Purpose
find Returns first element equivalent to a specified value
count Counts the number of elements that have a specified value
equal Compares the contents of two containers and returns true if all corresponding

elements are equal
search Looks for a sequence of values in one container that correspond with the same

sequence in another container
copy Copies a sequence of values from one container to another (or to a different

location in the same container)
swap Exchanges a value in one location with a value in another
iter_swap Exchanges a sequence of values in one location with a sequence of values in

another location
fill Copies a value into a sequence of locations
ort Sorts the values in a container according to a specified ordering
merge Combines two sorted ranges of elements to make a larger sorted range
accumulate Returns the sum of the elements in a given range
for_each Executes a specified function for each element in the container

Suppose you create an array of type int, with data in it:

int arr[8] = {42, 31, 7, 80, 2, 26, 19, 75};

You can then use the STL sort() algorithm to sort this array by saying

sort(arr, arr+8);

where arr is the address of the beginning of the array, and arr+8 is the past-the-end address (one item
past the end of the array).

Iterators

Iterators are pointer-like entities that are used to access individual data items (which are usually
called elements), in a container. Often they are used to move sequentially from element to element,
a process called iterating through the container. You can increment iterators with the ++ operator so

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

a process called iterating through the container. You can increment iterators with the ++ operator so
they point to the next element, and dereference them with the * operator to obtain the value of the
element they point to. In the STL an iterator is represented by an object of an iterator class.

Different classes of iterators must be used with different types of container. There are three major
classes of iterators: forward, bi-directional, and random access. A forward iterator can only move
forward through the container, one item at a time. Its ++ operator accomplishes this. It can’t move
backward and it can’t be set to an arbitrary location in the middle of the container. A bidirectional
iterator can move backward as well as forward, so both its ++ and -- operators are defined. A
random access iterator, in addition to moving backward and forward, can jump to an arbitrary
location. You can tell it to access location 27, for example.

There are also two specialized kinds of iterators. An input iterator can “point to” an input device
(cin or a file) to read sequential data items into a container, and an output iterator can “point to” an
output device (cout or a file) and write elements from a container to the device.

While the values of forward, bi-directional, and random access iterators can be stored (so they can
be used later), the values of input and output iterators cannot be. This makes sense: the first three
iterators point to memory locations, while input and output iterators point to I/O devices for which
stored “pointer” values have no meaning. Table 15.6 shows the characteristics of these different
kinds of iterators.

Table 15.6 Iterator Characteristics

Iterator Type Read/Write

Iterator
Can Be
Saved Direction Access

Random access Read and write Yes Forward and back Random
Bidirectional Read and write Yes Forward and back Linear
Forward Read and write Yes Forward only Linear
Output Write only No Forward only Linear
Input Read only No Forward only Linear

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Potential Problems with the STL

The sophistication of the STL’s template classes places a strain on compilers, and not all of them
respond well. Let’s look at some potential problems.

First, it’s sometimes hard to find errors because the compiler reports them as being deep in a header
file when they’re really in the class user’s code. You may need to resort to brute force methods
such as commenting out one line of your code at a time to find the culprit.

Precompilation of header files, which speeds up compilation dramatically on compilers that offer it,
may cause problems with the STL. If things don’t seem to be working, try turning off precompiled
headers.

The STL may generate spurious compiler warnings. “Conversion may lose significant digits” is a
favorite. These appear to be harmless, and can be ignored or turned off.

These minor complaints aside, the STL is a surprisingly robust and versatile system. Errors tend to
be caught at compile time rather than at run time. The different algorithms and containers present a
very consistent interface; what works with one container or algorithm will usually work with
another (assuming it’s used appropriately).

This quick overview probably leaves you with more questions than answers. The balance of this
chapter should provide enough specific details of STL operation to make things clearer.

Algorithms

The STL algorithms perform operations on collections of data. These algorithms were designed to
work with STL containers, but one of the nice things about them is that you can apply them to
ordinary C++ arrays. This may save you considerable work when programming arrays. It also offers
an easy way to learn about the algorithms, unencumbered with containers. In this section we’ll
examine how some representative algorithms are used. (Remember that the algorithms are listed in
Appendix F.)

The find() Algorithm

The find() algorithm looks for the first element in a container that has a specified value. The FIND
example program shows how this looks when we’re trying to find a value in an array of ints.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// find.cpp
// finds the first object with a specified value
#include <iostream>
#include <algorithm> //for find()
using namespace std;

int arr[] = { 11, 22, 33, 44, 55, 66, 77, 88 };

int main()
 {
 int* ptr;
 ptr = find(arr, arr+8, 33); //find first 33
 cout << “First object with value 33 found at offset ”
 << (ptr-arr) << endl;
 return 0;
 }

The output from this program is

First object with value 33 found at offset 2.

As usual, the first element in the array is number 0, so the 33 is at offset 2, not 3.

Header Files

In this program we’ve included the header file ALGORITHM. Notice that, as with other header files
in the Standard C++ library, there is no file extension (like .H or .CPP). This file contains the
declarations of the STL algorithms. Other header files are used for containers and for other
purposes. If you’re using an older version of the STL you may need to include a header file with a
somewhat different name, like ALGO.H.

Ranges

The first two parameters to find() specify the range of elements to be examined. These values are
specified by iterators. In this example we use normal C++ pointer values, which are a special case of
iterators.

The first parameter is the iterator of (or in this case the pointer to) the first value to be examined.
The second parameter is the iterator of the location one past the last element to be examined. Since
there are 8 elements, this value is the first value plus 8. This is called a past-the-end value; it points
to the element just past the end of the range to be examined.

This syntax is reminiscent of the normal C++ idiom in a for loop:

for(int j=0; j<8; j++) //from 0 to 7
 {
 if(arr[j] == 33)
 {
 cout << “First object with value 33 found at offset ”
 << j << endl;
 break;
 }
 }

In the FIND example the find() algorithm saves you the trouble of writing this for loop. In more
complicated situations, algorithms may save you from writing far more complicated code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The count() Algorithm

Let’s look at another algorithm, count(), which counts how many elements in a container have a
specified value and returns this number. The COUNT example shows how this looks:

// count.cpp
// counts the number of objects with a specified value
#include <iostream>
#include <algorithm> //for count()
using namespace std;

int arr[] = { 33, 22, 33, 44, 33, 55, 66, 77 };

int main()
 {
 int n = count(arr, arr+8, 33); //count number of 33’s
 cout << “There are “ << n << ” 33’s in arr.” << endl;
 return 0;
 }

The output is

There are 3 33’s in arr.

The sort() Algorithm

You can guess what the sort() algorithm does. Here’s an example, called SORT, of this algorithm
applied to an array:

// sort.cpp
// sorts an array of integers
#include <iostream>
#include <algorithm>
using namespace std;
 //array of numbers
int arr[] = {45, 2, 22, -17, 0, -30, 25, 55};

int main()
 {
 sort(arr, arr+8); //sort the numbers

 for(int j=0; j<8; j++) //display sorted array
 cout << arr[j] << ‘ ‘;
 return 0;
 }

The output from the program is

-30, -17, 0, 2, 22, 25, 45, 55

We’ll look at some variations of this algorithm later.

The search() Algorithm

Some algorithms operate on two containers at once. For instance, while the find() algorithm looks
for a specified value in a single container, the search() algorithm looks for a sequence of values,
specified by one container, within another container. The SEARCH example shows how this looks.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// search.cpp
// searches one container for a sequence in another container
#include <iostream>
#include <algorithm>
using namespace std;

int source[] = { 11, 44, 33, 11, 22, 33, 11, 22, 44 };
int pattern[] = { 11, 22, 33 };

int main()
 {
 int* ptr;
 ptr = search(source, source+9, pattern, pattern+3);
 if(ptr == source+9) //if past-the-end
 cout << “No match found\n”;
 else
 cout << “Match at ” << (ptr - source) << endl;
 return 0;
}

The algorithm looks for the sequence 11, 22, 33, specified by the array pattern, within the array
source. As you can see by inspection, this sequence is found in source starting at the fourth element
(element 3). The output is

Match at 3

If the iterator value ptr ends up one past the end of the source, then no match has been found.

The arguments to algorithms such as search() don’t need to be the same type of container. The source
could be in an STL vector, and the pattern in an array, for example. This kind of generality is a very
powerful feature of the STL.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

The merge() Algorithm

Here’s an algorithm that works with three containers, merging the elements from two source
containers into a destination container. The MERGE example shows how it works.

// merge.cpp
// merges two containers into a third
#include <iostream>
#include <algorithm> //for merge()
using namespace std;

int src1[] = { 2, 3, 4, 6, 8 };
int src2[] = { 1, 3, 5 };
int dest[8];

int main()
 { //merge src1 and src2 into dest
 merge(src1, src1+5, src2, src2+3, dest);
 for(int j=0; j<8; j++) //display dest
 cout << dest[j] << ‘ ‘;
 cout << endl;
 return 0;
 }
}

The output, which displays the contents of the destination container, looks like this:

1 2 3 3 4 5 6 8

As you can see, merging preserves the ordering, interweaving the two sequences of source elements
into the destination container.

Function Objects

Some algorithms can take something called a function object as an argument. A function object
looks, to the user, much like a template function. However, it’s actually an object of a template
class that has a single member function: the overloaded () operator. This sounds mysterious, but it’s
easy to use.

Suppose you want to sort an array of numbers into descending instead of ascending order. The
SORTEMP program shows how to do it:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// sortemp.cpp
// sorts array of doubles in backward order,
// uses greater<>() function object
#include <iostream>
#include <algorithm> //for sort()
#include <functional> //for greater<>
using namespace std;
 //array of doubles
double fdata[] = { 19.2, 87.4, 33.6, 55.0, 11.5, 42.2 };

int main()
 { //sort the doubles
 sort(fdata, fdata+6, greater<double>());

 for(int j=0; j<6; j++) //display sorted doubles
 cout << fdata[j] << ‘ ‘;
 cout << endl;
 return 0;
}

The sort() algorithm usually sorts in ascending order, but the use of the greater<>() function object,
the third argument of sort(), reverses the sorting order. Here’s the output:

87.4 55 42.2 33.6 19.2 11.5

Besides comparisons, there are function objects for arithmetical and logical operations. We’ll look
at function objects more closely in the last section in this chapter.

User-written Functions in Place of Function Objects

Function objects operate only on basic C++ types and on classes for which the appropriate operators
(+, <, ==, and so on) are defined. If you’re working with values for which this is not the case, you
can substitute a user-written function for a function object. For example, the operator < is not
defined for ordinary char* strings, but we can write a function to perform the comparison, and use
this function’s address (its name) in place of the function object. The SORTCOM example shows
how to sort an array of char* strings:

// sortcom.cpp
// sorts array of strings with user-written comparison function
#include <iostream>
#include <string> //for strcmp()
#include <algorithm>
using namespace std;
 //array of strings
char* names[] = { “George”, “Penny”, “Estelle”,
 “Don”, “Mike”, “Bob” };

bool alpha_comp(char*, char*); //prototype

int main()
 {
 sort(names, names+6, alpha_comp); //sort the strings

 for(int j=0; j<6; j++) //display sorted strings
 cout << names[j] << endl;
 return 0;
 }

bool alpha_comp(char* s1, char* s2) //returns true if s1<s2
 {
 return (strcmp(s1, s2)<0) ? true : false;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return (strcmp(s1, s2)<0) ? true : false;
 }

The third argument to the sort() algorithm is the address of the alpha_comp() function, which compares
two char* strings and returns true or false, depending on whether the first is lexicographically (that is,
alphabetically) less than the second. It uses the C library function strcmp(), which returns a value less
than 0 if its first argument is less than its second. The output from this program is what you would
expect:

Bob
Don
Estelle
George
Mike
Penny

Actually, you don’t need to write your own function objects to handle text. If you use the string class
from the standard library, you can use built-in function objects like less<>() and greater<>().

Adding _if to Algorithms

Some algorithms have versions that end in _if. These algorithms take an extra parameter called a
predicate, which is a function object or a function. For example, the find() algorithm finds all
elements equal to a specified value. We can also create a function that works with the find_if()
algorithm to find elements with any arbitrary characteristic.

Our example uses string objects. The find_if() algorithm is supplied with a user-written isDon()
function to find the first string in an array of string objects that has the value “Don”. Here’s the listing
for FIND_IF:

// find_if.cpp
// searches array of strings for first name that matches “Don”
#include <iostream>
#include <string>
#include <algorithm>
using namespace std;
//--
bool isDon(string name) //returns true if name==”Don”
 {
 return name == “Don”;
 }
//--
string names[] = { “George”, “Estelle”, “Don”, “Mike”, “Bob” };

int main()
 {
 string* ptr;
 ptr = find_if(names, names+5, isDon);

 if(ptr==names+5)
 cout << “Don is not on the list.\n”;
 else
 cout << “Don is element ”
 << (ptr-names)
 << “ on the list.\n”;
 return 0;
 }

Since “Don” is indeed one of the names in the array, the output from the program is

Don is element 2 on the list.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Don is element 2 on the list.

The address of the function isDon() is the third argument to find_if(), while the first and second
arguments are, as usual, the first and the past-the-end addresses of the array.

The find_if() algorithm applies the isDon() function to every element in the range. If isDon() returns
true for any element, then find_if() returns the value of that element’s pointer (iterator). Otherwise, it
returns a pointer to the past-the-the end address of the array.

Various other algorithms, such as count(), replace(), and remove(), have _if versions.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

The for_each() Algorithm

The for_each() algorithm allows you to do something to every item in a container. You write your
own function to determine what that “something” is. Your function can’t change the elements in the
container, but it can use or display their values.

Here’s an example in which for_each() is used to convert all the values of an array from inches to
centimeters and display them. We write a function called in_to_cm() that multiplies a value by 2.54,
and use this function’s address as the third argument to for_each(). Here’s the listing for FOR_EACH:

// for_each.cpp
// uses for_each() to output inches array elements as centimeters
#include <iostream>
#include <algorithm>
using namespace std;

void in_to_cm(double); //prototype

int main()
 { //array of inches values
 double inches[] = { 3.5, 6.2, 1.0, 12.75, 4.33 };
 //output as centimeters
 for_each(inches, inches+5, in_to_cm);
 cout << endl;
 return 0;
 }

void in_to_cm(double in) //convert and display as centimeters
 {
 cout << (in * 2.54) << ‘ ‘;
 }

The output looks like this:

8.89 15.748 2.54 32.385 10.9982

The transform() Algorithm

The transform() algorithm does something to every item in a container, and places the resulting
values in a different container (or the same one). Again, a user-written function determines what
will be done to each item. The return type of this function must be the same as that of the
destination container. Our example is similar to FOR_EACH, except that instead of displaying the
converted values, our in_to_cm() function puts the centimeter values into a different array, centi[].The
main program then displays the contents of centi[]. Here’s the listing for TRANSFO:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// transfo.cpp
// uses transform() to change array of inches values to cm
#include <iostream>
#include <algorithm>
using namespace std;

int main()
 { //array of inches values
 double inches[] = { 3.5, 6.2, 1.0, 12.75, 4.33 };
 double centi[5];
 double in_to_cm(double); //prototype
 //transform into array centi[]
 transform(inches, inches+5, centi, in_to_cm);

 for(int j=0; j<5; j++) //display array centi[]
 cout << centi[j] << ‘ ‘;
 cout << endl;
 return 0;
 }

double in_to_cm(double in) //convert inches to centimeters
 {
 return (in * 2.54); //return result
 }

The output is the same as that from the FOR_EACH program.

We’ve looked at just a few of the algorithms in the STL. There are many others, but what we’ve
shown here should give you an idea of the kinds of algorithms that are available, and how to use
them.

Sequential Containers

As we noted earlier, there are two major categories of containers in the STL: sequence containers
and associative containers. In this section we’ll introduce the three sequence containers: vectors,
lists, and deques, focusing on how these containers work and on their member functions. We
haven’t learned about iterators yet, so there will be some operations that we can’t perform on these
containers. We’ll examine iterators in the next section.

Each program example in the following sections will introduce several member functions for the
container being described. Remember, however, that different kinds of containers use member
functions with the same names and characteristics, so what you learn about, say, push_back() for
vectors will also be relevant to lists and queues.

Vectors

You can think of vectors as smart arrays. They manage storage allocation for you, expanding and
contracting the size of the vector as you insert or erase data. You can use vectors much like arrays,
accessing elements with the [] operator. Such random access is very fast with vectors. It’s also fast
to add (or push) a new data item onto the end (the back) of the vector. When this happens the
vector’s size is automatically increased to hold the new item.

Member Functions push_back(), size(), and operator[]

Our first example, VECTOR, SHOWS the most common vector operations.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// vector.cpp
// demonstrates push_back(), operator[], size()
#include <iostream>
#include <vector>
using namespace std;

int main()
 {
 vector<int> v; //create a vector of ints

 v.push_back(10); //put values at end of array
 v.push_back(11);
 v.push_back(12);
 v.push_back(13);

 v[0] = 20; //replace with new values
 v[3] = 23;

 for(int j=0; j<v.size(); j++) //display vector contents
 cout << v[j] << ‘ ‘; //20 11 12 23
 cout << endl;
 return 0;
 }

We use the vector’s default (no-argument) constructor to create a vector v. As with all STL
containers, the template format is used to specify the type of variable the container will hold; in this
case type int. We don’t specify the container’s size, so it starts off at 0.

The push_back() member function inserts the value of its argument at the back of the vector. (The
back is where the element with the highest index number is.) The front of a vector (the element with
index 0), unlike that of a list or queue, cannot be used for inserting new elements. Here we push the
values 10, 11, 12 and 13, so that v[0] contains 10, v[1] contains 11, v[2] contains 12, and v[3] contains
13.

Once a vector has some data in it, this data can be accessed—both read and written to—using the
overloaded [] operator, just as if it were in an array. We use this operator to change the first element
from 10 to 20, and the last element from 13 to 23. Here’s the output from vector:

20 11 12 23

The size() member function returns the number of elements currently in the container, which in
VECTOR is 4. We use this value in the for loop to print out the values of the elements in the
container.

Another member function, max_size() (which we don’t demonstrate here), returns the maximum size
to which a container can be expanded. This number depends on the type of data being stored in the
container (the bigger the elements, the fewer of them you can store), the type of container, and the
operating system. For example, on our system max_size() returns 1,073,741,823 for a vector type

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Member Functions swap(), empty(), back() and pop_back()

The next example, VECTCON, shows some additional vector constructors and member functions.

// vectcon.cpp
// demonstrates constructors, swap(), empty(), back(), pop_back()
#include <iostream>
#include <vector>
using namespace std;

int main()
 { //an array of doubles
 double arr[] = { 1.1, 2.2, 3.3, 4.4 };

 vector<double> v1(arr, arr+4); //initialize vector to array
 vector<double> v2(4); //empty vector of size 4

 v1.swap(v2); //swap contents of v1 and v2

 while(!v2.empty()) //until vector is empty,
 {
 cout << v2.back() << ‘ ‘; //display the last element
 v2.pop_back(); //remove the last element
 } //output: 4.4 3.3 2.2 1.1
 cout << endl;
 return 0;
 }

We’ve used two new vector constructors in this program. The first initializes the vector v1 with the
values of a normal C++ array passed to it as an argument. The arguments to this constructor are
pointers to the start of the array and to the element one past the end. The second constructor sets
to an initial size of 4, but does not supply any initial values. Both vectors hold type double.

The swap() member function exchanges all the data in one vector with all the data in another,
keeping the elements in the same order. In this program there is only garbage data in v2, so it’s
swapped with the data in v1. We display v2 to show it now contains the data that was in v1. The
output is

4.4, 3.3, 2.2, 1.1

The back() member function returns the value of the last element in the vector. We display this value
with cout. The pop_back() member function removes the last element in the vector. Thus each time
through the loop there is a different last element. (It’s a little surprising that pop_back() does not
simultaneously return the value of the last element and remove it from the vector, as we’ve seen
pop() do in previous examples with stacks, but it doesn’t, so back() must be used as well.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Some member functions, such as swap(), also exist as algorithms. When this is the case, the member
function version is usually provided because it’s more efficient for that particular container than the
algorithm version. Sometimes you can use the algorithm as well. For example, you can use it to
swap elements in two different kinds of containers.

Member Functions insert() and erase()

The insert()and erase() member functions insert or remove an element from an arbitrary location in a
container. These functions aren’t very efficient with vectors, since all the elements above the
insertion or erasure must be moved to make space for the new element or close up the space where
the erased item was. However, insertion and erasure may nevertheless be useful if speed is not a
factor. The next example, VECTINS, shows how these member functions are used:

// vectins.cpp
// demonstrates insert(), erase()
#include <iostream>
#include <vector>
using namespace std;

int main()
 {
 int arr[] = { 100, 110, 120, 130 }; //an array of ints

 vector<int> v(arr, arr+4); //initialize vector to array

 cout << “\nBefore insertion: ”;
 for(int j=0; j<v.size(); j++) //display all elements
 cout << v[j] << ‘ ‘;

 v.insert(v.begin()+2, 115); //insert 115 at element 2

 cout << “\nAfter insertion: ”;
 for(j=0; j<v.size(); j++) //display all elements
 cout << v[j] << ‘ ‘;

 v.erase(v.begin()+2); //erase element 2

 cout << “\nAfter erasure: ”;
 for(j=0; j<v.size(); j++) //display all elements
 cout << v[j] << ‘ ‘;
 cout << endl;
 return 0;
 }

The insert() member function (at least this version of it) takes two arguments: the place where an
element will be inserted in a container, and the value of the element. We add 2 to the begin() member
function to specify element 2 (the third element) in the vector. The elements from the insertion
point to the end of the container are moved upward to make room, and the size of the container is
increased by 1.

The erase() member function removes the element at the specified location. The elements above the
deletion point are moved downward, and the size of the container is decreased by 1. Here’s the
output from VECTINS:

Before insertion: 100 110 120 130
After insertion: 100 110 115 120 130
After erasure: 100 110 120 130

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Lists

An STL list container is a doubly linked list, in which each element contains a pointer not only to
the next element but also to the preceding one. The container stores the address of both the front
(first) and the back (last) elements, which makes for fast access to both ends of the list.

Member Functions push_front(), front(), and pop_front

Our first example, LIST, shows how data can be pushed, read, and popped from both the front and
the back.

//list.cpp
//demonstrates push_front(), front(), pop_front()
#include <iostream>
#include <list>
using namespace std;

int main()
 {
 list<int> ilist;

 ilist.push_back(30); //push items on back
 ilist.push_back(40);
 ilist.push_front(20); //push items on front
 ilist.push_front(10);

 int size = ilist.size(); //number of items

 for(int j=0; j<size; j++)
 {
 cout << ilist.front() << ‘ ‘; //read item from front
 ilist.pop_front(); //pop item off front
 }
 cout << endl;
 return 0;
 }

We push data on the back (the end) and front of the list in such a way that when we display and
remove the data from the front it’s in normal order:

10 20 30 40

The push_front(),pop_front(), and front()member functions are similar to push_back(), pop_back(), and
back(), which we’ve already seen at work with vectors.

Note that you can’t use random access for list elements, because such access is too slow. For this
reason the [] operator is not defined for lists. If it were, this operator would need to traverse along
the list, counting elements as it went, until it reached the correct one, a time-consuming operation.
If you need random access, you should use a vector or a deque.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Lists are appropriate when you will make frequent insertions and deletions in the middle of the list.
This is not efficient for vectors and deques, because all the elements above the insertion or deletion
point must be moved. However, it’s quick for lists because only a few pointers need to be changed
to insert or delete a new item. (However, it may still be time-consuming to find the correct insertion
point.)

The insert()and erase() member functions are used for list insertion and deletion, but they require the
use of iterators, so we’ll postpone a discussion of these functions.

Member Functions reverse(), merge(), and unique()

Some member functions exist only for lists; no such member functions are defined for other
containers, although there are algorithms that do the same things. Our next example, LISTPLUS,
shows some of these functions. It begins by filling two list-of-int objects with the contents of two
arrays.

listplus.cpp
// demonstrates reverse(), merge(), and unique()
#include <iostream>
#include <list>
using namespace std;

int main()
 {
 int j;
 list<int> list1, list2;

 int arr1[] = { 40, 30, 20, 10 };
 int arr2[] = { 15, 20, 25, 30, 35 };

 for(j=0; j<4; j++)
 list1.push_back(arr1[j]); //list1: 40, 30, 20, 10
 for(j=0; j<5; j++)
 list2.push_back(arr2[j]); //list2: 15, 20, 25, 30, 35

 list1.reverse(); //reverse list1: 10 20 30 40
 list1.merge(list2); //merge list2 into list1
 list1.unique(); //remove duplicate 20 and 30

 int size = list1.size();
 while(!list1.empty())
 {
 cout << list1.front() << ‘ ‘; //read item from front
 list1.pop_front(); //pop item off front
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
 cout << endl;
 return 0;
 }

The first list is in backward order, so we return it to normal sorted order using the reverse() member
function. (It’s quick to reverse a list container because both ends are accessible.) This is necessary
because the second member function, merge(), operates on two lists and requires both of them to be
in sorted order. Following the reversal, the two lists are

10, 20, 30, 40
15, 20, 25, 30, 35

Now the merge() function merges list2 into list1, keeping everything sorted and expanding list1 to hold
the new items. The resulting content of list1 is

10, 15, 20, 20, 25, 30, 30, 35, 40

Finally we apply the unique() member function to list1. This function finds adjacent elements with
the same value, and removes all but the first. The contents of list1 are then displayed. The output of
LISTPLUS is

10, 15, 20, 25, 30, 35, 40

To display the contents of the list we use the front()and pop_front()member functions in a for loop.
Each element, from front to back, is displayed and then popped off the list. The result is that the
process of displaying the list destroys it. This may not always be what you want, but for the
moment it’s the only way we have learned to access successive list elements. Iterators, described in
the next section, will solve this problem.

Deques

A deque is like a vector in some ways and like a linked list in others. Like a vector, it supports
random access using the [] operator. However, like a list a deque can be accessed at the front as
well as the back. It’s a sort of double-ended vector, supporting push_front(), pop_front(), and front().

Memory is allocated differently for vectors and queues. A vector always occupies a contiguous
region of memory. If a vector grows too large, it may need to be moved to a new location where it
will fit. A deque, on the other hand, can be stored in several non-contiguous areas; it is segmented.
A member function, capacity(), returns the largest number of elements a vector can store without
being moved, but capacity() isn’t defined for deques because they don’t need to be moved.

// deque.cpp
// demonstrates push_back(), push_front(), front()
#include <iostream>
#include <deque>
using namespace std;

int main()
 {
 deque<int> deq;

 deq.push_back(30); //push items on back
 deq.push_back(40);
 deq.push_back(50);
 deq.push_front(20); //push items on front

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 deq.push_front(20); //push items on front
 deq.push_front(10);

 deq[2] = 33; //change middle item

 for(int j=0; j<deq.size(); j++)
 cout << deq[j] << ‘ ‘; //display items
 cout << endl;
 return 0;
 }

We’ve already seen examples of push_back(), push_front(), and operator []. They work the same for
deques as for other containers. The output of this program is

10 20 33 40 50

Figure 15.2 shows some important member functions for the three sequential containers.

Figure 15.2 Sequential containers.

Iterators

Iterators may seem a bit mysterious, yet they are central to the operation of the STL. In this section
we’ll first discuss the twin roles played by iterators: as smart pointers and as a connection between
algorithms and containers. Then we’ll show some examples of their use.

Iterators as Smart Pointers

It’s often necessary to perform an operation on all the elements in the container (or perhaps a range
of elements). Displaying the value of each element in the container, or adding its value to a total,
are examples. In an ordinary C++ array, such operations are carried out using a pointer (or the []

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

are examples. In an ordinary C++ array, such operations are carried out using a pointer (or the []
operator, which is the same underlying mechanism). For example, the following code iterates
through a float array, displaying the value of each element:

float* ptr = start_address;
for(int j=0; j<SIZE; j++)
 cout << *ptr++;

We dereference the pointer ptr with the * operator to obtain the value of the item it points to, and
increment it with the ++ operator so it points to the next item.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Ordinary Pointers Underpowered

However, with more sophisticated containers, plain C++ pointers have disadvantages. For one thing,
if the items stored in the container are not placed contiguously in memory, handling the pointer
becomes much more complicated; we can’t simply increment it to point to the next value. For
example, in moving to the next item in a linked list we can’t assume the item is adjacent to the
previous one; we must follow the chain of pointers.

We may also want to store the address of some container element in a pointer variable so we can
access the element at some future time. What happens to this stored pointer value if we insert or
erase something from the middle of the container? It may not continue to be valid if the container’s
contents are rearranged. It would be nice if we didn’t need to worry about revising all our stored
pointer values when insertions and deletions take place.

One solution to these kinds of problems is to create a class of “smart pointers.” An object of such a
class basically wraps its member functions around an ordinary pointer. The ++ and * operators are
overloaded so they know how to operate on the elements in their container, even if the elements are
not contiguous in memory or change their locations. Here’s how that might look, in skeleton form:

class SmartPointer
 {
 private:
 float* p; //an ordinary pointer
 public:
 float operator*()
 { }
 float operator++()
 { }
 };

void main()
 {
 ...
 SmartPointer sptr = start_address;
 for(int j=0; j<SIZE; j++)
 cout << *sptr++;
 }

Whose Responsibility?

Should the smart pointer class be embedded in a container, or should it be a separate class? The
approach chosen by the STL is to make smart pointers, called iterators, into a completely separate

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

approach chosen by the STL is to make smart pointers, called iterators, into a completely separate
class (actually a family of templetized classes). The class user creates iterators by defining them to
be objects of such classes.

Iterators as an Interface

Besides acting as smart pointers to items in containers, iterators serve another important purpose in
the STL. They determine which algorithms can be used with which containers. Why is this
necessary?

In some theoretical sense you should be able to apply every algorithm to every container. And, in
fact, many algorithms will work with all the STL containers. However, it turns out that some
algorithms are very inefficient (that is, slow) when used with some containers. The sort() algorithm,
for example, needs random access to the container it’s trying to sort; otherwise it would need to
iterate through the container to find each element before moving it, a time-consuming approach.
Similarly, to be efficient, the reverse() algorithm needs to iterate backward as well as forward
through a container.

Iterators provide a surprisingly elegant way to match appropriate algorithms with containers. As we
noted, you can think of an iterator as a cable, like the cable used to connect a computer and printer.
One end of the cable plugs into a container, and the other plugs into an algorithm. However, not all
cables plug into all containers, and not all cables plug into all algorithms. If you try to use an
algorithm that’s too powerful for a given container type, then you won’t be able to find a cable (an
iterator) to connect them. If you try it, you will receive a compiler error, alerting you to the
problem.

How many kinds of iterators (cables) do you need to make this scheme work? As it turns out, only
five types are necessary. Figure 15.3 shows these five categories, arranged from bottom to top in
order of increasing sophistication, except that input and output are equally unsophisticated. (This is
not an inheritance diagram.)

If an algorithm needs only to step through a container in a forward direction, reading (but not
writing to) one item after another, it can use an input iterator to connect itself to the container.
Actually, input iterators are typically used, not with containers, but when reading from files or cin

If an algorithm steps through the container in a forward direction but writes to the container instead
of reading from it, it can use an output iterator. Output iterators are typically used when writing to
files or cout.

If an algorithm steps along in the forward direction and may either read or write to a container, it
must use a forward iterator.

If an algorithm must be able to step both forward and back through a container, it must use a
bidirectional iterator.

Finally, if an algorithm must access any item in the container instantly, without stepping along to it,
it must use a random access iterator. Random access iterators are like arrays, in that you can access
any element. They are the only iterators that can be manipulated with arithmetic operations, as in

iter2 = iter1 + 7;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 15.3 Iterator categories.

Table 15.7 shows which operations each iterator supports.

Table 15.7 Capabilities of Different Iterator Categories

Iterator Type

Step
Forward
++

Read
value=*i

Write
*i=value

Step
Back
--

Random
Access
[n]

Random access iterator x x x x x
Bidirectional iterator x x x x
Forward iterator x x x
Output iterator x x
Input iterator x x

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

As you can see, all the iterators support the ++ operator for stepping forward through the container.
The input iterator can use the * operator on the right side of the equal sign (but not on the left):

 value = *iter;

The output iterator can use the * operator only on the right:

*iter = value;

The forward iterator handles both reading and writing, and the bidirectional iterator can be
decremented as well as incremented. The random access iterator can use the [] operator (as well as
simple arithmetic operators like + and -) to access any element quickly.

An algorithm can always use an iterator with more capability than it needs. If it needs a forward
iterator, for example, it’s all right to plug it into a bidirectional iterator or a random access iterator.

Matching Algorithms with Containers

We’ve used a cable as an analogy to an iterator, because an iterator connects an algorithm and a
container. Let’s focus on the two ends of this imaginary cable: the container end and the algorithm
end.

Plugging the Cable into a Container

If you confine yourself to the basic STL containers, you will be using only two kinds of iterators.
As shown in Table 15.8, the vector and deque accept any kind of iterator, while the list, set,
multiset, map, and multimap accept anything except the random iterator.

Table 15.8 Iterator Types Accepted by Containers
Vector List Deque Set Multiset Map Multimap

Random Access x x
Bidirectional x x x x x x x
Forward x x x x x x x
Input x x x x x x x
Output x x x x x x x

How does the STL enforce the use of the correct iterator for a given container? When you define an
iterator you must specify what kind of container it will be used for. For example, if you’ve defined
a list holding elements of type int,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

list<int> iList; //list of ints

then to define an iterator to this list you say

list<int>::iterator iter; //iterator to list-of-ints

When you do this, the STL automatically makes this iterator a bidirectional iterator, because that’s
what a list requires. An iterator to a vector or a deque is automatically created as a random-access
iterator.

This automatic selection process is implemented by having an iterator class for a specific container
be derived (inherited) from a more general iterator class that’s appropriate to a specific container.
Thus the iterators to vectors and deques are derived from the random_access_iterator class, while
iterators to lists are derived from the bidirectional_iterator class.

We now see how containers are matched to their end of our fanciful iterator—cables. A cable
doesn’t actually plug into a container; it is (figuratively speaking) hardwired to it, like the cord on a
toaster. Vectors and deques are always wired to random-access cables, while lists (and all the
associative containers, which we’ll encounter later in this chapter) are always wired to bidirectional
cables.

Plugging the Cables into the Algorithm

Now that we’ve seen how one end of an iterator cable is “wired” to the container, we’re ready to
look at the other end of the cable. How do iterators plug into algorithms? Every algorithm,
depending on what it will do to the elements in a container, requires a certain kind of iterator. If the
algorithm must access elements at arbitrary locations in the container, it requires a random-access
iterator. If it will merely step forward through the iterator, it can use the less powerful forward
iterator. Table 15.9 shows a sampling of algorithms and the iterators they require. (A complete
version of this table is shown in Appendix F.)

Table 15.9 Type of Iterator Required by Representative Algorithms
Input Output Forward Bidirectional Random

Access
for_each x
find x
count x
copy x x
replace x
unique x
reverse x
sort x
nth_element x
merge x x
accumulate x

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Again, although each algorithm requires an iterator with a certain level of capability, a more
powerful iterator will also work. The replace() algorithm requires a forward iterator, but it will work
with a bidrectional or a random access iterator as well.

Now, imagine that algorithms have connectors with pins sticking out, like the cable connectors on
your computer. This is shown in Figure 15.4. Those requiring random access iterators have 5 pins,
those requiring bidirectional iterators have 4 pins, those requiring forward iterators have 3 pins, and
so on.

Figure 15.4 Iterators connecting containers and algorithms.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The algorithm end of an iterator (a cable) has a connector with a certain number of holes. You can
plug a 5-hole iterator into a 5-pin algorithm, and you can also plug it into an algorithm with 4 or
fewer pins. However, you can’t plug a 4-hole (bidirectional) iterator into a 5-pin (random-access)
algorithm. So vectors and deques, with random access iterators, can be plugged into any algorithm,
while lists and associative containers, with only a 4-hole bidirectional iterator, can only be plugged
into less powerful algorithms.

The Tables Tell the Story

From Table 15.8 and 15.9 you can figure out whether an algorithm will work with a given
container. Table 15.9 shows that the sort() algorithm, for example, requires a random-access iterator.
Table 15.8 indicates that the only containers that can handle random-access iterators are vectors and
deques. There’s no use trying to apply the sort() algorithm to lists, sets, maps, and so on.

Any algorithm that does not require a random-access iterator will work with any kind of STL
container, because all these containers use bidirectional iterators, which is only one grade below
random access. (If there were a singly-linked list in the STL it would use only a forward iterator, so
it could not be used with the reverse() algorithm.

As you can see, comparatively few algorithms require random-access iterators. Therefore most
algorithms work with most containers.

Overlapping Member Functions and Algorithms

Sometimes you must choose between using a member function or an algorithm with the same name.
The find() algorithm, for example, requires only an input iterator, so it can be used with any
container. However, sets and maps have their own find() member function (unlike sequential
containers). Which version of find() should you use? Generally, if a member-function version exists,
it’s because, for that container, the algorithm version is not as efficient as it could be; so in these
cases you should probably use the member-function version.

Iterators at Work

Using iterators is considerably simpler than talking about them. We’ve already seen several
examples of one of the more common uses, where iterator values are returned by a container’s
begin() and end() member functions. We’ve disguised the fact that these functions return iterator
values by treating them as if they were pointers. Now let’s see how actual iterators are used with
these and other functions.

Data Access

In containers that provides random access iterators (vector and queue) it’s easy to iterate through
the container using the [] operator. Containers such as lists, which don’t support random access,
require a different approach. In previous examples we’ve used a “destructive readout” to display
the contents of a list by popping off the items one by one, as in the LIST and LISTPLUS examples. A
more practical approach is to define an iterator for the container. The LISTOUT program shows how
that might look:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// listout.cpp
// iterator and for loop for output
#include <iostream>
#include <list>
#include <algorithm>
using namespace std;

int main()
 {
 int arr[] = { 2, 4, 6, 8 };
 list<int> theList;

 for(int k=0; k<4; k++) //fill list with array elements
 theList.push_back(arr[k]);

 list<int>::iterator iter; //iterator to list-of-ints

 for(iter = theList.begin(); iter != theList.end(); iter++)
 cout << *iter << ‘ ‘; //display the list
 cout << endl;
 return 0;
 }

The program simply displays the contents of the theList container. The output is

2 4 6 8

We define an iterator of type list<int> to match the container type. As with a pointer variable, we
must give an iterator a value before using it. In the for loop we initialize it to iList.begin(), the start of
the container. We can increment it with the ++ operator so that it steps through the elements in a
container, and we can dereference it with the * operator to obtain the value of each element it points
to. We can also compare it for equality using the != operator, so we can exit the loop when it
reaches the end of the container at iList.end().

An equivalent approach, using a while loop instead of a for loop, might be

iter = iList.begin();
while(iter != iList.end())
 cout << *iter++ << ‘ ‘;

The *iter++ syntax is the same as it would be for a pointer.

Data Insertion

We can use similar code to place data into existing elements in a container, as shown in LISTFILL:

// listfill.cpp
// uses iterator to fill list with data
#include <iostream>
#include <list>
using namespace std;

int main()
 {
 list<int> iList(5); //empty list holds 5 ints
 list<int>::iterator it; //iterator
 int data = 0;
 //fill list with data
 for(it = iList.begin(); it != iList.end(); it++)
 *it = data += 2;
 //display list

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 //display list
 for(it = iList.begin(); it != iList.end(); it++)
 cout << *it << ‘ ‘;
 cout << endl;
 return 0;
 }

The first loop fills the container with the int values 2, 4, 6, 8, 10, showing that the overloaded *
operator works on the left side of the equal sign as well as the right. The second loop displays these
values.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Algorithms and Iterators

Algorithms, as we’ve discussed, use iterators as arguments (and sometimes as return values). The
ITERFIND example shows the find() algorithm applied to a list. (We know we can use the find()
algorithm with lists, because it requires only an input iterator.)

// iterfind.cpp
// find() returns a list iterator
#include <iostream>
#include <algorithm>
#include <list>
using namespace std;

int main()
 {
 list<int> theList(5); //empty list holds 10 ints
 list<int>::iterator iter; //iterator
 int data = 0;
 //fill list with data
 for(iter = theList.begin(); iter != theList.end(); iter++)
 *iter = data += 2; //2, 4, 6, 8, 10
 //look for number 8
 iter = find(theList.begin(), theList.end(), 8);
 if(iter != theList.end())
 cout << “\nFound 8.\n”;
 else
 cout << “\nDid not find 8.\n”;
 return 0;
 }

As an algorithm, find() takes three arguments. The first two are iterator values specifying the range
to be searched, and the third is the value to be found. Here we fill the container with the same 2, 4,
6, 8, 10 values as in the last example. Then we use the find() algorithm to look for the number 8. If
find() returns iList.end(), we know it’s reached the end of the container without finding a match.
Otherwise, it must have located an item with the value 8. Here the output is

Found 8.

Can we use the value of the iterator to tell where in the container the 8 is located? You might think
the offset of the matching item from the beginning of the container could be calculated from (iter -
iList.begin()). However, this is not a legal operation on the iterators used for lists. A list iterator is
only a bidirectional iterator, so you can’t perform arithmetic with it. You can do arithmetic with
random access iterators, such as those used with vectors and queues. Thus if you were searching a
vector v rather than a list iList, you could rewrite the last part of ITERFIND like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

iter = find(v.begin(), v.end(), 8);
if(iter != v.end())
 cout << “\nFound 8 at location ” << (iter-v.begin());
else
 cout << “\nDid not find 8.”;

The output would be

Found 8 at location 3

Here’s another example in which an algorithm uses iterators as arguments. This one uses the copy()
algorithm with a vector. The user specifies a range of locations to be copied from one vector to
another, and the program copies them. Iterators specify this range.

// itercopy.cpp
// uses iterators for copy() algorithm
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

int main()
 {
 int beginRange, endRange;
 int arr[] = { 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 };
 vector<int> v1(arr, arr+10); //initialized vector
 vector<int> v2(10); //uninitialized vector

 cout << “Enter range to be copied (example: 2 5): ”;
 cin >> beginRange >> endRange;

 vector<int>::iterator iter1 = v1.begin() + beginRange;
 vector<int>::iterator iter2 = v1.begin() + endRange;
 vector<int>::iterator iter3;
 //copy range from v1 to v2
 iter3 = copy(iter1, iter2, v2.begin());
 //(it3 -> last item copied)
 iter1 = v2.begin(); //iterate through range
 while(iter1 != iter3) //in v2, displaying values
 cout << *iter1++ << ‘ ‘;
 cout << endl;
 return 0;
 }

Some interaction with this program is

Enter range to be copied (example: 2 5): 3 6
17 19 21

We don’t display the entire contents of v2, only the range of items copied. Fortunately, copy()
returns an iterator that points to the last item (actually one past the last item) that was copied to the
destination container, v2 in this case. The program uses this value in the while loop to display only
the items copied.

Specialized Iterators

In this section we’ll examine two specialized forms of iterators: iterator adapters, which can change
the behavior of iterators in interesting ways, and stream iterators, which allow input and output
streams to behave like iterators.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Iterator Adapters

The STL provides three variations on the normal iterator. These are the reverse iterator, the insert
iterator, and the raw storage iterator. The reverse iterator allows want you to iterate backward
through a container. The insert iterator want changes the behavior of various algorithms, such as
copy() and merge(), so they insert data into a container rather than overwriting existing data. The raw
storage iterator allowswant output iterators to store data in uninitialized memory, but it’s used in
specialized situations and we’ll ignore it here.

Reverse Iterators

Suppose you want to iterate backward through a container, from the end to the beginning. You
might think you could say something like

list<int>::iterator iter; //normal iterator
iter = iList.end(); //start at end
while(iter != iList.begin()) //go to beginning
 cout << *iter-- << ‘ ‘; //decrement iterator

but unfortunately this doesn’t work. For one thing, the range will be wrong (from n to 1, instead of
from n-1 to 0).

To iterate backward you can use a reverse iterator. The ITEREV program shows an example where a
reverse iterator is used to display the contents of a list in reverse order.

// iterev.cpp
// demonstrates reverse iterator
#include <iostream>
#include <list>
using namespace std;

int main()
 {
 int arr[] = { 2, 4, 6, 8, 10 }; //array of ints
 list<int> theList;

 for(int j=0; j<5; j++) //transfer array
 theList.push_back(arr[j]); //to list

 list<int>::reverse_iterator revit; //reverse iterator

 revit = theList.rbegin(); //iterate backward
 while(revit != theList.rend()) //through list,
 cout << *revit++ << ‘ ‘; //displaying output
 cout << endl;
 return 0;
 }

The output of this program is

10 8 6 4 2

You must use the member functions rbegin() and rend() when you use a reverse iterator. (Don’t try to
use them with a normal forward iterator.) Confusingly, you’re starting at the end of the container,
but the member function is called rbegin(). Also, you must increment the iterator. Don’t try to
decrement a reverse iterator; revit-- doesn’t do what you want. With a reverse_iterator, always go from
rbegin() to rend() using the increment operator.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Insert Iterators

Some algorithms, such as copy(), overwrite the existing contents (if any) of the destination container.
The COPYDEQ program, which copies from one deque to another, provides an example:

// copydeq.cpp
//demonstrates normal copy with queues
#include <iostream>
#include <deque>
#include <algorithm>
using namespace std;

int main()
 {
 int arr1[] = { 1, 3, 5, 7, 9 };
 int arr2[] = { 2, 4, 6, 8, 10 };
 deque<int> d1;
 deque<int> d2;

 for(int j=0; j<5; j++) //transfer arrays to deques
 {
 d1.push_back(arr1[j]);
 d2.push_back(arr2[j]);
 } //copy d1 to d2
 copy(d1.begin(), d1.end(), d2.begin());

 for(int k=0; k<d2.size(); k++) //display d2
 cout << d2[k] << ‘ ‘;
 cout << endl;
 return 0;
 }

The output of this program is

1 3 5 7 9

The contents of d2 have been written over the contents of d1, so when we display d2 there’s no trace
of its former (even-numbered) contents. Usually this behavior is what you want. Sometimes,
however, you’d rather that copy() inserted new elements into a container along with the old ones,
instead of overwriting the old ones. You can cause this behavior by using an insert iterator. There
are three flavors of this iterator:

• back_inserter inserts new items at the end
• front_inserter inserts new items at the beginning
• inserter inserts new items at a specified location

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The DINSITER program shows how to use a back inserter.

//dinsiter.cpp
//demonstrates insert iterators with queues
#include <iostream>
#include <deque>
#include <algorithm>
using namespace std;

int main()
 {
 int arr1[] = { 1, 3, 5, 7, 9 }; //initialize d1
 int arr2[] = {2, 4, 6}; //initialize d2
 deque<int> d1;
 deque<int> d2;

 for(int i=0; i<5; i++) //transfer arrays to deques
 d1.push_back(arr1[i]);
 for(int j=0; j<3; j++)
 d2.push_back(arr2[j]);
 //copy d1 to back of d2
 copy(d1.begin(), d1.end(), back_inserter(d2));

 cout << “\nd2: ”; //display d2
 for(int k=0; k<d2.size(); k++)
 cout << d2[k] << ‘ ‘;
 cout << endl;
 return 0;
 }

The back inserter uses the container’s push_back() member function to insert the new items at the end
of the target container d2, following the existing items. The source container d1 is unchanged. The
output of the program, which displays the new contents of d2, is

2 4 6 1 3 5 7 9

If we specified a front inserter instead,

copy(d1.begin(), d1.end(), front_inserter(d2));

then the new items would be inserted into the front of the container. The underlying mechanism of
the front inserter is the container’s push_front() member function, which pushes the items into the
front of the container, effectively reversing their order. The output would be

9 7 5 3 1 2 4 6

You can also insert the new items starting at any arbitrary element by using the inserter version of
the insert iterator. For example, to insert the new items at the beginning of d2, we would say

copy(d1.begin(), d1.end(), inserter(d2, d2.begin());

The first argument to inserter is the container to be copied into, and the second is an iterator pointing
to the location where copying should begin. Because inserter uses the container’s insert() member
function, the order of the elements is not reversed. The output resulting from this statement would
be

1 3 5 7 9 2 4 6

By changing the second argument to inserter we could cause the new data to be inserted anywhere in

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

By changing the second argument to inserter we could cause the new data to be inserted anywhere in
d2.

Note that a front_inserter can’t be used with a vector, because vectors don’t have a push_front()
member function; they can only be accessed at the end.

Stream Iterators

Stream iterators allow you to treat files and I/O devices (such as cin and cout) as if they were
iterators. This makes it easy to use files and I/O devices as arguments to algorithms. (This is
another demonstration of the versatility of using iterators to link algorithms and containers.)

The major purpose of the input and output iterator categories is to support these stream iterator
classes. Input and output iterators make it possible for appropriate algorithms to be used directly on
input and output streams.

Stream iterators are actually objects of classes that are templetized for different types of input or
output. There are two stream iterators: ostream_iterator and istream_iterator. Let’s look at them in turn.

The ostream_iterator Class

An ostream_iterator object can be used as an argument to any algorithm that specifies an output
iterator. In the OUTITER example we’ll use it as an argument to copy():

//outiter.cpp
//demonstrates ostream_iterator
#include <iostream>
#include <algorithm>
#include <list>
using namespace std;

int main()
 {
 int arr[] = { 10, 20, 30, 40, 50 };
 list<int> theList;

 for(int j=0; j<5; j++) //transfer array to list
 theList.push_back(arr[j]);

 ostream_iterator<int> ositer(cout, “, ”); //ostream iterator

 cout << “\nContents of list: ”;
 copy(theList.begin(), theList.end(), ositer); //display list
 cout << endl;
 return 0;
 }

We define an ostream iterator for reading type int values. The two arguments to this constructor are
the stream to which the int values will be written, and a string value that will be displayed following
each value. The stream value is typically a filename or cout; here it’s cout. When writing to cout the
delimiting string can consist of any characters you want; here we use a comma and a space.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

The copy() algorithm copies the contents of the list to cout. The ostream iterator is used as the third
argument to copy(); it’s the destination.

The output of OUTITER is

Contents of list: 10, 20, 30, 40, 50,

Our next example, FOUTITER, shows how to use an ostream iterator to write to a file:

//foutiter.cpp
//demonstrates ostream_iterator with files
#include <fstream>
#include <algorithm>
#include <list>
using namespace std;

int main()
 {
 int arr[] = { 11, 21, 31, 41, 51 };
 list<int> theList;

 for(int j=0; j<5; j++) //transfer array
 theList.push_back(arr[j]); // to list
 ofstream outfile(“ITER.DAT”); //create file object

 ostream_iterator<int> ositer(outfile, “ ”); //iterator
 //write list to file
 copy(theList.begin(), theList.end(), ositer);
 return 0;
 }

You must define an ofstream file object and associate it with a file, here called ITER.DAT. This object
is the first argument to the ostream_itertor. When writing to a file, use a whitespace character in the
string argument, not characters like “--”. This makes it easier to read the data back from the file.
Here we use a space (“ ”) character.

There’s no displayable output from FOUTITER, but you can use a text editor (like the Notepad utility
in Windows) to examine the file ITER.DAT, which was created by the ITER program. It should
contain the data

11 21 31 41 51

The istream_iterator Class

An istream_iterator object can be used as an argument to any algorithm that specifies an input iterator.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An istream_iterator object can be used as an argument to any algorithm that specifies an input iterator.
Our example, INITER, shows such objects used as the first two arguments to copy(). This program
reads floating-point numbers entered into cin (the keyboard) by the user, and stores them in a list.

// initer.cpp
// demonstrates istream_iterator
#include <iostream>
#include <list>
#include <algorithm>
using namespace std;

int main()
 {
 list<float> fList(5); //uninitialized list

 cout << “\nEnter 5 floating-point numbers: ”;
 //istream iterators
 istream_iterator<float> cin_iter(cin); //cin
 istream_iterator<float> end_of_stream; //eos
 //copy from cin to fList
 copy(cin_iter, end_of_stream, fList.begin());

 cout << endl; //display fList
 ostream_iterator<float> ositer(cout, “--”);
 copy(fList.begin(), fList.end(), ositer);
 cout << endl;
 return 0;
 }

Some interaction with INITER is

Enter 5 floating-point numbers: 1.1 2.2 3.3 4.4 5.5
1.1--2.2--3.3--4.4--5.5--

Notice that for copy(), because the data coming from cin is the source and not the destination, we
must specify both the beginning and the end of the range of data to be copied. The beginning is an
istream_iterator connected to cin, which we define as cin_iter using the one-argument constructor. But
what about the end of the range? The no-argument (default) constructor to istream_iterator plays a
special role here. It always creates an istream_iterator object that represents the end of the stream.

How does the user generate this end-of-stream value when inputting data? By typing the [Ctrl]-[z]
key combination, which transmits the end-of-file character normally used for streams. Sometimes
several presses of [Ctrl]-[z] are necessary. Pressing [Enter] won’t end the file, although it will delimit
the numbers.

We use an ostream_iterator to display the contents of the list, although of course there are many other
ways to do this.

You must perform any display output, such as the “Enter 5 floating-point numbers” prompt, not
only before using the istream iterator, but even before defining it. As soon as this iterator is defined,
it locks up the display, waiting for input.

Our next example, FINITER, uses a file instead of cin as input to the copy() algorithm.

// finiter.cpp
// demonstrates istream_iterator with files
#include <iostream>
#include <list>
#include <fstream>
#include <algorithm>
using namespace std;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

using namespace std;

int main()
 {
 list<int> iList; //empty list
 ifstream infile(“ITER.DAT”); //create input file object
 //(ITER.DAT must already exist)
 //istream iterators
 istream_iterator<int> file_iter(infile); //file
 istream_iterator<int> end_of_stream; //eos
 //copy from infile to iList
 copy(file_iter, end_of_stream, back_inserter(iList));

 cout << endl; //display iList
 ostream_iterator<int> ositer(cout, “--”);
 copy(iList.begin(), iList.end(), ositer);
 cout << endl;
 return 0;
 }

The output from FINITER is

11--21--31--31--41--51--

We define an ifstream object to represent the ITER.DAT file, which must already exist and contain
data. (The FOUTITER program, if you ran it, will have generated this file.)

Instead of using cout, as in the istream iterator in the INITER example, we use the ifstream object
named infile. The end-of-stream object is the same.

We’ve made another change in this program: it uses a back_inserter to insert data into iList. This
makes it possible to define iList as an empty container instead of one with a specified size. This
often makes sense when reading input, since you may not know how many items will be entered.

Associative Containers

We’ve seen that the sequence containers (vector, list and deque) store data items in a fixed linear
sequence. Finding an item (unless its index number is known or it’s located at an end of the
container) will involve the slow process of stepping through the items in the container one by one.

In an associative container the items are not arranged in sequence. Instead they are arranged in a
more complex way that makes it much faster to find a given item. This arrangement is typically a
tree structure, although different approaches (such as hash tables) are possible. The speed of
searching is the main advantage of associative containers.

Searching is done using a key, which is usually a single value like a number or string. This value is
an attribute of the objects in the container, or it may be the entire object.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

The two main categories of associative containers in the STL are sets and maps.

A set stores objects containing keys. A map stores pairs, where the first part of the pair is an object
containing a key and the second part is an object containing a value.

In both a set and a map, only one example of each key can be stored. It’s like a dictionary that
forbids more than one entry for each word. However, the STL has alternative versions of set and
map that relax this restriction. A multiset and a multimap are similar to a set and a map, but can
include multiple instances of the same key.

Associative containers share many member functions with other containers. However, some
algorithms, such as lower_bound() and equal_range(), exist only for associative containers. Also, some
member functions that do exist for other containers, such as the push and pop family (push_back()
and so on) have no versions for associative containers. It wouldn’t make sense to use push and pop
with associative containers, because elements must always be inserted in their ordered locations,
not at the beginning or end of the container.

Sets and Multisets

Sets are often used to hold objects of user-defined classes such as employees in a database. (You’ll
see examples of this later in this chapter.) However, sets can also hold simpler elements such as
strings. Figure 15.5 shows how this looks. The objects are arranged in order, and the entire object is
the key.

Our first example, SET, shows a set that stores objects of class string.

// set.cpp
// set stores string objects
#include <iostream>
#include <set>
#pragma warning (disable:4786) //for set (microsoft compilers only)
#include <string>
using namespace std;

int main()
 { //array of string objects
 string names[] = {“Juanita”, “Robert”,
 “Mary”, “Amanda”, “Marie”};
 //initialize set to array
 set<string, less<string> > nameSet(names, names+5);
 //iterator to set
 set<string, less<string> >::iterator iter;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 set<string, less<string> >::iterator iter;

 nameSet.insert(“Yvette”); //insert more names
 nameSet.insert(“Larry”);
 nameSet.insert(“Robert”); //no effect; already in set
 nameSet.insert(“Barry”);
 nameSet.erase(“Mary”); //erase a name
 //display size of set
 cout << “\nSize=” << nameSet.size() << endl;
 iter = nameSet.begin(); //display members of set
 while(iter != nameSet.end())
 cout << *iter++ << ‘\n’;

 string searchName; //get name from user
 cout << “\nEnter name to search for: ”;
 cin >> searchName;
 //find matching name in set
 iter = nameSet.find(searchName);
 if(iter == nameSet.end())
 cout << “The name ” << searchName << “ is NOT in the set.”;
 else
 cout << “The name ” << *iter << “ IS in the set.”;
 cout << endl;
 return 0;
 }

Figure 15.5 A set of string objects.

To define a set we specify the type of objects to be stored (in this case class string) and also the
function object that will be used to order the members of the set. Here we use less<>() applied to
string objects.

As you can see, a set has an interface similar to other STL containers. We can initialize a set to an
array, and insert new members into a set with the insert() member function. To display the set we can
iterate through it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To find a particular entry in the set we use the find() member function. (Sequential containers use
find() in its algorithm version.) Here’s some sample interaction with SET, where the user enters
“George” as the name to be searched for:

Size = 7
Amanda
Barry
Juanita
Larry
Marie
Robert
Yvette

Enter name to search for: George
The name George is NOT in the set.

Of course the speed advantage of searching an associative container isn’t apparent until you have
many more entries than in this example.

Let’s look at an important pair of member functions available only with associative containers. Our
example, SETRANGE, shows the use of lower_bound() and upper_bound():

// setrange.cpp
// tests ranges within a set
#include <iostream>
#include <set>
#pragma warning (disable:4786) //for set (microsoft compilers only)
#include <string>
using namespace std;

int main()
 { //set of string objects
 set<string, less<string> > organic;
 //iterator to set
 set<string, less<string> >::iterator iter;

 organic.insert(“Curine”); //insert organic compounds
 organic.insert(“Xanthine”);
 organic.insert(“Curarine”);
 organic.insert(“Melamine”);
 organic.insert(“Cyanimide”);
 organic.insert(“Phenol”);
 organic.insert(“Aphrodine”);
 organic.insert(“Imidazole”);
 organic.insert(“Cinchonine”);
 organic.insert(“Palmitamide”);
 organic.insert(“Cyanimide”);

 iter = organic.begin(); //display set
 while(iter != organic.end())
 cout << *iter++ << ‘\n’;

 string lower, upper; //display entries in range
 cout << “\nEnter range (example C Czz): ”;
 cin >> lower >> upper;
 iter = organic.lower_bound(lower);
 while(iter != organic.upper_bound(upper))
 cout << *iter++ << ‘\n’;
 return 0;
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

The program first displays an entire set of organic compounds. The user is then prompted to type in
a pair of key values, and the program displays those keys that lie within this range. Here’s some
sample interaction:

Aphrodine
Cinchonine
Curarine
Curine
Cyanimide
Imidazole
Melamine
Palmitamide
Phenol
Xanthine

Enter range (example C Czz): Aaa Curb
Aphrodine
Cinchonine
Curarine

The lower_bound() member function takes an argument that is a value of the same type as the key. It
returns an iterator to the first entry that is not less than this argument (where the meaning of “less”
is determined by the function object used in the set’s definition). The upper_bound() function returns
an iterator to the first entry that is greater than its argument. Together, these functions allow you to
access a specified range of values.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Maps and Multimaps

A map stores pairs. A pair consists of a key object and a value object. The key object contains a key
that will be searched for. The value object contains additional data. As in a set, the key objects can
be strings, numbers, or objects of more complex classes. The values are often strings or numbers,
but they can also be objects or even containers.

For example, the key could be a word, and the value could be a number representing how many
times that word appears in a document. Such a map constitutes a frequency table. Or the key could
be a word and the value could be a list of page numbers. This arrangement could represent an
index, like the one at the back of this book. Figure 15.6 shows a situation in which the keys are
words and the values are definitions, as in an ordinary dictionary.

Figure 15.6 A map of word-phrase pairs.

One common way to use maps is as associative arrays. In an ordinary C++ array the array index,
which is used to access a particular element, is an integer. Thus in the expression anArray[3], the 3 is
the array index. An associative array works in a similar way except that you can choose the data
type of the array index. If you’ve defined the index to be a string, for example, you can say
anArray[“jane”].

An Associative Array

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Let’s look at a simple example of a map used as an associative array. The keys will be the names of
states, and the values will be the populations of the states. Here’s the listing for ASSO_ARR:

// asso_arr.cpp
// demonstrates map used as associative array
#include <iostream>
#include <string>
#include <map>
#pragma warning (disable:4786) //for map (Microsoft only)
using namespace std;

int main()
 {
 string name;
 int pop;

 string states[] = { “Wyoming”, “Colorado”, “Nevada”,
 “Montana”, “Arizona”, “Idaho”};
 int pops[] = { 470, 2890, 800, 787, 2718, 944 };

 map<string, int, less<string> > mapStates; //map
 map<string, int, less<string> >::iterator iter; //iterator

 for(int j=0; j<6; j++)
 {
 name = states[j]; //get data from arrays
 pop = pops[j];
 mapStates[name] = pop; //put it in map
 }
 cout << “Enter state: ”; //get state from user
 cin >> name;
 pop = mapStates[name]; //find population
 cout << “Population: ” << pop << “,000\n”;

 cout << endl; //display entire map
 for(iter = mapStates.begin(); iter != mapStates.end(); iter++)
 cout << (*iter).first << ‘ ‘ << (*iter).second << “,000\n”;
 return 0;
 }

When the program runs, the user is prompted to type the name of a state. The program then looks in
the map, using the state name as an index, and returns the population of the state. Finally it displays
all the name-population pairs in the map. Here’s some sample output:

Enter state: Wyoming
Population: 470,000

Arizona 2718,000
Colorado 2890,000
Idaho 944,000
Montana 787,000
Nevada 800,000
Wyoming 470,000

Search speed is where sets and maps excel. Here the program quickly finds the appropriate
population when the user enters a state’s name. (This would be more meaningful if there were
millions of data items.) Iterating through the container, as is shown by the list of states and
populations, isn’t as fast as in a sequential container, but it’s still fairly efficient. Notice that the
states are ordered alphabetically, although the original data was not.

The definition of a map takes three template arguments:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

map<string, int, less<string> > maStates;

The first is the type of the key. In this case it’s string, representing the state name. The second is the
type of the value; in this case it’s int, which represents the population, in 1,000s. The third argument
specifies the ordering that will be used for the keys. We choose to have it ordered alphabetically by
the names of the states; that’s what less<string> does. We also define an iterator to this map.

Our input data is in two separate arrays. (In a real program it would probably come from a file.) To
put this data into the map we read it into the variables name and pop, and execute the statement

mapStates[name] = pop;

This is a particularly elegant construction, looking just like an insertion into an ordinary array.
However, the array index name is a string, not an integer.

When the user types in a state name, the program finds the appropriate population with the
statement

pop = mapStates[name];

Besides using the array-index syntax, we can also access the two parts of an entry in the map, the
key, and the value, using an iterator. The key is obtained from (*iter).first, and the value from
(*iter).second. Otherwise the iterator works as it does in other containers.

Storing User-Defined Objects

Until now our example programs have stored objects of basic types. However, the big payoff with
the STL is that you can use it to store and manipulate objects of classes that you write yourself (or
that someone else has written). In this section we’ll show how this is done.

A Set of person Objects

We’ll start with a person class that includes a person’s last name, first name, and telephone number.
We’ll create some members of this class and insert them in a set, thus creating a phone book
database. The user interacts with the program by entering a person’s name. The program then
searches the list and displays the data for that person, if it finds a match. We’ll use a multiset so two
or more person objects can have the same name. Here’s the listing for SETPERS:

// setpers.cpp
// uses a multiset to hold person objects
#include <iostream>
#include <set>
#pragma warning (disable:4786) //for set (Microsoft only)
#include <string>
using namespace std;

class person
 {
 private:
 string lastName;
 string firstName;
 long phoneNumber;
 public: //default constructor
 person() : lastName(“blank”),
 firstName(“blank”), phoneNumber(0)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 firstName(“blank”), phoneNumber(0)
 { }
 //3-arg constructor
 person(string lana, string fina, long pho) :
 lastName(lana), firstName(fina), phoneNumber(pho)
 { }
 friend bool operator<(const person&, const person&);
 friend bool operator==(const person&, const person&);

 void display() const //display person’s data
 {
 cout << endl << lastName << “,\t” << firstName
 << “\t\tPhone: ” << phoneNumber;
 }
 };
 //operator < for person class
bool operator<(const person& p1, const person& p2)
 {
 if(p1.lastName == p2.lastName)
 return (p1.firstName < p2.firstName) ? true : false;
 return (p1.lastName < p2.lastName) ? true : false;
 }
 //operator == for person class
bool operator==(const person& p1, const person& p2)
 {
 return (p1.lastName == p2.lastName &&
 p1.firstName == p2.firstName) ? true : false;
 }
//
int main()
 { //create person objects
 person pers1(“Deauville”, “William”, 8435150);
 person pers2(“McDonald”, “Stacey”, 3327563);
 person pers3(“Bartoski”, “Peter”, 6946473);
 person pers4(“KuangThu”, “Bruce”, 4157300);
 person pers5(“Wellington”, “John”, 9207404);
 person pers6(“McDonald”, “Amanda”, 8435150);
 person pers7(“Fredericks”, “Roger”, 7049982);
 person pers8(“McDonald”, “Stacey”, 7764987);
 //multiset of persons
 multiset< person, less<person> > persSet;
 //iterator to a multiset of persons
 multiset<person, less<person> >::iterator iter;

 persSet.insert(pers1); //put persons in multiset
 persSet.insert(pers2);
 persSet.insert(pers3);
 persSet.insert(pers4);
 persSet.insert(pers5);
 persSet.insert(pers6);
 persSet.insert(pers7);
 persSet.insert(pers8);

 cout << “\nNumber of entries = ” << persSet.size();

 iter = persSet.begin(); //display contents of multiset
 while(iter != persSet.end())
 (*iter++).display();
 //get last and first name
 string searchLastName, searchFirstName;
 cout << “\n\nEnter last name of person to search for: ”;
 cin >> searchLastName;
 cout << “Enter first name: ”;
 cin >> searchFirstName;
 //create person with this name
 person searchPerson(searchLastName, searchFirstName, 0);

 //get count of such persons

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 //get count of such persons
 int cntPersons = persSet.count(searchPerson);
 cout << “Number of persons with this name = ” << cntPersons;

 //display all matches
 iter = persSet.lower_bound(searchPerson);
 while(iter != persSet.upper_bound(searchPerson))
 (*iter++).display();
 cout << endl;
 return 0;
 } //end main()

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Necessary Member Functions

To work with STL containers, the person class needs a few common member functions. These are a
default (no-argument) constructor (which is actually not necessary in this example but is usually
essential), the overloaded < operator, and the overloaded == operator. These member functions are
used by the list class and by various algorithms. You may need other member functions in other
specific situations. (As in most classes, you should probably also provide overloaded assignment
and copy constructors and a destructor, but we’ll ignore these here to avoid complicating the
listing.)

The overloaded < and == operators should use const arguments. Generally it’s best to make them
friends, but you can use member functions as well.

Ordering

The overloaded < operator specifies the way the elements in the set will be ordered. In SETPERS we
define this operator to order the last name of the person, and, if the last names are the same, to order
the first names.

Here’s some interaction with SETPERS. The program first displays the entire list. (Of course this
would not be practical on a real database with a large number of elements.) Because they are stored
in a multiset, the elements are ordered automatically. Then, at the prompt, the user enters the name
“McDonald” followed by “Stacey” (last name first). There are two persons on the list with this
particular name, so they are both displayed.

Number of entries = 8
Bartoski, Peter phone: 6946473
Deauville, William phone: 8435150
Fredericks, Roger phone: 7049982
KuangThu, Bruce phone: 4157300
McDonald, Amanda phone: 8435150
McDonald, Stacey phone: 3327563
McDonald, Stacey phone: 7764987
Wellington, John phone: 9207404

Enter last name of person to search for: McDonald
Enter first name: Stacey
Number of persons with this name = 2
McDonald, Stacey phone: 3327563
McDonald, Stacey phone: 7764987

Just Like Basic Types

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As you can see, once a class has been defined, objects of that class are handled by the container in
the same way as variables of basic types.

We first use the size() member function to display the total number of entries. Then we iterate
through the list, displaying all the entries.

Because we’re using a multiset, the lower_bound() and upper_bound() member functions are available
to display all elements that fall within a range. In the example output the lower and upper bound are
the same, so all persons with the same name are displayed. Notice that we must create a “fictitious”
person with the same name as the person (or persons) we want to find. The lower_bound() and
upper_bound() functions then match this person against those on the list.

A List of person Objects

It’s very fast to search a set or multiset for a person with a given name, as in the SETPERS example.
If, however, we’re more concerned with being able to quickly insert or delete a person object, we
might decide to use a list instead. The LISTPERS example shows how this looks.

// listpers.cpp
// uses a list to hold person objects
#include <iostream>
#include <list>
#include <algorithm>
#include <string>
using namespace std;

class person
 {
 private:
 string lastName;
 string firstName;
 long phoneNumber;
 public:
 person() : //no-arg constructor
 lastName(“blank”), firstName(“blank”), phoneNumber(0L)
 { }
 //3-arg constructor
 person(string lana, string fina, long pho) :
 lastName(lana), firstName(fina), phoneNumber(pho)
 { }
 friend bool operator<(const person&, const person&);
 friend bool operator==(const person&, const person&);
 friend bool operator!=(const person&, const person&);
 friend bool operator>(const person&, const person&);

 void display() const //display all data
 {
 cout << endl << lastName << “,\t” << firstName
 << “\t\tPhone: ” << phoneNumber;
 }

 long get_phone() const //return phone number
 { return phoneNumber; }
 };
 //overloaded < for person class

 //overloaded == for person class
bool operator==(const person& p1, const person& p2)
 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {
 return (p1.lastName == p2.lastName &&
 p1.firstName == p2.firstName) ? true : false;
 }
bool operator<(const person& p1, const person& p2)
 {
 if(p1.lastName == p2.lastName)
 return (p1.firstName < p2.firstName) ? true : false;
 return (p1.lastName < p2.lastName) ? true : false;
 }
bool operator!=(const person& p1, const person& p2)
 { return !(p1==p2); }
bool operator>(const person& p1, const person& p2)
 { return !(p1<p2) && !(p1==p2); }
//
int main()
 {
 list<person> persList; //list of persons
 //iterator to a list of persons
 list<person>::iterator iter1;
 //put persons in list
 persList.push_back(person(“Deauville”, “William”, 8435150));
 persList.push_back(person(“McDonald”, “Stacey”, 3327563));
 persList.push_back(person(“Bartoski”, “Peter”, 6946473));
 persList.push_back(person(“KuangThu”, “Bruce”, 4157300));
 persList.push_back(person(“Wellington”, “John”, 9207404));
 persList.push_back(person(“McDonald”, “Amanda”, 8435150));
 persList.push_back(person(“Fredericks”, “Roger”, 7049982));
 persList.push_back(person(“McDonald”, “Stacey”, 7764987));

 cout << “\nNumber of entries = ” << persList.size();

 iter1 = persList.begin(); //display contents of list
 while(iter1 != persList.end())
 (*iter1++).display();

//find person or persons with specified name (last and first)
 string searchLastName, searchFirstName;
 cout << “\n\nEnter last name of person to search for: ”;
 cin >> searchLastName;
 cout << “Enter first name: ”;
 cin >> searchFirstName;
 //make a person with that name
 person searchPerson(searchLastName, searchFirstName, 0L);
 //search for first match of names
 iter1 = find(persList.begin(), persList.end(), searchPerson);
 if(iter1 != persList.end()) //find additional matches
 {
 cout << “Person(s) with that name is(are)”;
 do
 {
 (*iter1).display(); //display match
 ++iter1; //search again, one past match
 iter1 = find(iter1, persList.end(), searchPerson);
 } while(iter1 != persList.end());
 }
 else
 cout << “There is no person with that name.”;

//find person or persons with specified phone number
 cout << “\n\nEnter phone number (format 1234567): ”;
 long sNumber; //get search number
 cin >> sNumber;
 //iterate through list
 bool found_one = false;
 for(iter1=persList.begin(); iter1 != persList.end(); ++iter1)
 {
 if(sNumber == (*iter1).get_phone()) //compare numbers

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if(sNumber == (*iter1).get_phone()) //compare numbers
 {
 if(!found_one)
 {
 cout << “Person(s) with that phone number is(are)”;
 found_one = true;
 }
 (*iter1).display(); //display the match
 }
 } //end for
 if(!found_one)
 cout << “There is no person with that phone number”;
 cout << endl;
 return 0;
 } //end main()

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Finding All Persons with a Specified Name

We can’t use the lower_bound()/upper_bound() member functions because we’re dealing with a list, not
a set or map. Instead we use the find() member function to find all the persons with a given name. If
this function reports a hit, we must apply it again, starting one person past the original hit, to see if
there are other persons with the same name. This complicates the programming; we must use a loop
and two calls to find().

Finding All Persons with a Specified Phone Number

It’s harder to search for a person with a specified phone number than one with a specified name,
because the class member functions like find() are intended to be used to find the primary search
characteristic. In this example we use the brute force approach to finding the phone number,
iterating through the list and making a “manual” comparison of the number we’re looking for and
each member of the list:

if(sNumber == (*iter1).getphone())
 ...

The program first displays all the entries, then asks the user for a name and finds the matching
person or persons. It then asks for a phone number and again finds any matching persons. Here’s
some interaction with LISTPERS:

Number of entries = 8
Deauville, William phone: 8435150
McDonald, Stacey phone: 3327563
Bartoski, Peter phone: 6946473
KuangThu, Bruce phone: 4157300
Wellington, John phone: 9207404
McDonald, Amanda phone: 8435150
Fredericks, Roger phone: 7049982
McDonald, Stacey phone: 7764987

Enter last name of person to search for: Wellington
Enter first name: John
Person(s) with that name is(are)
Wellington, John phone: 9207404

Enter phone number (format 1234567): 8435150
Person(s) with that number is(are)
Deauville, William phone: 8435150
McDonald, Amanda phone: 8435150

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

McDonald, Amanda phone: 8435150

Here the program has found one person with the specified name and two people with the specified
phone number.

When using lists to store class objects we must declare four comparison operators for that class:
!=, <, and >. Depending on what algorithms you actually use, you may not need to define (provide
function bodies for) all these operators. In this example we only need to define the == operator,
although for completeness we define all four. If we used the sort() algorithm on the list, we would
need to define the < operator as well.

Function Objects

Function objects are used extensively in the STL. One important use for them is as arguments to
certain algorithms. They allow you to customize the operation of these algorithms. We mentioned
function objects earlier in this chapter, and used one in the sortemp program. There we showed an
example of the predefined function object greater<>() used to sort data in reverse order. In this
section we’ll examine other predefined function objects, and also see how to write your own so that
you have even greater control over what the STL algorithms do.

Recall that a function object is a function that has been wrapped in a class so that it looks like an
object. The class, however, has no data and only one member function, which is the overloaded ()
operator. The class is often templetized so it can work with different types.

Predefined Function Objects

The predefined STL function objects, located in the functional header file, are shown in Table
15.10. There are function objects corresponding to all the major C++ operators. In the table, the
letter T indicates any class, either user-written or a basic type. The variables x and y represent
objects of class T passed to the function object as arguments.

Table 15.10 Predefined Function Objects
Function object Return value
T = plus(T, T) x+y
T = minus(T, T) x-y
T = times(T, T) x*y
T = divide(T, T) x/y
T = modulus(T, T) x%y
T = negate(T) -x
bool = equal_to(T, T) x == y
bool = not_equal_to(T, T) x != y
bool = greater(T, T) x > y
bool = less(T, T) x < y
bool = greater_equal(T, T) x >= y
bool = less_equal(T, T) x <= y
bool = logical_and(T, T) x && y
bool = logical_or(T, T) x || y
bool = logical_not(T) !x

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

There are function objects for arithmetic operations, comparisons, and logical operations. Let’s look
at an example where an arithmetic function object might come in handy. Our example uses a class
called airtime, which represents time values consisting of hours and minutes, but no seconds. This
data type is appropriate for flight arrival and departure times in airports. The example shows how
the plus<>() function object can be used to add all the airtime values in a container. Here’s the listing
for PLUSAIR:

//plusair.cpp
//uses accumulate() algorithm and plus() function object
#include <iostream>
#include <list>
#include <numeric> //for accumulate()
using namespace std;
//
class airtime
 {
 private:
 int hours; //0 to 23
 int minutes; //0 to 59
 public:
 //default constructor
 airtime() : hours(0), minutes(0)
 { }
 //2-arg constructor
 airtime(int h, int m) : hours(h), minutes(m)
 { }
 void display() const //output to screen
 { cout << hours << ‘:’ << minutes; }

 void get() //input from user
 {
 char dummy;
 cout << “\nEnter airtime (format 12:59): ”;
 cin >> hours >> dummy >> minutes;
 }
 //overloaded + operator
 airtime operator + (const airtime right) const
 { //add members
 int temph = hours + right.hours;
 int tempm = minutes + right.minutes;
 if(tempm >= 60) //check for carry
 { temph++; tempm -= 60; }
 return airtime(temph, tempm); //return sum
 }
 //overloaded == operator
 bool operator == (const airtime& at2) const
 { return (hours == at2.hours) &&
 (minutes == at2.minutes); }
 //overloaded < operator

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 //overloaded < operator
 bool operator < (const airtime& at2) const
 { return (hours < at2.hours) ||
 (hours == at2.hours && minutes < at2.minutes); }
 //overloaded != operator
 bool operator != (const airtime& at2) const
 { return !(*this==at2); }
 //overloaded > operator
 bool operator > (const airtime& at2) const
 { return !(*this<at2) && !(*this==at2); }
 }; //end class airtime
//
int main()
 {
 char answer;
 airtime temp, sum;
 list<airtime> airlist; //list of airtimes

 do { //get airtimes from user
 temp.get();
 airlist.push_back(temp);
 cout << “Enter another (y/n)? ”;
 cin >> answer;
 } while (answer != ‘n’);
 //sum all the airtimes
 sum = accumulate(airlist.begin(), airlist.end(),
 airtime(0, 0), plus<airtime>());
 cout << “\nsum = ”;
 sum.display(); //display sum
 cout << endl;
 return 0;
 }

This program features the accumulate() algorithm. There are two versions of this function. The three-
argument version always sums (using the + operator) a range of values. In the four-argument
version shown here, any of the arithmetic function objects shown in Table 15.10 can be used.

The four arguments to this version of accumulate() are the iterators of the first and last elements in the
range, the initial value of the sum (often 0), and the operation to be applied to the elements. In this
example we add them using plus<>(), but we could subtract them, multiply them, or perform other
operations using different function objects. Here’s some interaction with plusair:

Enter airtime (format 12:59) : 3:45
Enter another (y/n)? y

Enter airtime (format 12:59) : 5:10
Enter another (y/n)? y

Enter airtime (format 12:59) : 2:25
Enter another (y/n)? y

Enter airtime (format 12:59) : 0:55
Enter another (y/n)? n

sum = 12:15

The accumulate() algorithm is not only easier and clearer than iterating through the container yourself
to add the elements, it’s also (unless you put a lot of work into your code) more efficient.

The plus<>() function object requires that the + operator be overloaded for the airtime class. This
operator should be a const function, since that’s what the plus<>() function object expects.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The other arithmetic function objects work in a similar way. The logical function objects such as
logical_and<>() can be used on objects of classes for which these operations make sense (for example,
type bool variables).

Writing Your Own Function Objects

If one of the standard function objects doesn’t do what you want, you can write your own. Our next
example shows two situations where this might be desirable, one involving the sort() algorithm and
one involving for_each().

It’s easy to sort a group of elements based on the relationship specified in the class < operator.
However, what happens if you want to sort a container that contains pointers to objects, rather than
the objects themselves? Storing pointers is a good way to improve efficiency, especially for large
objects, because it avoids the copying process that takes place whenever an object is placed in a
container. However, if you try to sort the pointers, you’ll find that the objects are arranged by
pointer address, rather than by some attribute of the object.

To make the sort() algorithm work the way we want in a container of pointers, we must supply it
with a function object that defines how we want the data ordered.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Our example program starts with a vector of pointers to person objects. These objects are placed in
the vector, then sorted in the usual way, which leads to the pointers, not the persons, being sorted.
This isn’t what we want, and in this case causes no change in the ordering at all, because the items
were inserted in order of increasing addresses. Next the vector is sorted correctly, using the
function object comparePersons(). This orders items using the contents of pointers, rather than the
pointers themselves. The result is that the person objects are sorted alphabetically by name. Here’s
the listing for SORTPTRS.

// sortptrs.cpp
// sorts person objects stored by pointer
#include <iostream>
#include <vector>
#include <algorithm>
#include <string>
using namespace std;

class person
 {
 private:
 string lastName;
 string firstName;
 long phoneNumber;
 public:
 person() : //default constructor
 lastName(“blank”), firstName(“blank”), phoneNumber(0L)
 { }
 //3-arg constructor
 person(string lana, string fina, long pho) :
 lastName(lana), firstName(fina), phoneNumber(pho)
 { }
 friend bool operator<(const person&, const person&);
 friend bool operator==(const person&, const person&);

 void display() const //display person’s data
 {
 cout << endl << lastName << “,\t” << firstName
 << “\t\tPhone: ” << phoneNumber;
 }
 long get_phone() const //return phone number
 { return phoneNumber; }
 }; //end class person
//--
//overloaded < for person class
bool operator<(const person& p1, const person& p2)
 {
 if(p1.lastName == p2.lastName)
 return (p1.firstName < p2.firstName) ? true : false;
 return (p1.lastName < p2.lastName) ? true : false;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return (p1.lastName < p2.lastName) ? true : false;
 }
//--
//overloaded == for person class
bool operator==(const person& p1, const person& p2)
 {
 return (p1.lastName == p2.lastName &&
 p1.firstName == p2.firstName) ? true : false;
 }
//--
//function object to compare persons using pointers
class comparePersons
 {
 public:
 bool operator() (const person* ptrP1,
 const person* ptrP2) const
 { return *ptrP1 < *ptrP2; }
 };
//--
//function object to display a person, using a pointer
class displayPerson
 {
 public:
 void operator() (const person* ptrP) const
 { ptrP->display(); }
 };
//
int main()
 { //a vector of ptrs to persons
 vector<person*> vectPtrsPers;
 //make persons
 person* ptrP1 = new person(“KuangThu”, “Bruce”, 4157300);
 person* ptrP2 = new person(“Deauville”, “William”, 8435150);
 person* ptrP3 = new person(“Wellington”, “John”, 9207404);
 person* ptrP4 = new person(“Bartoski”, “Peter”, 6946473);
 person* ptrP5 = new person(“Fredericks”, “Roger”, 7049982);
 person* ptrP6 = new person(“McDonald”, “Stacey”, 7764987);

 vectPtrsPers.push_back(ptrP1); //put persons in set
 vectPtrsPers.push_back(ptrP2);
 vectPtrsPers.push_back(ptrP3);
 vectPtrsPers.push_back(ptrP4);
 vectPtrsPers.push_back(ptrP5);
 vectPtrsPers.push_back(ptrP6);

 for_each(vectPtrsPers.begin(), //display vector
 vectPtrsPers.end(), displayPerson());
 //sort pointers
 sort(vectPtrsPers.begin(), vectPtrsPers.end());
 cout << “\n\nSorted pointers”;
 for_each(vectPtrsPers.begin(), //display vector
 vectPtrsPers.end(), displayPerson());

 sort(vectPtrsPers.begin(), //sort persons
 vectPtrsPers.end(), comparePersons());
 cout << “\n\nSorted persons”;
 for_each(vectPtrsPers.begin(), //display vector
 vectPtrsPers.end(), displayPerson());
 while(!vectPtrsPers.empty())
 {
 delete vectPtrsPers.back(); //delete person
 vectPtrsPers.pop_back(); //pop pointer
 }
 cout << endl;
 return 0;
 } //end main()

Here’s the output of SORTPTRS:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

KuangThu, Bruce phone: 4157300
Deauville, William phone: 8435150
Wellington, John phone: 9207404
Bartoski, Peter phone: 6946473
Fredericks, Roger phone: 7049982
McDonald, Stacey phone: 7764987

Sorted pointers
KuangThu, Bruce phone: 4157300
Deauville, William phone: 8435150
Wellington, John phone: 9207404
Bartoski, Peter phone: 6946473
Fredericks, Roger phone: 7049982
McDonald, Stacey phone: 7764987

Sorted persons
Bartoski, Peter phone: 6946473
Deauville, William phone: 8435150
Fredericks, Roger phone: 7049982
KuangThu, Bruce phone: 4157300
McDonald, Stacey phone: 7764987
Wellington, John phone: 9207404

First the original order is shown, then the ordering sorted incorrectly by pointer, and finally the
order sorted correctly by name.

The comparePersons() Function Object

If we use the two-argument version of the sort() algorithm,

sort(vectPtrsPers.begin(), vectPtrsPers.end());

then only the pointers are sorted, by their addresses in memory. This is not usually what we want.
To sort the person objects by name, we use the three-argument version of sort(), with the
comparePersons() function object as the third argument:

sort(vectPtrsPers.begin(),
 bectPtrsPers.end(), comparePersons());

The function object comparePersons() is defined like this in the SORTPTRS program:

//function object to compare persons using pointers
class comparePersons
 {
 public:
 bool operator() (const person* ptrP1,
 const person* ptrP2) const
 { return *ptrP1 < *ptrP2; }
 };

The operator() takes two arguments that are pointers to persons and compares their contents, rather
than the pointers themselves.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

The displayPerson() Function Object

We use a different approach to display the contents of a container than we have before. Instead of
interacting through the container, we use the for_each() function, with a function object as its third
argument.

for_each(vectPtrsPers.begin(),
 bectPtrsPers.end(), displayPeson());

This causes the displayPerson() function object to be called once for each person in the vector. Here’s
how displayPerson() looks:

//function object to display a person, using a pointer
class displayPerson
 {
 public:
 void operator() (const person* ptrP) const
 { ptrP->display(); }
 };

With this arrangement a single function call displays all the person objects in the vector.

Function objects Used to Modify Container Behavior

In SORTPTRS we showed function objects used to modify the behavior of algorithms. Function
objects can also modify the behavior of containers. For example, if you want a set of pointers to
objects to sort itself automatically based on the objects instead of the pointers, you can use an
appropriate function object when you define the container. No sort() algorithm need be used. We’ll
examine this approach in an exercise.

Summary

This chapter has presented a quick and dirty introduction to the STL. However, we’ve touched on
the major topics, and you should have acquired enough information to begin using the STL in a
useful way. For a fuller understanding of the STL we recommend that readers avail themselves of a
complete text on the topic.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You’ve learned that the STL consists of three main components: containers, algorithms, and
iterators. Containers are divided into two groups: sequential and associative. Sequential containers
are the vector, list, and deque. Associative containers are the set and map, and the closely-related
multiset and multimap. Algorithms carry out operations on containers, such as sorting, copying, and
searching. Iterators act like pointers to container elements and provide connections between
algorithms and containers.

Not all algorithms are appropriate for all containers. Iterators are used to ensure that algorithms and
containers are appropriately matched. Iterators are defined for specific kinds of containers, and used
as arguments to algorithms. If the container’s iterators don’t match the algorithm, a compiler error
results.

Input and output iterators connect directly to I/O streams, thus allowing data to be piped directly
between I/O devices and containers. Specialized iterators allow backward iteration and can also
change the behavior of some algorithms so that they insert data rather than overwriting existing
data.

Algorithms are standalone functions that can work on many different containers. In addition, each
container has its own specific member functions. In some cases the same function is available as
both an algorithm and a member function.

STL containers and algorithms will work with objects of any class, provided certain member
functions, such as the < operator, are overloaded for that class.

The behavior of certain algorithms such as find_if() can be customized using function objects. A
function object is instantiated from a class containing only an () operator.

Questions

Answers to questions can be found in Appendix G, “Answers to Questions and Exercises.”

1. An STL container can be used to

a. hold objects of class employee.
b. store elements in a way that makes them quickly accessible.
c. compile C++ programs.
d. organize the way objects are stored in memory.

2. The STL sequence containers are v_______, l_______, and d________.
3. Two important STL associative containers are s_______ and ma_______.
4. An STL algorithm is

a. a standalone function that operates on containers.
b. a link between member functions and containers.
c. a friend function of appropriate container classes.
d. a member function of appropriate container classes.

5. True or false: one purpose of an iterator in the STL is to connect algorithms and
containers.
6. The find() algorithm

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6. The find() algorithm

a. finds matching sequences of elements in two containers.
b. finds a container that matches a specified container.
c. takes iterators as its first two arguments.
d. takes container elements as its first two arguments.

7. True or false: algorithms can be used only on STL containers.
8. A range is often supplied to an algorithm by two i_______ values.
9. What entity is often used to customize the behavior of an algorithm?
10. A vector is an appropriate container if you

a. want to insert lots of new elements at arbitrary locations in the vector.
b. want to insert new elements, but always at the front of the container.
c. are given an index number and you want to quickly access the corresponding
element.
d. are given an element’s key value and you want to quickly access the corresponding
element.

11. True or false: the back() member function removes the element at the back of the
container.
12. If you define a vector v with the default constructor, and define another vector w with a
one-argument constructor to a size of 11, and insert 3 elements into each of these vectors with
push_back(), then the size() member function will return ______ for v and _____ for w.
13. The unique() algorithm removes all _________ element values from a container.
14. In a deque,

a. data can be quickly inserted or deleted at any arbitrary location.
b. data can be inserted or deleted at any arbitrary location, but the process is relatively
slow.
c. data can be quickly inserted or deleted at either end.
d. data can be inserted or deleted at either end, but the process is relatively slow.

15. In iterator ________ a specific element in a container.
16. True or false: an iterator can always move forward or backward through a container.
17. You must use at least a ____________ iterator for a list.
18. If iter is an iterator to a container, write an expression that will have the value of the
object pointed to by iter, and will then cause iter to point to the next element.
19. The copy() algorithm returns an iterator to

a. the last element copied from.
b. the last element copied to.
c. the element one past the last element copied from.
d. the element one past the last element copied to.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

20. To use a reverse_iterator, you should

a. begin by initializing it to end().
b. begin by initializing it to rend().
c. increment it to move backward through the container.
d. decrement it to move backward through the container.

21. True or false: the back_inserter iterator always causes the new elements to be inserted
following the existing ones
22. Stream iterators allow you to treat the display and keyboard devices, and files, as if they
were _____________.
23. What does the second argument to an ostream_iterator specify?
24. In an associative container,

a. values are stored in sorted order.
b. keys are stored in sorted order.
c. sorting is always in alphabetical or numerical order.
d. you must use the sort() algorithm to keep the contents sorted.

25. When defining a set, you must specify how ______________.
26. True or false: in a set, the insert() member function inserts a key in sorted order.
27. A map stores __________ of objects (or values).
28. True or false: a map can have two or more elements with the same key value.
29. If you store pointers to objects, instead of objects, in a container, then

a. the objects won’t need to be copied to implement storage in the container.
b. only associative containers can be used.
c. you can’t sort the objects using object attributes as keys.
d. the containers will often require less memory.

30. If you want an associative container like set to order itself automatically, you can define
the ordering in a function object and specify that function object in the container’s
___________.

Exercises

Answers to exercises can be found in Appendix G.

*1. Write a program that applies the sort() algorithm to an array of floating point values

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

*1. Write a program that applies the sort() algorithm to an array of floating point values
entered by the user, and displays the result.
*2. Apply the sort() algorithm to an array of words entered by the user, and display the result.
Use push_back() to insert the words, and the [] operator and size() to display them.
*3. Start with a list of int values. Use two normal (not reverse) iterators, one moving forward
through the list and one moving backward, in a while loop, to reverse the contents of the list.
You can use the swap() algorithm to save a few statements. (Make sure your solution works
for both even and odd numbers of items.) To see how the experts do it, look at the reverse()
function in your compiler’s algorithm header file.
*4. Start with the person class, and create a multiset to hold pointers to person objects. Define
the multiset with the comparePersons function object, so it will be sorted automatically by
names of persons. Define a half-dozen persons, put them in the multiset, and display its
contents. Several of the persons should have the same name, to verify that the multiset stores
multiple objects with the same key.
5. Fill an array with even numbers and a set with odd numbers. Use the merge() algorithm to
merge these containers into a vector. Display the vector contents to show that all went well.
[merge.cpp]
6. In Exercise 15.3 two ordinary (non-reverse) iterators were used to reverse the contents of
a container. Now use one forward and one reverse iterator to carry out the same task, this
time on a vector. [reverse2.cpp]
7. We showed the four-argument version of the accumulate() algorithm in the PLUSAIR
example. Rewrite this example using the three-argument version. [accumulate.cpp]
8. You can use the copy() algorithm to copy sequences within a container. However, you
must be careful when the destination sequence overlaps the source sequence. Write a
program that lets you copy any sequence to a different location within an array, using copy()
Have the user enter values for first1, last1, and first2. Use the program to verify that you can
shift a sequence that overlaps its destination to the left, but not to the right. (For example, you
can shift several items from 10 to 9, but not from 10 to 11.) This is because copy() starts with
the leftmost element. [copy1.cpp]
9. We listed the function objects corresponding to the C++ operators in Table 15.10, and, in
the PLUSAIR program earlier in this chapter, we showed the function object plus<>() used with
the accumulate() algorithm. It wasn’t necessary to provide arguments to the function objects in
that example, but sometimes it is. However, you can’t put the argument within the
parentheses of the function object, as you might expect. Instead, you use a function adapter
called bind1st or bind2nd to bind the argument to the function. For example, suppose you were
looking for a particular string (call it searchName) in a container of strings (called names). You
can say

ptr = find_if(names.begin(), names.end(),
 bind2nd(equal_to<string>(), searchName));

Here equal_to<>() and searchName are arguments to bind2nd(). This statement returns an iterator
to the first string in the container equal to searchName. Write a program that incorporates this
statement or a similar one to find a string in a container of strings. It should display the
position of searchName in the container. [bind2nd.cpp]
10. You can use the copy_backword() algorithm to overcome the problem described in Exercise
7. That is, you can’t shift a sequence to the left if any of the source overlaps any of the
destination. Write a program that uses both copy() and copy_backward() to enable shifting any
sequence anywhere within a container, regardless of overlap. [copy2.cpp]
11. Write a program that copies a source file of integers to a destination file, using stream

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11. Write a program that copies a source file of integers to a destination file, using stream
iterators. The user should supply both source and destination filenames to the program. You
can use a while loop approach. Within the loop, read each integer value from the input iterator
and write it immediately to the output iterator, then increment both iterators. The ITER.DAT
file created by the FOUTITER program in this chapter makes a suitable source file.
[copyfile.cpp]
12. A frequency table lists words and the number of times each word appears in a text file.
Write a program that creates a frequency table for a file whose name is entered by the user.
You can use a map of string-int pairs. You may want to use the C library function ispunct() (in
header file CTYPE.H) to check for punctuation so you can strip it off the end of a word, using
the string member function substr(). Also, the tolower() function may prove handy for
uncapitalizing words. [wordfreq.cpp]

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

CHAPTER 16
OBJECT-ORIENTED DESIGN

You will learn about the following in this chapter:
• CRC Cards • USE Cases
• Class relationships • Class diagrams
• Translating design into code

An object-oriented programmer faces a major question at the start of every programming project:
“What classes should I use?” Understanding how to break a programming problem into classes is
not a trivial undertaking. The process is called object-oriented design (OOD). Many books have
been written, and many more will be written, on this subject, which is still in a state of rapid
evolution.

In a single chapter we can’t cover everything there is to know about OOD, but we can give you an
idea of the issues involved and some of the major techniques.

Much writing about OOD is abstract and theoretical. To make our discussion as concrete as
possible, we’ll use a case study, focusing on a specific situation and describing the actual steps you
might take to design a program.

Our Approach to OOD

In this chapter we’re going to focus on three major phases in the process of translating a
programming problem into classes. These are:

• CRC cards
• Use cases
• Class diagrams

Briefly, creating CRC cards gives us a first approximation of the classes we will need and what
they do. Use cases then allow us to add detail to what we learned with CRC cards. Finally, class
diagrams specify how our classes are related, and provide a bridge to the actual program code.

CRC Cards

CRC cards are a non-technical, non-threatening way to analyze a problem. They allow the people

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CRC cards are a non-technical, non-threatening way to analyze a problem. They allow the people
who understand the problem, or who are going to use the finished program, to guide the design
process. These people are sometimes referred to with a highfalutin’ name like business domain
experts (BDEs). The BDEs may not know anything about programming, but they know (or can
figure out) what they want the program to do. CRC cards are effective because the BDEs can
generate them with no knowledge of programming.

Each CRC card corresponds to an object in the business domain, such as a person or report.
Because of the correspondence between real-world and program objects, each CRC card also
corresponds to an object in the program code. Thus the CRC-card approach allows non-
programmers to play a major role in program design.

Use Cases

A use case is a description of a specific operation carried out by the program. Such an operation is
usually initiated by a human user of the program. This user may ask a class to do something. Then
this class may ask other classes for help carrying out the user’s request. A detailed description of
this process constitutes the use case.

As use cases are generated, it may become clearer that new classes are needed, or that existing
classes need to be modified. Such perceptions can be reflected in new or modified CRC cards.

Class Diagrams

Once CRC cards and use cases have been generated, class diagrams provide a way to express the
relationships among the classes, and to record the information on the CRC cards. The Universal
Modeling Language (UML) specifies how class relationships are depicted on class diagrams.
Exploring class relationships with the class diagrams may again reveal that additions or changes
need to be made to the original classes, resulting in further revisions to the CRC cards.

When the CRC cards, use cases, and class diagrams have been completed, the final program design
is ready to be coded.

In the balance of this chapter we’ll describe how CRC cards, use cases, and class diagrams are used
to design a specific program. We’ll then discuss how the design is translated into actual code, and
show the program listings for the completed program.

The Programming Problem

The program we’ll design in this chapter is called Landlord. Using a specific program will keep the
discussion grounded in something specific. You may or may not like your landlord, but you can
understand the sorts of data (such as rents and expenses) that the landlord must deal with. This gets
us started with an easily-understood business domain (what we’re writing the program about).

Let’s suppose that you’re an independent programmer, and you’re approached by a potential
customer whose name is Beverly Smith. Beverly is a small-time landlord: she owns an apartment
building with 12 units. She wants you to write a program that will make it easier for her to record
data and print reports regarding the finances of the apartment building.

Hand-Written Forms

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Currently Beverly is recording all the information about her apartment building by hand, in old-
fashioned ledger books. She shows you the forms she’s currently using. There are three of them:

• The Rental Income Record
• The Expense Record
• The Annual Summary

The Rental Income Record is used to record and display the incoming rent payments. It contains 12
columns, one for each month; and one row for each apartment number. Each time Beverly receives
a rent payment from a tenant, she records it in the appropriate row and column of the Rental Income
Record, which is shown in Figure 16.1.

Figure 16.1 The Rental Income record.

The layout of the Rental Income Record makes it easy to see which rents have been paid.

The Expense Record records outgoing payments. It’s similar to your personal check register. It has
columns for the date, the payee (the company or person to whom Beverly writes the check), and the
amount being paid. In addition, there’s a column where Beverly can specify the budget category to
which the payment should be charged. Budget categories include Mortgage, Repairs, Utilities,
Taxes, Insurance, and so on. The Expense Record is shown in Figure 16.2.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 16.2 The Expense record.

The Annual Report uses data from the Rental Income Record and the Expense Record to summarize
how much money came in and how much went out during the year. All the rents are summed and
the result is displayed. The expenses are summed and displayed by budget category, which makes it
easy to see, for example, how much was spent on repairs during the year. Figure 16.3 shows the
Annual Report. Finally expenses are subtracted from income to show how much money Beverly
made (or lost) during the year.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

In Beverly’s existing system, the annual report isn’t created until the end of the year, and all the
rents and expenses for December have been recorded.

Beverly tells you she wants the program to pretty much duplicate what she’s currently doing on the
paper forms. She wants to be able to enter data about rents and expenses, and print out the Rental
and Expense records and the Annual Report.

Assumptions

Of course we’ve already made some simplifying assumptions. There are other kinds of data
associated with running an apartment building, such as damage deposits, depreciation, mortgage
interest, and income from late fees and the rental of laundry machines. We won’t consider these
details.

Figure 16.3 The Annual report.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There are also other kinds of reports Beverly might want, such as a Net Worth statement. It might
even be nice to have the program interface with an income tax program and online banking. And
from a big-picture perspective, there are commercial landlord programs available, so it might not be
smart for Beverly to contract to have one custom-written. We’ll ignore all of these distractions to
make the problem more tractable.

The CRC Modeling Team

In the early days of software development, a programming team would ask the client to write a
specification describing exactly what they wanted the program to do. Once they had completed the
specification, the client’s part of the job was over. The programmers would go back to their office
and write the program based on the specification. After some period of time (usually lengthy) they
would deliver the final result to the client.

This might seem like a reasonable approach, but the results were often disappointing for the client.
The programmers’ interpretation of the specification was often not what the client had expected.
The problem was that there wasn’t enough interaction between the client and the programmers.
Experience has shown that the more closely the client is involved in the design of the actual
program, the more satisfactory the outcome.

Object-Oriented Programming makes a close association with the client much easier because
objects in the program correspond so closely with objects in the real world. First the client defines
the objects that are important in the real world situation, which as we noted is called the problem
domain or business domain. Then the programmer translates these objects into objects in the
program.

The approach we’ll describe for an initial approach to finding user requirements is called CRC
modeling. CRC stands for Class-Requirements-Collaborators.

Members of the Team

CRC modeling is carried out by a team of people. The first step in beginning the CRC modeling
process is to get your team together. There are three kinds of people on the team:

• Business Domain Experts
• A facilitator
• Scribes

The majority of the people on a CRC team are business domain experts (BDEs), people who
understand the business and how the program will be used. For a large application there might be a
half-dozen or more BDEs, but for our simple landlord program the only BDEs are Beverly and her
accountant, a CPA named Bryan.

The facilitator guides the process of developing the CRC cards. Ideally the facilitator has
considerable experience in object-oriented design, the use of CRC modeling, and Object-Oriented
Programming. In addition, the facilitator should be someone who communicates well with people
and can encourage them to express their ideas.

The scribe writes down business details that aren’t recorded on the CRC cards. A large project may

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The scribe writes down business details that aren’t recorded on the CRC cards. A large project may
have several scribes. Our landlord project is small, so you yourself, in your role as independent
software developer, can play the role of both the facilitator and the scribe.

You’ll need to a meeting room with a nice big table for the CRC team. You’ll use this table to
spread out and arrange the CRC cards once they’ve been created.

The Problem Summary Statement

The goal of the CRC modeling process is to discover the classes that are appropriate for modeling
the problem. One way to begin this process is to create a formal written statement of the problem.
This statement is called the Problem Summary Statement.

As facilitator, you suggest that Beverly take a crack at writing this statement. Beverly comes up
with the following:

The Landlord program handles the financial data necessary for operating a small apartment
building. The program’s user should be able to input rents paid by individual tenants, and
expenses incurred in operating the building. On demand, the program should display a Rent
Record, which shows the rents paid by each tenant for each month; and an Expense Record,
which, for each expense, records the date, payee, amount, and budget category.

“How does that look to you?” you ask Bryan.

Bryan examines the statement. “You left out the Annual Report,” he tells Beverly.

“Good point,” she responds. She adds another sentence to the statement:

The program should also be able to display an Annual Summary, which shows total rents
paid for the year and total expenses paid in each budget category.

This amended Problem Summary Statement looks good to you, so you declare it finished. In a more
complicated situation many people would collaborate on the creation of the Problem Summary
Statement, but in this case Beverly knows the business well enough to get it right the first time,
with a little help from Bryan.

“So far so good,” you tell Beverly. “Now let’s see what classes we can extract from this statement.
Every noun is a potential candidate for becoming a class.” You make a list of all the nouns in the
Program Summary Statement. However, you cross a few of them out, such as “Landlord program”
and “financial data” because they’re too general or too vague. You’re left with the following list:

• Program user
• Rent
• Tenant
• Expense
• Apartment
• Building
• Rent Record
• Expense Record
• Date
• Payee
• Amount

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

• Budget Category
• Annual Summary
• Total Expenses

During the development process, we’ll find that some of these candidate classes will be deleted,
some will remain, and some new ones will be added. For the time being they’re a starting point.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents

Constructing the CRC Cards

A CRC card starts as a blank 4-by-6 or 3-by-5 filing card. This may seem like a mundane basis for such a high tech activity as object-oriented design, but filing cards have many advantages.
They’re cheap, readily available, and not threatening to non-programmers. No one cares if you make a mistake and need to throw one away. They can also be moved around on the table to make
the relationships among classes easier to visualize. Perhaps most importantly, their size is limited, so you can’t write too much on them. This forces you to keep things reasonably simple.

The name CRC comes from the three areas into which we divide the front of the card. These are:

• Class
• Responsibilities
• Collaborators

Figure 16.4 shows a CRC card. The top of the card holds the class name, the left side lists responsibilities, and the right side lists collaborators.

Figure 16.4 CRC card.

We’ve learned about classes in previous chapters. Responsibilities are the things a class needs to know and the actions it must take.
carry out its responsibilities. We’ll return to Responsibilities and Collaborators in a moment.

Classes

You tell everyone in your little CRC modeling group that the next step is to write the name of each of the candidate classes at the top of a CRC card. The three of you divide up the work and soon
there are CRC cards spread all over the table.

Have you missed any classes that should be in the program? It’s quite likely. Experience has shown that there are some categories that are often candidates for classhood. These are

• Any human beings associated with the program
• Any objects associated with the program
• Money used for specific purposes
• Input screens (often called forms)
• Output screens (often called reports)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

“These categories provide a different way of coming up with classes,” you explain. “Is there anything in any of these categories that we haven’t already put on a card?”

“Well, tenants and payees are the only human beings I need to deal with, and we’ve got both of them,” says Beverly. “Of course there are all sorts of other objects in the building, like bathtubs and
fire extinguishers. Do we need to include them?”

“I don’t think so,” you tell her. “Things like that are really just things you buy, so they’re recorded as expenses. The actual items you buy aren’t important to this program. You just care about
recording who sold you the item and how much you paid for it.”

“As for possible money items,” Bryan says, “the only money involved is for rents and expenses, and we’ve covered those already.”

“I think we’ve covered all the reports, too,” you say. “We’ve got the Rent Record, the Expense Record, and the Annual Report.”

“But we don’t have any input screens!” Beverly says. “Don’t we need some?”

“We certainly do,” you say. “You’ll need some sort of screen to enter rents, and another to enter expenses.”

“Won’t I also need some kind of main screen?” Beverly asks. “You know, like a main menu or something, where I tell the program what I want to do next.”

“Good point,” you tell her. “Let’s call it the User Interface Screen. So we’ll add three more classes.” You create three more CRC cards:

• Rent Input Screen
• Expense Input Screen
• User Interface Screen

The resulting cards are shown in Figure 16.5.

Responsibilities

“The next step,” you tell everyone, “is to add responsibilities to each card.”

“What are responsibilities again?” Bryan asks.

“Anything a class needs to know or do. For example, let’s look at class Tenant. Objects of this class represent real tenants that live in Beverly’s apartments. Tenants will know things, like their
names, addresses, and phone numbers. They may also do things. For example, we may need an object of the Tenant class to display its name. Any of these are potential responsibilities.”

You don’t explain that “things that a class knows” corresponds to class member data (attributes) in the program, and that “things that a class does” corresponds to member functions (methods).
Bryan and Beverly aren’t programmers, and don’t know or care about the technical terms.

We should note that some experts don’t consider attributes to be responsibilities, and put them in a separate place on the card, such as on the back. To keep things simple we’ll consider attributes to
be responsibilities, along with methods.

“Wait a minute,” says Beverly. “Isn’t a tenant’s main responsibility to pay the rent?”

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 16.5 The initial CRC cards.

“That’s true in a legal sense,” you say. “But we’re only talking about responsibilities within the program. As the user of the program you’re going to enter the rent amounts yourself, when you
receive a check from a real tenant. So the Tenant object in the program doesn’t have the responsibility of paying the rent.”

“I thought objects in the program corresponded to objects in real life,” Bryan says.

“It’s not an exact correspondence,” you explain. “Objects in the program are usually less complex than the equivalent object in the real world. Remember that we’re really only interested in
responsibilities that will be used by other parts of the program. If no other class cares about some responsibility, we don’t need it.”

“Then what about the phone number you mentioned?” asks Bryan. “No other part of the program is going to call anyone, so we don’t need that.”

“That’s a good point,” you tell Bryan. “We need the names of the tenants to identify them, and we’ll need their apartment numbers, so each rent amount can be placed in the correct row of the Rent
Record. But that’s probably all the data we need for each tenant. We can forget about phone numbers and other details.”

“But if it doesn’t pay the rent, what does a Tenant object do?” asks Beverly.

“Besides displaying its name, I’m not actually sure at this point,” you say. “We’ll learn more as we go along.”

“You don’t know yet?” asks Beverly incredulously. “But you’re supposed to be the expert.”

“No, you’re the experts in what you want the program to do,” you tell her. It’s a group effort. And no one gets everything right the first time. That’s why it’s important to go through this process.
We help each other discover things.”

“I have a another question,” Bryan says. “How do we get data into a Tenant object in the first place? Isn’t one of its responsibilities to find out what its name is and where it lives?”

“Yes, but we can do that in the constructor. Oh, sorry!” You realize you’ve used too technical a term. “I mean, Tenant objects can be born knowing their name and apartment number. We don’t
need to specify separate responsibilities for that.”

Previous Table of Contents

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Collaborators

You move on to collaborators, explaining that a collaborator is any other class that our class needs
to help do something. That is, one or more collaborators may be necessary to implement each “what
it does” responsibility. A collaborator may simply provide information, or it may carry out a more
extensive task.

“All the Tenant class does is display itself,” says Bryan. “I don’t see that it needs any collaborators
for that.”

You agree, but take time to explain that collaborators are usually shown only on the CRC card for
the class that initiates the collaboration, not on the card that carries out the request. Thus if class A
asks for some information from class B, then B is listed as a collaborator on class A’s CRC card,
but A isn’t listed on B’s card. “Maybe a collaborator should be called an assistant,” you conclude,
“to make it clearer the relationship only goes one way.”

The Tenant CRC Card

You write down the responsibilities you’ve discussed so far on the Tenant class CRC card, which is
shown in Figure 16.6. You leave the collaborator field blank.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 16.6 The initial CRC card for the Tenant class.

The Expense CRC Card

Next you pick up the card for the Expense class. “Responsibilities?” you ask.

“OK, says Bryan, I’m getting the hang of this. It’s all in the Problem Summary Statement. Each
Expense object needs to know the payee, the amount, and the budget category.”.

“And the date,” interjects Beverly.

“Oh, right,” says Bryan.

“Wait a minute,” Beverly points to the cards on the table. “We already have CRC cards for the
payee, date, amount, and budget category. They can’t be classes and also responsibilities of the
Expense class at the same time, can they?”

“Very perceptive,” you tell her. “And if you think about it, those four things are pretty simple. The
amount is just a single number, and the payee and budget are just strings.”

“You mean they’re not complex enough to be classes?” Bryan asks.

“It could be,” you say. “There’s usually no point creating a class for something that’s basically a
simple variable. It was probably a mistake to make CRC cards for them. The date could be a class,
but let’s say we’re going to treat it as two separate numbers, for the day and the month. So those
four things should be responsibilities, not classes.”

You throw the CRC cards for the Amount, Payee, Budget Category, and Date into the waste basket.
Then you write these names down in the Responsibilities column of the Expense CRC card,
changing Date to Month and Day. You don’t need a year column because the program handles data
for only one year at a time.

“Now, what about things an Expense object does?”

“We’ll want to see every expense displayed in the Expense Record,” says Beverly. “So an Expense
object should be able to display itself.” You add the Display responsibility to the card. Again there
doesn’t seem to be a need for any collaborators. The initial CRC card for the Expense class is
shown in Figure 16.7.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 16.7 The initial CRC card for the Expense class.

The Rent Input Screen CRC card

“OK, let’s try the Rent Input Screen,” you say. “What are its responsibilities?”

“It’s the screen I’ll use when I receive a rent check,” says Beverly. “I’ll input the date of the check,
the name of tenant who wrote it, and the amount. So those three things are what the class knows.”

“And what this class does,” Bryan says, “is to get this information from the user, and pass it along
to the Rent Record.”

“So that makes the Rent Record a collaborator,” Beverly says.

That’s good, you think. They’re catching on fast. You fill out the CRC card as they suggest, as
shown in Figure 16.8.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 16.8 The initial CRC card for the Rent Input Screen class.

The Rent Record CRC Card

“That leads to the Rent Record CRC card,” Beverly says.

“I have a feeling it’s going to be a little more complicated,” you say. “What are its
responsibilities?”

“It’s got to hold all the rent amounts, so it will need a list of rents,” Beverly says.

“And a way to insert a new rent, and a way to display itself,” adds Bryan. You decide no
collaborators are necessary, and come up with the CRC card shown in Figure 16.9.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 16.9 The initial CRC card for the Rent Record class.

“Hang on a minute,” says Bryan. “Shouldn’t we have made a Rent class CRC card before we did
the Rent Input Screen and the Rent Record? Rent is one of the nouns from our Problem Summary
Statement, and the Rent Record will need to collaborate with it.”

“Well, we could do it that way,” you tell Bryan. “The rent amount, and maybe also the month it
was for and the apartment number, could be attributes of a Rent class. But my sense is that the Rent
Record can take care of remembering which month and apartment number applies to which rent.
Then the rent is just a single number, and that’s probably not worth making into a class.” You hold
the Rent CRC card over the wastebasket. “Any objections?” No one says anything, so you drop it
in.

The Expense Input Screen CRC Card

You work through the remaining cards in a similar way, with Beverly and Bryan making initial
suggestions, which you sometimes modify.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Expense Input Screen is somewhat analogous to the Rent Input Screen class. However, because
an Expense is a class object rather than a single variable as a rent is, the Expense Input Screen
doesn’t need to “know” the details of an expense. Instead it creates a new Expense object, based on
the information typed in by the user, and passes this object along to the Expense Report for storage.
Figure 16.10 shows the Expense Input Screen CRC card.

Figure 16.10 The initial CRC card for the Expense Input Screen class.

he Expense Record CRC Card

The Expense Record CRC card contains a list of expenses. It will be responsible for inserting a new
object into the list when requested by the Expense Input Screen, and it will also need to display all
the expenses when asked. The result is shown in Figure 16.11.

The Annual Report CRC Card

The Annual Report displays a summary of the data in the Rent Record and the Expense Record. It
doesn’t need to “know” anything because all the data it needs is in these two records, which
therefore act as collaborators. The card is shown in Figure 16.12.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 16.11 The CRC card for the Expense Record class.

Figure 16.12 The initial CRC card for the Annual Report class.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

The User Interface CRC Card

The User Interface class takes care of interacting with the user. In fact, that’s its single
responsibility. It doesn’t need to know anything, but what it does, depending on the instructions
from the user, is insert data or display reports. More specifically, it tells the Rent Input Screen to
insert a rent amount, and the Expense Input Screen to insert an expense. It also displays the Rent
Record, Expense Record, or Annual Report. It must therefore collaborate with all these classes.
Figure 16.13 shows the User Interface CRC card.

“What about doing the Apartment class next?” Beverly asks.

“Hmm.” You think for a moment. “I’m not sure what responsibilities this class would have. None
of the classes we’ve done so far need to collaborate with the Apartment class. It’s true a real tenant
lives in a real apartment, but in this program all we really care about is the apartment number
associated with a tenant, and that’s just a single number. Maybe we could use an Apartment class
instead of a Tenant class, but we’ve already figured out the Tenant class.”

“I see what you mean,” Beverly says. “All right, let’s keep the Tenant class and forget about the
Apartment class. Now what about the Building class?”

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 16.13 The initial CRC card for the User Interface class.

“We don’t need that either,” you tell her. “The assumption in this program is that Beverly only
owns one building. So we never need to specify the building, or know anything about it. I’d suggest
scrapping it. Also, I don’t think we need a class called Program User. We already have one called
User Interface.”

After a some more discussion you toss away the CRC cards for Apartment, Building, and Program
User. You now have CRC cards for the following classes:

• User Interface
• Tenant
• Rent Input Screen
• Rent Record
• Expense
• Expense Input Screen
• Expense Record
• Annual Report

You spread these cards out on the table where everyone can see them.

The Scribe

During the whole process of constructing the CRC cards, the scribe (you yourself, in this case) has
been taking notes on details not captured on the CRC cards. These notes will be made available to
programmers and others later on, in case details of the operation aren’t clear.

Use Cases

Having created a set of CRC cards, the members of your group probably feel that they have
correctly identified all the relevant classes, responsibilities, and collaborators. However, they may
be overly optimistic. A different approach, called use cases, may help to uncover additional classes
and responsibilities.

A use case is a detailed description of a specific task carried out by the program.

An actor is a human (or organizational) entity that interacts with the program. Actors often initiate
tasks. In this program there’s only one actor, which we call the user.

Rereading the Problem Summary Statement (including the addition of the Annual Summary), we
can see that it mentions five activities. Each of these is a candidate for a use case. All these
activities are initiated by an actor: the user. Here they are:

1. User inputs an expense
2. User inputs a rent
3. User asks to see the Expense Record
4. User asks to see the Rent Record

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5. User asks to see the Annual Summary

Use Case 1: User Inputs an Expense

“OK,” you tell the CRC group. “Let’s take a new filing card and write down the detailed steps for
the user inputting an expense. This isn’t a CRC card, it’s just a handy place to make a list.”

“How do we begin?” asks Beverly.

“Ask yourself what’s the first thing that happens when the user inputs an expense. Who does what
to whom?”

“Well, I guess the first thing is that the user tells the User Interface object that she wants to input an
expense,” Beverly says, thinking out loud.

“Right, and then the User Interface calls up the Expense Input Screen,” adds Bryan.

“Good. Then what?” You prompt.

“The Expense Input Screen calls the Expense Record?” asks Bryan.

“There’s another detail we should interject here,” you say. “The Expense Input Screen needs to
create a new Expense object. Then it passes that object to the Expense Record.”

“OK,” says Bryan, “and then the Expense Record stores the new Expense object in its list.”

“Sounds good,” you say. You finish adding these steps to a card. The result is shown in Figure
16.14.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 16.14 Use-case card for inputting an expense.

Use Case 2: The User Inputs a Rent

“The use case for the user inputting a rent starts the same way,” Bryan says. “In fact, all the use
cases start with the user asking the user interface to do something.”

“True,” you say. “That’s because this is a relatively simple program. In a more complicated
situation we might have Manager actors and Salesmen actors and Client actors, as well as other
parts of the program initiating an action.”

“OK,” says Beverly, ignoring this complexity, “then the User Interface calls up the Rent Input
Screen, and the user types in the date, the tenant’s name, and the rent amount.”

“Then the Rent Input Screen passes that information to the Rent Record,” Bryan says, “and the
Rent Record stores it in its list of rents.” The resulting use case is shown in Figure 16.15.

Figure 16.15 Preliminary use case: user inputs a rent.

Trouble with the “User Inputs a Rent” Use Case

“I see a problem with that last step,” you say. “The Rent Record stores the rent according to
apartment number and month (see Figure 16.2). But the Rent Input Screen is passing the tenant’s
name to the Rent Record, not the apartment number.”

“Maybe the Rent Input Screen should get the apartment number from the user instead of the name,”
Bryan suggests.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

“That’s no good,” Beverly says. “When I get a check from someone, it has their name on it, not the
apartment number. I want to be able to type in the name.”

“If you type the tenant’s name, can’t the program figure out the apartment number?” asks Bryan.

“Where would it look that up?” you ask. “We don’t have a list of tenants anywhere.”

“Uh oh,” says Bryan gloomily. “Trouble.”

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

A New Tenant List Class

“Well, maybe we should have a tenant list,” says Beverly.

“I think you’re right,” you say. “We haven’t thought about it, but we need a place to put all the
Tenant objects after they’re created. They can’t just float around randomly in the program.” You
make a new CRC card with the title Tenant List. “What should this class know?” you ask.

“I can’t think of anything,” Beverly says. “It just stores the tenants.”

“But one of its responsibilities should be finding a tenant’s apartment number if you tell it the
tenant’s name,” says Bryan. “That’s what we need in the User inputs a rent use case.

“And it needs a way for the user to add a new tenant to it,” you say. “That’s how we’ll get new
tenants into the program.”

“And it should be able to display itself,” Beverly says. “It would be handy to see who’s living
where.”

You make a new CRC card for the Tenant List, as shown in Figure 16.16.

“All right,” you say. “Now we’ve added another class to the program, and we can finish up the use
case for the user entering a rent.”

A New Tenant Input Screen Class

“Not so fast,” Beverly says. “The user needs to insert tenants into the Tenant List object, but we
don’t have a tenant input screen.”

“My fault,” you say. “You’re absolutely right, we should add a class to represent that screen.”
Beverly, you think, is turning out to be very good at this. You make up a new CRC card, as shown
in Figure 16.17.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 16.17 A new CRC Card for the Tenant Input Screen class.

“Now,” you ask, “can we can get back to the use case for User inputting a rent payment?”

This time there are no objections, and you modify the card as shown in Figure 16.18.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 16.18 Final use case: user inputs a rent.

Use Case: The User Inputs a Tenant

“I hate to say this,” you tell the group, “but I think we need another use case.”

“I know what you’re thinking,” Beverly says. “Inputting the data for a new tenant.”

“Exactly.” You make up a new card for this use case, as shown in Figure 16.19

Figure 16.19 Use case: user inputs a tenant.

“Well at least this use case didn’t reveal the need for any new classes,” Beverly says, breathing a
sigh of relief.

Revised CRC card for Rent Input Screen

“But there’s something else,” Bryan says. “If the Rent Input Screen has to look up each tenant on
this new Tenant List object to find the tenant’s apartment number, doesn’t that make Tenant List a
collaborator of the Rent Input Screen?”

You think about that for a moment. “That’s a good point,” you tell Bryan. You revise the Rent
Input Screen CRC card, as shown in Figure 16.20.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 16.20 The revised CRC Card for the Rent Input Screen.

Revised CRC Card for User Interface Class

“Adding the Tenant List class is certainly having a ripple effect,” says Beverly. “We’re adding new
classes and use cases all over the place.”

“It’s chaotic!” Bryan says. “It’s making me uneasy. I thought we had everything all figured out, and
now we’ve added all kinds of new stuff.” He’s looking a little panic-stricken.

“That’s how this process is supposed to work,” you explain to him. “You can’t get all the classes
right just with the CRC cards, so you try the use-case approach to see if more classes show up. In
this case, they did.”

“It’s not a science at all,” complains Bryan. “More like a town meeting.”

“What’s worse,” you tell Bryan, “Is that we’re not done. If the user is going to be able to add a new
tenant, then what happens to the Interface object?”

“We need to add the Tenant Input Screen as a collaborator of the User Interface class,” Beverly
says.

You make the change, as shown in Figure 16.21.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 16.21 The revised CRC card for the User Interface class.

The Remaining Use Cases

Creating the remaining use cases doesn’t lead to any complications. Figures 16.22, 16.23, and 16.24
show how they look.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 16.22 Use case: user displays the Rent Record.

Figure 16.23 Use case: user displays the Expense Record.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 16.24 Use case: user displays the Annual Report.

You rewrite the original list of use cases:

• User inputs a tenant
• User inputs a rent payment
• User inputs an expense
• User displays the Rent Record
• User displays the Expense Record
• User displays the Annual Report

At this point our CRC modeling group has done its job, creating a group of CRC cards representing
classes, along with their responsibilities and collaborators. We’ll let Beverly and Bryan get back to
their normal lives. You, in your role as software developer, still have considerable work ahead of
you.

Simplifications

In the preceding discussion, we simplified the creation of the use cases by leaving out various
alternative scenarios that might occur if the user does something unusual. For example, what
happens if the user enters a rent payment and the program can’t fine a name on the tenant list that
matches the name the user types in? Or what happens if the user asks to see the Expense Report, but
no expense amounts have been entered? Typically, the alternative scenarios are numbered and
included in the same use case description. Figure 16.25 shows a use case that includes two
alternative scenarios.

Figure 16.25 Revised use case: user displays the Expense Record.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

During the creation of the use cases, it’s quite possible that the BDEs will come up with additions
they would like to make to the program’s capabilities. Beverly might realize, for example, that
being able to delete a tenant from the Tenant List might be useful, in case a real tenant moved out.
It might also be useful to be able to modify entries in all the reports. Including new program
capabilities would involve adding new responsibilities to some CRC cards and possibly adding new
classes. For simplicity, we haven’t included these possibilities in our example.

Another issue we’ve ignored is that of persistence. A persistent object is one whose data can be
saved to disk. In the Landlord program, you would probably want to make the Tenant List, the Rent
Record, and the Expense Record into persistent classes, so the information contained in them would
not be lost when the program terminates. Again, for simplicity, we ignore this feature.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Class Relationships

Class relationships describe how classes within a program interact with each other. They’re
important in object-oriented design because they help us understand how a program is organized,
and this understanding helps us write the actual code for the program. In the development of the
Landlord program we’ll apply what we learn about class relationships to creating a class diagram
for the program. The class diagram will then help with the actual coding.

When we use natural languages like English to describe object-oriented programs, we generally use
verbs to describe relationships between classes, while nouns are used to describe the classes
themselves. For example, one of the statements in the use cases described earlier is “Rent Input
Screen uses Tenant List to find apartment number.” Here the relationship between the Rent Input
Screen class and the Tenant List class is described by the verb “uses.”

This is another way in which the object-oriented paradigm is analogous to the real world. In
natural-language descriptions we use verbs to describe relationships between nouns: “Chris buys
groceries,” “Sandy asks Bob.”

In this section we’ll discuss three important class relationships: association, aggregation, and
generalization. Be aware that the names of some class relationships are different in the realm of
object-oriented design than they are in the rest of C++ programming. For example, we use the term
“inheritance” in C++, but “generalization” in OOD. OOD was originally developed in association
with the Smalltalk language, which has its own vocabulary.

If you do further reading in OOD, you should also know that, before the advent of UML, writers
used a variety of terms to describe class relationships. What the UML calls association, for
example, was called a uses relationship, an instance relationship, and other terms in older books.
Even today, different writers use relationship terms in different ways.

Attribute

Let’s start with a class relationship we already know about: attributes, which is another name for
member data. Basic variable types like int are typically used as attributes. However, it’s also
possible for attributes to consist of objects of other classes. For example, we’ve seen examples
where a string object called name is an attributes of the employee class.

An attribute is said to model the has a relationship. We say that an employee has a name, for
example.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Because the attribute is entirely enclosed within the class, we don’t usually consider it when
working with class diagrams, which depict relationships between classes. However, we’re
mentioning it here to clarify the difference between attributes and other class relationships. Some
writers say that an attribute class has a weak association with the class that contains it. This
differentiates attributes from normal associations, which we’ll look at next.

Association

An association is the most commonly-used relationship between objects. In an association, one
object uses another object to help it carry out a task. For this reason, association is often called a
uses relationship.

Use cases (or sometimes the Problem Summary Statement) may contain clues to associations.
Terms like “uses,” “sends to,” “gets from,” “depends on,” “requests,” or “tells” probably indicate
associations.

In our Landlord program, in the “User displays the Annual Report” use case described earlier, there
are the sentences “Annual Report gets sum of rents from Rent Record” and “Annual Report tells
Expense Record to display expenses.” From these statements we can infer that there are
associations between Annual Report and Rent Record, and between Annual Report and Expense
Record.

In UML class diagrams, associations are indicated by lines, as shown in Figure 16.26.

Figure 16.26 Association.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Classes that collaborate are usually related through associations. Thus we can use the collaboration
part of the CRC cards to indicate when an association exists on the class diagram.

Navigability

Associations can go both ways at once, with both classes being able to make requests of the other.
More often they go only one way, with class A asking class B to help it out, but class B not asking
class A for anything.

The direction of an association is called navigability, and is represented on UML class diagrams by
a small open arrowhead pointing toward the collaborator (B). If each class asks the other to do
something, then no arrows are used; just an unadorned line. Figure 16.27 shows association with
navigability from A to B.

Figure 16.27 Association with navigability.

Aggregation

The second major class relationship is aggregation. Aggregation means that one object (call it A)
contains other objects (say B, C, and D). Another way to say this is that B, C, and D are part of A.
Examples are an Address Book object containing many People objects, and a Seminar containing
many Students. Aggregation is sometimes called the part-of relationship.

In UML terminology the object that contains the parts is called the whole. In the paragraph above,
A is the whole, while B, C, and D are the parts.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In UML class diagrams, aggregation is depicted by lines from the parts meeting at an empty
diamond-shaped arrowhead pointing to the whole. This is shown in Figure 16.28.

Composition

Composition is a stronger kind of aggregation, in which the parts are necessary to the whole and are
more permanently bound to it. For example, a calculator object might be composed of a screen
object, some button objects, and an Integrated Circuit object.

Formally, a composition relationship must satisfy three criteria. First, as in aggregation, Classes B,
C, and D are part of A. Second, B, C, and D cannot be part of any other class. Third, B, C, and D
have lifetimes contemporaneous with A. That is, they are created when A is created, and destroyed
when A is destroyed.

Figure 16.28 Aggregation.

In UML class diagrams, composition is depicted with lines from the parts that meet at a filled-in
diamond-shaped arrowhead pointing to the whole. This is shown in Figure 16.29. (Composition
may also be shown by placing the icon for the contained class within the icon for the class that
contains it.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 16.29 Composition.

Objects and Classes

Association, aggregation, and composition are actually relationships between objects, not classes.
This is confusing, because the rectangular symbols on a class diagram seem to represent classes, not
objects. How then can lines between these rectangles represent relationships between objects? The
best way to think about this is to consider the rectangles as representing both a class and at the same
time objects of that class.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 16.1 The UML Multiplicity Symbols
Symbol Meaning
0 None
1 One
* Some (0 to infinity)
0..1 None or one
1..* One or more
2..4 Two, three, or four
7,11 Seven or eleven

Figure 16.30 shows some relationships between classes, with their associated multiplicities. Each
object of class A is an aggregate of exactly four objects of class B. Each object of class A may be

associated with zero or more objects of class C, and each object of class C is associated with
exactly one object of class A. Each object of class A is also associated with two, three, or four

objects of class D. Each object of class B may or may not be associated with one object of class E.

This information provided by the multiplicity notation will be useful to the programmer in writing
actual code.

Figure 16.30 Multiplicity.

Generalization

Generalization is another name for inheritance (actually public inheritance). In OOD the terms
superclass and subclass are often used instead of base class and derived class. The superclass is a
generalization of the subclass, in the same way the Mammal class is a generalization of the Tiger
class. Generalization is often called the is a kind of or simply the is a (or even is a) relationship.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

class. Generalization is often called the is a kind of or simply the is a (or even is a) relationship.

Generalization (unlike association and composition) is a relationship defined at the class level, not
the object level. Being defined on the class level means that all the objects of the class must obey

the relationship.

Generalizations can often be identified from use cases or the Problem Summary Statement by
looking for phrases like “is a kind of.”

In UML class diagrams, generalization is indicated by a line from the subclass (child) terminating
in an open triangle-shaped arrowhead pointing to the superclass (parent). Figure 16.31 shows how

this looks where B is a subclass of A.

There aren’t any generalization relationships in the Landlord program. However, you might
imagine a situation in which the three data input screen classes, “Tenant Input Screen,” “Rent Input

Screen,” and “Expense Input Screen,” are descended from a superclass called “Input Screen.” In
this case each of the three specific input screen classes could be described (perhaps in the Problem

Summary Statement) as a “kind of Input Screen class.”

In the Landlord program this generalization isn’t implemented because no responsibilities are
shared by these classes, despite their similar names. (If a GUI were used in the program, and the
input screens were windows, generalization would probably be more appropriate because there

would be more common responsibilities.)

Figure 16.31 Generalization.

Coupling and Cohesion

Coupling describes the strength of the connections between classes. In a good program design,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Coupling describes the strength of the connections between classes. In a good program design,
classes are coupled as loosely as possible. This makes it easier to understand the class relationships

and implement robust, maintainable code.

If you find two classes that are highly coupled (send many kinds of messages to each other, for
example), maybe you should consider merging them into a single class.

Attribution is considered to be the weakest coupling, followed by association. Aggregation and
generalization constitute stronger coupling.

Cohesion refers to the conceptual unity of a class. A class should represent a single, easily-
understood concept, and its responsibilities should all relate directly to this concept. Such a concept

is often called the key abstraction of the class. In a good design, all classes have tight cohesion.

If you find yourself with a class with loose cohesion (its purpose is vague, or involves two or more
major abstractions), you might consider breaking it into several classes.

Class Diagrams

Now that we’ve learned something about class relationships, let’s try to put together a class
diagram that depicts the class relationships for the Landlord program. This is our last step before we

start writing code.

Why do we need a class diagram? The CRC cards and the collection of use cases is not a very
convenient way to transmit information. The class diagram provides a clear and compact way to
show class relationships. Also, developing the class diagram gives us another chance to rethink

class relationships, and see if we’ve forgotten any classes or responsibilities.

Arranging the CRC Cards

Start off by arranging the CRC cards so each card is near its collaborators. Cards with more
collaborators should be placed in the center, cards with fewer collaborators near the periphery.

The way the cards are arranged on the table will be duplicated on the class diagram. It’s a lot easier
to move the cards around than to draw and redraw a bunch of rectangles on a sheet of paper or even

on a whiteboard.

Figure 16.32 shows a possible arrangement for the CRC cards for the Landlord program.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Figure 16.32 Landlord CRC cards arrangement.

Once you’ve arranged the CRC cards to your satisfaction, you can copy the contents of each CRC
card into a rectangle drawn on the class diagram. If you’re using a big piece of paper or a

whiteboard, you can include responsibilities within each class rectangle. Leave out collaborators,
which will be represented on the class diagram by relationships. Figure 16.33 shows a class

rectangle that includes this information.

If you want to keep everything on letter-size paper, then you’ll probably need to leave out the
responsibilities and include only a class name inside each class rectangle. You can show

responsibilities on separate sheets of paper.

Figure 16.33 Class rectangle with responsibilities.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Previous Table of Contents Next

Multiplicity

Sometimes exactly one object of class A relates to exactly one object of class B. In other situations,
many objects of class A will relate to one object of class B. The number of objects involved on both
sides of a relationship is called the multiplicity of the relationship. In class diagrams, symbols are
used at both ends of the relationship line to indicate multiplicity. Table 16.1 shows the UML
multiplicity symbols.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 16.2 List of Collaborations
Class Collaborator
Tenant none
Expense none
Rent Input Screen Tenant List, Rent Record
Rent Record none
Expense Input Screen Expense Record
Expense Record none
Tenant Input Screen Tenant List
Annual Report Rent Record, Expense Record
User Interface Tenant Input Screen, Tenant List, Rent Input Screen, Rent Record,

Expense Input Screen, Expense Record Annual Report

Wherever there was a collaboration in the CRC cards, draw a line representing an association from
the initiating class to the servant class. As we’ve seen, associations are drawn as lines from one

class to another, with a small arrowhead pointing to the server.

Aggregations in Landlord

We have two instances of aggregation in the Landlord program. Class Tenant List holds a number
of Tenant objects, and class Expense Record holds a number of Expense objects. (There’s no

aggregation in the Rent Record class because rents are basic variables, not class objects.)

There are no generalization relationships (inheritance) in the Landlord program, nor are there any
examples of composition.

Figure 16.34 shows the class diagram for the Landlord program. Because of space limitations it
shows only the class names, not their responsibilities.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 16.34 Class diagram for the Landlord program.

Writing the Program

Finally, armed with the CRC cards, use cases, the class diagram, and the detailed notes recorded by
the scribe, you can crank up your compiler and start writing the actual code.

The Header file

The best place to start coding is the .H file, where you define class interfaces, rather than the details
of their implementations. As we’ve discussed before, the declarations in the .H file are the public
part of the classes, the part that users of these classes see. The function bodies in the .CPP file are

the implementations, which should be invisible to class users.

The creation of the .H file is an intermediate step between design and the nitty-gritty of writing
method bodies. Here’s the LANDLORD.H file:

//landlord.h
//header file for landlord.cpp -- contains class declarations, etc.

#include <iostream>
#include <vector>

#pragma warning (disable:4786) //for set (microsoft compilers only)
#include <set>

#include <string>
#include <algorithm> //for sort()

#include <numeric> //for accumulate()

using namespace std;
/////////////////////////external methods///////////////////////

void getaLine(string& inStr); // get line of text
char getaChar(); // get a character

///////////////////////////class tenant/////////////////////////
class tenant

 {
 private:

 string name; // tenant’s name
 int aptNumber; // tenant’s apartment number

 // other tenant information (phone, etc.) could go here

 public:
 tenant(string n, int aNo);

 ~tenant();
 int getAptNumber();

 // needed for use in ‘set’
 friend bool operator < (const tenant&, const tenant&);
 friend bool operator == (const tenant&, const tenant&);

 // for I/O
 friend ostream& operator << (ostream&, const tenant&);

}; // end class tenant
///////////////////////class compareTenants/////////////////////

class compareTenants //function object -- compares tenants
 {

 public:
 bool operator () (tenant*, tenant*) const;

 };

////////////////////////class tenantList////////////////////////
class tenantList

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

class tenantList
 {

 private:
 // set of pointers to tenants

 set<tenant*, compareTenants> setPtrsTens;
 set<tenant*, compareTenants>::iterator iter;

 public:
 ~tenantList(); // destructor (deletes tenants)

 void insertTenant(tenant*); // put tenant on list
 int getAptNo(string); // return apartment number

 void display(); // display tenant list
 }; // end class tenantList

/////////////////////class tenantInputScreen////////////////////
class tenantInputScreen

 {
 private:

 tenantList* ptrTenantList;
 string tName;
 int aptNo;

 public:
 tenantInputScreen(tenantList* ptrTL) : ptrTenantList(ptrTL)

 { /* empty */ }
 void getTenant();

 }; //end class tenantInputScreen

//////////////////////////class rentRow/////////////////////////
// one row of the rent record: an address and 12 rent amounts

class rentRow
 {

 private:
 int aptNo;

 float rent[12];

 public:
 rentRow(int); // 1-arg ctor

 void setRent(int, float); // record rent for one month
 float getSumOfRow(); // return sum of rents in row

 // needed to store in ‘set’
 friend bool operator < (const rentRow&, const rentRow&);
 friend bool operator == (const rentRow&, const rentRow&);

 // for output
 friend ostream& operator << (ostream&, const rentRow&);

 }; // end class rentRow

//
class compareRows //function object -- compares rentRows

 {
 public:

 bool operator () (rentRow*, rentRow*) const;
 };

/////////////////////////class rentRecord///////////////////////
class rentRecord

 {
 private:

 // set of pointers to rentRow objects (one per tenant)
 set<rentRow*, compareRows> setPtrsRR;

 set<rentRow*, compareRows>::iterator iter;

 public:
 ~rentRecord();

 void insertRent(int, int, float);
 void display();

 float getSumOfRents(); // sum all rents in record
 }; // end class rentRecord

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }; // end class rentRecord

/////////////////////////class rentInputScreen//////////////////
class rentInputScreen

 {
 private:

 tenantList* ptrTenantList;
 rentRecord* ptrRentRecord;

 string renterName;
 float rentPaid;

 int month;
 int aptNo;

 public:
 rentInputScreen(tenantList* ptrTL, rentRecord* ptrRR) :

 ptrTenantList(ptrTL), ptrRentRecord(ptrRR)
 { /*empty*/ }

 void getRent(); //rent for one tenant and one month
 }; // end class rentInputScreen

////////////////////////////class expense///////////////////////
class expense

 {
 public:

 int month, day;
 string category, payee;

 float amount;
 expense()
 { }

 expense(int m, int d, string c, string p, float a) :
 month(m), day(d), category(c), payee(p), amount(a)

 { /*empty */ }
 // needed for use in ‘set’

 friend bool operator < (const expense&, const expense&);
 friend bool operator == (const expense&, const expense&);

 // needed for output
 friend ostream& operator << (ostream&, const expense&);

 }; // end class expense
//

class compareDates //function object--compares expenses
 {

 public:
 bool operator () (expense*, expense*) const;

 };
//
class compareCategories //function object--compares expenses

 {
 public:

 bool operator () (expense*, expense*) const;
 };

////////////////////////class expenseRecord/////////////////////
class expenseRecord

 {
 private:

 // vector of pointers to expenses
 vector<expense*> vectPtrsExpenses;
 vector<expense*>::iterator iter;

 public:
 ~expenseRecord();

 void insertExp(expense*);
 void display();

 float displaySummary(); // used by annualReport
 }; // end class expenseRecord

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Associations in Landlord

 }; // end class expenseRecord

/////////////////////class expenseInputScreen///////////////////
class expenseInputScreen

 {
 private:

 expenseRecord* ptrExpenseRecord;

 public:
 expenseInputScreen(expenseRecord*);

 void getExpense();
 }; // end class expenseInputScreen

///////////////////////class annualReport///////////////////////
class annualReport

 {
 private:

 rentRecord* ptrRR;
 expenseRecord* ptrER;
 float expenses, rents;

 public:
 annualReport(rentRecord*, expenseRecord*);

 void display();
 }; // end class annualReport

///////////////////////class userInterface//////////////////////
class userInterface

 {
 private:

 tenantList* ptrTenantList;
 tenantInputScreen* ptrTenantInputScreen;

 rentRecord* ptrRentRecord;
 rentInputScreen* ptrRentInputScreen;
 expenseRecord* ptrExpenseRecord;

 expenseInputScreen* ptrExpenseInputScreen;
 annualReport* ptrAnnualReport;

 char ch;

 public:
 userInterface();
 ~userInterface();
 void interact();

 }; // end class userInterfac
//////////////////////////end file landlord.h//////////////////////

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Generally speaking, collaborations in the CRC cards translate into associations in the class diagram.
Table 16.2 shows a list of collaborations, taken from the CRC cards.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Classes Declarations

Declaring classes is the easy part. Most class declarations arise directly from the classes depicted on
the CRC cards and on the class diagram. The names are changed from the multi-word English
versions to single-word computerese, so that, for example, Tenant List becomes tenantList.

A few new classes have been added. We probably won’t actually discover that we need classes
until we start to write method bodies, but it will be clearer to mention them here.

First, when looking over the attributes of the Rent Record, you will probably realize that each line
of the display consists of an address and 12 rent amounts. It seems reasonable to combine these
quantities into a class called rentRow. A more experienced facilitator might have suggested this in
the CRC phase, but no one gets everything right the first time.

Second, we’ll find that we’re storing pointers to objects in various kinds of STL containers. This
means that we must define comparison objects for these containers, as described in Chapter 15,
“The Standard Template Library.” These comparison objects are actually classes named
compareTenants, compareRows, compareDates, and compareCategories.

Attribute Declarations

Many of the attributes (member data) for each class can be determined from the Responsibilities
part of the CRC cards. For example, the Tenant CRC card shows Name and Apartment Number as
attributes. These translate into name and aptNumber in the tenant class declaration.

Other attributes are derived from the Collaborators field of the CRC cards. For example, the revised
version of the Rent Input Screen, shown in Figure 16.20, shows that Tenant List and Rent Record
are collaborators of this class. Collaborators on the CRC cards typically become attributes that are
pointers or references to other classes. This is because you can’t collaborate with someone if you
can’t find them. Thus the rentInputScreen class has the attributes ptrTenantList and ptrRentRecord, and
pointers to tenantList and rentRecord.

Aggregate Declarations

Aggregates are shown on the class diagram and referred to as lists on the CRC cards. Usually,
aggregates become containers that are attributes of the containing class (the whole).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Neither the CRC cards nor the class diagram suggest what sort of container should be used for these
lists. As a programmer, you’ll need to choose an appropriate container for each aggregate, whether
it’s a simple array, an STL container, or something else. In Landlord, we made the following
choices:

• The tenantList class contains an STL set of pointers to tenant objects.
• The rentRecord class contains a set of pointers to rentRow objects.
• The expenseRecord class contains a vector of pointers to expense objects.

We used sets for tenantList and rentRecord to provide fast access. We used a vector for expenseRecord
because we need to sort the Expense objects both by date and by category, and vectors (unlike sets)
can be sorted efficiently.

In all the aggregations, we chose to store pointers, rather than actual objects, to avoid the copying
that takes place every time an actual object is stored. Storing objects directly might be appropriate
in situations where the objects are small and there aren’t many of them. Of course, the performance
penalty for storing objects isn’t great in a small program like this, but for efficiency you should
always consider storing pointers.

Method Declarations

Many methods (member functions) can be inferred from the use cases. For example, let’s examine
the first use case card, “User inputs an expense,” shown in Figure 16.14.

The first statement on this card is “User tells the User Interface that she wants to input an expense.”
A single method in the userInterface class can take care of figuring out what the user wants to do,
such as inputting a rent or displaying expenses. This method can then dispatch control to the
appropriate object (rentInputScreen or expenseReport). We’ll call this method interact(), because it
interacts with the user.

The next three statements in the use case are “User Interface calls Expense Input Screen,” “User
types data into Expense Input Screen,” and “Expense input screen creates a new expense object.”
These statements can all be handled by a method of the class expenseInputScreen. We can call this
method getExpense().

The last two statements are “Expense Input Screen passes new Expense object to Expense Record,”
and “Expense Record inserts new Expense object into list of Expenses.” Again, these really
describe the same method of the expenseRecord class, which we can call insertExp(). This function will
take the new expense object as an argument and insert it into the container in expenseRecord.

Similar analysis of the other use cases will reveal most of the other methods.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

The .cpp Files

The .CPP files contain the method bodies whose declarations were given in the .H file. Writing the
code for these methods should be fairly straightforward at this point. You know the function name,
what it’s supposed to do, and probably the arguments passed to it.

We’ve separated the class method definitions from main(), which is in the short lordApp.cpp file. In
main() a userInterface object is created and its interact() method is called. Here’s the LORDAPP.CPP file:

// lordApp.cpp
// client file for apart program
#include “landlord.h”

int main()
 {
 userInterface theUserInterface;

 theUserInterface.interact();
 return 0;
 }
////////////////////////end file lordApp.cpp////////////////////

Finally, here’s the LANDLORD.CPP file, which contains all the class method definitions.

//landlord.cpp
//models the finances for an apartment building
#include “landlord.h” //for class declarations, etc.

//////////////////////global functions////////////////////////
void getaLine(string& inStr) // get line of text
 {
 char temp[21];
 cin.get(temp, 20, ‘\n’);
 cin.ignore(20, ‘\n’);
 inStr = temp;
 }
//--
char getaChar() // get a character
 {
 char ch = cin.get();
 cin.ignore(80, ‘\n’);
 return ch;
 }
//--

/////////////////////methods for class tenant///////////////////
tenant::tenant(string n, int aNo) : name(n), aptNumber(aNo)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

tenant::tenant(string n, int aNo) : name(n), aptNumber(aNo)
 { /* empty */ }
//--
tenant::~tenant()
 { /* empty */ }
//--
int tenant::getAptNumber()
 { return aptNumber; }
//--
bool operator < (const tenant& t1, const tenant& t2)
 { return t1.name < t2.name; }
//--
bool operator == (const tenant& t1, const tenant& t2)
 { return t1.name == t2.name; }
//--
ostream& operator << (ostream& s, const tenant& t)
 { s << t.aptNumber << ‘\t’ << t.name << endl; return s; }
//--

////////////////method for class tenantInputScreen//////////////
void tenantInputScreen::getTenant() //get tenant info
 {
 cout << “Enter tenant’s name (George Smith): “;
 getaLine(tName);
 cout << “Enter tenant’s apartment number (101): “;
 cin >> aptNo;
 cin.ignore(80, ‘\n’); //make tenant
 tenant* ptrTenant = new tenant(tName, aptNo);
 ptrTenantList->insertTenant(ptrTenant); //send to tenant list
 }
//
bool compareTenants::operator () (tenant* ptrT1,
 tenant* ptrT2) const
 { return *ptrT1 < *ptrT2; }
//--

///////////////////methods for class tenantList/////////////////
tenantList::~tenantList() //destructor
 {
 while(!setPtrsTens.empty()) //delete all tenants,
 { //remove ptrs from set
 iter = setPtrsTens.begin();
 delete *iter;
 setPtrsTens.erase(iter);
 }
 } // end ~tenantList()
//--
void tenantList::insertTenant(tenant* ptrT)
 {
 setPtrsTens.insert(ptrT); //insert
 }
//--
 int tenantList::getAptNo(string tName) //name on list?
 {
 int aptNo;
 tenant dummy(tName, 0);
 iter = setPtrsTens.begin();
 while(iter != setPtrsTens.end())
 {
 aptNo = (*iter)->getAptNumber(); //look for tenant
 if(dummy == **iter++) //on the list?
 return aptNo; //yes
 }
 return -1; //no
 }
//--
 void tenantList::display() //display tenant list
 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {
 cout << “\nApt#\tTenant name\n-------------------\n”;
 if(setPtrsTens.empty())
 cout << “***No tenants***\n”;
 else
 {
 iter = setPtrsTens.begin();
 while(iter != setPtrsTens.end())
 cout << **iter++;
 }
 } // end display()
//--

/////////////////////methods for class rentRow//////////////////
rentRow::rentRow(int an) : aptNo(an) // 1-arg constructor
 { fill(&rent[0], &rent[12], 0); }
//--
void rentRow::setRent(int m, float am)
 { rent[m] = am; }
//--
float rentRow::getSumOfRow() // sum of rents in row
 { return accumulate(&rent[0], &rent[12], 0); }
//--
bool operator < (const rentRow& t1, const rentRow& t2)
 { return t1.aptNo < t2.aptNo; }
//--
bool operator == (const rentRow& t1, const rentRow& t2)
 { return t1.aptNo == t2.aptNo; }
//--
ostream& operator << (ostream& s, const rentRow& an)
 {
 s << an.aptNo << ‘\t’; //print apartment number
 for(int j=0; j<12; j++) //print 12 rents
 {
 if(an.rent[j] == 0)
 s << “ 0 “;
 else
 s << an.rent[j] << “ “;
 }
 s << endl;
 return s;
 }

//
bool compareRows::operator () (rentRow* ptrR1,
 rentRow* ptrR2) const
 { return *ptrR1 < *ptrR2; }

///////////////////methods for class rentRecord/////////////////
rentRecord::~rentRecord() //destructor
 {
 while(!setPtrsRR.empty()) //delete rent rows,
 { //remove ptrs from set
 iter = setPtrsRR.begin();
 delete *iter;
 setPtrsRR.erase(iter);
 }
 }
//--
void rentRecord::insertRent(int aptNo, int month, float amount)
 {
 rentRow searchRow(aptNo); //temp row with same aptNo
 iter = setPtrsRR.begin(); //search setPtrsRR
 while(iter != setPtrsRR.end())
 {
 if(searchRow==**iter) //rentRow found?
 { //yes,
 (*iter)->setRent(month, amount); //put rent in row

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 (*iter)->setRent(month, amount); //put rent in row
 return;
 }
 else
 iter++;
 } //didn’t find it
 rentRow* ptrRow = new rentRow(aptNo); //make new row
 ptrRow->setRent(month, amount); //put rent in row
 setPtrsRR.insert(ptrRow); //put row in vector
 } // end insertRent()
//--
void rentRecord::display()
 {
 cout << “\nAptNo\tJan Feb Mar Apr May Jun “
 << “Jul Aug Sep Oct Nov Dec\n”
 << “---------------------------------”
 << “---------------------------------\n”;
 if(setPtrsRR.empty())
 cout << “***No rents***\n”;
 else
 {
 iter = setPtrsRR.begin();
 while(iter != setPtrsRR.end())
 cout << **iter++;
 }
 }
//--
float rentRecord::getSumOfRents() // return sum of all rents
 {
 float sumRents = 0.0;
 iter = setPtrsRR.begin();
 while(iter != setPtrsRR.end())
 {
 sumRents += (*iter)->getSumOfRow();
 iter++;
 }
 return sumRents;
 }
//--

/////////////////methods for class rentInputScreen//////////////
void rentInputScreen::getRent()
 {
 while(true)
 {
 cout << “Enter tenant’s name: “;
 getaLine(renterName);
 aptNo = ptrTenantList->getAptNo(renterName);
 if(aptNo > 0) // if name found,
 break; // get rent amount
 else // ask again
 cout << “No tenant with that name.\n”;
 }
 cout << “Enter amount paid (345.67): “;
 cin >> rentPaid;
 cin.ignore(80, ‘\n’);
 cout << “Enter month rent is for (1-12): “;
 cin >> month;
 cin.ignore(80, ‘\n’);
 month--; // internal is 0-11
 ptrRentRecord->insertRent(aptNo, month, rentPaid);
 } // end getRent()
//--

///////////////////methods for class expense////////////////////
bool operator < (const expense& e1, const expense& e2)
 { // compares dates
 if(e1.month == e2.month) // if same month,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if(e1.month == e2.month) // if same month,
 return e1.day < e2.day; // compare days
 else // otherwise,
 return e1.month < e2.month; // compare months
 }
//--
bool operator == (const expense& e1, const expense& e2)
 { return e1.month == e2.month && e1.day == e2.day; }
//--
ostream& operator << (ostream& s, const expense& exp)
 {
 s << exp.month << ‘/’ << exp.day << ‘\t’ << exp.payee << ‘\t’ ;
 s << exp.amount << ‘\t’ << exp.category << endl;
 return s;
 }
//--

//
bool compareDates::operator () (expense* ptrE1,
 expense* ptrE2) const
 { return *ptrE1 < *ptrE2; }
//--

//
bool compareCategories::operator () (expense* ptrE1,
 expense* ptrE2) const
 { return ptrE1->category < ptrE2->category; }
//--

//////////////////methods for class expenseRecord///////////////
expenseRecord::~expenseRecord() //destructor
 {
 while(!vectPtrsExpenses.empty()) //delete expense objects,
 { //remove ptrs from vector
 iter = vectPtrsExpenses.begin();
 delete *iter;
 vectPtrsExpenses.erase(iter);
 }
 }
//--
void expenseRecord::insertExp(expense* ptrExp)
 { vectPtrsExpenses.push_back(ptrExp); }
//--
void expenseRecord::display()
 {
 cout << “\nDate\tPayee\t\tAmount\tCategory\n”
 << “--\n”;
 if(vectPtrsExpenses.size() == 0)
 cout << “***No expenses***\n”;
 else
 {
 sort(vectPtrsExpenses.begin(), // sort by date
 vectPtrsExpenses.end(), compareDates());
 iter = vectPtrsExpenses.begin();
 while(iter != vectPtrsExpenses.end())
 cout << **iter++;
 }
 }
//---
float expenseRecord::displaySummary() // used by annualReport
 {
 float totalExpenses = 0;

 if(vectPtrsExpenses.size() == 0)
 {
 cout << “\tAll categories\t0\n”;
 return 0;
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
 // sort by category
 sort(vectPtrsExpenses.begin(),
 vectPtrsExpenses.end(), compareCategories());

 // for each category, sum the entries
 iter = vectPtrsExpenses.begin();
 string tempCat = (*iter)->category;
 float sum = 0.0;
 while(iter != vectPtrsExpenses.end())
 { //same category
 if(tempCat == (*iter)->category)
 sum += (*iter)->amount;
 else //different category
 {
 cout << ‘\t’ << tempCat << ‘\t’ << sum << endl;
 tempCat = (*iter)->category;
 sum = (*iter)->amount; // add last entry
 }
 totalExpenses += sum;
 iter++;
 } // end while
 cout << ‘\t’ << tempCat << ‘\t’ << sum << endl;
 return totalExpenses;
 } // end displaySummary()
 //---

//////////////methods for class expenseInputScreen//////////////
expenseInputScreen::expenseInputScreen(expenseRecord* per) :
 ptrExpenseRecord(per)
 { /*empty*/ }
 //---
void expenseInputScreen::getExpense()
 {
 int month, day;
 string category, payee;
 float amount;

 cout << “Enter month (1-12): “;
 cin >> month;
 cin.ignore(80, ‘\n’);
 cout << “Enter day (1-31): “;
 cin >> day;
 cin.ignore(80, ‘\n’);
 cout << “Enter expense category (Repairing, Utilities): “;
 getaLine(category);
 cout << “Enter payee “
 << “(Bob’s Hardware, Big Electric Co): “;
 getaLine(payee);
 cout << “Enter amount (39.95): “;
 cin >> amount;
 cin.ignore(80, ‘\n’);
 expense* ptrExpense = new
 expense(month, day, category, payee, amount);
 ptrExpenseRecord->insertExp(ptrExpense);
 }
//---

//////////////////methods for class annualReport/////////////
annualReport::annualReport(rentRecord* pRR,
 expenseRecord* pER) :
 ptrRR(pRR), ptrER(pER)
 { /* empty*/ }
//---
void annualReport::display()
 {
 cout << “Annual Summary\n--------------\n”;
 cout << “Income\n”;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 cout << “Income\n”;
 cout << “\tRent\t\t”;
 rents = ptrRR->getSumOfRents();
 cout << rents << endl;

 cout << “Expenses\n”;
 expenses = ptrER->displaySummary();
 cout << “\nBalance\t\t\t” << rents - expenses << endl;
 }
//---

////////////////methods for class userInterface//////////////
userInterface::userInterface()
 {
 //reports exist for the life of the program
 ptrTenantList = new tenantList;
 ptrRentRecord = new rentRecord;
 ptrExpenseRecord = new expenseRecord;
 ptrAnnualReport = new annualReport(ptrRentRecord,
 ptrExpenseRecord);
 }
//---
userInterface::~userInterface()
 {
 delete ptrTenantList;
 delete ptrRentRecord;
 delete ptrExpenseRecord;
 delete ptrAnnualReport;
 }
//---
void userInterface::interact()
 {
 while(true)
 {
 cout << “Enter ‘i’ to input data, \n”
 << “ ‘d’ to display a report, \n”
 << “ ‘q’ to quit program: “;
 ch = getaChar();
 if(ch==’i’) // enter data
 {
 cout << “Enter ‘t’ to add tenant, \n”
 << “ ‘r’ to record rent payment, \n”
 << “ ‘e’ to record expense: “;
 ch = getaChar();
 switch(ch)
 {
 //input screens exist only while being used
 case ‘t’: ptrTenantInputScreen =
 new tenantInputScreen(ptrTenantList);
 ptrTenantInputScreen->getTenant();
 delete ptrTenantInputScreen;
 break;
 case ‘r’: ptrRentInputScreen =
 new rentInputScreen(ptrTenantList, ptrRentRecord);
 ptrRentInputScreen->getRent();
 delete ptrRentInputScreen;
 break;
 case ‘e’: ptrExpenseInputScreen =
 new expenseInputScreen(ptrExpenseRecord);
 ptrExpenseInputScreen->getExpense();
 delete ptrExpenseInputScreen;
 break;
 default: cout << “Unknown input option\n”;
 break;
 } // end switch
 } // end if
 else if(ch==’d’) // display data

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 else if(ch==’d’) // display data
 {
 cout << “Enter ‘t’ to display tenants, \n”
 << “ ‘r’ to display rents\n”
 << “ ‘e’ to display expenses, \n”
 << “ ‘a’ to display annual report: “;
 ch = getaChar();
 switch(ch)
 {
 case ‘t’: ptrTenantList->display(); break;
 case ‘r’: ptrRentRecord->display(); break;
 case ‘e’: ptrExpenseRecord->display(); break;
 case ‘a’: ptrAnnualReport->display(); break;
 default: cout << “Unknown display option\n”;
 } // end switch
 } // end elseif
 else if(ch==’q’)
 return; // quit
 else
 cout << “Unknown option. Enter only ‘i’, ‘d’ or ‘q’\n”;
 } // end while
 } // end interact()
/////////////////////end of file apart.cpp///////////////////

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

More Simplifications

The code we show for Landlord, while quite lengthy, still contains many simplifications. It uses a
character-mode user interface, not the menus and windows of a modern Graphic User Interface.
There’s very little error-checking for the user’s input. Only one year’s worth of data can be
handled.

Interacting with the Program

After going to the trouble to design and write the Landlord program, you may be interested in
seeing some sample interaction with it. Here’s how it looks when Beverly uses it to insert a new
tenant’s name and apartment number. First she enters i followed by t, for “insert tenant.” Then she
enters the relevant data at the prompts. (The prompts often show the proper format in parentheses.)

Enter ‘i’ to input data,
 ‘d’ to display a report,
 ‘q’ to quit program: i
Enter ‘t’ to add a tenant,
 ‘r’ to record a rent payment,
 ‘e’ to record an expense: t
Enter tenant’s name (George Smith): Harry Ellis
Enter tenant’s apartment number: 101

After she’s entered all the tenants, she can display the tenant list (for brevity we show only five of
the twelve tenants):

Enter ‘i’ to input data,
 ‘d’ to display a report,
 ‘q’ to quit program: d
Enter ‘t’ to display tenants,
 ‘r’ to display rents,
 ‘e’ to display expenses,
 ‘a’ to display annual report: t

Apt# Tenant name

101 Harry Ellis
102 Wanda Brown
103 Peter Quan
104 Bill Vasquez
201 Jane Garth

To input a rent paid by a tenant, Beverly enters i, then r. (From now on we’ll leave out the option
lists displayed by the program.) The interaction looks like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Enter tenant’s name: Wanda Brown
Enter amount paid (345.67): 595
Enter month rent is for (1-12): 5

Here Wanda Brown has sent a check for the May rent in the amount of $595. (The tenant’s name
must be typed exactly as it appears in the tenant list. A smarter program would be more flexible.)

To see the entire Rent Record, Beverly types d followed by r. Here’s the result after the May rents
have been received (for brevity we show the rents for only five of Beverly’s 12 units):

AptNo Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

101 695 695 695 695 695 0 0 0 0 0 0 0
102 595 595 595 595 595 0 0 0 0 0 0 0
103 810 810 825 825 825 0 0 0 0 0 0 0
104 645 645 645 645 645 0 0 0 0 0 0 0
201 720 720 720 720 720 0 0 0 0 0 0 0

Notice that Beverly raised Peter Quan’s rent in March.

To input an expense, Beverly types i followed by e. Here’s some sample interaction:

Enter month: 1
Enter day: 15
Enter expense category (Repairing, Utilities): Utilities
Enter payee (Bob’s Hardware, Big Electric Co): P. G. & E.
Enter amount: 427.23

To display the Expense Report, you type d and e. Here we show only the beginning of the report:

Date Payee Amount Category
--
1/3 First MegaBank 5187.30 Mortgage
1/8 City Water 963.10 Utilities
1/9 Steady State 4840.00 Insurance
1/15 P. G. & E. 727.23 Utilities
1/22 Sam’s Hardware 54.81 Supplies
1/25 Ernie Glotz 150.00 Repairs
2/3 First MegaBank 5187.30 Mortgage

To display the annual report, Beverly enters d and a. Here’s a partial version, covering the first five
months of the year:

Annual Summary

Income
 Rents 42610.12
Expenses
 Advertising 95.10
 Insurance 4840.00
 Mortgage 25936.57
 Repairs 1554.90
 Supplies 887.22
 Utilities 7636.15

The expense categories are sorted in alphabetical order. In a real situation there would be many
more budget categories, including legal fees, taxes, travel expenses, landscaping, cleaning and
maintenance costs, and so on.

Prototyping

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Prototyping is the creation of user interface screens that are non-functional but are visually similar
to what will appear in the final program. Prototyping is especially important if you’re programming
for a target environment like Microsoft Windows, which uses a Graphic User Interface (GUI). User
input screens can be quite elaborate in this environment, and their design has an important effect on
user satisfaction.

In a GUI, designing user interface screens (actually Windows-style windows) must be approached
with the same care as the rest of the design process. You create prototype user interface screens,
and try them out on users and BDEs. If they’re not satisfactory, you modify them. If they’re still not
satisfactory, you modify them again. Only when the BDEs and users are satisfied will you integrate
the screens into the finished program.

Because our Landlord program uses a simple character-based interface, we haven’t dealt with
prototyping in this chapter. Even with such a simple interface, however, it would be a good idea to
show the client how you intend the interface to look before finalizing the program.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Final Thoughts

In a real project of any size, the design process would probably not go as smoothly as we’ve
portrayed it in this chapter. Several iterations of the CRC cards, use cases, and class diagram steps
may be necessary. Programmers may find themselves confused about what the business domain
experts intended, requiring a return to the design process while in the midst of programming. The
BDEs may change their minds about what they want in the middle of the design or programming
phases.

There are many other facets of object-oriented design that we haven’t mentioned, such as
interaction diagrams, state diagrams, and so on. We’ve really only scratched the surface of the
complex and rapidly-evolving field of object-oriented design. The bibliography has suggestions for
further reading.

Summary

Trial and error may be sufficient for simple OO programs. For more complex programs, a more
organized approach is usually necessary. In this chapter, we’ve shown several design
methodologies.

A problem summary statement defines what the user wants the program to do. From this statement,
any noun is a candidate to become a class.

CRC cards are filing cards representing classes. The letters stand for class, responsibilities,
collaborators. A class’s responsibilities are what it must know (data or attributes) and what it must
do (member functions or methods). A class’s collaborators are other classes it must call on to carry
out its responsibilities. A CRC modeling group, consisting of software specialists working with
experts on the business, prepares the CRC cards. Each card may represent a class (or object) in the
final program.

Use cases are detailed descriptions of program operations. Like CRC cards, they can help to
identify classes.

The relationships among classes can be shown in a class diagram. There are five major kinds of
class relationships.

One class may be an attribute of another.
In association, one class uses another.
In Aggregation, one class is contained within another.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Composition is a stronger form of aggregation, in which the parts are more necessary to the
whole.
In generalization, one class is derived from another using inheritance.

A class diagram represents all the classes and their relationships. Each kind of relationship is shown
using a different notation. Using the class diagram, the programmer can start to write the code for
the project.

Questions

Answers to questions can be found in Appendix G, “Answers to Questions and Exercises.”

1. True or false: Object-oriented design is concerned with the syntax of C++ program
statements.
2. CRC cards are used to (among other things)

a. summarize problems encountered in program code.
b. discover what constructors a class may have.
c. enumerate return types for class methods.
d. deduce what classes may be necessary in a program.

3. The letters CRC stand for c________, r________, and c_________.
4. True or false: after a set of CRC cards is created, new cards can be added at a later time.
5. Responsibilities are things a class must k________ and things a class must d________.
6. A facilitator

a. is more concerned with the program than its users.
b. should understand object-oriented design.
c. should discourage BDEs from expressing their own ideas.
d. does nothing but take notes.

7. If class A uses class B to help it carry out a task, then class B is called a ________ of class
A.
8. The Problem Summary Statement

a. is a short description of the real world problem a program is supposed to solve.
b. describes the attributes of classes in a program.
c. lists problems that have been found in the code.
d. contains nouns that may become classes in the program.

9. True or false: at least some of the CRC cards must be completed before the Problem
Summary Statement is written.
10. Classes in the program may correspond to

a. verbs in the Problem Summary Statement.
b. CRC cards.
c. reports or input screens.
d. names of famous programmers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

11. True or false: vague, general entities in the business domain are not good candidates for
classes in the program.
12. True or false: entities with a single attribute and no other responsibilities (except perhaps
displaying themselves) are good candidates for classes.
13. In the design process, which of the following may happen from time to time?

a. A use case will be completed before some CRC cards.
b. A class diagram will be drawn before some use cases are written.
c. Some code will be written before the class diagram is complete.
d. The header file will be changed while methods are still being coded.

14. Actors are ________ who interact with the ________.
15. A use case is

a. one class using another to carry out a task.
b. a detailed list of class attributes.
c. a convenient container for programming documents.
d. a description of the steps necessary for a class to carry out a responsibility.

16. Use cases may help to identify

a. additional classes.
b. additional responsibilities of existing classes.
c. collaborators of existing classes.
d. additional details of tasks performed by classes.

17. True or false: attributes are one of the major class relationships.
18. Assume there is an association between class A and class B. Also, objA is an object of
class A, and objB is an object of class B. Which of the following applies?

a. objA may send a message to objB.
b. Class B must be a subclass of class A, or vice versa.
c. objB must be an attribute of class A, or vice versa.
d. objB may help objA carry out a task.

19. If class B is a collaborator of class A, then it’s likely they are related by a(n) ________.
20. True or false: an association is a relationship between objects, as opposed to a
relationship between classes.
21. Aggregation means that

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

21. Aggregation means that

a. one class contains a number of other classes.
b. an object of one class contains a number of objects of another class.
c. one class is descended from another class.
d. an object of one class is descended from an object of another class.

22. Composition is a ________ form of ________.
23. True or false: although we talk about classes being related by association and
aggregation, we really mean that objects of these classes are so related.
24. The class relationship called generalization is the same as

a. inheritance.
b. aggregation.
c. association.
d. abstraction.

25. The direction of an association is called ________.
26. Multiplicity refers to the number of ________ a(n) ________ is related to.
27. The classes in a class diagram are represented by ________.
28. Prototyping refers to the creation of

a. CRC cards.
b. a class diagram.
c. a preliminary user interface.
d. the .H file.

29. The .H file contains class i________s, while the .CPP file contains the class i________s.
30. Classes should be ________ coupled but have ________ cohesion.

Projects

We don’t have room in this book for exercises involving the kind of projects involved in this
chapter. However, we list some suggestions for projects you may want to pursue on your own.

1. Reread the explanation of the Horse program from Chapter 10, “Pointers,” but do not look
at the code. Create CRC cards, use cases, and make a class diagram for this program. Use the
results to create a .H file, and compare your results with the program. There are many correct
results.
2. Reread the explanation of the Elev program from Chapter 13, “Multifile Programs,” but
do not look at the code. Create CRC cards, use cases, and make a class diagram for this
program. Use the results to create appropriate .H files. Compare your results with the
program.
3. Create CRC cards, use cases, and make a class diagram for a business situation you’re
familiar with, whether it’s horse trading, software consulting, or dealing rare comic books.
4. Create CRC cards, use cases, and make a class diagram for a program you’ve always
wanted to write, but haven’t had time for. If you can’t think of anything, try a simple word-
processing program, a game, or a genealogical program that allows you to enter information
about your ancestors and displays a family tree.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Introduction
About the Author
Preface

CHAPTER 1—THE BIG PICTURE

Why Do We Need Object-Oriented Programming?

Procedural Languages
The Object-Oriented Approach

Characteristics of Object-Oriented Languages

Objects
Classes
Inheritance
Reusability
Creating New Data Types
Polymorphism and Overloading

C++ and C
Laying the Groundwork
Summary
Questions

CHAPTER 2—C++ PROGRAMMING BASICS

Getting Started
Basic Program Construction

Functions
Program Statements
Whitespace

Output Using cout

String Constants

Directives

Preprocessor Directives
Header Files

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The using Directive

Comments

Comment Syntax
When to Use Comments
Alternative Comment Syntax

Integer Variables

Defining Integer Variables
Declarations and Definitions
Variable Names
Assignment Statements
Integer Constants
Output Variations
The endl Manipulator
Other Integer Types

Character Variables

Character Constants
Initialization
Escape Sequences

Input with cin

Variables Defined at Point of Use
Cascading <<
Expressions
Precedence

Floating Point Types

Type float
Type double and long double
Floating-Point Constants
The const Qualifier
The #define Directive

Type bool
The setw Manipulator

Cascading the Insertion Operator
Multiple Definitions
The IOMANIP Header File

Variable Type Summary

unsigned Data Types

Type Conversion

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Type Conversion

Automatic Conversions
Casts

Arithmetic Operators

The Remainder Operator
Arithmetic Assignment Operators
Increment Operators

Library Functions

Header Files
Library Files
Header Files and Library Files
Two Ways to Use #include

Summary
Questions
Exercises

CHAPTER 3—LOOPS AND DECISIONS

Relational Operators
Loops

The for Loop
Debugging Animation
for Loop Variations
The while Loop
Precedence: Arithmetic and Relational Operators
The do Loop
When to Use Which Loop

Decisions

The if Statement
The if...else Statement
The else...if Construction
The switch Statement
The Conditional Operator

Logical Operators

Logical and Operator
Logical OR Operator
Logical NOT Operator

Precedence Summary
Other Control Statements

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Other Control Statements

The break Statement
The continue Statement
The goto Statement

Summary
Questions
Exercises

CHAPTER 4—STRUCTURES

Structures

A Simple Structure
Declaring the Structure
Defining a Structure Variable
Accessing Structure Members
Other Structure Features
A Measurement Example
Structures Within Structures
A Card Game Example
Structures and Classes

Enumerations

Days of the Week
One Thing or Another
Organizing the Cards
Specifying Integer Values
Not Perfect
Other Examples

Summary
Questions
Exercises

CHAPTER 5—FUNCTIONS

Simple Functions

The Function Declaration
Calling the Function
The Function Definition
Comparison with Library Functions
Eliminating the Declaration

Passing Arguments to Functions

Passing Constants
Passing Variables

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Passing by Value
Structures as Arguments
Names in the Declaration

Returning Values from Functions

The return Statement
Returning Structure Variables

Reference Arguments

Passing Simple Data Types by Reference
A More Complex Pass by Reference
Passing Structures by Reference
Notes on Passing by Reference

Overloaded Functions

Different Numbers of Arguments
Different Kinds of Arguments

Inline Functions
Default Arguments
Variables and Storage Classes

Automatic Variables
External Variables
Static Variables
Storage

Returning by Reference

Function Calls on the Left of the Equal Sign
Don’t Worry Yet

const Function Arguments
Summary
Questions
Exercises

CHAPTER 6—OBJECTS AND CLASSES

A Simple Class

Classes and Objects
Declaring the Class
Using the Class
Calling Member Functions

C++ Objects As Physical Objects

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C++ Objects As Physical Objects

Widget Parts as Objects
Circles as Objects

C++ Objects As Data Types
Constructors

A Counter Example
A Graphics Example
Destructors

Objects as Function Arguments

Overloaded Constructors
Member Functions Defined Outside the Class
Objects As Arguments

The Default Copy Constructor
Returning Objects from Functions

Arguments and Objects

A Card–Game Example
Structures and Classes
Classes, Objects, and Memory
Static Class Data

Uses of Static Class Data
An Example of Static Class Data
Separate Declaration and Definition

const and Classes

const Member Functions
const Objects

What Does It All Mean?
Summary
Questions
Exercises

CHAPTER 7—ARRAYS AND STRINGS

Array Fundamentals

Defining Arrays
Array Elements
Accessing Array Elements
Averaging Array Elements
Initializing Arrays
Multidimensional Arrays

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Passing Arrays to Functions

Function Declaration with Array Argument

Arrays of Structures

Arrays As Class Member Data
Arrays of Objects

Arrays of English Distances
Arrays of Cards

C-Strings

C-string Variables
Avoiding Buffer Overflow
String Constants
Reading Embedded Blanks
Reading Multiple Lines
Copying a String the Hard Way
Copying a String the Easy Way
Arrays of Strings
Strings As Class Members
A User-Defined String Type

The Standard C++ string Class

Defining and Assigning string Objects
Input/Output with string Objects
Finding string Objects
Modifying string Objects
Comparing string Objects
Accessing Characters in string Objects
Other string Functions

Summary
Questions
Exercises

CHAPTER 8—OPERATOR OVERLOADING

Overloading Unary Operators

The operator Keyword
Operator Arguments
Operator Return Values
Nameless Temporary Objects
Postfix Notation

Overloading Binary Operators

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Overloading Binary Operators

Arithmetic Operators
Concatenating Strings
Multiple Overloading
Comparison Operators
Arithmetic Assignment Operators
The Subscript Operator []

Data Conversion

Conversions Between Basic Types
Conversions Between Objects and Basic Types
Conversions Between Objects of Different Classes
Conversions: When to Use What

Pitfalls of Operator Overloading and Conversion

Use Similar Meanings
Use Similar Syntax
Show Restraint
Avoid Ambiguity
Not All Operators Can Be Overloaded

Keywords explicit and mutable

Preventing Conversions with explicit
Changing const Object Data Using mutable

Summary
Questions
Exercises

CHAPTER 9—INHERITANCE

Derived Class and Base Class

Specifying the Derived Class
Accessing Base Class Members
The protected Access Specifier

Derived Class Constructors
Overriding Member Functions
Which Function Is Used?

Scope Resolution with Overridden Functions

Inheritance in the English Distance Class

Operation of ENGLEN
Constructors in DistSign
Member Functions in DistSign

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Abetting Inheritance

Class Hierarchies

“Abstract” Base Class
Constructors and Member Functions

Inheritance and Graphics Shapes
Public and Private Inheritance

Access Combinations
Access Specifiers: When to Use What

Levels of Inheritance
Multiple Inheritance

Member Functions in Multiple Inheritance

private Derivation in EMPMULT

Constructors in Multiple Inheritance

Ambiguity in Multiple Inheritance
Containership: Classes Within Classes
Inheritance and Program Development
Summary
Questions
Exercises

CHAPTER 10—POINTERS

Addresses and Pointers
The Address-of Operator &

Pointer Variables
Syntax Quibbles
Accessing the Variable Pointed To
Pointer to void

Pointers and Arrays

Pointer Constants and Pointer Variables

Pointers and Functions

Passing Simple Variables
Passing Arrays
Sorting Array Elements

Pointers and C-type Strings

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Pointers and C-type Strings

Pointers to String Constants
Strings As Function Arguments
Copying a String Using Pointers
Library String Functions
The const Modifier and Pointers
Arrays of Pointers to Strings

Memory Management: new and delete

The new Operator
The delete Operator
A String Class Using new

Pointers to Objects

Referring to Members
Another Approach to new
An Array of Pointers to Objects

A Linked List Example

A Chain of Pointers
Adding an Item to the List
Displaying the List Contents
Self-Containing Classes
Augmenting linklist

Pointers to Pointers

Sorting Pointers
The person** Data Type
Comparing Strings

A Parsing Example

Parsing Arithmetic Expressions
The PARSE Program

Simulation: A HORSE Race
Debugging Pointers
Summary
Questions
Exercises

CHAPTER 11—VIRTUAL FUNCTIONS

Finding An object’s class with TYPEID()11
Virtual Functions

Normal Member Functions Accessed with Pointers

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Virtual Member Functions Accessed with Pointers
Late Binding
Abstract Classes and Pure Virtual Functions
Virtual Functions and the person Class
Virtual Functions in a Graphics Example
Virtual Destructors
Virtual Base Classes

Friend Functions

Friends As Bridges
Breaching the Walls
English Distance Example
friends for Functional Notation
friend Classes

Static Functions

Accessing static Functions
Numbering the Objects
Investigating Destructors

Assignment and Copy Initialization

Overloading the Assignment Operator
The Copy Constructor
A Memory-Efficient String Class

The this Pointer

Accessing Member Data with this
Using this for Returning Values
Revised strimem Program

Dynamic Type Information

Checking the Type of a Class with dynamic_cast
Changing Pointer Types with dynamic_cast
The typeid Operator

Summary
Questions
Exercises

CHAPTER 12—STREAMS AND FILES

Stream Classes

Advantages of Streams
The Stream Class Hierarchy
The ios Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The istream Class
The ostream Class
The iostream and the _withassign Classes

Stream Errors

Error-Status Bits
Inputting Numbers
Too Many Characters
No-Input Input
Inputting Strings and Characters
Error-Free Distances

Disk File I/O with Streams

Formatted File I/O
Strings with Embedded Blanks
Character I/O
Binary I/O
The reinterpret_cast Operator
Closing Files
Object I/O
I/O with Multiple Objects

File Pointers

Specifying the Position
Specifying the Offset
The tellg() Function

Error Handling in File I/O

Reacting to Errors
Analyzing Errors

File I/O with Member Functions

Objects That Read and Write Themselves
Classes That Read and Write Themselves

Overloading the Extraction and Insertion Operators

Overloading for cout and cin
Overloading for Files

Memory As a Stream Object
Command-Line Arguments
Printer Output
Summary
Questions
Exercises

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CHAPTER 13—MULTIFILE PROGRAMS

Reasons for Multifile Programs

Class Libraries
Organization and Conceptualization

Creating a Multifile Program

Header Files
Directory
Projects

A Very Long Number Class

Numbers As Strings
The Class Specifier
The Member Functions
The Application Program

A High-Rise elevator Simulation

Running the ELEV Program
Designing the System
Listings for ELEV
Elevator Strategy

A Water-Distribution System

Components of a Water System
Flow, Pressure, and Back Pressure
Component Input and Output
Making Connections
Simplifying Assumptions
Program Design
Programming the Connections
Base and Derived Classes
The Component Base Class
The Flows-Into Operator
Derived Classes
The Switch Class
The PIPE_APP.CPP File

Summary
Questions
Projects

CHAPTER 14—TEMPLATES AND EXCEPTIONS

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Function Templates

A Simple Function Template
Function Templates with Multiple Arguments

Class Templates

Class Name Depends on Context
A Linked List Class Using Templates
Storing User-Defined Data Types

Exceptions

Why Do We Need Exceptions?
Exception Syntax
A Simple Exception Example
Multiple Exceptions
Exceptions with the Distance Class
Exceptions with Arguments
Extracting Data from the Exception Object
The bad_alloc Class
Exception Notes

Summary
Questions
Exercises

CHAPTER 15—THE STANDARD TEMPLATE LIBRARY

Introduction to the STL

Containers
Algorithms
Iterators
Potential Problems with the STL

Algorithms

The find() Algorithm
The count() Algorithm
The sort() Algorithm
The search() Algorithm
The merge() Algorithm
Function Objects
The for_each() Algorithm
The transform() Algorithm

Sequential Containers

Vectors
Lists

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Deques

Iterators

Iterators as Smart Pointers
Iterators as an Interface
Matching Algorithms with Containers
Iterators at Work

Specialized Iterators

Iterator Adapters
Stream Iterators

Associative Containers

Sets and Multisets
Maps and Multimaps

Storing User-Defined Objects

A Set of person Objects
A List of person Objects

Function Objects

Predefined Function Objects
Writing Your Own Function Objects
Function objects Used to Modify Container Behavior

Summary

Questions

Exercises

CHAPTER 16—OBJECT-ORIENTED DESIGN

Our Approach to OOD

CRC Cards
Use Cases
Class Diagrams

The Programming Problem

Hand-Written Forms
Assumptions

The CRC Modeling Team

Members of the Team

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Problem Summary Statement

Constructing the CRC Cards

Classes
Responsibilities
Collaborators
The Tenant CRC Card
The Expense CRC Card
The Rent Input Screen CRC card
The Rent Record CRC Card
The Expense Input Screen CRC Card
he Expense Record CRC Card
The Annual Report CRC Card
The User Interface CRC Card
The Scribe

Use Cases

Use Case 1: User Inputs an Expense
Use Case 2: The User Inputs a Rent
Trouble with the “User Inputs a Rent” Use Case
The Remaining Use Cases
Simplifications

Class Relationships

Attribute
Association
Navigability
Aggregation
Composition
Objects and Classes
Multiplicity
Generalization
Coupling and Cohesion

Class Diagrams

Arranging the CRC Cards
Associations in Landlord
Aggregations in Landlord

Writing the Program

The Header file
The .cpp Files
More Simplifications

Interacting with the Program
Prototyping
Final Thoughts

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Summary
Questions
Projects

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Appendix G
Appendix H
Index

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Waite Group's Object-Oriented Programming in C++, Third Edition
(Publisher: Macmillan Computer Publishing)
Author(s): Robert Lafore
ISBN: 157169160x
Publication Date: 11/25/98

Previous Table of Contents Next

Introduction
Object-Oriented Programming (OOP) is the most dramatic innovation in software development in
the last decade. It ranks in importance with the development of the first higher-level languages at
the dawn of the computer age. Sooner or later, every programmer will be affected by the object-
oriented approach to program design.

Advantages of OOP

Why is everyone so excited about OOP? The chief problem with computer programs is complexity.
Large programs are probably the most complicated entities ever created by humans. Because of this
complexity, programs are prone to error, and software errors can be expensive and even life
threatening (in air-traffic control, for example). Object-Oriented Programming offers a new and
powerful way to cope with this complexity. Its goal is clearer, more reliable, more easily
maintained programs.

Languages and Development Platforms

Of the Object-Oriented Programming languages, C++ is by far the most widely used. (Java, a recent
addition to the field of OO languages, lacks certain features, such as pointers, that make it less
powerful and versatile than C++.)

In past years the standards for C++ have been in a state of evolution. This meant that each compiler
vendor handled certain details differently. However, in November 1997, the ANSI/ISO C++
standards committee approved the final draft of what is now known as Standard C++. (ANSI stands
for American National Standards Institute, and ISO stands for International Standards Institute.)
Standard C++ adds many new features to the language, such as the Standard Template Library
(STL). In this book we follow Standard C++ (except for a few places which we’ll note as we go
along).

The most popular development environments for C++ are manufactured by Microsoft and Borland
and run on the various flavors of Microsoft Windows. In this book we’ve attempted in ensure that
all example programs run on the current versions of both Borland and Microsoft compilers. (See
Appendixes C and D for more on these compilers.)

What this Book Does

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This book teaches Object-Oriented Programming with the C++ programming language, using either
Microsoft or Borland compilers. It is suitable for professional programmers, students, and kitchen-
table enthusiasts.

New Concepts

OOP involves concepts that are new to programmers of traditional languages such as Pascal, Basic,
and C. These ideas, such as classes, inheritance, and polymorphism, lie at the heart of Object-
Oriented Programming. But it’s easy to lose sight of these concepts when discussing the specifics
of an object-oriented language. Many books overwhelm the reader with the details of language
features, while ignoring the reason these features exist. This book attempts to keep an eye on the
big picture and relate the details to the larger concepts.

The Gradual Approach

We take a gradual approach in this book, starting with very simple programming examples and
working up to full-fledged object-oriented applications. We introduce new concepts slowly so that
you will have time to digest one idea before going on to the next. We use figures whenever possible
to help clarify new ideas. There are questions and programming exercises at the end of most
chapters to enhance the book’s usefulness in the classroom. Answers to the questions and to the
first few (starred) exercises can be found in Appendix D. The exercises vary in difficulty to pose a
variety of challenges for the student.

What You Need to Know to Use this Book

You can use this book even if you have no previous programming experience. However, such
experience, in BASIC or Pascal, for example, certainly won’t hurt.

You do not need to know the C language to use this book. Many books on C++ assume that you
already know C, but this one does not. It teaches C++ from the ground up. If you do know C, it
won’t hurt, but you may be surprised at how little overlap there is between C and C++.

You should be familiar with the basic operations of Microsoft Windows, such as starting
applications and copying files.

Software and Hardware

You should have the latest version of either the Microsoft or the Borland C++ compiler. Both
products come in low-priced “Learning Editions” suitable for students.

Appendix C provides detailed information on operating the Microsoft compiler, while Appendix D
does the same for the Inprise (Borland) product. Other compilers will probably handle most of the
programs in this book as written, if they adhere to Standard C++.

Your computer should have enough processor speed, memory, and hard disk space to run the
compiler you’ve chosen. You can check the manufacturer’s specifications to determine these
requirements.

Console-Mode Programs

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The example programs in this book are console-mode programs. They run in a character-mode
window within the compiler environment, or directly within an MS-DOS box. This avoids the
complexity of full-scale graphics-oriented Windows programs. Go for It!

You may have heard that C++ is difficult to learn. It’s true that it might be a little more challenging
than BASIC, but it’s really quite similar to other languages, with two or three “grand ideas” thrown
in. These new ideas are fascinating in themselves, and we think you’ll have fun learning about
them. They are also becoming part of the programming culture; they’re something everyone should
know a little bit about, like evolution and psychoanalysis. We hope this book will help you enjoy
learning about these new ideas, at the same time that it teaches you the details of programming in
C++.

A Note to Teachers

Teachers, and others who already know C, may be interested in some details of the approach we
use in this book and how it’s organized.

Standard C++

We’ve revised all the programs in this book to make them compatible with Standard C++. This
involved, at a minimum, changes to header files, the addition of namespace designation, and
making return type . Many programs received more extensive modifications, including the
substitution in many places of the new class for the old C-style strings.

We devote a new chapter to the STL (Standard Template Library), which is now included in
Standard C++.

Object-Oriented Design

Students are frequently mystified by the process of breaking a programming project into
appropriate classes. For this reason we’ve added a chapter on object-oriented design. This chapter is
placed near the end of the book, but we encourage students to skim it earlier to get the flavor of
OOD. Of course, small programs don’t require such a formal design approach, but it’s helpful to
know what’s involved even when designing programs in your head. C++ is not the same as C.

Some institutions want their students to learn C before learning C++. In our view this is a mistake.
C and C++ are entirely separate languages. It’s true that their syntax is similar, and C is actually a
subset of C++. But the similarity is largely a historical accident. In fact, the basic approach in a C
program is radically different from that in a C program.

C++ has overtaken C as the preferred language for serious software development. Thus we don’t
believe it is necessary or advantageous to teach C before teaching C++. Students who don’t know C
are saved the time and trouble of learning C and then learning C++, an inefficient approach.
Students who already know C may be able to skim parts of some chapters, but they will find that a
remarkable percentage of the material is new.

Optimize Organization for OOP

We could have begun the book by teaching the procedural concepts common to C and C++, and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We could have begun the book by teaching the procedural concepts common to C and C++, and
moved on to the new OOP concepts once the procedural approach had been digested. That seemed
counterproductive, however, because one of our goals is to begin true Object-Oriented
Programming as quickly as possible. Accordingly, we provide a minimum of procedural
groundwork before getting to objects in Chapter 7. Even the initial chapters are heavily steeped in
C++, as opposed to C, usage.

We introduce some concepts earlier than is traditional in books on C. For example, structures are a
key feature for understanding C++ because classes are syntactically an extension of structures. For
this reason, we introduce structures in Chapter 5 so that they will be familiar when we discuss
classes.

Some concepts, such as pointers, are introduced later than in traditional C books. It’s not necessary
to understand pointers to follow the essentials of OOP, and pointers are usually a stumbling block
for C and C++ students. Therefore, we defer a discussion of pointers until the main concepts of
OOP have been thoroughly digested.

Substitute Superior C++ Features

Some features of C have been superseded by new approaches in C++. For instance, the and
functions, input/output workhorses in C, are seldom used in C++ because and do a better job.
Consequently, we leave out descriptions of these functions. Similarly, constants and macros in C
have been largely superseded by the qualifier and inline functions in C++, and need be mentioned
only briefly.

Minimize Irrelevant Capabilities

Because the focus in this book is on Object-Oriented Programming, we can leave out some features
of C that are seldom used and are not particularly relevant to OOP. For instance, it isn’t necessary
to understand the C bit-wise operators (used to operate on individual bits) to learn Object-Oriented
Programming. These and a few other features can be dropped from our discussion, or mentioned
only briefly, with no loss in understanding of the major features of C++.

The result is a book that focuses on the fundamentals of OOP, moving the reader gently but briskly
toward an understanding of new concepts and their application to real programming problems.

Programming Examples

There are numerous listings of code scattered throughout the book that you will want to try out for
yourself. The program examples are available for download by going to Macmillan Computer
Publishing’s web site, http://www.mcp.com/product_support, and go to this book’s page by
entering the ISBN and clicking Search. To download the programming examples, just click the
appropriate link on the page.

Programming Exercises

One of the major changes in the second edition was the addition of numerous exercises. Each of
these involves the creation of a complete C++ program. There are roughly 12 exercises per chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

these involves the creation of a complete C++ program. There are roughly 12 exercises per chapter.
Solutions to the first three or four exercises in each chapter are provided in Appendix D. For the
remainder of the exercises, readers are on their own, although qualified instructors can suggested
solutions. Please visit Macmillan Computer Publishing’s Web site,
http://www.mcp.com/product_support, and go to this book’s page by entering the ISBN and
clicking Search. Click on the appropriate link to receive instructions on downloading the encrypted
files and decoding them.

The exercises vary considerably in their degree of difficulty. In each chapter the early exercises are
fairly easy, while later ones are more challenging. Instructors will probably want to assign only
those exercises suited to the level of a particular class.

Previous Table of Contents Next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

